
RANDOMIZED FUNCTIONAL DATA ANALYSIS AND ITS APPLICATION IN

ASTRONOMY

A Dissertation

by

XIAOMENG YAN

Submitted to the Graduate and Professional School of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Jianhua Z. Huang
Co-Chair of Committee, Lan Zhou
Committee Members, Nicholas B. Suntzeff

Lifan Wang
Raymond Ka Wai Wong

Head of Department, Brani Vidakovic

May 2022

Major Subject: Statistics

Copyright 2022 Xiaomeng Yan



ABSTRACT

Functional data analysis (FDA) methods have computational and theoretical appeals for some

high dimensional data, but lack the scalability to modern large sample datasets. Covariance op-

erators are fundamental concepts and modeling tools for many FDA methods, such as functional

principal component analysis. However, the empirical (or estimated) covariance operator becomes

too costly to compute when the functional dataset gets big. We study a randomized algorithm for

covariance operator estimation. The algorithm works by sampling and rescaling observations from

the large functional data collection to form a sketch of much smaller size, and performs computa-

tion on the sketch to obtain the subsampled empirical covariance operator. The proposed algorithm

is theoretically justified via non-asymptotic bounds between the subsampled and the full-sample

empirical covariance operator in terms of the Hilbert-Schmidt norm and operator norm. It is shown

that the optimal sampling probability that minimizes the expected squared Hilbert-Schmidt norm

of the subsampling error is determined by the norm of each function. Simulated and real data

examples are used to illustrate the effectiveness of the proposed algorithm.

The idea of randomization is then used in a Type Ia supernova (SN Ia) spectrophotometric

data modeling problem where we develop the Independent Component Estimation (ICE) method

for sparse and irregularly spaced spectrophotometric data of Type Ia supernovae (SNe Ia) using

functional principal component analysis (FPCA) and independent component analysis (ICA) to

explore the separation of SN Ia intrinsic properties and interstellar dust reddening effect. This

separation makes it possible to construct the intrinsic spectral energy distribution (SED) manifolds

of SNe Ia, which facilitates supernova studies and their cosmological application.
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1. OVERVIEW

1.1 Functional Data Analysis

The modern era brings us advanced technologies and instruments to record data continuously

during a time interval or intermittently at several discrete observation points, such as the light

curve, a smooth function that shows the brightness of an object over a period of time, spectrum

which describes the electromagnetic radiation featured with localized emission and absorption

lines, and the spectral energy distribution, a energy surface of an astronomical object observed at

different time and wavelength. The nature of functional data is a stochastic process residing in

a Hilbert space. Though digitization makes classical multivariate analysis possible, the smooth

nature of the observations and the high dimensional fact can lead to ill conditioning of the prob-

lems and, eventually, profound consequences. Functional data analysis [3, FDA] is concerned with

the development of both theoretical and applicable tools for statistical analysis of this commonly

encountered type of data. FDA treats functional observations as realizations of the stochastic pro-

cess with low intrinsic dimension in an infinite dimensional Hilbert space. This means functional

variables can be effectively approximated by splines, wavelets or linear combinations of a few

functional principal components. In contrast to classical multivariate methods, FDA takes these

features into consideration to achieve optimal convergence rates.

1.2 Randomization

Advances in digital sensors, communications, computation, and storage have created huge col-

lections of functional data, both sample size and dimension of which increase out of the capacity

of classical statistical methods. Examples of the large scale datasets include: millions of spectra

collected by astronomical surveys (e.g. LAMOST [4] and SDSS [5]); petabyte amounts of hyper-

spectral images recorded by airborne or satellite remote sensing [6]; brain medical images through

the functional magnetic resonance imaging [7, 8, fMRI]. Despite FDA demonstrated value in the-

ory and application, the current FDA methods lack the scalability for modern large scale datasets
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[9].

Among the current approaches to making statistical methods scalable to large datasets, ran-

domization has recently gained popularity. The randomized algorithms approach the problem by

constructing a substantially smaller sketch of the large scale data at hand. Then, existing methods

are applied to the sketch to reduce computation cost. When the sketch keeps the most relevant

information, the result computed from the sketch should remain close to the result from the orig-

inal dataset. There are a few ways to construct a sketch of a large data set. One approach is to

draw subsamples with respect to some carefully designed probability, which will select informa-

tive samples with larger probability. These sampling probabilities include the importance sampling

in matrix multiplication [10], the leverage sampling for least squares regression [11, 12], the sub-

space sampling for low rank matrix construction [13], etc. Effective sampling probabilities have

also been proposed for logistic regression [14, 15] and generalized linear models [16] to mini-

mize the asymptotic variance of the estimator. An alternative way towards sketching is to mix the

original data with a random projection and draw samples from the projected data [17, 18].

Since the seminal works of [10, 19, 20] for matrix multiplication and approximation, the idea

of randomized algorithm has been successfully applied to optimization [21, 22], low rank matrix

estimation [23, 13], least squares regression [11], nonparametric kernel regression [24], etc. These

algorithms are able to yield comparatively accurate results at reduced computational and storage

costs. See the references [25, 26] for an overview. Most theoretical analysis of these randomized

algorithms is conducted from the algorithmic perspective, where the analysis is carried out con-

ditionally on an arbitrarily fixed dataset. Some recent works [12, 27, 18] also draw analysis from

the statistical perspective, where statistical properties such as bias and average prediction error are

considered.

1.3 Main Contributions

The current literature of randomized algorithms focuses on multivariate statistical methods

which are not directly applicable to the functional data setting. Their theoretical results also does

not naturally extend to functional data in an infinite dimensional space. Existing work on random-
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ized algorithms have focused on algorithmic and numerical issues arising in the finite dimensional

Euclidean space, but none of them addresses these issues in infinite dimensional Hilbert space and

the generalization of the results is non-trivial.

In Chapter 2, we explore randomized estimation of covariance operator for functional data. We

propose to estimate the covariance operator via a sketched dataset instead. The sketched data

is constructed by sampling and rescaling a small number of functions from the original large

dataset. The sampling probability should be chosen to minimize the loss of information. The

common strategies are selecting informative samples with larger probability. In determining em-

pirical covariance operator, we argue that informative samples are those with large norm values.

To theoretically justify the randomized algorithm, we develop non-asymptotic bounds between the

subsampled and full-sample empirical covariance operator. The bounds are developed in terms of

Hilber-Schmidt norm and operator norm. For an eigenfunction with a positive eigengap, the oper-

ator norm bound directly implies a bound on the eigenfunctions. The bound suggests the potential

application of randomized algorithms to functional principal component analysis.

The idea of randomization is also applied to the Type Ia supernova (SN Ia) spectrophotometric

data modeling in Chapter 3. We develop the Independent Component Estimation (ICE) method

for sparse and irregularly spaced spectrophotometric data of SNe Ia mainly based on functional

principal component analysis (FPCA) and assisted by independent component analysis (ICA) using

a collection of SN Ia spectra from the Nearby Supernova Factory collaboration (SNFactory). The

application of FPCA facilitates a unique low-rank representation of SN Ia data by decomposing

the data into a linear combination of multiple components which are efficiently estimated using a

stochastic gradient descent algorithm [28]. From astronomical perspective, the ICA allows for the

separation of independent physical effects such as the dust extinction and intrinsic color differences

of SNe Ia. This separation makes it possible to construct the intrinsic SED manifolds of SNe Ia.

A mean extinction curve is derived based on ICA which is in excellent agreement with the dust

extinction laws found in the Milky Way but with a significantly steeper wavelength dependence.

The intrinsic SED manifolds also allows for the calculation of the dust extinction properties of each
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individual SN. Typical values of the total-to-selective extinction ratioRV are found to be around 1-

2 for the intrinsic SED constructed with ICA, which is in agreement with independently derivedRV

values of several well observed nearby SNe with NIR data. A numerical toolbox is built to calculate

AV andRV for any SNe with well calibrated spectral sequence. The toolbox simultaneously builds

an intrinsic spectral time series for the SN. With this tool, the color correction in SN Ia distance

standardization can be performed separately for the intrinsic color and the host galaxy reddening.

The rest of the work is organized as follows. In Chapter 2, we develop our randomized al-

gorithm for empirical covariance operator estimation. In Chapter 3, we develop the Independent

Component Estimation (ICE) method for sparse and irregularly spaced spectrophotometric data of

SNe Ia. We end the thesis with our major results and conclusions in Chapter 4.
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2. RANDOMIZED COVARIANCE OPERATOR ESTIMATION*

The covariance operator generalizes covariance matrix in classical multivariate statistics to

measure variable interdependence. It is a fundamental modeling concept for many FDA methods,

such as functional principal components, functional canonical analysis, functional time series, etc.

Interested readers may refer to the book of [29] for a thorough review. There are several works,

e.g., [30, 31] considering the estimation of covariance operator but not the computation for large

datasets. We focus on the regime with fully observed functional data. In this case, each observation

is regarded as a function whose value is known at any point of its domain. In practical applications,

our setup is relevant when functions are recorded with a fixed high frequency over a time interval

or recorded on a dense grid in a spatial domain. This type of data has been widely collected by

the astronomical surveys, remote sensing, etc, as discussed at the beginning of this section. Given

a collection of fully observed functions, the empirical covariance operator, as an estimator of the

population covariance operator, is well defined and readily computable. However, the computation

becomes expensive as the sample size grows large, since it involves a tensor product for each

sample as well as the summations of these tensor products.

This work explores randomized estimation of covariance operator for functional data. The

optimal sampling probability that minimizes the expected squared Hilbert-Schimidt norm of the

subsampling error has been shown to be proportional to the norm of each function (pairs). This

sampling probability is indeed a importance sampling probability which regards the data with

larger L2 norm as more informative one. We also developed concentration bounds between the

subsampled and the full-sample empirical covariance operator in terms of the Hilbert-Schmidt

norm and the operator norm. The bounds suggest that, under some regularity conditions, the target

precision can be guaranteed with high probability if the subsample size is large enough, roughly

speaking, inversely proportional to squared precision.

*Reprinted with permission from “Randomized estimation of functional covariance operator via subsampling" by
Shiyuan He and Xiaomeng Yan, 2020. Stat, vol. 9, no, 1, p.e311, Copyright 2020 by John Wiley and Sons.
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The rest of this chapter is organized as follows. Section 2.1 develops the randomized algorithms

for covariance operator estimation. The theoretical guarantees of the algorithms are developed in

Section 2.2. A simulation study to assess the proposed algorithms is provided in 2.3. Finally, our

randomized algorithm is illustrated on two real world datasets in Section 2.4. The technical proofs

are provided in Section 2.5

2.1 Introduction

We start by defining some basic notions. Let x (or y) be a zero-mean random function in

a separable Hilbert space HX (or HY resp.). The Hilbert space HX (or HY ) is equipped with

an inner product ⟨·, ·⟩X (or ⟨·, ·⟩Y resp.) and the induced norm ∥ · ∥X (or ∥ · ∥Y resp.). For

example, when x is a continuous function over a compact interval Ω, the space HX = L2(Ω) can

be made of all square integrable functions with domain Ω. For x, x′ ∈ HX , their inner product is

⟨x, x′⟩X =
∫
Ω
x(ω)x′(ω) dω and the induced norm is ∥x∥X =

( ∫
Ω
x2(ω) dω

)1/2. In the following,

when the notation is clear from the context, the subscript X (or Y ) will be dropped for the norm

∥ · ∥X (or ∥ · ∥Y resp.) and the inner product ⟨·, ·⟩X (or ⟨·, ·⟩Y resp.) for simplicity.

Let x (or y) be a zero-mean random function in a separable Hilbert space HX (or HY resp.).

The Hilbert space HX (or HY ) is equipped with an inner product ⟨·, ·⟩X (or ⟨·, ·⟩Y resp.) and

the induced norm ∥ · ∥X (or ∥ · ∥Y resp.). For example, when x is a continuous function over a

compact interval Ω, the space HX = L2(Ω) can be made of all square integrable functions with

domain Ω. For x, x′ ∈ HX , their inner product is ⟨x, x′⟩X =
∫
Ω
x(ω)x′(ω) dω and the induced

norm is ∥x∥X =
( ∫

Ω
x2(ω) dω

)1/2. In the following, when the notation is clear from the context,

the subscript X (or Y ) will be dropped for the norm ∥ · ∥X (or ∥ · ∥Y resp.) and the inner product

⟨·, ·⟩X (or ⟨·, ·⟩Y resp.) for simplicity.

The population covariance operator CXY generalizes the covariance matrix in multivariate

statistics to measure the covariance between x and y. It is a mapping from HX to HY , such that

u ∈HX is mapped to CXY u ∈HY . The covariance operator is determined by the relation

⟨CXY u, v⟩ = E(⟨x, u⟩⟨y, v⟩), for any u ∈HX , v ∈HY .
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Note ⟨CXY u, v⟩ quantifies the correlation between the random scalars ⟨x, u⟩ and ⟨y, v⟩. In the case

where HX = HY = L2(Ω), the covariance operator can be expressed as an integral operator.

Let k(ω, ω′) = E(x(ω) · y(ω′)), then CXY maps any u ∈ L2(Ω) to CXY u ∈ L2(Ω) defined by

(CXY u)(ω
′) =

∫
Ω
k(ω, ω′)u(ω) dω.

Suppose we have observed N independent pairs of functions {(xn, yn)}Nn=1 with identical dis-

tribution as the random pair (x, y). The covariance operator can be estimated by the empirical

covariance operator

ĈXY = (1/N)
N∑

n=1

xn ⊗ yn,

where ⊗ denotes the tensor product determined by the relation (xn ⊗ yn)u = ⟨xn, u⟩ × yn for any

u ∈HX .

The cost of computing the empirical covariance operator ĈXY will grow overwhelming when

the sample size N becomes large, as it involves the computation of N tensor products and their

summations. To reduce the computing cost, we can draw a subset of samples from the large

dataset {(xn, yn)}Nn=1. The sampling is taken with replacement and according to some appropriate

probability distribution {pn}Nn=1, which satisfies pn ≥ 0 and
∑N

n=1 pn = 1. By this way, we obtain

C (≪ N) subsamples {(x̃c, ỹc)}Cc=1. In particular, suppose the c-th subsample is indexed by ic

in the original whole dataset, then, we actually have set x̃c = xic , ỹc = yic . The corresponding

sampling probability will be denoted as p̃c = pic for the c-th subsample. The smaller dataset

{(x̃c, ỹc)}Cc=1 then forms a sketch of the original large dataset {(xn, yn)}Nn=1. Given the sketch, the

covariance operator can be estimated from this smaller dataset as

C̃XY =
1

CN

C∑
c=1

(
x̃c ⊗ ỹc

)
/p̃c.

This procedure is listed in Algorithm 1. Obviously, conditional on the full dataset {(xn, yn)}Nn=1,

C̃XY is an unbiased estimator of ĈXY under any strictly positive {pn}Nn=1. Specific choices of the

sampling probability {pn}Nn=1 affect algorithmic performance. The probability distribution of the

form pn ∝ ∥xn∥ · ∥yn∥ will be proven to be optimal in that it minimizes E∥C̃XY − ĈXY ∥2HS , see
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Algorithm 1: Randomized Algorithm for Sample Covariance Operator
Input: Dataset {(xn, yn)}Nn=1; sampling probability {pn}Nn=1; subsample size C.
Output: C̃XY .

1: for c = 1, · · · , C do
2: Obtain (x̃c, ỹc) and p̃c with probability P

(
(x̃c, ỹc, p̃c) = (xn, yn, pn)

)
= pn.

3: end for
4: Compute C̃XY = 1

C·N
∑C

c=1
1
p̃c
x̃c ⊗ ỹc.

Algorithm 2: Randomized Algorithm for Sample Covariance Operator
Input: Dataset {xn}Nn=1; sampling probability {pn}Nn=1; subsample size C.
Output: C̃XX .

1: for c = 1, · · · , C do
2: Sample x̃c from {xn}Nn=1 and get p̃c with probability P

(
(x̃c, p̃c) = (xn, pn)

)
= pn.

3: end for
4: Compute C̃XX = 1

C·N
∑C

c=1
1
p̃c
x̃c ⊗ x̃c.

Theorem 1.

Similarly, the covariance operator CXX can be defined involving x with itself. In particular, it

is a mapping from HX to HX , such that u ∈ HX is mapped to CXXu ∈ HX . The covariance

operator is determined by the relation ⟨CXXu, v⟩ = E(⟨x, u⟩⟨x, v⟩) for any u, v ∈HX . After get-

ting N observations {xn}Nn=1 with identical distribution as x, the finite sample empirical estimator

ĈXX = (1/N)
∑N

n=1 xn⊗xn can be calculated correspondingly. We also note Algorithm 1 can be

easily adapted for randomized estimation of CXX , as in Algorithm 2.

