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ABSTRACT 

 

Many large and small companies have studied and applied autonomous driving systems 

to the real world. However, much of it is still lacking. In fact, it is easy to find news of 

accidents of vehicles with autonomous driving technology. Research related to 

autonomous driving is directly related to human life, so no error should be allowed, and 

much research effort is needed yet. In order to meet the three significant aspects of 

current self-driving research: driving accuracy, safety, and comfort, we have constructed 

three topics that can cover all four essential elements of self-driving cars, which are 

perception, path planning, decision making, and controller. In this research, we will 

propose the novel approached methods to solve the current issues of autonomous 

vehicles and discuss the simulation results which were conducted through our newly 

implemented simulation environment. Through this, we will show our novel methods 

have acceptable performance and have breakthrough ideas that others didn't consider yet 

that can contribute to the future autonomous driving research area. 
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1. INTRODUCTION  

 

1.1. Autonomous Vehicles 

An autonomous vehicle (a self-driving car) is a motor vehicle capable of 

operating on its own without the operation of a driver or passenger. The concept of 

autonomous vehicles was proposed around Mercedes in the 1960s, and rudimentary 

research began in the mid to late 1970s. Initially, it did not cross the centerline or lane at 

test driving sites where there were no obstacles, but in the 1990s, autonomous driving 

areas where obstacles were involved began to be studied in earnest as computer 

judgment technology developed significantly. Furthermore, research on autonomous 

driving technologies using deep learning has progressed rapidly in the 2010s and has 

been limited to commercial vehicles. Currently, tech giants, startups, and automakers are 

making large investments in the development of self-driving cars, and prototype self-

driving cars are being tested on public roads and highways around the world, including 

the United States, Canada, Europe, Korea, and Japan. In line with companies' 

development efforts, the state of California passed a bill on February 26, 2018, to allow 

self-driving cars to be tested on public roads without human drivers on board. Self-

driving cars, no longer the technology of the future, are preparing for a tremendous 

change in the ecosystem of the traditional automobile industry, as well as the structure of 

the human lifestyle and service industry, as well as the design and national policy of the 

entire city. 
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In March 2004, self-driving cars were developed in earnest, starting with the 

unmanned car race held in the Mojave Desert under the auspices of America's main 

military-research Agency (DARPA). Researchers from Stanford and Carnegie Mellon 

University, who participated in the race, are leading self-driving car projects by Uber, 

Tesla, and startup companies, including the autonomous car research institute 

established by Google in 2009. With innovation in the sensor sector in 2005, computer 

vision capabilities have improved rapidly. It also achieved great results in the field of 

artificial intelligence systems through deep learning using big data. Currently, prototype 

self-driving cars are rapidly improving performance with advances in improved sensor 

processing technology, adaptive algorithms, high-resolution maps, Vehicle to Vehicle 

(V2V), and Vehicle to Infrastructure (V2I) communication technologies. Technically, 

autonomous driving in a controlled environment may seem to be already in its final 

stages. 

In autonomous vehicles, it is important to collect various information that exists 

around cars because cars, not people, have to make decisions necessary to drive. Based 

on this information, the car makes its own judgment and drives itself. In self-driving 

cars, sensors will be able to collect information from people around them. Sensors are 

Figure 1.1 Changes in the computing machine of the autonomous vehicle over time. 
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technologies that replace human vision and hearing and are types of sensors that are 

installed in vehicles with various cameras, radar, lidar, and ultrasound. Sensors installed 

inside the vehicle are divided into optical-based sensors and non-optical-based sensors. 

Optical-based sensors are mainly used to recognize topography and distance, including 

cameras and laser scanners (LiDARs). Non-optical-based sensors are often used for 

distance measurements, including radar and ultrasound. Self-driving cars, like humans, 

collect information in response to dynamic driving environments, perform various 

algorithms to make judgments about situations, and formulate strategies. These 

strategies are quickly adapted to changes in the driving environment and are carried out 

through vehicle control such as steering, acceleration, and deceleration. Thus, the 

technology of self-driving cars can be classified around cognitive, judgmental, and 

control functions, all of which operate error-free, enabling stable driving, with artificial 

intelligence systems and software playing a pivotal role. 

Figure 1.2 Sensors for autonomous vehicle 
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The Society of Automotive Engineers (SAE) provided a six-step guide to 

automation levels for self-driving cars in 2014. [1] This distinction is now widely used 

by officials throughout the self-driving car industry. Phase 0 is the level at which 

automation-related cars are not applied. Phase 1 refers to the level of motor vehicles 

currently applied with driver assistance technologies. Phase 2 is a partial automation 

phase, which is the level of automation with an advanced Auto Driver Assistant System 

(ADAS) technology. Phase 3 is a stage of self-driving under limited conditions, in which 

drivers must be always on standby in case of unexpected situations. Phase 4 is the 

highest automation phase that does not require any devices needed for human driving, 

Figure 1.3 SAE J3016 Levels of driving automation. Reprinted from [1] 
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and there is a limit to driving only in certain areas and at certain speeds. Phase 5 is a 

fully automated stage, which means automation that is beyond the limits of region and 

speed while humans do not have to pay any attention to the driving of cars. Currently, 

the technology level of self-driving cars is in the process of moving from phase 3 to 

phase 4, and it is believed that only when the automation of phase 4 and 5 takes place 

will it enter the technology level that can provide the aforementioned benefits to us. 

Table 1.1 2020 2020 Disengagement Reports, State of California DMV, 
Autonomous vehicle manufacturers that are testing vehicles in the Autonomous 
Vehicle Tester (AVT) Program and AVT Driverless Program are required to 
submit annual reports to share how often their vehicles disengaged from 
autonomous mode during tests (whether because of technology failure or situations 
requiring the test driver/operator to take manual control of the vehicle to operate 
safely). 

Company 
Number of 

tested vehicles 
Total 

Driven Mileage 
Total 

Disengagement 
Disengagement 

per 1,000mi 
Waymo LLC 239 628,838.50 21 0.03 
CRUISE LLC 137 770,049.26 27 0.04 
AutoX Technologies, Inc 8 40,734.00 2 0.05 
PONY.AI, INC. 29 225,496.00 21 0.09 
WeRide Corp 9 13,014.00 2 0.15 
DiDi Research America LLC 12 10,401.49 2 0.19 
Nuro, Inc 20 55,369.84 11 0.20 
Zoox, Inc 45 102,521.00 63 0.61 
Aurora Innovation, Inc. 12 12,200.78 37 3.03 
Lyft 19 32,731.36 123 3.76 
Gatik AI Inc. 3 2,352.00 11 4.68 
Apple Inc. 69 18,805.30 130 6.91 
Nissan North America, INC 4 394.50 4 10.14 
BMW of North America 5 122.00 3 24.59 
AImotive Inc. 3 2,987.00 113 37.83 
Mercedes Benz R&D North America, Inc 10 29,983.80 1167 38.92 
NVIDIA 7 3,033.00 125 41.21 
QUALCOMM TECHNOLOGIES, INC. 3 1,727.00 90 52.11 
SF Motors, Inc. 2 874.69 61 69.74 
EasyMile 1 424.00 128 301.89 
Toyota Research Institute 7 2,875.00 1215 422.61 
Telenav, Inc. 1 4.00 2 500.00 
Udelv, Inc 2 66.00 49 742.42 
Ridecell Inc 1 147.63 189 1280.23 
Valeo North America Inc. 2 49.00 99 2020.41 
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Many large and small companies have studied and applied autonomous driving 

systems to the real world. Many people think that self-driving technology research has 

been conducted a lot, but in reality, much of it is still lacking. In fact, it is easy to find 

news of accidents of vehicles with autonomous driving technology. And, according to 

the Autonomous vehicles’ disengagement report provided by the California DMV [2], 

many self-driving car companies test their self-driving cars and see how often the self-

driving mode is disengaged by various factors. The indicators also show that research on 

autonomous driving has not yet been completed and that there are many studies left to be 

carried out in the future. As research related to autonomous driving is absolutely directly 

related to human life, it is a very important and large part of our human future, so no 

error should be allowed, and much research effort is needed yet. 

In this research, we would like to introduce a number of ways to achieve great 

progress in the perfection of autonomous vehicle systems directly connected to human 

life, as mentioned earlier. To this end, this paper seeks to contribute to perfection in 

three aspects: 1. Safety, 2. Driving accuracy, and 3. Driving comfort. 

 

1.2. Objectives of this study 

This research consists largely of three parts, which cover all four of these sub-

modules of driverless automotive systems while also satisfying Safety, Driving 

Accuracy, and Driving Comfort. 
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1.2.1. Perception 

It is a step in which data from cognitive sensors such as cameras, LiDAR, Radar, 

etc. are used to obtain information about lanes and surrounding objects. This is a module 

that acts as a person's vision, hearing, or touch. 

 

1.2.2. Path Planning 

It is a stage in which all paths for a vehicle to be driven are pre-planned using 

information passed by the perception module. All paths that the vehicle can travel will 

be created, and one of these paths can be selected in the next step, the decision maker. 

 

1.2.3. Decision maker 

It is a module that aggregates all the information previously organized in the 

perception module and path planning module to determine the path and speed of the 

vehicle. At this point, it determines how quickly or slowly the perceived objects can be 

avoided in some way. This is exactly the case with the human brain. 

 

1.2.4. Motion controller 

It is a module that calculates the steering wheel angle, throttle, and brake values 

at each moment in order to actually move the vehicle according to the path and speed 

determined by the decision maker. Calculated values will be transmitted to the vehicle 

through CAN bus. 
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1.3. Summary of research topics 

This research is a study of self-driving related fields, which still have a lot of 

deficiencies, divided into following three major topics. 

Table 1.2 Research topics 

 

1.3.1. Topic 1 

Proposes the early warning based complementary system that would be able to 

activate collision avoidance control sequence when machine vision algorithms fail to 

detect and classify objects. The approach is camera-based and utilizes image signal 

processing algorithms based on the concept of critical slowing down. 

 

1.3.2. Topic 2 

Seek to address the controller role when a given path is established from the path 

planning stage. Introduce a new way to take advantage of the Pure Pursuit Controller, 

and to make up for the vulnerability with the newly designed Automatic Steering Gears 

for Pure Pursuit method. 

 

Topics Descriptions 

Topic 1 Early Warnings Signals of Unexpected Path Obstructions for Autonomous 

Vehicle Controls 

Topic 2 Steering Gears Configurations in Pure Pursuit Method for Autonomous 

Ground Vehicles 

Topic 3 Path Optimizations for Autonomous Ground Vehicles Controls 
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1.3.3. Topic 3 

To compensate for the weakness that vehicle controllers are vulnerable to drastic 

road curvature changes, we propose a new method of smoothing recognized roads. Just 

like designing the railway path to avoid sharp changes in curvature, we choose to design 

a path for control of automatic ground vehicles using a transition curve. 

