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ABSTRACT

Reservoirs in the Arabian Gulf, home to some of the world’s largest oil reserves, consist pri-

marily of heterogeneous carbonate rocks and successfully recovering hydrocarbons from them is

a challenge. With existing technologies, most of the oil reserves located in the offshore carbon-

ate fields in the Arabian Gulf will remain unrecoverable. Shear wave information is essential for

reservoir characterization in the offshore fields of the Arabian Gulf. Used together with P waves,

S waves can help better delineate reservoir structures and discriminate bypassed hydrocarbons for

production monitoring. The Arabian Gulf has extremely shallow waters (∼ 10 m) and varied

hard sea-bottom, which results in highly dispersive waves, water-bottom reverberations, and se-

vere anti-aliasing. Previous studies have also observed strong shear wave energy conversion at the

sea-bottom in the Arabian Gulf. In this dissertation, I will analyze the source mechanism in order

to understand and utilize the strong shear wave generated in the region.

Classical wave propagation analysis, especially the ray theory, is not adequate to address the

complex interactions between the acoustic source and sea-bottom in the shallow waters. It remains

a long-standing challenging problem to explain the S* and SH* waves observed in the field decades

ago. In this dissertation, we propose a conceptual body force model that explains the generation

of SH* and S* waves from an explosive source in the shallow water with a hard sea-bottom. This

model defines an effective source on the seafloor directly under the acoustic source load from

mechanical deformation analysis. Instead of a wave propagation model, the mechanical model

considers the source and the boundary together as one volume element of elastic deformation.

From the mechanical model, the body force components for P, SV, and SH waves are explicitly

defined by the water depth and the Poisson ratio difference of the media. Exact analytical solutions

are derived for the near-field and far-field wave propagation from the effective source. Analysis is

given for three sea-bottom scenarios, soft mud, intermediate, and hard coral reef, to observe the

effect of source distance to the sea-bottom and sea-bottom hardness on wave propagation. Shear

waves generated from shallow source and hard sea-bottom are more than a thousand times stronger
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compared to far source and soft sea-bottom. Further, finite-difference wave modeling is utilized

to analyze the source mechanism in the shallow marine environment using the full wave-form

solutions.

Field 2D 4C seismic data acquired in the Arabian Gulf is processed for confirmation of the

existence of shear waves generated from the explosive source in the shallow waters and for direct

shear wave imaging of the subsurface. The processed inline shear wave is not the evanescent PS*

waves as other authors proposed. It is the body shear waves which are generated at the impact

point by effective source’s SV component. It propagates into the medium as a pure shear wave that

we refer to as direct shear (PSS). The SH* waves generated at the impact point by the effective

source’s SH component should be detected by processing the 2D 4C crossline data or 3D 4C data.

An established model-driven approach is used, based on reliable P and S wave velocity from well

log. The proposed workflow enhances reflected energy signals to extract shear wave information. P

and S wave extracted seismic sections have similar geological structural features, but the S stacked

section has higher frequency and higher resolution on the inline component than P wave sections.

This processing workflow greatly enhances the signal-to-noise ratio of the seismic data and directly

extracts shear wave information for reservoir characterization.
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4C Four Components

OBC Ocean Bottom Cable

Vp Compressional Wave Velocity

Vs Shear Wave Velocity
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SV Shear Vertical

S/N Signal to Noise Ratio
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1. INTRODUCTION

1.1 Statement and Significance of the Problem

The impact of seismic technologies has been of paramount importance in oil and gas explo-

rations. With advanced seismic methods, major contributions were made on increasing proven

reserves and reserve-production ratios worldwide. Over the past decades, multicomponent seismic

method has become one of the most significant breakthroughs in seismic technology. Multicom-

ponent seismic, commonly known as 4C seismic when deployed in water, aims to measure the

particle motion of the propagating seismic wave in three orthogonal directions (X-Y-Z) as well as

the pressure component (Hydrophone). 4C seismic record includes measurements from not only

compressional waves (P-waves) but also transverse shear waves (S-waves). S-waves aid in better

subsurface imaging, detecting oil-water contact, and delineating the top or base of the reservoir

unit that is not detectable by P-waves alone (Yilmaz, 2001). Furthermore, S-waves can be used

to identify fluid types in reservoir rocks, discriminate sand from shale, and map hydrocarbon sat-

uration with the goal of characterizing oil and gas reservoirs accurately (Stewart et al., 2002). To

characterize reservoirs, most studies rely on both P-wave imaged seismic data and S-waves es-

timated from AVO (Amplitude Variation with Offset) analysis techniques (DeVault et al., 2002);

however, some studies show better mapping of reservoirs using PS imaged data over AVO (Singh

et al., 2015). Nevertheless, the key benefit of 4C seismic data remains in the extraction of shear

waves directly from the multicomponent dataset (Farfour and Yoon, 2016). Unfortunately, most

studies (Crompton et al., 2005; Johns et al., 2006; Rajput, 2010) utilize shear waves in 4C seis-

mic data by focusing on the pressure and vertical components only, neglecting both the inline and

crossline geophone components due to lower signal-to-noise (S/N) ratios that arise from coupling

issues. With existing technologies, most of the reserves located in the offshore carbonate fields in

the United Arab Emirates (U.A.E.) will remain unrecoverable. To recover them, a fundamental un-

derstanding of reservoir heterogeneity and reservoir fluid flow is essential. Therefore, shear waves
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can help delineate reservoir structure and discriminate bypassed hydrocarbons which makes them

an important tool for carbonate reservoir description and monitoring in the U.A.E. offshore fields,

which is home to 8 percent of the global oil reserves.

The data used in this study includes a 2D-4C seismic data recorded offshore Abu Dhabi in the

United Arab Emirates (U.A.E.) on the Arabian Gulf. In this area, the water levels are very shallow

at 15 m depth only and the seabed comprises of a hard sea-bottom that is due to the scattered hard

coral reefs. In addition, the subsurface in the region is characterized by both anhydrite seals and

heterogeneous carbonate reservoir rocks. Therefore, shallow water environment in the Arabian

Gulf presents a unique setting that presents certain challenges compared to its counterpart in the

North Sea as shown in Figure 1.1.

Figure 1.1: Seismic shot record comparison between UAE (shallow water) and the North Sea
(deep-sea) Modified from (Berteussen and Sun, 2010).

In the Arabian Gulf, the major challenges can be summarized as highly dispersive surface

waves, spatial aliasing, and severe internal multiples. All these characteristics are attributed to the
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shallow water and hard sea bottom of the Arabian Gulf that are not present in the deep water en-

vironment of the North Sea. However, reflectivity modeling for a P-wave source in shallow water

setting (<15 m depth) indicates that strong P-S conversion occurring at the sea-bottom is more than

a thousand times stronger than in deep-water environments (>100 m depth) as shown in Figure 1.2

(Sun and Berteussen, 2009). The modeling depicts the relative energy transmitted to the subsurface

Figure 1.2: A comparison of energy transmitted into the subsurface for a pressure source in a 10
m water depth setting (left) and a 100 m water depth setting (right). The green line represents the
energy transmitted for the converted S wave at the sea bottom. Adapted from (Sun and Berteussen,
2009).

with offset for the shallow water and deep-water setting. The energy transmitted for the shallow

water setting is order of magnitudes higher than the deep-water setting. Furthermore, the energy

transmission peaks within the first 20 m from the source and after that total internal reflection

occurs. This means that in the shallow water seismic acquisition most of the energy conversion

happens within the vicinity of the source which leads to complex wave-sea bottom interactions.

Therefore, the shallow marine environment of the Arabian Gulf presents a unique opportunity for

efficient energy penetration of S-waves into the elastic rocks below the water bottom which is im-

portant to obtaining shear wave information from converted waves for reservoir monitoring (Sun

and Berteussen, 2009). However, the strong shear wave transmission utilizes relative amplitudes

and is based on the assumption of classical plane wave theory. The assumption of plane waves
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propagating from the source is not valid in the shallow marine environment of the Arabian gulf

due to the proximity of the sea-bottom to the pressure source. Thus, energy partition may not be

addressed adequately using classical plane theory. To address this, analytical solution of the wave

equation is required to quantify the amplitude response in the shallow water setting due to the shal-

low water and hard sea-bottom. The first exact analytical computation of a propagating wavefield

is attributed to Sir Horace Lamb (Lamb, 1904). His solution involves investigating surface mo-

tions of linear elastic, isotropic, homogeneous halfspace due to an impulsive point source acting

vertically on a boundary; problems of this nature are commonly referred to as Lamb’s problem.

Analytical solution of wavefields can be found using two main methods. The first method involves

Fourier superposition over time domain solutions. This method was first used by Lamb which

involves mutliple integrations and asymptotic assumptions to arrive at the analytical solution. This

method was expanded further into elastic over elastic half-spaces by several authors (Ewing et

al., 1957; Berkhovskikh, 1980). Berkhovskikh (1980) examined the fluid over elastic half-space

case but only considered normal modes for his analysis. The other method employs time-domain

solutions without the use of Fourier superposition to avoid the asymptotic evaluation of multiple

integrals. These group of methods were developed by Cagniard and expanded further by other

authors (Cagniard, 1939; Pekeris, 1956); however, it wasn’t until de-Hoop’s contribution that the

Cagniard method became widely known and is now commonly referred to as Cagniard de-Hoop

method (de Hoop, 1960). Using the Cagniard de-Hoop method, analytical solution of propagat-

ing wavefield were sought in an elastic half-space with varying source-receiver geometry (Garvin,

1956). When an explosive source is placed within a wavelength to the boundary in an elastic

half-space, non-geometrical shear waves were reported to exist in synthetic seismograms which

are known as S∗ waves.(Hron and Mikhailenko, 1981). The S∗ waves are non-geometrical waves

that appear to propagate from the boundary instead of the source and are interpreted as evanescent

waves that exponentially decay with depth. Other non-geometric wave arrivals such as SH* were

identified in synthetic seismograms (Daley and Hron, 1988). This phenomenon was further ex-

amined in fluid-solid half-space where a PS∗ wave was identified on synthetic seismogram given
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an explosive source close to the sea-bottom boundary (Allouche and Drijkoningen, 2016). The

previous analysis also involved using the Cagniard de-Hoop method to find analytical solutions of

propagating waves for sources close to the interface. In the shallow water environment, however,

the complex wave interaction from the source and sea-bottom cannot be described by classical ray

theory propagation analysis; instead, a wave generation analysis subject to the proximity of the

source and physical characteristics of the elastic sea-bottom is required to explain the generation

of SH∗ waves from an explosive source in the shallow waters.

Understanding wave generation in the shallow marine environment provides much needed in-

sight into seismic processing and imaging. This environment introduces unique challenges in seis-

mic imaging such as severe surface wave contamination, spatial aliasing, and multiples (Berteussen

and Sun, 2010). Zhang et al. (2015) proposed a model-based seismic processing workflow aimed

at verifying the existence of shear waves in shallow water 2D-4C OBC (Ocean Bottom Cable) seis-

mic data as shown in Figure 1.3. The stacked seismic images for shear waves were done utilizing

Figure 1.3: A comparison pressure component seismic stacked image using P wave velocity and S
wave velocity. Adapted from (Zhang et al., 2015).

S wave velocity stack with a conventional Common MidPoint binning (CMP) instead of Common
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Conversion Point (CCP) binning. Those binning techniques are based on the wave propagation

in the subsurface and the conversion from P waves to S waves as shown in Figure 1.4. Further,

Figure 1.4: A schematic of a marine seismic survey showing the difference between S wave con-
version only at the sea bottom and S wave conversion in the subsurface. The S wave conversion
at sea-bottom only means the wave propagates only as S wave and requires CMP binning. The
S wave conversion at subsurface means the wave propagation downward is P wave and returns to
surface as S wave which requires CCP binning.

Berteussen et al. (2014) used the same dataset to extract S-waves from the 4C seismic data using

heavy filtering with NMO (Normal Move Out) corrections. Both methods aim to extract P and S

waves information from the seismic data by utilizing velocity information from a nearby well log.

However, the well log used in their study provides measured P-wave information only; whereas, S

wave information was calculated through a constant Vp/Vs ratio. In this study, the well log con-

tains P and S wave information that are both directly measured and available throughout a range

that exceeds the reservoir level.

1.2 Dissertation Research Objectives

This dissertation is concerned with the generation and propagation of shear waves in the shal-

low water environment of the Arabian Gulf from the seismic source until the extracting of shear

waves in the 2D 4C seismic image. Therefore, the dissertation research objectives are

• Analyze the source mechanism responsible for the complex wave generation in the region
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• Explain the complex wave generation in the Arabian Gulf by proposing a new mechanical

model

• Verify the generation of strong SH shear waves in the region

• Utilize analytical and numerical solutions to understand the propagation of waves from the

source in the shallow marine environment

• Extract direct shear wave information from 2D 4C seismic data

1.3 Dataset and Geological Background

The study area is located 25 km NorthWest of Abu Dhabi on the Arabian Gulf between two

offshore oil fields as shown in Figure 1.5.

Figure 1.5: Location map of the United Arab Emirates. Study area is NW of Abu Dhabi and is
approximately indicated by the highlighted box. Modified from (Granier et al., 2003).

The U.A.E. is part of the Arabian Peninsula and lies at its northeastern corner. In the U.A.E.,

the existing oil and gas reservoirs developed from the late Permian to the middle Miocene are

predominantly carbonate rocks with highly heterogenous quality. The offshore field in this study
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area is situated in the NE-trending Rub’ Al Khali basin which was floored with evaporates during

its initiation as an intracontinental rift basin (Sharland et. al., 2001). During its evolution from

the Early Permian, the Rub’ Al Khali basin evolved into the NE-trending embayment of the NW-

trending Arabian Gulf basin, which is a foreland basin lying between the Arabian Shelf and the

Zagros foldbelt. With warm temperatures and very shallow water depth, the area culminated car-

bonates, mudstones and carbonates-anhydrites that occurred periodically through the geologic age.

The anhydrite cycle deposition gave rise to the regional anhydrite seal in the area (Alsharhan and

Nairn, 1990). With thermally matured organic-rich source rocks, porous and permeable reservoir

rocks, and impermeable seal rocks, the Arabian Gulf Basin is one of the world’s largest sources of

crude oil.

The study will utilize a 2D 4C OBC seismic line as well as one nearby wireline well log.

The seismic line consists of three Geophones, X-Y-Z representing a Cartesian system, and one

Hydrophone pressure component deployed on the sea-bottom. In the survey, the average water

depth and the source depth are 15 m and 5 m, respectively. 1185 Shots were carried out in the

survey with a shot spacing of 18 m and a receiver spacing of 25 m. With 400 receiver groups

deployed, the total length of the line is 10 km. The well data for this study contains various well

measurements such as caliper, gamma ray, neutron porosity, resistivity, density, compressional

wave velocity (Vp), and shear wave velocity (Vs). In this well, Vp and Vs logs are available

starting from a measured depth of 42 m up to 3164 m; whereas, the density log is available from

measured depth of 226 m to 3164 m.

1.4 Dissertation Summary

Given the importance of shear waves and challenges present in the shallow marine environ-

ment, this dissertation aims to address all the challenges existing with a detailed analysis of the

seismic source in the shallow waters of the Arabian Gulf. This includes gaining a fundamental

understanding of the source mechanism responsible for the complex wave interactions that leads

to the strong shear wave generation in the region. To accomplish that, a novel mechanical model is

proposed that explains the complex wave generation in the region. Using this model, an equivalent
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body force is established on the sea-bottom and an explicit body force components are derived for

P, SV, and SH waves. With propagation analysis, this model is verified both analytically and nu-

merically. From this understanding, direct shear wave information is extracted from 2D 4C seismic

data in the shallow marine environment of the Arabian Gulf.
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2. GENERATION OF SHEAR WAVES FROM AN EXPLOSIVE SOURCE IN THE

SHALLOW MARINE ENVIRONMENT

Considering the observed wave phenomenon in the region, multiple challenges are present that

affect everything from acquisition to imaging of the seismic data. However, unique opportunities

remain due to the shallow water setting and hard sea-bottom. In this chapter, analysis of the

explosive source and its interactions with the boundaries in shallow water setting will be conducted

in detail to address the strong generation of shear waves in the region. From this analysis, a new

body force model is conceptualized that considers the spherical shape of the waves, proximity of

the source, and the mechanical nature of the interaction between the source and the sea-bottom

boundary. With this model, the correct body force terms for P, SV, and SH waves are explicitly

defined using the effective source at the sea-bottom which is responsible for the strong generation

of shear waves.

2.1 Theory

2.1.1 Conceptual Model of the Body Force

In exploration seismology, seismic waves are generated by an active source that are propagated

through Earth’s medium. Those waves are spherical in nature and undergo physical changes during

their propagation due to the varying elastic properties of the Earth. In the shallow waters of the

Arabian Gulf, the average water depth is 15 meters and the airgun source is approximately 5 meters

above the seafloor. Due to the proximity of the source to the seafloor, the source frequency can be

approximately estimated through the seafloor signature as shown in figure 2.1 below.

As depicted from the previous figure, the dominant frequency of the source from the seafloor

signature is approximately f = 30Hz. From the dominant frequency, the dominant period be-

comes T =
1

30
= 0.033 s. Assuming the average wave velocity in water to be C = 1500m/s, then

the dominant wavelength in the shallow waters of the Arabian Gulf is λ = T ∗C = 0.033∗1500 =

50meters. This indicates that with the source depth at 5 meters above the seafloor then the source
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Figure 2.1: Seafloor signature in the shallow waters of the Arabian Gulf from the given airgun
source. a) The first 100 ms of the seismic trace closest to the source from a typical shot gather from
the seismic data. b) The extracted amplitude spectra from the seismic trace in a). The dominant
frequency from the seafloor signature is 30 Hz. The high frequency in the spectra is due to the high
frequency coherent noise common in the region.

height compared to the dominant wavelength is
h

λ
=

5

50
=

1

10
. In such setting, the source is placed

one tenth the distance of a dominant wavelength which means that the source exists well within

the near-field source radiation. This causes multiple issues that must be identified and addressed

adequately . The first problem that needs to be considered is the wave propagation. To visualize it,

a comparison of wave propagation between deep and shallow waters is depicted in figure 2.2.