In some applications, each observation xn (or yn) is recorded digitally as a high dimensional

vector of length T . For example, when HX = L2(Ω) with Ω = [0, 1], then xn could be recorded

as (xn(1/T ), xn(2/T ), · · · , xn(1))T ∈ RT . For the spectral dataset of LAMOST survey [4], N is

in the order of millions and T ∼ 3500 for each spectrum. Evaluating the full sample empirical

covariance operator ĈXX requires a complexity of O(NT 2). On the other hand, to compute the

subsampled empirical covariance operator C̃XX , we need to evaluate the sampling probability pn

in the first place. Suppose the sampling probability is chosen as pn ∝ ∥xn∥2. Then, computing
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{pn}Nn=1 requires one scan over the whole dataset with complexity O(NT ). After obtaining C

subsamples, evaluating ĈXX only costs O(CT 2). Therefore, the total complexity of the algorithm

is O(NT + CT 2). When C ≪ N , the algorithm approximately costs O(NT ), which reduces the

cost of the full sample algorithm by a factor of T .

Closely related to the self-adjoint operator ĈXX is the concept of functional principal compo-

nent. Traditionally, functional principal components can be obtained via the eigenvalue-eigenfunction

decomposition of the full sample empirical covariance operator ĈXX . The decomposition admits

the form

ĈXX =
∞∑
r=1

σ̂2
r(θ̂r ⊗ θ̂r),

where σ̂2
1 ≥ σ̂2

2 ≥ · · · is a decreasing sequence of eignvalues, and θ̂r’s are the corresponding or-

thonormal eigenfunctions. The leading R eigenfunctions are usually referred to as functional prin-

cipal components, which explains most of the variability of the dataset {xn}Nn=1. As we have noted,

computing the full sample empirical covariance operator ĈXX is expensive when the sample size

N is large. The proposed algorithm provides a faster way to estimate the covariance operator and

obtain the estimate of functional principal components. That is, with the eigenvalue-eigenfunction

decomposition of the subsampled empirical covariance operator,

C̃XX =
∞∑
r=1

σ̃2
r(θ̃r ⊗ θ̃r),

the eigenfunctions θ̃1, · · · , θ̃R can be used as surrogate of θ̂1, · · · , θ̂R for functional principal com-

ponent analysis.

2.2 The Non-asymptotic Bound

In this section, we quantify the uncertainty associated with the subsampling estimation er-

ror C̃XY − ĈXY , where C̃XY is obtained from Algorithm 1. When the Hilbert spaces are finite-

dimensional, the theoretical results in this section degenerate to that of [10] and that of Section 6.4

from [32] in Euclidean space. The results presented here is more general and is framed with
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infinite-dimensional Hilbert space.

The magnitude of the subsampling estimation error can be quantified by the Hilbert–Schmidt

norm. Suppose {θXj}∞j=1 and {θY j}∞j=1 are two groups of complete orthonormal basis for HX and

HY , respectively. The Hilbert–Schmidt norm for an operator CXY is computed as ∥CXY ∥HS :=(∑
i,j⟨CXY θXi, θY j⟩2

)1/2. The next theorem analytically evaluates E∥C̃XY − ĈXY ∥2HS and mini-

mize it with optimal sampling probability.

Theorem 1. Conditional on the full observation {(xn, yn)}Nn=1, we have

E∥C̃XY − ĈXY ∥2HS = (1/C)
[
(1/N2)

N∑
n=1

∥xn∥2 · ∥yn∥2/pn − ∥ĈXY ∥2HS

]
. (2.1)

Furthermore, the choice of

pn = ∥xn∥ · ∥yn∥/
[ N∑
m=1

∥xm∥ · ∥ym∥
]

(2.2)

minimizes the expected error, which yields the optimal E∥C̃XY−ĈXY ∥2HS = (1/C)
[
(1/N2)

(∑N
i=1 ∥xi∥·

∥yi∥
)2
− ∥ĈXY ∥2HS

]
.

Theorem 1 extends Lemma 4 of [10] in Euclidean space. Note the analysis is carried out

conditional on the whole dataset {(xn, yn)}Nn=1, and the expectation is taken with respect to the

subsampling process. As expected, the squared Hilbert-Schmidt error is inversely proportional to

the subsample size C in (2.1). The optimal sampling probability pn ∝ ∥xn∥ · ∥yn∥ minimizes

the constant in the bracket of (2.1) and is called importance sampling probability (IMPO). Us-

ing Jensen’s inequality and the fact ∥C̃XY − ĈXY ∥ ≤ ∥C̃XY − ĈXY ∥HS , we can directly obtain

bounds for E∥C̃XY − ĈXY ∥HS and E∥C̃XY − ĈXY ∥ from the above. Corollary 2 below is a direct

consequence of Theorem 1 for C̃XX by setting xn = yn.

Corollary 2. Conditional on the full observation {xn}Nn=1, the choice of sampling probability

pn = ∥xn∥2/
[ N∑
m=1

∥xm∥2
]

(2.3)
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yields minimal E∥C̃XX − ĈXX∥2HS = (1/C)
[
(1/N2)

(∑N
i=1 ∥xi∥2

)2 − ∥ĈXX∥2HS

]
.

Non-asymptotic concentration bounds in terms of operator norm can also be obtained. The

operator norm is defined by ∥ĈXY ∥ := supu∈HX : ∥u∥≤1 ∥ĈXY u∥. The subsampling error in op-

erator norm ∥C̃XY − ĈXY ∥ will be measured relative to the size of ∥ĈXX∥ and ∥ĈY Y ∥. As

ĈXX and ĈY Y are self-adjoint and positive semi-definite, their operator norms equal their largest

eigenvalues. In an infinite-dimensional Hilbert space, operator concentration inequalities are de-

veloped with the notion of intrinsic dimension. For the operator ĈXX , its intrinsic dimension

is defined by intdim(ĈXX) := tr(ĈXX)/∥ĈXX∥. The trace for CXY is defined as tr(ĈXY ) :=∑
i,j⟨ĈXXθXi, θY j⟩. Because ĈXX is computed from a finite amount of N samples, it obviously

holds that intdim(ĈXX) ≤ rank(ĈXX) ≤ N .

Theorem 3. Denote by δ̂x = intdim(ĈXX) and δ̂y = intdim(ĈY Y ) the intrinsic dimensions

of ĈXX and ĈY Y , respectively. In addition, define σ̂2
x,1 = ∥ĈXX∥, σ̂2

y,1 = ∥ĈY Y ∥, and η̂ =

∥ĈXY ∥/(σ̂x,1σ̂y,1). Suppose for some β ≥ 1, the sampling probability of Algorithm 1 satisfies

pn ≥
1

β

∥xn∥2/σ̂2
x,1 + ∥yn∥2/σ̂2

y,1∑N
m=1

(
∥xm∥2/σ̂2

x,1 + ∥ym∥2/σ̂2
y,1

) . (2.4)

Then for ϵ satisfying ϵ · C ≥
√
Cβ(δ̂x + δ̂y) + β(δ̂x + δ̂y)/6 + η̂/3, it holds that

P
(
∥C̃XY − ĈXY ∥ ≥ ϵ · σ̂x,1σ̂y,1

)
≤ 4(δ̂x + δ̂y) exp

(
− Cϵ2

2β(δ̂x + δ̂y)(1 + ϵ/6) + 2η̂ϵ/3

)
.

The above theorem provides performance guarantee for Algorithm 1 in terms of the relative

error 1
σ̂x,1σ̂y,1

∥C̃XY − ĈXY ∥. Note (2.4) is a lower bound requirement for the sampling probability.

Smaller value of β(≥ 1) will deliver smaller bound for the error probability. The error bound from

this theorem allows us to give a conservative estimate of the subsample size C to ensure that the

approximation error is within certain upper bound. For example, suppose we want to control the

relative error within ϵ(≤ 1) and with probability 0.9. The theorem states that the subsample size

11



C should exceed

C ≥ 4

ϵ2
(
β(δ̂x + δ̂y) + η̂

)
log
(
40(δ̂x + δ̂y) + e

)
. (2.5)

This required subsample size scales inverse proportionally to the squared precision ϵ2, and scales

superlinearly with the intrinsic dimension δ̂x + δ̂y.

Following similar argument as in Theorem 3, we establish concentration bound for ∥C̃XX −

ĈXX∥ in the next theorem.

Theorem 4. Let δ̂x = intdim(ĈXX) and σ̂2
x,1 = ∥ĈXX∥. Suppose the sampling probability satis-

fies pn ≥ 1
β

∥xn∥2∑N
m=1 ∥xm∥2 for some β ≥ 1. Then, we have that

P
(
∥C̃XX − ĈXX∥ ≥ ϵ · σ̂2

x,1

)
≤ 4δ̂x exp

(
− Cϵ2/2

βδ̂x + (βδ̂x + 1)ϵ/3

)
,

for ϵ satisfying C · ϵ >
√
Cβ · δ̂x + (βδ̂x + 1)/3.

The interpretation of Theorem 4 is similar to that of Theorem 3. We can compute exactly

pn = ∥xn∥2/
(∑N

m=1 ∥xm∥2
)

with β = 1 through one scan over the whole dataset. Suppose our

target is to control the relative error ∥C̃XX − ĈXX∥/σ̂2
x,1 within ϵ(≤ 1) and with probability 0.9,

Theorem 4 indicates the subsample size should satisfy the lower bound

C ≥ 8

3ϵ2
(δ̂x + 1) log(40δ̂x + e). (2.6)

In practical applications, the exact value of this lower bound is unknown unless we have δ̂x from

the full sample computation, which contradicts our goal of reducing computation cost via sub-

sampling. To determine C in practice, we need to estimate the intrinsic dimension δ̂x. Re-

call the definition δ̂x = intdim(ĈXX) = tr(ĈXX)/∥ĈXX∥. The trace value in the numerator,

tr(ĈXX) = (1/N)
∑N

n=1 ∥xi∥2, can be easily obtained at the same time when we compute the

sampling probability pn = ∥xn∥2/
(∑N

m=1 ∥xm∥2
)
. It only remains to estimate ∥ĈXX∥ in the de-
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nominator of δ̂x. For this, we can apply Algorithm 2 to get a pilot covariance operator C̃ ′
XX with a

relatively small C ′ (e.g C ′ = 1, 000 or C ′ = 5, 000). The largest eigenvalue (σ̂′
x,1)

2 of C̃ ′
XX serves

as an estimate for σ̂2
x,1. Combining this (σ̂′

x,1)
2 with the computed tr(ĈXX), we can obtain an esti-

mate for δ̂x, and thereby be able to determine an appropriate value for C according to (2.6). With

this specified subsample size C, Algorithm 2 will be executed again to get the final randomized

estimate ĈXX .

To determine C for the estimation of ĈXY via (2.5), we can carry out a similar two-step pro-

cedure in practice. Given a relatively small subsample size C ′, we firstly apply Algorithm 1 and

Algorithm 2 with sampling probability (2.2) and (2.3), respectively. They will produce pilot oper-

ator estimates C̃ ′
XX , C̃ ′

Y Y and C̃ ′
XY . Their largest eigenvalues and trace values help us to estimate

δ̂x, δ̂y, σ̂2
x,1, σ̂2

y,1 and η̂. These estimates can be plugged in (2.5). Now, the only unspecified quantity

in bound (2.5) is the value of β. To get an appropriate value of β, we denote (σ̂′
x,1)

2 = ∥C̃ ′
XX∥ and

(σ̂′
y,1)

2 = ∥C̃ ′
Y Y ∥. Suppose the pilot estimates satisfy the event

∥C̃ ′
XX − ĈXX∥ ≤ σ̂2

x,1/2 and ∥C̃ ′
Y Y − ĈY Y ∥ ≤ σ̂2

y,1/2,

then the perturbation bounds imply

|(σ̂′
x,1)

2 − σ̂2
x,1| ≤ ∥C̃ ′

XX − ĈXX∥ ≤ σ̂2
x,1/2 and |(σ̂′

y,1)
2 − σ̂2

y,1| ≤ ∥C̃ ′
Y Y − ĈY Y ∥ ≤ σ̂2

y,1/2.

When this event happens, it follows that

pn =
∥xn∥2/(σ̂′

x,1)
2 + ∥yn∥2/(σ̂′

y,1)
2∑N

m=1

(
∥xm∥2/(σ̂′

x,1)
2 + ∥ym∥2/(σ̂′

y,1)
2
) ≥ 1

β

∥xn∥2/σ̂2
x,1 + ∥yn∥2/σ̂2

y,1∑N
m=1

(
∥xm∥2/σ̂2

x,1 + ∥ym∥2/σ̂2
y,1

)
with β = 3. In practical applications, we can be more conservative by specifying a slightly larger

value of β > 3 in (2.5).

Recall we have discussed that functional principal components can be obtained from the sub-

sampled covariance oeperator C̃XX to reduce the cost of computation. By a direct result of per-
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turbation theory Lemma 1 of [33], the eigenfunctions θ̃r’s of the subsample estimator C̃XX should

remain close to the eigenfunctions θ̂r’s of the full sample estimator ĈXX , as long as the subsample

size C and the eigengap are large enough. Assume the eigenvalue of the r-th eigenfunction θ̂r

has multiplicity one. Let gr = σ̂2
r − σ̂2

r+1 be the r-th eigengap and set Gr = min{gr, gr−1}.

When Gr > 0, it follows immediately that ∥θ̂r − srθ̃r∥ ≤ (2
√
2/Gr)∥C̃XX − ĈXX∥, with

sr = sign
(
⟨θ̂r, θ̃r⟩

)
, see Lemma 2.3 of [29]. As a result, Theorem 4 also directly implies a bound

for the leading functional principal components.

2.3 Simulation Study
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Figure 2.1: Randomized covariance operator estimation and FPCA for the nearly uniform (NU)
setting. The vertical axes represent comparison metrics in log scale. The red dashed and black
solid lines correspond to the results of the UNIF and IMPO sampling probability, respectively.

To evaluate the randomized algorithm on estimating covariance operator and functional princi-

pal components, in each replication of simulations, we generate one synthetic dataset {(xn, yn)}Nn=1.

Each xn (or yn) is a continuous function defined over the interval Ω = [0, 1]. In particular, each pair

is generated according to xn(ω) =
∑50

r=1 σrξ
x
nrθr(ω) and yn(ω) =

∑50
r=1 σrξ

y
nrθr(ω). We set θr as

the Fourier function which is θr(ω) =
√
2 sin(2πrω) when r is odd, and θr(ω) =

√
2 cos(2πrω)
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Figure 2.2: Randomized covariance operator estimation and FPCA for the moderately nonuniform
(MN) setting.

when r is even. The eigenvalues σ2
1, · · · , σ2

50 are specified by a exponentially decaying sequence

of values, i.e. σ2
r = c · κr with c = 251 and κ = 0.5.

Each random score pair, (ξxnr, ξ
y
nr)’s, independently follows a bi-variate distribution with zero

mean and a fixed covariance matrix. The covariance matrix has ones on its diagonal and 0.5’s

on its off-diagonal entries. In particular, the distribution of (ξxnr, ξ
y
nr) is set to one of the following

three settings. The first is called nearly uniform (NU) distribution, for which (ξxnr, ξ
y
nr)’s are

drawn from bi-variate Gaussian distribution. The second is called moderately nonuniform

(MN) distribution, where (ξxnr, ξ
y
nr)’s are generated by bi-variate t-distribution with 3 degree of

freedom. The third is denoted as very nonuniform (VN), where (ξxnr, ξ
y
nr)’s follows bi-

variate t-distribution with 1 degree of freedom. Notice in these three cases, the distribution of

the score pairs for NU has the lightest tail, while VN has the heaviest tail. As a result, the func-

tion pairs in a synthetic dataset from NU will behave homogeneously. On the other hand, the

synthetic datasets from MN or VN are likely to contain some function pairs with extreme mag-

nitude, which could affect the data-driven sampling distribution in an adverse way. From the

above specification, we can deduce that the population covariance operator CXY for (xn, yn) can

be represented as (CXY u)(ω
′) =

∫ 1

0
k(ω, ω′)u(ω) dω for any u ∈ L2([0, 1]), with k(ω, ω′) =
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Figure 2.3: Randomized covariance operator estimation and FPCA for the very non-uniform (VN)
setting.

