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ABSTRACT

Quantum error-correcting codes play a vital role in protecting quantum information from ex-

ternal noise and internal decoherence, and will be a critical tool in the construction of a universal

fault-tolerant quantum computer. Most known quantum error-correcting codes belong to the well-

studied class of quantum stabilizer codes, which have a well-behaved group structure that makes

them easy to construct and practical to use. In this dissertation, we expand the theory of two gen-

eralizations of stabilizer codes: quantum-classical hybrid codes and nonadditive quantum codes.

Hybrid codes simultaneously encode both quantum and classical information together, which

allows for some nontrivial advantage over coding schemes with separate transmission. As many

quantum communications protocols involve both quantum and classical information, hybrid codes

may be useful in designing more efficient schemes. We construct the first known families of gen-

uine hybrid codes that are guaranteed to provide an advantage over quantum stabilizer codes, giv-

ing infinite families of both single-error detecting and correcting hybrid codes. We also generalize

hybrid codes to allow for differing levels of protection of errors, and give a general construction of

hybrid codes of this type from quantum subsystem codes. When used in conjunction with the class

of Bacon-Casaccino subsystem codes, this provides for a method of constructing hybrid codes

from pairs of classical linear codes. As an application of hybrid codes, we show how they can be

used to protect against faulty syndrome measurement errors and inspire the construction of new

quantum data-syndrome codes.

Finally, we investigate the Shor-Laflamme weight enumerators for both hybrid and nonaddi-

tive quantum codes. Weight enumerators are powerful tools that allow for the construction of

linear-programming bounds on the parameters of quantum codes and let us rule out the existence

of certain codes. In particular, we show that the weight enumerators of the nonadditive codeword

stabilized quantum codes have a combinatorial interpretation analogous to that of quantum stabi-

lizer codes, showing that they may be viewed as the distance enumerators of associated classical

codes.
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1. INTRODUCTION AND FUNDAMENTAL CONCEPTS

1.1 Motivation

The rapid advances made in the field of quantum computation in the past two and a half decades

have rocketed us to the threshold of the Noisy Intermediate-Scale Quantum (NISQ) era of quan-

tum computation [83], a period of time where quantum supremacy has been achieved (on approxi-

mately 50 to 100 noisy qubits) but large-scale fully fault-tolerant quantum computers have not been

realized. In order to obtain the quadratic speedup for unstructured database search or the super-

polynomial speedup for integer factorization promised by Grover [46] and Shor [95] respectively,

both quantum error correction and fault-tolerance are necessary.

Both classical and quantum information are impacted by noise, although quantum information

tends to be much less robust to noise, which may arise from the environment, nearby qubits, or even

from within the qubit itself. In the case of classical information, the answer to the question of noise

is to add redundancy to the system, and this is also the solution to protecting quantum information.

However, the properties of quantum mechanics present several hurdles that need to be cleared

first, especially the no-cloning theorem, which prevents the copying of quantum systems, and the

collapse of a superposition of quantum states upon observation. In fact, until the construction of

the first quantum error-correcting code by Shor [93], many skeptics pointed to these issues as proof

of the infeasibility of quantum computation.

Since the introduction of this original 9-qubit Shor code, the field of quantum error correction

has rapidly grown with the introduction of CSS codes [23, 98], which allow for the construc-

tion of quantum codes from classical linear codes, as well as their generalization the stabilizer

codes [22, 39], which are so important as to be nearly synonymous with quantum error correction.

Other more specialized constructions include subsystem codes [62], codeword stabilizd codes [29],

entanglement-assisted codes [21], and topological codes [54].

Even though they operate primarily on quantum information, quantum computers still rely on
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classical information for their outputs and in some cases the controls for quantum gates, which may

be affected by noise (e.g., the problem of faulty syndrome extraction [10, 36]). Similarly, some

quantum communications protocols require the transmission of quantum and classical information

across a quantum channel. To address these problems, the work in this dissertation primarily in-

vestigates hybrid quantum-classical codes that can protect both quantum and classical information

together against the effects of noise. Additionally, the other focus in this work is investigating the

weight enumerators of both hybrid quantum-classical codes and the nonadditive codeword stabi-

lized quantum codes, which allow us to derive upper bounds on the existence of codes.