Figure 2.2: A comparison of wave propagation from the source between deep and shallow water
environments. a) The wave propagation in deep water environment where the distance from the
source to the seafloor is far enough that it can be approximated as an incident plane wave. b) The
wave propagation in the shallow water environment where the distance from source to the seafloor
is close enough which makes interactions complex and the incident wave remains as a spherical
wave without approximations.

Figure 2.2 highlights the difference between a wave propagation from a source in a deep water
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and shallow water environments. In the deep water, the source excites spherical waves that progress

outward until it interacts with the sea-bottom boundary. In such environment, the distance from

the source to the seafloor is much greater than the arc length of the spherical wave that interacts

with the sea-bottom boundary. Therefore, the spherical waves in this setting can be approximated

as plane waves. The plane wave theory model enables approximate wave amplitude estimation

that is convenient especially when considering those waves interactions with boundaries. On the

other hand, the wave fronts propagating from the source in the shallow water environments causes

complex wave interactions because the source is close to the sea-bottom. The existence of the

source within the near-field means that the distance from the source to the sea-bottom cannot be

much greater than the arc length of the wave front when it interacts with the seafloor boundary;

in fact, it is less. This indicates that the plane wave theory model fails to apply for shallow water

setting and the wave propagation model is not sufficient to describe the complex wave interactions

that happens in the near-field for the shallow waters of the Arabian Gulf.

In a more comprehensive approach, such as Lamb’s problem (Lamb, 1904), spherical waves

are decomposed into the summation of plane waves to further analyze the source-boundary inter-

action in the near-field. In this classical problem, the interest becomes the exact calculation of

waves emanating from the impulsive source within the given source/medium geometries. Gener-

ally, Lamb’s problem involves an impulsive point or line source that acts on a boundary that will

then propagate coupled P-SV waves or SH depending on the source configuration.

Given that the ray theory analysis is not a suitable model to describe the wave interactions in

the shallow water setting, then a different model is required to better approximate the physical

interactions between the source and the hard sea-bottom boundary. The proximity of the source

to the hard sea-bottom in the Arabian Gulf enables the source explosion to act directly onto the

seabed as a whole. This can be idealized as a vertical force projected directly on the seafloor as

shown in figure 2.3.

As shown in figure 2.3, the pressure source is located a distance h from the seafloor but it is

close enough that it can be approximated as a vertical force fz on the seafloor. Intuitively, we
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Figure 2.3: The conceptual body force mechanical model. The source proximity to the source
is idealized as a vertical force, Fz, applied directly on the seafloor. This force directly excites the
internal force, σz, which indirectly induces the horizontal internal forces, σ′x and σ′y, at the seafloor.
The internal forces at the seafloor represent the actual effective source in the shallow water setting
and is proportional to the distance from the airgun source and the elastic properties of the hard
sea-bottom.

can visualize as follows. Before the instant of the vertical force reaching its impact point on the

seafloor, an infinitesimal volume element of the rock mass around the impact point experiences no

force in three dimensions. At the instant of the impact, this volume element experiences an external

vertical force fz only. This external vertical force not only generates internal deformations in the

vertical direction but also deformations in the horizontal directions. These induced deformations

in the horizontal directions produces internal molecular forces in the horizontal directions. After

the instant of the impact, these induced internal molecular forces in three directions act as a point

source to propagate the deformation energy into the rest of the media, we call this the effective

source. To quantify this physical process,the Cartesian coordinates system is employed where

{x1 = x, x2 = y, x3 = z}. Facilitating the mechanical body force model, the external applied force

on the seafloor is defined as

f = (0, 0, fz),

fz =
A

h2
δ(x)S(t)

(2.1)

where A is a constant and fx = fy = 0. Further, h is the distance from the source to the seafloor
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and internal force at the seafloor is inversely proportional to the square of the distance from the

airgun source. This relationship is reasonable given that the spherical waves in the shallow waters

cannot be approximated as plane waves and the intensity of the spherical waves are inversely

proportional to the square of the distance from the source (Ikelle and Amundsen, 2010). The

S(t) term represents the source time signature which includes the time impulse function. In the

mechanical deformation model, we consider a dynamic process at the instantaneous moment of

impact on the seafloor. Prior to the external vertical force impact, everything is assumed to be

at rest without any external force in all directions. Therefore, this vertical force generates the

time-dependent vertical stress in the solid at the moment of the impact that is defined as

σz =
A0

h2
δ(x)S(t), (2.2)

where A0 is a constant and σx = σy = 0 because no horizontal forces are applied on the seafloor

directly from the source at the instant of impact. Here we assume that σx, σy, and σz are the

principal stresses.

As described before, the time-dependent stress at the instant of impact not only generates in-

ternal deformation (strain) in the vertical direction but also deformation (strain) in the horizontal

directions. Assuming isotropic materials, the deformation (strain) in the infinitesimal volume ele-

ment around the impact point at the instant of the impact, produced by the external force, can be

calculated using the Hooke’s law as follows

ex =
1

E
[σx − ν(σy + σz)]

ey =
1

E
[σy − ν(σx + σz)]

ez =
1

E
[σz − ν(σx + σy)] ,

(2.3)

where e is the strain which represents a measure of the deformation in the elastic solid, E is

the Young’s modulus defined as E =
µ(3λ+ 2µ)

(λ+ µ)
, and ν is the Poisson’s ratio defined as ν =
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λ

2(λ+ µ)
. It should be noted that only 2 independent elastic constants are required to describe

the behavior of isotropic materials; namely, the Lame’s constant, λ, and the shear modulus, µ.

Combining equations 2.2 and 2.3 yields:

ex =
1

E
[−ν(σz)] =

1

E
[σ′x]

ey =
1

E
[−ν(σz)] =

1

E

[
σ′y
]

ez =
1

E
[σz] .

(2.4)

In equation 2.4, the three strain components, ex, ey, and ez are the internal deformation produced

by the vertical external force at the instant of impact. Following the Hooke’s law in elasticity,

these strains generate internal stresses in the adjacent molecules immediately after the instant of

the impact. This is equivalent to say that the stress components in equation 2.4, σ′x, σ′y, and σz can

be treated as an effective source. This effective source of stress propagates elastic energy further

into the surrounding medium after the instant of impact.

From equation 2.4, it can be seen that the stress of the effective force is produced by the

combination of the applied vertical force at the instant of impact and the rock properties of the

sea-bottom at the impact point. Although no direct external horizontal forces were applied to the

seafloor, the horizontal strains are non-zero after the instant of impact because of the elasticity

of the medium; i.e., this is due to the fact that the horizontal deformations are dependent on the

vertical stress σz and the Poisson ratio as given in equation 2.4. Given that the stresses are the

forces per unit area, then the deformations in horizontal and vertical directions are excited within a

given volume in the solid. This deformation excited by the internal forces form an effective source

in the volume at the seafloor directly under the external force, such as the case of an airgun source

in the shallow waters of the Arabian Gulf.

In the discussions above, we analyzed the dynamic process of physical source-boundary inter-

actions in the near-field, which is different from the static loading during mechanical deformation

due to compaction of sediments. In the study of compaction, we usually assume that under verti-
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cal loading there is only vertical strain component and the horizontal components are zero which

means the material can freely expand in the horizontal directions. In the compaction scenario, we

thus assume ex = ey = 0. So equation 2.3 becomes

0 =
1

E
σx −

ν

E
σy −

ν

E
σz

0 = − ν
E
σx +

1

E
σy −

ν

E
σz

0 =
1− ν
E

σx +
1− ν
E

σy −
2ν

E
σz

2(1− ν)

E
σx =

2ν

E
σz

σx =
ν

1− ν
σz,

(2.5)

where σx = σy. Results given in equation 2.5 are valid for mechanical deformation due to static

loading during compaction. It is, however, not suitable for the dynamic process we considered

here for the source-boundary interaction in the very short time of few milliseconds at and after the

instant of impact. In the dynamic process, at the impact point, only the vertical stress component is

non-zero but the three strain components are non-zero at the instantaneous moment of the impact;

after the instant of impact both stress and strain components are non-zero in general.

In reality, both σx, σy and ex, ey in the effective source model should be non-zero after the

instant of impact and while S(t) is non-zero. How close or far σx and σy are zero as assumed

in the source term while S(t) is non-zero may depend on rock properties and the duration of the

applied source, and should be tested and evaluated in the future to improve the effective source

model.

Having considered the mechanical features of the effective source, the body force in the con-

ceptual model can be formally defined as:

f = (fx, fy, fz)

=
A

h2
δ(x)S(t)(−ν,−ν, 1).

(2.6)

The body force from equation 2.6 represents the effective source in the conceptual body force

16



model. This source not only takes into account the proximity of the source to the seafloor; but

also the material properties of the hard sea-bottom. Those distinctive features form a basis for

the shallow water environment in the Arabian Gulf; thus, it is essential they are considered in the

model. In this model, the strength of the force in the vertical direction is controlled by the distance

h of the airgun source and the seafloor. Moreover, the strength of the horizontal force is affected

by the distance h and elastic parameter ν. Generalizing this model to include the limiting case of

two fluid boundaries, the Poisson ratio ν will be replaced by the difference between the two media,

ν = ν2 − ν1 (2.7)

where ν1 is the Poisson ratio of the first medium, and ν2 is the Poisson ratio of the medium below

the first medium. This model will be used to understand the generation of shear waves from an

explosive source in the shallow water setting associated with the hard or soft sea-bottom.

2.1.2 The Wave Equation

To study seismic motion in the Earth, an analytical framework must incorporate a seismic

source, equations for the motions that propagate once motion has started, and a theory relating the

seismic source with the equations of motion. The equation of motion is governed by Newton’s law

of motion and can be represented in summation notation as:

ρüi = fi + τij,j, (2.8)

where ρ is the mass density, u is the displacement vector, f is the body force ,and τ is the stress

tensor. Considering infinitesimal motion, the stress is related to strain with the theory of linear

stress-strain relation as follows:

τij = cijklekl. (2.9)
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Equation 2.9 is known as the constitutive relation and a system that obeys it is said to be linearly

elastic. In linear elasticity, the strain tensor is defined as:

eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.10)

The quantities cijkl are components of a fourth-order tensor; namely, the stiffness tensor. In the

isotropic case, the stiffness tensor can be written as

cijkl = λδijδkl + µδ (δikδjl + δilδjk) . (2.11)

Where the independent constants, λ and µ, are the Lamé parameters, and δ is the Kronecker delta

defined as:

δij =


1, if i = j,

0, if i 6= j.

Six independents components of the stiffness tensor remain when considering symmetries due to

the stress (τij = τji), strain (eij = eji), and the thermodynamic argument (cijkl = cklij) (Aki and

Richards, 2002). In the isotropic case, the reduced stiffness tensor can be expressed in matrix form

as:

C =



λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0

λ λ λ+ 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ


(2.12)

Substituting equation 2.12 into equation 2.9 yields:

τij = λekkδij + 2µeij (2.13)
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Using 2.13, instead of equation 2.9, the wave equation in an isotropic medium can be derived.

From equations 2.10, 2.8, and 2.13, the isotropic wave equation in 3D with components can be

written as

ρ


∂2u1
∂t2

∂2u2
∂t2

∂2u3
∂t2

 = (λ+ 2µ)


∂
∂x1

(
∂u1
∂x1

+ ∂u2
∂x2

+ ∂u3
∂x3

)
∂
∂x2

(
∂u1
∂x1

+ ∂u2
∂x2

+ ∂u3
∂x3

)
∂
∂x3

(
∂u1
∂x1

+ ∂u2
∂x2

+ ∂u3
∂x3

)
− µ


∂
∂x2

(
∂u2
∂x1
− ∂u1

∂x2

)
− ∂

∂x3

(
∂u1
∂x3
− ∂u3

∂x1

)
∂
∂x3

(
∂u3
∂x2
− ∂u2

∂x3

)
− ∂

∂x1

(
∂u2
∂x1
− ∂u1

∂x2

)
∂
∂x1

(
∂u1
∂x3
− ∂u3

∂x1

)
− ∂

∂x2

(
∂u3
∂x2
− ∂u2

∂x3

)
 ,

(2.14)

or in vector notation, the inhomogeneous wave equation is

ρü = f + (λ+ 2µ)∇(∇ · u)− µ∇× (∇× u), (2.15)

where the double over dots implies second derivative with respect to time. The 3D wave equation

has three unknowns with a non-trivial solution. This equation supports two type of waves; namely,

the transverse and longitudinal waves. Transverse waves are waves that have motion perpendicular

to the propagation direction; these types of waves are also known as shear waves (S waves). For

longitudinal waves, the motion is parallel to the propagation direction and are commonly known

as compressional waves. In acoustics, the longitudinal waves are the same as the pressure waves

(P waves). Given those properties, the displacement of the wave equation can be separated into the

transverse wave part and the longitudinal wave part. This decomposition is known as the Helmholtz

decomposition and is defined as

u = ∇φ+∇×ψ. (2.16)

where φ is the scalar displacement potential of the P wave (curl-free) and ψ represents the vec-

tor displacement potential field of the S wave (divergence-free). Equation 2.16 equates the 3-

component vector u to an expression of 4 unknowns; where, the extra constraint is handled by

∇ · ψ = 0. Moreover, the Helmholtz decomposition of the displacement field into potentials is

satisfied only if the body force from equation 2.15 can also be expressed in terms of Helmholtz
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potentials as

f = ∇Φ +∇×Ψ, (2.17)

where Φ is the scalar body force P potential,Ψ is the vector body force S potential, and ∇ ·Ψ =

0. The left term on the right hand-side of equation 2.17 represents the compressional (P wave)

source and the right term represents the shear (S wave) source of the body force. Substituting

the potentials from equations 2.16 and 2.17 into equation 2.15 and utilizing the the vector identity

∇× (∇×ψ) = ∇∇ ·ψ −∇2ψ, then the scalar potential satisfies

φ̈ =
Φ

ρ
+ α2∇2φ (2.18)

where α is the compressional wave velocity defined as α2 = λ+2µ
ρ

. Equation 2.18 is known as the

P scalar wave equation since it is curl-free and propagates with the P wave velocity α. Similarly,

the vector potential satisfies

ψ̈ =
Ψ

ρ
+ β2∇2ψ, (2.19)

where β is the shear wave velocity defined as β2 = µ
ρ
. Equation 2.19 is known as the S vector

wave equation since it is divergence-free and propagates with the S wave velocity β.The potential

equations satisfy the inhomogeneous wave equation and are simpler than the elastodynamic wave

equation which helps break it up into soluble equations. Solutions of the wave equation will

be pursued using the potential equations in the subsequent sections and their usefulness will be

demonstrated especially when addressing boundary value problems.

2.2 Solution for the Elastodynamic Wave Equation in a Homogeneous Medium using the

Conceptual Body Force Model

2.2.1 Wave Equation Solution using the Body Force P and S potentials

To analyze inhomogeneous solutions of the wave equation, the Helmholtz potential decompo-

sition of the body forces and the displacement fields is utilized. The inhomogeneous body wave

equations for P and S waves in isotropic media were expressed in equations 2.18 and 2.19 respec-
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tively. The following derivations follows the work of Aki and Richards (2002) for the displacement

solutions in a homogeneous, isotropic, and unbounded medium. Prior to finding the solution for

the wave equation, the first step involves finding the body-force potentials Φ and Ψ such that

f = (f1, f2, f3) =
A

h2
δ(x)S(t)(−ν,−ν, 1) = ∇Φ +∇×Ψ. (2.20)

At a given moment of time, the body force potentials are defined by solving the Poisson vector

equation∇2W = Z, which is given by (Aki and Richards, 2002)

W (x, t) = −
∫∫∫

V

Z(ξ, t)

4π|x− ξ|dV (ξ) (2.21)

and

Φ = ∇ ·W (2.22)

Ψ = −∇×W (2.23)

Using the conceptual body force model, the vector Z is defined as such

Z(x, t) =
A

h2
δ(x)S(t)(−ν,−ν, 1), (2.24)

so that

W = −AS(t)

4πh2

∫∫∫
V

(−ν,−ν, 1)
δ(ξ)dV

|x− ξ|
= − AS(t)

4π|x|h2
(−ν,−ν, 1). (2.25)

Therefore, the body force potentials are

Φ(x, t) = ∇ ·W = −AS(t)

4πh2

(
− ∂

∂x1

ν

|x| −
∂

∂x2

ν

|x| +
∂

∂x3

1

|x|

)
(2.26)

21



Ψ(x, t) = −∇×W

=
AS(t)

4πh2

(
∂

∂x2

1

|x| + ν
∂

∂x3

1

|x| ,−ν
∂

∂x3

1

|x| −
∂

∂x1

1

|x| ,−ν
∂

∂x1

1

|x| + ν
∂

∂x2

1

|x|

).
(2.27)

Substituting equations 2.26 and 2.27 in equations 2.18 and 2.19 respectively, yields the inhomoge-

neous P and S wave equations

φ̈ = −AS(t)

4πρh2

(
−ν ∂

∂x1

1

|x| − ν
∂

∂x2

1

|x| +
∂

∂x3

1

|x|

)
+ α2∇2φ (2.28)

ψ̈ =
AS(t)

4πρh2

(
∂

∂x2

1

|x| + ν
∂

∂x3

1

|x| ,−ν
∂

∂x3

1

|x| −
∂

∂x1

1

|x| ,−ν
∂

∂x1

1

|x| + ν
∂

∂x2

1

|x|

)
+ β2∇2ψ.