∑50
r=1 0.5σ

2
rθr(ω)θr(ω

′). Similarly, the true covariance operator CXX for xn is determined by the

integral (CXXu)(ω
′) =

∫ 1

0
k(ω, ω′)u(ω) dω with k(ω, ω′) =

∑50
r=1 σ

2
rθr(ω)θr(ω

′). The r-th eigen-

value and eigenfunction of CXX are σ2
r and θr, respectively.

By three different choices (NU, MN, or VN) of score pair distributions, we have three distinct

ways to generate a full sample dataset {(xn, yn)}Nn=1 of size N = 10, 000. The full sample empiri-

cal covariance operator ĈXY and ĈXX will be computed. We then apply the randomized algorithms

to estimate the subsampled empirical covariance operator C̃XY and C̃XX . Based on the eigenvalue-

eigenfunction decomposition of the subsampled C̃XX , the first four eigenfunctions θ̃1, · · · , θ̃4 can

also be obtained as estimates of the full sample counterparts θ̂1, · · · , θ̂4 (eigenfunctions of ĈXX).

Two sampling probabilities are plugged into Algorithm 1 for comparision. These include: (i)

the naive uniform sampling probability (UNIF) punif
n = 1/N ; and (ii) the optimal sampling proba-

bility (IMPO, suggested by Theorem 1 and Corollary 2) pimpo
n = ∥xn∥∥yn∥/

(∑N
m=1 ∥xm∥∥ym∥

)
for estimating ĈXY or pimpo

n = ∥xn∥2/
(∑N

m=1 ∥xm∥2
)

for ĈXX .

The algorithm performance will be evaluated by three comparison metrics, including the Hilbert-

Schmidt norm (∥ĈXY −C̃XY ∥HS and ∥ĈXX−C̃XX∥HS) and the operator norm (∥ĈXY −C̃XY ∥ and

∥ĈXX − C̃XX∥). Notice these are differences between the full sample estimates and the subsample
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estiamtes, as bounded by our theoretical results. In addition, the estimation error for eigenfunctions

will be also computed by ∥θ̂r − sign(⟨θ̂r, θ̃r⟩)θ̃r∥.

The procedure is repeated 5, 000 times to compute the average errors. The results are presented

in Figures 2.1–2.3. The three figures correspond to the cases with NU, MN and VN distributions,

respectively. In each figure, the four panels in the first row show the estimation error of ∥ĈXY −

C̃XY ∥HS , ∥ĈXY − C̃XY ∥, ∥ĈXX − C̃XX∥HS and ∥ĈXx − C̃XX∥, respectively. The panels in the

second row draw the estimation error of the individual θ̃1, θ̃2, θ̃3 and θ̃4, respectively. In addition,

for each panel, the horizontal axes represent the subsample size C, while the vertical axes are the

comparison metrics in the logarithm scale with base 10. The red dashed and black solid lines

correspond to the results of the UNIF and IMPO sampling probability, respectively.

It is seen from the figures that, as the subsample size increases, the average errors tend to de-

crease monotonically for both random sampling methods. The advantage of IMPO over UNIF in-

creases substantially when the data distribution changes from nearly uniform to moderately nonuni-

form and then to very nonuniform. The optimal sampling algorithm IMPO always outperforms the

naive uniform sampling UNIF in estimating the covariance operators, which corroborates our theo-

retical results. In particular, UNIF almost fails completely for the VN datasets in Figure 2.3, where

the observations have extreme values, whereas IMPO can substantially preserve the information

contained in covariance operator by assigning extreme observations with a larger sampling proba-

bility. For estimation of the eigenfunctions, the accuracy of IMPO is higher than UNIF in all cases

except the estimation of θ̂4 in the NU setting, where UNIF is expected to work well since the data

have nearly uniform distribution.

2.4 Real Data Analysis

Our randomized algorithm is illustrated on two real datasets: one is the hourly air pollution

dataset from the Environmental Protection Agency (EPA, https://aqs.epa.gov/aqsweb/

airdata/download_files.html), and the other is the stellar spectrum dataset from the

survey of the Large sky Area Multi-Object fiber Spectroscopic Telescope [4, LAMOST].

The EPA dataset has hourly-level measurements of O3,SO2 and CO from the state, local and
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Figure 2.4: The level of O3, SO2 and CO collected from Site Number 2, Contra Costa County,
California on 2019-01-01.
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Figure 2.5: Five stellar spectra from LAMOST with 0.0002 offset in the vertical direction.

tribal monitoring agencies across the United States. The level of the criteria gases O3,SO2 and

CO is part of for the Air Quality Index. At an exemplary site, the hourly measurement in one day

is plotted in Figure 2.4. The horizontal axis is hour of the day, and the vertical axis is the criteria

gases level. Each curve in the plot can be viewed as functional data, where the gas level varies as

a function of time. We will treat the O3,SO2 and CO measurements from one site in a day as a

realization of a random function triple (x, y, z). From the released 2019 hourly dataset, we select

20,770 observation triples by ensuring each curve having more than 20 measurement points. The

missing measurements are imputed by linear interpolation. The randomized algorithm is applied

to estimate the covariance operator between the three criteria gases.
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The LAMOST survey began carrying out its scientific spectroscopic recording of millions of

stars and galaxies in 2012. Its current data release includes more than nine million spectra. From

the current LAMOST data release, we randomly select 110,000 spectra whose r-band signal-to-

noise ratio is greater than 35 as our full dataset. Each spectrum is normalized with unit norm. Five

randomly selected spectra are plotted in Figure 2.5. The horizontal axis is wavelength, and the

vertical axis is normalized flux. The flux measures the brightness of an object. Each spectrum

observation can also be viewed as functional data, where the flux value varies as a function of

wavelength. For this dataset, we will apply the randomized algorithm to estimate the covariance

operator and its leading five eigenfunctions.

Two sampling strategies (UNIF and IMPO) in Section 2.3 are utilized for the above two

datasets. The procedure is repeated 300 times. Each time the subsampled estimates are com-

pared with the full sample results by the metrics introduced in Section 2.3, and the full sample

estimators are computed with brute force. Table 2.1 and Table 2.2 present the average estimation

accuracy and related standard errors for the EPA and LAMOST dataset, respectively. The metrics

are reported in the scale of log10. The comparison results are similar to that of Section 2.3. The

IMPO sampling strategy delivers smaller error in estimating the covariance operators in all cases.

In Table 2.2, it also has smaller estimation error for all the eigenfunctions. The running time for

constructing sampling probabilities and performing Algorithm 2 for spectra dataset is reported in

the last row in Table 2.2. The time to compute full sample empirical covariance operator is 257.82

secs, whereas, the running time for the proposed randomized algorithms with sampling probability

being IMPO and subsample size C being 1, 000, 5, 000 and 10, 000 is 7.69 secs, 15.78 secs and

27.38 secs, respectively. This suggests that the randomized algorithms are more computationally

efficient.

2.5 Technical Proofs

Theorem 7.3.1 of [32] developed intrinsic matrix Bernstein concentration inequality. Together

with the techniques in Section 3.2 of [34], it can be easily extended to compact operators. Similar

results can also be found in Lemma 5 of [35]. In the below, H1 and H2 are two Hilbert spaces.
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Table 2.1: Randomized covariance operator estimation for the Criteria Gases dataset.

C = 100 C = 1, 000 C = 10, 000

UNIF IMPO UNIF IMPO UNIF IMPO
∥ĈXY − C̃XY ∥HS -2.932 -3.246 -3.268 -3.743 -3.738 -4.243

(0.008) (0.002) (0.004) (0.002) (0.003) (0.002)
∥ĈXY − C̃XY ∥ -2.965 -3.356 -3.277 -3.845 -3.760 -4.349

(0.010) (0.003) (0.004) (0.003) (0.004) (0.003)
∥ĈXZ − C̃XZ∥HS -3.645 -3.865 -4.134 -4.364 -4.631 -4.865

(0.003) (0.002) (0.002) (0.001) (0.002) (0.001)
∥ĈXZ − C̃XZ∥ -3.718 -3.984 -4.218 -4.478 -4.712 -4.983

(0.003) (0.003) (0.003) (0.002) (0.003) (0.002)
∥ĈY Z − C̃Y Z∥HS -1.661 -2.126 -1.859 -2.625 -2.059 -3.126

(0.031) (0.001) (0.013) (0.002) (0.003) (0.001)
∥ĈY Z − C̃Y Z∥ -1.764 -2.267 -2.015 -2.768 -2.260 -3.268

(0.030) (0.002) (0.015) (0.002) (0.005) (0.002)

Lemma 5. For a finite sequence of random operators Zi mapping from H1 to H2, they satisfy

EZi = 0 and ∥Zi∥ ≤ L. Suppose their summation is S =
∑

i Zi and S ∗ is its adjoint. Let

V1 and V2 be semidefinite upper bounds for Var1(S ) and Var2(S ), respectively. That is, V1 ⪰

Var1(S ) = E(S S ∗) =
∑

i E(ZiZ ∗
i ), and V2 ⪰ Var2(S ) = E(S ∗S ) =

∑
i E(Z ∗

i Zi). De-

fine an intrinsic bound d = intdim(V1)+intdim(V2) and a variance bound v = max{∥V1∥, ∥V2∥}.

Then, for t ≥
√
v + L/3, P(∥S ∥ ≥ t) ≤ 4d exp

(
− t2/2

v+Lt/3

)
.

Lemma 6. For a sequence of random self-adjoint operators Zi mapping from H1 to H1, they

satisfy EZi = 0 and ∥Zi∥ ≤ L. Suppose their summation is S =
∑

i Zi, and V is the semidefinite

upper bound for
∑

i E(Z 2
i ). Define an intrinsic bound d = intdim(V ) and a variance bound

v = ∥V ∥. Then, for t ≥
√
v + L/3, P(∥S ∥ ≥ t) ≤ 4d exp

(
− t2/2

v+Lt/3

)
.

2.5.1 Proof of Theorem 1

For any u ∈ HX and v ∈ HY , ⟨C̃XY u, v⟩ = 1
CN

∑C
c=1

1
p̃c
⟨x̃c, u⟩⟨ỹc, v⟩. For each sampled

summand, it holds that

E
[ 1
p̃c
⟨x̃c, u⟩⟨ỹc, v⟩

]
=

N∑
n=1

⟨xn, u⟩⟨yn, v⟩ = N⟨ĈXY u, v⟩, E
[ 1
p̃c
⟨x̃c, u⟩⟨ỹc, v⟩

]2
=

N∑
n=1

1

pn
⟨xn, u⟩2⟨yn, v⟩2.
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Table 2.2: Randomized covariance operator estimation for the spectra dataset.

C = 1, 000 C = 5, 000 C = 10, 000

UNIF IMPO UNIF IMPO UNIF IMPO
∥ĈXX − C̃XX∥HS -7.64 -8.23 -7.96 -8.58 -8.12 -8.73

(0.01) (0.00) (0.01) (0.00) (0.01) (0.00)
∥ĈXX − C̃XX∥ -7.67 -8.35 -8.00 -8.70 -8.15 -8.86

(0.01) (0.00) (0.01) (0.00) (0.01) (0.00)
∥θ̂1 − sign(⟨θ̂1, θ̃1⟩)θ̃1∥ -1.71 -2.04 -2.03 -2.39 -2.17 -2.54

(0.01) (0.00) (0.01) (0.00) (0.01) (0.00)
∥θ̂2 − sign(⟨θ̂2, θ̃2⟩)θ̃2∥ -0.53 -1.01 -0.99 -1.36 -1.17 -1.51

(0.01) (0.00) (0.01) (0.00) (0.01) (0.00)
∥θ̂3 − sign(⟨θ̂3, θ̃3⟩)θ̃3∥ -0.35 -0.89 -0.73 -1.27 -1.03 -1.41

(0.01) (0.00) (0.02) (0.00) (0.02) (0.00)
∥θ̂4 − sign(⟨θ̂4, θ̃4⟩)θ̃4∥ -0.03 -0.36 -0.21 -0.63 -0.30 -0.76

(0.00) (0.01) (0.01) (0.01) (0.01) (0.01)
∥θ̂5 − sign(⟨θ̂5, θ̃5⟩)θ̃5∥ -0.02 -0.21 -0.14 -0.57 -0.21 -0.71

(0.00) (0.01) (0.01) (0.01) (0.01) (0.01)
CPU Time (secs) 2.60 7.69 11.46 15.78 23.42 27.38

The subsampled estimator C̃XY has C summands, and its related expectation is E⟨C̃XY u, v⟩ =
1

CN
× C × E

[
1
p̃c
⟨x̃c, u⟩⟨ỹc, v⟩

]
= ⟨ĈXY u, v⟩, and the variance is

Var⟨C̃XY u, v⟩ =
1

CN2
× Var

[ 1
p̃c
⟨x̃c, u⟩⟨ỹc, v⟩

]
=

1

CN2
×
[
E
( 1

p̃c
⟨x̃c, u⟩⟨ỹc, v⟩

)2
−
(
E
1

p̃c
⟨x̃c, u⟩⟨ỹc, v⟩

)2]
=

1

CN2
×
[ N∑

n=1

1

pn
⟨xn, u⟩2⟨yn, v⟩2 −N2⟨ĈXY u, v⟩2

]
. (2.7)

Suppose {θXj}∞j=1 and {θY j}∞j=1 are two groups of complete orthonormal basis for HX and

HY , respectively. By definition of Hilbert–Schmidt norm,

E∥C̃XY − ĈXY ∥2HS = E
∞∑

i,j=1

⟨(C̃XY − ĈXY )θXi, θY j⟩2

=
1

CN2

∞∑
i,j=1

[ N∑
n=1

1

pn
⟨xn, θXi⟩2⟨yn, θY j⟩2 −N2⟨ĈXY θXi, θY j⟩2

]
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=
1

C

[ 1

N2

N∑
n=1

∥xn∥2 · ∥yn∥2

pn
− ∥ĈXY ∥2HS

]
.

In the above, the second equation uses (2.7). The third equation depends on that ∥xn∥2 =
∑∞

i=1⟨xn, θXi⟩2

and ∥yn∥2 =
∑∞

i=1⟨yn, θY i⟩2. When pn = ∥xn∥·∥yn∥∑N
m=1 ∥xm∥·∥ym∥ is used in this expression, we will get

E∥C̃XY − ĈXY ∥2HS =
1

C

[ 1

N2

( N∑
n=1

∥xn∥ · ∥yn∥
)2
− ∥ĈXY ∥2HS

]
.

To prove that this choice of pn’s minimizes E∥C̃XY − ĈXY ∥2HS , we can find that

N∑
n=1

∥xn∥2 · ∥yn∥2

pn

(i)
=

N∑
n=1

(∥xn∥ · ∥yn∥√
pn

)2
·

N∑
n=1

(
√
pn)

2
(ii)

≥
( N∑

n=1

∥xn∥ · ∥yn∥√
pn

· √pn
)2

=
( N∑

n=1

∥xn∥ · ∥yn∥
)2
.

The equation (i) uses
∑N

n=1 pn = 1. The inequality (ii) is due to Cauchy–Schwarz inequality,

and the equality holds if and only if pn = γ∥xn∥ · ∥yn∥ for some γ > 0. Therefore, the optimal

probability is pn = ∥xn∥·∥yn∥∑N
m=1 ∥xm∥·∥ym∥ .

2.5.2 Proof of Theorem 3

First of all, notice 1
N

∑N
n=1

(
∥xn∥2/σ̂2

x,1 + ∥yn∥2/σ̂2
y,1

)
= tr(ĈXX)/σ̂

2
x,1 + tr(ĈY Y )/σ̂

2
y,1 =

δ̂x+δ̂y.As a result, the sampling probability (2.4) satisfies pn ≥ (∥xn∥22/σ̂2
x,1+∥yn∥22/σ̂2

y,1)/(β(δ̂x+

δ̂y)N).

Let Zc =
1

p̃cN
x̃c

σ̂x,1
⊗ ỹc

σ̂y,1
− ĈXY

σ̂x,1σ̂y,1
, with its adjoint operator Z ∗

c = 1
p̃cN

ỹc
σ̂y,1
⊗ x̃c

σ̂x,1
− Ĉ ∗

XY

σ̂x,1σ̂y,1
, our

goal is to bound

1

σ̂x,1σ̂y,1

[
C̃XY − ĈXY

]
=

1

σ̂x,1σ̂y,1
× 1

C

C∑
c=1

[
1

p̃cN
x̃c ⊗ ỹc − ĈXY

]
=

1

C

C∑
c=1

Zc =
1

C
S ,

with Lemma 5. It is easy to see that EZc = 0 and

∥Zc∥ ≤
1

p̃cN

∥∥∥∥ x̃cσ̂x,1 ⊗ ỹc
σ̂y,1

∥∥∥∥+
∥∥∥∥∥ ĈXY

σ̂x,1σ̂y,1

∥∥∥∥∥ ≤ (δ̂x + δ̂y)β ×
∥x̃c ⊗ ỹc∥/(σ̂x,1σ̂y,1)
∥x̃c∥2/σ̂2

x,1 + ∥ỹc∥2/σ̂2
y,1

+ ∥ĈXY ∥/(σ̂x,1σ̂y,1)
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(i)

≤ (δ̂x + δ̂y)β

2
×
∥∥∥∥ x̃c
∥x̃c∥

⊗ ỹc
∥ỹc∥

∥∥∥∥+ ∥ĈXY ∥/(σ̂x,1σ̂y,1)
(ii)
=

β(δ̂x + δ̂y)

2
+ η̂ = L , (2.8)

In the above, (i) uses the inequality a2 + b2 ≥ 2ab for any a, b ∈ R, and (ii) uses the fact the

operator norm of x̃c

∥x̃c∥ ⊗
ỹc

∥ỹC∥ is equal to one.

