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 ABSTRACT 

 

Rainfall that occurs at the tails of the precipitation distribution are considered to 

be the extremes, which are of critical importance for regional flood planning and 

infrastructure design. Previously, a stationary climate assumption had been used for 

computing extreme rainfall estimates. However, this assumption has since been shown to 

underestimate current precipitation frequency and intensity in the presence of an upward 

trend in precipitation. Trends in the rainfall extremes, calculated through a nonstationary 

lens, have been documented in observations and global climate models. This study 

computes extreme rainfall trends across the Gulf and Southeastern Coasts of the US and 

presents additional methods for addressing current uncertainties in assessing the climate-

driven trends. Nonstationary generalized extreme value (GEV) models are applied to 

historical data (1890-2019) and fit to the log of precipitation while using CMIP5 global 

mean model surface temperature as the covariate. Comparisons are also made to NOAA 

Atlas 14 using a stationary GEV model and truncated datasets. 

Trends for the composite stations vary from -30% to ~ +60% across the area of 

study while the pooled trends vary from -5% to +27% at the 2-yr return period and -8% 

to ~ +50% at the 100-yr return period. The trend estimates themselves are sensitive to 

various weather events and are therefore unreliable as individual estimates. The 

aggregate of the pooled trends yield mean trend estimates and associated 95% 

confidence intervals of 8.99% +/- 3.90% for the 2-yr return period and 13.43% +/- 

3.91% for the 100-yr return period using a spatial statistical model. Through the 
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comparisons to NOAA Atlas 14 extreme rainfall estimates, it can be seen that updates to 

the stationary estimates are necessary. 
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1. INTRODUCTION  

 

1.1. Background 

Future extreme precipitation, such as the greatest one-day rainfall in a decade at a 

given location, has been examined under different statistical lenses within existing 

literature. Previous planning estimates have utilized the stationary climate assumption in 

extreme precipitation calculations (Hershfield 1961; Bonnin et al. 2006; Perica et al. 

2013; Perica et al. 2018). Nonstationarity, as seen by trends in data, has been 

increasingly shown to be an important consideration for extreme precipitation analysis 

(Kunkel et al. 2013; Westra et al. 2014; Pacoriek et al. 2018). The stationary assumption 

can underestimate the present-day frequency and intensity of extreme precipitation 

events in the presence of an upward trend in precipitation and recent heavier rain-

producing storms (Wright et al. 2019; Vu and Mishra 2019). 

In the context of a warming climate, precipitation has a potential to increase as 

the result of an enhanced atmospheric capacity for holding water vapor, according to the 

Clausius-Clapeyron relationship. The relationship predicts a ~7% increase in saturation 

vapor pressure per degree Kelvin increase in temperature (Held and Soden 2006; Westra 

et al. 2014). However, changes in weather patterns and storm structure can also affect 

precipitation intensity (Trenberth 2011; Prein et al. 2017). 

Before observed changes in precipitation began to be documented, rudimentary 

models were already showing that extreme rainfall would likely increase in the future 

(Fischer and Knutti 2016). More sophisticated models and ensembles, such as the 
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Coupled Model Intercomparison Project Phase 5 (CMIP5), have broadly been supporting 

this pattern as well (Knutti and Sedlacek 2012; Pfahl et al. 2017; Giorgi et al. 2019; Feng 

et al. 2019). Globally, modeling studies have shown extreme rainfall increasing in North 

America, Europe, South Africa, and Oceania, and decreasing extreme rainfall in Eastern 

China, with more variability in the trends at smaller spatial scales (Westra et al. 2014). 

Mascioli et al. (2016) examined the US in their modeling study, which found increasing 

trends in wintertime extreme precipitation over the eastern US for simulations that 

considered greenhouse gas forcing only. Simulated springtime extreme precipitation 

increased over much of the central and eastern US (Mascioli et al. 2016). Other 

modeling works have also investigated trends in precipitation extremes in the US. For 

example, Janssen et al. (2014) showed that the frequency of extreme precipitation event 

days had a positive trend in the CMIP5 model simulations. 

Some modeling studies have additionally made the distinction between 

simulations of the annual mean precipitation and the tails of the precipitation 

distribution, and in doing so, have demonstrated that rainfall is tending to shift toward 

the upper tails of the probability distribution function. This indicates that extreme 

precipitation is changing more than the annual mean (Pendergrass and Hartmann 2014; 

Giorgi et al. 2019). 

Models also provide an overview of extreme precipitation behavior under a 

continually changing climate. Feng et al. (2019) used an ECMWF model to identify how 

light, moderate, and heavy precipitation frequencies would change as the global 
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temperature increased. The intensity of precipitation events in all precipitation categories 

increased at high latitudes, while the light and heavy precipitation frequencies increased 

(the PDF flattened as the frequencies spread out at the tails of the distribution) at the 

expense of moderate precipitation in the tropics under these simulations (Feng et al. 

2019). Over most land regions in the subtropical and mid-to-high latitudes, the PDF 

reflected a shift toward higher frequencies of heavy precipitation events with a decrease 

in the moderate and light precipitation frequencies (Feng et al. 2019). Comparatively, 

Giorgi et al. (2019) highlighted that light and medium precipitation event frequencies 

would decrease while high precipitation event frequencies and intensities would increase 

under a 4 ℃ warming scenario over the majority of global land areas. 

Precipitation simulation in models does continue to be filled with biases and 

uncertainties when compared to previous model iterations and observations. Typical 

biases include those related to seasonal mean precipitation and the number of days with 

precipitation (Dai 2006; Mehran et al. 2014). Model resolution in global climate models 

is also a factor in uncertainties. For example, light precipitation frequency tends to be 

overestimated while extreme precipitation frequency is usually underestimated in models 

due to the coarse resolution (van der Wiel et al. 2016). Trends in extreme precipitation 

amounts and frequency have also been underestimated by the CMIP5 models compared 

to observations (Janssen et al. 2014; Asadieh and Krakauer 2015). The CMIP6 models 

have been found to exhibit no significant differences from the CMIP5 models (Wehner 

et al. 2020a). Precipitation extremes are underestimated in the tropics but overestimated 

in the subtropics in CMIP6 models (Chao et al. 2021). However, CMIP6 models, like 
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previous CMIP iterations, do show an increase in frequency and intensity of extreme 

precipitation over much of the globe and capture the large-scale spatial patterns of 

extremes well (Chao et al. 2021). Janssen et al. (2014) found that the observations 

obtained from the US Cooperative Observer Network (COOP) stations also showed a 

positive trend in the frequency of extreme precipitation event days, which was a 

consistent finding in the CMIP5 model observations. However, the signal of the trends 

was reduced in the models. 