(2.29)

Finding the displacements involves solving the wave equations for the Lamé potentials φ and ψ.

Since the body force potentials are defined in the whole volume V , the Lamé potentials solutions

must be written in integral form as

φ(x, t) = − A

(4πα)2ρh2

∫∫∫
V

S

(
t− |x− ξ|

α

)
|x− ξ|

(
−ν ∂

∂ξ1

1

|ξ|
− ν ∂

∂ξ2

1

|ξ|
+

∂

∂ξ3

1

|ξ|

)
dV (ξ)

(2.30)

ψ(x, t) =
A

(4πβ)2ρh2

∫∫∫
V

S

(
t− |x− ξ|

α

)
|x− ξ|

(
∂

∂ξ2

1

|ξ| + ν
∂

∂ξ3

1

|ξ| ,−ν
∂

∂ξ3

1

|ξ| −
∂

∂ξ1

1

|ξ| ,−ν
∂

∂ξ1

1

|ξ| + ν
∂

∂ξ2

1

|ξ|

)
dV (ξ).

(2.31)

It is important to note that all potentials are defined over the whole volume especially for force po-

tentials even when the body forces are acting at a point. In the preceding equations, the evaluation

of the volume integral is separated into two parts, first an integral over a spherical surface Ω and

second and integral over time τ from zero to infinity. Considering the P wave equation, the volume

integral can then be separated as

φ(x, t) = − A

(4πα)2ρh2

∫ ∞
0

S(t− τ)

τ

(∫∫
Ω

(
−ν ∂

∂ξ1

1

q
− ν ∂

∂ξ2

1

q
+

∂

∂ξ3

1

q

)
dΩ(ξ)

)
dτ, (2.32)
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with ατ = |x − ξ| and q = |ξ|. To facilitate the previous integral, the geometry configuration of

the spherical surface is depicted in figure 2.4 below.

Figure 2.4: Geometry configuration of the spherical surface Ω with center at xi and radius r′ =
|xi − ξi| = ατ .

The parameter q is the distance from the origin to an element dΩ of the spherical surface Ω,

r = |xi| is the distance from the origin to the position where displacement due to the applied force

is evaluated in the volume, and r′ = |xi − ξi| = ατ is the distance from the point xi to the point ξi

on the spherical surface. The evaluation of the surface integral involves considering the spherical

surface Ω position relative to the origin O. When the spherical surface extends beyond the origin

(τ >
r

α
) then the integral over Ω is constant and equal to 4πατ , and thus its derivative is zero.

Conversely, if the spherical surface does not include the origin (τ <
r

α
), then the integral has a

value of
4πα2τ 2

r
(Aki and Richards, 2002). Therefore, the integral of the spherical sphere becomes

∫∫
Ω

(
−ν ∂

∂ξ1

1

q
− ν ∂

∂ξ2

1

q
+

∂

∂ξ3

1

q

)
dΩ(ξ) = 4πα2τ 2

(
−ν ∂

∂x1

1

r
− ν ∂

∂x2

1

r
+

∂

∂x3

1

r

)
. (2.33)

Substituting equation 2.33 into 2.31 yields

φ = − A

4πρh2

(
−ν ∂

∂x1

1

r
− ν ∂

∂x2

1

r
+

∂

∂x3

1

r

)∫ r/α

0

τS(t− τ)dτ. (2.34)
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Following the same development for the S wave field, the vector potential ψ becomes

ψ =
A

4πρh2

(
∂

∂x2

1

r
+ ν

∂

∂x3

1

r
,−ν ∂

∂x3

1

r
− ∂

∂x1

1

r
,−ν ∂

∂x1

1

r
+ ν

∂

∂x2

1

r

)∫ r/β

0

τS(t− τ)dτ.

(2.35)

To obtain the displacement u then equations 2.34 and 2.35 are substituted in equation 2.16 as

follows

u = uP + uS = ∇φ+∇×Ψ,

u = − A

4πρh2
∇
(
−ν ∂

∂x1

1

r
− ν ∂

∂x2

1

r
+

∂

∂x3

1

r

)∫ r/α

0

τS(t− τ)dτ+

A

4πρh2
∇×

(
−ν
[
∂

∂x2

1

r
− ∂

∂x3

1

r

]
,−ν

[
∂

∂x3

1

r
− ∂

∂x1

1

r

]
,
∂

∂x1

1

r
− ∂

∂x2

1

r

)∫ r/β

0

τS(t− τ)dτ.

(2.36)

The parameter r can be expressed from a generic point ξi where the force is applied to the point xi

where the displacement is evaluated, is defined in the volume V as

r =
[
(x1 − ξ1)2 + (x2 − ξ2)2 + (x3 − ξ3)2

]1/2
, (2.37)

Evaluating the displacement in equation 2.36 involves taking derivatives or r and 1/r with respect

to xi which is

∂

∂xi
r =

xi − ξi
r

=
ri
r
, (2.38)

∂

∂xi

1

r
= −xi − ξi

r3
= − ri

r3
. (2.39)

Using equations 2.37, 2.38, and 2.39 together yields

uPi =
Akj

4πρh2

[
−
(

3rirj
r5
− δij
r3

)∫ r/α

0

τS(t− τ)dτ +
rirj
r3α2

S
(
t− r

α

)]
, (2.40)
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uSi =
Akj

4πρh2

[(
3rirj
r5
− δij
r3

)∫ r/β

0

τS(t− τ)dτ − rirj
r3β2

S

(
t− r

β

)
+

δij
rα2

S

(
t− r

β

)]
,

(2.41)

with the vector kj defined as k = (−ν,−ν, 1). Combining equations 2.40 and 2.41 together yields

the total displacement as follows

ui =
Akj

4πρh2

[(
3rirj
r5
− δij
r3

)∫ r/β

r/α

τS(t− τ)dτ +
rirj
r3α2

S
(
t− r

α

)
+

1

rβ2

(
δij −

rirj
r2

)
S

(
t− r

β

)]
.

(2.42)

The preceding equation is commonly known as Stokes formula (Stokes, 1849). It gives the dis-

placement component in the i-direction at the point x, due to a concentrated arbitrary force f

acting at the point ξ in the j-direction (Eringen and Suhubi, 1975). Furthermore, the amplitude

of the displacement is affected by the source-receiver distance r and the conceptual body force

strength. The first term of equation 2.42 is called a near-field term and decays rapidly away from

the source due to the higher power of r. The other two terms are the P and S far-field terms, re-

spectively,and they are more dominant and decay slower than the near-field with distance from the

source. Notice that the shear wave displacement in equation 2.41 refers to a general transverse

waves without indication to the polarization; i.e., SV or SH waves. The following subsection will

define and separate the SH and SV components of the wave equation utilizing the effective source

from the conceptual body force model.

2.2.2 Separation of the Body Force S potential into SV and SH components

In the previous subsections, the displacement field was separated into the gradient of scalar po-

tential and curl of the vector potential using the Helmholtz decomposition. As mentioned earlier,

this decomposition is useful for seeking solutions to the displacement field and when accounting to

satisfy boundary conditions. Applying boundary conditions on a vector field is often done through

scalar fields. Generally, any vector field can be represented by 3 scalar fields (Morse and Fesh-

bach, 1953). The potential wave equations 2.18 and 2.19 results in 1 scalar and 3 vector potential

equations; respectively. Therefore, to rewrite the displacement vector field into 3 scalar fields then
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the vector potential equation 2.19 must be reduced into 2 scalar potential equations. Indeed, only 2

scalar potential equations are required instead of 3 because the auxiliary condition; i.e.,∇·ψ = 0,

reduces the independent quantities needed to specify the vector potential wave equation. Therefore,

the potential wave equations 2.18 and 2.19 can be represented by the following 3 scalar equations

φ̈ =
Φ

ρ
+ α2∇2φ, (2.43)

d2

dt2
(∇×ψ)z =

(∇×Ψ)z
ρ

+ β2∇2[(∇×ψ)z], (2.44)

ψ̈z =
Ψz

ρ
+ β2∇2ψz. (2.45)

The three scalar fields decomposition utilize the Cartesian coordinates where the vertical axes is

the z-axis. Equations 2.43, 2.44, and 2.45 can be rewritten as

φ̈ =
Φ

ρ
+ α2∇2φ, (2.46)

ψ̈ =
Ψ

ρ
+ β2∇2ψ, (2.47)

χ̈ =
X

ρ
+ β2∇2χ, (2.48)

where

ψ = (∇×ψ)z =
∂ψy
∂x
− ∂ψx

∂y
, Ψ = (∇×Ψ)z =

∂Ψy

∂x
− ∂Ψx

∂y
,

χ = ψz, X = Ψz.

(2.49)

The scalar fields from equations 2.46, 2.47, and 2.48 represent the scalar field decomposition for

a general case with an arbitrary body force. It is immediately apparent that equation 2.46 is the P

scalar wave equation following from equation 2.18. The physical meaning of the scalar potential
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φ can be deduced from

∇ · u = ∇ · (∇φ) ,

= ∇2φ,

where the double spatial derivative of φ is the divergence of the displacement field. This means that

φ represents the dilatation in a given volume; i.e., the relative change of a volume, or area in 2D,

due to deformation.From equation 2.19, equations 2.47 and 2.48 represent the two independent S

scalar wave equation that fully describe the vector potential wave equation. The physical meaning

of the vector potential ψ can be deduced from

∇× u = ∇×∇×ψ,

= −∇2ψ,

where the double spatial derivative ofψ is the rotation of the displacement field. This means thatψ

represents the shape change in a given volume, or an area in 2D, due to the rotation. The physical

meaning of ψ from equation 2.47 is the rotation in the planes parallel to the z-axis; whereas, the

physical meaning of χ from equation 2.48 is the rotation in the plane perpendicular to the z-axis.

The scalar equations 2.46, 2.47, and 2.48 will first be analyzed in the absence of body forces. In

the absence of body forces, in addition to the trivial solution, only 1 motion is independent and 2

must vanish everywhere from the scalar equations. Starting with equation 2.46, the motion will be

analyzed assuming ψx = ψy = ψz = 0, then the displacement is

u = ∇φ =

(
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)
,

∇ · u =
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
6= 0,

∇× u =

 ∂2φ

∂y∂z
− ∂2φ

∂z∂y︸ ︷︷ ︸
=0

,
∂2φ

∂x∂z
− ∂2φ

∂x∂z︸ ︷︷ ︸
=0

,
∂2φ

∂x∂y
− ∂2φ

∂y∂x︸ ︷︷ ︸
=0

 = 0.

(2.50)
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Motion from equation 2.50 is characterized by ∇ · u 6= 0 and ∇ × u = 0. Since the rotation of

the displacement is zero and the wave propagates with velocity α, then equation 2.46 represents

P waves. Analysis of the second scalar wave equation 2.47 assumes φ = 0, χ = 0, and involves

∇ · ψ = 0. Only in the special case ψz = 0 then there exists a condition for a scalar function γ

such that

ψ = ∇× (0, 0, γ) =

(
∂γ

∂y
,−∂γ

∂x
, 0

)
,

u = ∇×ψ =

(
∂2γ

∂z∂x
,
∂2γ

∂z∂y
,−∂

2γ

∂x2
− ∂2γ

∂y2

)
,

∇ · u =
∂3γ

∂x2∂z
+

∂3γ

∂y2∂z
− ∂3γ

∂x2∂z
− ∂3γ

∂y2∂z
= 0,

∇× u =

 ∂

∂y

[
−∂

2γ

∂x2
− ∂2γ

∂y2

]
− ∂3γ

∂z2∂y
,− ∂

∂x

[
−∂

2γ

∂x2
− ∂2γ

∂y2

]
+

∂3γ

∂z2∂x
,

∂3γ

∂z∂y∂x
− ∂3γ

∂z∂y∂x︸ ︷︷ ︸
(∇×u)z=0


(2.51)

Motion from equation 2.51 is characterized by ∇ · u = 0, (∇ × u)z = 0, and uz 6= 0. With this

characterization and the fact that the wave travels with velocity β then the scalar wave equation

2.47 represents SV waves. It is important to note that the scalar function γ exists if and only if

χ = ψz = 0. Generally, γ 6= ψ and ψ is defined as in equation 2.49. Analysis of the third scalar

wave equation 2.48 involves φ = 0 and ψ = 0, then the displacement is

u = ∇× (0, 0, χ) =

∂χ
∂y
,−∂χ

∂x
, 0︸︷︷︸
uz=0

 ,

∇ · u =
∂2χ

∂x∂y
− ∂2χ

∂x∂y
= 0,

∇× u =

 ∂2χ

∂x∂z
,
∂2χ

∂y∂z
,−∂

2χ

∂x2
− ∂2χ

∂y2︸ ︷︷ ︸
(∇×u)z 6=0

 .

(2.52)
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Motion from equation 2.52 is characterized by ∇ · u = 0, uz = 0, and (∇× u)z 6= 0. Given this

characterization and the fact that the wave travels with velocity β then the scalar wave equation

2.48 represents SH waves. Now that the independent scalar waves have been characterized and

their respective motions described, then the presence of the body force will be considered. More

specifically, the conceptual body force model will be used to identify and separate the S wave

motions only and no further assessment of P waves is necessary; this analysis will be carried out

in different case scenarios.

Case 1: Vertical Body Force, f = (0,0,fz)

Considering the body force in the vertical direction only which is defined as

f =
A

h2
δ(x)S(t)(0, 0, 1), (2.53)

then substituting equation 2.53 into 2.21 yields

W = −AS(t)

4πrh2
(0, 0, 1) = −Wzz, (2.54)

where Wz =
AS(t)

4πrh2
.Using equation 2.54, the body force S potential becomes

Ψ = −∇×W =

∂Wz

∂y︸ ︷︷ ︸
Ψx

,− ∂Wz

∂x︸ ︷︷ ︸
Ψy

, 0︸︷︷︸
Ψz

 (2.55)

Since X = Ψz = 0 then the vertical body force does not excite SH waves. From the body force

potential of equation 2.55, the S wave body force is defined as

fS = ∇×Ψ. (2.56)
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Combining equation 2.55 with equation 2.56 yields

fS = ∇×Ψ =

∂2Wz

∂z∂x
,
∂2Wz

∂z∂y
,−∂

2Wz

∂x2
− ∂2Wz

∂y2︸ ︷︷ ︸
fS
z 6=0

 (2.57)

Since fS
z 6= 0 then fS from equation 2.57 for the vertical body force meets one criteria for the

characterization of SV wave generation. In order to fully characterize the body force as the SV

body force then the curl of equation 2.57 in the vertical direction must be zero as

(∇× fS)z =
∂3Wz

∂z∂y∂x
− ∂3Wz

∂z∂y∂x
= 0. (2.58)

Therefore, the vertical force from the conceptual body force does not excite SH waves; instead,

only excites SV waves. Moreover, the vertical body force fully satisfies the condition for SV wave

generation which means that the body force from equation 2.56 is the SV body force fSV = fS .

Further analysis will involve the horizontal forces, which will include multiple cases to form a

comprehensive analysis of the body force.

Case 2: Horizontal Body Force, f = (fx,0,0)

For this case, the horizontal force is defined as

f =
AS(t)

h2
δ(x)(−ν, 0, 0), (2.59)

Generally, the horizontal force in the conceptual model is directly related to the Poisson ratio, ν,

and the distance from source, h, unlike the vertical force which is related only to the distance from

the source. Substituting equation 2.59 into 2.21 yields the equivalent

W = −
(
−νAS(t)

4πrh2
, 0, 0

)
= −WHx, (2.60)
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where WH =
−νAS(t)

4πrh2
. Using equation 2.60, the body force S potential becomes

Ψ = −∇×W =

(
0,
∂WH

∂z
,−∂WH

∂y

)
. (2.61)

From the previous equation, X = Ψz 6= 0 which is one of the conditions for the existence of the

SH waves. However, the body force S potential involve Ψ = (∇×Ψ)z 6= 0 which is due to either

Ψx, Ψy, or both not equal to zero which is one of the conditions for the existence of SV waves. For

further analysis, the body force S potential from equation 2.61 will be separated as such

Ψ = Ψ1 + Ψ2, (2.62)

fS = fS1 + fS2 (2.63)

where

Ψ1 =

(
0,
∂WH

∂z
, 0

)
, (2.64)

and

Ψ2 =

(
0, 0,−∂WH

∂y

)
, (2.65)

If equation 2.64 satisfy the generation of SV waves then it must be characterized as

fS1 = ∇×Ψ1 =

(
−∂

2WH

∂z2
, 0,

∂2WH

∂x∂z

)
, (2.66)

and

(∇× fS1)z =
∂3WH

∂z2∂y
6= 0. (2.67)

From the previous equations, fS1 characterization for SV waves involves fS1
z 6= 0 but (∇ ×

fS1)z = 0. Since (∇ × fS1)z 6= 0 then fS1 does not fully satisfy the generation of SV waves;

hence, fSV 6= fS1. This indicates that the horizontal body force (x-component) from the concep-

tual model generates an S wave like motion from fS1 that does not satisfy either an SV or an SH
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wave motion. On the other hand, waves generated from fS2 can be characterized like SH wave,

since X = Ψz 6= 0, as follows

fS2 = ∇×Ψ2 =

(
−∂

2WH

∂y2
,
∂2WH

∂x∂y
, 0

)
, (2.68)

and

(∇× fS2)z =
∂3WH

∂x2∂y
+
∂3WH

∂y3
6= 0. (2.69)

From the previous equations, fS2 characterization for SH waves involve fS2
z = 0 and (∇ ×

fS2)z 6= 0. Meeting these conditions means that the horizontal body force (x-component) excited

from fS2 does fully satisfy and generate SH waves; thus, fSH = fS2.