 

1.4. References 

[1] SAE International, SAE International Releases Updated Visual Chart for Its 

“Levels of Driving Automation” Standard for Self-Driving. 

https://www.sae.org/news/press-room/2018/12/sae-international-releases-updated-

visual-chart-for-its-%E2%80%9Clevels-of-driving-automation%E2%80%9D-

standard-for-self-driving-vehicles, Accessed Feb. 20, 2022 

[2] State of California DMV, 2020 Disengagement Report. 

https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-

vehicles/disengagement-reports/ 
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2. COMPLEMENTARY EARLY WARNING SIGNALS FOR OBJECT DETECTION 

FAILURES OF AUTONOMOUS VEHICLE CONTROLS 

 

2.1. Introduction 

On May 6, 2016, Joshua Brown, a 40 years old man from Ohio, was killed when 

his Tesla Model S failed to detect a semi-trailer truck turning across its path and collided 

with the side of the truck [1]. At the time of the accident the vehicle was operated by 

Autopilot, a computer-assist mode available on the Model S. Even though Tesla Motors 

was ultimately cleared of any wrongdoing, the crash has since threatened to sidetrack the 

whole industry effort for advancing vehicle automation. Specifically, the investigation 

report from the National Highway Transportation Safety Agency (NHTSA) ironically 

highlighted that “Autopilot requires full driver engagement at all times!” 

Since the fatal incident in 2016, Tesla Autopilot have been involved in two other 

fatalities in which the driver was killed and the Autopilot mode was confirmed to be 

engaged at the time of collision – one more fatal collision with turning semi-trailer 

trucks in Florida, and a fatal collision with a median barrier in California. The first 

collision occurred on March 23, 2018, in Mountain View, California with a Tesla Model 

X. The vehicle was following a lead car, and as the path of the lead car veered right, the 

Model X stopped following and instead accelerated toward a median barrier, resulting in 

a fatal collision [2]. The second collision occurred on March 1, 2019, in Delray Beach, 

Florida when a Tesla Model 3 also failed to detect a semi-trailer truck turning across its 

path and collided with the side of the truck. In this incident, the National Transportation 
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Safety Board (NTSB) released clear findings that “the car’s sensors weren’t designed to 

identify the side of the truck and, therefore, didn’t slow the car”. 

In addition to the three fatal crashes, some vehicle owners have shared personal 

stories over social media claiming to have been in collisions caused by a failure of the 

autopilot system to detect objects. One California driver claims her autonomous vehicle 

collided with a parked police vehicle while autopilot was engaged. Another Utah driver 

claims to have collided with a fire hydrant while autopilot was engaged [3]. For its part, 

Tesla Motors emphasizes in its user manual that collisions with stationary objects while 

traveling over 50 mph are possible based on current design, so drivers should stay 

attentive and prepared throughout their drive for these types of scenarios. The Model S 

user manual states “Traffic-Aware Cruise Control cannot detect all objects and, 

especially in situations when you are driving over 50 mph (80 km/h), may not 

brake/decelerate when a vehicle or object is only partially in the driving lane or when a 

vehicle you are following moves out of your driving path and a stationary or slow-

moving vehicle or object is in front of you” (Tesla Model S 2019). It is apparent that the 

current object detection methods are capable of failure, and there is room for 

improvements to be made. 

In fact, there is a fundamental underlying issue at the root of the problem. When 

vehicles travel at higher speeds relevant driving environment extends beyond what 

LiDAR and long-range radar sensors can effectively perceive in presence of noisy 

backgrounds. Cameras can see further, but the obtained images are not well suited for 
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training machine vision object detection and classification algorithms. This is 

particularly problematic for objects that laterally enter the field of camera’s vision. 

Geirhos at al. [4] carried out comparison of human vs. deep neural networks 

(DNNs) object recognition robustness for image degradations. According to their study, 

DNN is extremely vulnerable to small changes in the operating environment and image 

file corruption, as well as DNN is very easily affected by random pixel disturbances 

compared to humans. The performance of DNN reduced rapidly as noise and distortion 

increased, compared with human cognitive abilities. 

In fact, in autonomous driving applications image distortions occur very 

frequently, especially during driving in high speeds. This image distortion and the lack 

of robustness represents a serious limitation of object detection technology, which is 

now widely used for autonomous driving. More accurate training data can perhaps 

improve the detection, but these data are not easy to collect in real driving situations. 

Driving environment is dynamic and prone to constant changes; a driver may 

expect vehicles to cross his/her path in a variety of ways for a variety of reasons, many 

of which may be unexpected. Human attention to potential hazards is triggered by early 

warning signals; the events that indicate tipping points after which the environment is 

expected to suddenly change. In context of data analysis, these tipping points can be any 

number of statistical indicators; critical points, sharp changes in mean or variance values 

or their differentials, the introduction of new system elements, or other signals that the 

environment is on the brink of change. Early warning signals provide an additional level 
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of security to the driving environment, predicting collision events far enough in advance 

that corrective action can be taken. 

In this paper we hypothesize that the risk assessment methods based on the 

concept of critical slowing down when applied to image processing could improve the 

set of early warning signals available to autonomous vehicles to detect impending 

vehicle collisions, more specifically unexpected occurrence of lateral obstruction objects 

within the relevant driving environment.  The early warnings method is presented in the 

Methodology section of this paper, with the results of the experimental analysis 

following. 

 

2.2. Background 

In autonomous driving numerous sensors provide the data inputs necessary for 

the vehicle to sense its surrounding environment. One of the primary means by which 

autonomous vehicles sense their environments is by object detection and tracking. 

A common method of image detection used for machine vision is a convolutional 

neural network, or CNN, or a region convolutional neural network, or R-CNN. These 

methods detect objects and draw boundary boxes around detected objects to localize the 

object within the source image [5]. R-CNN, as well as its variants Fast R-CNN and 

Faster R-CNN, is regarded as one of the most efficient means of object detection. R-

CNN generates 2,000 regions within an image to search using selective search 

algorithms. From there, CNN methods are applied to extract features and classify object 

presences. R-CNN has a speed advantage over CNN due to its limited number of regions 



 

14 

 

to search, but it is still a relatively slow method of object detection. Fast R-CNN flips the 

first two steps of the R-CNN process; instead of first generating regions and then feeding 

them to a CNN processor, the fast R-CNN process feeds a source image to a CNN 

processor to form a convolutional feature map, and then uses that feature map to identify 

proposal regions. Faster R-CNN works similarly to fast R-CNN, but rather than finding 

region proposals through selective search, the program uses machine learning to learn 

how to predict region proposals. As a result, this method can detect objects in as little as 

0.2 seconds, making it a realistic method to use for real-time driving object detection 

[5][6][7]. 

Lefèvre et al [8] provide a survey of the existing methods of motion prediction 

and risk assessment for intelligent vehicles in 2014. The survey classified three types of 

motion models utilized by autonomous vehicles to predict the behavior of other drivers 

and avoid collisions: physics-based models, maneuver-based models, and interaction-

aware models. However, in all three types of models one assumes that the object is 

identified. 

Physics-based models have been studied extensively, and they are some of the 

most common models used today for collision risk estimation. However, they are 

simplistic models which can predict motion behavior no more than a second in advance, 

and they cannot predict changes in vehicle motion as a result of maneuvers or external 

factors [8][9][10]. Maneuver-based models build off of physics-based models by 

considering the potential future motions of a vehicle based on the maneuvers that a 

driver intends to perform, independent of maneuvers performed by other vehicles [8]. It 
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considers changes in vehicle behavior as a result of maneuvers, such as a change in 

direction or slowing down as a result of a turn [11][12]. 

Maneuver-based models suffer limitations for their assumption that vehicles 

operate independently. Instead, vehicles and drivers interact with one another on the 

roadway, and one driver’s maneuvers will impact another’s [13][14]. Ignoring these 

effects results in inaccurate risk estimations. Interaction-aware models resolve the 

deficiencies in the maneuver-based models, considering the inter-dependencies between 

vehicle maneuvers. 

A downside of object detection and following path prediction is the extensive 

training is needed to work effectively. Furthermore, some objects may fall get detected 

at all, like the side profiles of semi-trailer trucks as noted in two fatal autonomous 

vehicle collisions. An analysis of images and pixel behavior in a vehicle’s camera video 

feed can serve as a supplemental strategy to reduce the likelihood of collisions 

occurring. 

Pixel behavior can be studied for early warning signals - changes in statistical 

data which indicate that a system is at a tipping point of change. These changes in 

behavior can be changes in mean grayscale values, sudden changes in variance values, 

changes in moving averages through video clips, or other abnormalities which indicate a 

possible change in the system environment. Since observations about pixel behavior 

provide object detection information at best, with no object classification data and little 

localization data. 
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A 2008 study examining vehicle detection based on traffic surveillance videos 

examined data similar to that collected for this research - rectilinear stationary camera 

footage taken on a roadside rather than mounted in-vehicle. The data collected for this 

study was intended for use in traffic counting and regulation, comparing results between 

a wide-lens camera and inductive loops. The results found that even with a simplistic 

pixel-based algorithm, the camera was able to outperform the loop detectors for vehicle 

detection [15]. 

One popular technique of using pixel behavior to identify moving objects 

involves modeling each individual pixel with a Gaussian distribution. Gaussian 

techniques allow for a frame-by-frame subtraction; changes between frames will be 

noticeable as non-zero values. A 1997 review of a people-tracking system utilized a 

single Gaussian model in this manner [16]; however, this system did not perform well in 

environments with dynamic backgrounds or scenes. 

Gaussian techniques are not always appropriate for pixel behavior analysis. A 

2002 study proposed a non-parametric model for analyzing pixel densities; pixel 

intensity probability density functions are assumed to vary from image to image and 

from frame to frame without an assumed parametric form. Instead, the probability 

density functions are estimated at directly at the data-level, using kernel density 

estimation techniques, without any underlying assumptions about the form of the 

distribution [17].  

Another example of utilizing pixel variations to identify objects is using 

discriminative texture features to reduce the effects of background events. Backgrounds 
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can pose challenges to object detection since they are often dynamic; trees move, water 

flows, birds fly through the frame, and shadows are cast around. Cameras can sway or 

bounce, and some cameras auto-adjust for light levels, causing changes to the image. 

Texture operators can be utilized to detect and isolate background pixel variations so that 

objects can be detected with fewer false positives [18]. 

Sometimes, early warning detectors will provide false positives - instances where 

early warnings are triggered, but no transition event occurs. False positives are easily 

identifiable in historical data since one can simply compare the instances of warning 

signals to the actual events which have occurred. In real-time or future data however, it 

is nearly impossible to distinguish a false positive from a true positive [19]. Some false 

positives occur due to random coincidences, while others are unintentionally 

systematically built into the early warning system framework. The systematic false 

positives are problematic, but they can be reduced or removed from the system through 

various treatments. One such treatment involves running the early warning system 

against a system with no critical transitions; therefore, any detected positive is a false 

positive, which can be investigated for root cause. Another treatment involves using 

local or global scaling to eliminate the influence of original data points [19]. Many 

additional treatments exist as well. Early warning systems are a delicate balancing act 

between preventing false negatives and avoiding false positives. 
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2.3. Methodology: Image-based early warning signals 

The overall early warning system covered in this paper can be largely divided 

into two sequential steps. The objective of the first step - Image Processing is to remove 

unnecessary information and noise from the images, while the objective of the second 

step - Statistical Processing is to process the image pixels and determine its behavior 

using the concept of critical slowing down and time series analysis.  Figure 2.1 shows 

the overall process that encompasses the previously mentioned two steps. 