Observational data is often used in more recent studies on extreme rainfall and 

can provide a means of verification for global model estimates while also contributing a 

higher resolution at which to analyze extreme precipitation patterns. On a global scale, 

the observed annual maximum daily precipitation has increased faster than in most 

CMIP5 climate models (Asadieh and Krakauer 2015). The increasing trend is broadly 

consistent on a continental scale as well, with documented increases in sub-daily and 

daily extreme precipitation noted across Europe, Asia, and North America (Westra et al. 

2014; Sun et al. 2021). Other continents, such as South America and Africa, exhibit 

increases in extreme precipitation in areas that have good data coverage, although any 

trend calculations in those continents do contain uncertainties due to the sparsity of the 

data (Sun et al. 2021). Observations further support the conclusion from Pendergrass and 

Hartmann (2014) and Giorgi et al. (2019) that extreme precipitation is changing more 

than the annual mean. For example, Wu (2015) found that heavy precipitation increased 

at higher rates than the mean precipitation across the CONUS while looking at station 
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precipitation data; heavy precipitation increased at 4.24% per decade compared to 1.66% 

per decade for the annual trend (Wu 2015). 

Studies for the US have shown a range of trend estimates at various levels of 

significance for different lengths of data records and aggregation magnitudes, with 

statistically significant trends found in durations from minutes to a few days (Kunkel et 

al. 2013; Westra 2014). On a regional scale, the Midwest, Northeast, and Southeast 

regions in the US have shown the largest upward trends in extreme precipitation (Kunkel 

et al. 2013).  

Aggregated US trends in extreme precipitation are more likely to be statistically 

significant east of 100 °W (Wright et al. 2019; Kunkel et al. 2020). Wright et al. (2019) 

found this to be true in their study which used a regional aggregation approach for 

reducing the noise in extreme precipitation trends, which ultimately exhibited 

statistically significant increases in the frequency of exceedances for different return 

periods, with greater increases at longer return intervals. The aggregation in Kunkel et 

al. (2020) used the National Centers for Environmental Information climate regions. The 

largest positive trends in extreme rainfall were located in the Northeast, East North 

Central, and Central climate regions, with nearly all of the trends at each return period 

and duration statistically significant at the 0.05 significance level (Kunkel et al. 2020). A 

similar analysis of extreme precipitation trends across the US was conducted by Wu 

(2015). The same climate regions were used for the purposes of aggregation. While the 

period of record was shorter, Wu (2015) also showed an increase in heavy precipitation 
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for all climate regions except the West. Regions such as the Northwest and Southeast 

presented large increases in extreme precipitation events while the mean precipitation 

did not change significantly, further emphasizing what global models have been 

demonstrating regarding a shift in the precipitation distributions (Wu 2015). 

While much of the previous extreme precipitation literature has concentrated on 

larger regional trend estimates, Villarini et al. (2013) and Brown et al. (2020) considered 

station level estimates to attempt to obtain the climate signal at a smaller spatial scale. 

The region of focus for Brown et al. (2020) was the Southeastern and Gulf Coasts of the 

US. Extreme hourly, rather than daily, precipitation data were acquired from weather 

stations in the NCEI Hourly Precipitation Database, and annual time series were created 

from that with supplemented records contributed by the Midwestern Regional Climate 

Center and the Iowa Mesonet. Only 6% of the station-level trends were found to be 

significant at the 0.05 significance level, while 6.4% were significant between the 0.05 

and 0.10 level which combined to a total of ~12% of stations that had significant trends. 

Villarini et al. (2013) focused on a similarly sized area, the central US, which also 

included some states considered in the present work (Louisiana, Arkansas, Mississippi, 

and Alabama). However, daily precipitation totals were used again in this study rather 

than hourly data. Increasing trends of extreme precipitation were found in this study as 

well, with 93 out of the 447 stations considered, or 21% of stations, exhibiting a 

significant positive trend (Villarini et al. 2013). This is much larger than the amount of 

significant trends in Brown et al. (2020), however, there were many more stations used 

in Villarini et al. (2013), 447, compared to Brown et al. (2020), 50. These differences in 
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significant trends could also be a result of the different extreme precipitation durations 

between the two studies. This illustrates how variable extreme precipitation trend 

analysis can be, especially while using trend estimation techniques on non-aggregated 

station-level data. 

Critically, natural variability in the climate system can impact the detection of the 

anthropogenic climate change signal within extreme precipitation analyses. Martel et al. 

(2018) investigated the role of natural variability on the detection of climate change 

trend signals for extreme precipitation and mean precipitation. Natural variability 

affected the annual 1-day extreme precipitation indices at the local scale more than the 

annual precipitation. It was also shown to influence the climate change signal into the 

mid-century at both the local and regional scales, while the climate change signal was 

more robust at the global scale (Martel et al. 2018). This highlights the importance of 

and complications surrounding the signal detection within extreme precipitation trend 

analyses. 

Extreme precipitation risk is particularly relevant for the Gulf Coast and 

Southeastern regions of the US. Almost all of the top 100 largest area-averaged, 

multiday precipitation events for the period 1949-2018 occurred in the southeastern US 

(Kunkel and Champion 2019). Furthermore, the Gulf Coast and Southeastern regions of 

the US have some of the largest and most significant trends in extreme rainfall according 

to a range of aggregation methods and statistical tests (Kunkel et al. 2013; Wu 2015; 

Wright et al. 2019; Kunkel et al. 2020).  
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1.2. Research Goals and Hypotheses 

It is important to acknowledge that trends in observed extreme precipitation are 

influenced by the length of the data record and the amount of spatial aggregation that is 

performed on the data. Different trend estimates can also occur as a result of trend 

calculation methods (e.g., linearly over time, such as with linear regression). Previous 

studies have focused on periods of record in the mid to late 1900s through present day 

rather than extending that period of record further back to create a longer data record for 

the purposes of trend analysis. A shorter period of record can lead to less robust trend 

results due to noise in the data and can lower the predictive power of a statistical model. 

In order to extend the data record back to 1890, this study utilizes a county composite 

station approach. These composite stations are then pooled in such a way that is distinct 

from other aggregation methods used in the literature presented here. The methodology 

behind the composite station creation and pooling techniques will be described in detail 

in the next section. Additionally, the present work approaches the GEV analysis 

differently than previous studies, which allows us to acquire information not otherwise 

present in those studies. Thus, the goal of the present work is to examine extreme 

precipitation across the Gulf and Southeast Coasts of the United States in order to 

expand upon existing extreme precipitation research and add additional methods that 

should help reduce current uncertainties in assessing the climate-driven trends. Our main 

hypotheses are: 
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1. Compositing and pooling techniques for station precipitation data will act as 

sound aggregation methods for analyzing extreme precipitation trends aside from 

other approaches used in the literature. 

2. The extension of precipitation annual block maxima periods of record yields 

more robust trend estimates than shorter datasets previously used. 