Case 3: Horizontal Body Force, f = (0,fy,0)

Similarly, the horizontal force for this case is defined as

f =
AS(t)

h2
δ(x)(0,−ν, 0), (2.70)

Substituting equation 2.70 into 2.21 yields the equivalent

W = −
(

0,−νAS(t)

4πrh2
, 0

)
= −WHy, (2.71)

where WH =
−νAS(t)

4πrh2
. Using equation 2.71, the body force S potential becomes

Ψ = −∇×W =

(
−∂WH

∂z
, 0,

∂WH

∂x

)
, (2.72)

From the previous equation, X = Ψz 6= 0 and Ψ = (∇ × Ψ)z 6= 0. Those two criteria lead to

different body force S potentials which can be separated using equations 2.62 and 2.63 resulting in

Ψ1 =

(
−∂WH

∂z
, 0, 0

)
, (2.73)
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and

Ψ2 =

(
0, 0,

∂WH

∂x

)
, (2.74)

If equation 2.73 satisfy the generation of SV waves then it must be characterized as

fS1 = ∇×Ψ1 =

(
0,−∂

2WH

∂2z2
,
∂2WH

∂y∂z

)
, (2.75)

and

(∇× fS1)z = −∂
3WH

∂z2∂x
6= 0, (2.76)

From the previous equations, fS1 characterization for SV waves involves fS1
z 6= 0 but (∇ ×

fS1)z = 0. Since (∇ × fS1)z 6= 0 then fS1 does not fully satisfy the generation of SV waves;

hence, fSV 6= fS1. This indicates that the horizontal body force (y-component) from the concep-

tual model generates an S wave like motion from fS1 that does not satisfy either an SV or an SH

wave motion. On the other hand, waves generated from fS2 can be characterized like SH wave,

since X = Ψz 6= 0, as follows

fS2 = ∇×Ψ2 =

(
∂2WH

∂x∂y
,−∂

2WH

∂2x2
, 0

)
, (2.77)

and

(∇× fS2)z = −∂
3WH

∂x3
− ∂3WH

∂y2∂x
6= 0, (2.78)

From the previous equations, fS2 characterization for SH waves involve fS2
z = 0 and (∇ ×

fS2)z 6= 0. Meeting these conditions means that the horizontal body force (y-component) excited

from fS2 does fully satisfy and generate SH waves; thus, fSH = fS2.

Case 4: Horizontal Body Force, f = (fx,fy,0)

Similarly, the horizontal force for this case is defined as

f =
AS(t)

h2
δ(x)(−ν,−ν, 0), (2.79)
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Substituting equation 2.70 into 2.21 yields the equivalent

W = −
(
−νAS(t)

4πrh2
,−νAS(t)

4πrh2
, 0

)
= −WHx−WHy, (2.80)

where WH =
−νAS(t)

4πrh2
. Using equation 2.80, the body force S potential becomes

Ψ = −∇×W =

(
−∂WH

∂z
,
∂WH

∂z
,
∂WH

∂x
− ∂WH

∂y

)
. (2.81)

From the previous equation, X = Ψz 6= 0 and Ψ = (∇ × Ψ)z 6= 0. Those two criteria lead to

different body force S potentials which can be separated using equations 2.62 and 2.63 resulting in

Ψ1 =

(
−∂WH

∂z
,
∂WH

∂z
, 0

)
, (2.82)

and

Ψ2 =

(
0, 0,

∂WH

∂x
− ∂WH

∂y

)
. (2.83)

If equation 2.82 satisfy the generation of SV waves then it must be characterized as

fS1 = ∇×Ψ1 =

(
−∂

2WH

∂z2
,−∂WH

∂z2
,
∂2WH

∂z∂x
+
∂2WH

∂z∂y

)
, (2.84)

and

(∇× fS1)z =
∂3WH

∂z2∂y
− ∂3WH

∂z2∂x
6= 0. (2.85)

From the previous equations, fS1 characterization for SV waves involves fS1
z 6= 0 but (∇ ×

fS1)z = 0. Since (∇ × fS1)z 6= 0 then fS1 does not fully satisfy the generation of SV waves;

hence, fSV 6= fS1. This indicates that the horizontal body force (x and y components) from the

conceptual model generates an S wave like motion from fS1 that does not satisfy either an SV or

an SH wave motion. On the other hand, waves generated from fS2 can be characterized like SH
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wave, since X = Ψz 6= 0, as follows

fS2 = ∇×Ψ2 =

(
∂

∂y
[V ] ,− ∂

∂x
[V ] , 0

)
, (2.86)

and

(∇× fS2)z = − ∂2

∂x2
[V ]− ∂2

∂y2
[V ] 6= 0, (2.87)

where V =
∂WH

∂x
− ∂WH

∂y
. From the previous equations, fS2 characterization for SH waves

involve fS2
z = 0 and (∇ × fS2)z 6= 0. Meeting these conditions means that the horizontal body

force (x and y components) excited from fS2 does fully satisfy and generate SH waves; thus,

fSH = fS2.With the conclusion of the horizontal body forces analysis, it is evident that one or a

combination of both of the horizontal body forces satisfy the condition to generate SH waves.

Explicit Form of the Body Force Potentials

In this section, the initial analysis involved reducing the scalar and vector potential wave equa-

tions into 3 independent scalar wave equations. In the absence of the body forces, the motions from

each of the scalar equation satisfy a single body wave type only; namely, P, SV, and SH waves.

In the presence of the body forces, P, SV, and SH waves can be generated successfully using the

conceptual body force model. Using the equivalent force from the body force model, the body

force potentials from equations 2.46, 2.47, and 2.48 are then explicitly defined as

Φ =
AS(t)

4πh2

(
ν
∂

∂x

1

r
+ ν

∂

∂y

1

r
− ∂

∂z

1

r

)
, (2.88)

Ψ =
AS(t)

4πh2

(
− ∂2

∂x2

1

r
− ∂2

∂y2

1

r

)
, (2.89)

X =
νAS(t)

4πh2

(
− ∂

∂x

1

r
+

∂

∂y

1

r

)
. (2.90)

The previous three equations represent the explicit body force potential defined from an arbitrary

body force which in the shallow waters of the Arabian Gulf is the effective source. These equations

together with equations 2.46, 2.47, and 2.48 represent the three independent scalar wave equations
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for P, SV, and SH wave motions with a unique body force to generate each motion. In Aki and

Richards (2002), they mentioned that three types of scalar wave equations exist for P, SV, and SH

and are described by a body force that can be decomposed as f = ∇Φ + ∇ × ∇ × (0, 0,Ψ) +

∇× (0, 0, X). However, this decomposition does not hold for an arbitrary body force because SV

and SH waves are not simultaneously generated from the same force component, as demonstrated

in the previous body force analysis. Further, to uncouple P-SV and SH motion then the gauge

condition ∇ · ψ = 0 must be satisfied. For this condition to be satisfied, the Neumann condition

∇ · ψ =
∂χ

∂z
= 0 must be true, which is not necessarily true (Meredith et al.,1990). In general,

P-SV and SH motion are completely coupled if no symmetry is assumed (Pilant, 1979). Therefore,

the three independent scalar wave equations that are decomposed in Aki and Richards (2002, Box

6.5) is not for a general arbitrary body force; instead, for a specific force only.

2.2.3 Boundary Conditions

With the wave equation separated into 3 distinct scalar wave equations, then it remains to apply

boundary conditions on the scalar wave equations to verify the existence of the wave motions and

the independence of P-SV and SH motions. Given the vertical axis is defined as the z-axis, the

boundary conditions will be considered assuming a horizontal material discontinuity at a solid-

solid interface encountered within Earth’s medium. The boundary conditions the wave motions

must satisfy are the displacement and traction continuity conditions because at the interface the

displacement and tractions are constrained. Since the interface is assumed to be between two

solids, all components of the displacement are continuous because no overlaps or tears occur which

in turn requires the tractions to be continuous (Stein and Wysession, 2009). The total displacement

from the scalar potentials is

u = uP + uSV + uSH (2.91)

36



with

ux = uPx + uSVx + uSHx

=
∂φ

∂x
+

∂2ψ

∂x∂z
+
∂χ

∂y
,

(2.92)

uy = uPy + uSVy + uSHy

=
∂φ

∂y
+

∂2ψ

∂y∂z
− ∂χ

∂x
,

(2.93)

uz = uPz + uSVz

=
∂φ

∂z
−
(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
.

(2.94)

For a horizontal discontinuity, the three scalar conditions of displacement continuity can be dif-

ferentiated in horizontal directions to satisfy the kinematic boundary condition (Aki and Richards,

2002). Those conditions are

(∇× u)z, (2.95)

∇ · u− ∂uz
∂z

, (2.96)

uz. (2.97)

Substituting equation 2.91 into equations 2.95, 2.96, and 2.97 yields

(∇× u)z =

(
−∂

2χ

∂x2
+

�
�

�
��∂3ψ

∂x∂y∂z
+

�
�
��∂2φ

∂x∂y
−

�
�

�
��∂3ψ

∂x∂y∂z
−

�
�

��∂2φ

∂x∂y
− ∂2χ

∂y2

)

=

(
−∂

2χ

∂x2
− ∂2χ

∂y2

)
,

(2.98)

∇ · u− ∂uz
∂z

=
∂2φ

∂x2
+

∂3ψ

∂x2∂z
+

�
�
��∂2χ

∂x∂y
+
∂2φ

∂y2
+

∂3ψ

∂y2∂z
−

�
�

��∂2χ

∂x∂y

=
∂2φ

∂x2
+

∂3ψ

∂x2∂z
+
∂2φ

∂y2
+

∂3ψ

∂y2∂z
,

(2.99)
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uz =
∂φ

∂z
−
(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
. (2.100)

The displacement boundary conditions from equations 2.95, 2.96, and 2.97 represent the conditions

where the vertical z-direction is normal to the horizontal interface that spans the x-y plane. The

first displacement condition from equation 2.95 states that the rotation in the vertical direction is

perpendicular to the interface. This rotation is characterized by in-plane rotation in the x-y plane

and it must be continuous if the displacement is continuous. The second displacement condition

from equation 2.96 states that the particle motion flow in the vertical direction is perpendicular

to the interface. This flow is characterized by an in-plane displacement flow in the x-y plane and

must be satisfied if the displacements are continuous across the interface. The third displacement

condition from equation 2.97 simply states the continuity of the vertical displacement across the

interface must be satisfied for the continuity condition. These equations demonstrate that P-SV

waves are independent of SH waves at the boundary. Further, the P and SV potentials contribute

to the same continuity conditions of ∇ · u and uz; thus, forming a coupled system. Conversely,

SH waves contribute to a different continuity condition and is decoupled from P and SV waves.

This indicates that the SH potential generated from the body force potential is indeed an SH wave

because the other continuity conditions; i.e., ∇ · u and uz, remain zero after interaction with the

boundary, so that SH waves remain SH. The boundary conditions also involve tractions continuity.

Since the normal to the interface has only a z component,

n = (0, 0, 1), nj = δj3 (2.101)

and the tractions on the interface are given by

Ti = τijnj = τi3 = (τxz, τyz, τzz). (2.102)
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Using equations 2.10, 2.13, and 2.91, the stress components from the traction vector in equation

2.102 can be found as follows

τxz = µ

[
2
∂2φ

∂x∂z
− ∂

∂x

(
∇2ψ − 2

∂2ψ

∂z2

)
+

∂2χ

∂y∂z

]
, (2.103)

τyz = µ

[
2
∂2φ

∂y∂z
− ∂

∂y

(
∇2ψ − 2

∂2ψ

∂z2

)
− ∂2χ

∂x∂z

]
, (2.104)

τzz = λ∇2φ+ 2µ

[
∂2φ

∂z2
− ∂

∂z

(
∇2ψ − ∂2ψ

∂z2

)]
. (2.105)

The scalar potentials satisfy the traction continuity conditions. Moreover, the normal stress follows

directly from the normal displacement of equation 2.100, where the P-SV waves are coupled but

the SH wave vanishes identically. To demonstrate the uncoupling of SH from P-SV waves for

the dynamic boundary conditions, then the horizontal derivatives are taken across the interface for

equations 2.103 and 2.104 and then combined. Therefore, the continuity of traction implies the

continuity of

µ
∂

∂z
[(∇× u)z] = µ

∂

∂z

[
−∂

2χ

∂x2
− ∂2χ

∂y2

]
, (2.106)

µ

[
∂

∂z
∇ · u− 2

∂2uz
∂z2

+∇2uz

]
= µ

[
2
∂

∂z

(
∂2φ

∂x2
+
∂2φ

∂y2

)
+

(
− ∂2

∂x2
− ∂2

∂y2

)(
∇2ψ − 2

∂2ψ

∂z2

)]
,

(2.107)

λ∇ · u+ 2µ
∂uz
∂z

= λ∇2φ+ 2µ

[
∂2φ

∂z2
− ∂

∂z

(
∇2ψ − ∂2ψ

∂z2

)]
. (2.108)

From the previous equations, the SH wave satisfies the continuity of equations 2.107 and 2.108

trivially since (∇ × u)z 6= 0 but uz = 0 and ∇ · u = 0. With the satisfaction of equation 2.106

continuity condition, SH waves does satisfy the dynamic boundary conditions that is uncoupled

from P and SV waves. However, the coupling of uz = 0 and ∇ · u = 0 for equations 2.107 and

2.108 implies the coupling of P and SV waves for the dynamic boundary condition as well.
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3. PROPAGATION OF SHEAR WAVES ACROSS A HORIZONTAL BOUNDARY

In the shallow marine environment of the Arabian Gulf, the general ray theory does not describe

the wave propagation adequately. In fact, the problem in such setting is a mechanical problem and

the effective source at the hard sea-bottom is responsible for generating P, SV, and SH waves.

Further, since the waves cannot be approximated as plane waves then accurate estimation of the

wave amplitudes is necessary. In this chapter, the propagation of the different wave types will be

considered in a heterogeneous medium using the exact analytical solution of the Cagniard-de Hoop

method (De Hoop, 1960) utilizing the effective source from conceptual body force model.

3.1 Analytical Solutions of the Wave Equation in a Heterogeneous Medium using the Con-

ceptual Body Force Model

The Cagniard de-Hoop employs time domain solutions for the wave equation and provides an

exact analytical computation of the wavefield at any given point without approximations. For this

reason, it will be the preferred method to solve the wave equation. Also, the analytical analysis

will be carried out in 2D which involves a line source geometry as shown in figure 3.1.
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Figure 3.1: Two-dimensional geometry of the line source problem. The sea-bottom interface is
located at depth z = 0 and the vertical distance from the effective source to the explosive airgun
source is h. All derivatives in the y direction are zero.
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Given the configuration, the direct wave from the source travels a vertical distance of |z −

h|; whereas the reflected wave travels a vertical distance of |z + h|. The following sub sections

will utilize the Cagniard de-Hoop method and the effective source from the conceptual model to

analytically solve for the SH, P, and SV waves in heterogeneous medium. The Cagniard de-Hoop

derivation in the following subsections will follow the line source derivation method by Aki and

Richards (2002) with the main difference of utilizing the correct effective source term from the

conceptual body force model.

3.1.1 SH Wave Solution using the Cagniard de-Hoop Method

In the two-dimensional line source problem, the derivatives in terms of the y direction are zero.

From equations 2.92 and 2.93, the SH potential only excites the y component of displacement; i.e.,

uy. Therefore, the SH wave equation, in this scenario, is characterized by

ux = uz = 0,

uy 6= 0,

∂uy
∂y

= 0.