 

2.3.1. Image processing 

The images captured in vehicle’s camera have more detailed information than 

one needs to detect early warning signals. The original data is a high-resolution color-

based image frame that is difficult to process in real-time. To address this issue one can 

convert it into a gray scale image to significantly reduce the amount of data processed. 

Figure 2.1 EWS Framework 
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Compared to the processing of three channels in RGB, it is much simpler and faster to 

process data on only one gray scaled channel with values between 0 and 255. To convert 

three channels RGB image to grayscale one can use the following formula. 

 

𝐺𝑟𝑎𝑦(𝑥, 𝑦) = 0.299 ∗ 𝑅𝑒𝑑(𝑥, 𝑦) + 0.587 ∗ 𝐺𝑟𝑒𝑒𝑛(𝑥, 𝑦) + 0.114 ∗ 𝐵𝑙𝑢𝑒(𝑥, 𝑦)       (2.1) 

 

In addition, brightness control can be added to better detect moving objects and 

eliminate unnecessary noise. In this paper, a simple brightness control method was used. 

Figure 2.2 Image Processing. Original(a), Gray scaled(b), Brightness controlled(c), 
Sectioned(d), and 0~255 gray scaled pixel distribution for each section(e). 
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There were many unnecessary bright pixels in the sample video we used in the 

experiment, so we set the maximum pixel value to remove the bright spots. 

 

𝐷𝑠𝑡(𝑥, 𝑦) =
𝐺𝑟𝑎𝑦(𝑥, 𝑦), 𝑖𝑓 𝐺𝑟𝑎𝑦(𝑥, 𝑦) < 100

100, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                        (2.2) 

 

When the desired binary image is ready, the images are divided into several specific 

sections. In this paper, ten sections were divided vertically because the vertical division 

allows more effective detection of the position of the vehicle or pedestrian coming close 

to the left and right from the driver's point of view. 

 

2.3.2. Statistical processing 

The statistical processing process can be performed largely in two different ways: 

1. directly comparing mean and variance for each section's time sequence and 2. 

comparing auto/cross-correlation coefficient for each section. 

 

2.3.2.1. Mean and variance method 

The critical slowing down phenomenon can be described by considering two 

different systems – the system that is far from the transition; and the system that is close 

to the transition. The system characterized by a “deep basin” of attraction with steep 

slopes around the equilibrium point, subjected to stochastic perturbations, will promptly 

return to the equilibrium point. In other words, the system is resilient to perturbations. 

The time series metrics (i.e., variance and autocorrelation of lag 1) will show the 
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behavior that is consistent with the system being in a stable orbit; the variance and 

correlation are constant and relatively low. The system characterized by an equilibrium 

point with a relatively flat basin of attraction, subjected to stochastic perturbations, will 

slowly return back to the equilibrium. Hence, even minor disturbances can take the 

system to the saddle point and into a new basin of attraction that may be associated with 

fundamentally different system behavior. Far away from the transition point, where the 

topology is characterized with a “deep basin”, the system exhibits lower autocorrelations 

and variances; close to transitions, where the topology is characterized with a “shallow 

basin”, the system shows increases in variances and autocorrelation. 

Figure 2.3 Changes in the time of mean(μ), variance(σ), and μ-σ as one vehicle passes 
by. Four out of ten vertical sections were divided into different colors. As shown in 
the figure, μ-σ can be used to identify a more obvious change in statistical values. 
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General principles of critical transitioning are universal and have found 

applications in many disciplines [20]. For example, recovery time models are often used 

in vibration analysis of rotary equipment to identify changed operating conditions [21], 

and financial market failure [22]. Similarly, accosting monitoring devices are placed to 

analyze pressure relief valves and warn against potential failures [23]. 

In this paper we are concerned with the statistical properties of a signal derived 

from a video feed i.e., a series of consecutive image frames of the driving environment. 

The key hypothesis is that the transiency to a new driving environment (i.e., new 

vehicles appearing and the existing vehicles changing directions) is characterized by the 

statistical signature of critical slowing down. 

The moments of the time series are typical metrics where the statistical signature 

of critical slowing down appears before transitioning. The variance   of the time series is 

defined as: 

 

𝜎 = ∑ (𝑥 − �̅�)                                                                                                (2.3) 

 

In this paper we mainly focus on the time series of the mean (μ) and variance (σ) of the 

pixel of each segment. This is because analyzing signal at the pixel level would be too 

noisy and difficult to interpret. In fact, Damnjanovic and Avan [24] state that system 

scale (spatial and time) is one of the key calibrating factors in developing early warning 

systems.  
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In the previous step, the whole image is divided into 10 vertical sections, and in this step, 

the decision value D=μ-σ is obtained after calculating the mean and variance for the 

pixel value of each section. The reason for μ-σ rather than using the mean directly is that 

the value of the changed mean is to be magnified through the variation of the image. The 

final decision value D is calculated by summing Di for each of these calculated sections. 

Assuming that there is no moving object in the first frame of the image, the D value of 

this first frame is set to base value Db. Once the final D value is obtained, the difference 

between D and the base value Db is calculated to determine the current risk level. In this 

paper, a total of five risk levels are designed to be known to the driver using four 

different thresholds. 

 

2.3.2.2. Auto-correlation method 

The auto-correlations for the time sequence of each of the 10 sections can be 

calculated to identify the changes that occur in each section. In addition, the cross-

correlations between adjacent sections can be calculated, and the changes in values over 

time can be identified to capture movement against the surrounding objects. Equation (4) 

shows the formula used in this paper to calculate the coefficient of coefficient r. The 

correlation coefficient is always between -1 and +1, where -1 represents a negative 

correlation between X and Y, while +1 represents a positive correlation between X and 

Y. 

 

𝑟 =
(∑ ) (∑ )(∑ )

[ ∑ (∑ ) ][ ∑ (∑ ) ]
                                                                                     (2.4) 
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As mentioned above, auto-correlation coefficient and cross-correlation 

coefficient are calculated, and for auto-correlation, these values are compared to the 

values of the previous frames, and for cross-correlation, the values of the adjacent 

sections are compared to the resulting values of the previous frames. The ability to catch 

movements in such fine detail is designed to vary depending on the user's set 

comparative thresholds, thauto and thcross. 

 

2.3.3. Additional suggestions for when the controlled vehicle is moving 

What we've covered so far has been a way to catch the movement of objects 

based on when the vehicle is stationary. However, when a controlled vehicle is moving, 

all other backgrounds, not just moving objects, may not be very effective in the way 

introduced so far. To address these issues, this paper establishes region of interest (ROI) 

Figure 2.4 ROI when the controlled vehicle is moving. The original frame (top) and 
clipped frame by ROI (bottom). 
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to treat only the most critical parts of safety in a statistical manner. The ROI suggested 

for when the controlled vehicle is moving in this paper is shown in Figure 2.4. 

 

2.4. Experimental setup 

The experiments in this study were conducted at Texas A&M University Rellis 

Campus, where all research experiments on self-driving cars in Texas A&M University 

is currently under way. For the experiment for this study, FLIR Blackfly S (Model: BFS-

PGE-23S3M-C: 2.3 MP, 53 FPS, Sony IMX392, Mono) camera sensors installed on 

Chevrolet Bolt vehicle from AutoDrive Project (a three-year competition to develop a 

fully automated vehicle sponsored by General Motors and SAE International) were used. 

After we stopped the experimental vehicle equipped with the camera at the 

corresponding intersection position, we prepared the experimental video by video 

Figure 2.5 Experimental scenarios 
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recording the movements of the car ahead and using these prepared videos, we 

implemented code to handle them. For the implementation, all codes were implemented 

and tested with C++ and OpenCV(ver.4.0.1) for Image Processing. 

 

Table 2.1 Early warning thresholds 
Warning Level 

Range Message 
Color 

1 |D-Db| <=   2 Good to go! Green 

2 2 < |D-Db| <= 10 Careful! Light Green 

3 10 < |D-Db| <= 35 Watch out! Yellow 

4 35 < |D-Db| <= 60 Stop! Orange 

5 60 < |D-Db| Don't move! Red 

 

The practical experiments of this study have been carried out in three cases 

depending on the movement of the vehicle ahead; 1) if the vehicle is moving 

horizontally from right to left, 2) if the vehicle is moving longitudinally, 3) if the vehicle 

passes diagonally ahead. Figure 2.5 illustrates these scenarios. The motivation for 

focusing on them is the fact that these situations are the ones where the current methods 

for object identification and tracking show the highest rate of false negatives. The 

warning threshold for this experiment was set as shown in Table 2.1.  

The warning thresholds used in experiments in this paper were determined by 

calibration through several prior experiments. After dividing the five situations (‘Good 

to go!’, ‘Careful!’, ‘Watch out!’, ‘Stop!’, and ‘Don’t move!’) that can be felt through the 

actual driver by the degree of risk, the thresholds were determined to be the ones that  
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Figure 2.6 Experiment results Scenario 1: Vehicle ahead moving horizontally from 
right to left(a), Scenario 2: Vehicle ahead moving longitudinally from a distance to 
a distance(b), Scenario 3: Vehicle ahead passes diagonally ahead(c). 
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best meet these situations. However, keep in mind that these thresholds can vary 

depending on the resolution of the camera sensor, the size of the image, and the 

segmentation method using in Image Processing. For example, in our additional 

experiment on the dashboard camera footage from Tesla Model S Sedan's accident 

vehicle in January 2016 in China [25], the video had a low resolution and foggy driving 

environment, so the threshold was calibrated accordingly. 

 

2.5. Results 

Figure 2.6 illustrates the results of the experiments on scenarios listed in the 

previous section. When a moving vehicle is not in front view, the warning panel displays 

'Good to go!' which is the lowest level of warning. If a moving vehicle is very far from 

the subject vehicle, the calculation for determining the warning level becomes very small 

and the warning level is also the lowest because of the very low contrast. (Scenario 3) A 

second warning phase, 'Careful!', is output when the vehicle begins to enter the forward 

field of vision, and as the vehicle progressively enters the forward field of vision, the 

warning phase increases. 

Since we have divided the sections, controller can recognize the size and location 

of the hazard. The larger the size of a moving object, the greater the number of sections 

whose statistics change, and the smaller the object, the smaller the number of sections 

that change. In addition, information on the left and right positions of moving objects 

can be obtained depending on the position of the section in which the statistics change. 

These are the distinctions from simply calculating pixel values for the whole image. 
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Since controllers can be provided with information on the size and location of objects 

moving along with risk levels, it will be easier to predict and prepare for future 

situations. 

Figure 2.7 shows the results of recognizing the movement of objects from each 

section itself or from adjacent sections by calculating the correlation coefficient in the 

case of Scenario 1. "A" displayed at the bottom of each figure is auto-correlation, which 

represents motion detection inside the section, and "L" and "R" represent motion change 

detection from the left and right frames, respectively. As can be seen in Figure 2.7, when 

a vehicle passes from right to left, when movement is detected, the markings "A", "L", 

or "R" change to red. 