Next, we need to control over ES S ∗ =
∑C

c=1 EZcZ ∗
c and ES ∗S =

∑C
c=1 EZ ∗

c Zc. For

any u ∈H1, we have that Zcu = 1
σ̂x,1σ̂y,1

[
1

p̃cN
⟨x̃c, u⟩ỹc − ĈXY u

]
, and moreover,

(σ̂2
x,1σ̂

2
y,1)Z

∗
c (Zcu) =

1

p̃2cN
2
⟨x̃c, u⟩⟨ỹc, ỹc⟩x̃c −

1

p̃cN
⟨x̃c, u⟩Ĉ ∗

XY ỹc −
1

p̃cN
⟨ỹc, ĈXY u⟩x̃c + Ĉ ∗

XY ĈXY u

=
1

p̃2cN
2
⟨x̃c, u⟩⟨ỹc, ỹc⟩x̃c −

1

p̃cN
Ĉ ∗
XY (x̃c ⊗ ỹc)u−

1

p̃cN
(x̃c ⊗ ỹc)∗ĈXY u+ Ĉ ∗

XY ĈXY u .

Notice E
[

1
p̃cN

Ĉ ∗
XY (x̃c ⊗ ỹc)u

]
= E

[
1

p̃cN
(x̃c ⊗ ỹc)∗ĈXY u

]
= Ĉ ∗

XY ĈXY u. As a result,

(σ̂2
x,1σ̂

2
y,1)E[Z ∗

c (Zcu)] =
N∑

n=1

1

pnN2
⟨xn, u⟩⟨yn, yn⟩xn − Ĉ ∗

XY ĈXY u.

It follows that

E[Z ∗
c Zc] =

1

σ̂2
x,1σ̂

2
y,1

[ N∑
n=1

1

pnN2
⟨yn, yn⟩xn ⊗ xn − Ĉ ∗

XY ĈXY

]
⪯ 1

σ̂2
x,1σ̂

2
y,1

N∑
n=1

1

pnN2
⟨yn, yn⟩xn ⊗ xn

⪯ β(δ̂x + δ̂y)

σ̂2
x,1N

N∑
n=1

⟨yi, yi⟩/σ̂2
y,1

∥xn∥2/σ̂2
x,1 + ∥yn∥2/σ̂2

y,1

xn ⊗ xn ⪯
β(δ̂x + δ̂y)

σ̂2
x,1

ĈXX . (2.9)

Now we get that ES S ∗ ⪯ V1 := Cβ(δ̂x+δ̂y)

σ̂2
x,1

ĈXX . It has operator norm ∥V1∥ = Cβ(δ̂x + δ̂y) and

intrinsic dimension intdim(V1) = intdim(ĈXX) = δ̂x. With a similar argument, we can deduce

that ES ∗S ⪯ V2 := cβ(δ̂x+δ̂y)

σ̂2
y,1

ĈY Y . It has operator norm ∥V2∥ = Cβ(δ̂x + δ̂y) and intrinsic

dimension intdim(V2) = intdim(ĈY Y ) = δ̂y.

Now denote v = max{∥V1∥, ∥V2∥} = Cβ(δ̂x + δ̂y), d = intdim(V1) + intdim(V2) = δ̂x + δ̂y

and L = β(δ̂x+δ̂y)

2
+ η̂ from (2.8). Applying Lemma 5, for ϵ satisfying ϵ · C ≥

√
Cβ(δ̂x + δ̂y) +
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β(δ̂x + δ̂y)/6 + η̂/3, we have that

P
(
∥C̃XY − ĈXY ∥ ≥ ϵ · σ̂x,1σ̂y,1

)
=P (∥S ∥ ≥ Cϵ) ≤ 4(δ̂x + δ̂y) exp

(
− C2ϵ2/2

Cβ(δ̂x + δ̂y) + [β(δ̂x + δ̂y)/2 + η̂]× Cϵ/3

)
=4(δ̂x + δ̂y) exp

(
− Cϵ2

2β(δ̂x + δ̂y)(1 + ϵ/6) + 2η̂ϵ/3

)
.

2.5.3 Proof of Theorem 4

Our goal is to apply Lemma 6 to 1
σ̂2
x,1

[
C̃XX − ĈXX

]
= 1

σ̂2
x,1
× 1

C

∑C
c=1

[
1

p̃cN
x̃c⊗ x̃c− ĈXX

]
=

1
C

∑C
c=1 Zc =

1
C
S .

In the above, we have set Zc := 1
σ̂2
x,1

[
1

p̃cN
x̃c ⊗ x̃c − ĈXX

]
. It has the operator norm upper

bound ∥Zc∥ ≤ 1
Np̃c
· ∥x̃c∥2

σ̂2
x,1

+ 1. At the same time, for the probability pn ≥ 1
β

∥xn∥2∑N
m=1 ∥xm∥2 in the

theorem, we have

p̃c ≥ ∥x̃c∥2/(β
N∑

n=1

∥x∥2) = ∥x̃c∥2/(βN · tr(ĈXX)). (2.10)

This implies

∥Zc∥ ≤ βtr(ĈXX)/σ̂
2
x,1 + 1 = βδ̂x + 1. (2.11)

Similar to the derivation of (2.9), it holds that

E[Z ∗
c Zc] =

1

σ̂4
x,1

[ N∑
n=1

1

pnN2
⟨xn, xn⟩xn ⊗ xn − Ĉ ∗

XXĈXX

]
⪯ 1

σ̂4
x,1

N∑
n=1

1

pnN2
⟨xn, xn⟩xn ⊗ xn.

(2.12)

Together with (2.10), it holds that

E[Z ∗
c Zc] ⪯

1

N

N∑
n=1

βδ̂x ×
xn ⊗ xn
σ̂2
x,1

= V := (βδ̂x/σ̂
2
x,1)ĈXX . (2.13)
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Therefore, ∥V ∥ = C(βδ̂x/σ̂
2
x,1)∥CXX∥ = Cβδ̂x, and intdim(V ) = δ̂x. Combining (2.11)

and (2.13) with Lemma 6, we conclude that for ϵ satisfying C · ϵ >
√
Cβ · δ̂x + (βδ̂x + 1)/3,

it holds that

P
(∥∥∥C̃XX − ĈXX

∥∥∥ ≥ ϵσ̂2
x,1

)
≤ 4δ̂x exp

(
− ϵ2C2/2

Cβδ̂x + (βδ̂x + 1)Cϵ/3

)
= 4δ̂x exp

(
− ϵ2C/2

βδ̂x + (βδ̂x + 1)ϵ/3

)
.
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3. ICE: INDEPENDENT COMPONENT ESTIMATION OF SPECTROSCOPIC DATA OF

TYPE IA SUPERNOVAE

With the advent of large dedicated Type Ia supernova (SN Ia) surveys, it is possible to statis-

tically improve the SN Ia spectral energy distribution (SED) and investigate the SN Ia intrinsic

properties. A purely data-driven statistical approach conducting such tasks can enable a direct uti-

lization of the data product and contribute to a better understanding of SN Ia intrinsic properties.

Based on a collection of SN Ia spectra from the Nearby Supernova Factory collaboration (SNFac-

tory), we develop the Independent Component Estimation (ICE) method for sparse and irregularly

spaced spectrophotometric data of SNe Ia using functional principal component analysis (FPCA)

and independent component analysis (ICA). The application of FPCA facilitates a unique low-

rank representation of SN Ia data by decomposing the data into a linear combination of multiple

components. The ICA allows for the separation of independent physical effects such as the dust

extinction and intrinsic color differences of SNe Ia. This separation makes it possible to construct

the intrinsic SED manifolds of SNe Ia. A mean extinction curve is derived based on ICA which

is in excellent agreement with the dust extinction laws found in the Milky Way but with a signifi-

cantly steeper wavelength dependence. The intrinsic SED manifolds also allows for the calculation

of the dust extinction properties of each individual SN. Typical values of the total-to-selective ex-

tinction ratio RV are found to be around 1-2 for the intrinsic SED constructed with ICA, which

is in agreement with independently derived RV values of several well observed nearby SNe with

NIR data. A numerical toolbox is built to calculate AV and RV for any SNe with well calibrated

spectral sequence. The toolbox simultaneously builds an intrinsic spectral time series for the SN.

With this tool, the color correction in SN Ia distance standardization can be performed separately

for the intrinsic color and the host galaxy reddening.
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3.1 Introduction

Type Ia supernovae (SNe Ia) have played an important role in cosmological studies. The lumi-

nosity distance versus redshift relation derived from SNe Ia provides powerful evidences for the

acceleration of the expansion of the Universe and SNe Ia continue to be one of the most critical

tools in cosmology [36, 37, 38]. The luminosity dispersion of SNe Ia is naturally low and can

be further reduced by well-addressed procedures [39, 40]. They are visible out to a high redshift,

making them precise distance indicators for cosmological studies. With the advent of current and

next-generation dedicated SN Ia surveys such as the LSST [41] and the WFRIST/Roman Tele-

scope [42], the number of well observed SNe Ia will increase dramatically, and the SNe will be

complimentary to various other astronomical probes in examining and distinguishing candidate

dark energy models.

There is a pressing need to improve the cosmological application of SNe Ia to understand the

systematic uncertainties encoded in the measurements. A number of studies of the heterogeneity

of SNe Ia have been carried out in the literature based largely on light curve shape and intrinsic

luminosity correlations. The light curve shape is measured mainly by parameters describing the

decline rate after optical maximum and the color around optical maximum. The light curves of

intrinsically brighter SN Ia tend to be broader and bluer [43, 44, 39]. Several metrics are developed

to describe these correlations, such as the magnitude decline from peak to at 15 days after B-

band maximum, ∆m15 [40] and the light curve stretch factor s [45, 46]. The treatment of the

luminosity-color dependence is ambivalent as the intrinsic color variations among different SNe Ia

are difficult to be decoupled from the reddening due to host galaxy extinction. To derive the

host galaxy reddening, a subset of SNe Ia from hosts of late type galaxies is needed to define a

extinction free sub-sample SNe Ia [36, 47, 48]. Alternatively, color corrections can also be applied

without distinguishing the difference between the intrinsic color and dust reddening [49, 50, 51].

However, the confounding of the intrinsic color and dust reddening presents a systematic limitation

to the application of SN Ia in cosmological study [52]. Generally speaking, the reddening effect

follows the extinction law [2, hereafter CCM] and [53], which can be expressed as an exponential
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multiplier to the flux depending on the ratio of total to selective dust extinction parameter RB.

The average value of RB is ∼ 4.1 for the interstellar dust in the Milky Way but appears to have

smaller values for extragalactic dust [54, 55], whereas the equivalent color correction coefficients

that minimizes residuals on the Hubble diagrams is found to be around 2.0 [56]. This discrepancy

remains poorly understood. The dust reddening may further subject to complications introduced

by the presence of dust located in the vicinity of the SNe [57, 58, 59, 60, 61].

Though a handful of well-established standardization procedures have been generally applied

to correct the light curve broadness-color heterogeneity, the dissimilarity among spectral features

does not follow a simple relation. There have been several empirical attempts to address this prob-

lem. [62] constructed a mean spectral time series template by interpolating the observations in

two dimensional time and wavelength grids, re-matching the photometric and spectroscopic mea-

surements, and taking the average over available spectra. A “mangling” function is used to rescale

the observed spectral data. SALT2 and SALT3 [50, 51] model the spectral energy distribution

(SED) by the sum of a two principle components, including a mean surface and a surface that

captures the dominant spectral variation. A time-independent color term c is defined to capture

the color offset between the flux surface of a fiducial SN with first order correction constructed

by the principle component analysis (PCA). A nonlinear transformation function is found for the

relation between the dominant component x1 of SALT2 to ∆m15 or the stretch parameter s. In a

recent work, the SNEMO [63] uses Gaussian Process to interpolate the non-uniformly collected

observations to generate a equally gridded spectral time series, and examines the time series fur-

ther with multivariate factor analysis. The color difference is removed by aligning the SN spectra

to an average fiducial supernova assuming an extinction law with RV = 3.1 [63]. Three SNEMO

models have been finally proposed based on different criteria, including two-component model

SNEMO2 for comparison purpose, seven-component model SNEMO7 determined by standardiz-

ing supernova magnitudes, and fifteen-component model SNEMO15 chosen according to Akaike

Information Criterion [64], which maximizes the information encoded in the spectral time series.

However, in either SALT3 or SNEMO, the fiducial models themselves do not distinguish intrinsic
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color and dust reddening. In SALT3, the requirement of c to be independent of x1 helps to isolate

the effect of dust extinction from that of the intrinsic color, but the effectiveness of this method is

compromised as the assumption of the color correction to be following certain functional forms of

wavelength dependency will lead to the eigenvectors of the PCA to be color dependent. For the

same reason, the use of a single average fiducial supernova in SNEMO to account for the color

corrections results in parameters and SN flux surfaces that are corrected by a mixture of dust and

intrinsic color effect. The methods do not lead to estimates of the intrinsic flux surfaces of SNeIa.

Deep neural network approaches have also been developed recently [65, 66, 67]. These models

show great promises in capturing the essential information contained in a multi-epoch data se-

quence of SNe Ia, and eventually link the observed data with certain theoretical models such as

TARDIS [68, 65].

In this work, we develop a data-driven tool to decouple the SN Ia spectral-feature-dependent

intrinsic properties from dust reddening mainly based on functional principal component analysis

[69, FPCA] and assisted by independent component analysis [70, 71, ICA]. Functional principal

component analysis treats irregular observations of SN Ia SED as realizations of some random

function over the domain generated by the tensor product of wavelength and phase dimension and

extracts the dominant modes residing within a function space. No additional SED interpolation and

evaluation are needed to fulfill the requirement of common-grid measurements in multivariate prin-

cipal component analysis, which mitigates the error propagating throughout the training process.

Using FPCA, the SN Ia SED is represented as a linear combination of a mean surface and a few

principal component surfaces and the corresponding coefficients are called principal component

scores, providing a unique low-rank representation of SNe Ia. FPCA was adopted by SALT2 where

third-order B splines were used to represent the spectral features and their evolution over time.

Alternatively, to increase the model capability of describing the localized and multi-resolutional

spectral feature strengths in a more stable, robust and compact way, we design a wavelet-spline

tensor product basis during the model training process, consisting of a over-complete fourth-order

wavelet basis in the wavelength dimension and a B-spline basis in the phase dimension.
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Two models are proposed, including a broadly considered flux-based FPCA model, referred as

fb-FPCA model, which models the spectrophotometric data with original flux unit and a magnitude-

based FPCA model, referred as mb-FPCA model, which considers the SED decomposition in the

logarithmic scale (magnitude). The motivation of mb-FPCA model is to adapt to the additive na-

ture of the dust extinction law and extract it from the rest of the signals. To enable an effective

construction of the physical surface that is independent of time and least correlated to the surfaces

governing the intrinsic time and spectral variations and in turn a better separation of dust redden-

ing effect and supernova intrinsic properties, ICA is applied to the imputed spectrophotometric

data for a desired SED representation that minimizes the statistical dependence between the latent

components.

As one of the most important contributions of this work, a novel Independent Component

Estimation (ICE) procedure of SNe Ia is proposed to decouple the effects due to dust extinction

and intrinsic SN property. Several tasks are conducted to achieve this goal:

I. Construct a dust extinction free SN Ia flux ratio surface to extract SN Ia intrinsic

property parameters. It opens the possibility of analyzing SN Ia intrinsic property

without considering the confounding of dust along the line of sight.