(3.1)

Substituting equation 3.1 into equation 2.15 yields

ρ
∂2uy
∂t2

= µ

[
∂2uy
∂z2

+
∂2uy
∂x2

]
fy, or,

üy =
uy
ρ

+ β2∇2uy,

(3.2)

where fy is the body force that excites the SH waves and for an impulsive line source is defined as

fy =
−νA
h2

δ(x)δ(z)δ(t) = Gδ(x)δ(z)δ(t). (3.3)

The SH wave displacement satisfies a scalar wave equation; thus, the displacement can be found

without using the SH potential. The Cagniard de-Hoop approach involves multiple domain trans-
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formations that include both a spatial Fourier transform

f(k) =

∫ ∞
−∞

f(t)e−ikdt, Forward, (3.4)

f(x) =
1

2π

∫ ∞
−∞

f(k)eikdk, Inverse, (3.5)

and a Laplace transform

f(s) =

∫ ∞
0

f(t)e−stdt, Forward, (3.6)

f(t) =
1

2πi

∫ c+i∞

c−i∞
f(s)estds, Inverse. (3.7)

Some useful properties of the transforms with respect to derivatives include

L
{
∂

(n)
t f(t)

}
= (s)nL {f(t)} , Laplace,

F
{
∂(n)
x f(k)

}
= (ikx)

nF {f(k)} , Fourier,

(3.8)

Also ∫ ∞
−∞

δ(x)e−ikxxdx = 1,

∫ ∞
0

δ(t)e−stdt = 1. (3.9)

In two dimensions, the waves displacement are a function of x and z (spatial), and time t (tempo-

ral). For this analysis, the propagating wave is assumed to travel with increasing depth z and the

Fourier transforms will be carried out on the horizontal variable x. Applying the double transforms

from equations 3.4 and 3.6 on equation 3.2, while utilizing equation 3.9, gives

ρs2uy(kx, z, s) = Gδ(z) + µ

(
−k2

x +
∂2

∂z2
uy(kx, z, s)

)
,

∂2

∂z2
uy(kx, z, s) = − G

ρβ2
δ(z) + n2uy(kx, z, s),

(3.10)

where β2 =
µ

ρ
and n2 = k2

x +
s2

β2
. In a heterogeneous media, the shear wave velocity is denoted

as β1 for the first medium that includes the source, and β2 for the second medium. At depth z 6= 0,
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equation 3.10 becomes
∂2uy
∂z2

= n2uy, (3.11)

with general solutions of

uy(kx, z, s) = aenz + be−nz, (3.12)

where the choice of root for n is n > 0. Requiring uy to be bounded as z → ±∞means that a = 0

for z > 0, and b = 0 for z < 0. Given the choice of root for n, then it follows

uy(kx, z, s) = be−nz. (3.13)

To find uy, it remains to evaluate the constant b in equation 3.13. To do that, equation 3.10 is

integrated once in terms of z which results in

∂zuy|z=+z − ∂zuy|z=−z = − G

ρβ2
H(z),

−nbe−nz − nbe−nz = − G

ρβ2
H(z),

(3.14)

and at z = 0

b =
G

2ρnβ2
. (3.15)

Substituting equation 3.15 back into equation 3.13 yields

uy(kx, z, s) =
G

2ρnβ2
e−n|z|. (3.16)

The H(z) function is the Heaviside step function that resulted from integrating δ(z). Applying the

inverse Fourier transform from equation 3.5 on equation 3.16 results in

uy(x, z, s) =
G

4πρβ2

∫ ∞
−∞

exp(ikxx− n|z|)
n

dkx, (3.17)
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with Re(n) = Re(
√
k2
x + s2/β2) > 0 which is generalized from n > 0. Letting the horizontal

slowness p =
kx
is

, dkx = isdp, and defining the vertical slowness η =
√

1/β2 − p2 allows for

rewriting the previous equation into

uy(x, z, s) =
G

4πρβ2

∫ i∞

−i∞

−ie−s(px−η|z|)

η
dp, (3.18)

where n = sη and Re η > 0 since n > 0. Rewriting the real and imaginary parts of
1

η
e−s(px−η|z|)

as E(p) and O(p), while noting that E is even and O is odd for imaginary values of p, then

∫ i∞

−i∞
−i(E + iO)dp = −2i

∫ i∞

0

Edp = 2Im

{∫ i∞

0

(E + iO)dp

}
; (3.19)

thus, equation 3.18 becomes

uy(x, z, s) =
G

2πρβ2
Im

{∫ i∞

0

e−s(px−η|z|)

η
dp

}
, (3.20)

where

t = px− η|z|. (3.21)

Equation 3.20 represents the setup of the wave equation prior to Cagniard de-Hoop method’s ma-

nipulation and equation 3.21 is the Cagniard path. The aim of Cagniard’s manipulation is to replace

equation 3.21 into 3.20 and find the representative transformation from dp→ dt. In order to com-

plete this transformation, the solution for the horizontal slowness p on the Cagniard’s path must

first be found, while avoiding branch points to ensure single-valued solutions. Regarding the SH

waves case, it is possible to determine the modified Cagniard path; however, numerical methods

are necessary when considering P-SV waves. Prior to finding p, it is instructive to find the travel

time of the SH wave. To do that, p = p0 is solved for by differentiating equation 3.21 in terms of
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p:

0 = x− p0z

η
,

p0 =
xη

z
,

p0 =

x

√
1

β2
− p2

0

z
,

p2
0 =

x2

(
1

β2
− p2

0

)
z2

,

x2

β2
= p2

0z
2 + p2

0x
2,

p0 =
x

β

1√
x2 + z2

.

(3.22)

p0 is necessarily located in between p = 0 and the branch point p =
1

β
(De Hoop, 1988). Let

t = TB at p = p0, then equation 3.21 becomes

TB = p0x+

√
1

β2
− p2

0z,

TB =
x2

β

1√
x2 + z2

+

√
1

β2
− x2

β2

1

x2 + z2
,

TB =
x2

β

1√
x2 + z2

+
z2

β

1√
x2 + z2

,

TB =

√
x2 + z2

β
=
R

β
,

(3.23)

where R =
√
x2 + z2 is the source-receiver distance and TB is the arrival time of the body wave,

SH, in accordance with Fermat’s principle. Solving for p on the Cagniard path from equation 3.21

involves solving the quartic equation starting from

t = px+ η|z|,

(t)2 = (px+ η|z|)2,

t2 = p2x2 + 2pxηz + η2z2,
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expanding further using the definition of η

t2 = p2x2 + 2px

√
1

β2
− p2z +

z2

β2
− z2p2,

t2 = (x2 − z2)p2 + 2xzηp+
z2

β2
,

rearranging (
t2 − (x2 − z2)p2 − z2

β2

)2

= (2xzηp)2,

expanding further results in

[
(x2 − z2)2 + 4x2z2

]︸ ︷︷ ︸
A

p4 − 2

[
(x2 − z2)t2 − (x2 − z2)

z2

β2
+ 2x2 z

2

β2

]
︸ ︷︷ ︸

B

p2 +

(
t2 − z2

β2

)2

︸ ︷︷ ︸
C

= 0,

Ap4 − 2Bp2 + C = 0.

Solving the previous quadratic equation for p results in

p =



xt− |z|

√
R2

β2
− t2

R2
, t ≤ R

β
,

xt+ i|z|

√
t2 − R2

β2

R2
, t ≥ R

β
.

(3.24)

The integral in equation 3.20 can instead be taken over the Cagniard path on which t increases

from zero to infinity

uy(x, z, s) =
G

2πρβ2
Im

{∫
C

e−s(px−η|z|)

η
dp

}
. (3.25)
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The derivative of p with respect to t on the Cagniard path is

dp

dt
=



x

R2
+

|z|t

R2

√
R2

β2
− t2

, t ≤ R

β
,

x

R2
+

i|z|t

R2

√
t2 − R2

β2

, t ≥ R

β
.

(3.26)

To complete Cagniard de-Hoop’s transformation, the vertical slowness η must be calculated on the

Cagniard path as well. Substituting equation 3.24 for t ≥ R

β
into equation 3.21 yields

t = px+ η|z|,

η =
t− px
|z|

=
t

|z|
−
x2t− i|z|x

√
t2 − R2

β2

zR2
,

η =
|z|
R2
t−

ix

√
t2 − R2

β2

R2
, (3.27)

and for t ≤ R

β

η =
|z|
R2
t+

x

√
t2 − R2

β2

R2
, (3.28)

Using η defined from equations 3.27, 3.28 and substituting it back into equation 3.26 yields

dp

dt
=



η√
R2

β2
− t2

, 0 < t <
R

β
,

iη√
t2 − R2

β2

,
R

β
< t.

(3.29)
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It follows then that equation 3.25, after substituting in equation 3.29, becomes

uy(x, z, s) = Im



∫ t=∞

t=
R

β

iG

2πρβ2

√
t2 − R2

β2︸ ︷︷ ︸
uy(x,z,t)

e−stdt


+ Im



∫ t=
R

β

t=0

G

2πρβ2

√
R2

β2
− t2︸ ︷︷ ︸

uy(x,z,t)

e−stdt


(3.30)

Arriving at equation 3.30 completes Cagniard de-Hoop’s manipulation. The integrals in that equa-

tion depicts forward Laplace transform where the integrand is the displacement in time domain

that is initially sought. Recognizing that, the left term of the right handside from equation 3.30
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becomes

uy(x, z, s) = Im



∫ t=∞

t=
R

β

iG

2πρβ2

√
t2 − R2

β2︸ ︷︷ ︸
uy(x,z,t)

e−stdt


,

uy(x, z, s) = Im



∫ t=∞

t=0

iGH(t− R

β
)

2πρβ2

√
t2 − R2

β2︸ ︷︷ ︸
uy(x,z,t)

e−stdt


,

uy(x, z, t) = Im


iG

2πρβ2

H(t− R

β2
)√

t2 − R2

β2

 ,

uy(x, z, t) = Re


G

2πρβ2

H(t− R

β2
)√

t2 − R2

β2

 =
G

2πρβ2

H(t− R

β2
)√

t2 − R2

β2

,

(3.31)

where the following property was used from Imaginary to Real evaluation (Båth, 1968)

Re[i(x+ iy)] = Re(ix− y) = −y = −Im(x+ iy). (3.32)

The SH displacement from equation 3.31 represents the complete displacement in a homogeneous

whole-space medium where the first wave arrival occurs at t = TB =
R

β
which means it is the

direct wave arrival. In such medium, there will be no contributions prior to TB because the hori-

zontal slowness, p(t), is real-valued on the Cagniard path and this would render the integral of the

second term in equation 3.30 to be equal to zero. However, if the medium is heterogeneous; i.e.,
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a half-space, then a reflected wave can exist. Further, if the second medium is characterized by a

higher velocity value than the first then there can exist a condition for the generation of head-waves

which eventually precedes the arrival time of both direct and reflected waves. In this case, there

will be an imaginary valued contribution of the Cagniard path since the horizontal slowness for the

refracted waves is

p =
sin90◦

β2

=
1

β2

, (3.33)

which leads to an imaginary valued η that contributes to a nonzero imaginary part on the Cagniard

path as shown in figure 3.2. There are two contributions in a heterogeneous medium on the

Cagniard path. The first contribution is due to the reflected wave arrival which coincides with

p =
sinjs
β1

corresponding to t = TR =

√
x2 + (z + h)2

β1

=
R0

β1

; where, z0 is the distance from

the interface to the receiver. The second contribution is due to the refracted wave which coincides

with p =
1

β2

, where the corresponding refracted wave time arrival is

t = TH =
x

β2

+ |z + h|

√
1

β2
1

− 1

β2
2

, (3.34)

which is found by substituting equation 3.33 into equation 3.21. To find the total displacement

in heterogeneous medium, boundary conditions for SH waves in 2D must be satisfied. This in-

cludes continuity of displacement, uy, and traction, τyz. The reflection coefficient that results from

satisfying the boundary conditions across depth z = 0 for a down-going SH wave is

S̀Ś =
µ1η1 − µ2η2

µ1η2 + µ2η2

, (3.35)

and the transmission coefficient

S̀S̀ =
2µ1η1

µ1η1 + µ2η2

, (3.36)

where µ and η subscripts correspond to either β1 or β2 representing the different mediums. Using

the reflection coefficient from equation 3.35, R0 instead of R in equation 3.29, depicting a het-

erogeneous medium, and substituting the results into equation 3.25 leads to the reflected SH wave
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Figure 3.2: The Cagniard path on p=p(t) for a heterogeneous medium. (a) is the Cagniard path
pre-critical angle where the point of departure from the real p-axis lies to the left of the branch cuts
representing reflected waves only . (b) is the Cagniard path post the critical angle where the initial
point of departure lies between 1/β2 and 1/β1 which represents head-waves contribution. The red
line is the branch cut due to β1 which starts at ±1/β1. The green line is the branch cut due to β2

which starts at ±1/β2. The dashed line in (a) and (b) represent the angle of incidence, js, for the
whole-space and half-space medium, respectively

displacement as follows

urefly (x, z, t) =
G

2πρ1β2
1

Re
{
S̀Ś
} H(t−R0/β1)√

t2 −R2
0/β

2
1

+
G

2πρ1β2
1

Im
{
S̀Ś
} H(t− TH)−H(t−R0/β1)√

R2
0

β2
1

− t2
,

(3.37)

where the left term is the contribution due to the reflected wave and the rightmost term is the

contribution due to the refracted wave. Substituting the transmission coefficient from equation

3.36; instead, would result in the transmitted SH wave displacement. The total displacement at a
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given receiver then combines the displacement due to the direct wave from equation 3.31 and the

refleced, refracted waves due to equation 3.37. The total displacement then becomes

uy(x, z, t) =
G

2πρβ2

H(t−R/β2)√
t2 − R2

β2

+
G

2πρ1β2
1

Re
{
S̀Ś
} H(t−R0/β1)√

t2 −R2
0/β

2
1

+

G

2πρ1β2
1

Im
{
S̀Ś
} H(t− TH)−H(t−R0/β1)√

R2
0

β2
1

− t2
.

(3.38)

Equation 3.38 represents the analytical SH wave solution in a heterogoneous medium using the

body force model.

3.1.2 P-SV Wave Solution using the Cagniard de-Hoop Method

In this section, P-SV motions with displacement only in the x and z directions will be con-

sidered due to the two-dimensional geometry of the line source problem. Further, the analytical

geometry will include an elastic half-space using the conceptual body force model along with

Cagniard de-Hoop’s manipulation and time domain solution. Starting from the P and SV scalar

potentials from equations 2.46 and 2.47 , respectively, the corresponding displacement in 2D be-

comes

ux =
∂φ

∂x
− ∂ψ

∂z
, uy = 0, uz =

∂φ

∂z
+
∂ψ

∂x
. (3.39)

In this geometry, the P-SV waves are coupled in x and z and there is no motion in y direction which

is characterized only by SH waves. The P-SV solution development is similar to SH but involves

a slightly different approach to accommodate the vector displacement and different cases of re-

flection coefficients. The approach for the P-SV case involves starting from the scalar potential,

then defining the line source and invoking the Cagniard de-Hoop method. Prior to proceeding to

the Cagniard’s manipulation back to time domain, the conversion from scalar potential to displace-

ments will be carried out in Laplace/Fourier domain because partial derivatives become a simple

multiplication process. After retrieving the displacement motions, the Cagniard method will trans-

form the result back to time-space domain where the motion will be clearly identified for any given
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ray (SS, SP, PS, PP). The line source for the scalar potentials from equations 2.46 and 2.47 is

Φ =
(−ν)A

h2
S(t)δ(x)δ(z) = GP (t)δ(x)δ(z),

Ψ =
A

h2
S(t)δ(x)δ(z) = GS(t)δ(x)δ(z).

(3.40)

The source term for the P and SV waves are defined utilizing the effective source in the concep-

tual body force model. Substituting equation 3.40 into equations 2.46 and 2.47; respectively, and

transforming the potentials from space-time to Fourier-Laplace domain in the process leads to

φinc(kx, z, s) =
GP (s)

2ρα2sξ
e−sξ|z−h|,

ψinc(kx, z, s) =
GS(s)

2ρβ2sη
e−sη|z−h|,

(3.41)

where φinc and ψinc are the incoming displacement potentials in a homogeneous medium repre-

senting waves directly from the source to the receiver point. Further, ξ is the P wave vertical

slowness defined as ξ =
√
α−2 − p2, η is the S wave vertical slowness defined as η =

√
β−2 − p2,

and the chosen roots are Re ξ > 0 and Re η > 0; respectively, to satisfy radiation conditions.

Equation 3.41 can be expanded for a heterogeneous medium by satisfying boundary conditions.

For a solid-solid half-space, the total potentials become

φ(kx, z, s) =
GP (s)

2ρα2sξ

{
exp(−sξ|z − h|) + P̀ Ṕ exp(−sξ|z + h|)

}
+

GS(s)

2ρβ2sη

α

β
S̀Ṕ exp [−s(ξz + ηh)] ,

ψ(kx, z, s) =
GS(s)

2ρβ2sη

{
exp(−sη|z − h|) + S̀Śexp(−sη|z + h|)

}
+
GP (s)

2ρα2sξ

β

α
P̀ Śexp [−s(ηz + ξh)] ,

(3.42)
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where the reflection coefficients are

P̀ Ṕ =
[
(bξ1 − cξ2)F − (a+ dξ1η2)Hp2

]
/D,

S̀Ṕ = −2η1 (ab+ cdξ2η2) pβ1/(α1D),

S̀Ś = −
[
(bη1 − cη2)E − (a+ dξ2η1)Jp2

]
/D,

P̀ Ś = −2ξ1 (ab+ cdξ2η2) pα1/(β1D),

(3.43)

and

a = ρ2(1− 2β2
2p

2)− ρ1(1− 2β2
1p

2), b = ρ2(1− 2β2
2p

2) + 2ρ1β
2
1p

2,

c = ρ1(1− 2β2
1p

2) + 2ρ2β
2
2p

2, d = 2(ρ2β
2
2 − ρ1β

2
1),

E = bξ1 + cξ2, F = bη1 + cη2,

J = a− dξ1η2, H = a− dξ2η1,

D = EF +GHp2.

In the special case of fluid-solid interface where β1 = 0, the conversion coefficients from equation

3.1.2 become

P̀ Ṕ =
[
−ρ1ξ2/(4ρ2ξ1β

4
2) + ∆R

]
/∆SCH ,

P̀ P̀ =
[
2(1− 2p2β2

2)ρ1(α1/α2)ξ1

]
/∆SCH ,

P̀ S̀ = [4 ∗ ρ1α1β2pξ1ξ2] /∆SCH ,

(3.44)

where

∆R = (p2 − 1/2β2
2)2 + p2ξ2η2 (3.45)

is the Rayleigh wave function and

∆SCH = ρ1ξ2/(4ρ2ξ1β
4
2) + ∆R (3.46)
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is the Scholte wave function. The Rayleigh wave function is associated with surface waves that

propagate along a traction-free boundary of a solid. The Scholte wave function is associated with

surface waves that propagate along a fluid-solid interface. Reflection and transmission coefficients

for P-SV waves differ based on the media (fluid/solid) and the upgoing/downgoing ray type (Aki

and Richards, 2002, pp. 135-143).

In the P-SV wave displacement solution, it is convenient to proceed with the inversion pro-

cess with the displacement components instead of potentials since spatial operators are a simple

multiplicative term. Therefore, equation 3.42 becomes

ux(kx, z, s)
uz(kx, z, s)

 =
GP (s)

2ρα2ξ


−p
−ξ

 exp[−sξ(z − h)] + P̀ Ṕ

−p
−ξ

 exp[−sξ(z + h)]


+
GS(s)

2ρβ2η

α

β
S̀Ṕ

−p
−ξ

 exp[−s(ξz + ηh)]

+
GP (s)

2ρα2ξ

β

α
P̀ Ś

 η

−p

 exp[−s(ηz + ξh)]

GS(s)

2ρβ2η


−η
−p

 exp[−sη(z − h)] + S̀Ś

 η

−p

 exp[−sη(z + h)]

 .