3. Recent heavy rain events in the past 10 years have contributed to spatial 

variability in trends in the nonstationary return value precipitation estimates 

across the Gulf and Southeast Coasts of the US. 

To work toward addressing the hypotheses, the remainder of this thesis is organized as 

follows: Section 2 discusses the data and methods used for the analyses. The results are 

presented in Section 3. Final conclusions and a brief discussion of future work are given 

in Section 4. 
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2. DATA AND METHODS 

 

2.1. Composite Station Construction 

Daily precipitation data from the period 1890-2019 were acquired from stations 

located in a geographical area encompassing the Gulf and Southeastern Coasts of the 

US, ~26 °S, 35 °N, -100 °W, and -75 °E, that are included in the Applied Climate 

Information System database, which is maintained by NOAA’s Regional Climate 

Centers. Most, but not all, of this data has undergone quality control as a part of the 

Global Historical Climate Network-Daily (GHCN-Daily) database (Menne et al. 2012). 

The quality control process is fully automated and performs well. Only 1%-2% of values 

flagged within GHCN-Daily are valid observations that have been flagged erroneously 

(Menne et al. 2012). 

To assess the influence of recent storms on stationary return value estimates and 

nonstationary trend estimates, three separate datasets are considered. The first dataset 

includes all of the years between 1890-2019, while the remaining two data subsets are 

truncated at 2011 and 2000. These years were chosen as cutoff points because they align 

with the ending years of data used in NOAA Atlas 14 Volumes 9 and 2 respectively. 

This allows for a comparison between stationary estimates computed in this study and 

previously accepted stationary estimates from NOAA Atlas 14. Comparing trend 

estimates between datasets can also provide information about whether the increasing 

trend in extreme precipitation was enhanced in recent years as a result of heavier rain 

events such as several hurricanes and inland flooding events. 
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Before further assessing the quality of the station data, composite county stations 

were created. Compositing was done with the intention of obtaining both long record 

lengths and comprehensive spatial data coverage with the assumption that stations were 

within a similar meteorological setting to sample similar statistical precipitation 

distributions. This assumption should not introduce an overall bias because mountainous 

areas are avoided, and counties have an average size of 1,860 square kilometers, which 

is a small enough area to prevent any large climatological variations in precipitation 

distributions between stations. To create the county composites, stations within a county 

with no more than 31 missing days for a given year were identified. If only one station 

met that criterion, then that station’s data were utilized for that year’s block maximum. If 

more than one station met that criterion, then the station with the longest period of 

record was used. In cases where no stations met the missing day threshold, that year’s 

block maximum for the county would be set to missing. County composites were 

discarded if they had fewer than 30 years of block maxima.  

An additional three-part screening process was implemented here to eliminate 

any flawed extreme precipitation values that were not caught in the original GHCN-

Daily quality inspections. The screening process focused on flagging spatial outliers for 

further investigation. A one-year block maximum of three-day precipitation was flagged 

if it exceeded the values reported at any neighboring stations for coincident periods by a 

factor of two or more or if the block maximum values were low outliers compared to 

surrounding stations. Next, the flagged block maxima were inspected manually to check 

for accuracy by looking at original observer forms, radar observations, neighboring 
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stations’ reports, and other weather data. The data were assigned a quality control flag of 

“bad” if there was clear evidence of an error, “suspicious” if the value(s) were not 

blatantly wrong but had other evidence suggesting they were incorrect, such as an error 

in the observer form, “probably good” if there was no additionally sufficient evidence to 

remove the value, and “good” if the value was clearly represented in the original 

observer form and the report made meteorological sense. Any block maxima that were 

designated as “bad” or “suspicious” were removed from the data set prior to the analysis. 

Through this quality control process, 37 data points were removed out of a total of 60 

flagged points and 66,113 block maxima points overall. 

 

2.2. Analysis of Nonstationarity 

The analysis of nonstationarity of the block maxima performed here follows 

similar procedures to the generalized extreme value (GEV) approaches as described in 

Martins and Stedinger 2000, El Adlouni et al. 2007, and Vu and Mishra 2019. A GEV 

distribution was fit to the block maxima while allowing only the location and scale 

parameters of the distribution to fluctuate with a covariate. The fit of the distribution was 

determined through the maximum likelihood estimation (MLE) method rather than L-

moments due to its ability to evaluate nonstationary extreme value distributions (Martins 

and Stedinger 2000; El Adlouni et al. 2007). MLE has been shown to perform well with 

stationary and nonstationary analyses of extreme values (El Adlouni et al. 2007). The 

climextRemes package was used to perform the MLE (Paciorek et al. 2018). With the 

estimated return values from the GEV distribution, trends in the return values are 
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examined. Trends are quantified as the percent change in expected precipitation return 

values between 1960 and 2020. These return values are based on the entire quality-

controlled dataset, with the assumption that the probability distribution is changing 

smoothly over time with changes to the covariate. 

The change in water vapor holding capacity in the atmosphere, or the 

thermodynamic response, has been predicted to be the main driver of changes in extreme 

precipitation in the northern mid to high latitudes and is therefore the most relevant to 

this study (Pfahl et al. 2017). As such, global mean surface temperature is a valid and 

practical proxy option for a covariate (Sun et al. 2021). CMIP5 model mean global 

surface temperatures are chosen for this study as one covariate option, which Knutti and 

Sedlacek (2012) discussed as valid and consistent from earlier CMIP versions. CO2 

forcing can be used as another covariate (Risser and Wehner 2017). The natural log of 

atmospheric CO2 concentrations provides an estimate for the forcing associated with 

CO2 (Myrhe et al. 1998). By using the forcing of CO2, volcanic eruptions are ignored, 

which can be beneficial since eruptions have a large effect interannually and will affect 

precipitation differently from greenhouse gases or even climate change (Mascioli et al. 

2016). Therefore, we chose the log of atmospheric CO2 as another covariate option for 

the purposes of this study. Figure 2-1 displays the time series of these nonstationary 

covariates. CMIP mid-year CO2 historical concentrations (Meinshausen et al. 2011) 

through 2005 and the average annual Mauna Loa concentrations through present day are 

used. This data reports CO2 concentrations with discrete steps between years, hence why 

the natural log of CO2 concentrations in the time series reflects discrete steps. 
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2.3. Substate Pooling 

Previous studies have shown that aggregating precipitation station data yields 

more signal in trend estimates of extreme rainfall and a better estimate of the GEV shape 

parameter (Martins and Stedinger 2000; Fischer and Knutti 2016; Kunkel et al. 2020). 

