
NOVEL DEGREES OF FREEDOM, CONSTRAINTS, AND STIFFNESS FORMULATION

FOR PHYSICALLY BASED ANIMATION

A Dissertation

by

NICHOLAS J. WEIDNER

Submitted to the Graduate and Professional School of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Shinjiro Sueda
Committee Members, John Keyser

Timothy A. Davis
Vinayak Krishnamurthy

Head of Department, Scott Schaefer

May 2022

Major Subject: Computer Science

Copyright 2022 Nicholas J. Weidner



ABSTRACT

I identify and improve upon three distinct components of physically simulated systems with

the aim of increasing both robustness and efficiency for the application of computer graphics: A)

the degrees of freedom of a system; B) the constraints put on that system; C) and the stiffness

that derives from force differentiation and in turn enables implicit integration techniques. These

three components come up in many implementations of physics-based simulation in computer an-

imation. From a combination of these components, I explore four novel ideas implemented and

experimented on over the course of my graduate degree. Eulerian-on-Lagrangian Cloth Simula-

tion resolves a longstanding problem of simulating contact-mediated interaction of cloth and sharp

geometric features by exploring a combination of all three of our components. Bilateral Staggered

Projections for Joints explores the constrained degrees of freedom of articulated rigid bodies in a

reduced state to extend the popular Staggered Projects technique into a novel formulation for rapid

evaluation of frictional articulated dynamics. Condensation Jacobian with Adaptivity looks at us-

ing reduction methods to improve the efficiency of soft body deformations by allowing larger time

step in dynamics simulations. Finally, Ldot: Boosting Deformation Performance with Cholesky

Extrapolation explores the inner workings of sparse direct solvers to introduce a Cholesky factor-

ization that is linearly extrapolated in time, which can improve the performance when encapsulated

inside an iterative nonlinear solver.
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1. INTRODUCTION

Physics-based animation is an important area of research in the field of computer graphics. In

the early days of the visual effects (VFX) industry, many non physics based tool were created. Al-

though very useful, these tools tended to be overly tedious or unsuited when it came to replicating

physical phenomena, so it was not before long that physics became a staple in the development of

many tools. With the advancement of algorithms, solvers, and hardware, simulating physical mo-

tion became the standard way to generate complex animation. The continued industry explosion in

VFX accelerated this development even further. Now many of the tools and algorithms developed

for artistic purposes have significantly impacted various cross disciplinary fields such as robotics

and biomechanics.

Of the phenomena that is much simpler to describe using the laws of physics compared to

pure artistic control, a few examples are the simulations of cloth, soft deformable bodies, and rigid

bodies, which are the topic of this dissertation. Cloth simulation has proven to be one of the ma-

jor success stories for physics-based animation as it is phenomenological behavior is difficult to

capture for an artist. Cloth simulation itself has a long history in computer graphics starting with

work by Terzopoulos et al. [1]. Driving cloth with physics allows artist-controlled inputs, such as

geometry and initial conditions, to generate life-like results with much less human effort. Baraff

and Witkin [2] increased the efficiency of dynamic simulations in their seminal work by enabling

large time steps and making cloth much more useful in production. To this same extent, soft

deformable body simulation uses many of the same fundamentals as thin shelled cloth in solids.

Representing intricate geometry with diverse material properties offers a lot of versatility on the

artistic side. When the artist has more interest in the overall object motion compared to the internal

deformations, rigid body simulation simplifies the approach. More specifically, articulated rigid

body dynamics connects a series of (potentially branching) bodies together to create complex and

intertwined systems. All of these simulation types are heavily multidisciplinary and have appli-

cations in various disciplines outside of just computer graphics including biomechanics, robotics,
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and aerospace.

From these motivations, research over the last few decades has focused on improving both

the performance and physical realism of these simulations. Understandably, the development of

this research has not been a linear path. That is because there are often different acceptable so-

lutions to these problems depending on the intent. Ultimately, at some level a simulation is only

an estimation of a true physical phenomena down to a level of computational precision or specific

algorithmic/mathematical abstractions. Often times simulating at the highest level of physical de-

tail is expensive and overkill when the output is just a believable or plausible sequence of images

image on a screen. With cloth for example, early work often described an object as a collection

of connected springs. These simulations, while often inaccurate and unstable, are still used today

for their relative simplicity in understanding and implementation and their performance when the

results are good enough. In modern day computer graphics, research has accelerated to the point

where adapting more stable and realistic implementations drawing and extending from fields such

as mechanical engineering have become viable. This has increased the toolbox in which mod-

ern day artists have the option to choose from, and expanded the relevant research approaches to

continuing the development of the field.

Because there are numerous angles at which to approach simulating dynamic motion, in this

dissertation I focus on three primary components of a simulated system: A) the degrees of freedom

of a system; B) the constraints put on that system; C) and the stiffness that derives from force

differentiation and in turn enables implicit integration techniques.

A. Degrees of freedom, or DOFs, refer to the independent parameters defining some config-

uration state. This configuration can vary from problem to problem. With the Lagrangian

view, objects are divided into discrete elements that represent a portion of the physical mate-

rial. Each of these elements have their own configuration states representing their movement

through space. Alternatively, with the Eulerian view, the space itself is divided into discrete

cells. The simulated material moves through and are tracked on these cells [3]. The majority

of the topics covered in this dissertation deal with the Lagrangian view, but some do touch on
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the use of the Eulerian view. In deformable bodies for example our degrees of freedom are

usually nodal positions in 3D that connect to form a geometric object. The engineering field

of modal analysis, which has grown prominent in computer graphics in recent years, studies

a set of low-dimensional DOFs that are capable of reproducing the salient deformations of

the object. In a rigid body system, the system is usually represented with 6 DOFs for each

body, relating to 3D position and rotation. For an articulated rigid body system, the DOFs

can be further reduced to just the relative motion between the bodies (i.e., the joint angles).

B. In most "visually interesting" simulations, the interesting motion in a scene is induced by the

introduction of constraints on the aforementioned DOFs of which the most prominently are

collision constraints. Simulated collisions included everything from a soft body bounding off

a floor, to cloth sliding across static scenery or itself, to the rotation of a rigid body around a

joint. Furthermore, contact often implies the introduction of a frictional force into our simu-

lated system. There exist relatively simple solutions to simulating contact and friction that do

not involve constraints. Penalty force methods, for example, do not constrain our DOFs and

instead introduce forces into our system to force contacting objects away from each other.

This approach is efficient and can still be powerful, but often requires careful tuning of the

penalty parameters, which can be tedious. Alternatively, we can apply explicit restrictions

on the position relationships of our DOFs to constraint our system without introducing non-

physical forces. When these restrictions require the constrained DOFs to take on a certain

(potentially time-varying) value, this is referred to as a bilateral or equality constraint. As an

example, imagine an object, rigid or deformed, fixed to a ceiling. These constrained DOFs

are taking on the value of the ceiling in order to remain fixed. More broadly, some DOFs

of an object may be constrained to lie on a lower-dimensional subspace. For example, some

nodes may be constrained to slide along a rail on the ceiling. When these restrictions require

the constrained DOFs to stay to a particular side of a (again potentially time-varying) value,

this is referred to as a unilateral or inequality constraint. Unlike fixing an object to another,

a simple example here is an object colliding with a floor. Due to the much larger solution
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space of inequality constraints and due to the fact that the constraints need to be turned on

and off depending on the system configuration, they are numerically more challenging to

solve compared to equality constraints.

C. Solving for these degrees of freedom under a set of constraints efficiently is at the core of

many physics simulations. To do so, one is faced with the often-difficult task of choosing

a time integrator, with each choice giving a different set of advantages and disadvantages

in terms of complexity and efficiency. Many simulation problems related to deformable

objects are categorized as "stiff" problems [4]. Most effective at solving these stiff problems

is the implicit integration scheme that evaluates the forces at the end of the time step. This

is in direct comparison to the explicit time stepping scheme that evaluates the force at the

beginning of the time step, but is highly susceptible to overshooting our target on stiffer

problems and requiring a relatively small step size to remain stable. The disadvantage of

implicit schemes is that we now need the differential of our forces which get compiled into a

(tangent) stiffness matrix. Depending on which material type is used in our object, we may

have the option of leveraging precomputation approaches for constructing this matrix but

this is not a guaranteed luxury [5]. This derivative of the force, or stiffness matrix, makes

solving for our DOFs computationally more complicated. This stiffness matrix is usually

indefinite, but previous work has explored analytical techniques for clamping the eigenvalues

to be non-zero, making these matrices positive semi-definite [6]. This opens us up a field of

efficient matrix solvers, but also introduces more choices into our problem-solving process.

Iterative solvers are widely popular when the exact solution is not necessarily required [7].

These techniques approach a solution to within a specific tolerance relatively quickly. If the

error from this tolerance range does not destabilize the simulation, this might be all that is

needed [8, 2]. On the other hand sometimes the exact solution to a problem is needed and

a direct solve approach is required [9]. Modern day direct solvers are incredibly efficient,

but require a large amount of computational memory and become unusable on large scale

problems. All in all, the introduction of stiffness into our system is often necessary to solve
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Figure 1.1: A subcategory of dynamic motion components that relate across the connected research
discussed in this work.

those “visually interesting” problems. This introduction opens up new avenues for exploring

physical simulation efficiency and stability.

These three components only cover a selective breadth of the entire field of physics based

animation, but are still broad enough to cover a variety of topics. This dissertation aims to assess

the contributed research across four different projects that each touched on these three categories,

as shown in Fig. 1.1.

I. Eulerian-on-Lagrangian Cloth Simulation (SIGGRAPH 2018) [10] deals with all three of

the prescribed categories. Where traditional approaches to cloth simulation employ a La-

grangian approach and limit the discretized nodes to three spacial DOFs (x, y, z), the in-

troduction of two new DOFs in an Eulerian domain (u, v) resolves a long standing contact

problem for cloth. Constraining cloth in regards to external objects is realizable only by

introducing constraints that do not fully represent the underlying geometry and discretiza-
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tion. In order to more accurately define these constraints, Eulerian space is introduced to the

problem. The Eulerian component of the problem must also account for the stiffness of our

integration and must be properly constrained in its own space. With this technique cloth can

properly interact with sharp geometry that traditionally snags cloth and leads to simulated

instabilities.

II. Bilateral Staggered Projections for Joints (a part of the larger REDMAX project) (SIG-

GRAPH 2019) [11] explores the constrained DOFs of articulated bodies in a reduced space.

A popular approach for applying friction to contact constraints is the Staggered Projections

algorithm [12]. Using a reduced coordinate approach, we eliminate the expensive step of

solving for the contact impulse. As a byproduct of this approach, though, we can no longer

compute the constraint forces directly, which are needed when solving for the frictional

forces. Extending Staggered Projections to a new algorithm called Bilateral Staggered Pro-

jections for articulated rigid bodies uses this reduced approach, but introduces an alternative

method for computing the constraint forces by solving the reduced and unconstrained max-

imal system. For articulated rigid bodies, this approach proves much more efficient than

using traditional Staggered Projections.

III. Condensation Jacobian with Adaptivity (MIG 2020) [13] looks at using reduction methods

to improve the efficiency of soft body deformations. Previous work has explored the con-

cept of condensation [14]. This approach to dynamic simulation takes a globalized problem

and solves for the reduced modes of the structure. Originally developed in structural engi-

neering for static vibration analysis and later expanded to dynamics, reducing the modes of

the problem helps speed up large problems and reduce the accompanying numerical drift.

While others like Gao et al. [15] have adapted this technique for the graphics field, we intro-

duce condensation at the velocity level of a simulation to improve the efficiency of soft body

simulations. Reducing problems down to a subset of driver nodes that still encapsulate the

entirety of the material stiffness improves traditional stability even at larger time steps.
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IV. Ldot: Boosting Deformation Performance with Cholesky Extrapolation [16] examines the

solvers driving our simulations. These solvers are often treated as a black box by our sim-

ulation, but there is room to explore them to more specifically suit our problems. Almost

always, the input matrices to these solvers undergo a Cholesky decomposition into the prod-

uct of a lower triangular matrix and its transpose. We examine the derivative of this lower

triangular matrix with respect to time in order to predict a future solution to minimize the

total number of decompositions.

L = chol(A) ⇒ (L, L̇) = dchol(A, Ȧ) (1.1)

While this work highlights some shortcomings in the approach, it does explore an interesting

experimental avenue for cutting down on the typically most expensive portion of a physical

simulation.

Across all of these works we examine how they tie into our overarching topics of exploration:

Degrees of Freedom, Constraints, and Stiffness. Each of these topics ties into the even larger

network of physical simulation work that continues to be developed by researchers from graphics

and beyond.
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2. EULERIAN-ON-LAGRANGIAN CLOTH SIMULATION ∗

Figure 2.1: (Left) Eulerian-on-Lagrangian Cloth Simulation deals with all three of the prescribed
categories. (Right) Still frame of a simulation showcasing the smooth sliding of cloth over sharp
features such as the edges and corners of a dynamically moving box. Reprinted from [10].

We resolve the longstanding problem of simulating the contact-mediated interaction of cloth

and sharp geometric features by introducing an Eulerian-on-Lagrangian (EOL) approach to cloth

simulation. Unlike traditional Lagrangian approaches to cloth simulation, our EOL approach per-

mits bending exactly at and sliding over sharp edges, avoiding parasitic locking caused by over-

constraining contact constraints. Wherever the cloth is in contact with sharp features, we insert

EOL vertices into the cloth, while the rest of the cloth is simulated in the standard Lagrangian fash-

ion. Our algorithm manifests as new equations of motion for EOL vertices, a contact-conforming

remesher, and a set of simple constraint assignment rules, all of which can be incorporated into

existing state-of-the-art cloth simulators to enable smooth, inequality-constrained contact between

cloth and objects in the world.

∗Reprinted with permission from "Eulerian-on-Lagrangian Cloth Simulation" by N. J. Weidner, K. Pidding-
ton, D. I. W. Levin, and S. Sueda, ACM Tans. Graph., vol. 37, no. 4, Jul. 2018. [Online]. Available:
https://doi.org/10.1145/3197517.3201281. Copyright 2018 by Association for Computing Machinery
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2.1 Introduction

Cloth simulation has a long history in computer graphics. Starting with the work by Terzopou-

los et al. [1], cloth simulation algorithms have steadily evolved from research curiosities to an

integral part of the visual effects pipeline. In fact, cloth simulation has proven to be one of the

major success stories for physics-based animation as its phenomenological behavior is difficult

to capture for an artist and far simpler to describe using the laws of physics. This allows artist-

controlled inputs, such as geometry and initial conditions, to generate life-like results with much

less human effort. Motivated by this, research over the last few decades has focused on improving

both the performance and physical realism of cloth-simulation.

Due to its highly-deformable nature, cloth undergoes complex colliding interactions with other

geometry and itself. Therefore, it is no surprise that much of the research in the field focuses

on resolving these collisions. Despite this concentration of effort, there is one crucial scenario

which, so far, has yet to be treated: the interaction of cloth with sharp geometric features. Such

interactions are common when cloth interacts with the world, from a table cloth pulled over a table

edge, to a sheet dragged off a clothing line to the unveiling of a sculpture. Yet this literal (but not

figurative) edge case still baffles today’s state-of-the-art approaches.

The difficulty arises because all previous cloth simulation algorithms rely on a Lagrangian

discretization of the cloth, which only permits bending along its edges. As a pedagogical example,

imagine draping the cloth over a sharp edge of a table. Unless the cloth mesh has edges exactly

aligned with the table edge, the cloth will not be able to bend sharply, leading to unappealing visual

artifacts. For a stationary piece of cloth, this can be resolved by remeshing the cloth, inserting edges

that directly align with the table edge. However, what happens if we pull the cloth? We suffer from

unacceptable jitter since the cloth can only be remeshed between time steps. This occurs even

if we remesh the cloth during the sliding motion, as shown in Fig. 2.2. In certain scenarios we

may even experience catastrophic locking, wherein the cloth, unable to slide over the edge, simply

gets stuck. Today, standard approaches to fixing this problem involve perturbing the underlying

geometry by approximating the underlying surface as smooth (e.g., by averaging surface normals).
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However, this approach is unsatisfactory because it prevents us from visually capturing the correct

physical sliding behavior of the cloth over the sharp feature, even if this is precisely what an

artist wants to achieve. This goes against the very philosophy of physics-based animation as we

are unintentionally adding counterintuitive, non-physical behavior to our simulations which can

prevent achieving a desired physical effect.

In this work, we propose the first Eulerian-on-Lagrangian [17, 18, 19] cloth framework—an

augmentation of Lagrangian cloth solvers that allows cloth to behave correctly when interacting

with both smooth and sharp features based solely on the input geometry. We develop a new contact-

conforming remeshing algorithm and propose a new set of contact constraints that, together, cor-

rectly handle sliding contact at sharp edges and corners by ensuring degrees of freedom (DOFs) ex-

ist at contact boundaries and automatically allowing a contact solver to apportion motion between

Lagrangian and Eulerian DOFs in a principled way. These contributions mean that our method

avoids constraint jitter and catastrophic locking due to contact (Fig. 2.2). Furthermore, because

our technique works in conjunction with, rather than supplanting, Lagrangian simulation schemes,

our algorithm gracefully elides to standard cloth simulation in all other cases. We demonstrate

the efficacy and applicability of our method by integrating our framework with the state-of-the-art

cloth remesher found in ARCSim [20] and using it to resolve a number of challenging scenarios

involving close contact of cloth with sharp geometric features.

2.2 Related Work

Cloth simulation has received tremendous amount of attention from the graphics community,

starting with the seminal work by Terzopoulos et al. [1]. Here we focus on works that are most

relevant to our work.

Considerable amount of work has focused on improving the efficiency of cloth simulators,

using, for example: linearly implicit integration [2]; implicit-explicit integration [21]; subspace

integration [22]; and multigrid [23]. Some works are focused on optimizing the cloth behavior and

collisions specifically for character animation [24, 25, 26, 27]. There have also been numerous

works on improving the mechanical behavior and material models of the cloth [28, 29, 30, 31, 32,
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Figure 2.2: (Top) Velocity constraints. Left: ignoring neighboring elements, the colliding vertex
should be able to move into quadrants I, II, and IV. Center: if we use both contact normals, the
strand gets stuck and cannot be pulled left or down. Right: if we use an averaged contact normal,
the strand would lift off of the table unexpectedly. (Bottom left & center) If we pull the strand to
the left, the vertices would need to jump to remain collision free. (Bottom right) With the EOL
approach, the center node does not need to move but can let the material pass through. Reprinted
from [10].

33, 34] and data-driven materials [35, 36, 37, 38]. Some have focused on simulating or adding

wrinkles and other high-frequency details [39, 40, 41, 42, 43, 44, 45, 46, 47, 48]. Recently, some

works have focused on: interactive editing [49]; precomputation [50]; and simulating individual

yarns [51, 52, 53, 54]. Creasing and adaptive remeshing for cloth and paper has also garnered

much attention [55, 20, 56, 57, 58, 59, 60, 61].

Perhaps the most important topic for cloth simulation is collision handling. Indeed, from the

early days of cloth animation, much of the attention has been focused on resolving collisions,

using, for example: collision zones and consistency checking [62]; hybrid constraint forces [63];

rigid impact zones [64, 65]; tangle removal as a post-process [66]; constraint projection [67];

inelastic projection [68]; globally coupled impulses [69]; asynchronous variational integrators and
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nested barrier potentials [70, 71]; and air meshes [72]. None of these previous works can handle

sliding around sharp features due to the fundamental limitations of the Lagrangian discretization.

Several previous works attempt to overcome the limitations of purely Lagrangian approaches.

The most famous is the Arbitrary Lagrangian-Eulerian (ALE) method, which introduces an addi-

tional computational domain, the reference domain, to the standard continuum mechanics picture,

which includes the material domain and the spatial domain [73]. This extra domain allows inde-

pendent movement of the simulation mesh with respect to the material it is tracking. ALE has been

used to great effect for simulating complex effects such as solid fluid coupling as well as for simple

contacting scenario for 2D or 3D objects [74]. Typically, ALE mesh movement relies on defining

an additional interpolation function or energy which drives mesh movement [74]. This is necessary

because introducing referential DOFs creates a singularity in the motion description which must

be resolved [18]. The Eulerian-on-Lagrangian (EOL) method [17, 18] is a close cousin to ALE

with three important differences. First, EOL does not rely on a referential domain, instead chain-

ing together Eulerian or Lagrangian domains into kinematic hierarchies; second, EOL can work

with generalized DOFs; and third, EOL methods do not rely on additional functions to determine

mesh movement, instead solving for it simultaneously as a function of the physics of the simulated

system. Such techniques also require dealing with the inherent motion singularity and the manner

in which this is accomplished is part of EOL algorithm design, be it using a least-squares partition

of velocities [18] or a reduced coordinate / constraint based approach [17, 19, 51, 52, 75].