Figure 2.7 Experiment results: Moving object detected by correlation coefficient. 
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Note that the experiment was focused on the situations when the vehicle is not 

moving, only the other vehicles are moving. This was done to establish the baseline 

performance of the proposed EWS. One can extend the applications of the system to the 

controlled vehicle that moves but certain adjustments need to be made including 

enhanced segmentation to move away from purely vertical segments to parallelograms 

that will fit the angle of view and the road horizon. For this adjustment adding GPS data 

and maps will be needed to secure effective image segmentation. 

Figure 2.8 shows the results of the additional experiment on the dashboard 

camera video of the accident vehicle of Tesla Model Sedan in China in January 2016. It 

seems clear that the method proposed in this paper successfully confirmed that the 

warning signal occurred, and through this, the accident could be prevented. Of course, 

although it is not yet confirmed whether Tesla's Autopilot function operates when a 

corresponding accident occurs, it seems certain that no warning message has been posted 

Figure 2.8 Experiment results: Tesla crash dashboard camera footage. 
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to the driver, so the supplementary early warning system proposed by this paper can be 

said to be an essential double safety device. 

Many existing self-driving cars and their controllers, including Tesla Autopilot, 

claim that they rely solely on object detection in machine vision and that their 

performance is sufficient, but as explained in the previous section of this paper, there are 

way too many cases when object detection fails. The proposed in this paper, shows 

promising results and is unlikely to fail in recognition of moving. Of course, pixel-based 

systems may be sensitive to solar illumination and weather conditions, but camera 

sensors that have been much improved recently. Therefore, it is suggested that if the 

pixel-based risk warning system introduced in this paper is used simultaneously with the 

use of basic object detection, the probability of failure of object detection can be greatly 

reduced, and a more reliable self-driving system can be developed. 

 

2.6. Summary and recommendations 

This paper presents a method that can be used as an early warning system for 

detecting objects entering vehicle’s collision path. As such it is particularly suitable for 

use in autonomous i.e., self-driving cars. The overall method employs only images as 

data and relies on the analysis of the time series behavior of pixels within defined 

segments. Hence, as the proposed method is only based on pixel behavior and can be 

easily done in real time, it represents a robust supplement to the existing collision 

avoidance systems that are based on machine learning methods and R-CNN. 
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The proposed method is also only a first step in developing pixel/segments based 

early warning systems.  In this step we established the baseline performance of the 

system without changing too many variables. The field experiments done on TAMU 

testing ground shows promising results. The vehicles can be easily detected without the 

use of data intensive machine learning methods. 

In future we plan to expend the experiment to include two important extensions: 

1. the use of a camera with a wider view, such as a fish-eye camera, and 2. conduct 

experiments with different configurations of driving environment, both geometry and 

background. 
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3. STEERING GEARS CONFIGURATIONS IN PURE PURSUIT METHOD FOR 

AUTONOMOUS GROUND VEHICLES 

 

3.1. Introduction 

Advances in sensing technologies, computing, and communications systems are 

making autonomous ground vehicles i.e., self-driving cars increasingly viable 

technology to solve some of the great challenges posed by modern transportation. [1] 

The autonomous and connected vehicles are currently being developed and tested for 

improved safety, reduced carbon emission, and efficient traffic flow among many other 

important outcomes. [2][3] It is a general expectation that in near future autonomous and 

connected systems will be become mainstream vehicle technology for the majority of 

automotive OEMs. [4] 

Complex and highly segmented market ecosystems follow the development of 

autonomous and connected systems. [5] Cadillac’s Super Cruise is one of the most 

visible and media-present companies promoting the self-driving features of its vehicles. 

In fact, Cadillac’s Super Cruise is credited to be the key differentiator making customers 

choose Super Cruise over other OEMs. [6] However, other major OEMs including Tesla, 

Ford, Daimler Benz, and Volvo are not too behind as they are also heavily investing in 

self-driving systems. In fact, not only automotive OEMs play important role in self-

driving systems but also many of the big-tech companies such as Apple, Uber, and 

Google Waymo compete in developing self-driving cars and building business models 

around the concept. The autonomous and connected vehicle market ecosystem is broad 
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and deep to include many of the key players in the semiconductor, software, sensing 

industries.  

Despite technological progress and the elaborate market ecosystem, the promise 

of the self-driving revolution has yet to materialize. [7] In fact, the complexities 

steaming from often unpredictable driving environment makes the implementation of the 

developed algorithms challenging. For example, the driving environment is an open 

system subjected to many interfaces such as weather and wildlife, roadway geometry is 

often inconsistent, while the traffic behavior is based on human perception and reaction 

that is defined by bounded rationality. This makes the AI algorithms less effective when 

compared to their performance in closed system games such as chess, checkers, and the 

Chinese game of Go. Furthermore, highly publicized accidents in which autonomous 

vehicles have failed to turn in sharp curves, or recognize pedestrians, median barriers, or 

even large 18-wheeler trucks have started to undermine public acceptance of the 

technology. To address these technical challenges, one first needs to fully understand the 

system architecture and its components. 

By definition, autonomous vehicles are mission-oriented self-actuating vehicles 

capable of perceiving and reacting to the environment without human assistance. In the 

process of self-navigation, the system relies in general on four sequential activities: 

perception, localization, path planning, and control. These components are fundamental 

and translated from the field of robotics. The machine i.e., the vehicle first perceives the 

environment including roadway geometry, vehicles, and other static and/or dynamic 

objects, then it locates itself within this environment often with the help of HD maps. 
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Once the location and the constraints are defined, the path of the machine/vehicle is 

determined i.e., planned. The plan is then executed with a predefined control strategy.  

In the Control phase, the vehicle will begin full-scale operation by determining 

engine running and direction of travel based on the prepared planned path. If perception 

is said to be sensory organs such as eyes and ears, control is the brain that determines 

movement and gives orders. There are large categories of steering and acceleration 

techniques for controlling the vehicle's movement, which are techniques for steering the 

steering angle, and acceleration or deceleration/stopping the vehicle through acceleration 

and braking. 

Despite extraordinary effort by the professionals and researchers the 

development of vehicles’ controllers has still ways to go as ground vehicles unlike 

drones are subjected to the roadway conditions that can be highly unpredictable and 

inconsistent. For example, not all roads, especially rural roads, are designed with proper 

transition curves and curvatures for the prevalent speeds. With a wrong speed 

assumption and lack of transition curves, even highly complex controllers will struggle 

to keep the vehicle within lane boundaries. 

Unlike in robotics, where the feasible region for path planning is determined and 

rarely updated, in roadway vehicles, the feasible region is only informative of future 

turning strategies and will likely change based on new information from driving 

environment i.e., curvature, traffic, pavement conditions. Furthermore, the future speed 

of the roadway vehicle depends on the future geometry as the roadway design elements 

are determined to accommodate the turning maneuvers at design speeds.  In other words, 
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the perceived roadway geometry is telling us when and how to turn. This is quite 

different than how drones and other robots are controlled. 

Some self-driving systems [8][9] provide path planning phase in the form of 

transition curves using Clothoid or Euler function to implement similar driving 

techniques. However, in this case, the controller does not know the characteristics of the 

actual road directly and relies solely on the path passed by the path planner, and if the 

route planning fails or the wrong path is taken over, the overall vehicle operation fails. 

Therefore, this paper seeks to address the controller role when a given path is established 

from the path planning stage. To this end, we would like to look at the advantages and 

disadvantages of the typical controllers used in various self-driving car industries and 

introduce new ways to take advantage of the Pure Pursuit Controller that we want to use 

in this paper, and to make up for the vulnerability with the newly designed Automatic 

Gear Selection for Pure Pursuit method. 

 

3.2. Background 

3.2.1. Path following controllers 

There are various methods of controlling vehicle steering, such as the Pure 

Pursuit, Stanley Method, Dynamic Control, Linear Quadratic Regulator (LQR) Control, 

and Optimal Preview Control. Pure Pursuit and Stanley method are considered 

geometrical methods as they use the geometric relationship between the vehicle and the 

path to follow the path and uses the current vehicle position, as well as the azimuth to 
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select a suitable lookahead point on a given path and calculate the steering angle to 

follow it.  

The Pure Pursuit, first discussed in [10], is a method of using path tracking, 

which involves geometrically calculating the curvature of the arc between the position of 

the rear axle of the vehicle and the lookahead point to be carried out by the vehicle. The 

coordinates of the lookahead point are determined from the position of the rear axle a 

distance away from the position of the axle in the direction the vehicle wishes to 

proceed. Once the lookahead point is established, the steering angle of the vehicle is 

determined by the angular difference between the vector in the direction the vehicle is in 

and the vector in the direction towards the lookahead point. Pure Pursuit is very useful 

for large errors and discontinuous route tracking. [11] However, the question of how to 

select a lookahead point remains a big question. Most self-driving systems using Pure 

Pursuit use the vehicle's current speed to determine this lookahead point which creates 

the problem of cutting corners and overshooting. 

The Stanley method is the route tracking method used in unmanned vehicles 

developed by Stanford University to target the DARPA Grand Challenge. [12] This 

method uses a nonlinear feedback function for route departure errors that can be 

measured from the center of the front axle to the point on the nearest driving path. The 

Stanley method has the simplest yet best performance. Although it has better 

performance than Pure Pursuit in many ways, the Stanley method has the disadvantage 

of being vulnerable to large errors and discrete paths. [11] 
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Kinematic Controller using the Kinematic cycle model, and Optimal Preview 

Control and Linear Quadratic Regulator (LQR) using the Dynamic cycle model are 

methods for calculating control values using the kinetic properties of each vehicle 

model. The Kinematic controller has the advantage of not doing cutting corners, a 

problem with Pure Pursuit, but it has a weak disadvantage with robustness to 

disturbances. [11] The LQR method and the Optimal method have the advantage of 

being easy to understand and implement, but because they have the limitations of the 

Dynamic cycle model, there are problems with poor performance at low speed and 

overshooting of sudden changes in curvature. [11] 

Table 3.1 shows the pros and cons of the controllers mentioned above. Note here 

that, unlike other controllers, Pure Pursuit has excellent results in the remaining criteria 

except cutting corners and overshooting, which are items of driving error in the nature of 

its algorithm. In other words, the Pure Pursuit method would be much better than other 

controllers, which would have prompted two vehicles to use Pure Pursuit at DARPA 

Grand Challenge [13] and three vehicles at DARPA Urban Challenge. [14][15] 

 

Table 3.1 Path-following Algorithms Pros and Cons 
 Pros Cons 
Pure Pursuit - Works fairly well. 

- Quite robust to large errors and 
discontinuous paths. 

- Not clear how to pick the best look-
ahead distance. 

Stanley - Simplest 
- Performs surprisingly well. 

(Outperforms Pure Pursuit in most 
scenarios) 

- Not as robust to large errors and non-
smooth paths. 

Kinematic - Easily extended for applications that 
need to pull a path following the 
trailer. 

 

- A Little more difficult to understand 
and implement than the Pure Pursuit 
or Stanley method. 
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Table 3.1 Continued 
 Pros Cons 
Kinematic 
(Continued) 

- Can be applied to a large class of 
mobile robots approximated by 
kinematic models written in the 
chained form. 

- For the car-like robot application, the 
overall tracking performance and 
robustness at moderate speed is 
comparable to the Stanley method 

- Significant increases in the online 
computational works needed to 
compute the steering angle velocity. 