(3.47)

From equation 3.47, the analytical solution using the Cagniard method can be found for the P, S,

PP, and SS rays following a similar development as demonstrated in detail for the SH wave in

the previous section. This is mainly due to similar Cagniard Path that can be solved analytically.

However, this is not possible for the PS and SP ray paths due to them having different vertical

slowness for the up-going and down-going waves. For the converted waves, there are two main

distinctions that arise compared to the others; namely, the travel time calculation and the Cagniard

Path solution. To find the travel time, the PS waves must satisfy the following equations

x = h tan θP + z tan θS, (3.48)
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sin θS
sin θP

=
β

α
, (3.49)

where θP is the angle of incidence for the P waves and θS is the angle of reflection for the S waves.

Equations 3.48 and 3.49 can be solved simultaneously to find the angles, which are used to find

the minimum travel time of the PS waves

tPS =
h

α cos θP
+

z

β cos θS
. (3.50)

To perform the inversion for the PS waves, the p solution along the Cagniard path must be found.

The Cagniard path for the PS wave is defined as

t = px+ ηz + ξh. (3.51)

Solving equation 3.51 leads to the quartic equation in p with

Ap4 − 4iBp3 − 2Cp2 + 4iDp+ E = 0, (3.52)

where all the coefficients are real and defined as

A =
[
(H + Z)2 +X2

] [
(H − Z)2 +X2

]
> 0

B = tX(H2 +X2 + Z2) > 0

C = t2(H2 + 3X2 + Z2)−
[
X2(H2a2 + Z2) + (H2 − Z2)(H2a2 − Z2)

]
,

D = tX
[
t2 − (H2a2 + Z2)

]
,

E = (t2 − (Ha+ Z)2)(t2 − (Ha− Z)2),

(3.53)

where

H =
h

R0

, Z =
z

R0

, X =
x

R0

,

a =
β

α
, R0 =

√
x2 + (z + h)2.
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The quartic equation admits four roots which can appear in alternative forms (Sanchez-Sesma et.

al, 2012). Generally, two roots of equation 3.53 have positive real part, which are p3 and p4, and

the chosen solution is the root with the smallest positive imaginary part (Shan and Ling, 2016).

Therefore, after numerically solving for p in equation 3.52, the chosen p root is

p =


p3, if |Im(p3)| < |Im(p4)|,

p4, if |Im(p3)| > |Im(p4)|,
(3.54)

and the dp/dt for the PS ray is obtained by the derivative of equation 3.51 as

dp

dt
=

1

x− pz

η
− ph

ξ

. (3.55)

With this, the general total analytical displacement solutions for P-SV waves are

ux =
GP

2πρα2

{
Re(p)

H(t−R/α)√
t2 −R2/α2

+ Im

[
p

ξ
PP

dp

dt

]
+ Im

[
η

ξ

β

α
PS

dp

dt

]}
+

GS

2πρβ2

{
Re(η)

H(t−R/β)√
t2 −R2/β2

+ Im

[
SS

dp

dt

]
+ Im

[
p

η

α

β
SP

dp

dt

]}
,

(3.56)

uz =
GP

2πρα2

{
Re(ξ)

H(t−R/α)√
t2 −R2/α2

+ Im

[
PP

dp

dt

]
+ Im

[
p

ξ

β

α
PS

dp

dt

]}
+

GS

2πρβ2

{
Re(p)

H(t−R/β)√
t2 −R2/β2

+ Im

[
p

η
SS

dp

dt

]
+ Im

[
ξ

η

α

β
SP

dp

dt

]} , (3.57)

where p and
dp

dt
for reflected waves, PP and SS, are found similar to equations 3.24 and 3.26;

respectively, while substituting the appropriate wave velocity and vertical slowness corresponding

to P and S waves. As for PS and SP, the p and
dp

dt
are found from equations 3.54 and 3.55,

respectively.
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3.2 Analytical Analysis of Seismic Wave Propagation

In this section, analysis of the analytical solution of the wave propagation across the the sea-

bottom boundary will be carried out utilizing the effective source from the conceptual body force

model. Each propagating wave type will be analyzed accordingly and the impact of the Poisson

ratio, ν, and distance of the airgun source, h, will be demonstrated. This will be done through three

model cases ranging from soft unconsolidated mud to hard coral reefs.

3.2.1 SH Waves Analysis

With the Cagniard de-Hoop method, the exact analytical solution for the SH waves can be

found. Using the configuration from figure 3.1, the source is located at depth z = 0 and the

receiver is across the horizontal boundary at similar depth which is similar to the configuration of

the shallow marine environment of the Arabian Gulf. Using the analytical solution from equation

3.38, the SH wave displacement solution for different values of ν and h is given in figures 3.3 and

3.4 below. Figure 3.4 depicts the analytical displacement solution for SH waves using different

models; where each model represents different Poisson ratio, ν, of the sea-bottom ranging from

soft to hard. The variation in sea-bottom hardness simulates a soft unconsolidated mud for the

soft model to a hard coral reef with 30 percent porosity for the hard model, which is typical in

the Arabian Gulf. Each displacement solution is calculated at a single receiver situated 500 m

away from the effective source at the sea-bottom. In figure 3.3, the distance from the airgun

source to the effective source at the sea-bottom is h = 10 m. The SH wave displacement solution

is calculated for three different models. The first (top) model is characterized by a slow shear

wave velocity for the sea-bottom of β = 250 m/s, density of ρ = 1200 kg/m3, and P wave

velocity of α = 1650 m/s. These properties result in a Poisson ration for the sea-bottom of

ν = 0.488 which represents an unconsolidated soft solid. The peak displacement amplitude for

this model is uy = 1.1 × 10−3 m. The second model (center) is characterized by an average

shear wave velocity for the sea-bottom of β = 1540 m/s, density of ρ = 2100 kg/m3, and P

wave velocity of α = 3400 m/s. These properties result in a Poisson ration for the sea-bottom of
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Figure 3.3: Analytical displacement solutions for SH waves given a distance h = 10 m from the
airgun source to the effective source at the sea-bottom. Each displacement solution is calculated a
distance x = 500 m from the source using different elastic parameters representing soft, interme-
diate, and hard solid layers.

ν = 0.371 which represents an intermediate consolidated solid. The peak displacement amplitude

for this model is uy = 0.033 m. The third model (bottom) is characterized by a fast shear wave

velocity for the sea-bottom of β = 2580 m/s, density of ρ = 2300 kg/m3, and P wave velocity

of α = 5000 m/s. These properties result in a Poisson ratio for the sea-bottom of ν = 0.319

which represents a hard consolidated solid. The peak displacement amplitude for this model is

uy = 0.22 m. The configuration of the models in figure 3.3 represents the typical configuration
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Figure 3.4: Analytical displacement solutions for SH waves given a distance h = 100 m from the
airgun source to the effective source at the sea-bottom. Each displacement solution is calculated a
distance x = 500 m from the source using different elastic parameters representing soft, interme-
diate, and hard solid layers.
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that of the shallow marine environment in the Arabian Gulf. Given the airgun distance of h = 10

m, the impact on the displacement amplitudes is highlighted by the rigidity of the sea-bottom. As

observed, the displacement amplitude of the hard solid is more than five times the intermediate

solid, and almost 100 times the value of the soft unconsolidated solid. This indicates that even

with the shallow water environment, the hardness of the sea-bottom has a drastic effect on the

strength of the SH wave generated at the sea-bottom from the effective source. In figure 3.4, the

displacement solution is calculated using three different models given a distance from the airgun

to the effective source at the sea-bottom of h = 100 m. These models are identical to the models

of figure 3.4 except for the airgun distance. The configuration from figure 3.4 represents that of

the deep-sea environment typical of the North Sea. For the soft solid model, the displacement

amplitude solution is uy = 1.1 × 10−5 m. For the intermediate solid model, the displacement

amplitude solution is uy = 3.3 × 10−4 m. For the hard solid model, the displacement amplitude

solution is uy = 2.2 × 10−3 m. The relative amplitude difference between the models is similar

to the variation depicted from figure 3.3 which indicates that the impact of the hard sea-bottom

on the displacement amplitude values. However, the amplitude values in the deep water are 100

times lower than the shallow water displacement amplitude values for each model type. In fact, the

displacement amplitude value for the hard consolidated model in figure 3.4 is approximately twice

as strong the soft unconsolidated solid in figure 3.3. Moreover, the displacement amplitude values

of the hard consolidated solid in figure 3.3 is approximately more than a 1000 times stronger than

the soft unconsolidated solid in figure 3.4. This indicates that although the hardness of the sea-

bottom affects the strength of the SH waves generated, the distance of the airgun to the sea-bottom

remains a great influence on the generated SH waves on the sea-bottom. This is shown by the fact

that a shallow source with unconsolidated solid generates SH waves almost as strong as the far

source with hard consolidated solid. Furthermore, a combination of both a shallow airgun depth

and a hard sea-bottom depth is responsible for generating strong SH shear waves at the sea-bottom

in the shallow marine environment in the Arabian Gulf. This analysis validates the previous work

observations and claims that the energy conversion of shear waves at the sea-bottom in the shallow
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Figure 3.5: Physical model used for the P and SV waves analysis.

marine environment is around 1000 times stronger than the energy conversion of shear waves for

the deep water environment (Sun and Bertuessen, 2009).

3.2.2 P-SV Waves Analysis

With the Cagniard-de Hoop method, the exact analytical solution for the P and SV waves

utilizing the effective P and SV source is calculated for the hard sea-bottom case with the shallow

water to simulate the shallow marine environment of the Arabian Gulf. For the hard sea-bottom,

the P and S velocities are very high that the difference between the velocities of the hard sea-

bottom and the water layer on top can be approximated and assumed to be the difference similar to

the difference between an elastic bottom and the free surface. Further, the proximity of the source

makes this configuration resemble a Lamb’s problem. Therefore, the model configuration used for

the P-SV waves analysis is shown in figure 3.5.

Using the configuration from figure 3.5, the pressure source is located at depth h = 10, the

effective P and SV source at depth z = 0.01 m, and the receiver is a distance x = 500 meters at

a depth of z0 = 100 m . The physical model depicts a free surface on top of an elastic half-space

with a source directly acting on the elastic half-space which is similar to Lamb’s problem. Using

equation 3.56, The P and SV waves analytical solution for the horizontal displacement will be
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Figure 3.6: Horizontal displacements analytical solutions assuming a Lamb’s problem utilizing the
P source at depth z = 0.01 m. Each displacement solution is calculated at a distance x = 500 m
with a depth of z0 = 100 m.

calculated from the P and SV source assuming a Lamb’s problem parameter by assuming h = 0,

then utilizing the conceptual body force parameters by placing the source at h = 10m representing

the shallow source depth. Utilizing the model from figure 3.5, the analytical solution from the P

effective source is solved assuming a Lamb’s problem as shown in figure 3.6. The previous figure

shows the horizontal displacement solutions from P source calculated using equation 3.57. Since

the calculations were done assuming a typical Lamb’s problem with the source placed at depth

z = 0.01m instead of the actual effective source, then the corresponding conceptual model factors

of source depth h and Poisson ratio ν were not considered. From the P source, three distinctive

events are observed; namely, the direct P, reflected PP, and converted PS waves. The direct P wave
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arrives at t = 0.1 s and has an amplitude of ux = 2.1 × 10−13 m. The reflected PP arrives at

t = 0.1 s and has an amplitude of ux = −8.0 × 10−14 m. The arrival times of both direct P

and reflected PP coincide due to the placement of the source at the interface. The converted PS

arrives at t = 0.2 s and has an amplitude of ux = 1.3×10−13 m. The total analytical solution at the

receiver is the summation of all these events; however, the reflected PP arrival is not observed since

it coincides with the direct P wave arrival and causes a lower amplitude value of ux = 1.2× 10−13

m when combined together. The analytical solutions for P and SV waves are more complicated

compared with SH wave solution. Therefore, the analytical solution from a P source is compared

with analytical solution found in literature to verify the results computed as shown in figure 3.7.

From figure 3.7, the horizontal displacement solutions were calculated for a P source placed away

from the interface and at the same level with the receiver. In this configuration, the first arrival

is the P, followed by the PP, and finally the PS wave event. In this configuration, all the wave

arrivals are clearly identifiable and similar parameters were used to the literature. By comparing

the results, the relative amplitude of the analytical solution used in this dissertation is similar to

the literature analytical solution. Proceeding with Lamb’s problem configuration, the analytical

horizontal displacement solutions is calculated for the SV source as shown in figure 3.8. Figure

3.8 shows the horizontal displacement solutions from SV source calculated using equation 3.57.

Since the calculations were done assuming a typical Lamb’s problem with the source placed at

depth z = 0.01 m instead of the actual effective source, where the corresponding conceptual

model factors of the source depth h and Poisson ratio ν were not considered. From the SV source,

three distinctive events are observed; namely, the direct S, reflected SS, and converted SP waves.

The direct S wave arrives at t = 0.2 s and has an amplitude of ux = 1.25× 10−13 m. The reflected

SS arrives at t = 0.2 s and has an amplitude of ux = 5.0×10−14 m. The arrival times of both direct

S and reflected SS coincide due to the placement of the source at the interface. The converted SP

arrives at t = 0.1 s and has an amplitude of ux = 1.4 × 10−13 m. The total analytical solution at

the receiver is the summation of all these events; however, the reflected SS arrival is not observed

since it coincides with the direct S wave arrival which is 10 times stronger in amplitude than the
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Figure 3.7: Comparison of horizontal displacement analytical solution from P source in elastic
half-space and a free surface between solution from this work (a) and solution from the literature
(b). Solutions from the literature is adapted from (Sanchez-Sesma et al., 2012). The source and
receiver depths are at z = 1 m and z0 = 1 m while the distance between them is x = 1 m. The P
and S waves velocity are α = 1.73 m/s and β = 1 m/s which are scaled.
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Figure 3.8: Horizontal displacements analytical solutions assuming a Lamb’s problem utilizing the
SV source at depth z = 0.01 m. Each displacement solution is calculated at a distance x = 500 m
with a depth of z0 = 100 m.
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Figure 3.9: Horizontal displacements analytical solutions utilizing the P effective source at depth
z = 0.01 m. Each displacement solution is calculated at a distance x = 500 m with a depth of
z0 = 100 m.

reflected SS wave arrival and are both positive. In fact, both the S and SS constructively combine

with a value of ux = 1.9× 10−13 m .

In Lamb’s problem, the analytical solution are solved using either a P or SV source. However,

the conceptual body force model excites both P and SV effective source due to the mechanical

deformation present from the pressure source on top of the sea-bottom. The horizontal analytical

solutions using the effective P and SV source from equation 3.57 are shown in figures 3.9 and

3.10, respectively. The previous figures used the same physical model as the Lamb’s problem

calculations. From figure 3.9, the effective P source is characterized by both the distance from the

source h and Poisson ratio ν. Due to the unique scaling factor characterizing the the effective P
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Figure 3.10: Horizontal displacements analytical solutions utilizing the SV effective source at
depth z = 0.01 m. Each displacement solution is calculated at a distance x = 500 m with a depth
of z0 = 100 m.
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Figure 3.11: Total horizontal displacements solutions utilizing both the effective P and SV sources
at depth z = 0.01 m. Each displacement solution is calculated at a distance x = 500 m with a
depth of z0 = 100 m.

source, the resulting amplitudes are affected. The direct P wave arrives at t = 0.1 s and has an

amplitude of ux = 3.7 × 10−16 m. The reflected PP arrives at t = 0.1 s and has an amplitude

of ux = −1.4 × 10−16 m. The converted PS arrives at t = 0.2 s and has an amplitude of ux =

2.4 × 10−16 m. Similarly, the total solution from the P effective source is dominated by the P

and PS wave arrivals with the combined P and PP wave events having lower amplitude to the PS

wave. From figure 3.10, the effective SV source is characterized only by the distance from the

source h. The direct S wave arrives at t = 0.2 s and has an amplitude of ux = 1.3 × 10−15

m. The reflected SS arrives at t = 0.2 s and has an amplitude of ux = 5.0 × 10−16 m. The

arrival times of both direct S and reflected SS coincide due to the placement of the source at the

interface. The converted SP arrives at t = 0.1 s and has an amplitude of ux = 1.4 × 10−15 m.

In the conceptual body force model, the total solutions from both sources can be combined as

shown in figure 3.11. As shown from figure 3.11, the total horizontal displacement solutions is the

summation of all wave events excited from the effective P and SV source. The four observable
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main events; namely, the P, PS, S, and SP waves are summed to show only two main events since

the P and SP waves coincides together as do the S and PS waves given the source location at the

interface. The maximum amplitude for the direct P and SP waves are ux = 1.65 × 10−15 m and

maximum amplitude for the direct S and PS waves are ux = 2.2× 10−15 m. Calculating the total

waves from both effective source shows that the total transmitted SV wave is stronger than the P

waves in the shallow water setting which confirms the strong shear waves observed in the shallow

waters of the Arabian Gulf.
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4. 2D FINITE-DIFFERENCE MODELING OF SEISMIC WAVE PROPAGATION

Analytical solutions represent the exact solution for a propagating wavefield. Given their com-

plexity, analytical solutions are limited to a whole-space or half-space and every single ray path

must be solved for independently considering time-domain solutions. In more complex situations,

numerical solution of propagating wavefields provide an approximate solution that are robust when

considering methods such as finite-difference. In this chapter, 2D finite-difference wave propaga-

tion modeling will be used to analyze the source mechanism and the complex wavefield interac-

tions across the sea-bottom. The numerical solutions will include multiple case studies for different

source depth and sea-bottom properties using different 2D model geometries for P-SV waves only.

4.1 Theory

To simulate a seismic model, it involves solving the wave equations that propagate in the Earth.