In this work, we follow an EOL approach and make several important contributions. First,

we extend EOL to the case of general cloth simulation, which is an object with a 2D material

domain in 3D world space. This is unique to all previous ALE and EOL methods. (Skin simula-

tion work by Li et al. [19] did not have Lagrangian DOFs; Yarn-level simulation work by Cirio

et al. [51, 52] did not have a 2D material domain.) Second, we develop a simple set of rules that

allow for automatic computation of Eulerian and Lagrangian motions. Third, we extend a state-

of-the-art remesher (ARCSim) [20] to allow conformal remeshing. Finally, our formulation works

with contact inequality constraints, allowing not just sliding, but separation of contacting objects,
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something which is yet to be demonstrated for previous ALE or EOL methods.

2.3 Overview

At each vertex i of the mesh, we store the Lagrangian DOF, xi ∈ R3, and the Eulerian DOF,

X i ∈ R2. The Lagrangian DOF represents the world coordinates of the vertex, and the Eulerian

DOF represents the material coordinates of the vertex. (One interpretation is that the Eulerian

DOFs represent the vertex texture coordinates, and a texel represents a cloth material point.) In

traditional purely Lagrangian methods, the material coordinates of all vertices are fixed, whereas

in our method, the material coordinates of some vertices can vary over time. We call such vertices

EOL vertices, and we use these where the cloth is in contact with sharp geometric features. The

rest of the cloth is discretized with standard Lagrangian vertices. We follow the standard notation

and use qi to denote the full DOF of a vertex. For a Lagrangian vertex, qi = xi ∈ R3, whereas for

an EOL vertex, qi = (xi X i)
T ∈ R5.

We use these EOL vertices wherever the cloth is in contact with sharp edges or corners of

another body. For example, if the cloth is in contact with a box, box-face vs. cloth-vertex collisions

are handled using standard Lagrangian approaches, whereas box-edge vs. cloth-edge and box-

vertex vs. cloth-face collisions are handled using our EOL framework. The border of the cloth

must be handled in a special way: cloth corner vertices are always purely Lagrangian, and cloth

edge vertices are Eulerian only in the direction along the edge of the cloth. (Using the texture

mapping interpretation from above, these conditions imply that the texture of the cloth cannot

slide outside of the border of the cloth.) For clarity of exposition, we will assume that all non-cloth

bodies are rigid boxes, though any rigid/deformable body would work well with our method, as

long as there is a way to distinguish between hard and soft edges.

Alg. 2.1 shows the procedure for taking a time step. In the rest of this work, we will go over

the important steps of this time stepper. We will first present the core of our framework—EOL

cloth dynamics in §2.4. Then, we will describe the set of simple geometric rules for constructing

the constraints on the Lagrangian and Eulerian velocities in §2.5. Finally, we will go over our

conformal remeshing solution in §2.6.
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Algorithm 2.1 EOL Cloth Time Stepper
1: while simulating do
2: Detect collisions . External call
3: Preprocess & Remesh . Section 2.6
4: Compute EOL constraints on new mesh . Section 2.5
5: Integrate velocities and positions . Section 2.4
6: end while

2.4 EOL Cloth Dynamics

We discretize the cloth with triangles that conform to the hard edges obtained from the collision

detector. Let the three vertices of a triangle be denoted (a, b, c), and X ∈ R2 be an arbitrary

material point inside this triangle. From the Eulerian DOFs of the triangle (Xa,Xb,Xc) we

can compute the barycentric coordinates (α, β, γ) of this material point, X , using the standard

expression for barycentric coordinates (Eq. A.3). The world position, x ∈ R3, corresponding to

this material point can then be computed as

x(X) = αxa + βxb + γxc, (2.1)

where (xa,xb,xc) are the Lagrangian DOFs of the triangle. The world position is not only a func-

tion of the Lagrangian DOFs of the triangle but also of the Eulerian DOFs, since the barycentric

coordinates depend on these Eulerian DOFs. Texture mapping again gives us a useful analogy for

intuition. Even if we keep the nodal positions (Lagrangian DOFs) fixed, if we modify the nodal

texture coordinates (Eulerian DOFs), the cloth moves in world space.

This dependence of the barycentric coordinates on the Eulerian DOFs becomes important when

we take the time derivative of Eq. 2.1, since we need to account for the time derivative of the

Eulerian coordinates as well. After some rearranging (see Appendix A.1 for the derivation), we

obtain

ẋ = (αẋa + βẋb + γẋc)− F (αẊa + βẊb + γẊc), (2.2)
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where F ∈ R3×2 is the deformation gradient of the triangle:

F = DxD
−1
X

Dx =

(
xb − xa xc − xa

)
DX =

(
Xb −Xa Xc −Xa

)
.

(2.3)

Here, Dx ∈ R3×2 and DX ∈ R2×2 are the matrices constructed from the edge vectors of the trian-

gle. The appearance of the deformation gradient here should not surprise us, since its purpose is to

map deformations from material space to world space. The negative sign is due to the derivative of

the barycentric coordinates with respect to the Eulerian DOFs. This implies that when we change

the Eulerian DOF of a node, the cloth material moves in the opposite direction, just like how the

motion of texture is the opposite to the motion of texture coordinates.

Finally, for any material point, X , inside a triangle, the Jacobian, J ∈ R3×15, for mapping the

generalized velocities of the three vertices of the triangle to the world velocity of the material point

is

J =

(
αI βI γI −αF −βF −γF

)
, (2.4)

where I is the 3× 3 identity matrix, and F is the deformation gradient from Eq. 2.3. The world

space velocity of a material point is then ẋ = Jq̇, where q̇ = (ẋa ẋb ẋc Ẋa Ẋb Ẋc)
T ∈ R15

is the concatenation of the Lagrangian and Eulerian DOFs of the triangle. The transpose of the

Jacobian maps a world force to a generalized force: f = JTf . If the material point happens to be

at a triangle node, the Jacobian simplifies to J = (I −F ) ∈ R3×5.

2.4.1 Generalized Inertia

The kinetic energy of a triangle can be expressed as

T =
1

2

∫
A

ρ ẋT ẋ dA, (2.5)
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where ρ is the area density, and the integral is over the area of the triangle in material space spanned

by (Xa,Xb,Xc). Using α and β as the variables of integration over the triangle, we obtain

T =
1

2

∫ 1

α=0

∫ 1−α

β=0

ρ ẋT ẋAdβ dα, (2.6)

where A = |det(DX)|/2 is the area of the triangle in material space. Integrating out α and β and

rearranging the terms, we arrive at

T =
1

2
q̇TMq̇, (2.7)

where M is the generalized inertia, obtained by using the Jacobian from Eq. 2.4 and then integrating

the result:

M =
ρA

12



2I I I −2F −F −F

· 2I I −F −2F −F

· · 2I −F −F −2F

· · · 2F TF F TF F TF

· · · · 2F TF F TF

· · · · · 2F TF


, (2.8)

where the dots indicate symmetric terms. This generalized inertia matrix is 15× 15, corresponding

to the 9 Lagrangian DOFs and 6 Eulerian DOFs of the triangle. The upper left 3× 3 blocks of

the inertia matrix correspond to the Lagrangian DOFs and are constant over time, an advantage

exploited by Lagrangian simulators. The rest of the inertia matrix must be computed at every time

step, since F is a function of both Lagrangian and Eulerian DOFs.

2.4.2 Generalized Forces

The EOL framework works with any set of forces. For each node, we compute its world force,

f , and then use the Jacobian transpose from Eq. 2.4 to map this world force into its Lagrangian

16



and Eulerian force components:

fL

fE

 =

 f

−F Tf

 . (2.9)

The corresponding stiffness matrix, K, for a node is similarly transformed into its Lagrangian and

Eulerian components as

KLL KLE

KEL KEE

 =

 K −KF

−F TK F TKF

 . (2.10)

In our current implementation, we use the corotated linear material model for membrane forces

[76, 32, 57] and discrete Willmore energy for bending forces [31, 34]. Whenever we need the

deformation gradient at a vertex, we simply take an element-wise average. An alternative approach

would be to take the polar decomposition to interpolate the rotation separately.

(a) Box normals (b) Box avg normal (c) Strand normal

(d) Box normals (e) Box avg normal (f) Strand normals (g) Strand avg normal (h) Strand binormals

Figure 2.3: Possible contact constraints for a strand-box collision without conformal remeshing (a-
c) and with conformal meshing (d-h). (a) If we use both normals of the box corner, the strand would
be over constrained. (b & c) If we use the averaged box normal or the strand normal, it would result
in an unnatural lift off. (d-g) Similar choices exist with conformal remeshing. Reprinted from [10].
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2.4.3 Equations of Motion

In our current implementation, we use the linearly implicit integration scheme at the velocity

level, popularized by the work on efficient cloth simulation by Baraff and Witkin [2]:

(
M− h2K

)
q̇(k+1) = Mq̇(k) + hf, (2.11)

where h is the time step, and the superscript k indicates the current time step. The EOL framework

is not tied to a specific integration scheme, and should work equally well with other schemes.

Adding the EOL equality and inequality constraints, which are described later in §2.5, and

applying Gauss’s Principle of Least Constraint [77], we arrive at the following, which is solved for

the new velocities, q̇(k+1).

minimize
q̇

1

2
q̇T M̃q̇− q̇T f̃

subject to Aeqq̇ = 0

Aineqq̇ ≥ 0,

(2.12)

where M̃ = M − h2K, and f̃ = Mq̇(k) + hf. Finally, the Lagrangian and Eulerian DOFs are both

updated as q(k+1) = q(k) + hq̇(k+1).

2.5 EOL Cloth Constraints

Before we describe the constraints we apply to the EOL vertices (§2.5.2), we first review how

one would constrain a Lagrangian cloth in contact with sharp geometric features (§2.5.1). As

we saw in Fig. 2.2, there are difficulties in dealing with position-level as well as velocity-level

constraints. Here, however, we expand only on velocity-level constraint problems.

2.5.1 Constraints for Lagrangian Cloth

Let us consider a 1D strand for illustration. Without conformal remeshing, the strand contacts

the box corner at some element, as shown in Fig. 2.3(a-c). There are two normals at the box corner,
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as shown in (a), as well as the single normal from the strand element, as shown in (c). If we choose

(a), then the strand becomes over-constrained and locked, unable to move left or down. Instead,

we must average the box normals (b) or use the strand normal (c). Unfortunately, this causes the

strand to lift off unnaturally, since the constrained point must stay in the positive halfspace of the

constraint.

If we apply conformal remeshing, as shown in Fig. 2.3(d-h), then there are now two normals to

choose from the two neighboring strand elements (f). Using these two strand normals still results

in an over-constrained configuration, since it prevents the colliding node to go below the top of the

box. A Lagrangian simulator must still use averaged normals (e) or (g), since otherwise the strand

becomes over-constrained. Unfortunately, with (e) or (g), the cloth is now under-constrained, as

these constraints may allow the cloth to penetrate the box. To summarize, conformal remeshing

helps a Lagrangian simulator when the cloth is static, but it does not resolve the problem stemming

from sliding motion.

2.5.2 Constraints for EOL Cloth

With the EOL approach, we get around this problem by using the Eulerian DOFs to move the

cloth around the sharp features.

Before we describe how we construct the Lagrangian and Eulerian constraints, we first mention

an important consideration when dealing with EOL methods: the inertia matrix in Eq. 2.8 can

become singular depending on the configuration of the cloth. This is because for some Eulerian

velocities, there may be a corresponding Lagrangian velocity that exactly cancels out the motion

of the cloth material. As an illustration, let us assume that an undeformed cloth is laid flat on

the X-Y plane, and that there is an EOL vertex in the middle of the cloth. In this configuration,

we can move the Lagrangian DOFs of the vertex (i.e., vertex position) in one direction and the

Eulerian DOFs (i.e., vertex texture coordinates) in the other direction† so that the actual cloth does

not move in world space. Thus, this combination of Lagrangian and Eulerian velocities lies in the

nullspace of the inertia matrix. One potential approach for dealing with this singularity is to use

†Note the negative sign in Eq. 2.2 (derivation in §A.1).
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least squares to solve for the largest Lagrangian velocities first [18, 78]. In our setting of cloth

simulation, however, we can exactly account for the singularity by using the local geometry of the

cloth and the box. In the rest of this section, we describe a simple set of rules for constructing these

constraints on the Lagrangian and Eulerian velocities of an EOL vertex.

There are two cases we must consider: contact with box corner and contact with box edge,

which are discussed in the following two paragraphs. In both cases, we use the box normal cone

(3D analogues of Fig. 2.3(d)). Alg. 2.2 summarizes the procedure for constructing these constraints

on the EOL vertices.

Corner: The Lagrangian constraint for a corner EOL vertex is constructed from an orthonormal

frame at the corner of the box. Let the box normals be denoted n1, n2, and n3. The Lagrangian

velocity constraint is then nT
1 ẋ ≥ 0, nT

2 ẋ ≥ 0, and nT
3 ẋ ≥ 0. We do not need any constraints on

the Eulerian velocity for a corner EOL vertex, since we use these Eulerian DOFs to allow the cloth

to slide freely around the corner.

Figure 2.4: (Left) Vector orthogonal to the cloth border in material space. (Right) Vector along the
average material space tangent constructed from the aligned and colliding edges. Reprinted from
[10].

Edge: The Lagrangian constraint for an edge EOL vertex is constructed from the box normals,

n1 and n2. We want the vertex to be able to move freely (in the Lagrangian sense) along the box

tangent but be able to lift off if necessary. The Lagrangian velocity constraint is then nT
1 ẋ ≥ 0 and
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Algorithm 2.2 EOL Constraint Generation
1: for each EOL vertex v do
2: if v colliding with box corner then
3: Lagrangian Constraint: nT

1 ẋ ≥ 0, nT
2 ẋ ≥ 0, nT

3 ẋ ≥ 0
4: Eulerian Constraint: none
5: else if v colliding with box edge then
6: Lagrangian Constraint: nT

1 ẋ ≥ 0, nT
2 ẋ ≥ 0

7: if v on cloth border then
8: Eulerian Constraint: b̄TẊ = 0
9: else

10: Eulerian Constraint: t̄TẊ = 0
11: end if
12: end if
13: end for

nT
2 ẋ ≥ 0. The Eulerian velocity constraint depends on whether the vertex is on the cloth border

or not. For EOL vertices on the cloth border, the Eulerian constraint is b̄TẊ = 0, where b̄ is the

vector orthogonal the cloth border in material space, Fig. 2.4a. This constraint ensures that the

cloth material remains affixed to the border. For internal EOL vertices, the Eulerian constraint is

t̄
T
Ẋ = 0, where t̄ is the averaged material space tangent constructed from the two edges of the

colliding vertex that are lying on the box edge. (In Fig. 2.4b, the box collision in material space

is shown in dotted blue, and the two edges are shown in thick white.) This constraint ensures

that any motion of the cloth along the box edge is realized by the Lagrangian DOF rather than the

Eulerian DOF.

All of the local constraints described in this section are collected into global matrices so that

the constraints can be written as Aeqq̇ = 0 and Aineqq̇ ≥ 0 where q̇ is the concatenation of all nodal

Lagrangian and Eulerian velocities.

2.6 Conformal Remeshing

To remesh the cloth, we use ARCSim (v0.3.1) [20, 56, 58], which has curvature based metrics

to help avoid visually unappealing changes to the triangle mesh. In Fig. 2.5, we show a typical

remeshing scenario when the cloth first make contact with the box. The cloth mesh is shown
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Figure 2.5: Typical remeshing scenario. Reprinted from [10].

in black, the box mesh is shown in blue, and the collisions are shown in red. Our goal is to

remesh the cloth so that it conforms to the box. Even though ARCSim has the ability to “preserve”

certain edges during triangulation, it does not work out-of-the-box for conformal remeshing for

two reasons:

• Our preserved edges move around in the material domain, potentially creating extremely thin

triangles.

• Collisions often occur very close to each other. Simply marking all collisions as preserved

(e.g., all red crosses touching the blue box mesh in Fig. 2.5) does not allow ARCSim enough

freedom to remesh properly.

Therefore, we preprocess the mesh before we send the mesh to ARCSim. This preprocessing

procedure is applicable to all conformal remeshing, either with standard Lagrangian or with our

EOL framework.

2.6.1 Preprocessing

Before remeshing with ARCSim, we first scan a list of collision features (e.g., box edges and

box corners), along with a list of existing conformal vertices. (Conformal vertices and edges

refer to cloth vertices and edges that are in contact with sharp features. In our EOL framework,

conformal vertices are our EOL vertices.) We insert new conformal vertices into our mesh either by
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splitting faces or edges of the mesh at untracked features. We then sort and connect the conformal

vertices to form conformal edges. Then we repeat the following steps, iterating through all triangles

incident to at least one conformal vertex, until no more changes are made. In these steps, when

we collapse an edge between a conformal vertex and a non-conformal vertex, we always collapse

toward the conformal vertex.

• Collapse non-conformal edges that are below a threshold. (For our examples, we used 1% of the

cloth length as our threshold.)

• Collapse conformal edges that are below a threshold. The edge can be collapsed in either direc-

tion unless one of the conformal vertices is a cloth border/corner, which must be preserved.

• For an ill-conditioned triangle, we split one of its edges to insert a new vertex, which will then

be removed during the next iteration of the preprocessing loop.

– If it has one conformal vertex, split the edge opposite to it.

– If it has two conformal vertices, split the conformal edge.

– If it has three conformal vertices, split the non-conformal edge. We assume that a triangle

cannot have three conformal edges—i.e., the cloth triangles are sufficiently small compared

to the sharp features.

This preprocessing scheme has worked well for our examples, but we do not have a convergence

proof. In some cases, it may not be possible to remove all ill-conditioned triangles while preserving

conformal features. In such cases, the time step must be slowed down accordingly. In our expe-

rience, EOL simulations produce much fewer ill-conditioned triangles than conformal Lagrangian

simulations, making it much more robust.

We do not allow conformal remeshing near the border of the cloth. Specifically, before we

insert a conformal edge that touches the cloth border, we check to make sure that the angle between

the edge and the border is above a threshold. This prevents the formation of thin triangles incident

to cloth borders. In the absence of collisions with sharp features, our algorithm reverts to a standard

non-conformal Lagrangian cloth simulation using ARCSim as the remesher.
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2.6.2 Velocity Transfer

Whenever the cloth is remeshed, the velocities must be interpolated at the new vertex positions.

There are four ways in which a new vertex can be introduced, and we use the following scheme to

compute the new velocity of the newly inserted vertex.

• New Lagrangian vertex inside a Lagrangian triangle. This is the standard case, and we simply

use barycentric averaging to compute the vertex’s Lagrangian velocity.

• New Lagrangian vertex inside an EOL triangle. If the newly inserted vertex happens to be

inside a triangle with one or more EOL vertices, we must first compute the world velocity at

these EOL vertices using Eq. 2.2. Then we use barycentric averaging to compute the inserted

vertex’s Lagrangian velocity.

• New EOL vertex from an EOL edge split. If the remesher inserts a new EOL vertex by splitting

an edge between two EOL vertices, we simply interpolate both the Lagrangian and Eulerian

velocities of the two EOL vertices.

• New EOL vertex from collision. Whenever we insert an new EOL vertex as a result of a col-

lision, we first compute the world velocity, ẋw, at the vertex by barycentric averaging. This

world velocity is composed of the Lagrangian component, ẋ, and Eulerian component, Ẋ , and

can be expressed as ẋw = ẋ − FẊ (cf. Eq. 2.2). We put as much of this world velocity into

the Eulerian velocity as possible by solving a small constrained optimization problem for Ẋ:

min. 1
2
‖ẋw + FẊ‖2 s.t. AeqẊ = 0. In other words, we minimize the Lagrangian velocity

subject to equality constraints from §2.5. This turns into a 3× 3 linear system:

F TF ATeq

Aeq 0


Ẋ

λ

 =

−F T ẋw

0

 . (2.13)

The Lagrangian velocity is then computed as ẋ = ẋw + FẊ .

If an EOL vertex lifts off, it becomes a Lagrangian vertex. In this case, the new Lagrangian velocity

must take into account the Eulerian velocity from the last step, using Eq. 2.2.
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2.7 Results

We implemented our system in C++ and ran the simulations on a consumer desktop with an

Intel Core i7-7700 CPU @ 3.6 Ghz and 16 GB of RAM. The code is single-threaded and uses

Eigen for linear algebra and Mosek for quadratic programs. In Figs. 2.6 and 2.8, we show some

still frames from the simulations. (Please also see the accompanying video.) In Table 2.1, we show

the performance numbers.