II. Extract the heuristic color correction curves (CCRs) from the spectrophotometric

data. The construction of the CCRs is based on FPCA and ICA, with the work-

ing hypothesis that the effects of dust extinction and the SN intrinsic properties

originate from distinct independent physical processes, and that the extinction

curves are smooth functions of wavelength and time-independent. ICA is used

as it enables a better signal separation of signals in data with mixed physical

origins.

III. Propose and statistically test two simplified hypotheses about the contribution of

the dust extinction to the CCRs. This enables us to quantify the intrinsic color

and interstellar dust reddening separately.

IV. Derive the mean extinction curves with FPCA and ICA after removing the SN Ia
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intrinsic color effect. The mean extinction curves encode the averaged effect of

dust reddening of the training dataset.

V. Construct the intrinsic spectrophotometric surface of SNe Ia by correcting the

effect due to dust extinction. A comprehensive low-rank representation of the

intrinsic surface is also provided.

VI. Calculate the total extinction AV in V -band and the ratio of absolute to selec-

tive extinction RV under the parametrization of CCM [2] and characterize their

distributions.

The chapter is structured as below. In Section 3.2, we introduce the data analyzed in this

work. The mathematical model formulation, model training implementation and SED fitting of

the FPCA are described in Section 3.3. We proceed in Section 3.4 to report the model selection

result and compare the parameters estimated from different models for the original data. Our main

contribution is presented in Section 3.5 where we construct a data-driven pipeline to study SN Ia

intrinsic property and separate the interstellar dust effect from SN Ia intrinsic features.

3.2 The Type Ia Supernova Dataset

The supernovae data used in this work are spectrophotometric time series observed by The

Nearby Supernova Factory [72] between 2004 and 2013 and published in [73]. The data product

have been analyzed by SNEMO [63] and SUGAR [74] companion projects. Our work is based

on the SNEMO training data. The supernova observations are flux-calibrated, corrected for Milky

Way dust extinction and shifted to a common rest-frame at z = 0, as described in the [63].

The original SNEMO training dataset consists of 1759 spectra for 122 SNe Ia, with redshift

ranging from z = 0.01 to 0.08. Peculiar SNe, such as SN 1991T and SN 1991bg-like objects

are also included in the training dataset. We restrict our study to the spectral range from 3500Å

to 8000Å and the phase coverage is chosen to be [−10, 20] with respect to the phase of B band

maximum. To ensure an adequate statistical model construction, the SNe Ia in the training dataset

are required to have more than 5 valid spectra. A total number of 1087 spectra of 122 SNe Ia meet
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the selection criteria and are used for further analysis.

Essential data processing procedures, such as light curve decline rate alignment and the corre-

sponding variance spectra generation, have been carried out before applying the FPCA. These are

described below:

Decline rate alignment. We scaled each spectrum to the mean B-band light curve [75]

to reduce the spectral diversity introduced by the light curve decline rate. This mean light

curve function was originally developed by identifying a function which describes the the

averaged behaviour of the SN Ia light curves and has a peak B-band magnitude of zero.

The scaling procedure was proceeded by multiplying a wavelength independent factor to the

original spectrum to match the mean B-band light curve at the corresponding light curve

phase. With this simple photometric scaling, the spectral features are preserved and the time

axis is stretched or squeezed to match the mean light curve of [75].

Variance spectra generation. With a flux-calibrated training set, we generated the vari-

ance spectra based on the scrolling window approach with a fixed window size h such that

the local variance of one pixel is determined by its h − 1 nearest neighborhoods. This

self-generated error spectra is similar to what has been used previously in the wavelet de-

composition of SN spectra [76]. We did not use the error spectra of the original data [73]

as the self-generated errors, though not as accurate, are applicable to a broad range of data

without error spectra. As in wavelet decomposition in [76], a preliminary true signal estima-

tion is required so that pixel to pixel fluctuations can be quantified. We fitted the individual

spectrum using least absolute shrinkage and selection operator, known as Lasso [77], with

the design matrix constructed from an over-complete fourth-order wavelet basis, which will

be discussed in Section 3.3.2. Lasso encourages a sparse estimation of the regression co-

efficients through penalizing the least squares criterion with an additional l1 norm of the

coefficient vector and it’s commonly used for basis selection. Once the true signal was es-

timated and got removed from the raw observations, the variance for a pixel was calculated

by averaging the squared measurements of its closest h− 1 neighborhoods.
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3.3 The Statistical Model

We aim at modeling the averaged behaviour of SN Ia spectrophotometric time series and its

dominant variation with a few components in a purely data-driven fashion. In this section, we will

present the mathematical formulation of the FPCA model, the details of the model training and the

new SN Ia SED surface fitting procedures.

3.3.1 Model Construction

Functional data analysis provides a reliable toolbox to represent and analyze spectrophotomet-

ric time series data in the form of functions. Our model construction is based on FPCA, which

extracts the dominant modes of the data variation. Let f (s)(λ, t) be the calibrated SED surface of

the s-th supernova, which is a function of rest-frame wavelength λ and rest-frame time t with re-

spect to its B-band maximum flux (i.e. phase). We represent the surface using a truncated version

of the functional principal component expansion [69]

f (s)(λ, t) = ϕ0(λ, t) +
R∑

r=1

β(s)
r ϕr(λ, t), (3.1)

where ϕ0(λ, t) is the mean spectral surface and ϕ1(λ, t), . . . , ϕR(λ, t) are R principal component

surfaces, which depict the dominant variations shared by the supernova population under study.

The elements of coefficient vector β =
(
β
(s)
1 , . . . , β

(s)
R

)
are called the principal component scores

(or scores for short). Additional assumptions are imposed on the principal component surfaces to

ensure model identifiability and promote interpretability. In particular, we require ϕr(λ, t)’s to be

orthonormal to each other, i.e.
∫
ϕr(λ, t)ϕr′(λ, t)dλdt = δrr′ with δrr′ = 1 if r = r′ and δrr′ = 0

otherwise. With these properties, each object is uniquely represented by a few number of scores,

which will facilitate the study of supernova properties.

In the model (3.1), functional basis expansion is applied directly to spectra in flux scale, leading

to a flux-based FPCA model (denoted as fb-FPCA). Since this model is a linear combination of

different components, the effect of dust extinction is not expected to be explicitly isolated as one

particular component. This may pose a problem in model interpretability that the model confounds
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the color variation due to dust extinction with the variation due to intrinsic SN heterogeneity.

As the dust extinction is usually expressed as an exponential multiplier to the flux, we build an

alternative model in the multiplicative form of components,

f (s)(λ, t) = ϕ0(λ, t)
R∏

r=1

exp
(
β(s)
r ϕr(λ, t)

)
. (3.2)

This is equivalent to applying the model (3.1) to the spectrophotometric data in the magnitude

scale, i.e., we take logarithm of (3.2) to get

log
(
f (s)(λ, t)

)
= ϕ0(λ, t) +

R∑
r=1

β(s)
r ϕr(λ, t), (3.3)

where the mean spectral surface, principal component surfaces and supernova-specific scores are

defined similarly as those of model (3.1). This model is referred to as the magnitude-based FPCA

model (abbreviated as mb-FPCA).

In summary, we build two FPCA models: the fb-FPCA model (3.1) and mb-FPCA model (3.2).

For both models, the mean spectral surface, principal component surfaces, and the scores of each

supernova are unknown parameters to be estimated.

3.3.2 Model Training

The procedure to estimate the unknown model parameters using the flux-calibrated spectra

observations is referred to as model training and will be presented in this section. The methodology

and terminologies developed here are for model (3.1) but can be extended to model (3.3) in a

straightforward way.

The training spectrophotometric observations are irregularly observed in the two dimensional

wavelength-phase space. In particular, the spectral time series of the s-th supernova is recorded

at a wavelength-phase pair (λ(s)i , t
(s)
j ) with flux y(s)i,j and uncertainty σ(s)

i,j for i ∈ {1, · · · I(s)j } and

j ∈ {1, · · · J (s)}. We decompose the observed value y(s)i,j as the summation of the signal surface
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and a stochastic noise term, i.e.,

y
(s)
i,j = f (s)(λ

(s)
i , t(s)) + σ

(s)
i,j ϵ

(s)
i,j , (3.4)

where the signal surface f (s)(λ
(s)
i , t

(s)
j ) has the FPCA expansion (3.1), σ(s)

i,j is the corresponding

measurement uncertainty, and ϵ(s)i,j is a random term with zero mean and unit variance.

The spectral surface f (s)(λ, t) of a supernova has two salient features: 1) high frequency and lo-

calized variability along the dimension of wavelength λ; 2) smooth evolution along the dimension

of phase t. The estimated mean surface and component surface should capture these characteristics

effectively.

For this purpose, we use a wavelet-spline tensor product basis to expand the mean and compo-

nent surfaces. For the wavelength dimension, a fourth order wavelet basis W (λ) = {w1(λ), w2(λ),

. . . , wp(λ)}⊤ of [78] is utilized, which is over-complete and highly redundant. The over-completeness

is usually coupled with sparse wavelet coefficient to only capture the significant but localized spec-

tral features (i.e. emission and absorption lines) and to remove small scale noise. On the other

hand, we use an orthonormal cubic spline basis B(t) = {b1(t), b2(t), . . . , bq(t)}⊤ for the phase

dimension. By utilising the tensor product of the two sets of bases, we represent the model (3.1) as

f (s)(λ, t) = W (λ)⊤Θ0B(t)︸ ︷︷ ︸
ϕ0(λ,t)

+
R∑

r=1

β(s)
r ×W (λ)⊤ΘrB(t)︸ ︷︷ ︸

ϕr(λ,t)

, (3.5)

where the mean surface and the component surfaces are parameterized by coefficient matrices Θr

of size p× q, for r = 0, . . . , K. A more comprehensible expression of Equation (3.5) is based on

the wavelet-spline tensor product basis presented as following,

f (s)(λ, t) = W (λ)⊤ ⊗B(t)⊤ vec(Θ0) +W (λ)⊤ ⊗B(t)⊤Θβ(s), (3.6)

where the operator vec(·) converts a matrix into a column vector by stacking the transpose of

the rows on top of one another. In addition, Θ is a pq × R matrix, storing all the parameters in
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the coefficient matrix of R principal component surfaces, i.e., Θ =
(
vec(Θ1), . . . , vec(ΘR)

)
. The

coefficient vector β(s) =
(
β
(s)
1 , . . . , β

(s)
R

)⊤ stores principal component scores and is unique for each

supernova. We require the coefficient matrix Θ to be orthonormal, i.e., ΘTΘ = IR, to guarantee

the orthonormality of the principal component surfaces and identifiability of the statistical model.

All the parameters are estimated by minimizing weighted least squares. Two additional regu-

larization penalties are added to the weighted least square criterion: a group Lasso penalty [79] on

the rows of Θr to encourage the selection of important spectral feature; and a roughness penalty

[69] on the columns of Θr to encourage the smooth evolution over phase. We use the fast iter-

ative shrinkage-thresholding algorithm [80, FISTA] to estimate the mean surface. After that, we

combine a stochastic gradient descent algorithm [28, ADAM] with a manifold optimization tech-

nique to estimate the principal component surfaces efficiently. See Supplemental Materials 3.6.1

for details.

3.3.3 Spectrophotometric Data Fitting

After the model training described in Section 3.3.2, we obtain the estimation of the mean and

principal component surfaces {ϕr(λ, t)}, for r = 0, . . . , R. They can be applied to fit new spec-

trophotometric data. The empirical estimations are denoted by {ϕ̂r(λ, t)}Rr=0 and are considered

as fixed during new data fitting. The construction of the full SED surface reduces to the evaluation

of the principal component score β = (β1, · · · , βR)⊤ assuming that the data have been processed

through the procedures discussed in Section 3.2.

We use maximum likelihood estimate (MLE) method to derive the estimated parameter β and

provide uncertainty quantification for the estimated parameter using parametric bootstrap method

[81]. To facilitate the estimation of unknown parameters β for the new supernova, we assume

that the random term ϵi,j in Equation (3.4) follows the standard normal distribution. The score

of the new supernova β̂ =
(
β̂1, . . . , β̂R

)⊤ is determined by MLE method, which is equivalent to

generalizing the least squares by combining Equation (3.4) and Equation (3.5). The parametric

bootstrap procedure with B bootstrap samples is described as follows. For b = 1, . . . , B, we

generate a new set of spectral data at its own observational wavelength-phase grid according to the
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model,

y
(∗b)
i,j = ϕ̂0(λi, tj) +

R∑
r=1

β̂rϕ̂r(λi, tj) + σi,jϵ
(∗b)
i,j

where ϵ(∗b)i,j is drawn independently from the standard normal distribution N (0, 1). The bth boot-

strap sample is the collection of sampled flux {y(∗b)i,j } for this supernova, its observed wavelength-

phase pairs {λi, tj} and observation uncertainty {σi,j} for i ∈ {1, . . . , Ij} and j ∈ {1, . . . , J}.

The estimation procedure described above is applied to each of bootstrap sample, leading to the

B bootstrapped parameter estimates β̂
(∗1)

, . . . , β̂
(∗B)

. The element-wise standard deviation of

β̂
(∗1)

, . . . , β̂
(∗B)

serves as an estimate of the uncertainty of β̂ for the new supernova data.

3.4 The FPCA Surfaces of the Original Data

In this section, we present the model training results of the fb-FPCA and mb-FPCA models for

the original data with no color correction but the data are processed as described in Section 3.2.

The model selection problem, i.e., the determination of the number of components R and the

interpretation of the estimated principal component surfaces is discussed. We also compare the

proposed two FPCA models, SALT2 and two-component SNEMO model (SNEMO2) in terms of

parameter interpretation. For simplicity, we denote the estimated mean SED surface by ϕ0(λ, t)

and the rth principal component SED surface by ϕr(λ, t) for r = 1, 2, . . . , R. The estimated rth

principal component scores for fb-FPCA and mb-FPCA models are represented by βfb
r and βmb

r

respectively.

3.4.1 Model Selection

We use cross-validation [82, 83, 84] to select the number of components (R). It is a commonly

used method to select the optimal hyper-parameters and to evaluate model prediction performance.

The procedure ofK-fold cross-validation is: randomly partitioning dataset intoK disjoint subsets,

training the model using K − 1 subsets with prefixed hyper-parameter, evaluating the model on

the remaining subset, repeating the procedure K times using different training and test partitions,

and ultimately averaging the K evaluation metrics. The average evaluation metric (referred to as

cross-validation score) is calculated for every candidate hyper-parameter, and the optimal hyper-
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parameter is selected as the one minimizing the cross-validation score.

We use ξ to denote the penalty parameters η, ρ in Supplemental Materials 3.6.1. For our mod-

els, both ξ and the number of components R need to be tuned during the model training. For any

candidate hyper-parameter pair (ξ, R), we conductK-fold cross-validation with the model training

(in Section 3.3.2) and data fitting (in Section 3.3.3) procedures. In particular, the full SED surface

f̂ (s)(λ, t) is fitted for each supernova in the test set, and the fitted surface is employed to predict its

actual observations. The overall cross-validation score (CV ) is calculated as,

CV(ξ, R) =
1

K

K∑
k=1

1

|Sk|
∑
s∈Sk

1

I
(s)
j × J (s)

∑
i,j

[
y
(s)
i,j − f̂ (s)(λ

(s)
i , t

(s)
j )
]2
, (3.7)

where the outermost summation corresponds to the K cross-validation repetitions, Sk is the in-

dex set (with cardinality |Sk|) of test supernovae in the k-th fold, and the innermost summation

computes the prediction error for the s-th supernova in the test data of the k-th fold.

To determine the optimal R using equation (3.7), we define a ξ-free metric called optimal CV

score, opCV(R) := minξ CV(ξ, R), which minimizes the cross-validation score with respect to

the hyper-parameter ξ for a given R. It accesses the model performance with a fixed R under the

best-case scenarios across different values of ξ. The optimal R is then selected as the one with the

minimal opCV(R) value. We note that, unlike the classical PCA method where the selection of R

is based on the proportion of in-sample variance explained by the model, this new metric focuses

on the decrease of the prediction error by adding R components into the model and selects the

model with better out-of-sample generalization power.

The model selection procedure is applied to both fb-FPCA and mb-FPCA model to select the

optimal R from a sequence of candidates ranging from 0 to 25. Due to the scale difference of

fb-FPCA and mb-FPCA models, their opCV(R)’s are not directly comparable. To overcome this

problem, we take the ratio of opCV(R) and opCV(0) to define a quantity called optimal CV score

ratio as RopCV := opCV(R)/opCV(0). This adjust the scales of opCV(R) to the same level for

both models.
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Figure 3.1: The optimal CV score ratio of fb-FPCA model and mb-FPCA model. The red and blue
points correspond to fb-FPCA and mb-FPCA model, respectively. The black dashed horizontal
line corresponds to y = 0.20. The inset panel zooms in on part of x-axis with R ranging from 8 to
12.