One of the most robust numerical techniques to solve the differential equations associated with the

wave equations is the finite-difference modeling (FDM). FDM consists of numerical approxima-

tions of derivatives of differential wave equations that are discretized in space and time. There

are multiple approaches to implement FDM; however, the approach that will be considered is the

explicit one, also known as the time marching approach, where the wave equations remain in the

time domain and are solved recursively. The explicit approach can be implemented in several

ways; most notable is the staggered-grid method which will be utilized to solve the wave equation

numerically (Madariaga, 1976; Viruex, 1986, Levander, 1988; Graves, 1996).

The following finite difference derivation follows the work of Ikelle and Amundsen (2005).

The governing equations for the wave propagation in 2D are given from equations 2.8 and 2.13,

which becomes

ρ(x)
∂vx(x, t)

∂t
− ∂τxx(x, t)

∂x
− ∂τxz(x, t)

∂z
= fx(x, t)

ρ(x)
∂vz(x, t)

∂t
− ∂τxz(x, t)

∂x
− ∂τzz(x, t)

∂z
= fz(x, t)

(4.1)

72



∂τxx(x, t)

∂t
= [λ(x) + 2µ(x)]

∂vx(x, t)

∂x
+ λ(x)

∂vz(x, t)

∂z
+ Ixx(x, t),

∂τzz(x, t)

∂t
= [λ(x) + 2µ(x)]

∂vz(x, t)

∂z
+ λ(x)

∂vx(x, t)

∂x
+ Izz(x, t),

∂τxz(x, t)

∂t
= µ(x)

[
∂vz(x, t)

∂x
+
∂vx(x, t)

∂z

]
+ Ixz(x, t).

(4.2)

In the previous equations, a temporal derivative was taken changing displacement to velocity and

stresses into stress-rate which means I = (Ixx, Izz, Ixz) are the components of the stress-rate

source. This is done so that the previous equations satisfy a set of first-order coupled differential

equations instead of second-order. Given that the numerical solutions are an approximation, this

process will reduce the resulting error when applying the staggered-grid method. To solve equa-

tions 4.1 and 4.2, appropriate boundary conditions must first be specified. The initial conditions

are

v =
∂v

∂t
= 0, t ≤ 0,

τ =
∂τ

∂t
= 0, t ≤ 0.

When considering a free surface at depth z = 0, the boundary conditions are

τzz(x, z = 0, t) = τxz(x, z = 0, t) = 0, (4.3)

substituting equation 4.2 into equation 4.3 yields

[λ(x) + 2µ(x)]
∂vz(x, z = 0, t)

∂z
+ λ(x)

∂vx(x, z = 0, t)

∂x

= µ(x)

[
∂vz(x, z = 0, t)

∂x
+
∂vx(x, z = 0, t)

∂z

]
= 0.

(4.4)

The rest of the model is unbounded. The main part in numerically solving the first-order differential

equation is to discretize the physical parameters. First, the spatial and temporal parameters x, z,
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and t are discretized and form what is known as the reference grid. They are discretized as follows

t = n∆t, n = 0, 1, 2, . . . , N,

x = i∆x, i = 0, 1, 2, . . . , I,

z = k∆z, k = 0, 1, 2, . . . , K,

(4.5)

where ∆x and ∆z represent the spatial grid spacing, and ∆t represents the time sampling. Using

the reference grid, equations 4.1 and 4.2 can be defined using the indexes n, i, and k as demon-

strated in the following examples

λ(x, z) = λ

[(
i+

1

2

)
∆x,

(
k +

1

2

)
∆z

]
= λi+1/2,k+1/2,

τxz(x, z, t) = τxz(i∆x, k∆z, n∆t) = [τxz]
n
i,k .

(4.6)

From the previous equation, not all quantities calculated are gridded on the reference grid; instead,

some are calculated half-grids away. This means some of the quantities of the differential equa-

tions are calculated on the reference grids and the rest are calculated between the reference grid;

i.e., half-grid between the reference grid. This technique is commonly known as the staggered-

grid technique. Therefore, the discrete forms of equations 4.1 and 4.2 utilizing the staggered-grid

method are given by (Madariaga, 1976; Graves, 1996)

[vx]
n+1/2
i,k+1/2 = [vx]

n−1/2
i,k+1/2 + [∆tbx(Dxτxx +Dzτxz + fx]

n
i,k+1/2,

[vz]
n+1/2
i+1/2,k = [vz]

n−1/2
i+1/2,k + [∆tbz(Dxτxz +Dzτzz + fx]

n
i+1/2,k,

[τxx]
n+1
i+1/2,k+1/2 = [τxx]

n
i+1/2,k+1/2 + ∆t[(λ+ 2µ)Dxvx + λDzvz + Ixx]

n+1/2
i+1/2,k+1/2,

[τzz]
n+1
i+1/2,k+1/2 = [τzz]

n
i+1/2,k+1/2 + ∆t[(λ+ 2µ)Dzvz + λDxvx + Izz]

n+1/2
i+1/2,k+1/2,

[τxz]
n+1
i,k = [τxz]

n
i,k + ∆t[µxz(Dzvx +Dxvz) + Ixz]

n+1/2
i,k ,

(4.7)
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with bx and bz being the effective medium parameters defined as

bx =
1

2
[bi,k + bi−1,k],

bz =
1

2
[bi,k + bi,k−1],

(4.8)

where b is the reciprocal of density defined as bi,k =
1

ρi,k
. Dx and Dz are spatial operators that

represents the first-order spatial derivative for x and z; respectively. The FDM used utilizes a

fourth-order difference which is more accurate and is defined as

Dxgi,k ≈
1

∆x

[
9

8
(gi+1/2,k − gi−1/2,k)−

1

24
(gi+3/2,k − gi−3/2.k)

]
, (4.9)

where gi,k is a dummy variable. Aside from the accuracy of the calculation, the order of the FDM is

subject to the phsyical parameters of the model such as the minimum wavelength. Based on those

parameters, a propagating wavelength must be adequately discretized to be sampled a minimum

number of times to ensure grid spatial stability. The minimum grid spacing, assuming ∆x = ∆z,

allowed is

∆x ≤ λmin
n

=
Vmin
nfmax

, (4.10)

where λmin denotes the minimum wavelength, Vmin the minimum velocity in the model, and fmax

is the maximum frequency of the source signal. The number of grid points per wavelength, n,

depends on the FDM order accuracy. A fourth-order accurate FDM requires atleast n = 8 to avoid

grid dispersion. Beside the spatial criteria, the temporal discretization must satisfy a sampling

criteria to ensure the stability of the FDM code. This criterion is commonly referred to as Courant-

Friedrichs-Lewy criterion (Courant et al., 1967) and is defined as

∆t ≤ ∆x

h
√

2Vmax
, (4.11)

where Vmax is the maximum velocity in the model, and h is the factor associated with the temporal

order of the FDM. A second-order temporal finite-difference is used; thus, h = 1. Satisfying the
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grid dispersion and the Courant stability ensures the stability of the FDM; however, higher values

of sampling are required when dealing with complex wave interactions such as surface waves.

The free-surface boundary condition from equation 4.4 requires the normal and shear stresses to

be zero at z = 0. As shown from the staggered-grid, knowledge of spatial derivatives couple of

grids prior to the calculation point is required. For horizontal spatial derivatives, the staggered-

grid implementation does not run into issues since the medium is unbounded; however, the vertical

spatial derivative require adjustment due to the free-surface boundary. The implementation of the

free-surface in FDM code involves adding two grid points above z = 0 assuming antisymmetry

for the stress components at z = 0; thus, the stress fields at and above the surface become

[τxz]
n+1
i,k=0 = 0, [τxz]

n+1
i,k=−1 = −[τxz]

n+1
i,k=1,

[τzz]
n+1
i+1/2,k=−1/2 = −[τzz]

n+1
i+1/2,k=1/2,

[τzz]
n+1
i+1/2,k=−3/2 = −[τzz]

n+1
i+1/2,k=3/2.

(4.12)

To deal with the unbounded medium, a damping coefficient is applied by surrounding the numerical

model with a strip of grids that exponentially decay any propagating wavefield. The stress and

particle velocity are multiplied by the damping factor

G(i) = exp

{
−
[ a

iabmax
(iabmax− i)

]2
}
, 1 ≤ i ≤ iabmax, (4.13)

where iabmax is the grid strip width and a is the absorbing constant.

4.2 Finite-Difference Modeling with Different Model Cases for a fluid/elastic half-space

Using the finite-difference method, numerical solution of the full waveform can be found. The

FDM code can be used to simulate both the deep and shallow marine environment. The goal of the

numerical simulation is to understand the source mechanism across the horizontal boundary given

different model cases that will describe the impact of the source mechanism. The first part of the

analysis will involve the shallow source depth with varying sea-bottom properties followed by the

far source depth with varying sea-bottom properties. The sea-bottom properties will vary from soft

76



Figure 4.1: Physical model (Model 1) with a shallow source at h = 10 m and a Poisson ratio of
ν = 0.458 which represents soft unconsolidated mud.

unconsolidated mud to hard coral reef solid.

Considering the shallow source depth analysis, the first model used for the numerical solution

is shown in figure 4.1. The physical model (Model 1) shows a fluid half-space above an elastic

half-space. The pressure source is placed 10 meters above the sea-bottom in the water layer and

its placement is similar to the shallow marine environment. In the lower elastic layer, the P wave

velocity is α = 1800 m/s, S wave velocity is β = 500 m/s, and Poisson ratio is ν = 0.458

which are indicative of an elastic sea-bottom characterized by a soft unconsolidated mud. From

the source, 600 receivers are placed on the seafloor that are 2 meters apart. The total dimensions

of the physical model are 500 meters in the vertical direction and 1000 meters in the horizontal

direction. To investigate the propagation of waves from the source, the medium will be considered

unbounded. Numerical solution for the horizontal component using Model 1 is shown in figure

4.2. The wavelet used is a Ricker wavelet and the source frequency is 25 Hz. Given the 4th order

of the FDM, the grid spacing chosen for this simulation is 1 meters according to equation 4.10.

As a result, the minimum sampling rate from the Courant criteria is ∆t = 0.3 ms; this ensures

77



Figure 4.2: Horizontal particle velocity for Model 1. The vertical axis is the time in seconds and
the horizontal axis is the distance in meters.

the stability of the FDM code and avoids grid dispersion. Two main events are observed from

the numerical solution, the surface Scholte wave and a direct transmitted S wave. The PP and PS

events appear to overlap due to the coupling between P and SV waves at the sea-bottom boundary

which are masked by the surface Scholte waves. At greater distance; however, the PP waves are

faster and starter to be arrive before the surface wave. The second event is the PS* waves which are

wave arrivals that are interpreted as evanescent P waves tunneling at the interface where they are

converted to propagating shear waves (Daley and Hron, 1983). There are two main characteristics

of the S* waves. First, they are evanescent waves which means they exponentially decay with

depth. Second, they are considered non-geometric waves in the sense that the waves propagate as

if they are excited from the sea-bottom instead of the airgun source (Hron and Mikhailenko, 1981).

However, when the source is moved closer to the interface then the PS* wave mode becomes more

prominent (Gutowski et al., 1984). For the PS* to exist in the fluid/elastic half-space medium,

shear wave velocity in the solid medium must be lower than the acoustic wave velocity of the
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Figure 4.3: Physical model (Model 2) with a shallow source at h = 10 m and a Poisson ratio of
ν = 0.37 which represents an intermediate consolidated solid.

water layer;i.e., β2 < α1 (Allouche and Drijkoningen, 2016).

The second model used for the numerical solution is shown in figure 4.3. The physical model

(Model 2) shows a fluid half-space above an elastic half-space. The pressure source is placed

10 meters above the sea-bottom in the water layer and its placement is similar to the shallow

marine environment. In the lower elastic layer, the P wave velocity is α = 3400 m/s, S wave

velocity is β = 1540 m/s, and Poisson ratio is ν = 0.37 which are indicative of an elastic sea-

bottom characterized by an intermediate consolidated solid. From the source, 600 receivers are

placed on the seafloor that are 2 meters apart. The total dimensions of the physical model are

500 meters in the vertical direction and 1000 meters in the horizontal direction. To investigate

the propagation of waves from the source, the medium will be considered unbounded. Numerical

solution for the horizontal component using Model 2 is shown in figure 4.4. The wavelet used is a

Ricker wavelet and the source frequency is 25 Hz. The grid spacing chosen for this simulation is

2 meters according to equation 4.10. As a result, the sampling rate to satisfy the Courant criteria

is ∆t = 0.3 ms. This ensures the stability of the FDM code and avoids grid dispersion. Two main
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Figure 4.4: Horizontal particle velocity for Model 2. The vertical axis is the time in seconds and
the horizontal axis is the distance in meters.

events are observed from the numerical solution, the surface Scholte wave and the PS headwave.

The PP and PS events appear to overlap due to the coupling between P and SV waves at the sea-

bottom boundary which are masked by the surface Scholte waves. The other event is the refracted

PS waves that exists due to having the shear wave velocity in the solid medium faster than the

acoustic wave velocity of the water layer;i.e., β2 > α1.

The third model used for the numerical solution is shown in figure 4.5. The physical model

(Model 3) shows a fluid half-space above an elastic half-space. The pressure source is placed 10

meters above the sea-bottom in the water layer and its placement is similar to the shallow marine

environment. In the lower elastic layer, the P wave velocity is α = 5000 m/s, S wave velocity

is β = 2580 m/s, and Poisson ratio is ν = 0.318 which are indicative of an elastic sea-bottom

characterized by a hard coral reef. From the source, 600 receivers are placed on the seafloor that

are 2 meters apart. The total dimensions of the physical model are 500 meters in the vertical

direction and 1000 meters in the horizontal direction. To investigate the propagation of waves
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Figure 4.5: Physical model (Model 3) with a shallow source at h = 10 m and a Poisson ratio of
ν = 0.318 which represents a hard coral reef.

from the source, the medium will be considered unbounded. Numerical solution for the horizontal

component using Model 3 is shown in figure 4.6. The wavelet used is a Ricker wavelet and the

source frequency is 25 Hz. The grid spacing chosen for this simulation is 2 meters according to

equation 4.10. As a result, the sampling rate to satisfy the Courant criteria is ∆t = 0.24 ms. This

ensures the stability of the FDM code and avoids grid dispersion. Two main events are observed

from the numerical solution, the surface Scholte wave and the PS headwave. The PP and PS events

appear to overlap due to the coupling between P and SV waves at the sea-bottom boundary which

are masked by the surface Scholte waves. The other event is the refracted PS waves that exists due

to having the shear wave velocity in the solid medium faster than the acoustic wave velocity of the

water layer;i.e., β2 > α1.

Considering the far source depth analysis, the fourth model used for the numerical solution

is shown in figure 4.7. The physical model (Model 4) shows a fluid half-space above an elastic

half-space. The pressure source is placed 100 meters above the sea-bottom in the water layer and

its placement is similar to the deep marine environment. In the lower elastic layer, the P wave
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Figure 4.6: Horizontal particle velocity for Model 3. The vertical axis is the time in seconds and
the horizontal axis is the distance in meters.

Figure 4.7: Physical model (Model 4) with a far source at h = 100 m and a Poisson ratio of
ν = 0.458 which represents soft unconsolidated mud.
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Figure 4.8: Horizontal particle velocity for Model 4. The vertical axis is the time in seconds and
the horizontal axis is the distance in meters.

velocity is α = 1800 m/s, S wave velocity is β = 500 m/s, and Poisson ratio is ν = 0.458

which are indicative of an elastic sea-bottom characterized by a soft unconsolidated mud. From

the source, 600 receivers are placed on the seafloor that are 2 meters apart. The total dimensions

of the physical model are 500 meters in the vertical direction and 1000 meters in the horizontal

direction. To investigate the propagation of waves from the source, the medium will be considered

unbounded. Numerical solution for the horizontal component using Model 4 is shown in figure

4.8. The wavelet used is a Ricker wavelet and the source frequency is 25 Hz. Given the 4th order

of the FDM, the grid spacing chosen for this simulation is 1 meters according to equation 4.10.

As a result, the minimum sampling rate from the Courant criteria is ∆t = 0.3 ms. This ensures

the stability of the FDM code and avoids grid dispersion. One main event is observed from the

numerical solution which is the surface Scholte wave. The PP and PS events appear to overlap

due to the coupling between P and SV waves at the sea-bottom boundary which are masked by the

surface Scholte waves. Since the source isn’t placed within a wavelength of the interface, the PS*
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Figure 4.9: Physical model (Model 5) with a far source at h = 100 m and a Poisson ratio of
ν = 0.37 which represents an intermediate consolidated solid.

event isn’t observed for Model 4. This is due to the evanescent nature of the PS* waves and they

can only exist when the source is located close to the interface (within one wavelength), although

the velocity criteria is satisfied.

The fifth model used for the numerical solution is shown in figure 4.9. The physical model

(Model 5) shows a fluid half-space above an elastic half-space. The pressure source is placed 100

meters above the sea-bottom in the water layer and its placement is similar to the deep marine

environment. In the lower elastic layer, the P wave velocity is α = 3400 m/s, S wave velocity

is β = 1540 m/s, and Poisson ratio is ν = 0.37 which are indicative of an elastic sea-bottom

characterized by an intermediate consolidated solid. From the source, 600 receivers are placed on

the seafloor that are 2 meters apart. The total dimensions of the physical model are 500 meters in

the vertical direction and 1000 meters in the horizontal direction. To investigate the propagation

of waves from the source, the medium will be considered unbounded. Numerical solution for

the horizontal component using Model 5 is shown in figure 4.10. The wavelet used is a Ricker

wavelet and the source frequency is 25 Hz. The grid spacing chosen for this simulation is 2
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Figure 4.10: Horizontal particle velocity for Model 5. The vertical axis is the time in seconds and
the horizontal axis is the distance in meters.

meters according to equation 4.10. As a result, the sampling rate to satisfy the Courant criteria is

∆t = 0.3 ms. This ensures the stability of the FDM code and avoids grid dispersion. Similar to

the shallow source case, two main events are observed from the numerical solution;i.e., the Scholte

wave and refracted PS wave. The PP and PS events appear to overlap due to the coupling between

P and SV waves at the sea-bottom boundary. The other event is the refracted PS waves that exists

due to the shear wave velocity in the solid medium is faster than the acoustic wave velocity of the

water layer;i.e., β2 > α1.