Cloth sliding over box EDGE

In this example, shown in Fig. 2.6, the cloth is pulled over an edge of a box. For comparison,

we also show how Lagrangian cloth simulations behave under the same scenario. Unless otherwise

stated, all Lagrangian simulations use averaged constraints (Fig. 2.3(e)) at sharp features, which

approximates the underlying box geometry as smooth.

• With static regular discretization, the cloth is able to form a sharp bend because the box edge

happens to be aligned with the cloth mesh. However, bending artifacts become obvious as soon

as we pull the cloth.

• With static irregular discretization, the cloth is unable to form a sharp bend.

• With non-conformal remeshing (i.e., vanilla ARCSim), the cloth is able to bend semi-sharply

only if we allow ARCSim to generate many triangles. Moreover, when we pull the cloth, the

cloth lifts unnaturally because it is not able to bend exactly at the box edge, even at high-

resolution. This artificial bending energy is completely independent of the material bending

stiffness.

• With naïve conformal remeshing (i.e., vanilla ARCSim with “preserved” edges), the simulation

abruptly halts when the cloth hits the box because the collision detector generates too many

contact points, which creates too many small “preserved” edges to be passed to ARCSim. See

Fig. 2.5.

• With conformal remeshing (i.e., our preprocessing + ARCSim), the cloth is able to bend sharply.

When we pull the cloth, however, averaged normal constraints (Fig. 2.3(e)) cause the cloth to
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lift unnaturally, at any resolution. Again, this artificial bending energy is independent of the

material bending stiffness. Also, because of the Lagrangian vertex motion very close to the

sharp features, the collision detector parameters must be highly tuned to detect all the collisions

correctly. Furthermore, when the cloth is bent sharply, this liftoff always causes the cloth to

penetrate the box, which must be projected back. (As an aside, this implies that continuous

collision detection cannot be used.)

• With conformal remeshing and with proper cone constraints (Fig. 2.3(d)), the cloth is again able

to bend sharply, but as soon as we pull the cloth, it locks catastrophically. (This result is not

included in Table 2.1.)

• With our EOL discretization, the cloth smoothly slides around the edge with a perfectly sharp

bend. Because the conformal vertices stay on the box edge, no penetrations are introduced.

Also, we are able to use proper cone constraints (Fig. 2.3(d)) without having to approximating

the underlying surface as smooth.

Cloth sliding over a WIRE

Even though conformal Lagrangian simulation works for the EDGE example, when the bend-

ing angle becomes more extreme, it is no longer able to slide smoothly because with the averaged

constraint (Fig. 2.3(e)), the conformal vertices can only move horizontally. Even a small amount of

horizontal movement causes large penetrations in the cloth, making subsequent conformal remesh-

ing challenging. Please see Fig. 2.7 and the video for some of these Lagrangian failure cases. Our

EOL cloth, on the other hand, works as expected.

Cloth sliding over NAILS

The EOL framework works just as well with sharp points. In this example, we pull the cloth

over a bed of nails. This is an artificially unrealistic scenario, because we would expect the cloth

to snag due to the individual cloth fibers getting caught by the nail tips. However, it is important to

note that Lagrangian simulations snag due to its discretization rather than by proper physics. With

our EOL approach, it would be possible to simulate this snagging behavior properly by including
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additional external forces.

Cloth sliding through JAWS

We further demonstrate the robustness of our approach by pulling the cloth through “jaws of

death.” As before, no artificial snagging behavior is observed.

Scripted box PUSH

In this example, we show the cloth being pushed by a scripted box to illustrate how effectively

the cloth is able to slide over the box. This example also highlights the proper lift-off of EOL

vertices due to our inequality constraints.

Scripted box THROW

This example shows a more dynamic cloth making contact with, sliding over, and then lifting

over a scripted box. Many EOL edges and points are created on the fly, as the cloth comes in

contact with various edges and corners of the box. Again, no snagging behavior is observed.

Coarse preview with LO-RES cloth

We show that the EOL framework works very well for generating coarse previews of simula-

tions involving sharp features. With a static Lagrangian simulation, we lose the details around the

sharp features. With EOL, we are able to retain the sharp features even when the cloth starts to

slide off. There are some obvious popping artifacts caused by remeshing along the sharp edges, but

this is a side effect of any method that aligns cloth geometry with object geometry, i.e., conformal

LAG and EOL, and also occurs at higher resolutions but is less visible. With EOL, we do not

get any snagging behavior even at low-res, which, in scenarios where overall quality of motion is

paramount, is more important than visual fidelity.

Cloth with FRICTION

In this example, the cloth is dropped between four boxes, hitting their corners. With EOL,

the cloth smoothly slides over the corners and edges of the boxes, and without friction, the cloth
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eventually falls naturally off of the boxes with no bending artifacts or locking. When we repeat the

simulation with friction by applying the impulse-based friction formulation of Bridson et al. [65],

the cloth stops rather than falling. For each vertex, we first compute the scalar friction multiplica-

tion factor using the world velocity of the vertex (Eq. 2.2). For Lagrangian vertices, we apply this

factor to the tangential component of the velocity as usual. For EOL vertices on a box corner, we

apply the factor to just the Eulerian velocity, since the tangential motion is encoded fully by the

Eulerian velocity. For EOL vertices on a box edge, we apply the factor to the Eulerian velocity and

the tangential component of the Lagrangian velocity (along the box edge).

2.8 Conclusion

We introduced a novel Eulerian-on-Lagrangian cloth simulation framework that can robustly

simulate the cloth sliding over sharp features, a scenario that cannot be simulated by other methods

due to the fundamental limitation of purely Lagrangian simulators. In our framework, we use

both Eulerian and Lagrangian DOFs for vertices at the sharp features. We derive the equations

of motion for elements that involve these special vertices. We define a simple set of geometric

rules for constraining these vertices to remove the redundancy that exists between the Eulerian

and Lagrangian DOFs. We extend a state-of-the-art remesher (ARCSim) for conformal remeshing

around sharp features. Finally, we show various examples of how our framework is able to handle

difficult scenarios involving sliding over sharp edges and corners.

2.8.1 Future Work

Our work is the first work to use an Eulerian discretization for cloth, and so we hope that

it opens many avenues of future work. We have released our source code to encourage future

research in Eulerian-on-Lagrangian cloth simulation,‡ some directions of which we discuss next.

A limitation common to all adaptive cloth simulators is that the remesher does not take into account

the sharp features in the environment. Collision-aware remeshing that avoids interpenetrations

would benefit not only our work but all other work on adaptive cloth. Another limitation of our

‡https://github.com/sueda/eol-cloth
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current implementation is that we are computing the per-vertex deformation gradient by element-

wise averaging of the incident triangle deformation gradients. We expect to see better energy

behavior if we compute this average using Lie algebra. Furthermore, allowing EOL style contact

handling for cloth-cloth, cloth-fluid and cloth-deformable body interactions would allow for more

seamless simulations of such phenomena. In the current implementation, we simply default to

purely Lagrangian handling for any contact which is not between cloth and a static rigid body.

Another interesting avenue of future work is to remove the restriction that the border vertices must

be Lagrangian (corner nodes cannot be Eulerian; edge nodes can only be Eulerian along the edge

tangent). With this modification, we expect to see better transition of EOL to Lagrangian vertices

near the border of the cloth. Next, while our work focuses on finite element simulation of cloth,

we believe it can be extended to other simulation techniques such as Projective [79] and Position-

Based Dynamics [80]. Finally, even though our approach is the first to enable smooth sliding cloth,

it still requires remeshing around sharp features. Removing this dependence on remeshing would

improve efficiency and robustness of both conformal Lagrangian and EOL cloth simulations.
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Table 2.1: Performance numbers for the examples. #F: Maximum number of faces. %E: Maximum
EOL vertex percentage. %CD: Percentage spent in collision detection. %RM: Percentage spent
in remesh. %MF: Percentage spent in matrix fill. %VI: Percentage spent in velocity integration
(QP). T: Total time per step (ms). Some scenes are run multiple times with different settings.
Regular: Lagrangian simulation with a static regular mesh. Irregular: Lagrangian simulation with
a static irregular mesh. Non-conformal: Lagrangian simulation with non-conformal remeshing
(ARCSim). Conformal: Lagrangian simulation with conformal remeshing (ARCSim with our
preprocessing). EOL: Our EOL simulation. Reprinted from [10]

Scene #F %E %CD %RM %MF %VI T (ms)

EDGE (reg.) 2116 - 1.2 - 6.6 92.1 436.2
EDGE (irreg.) 2000 - 0.9 - 5.0 94.0 589.2
EDGE (non-conf.) 2521 - 0.9 4.7 5.4 88.9 638.9
EDGE (conf.) 2622 - 1.8 5.2 4.5 88.6 729.6
EDGE (EOL) 2971 2.4 0.9 2.5 7.7 88.8 1101.0
WIRE (reg.) 1936 - 0.3 - 3.4 96.3 827.2
WIRE (irreg.) 2055 - 0.2 - 3.3 96.5 896.5
WIRE (non-conf.) 2048 - 2.6 4.1 2.8 96.9 1028.7
WIRE (conf.) 2022 - 0.6 4.0 3.5 91.9 728.3
WIRE (EOL) 2048 2.4 0.2 3.0 7.7 89.1 1058.7
NAILS (EOL) 2012 1.9 0.6 2.9 7.9 88.6 804.2
JAWS (EOL) 3380 0.3 0.3 9.2 21.8 68.7 503.9
PUSH (EOL) 2110 3.1 1.4 6.2 16.7 75.6 454.9
THROW (EOL) 1913 3.9 0.8 3.9 9.0 86.2 568.4
LO-RES (reg.) 256 - 3.2 - 15.8 81.0 18.1
LO-RES (EOL) 133 6.0 16.8 6.2 23.1 53.9 16.3
FRICTION (EOL) 2927 2.9 6.7 8.4 23.6 61.3 451.5
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Figure 2.6: Still shots from EDGE simulations. From top to bottom: LAG static regular with
averaged constraints, LAG static irregular with averaged constraints, LAG non-conformal with
averaged constraints, LAG conformal with averaged constraints, LAG conformal with cone con-
straints, EOL with cone constraints. Reprinted from [10].

(a) (b) (c)
Figure 2.7: Lagrangian failure cases for WIRE. (a) Cloth cannot bend sharply. (b) Cloth bunches
up and cannot slide over the wire. (c) Cloth falls off the wire. Reprinted from [10].
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Figure 2.8: Still shots from WIRE, NAILS, JAWS, PUSH, THROW, LO-RES, and FRICTION
simulations. Reprinted from [10].
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3. BILATERAL STAGGERED PROJECTIONS FOR JOINTS∗

Figure 3.1: (Left) Bilateral Staggered Projections for Joints explores the constrained DOFs of
articulated bodies in a reduced state. (Right) Still frame of a Klann walker linkage simulation that
utilizes BISP to compute joint frictional forces. Reprinted from [11].

It is well known that the dynamics of articulated rigid bodies can be solved in O(n) time using

a recursive method, where n is the number of joints. However, when elasticity is added between

the bodies (e.g., damped springs), with linearly implicit integration, the stiffness matrix in the

equations of motion breaks the tree topology of the system, making the recursive O(n) method

inapplicable. In such cases, the only alternative has been to form and solve the system matrix,

which takesO(n3) time. We propose a new approach that is capable of solving the linearly implicit

equations of motion in near linear time. Our method, which we call REDMAX, is built using a

combined reduced/maximal coordinate formulation. This hybrid model enables direct flexibility

to apply arbitrary combinations of constraints and contact modeling in both reduced and maximal

coordinates, as well as mixtures of implicit and explicit forces in either coordinate representation.

∗Reprinted with permission from "Redmax: Efficient & flexible approach for articulated dynamics" by Y. Wang,
N. J. Weidner, M . A. Baxter, Y. Hwang, D. M. Kaufman, and S. Sueda, ACM Trans. Graph., vol 38, no 4, Jul.
2019. [Online]. Available: https://doi.org/10.1145/3306346.3322952. Copyright 2019 by Association for Computing
Machinery.
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We highlight REDMAX’s flexibility with seamless integration of deformable objects with two-

way coupling, at a standard additional cost. We further highlight its flexibility by constructing

an efficient internal (joint) and external (environment) frictional contact solver that can leverage

bilateral joint constraints for rapid evaluation of frictional articulated dynamics.

3.1 Introduction

Articulated rigid body dynamics has many applications in various disciplines, including biome-

chanics, robotics, aerospace, and computer graphics. It has been extensively studied starting in the

1960s (e.g., [81]), but it was not until the 1980s that an O(n) algorithm, where n is the number

of joints or bodies, became widely known [82]. This algorithm and its variants are based on a

recursive formulation, where various quantities are computed recursively based on the tree struc-

ture of the mechanism. These algorithms take advantage of dynamics represented using “reduced”

coordinates, where a minimal set of degrees of freedom (DOFs), such as joint angles for revolute

joints and relative translations for prismatic joints, are used to represent the state of the system.

An alternate approach that uses “maximal” coordinates has also been studied.† For example, an

O(n) method for maximal coordinates was discovered by Baraff [83]. However, constraints need

to be applied to model joints, and these constraints must be stabilized to avoid drift [84, 85]. On

the other hand, reduced coordinates do not require any stabilization, since reduced coordinates

only allow configurations that satisfy the joint constraints. Loops are handled with constraints in

either approach, but in practice, stabilizing a few loop constraints is much easier than stabilizing

the whole structure. Furthermore, reduced coordinates are in general faster, because the number of

DOFs is much smaller (e.g., 1/6 the size), and no constraints are required. Also, Baraff [83] notes

that there is anecdotal evidence that larger time steps are possible using reduced coordinates.

One of the advantages of maximal coordinates is that it is more intuitive—it is easier to add

various implicit/explicit forces and to combine with other deformable objects. To address this

point, Wang et al. [11] introduced a formulation of dynamics called REDMAX. Any combina-

†Maximal coords are also called absolute coords or Cartesian coords; reduced coords are also called generalized
coords or minimal coords.
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tion of reduced/maximal forces can be added implicitly or explicitly, and any combination of re-

duced/maximal constraints can be handled. Furthermore, it becomes trivial to get full two-way

coupling between a deformable object (such as an FEM) and the articulated rigid bodies.

REDMAX introduced a few key contributions to articulated dynamics:

• A near linear approach for articulated dynamics, even in the presence of the maximal stiff-

ness matrix, based on our novel matrix-free Projected Block Jacobi Preconditioner.

• A formulation that exposes both maximal and reduced degrees of freedom, allowing any

combination of implicit and explicit forces and constraints in either coordinates. It also

handles full, implicit two-way coupling between articulated and deformable bodies.

As a further demonstration of the flexibility of REDMAX, we show that we can also incorporate

frictional contact within the joints in an efficient manner, by taking advantage of the reduced coor-

dinate representation of the joints. Our approach works well when augmented with both bilateral

(e.g., loop closure) and unilateral (e.g., external contact) constraints.

3.2 Related Work

Articulated rigid body dynamics has been an active research area for many decades, especially

in the field of robotics, where high-performance algorithms were required for low-power systems.

To model joint friction for articulated bodies formulated in reduced coordinates, a common

approach is to treat the frictional force solely as a function of joint velocities, rather than using

the geometry of the joint [86, 87]. With our approach, we use the geometry of the joint in our

friction algorithm, and we show that changing the geometry parameters affects the resulting mo-

tion. Finally, some recent research has shown the effectiveness of using a non-discretized friction

cone [88, 89]. However, we note that the joints in most mechanisms have only 1 DOF, and so the

friction “cone” can be trivially modeled by a box constraint.

3.3 Frictional Joints

In this section, we highlight the flexibility of the REDMAX formulation with an efficient algo-

rithm for resolving frictional contact within joints. This has many applications including: comput-
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ing the energy required for robotics; and modeling arthritic joints for biomechanics or animation.

In this section, we show how REDMAX can be combined with the Staggered Projections (SP)

algorithm to take into account the bilateral nature of the joint constraints.

3.3.1 Review of Staggered Projections

The original Staggered Projections algorithm was developed for solids undergoing unilateral

contact constraints with friction [12]. SP is shown in Alg. 3.1, slightly modified to match our

notation. Since SP was designed for maximal rigid bodies, we remove the m and r (maximal &

reduced) subscripts for clarity. There are two quadratic programs (QP) that are solved iteratively:

contact and friction. Let q̇unc = q̇prev + hM−1f be the unconstrained velocity, where q̇prev is the

velocity from the last time step. The contact QP can then be written as:

minimize
α

1

2
α>NM−1N>α− α>N(q̇unc + hM−1fβ)

subject to α ≥ 0,

(3.1)

where α is the contact impulse, N is the contact normal matrix, M is the maximal mass matrix, f

is the maximal force, and fβ is the frictional force, which is initially zero. After solving for α, we

compute the contact force as fα = −N>α/h. The frictional QP is:

minimize
β

1

2
β>TM−1T>β − β>T(q̇unc + hM−1fα)

subject to − µα ≤ β ≤ µα,

(3.2)

where β is the frictional impulse, T is the contact tangent matrix, and µ ≥ 0 is the coefficient

of friction. The box constraints can only accommodate a four-sided friction cone—if needed, we

can rewrite this constraint to give us a polyhedral cone [90] or a continuous cone [88, 89], but we

note that for 1 DOF joints, the cone constraint degenerates into a box constraint. After solving

for β, we compute the frictional force as fβ = −T>β/h. These two QPs are solved iteratively

until convergence. The convergence rate can be improved by caching the frictional force, fβ , and

warm-starting with this cached value at every time step [12].
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Algorithm 3.1 Staggered Projections
1: Fill M . mass matrix
2: fβ = 0
3: while simulating do
4: Fill f, N, T . force vector, normal and tangent matrices
5: f0α = 0
6: q̇unc = q̇prev + hM−1f
7: while true do
8: // CONTACT
9: Solve contact QP 3.1 for α

10: fα = −N>α/h
11: // CONVERGENCE CHECK
12: if ‖fα − f0α‖M−1 ≤ ε or max iterations then
13: break
14: end if
15: f0α = fα
16: // FRICTION
17: Solve friction QP 3.2 for β
18: fβ = −T>β/h
19: end while
20: q̇ = q̇prev + hM−1(f + fα + fβ)
21: end while

3.3.2 Bilateral Staggered Projections

We extend SP by taking advantage of the bilateral constraints present in articulated rigid body

dynamics. The resulting algorithm, which we call Bilateral Staggered Projections (BISP), is much

more efficient than SP and can also be combined with SP for handling external frictional contacts,

such as between a body and the environment.

BISP has several advantages over SP. First, we do not need collision detection. With BISP, for

each joint type (e.g., revolute, spherical, prismatic), we use a small number of implicit contacts

at pre-determined positions around the joint. For example, for a revolute joint, we assume that

the joint geometry is a cylinder, and we populate the two ends of the cylinder with a sparse set

of contact points (see inset figure). By changing the parameters of this cylinder, we get different

frictional effects. Second, the size of the friction QP decreases significantly, because the friction

cone can be represented exactly using box constraints for 1 DOF (revolute and prismatic) joints,
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Algorithm 3.2 Bilateral Staggered Projections
1: Fill M . mass matrix
2: fβ = 0
3: while simulating do
4: Fill f, N, T . force vector, normal and tangent matrices
5: f0α = 0
6: while true do
7: // CONTACT
8: Evaluate 3.5 for fα . §3.3.2.1
9: while backward traversal do

10: Distribute fα to joint . §3.3.2.2
11: end while
12: while parallel traversal do
13: Locally solve 3.7 for α . §3.3.2.3
14: end while
15: // CONVERGENCE CHECK
16: if ‖fα − f0α‖M−1 ≤ ε or max iterations then
17: break
18: end if
19: f0α = fα
20: // FRICTION
21: Solve friction QP 3.2 for β
22: fβ = −T>β/h
23: end while
24: q̇r = q̇prev

r + hM−1r J>mr (̃fm + fα + fβ)
25: end while

which are often the most used joints. Third, the contact QP can be eliminated, since in reduced co-

ordinates, the contact constraints are satisfied automatically. Finally, we obtain faster convergence,

since the contacts are more temporally coherent in a bilaterally constrained system.

In the following subsections, we describe how we extend SP to obtain BISP. As stated above,

BISP eliminates the need for the contact QP by taking advantage of reduced coordinates, How-

ever, we still need the contact Lagrange multipliers, α, when we solve for the frictional impulses,

because α is used as the limits on the friction forces. We compute α in three steps:

• §3.3.2.1: Compute the joint reaction forces.

• §3.3.2.2: Distribute this global force into the joints.
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• §3.3.2.3: Compute α locally within each joint.