Figure 3.1 shows the change of RopCV with the number of components R. The red and blue

lines represent the results of fb-FPCA and mb-FPCA model, respectively. In general, the average

prediction error decreases as more components are included in the model. The RopCV is 46.03% for

fb-FPCA model and 46.54% for mb-FPCA model when R = 1, which indicates that the inclusion

of a single component dramatically reduces the prediction error by more than 50% for both models.

However, the difference between the fb-FPCA and mb-FPCA is very small which suggests that

the dominate source of the data diversities can be well captured by both models, such as can be

expected if the effect is due mostly to interstellar dust extinction but with the large majority of the

SNe showing very small amount of reddening. As the component number increases, the decreasing

trend of the ratio becomes gradually flat and the ratio eventually stabilizes at around 15%. The

black dashed lines in Figure 3.1 correspond to y = 0.20 which intersects with two RopCV curves

between R = 9 and R = 10. In this study, we will present three models: one-component model

which explores only the dominant variation within the spectral data; two-component model to

compare with SNEMO2 and SALT2 SED models; and a comprehensive ten-component model

which captures more than 80% of the information of the spectral time series in the training dataset.
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3.4.2 Model Comparison

This section presents the model training results of the fb-FPCA and mb-FPCA models, in-

cluding the estimated mean, principal component surfaces and SN Ia spectral fitting results. We

compare the derived principal component scores with parameters extracted from other SN Ia SED

models at the end of this section.

Our fb-FPCA and mb-FPCA models are constructed in the wavelength range [3500Å, 8000Å]

and phase range [−10, 20]. Figure 3.2 and Figure 3.3 show the estimated mean surfaces and princi-

pal component surfaces for the two-component models of fb-FPCA and mb-FPCA. For illustrative

purpose, we only show several slices in the phase and wavelength dimension. The three rows

correspond to mean surface ϕ0(λ, t), the first principal component surface ϕ1(λ, t) and the second

principal component surface ϕ2(λ, t), respectively. From the left column to the right, the eigen-

spectrum slices at four demonstrative phases denoted with {ϕr(λ, ·)}r=0,1,2, the monochromatic

light curves at four wavelengths denoted with {ϕr(·, t)}r=0,1,2 and the broad-band light curves in

the rest-frame Kron-Cousins B, V and R filters denoted with {ϕ̃r(t)}r=0,1,2 are shown. In the

second panel of the left column of Figures 3.2 and 3.3, the re-scaled and vertically re-located

CCM extinction law with RV = 3.1 is overplotted using grey solid lines. By comparing the first

eigenspectrum slices ϕ1(λ, ·) at different phases with the extinction law, we find that the ϕ1(λ, t)

presents a homogeneous trend regardless of the phases of the data, especially in the mb-FPCA

model. This behavior suggests that the surface of the first principal component effectively captures

the effect of interstellar dust extinction. Note however, the same component may also capture par-

tially the time-independent color variations intrinsic to different sub-types of SNe Ia. The second

eigenspectra are distributed around a mean value of 0 and describe the spectral features and their

time evolution. We notice that the estimated mean spectral surface and the eigenspectra time series

of the mb-FPCA model are unstable at the two wavelength boundaries, in particular, the second

eigenspectra depict a fake spectral feature at around 8000Å. This issue is most likely due to a

combination of the artifacts introduced by taking logarithm of the flux close to 0 and the increased

spectral diversities of SNe Ia at this wavelength range caused by the high velocity component of
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the Ca II IR triplet [85, 86].
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Figure 3.2: Demonstrative spectra, monochromatic and broad band light curves of the two-
component fb-FPCA model. From top to bottom, the mean eigenspectra ϕ0(λ, t), the first eigen-
spectra ϕ1(λ, t), and the second eigenspectra ϕ2(λ, t) are shown. The left column presents eigen-
spectrum slices at four demonstrative phases of day −5 (black), 0 (red), 5 (blue), and 10 (green)
pastB band maximum, the middle panel shows monochromatic light curves at four different wave-
lengths: 4000Å (black), 5000Å (red), 6000Å (blue), and 7000Å (green), and the right column
shows the broad-band light curves in the rest-frame Kron-Cousins B (black), V (red) and R (blue)
filters. The grey solid line in the second panel of the left column represents the re-scaled and re-
located CCM extinction law with RV = 3.1.
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Figure 3.3: Same as Figure 3.2 but for the two-component mb-FPCA model.

Examples of the fb-FPCA model and the mb-FPCA model fitting results are shown in Fig-

ure 3.4 and 3.5 for three SNe: SN33, SN67, and SN106. Each column shows the fitting results

of the spectra of one object observed at different phases with varying component numbers. In

general, one component model (plus mean) is able to capture the overall spectral trend and the

time evolution of the observed spectra. However, higher order principal component functions are

required to precisely depict the details of localized spectral features. Of these three SNe, SN67 is

SN 1991T-like with shallow Si II lines, the other two are normal SNe Ia but at different phases. The

one and two component models perform well for data around optical maximum, and deteriorates

at later phases, whereas the ten component model provide good fits to data of all epochs.
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Figure 3.4: SED fitting examples of the fb-FPCA model with different component numbers. The
blue, green and red solid lines correpond to R = 1, 2, and 10, respectively. From left to right, the
columns are for one SN33, SN67, and SN106 with phases of the spectra marked at the upper right
corner of each panel. The residual spectra are plotted at the bottom in each panel.
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Figure 3.5: Same as in Figure 3.4 but for the mb-FPCA models. An offset of 2 is added to the
residual spectra to separate them from the supernova spectra, and are shown above the supernova
spectra.
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Figure 3.6 shows the estimated scores of the two-component fb-FPCA and mb-FPCA model

versus the parameters extracted from two other standard models SALT2 and SNEMO2. SALT2

and SNEMO2 are both two-component plus dust extinction models in which the supernova spectra

are decomposed into a linear combination of two components with an extra color term multiplied to

the linear term to account for interstellar extinction – in SNEMO2, the color difference is modeled

by widely used extinction laws with a prefixed parameter RV , whereas SALT2 constructs a color

correction function using a third order polynomial with additional constraints, whose effect has

been proven to be similar to the CCM extinction law [2] 1. In accordance with SNEMO2, a

constant value of RV = 3.1 has been assumed in this comparison analysis. However, we note

that the assumed RV and extinction curve are needed only for SNEMO2, our algorithm does not

need these assumptions to derive the extinction corrections. We adopt the same notations from the

original SNEMO2 and SALT2 model such that (c1, As) and (x1, c) represent the coefficients of the

first component and color parameter, of SNEMO2 and SALT2, respectively. The corresponding

parameters for our models are the FPCA scores denoted as
(
βfb
1 , β

fb
2

)
and

(
βmb
1 , βmb

2

)
for the fb-

FPCA and mb-FPCA model, respectively.

The first row of Figure 3.6 shows the relation between the first score estimated in our models

and the color parameters computed according to SNEMO2 and SALT2. The strong correlations

between βfb
1 and βmb

1 withAs and c confirm our previous observation that the first principal compo-

nent ϕ1 of our models are closely related to interstellar dust reddening. For example, the coefficient

of determination is calculated to be 0.945 and 0.951 for the simple linear regression model of As

versus βfb
1 and As versus βmb

1 , respectively. The dramatic decrease of the optimal CV score ratio

RopCV after introducing the first component presented in Figure 3.1 demonstrates that the inter-

stellar dust reddening is the major contributor to the inhomogeneity of the observed supernova

spectra [36, 49, 47]. One subtle but crucial observation is that an obvious nonlinear trend can be

found in the first panel where the relation between the first score of the fb-FPCA model and the

color parameter As from SNEMO2 is shown. Although the fb-FPCA and the mb-FPCA models

1See [50] and [63].

45



appear to be equally well correlated to the color indicators of SNEMO2 and SALT2, noticeable

deviations at relatively large values of As and βfb
1 are seen in Figure 3.6; such deviations are less

significant for the βmb
1 model. This is understandable as the effect of interstellar dust extinction

can be approximated as a linear process in the flux scale only when the extinction effect is low.

The second row of Figure 3.6 shows the scatterplots of the second score βfb
2 and βmb

2 against

the c1 from SNEMO2 or x2 from SALT2. It’s not surprising that the levels of correlation are low,

because the means and the first components of all models are affected by their own color correc-

tions which are mixtures of the effects of interstellar dust extinction and intrinsic color diversities.

The separation of these effects will facilitate the construction of a method of data-driven extinction

correction and spectral quantification, as will be shown in the next section.
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Figure 3.6: The scores of two-component fb-FPCA and mb-FPCA model versus parameters of
SALT2 and SNEMO2. The color parameter and the coefficient of the first component of SNEMO2
are denoted with As and c1, and the counterparts of SALT2 are denoted using c and x1. The scores
of the fb-FPCA model and the mb-FPCA model are represented using {βfb

r }2r=1 and {βmb
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versus βmb
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1 , c versus βmb
1 , c1 versus βfb

2 , c1 versus βmb
2 , x1 versus βfb
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2 . The data points are fitted by the robust linear regression (the black dashed lines).
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3.5 The Dust Extinction and the Intrinsic Property
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Figure 3.7: An illustrative flowchart of the Independent Component Estimate of SNe Ia.

In Section 3.5, we describe the procedure of Independent Component Estimate (ICE) that sep-

arates the effect due to dust extinction and intrinsic SN properties (Figure 3.7). In Section 3.5.1,

we construct an interstellar dust extinction free surface called flux ratio surface to extract super-
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nova intrinsic property parameters. In Section 3.5.2, we present two heuristic CCRs and calculate

the supernova color parameter which quantifies the mixed effect of interstellar dust reddening and

supernova intrinsic color information. By investigating the relation between the color parameter

and intrinsic property parameters, we formulate two hypotheses on the supernova intrinsic color

models and thereafter separate intrinsic color from the dust reddening effect in Section 3.5.3. Fi-

nally, we derive the dust extinction curve based on the SN data. With the intrinsic SED surfaces of

SNe Ia we have constructed, we also carry out parameter studies of the extinction properties based

on the CCM extinction law [2]. Hereafter, we use y(s)(λ, t) and ϵ(s)(λ, t) to represent the irregular

spectrophotometric training data {y(s)i,j } and its corresponding uncertainties with i ∈ {1, . . . , I(s)j }

and j ∈ {1, . . . , J (s)} for SN Ia s to simplify the notations.

3.5.1 Flux Ratio Surface

The exploration of the SN Ia intrinsic features relies on taking away the dust reddening effect

from the observed measurements and constructing a intrinsic property spectrophotometric time

series. In this section, we propose a dust reddening free flux ratio surface for each SN Ia called

flux ratio surface whose construction follows a two-step procedure: interpolate the original SED

surface to estimate the spectrum at the phase of B-band peak magnitude f0(λ, tmax) and take

the ratio of the spectral time series to the estimated spectrum f0(λ, tmax) to derive the surface of

spectral ratio.

The behavior of interstellar dust extinction is known to be a smooth function of wavelength

and time-independent or only very weakly time dependent (see however, [57], [87], and [88] for

potential time dependent extinctions). Therefore, we construct the flux ratio surface by assuming

that dust reddening is an time-independent multiplier towards the flux such that

f(λ, t) = A(λ;α)f0(λ, t),

where A(λ;α) is time-independent extinction law with α being supernova-specific extinction pa-

rameter and f0(λ, t) denotes the intrinsic SED surface of SNe Ia. Therefore, the spectrum at the
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phase of B-band maximum tmax can be represented as f(λ, tmax) = A(λ;α)f0(λ, tmax). With

these notations, we bring forward the definition of extinction-independent flux ratio surface as

fr(λ, t) :=
f(λ, t)

f(λ, tmax)
=

f0(λ, t)

f0(λ, tmax)
,

which is essentially the ratio between the spectra observed at any time t with the spectra at B-band

maximum. Despite the fact that no B-band maximum spectra observation is available, we can

perform a preliminary interpolation using ten-component comprehensive fb-FPCA model to derive

the f(λ, tmax) estimation. Two randomly selected examples SNe Ia SN0 and SN24 are presented

in Figure 3.8 to exhibit the goodness of the predicted spectra at the B-band maximum. Different

panel corresponds to the spectra observed at different phases. The gray points are observations

and black solid lines are fitted spectra. The red solid lines are the predicted spectra at the phase of

B-band maximum. As the time approaches the phase of B-band maximum, the black solid lines

tend to converge to the predicted B-band maximum spectra.

After eliminating the effect of interstellar dust by constructing the flux ratio surface, we can

analyze SN Ia intrinsic properties based on the scores of the fb-FPCA model of ratio surfaces.

We refer these scores as intrinsic property parameters, denoted as {γ1, γ2, . . . , γR}. Because the

strength of the spectral lines are physically related to the temperature of the SN photosphere,

it is reasonable to assume that the information about the intrinsic color is encoded in these pa-

rameters. To determine the number of components (R) for the flux ratio surfaces, we use the

optimal CV score ratio RopCV as discussed in Section 3.4.1. The RopCV is calculated to be

100%, 66.8%, 59.2%, 56.7%, 54.1%, 52.1%, and 49.3% for R = 0, . . . , 6 and finally stabilizes at

around 40% when R approaches 25. For the current stage, we focus on the score of the dominant

component, i.e., γ1.

3.5.2 Color Correction Relation

The FPCA components derived in the previous section, although showing properties that are

related to dust extinction, are also affected by the intrinsic colors of SNe Ia. In this section, we
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Figure 3.8: Examples of the fb-FPCA fitted spectra at B-band maximum of SN0 (left) and SN24
(right). The gray points are the observed spectral data at different phases. The phases of the data
are shown at the top of each panel. The black lines are fitted spectra at different observed phases.
The red lines are the predicted spectra at the phase of B-band maximum.

extract a smooth wavelength-dependent and time-independent component from the SN data which

enables the separation of the dust reddening from the intrinsic color of SNe Ia. Two CCR’s will be

constructed, one is denoted by ψ(λ) and is based on the surface of the one-component mb-FPCA

model, and the other is denoted by ψica(λ) and is based on the results of independent component

analysis (ICA).

3.5.2.1 Independent Component Analysis

As shown in Figure 3.3, besides a dust extinction law like trend, the extracted first eigenspectra

also contains a considerable amount of spectral variations, suggesting that the component is con-

taminated by the intrinsic spectral features of the SNe and therefore also likely by their intrinsic

colors. In this regard, we employ a signal processing tool called independent component analysis

[70, 71, ICA] to explore a direct separation of the extinction from the localized spectral infor-

mation. ICA is a multivariate statistical method to decompose a signal into several independent
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components by maximizing the statistical independence of the estimated components. In contrast,

the orthogonality between the eigenfunctions required in FPCA ususally does not guarantee their

statistical independence and, in turn, the minimization of the signal mixing.

With the assumption that the effects of dust extinction and the SNe intrinsic properties originate

from distinct independent nongaussian physical processes, the two processes can be statistically

separated by maximizing their non-Gaussianity using FastICA [89, 90, 91]. To facilitate the cal-

culation of ICA, we impute the irregular spectrophotometric data using ten-component mb-FPCA

model and evaluate on an uniform grid in wavelength and phase. The data is centered using the

mean surface ϕ0(λ, t) defined in the mb-FPCA model (3.3) before performing ICA. We assume

that there exists two latent independent components, one accounts for the dust extinction effect

and the other depicts SN Ia intrinsic features. For consistency, they are denoted with ϕica,1(λ, t)

and ϕica,2(λ). The decomposition of the SED surface using ICA can be expressed as,

log
(
f (s)(λ, t)

)
= ϕ0(λ, t) + β

(s)
ica,1ϕica,1(λ, t) + β

(s)
ica,2ϕica,2(λ, t),

where ϕica,1(λ, t) and ϕica,2(λ, t) are statistically independent. Figure 3.9 illustrates the behaviour

of ϕica,1(λ, t) and ϕica,2(λ, t). The first ICA components are more featureless compared with eigen-

spectra slices of ϕ1(λ, t) of the two-component mb-FPCA model shown in Figure 3.3.

3.5.2.2 The Color Correlation Relation

In this section, we present a heuristic two-step procedure to construct the time-independent

wavelength-smoothed CCRs ψ(λ) and ψica(λ) for the FPCA and ICA decompositions, respec-

tively. They are used to depict the behavior of intrinsic color effect of the SNe and the properties

of the dust extinction on the observed spectral shapes and time evolution. We take the construction

of ψ(λ) as an illustrative example and ψica(λ) can be established following the same procedure.