 

MPC - Plant dynamics can be fully exploited 
- Generic consideration of complex 

control goals 
- Simple control policy for complex 

systems 
- Generic consideration of constraints 

- A plant model is required 
- High computational load 
- high algorithmic complexity 
- High number of control parameters 

LQR 
with Feed-
Forward 

- Easy to understand and implement. 
- Great choice for highway driving and 

many urban driving scenarios. 

- Not considerably outperform the 
Stanley or Kinematic methods in 
many scenarios. 

- Not perform as well at very low 
speeds. 

- Significant overshoot occurs during 
rapid, even smooth, changes in path 
curvature. 

- Not robust like the Pure pursuit or 
Stanley method to large errors or 
path discontinuity. 

Optimal 
Preview 

- Little more complicated than the 
LQR method, but it is still easy to 
understand and implement. 

- Provides the LQR method with a 
look-ahead, or preview, of the 
upcoming path to address the 
problem. 

- Constant velocity assumption.  

 

3.2.2. Pure pursuit controller 

Pure Pursuit is the most common and frequently used controller in the path 

tracking method of mobile robots. In fact, it is the most widely used method for 

challenging environments including Roborace and Indy Autonomous Challenge. It is 

especially useful when a High-Definition digital map is not available and unusable due 

to the factors such as high speed. As described earlier, Pure Pursuit is a method that 
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utilizes the curvature of the circle through which the lookahead point on the front path 

and the rear axle of the vehicle passes. The curvature of the circle is determined by the 

lookahead distance S. (Figure 3.1) Procedure for obtaining steering angle (𝛿) using Pure 

Pursuit is as follows. 

 

( )
=                                                                                                       (3.1) 

( ) ( )
=                                                                                                  (3.2) 

( )
= 2𝑅                                                                                                                 (3.3) 

𝑅 =
( )

                                                                                                                 (3.4) 

𝜌 = =
( )

                                                                                                         (3.5) 

 

Figure 3.1 Basic Pure pursuit set up with using Bicycle Model 
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By applying the curvature ρ to the geometric bicycle model of a vehicle with 

Ackermann’s steering angle we have: 

 

𝛿 = tan (𝜌𝐿)                                                                                                              (3.6) 

𝛿 = tan
( )

                                                                                                     (3.7) 

 

The result 𝛿 is finally the steering angle for the vehicle to follow its path. 

As it can be observed from Eq. 7 lookahead-distance, S, plays the most important 

role in Pure Pursuit. The long or short S changes the following target point, and the 

curvature of the circle passing the following target point and the rear-wheel axis. If the S 

is long, the following target point is selected far away and the circular curvature across 

the following target point and rear-wheel axis increases, making the steering angle 

smooth and the steering angle less shaky, thus stabilizing the vehicle's behavior. 

However, if S is excessively long, path-following performance is degraded. In the 

opposite case, a shorter S means that the following target point is close, thus reducing 

the circle curvature across the following target point and rear-wheel axis, allowing quick 

access to the path and improving path follow performance. But again, the shorter the S, 

the more severe the steering angle changes, and in excessive cases, lateral control is 

emitted, causing the vehicle to behave in a dangerous manner. As the question of 

whether to hold S short or long is directly related to the trade-off problem of stability 

and tracking performance, it is very important to choose the optimal S. 
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3.2.3. Transition Curve 

Transition curve is as known as Clothoid, Cornu spiral, or Fresnel integrals. The 

introduction of gentle curves to prevent accidents caused by sudden curves when a straight 

road meets a curved road with a specific radius. When designing all vehicle roads, the 

transition curve is used to mitigate drastic curvature changes. 

In the case of a vehicle, even in the case of a non-transition curve, the path to the 

curve entry of all vehicles will take the form of the transition curve. Transition curve is 

essential, especially for rail designs on trains with no degree of freedom over the route. 

Figure 3.2 shows the form of a Clothoid curve and the formula that constitutes it. 

 

3.3. Methodology 

As mentioned before, Pure Pursuit may or may not show a good path-following 

performance depending on the lookahead-distance, choice of speed, and the type of 

geometry. In each case, there is a trade-off, which means that choosing a good path-

Figure 3.2 Clothoid curve 
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following performance increases the lateral-jerk, while minimizing the lateral-jerk 

decreases the path-following performance. We would like to propose two different ways 

to compensate for the shortcomings of the original Pure Pursuit: 1. Steering Gear Pure 

Pursuit and 2. Automatic Gear Selection Pure Pursuit. 

 

3.3.1. Steering Gear Pure pursuit 

Figure 3.3 shows the first proposed method of a novel path-following controller. 

Receiving the paths provided in the cognitive and path planning phases, two different 

methods of computation are applied, in which the final steering angle is derived by 

summing the steering angles calculated. 

 

3.3.1.1. Calculate steering angle to follow roadway geometry 

Figure 3.3 Steering Gear Pure pursuit 
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As shown on the left side of Figure 3.4, conventional Pure Pursuit uses a 

Circular-guideline that uses a fixed radius to find the lookahead point. Because of its 

fixed radius, the lookahead-distance is used as a fixed value, but the lookahead-angle is a 

variable. The problem, in this case, is that if the lookahead-angle, which has a greater 

effect on the change in steering angle, changes rapidly, the calculated final steering angle 

will also change rapidly, resulting in a larger lateral-jerk. 

To determine the variable lookahead-distance, we use a new method using 

Straight-guidelines as shown on the right side of Figure 3.4. Because the Straight-

guideline uses a straight line with fixed angles, it can fix the lookahead-angle and use 

variable lookahead-distance at the same time. Of course, the use of the Straight-

guideline is not perfect. Because the lookahead-angle is fixed, the lookahead point 

cannot be specified unless the angle and path cross. We address this only disadvantage 

not by using a single angle of Straight-guideline, but by using multiple angles of 

Figure 3.4 Pure pursuit using Circular-guideline(left), and Straight-
guideline(right) 
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Straight-guideline. Three types of combinations of Straight-guidelines were prepared for 

the experiment: One Straight-guideline with an angle of 1°, 6 Straight-guidelines with 

angles of 1°, 3°, and 10°, and 6 Straight-guidelines with angles of 1°, 2°, 3°, 5°, 7°, and 

10°. 

So, what is 'Gear' we are talking about? We named 'Gear' the Straight-guideline 

with each different lookahead-angle and produced a new way of changing gears to fit the 

curvature of the following path, like the gear shift of the vehicle transmission. Figure 3.5 

shows Single gear, three gears, and six gears configurations. We designed to use 

different gears depending on the radius of the curve being detected, as shown in Figure 

Figure 3.5 Three different gear configurations. Single gear(top), three gears(bottom 
left), and six gears(bottom right) 
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3.5, before solving the problem of which gear to choose when using more than one gear. 

This is based on the use of a Straight-guideline using small angles when the curvature of 

the curve is large and is designed to use a Straight-guideline with larger angles as the 

curve is milder. The smaller the curve curvature, i.e., the closer it gets to a straight road, 

the smaller the left or right bias when the path becomes similar to the straight-line shape, 

making it possible to detect the bias of the small curve. 

However, the higher angle Straight-guideline allows for more accurate curvature 

detection. Figure 3.6 shows a result of detecting the curvature of several different curves 

with different angles of Straight Guideline and measuring the error range of each. As 

mentioned earlier, the higher the angle of the Straight-guideline, the smaller the error 

Figure 3.6 Curvature reading error range for each gears 
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range.  Therefore, we design our Gear Configuration so that we can use a higher angle of 

Straight-guideline whenever possible. 

 

3.3.1.2. Calculate positioning steering angle 

To add more accuracy of path-following ability, one can add the Positioning 

controller. In addition, this positioning guideline is useful even if all the guidelines we 

use do not cross paths and thus do not compute the reading of curvature, especially at the 

end of the non-transition curve. At this moment, the calculated steering angle will be 

dramatically going to 0 and will cause a dramatic change of the steering angle. The 

Positioning controller uses the basic Pure Pursuit method and, in addition, uses variable 

lookahead-distance according to the distance from the car to the path. The radius of the 

Positioning guideline can be calculated by the following equation. 

 

𝑟𝑎𝑑𝑖𝑢𝑠 = 30 ∗ 𝑒 + 𝑑𝑖𝑠𝑡                                                                                      (3.8) 

Figure 3.7 Radius of the Positioning guideline 
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3.3.2. Automatic Gear Selection Pure pursuit 

Figure 3.8 shows our second proposed method of a novel path-following 

controller. One big difference from the first novel controller proposed earlier is that 

instead of using one of the optimal angles of the guideline from up to six different 

angles, we use all the one-degree increasing from 1 to 30 degrees at once and then 

calculate their average as the final steering angle. In addition, we determine whether the 

perceived path is a transition curve, and then use pre-steering only if it is a non-transition 

curve that causes a large natural curve on entry and escape, and a lateral-jerk adjustment 

function which we call HTL (half, then linear). As a final step, we design to enhance the 

performance of path tracking using Positioning control, which was used in the 

Figure 3.8 Automatic Gear Selection Pure pursuit 
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previously proposed method. The final derived steering angle is obtained by summing all 

the steering angles calculated in each step. 

 

3.3.2.1. Calculate steering angle to follow roadway geometry 

Each steering angle is calculated using a total of 30 Straight-guidelines with 

lookahead-angles ranging from 1 to 30 degrees, and the average of these is obtained to 

obtain the final steering angle. At this time, we named this method Automatic Gear 

Selection because it uses all the gears rather than choosing one of the several Straight-

guidelines (i.e., Gears). 

 

3.3.2.2. Lateral jerk control 

We apply our HTL method so that we can enter and escape curves more 

smoothly without simply relying on steering angle calculations for fixed geometry 

following. First, steering the half of difference of curvature from the previous frame until 

the reading curvature is steady, and then during the same time of half steering, linearly 

Figure 3.9 Thirty Straight guidelines 
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get to the maximum of its curvature. The red line from Figure 3.10 shows this HTL 

method and the blue line shows the native curvature reading from the 30 Gears’ average. 

 

3.3.2.3. Pre-steering for non-transition curve 

In racing competitions and adequate transition curves, it is common to advance to 

the outside of the lane before entering the curve and then attempt to steer early before 

the curve begins to avoid oversteering by minimizing the lateral-jerk; the out-in strategy. 

In addition to racing, we can easily see drivers turning the steering wheel even before the 

start of the curve when entering a sharp curve. Inspired by this, we added a more 

advanced approach for steering in the case of non-transition curves where the curve 

starts sharply to minimize the lateral-jerk. Intuitively following the non-transition curve 

results in a large lateral-jerk, so to avoid such a large lateral-jerk, the same principle is to 

Figure 3.10 HTL (Half, then Linear) method 
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follow a virtual transition curve, which starts steering in advance before the actual curve 

starts, gradually increasing the steering value to the point where the curve starts. 

 

3.3.2.4. Calculate Positioning steering angle 

We improve the accuracy of additional path-following using the same method as 

the Positioning control method used in the previously proposed Manual Gear Pure 

Pursuit. 