1.2 Quantum Information

The basic unit of quantum information is the qubit, which is a unit (column) vector in the

Hilbert space C2. Using bra-ket notation from quantum mechanics, we define the computational

basis of the Hilbert space to be

|0⟩ =

1
0

 and |1⟩ =

0
1

 ,
read as “ket 0” and “ket 1”, which is the standard basis of the vector space. A qubit |ψ⟩ can

therefore be written as a linear combination of |0⟩ and |1⟩:

|ψ⟩ = α |0⟩+ β |1⟩ =

α
β

 , where α, β ∈ C and |α|2 + |β|2 = 1.

A qubit written in this way is said to be a superposition of the basis states. This can be visualized

as the qubit living on the surface of the Bloch sphere.

Multiple qubits can be combined together into a composite quantum system by taking a tensor

product of the corresponding Hilbert spaces. A two qubit system is a unit vector in the Hilbert

space C2⊗C2, which has the vectors {|0⟩ ⊗ |0⟩ , |0⟩ ⊗ |1⟩ , |1⟩ ⊗ |0⟩ , |1⟩ ⊗ |1⟩} as an orthonormal

basis. For simplicity, and since this Hilbert space is isomorphic to C4, this basis is typically

2



written as {|00⟩ , |01⟩ , |10⟩ , |11⟩}. In general, an n-qubit system is the Hilbert space C2n , with the

computational basis indexed by the 2n bit strings of length n.

An operator that maps a quantum state to a quantum state is modeled by a unitary matrix U ,

which means U satisfies U †U = UU † = I , where U † is the conjugate transpose of U . Unitary

operators on separate qubits can be combined by using the tensor product: for a three qubit system,

the matrix U ⊗ I ⊗ V applies the operator U to the first qubit, applies no operator (or the identity

operator) to the second qubit, and the operator V to the third qubit. Three single-qubit operators

that are especially important to quantum error correction are the Pauli matricesX , Y , and Z, where

X =

0 1

1 0

 , Z =

1 0

0 −1

 , and Y = iXZ =

0 −i

i 0

 .
The matrix X is known as the “bit-flip” operator since it maps |0⟩ 7→ |1⟩ and |1⟩ 7→ |0⟩, analogous

to a classical bit-flip, while the matrix Z is known as the “phase-flip” operator, as it maps |0⟩ 7→ |0⟩

and |1⟩ 7→ − |1⟩. Another way of viewing it is the X , Y , and Z operators represent a rotation

of π around their respective axes in the Bloch sphere. One fact about the Pauli matrices that

will become useful later on when looking at quantum stabilizer codes in Section 1.3.2 is that

they all anticommute with each other. Together with I , we denote the set of Pauli operators by

E = {I,X, Y, Z}.

Two other important unitary operators are the Hadamard and controlled-NOT (CNOT) gates,

defined by

H =
1√
2

1 1

1 −1

 and CNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


.

Conjugating by Hadamard operators allow us to switch between X and Z operators, as

X = HZH and Z = HXH.

3



Figure 1.1: Quantum circuit diagrams for the CNOT, controlled-Z, and SWAP gates.

The CNOT gate is a two qubit operator that when applied to the computation basis states will

perform the following mapping:

|00⟩ 7→ |00⟩ ,

|01⟩ 7→ |01⟩ ,

|10⟩ 7→ |11⟩ ,

|11⟩ 7→ |10⟩ .