The construction of ψ(λ) is based on the principal component ϕ1(λ, t) of mb-FPCA model by

averaging over its the time dependence and smoothing the localized spectral features. The detailed

procedure is summarized below,
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Figure 3.9: Same as Figure 3.3 but for ICA model.

Step 1. Obtain a time-free function ⟨ϕ1(λ, t)⟩t by taking the average of ϕ1(λ, t) w.r.t the

phase argument.

Step 2. Approximate ⟨ϕ1(λ, t)⟩t with a much smoother function ψ(λ) which is expressed

by cubic B-splines with interior knots located at the effective wavelengths of the

B, V and R filters.

Note that ⟨·⟩t denotes the operation of taking average over the time domain. The left column of

Figure 3.10 shows the elements used or produced during the CCR’s construction. The princi-

pal component ϕ1(λ, t) and the independent component ϕica,1(λ, t) evaluated at different phases

ranging from −8 to 16 days with respect to the B-band maximum are shown by the blue lines of

different heaviness. The black dashed lines represent ⟨ϕ1(λ, t)⟩t and ⟨ϕica,1(λ, t)⟩t. The red solid

curves represent the CCR ψ(λ) and ψica(λ) after the B-spline smoothing. The dotted black lines

at the bottom illustrate the B-splines we use to construct ψ(λ) and ψica(λ) .

Once we have determined the CCR ψ(λ), the supernova-specific color parameter α is defined

by projecting the spectrophotometric data y(s)(λ, t) onto the space spanned by ψ(λ) after removing
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the effect of the averaged SED surface ϕ0(λ, t). The color parameter α for a specific SN Ia s

(denoted by α(s)) can be estimated by the method of least squares, i.e.,

α(s) = argmin
α(s)

{log
(
y(s)(λ, t)

)
−
[
ϕ0(λ, t)− α(s)ψ(λ)

]
}2.

This definition ensures that all information associated with the CCR is extracted from the data

and this information is quantified by the color parameter α. The corresponding color parameter of

ψica is denoted by αica. The color parameters α and αica can be compared with similar quantities

derived by other methods including c from SALT2 and As from SNEMO2. These parameters are

found to be strongly correlated, as shown in the middle and right panels of Figure 3.10.

3.5.3 Dust Reddening and Intrinsic Spectral Features Separation

The CCRs we have derived accounts for the effects of both dust reddening and intrinsic SN

color. By investigating the correlation between the supernova color parameters (α and αica) de-

rived in Section 3.5.2 and the intrinsic property parameter γ1 as derived from the fb-FPCA of the

flux ratios, we may decompose α or αica into two parts, each part of which accounts for a different

source of the color variations, including intrinsic color diversities and interstellar dust reddening

(Section 3.5.3.1). After removing the supernova intrinsic color diversities, we may derive an av-

erage dust extinction curve (ICE-EC) using a sample of SNe showing significant amount of dust

reddening (Section 3.5.3.2). This also allows us to derive an extinction corrected flux manifold

which is a representation of the intrinsic properties of of SNe Ia (Section 3.5.3.3).

3.5.3.1 Intrinsic Color Hypotheses

We formulate two hypotheses about the composition of the SNe. They consider two extreme

cases where the observed colors are attributed to intrinsic color diversities and interstellar dust

property variations described as below,

Hypothesis 1: All SNe Ia share an identical intrinsic color independent of their the spectral

features, the difference in the observed colors is caused by the difference in the amount of
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Figure 3.10: The construction of ψ(λ) and ψica(λ) and the comparisons of α and αica with the color
parameters from SALT2 and SNEMO2. Left: The blueish transparent lines represent ϕ1(λ, t) (top)
and ϕica,1(λ, t) (bottom) at phases from day −8 to 16 w.r.t. B-band maximum. The dashed black
lines represent ⟨ϕ1(λ, t)⟩t (top) and ⟨ϕica,1(λ, t)⟩t (bottom). The ψ(λ) and ψica(λ) are presented
using red solid lines. The dotted black lines in both panels are B-splines used to approximate
the target functions. Middle and Right: The black points show the comparisons between the c of
SALT2 and the As of SNEMO2 with the corresponding color parameters derived from the mb-
FPCA (top) and ICA (bottom) decomposition. The black dashed lines are regression lines.

interstellar dust along the line of sights towards the SNe.

Hypothesis 2: The interstellar dust properties of all the SNe Ia share a common physical

origin, but their intrinsic colors are dependent on their intrinsic spectral properties.

The SNEMO2 formulation of the problem virtually assumes Hypothesis 1. SALT3 explicitly

requires its color index c to be independent of the the parameter x1 which describes the intrinsic

properties of SNe Ia. SALT3 is thus constructed with the goal of being consistent with Hypothesis

2. However, as shown in Figure 3.11, the c of SALT3 is found to be correlated with γ1. The

SNEMO As values are tightly correlated with those of SALT2 [63], and show similar correlations
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with γ1 (Figure 3.11). In fact, all the eigenvectors and their scores of SALT2/SALT3 are affected by

the amount of dust extinction in the data sample and the requirement of c and x1 being uncorrelated

is insufficient to guarantee consistency with Hypothesis 2.

The intrinsic color as an important feature of SNe Ia may be natually encoded in the pa-

rameters describing their intrinsic properties. The FPCA decomposition using flux ratios in Sec-

tion 3.5.1 can be employed to establish the correlation between intrinsic color and the fb-FPCA

scores. The scatterplot of the color parameters α versus the intrinsic property parameter is shown

in Figure 3.11, together with two Hypothetical models corresponding to the two hypotheses above.

The blue solid horizontal line represents the naive lower envelope corresponding to the line y =

min{α(s)}. The red solid line depicts the lower boundary of the scatterplot which is estimated

by 10% quantile regression. The slop and intercept of the red line are calculated by (b, a) =

argminb,a

∑
s

(
α(s) − f(γ(s)1 )

)
·
(
0.1− 1{x<0}(α

(s) − f(γ(s)1 ) < 0)
)

with f(γ1) = bγ1+a, where

the Heaviside indicator function 1{x<0}(u) is equal to 1 when u < 0 and 0 otherwise. This line is

used to define the γ1 dependent intrinsic color. The vertical distance between the color parameter

α and the intrinsic color αintr is then assumed to be due to interstellar dust reddening, denoted as

αdust = α − αintr. An illustrative example of intrinsic color and interstellar dust property under

Hypothesis 2 are presented using the red dot and black segment in Figure 3.11. Similarly, we

construct the intrinsic color model of ICA under the same hypotheses and it is presented in Sup-

plemental Materials 3.6.2. The corresponding intrinsic color and dust extinction parameters are

given as αica,intr and αica,dust, respectively.

The proposed hypotheses consider two extreme cases of the source of SN Ia color. The naive

horizontal line is defined as the intrinsic color model under Hypothesis 1 such that αintr remain

identical for all SNe Ia regardless of their various spectral feature properties. The α is attributed

entirely to the interstellar dust property diversities, i.e., the statistical distribution of αdust varies

for different sub-Types of SNe Ia. The red edge curve serves as the intrinsic color model under

Hypothesis 2 where the intrinsic color is assumed to be a function of SN intrinsic spectral proper-

ties, whereas the statistical distribution of αdust under Hypothesis 2 is independent of the intrinsic
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Figure 3.11: The color parameters versus intrinsic property parameter γ1. Left: SALT2 (black) and
SALT3 (green) color parameters c versus γ1. Note that the differences are small and the majority
of the SALT2 and SALT3 points overlap in this figure. Middle: SNEMO2 color parameter As

versus γ1. Right: the mb-FPCA color index α versus γ1. The blue solid horizontal line and the
red solid line correspond to the intrinsic color αintr as a function of intrinsic property parameter
γ1 under Hypothesis 1 and 2, respectively. The definitions of αintr and αdust under Hypothesis 2
are shown. The vertical distance between the color parameter α and αintr (the black solid line)
defines the parameter of dust extinction, αdust. The SNe Ia are split into five subgroups according
to the quantile levels 0 ∼ 20%, 20 ∼ 40%, 40 ∼ 60%, 60 ∼ 80%, 80 ∼ 100% of γ1, shown by the
vertical dashed lines, to test the consistency of their statistical distribution.

properties of SNe Ia.

We examine statistical distribution of αdust of SNe Ia with different intrinsic properties under

the two hypotheses using Kolmogorov-Smirnov test. To overcome the problem caused by limited

sample size, we split the SNe Ia into five subgroups according to the quantile levels 0 ∼ 20%, 20 ∼

40%, 40 ∼ 60%, 60 ∼ 80%, 80 ∼ 100% of the intrinsic property parameter γ1 (Figure 3.11) and

treat the SNe Ia in each subgroup as repeated observations of one object since they share similar

intrinsic properties. The distribution of αdust for five subgroups under two hypotheses are shown

in Figure 3.12. The corresponding figure of αica,dust can be found in Supplemental Materials 3.6.2.

The p-values of the Kolmogorov-Smirnov test of αdust are reported in Table 3.1 for each pair

of subgroups under two hypotheses. The upper triangular part (shaded cells) and lower triangular

part of the table report the p-values for the pairwise comparisons between the five subgroups under

Hypothesis 1 and 2, respectively. Under Hypothesis 1, the distribution of each pair of αdust being

identical is rejected at a significance level of 0.05 in most cases, suggesting different dust property
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for different SNe Ia, whereas hypothesis 2 is in agreement with the statistical test. The correspond-

ing table of the Kolmogorov-Smirnov test for the ICA is reported in Supplemental Materials 3.6.2.

Table 3.1: The p-value of Kolmogorov–Smirnov test for two hypotheses. The shaded cells contain
the p-values under Hypothesis 1 and the lower triangular part reports the results under Hypothesis
2. The values in bold font are less than the significance level 0.05.

I II III IV V
I 1.000 0.156 0.004 0.000 0.000
II 0.379 1.000 0.012 0.000 0.000
III 0.475 0.263 1.000 0.030 0.000
IV 0.475 0.449 0.902 1.000 0.001
V 0.710 0.127 0.996 0.463 1.000

3.5.3.2 Dust Extinction Curve from Intrinsic-Color-Removed Surface

As discussed above, the wavelength dependence of the CCRs (ψ(λ) and ψica(λ)) are caused by

a mixture of the effects of dust extinction and intrinsic color. Under Hypothesis 2, we can remove

the intrinsic color dependence quantified by α(s)
intrψ(λ) and α(s)

ica,intrψica(λ) from the data to enhance

the effect of the dust. This leads to the intrinsic-color-corrected spectra, i.e., log
(
y
(s)
dust(λ, t)

)
=
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log
(
y(s)(λ, t)

)
+ α

(s)
intrψ(λ) (or α(s)

ica,intrψica(λ)). The FPCA and ICA can be retrained using the

intrinsic-color-corrected data to deliver a better approximation of the wavelength dependence of

dust extinction. This training process leads to revised CCRs denoted by ψdust(λ) and ψica,dust(λ)

which capture the wavelength dependence of the dust extinction curves (ICE-CE).

Figure 3.13 compares ψ(λ), ψica(λ), ψdust(λ), and ψica,dust(λ) with the CCM extinction law

[2] with RV = 1.5, 5 and 7, with ψ(λ) (or ψica(λ), ψdust(λ), ψica,dust(λ)) re-scaled and vertically

shifted to match the scale of the CCM extinction law with various RV values for a fixed AV of

1. As shown in Figure 3.13, the wavelength dependence of the functions ψica(λ) and ψica,dust(λ)

match very well with for RV = 1.5, but the extinction curves deduced from ψ(λ) and ψdust(λ)

require RV that is significantly larger than 1.5. In fact, ψ(λ) and ψdust(λ) show good consistency

with the CCM extinction laws with RV = 7 and RV = 5, respectively.
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Figure 3.13: The CCRs ψ(λ) and ψica(λ) and their corresponding ICE-ECs ψdust(λ) and
ψica,dust(λ). The black solid lines show the CCM extinction laws [2] with fixed AV = 1 and
various RV = 1.5 (left), 5 (middle), and 7 (right). The red, blue, green, and purple dashed lines
correspond ψ(λ), ψdust(λ), ψica(λ) and ψica,dust(λ), respectively. All the CCRs are scaled and
shifted vertically to match the CCM curves at 5500Å and 4350Å.

3.5.3.3 Intrinsic SED Surface after Dust Extinction Correction

A representation of SNe Ia intrinsic SED surface can be constructed to facilitate supernova

studies and their cosmological application. The procedures above can effectively separate the
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effect due to dust extinction and intrinsic properties and thereby allow us to construct the 2D

extinction free manifold in a straightforward way. This is done by simply applying the CCRs but

with only the portion due to dust extinction to the original data sample to derive a dust-free dataset,

i.e. log
(
y
(s)
intr(λ, t)

)
= log

(
y(s)(λ, t)

)
+α

(s)
dustψ(λ)( or α(s)

ica,dustψica(λ)), and retrain the mb-FPCA

model. The formula of the mb-FPCA model for the extinction-free dataset is expressed as

log
(
y
(s)
intr(λ, t)

)
= ϕ0,intr(λ, t) +

R∑
r=1

β
(s)
intr,rϕintr,r(λ, t) + ϵ

(s)
intr(λ, t), (3.8)

where {ϕr,intr(λ, t)}Rr=0 represent the universal averaged and principal component surfaces of the

extinction-free SED data, {β(s)
r,intr}Rr=1 are SN specific scores and ϵ(s)intr(λ, t) is the noise term. See

the discussions following equation (3.3) and (3.4) for the meaning and properties of the notations

in equation (3.8). In principle, the data set thus corrected by the CCRs may still be contaminated

by the effect of dust extinction because the mean component and the eigenvectors from the PCA

and ICAs are affected by interstellar dust. An iterative procedure may be devised to alleviate the

remaining effect of dust extinction. However, owning to the small size of the data sample we do not

pursue this further. Nonetheless, as shown in Figure 3.14, the scores of the first PCA component of

the intrinsic surfaces (β1,intr) do show strong correlation with γ1 and weak correlations with αdust,

which indicates that the intrinsic SED surface we have constructed to be reasonable approximations

already.

Note that since we apply two different ICE-ECs to correct for the effect due to dust extinction,

we finally derive two different intrinsic SED surface training sets and accordingly two different

averaged and principal component spectrophotometric time series. The mean surfaces and eigen-

surfaces of the dust-free spectrophotometric data for data set corrected by the CCRs of the FPCA

and ICA are available for download from the online document.

3.5.4 Final Dust Extinction Relation

With the intrinsic SED and its representitave templates, we can derive the dust extinction of

each SN Ia by matching any observed spectra with the intrinsic SED manifold. As the wavelength
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Figure 3.14: The first mb-FPCA score of the intrinsic SED surfaces βintr,1 versus γ1, αdust and
αica,dust. The black and green points represent βintr,1 associated with ψ(λ) corrected and ψica(λ)
corrected intrinsic SED surfaces, respectively. The black and green dashed lines are regression
lines. The score of the first PCA component is found to be tightly correlated with the intrinsic
spectral property measure γ1, and is uncorrelated with the dust extinction indices deduced for each
SN.

dependence of the extinction curves we have derived agrees with the CCM extinction law, we will

adopt the CCM extinction law [2] with its RV and AV parameterization for this purpose. The

formula is given as

(R
(s)
V , A

(s)
V ) = argmin

R
(s)
V ,A

(s)
V ,c(s)

{
log
(
y(s)(λ, t)

)
− 0.4 log10 e · A

(s)
V CCM(λ,R

(s)
V )−

ϕ0,intr(λ, t)− Σrβ
(s)
r,intrϕr,intr(λ, t) + c(s)

}2
,

(3.9)

where the factor log10 e accounts for the difference between log and log10, an additional offset

c(s) is allowed for each SN. The intrinsic surfaces {ϕr,intr}Rr=0 are taken to be ψ(λ) corrected

ones or ψica(λ) corrected ones and thereby we have two groups of RV and AV estimation. When

solving the optimization problem (3.9), we restrict the parameter RV lying within the range (0, 8)

and reject the samples that deliver an estimation on or beyond boundaries. The distributions of

AV and RV are shown in Figure 3.15. The two intrinsic surfaces lead to two different estimates

of RV and AV , this difference is largely caused by the systematic errors involved in the ICE-

ECs, especially at wavelengths redder than ∼ 7000Å. The two ICE-ECs can be discriminated

by examining the values of some very well observed SNe Ia with significant extinction and with
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extensive wavelength and time coverage that allow for the AV and RV values to be determined

directly from observational data. For example, the RV value is equal to 1.4±0.1 for SN 2014J with

AV = 1.85 ± 0.11 based on optical to NIR observations [92]. More examples of low RV values

can be found in e.g., [93, 94, 95, 96]. It is extremely encouraging that the RV values derived

from the ICA decomposition is consistent with these observations. If the ICA decomposition does

provide a reasonable way of measuring the extinction properties of SNe Ia, we may also infer from

Figure 3.15 that there is a general trend that the RV values tend to be larger for SNe with larger

AV . Such a trend, if borne out with more data, is certainly important for cosmological applications

of SNe Ia.
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Figure 3.15: The distribution ofAV andRV estimated with equation (3.9) using the ψ(λ) corrected
intrinsic SED surface (top) and ψica(λ) corrected intrinsic SED surface (bottom). From left to right,
the columns are histograms of AV , RV , and the density plots of RV versus AV , only the SNe with
dust parameters α(s)

dust (or α(s)
ica,dust) above the 20% quantile level of their respective distributions

are drawn. The scaled density curves are overplotted on histograms using dashed curves.