Aggregation methods are employed for the purposes of this study as well. The county 

composite stations constructed for the block maxima rainfall were pooled together to 

create substate regions of approximately ten counties each and 20,000 square kilometers 

in area across the entire period of analysis prior to performing the GEV analysis. More 

Figure 2-1: Time series of the nonstationary covariates chosen for this study. The dark red 
line shows the CMIP5 mean model temperature time series with associated y axis on the 
left side of the figure, and the dark purple line represents the natural log of CO2 
concentration time series with associated y axis on the right side of the figure. 
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(fewer) counties are contained in a single region in states with smaller (larger) counties, 

such as Georgia (Texas). Pooled regions were designed to be compact and contain 

composite stations from a nearly uniform geographical setting for extreme rainfall, and a 

single GEV distribution was applied to each pooled region. Figure 2-2 depicts the pooled 

regions across the states used in this study, which are South & East Texas, Arkansas, 

Louisiana, Mississippi, Alabama, Georgia, Florida, South Carolina, and Central & East 

North Carolina. 

 

 

 

Figure 2-2: Boxes labeled with numbers and letters identify the pooled regions within a 
specific state. These labels do not connect across state boundaries. I.e., Region 1 in Texas does 
not relate to Region 1 in Louisiana. Individual dots within a specific region correspond to the 
county composites that make up that pooled area. Colors identify additional classifications of 
the pooled regions which are not considered in the present study. 
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2.4. Model Selection 

In order to determine which of these statistical models (stationary or 

nonstationary) best fit extreme precipitation data, the Akaike Information Criterion 

(AIC) is often applied. The model with the lowest AIC value is considered to have the 

best fit (Vu and Mishra 2019). This method accounts for the number of terms estimated 

in the model as well as the likelihood function of the models, which can be calculated 

using the maximum likelihood estimation method (MLE), method of moments, or L-

moments method. Prior studies have suggested that the MLE method using covariates in 

a generalized extreme value (GEV) model is a valid approach for acquiring the 

likelihood of models (El Adlouni et al. 2007; Martins and Stedinger 2000). 

To avoid overfitting the data, the most parsimonious models must be chosen; 

fewer parameters that explain the behavior of the data are preferred in these models. The 

AIC was applied in this study to identify the models with the best parsimony. The 

natural log of atmospheric CO2 held only marginally better AIC values as the covariate 

for the composite stations. CMIP5 mean model global surface temperature performed 

better for the pooled counties, according to the AIC statistics. The AIC results also 

helped identify which parameters should change with the covariate in the GEV model. 

For the composite stations, the mean AIC values and the spread of the AIC values were 

lower for the model where only the location parameter was varying. Contrastingly, for 

the pooled stations, the mean and spread of the AIC values were lower for the model 

where both the location and scale parameters were changing with the covariate. Based 

on these results, the models chosen for the nonstationary analysis were as follows: 
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1) A GEV fit to the logarithm of precipitation with the location parameter 

covarying with the CMIP5 mean model surface temperatures for 

composite stations 

2) A GEV fit to the logarithm of precipitation with the location and scale 

parameters covarying with the CMIP5 mean model surface temperatures 

for pooled stations 

The remainder of the analyses proceeds with the CMIP5 mean model surface 

temperature as the covariate. 

 

2.5. Gaussian Process Model 

To obtain information about the spatial patterns of the trends, and to compute 

confidence intervals of the mean trend, a Gaussian process model is applied. Gaussian 

processes are fields of variables that each have Gaussian probability density functions 

associated with them. The model accounts for the covariance between points, which 

provides the spatial element to the analysis. First, coordinates of the pooled trends were 

obtained from the latitude and longitude pairs for each of the regions in the area of study. 

From there, a Gaussian process model was fit to the pooled trends. The mathematical 

framework of the model can be seen in Equation 1: 

𝑌(𝑥) 	= 	𝜇(𝑥) 	+ 	𝑆(𝑥) 	+ 	𝑒                                      Eq. (1) 

Y is the variable being observed, which corresponds to the pooled trends. The 

variable x defines the spatial location, latitude and longitude pairs, of the trends. The 
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term, 	𝜇(𝑥), is equivalent to a covariate term multiplied by a beta estimate across the 

spatial domain. 𝑆(𝑥) is the stationary Gaussian process, and 𝑒 is an error term. The key 

terms from the output for estimating the aggregate of the pooled trends are the beta term, 

which represents the mean trend, and the beta variance, i.e., the variance of the mean 

trend. Bounds of the confidence interval are calculated by taking the mean trend and 

adding or subtracting 1.96 multiplied by the square root of the mean trend variance. The 

value 1.96 is the z-value for the significance level of 0.05, which corresponds to a 95% 

confidence interval. 
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3. RESULTS 

 

3.1. Stationary Analysis 

To establish the validity of the methods described in Section 2, a stationary GEV 

analysis was performed with a similar approach to NOAA Atlas 14. The GEV 

parameters were acquired from the previously mentioned MLE, and no covariates were 

used since the analysis was stationary. Return values were first calculated from the block 

maxima in the county composite stations for 2-yr and 100-yr return periods. 

 

 

 

Figure 3-1: Composite station 1-day rainfall amounts (inches) from the quality 
controlled full dataset under a stationary model for the 2-yr return period 
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The 2-yr composite stationary 1-day duration return values are plotted in Figure 

3-1. Higher return values exist along the Gulf Coast. The 2-yr return values are spatially 

more coherent than the 100-yr composite 1-day values (Fig. 3-2). This reflects the idea 

that return values toward the middle of the cumulative GEV distribution have lower 

uncertainty than those at the tails. Pooling by region is sufficient to produce spatially 

coherent return value estimates even at the longer return periods using these methods, 

which is apparent in the systematic reduction in return values with distance inland (Fig. 

3-3; Fig. 3-4). However, there are two exceptions to this reduction in return values, 

Figure 3-2: Same as Fig. 3-1, except this is for the 100-yr return period 
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which occur over northwestern South Carolina and the southern Edwards Plateau region 

in Texas. These exceptions could be a result of topographic effects in those areas. 

 

 

 
 

 

 

 

 

 

Figure 3-3: Pooled stations 1-day rainfall amounts (inches) from the quality controlled 
full dataset under a stationary model for the 2-yr return period 
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Figure 3-4: Same as Fig. 3-3, except this is for the 100-yr return period 
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Figure 3-5: Pooled stations 1-day rainfall amounts (inches) from the NOAA Atlas 
14 Volume 2 (North and South Carolina), Volume 9 (Alabama, Arkansas, Georgia, 
Louisiana, Florida, and Mississippi), and Volume 11 (Texas) datasets under a 
stationary model for the 2-yr return period. Data end years for each volume were 
2000, 2011, and 2019, respectively 
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Figure 3-6: Same as Fig. 3-5, for the 100-yr return period 
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Figure 3-7: Percentage differences in pooled stations 1-day rainfall amounts between 
our calculated stationary return values and NOAA Atlas 14 values shown in Fig. 3-5 for 
the 2-yr return period. The comparison is made between analyses with the same data 
time cutoffs as mentioned in Fig. 3-5. E.g., the North Carolina & South Carolina 
differences reflect the differences between our calculated return values using the dataset 
cut off in 2000 and the NOAA Atlas 14 Volume 2 values which also used data through 
2000. 
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Overall, the stationary return value pattern calculated using the methods outlined 

here appears to be consistent with prior stationary estimates. A direct comparison to 