The sixth model used for the numerical solution is shown in figure 4.11. The physical model

(Model 6) shows a fluid half-space above an elastic half-space. The pressure source is placed 100

meters above the sea-bottom in the water layer and its placement is similar to the deep marine

environment. In the lower elastic layer, the P wave velocity is α = 5000 m/s, S wave velocity

is β = 2580 m/s, and Poisson ratio is ν = 0.318 which are indicative of an elastic sea-bottom

characterized by a hard coral reef. From the source, 600 receivers are placed on the seafloor that
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Figure 4.11: Physical model (Model 6) with a far source at h = 100 m and a Poisson ratio of
ν = 0.318 which represents a hard coral reef.

are 2 meters apart. The total dimensions of the physical model are 500 meters in the vertical

direction and 1000 meters in the horizontal direction. To investigate the propagation of waves

from the source, the medium will be considered unbounded. Numerical solution for the horizontal

component using Model 6 is shown in figure 4.12. The wavelet used is a Ricker wavelet and the

source frequency is 25 Hz. The grid spacing chosen for this simulation is 2 meters according to

equation 4.10. As a result, the sampling rate to satisfy the Courant criteria is ∆t = 0.24 ms. This

ensures the stability of the FDM code and avoids grid dispersion. Similar to the shallow source

case, two main events are observed from the numerical solution;i.e.,the Scholte wave and refracted

PS wave. The PP and PS events appear to overlap due to the coupling between P and SV waves

at the sea-bottom boundary. The other event is the refracted PS waves that exists due to the shear

wave velocity in the solid medium is faster than the acoustic wave velocity of the water layer;i.e.,

β2 > α1.

For further analysis, figures 4.13 and 4.14 display the horizontal particle velocity for near, mid,

and far offsets using the different model cases at shallow and far depth source positions.
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Figure 4.12: Horizontal particle velocity for Model 6. The vertical axis is the time in seconds and
the horizontal axis is the distance in meters.
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Figure 4.13: Horizontal particle velocity for Models 1, 2, and 3 at different distances. These models
represent the shallow source depth case varying from soft unconsolidated mud to hard coral reef.
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Figure 4.14: Horizontal particle velocity for Models 4, 5, and 6 at different distances. These
models represent the far source depth case varying from soft unconsolidated mud to hard coral
reef.
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From figure 4.13, the horizontal velocity solution results are shown at x = 10 m, x = 100 m,

and x = 500m for Model 1, 2, and 3 which represents the shallow source depth models. At x = 10

m, the PP and PS signals are indistinguishable for all the models and are masked by the Scholte

surface waves. The peak amplitude at this offset is Vx = 1.2×10−9 m for Model 1, Vx = 1.7×10−9

m for Model 2, and Vx = 1.8× 10−9 m for Model 3. At x = 100 m, the PS* event starts to form

for Model 1. The peak amplitude is Vx = 5.8× 10−10 m for Model 1, and Vx = 6.8× 10−10 m for

Model 2 while the peak amplitude drops slightly to Vx = 6.8× 10−10 m for Model 3. At x = 500

m, The Scholte and PS* waves are clearly distinguishable and the PP waves starts to arrive faster

for Model 1. The refracted wave starts to arrive faster for Models 2 and 3 and are distinguishable.

The peak amplitude of the Scholte and PS* waves are Vx = 5.1× 10−11 m and Vx = 4.5× 10−11

m for Model 1; respectively. The peak amplitude is Vx = 7.8× 10−10 m and Vx = 0.9× 10−9 m

for Models 1 and 2; respectively. Those results indicate that the maximum amplitude is in the near-

field and is highest for the hard coral reef model case; although the difference between the Model

cases at the near offset is not drastic. As the offset increases, this pattern increases; however, the

hard consolidated Model 3 becomes an order of magnitude higher than Model 2 which is an order

of magnitude higher than Model 1. This means that for the shallow source, the material properties

of the elastic bottom has noticeable impact on the transmitted converted waves. In Model 1, PS*

waves are formed and increase in amplitude the further from the source across the horizontal sea-

bottom boundary. However, the amplitude of PS* remains lower than the Scholte waves for all

model cases. Further, PS* waves exponentially decay with depth which means their amplitudes

should decrease further as they travel through the subsurface.

From figure 4.14, the horizontal velocity solution results are shown at x = 10 m, x = 100 m,

and x = 500 m for Model 4, 5, and 6 which represents the far source depth models. The peak

amplitude at this offset is Vx = 8.0 × 10−11 m for Model 4, Vx = 9.8 × 10−11 m for Model 5,

and Vx = 8.8 × 10−11 m for Model 6. At x = 100 m, the surface Scholte waves dominate the

record and the PS* waves are not observed for Model 4. The peak amplitude is Vx = 4.5× 10−10

m for Model 4, and Vx = 4.6 × 10−10 m for Model 5 while the peak amplitude increases slightly
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to Vx = 4.8 × 10−10 m for Model 6. The refracted wave starts to arrive faster for Models 5 and

6 and are distinguishable from the Scholte surface waves. The peak amplitude for Model 4 is

Vx = 2.25× 10−10 m; whereas, the peak amplitude is Vx = 1.9× 10−10 m and Vx = 5.1× 10−10

m for Models 5 and 6; respectively. Those results indicate that the maximum amplitude is in

the far field and is highest for the hard consolidated layer; although the difference between the

Model cases at the near offset is not significant. In general, the amplitude increases for all Model

cases from near to far offset for the far source depth case; where, the increase for all cases are

approximately an order of magnitude. This pattern is opposite to the shallow source cases which

confines most of its energy in the near-field instead. Generally, the shallow source cases amplitude

values are two orders of magnitudes higher than the far shallow source cases especially in the near-

field where most of the energy is transmitted for the shallow source case (Sun and Berteussen,

2009). In Model 4, PS* waves are not formed due to the far distance of the source to the sea-

bottom.
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5. 2D 4C SHEAR WAVE IMAGING IN SHALLOW MARINE ENVIRONMENT

The higher rate of attenuation of S-waves compared to P-waves makes it difficult to obtain

a pure shear imaged seismic section. Fortunately, the proximity of the pressure source to the

hard sea-bottom in the shallow water environment serves as an effective shear wave generator,

which is useful for obtaining a shear wave imaged seismic section. In this chapter, a direct shear

wave imaged section from 2D 4C seismic data will be extracted using established model-driven

algorithm utilizing well log data.

5.1 Methods

The 2D 4C seismic line contains pressure, inline, crossline, and vertical components. In this

work, only the pressure and inline components will be processed using Landmark’s ProMax soft-

ware. The processing workflow follows the work of Zhang et al., (2015), Berteussen et al. (2014),

and Guo (2017) where model-driven approach utilizing log data is used to extract P and S waves

from the pressure and inline components. The log data contains crucial information for this pro-

cessing method since it not only has P and S wave information at the reservoir level, but also

includes velocity information starting 30 m below the sea-bottom. This means the log data is

essential in the proposed workflow as shown in Figure 5.1
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Figure 5.1: Seismic processing workflow focusing on Pressure and Inline components to separate
and extract S waves.
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When dealing with 4C seismic data, the first step involves separating the data into each com-

ponent and applying the geometry. Given the highly dispersive surface waves that contaminate the

dataset; their removal takes precedence since they mask the desirable reflection signals. To remove

the surface waves, a linear move out in the Frequency-Space (FX) domain is utilized. This filter

is based on a fixed velocity value and can be fixed for low frequencies which is a common feature

for surface waves. This process is done in source side (shot domain) and receiver side (receiver

domain). The main reason for multiple domain filtering is that some of the linear features of the

surface waves do not exist completely in the shot domain; therefore, receiver domain sorting is

used to remove surface waves that appear linear only in this domain. Afterwards, multiple domain

Frequency-Wavenumber (FK) filtering is used to remove the residual noises masking the reflection

signals. In this context, residual noise represents signals that hide the reflection signals at mid to

far offsets after removing the surface waves which include but not limited to direct waves, refracted

waves, and back-scattered noise. After removing all the noise, velocity measurements from the log

are used as a reference to extract the desirable P and S wave modes from the components. This

is done first by the NMO correction which straightens reflectors with similar velocity from the

log and then using FK filter to remove all up-dipping and down-dipping events. This leads to two

additional results: one using P velocity values for extraction; whereas, the other using S velocities

values from log for extraction. The new P and S section are used as a reference to perform another

round of Velocity analyses and the resulting velocity picking on the P and S section represents the

final P and S stacking velocities that are then used to generate the final P and S stacked sections

for each respective component; i.e., pressure and inline components.

5.2 Results

5.2.1 Log Data Analysis

The well log data used in this study includes Gamma ray, bulk density, effective porosity, water

saturation, P wave velocity, and S wave velocity as shown in Figure 5.2. The gamma ray (GR)

log is a continuous measurement of the rock’s natural radioactivity with higher GR values indicate
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Figure 5.2: Well log data of the nearby well around the reservoir zone. The log data displayed are
gamma ray, bulk density, effective porosity, P velocity, and S velocity.

formations such as shale. In the log, GR log is consistently low from depth of 2780 m to 2890 m.

At the same depth, the porosity values range from 25 to 27 percent. From 2780 m to 2800 m, the

water saturation is lowest, and peaks right after that depth. Similarly, the porosity is highest at 27

percent and then drops down to 25 percent. This indicates that the oil reservoir is roughly 20 m

between 2780m to 2800m. Velocity values in this range confirms that and the respective two-way

travel time (TWT) for the reservoir is approximately at 1.5 s.

5.2.2 Processing Results

The main objective of the seismic processing is to separate S from P waves and extract a P and

S wave structural image of the subsurface. Focusing on the pressure and inline components only,

Figures 5.3 and 5.4 show the raw shot gathers for the pressure and inline components, respectively.

As shown from the previous figures, the raw shot gathers are severely contaminated by noise

especially surface waves. Following the proposed workflow from figure 5.1, the first round of

denoising mainly includes surface wave attenuation in shot domain then receiver domain. The

surface wave attenuation is based on waves velocity and frequency values. The typical velocity
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Figure 5.3: Raw shot gather of the pressure component.

value for the Surface wave was measured to between 700 m/s to 1000 m/s; thus, multiple surface

wave attenuation was applied in both shot and receiver domains. The result after surface wave

attenuation for the pressure and inline components are displayed in figure 5.5 and 5.6, respectively.
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Figure 5.4: Raw shot gather of the inline component.

Figure 5.5: Shot gathers after surface wave attenuation for the pressure component.
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Figure 5.6: Shot gathers after surface wave attenuation for the pressure component.

As shown from the previous figures, removing the surface wave drastically enhances the signal-

to-noise ratio by revealing the desirable signal; i.e., reflected hyperbolic waves. It is important to

note; however, removing surface waves can remove wanted signals if they overlap due to aliasing.

The next step after removing surface waves, is to remove all the remaining residual noises that

aren’t reflection signals. To do that, a multi-trace FK analysis in utilized as shown in figure 5.7.

The FK spectrum transforms the space-time domain of the shot record into frequency-wavenumber

domain. This is essentially a 2D Fourier transform that allows the analysis of the waves with fre-

quency and wavenumber. In this domain, linear and hyperbolic events based on their frequencies

should separate clearly. Unfortunately, severe aliasing can be observed from the FK spectrum

which is a common issue in seismic data acquired in the shallow marine environment of the Ara-

bian Gulf. A polygon in constructed to reject all the unwanted linear events in shot, receiver, and

CMP domain. As mentioned earlier, this is done because some linear features cannot be observed
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Figure 5.7: FK spectrum of the pressure component using 2D Fourier transform. The arbitrary
polygon represents the zone created to reject the unwanted signal.

in a single domain. With SWA and FK filters, most of the coherent noise suppression is com-

pleted for the seismic data. At this stage, the P and S wave information can be extracted using

NMO correction and FK filter. P wave velocities from the log is used to straighten the filtered

seismic gathers followed by an FK filter to extract the P wave and an inverse NMO to get back

the P wave extracted gather. Similar process is done for S wave but using the S wave velocities

from the log instead. Results from the Fk filtering, P wave extraction, and S wave extraction are

displayed for pressure and inline components in figure 5.8 and 5.9, respectively. The heavy fil-

tering sequence successfully removes the contaminating surface waves and residual noise. Also,

the extracted P wave gather depicts a hyperbola typical of higher velocities; whereas, the S wave

gather depicts a hyperbola of lower velocities. To stack the gathers, velocity analysis is carried out

as shown in figure 5.10 Several velocity analyses were carried out on the P-extracted CMP gather

and the S-extracted CMP gather. For the P-extracted gather, the velocity values where consistent

with less ambiguity due to strong semblance values existing throughout the picking and each sem-
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Figure 5.8: Results from applying heavy filtering on the raw pressure record. a) SWA filtered CMP
record. b) FK filtered CMP record. P wave extracted CMP record using velocities from the well
log. S wave extracted CMP record using velocities from the well log.

blance value corresponds to major reflector signals. However, the S-extracted picking introduces

more ambiguity due to semblance values and corresponding reflectors having different response.

Therefore, using the log measurements as a guide for S-wave velocity picking resulted in a guided

analysis helped picking the reflectors signals. Using the velocity analysis, the final stacked im-

ages for the pressure and inline component are shown in figure 5.11 and 5.12, respectively. The

stacked seismic sections represent the structural image of the subsurface in the region. In general,

the reflectors are approximately flat which is typical of the region. In the pressure component, both

the P and S waves stacked section display similar features with decent signal-to-noise ratio (SNR);
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Figure 5.9: Results from applying heavy filtering on the raw inline record. a) SWA filtered CMP
record. b) FK filtered CMP record. P wave extracted CMP record using velocities from the well
log. S wave extracted CMP record using velocities from the well log.

although, the P wave stacked image of the pressure component has noticeable higher SNR. How-

ever, the S stacked image of the pressure component has higher frequency level than the P stacked

image. For the inline component, both sections display similar flat reflector pattern; however, the

SNR of both P and S wave stacked inline components are noticeably lower than the pressure com-

ponent. Generally, the inline component stacked section have higher frequency content but the S

stacked image has higher SNR than the P stacked image of the inline component. This is expected

because the inline component directly measures S waves (direct shear) that reflect from the sub-
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Figure 5.10: Velocity analysis for the pressure component done on the P extracted CMP gather. a)
P wave velocity analysis. b) S wave velocity analysis.

surface. The existence of SH* wave from 2D seismic has been successfully confirmed using the

same dataset from this study on the crossline component by Guo (2017).
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Figure 5.11: Seismic stacking image of the pressure component.a) P wave stacked seismic image.
b) S wave stacked seismic image.

Figure 5.12: Seismic stacking image of the inline component.a) P wave stacked seismic image. b)
S wave stacked seismic image.
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6. CONCLUSIONS

The Arabian Gulf is home to the world’s largest oil reserves. This region is characterized by

heterogeneous carbonates, very shallow waters (10 m) and hard sea-bottom which presents unique

challenges that makes hydrocarbon extraction difficult. This setting is also responsible for strong

shear wave generation at the sea-bottom. The strong shear wave generation is attributed to the

complicated source mechanism that exists in the region due to the proximity of the source to the

seafloor and the varying hard sea-bottom. Extracting shear wave information is essential for reser-

voir characterization in the offshore fields of the Arabian Gulf and, along with P waves, can help

delineate reservoir structures and discriminate bypassed hydrocarbons for production monitoring.

To understand and utilize the strong shear waves generated in the region, the source mechanism

was analyzed. Classical wave propagation analysis is not sufficient to address the complex wave

interactions between the source and the sea-bottom in shallow waters. To analyze the source, a

conceptual body force model was proposed that uses mechanical deformation analysis to define

an effective source on the seafloor directly under the acoustic source load. This model explains

the generation of SH* and S* waves from an explosive source in the shallow waters with a hard

sea-bottom. Considering the acoustic source and seafloor boundary as a single volume element of

deformation, the mechanical model is used to explicitly define P, SV, and SH waves body force

components from the water depth of the acoustic source and the Poisson ratio difference of the

media. Using the effective source, exact analytical solutions were derived to analyze wave propa-

gation, in the near and far-field, for three sea-bottom scenarios representing soft mud, intermediate,

and hard coral reef. This was done to observe the effect of acoustic source distance and sea-bottom

hardness on wave propagation. With this analysis, shear waves generated from shallow source and

hard sea-bottom were found to be more than thousand times stronger than shear waves from far

source and soft sea-bottom. The source mechanism was further analyzed using numerical finite-

difference wave modeling for seismic wave propagation.

Acquired 2D 4C seismic data in the Arabian Gulf was processed for direct shear wave imaging
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utilizing the pressure and inline components only. This processing follows an established model-

driven approach that confirmed the existence of direct shear (PSS) waves using the inline compo-

nent. The existence of SH* waves using the same 2D seismic has been successfully detected in

another study. This was done by first addressing the seismic processing challenges that exist in the

region including highly dispersive surface waves, water-bottom reverberations, and severe anti-

aliasing. Separately extracting P and S wave information involved a NMO-filtering routine that

utilized the P and S wave velocities from the well log which provided the necessary step to stack

and image the seismic data. Similar geological structural features were observed on both P and S

wave stacked section; however, the S stacked section showed higher frequency and resolution on

the inline component. The processing workflow greatly enhances the signal-to-noise ratio of the

seismic data and also direction extracts shear wave information for reservoir characterization.
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