 

3.4. Experimental setting 

For simulation of the proposed methods, we have implemented and experimented 

with MATLAB. We fixed the steering angular speed and operating frequency of 

simulation vehicles at 0.4 deg/ms and 0.3sec, respectively, for all methods. The test 

cases used both a normal speed of 4.5m/s and a fast speed of 9.0m/s, and the simulated 

path has a 30m radius curve, and we experimented with both with and without the 

transition curve. In the case of the original Pure Pursuit, we experimented with 5m, 10m, 

20m, and 30m lookahead-distance for performance comparison according to the 

lookahead-distance. 

For performance evaluation, we measure and compare the accuracy of path-

following and the lateral-jerk. The accuracy of path-following is calculated by the path 

departure error of path-following, and we set the acceptance criteria to a maximum of 

1.0m. This acceptance criterion was derived by Figure 3.11. 
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And the lateral-jerk was calculated from the following formula. 

 

𝐿𝑎𝑡𝑒𝑟𝑎𝑙 𝐽𝑒𝑟𝑘 =  
∆

∆
=

( ∗ ) ( ∗ )

∆
                                                             (3.10) 

 

Generally, acceptable range of non-uncomfortable to the human feel, the lateral-jerk is in 

the range from 0.8m/sec3 to 1.1m/sec3. We assume 1.0m/sec3 as our limit and confirm 

the simulation results, considering that we place a greater weight on the safety aspect 

than only pursuing comfort. 

 

3.5. Results 

We measured the distance error and the lateral-jerk as the entire performance 

gage. ‘OK’ sign was marked on the figures if the measurement is within the acceptable 

range (green area), and ‘NOK’ if it goes into the unacceptable range (red area). 

 

Figure 3.11 Acceptance criteria of path following accuracy 
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3.5.1. Original Pure pursuit 

Figure 3.12 Simulation result. Original Pure Pursuit (v=4.5m./s) 

Figure 3.13 Simulation result. Original Pure Pursuit (v=9.0m./s) 
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The results of the original Pure Pursuit clearly show that there is a trade-off of 

distance error and lateral-jerk depending on lookahead-distance. (Figure 3.12, Figure 

3.13) In the case of the shortest lookahead-distance of 5m, the distance error is very 

small at all speeds, but in the case of driving at a high speed on a non-transition curve, it 

is confirmed that a very large lateral-jerk occurs. Conversely, in the case of the longest 

lookahead-distance of 30m, a distance error occurred significantly out of tolerance 

regardless of driving speed, but the lateral-jerk had the smallest of the four lookahead-

distances we tested. 

 

3.5.2. Steering Gear Pure pursuit 

 
Figure 3.14 Simulation result. Manual Geared Pure Pursuit (v=4.5m./s) 
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Our first proposed Steering Gear Pure Pursuit showed a slight improvement over 

the original Pure Pursuit. At slow speeds, both 3 and 6 gears, except for the use of Single 

gear, came within the tolerance range of distance error and lateral-jerk, but as we 

expected, single gear showed results that lateral-jerk exceeded the tolerance range on a 

non-transition curve. (Figure 3.14) However, at high speeds, all three gear configurations 

resulted in a lateral-jerk greater than the allowable value in a non-transition curve. 

(Figure 3.15) 

 

 

 

Figure 3.15 Simulation result. Manual Geared Pure Pursuit (v=9.0m./s) 
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3.5.3. Automatic Gear Selection Pure pursuit 

Figure 3.16 Simulation result. Automatic Geared Pure Pursuit (v=4.5m./s) 

Figure 3.17 Simulation result. Automatic Geared Pure Pursuit (v=9.0m./s) 
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Our final proposal, Automatic Gear Selection Pure Pursuit, showed excellent 

results that both distance error and lateral-jerk did not exceed the allowable range, 

regardless of the speed and type of curve we experimented with. (Figure 3.16, Figure 

3.17) 

 

3.5.4. Overall comparison 

Figure 3.18 shows all the results of our experiments briefly. Values that exceed 

the allowable range are shown in red. Note that the Automatic Gear Selection is within 

the allowable range for all experiments. 

 

3.6. Discussion 

As we expected, the original Pure Pursuit showed different results depending on 

the lookahead-distance. At a low speed of 4.5m/s, all the tested lookahead-distances 

Figure 3.18 Simulation result. Overall comparison 
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could be seen to be stable by showing a lateral Jerk within the acceptable range, but at a 

long 30m, the Distance error could be found to be greater than the acceptable range. 

Experiments on a regular curve without a transition curve showed that the distance error 

was greater than the allowable range even in the additional 20m lookahead-distance. 

This is where we can confirm that the original Pure Pursuit is more vulnerable to non-

transition curves. The performance of path tracking and the trade-off of the lateral-jerk 

can be seen clearly when the vehicle is driving at high speeds on a non-transition curve. 

The path tracking performance is good in the order of 5m-10m-20m-30m, but in 

contrast, the lateral-jerk is large in the order of 30m-20m-10m-5m. 

The results of our first proposal, Steering Gear Pure Pursuit, showed slightly 

better results than the original Pure Pursuit. Single Geared, Three Geared, and Six 

Geared all have satisfactory results within tolerance for distance errors. However, as 

expected, Single Geared showed a very large lateral Jerk at low speeds, and a larger 

value at high speeds, indicating that it would be better to use more than one Gear. 

However, when running at high speeds in non-transition curves, both Three Geared and 

Six Geared were found to have exceeded the acceptable range of the lateral-jerk. Our 

proposed Steering Gear Pure Pursuit certainly suggests that while following performance 

has improved, it is still insufficient to reduce the lateral-jerk. 

However, the results of our second proposal, Automatic Gear Selection Pure 

Pursuit, were surprising. At both low and high speeds, the following performance and 

the lateral-jerk were within acceptable limits, showing very good results with and 

without transition curves. This confirms that Automatic Gear Selection Pure Pursuit is a 
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very robust new path-following controller that compensates for all the shortcomings of 

the original Pure Pursuit we identified. 

 

3.7. Conclusion 

In this paper, we compare the algorithms representatively used for path tracking 

and introduce Steering Gear Pure Pursuit, which can preserve the advantages of Pure 

Pursuit controllers, which are most used, and compensate for vulnerabilities.  As 

previously discussed, the existing Pure Pursuit controller had path-following 

performance and inverse properties of lateral-jerk at the choice of lookahead-distance, 

which was a very difficult and sensitive part to identify. This result was satisfactory not 

only at low speeds but also at high speeds, and at both transition curves and non-

transition curves, i.e., at any type of road. Therefore, we believe that this new Automatic 

Gear Selection Pure Pursuit will contribute significantly not only to autonomous vehicles 

currently being studied or tested in many ways but also to unmanned racing-related areas 

where the optimal adjustment of lateral-jerk at high speeds is essential. 
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4. PATH OPTIMIZATIONS FOR AUTONOMOUS GROUND VEHICLES 

CONTROLS 

 

4.1. Introduction 

The autonomous vehicle system is largely composed of Perception, Path 

planning, Decision maker, and Controller. Based on various sensor data from the 

perception module, the path planning module generates all the possible paths that the 

vehicle can travel and passes them to the decision making module, which selects the best 

route of these candidate routes and passes the final decided route to the controller. And 

finally, the controller uses various path following algorithms to calculate steering angles 

and acceleration and deceleration to follow that path. Among them, the controller plays a 

very important role in calculating the speed and steering value of the vehicle directly, 

such as the role of human arms and legs at the last position.  

Academia and industries that study many autonomous driving systems have been 

constantly working on controllers that enable vehicles to follow a given path accurately 

and efficiently, resulting in many sophisticated controllers. These efforts are based on 

the goal of accuracy of vehicle path tracking, but they are additionally designed to 

prevent understeer or oversteer of the vehicle, and allow the minimum amount of 

lateral/longitudinal force to be derived. [13] For this reason, more complex calculations 

are required for controllers to consider more portions and produce optimal results. 

Therefore, if it is possible to share the role of the controller in other modules, such as 
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path planning, it is possible to reduce the heavy burden on the controller and reduce the 

amount of computation. 

However, in most studies, the path planning module is limited to generating only 

a drivable path and does not care how smoothly and comfortably the controller can 

follow the path. Furthermore, several path following algorithms published so far have 

not simultaneously satisfies path tracking performance and optimal ride comfort in any 

situation, suggesting that providing the optimal path for the controller during the path 

planning phase is the key to solving this problem. And we got the idea from the railways 

to solve this problem. 

Trains follow only the perfect pre-designed railways, designed depending on the 

speed of the train and the curvature of the path. Unlike other modes of transportation, all 

railways are designed using transition curves to prevent railway derailment due to 

sudden changes in curvature, as trains cannot follow any other routes than the existing 

Figure 4.1 Autonomous vehicle's submodule that covers in this topic 
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railway. That is, following only the path of the transition curve, the train always can 

enter or escape certain curves smoothly without large lateral jerk. However, since cars 

are free to change paths by humans or computer systems, a sudden change of direction 

can lead to a larger lateral jerk, which in severe cases leads to an oversteer or understeer 

or cause multiple accidents. 

A transition curve is a part of the curve that gradually increases or decreases at 

the beginning or end of the curve, thereby alleviating a sharp curve. The key to our 

proposed methods is to soften the path to the form of this transition curves so that the 

controller does not have to consider the lateral jerk when tracking the path while 

maintaining the path following accuracy and lesson the calculation. In addition, the 

ability to smoothen the path by eliminating perceived raw sensor data singularities in the 

path planning phase prior to making it a transition curve type is also an advantage. 

In this paper, we explore the lane detection methods includes the curve fitting 

lane detection method, used in most existing studies, as a part of the path planning 

module, and address their weakness itself and what can be improved from the 

perspective of path planning to ease the burden on the controller.  Finally, we propose 

methods using our new approach, discuss improvements from traditional methods 

through experiments through MATLAB simulation we implement and discuss the 

implications of these proposed methods. Through this, prove that our proposed methods 

are ways to broaden our horizons not only to adhere to lane detection's inherent function, 

but also to make it the easiest, simplest, and most reliable when tracking a path by the 
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controller, and show that we yield both low departure error and lateral jerk with the 

simple controller like basic Pure pursuit. 

 

4.2. Background 

4.2.1. Lane detection 

Starting with self-driving car technology is lane detection that utilizes various 

sensors. A number of sensor fusion technologies such as camera and distance sensors are 

used to detect lanes, of which camera is the primary sensor. The tradition methods of 

lane detection techniques used in self-driving cars using cameras are grouping image 

gradients methods [1][2][3][4], or using Hough transform based on local edges extended 

image gradients [5][6][7][8], and recently, lane detection techniques based on deep 

neural networks have been studied [9][10][11]. Figure 4.2 shows a basic sequence of 

traditional methods in lane detection. 

Figure 4.2 Traditional Lane Detection Method 
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In another sense, lane detection is often divided into two main categories. The 

first is to use the forward view taken over from the camera sensor as it is, and the second 

is to convert it to bird’s eye view. There are pros and cons to each, but in the former 

case, there is no distortion of the shape because it uses the image as it is, but due to 

perspective, it is difficult to use the detected lane directly in a controller. Conversely, 

switching to bird’s eye view can cause screen distortion over a long distance, but it is 

convenient for controllers in many ways because it allows them to align lanes as we 

view maps. Figure 4.2 also demonstrates the lane detection process using bird’s eye view 

switching methods, and this study will also use bird’s eye view switching methods. 