NOAA Atlas 14 stationary estimates demonstrates that the methods performed in this 

study are generally valid. The return values from Volume 2 (Fig. 3-5; Fig. 3-6) are 

similar to the return values calculated for this study. The data were truncated at the year 

2000 because NOAA Atlas 14 Volume 2 was produced using data through that year. For 

example, North Carolina Region 3, which can be identified from Figure 2 in section 2, 

has a pooled 2-yr return period value of 3.42” (Fig. 3-5) and a 100-yr return period value 

of 9.38” (Fig. 3-6). NOAA Atlas 14 estimated the average return value for a 2- and 100-

yr return period for that region as 3.42” and 9.08”, respectively, which led to no 

Figure 3-8: Same as Fig. 3-7, for the 100-yr return period 
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difference between the values calculated in this study compared to those Atlas 14 

estimates at the 2-yr return period (Fig. 3-7) and a 3% difference at the 100-yr return 

period (Fig. 3-8). Similarly, the estimates for South Carolina Region 4 for this study’s 

calculations were 3.61” and 9.1”. Those same return values from NOAA 14 were 3.59” 

and 9.19”, resulting in a 1% difference and a -1% difference at the 2- and 100-yr return 

periods. Note that positive differences indicate that the present values are larger than 

Atlas 14 while negative differences indicate that Atlas 14 estimates are larger. 

 Return value estimates were also fairly comparable for states in Volume 9, which 

had a data cutoff year in 2011. Louisiana Region 3, located on the coast, has regional 

values of 5.16” for the 2-yr return period (Fig. 3-3) and 12.48” for the 100-yr return 

period (Fig. 3-4). From NOAA Atlas 14, these values were roughly 5.33” and 13.50” 

(Fig. 3-5; Fig. 3-6) Furthermore, Arkansas Region 2 had average pooled values from 

NOAA Atlas 14 as 4.36” and 9.43” while the values computed in this study are 4.19” 

and 9.36” respectively. The associated percent differences for Louisiana Region 3 at the 

2- and 100-yr return periods were -3% and -8%, while Arkansas Region 2 had 

differences of -4% and -1% (Fig. 3-7; Fig. 3-8). The largest differences between the 

stationary estimates occur in Florida Region 6 where the differences at the 2-yr return 

period are 12% and 26% at the 100-yr return period. 

Similar return value estimates between this work and NOAA Atlas 14 are found 

for the more recent Volume 11 as well. For example, Texas Region A, located in eastern 

Texas, has a 1-day duration pooled stationary return value for the 2-yr return period of 

4.12” (Fig. 3-3) and for the 100-yr return period of 10.78” (Fig. 3-4). NOAA Atlas 14 
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reports return values of approximately 4.16” for the 1-day duration 2-yr return period 

(Fig. 3-5) and 10.80” for the 100-yr return period (Fig. 3-6) in Region A. This resulted in 

a percent difference of -1% and ~0% for the associated return periods (Fig. 3-7; Fig. 3-

8). From these comparisons between prior well-established work and the current study, it 

can be seen that the estimates presented here tend to be only slightly different than the 

NOAA Atlas 14 estimates, with the vast majority of regional estimates having negative 

differences. Overall, the percentage change between current values and those in NOAA 

Atlas 14 vary from -8% to 12% for the 2-yr return period and -15% to 26% for the 100-

yr return period. Interestingly, the largest positive differences occur along the Atlantic 

Coast. Differences exist between these estimates and NOAA Atlas 14 likely due to a few 

reasons. First, Atlas 14 does not use composite stations in the statistical analysis. Time 

series from individual stations were used, and the GEV model was fit to each time series 

separately. Furthermore, when the GEV estimates from each time series were aggregated 

together in Atlas 14, it was done through the examination of the proximity of stations to 

each other, elevation, and other factors. Here, the regions are defined geographically by 

hand prior to fitting the GEV distribution to the data. A third reason differences exist 

between these estimates and Atlas 14 is due to the difference in GEV parameter 

calculation methods. Atlas 14 used L-moments, while this study uses the MLE method. 

Despite this, the differences between return values are not sufficient to suggest that our 

methods of calculating them are poor. 
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3.2. Nonstationary Analysis 

The nonstationary analysis of block maxima rainfall, as described in section 2, 

allowed for an examination of the trends in extreme rainfall across the area of study. 

Figure 3-9 depicts the 100-yr composite station trend patterns for 1-day precipitation 

durations. Only the 100-yr return period composite trends are shown here because only 

the location parameter is changing in the GEV distribution for the composite stations. 

This means that the return values must change by similar proportions for each return 

period since the distribution is only shifting along the x-axis when the location parameter 

changes, while the width of the distribution is constant. It is important to note that this is 

true only if the GEV is fit to the logarithm of precipitation, which is what is done in this 

study. Therefore, there is a negligible difference between the 2-year return period and 

the 100-year return period at the composite station level. The trends vary from ~ -30% to 

~ +60% across the area of study. Larger positive trends are found across Louisiana, 

Mississippi, East Texas, and coastal North Carolina. However, there are also numerous 

composite stations that highlight strong negative trends throughout this area. Georgia, 

for example, reflects this juxtaposition well with several negative trends interspersed 

among positive trends; record lengths can be much shorter in Georgia though, which can 

leave more noise in the trend estimates. The composite trend patterns demonstrate the 

magnitude of the natural variability present within the block maxima precipitation 

through the spatial variability in the trends, which can be interpreted here as natural 

variability since the trends at this small scale do not account for the broader physical 

changes that occur as the global temperature increases. 
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Patterns within 1-day duration trends across the area of study become more 

apparent in the pooled regions. Pooled trends for the 2- and 100-yr 1-day duration 

precipitation return values are shown in Figures 3-10 and 3-11 respectively. The trends 

for the 2-yr return period show less spatial variability than the 100-yr return period 

trends because they are less affected by event outliers. A discussion on the impact of 

recent storms on the trend estimates will be discussed later in this section. 

 

 

 

 

Figure 3-9: Percentage changes in nonstationary composite station estimates of 
expected 1-day return values between 1960 and 2020 for the 100-yr return period 
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Figure 3-10: Percentage changes in nonstationary pooled station estimates of expected 1-
day return values between 1960 and 2020 for the 2-yr return period 
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Using the natural log of CO2 concentrations as the covariate yields similar trend 

results. The broad patterns of the trends are generally the same both with the composite 

station trends and the pooled regions (not pictured). The trends from the two covariates 

are mainly within 10% of each other. Agreement between trends from both the mean 

model temperatures and natural log of CO2 covariates indicates that the choice of 

covariate did not greatly affect the extreme rainfall return value estimates for this 

nonstationary analysis. 