3.3.2.1 Compute joint reaction force

We first compute the joint reaction (i.e., constraint) force that would produce the same con-

strained motion as the one generated using reduced coordinates. We do this by comparing the

velocity generated by the reduced solve against the velocity generated by an unconstrained max-

imal solve. As an illustration, suppose we are running the standard SP algorithm with maximal

coordinates. Let q̇unc = q̇prev +hM−1f, and the corresponding constrained velocity from Eq. 3.1 be

q̇con. We can rearrange the constrained equations of motion to solve for the constraint forces:

Mq̇ + N>α = Mq̇prev + h(f + fβ)

M−1N>α = q̇prev + hM−1(f + fβ)︸ ︷︷ ︸
q̇unc

− q̇︸︷︷︸
q̇con

(3.3)

where q̇prev is the velocity from the last time step. We can rearrange further to obtain the expression

for the constraint force, fα = −N>α/h:

fα =
1

h
M (q̇con − q̇unc) . (3.4)

What this equation implies is that we can compute the constraint force, fα, by subtracting the

unconstrained velocity from the constrained velocity.

Now we show how BISP uses a similar approach to eliminate the contact QP. As in SP, the cur-

rent friction force must be taken into account when computing the constrained and unconstrained

velocities. In the following equations, since we must now compute both reduced and maximal

coordinates, we add back the subscripts m and r. (The contact and friction forces, fα and fβ , are

maximal quantities.) As before, we subtract the unconstrained velocity from the constrained veloc-

ity, but now the constrained velocity is computed in reduced coordinates instead of using Eq. 3.1:
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fα =
1

h
Mm (Jmrq̇

con
r − q̇unc

m ) (3.5a)

q̇unc
m = Jmrq̇

prev
r + hM−1m (fm + fβ) (3.5b)

q̇con
r = q̇prev

r + hM−1r J>mr

(
f̃m + fβ

)
. (3.5c)

To lighten the notation, we use f̃m in Eq. 3.5c to include the quadratic velocity vector from the

RHS of Eq. 3.6, derived in the body of the larger REDMAX project in Wang et al. [11]

(
J>mr

(
Mm + hDm − h2Km

)
Jmr + hDr − h2Kr

)
q̇(k+1)
r =(

J>mrMm Jmr
)
q̇(k)r + h

(
fr + J>mr

(
fm −Mm J̇mr q̇

(k)
r

))
,

(3.6)

3.3.2.2 Distribute contact force to joints

The computed constraint force, fα, is a global maximal force vector that accounts for all joint

reaction forces. Therefore, if we extract a portion of fα corresponding to a single body, we obtain

the sum of all the joint reaction forces acting on that body. To compute the Lagrange multipliers

for a particular joint, we first need to isolate the joint reaction force from this sum. Fortunately,

this can be done in a linear fashion by traversing the joints backward from leaf to root. For a leaf

body, there is only one joint force acting on it, and so its portion of fα is exactly the required joint

reaction force. Since this joint reaction force exerts an equal and opposite force on the parent of

the leaf, we subtract this force from the parent’s portion of fα and continue the backward traversal.

3.3.2.3 Compute contact Lagrange multipliers

Once we have the joint reaction forces distributed to each joint, we can compute the contact

Lagrange multipliers that generate that joint reaction force. This can be done in parallel, since

these are local operations performed for each joint independently of each other. For each joint, we

search for a least-squares solution to (NiM
−1
i N>i )αi = hNiM

−1
i fαi, where the subscript i indicates

the blocks corresponding to the ith body. We do not require αi to be positive, since these “contact”
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constraints are bilateral—they cannot come apart. To deal with contact indeterminacy [91], we add

a regularization term, which is critical because otherwise the joint can become arbitrarily tight. For

instance, setting αi = 1000 for all contacts will generate the same effective constraint on the joint

as setting αi = 0.1. Adding this regularization term, the local linear system becomes:

αi = h
(
NiM

−1
i N>i + εI

)−1 (
NiM

−1
i fαi

)
. (3.7)

In our experiments, we set ε = 1e-6.

After the contact impulses for all the joints, α, are computed, the convergence check and the

friction solve are the same as in SP. The step-by-step algorithm is shown in Alg. 3.2.

3.3.3 Adding External Constraints

BISP can also take into account external constraints, such as loop-closing (bilateral) constraints

or frictional contact (unilateral) constraints with the environment. Alg. 3.2 is modified as follows

to take into account these additional constraints:

• Line 10: To compute the contact force, both the unconstrained and constrained velocities

must take into account the additional external constraints. The unconstrained velocity is obtained

by solving a maximal system with only the external constraints, ignoring the implicit constraints

exerted by the joints. The corresponding constrained velocity is obtained by solving a reduced

system with external bilateral constraints, G, and unilateral constraints, C. The difference between

these velocities will give us the joint reaction forces. Thus, instead of Eq. 3.5, we evaluate the
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following:

fα =
1

h
Mm (Jmrq̇

con
r − q̇unc

m ) (3.8a)

min.
q̇m

1

2
q̇>mMmq̇m − q̇>m (MmJmrq̇

prev
r + h (fm + fβ))

s. t. Gmq̇m = 0, Cmq̇m ≥ 0

(3.8b)

min.
q̇r

1

2
q̇>r Mrq̇r − q̇>r

(
Mrq̇

prev
r + h J>mr

(
f̃m + fβ

))
s. t. GmJmrq̇r = 0, CmJmrq̇r ≥ 0,

(3.8c)

where q̇unc
m and q̇con

r are the solutions of the two QPs (3.8b & 3.8c). The loop-closing constraint

reaction forces are computed as fλ = −J>mrG>mλ/h, where λ is the vector of Lagrange multipliers

corresponding to the loop-closing constraints, GmJmrq̇r = 0, from the minimization for q̇con
r . The

maximal QP in Eq. 3.8b may seem expensive to solve (all other QPs are in reduced coordinates),

but usually, the number of external constraints is much smaller than the number of joint constraints.

Therefore, we can solve this maximal QP in its dual form instead, which is much smaller. For

example, for the KLANN mechanism with 6 legs (Fig. 3.3a), the dual QP is of size at most 30 with

only box constraints.

• Line 15: We need to compute the contact forces due to the loop-closing joint constraints, by

again solving a small linear system 3.7. These small linear systems are solved for each joint and

for each loop-closing joint constraint.

• Line 26: To compute the final velocity, we solve a quadratic program that takes into account

the external constraints:

min.
q̇r

1

2
q̇>r Mrq̇r − q̇>r

(
Mrq̇

prev
r + h J>mr

(
f̃m + fα + fβ

))
s. t. GmJmrq̇r = 0, CmJmrq̇r ≥ 0.

(3.9)

With these three changes, any combination of external bilateral and unilateral constraints can

be incorporated into BISP.
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(a) CHAIN (R) (b) CHAIN (2R)

Figure 3.2: (a) CHAIN composed of revolute joints. (b) With a larger radius, the chain stops earlier.
Reprinted from [11].

3.4 Results

We implemented our system in C++ and ran the simulations on a consumer desktop with an

Intel Core i7-7700 CPU @ 3.6 Ghz and 16 GB of RAM. We use Eigen for dense linear algebra,

Pardiso for sparse linear solves, and Mosek for quadratic programs.

• CHAIN (Figs. 3.2a & 3.2b): This scene shows the frictional effect due to changing the geom-

etry of the joint. We initialize the scene so that the chain starts horizontally and falls under gravity,

with the axis of rotation oriented 45◦ from the direction of gravity. Since more weight must be

supported by bodies closer to the root, the contact force, and thus the force of friction, is stronger

at the root compared to the tip. This makes the chain stop rotating starting from the root rather

than at the tip. When we increase the joint radius, even with the same coefficient of friction, the

force of friction increases since the joint is able to apply more torque. When Staggered Projections

is used, the simulation takes an order of magnitude longer to complete because: (1) with maximal

coordinates, position stabilization is required, and this can have an adverse effect on the iteration

count; and (2) SP requires two global QPs, whereas BISP requires only one.

• KLANN (Figs. 3.3a & 3.3b): Our friction solver can handle loop-closure and contact con-

straints. We build a walking machine with a Klann linkage for each of the 6 limbs. Each limb
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Figure 3.3: (a) Klann walker with frictional joints. (b) Graph of torque vs. time, with various joint
friction coefficients. Reprinted from [11].

has 5 revolute joints and 2 loop-closure constraints. Since each loop-closure constraint removes

2 DOFs, each limb has 5 − 2 · 2 = 1 effective DOF. In total, there are 26 internal joint DOFs

with 24 bilateral constraints and (up to) 6 unilateral constraints. The 2 remaining DOFs are driven

with inverse dynamics to have a constant rotational speed. We use µ = 0.8 for floor friction.

We run several simulations, increasing µ for loop closure and joint constraints from 0.0 to 0.8.

Fig. 3.3b shows the amount of torque required to drive the mechanism as we increase this fric-

tional coefficient. As we expect, more torque is required when there is more friction within the

joints. Interestingly, when the µ = 0, the motor does some negative work—the limbs try to push

the motor forward, but the motor pushes back.

3.5 Conclusion

We introduced an efficient and flexible approach for computing the dynamics of articulated

rigid bodies. This approach can be efficiently integrated into a friction solver that can incorporate

friction inside the joints with loop closure as well as external contact constraints. Our algorithm
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bypasses the expensive bottleneck of a contact QP while still computing the same result of a tra-

ditional full staggered projections contacts with friction simulation. We take advantage of the

reduced system to create complex scenes with a significantly reduced number of DOFs and avoid

the position stabilization that comes along with maximal setups. The algorithm is an extension of

the Staggered Projections algorithm [12], which iteratively solves a pair of coupled quadratic pro-

grams to resolve the frictional force. It would be interesting to also extend the popular approximate

frictional contact model by Anitescu and Hart [92], which uses only a single QP.
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4. CONDENSATION JACOBIAN WITH ADAPTIVITY∗

Figure 4.1: (Left) Condensation Jacobian with Adaptivity looks at using reduction methods to
improve the efficiency of soft body deformations. (Right) Still frame of a simulated soft body
dragon deforming from pulling forces and generating lively motion using only a small number of
dynamic nodes. Reprinted from [13].

We present a new approach that allows large time steps in dynamic simulations. Our approach,

CONJAC, is based on condensation, a technique for eliminating many degrees of freedom (DOFs)

by expressing them in terms of the remaining degrees of freedom. In this work, we choose a subset

of nodes to be dynamic nodes, and apply condensation at the velocity level by defining a linear

mapping from the velocities of these chosen dynamic DOFs to the velocities of the remaining

quasistatic DOFs. We then use this mapping to derive reduced equations of motion involving

only the dynamic DOFs. We also derive a novel stabilization term that enables us to use complex

nonlinear material models. CONJAC remains stable at large time steps, exhibits highly dynamic

motion, and displays minimal numerical damping. In marked contrast to subspace approaches,

CONJAC gives exactly the same configuration as the full space approach once the static state is

∗Reprinted with permission from "Conjac: Large steps in dynamic simulation" by N. J. Weidner, T. Kim, and S.
Sueda, Motion, Interaction and Games, ser. MIG ’20. New York, NY, USA: Association for Computing Machinery,
2020 [Online]. Available: https://doi.org/10.1145/3424636.3426901. Copyright 2020 by Association for Computing
Machinery.
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reached. Furthermore, CONJAC can automatically choose which parts of the object are to be

simulated dynamically or quasistatically. Finally, CONJAC works with a wide range of moderate

to stiff materials, supports anisotropy and heterogeneity, handles topology changes, and can be

combined with existing solvers including rigid body dynamics.

4.1 Introduction

Physics-based simulation of dynamic deformable objects has a long history in computer graph-

ics. Starting with the work by Terzopoulos et al. [1], algorithms for physics-based animation

have steadily become an integral part of the visual effects pipeline. Over the years, various im-

provements have been made, including: novel energy formulations [93], inversion recovery/safety

[94, 95], novel Eulerian/Largrangian formulations [96, 97], and completely new time stepping

schemes [80, 79].

Computational efficiency is one of the most important aspects of simulation. Real-time applica-

tions such as games and virtual surgery have strict computational budgets for physics, while offline

applications such as movies need efficiency so that artists can quickly iterate on designs. However,

efficiency comes at a price. Various works have made dynamic simulation of deformable objects

extremely efficient, but they inescapably introduce limitations. To tackle this issue, we introduce a

novel, reduced coordinate approach that has the following desirable properties:

• Reproduces exactly the same static configuration as the standard finite element (FE) ap-

proach.

• Supports complex nonlinear materials, including heterogeneity, anisotropy, and biomechan-

ical soft tissues.

• Does not require any precomputation.

• Supports topology changes.

• Retains dynamic motion at large time steps, without suffering from excessive numerical

damping.
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• Can be combined with existing frameworks, including rigid body dynamics, into a fully

two-way coupled simulation.

Existing works fail with respect to at least one of these properties. The virtual surgery simula-

tor of Bro-Nielsen and Cotin [98] is highly efficient and produces the same static configuration as

the full FE method, which is useful for predicting the behavior of a virtual organ. However, it only

supports relatively small deformations, because only linear materials can be factorized as a precom-

putation. In one of the seminal works on cloth simulation, Baraff and Witkin [2] greatly increased

the efficiency of dynamics simulations by introducing a linearly implicit integration method that

allowed large time steps. However, this approach fails to retain dynamics under large time steps

due to numerical damping. One of the most important approaches to improving efficiency is sub-

space dynamics [99, 100, 101, 102, 103, 104]. These methods achieve massive speed ups, but

sacrifice local detail because the subspace dimension must be kept at a minimum. They also re-

quire precomputation, and cannot reproduce the same solution as FE unless a prohibitively large

subspace is used.

Our approach is based on condensation [14], a technique for eliminating many degrees of

freedom (DOFs) by expressing them in terms of the remaining DOFs. With CONJAC, short for

Condensation Jacobian, we apply condensation at the velocity level—a significant departure from

previous work [105, 14, 98, 15, 104]. We select a “dynamic” subset of nodes as the true DOFs of

the system, and the remaining “quasistatic” nodes are assumed to follow the dynamic nodes in a

quasistatic fashion.† More specifically, CONJAC expresses the velocities of the quasistatic nodes

as a linear function of the dynamic nodes by leveraging the condition that the net force acting on

each quasistatic node vanishes. We also derive a novel stabilization term that allows CONJAC to

be used with an arbitrary material model. Previous work was limited to linear materials.

We show that most of the important dynamics of an object are captured by simulating just a few

key dynamic nodes, and the remainder can be handled quasistatically. We simulate a bar stretching,

compressing, bending, and twisting with only a few (1-4) dynamic nodes placed along the central

†Previous works have called these “external/internal” or “master/slave” nodes.
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axis. We are also able to simulate the dynamics of a dragon being pulled in various locations,

and a bunny being dropped on the floor, each with only 8 dynamic nodes. The CONJAC approach

remains stable with large time steps because the quasistatic nodes cannot move independently,

which effectively removes the small vibrations that can destabilize standard FE simulators. With

CONJAC, a strong force suddenly applied to a node is instantaneously propagated to the dynamic

nodes, eliminating the numerical wave that would force a full FE simulator to take small time steps.

CONJAC is a method for reducing the DOFs of a system, and so it is not tied to a specific time

integrator. In this work, we showcase the strengths of CONJAC using the popular linearly implicit

integration scheme [2]. We show that with a linearly implicit scheme, CONJAC is computationally

inexpensive, requiring only one linear solve per time step, but does not suffer excessively from

numerical damping and retains all of the advantages listed earlier in the introduction.

4.2 Related Work

Simulation of deformable objects is a well-studied subject in computer animation, and we refer

the reader to excellent existing surveys and tutorials [106, 5].

Our method is based on condensation, a technique from structural engineering [107, 108, 105].

Originally developed for static vibrational analysis, condensation has been extended to include

dynamics [14]. With these classical condensation approaches, a global generalized eigenvalue

problem is solved for the reduced modes of the structure. In our work, we use condensation to

derive a linear mapping of the velocities rather than to compute the modes.

Several previous works in computer graphics are motivated by condensation. These methods

use the stiffness matrix to couple specially chosen dynamic DOFs to the remaining quasistatic

nodes. Our work is closely related to the work by Gao et al. [15] on Steklov-Poincaré skinning.

They achieve impressive volumetric effects for skinning using only the surface degrees of free-

dom, but is limited to quasistatics and corotational elasticity. The same authors later developed a

“macroblock” solver for grid-based discretizations, also using a stiffness matrix reduction [109].

By solving the macroblocks in parallel and efficiently aggregating, they quickly compute a de-

formation that matches the output of a standard FE solver. However, they again rely on linear
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(corotational) material that can be precomputed. Furthermore, stiff springs are used to couple de-

formable objects to rigid bodies, which may reduce the time step or introduce unwanted numerical

damping.

One of the most important and popular approaches to improving efficiency is subspace dynam-

ics [99, 100, 101, 102, 110, 103]. Rather than simulating the full space of vertex DOFs, dynamics

are performed over a reduced set of DOFs. To address artifacts that arise from the global support

of subspace basis functions, researchers have explored domain decompositions where subspaces

are computed per domain. To stitch these domains together, Barbič and Zhao citeBarbic2011 used

locally aligned rigid frames, while Kim and James [111] used penalty forces. These methods can

achieve massive speed ups, but sacrifice local detail because the subspace dimension must be kept

at a minimum. They also require precomputations such as modal analysis and cubature optimiza-

tion, so changing object topologies are challenging. Finally, they generally do not reproduce the

full FE solution unless the subspace is prohibitively large.

Condensation has also been combined with subspace dynamics. Traditionally, only linear ma-

terials could be used, but Teng et al.[104] efficiently performed subspace condensation at runtime,

allowing nonlinear materials to also be used. However, the overall limitations remain. The sub-

space must be carefully constructed, and while the condensation allows objectionable artifacts to

be avoided, the final deformation does not match the full FE solution.

Recently, Xian et al. [112] introduced a multigrid-based method to solve for deformation dy-

namics in the full space, and achieved over 40 FPS on a mesh with over 60k vertices. However,

they inherit common limitations of multigrid methods. Without significant extensions, it is not

possible to support topological changes, complex materials (heterogeneity and anisotropy), and

two-way coupling with rigid body dynamics.

Finally, a number of efficient time stepping schemes have been introduced by graphics re-

searchers. Recently, Li et al. [113] introduced a domain-decomposed optimization method for

implicit numerical time integration. In the past two decades, Position-Based Dynamics [80], Pro-

jective Dynamics [79], and ADMM [114, 115] have become popular, efficient alternatives to the
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standard time stepping schemes. Although initially quite limited in terms of available materials and

constraints, these methods have become quite general and flexible. These time stepping schemes

work well, but are monolithic, and would require a complete rewrite of existing formulations to

make them work together. Our work is instead based on a simple mapping of velocities, which can

be incorporated into a wide range of existing explicit and implicit integrators.

4.3 CONJAC Dynamics

We begin with a high-level, didactic description of CONJAC in action. Imagine a vertical string

discretized as a sequence of 1D nodes (i.e., they can only move vertically). We fix the top node and

pick the bottom node to be the dynamic node. The remaining nodes in the middle are labeled as

quasistatic nodes. If we know the material properties of the string (e.g., zero rest-length springs),

then by assuming that the net force on each quasistatic node remains zero, we can calculate the

position and velocities of all these quasistatic nodes from the position and velocity of the single

dynamic node at the bottom of the string.

In this section, we will formalize this approach by deriving the linear mapping between the

quasistatic and dynamic nodes of a volumetric solid composed of an arbitrary nonlinear material.

We will then derive equations of motion that allow us to simulate the object using only the dynamic

DOFs. The remaining nodes are simulated quasistatically, so the final resting configuration exactly

matches the result of a full, non-reduced FE simulator.

4.3.1 CONJAC Mapping

Once again, we select a set of dynamic nodes that are the exposed degrees of freedom of the

system. The remaining quasistatic nodes move so that their net force always resolves to zero. The

CONJAC framework uses the linear mapping that enforces this condition between the dynamic and

quasistatic nodal velocities:

vq = Jqdvd, (4.1)

where Jqd is the Jacobian term that we will derive in the rest of this section. Given any velocities of

the dynamic nodes, vd, this mapping allows us to compute the velocities of the quasistatic nodes,
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vq.