In the phase of defining lanes after basic image processing, including denoising, 

many prior studies use a method of fitting curves with polynomials or spline curves.[7] 

In this case, the effect of softening raw data is great, but sometimes overfitting 

occurs[12], and the accuracy of partial detection of the lane may be somewhat reduced 

as fitting is concentrated only on the overall lane flow. (Figure 4.3) And most of the 

case, as Figure 4.3 (a) shows, the lane markings hardly detected on distanced area of the 

vision, so the longer distance area, the less accurate waypoints detection occurs. This 

Figure 4.3 Curve fitting problems 
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results in a large noise input in curve fitting, which inevitably results in inaccurate line 

detection results. In addition, it is recommended that the detected road can be expressed 

in a low-order fitting equation to represent it as smooth as possible, but this may lead to 

inaccuracy of detection and, on the contrary, overfitting as mentioned earlier.  

More importantly, other studies so far show that there is no lane detection 

considering which routes the controller prefers, i.e., accuracy and comfort or safety in 

route tracking. All prior studies are devoted solely to lane detection's basic function, 

focusing only on how well it finds lanes. 

 

4.2.2. Savitzky-Golay smoothing filter 

There are several methods of smoothing signals. A typical smoothing method 

refers to a method of smoothing data by sequentially averaging a part of the entire data 

through windowing and displaying the average value as a representative value of the 

window, not the average of the entire data when the time series is listed in moving 

average. What can be quickly detected about the drawback of moving average here is 

that moving average uses the average value, which is well known to react very 

vulnerable to outliers. For this reason, some applications often use a median instead of 

an average value. Therefore, moving average has the advantage of being easy to 

implement, but it shows limitations that it is vulnerable to instant peaks. As one of the 

methods to compensate for this, there may be a method of smoothing by constructing a 

polynomial regression model for a short signal interval in the window that is applied to 

the time series. 
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The Savitzky-Golay filter [14], published in 1964, is a filter that finds a 

polynomial of k-order that best fits the surrounding points at each point in a least square 

way when there are given data, contain original information and noise, at regular 

intervals, and the result preserves the maximum, minimum, or peak width relatively well 

in a given data. The Savitzky-Golay filter suggests that in performing smoothing using 

regression model, it can accurately replace smoothing using a polynomial regression 

model by preparing a specific impulse response without calculating the regression model 

within the window of every time step. [15] In other words, if the properly calculated 

impulse response is used, the filter is designed to have the same effect as calculating a 

regression model for each window of every time step. 

 

Figure 4.4 Savitzky-Golay filter test (frame length: 15) 
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4.3. Methodology 

The main idea of this topic is to make the raw data points (i.e., waypoints) given 

by the sensors a smooth curve with no major inflection, while allowing the controller to 

tracking this refined path very easily with having the low departure error and lateral jerk. 

It should be noted that all the methods we propose are start from receiving waypoints 

made through underlying image processing of raw data received from camera sensors. 

This corresponds to the E of Figure 4.2. 

Unlike the traditional lane detection method which only performs curve fitting 

for smoothening the curve, we deal with the waypoints smoothening first, and then add 

additional curve optimization for the controller. 

 

4.3.1. Curve smoothening 

Prior to curve optimization for controllers, pre-processing for curve smoothing is 

required. Since we assume that the data taken over from the sensor had no special 

processing that was directly related, such as form modification of lane other than image 

processing includes basic denoising, the data taken over contains singularities due to 

other external factors such as solar reflection from the road. The process to remove this 

singularity and soften the detected lane. 

 

4.3.1.1. Moving average of angle smoothening 

At this stage, the key is to utilize the angle between each sequential point, instead 

of directly averaging the x and y points. We first calculate the difference between the x- 



 

74 

 

and y-axis of each point, delta x(dx) and delta y(dy), to calculate the angle Alpha(α) 

between each sequential point. When Alpha is obtained, the mean of Alpha is obtained 

at intervals of 5 meters, and there is not a fixed number of points within each 5 meters. 

Therefore, the mean of Alpha is divided by the number of points contained within each 

5-meter range and used as a modified Alpha for each point. 

We performed moving average curve smoothening test for 30m length waypoints 

to check its performance, and the result shows 0.48m distance average error from the 

ground truth path and the angle of each waypoint does not smoothly change. (Figure 4.6) 

This still can be used since this unsmooth angle changes can be mitigated through the 

Figure 4.5 Moving average curve smoothening 
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curve optimization, the next step, however, this issue can be solved with Savitzky-Golay 

filter which we will prove on  4.3.1.2. 

 

4.3.1.2. Savitzky-Golay filter smoothening 

The Savitzky-Golay filter smoothing method is also receiving input of the size of 

the frame that processes it. It should be noted that we have set the frame size to 15. We 

used 30m as a typical driver's viewing distance, which is usually very rare to have more 

Figure 4.6 Moving average curve smoothening test 

Figure 4.7 Savitzky-Golay filter curve smoothening 
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than one large inflection point on the road within 30m, so it would be ideal to set the 

frame size to the number of all points within a distance of 30m. However, if there are 

two or more (multiple) inflection points on a road over 30m, smoothening's 

overperformance occurs, making the inflection points too dull. Therefore, in order to 

save the maximum information of the inflection point, we fixed the frame size to 15 

(number of points within around 15m waypoints) and performed smoothing repeatedly. 

As a result of testing Savitzky-Golay method under the same conditions as 

Moving average method, the Savitzky-Golay method shows better results than Moving 

average method with an average distance error of 0.12m. (Figure 4.8) In addition, the 

angle changes very smoothly. For this reason, the simulation was decided to proceed 

using Savitzky-Golay method as the curve smoothing in this paper. 

 

 

 

 

Figure 4.8 Savitzky-Golay filter curve smoothening test 
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4.3.2. Curve optimization for controller 

   Curve optimization for controller, a key procedure in this topic, is an additional 

process that eliminates significant changes in the curvature from the smoothened 

waypoints. 

 

4.3.2.1. Curvature based optimization 

Figure 4.9 shows overview of the Curvature based curve optimization. The key 

point of Curvature-based optimization is to make the sum of changes in angles and 

angles for the section of each point before optimization equal to the sum after 

optimization.  

Figure 4.9 Curvature based optimization 
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Let’s first assume that the delta Alpha can be expressed in the following first 

order polynomials. 

 

𝑑𝛼 = 𝐴𝑥 + 𝑏   

 

The above formula is valid if (0,0) is the starting point and the expression is expressed 

for the whole part, but the expression can be changed as follow to allow the whole part 

to be broken into parts and each to be optimized in order to maintain a more detailed 

representation. 

 

 𝑑𝛼 = 𝐴(𝑥 − 𝑋) + 𝑌  

 

At this time, our goal is to find the optimal slope A. First of all, the expressions sum of 

delta alpha and sum of alpha are as follows. 

 

1) 𝑆𝑢𝑚 𝑜𝑓 𝑑𝑒𝑙𝑡𝑎 𝐴𝑙𝑝ℎ𝑎:  𝑑𝛼 

= 𝑑𝛼 = {𝐴(𝑥 − 𝑋) + 𝑌} = 𝐴 (𝑥 − 𝑋) + (𝑏 − 𝑎)𝑌 

= 𝐴① + ② 

 

2) 𝑆𝑢𝑚 𝑜𝑓 𝐴𝑙𝑝ℎ𝑎:  𝛼 
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= 𝛼 = {𝐴(𝑥 − 𝑋) + 𝑌}(𝑥 − 𝑥 ) + 𝐴 𝑥 − 𝑋 + 𝑌 𝑥 − 𝑥 + 𝛼  

= 𝐴 (𝑥 − 𝑋)(𝑥 − 𝑥 ) + 𝑥 − 𝑋 𝑥 − 𝑥

+ 𝑌 (𝑥 − 𝑥 ) + 𝑥 − 𝑥 + (𝑏 − 𝑎)𝛼  

= 𝐴 ③ + ④ + 𝑌 ⑤ + ⑥ + ⑦ 

 

Since we aim to optimize the original curve while keeping the final direction unchanged, 

each Alpha and delta Alpha can induce the following expression by ensuring that the 

difference before and after optimization is zero. 

 

1 − 1) 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 𝐴 𝑜𝑛𝑙𝑦 𝑓𝑜𝑟 𝑑𝐴𝑙𝑝ℎ𝑎  

     = 𝑑𝛼_𝑜𝑟𝑖𝑔 − 𝑑𝛼 = 0 

     ⇒ 𝑑𝐴𝑙 − (𝐴➀ +➁) = 0 

     ⇒ 𝐴 =
𝑑𝐴𝑙 −➁

➀
 

 

2 − 1) 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 𝐴 𝑜𝑛𝑙𝑦 𝑓𝑜𝑟 𝐴𝑙𝑝ℎ𝑎 
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     = 𝛼_𝑜𝑟𝑖𝑔 − 𝛼 = 0 

    ⇒ 𝐴𝑙 − [{𝐴(➂ +➃) + 𝑌(➄+➅)} +➆] = 0 

    ⇒ 𝐴 =
𝐴𝑙 − 𝑌(➄+➅) −➆

➂+➃
 

 

Use the two expressions above to find a common A, which is the optimized A, 

 

3)   𝑑𝐴𝑙 − (𝐴➀ +➁) + 𝐴𝑙 − [{𝐴(➂+➃) + 𝑌(➄+➅)} +➆] = 0 

     ⇒ 𝐴 =
𝑑𝐴𝑙 −➁ + 𝐴𝑙 − 𝑌(➄+➅) −➆

➂ +➃ +➀
 

 

We divide the entire interval into three parts to obtain each optimized A. The reason for 

dividing the section into three parts, as briefly stated above, is to maintain the original 

lane shape as much as possible. The more detailed the part is divided, the more 

Figure 4.10 Curvature based optimization test 
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sophisticated the expression will be possible, but we decide not to divide it into too 

many sections because the amount of computation can be increased. 

The test results were good as expected. (Figure 4.10) The average distance error 

was very small at 0.01m, and the angle change continued very smoothly. However, all 

calculations do not consider vehicle status such as location, heading, and previous 

steering angle. This is important since our purpose is to design the path which has all 

information of the vehicle so that vehicle just can follow without considering anything. 

Therefore, we add additional step for rotating entire optimized path to the vehicle’s 

location. 

 

4.3.2.2. Target-point based optimization 

Figure 4.11 Target-point based optimization 
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Target-point based optimization is a method of producing points that gradually 

increase/decrease the angle corresponding to each point from current vehicle location to 

the fixed target point. To calculate this, the final point, the forward looking distance to 

obtain the final point, the location of the current vehicle, and the steering angle change in 

the previous situation are required. 

The calculation can be much simpler than the Curvature based optimization. 

Since it is fundamental that the angle of each waypoint increases/decreases by the same 

difference, we start with the basic arithmetical progression formula. 