 

3.3. Impact of Recent Storms 

To assess the extent to which recent weather events have impacted the stationary 

and trend estimates of extreme precipitation since NOAA Atlas 14, the truncated 

datasets are used. The same analyses are performed on the shortened datasets, and the 

Figure 3-11: Same as Fig. 3-10, for the 100-yr return period 
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results are then compared to those using the full dataset. For the purpose of this 

discussion, only the 100-yr return period results will be highlighted to focus on the tail 

of the probability distribution. Differences between the stationary return value estimates 

from the data through 2011 and 2019 for 1-day duration precipitation are shown in 

Figure 3-12 and Figure 3-13. Notably, in the pooled estimates there are several regions 

with positive differences (2019 values are higher when there is a positive difference) 

(Fig. 3-12). These positive differences are approximately 1, corresponding to 1 inch of 

precipitation, at the highest locations. The differences are understandably more spatially 

varying in the composite stations (Fig. 3-13). Locations in southeastern Texas and the  

As the data record is shortened further, the differences between the stationary 

estimates are magnified. This is clearly evident in Figure 3-14 and Figure 3-15, which 

display the differences in stationary estimates between data years ending in 2000 and 

2019. More negative differences (2019 values are lower) are apparent in the pooled map 

(Fig. 3-14) than there are in the 2019-2011 map. The largest negative difference is 

roughly 2 inches, and the largest positive difference is roughly 1 inch. Amplified 

differences even in the stationary return values emphasize the importance of updating 

extreme precipitation estimates for planners. 
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Figure 3-12: Differences in stationary estimates of 1-day 100-yr return values (inches) 
between the 2011 and 2019 datasets for the pooled stations 
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Figure 3-13: Same as Fig. 3-12, for the composite stations 
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Figure 3-14: Same as Fig. 3-12, except this is showing the differences between the 2000 and 
2019 datasets 

Figure 3-15: Same as Fig. 3-14, for the composite stations 
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Recent storms influence the trends in the nonstationary extreme precipitation as 

well. Figures 3-16 and 3-17 display the percentage changes between the trend estimates 

from the 2011 and 2019 data for 1-day duration precipitation. It is relevant to note that 

while there are negative values on these difference plots, that does not imply that the 

trends in 2011 or 2000 were decreasing. The differences note the changes in trend 

magnitude between the datasets, which means that while both 2011 and 2019 may show 

an increasing trend in the data, if the trend was larger in magnitude in 2011 than in 2019, 

then that difference value would be negative. The effect on the difference in return 

values between 1960 and 2020 is larger than the effect on the stationary values 

themselves. Impacts from the recent events have similar signs between the trends and 

stationary estimates, as expected. 100-yr return period or smaller spatial scale 

precipitation estimates specifically are much more influenced by event outliers as they 

affect the tails of the probability distribution more than the center of the distribution. The 

differences in these trends vary from -34% to +42% for the composite stations (Fig. 3-

17). The differences in pooled trends ranges from -23% to +22% (Fig. 3-16). 
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Figure 3-16: Percentage differences in nonstationary trend estimates of 1-day 100-yr return 
values between 2011 and 2019 datasets for the pooled stations 
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Figure 3-17: Same as Fig. 3-16, for the composite stations 
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Figure 3-18: Same as Fig. 3-16, except these are the differences between the 2000 and 2019 
datasets for the pooled stations 
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Figure 3-19: Same as Fig. 3-18, for the composite stations 
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Larger differences in the trends exist between the full dataset and the dataset that 

ends in 2000. The pooled trend differences vary from -42% to +34% (Fig. 3-18) while 

the composite station trend differences vary from approximately -60% to +50% (Fig. 3-

19). These trend differences, both for the dataset that ends in 2000 and 2011, further 

highlight the need for Atlas 14 updates in states presented here, especially North and 

South Carolina whose Atlas 14 volume used data through 2000. Nonstationary trend 

estimates, as well as the stationary estimates discussed earlier in this section, can be 

vastly different when using shorter periods of record. 

 

3.4. Aggregated Trends 

From the pooled trend estimates for extreme precipitation, the next step involves 

examining the aggregate of these trend estimates using spatial statistics. The goal is to 

acquire the estimated mean trend across the entire spatial domain and confidence 

intervals of the mean trend for the 2- and 100-yr return periods using all three datasets 

separately. Estimates of the beta term, beta variance, and bounds of the confidence 

intervals for the 2- and 100-yr return periods are summarized in Table 3.4.1. Using the 

full dataset, it can be seen that the estimated mean trend is ~9% for the 2-yr period and 

~13% for the 100-yr return period. The confidence intervals are wider for the dataset 

ending in 2000 at both return periods than the 2011 and 2019 datasets. Similarly, the 

beta estimate for the 2-yr return period from the 2000 dataset is larger than the estimate 

for 2011 and 2019. However, at the 100-yr return period, the mean trend estimate for the 

full dataset, ~13%, is larger compared to the other datasets which are ~12%. The 
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confidence intervals at the 100-yr return period are wider for the full dataset than the 

2011 dataset, but narrower than the 2000 dataset. Statistically, the confidence intervals 

for the differences between the 2- and 100-yr return period trends are more robust than 

the intervals of the raw trends themselves (not shown). The intervals for the three 

datasets, 2019, 2011, and 2000, are approximately (-0.13, 6.7), (-3.4, 10.9), and (-4.1, 

9.3). Negative differences highlight when the 2-yr return period trend was larger than the 

100-yr return period trend, while positive differences reflect the opposite. 

 

 

End year of 
dataset Return Period Beta estimate 

95% CI lower 
bound 

95% CI upper 
bound Beta variance 

2019 2-yr 8.89 0.853 16.918 16.796 

2019 100-yr 12.89 3.174 22.606 24.573 

2011 2-yr 8.80 2.989 14.602 8.776 

2011 100-yr 11.85 3.218 20.491 19.416 

2000 2-yr 9.43 2.096 16.766 14.005 

2000 100-yr 12.29 0.0922 24.478 38.700 
Table 3.4.1: Each ending year of the three datasets are displayed with their 
corresponding return periods, beta estimates of the average trend over the entire study 
area from the Gaussian process model, and confidence intervals computed from the 
output of the Gaussian process model. Trends are expressed as percentages. 
 