The derivation of Jqd in Eq. 4.1 starts with a linearization of the forces, popularized by Baraff

and Witkin [2] and extensively used by other researchers [106]. We approximate the implicit force

at the next time step as:

f = f0 + K0(x− x0), (4.2)

where the superscript 0 denotes the quantities at the current time step, and K = ∂f/∂x is the

tangent stiffness matrix. Substituting the next velocity as v = (x−x0)/h, where h is the step size,

we obtain:

f = f0 + K0hv. (4.3)

We follow previous condensation work [105, 14, 98, 15, 104] and partition each of the terms into

dynamic and quasistatic quantities:

fd

fq

 =

f0d

f0q

+ h

K0
dd K0

dq

K0
qd K0

qq


vd

vq

 . (4.4)

Since we are interested in applying the zero net-force condition on the quasistatic nodes, we extract

the bottom row of Eq. 4.4. After moving f0q and h to the left hand side (LHS), we have:

1

h

(
fq − f0q

)
= K0

qdvd + K0
qqvq. (4.5)

Our goal is to obtain zero net-force on the quasistatic nodes, so we set the force vectors to zero.

(We will return to this point in §4.3.3.) Rearranging Eq. 4.5 in the form of Eq. 4.1, vq = Jqdvd,

we obtain our condensation Jacobian (CONJAC):

Jqd = −(K0
qq)
−1K0

qd. (4.6)

Moving forward, we will drop the superscript 0 from K, with the understanding that these quanti-

ties are evaluated at the current time step.
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4.3.2 Equations of Motion

Armed with the CONJAC mapping in Eq. 4.6, we are now ready to derive the equations of

motion. First, we define an expanded mapping that includes both quasistatic and dynamic nodes:

v = Jvd, v =

vd

vq

 , J =

 I

Jqd

 , (4.7)

where I is the identity matrix. This mapping passes the dynamic velocities through untouched,

while applying the CONJAC mapping defined by Eq. 4.6 to the quasistatic velocities. Taking the

time derivative of Eq. 4.7, we have:

v̇ = Jv̇d + J̇vd. (4.8)

Plugging v̇ into Newton’s second law, Mv̇ = f , rearranging the terms, and left multiplying by J>,

we get:

J>MJv̇d = J>
(
f −MJ̇vd

)
. (4.9)

The LHS matrix, J>MJ, is the effective inertia tensor acting on the dynamic nodes. This gen-

eralized inertia includes not only the self inertia of the dynamic nodes but also the inertia of the

quasistatic nodes, since any motion of the dynamic nodes automatically causes the quasistatic

nodes to move. The right hand side (RHS) vector is pre-multiplied by the Jacobian transpose, J>.

Since J> =

(
I J>qd

)
, the forces acting on quasistatic nodes are left-multiplied by J>qd to project

away the null-space. Finally, since the goal of our approach is to approximate dynamics while

preserving quasistatics, we ignore the quadratic velocity vector on the RHS involving J̇, which

disappears when v is zero [116]. In our examples, the lack of the quadratic velocity vector did not

cause any visual artifacts.

The CONJAC mapping can be used with a variety of time stepping schemes. In this work, we

use the popular linearly implicit (which we call “VANILLA”) formulation [2, 106, 117, 118]. This
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integration scheme is easy to implement, requiring only a single linear solve per time step.

(
M− βh2K

)
v = Mv0 + hf . (4.10)

Here, the tangent stiffness matrix, K, is evaluated at the current time step, but we have dropped the

superscript for brevity. In addition to the h2 factor in the stiffness term in Eq. 4.10, we also apply

a positive factor β to control the amount of damping [101, 119]. If we increase β, the simulation

becomes more stable but at the cost of added numerical damping.

We obtain our final CONJAC equations of motion by projecting VANILLA with the Jacobian:

J>
(
M− βh2K

)
Jvd = J>

(
Mv0 + hf

)
. (4.11)

We solve this linear system at every time step for the new dynamic velocities, vd. Once the dynamic

velocities are computed, we compute the quasistatic velocities as vq = Jqdvd. Then, as explained

in the next section, we apply stabilization to the positions at the end of the time step.

4.3.3 Stabilization

The Jacobian, Jqd, defined in Eq. 4.6 can cause large errors for nonlinear materials, due to

the linear approximation introduced in Eq. 4.2. Since we are applying condensation at the velocity

level, after taking a time step, the quasistatic forces inevitably contain small non-zero values, which

implies that the LHS of Eq. 4.5 is not always zero. In particular, the current force acting on the

quasistatic nodes, f0q , is not exactly balanced, and contains small non-zeros. (On the other hand,

the implicit force at the next time step, fq, is what we want to eliminate, so it is set to zero.)

This observation allows us to compute the “residual” velocity that drives the quasistatic nodes

back to the zero net-force state. If we do not throw away f0q from Eq. 4.5, we obtain:

vq = Jqdvd + bq, bq = −1

h
(K0

qq)
−1f0q . (4.12)

This Baumgarte-like stabilization term, bq, is the key term that makes our approach work, even
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Algorithm 4.1 CONJAC pseudocode
1: (Optional) Initialize the quasistatic positions
2: Compute M
3: while simulating do
4: Compute f ,K
5: Compute J, b
6: Solve for vd (Eq. 4.11)
7: Compute vq = Jqdvd
8: Update x (Eq. 4.13)
9: end while

in the presence of linearization artifacts [84]. Rather than modifying the velocities, we apply this

stabilization term when we update the positions. We multiply this factor by a scalar parameter γ

that controls the strength of the stabilization. The position updates for dynamic and quasistatic

nodes are then:

xd = x0
d + hvd

xq = x0
q + h(vq + γbq).

(4.13)

When applied to the position, this stabilization term becomes exactly a Newton correction term:

∆x = −γK−1qq fq. In other words, we apply one scaled Newton step at the position level after taking

a velocity step, with γ = 1 corresponding to a full Newton step. In practice, we found that a full

Newton step can sometimes cause instabilities. The best value can be obtained with a line search,

but we found that simply setting γ = 1/3 worked well for our examples (unless otherwise stated).

Without the stabilization term bq, the object becomes visibly distorted due to the accumulation

of error, and can eventually blow up. This term had not been derived in previous approaches

because linearization does not cause any drift in linear materials. This stabilization approach is

both effective and efficient. An alternative approach based on pre- or post-stabilization may work

as well [85, 120], but we speculate that they will be less efficient and more difficult to implement.
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Algorithm 4.2 VANILLA pseudocode
1: Compute M
2: while simulating do
3: Compute f ,K
4: Solve for v (Eq. 4.10)
5: Update x = x0 + hv
6: end while

4.3.4 Time Stepping

The overall simulation pseudocode for CONJAC using linearly implicit Euler [2] is shown in

Alg. 4.1. For comparison, we also show the VANILLA pseudocode, also using linearly implicit

integration, in Alg. 4.2.

With VANILLA, the performance bottleneck is the linear solve for the new velocities (line

4). On the other hand, with CONJAC, solving for the new dynamic velocities is not the bottleneck

because Eq. 4.11 is small. Instead, the bottleneck is in forming the Jacobian (line 5), which involves

a series of solves by Kqq, which cannot be prefactored for nonlinear materials.

With our current implementation, each time step of CONJAC (lines 4-8 in Alg. 4.1) is about

20% slower than a time step of VANILLA (lines 3-5 in Alg. 4.2) with 4 dynamic nodes, and 40%

slower with 10 dynamic nodes (see Fig. 4.3). However, we more than make up for this difference

because CONJAC allows much bigger time steps for the same amount of dynamic behavior.

The initial nonlinear solve for the quasistatic positions in CONJAC (line 1 in Alg. 4.1) can be

costly, but it only needs to be performed once at the beginning of the simulation. We do not need

to run this expensive nonlinear optimization within the simulation loop because of the stabilization

term from §4.3.3. In fact, it is even possible to skip the initial nonlinear solve, since the stabilization

term eventually eliminates the drift and drives quasistatic nodes to their zero net-force state over

time.
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4.4 Adaptivity

The liveliness of a CONJAC simulation is tied to the number of dynamic nodes in the scene.

We can choose to place dynamic nodes only in regions where dynamics are desired to avoid unnec-

essarily increasing the bottleneck. To generalize objects so that they are still lively and optimized

in novel deformations and environments, we introduce a concept of adaptivity—we turn on/off the

dynamic nodes at runtime. We assume that we know a priori a subset of mesh nodes that can

become dynamic, which we call the “representative” nodes. As we show in §4.5, this number

does not need to be very high to get rich deformations. For example, in the ARMADILLO mesh

shown in Fig. 4.10, this subset consists of 5 representative nodes, placed in the extremities of the

four limbs and in the center of the torso. During runtime, we automatically decide which of these

representative nodes should be dynamic or quasistatic, depending on our novel “liveliness” metric.

This cuts down on unnecessary solves which speeds up simulations, and improves the robustness

of scenes. In the rest of this section, we will describe our liveliness metric (§4.4.1) and then discuss

the necessary changes to the CONJAC algorithm to minimize expensive matrix resizing and slicing

operations that occur when dynamic nodes are turned on and off at runtime (§4.4.2).

4.4.1 Adaptivity Metric

To quantify the liveliness of a node, we want a metric that captures how a local region of the

mesh is deforming differently from its neighborhood regions. We are interested in capturing the

differences in the rate of change of deformation. Therefore, rather than using the deformation

gradient F, we use the time derivative of the deformation gradient Ḟ. In particular, we look at

the average change in stretching speed over a local group of tetrahedral elements. Stretch is a very

insightful local measurement into how much our object is actually deformed rather than undergoing

rigid motion, and change in stretch captures activity instead of a deformed settled state.

To derive this change in stretch over time, or Ṡ, we look at the deformation gradient F based
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on our material matrix Dm and spacial matrix Ds:

Dm =

(
x1 − x0|x2 − x0|x3 − x0

)
Ds =

(
x1 − x0|x2 − x0|x3 − x0

)
F = DsD

−1
m .

(4.14)

These matrices are a formulation of our nodal material positions in world space, x, and our current

time step’s deformed nodal positions in world space, x, respectively. F can also be decomposed

into rotation and stretch components using the polar decomposition:

F = RS. (4.15)

Substituting our deformed positions for velocities allows us to instead formulate a velocity gradi-

ent. Using the chain rule, this velocity gradient can be similarly decomposed just like F, using

nodal velocities vi instead of positions xi [121]:

Ḋs =

(
v1 − v0|v2 − v0|v3 − v0

)
Ḟ = ḊsD

−1
m

Ḟ = ṘS + RṠ.

(4.16)

From this decomposition we can rearrange and solve for Ṡ:

Ṡ = R>
(
Ḟ− ṘS

)
. (4.17)

A singular value decomposition of F gives us definitions for R and S:

F = UΣV> R = UV> S = VΣV>. (4.18)
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The slightly more complicated piece we still need is Ṙ, which we can decompose as follows:

Ṙ =
∂R

∂F
: Ḟ. (4.19)

We compute ∂R/∂F in closed form by following the work of Smith et al. [6]. (The pseudocode

is given in §B.1.1.) Computationally speaking, when using a material model such as the Stable

Neo-Hookean material [93], the expensive SVD component of these operations is already required

so the only additional work needed for this new metric is the relatively inexpensive Ṙ value.

Once this metric is defined per tetrahedron, we want to quantify this measurement for each

representative node so we know whether a particular representative node should be dynamic or

quasistatic at a given time step. Ṡ is a a matrix whose coefficients represent the speed of change

of the deformation, so by using the absolute value of these coefficients to ignore direction and the

average of them to alleviate outliers, we arrive at a scalar value giving us a good idea how much

deformation is taking place. In other words, the liveliness measure of the jth representative node

is:

metricj = mean
([

vec(|Ṡ1|)> · · · vec(|Ṡm|)>
])
, (4.20)

where m is the number of tetrahedra in the region owned by the jth representative node. (The

pseudocode is given in §B.1.2; in our actual implementation, we use a weighted average using the

volume of each element.) To further account for potential noise in the metric, we expand this by

averaging these metrics across a window of past time steps. Our final scalar value is compared

against a threshold of desirable motion and the end result is a dynamic node that can gracefully

revert to a quasistatic state when the local deformations around it are not worth spending the

increased number of solves to capture. In the extreme case, when the dynamic motion has mostly

died down, the simulation is driven entirely from the stabilization term, with all nodes moving in a

quasistatic fashion.
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Algorithm 4.3 CONJAC with adaptivity
1: (Optional) Initialize the quasistatic positions
2: Compute M
3: while simulating do
4: Compute f ,K, Ṡ
5: for representative nodes do
6: Compute metric
7: Set as dynamic or quasistatic
8: end for
9: Adjust sparse values of K and Kqd

10: Compute J, b
11: Solve for vd (Eq. 4.11)
12: Compute vq = Jqdvd
13: Update x (Eq. 4.13)
14: end while

4.4.2 Sparse Matrix Handling

Introducing this mechanic for flipping the state of a subset of our nodes forces us to take another

look at our CONJAC algorithm. The construction of our Jacobian is reliant on both the Kqq and

Kqd matrices, which can now vary in size at runtime depending on the number of dynamic and

quasistatic nodes. Because the construction of our Jacobian is our bottleneck, we want to ensure

that we are not introducing new overhead on top of the existing CONJAC algorithm that used fixed-

sized matrices. More specifically, some operations such as large matrix allocations and sparsity

pattern analyses (row/column permutations and symbolic analysis) that usually take place in the

simulation setup phase now must happen each time step that a representative node changes from

dynamic to quasistatic and vice versa.

Predefining the subset of representative nodes that can flip between states has a major advantage

in combatting this issue. Without adaptivity, we used Eq. 4.6, which required the entire stiffness

matrix, K, to be pre-partitioned into Kqq and Kqd. (Since the number of quasistatic nodes is much

larger than the number of dynamic nodes, Kqq is almost the same size as K, but Kqd is a tall and

skinny matrix.) With adaptivity, rather than partitioning K into Kqq and Kqd at runtime, we instead

adjust the non-zeros of K and Kqd on the fly to account for the changing number of dynamic nodes.
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Figure 4.2: DRAGON. Pulling portions of the mesh generates lively motion using only a small
number of dynamic nodes. Reprinted from [13].

Specifically: (1) we zero out the row and column of K corresponding to each of the dynamic nodes

and place a negative one on the diagonal; and (2) we replace the rows of Kqd corresponding to the

dynamic nodes with the identity matrix. In this context, to zero-out refers to explicitly setting a

sparse value to zero rather than to change the sparsity. (The pseudocode for these operations is

provided in §B.1.3.) Calling these adjusted matrices KA and KqdA, the Jacobian can be computed

as:

J = −K−1A KqdA, (4.21)

instead of Eqs. 4.6 and 4.7. This allows us to take advantage of the reduced number of solves

without shifting around, reallocating, or reanalyzing unnecessary data in the sparse matrices.

4.5 Results

We implemented our system in MATLAB and ran the simulations on a consumer laptop with

an Intel Core i9-9880H CPU @ 2.3 GHz and 16 GB of RAM. We use MEX for filling the force

vector and the stiffness matrix, and CHOLMOD for sparse linear factorizations and solves [9].

The scene parameters are listed in Table 4.1. All of the objects are table-top sized—roughly 5-15

cm across, weighing a few hundred grams. For all results, we use the Stable Neo-Hookean (SNH)

base material [93]. This material is stable under inversion, but like any non-linear material, it can

still need a Newton solve plus line search to maintain stability under large deformations. We found

that when used with a linearly implicit scheme, it must be heavily damped when using a large time

step, especially when Poisson’s ratio, ν, is close to 0.5.

DRAGON: We start with a 10k node dragon, shown in Fig. 4.2. This example shows that
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CONJAC presents an attractive option for efficiently producing lively simulations. We grab the

jaws and the body of the dragon and pull them in different directions. After some time has passed,

we let go, instantaneously releasing the built-up energy. We compare the results using CONJAC

and VANILLA, both with time step h= 5E-3 for this 1 second simulation. For the damping factor,

we use β = 0.5 for CONJAC and β = 3.7 for VANILLA (Eq. 4.10 and Eq. 4.11). These values

were chosen by manually searching for the smallest β values in 0.1 increments that produced

stable simulations. As can be seen in the supplemental video, the discrepancy in the β values

are visibly significant. Using the same h, CONJAC produces highly dynamic results, whereas

VANILLA produces heavily damped results. Since we are using the linearly implicit integrator,

more dynamic results can be generated with VANILLA by reducing h, but this adds computational

cost. CONJAC, on the other hand, allows large time steps while retaining interesting dynamics.

If we reduce the time step to h = 2E-3 with VANILLA, the qualitative behavior of the dragon

becomes nearly as lively as CONJAC, but the wall-clock simulation time increases to more than

double the time of CONJAC with 6 dynamic nodes. For didactic purposes, we also include a

CONJAC simulation with 0 dynamic nodes, which produces a quasistatic simulation driven solely

by the stabilization term, bq from Eq. 4.12. For this example, we used the stabilization factor

γ = 1/5, since the Newton displacements immediately after releasing the jaws and the body are

extremely large. Once we add dynamic nodes, the behavior becomes very lively, even with only 2

Table 4.1: List of scene parameters. #vert: number of total vertices. #dyn: number of dynamic
vertices. #elem: number of elements. mat: material model. Y: Young’s modulus (Pa). ν: Poisson’s
ratio. Reprinted from [13].

Scene #vert #dyn #elem mat Y ν

DRAGON 10456 0-10 37565 SNH 3E4 0.49
TWIST 1029 1-32 4320 SNH 1E4 0.40
HETERO 5915 1 29376 SNH 1E4 0.40
ANISO 6591 1 32832 +aSTVK 1E4 0.40
MUSCLE 262 5 438 +aFUNG 3E4 0.49
BARCUT 6050 2 29400 SNH 1E4 0.40
BUNNY 5988 8 27695 SNH 4E4 0.45
ARMADILLO 5159 5 18448 SNH 6E4 0.49
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Figure 4.3: Wall-clock times for DRAGON. Starting from the left: VANILLA, CONJAC with 0, 2,
4, 6, 8, and 10 dynamic nodes. Each bar is broken down into Fill (f and K), Factor, Solve, and
Other. As the number of dynamic nodes increases, the Solve cost goes up linearly. Reprinted from
[13].

nodes. The wall-clock times of CONJAC is compared to VANILLA in Fig. 4.3. Virtually all of the

added cost is in the triangular solves—since we require 3nd + 1 solves, where nd is the number of

dynamic nodes, the cost increases linearly in nd. (The +1 is for computing the stabilization term,

bq.) For most objects, 4 to 8 dynamic nodes are enough to produce convincingly dynamic results.

We discuss potential ways to improve performance in §4.6.1.

TWIST: Here, we show the deformation behavior of CONJAC as we increase nd, the number of

dynamic nodes. For this scene, we use CONJAC to simulate a bar with one of its ends moved kine-

matically to compress, stretch, bend, and twist the bar as shown in Fig. 4.4. For nd = {1, 2, 4}, we

place the dynamic nodes at equal intervals along the central horizontal axis. For nd = {8, 16, 32},
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we slice the bar orthogonal to the central axis at equal intervals and place 4 dynamic nodes at the

corners of each of these vertical slices. Interestingly, it becomes difficult to visually distinguish

between these cases—even with 1 dynamic node, the dynamic motion is convincing. When the

dynamic nodes are placed along the central axis (nd = {1, 2, 4}), we get the added “feature”: the

twisting waves are propagated instantaneously along the bar, increasing the stability of the system.

If the dynamic nodes are placed along vertical slices (nd = {8, 16, 32}), we recover the twisting

dynamics.

HETERO: We show that CONJAC efficiently and effectively handles heterogeneous materials.

In this example, we use CONJAC to simulate a vertical bar with alternating layers of stiffnesses.

Fig. 4.5 shows that even with only one dynamic node, we can capture the bulging of the soft layers.

Because of gravity, the lower soft layer bulges out more than the upper soft layer, even though they

have the same stiffness. Once the object reaches its static state, the final shape is exactly the same

as the one generated by VANILLA.

ANISO: We show the effect of anisotropic materials. On top of the base SNH material, we add

an anisotropic Saint Venant–Kirchhoff material (aSTVK) [95]. In this example, we use CONJAC

with one dynamic node to simulate a vertical bar with different anisotropic directions: vertical,

horizontal, diagonal, and helical. Fig. 4.6 shows that when gravity compresses the bar, it deforms

differently depending on the fiber directions. Interestingly, the helical fibers induce a twisting

motion.