61



3.6 Supplemental Materials

3.6.1 FPCA Model Training Algorithm

This section presents the details of the model training algorithm in Section 3.3.2 for the flux-

based functional principal component analysis (fb-FPCA). Similar implementation applies to the

mb-FPCA model.

3.6.1.1 Learning the Mean Surface

For the spectrophotometric observation of the s-th supernova at time (phase) t(s)j , let W(s)

j,I
(s)
j ×p

=(
W(λ

(s)
1 ),W(λ

(s)
2 ), · · · ,W(λ

(s)

I
(s)
j

)
)T be the I(s)j ×pwavelet basis matrix evaluated at the sequence

of observation wavelength (λ
(s)
1 , . . . , λ

(s)

I
(s)
j

) and B
(s)
j,q×1 = B(t

(s)
j ) be the spline basis vector. The

fb-FPCA model (3.5) for this observation in matrix format is

y
(s)
j = W

(s)
j Θ0B

(s)
j +

R∑
r=1

β(s)
r W

(s)
j ΘrB

(s)
j +V

(s)
j ϵ

(s)
j , (3.10)

where y
(s)
j is a spectra observation vector with length I

(s)
j , ϵ(s)j is a mean-zero random vector

of length I(s)j with identity covariance matrix, and V
(s)
j = diag{σ(s)

1 , · · · , σ(s)

I
(s)
j

}. According to

the construction of the functional principal component model (3.5), the last two terms in Equa-

tion (3.10) have zero expectations. The (weighted) least squares criterion guarantees a consistent

estimation of the coefficient matrix Θ0 of the mean surface and is presented below,

min
Θ0

S∑
s=1

J(s)∑
j=1

1

I
(s)
j

∥(V(s)
j )−1

(
y
(s)
j −W

(s)
j Θ0B

(s)
j

)
∥22︸ ︷︷ ︸

I

+

p∑
m=1

η∥Θm
0 ∥︸ ︷︷ ︸

II

+ ρ tr
(
Θ0ΩΘ⊤

0

)︸ ︷︷ ︸
III

, (3.11)

where Θm
0 represents the m-th row of the matrix Θ0 and Ωq×q =

∫
B′′(t)B′′(t)Tdt. The term I

is the weighted least square criterion. The term II is the group lasso penalty which encourages

row sparsity of the coefficient matrix Θ0 and thereby facilitates the selection of the over-complete

wavelet basis. With this regularization, important spectral features can be identified, whereas the

noise gets filtered out. The term III is the roughness penalty to encourage the smooth evolution of
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the mean surface along the time (phase) dimension. The smoothness is achieved by controlling the

norm of the second-order derivative of the mean function along the time dimension.

The optimization problem (3.11) is solved by the fast iterative shrinkage-thresholding algo-

rithm [80, FISTA]. The tunning parameters η and ρ are selected by K-fold cross-validation. More

details of the algorithm is discussed below. For the simplicity of notation, we assume the weighting

matrix V
(s)−1
j is absorbed by y

(s)
j and W

(s)
j .

Let L (Θ0) = I + III be the summation of the smooth and differentiable terms of (3.11), the

gradient of L (Θ0) with respect to matrix Θ0 is given by

∇Θ0L (Θ0) = −2
S∑

s=1

J(s)∑
j=1

1

I
(s)
j

W
(s)⊤
j

(
y
(s)
j −W

(s)
j Θ0B

(s)
j

)
B

(s)⊤
j + 2ρΘ0Ω. (3.12)

FISTA updates Θ0 along the negative gradient by Θ0 = Θ0−γ∇Θ0L (Θ0), and meanwhile induces

sparsity (incurred by II) via applying the soft-thresholding operator to the updated Θ0. The rows

of Θ0 with relatively small norm are set to be exact zero, and the rows with large norm shrinks

towards zero. The expression for the soft-thresholding operator is

Θm
0 =

(
1− c

∥Θm
0 ∥

)
+

Θm
0 , (3.13)

where c is a constant depending on the algorithm step size and the tunning parameter η. The

notation (·)+ standards for the operation that (x)+ = x if x > 0 and (x)+ = 0 otherwise. The

algorithm for estimating the mean surface is presented in Algorithm 3.

3.6.1.2 Learning the Principal Component Surfaces

Suppose Θ̂0 is the optimizer of the optimization problem (3.11), the corresponding mean sur-

face is ϕ̂0(λ, t) = W(λ)Θ̂0B(t). We subtract the mean surface from the observed spectra y
(s)
j and

denote the residual spectra as ỹ(s)
j , i.e. ỹ(s)

j = y
(s)
j −W

(s)
j Θ̂0B

(s)
j . The principal component sur-

faces are estimated based on the residual spectra. With a fixed R, the coefficient matrices {Θr}Rr=1

and the principal component scores {β(s)}Ss=1 can be estimated by solving the optimization prob-
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Algorithm 3: Learning the Mean Surface ϕ0(λ, t).
Require: Stepsize: γ. Weight paramerter k1 = 1.
Require: Initialization: the coefficient matrix of mean spectrophotometric time series Θ and the

intermediate parameter Θ′. (We suppress the subscript for notation simplicity.)
1: while not converged do
2: Update iteration t← t+ 1.
3: Calculate gradient at iteration t using equation (3.12): gt ← ∇ΘL (Θ′

t).
4: Update matrix Θt = Θ′

t + γ · gt and apply soft-thresholding operator to Θt using
equation (3.13).

5: kt+1 ←
(
1 +

√
1 + 4k2t

)
/2.

6: Update the intermediate parameter Θ′
t+1 ← Θt + (kt − 1) /kt+1 · (Θt −Θt−1).

7: end while
8: return Θ. The mean function is then calculated by ϕ0(λ, t) = W(λ)⊤ΘB(t).

lem, which is based on (3.6),

min
{Θr}Rr=1,{β

(s)}Ss=1

S∑
s=1

J(s)∑
j=1

1

I
(s)
j

∥ỹ(s)
j −W

(s)
j ⊗Bs⊤

j Θβ(s)∥22 + Pη′ (Θ) + ρ′tr[Θ⊤(I⊗Ω)Θ],

subject to Θ⊤Θ = IR.

(3.14)

where Θpq×R =
(
vec(Θ1), . . . , vec(ΘR)

)
and β(s) =

(
β
(s)
1 , . . . β

(s)
R

)
. The penalty term Pη′

(
Θ
)

encourages sparse wavelet representation of spectral features. Specifically, Pη′ (Θ) =
∑p

m=1 η
′∥Θm∥

with Θm being the block matrix corresponding to the (m−1)q+1, · · · ,mq-th rows of Θ. A rough-

ness penalty tr[Θ⊤(I⊗Ω)Θ] is also included to encourage smooth time evolution of the component

surfaces. The tuning parameter η′ is selected by K-fold cross-validation.

Solving the optimization (3.14) is challenging due to the following reasons. The algorithm

could potentially have a high computational cost at each iteration, especially for a large dataset, be-

cause the wavelet basis is over-complete and high-dimensional. Meanwhile, the algorithm should

respect the orthonormality constraint Θ⊤Θ = IR and the sparsity-inducing penalty Pη′ .

For efficient optimization searching, we use an efficient first-order stochastic gradient algorithm

called Adam [28]. The search is combined with a manifold optimization technique [97] to respect
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the orthonormality constraint Θ⊤Θ = IR. The sparse-inducing soft-thresholding (3.13) will also

be applied.

The algorithm proceeds in a way that the parameters {Θr}Rr=1 and {β(s)}Ss=1 get updated alter-

natively until convergence. Given {β(s)}Ss=1, a random supernova is drawn to compute the gradient

with respect to Θ. Suppose the sampled supernova is indexed by s, and J (Θ) is the summation

of the first and third (smooth and differentiable) term of (3.14). Its gradient with respect to Θ is

∇ΘJ (Θ) =
J(s)∑
j=1

1

I
(s)
j

(
W

(s)
j ⊗B

(s)⊤
j

)⊤ (
ỹ
(s)
j −W

(s)
j ⊗B

(s)⊤
j Θβ(s)

)
β(s)⊤ + 2ρ′(I⊗Ω)Θ.

(3.15)

In Adam, this stochastic gradient will be adjusted by historical momentum and volatility for

each element of the parameter matrix Θ. The adjusted gradient matrix is denoted as D, and its

negative will be employed as an update direction for Θ. Due to the orthonormal constraint on

Θ, the matrix Θ belongs to a special matrix manifold called Stiefel manifold. The geometrical

structure of the manifold can be further exploited for efficient update. We project the update

direction D onto the tangent space of the Stiefel manifold via

Proj (D) = D−Θ
Θ⊤D+D⊤Θ

2
. (3.16)

The matrix Θ gets updated along the negative of the projected direction, and then the sparsity

inducing soft-thresholding operator (3.13) in applied. Finally, the updated Θ is retracted to the

Stiefel manifold using QR decomposition, which ensures Θ⊤Θ = IR at the end of each iteration.

Given Θ, the scores {β(s)}Ss=1 are updated according to the weighted least squares criterion,

i.e.

β̂
(s)

= argmin
J(s)∑
j=1

1

I
(s)
j

∥ỹ(s)
j −W

(s)
j ⊗B

(s)⊤
j Θβ(s)∥2. (3.17)

The algorithm iteratively updates the two groups of parameters until convergence. Suppose Θ̂ is

the solution of the optimization problem (3.14), the resulting principal component surfaces are
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ϕ̂r(λ, t) = W(λ)⊤ ⊗B(t)⊤Θ̂r, where Θ̂r is the rth column of the matrix Θ̂ for r = 1, . . . , R. We

summarize the procedure in Algorithm 4.

Algorithm 4: Learning the Principal Component Surfaces ϕr(λ, t), r = 1, . . . , R.
Require: Stepsize: γ; Exponential decay rates: β1 = 0.9 and β2 = 0.999; ϵ = 10−8.
Require: Initialization: Θ0, m0 and v0.

1: while not converged do
2: Update iteration t← t+ 1.
3: Calculate unbiased gradient at iteration t using equation (3.15): gt ← S · ∇ΘJ (Θt−1).
4: Update the biased first and second raw moment estimate:

mt ← mt−1 + (1− β1) · gt,
vt ← vt−1 + (1− β2) · gt ⊙ gt (elementwise product).

5: Correct the bias for the estimates above

m′
t ← mt/(1− βt

1),

v′t ← vt/(1− βt
2).

6: Define Dt = m′
t/
(√

v′t + ϵ
)

(with elementwise square-root and division) and project it
onto the tagent space of Θt−1 using equation (3.16).

7: Update parameters Θt ← Θt−1 − γ · Proj(Dt).
8: Apply soft-thresholding operator towards Θt using equation (3.13) and then retract the

resulting parameters to Stiefel manifold using QR decomposition.
9: Update scores {β(s)

t }Ss=1 using equation (3.17).
10: end while
11: return Θt and {β(s)}Ss=1

3.6.2 Independent Component Analysis Related Results

In Section 3.5.3, we formulated two hypothesis about the supernova color composition and

presented the intrinsic color models under two hypotheses based on CCR ψ(λ). This section

presents the parallel results of the development of the two intrinsic color models and hypothesis

testing results related with ψica(λ).
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The definition of color parameter corresponding to ψica(λ) is given by

α
(s)
ica = argmin

α
(s)
ica

{
log
(
y(s)(λ, t)

)
−
[
ϕ0(λ, t)− α(s)

icaψica(λ)
]}2

.

Figure 3.16 shows the scatterplot of the color parameter αica versus intrinsic property parameter

γ1 and the correspondingly developed two hypotheses are highlighted with blue and red solid lines.
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Figure 3.16: Same as in Figure 3.11, but for ICA

The distributions of αica,dust for five subgroups splited by the quantile levels of γ1 under two

hypotheses are plotted in Figure 3.17.
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Figure 3.17: Same as in Figure 3.12, but for ICA.
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The p-values of Kolmogorov-Smirnov test performed between each pair of five subgroups un-

der two hypotheses are reported in Table 3.2.

Table 3.2: The p-value of Kolmogorov–Smirnov test for two hypotheses of αica,dust. Same as in
Table 3.1, but for ICA.

I II III IV V
I 1.000 0.163 0.005 0.000 0.000
II 0.616 1.000 0.012 0.000 0.000
III 0.426 0.140 1.000 0.012 0.000
IV 0.230 0.068 0.686 1.000 0.000
V 0.285 0.062 0.942 0.450 1.000
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4. SUMMARY AND CONCLUSIONS

Functional data analysis is concerned with the development of theoretical and applicable tools

for statistical analysis of the functional data.

As the core concept in functional data analysis, covariance operator generalizes the definition

of covariance matrix to depict the interdependence and the computation cost to construct its em-

pirical estimate grows overwhelming as the data size increases. In the first part of this thesis,

we studied the randomized algorithms to estimate the covariance operator by forming a sketch of

much smaller size by subsampling according to some probability distributions. The optimal sam-

pling probability that minimizes the expected squared Hilbert-Schmidt norm of the subsampling

error is determined by the norm of each function. The concentration bounds are developed for both

sampling probabilities, showing that under some regularity conditions, the target precision can be

guaranteed with high probability. The mathematical accuracy and computational efficiency have

been elaborated in numerical experiments and real word problems.

In the second part, we presented two empirical statistical models of SN Ia spectrophotometric

data: flux-based FPCA (fb-FPCA) and magnitude-based FPCA (mb-FPCA). The construction of

the models utilizes FPCA and the entire process is developed in a purely data-driven fashion and the

use of the stochastic first-order gradient descent optimization method improves the computational

efficiency. With these models, the spectral-temporal surface of SNe Ia with non-uniformly sam-

pled observations can be evaluated at any desired wavelength and phase, and it can be expressed

by a linear combination of multiple components whose scores are regarded as SN Ia low-rank

representation.

To distinguish interstellar dust extinction from the intrinsic color properties of SNe Ia and to

quantify them separately, a novel procedure is developed to extract the independent physical pro-

cesses involved in the observed spectral data of SNe Ia. The derivation of the parameters of the

intrinsic property relies on the scores of the extinction free flux ratios, whose construction involves

the estimation of the spectrum at B-band maximum of each SN and division of the spectropho-
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tometric time series by the spectrum at maximum. The flux ratio surface is independent of the

effect of interstellar dust extinction and enables quantitative analyses of the intrinsic properties of

SN Ia. We constructed two CCRs by taking the time-average and smoothing the wavelength de-

pendence of the first components of the FPCA and ICA decompositions. They are used to define

the wavelength dependence of interstellar dust extinction and to derive the color parameters of the

SNe.

The color parameters are separated into a component of SN Ia intrinsic color and a component

of interstellar dust reddening. This is achieved by investigating the relation between the color

parameters and intrinsic property parameters derived from flux ratios. By removing the supernova

intrinsic color dependence, we derived two ICE-ECs to account for the interstellar dust properties

and the ICE-EC of the ICA shows excellent agreement with the CCM extinction law [2] with

RV ≲ 2.0 but the counterpart of FPCA shows larger RV value inconsistent with well observed

SNe with multi-band data. Finally, after correcting the effect due to dust extinction, we are able to

construct the intrinsic SED surfaces of SNe Ia. This intrinsic SED surface can be used to derive

the essential extinction properties of interstellar dust along the line-of-sight as well as the principle

components of the intrinsic properties of the SNe Ia.

For the future work, more statistical inference properties such as asymptotic behavior of ran-

domized estimators remain to be investigated for the static data. In the dynamic scenario where

streaming data continuously arrives, the design of the randomized algorithm should takes more

practical limitation into consideration. The idea of randomization can also be applied to more

functional data analysis methods and large-scale astronomical dataset.
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