In addition to the confidence intervals computed for the aggregate of the pooled 

trends, it is important to consider how the trend estimates and the associated confidence 

intervals compare at an intermediate aggregation level to those found across the entire 

domain of pooled stations. The confidence intervals calculated for the intermediate 

aggregation trend estimates not only describe the uncertainty associated with the trends 
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at that level of aggregation, but they also help inform how robust the climate-driven 

trend is at a smaller aggregation. To do this, the pooled regions were divided into the 

Gulf Coast only and the Southeast Coast only. The Gulf Coast was defined as all 

Alabama regions, all Arkansas regions, Florida regions 1, 2, and 3, all Louisiana regions, 

all Mississippi regions, and all Texas regions. The Southeast Coast was defined as all 

Georgia regions, all South Carolina regions, and all North Carolina regions. Averages of 

the pooled trends across each of these aggregated subdivisions were computed for the 2-

yr and 100-yr return periods. This was done separately for each dataset ending year. 

Table 3.4.2 shows the average trends for each aggregated region and the 95% confidence 

intervals computed from the Gaussian process model output in each dataset. The 

confidence intervals of the 2-yr return period trends for the 2019, 2011, and 2000 

datasets are approximately (9.6, 12.7), (8.2, 10.8), and (12.3, 13.1) respectively. 

Comparatively, the confidence intervals of the 100-yr return period are (14.3, 14.9), 

(13.1, 13.2), and (10.1, 21.7). The average trends for these aggregated regions are larger 

than those found for the aggregates of the pooled trends. Furthermore, the confidence 

intervals of these additional aggregates are narrower than the intervals produced from 

the pooled trends (Table 3.4.2). However, these intervals are so narrow because there are 

only two data points being used in the spatial model, and less data will shrink confidence 

intervals. Aggregated regions at this scale are therefore not beneficial for ascertaining 

the climate-driven trend from noise. 
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End year of 
dataset 

Aggregated 
region 

2-yr RP 
Trends 

100-yr RP 
Trends 

2-yr RP 95% CI 100-yr RP 95% CI 

2019 SE Coast 9.565 14.785 

(9.047, 12.765) (14.291, 14.864) 
2019 Gulf Coast 12.248 14.371 

2011 SE Coast 8.562 13.164 

(8.203, 10.782) (13.154, 13.223) 
2011 Gulf Coast 10.423 13.213 

2000 SE Coast 12.982 20.149 

(12.293, 13.094) (10.078, 21.778) 
2000 Gulf Coast 12.405 11.707 

Table 3.4.2: Each ending year of the three datasets are displayed with their 
corresponding aggregated regions and trends at the 2- and 100-yr return period. 95% 
confidence intervals, which were calculated using the output from the Gaussian process 
model, for each year and return period are presented as well. Trends are expressed as 
percentages. 



 

 

4. CONCLUSIONS 

 

Extreme rainfall has been a topic of societal importance in the United States, 

particularly in response to events such as Hurricane Harvey, but changes in extreme 

rainfall are of emerging concern. Robust and scientifically sound trend estimates of 

extreme precipitation are crucial for emergency managers, city planners, engineers, and 

policy makers as global temperatures continue to rise. While past and current studies do 

address trends in extreme rainfall from observational datasets, this study aims to focus 

on such trends across the Gulf and Southeastern Coasts of the US, specifically working 

toward improving upon existing analytical methods of evaluating the climate-driven 

trends in extreme precipitation. To do this, precipitation station data are acquired from 

1890-2019 using the Applied Climate Information System from NCEI. Stations are first 

composited in each county, and then multiple composite stations are treated as a single 

set of observations to create pooled regions in each state. GEV models are fit to the 

logarithm of precipitation for both the composite stations and the pooled regions using 

CMIP5 global mean surface temperatures as the covariate for the nonstationary analysis. 

Through the analysis, stationary extreme rainfall return values are compared to the 

NOAA Atlas 14 stationary estimates. Trends in the nonstationary return values are 

calculated and compared across datasets of different time cut-offs and are further 

inspected using spatial statistics. 

The results presented in this thesis are comparable to NOAA Atlas 14 stationary 

return value estimates. Daily pooled stationary return values calculated in these analyses 
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appear to be generally smaller than the pooled stationary values from NOAA Atlas 14 

Volumes 2, 9, and 11 for both the 2- and 100-yr return periods. These differences in the 

exact values do not appear to be problematic, especially considering the overall patterns 

of the stationary values across the Gulf and Southeast are consistent between the NOAA 

Atlas 14 volumes and the current study. Disparities are apparent due to differences in the 

regionalization of the data, GEV parameter estimation methods, and treatment of the 

data prior to fitting the GEV distribution to it. 

Directly comparing trend estimates between this work and previous literature is 

not entirely beneficial since different methods for calculating trends and definitions of 

trends can lead to widely varying results. However, one can consider how the 

magnitudes of the trends, the methods used to compute the trends, and the information 

gathered from the trends compare between this thesis and preceding studies. Previous 

observational studies have shown that the Southeastern US has experienced increases in 

the frequency and intensity of extreme precipitation. Increasing intensity is reflected in 

the trends of extreme precipitation return values. The trends computed here for the full 

precipitation dataset (data through 2019) predominantly support those patterns, 

especially in the pooled regions. Pooled trend values vary from -5% to 27% for the 2-yr 

return period and from -8% to 49% for the 100-yr return period. Of the 60 pooled 

regions, four exhibit negative trends at the 2-yr return period while six exhibit negative 

trends at the 100-yr return period. The largest positive trends are found across eastern 

Texas, Louisiana, and the coast of North Carolina. 
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This pattern of positive trends across the Gulf and Southeastern Coasts of the US 

does broadly align with prior studies, even studies that aggregated stations to a larger 

level. However, there are key differences between this thesis and previous studies. For 

example, Kunkel et al. (2020) examined annual trends in the 1-day return values that 

exceeded a certain value at a given return period. The highest return period considered 

was 20 years, so the 20-yr return value was computed. Trends were then calculated for 

the values that exceed that 20-yr return value and for the other return periods considered. 

The annual trend (% per decade) from 1949-2016 for the 1-day return values that 

exceeded the 2-yr return period value was 4% in Kunkel et al. (2020), while this study’s 

aggregated actual 1-day 2-yr return period trend from 1890-2019 for the Southeast Coast 

was ~10%. It is also important to note that Kunkel et al. (2020) used region definitions 

that are different from the ones presented here. Furthermore, Kunkel et al. (2020) did not 

quantify the confidence intervals of their trends, while this study did. 

Wu (2015) also computed trends in daily extreme precipitation in the Southeast 

US while using nearly identical climate divisions as Kunkel et al. (2020). Before pooling 

the data into the climate regions, the annual maximum precipitation at each station was 

normalized by the annual maximum precipitation mean, which is one difference between 

that study and the current work. Percent changes in daily precipitation return values 

between the 1951-1980 period and the 1981-2013 period were computed for various 

return intervals, which is similar to the definition of the trends in this thesis. However, 

this thesis did not split the data into two distinct periods for the analysis. For the 

Southeast US, the 1-day 100-yr return period differences in the return values were ~8% 
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(Wu 2015). This value is ~5% lower than the aggregated Southeast trend estimate from 

1890-2011 for the 100-yr return period from the present study, which was ~13%. Wu 

(2015) did not compute return values for the 2-yr return period. Confidence intervals of 

the trends were not calculated in Wu (2015) either.  