MUSCLE: CONJAC can easily be combined with existing rigid body dynamics to model a

musculoskeletal system (Fig. 4.7). In this 2D example, we combine CONJAC with a reduced coor-

(a) (b) (c) (d)
Figure 4.4: TWIST scene: A bar is (a) compressed, (b) stretched, (c) bent, (d) and twisted through
kinematic motion. The bar in these figures only have a single dynamic node. Reprinted from [13].
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dinate articulated rigid body framework [11]. To attach the origin and insertion nodes to the bones,

we use a Jacobian mapping that expresses the velocity of these nodes as a function of the velocities

of the joints. This allows us to solve for the velocities of the muscles and joints simultaneously to

give us full two-way coupling between muscles and bones, which is important because the muscle

weighs more than the bones. We use SNH for the background isotropic material, and anisotropic

Fung (aFUNG) for the muscle fiber material [122]. We also take advantage of CONJAC’s support

for heterogeneity—the stiffness of the background SNH material is modulated so that it is stiffer

in the tendon regions than in the muscle region. In the resulting simulation, the dynamics of the

muscle is fully accounted for by a single, central dynamic node. In total, the system is only 4-

dimensional: 2 DOFs for the joints and 2 for the muscle. Unlike quasistatic muscle simulators

that assume both bones and muscles are quasistatic, with CONJAC, we can keep the bones fully

dynamic and choose how dynamic we want the muscles to be.

BARCUT: In this example, we show that CONJAC supports topology changes. We start with

a horizontal bar fixed at its two ends, and we cut the bar in two locations (see Fig. 4.8). We place

two dynamic nodes on either side of the initial cut. Because CONJAC requires no precomputation,

the cut can be placed anywhere. After the second cut, the right-most piece loses all dynamic nodes

and gracefully degrades into a purely quasistatic model.

BUNNY: In this example, we show that CONJAC can be extended to handle frictional contact.

(a) (b)
Figure 4.5: HETERO scene that divides a vertical bar mesh into layers of alternating material
stiffness. Reprinted from [13].
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(a) (b) (c)
Figure 4.6: ANISO bar with (a) horizontal, (b) vertical, (c) helical directional fibers. Reprinted
from [13].

We drop a bunny with 8 dynamic nodes onto the floor with various starting orientations. We follow

the formulation by McAdams et al. [123] for the contact penalty force: f = K
(
(1− α)nn> + αI

)
(x−

xs), where K is a stiffness constant, n is the collision normal, and xs is the closest point on the

collision surface. When α = 0, the spring acts only along the normal direction, and when α = 1,

the spring acts isotropically. In our experiments, we use α = 0.1. For friction, we use the velocity

filter approach by Bridson et al. [65] to compute the post-friction velocity, vf , of all nodes. For

the coefficient of friction, we use a global value of µ = 0.3. We then use weighted least squares

to compute our new dynamic velocity: v∗d = argmin‖vf − Jvd‖2M̃, where M̃ = M − βh2K

with β = 0.5 as in other examples. This solve is inexpensive, since we solve only for the dynamic

nodes of domains in contact. When collisions occur with quasistatic nodes, the contact information

is added to the global stiffness matrix, making CONJAC be collision-aware. CONJAC intelligently

transfers the masses of the quasistatic nodes to the dynamic nodes, giving us a small (24×24 in this

case since there are 8 dynamic nodes) and stable system to solve at each time step. Even with only

8 dynamic nodes, CONJAC gives remarkably rich deformations. For example, although the front

feet and the two ears only have one dynamic node each, they undergo significant local nonlinear
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Figure 4.7: MUSCLE scene that combines CONJAC with rigid body dynamics. There is one dy-
namic node in the middle of the muscle, colored green in the inset subfigure. The colored lines in
the muscle foreground show the fiber directions of the anisotropic Fung material, activated from
white to yellow to red. The muscle background is color coded in gray with the stiffness of the SNH
material. Reprinted from [13].

deformations upon contact, as shown in Fig. 5.13a and the supplemental video.

ARMADILLO: In our last example, we showcase CONJAC with adaptivity in place. An ar-

madillo is fixed in place by a subset of internal nodes in the center of its body. 5 representative

nodes are placed in the center of 5 tetrahedral regions shown by the different colors on the mesh in

Fig. 4.10. The simulation begins with all representative nodes in a deactivated (quasistatic) state

before gravity introduces the initial dynamic motion that is then followed by a series of pulling

forces. As the limbs are pulled and released, the representative nodes activate and deactivate,

based on the relative motion in the region. While the body is not pulled itself, it picks many of the

shockwave motions that activate it briefly multiple times. This can be seen clearly by the motion

in the tail and nose. Even though these regions are not pulled themselves, they react realistically

in a quasistatic fashion when nearby limbs are pulled. Fig. 4.11 shows the plots of our liveliness
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(a) (b) (c)

Figure 4.8: BARCUT scene where a bar is stretched apart, (a) cut, and (b) fully separated into two
halves. (c) The right piece is further cut into two pieces. The left and middle pieces are dynamic,
while the right piece becomes quasistatic. Reprinted from [13].

(a) (b)
Figure 4.9: BUNNY falling, colliding with the floor, (a) deforming from the impact, (b) bouncing
back up. Reprinted from [13].

metrics. The top figure shows the plot of the metric over time with a threshold of 0.02/s, and the

bottom with a threshold of 0.1/s. In other words, a representative node is dynamic as long as the

average stretching speed is greater than 2% or 10% per second. The inset figures show close-ups

of these plots. It can be clearly seen that with the lower threshold, the dynamics is retained longer,

since the representative nodes remain active for longer.

4.6 Conclusion

CONJAC is a new reduced coordinate approach based on condensation. Unlike previous work,

we apply condensation at the velocity level by defining a mapping that expresses the velocities

of quasistatic DOFs as a linear function of the dynamic DOFs. Compared to VANILLA (the stan-

dard, full FE solution), CONJAC remains stable at large time steps and exhibits highly dynamic
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(a) (b)
Figure 4.10: ARMADILLO (a) resting under gravity and (b) having individual limbs pulled.

motion with less numerical damping. Furthermore, CONJAC gives the exact same configuration as

VANILLA once the static state is reached. To demonstrate CONJAC’s versatility, we have shown

examples involving: a wide range of materials, anisotropy and heterogeneity, topology changes,

integration with rigid body dynamics, and adaptivity.

4.6.1 Limitations & Future Work

For CONJAC to maintain its advantages over VANILLA, the dynamic nodes must not be too

close to each other. In our DRAGON and BUNNY examples, we manually placed the first few

dynamic nodes in strategic locations (e.g., dragon jaws, bunny ears), and the rest were generated

randomly. If two dynamic nodes were generated too close to each other, we reran the random

generator with a different seed.

Although the stabilization term, bq in Eq. 4.12, works well to fight the drift due to the lineariza-

tion artifacts of the Jacobian, it still cannot maintain the zero net-force state on the quasistatic nodes

during motion, causing visual artifacts especially when the motion is large. Rather than taking a

single Newton step, taking multiple steps would produce better results when time steps are large.

A quasi-Newton approach, where only the force vector, and not the stiffness matrix, is updated

every step may yield a good balance between convergence and performance.

In our current implementation, we explicitly form Jqd, which requires 3nd solves with Kqq,

where nd is the number of dynamic nodes. When nd is small, the bottleneck is the factorization

of Kqq, making CONJAC and VANILLA nearly equivalent in terms of computational cost. As we
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Figure 4.11: Average Ṡ values of the representative nodes, color coded to correspond to the
ARMADILLO mesh. The top plot is with the threshold set to 0.02, and the bottom with 0.10.
Zoomed versions are shown as inset figures. With a higher threshold, the representative nodes
become quasistatic earlier.

increase nd, the solves start to become the bottleneck, making CONJAC more and more expensive

compared to VANILLA. However, as shown in §4.5, CONJAC retains important dynamics even

with few dynamic nodes. An exciting avenue of future work is to follow the work of Mitchell et

al. [109] to decompose the object into domains, which would allow CONJAC to scale up to a very

large mesh, since then the factorizations of Kqq can be computed per-domain. However, obtaining

good multi-threaded performance would still be a major challenge, requiring careful tuning of

domain sizes and topology.

Scaling CONJAC to very large meshes would require an iterative approach, since the factoriza-

tion of Kqq may not fit into memory. This is non-trivial for the same reason above—the number of
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RHS vectors is 3nd where nd is the number of dynamic nodes. One approach to resolve this issue

is the block Krylov method [124], which allows the solver to share information across multiple

RHS. However, we would still need to limit nd to be relatively small to remain competitive.

An important limitation is that frictional impulses acting on quasistatic nodes cannot be ac-

curately handled, since these nodes are not DOFs, and so their frictional impulses can only be

satisfied in a least squares sense. This is, however, a limitation common to all reduced coordinate

approaches. Therefore, our approach is most suitable when the effects of friction are not too large.

We have found experimentally that CONJAC does not work well for very soft objects, due to

severe linearization artifacts. For similar reasons, CONJAC cannot handle extremely fast rotational

motion. For these types of simulations, we may need to run Newton’s method to convergence,

rather than using the linearly implicit Euler scheme.

CONJAC can suffer from locking artifacts with hard constraints if these constraints are applied

to quasistatic nodes. In such cases, an averaged or softened constraint will need to be applied, or

new dynamic nodes must be inserted [125, 126, 127].

Finally, we are interested in exploring adaptive time step integrators, such as Runge-Kutta-

Fehlberg or MATLAB’s ode45 [128, 129]. Given CONJAC’s stability at large time steps even

with an explicit integrator, these adaptive methods have the potential to reduce the number of total

time steps substantially.
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5. LDOT: BOOSTING DEFORMATION PERFORMANCE WITH CHOLESKY

EXTRAPOLATION∗

Figure 5.1: (Left) Ldot examines the solvers driving our simulations. (Right) Still frame of a large
collection of simulated soft body ducks undergoing collisions and utilizing Cholesky extrapolation
in a hybrid solver from Witemeyer et al. [16]. Reprinted from [16].

We propose a method of accelerating nonlinear time integration schemes by extrapolating the

Cholesky factorization in time. Unlike previous methods that “freeze” this factorization, we ex-

trapolate it linearly in time and build approximations that are applicable across more nonlinear

solver iterations. Our approach supports complex nonlinear materials, including heterogeneity and

anisotropy, as well as collisions, including frictional contact and self collisions. The extrapolated

Cholesky factor can be used to accelerate both quasi-Newton and Newton solvers. We highlight

some shortcomings in this approach, but explore how this extrapolation is an interesting experi-

mental avenue for integration efficiency.

∗Part this chapter is reprinted with permission from "Qlb: Collision-awware quasi-newton solver with cholesky
and l-bfgs for nonlinear time integration" by B. Witemeyer, N. J. Weidner, T. A. Davis, T. Kim, and S. Sueda, Motion,
Interaction and Games, ser. MIG ’21. New York, NY, USA: Association for Computing Machinery, 2021. [Online].
Available: https://doi.org/10.1145/3487983.3488297. Copyright 2021 by Association for Computing Machinery.
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5.1 Introduction

Physics-based simulation has become an important tool in computer animation. Starting with

the seminal work by Terzopoulos et al. [1], many sophisticated methods have been proposed to

improve various aspects of these simulations. An early example of this is the linearly implicit Euler

integration method of Baraff and Witkin [2], which is still in use today in a production environment

due to its favorable blend of efficiency, stability, and visual fidelity [8]. More recently, nonlinear

integration methods have become increasingly popular in physics-based animation, with examples

including BDF1 (1st-order Backward Differentiation Formula) [4], BDF2 (2nd-order Backward

Differentiation Formula) [130, 131], TR-BDF2 (Trapezoidal-BDF2) [119], and SDIRK2 (2nd-

order Singly-Diagonal Implicit Runge-Kutta) [132]. Quasistatic simulations with time-varying

boundary conditions, which require nonlinear solves, have also been extensively studied [93, 133,

134].

The common computational bottleneck of these integration methods is their one or more fac-

torizations and solves. We explore a method for improving the efficiency of these integrators by

using an extrapolation of a Cholesky factorization. Unlike previous methods based on “frozen”

factorization approaches [135, 136], we look into linearly extrapolating this factor forward in time

so that it can be reused later on. Because this extrapolation is not tied to the underlying integrator,

it can be applied to any integration method. It also doesn’t introduce any limit on the support

for important physics based animated features such as complex nonlinear materials, heterogeneity,

anisotropy, collisions, and friction.

We propose improving the efficiency of the aforementioned nonlinear methods by using this

extrapolation technique. In the process, we examine some algorithmically expensive hurdles that

come up in comparison to our “freezing” approach. Direct solvers to sparse linear systems play a

major role in this efficiency, so by looking at them on a practical implementation level we see how

to leverage them inside the iterative steps of nonlinear solver algorithms.
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5.2 Related Work

There are many existing methods for improving the efficiency of simulation-based techniques,

but there are always sacrifices made in the process.

Subspace dynamics [99, 101, 100, 137] or condensation [107, 104, 109, 13] can achieve im-

pressive speedups, but they inevitably introduce errors in the resulting motion. We aim to address

the efficiency problem from a granularity that does not effect the model of the underlying sys-

tem. Some of these techniques also require precomputations or basis functions which can restrict

robustness of simulations at simulation time.

Unlike these reduction based methods, multigrid methods are capable of producing massive

speedups for the full, non-reduced problem [123, 23, 112]. However, significant extensions are

necessary to support complex materials involving heterogeneity and anisotropy [138].

Since our method is based on factoring a global matrix and reusing its decomposition, it is sim-

ilar in flavor to Projective Dynamics, ADMM, and other global-local methods [79, 114, 139, 140,

115, 134]. These methods are highly efficient and can be used for real-time simulations. However,

our method is independent of the time-stepping scheme, and can work with any implicit integrator,

including higher-order schemes. Furthermore, our method works with an arbitrary material model,

including anisotropic and heterogeneous materials.

Position-based Dynamics (PBD) is an attractive option for real-time multi-physics simulation

that is capable of modeling everything from rigid and elastic bodies to fluids [80]. Many features

have been added over the years, including new material models, new constraints, and more sophis-

ticated integrators [141]. However, PBD is a fundamental departure from classical methods, and

cannot be readily deployed without changing the core of an existing simulator.

Similar to our work, Cholesky factorizations have been re-used or updated in geometry pro-

cessing, but they either apply to local solutions [142, 143], or update based on changing boundary

conditions [144]. These methods are efficient for nonlinear solves involving a subset of vertices

but are inefficient for nonlinear solves involving all of the vertices of the deformable objects.

They further assume that the underlying energy is Laplacian. Several simulation works have also
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attempted to use updated factorizations, but either only apply to linear [145] or co-rotational ma-

terials [146, 109].

5.3 Review of Sparse Cholesky

The stiffness matrix of our simulations is usually indefinite, but previous work has explored

analytical techniques for clamping the eigenvalues to be non-zero, making these matrices positive

semi-definite [6]. Because the structure of this matrix is based on the connectivity topology of

our simulated object, we end up with highly sparse matrices. For dynamic simulations, we sum

the diagonal mass matrix to this semi-definite stiffness matrix, giving us a positive definite matrix.

Solving sparse positive definite matrices has a long standing history from both the iterative solver

and direct solver directions. Iterative solvers are widely popular when the exact solution is not

necessarily required or where the size of problem starts to incur memory issues on the machine

running the simulation [7]. Direct solvers, on the other hand, ensure an exact solution and are

extremely efficient when we are not memory bound [9]. For symmetric positive definite matrices,

sparse Cholesky factorization is typically used, and our stiffness matrix structure additionally ben-

efits from supernodal methods. Software packages have taken advantage of these many factors and

exploited dense matrix kernels from Basic Linear Algebra Subprograms (BLAS) [147, 148, 149].

We focus our work specifically exploring the CHOLMOD package [150], and extending it towards

linear time extrapolation.

Packages such as CHOLMOD divide solving a sparse linear system into three primary parts.

These are a symbolic matrix analysis, a numerical factorization, and finally a solve.

The initial analysis is done to determine the structure of the sparse matrix. If the structure

is not changed, then this analysis does not need to repeat on subsequent factorization and solv-

ing stages. At this stage, it is possible to determine whether or not an up-looking or supernodal

approach is best for the given matrix. A maximal supernode is defined as a maximal block of

contiguous columns whose diagonal block is fully lower triangular and whose off-block diagonal

column sparsity structures are identical [151]. Supernodal methods take advantage of dense blocks

within the sparse structure of a matrix in order to achieve efficiency over up-looking methods that
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work one row at a time. While there is additional overhead introduced with supernodal methods,

our stiffness matrix is composed of numerous small dense blocks scattered sparsely and are thus

perfectly suited for a supernodal approach.

The factorization step is the bottleneck of sparse Cholesky and aims to decompose our matrix

A into the form LL>. CHOLMOD utilizes a column block pivoting approach in contrast to a row

block pivoting approach. In column pivoting, we march through our columns left to right adjusting

our columns lower diagonal in regards to previously computed columns and rows, defining a pivot

on our diagonal, and updating said column lower diagonal off the pivot. The block version expands

these single column operations into block operations that take advantage of BLAS routines to

compute them efficiently.

Finally this L of A is used to compute the solution to the general problem Ax = b. Because

the decomposition takes the form A = LL>, the solve takes place in two stages: Ly = b and

L>x = y. This solve generates a unique solution which is relatively much less expensive to

compute compared to the factorization.

5.4 Cholesky Time Extrapolation

To explore the idea of Cholesky time extrapolation, we will breakdown its formulation and

performance factors in order to see how it can be applied to nonlinear solvers.

5.4.1 Formulation

We begin by briefly describing the frozen Cholesky approach [135, 136]. This approach im-

proves the efficiency of nonlinear solvers by forming and factoring the system matrix A only pe-

riodically and reusing the frozen factorization L = chol(A) multiple times, even when A changes

during the nonlinear solver iterations. This approach was used effectively by Hecht et al. [146] for

co-rotational materials, where the Cholesky updates were made not only based on time but also on

the locations in the mesh undergoing the largest deformations.

The main problem with the frozen Cholesky approach is that the L factor can become stale over

time—i.e., LL> no longer approximates A. Therefore, we propose a natural extension: a linear
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extrapolation of L in time. While more expensive to compute, when this Cholesky is encapsulated

as a layer to something grander, such as the iterations of a Preconditioned Conjugate Gradient

solver, we can reduce the iteration count and make the extra computation worthwhile.

We augment all functions that compute the force with the time derivative of the corresponding

stiffness and damping matrices:

(f ,K,D, K̇, Ḋ) = evalForce(x,v, · · · ). (5.1)

The system matrix A and its time derivative Ȧ can then be computed as

A = M− hD− h2K, Ȧ = −hḊ− h2K̇. (5.2)

Similarly, rather than computing just the Cholesky factor L of A, we also compute its time deriva-

tive, L̇:

(L, L̇) = dchol(A, Ȧ). (5.3)

Once we have L and L̇, we can linearly extrapolate the Cholesky factor as

L̃ = L + ∆tL̇, (5.4)

where ∆t is the elapsed time since the factor was computed. During a nonlinear solve for the

system state at time step (k + 1), instead of using the frozen factor L from time step (k), we use

the extrapolated factor L̃ as the approximate factor to speed up the convergence.

To help conceptualize this extrapolated Cholesky compared to the frozen Cholesky, we can

examine individual matrix values of a simulation factor as they change across time. Fig. 5.2a

shows a plot of one such matrix value and takes a time snapshot at the vertical green line to examine

the approximations. The red line shows the frozen factor approach, reusing the same factor value

until the factor is recalculated. The yellow line shows the Cholesky extrapolation approach, taking

a linear step in the direction of the derivative in order to more appropriately approximate the future
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factors. It is important to note that at the time snapshot of this example, Cholesky approximation is

a better fit than the frozen approach, but we can see in 5.2b this does not always hold true. Here the

extrapolation overshoots and the frozen approach ends up being a better fit. This fit is also highly

dependent on our time step and usage time.

As mentioned prior, we are specifically looking at quasi-Newton and Newton solvers. It is

worth noting that in linearly implicit Euler integration methods, the outputted solution is directly

influenced by these frozen and extrapolated results. Whenever we forgo refactoring and use a factor

approximation instead, we are compounding error into our simulation results. This can create

catastrophic errors very early on in simulation time. In contrast, quasi-Newton methods solve for

an exact solution and these frozen and extrapolated results only influence the convergence rate of

the solve. Here, we do not need to worry about disrupting our simulations with poorly predicted

factors and can instead focus on how our iteration counts are impacted with regards to efficiency.

5.4.2 Extrapolation Performance

With the aim of improving quasi-Newton solve iterations and not impacting simulation results,

Cholesky extrapolation falls fully into the realm of a performance enhancing technique. With this

in mind, there are a number of technical components to take into account when considering its

impact on the overall system. Working through these, we arrive at a some clear theoretical limits

of the Cholesky extrapolation approach alongside some experimental insights.