 

𝑤ℎ𝑒𝑟𝑒, 

𝑎 =  𝑎𝑛𝑔𝑙𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑠𝑖𝑛𝑔𝑙𝑒 𝑤𝑎𝑦𝑝𝑜𝑖𝑛𝑡 

𝑎 = 𝑛  𝑡𝑒𝑟𝑚 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 

𝑎 = 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑡𝑒𝑟𝑚 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 (𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔 𝑎𝑛𝑔𝑙𝑒 𝑐ℎ𝑎𝑛𝑔𝑒) 

𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑎𝑦𝑝𝑜𝑖𝑛𝑡𝑠 

𝑑 =   𝑐𝑜𝑚𝑚𝑜𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑒𝑟𝑚𝑠 

𝑆 = 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑠𝑒𝑟𝑖𝑒𝑠 

𝐿𝑜𝑐 = 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 (𝑥, 𝑦) 

𝑃 = 𝑓𝑖𝑛𝑎𝑙 𝑤𝑎𝑦𝑝𝑜𝑖𝑛𝑡 (𝑥, 𝑦) 

 

𝑎 =  𝑎 + (𝑛 − 1)𝑑 

 

Therefore, the total angle change within the given waypoints would be: 
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𝑆 =  
( ( ) )

=  (𝑃 (𝑥) − 𝐿𝑜𝑐 (𝑥)) + (𝑃 (𝑦) − 𝐿𝑜𝑐 (𝑦))  

 

And the common difference of angle changed d can be calculated with: 

 

𝑑 =  

2𝑆
𝑁

− 2𝑎

𝑁 − 1
 

 

After we get this value d, we can calculate the angle change at each waypoints, and then 

finally get the final X and Y of optimized waypoints. 

As we expected, the optimized path has the same end point with the original 

path, and the angle differences changes smoothly increase/decrease. (Figure 4.12) Key 

advantage of this Target-point based optimization is that the optimized path already been 

designed with all information of the vehicle, so the controller just can follow this refined 

Figure 4.12 Curvature based optimization test 
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path without considering anything about the path ahead and current vehicle’s status. 

However, we should note that the performance is sensitive with the current vehicle’s 

status as shown in Figure 4.12. 

 

4.4. Experimental setting 

We performed the simulation experiments with MATLAB. For the same 

conditions for all methods, we used fixed vehicle speed for 4.5m/s, steering angular 

speed for 0.4deg/ms, and operating frequency for 0.3sec, and used Pure pursuit for the 

path following controller. The lookahead distance for the Pure pursuit also fixed with the 

product of vehicle speed and operating frequency, however, the dynamic lookahead 

distance was used for simulating the Target-point based optimization algorithm, since 

this cannot be shorter than the forward looking distance. We set the lookahead distance 

as same as the forward looking distance if the forward looking distance is shorter than 

the default lookahead distance which is the product of vehicle speed and operating 

frequency. Three test scenarios are shown in Figure 4.13. 

 

Figure 4.13 Simulation scenarios 
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4.5. Result 

4.5.1. Curve fitting 

As mentioned above, overfitting occurred in simulations using the traditional 

Curve Fitting method. This is the point of the sudden occurrence of a lateral jerk at 85m 

at our first scenario in Figure 4.14. No other unusual problem has been seen but given 

that the scenarios we experimented with consisting of simple curves rather than complex 

curves, more overfitting is expected if there is a lot of noise in signals accepted by the 

camera when dimming is poor. 

 

Figure 4.14 Simulation result - Curve fitting 
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4.5.2. Savitzky-Golay filter with Curvature based optimization 

Our first proposal, the simulation experiment of the Savitzky-Golay filter with 

Curvature based optimization method, did not cause any major problems. However, it 

can be seen that the lateral jerk is small but fluctuating so that it is not smooth. This is 

because the refined path does not contain information of the vehicle’s heading. But as 

long as it’s not over limitation and not jumping between + and -, it is still acceptable. 

 

4.5.3. Savitzky-Golay filter with Target-point based optimization 

Figure 4.15 Simulation result - Savitzky-Golay filter with Curvature based 
optimization 
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Optimizing with Target-point based method shows lowest lateral jerk amongst all 

three simulation tests, however, has unacceptable distance error on both scenarios. Note 

that using short lookahead distance will have more distance error, opposite to the normal 

Pure pursuit controller’s result. Since it optimizes the path which should have the same 

end point with the original path and gradually increasing/decreasing the changes of angle 

at the same time, more likely to moving closer to the original path when it uses shorter 

lookahead distance.  

We managed to reduce the forward looking distance when the distance error is 

increased. The reason for this is that, in general, even when humans drive, if the vehicle 

deviates significantly from the lane, they look closer to the lane than they look far ahead 

Figure 4.16 Simulation result - Savitzky-Golay filter with Target-point based 
optimization 
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and re-enter the lane. In fact, a much larger distance error was identified without adding 

this function. 

 

4.6. Discussion 

The experiments of the two novel methods proposed by this paper contain 

several important messages in that the optimal path to reduce the load of an autonomous 

vehicle controller could be provided in advance in the path planning stage. First of all, 

the Savitzky-Golay filter, which has not been used in other autonomous vehicle path 

smoothing studies so far, has been able to successfully remove noise and create a smooth 

path to the optimization stage. In addition, through the optimization of two methods 

through the curriculum analysis proposed by us, the later Jerk could be reduced. The 

redesigned path is, in other words, very similar to the controller's trajectory moving 

along the transition curve. Among the experiments we have performed, combination of  

Savitzky-Golay filter path smoothing and Curvature based optimization combination 

show that we can provide optimal driving Comfort with the most accurate path following 

Figure 4.17 Simulation result. Overall comparison 
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performance and the smallest lateral jerk among the experiments we have performed.  

And it should be noted that even though Target-point based path optimization method 

has larger lane departure, it is still a meaningful suggestion since the refined path 

contains the maximum information of the vehicle status and route ahead and it implies 

that there’s no need for the complex controller design anymore. In addition, we can slow 

down the speed to mitigate the distance error for Target-point based optimization. Figure 

4.18 show the result based on different speed and you can see that when lower the speed, 

we can get lower distance error and lower lateral jerk. And, this is not only for the 

Target-point based optimization, but also for the Curvature based optimization when it is 

needed. In the follow-up study, we can conduct how to combine the two proposed 

optimization methods which can provides the path for minimum distance errors and 

lateral jerk while carrying overall information of vehicle’s condition and the road ahead, 

and add speed control. 

Figure 4.18 Performance based on vehicle speed 



 

90 

 

 

4.7. References 

[1] ZuWhan Kim.  Robust lane detection and tracking in challenging scenarios. 

Transactions on Intelligent Transportation Systems, vol. 9, no. 1, pp. 16–26, 2008.  

[2] Hendrik Deusch, Jurgen Wiest, Stephan Reuter, Magdalena Szczot, Marcus 

Konrad, and Klaus Dietmayer. A random finite set approach to multiple lane 

detection. International Conference on Intelligent Transportation Systems, pp. 

270–275, 2012. 

[3] Hunjae Yoo, Ukil Yang, and Kwanghoon Sohn. Gradientenhancing conversion for 

illumination-robust lane detection. Transactions on Intelligent Transportation 

Systems, vol. 14, no. 3, pp. 1083–1094, 2013.  

[4] Tao Wu and Ananth Ranganathan. A practical system for road marking detection 

and recognition. Intelligent Vehicles Symposium, pp. 25–30, 2012. 

[5] Byambaa Dorj and Deok Jin Lee. A precise lane detection algorithm based on top 

view image transformation and leastsquare approaches. Journal of Sensors, vol. 

2016, 2016.  

[6] Kamarul Ghazali, Rui Xiao, and Jie Ma. Road lane detection using h-maxima and 

improved hough transform. International Conference on Computational 

Intelligence, Modelling and Simulation, pp. 205–208, 2012. 

[7] Yue Wang, Dinggang Shen, and Eam Khwang Teoh. Lane detection using spline 

model. Pattern Recognition Letters, vol. 21, no. 8, pp. 677–689, 2000.  



 

91 

 

[8] Bin Yu and Anil K Jain. Lane boundary detection using a multiresolution hough 

transform.  ICIP, vol. 2, pp. 748–751, 1997. 

[9] Bei He, Rui Ai, Yang Yan, and Xianpeng Lang. Accurate and robust lane detection 

based on dual-view convolutional neutral network. Intelligent Vehicles 

Symposium, pp. 1041– 1046, 2016 

[10] Jun Li, Xue Mei, Danil Prokhorov, and Dacheng Tao. Deep neural network for 

structural prediction and lane detection in traffic scene. Transactions on neural 

networks and learning systems, vol. 28, no. 3, pp. 690–703, 2016.  

[11] Jigang Tang, Songbin Li, and Peng Liu, A review of lane detection methods based 

on deep learning. Pattern Recognition, pp. 107623, 2020.  

[12] Taskin Kavzoglu. Determining Optimum Structure for Artificial Neural Networks. 

Proceedings of the 25th Annual Technical Conference and Exhibition of the 

Remote Sensing Society, pp. 675-682, 1999. 

[13] A Study of Lateral Vehicle Control Under a ‘Virtual’ Force Framework 

[14] A. Savitzky and M. J. E. Golay, "Soothing and differentiation of data by simplified 

least squares procedures", Anal. Chem., vol. 36, pp. 1627-1639, 1964. 

[15] R. W. Schafer, "What Is a Savitzky-Golay Filter? [Lecture Notes]," in IEEE Signal 

Processing Magazine, vol. 28, no. 4, pp. 111-117, July 2011. 

 

 

 

 



 

 

 

5. CONCLUSIONS 

It would be ideal to implement self-driving cars most similarly to human 

manipulation. However, it is not easy to fully implement human judgment and 

movements so far, so both academia and industry are spurring the development of self-

driving cars, and in fact, research on self-driving is one of the hottest areas now. As part 

of such efforts, this study also conducted in various ways to satisfy the driving accuracy, 

safety, and comfort of the autonomous ground vehicle. In the first research topic, 

through risk detection using simple image signal processing that other studies have not 

yet thought of, we proposed an auxiliary early warning system for areas where 

sophisticated machine learning methods may miss and improved the area of 'Safety'. 

And in the second topic, a new type of Pure pursuit controller was proposed, and the 

performance of our system was verified by implementing our own simulation 

environment, and it showed the same or excellent performance as the existing traditional 

methods. At the last and third topic, a new Path planning method based on the idea from 

the train rail was proposed, which is noteworthy that the existing methods did not utilize 

the detailed characteristics of the designed road, but we introduced them into the 

autonomous driving system by utilizing the characteristics from the standpoint of 

designing the road and these last two topics covering the 'Driving accuracy' and 

'Comfort' at the same time. 

The first study of this study aims to enable passengers or autonomous driving 

systems to control speed through early warning or to avoid dangerous situations through 

steering. The second and third topics do not contain content about speed control, but 
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only about lateral control, which is intended to be mainly dealt with in this study, to 

make it clear that it is intended to deal with the controller's lateral control ability. 

However, since the last two topics of this study did not conduct actual 

application experiments to self-driving cars and only derived results through computer 

simulation implemented with MATLAB, considerations for various external factors that 

will occur in the actual situation should be confirmed and applied through future studies. 

In addition, the simulation we conducted used a basic Bicycle model that is slightly 

different in motion from the actual four-wheeled vehicle, and also used a fixed steering 

angle rate value, so sufficient testing and verification must be performed to apply it to 

the actual vehicle. 