While Sun et al. (2021) found trends in extreme rainfall, the trends are also not 

quantified, nor are there confidence intervals given, except for intervals connected to 

extreme precipitation sensitivity to global mean temperatures. This is also the case with 

Villarini et al. (2012). Villarini et al. (2012) identified the presence of trends, but did not 

compute the magnitude of those trends, nor the uncertainty through the use of 

confidence intervals. Wright et al. (2019) also analyzed trends in extreme precipitation 

using observations. However, the methods for performing the analyses are different from 

those presented here. For example, Wright et al. (2019) formed clusters of precipitation 

values that exceeded a certain return value at a given return period rather than on the 

stations themselves where clusters represented one storm specifically. Furthermore, 

trends in the clusters were computed through regressions using the El Niño index, the 

Atlantic Multidecadal Oscillation indices, yearly averaged Northern Hemisphere 

temperature anomalies, and the Pacific Decadal Oscillation indices as the regression 

predictors (Wright et al. 2019). Lastly, Wright et al. (2019) also did not compute the 

confidence intervals of the trends, rather the return periods for the 100-yr daily observed 

exceedances were found based on the upper bound of the NOAA Atlas 14 confidence 

intervals. 
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In comparison, modeling studies have tended to focus on broader extreme 

precipitation characteristics and trends rather than the magnitude or confidence intervals 

of such trends. Van der Wiel et al. (2016) is one example of a modeling study that did 

attempt to quantify trends in extreme precipitation. Trends in precipitation intensity were 

calculated using the peaks-over-threshold approach, which means that the number of 

days with precipitation exceeding the rate of a specific event at a given return period 

were counted. Another difference between van der Wiel et al. (2016) and this thesis 

comes from how the trends were reported. Here, trends are the percentage change 

between return values computed for 2020 and 1960, while van der Wiel et al. (2016) 

reported them as the percent per degree of global warming. Lastly, no statistical 

distribution was fit to the data prior to the trend analysis (van der Wiel et al. 2016). 

Plots generated for the differences in trend estimates between the three datasets 

used in this study highlight how recent weather events impact extreme precipitation 

trends. Pooled differences between the full dataset and the dataset truncated at 2011 

show that the 2019 trends are larger than those computed in 2011 in regions along the 

Texas, Louisiana, and South Carolina coasts, which may reflect the influence of storms 

such as Hurricane Harvey and Hurricane Florence (Fig. 18). Heavier rain producing 

storms have implications for NOAA Atlas 14. Trends in extreme rainfall imply that the 

stationary return values calculated in NOAA Atlas 14 may no longer be the best 

estimates for extreme rainfall risk, particularly for the volumes that were produced 

several years ago with older data. Updates to volumes such as Volume 2 for North 

Carolina and South Carolina are likely needed. Pooled trend differences between the full 
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dataset and 2000 dataset have more spatial variability than those between 2019 and 2011 

(Fig. 20). Figure 20 also shows more regions that have larger magnitudes in the trend 

differences between the datasets. This could be an artifact of additional noise in the data 

caused by shorter composite station record lengths in the 2000 dataset, which reflects the 

importance of including more years in trend analyses. Trend differences among the 

pooled data indicate that the trend estimates are sensitive to various weather events and 

are therefore unreliable as individual estimates. 

Some methods utilized herein to compute the aforementioned trends are unique 

for extreme precipitation analysis and can be summarized as improving upon previous 

techniques in various ways. First, precipitation station data were used from 1890 through 

2019 to perform the analyses. The extended data record was made possible through the 

compositing techniques described in Section 2, which allowed for the longer record 

without decreasing the number of stations that could be used. Other studies used shorter 

periods of record to account for the lower amount of specific quality observing stations 

when using individual station time series for the linear trend analysis. This approach 

leads to larger trend confidence intervals due to an increased margin of error resulting 

from the smaller sample sizes. Another way in which the present work improves upon 

previous studies is through the use of the pooling technique. The use of composite 

stations to form the pooled regions discussed in the results is believed to be unique to 

this study as it relates to extreme precipitation analysis. The record of block maxima for 

each station composite within a predefined region was treated as one set of observations 

prior to fitting the GEV model to it, which refines the trend analysis by decreasing the 
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noise through the use of more data points. Additionally, this pooling technique allows 

for the return periods associated with the trends to be acquired, rather than just the trends 

themselves. Prior studies performed the GEV fit on the individual station time series and 

then aggregated them, which is challenging to take into account because of the 

differences between stations’ data record quality and length. This approach can also 

cause trends to be unduly influenced by an individual station’s record. Pooling the data 

prior to fitting the GEV model to the data greatly reduces the impact of individual events 

and stations. Finally, the use of the global mean surface temperature as the covariate in 

the nonstationary analysis allows for the extreme rainfall trends to be directly assessed 

per degree of global warming, which can be beneficial for future adaptation planning as 

scientists continue to discern how much warming the world will undergo. A 

nonstationary model using global mean surface temperature as the covariate is also 

likely a better model of the data. Global temperatures are increasing and do physically 

affect extreme precipitation, which means that the covariate would fit the data well. 

Furthermore, global temperature changes are nonlinear. Stationary analyses do not allow 

the precipitation distribution to change in time and therefore, would act more as a linear 

fit to the extreme rainfall data. This would lead to higher error variances between the fit 

and the data, thereby increasing the confidence interval. The nonstationary model with 

the global mean surface temperature covariate better estimates the present-day risk from 

extreme rainfall and leads to smaller confidence intervals. 

Future work can improve upon and add to the insights gleaned from this study. 

Although the pooling of regions was done based on the assumption that the composite 
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counties were all within the same geographical environment for extreme rainfall 

distributions, this assumption should be examined further to check for statistical 

consistency. Furthermore, it could be beneficial to determine if better region definitions 

should be created based on factors such as topography. With additional avenues of 

examining the data, future work may also involve separating the pooled counties into 

coastal, near-coastal, and inland regions to compare how the extreme rainfall trends and 

associated patterns change spatially. One additional analysis that could benefit related 

studies would be considering the seasonality of these trends, i.e., determining the trend 

estimates for spring, summer, fall, and winter. Differences in trends between seasons 

could potentially provide information on where the largest influence in the annual trend 

is coming from. Finally, more work may be needed to investigate how these trend 

estimates and the techniques for acquiring them behave across different portions of the 

US. Specifically, the assumption that stations within counties are interchangeable likely 

does not work for locations with large topographic relief, which is why this analysis 

attempted to exclude most counties where that occurs. 
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