5.4.2.1 Sparsity Pattern

As mentioned earlier, finite element simulations prove to be very well fit for the sparse su-

pernodal variant of Cholseky factorization. Sparse matrix reordering algorithms such as AMD

[152, 153] or METIS [154] can reconfigure our matrices into a collection of very dense blocks

perfect for supernodal approaches. At an even finer grain of detail, we can roughly predict the fac-

torization efficiency of a mesh based on its geometric connectivity and what these reordering algo-

rithms will output. At the lowest level, sparse Cholesky is computing blocks of dense Cholesky. A

fully dense matrix achieves no efficiency boost from using a sparse approach, and will actually be
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(a)

(b)

Figure 5.2: A single value taken from the L matrix every time step of a simple bar simulation.
The peaks and valleys represent dynamic change in the bars movememnt. The green vertical line
represents the chosen timestep. The red line represents the frozen value approximation over time.
The yellow line represents the linear extrapolation value approximation over time. (a) At this time
step, linear extrapolation is much closer to the correct future L value. (b) At this time step, linear
extrapolation overshoots the future L values. The frozen apprimzation is a much better fit.

slower simply from additional overhead. A sparse matrix which can be reordered to create as many

dense blocks of fully non zeros values as possible are our best candidates. We can use various ar-

rangements of connected tetrahedrons as an example. If we take a collective set of independently

simulated tetrahedron, we create a best case scenario. Because each tet is completely independent,

all matrix values of a tet form a super node without the need for reordering and each block is fully
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dense. From here we can logical progress to a new connectivity pattern for comparison where

each tet is connected by a single node. After reordering we can still achieve very dense super node

blocks, but we have introduced zeros which ever so slightly slow our computations in comparison.

Now we can accelerate our progression of examples to a worst case scenario. If we create a dense

tetrahedral block where the majority of our nodes live inside the mesh and all connect to the maxi-

mum amount of neighbors, we create a sparsity pattern that even when reordered is hard to separate

into good individualized dense blocks. Using this logic, we can estimate the factor performance of

traditional computer graphics simulation meshes and verify them with performance tests. Fig. 5.3

showcases the relative performance of these meshes. These results make sense because visually we

can see that the bunny mesh is much blockier and dense compared to the long and skinny dragon

mesh. These insights are important to our problem because as we introduce more computationally

expensive factoring, we want to know how versatile our methods are.

5.4.2.2 Analytical vs. Finite Differencing

Initially, we derived the analytic forms of all the time derivatives, including the stiffness ve-

locity K̇ of various material types, and the corresponding sparse Cholesky derivative L̇. However,

extensive experiments showed that a simple finite differencing scheme is more efficient for both of

these calculations, and its accuracy is sufficient.

In the case of K̇, the hope would be that there is a large cross over of work in computing K and

K̇ in order to maximize the efficiency in computing them both together. Unfortunately, while the

prerequisite work for K̇ does include the calculations for K, there is the same if not more matrix

work done depending on the material model. The scene-wide, global K in simulation is formed

via the compilation of individual tetrahedral K. These tetrahedral computations are independent

and favor parallelism, but due to connectivity are not thread safe at the fill step. Experimentation

showed that the amount of additional data handling and work involved with computing K̇ was far

too expensive, at least within the limit of feasibly large memory bound problems, when compared

to a simple finite differencing approach. Since the derivative is with respect to a scalar (time), it

takes two evaluations of K to compute the approximate derivative. The first evaluation uses the
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Figure 5.3: Meshes with a high degree of nodal connectivity are slower to factor when compared
to sparsely connected meshes. As a best case scenario, a collection of unconnected tetrahdrons
creates a perfect collection of dense supernodal blocks without any excess values. In the worst case
scenario, a pure block of tetrahedrons with max connectivity internally creates an ill fit supernodal
block structure. In between is a long skinny dragon mesh which is relatively fast, and a blocky
bunny mesh which is relatively slow. All of these meshes have roughly the same number of nodes.

tetrahedrons nodal positions at the current time.

(K) = evalTetStiffness(x). (5.5)

We then perturb the positions by the current nodal velocities.

(K̃) = evalTetStiffness(x + εv). (5.6)

Now the approximated derivative becomes

K̇ ≈ (K̃−K)/ε. (5.7)
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This proved to be more efficient than the analytical approach, and proved to be well within float-

ing point precision in regards to accuracy. Finite-difference approximation also has the attractive

property of automatically incorporating the clamped eigenvalues used to enforce semi-positive

definiteness of the stiffness matrix [93]. Clamping these inside the analytical steps increases the

computation time even more and, while not a vital step, increases the robustness of simulations.

A similar situation arises in the case of L̇. The sparse Cholesky derivative can be approximated

with finite differencing as

L̇ ≈ (chol(A + εȦ)− chol(A))/ε. (5.8)

For the analytical approach to be more efficient, L and L̇ must be computed in less time than calling

chol() twice. This is a challenge, because computing L̇ alone takes at least twice the time of

computing L [155]. For experimental validation, we attempted extending CHOLMOD’s sparse

supernodal Cholesky function to support the computation and return of L̇ alongside L. A nicety of

this extension, was that the matrix structure of these two factors would be identical, meaning we

could share the ordering, supernodal breakdown, and traversal between the two. To showcase this

we can compare the relatively simpler dense chol() and dchol() column based algorithms.

Algorithm 5.1 shows the process of factorizing a symmetric positive definite matrix into the lower

triangular matrix satisfying A = LL>. This algorithm operates across the columns of the matrix

in three stages per column. The first stage modifies the working column using the previously

calculated columns. The second stage defines the pivot as the current diagonal value. Finally, the

third stage uses the pivot to adjusts the values under it. Algorithm 5.2 works through the same

process doing the same amount of work with new L̇ work on top of it. The most glaring efficiency

complication with this approach comes from the matrix-matrix multiplication that occurs in the

row operations stage on line 9. The initial multiplication A=B*C undergoes a derivation that turn

it into dA=dB*C+B*dC, which means that computing A and dA takes about 3x the amount of

work of computing just A. For pedagogical reasons, Appendix C.1 shows this same dchol()

algorithm in the sparse block sense to replicate CHOLMOD’s supernodal block algorithm. We

still run into the same efficiency complications in the sparse algorithm and, at the lowest function

82



Algorithm 5.1 Column Pivoting Dense Cholesky
1: procedure CHOL(A)→ L
2: L = tril(A) . extract the lower triangular portion of A
3: n = rows in L
4: for j = 1 : n do
5: for k = 1 : j − 1 do . row operations
6: for i = j : n do
7: L(i, j) = L(i, j)− L(i, k) ∗ L(j, k)
8: end for
9: end for

10: L(j, j) = sqrt(L(j, j)) . define pivot
11: for j = 1 : n do . adjust subdiagonal
12: L(i, j) = L(i, j)/L(j, j)
13: end for
14: end for
15: end procedure

level, CHOLMOD takes advantage of BLAS routines which have already been highly optimized.

This boils down to the situation of introducing necessary low level matrix multiplication routines

that more than double the overall work. The higher level advantages we leverage such as reuse

of the sparsity pattern is something that a finite differencing approach can also do. This leaves

us with another situation where it simply becomes more efficient and easier to implement by just

computing L̇ with equation 5.8. Another potential approach is to use the recently introduced

complex-step finite differencing scheme [156]. However, it is still not faster than the standard

real-step finite differencing, and incorporating complex steps into a sparse Cholesky derivative is

non-trivial.

5.4.2.3 Applications in Nonlinear Integration

While the Cholesky extrapolation application is not restricted to a single nonlinear integrator,

we can examine the performance with the relatively easy to understand BDF1 [4]. Let x and v

be the nodal positions and velocities of a volumetric solid, and M be the constant mass matrix.

Furthermore, let f(x,v) be the force vector, and derivatives D = df/dv and K = df/dx be the

damping and stiffness matrices. We use a trailing superscript with parenthesis to denote the time
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Algorithm 5.2 Column Pivoting Dense Cholesky with Derivative

1: procedure DCHOL(A, Ȧ)→ (L, L̇)
2: L = tril(A) . extract the lower triangular portion of A
3: L̇ = tril(Ȧ)
4: n = rows in L
5: for j = 1 : n do
6: for k = 1 : j − 1 do . row operations
7: for i = j : n do
8: L(i, j) = L(i, j)− L(i, k) ∗ L(j, k)
9: L̇(i, j) = L̇(i, j)− L̇(i, k) ∗ L(j, k)− L(i, k) ∗ L̇(j, k)

10: end for
11: end for
12: L(j, j) = sqrt(L(j, j)) . define pivot
13: L̇(j, j) = 0.5 ∗ L̇(j, j)/L(j, j)
14: for j = 1 : n do . adjust subdiagonal
15: L(i, j) = L(i, j)/L(j, j)
16: L̇(i, j) = (L̇(i, j)− L(i, j) ∗ L̇(j, j))/L(j, j)
17: end for
18: end for
19: end procedure

step.

With BDF1 we solve the nonlinear system to advance the state from k to k + 1:

Mv(k+1) = Mv(k) + hf (k+1) (5.9)

x(k+1) = x(k) + hv(k+1) (5.10)

where h is the time step. We substitute 5.9 into 5.10 to arrive at the following equation:

x(k+1) = x(k) + h(v(k) + hM−1f (k+1)) (5.11)

We now solve for a root x(k+1) that satisfies the nonlinear system. After some rearranging, the
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Newton search direction is then ∆xi = −H−1i gi, with

gi = M(x
(k+1)
i − x(k) − hv(k))− h2f (k+1)

i , Hi = M− hD(k+1)
i − h2K(k+1)

i , (5.12)

where i indicates the current iteration of the nonlinear solve.

As previously mentioned, the frozen Cholesky approach improves the efficiency of this inte-

gration by forming and factoring the system matrix H only periodically and reusing the frozen

factorization L = chol(H) multiple times, even when H changes during the nonlinear solver iter-

ations. To compute the search direction, only the forward/backward solves are required: ∆xi =

−L−TL−1gi. This L factor becomes stale over time as LLT is no longer a good approximation of

H.

The problem of becoming stale is not void when using Cholesky extrapolation. If our approx-

imation deteriorates slower than the increased cost of its calculation, though, we can improve the

overall performance of our nonlinear solver. We explored two main implementations of this idea:

a Quasi-Newton and Full-Newton approach shown in algorithms 5.3 and 5.4. In the Quasi-Newton

approach, we use the extrapolated L in order to directly solve ∆xi each iteration. As L becomes

less and less accurate, so does ∆xi, which can have adverse effects on the overall iteration count

of the solve. In the Full-Newton approach, we replace the direct solve with an Preconditioned

Conjugate Gradient (PCG) solve that is preconditioned with the extrapolated L. This approach

benefits from accurate ∆xi results in order to minimize the overall Newton iterations, but in turn

increases the solve time per iteration as the PCG can never outperform the time of a single direct

solve.

5.5 Results

We built our Cholesky extrapolation within the CHOLMOD C++ library and implemented our

solvers in C++ running on a consumer laptop with an Intel Core i9-9880H CPU @ 2.3 GHz and

16 GB of RAM. All of our Cholesky extrapolation experiments were used as preliminary tests that

evolved into the project QLB: Collision-Aware Quasi-Newton Solver with Cholesky and L_BFGS
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Algorithm 5.3 Quasi-Newton solver

1: procedure QUASINEWTON(L̃,x0)→ (x)
2: i = 0,x = x0

3: while not converged do
4: Compute b(x)
5: ∆x = −(L̃L̃>)−1b . direct solve
6: Line search for λ
7: x+= λ∆x
8: i++ . break if iteration limit reached
9: end while

10: end procedure

Algorithm 5.4 Newton solver

1: procedure NEWTON(L̃,x0)→ (x)
2: i = 0,x = x0

3: while not converged do
4: Compute A(x),b(x)
5: Compute ∆x0 . initial guess for PCG
6: ∆x = −PCG(A,b, L̃,∆x0)
7: Line search for λ
8: x+= λ∆x
9: i++ . break if iteration limit reached

10: end while
11: end procedure

for nonlinear Time Integration by Witemeyer et al. [16]. Ultimately, the usage of Cholesky extrap-

olation was dropped due to unsatisfactory performance results. We mentioned in Section 5.4.1,

that the linear extrapolation can be a good prediction of future L values. As Fig. 5.2b showed,

there are situations where are linear extrapolation severely overshoots the values we are trying to

predict and the frozen factorization ends up yielding closer results. These peaks in values were of-

ten associated with large dynamic changes in the simulation such as collisions or vibrations. Many

practical experimental simulations undergo changes of varying intensity throughout a simulated

object and do not produce uniformity capable of good extrapolation prediction.

Explored to various degrees were combinations of hybrid solvers that toggled the use of New-
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Algorithm 5.5 BDF1 solver

1: procedure BDF1(x(k))→ (x(k+1))
2: Compute A(x(k))
3: (L, L̇) = dchol(A, Ȧ)
4: L̃ = L + hL̇ . approx. factor
5: x

(k+1)
0 = x(k) + hv(k) . initial guess

6: if Quasi then
7: x(k+1) = QUASINEWTON(L̃,x

(k+1)
0 )

8: else
9: x(k+1) = NEWTON(L̃,x

(k+1)
0 )

10: end if
11: end procedure

Table 5.1: Test objects. verts: total number of vertices. tets: total number of tets. mass: total mass
(kg). Reprinted from [16].

verts tets mass

BAR 10,125 51,744 3.00
ARMADILLO 25,317 98,486 1.37
BUNNY 3,907 14,374 2.25
DUCKS 12,800 36,800 1.31

ton and Quasi-Newton iterations in order to best fit certain scene setups. We found success adap-

tively switching between these methods during simulation in moments of high and low dynamics.

To explore the results, the baseline method is referred to with NEWTON-D, which uses a direct

method (CHOLMOD) to solve the linear system. Next, NEWTON-L0 uses PCG with a frozen

Cholesky preconditioner. Finally, our method is HYBRID-L1 which uses a hybrid approach with

a linearly extrapolated Cholesky factor. We use 1E-6 as the relative and absolute tolerance for

the Newton and quasi-Newton solvers, and 1E-2 as the PCG tolerance. This relatively high PCG

tolerance was chosen experimentally—starting at 1E-6, we increased this tolerance by an order of

magnitude until the number of Newton/quasi-Newton iterations started to creep up. Testing was

done on a variety of integrators, Young’s modulus, Poisson’s Ratios, Heterogeneity, Anisotropy,

and collisions which can be seen in Table 5.2.
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Table 5.2: Scene parameters. vary: scene parameter to vary. material: material model. E: Young’s
modulus (Pa). µ: Poisson’s ratio. damping: damping coefficient relative to E. h: time step (s).
integrator: time integrator scheme. Reprinted from [16].

vary material E µ damping h integrator

BAR E SNH 6E3, 2E4, 5E4, 1E5 0.49 - 5E-2 quasistatics
BAR µ SNH 2E4 0.42, 0.49 - 5E-2 quasistatics
BAR hetero SNH 8E3, 2E4 0.49 - 5E-2 quasistatics
BAR aniso aSTVK+SNH 4E4+2E4 0.49 - 5E-2 quasistatics
ARMADILLO damping SNH 1E7 0.49 0, 1E-6 1E-2 BDF2
ARMADILLO material Corot, StVK, SNH 1E7 0.49 0 1E-2 BDF2
ARMADILLO integrator SNH 1E7 0.49 0 1E-2 Baraff, BDF1, BDF2
ARMADILLO h SNH 1E7 0.49 0 5E-3, 1E-2, 2E-2 BDF2
BUNNY - SNH 5E4 0.49 2E-2 3E-3 SDIRK2
DUCKS - SNH 5E4 0.49 2E-3 1E-2 SDIRK2

5.5.1 BAR

Our first experiment is a quasistatic bar undergoing time-varying boundary conditions. Over

a period of 5 simulation seconds, the bar is compressed, stretched, bent, and twisted by rigidly

moving the vertices of the free end of the bar. We vary several different parameters to see the

effect on the convergence of the nonlinear solvers.

Fig. 5.4 shows how the speeds of various methods compare to simulate the BAR scene with

the default parameters. NEWTON-D and NEWTON-I are the standard Newton Methods with

direct and iterative solvers. Since their performance are similar, we use only NEWTON-D as our

baseline. NEWTON-L0 and NEWTON-L1 are also Newton Methods, but they use the frozen and

extrapolated Cholesky factors as preconditioners, respectively. Their performances are similar—

with NEWTON-L1, the added cost of computing L̇ nullifies the advantage of using a better precon-

ditioner. HYBRID-L0 and HYBRID-L1 use our hybrid approach where the frozen/extrapolated

Cholesky factors are used first for the quasi-Newton solver and then for the Newton solver. Since

quasi-Newton is not as robust as Newton, we observe that the frozen Cholesky factor in HY-

BRID-L0 often fails, making it waste a lot of computation. On the other hand, quasi-Newton in

HYBRID-L1 converges frequently, resulting in a faster simulation time. For the rest of this section,

we will only look at NEWTON-D, NEWTON-L0, and HYBRID-L1.
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5.5.1.1 Young’s Modulus

We run the simulation with the Young’s modulus values of 6E3, 2E4, 5E4, and 1E5. As shown in

Fig. 5.5a, our HYBRID-L1 method works well across a range of stiffness values. With the default

Young’s modulus value of 2E4, our HYBRID-L1 is 3.3x faster than NEWTON-D and 2.12x faster

than NEWTON-L0. With all three methods, the softer object takes the longest to compute due to

the larger deformation changes between the quasistatic time steps. However, we did notice that for

very soft objects for which many elements may become indefinite, NEWTON-D is the most robust,

probably because the frozen or extrapolated Cholesky factors cannot account for newly clamped

elements during the nonlinear solve [93]. When the BAR gets stiffer, HYBRID-L1 remains fast but

slows down relatively, whereas NEWTON-D keeps the same speed. Fig. 5.7 shows the iteration

data per time step for the default parameter of E = 2E4. The top plot shows the Newton iterations

( NEWTON-D and NEWTON-L0), and the bottom plot shows the Hybrid iterations ( HYBRID-L1).

With the hybrid solver, we switch from quasi-Newton to Newton after 40 iterations. On some time

steps, the quasi-Newton solver fails during the line search, in which case we switch to the Newton

solver.
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Figure 5.4: Wall-clock time comparison of different methods for the default BAR scene. Reprinted
from [16].
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Figure 5.5: Wall-clock times for BAR with: (a) different Young’s moduli; (b) different Poisson’s
ratios; (c) heterogeneity on/off; (d) anisotropy on/off. In all the plots, the BAR with the default
parameters are shown in blue. Reprinted from [16].

5.5.1.2 Poisson’s Ratio

Next we change the Poisson’s ratio to control the amount of volume preservation. With all

three nonlinear solvers, the number of iterations is lower when the Poisson’s ratio is lower. The

relative performance gain by going from the default value of µ = 0.49 down to µ = 0.42 is modest

for HYBRID-L1, but it is still able to beat the baseline methods.
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5.5.1.3 Heterogeneity

We repeat the simulation with a heterogeneous material distribution, alternating soft and stiff

materials along the length of the bar. When heterogeneity is added, the wall-clock times of all

three methods increase due to the added nonlinearity.

Figure 5.6: Bar undergoing deformation with a heterogeneous material distribution. Reprinted
from [16].

5.5.1.4 Anisotropy

Finally, we use anisotropic fibers within the BAR to introduce nonlinearities. On top of the

background SNH material, we add the anisotropic StVK material [157] to model the fibers. The

added complexity makes the three methods noticeably slower across the board.

91



Newton

0 1 2 3 4 5
Time (s)

0

10

20

30

40
Ite

ra
tio

ns

Hybrid

0 1 2 3 4 5
Time (s)

0

20

40

60

80

Ite
ra

tio
ns

Newton
Quasi

Figure 5.7: Nonlinear iterations for the BAR scene with default parameters. (Top) NEWTON-D
and NEWTON-L0 solvers; (Bottom) HYBRID-L1 solver. The iterations are the highest during the
initial compression phase. With the hybrid solver, most time steps are solved efficiently with the
quasi-Newton solver. During some time steps, the quasi-Newton solver fails during the line search
and switches to the Newton solver. Reprinted from [16].

5.5.2 ARMADILLO

Next we dynamically simulate the ARMADILLO with the BDF2 integrator. The stiff AR-

MADILLO is attached to a base by its feet, and the base is moved kinematically to induce motion.

5.5.2.1 Damping

We first add damping. Since we use a higher-order integrator, the added damping is much

more controllable and does not depend heavily on the time step (see §5.5.2.4). Fig. 5.9a shows the

wall-clock time for the default and damped ARMADILLO. Predictably, with all three methods, the

damped simulation finishes more quickly.
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Figure 5.8: Armadillo on a shaken platform to induce deformation. Reprinted from [16].

5.5.2.2 Material

We now change the material model of the object. In addition to the default material of SNH, we

use the StVK and co-rotational materials. With StVK, all three methods see some decline in speed.

With co-rotation, NEWTON-D and NEWTON-L0 see dramatic improvement in speed, whereas

HYBRID-L1 sees a minor decline in speed. For simpler, near-linear materials, NEWTON-D and

NEWTON-L0 are the method of choice.

5.5.2.3 Integrator

With the same default parameters, we now switch out the time integration scheme. In addition

to the BDF2 integrator, we use BDF1 and Baraff, which takes a single step of BDF1 [2]. With

BDF1, all three methods become faster. Interestingly, the relative speedup with our HYBRID-

L1 is higher than with the other two. This is most likely due to the excessive artificial damping

added by BDF1 and the resulting temporal coherency, which helps keep the extrapolated factor

from going stale. For the Baraff integrator, NEWTON-D is clearly the best, since the Cholesky
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Figure 5.9: Wall-clock times for ARMADILLO with: (a) different damping coefficients; (b) dif-
ferent materials; (c) different integration schemes; (d) different time steps. In all the plots, the
ARMADILLO with the default parameters are shown in blue. Reprinted from [16].

factors cannot be used enough times to make it worthwhile. For NEWTON-L0 and HYBRID-L1

in Fig. 5.9c, we used the Cholesky factor for two time steps, so that factorization only happened

every other step. Even then, we were not able to beat NEWTON-D.

5.5.2.4 Time step

Using BDF2, we use half and double the default time step of h = 1E-2. At the high time step,

the resulting simulation is slightly more damped, due to the small amount of numerical damping

in BDF2. If the time step gets very large, the efficacy of the linearly extrapolated Cholesky factor
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Figure 5.10: Nonlinear iterations for the ARMADILLO scene with default parameters. (Top) NEW-
TON-D and NEWTON-L0 solvers; (Bottom) HYBRID-L1 solver. With the hybrid solver, most
time steps are solved efficiently with the quasi-Newton solver. During some time steps, the quasi-
Newton solver fails during the line search and switches to the Newton solver. Reprinted from
[16].

begins to degrade, making HYBRID-L1 less attractive. At the lower time step, HYBRID-L1 retains

its advantage over the other methods.

5.5.3 BUNNY

We show self collisions with a BUNNY with the SDIRK2 integrator. We use the contact model

by Geilinger et al. [131] for collisions with the floor, and the contact model by McAdams et al.

[123] for self collisions. As shown in Appendix C.2.5, the SDIRK2 integrator requires two nonlin-

ear solves per time step. However, unlike BDF2, it is a single-step method and is potentially more

suitable for simulations with contact [132] (though Geilinger et al. [131] do use BDF2). We use

a relatively small time step of h = 3E-3 to deal with the thin ears. The overall wall-clock times
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are shown in Fig. 5.13a. For this 3 second simulation, HYBRID-L1 is 135% and 43% faster than

NEWTON-D and NEWTON-L0, respectively.

Figure 5.11: Bunny colliding with a floor to induce self collisions. Reprinted from [16].

5.5.4 DUCKS

For the final scene, we simulate 50 and then 100 contacting DUCKS with the SDIRK2 integra-

tor. For added stability, in addition to Green damping (Table 4.1), we also added some velocity-

based contact damping forces. Unlike BDF1 or the Baraff integrator, adding damping forces is

much more controllable, since changing the time step does not add significant artificial damping.

We use NEWTON-D and HYBRID-L1 for this scene, with a large time step of h = 1E-2. The

overall wall-clock times are shown in Fig. 5.13b and the iteration plots are shown in Fig. 5.14. For

this 2 second simulation, HYBRID-L1 is 29% faster than NEWTON-D.
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Figure 5.12: Collection of ducks dropped into a bowl and colliding with each other. Reprinted
from [16].
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Figure 5.13: Wall-clock times for (a) BUNNY and (b) DUCKS. Reprinted from [16].
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Figure 5.14: Nonlinear iterations for the DUCKS scene. (Top) NEWTON-D: the two nonlin-
ear solves of SDIRK2 are shown. (Bottom) HYBRID-L1: the two nonlinear solves of SDIRK2
are shown. Each color corresponds to the total number of quasi-Newton and Newton iterations.
Reprinted from [16].

5.5.5 Summary of Results

Our approach works well in a wide range of settings, but there are some situations in which

existing approaches may work better.

• HYBRID-L1 is most effective with complex nonlinear material models. For simpler near-

linear materials, NEWTON-D may be a better choice.

• With nonlinear integrators, HYBRID-L1 is very efficient, but with the Baraff integrator,

NEWTON-D is a better choice since the overhead of factorizations becomes wasteful.

• HYBRID-L1 works well for a wide range of time steps, but if the time step is very large,

NEWTON-D may be a better choice since the extrapolated Cholesky factor becomes stale
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more quickly. However, sometimes there are restrictions on the time step due to collisions.

• HYBRID-L1 can handle a wide range of stiffness values, but for very soft objects for which

many elements may become indefinite, NEWTON-D is a better choice, since it can account

for newly clamped elements during the nonlinear solve.

Ultimately, these limitations do limit the overall applications of the Cholesky extrapolation ap-

proach. Along with that, the overall speed up of this method is not so grand as to make it clearly

worth the overall effort of implementation. We do feel these results are interesting to study, but

not wholly worth applicable to most simulation environments. With QLB, we see the extension of

these ideas and results without Cholesky extrapolation to a much more favorable conclusion.

5.6 Conclusion

Cholesky extrapolation explores the extension of the CHOLMOD library to efficiently com-

pute the time derivative of the factor. Experimentation showed that a finite differencing approach

ended up out performing an analytical solution and still retained the required accuracy for dynamic

simulation This extrapolation technique is best used for the iterative integration loops in nonlinear

solvers where the factor approximation only effects the iteration count and does not destabilize the

simulation results. Unfortunately, the non-uniform nature of the L̇ values meant a linear approxi-

mation was not always the best approximation for a given scene. Testing showed that the traditional

frozen factor approach often performed just as well over the course of a simulation range, and the

newly introduced double factor computation time was very rarely worth it.
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6. CONCLUSION

Across the broad domain of physics-based animation, I have only touched on a select subset

of components and applications. Due to the many knobs to turn when building and tuning simu-

lations, there are always new directions to explore in the name of efficiency, accuracy, and visual

fidelity. In this dissertation I focus on three primary components of a simulated system: A) the

degrees of freedom of a system; B) the constraints put on that system; C) and the stiffness that de-

rives from force differentiation and in turn enables implicit integration techniques. While these are

very much independent components that are only a piece of the overall simulation structure, their

scopes are far reaching and intertwined. The degrees of freedom are the foundational components

of a configuration state that define any system we look to simulate. At the same time, these de-

grees of freedom undergo constraints that visually represent many common physical phenomena.

Once packaged together, in order to find these constrained degrees of freedom as we step through

time, we need some form of time integrator. The popularly used implicit integration techniques

are dependent on the force differentiation which are directly defined via the degrees of freedom.

Understanding these component’s independent contributions and their interactions with each other

are the key to advancing the state of the overall simulation problem.

We can look back again on the four different projects that each touched on our three focal

categories. Eulerian-on-Lagrangian Cloth Simulation [10] uniquely touched on all three by in-

troducing a new simulation framework that robustly simulated cloth sliding over sharp features.

This longstanding problem in cloth simulation was tackled by discretizing the cloth into degrees

of freedom across the Lagrangian and Eulerian domains. These additional DOFs gave rise to a

much more representative set of constraints while still retaining the correct dynamics and support-

ing traditional implicit integration techniques. REDMAX [11] introduced an efficient and flexible

approach for computing the dynamics of articulated rigid bodies. Combining reduced and max-

imal degrees of freedom and their associated constraints in a novel way allowed for improved

efficiency when introducing joint friction with Bilateral Staggered Projections for Joints. Conden-
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Figure 6.1: A look back on the subcategories of dynamic motion components explored in this
work.

sation Jacobian with Adaptivity [13] took a reduced coordinate approach to soft deformable bodies

in order to improve the stability of simulations at larger and more desirable time step sizes. By

applying condensation techniques at the velocity level, we can adaptively activate DOFs to drive

our simulation and encode the neighboring information into a Jacobian matrix. This unique take

on the application of the force differentiation means we grow unstable slower without damping

out motion. Finally, Ldot: Boosting Deformation Performance with Cholesky Extrapolation [16]

extended traditional linear solvers in order to cut down the number of highly bottlenecking matrix

factorizations. Once we compile our DOF and constraint data into a matrix usable for solving

our implicit problem, we take advantage of matrix factor derivations in order to linearly extrap-

olate a new factor matrix usable for future solves. This cuts down on the iteration counts inside

more expensive Newton solvers that could be applied to any number of the previously mentioned

applications.
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Across all of these projects are new ideas that still hold the possibility for extension. There is

no reason why any of these four techniques could not be combined into a single unified solver. A

large portion of REDMAX’s technical contribution dealt with its hybrid combination of soft and

rigid bodies. A natural extension is the combination of CONJAC with REDMAX joints, which was

explored partially with CONJAC’s muscle simulation. Similarly, EOL cloth could be introduced to

the mix with its rigid body interactions and possibility of further cloth-deformable body contacts.

EOL cloth itself, while specifically designed for the application of thin sheets, was predated by

work in rods and soft deformable bodies. Behind each application is also the integrator, which

is always looking to be improved either through direct techniques such as matrix extrapolation or

more problem specific approaches yet to be explored. Each individual project has its own potential

for future work, and that potential is only expanded upon by finding more unique combinations of

physics-based animation components to explore.
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APPENDIX A

EULERIAN-ON-LAGRANGIAN CLOTH SIMULATION APPENDIX

A.1 Derivation of World Velocity

Let xa, xb, and xc be the Lagrangian positions of the three vertices of a triangle, and let Xa,

Xb, and Xc be their corresponding Eulerian positions. Let X be any material point within this

triangle. The world position of this point can be expressed as

x(X) =α(Xa,Xb,Xc,X)xa+

β(Xa,Xb,Xc,X)xb+

γ(Xa,Xb,Xc,X)xc.

(A.1)

Here we have made it explicit that the barycentric coordinates, (α, β, γ), are all functions of the

query material point, X , as well as the Eulerian coordinates of the triangle vertices, Xa, Xb, and

Xc. Using the standard expression for converting between barycentric and Cartesian coordinates,

we have β
γ

 = T−1(X −Xa), T =

(
Xb −Xa Xc −Xa

)
∈ R2×2. (A.2)

Since α = 1− β − γ, we have


α

β

γ

 = DT−1(X −Xa) + d, D =


−1 −1

1 0

0 1

 , d =


1

0

0

 . (A.3)
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We combine Eq. A.1 and Eq. A.3 to get

x(X) =

(
xa xb xc

)
α

β

γ


=

(
xa xb xc

)(
DT−1(X −Xa) + d

)
.

(A.4)

Taking the time derivative, we get

ẋ =

(
ẋa ẋb ẋc

)
α

β

γ


︸ ︷︷ ︸

ẋL

+

(
xa xb xc

)
D
d

dt

{
T−1(X −Xa)

}
︸ ︷︷ ︸

ẋE

. (A.5)

The first term is the Lagrangian contribution, and the second term is the Eulerian contribution. We

now focus only on the Eulerian term. First, we note that T = DX , the edge matrix of the Eulerian

DOFs from Eq. 2.3. Similarly, the multiplication of the Lagrangian DOFs by D in the first portion
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of ẋE gives Dx, the edge matrix of the Lagrangian DOFs. Taking the time derivative, we have

ẋE = Dx

(
dD−1X
dt

(X −Xa)−D−1X Ẋa

)
= Dx

(
−D−1X

(
dDX

dt

)
D−1X (X −Xa)−D−1X Ẋa

)

= −DxD
−1
X

(dDX

dt

)β
γ

+ Ẋa


= −DxD

−1
X

( c∑
i=a

∂DX

∂X i

⊗ Ẋ i

)β
γ

+ Ẋa


= −F

((−Ẋa −Ẋa

)
+

(
Ẋb 0

)
+

(
0 Ẋc

))β
γ

+ Ẋa


= −F

(
−βẊa − γẊa + βẊb + γẊc + Ẋa

)
= −F

(
αẊa + βẊb + γẊc

)
,

(A.6)

giving us the final expression for the world velocity:

ẋ = (αẋa + βẋb + γẋc)− F
(
αẊa + βẊb + γẊc

)
. (A.7)
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APPENDIX B

CONDENSATION JACOBIAN WITH ADAPTIVITY APPENDIX

B.1 Miscellaneous Pseudocode

B.1.1 Rotation Derivative

Given F and Ḟ, we compute Ṙ with the following function:

function [A] = Rdot(F, Fdot)

Rgradient = DRDF(F); % Smith et al. 2019

fdot = reshape(Fdot, [], 1);

A = reshape(Rgradient * fdot, 3, 3);

end

B.1.2 Metric

Let Sdot_1 through Sdot_m be the Ṡ matrices of the m tetrahedra of the jth representative

node. Then the liveliness metric is computed as:

metric_j = mean([ ...

reshape(abs(Sdot_1), [], 1)

...

reshape(abs(Sdot_m), [], 1)

]);

B.1.3 Adjusted Jacobian

Let iq and id be the indices of the quasistatic and dynamic nodes, respectively, and nd=length(id).

Eqs. 4.6 and 4.21 are computed as:

% Jacobian without adaptivity
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Kqq = K(iq,iq);

Kqd = K(iq,id);

J(iq,:) = -Kqq \ Kqd; % Eq. 6

J(id,:) = eye(nd); % Eq. 7

% Jacobian with adaptivity

KA = K;

KA(:,id) = 0; % zero out dynamic rows

KA(id,:) = 0; % zero out dynamic columns

KA = KA - sparse(id,id,ones(nd,1),n,n);

KqdA = K(:,id);

KqdA(id,:) = speye(nd);

JA = -KA \ KqdA; % Eq. 21
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APPENDIX C

LDOT: BOOSTING DEFORMATION PERFORMANCE WITH CHOLESKY

EXTRAPOLATION APPENDIX

C.1 Column Block Cholesky Time Derivative

Given A, Ȧ, and a block pattern we compute L and L̇ together with the following function:

function [L,dL] = dchol_col_block(A,dA,bsize)

L = tril(A);

dL = trilblock(dA, bsize);

bj0 = 0; % starting index for block j

for j = 1 : length(bsize)

% (a) block row operation

bj = bj0 + (1:bsize(j));

bi = bj0 + (1:sum(bsize(j:end))); % All rows in block j

bk0 = 0; % Starting index for block k

for k = 1 : j - 1

bk = bk0 + (1:bsize(k));

% Construct update matrix C for block k

C = L(bi,bk) * L(bj,bk)’;

L(bi,bj) = L(bi,bj) - C;

% Construct update matrix dC for block k

dC = dL(bi,bk) * L(bj,bk)’;

dL(bi,bj) = dL(bi,bj) - dC;

dC = L(bi,bk) * dL(bj,bk)’;

dL(bi,bj) = dL(bi,bj) - dC;

% Go to next block
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bk0 = bk0 + bsize(k);

end

% (b) define pivot

% Call dchol and return the block L and dL

%[L(bj,bj),dL(bj,bj)] = cdchol(L(bj,bj),dL(bj,bj));

% OR

% Call dchol and only return the L block

% Calculate the dL block using the dcholphi operation on the L block

[L(bj,bj),~] = dchol_col(L(bj,bj),dL(bj,bj));

dL(bj,bj) = dcholphi(L(bj,bj),dL(bj,bj));

% (c) compute subdiagional block

bi = bj(end) + (1:sum(bsize(j+1:end))); % All off diagonal rows in block j

L(bi,bj) = L(bi,bj) / L(bj,bj)’;

dC = L(bi,bj) * dL(bj,bj)’;

dL(bi,bj) = dL(bi,bj) - dC;

dL(bi,bj) = dL(bi,bj) / L(bj,bj)’;

% Go to next block

bj0 = bj0 + bsize(j);

end

end

%% Block lower triangular part of A

function L = trilblock(A,bsize)

L = zeros(size(A));

bk0 = 0; % starting index for block k

for k = 1 : length(bsize)

% Block diagonal indices
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bk = bk0 + (1:bsize(k));

% Fill block row below block diagonal

L(bk(1):end,bk) = A(bk(1):end,bk);

% Go to next block

bk0 = bk0 + bsize(k);

end

end

%% dcholphi

function dL = dcholphi(L,dA)

phi = phifun((L \ dA) / L’);

dL = L * phi;

end

%% phifun

function phi = phifun(A)

phi = tril(A,-1);

phi = phi + diag(0.5 * diag(A));

end

C.2 Integrators

In this section, we describe the various integrators we use to test the performance of our ap-

proach. Let x and v be the nodal positions and velocities of the volumetric solid, and M be

the constant diagonal mass matrix. Furthermore, let f(x,v) be the total forces and derivatives

D = df/dv and K = df/dx be the damping and stiffness matrices, respectively. We use a trail-

ing superscript with parenthesis to denote the time step. Thus, the goal of each integrator is to

compute the nodal positions x(k+1) given x(k). After computing x(k+1), we compute the nodal

velocities v(k+1) using the discretization scheme of the particular integrator.
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C.2.1 BDF1

With BDF1 (1st-order Backward Differentiation Formula) [4], we solve a nonlinear system to

advance the state from step k to k + 1:

Mv(k+1) = Mv(k) + hf (k+1) (C.1a)

x(k+1) = x(k) + hv(k+1), (C.1b)

where h is the time step. After some substitutions and rearranging, the Newton search direction

for the nonlinear system becomes ∆xi = −A−1i bi, with:

bi = M
(
x
(k+1)
i − x(k) − hv(k)

)
− h2f (k+1)

i

Ai = M− hD(k+1)
i − h2K(k+1)

i ,

(C.2)

where i indicates the current iteration of the nonlinear solve.

C.2.2 Baraff

A popular integrator in graphics is a variant of BDF1 where only one iteration is taken —

i.e., we solve one linear system per time step. In this work, we call this the Baraff integrator [2].

C.2.3 Quasistatic

The quasistatic time stepper solves for the nonlinear system

f (k+1) = 0 (C.3)

at each time step, with time-varying boundary conditions or forces. The Newton search direction

for the nonlinear system is ∆xi = −A−1i bi, with:

bi = −f (k+1)
i

Ai = −K(k+1)
i .

(C.4)
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C.2.4 BDF2

With BDF2 (2nd-order Backward Differentiation Formula) [4], we solve a nonlinear system to

compute the state at k + 1 using the states at k − 1 and k:

Mv(k+1) =
4

3
Mv(k) − 1

3
Mv(k−1) +

2

3
hf (k+1) (C.5a)

x(k+1) =
4

3
x(k) − 1

3
x(k−1) +

2

3
hv(k+1). (C.5b)

After some substitutions and rearranging, the Newton search direction for the nonlinear system

becomes ∆xi = −A−1i bi, with:

bi = M

(
x
(k+1)
i − 4

3
x(k) +

1

3
x(k−1) − 8

9
hv(k) +

2

9
hv(k−1)

)
− 4

9
h2f

(k+1)
i

Ai = M− 2

3
hD

(k+1)
i − 4

9
h2K

(k+1)
i .

(C.6)

On the very first time step, we cannot use BDF2 since it requires solutions at two previous time

steps. Instead, we use SDIRK2, described below, to start BDF2 [158].

C.2.5 SDIRK2

With SDIRK2 (2nd-order Singly-Diagonal Implicit Runge-Kutta) [159], we solve two nonlin-

ear systems to advance the state from step k to k + 1:

Mv(k+α) = Mv(k) + αhf (k+α) (C.7a)

x(k+α) = x(k) + αhv(k+α), (C.7b)

and

Mv(k+1) = Mv(k) + (1− α)hf (k+α) + αhf (k+1) (C.8a)

x(k+1) = x(k) + (1− α)hv(k+α) + αhv(k+1), (C.8b)
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where α = (2−
√

2)/2. These two nonlinear systems are solved sequentially: first for x(k+α) and

then for x(k+1). (The velocities can be computed from the positions using Eqs. C.7b and C.8b.)

After some substitutions and rearranging, the Newton search direction for the first nonlinear system

becomes ∆xi = −A−1i bi, with:

bi = M
(
x
(k+α)
i − x(k) − αhv(k)

)
− (αh)2f

(k+α)
i

Ai = M− αhD(k+α)
i − (αh)2K

(k+α)
i .

(C.9)

Similarly, for the second nonlinear system, we have:

bi = M
(
x
(k+1)
i − x(k) − βhv(k) − γhv(k+α)

)
− (αh)2f

(k+1)
i

Ai = M− αhD(k+1)
i − (αh)2K

(k+1)
i ,

(C.10)

where β = 2α− 1 and γ = 2− 2α.
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