The effect of this on the basis states is to apply an identity operator to the second qubit if the first

qubit is “not set” (i.e., is the state |0⟩), and to apply an X operator to the second qubit if the first

qubit is “set” (i.e., is the state |1⟩). The first and second qubits are referred to as the control and

target respectively. Two qubit gates allow us to construct states that exhibit the uniquely quantum

phenomenon of entanglement. Consider the state |Φ⟩ = |00⟩+|11⟩√
2

(obtained by applying H and

CNOT in succession on the state |00⟩), which we call entangled since its two qubits cannot be writ-

ten as the tensor product of two single qubit states. One interesting and useful property of this state

is that if one of the two qubits is measured, the superposition is immediately collapsed and the

other quantum state is reduced to the identical state with probability 1. This makes entanglement

useful for several quantum communication protocols including superdense coding [17] and quan-

tum teleportation [16], as well as a resource to be used in entanglement-assisted quantum error

correction [21].

The last two gates necessary for this dissertation are the controlled-Z gate and the SWAP gate.

The SWAP gate simply swaps two qubits, while the controlled-Z gate applies a Z-gate on the target
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qubit if the control qubit is set, although there is no difference which qubit is the target and which

is the control.

Another important type of operations are von Neumann measurements, which are represented

by orthogonal projection matrices, that is a matrix P such that P 2 = P = P †. It is a basic rule

that matrices of this form can be diagonalized so that P =
∑

i |ϕi⟩ ⟨ϕi|, where {|ϕi⟩} forms an

orthonormal basis for the Hilbert space. Here ⟨ϕi| (read as “bra ϕi”) is the conjugate transpose

of the state |ϕi⟩. When multiplied together, bra then ket, ⟨ϕ|ψ⟩ is the standard complex inner

product on the Hilbert space. Applying the operator P to a state |ψ⟩ collapses the superposition and

reduces it to the state ⟨ϕi|ψ⟩
|⟨ϕi|ψ⟩| |ϕi⟩ with probability |⟨ϕi|ψ⟩|2. As an illustrative example, if we take a

measurement of the state |ψ⟩ = α |0⟩+β |1⟩ in the computational basis so that P = |0⟩ ⟨0|+|1⟩ ⟨1|,

we will end up with the state |0⟩ with probability |α|2 and |1⟩ with probability |β|2.

More information on quantum information may be found in the standard quantum computing

textbook of Nielsen and Chuang [78], or the quantum information theory textbook of Wilde [99].

1.3 Quantum Error Correction

The noise that affects a quantum system can be modeled in several different ways. Noise can

come internally through the process of amplitude damping, where the superposition of states tends

to devolve away from the excited state |1⟩ towards the lower-energy state |0⟩. Noise can also come

externally, through the interaction of the system with nearby systems or the environment. These

new types of noise, combined with the rules of quantum mechanics, give us three main obstacles

not present in classical error correction that must be overcome:

(1) the no-cloning theorem prevents the duplication of arbitrary quantum states,

(2) the errors that affect the system are continuous, and

(3) measuring quantum information destroys the system it is observing.

Thankfully, these obstacles can be overcome.

Firstly, the no-cloning theorem [32, 100] states there is no unitary operator that can take a

general quantum state |ψ⟩ tensored with an ancilla state |0⟩ and “clone” the general quantum state
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onto the ancilla, that is there is no unitary U such that

|ψ⟩ ⊗ |0⟩ U−→ |ψ⟩ ⊗ |ψ⟩

for an arbitrary |ψ⟩. This prevents the use of basic repetition codes from classical coding theory.

However, we can design unitaries that encode the basis states into encoded states on more qubits.

For example, if |ψ⟩ = α |0⟩ + β |1⟩, we can use two two CNOT gates controlled by the first qubit

and targeted on the second and third qubits respectively to perform the following mapping:

(α |0⟩+ β |1⟩)⊗ |0⟩ ⊗ |0⟩ → α |000⟩+ β |111⟩ ,

getting around obstacle (1).

The second obstacle is that as the errors that affect the system are continuous, there are un-

countably infinite number of possible errors that must be corrected. We can avoid this situation by

discretizing the errors and then correcting this discrete set of errors. The noise may be modeled

in operator-sum representation as
∑
i

Ei |ψ⟩ ⟨ψ|E†
i , and if we look at each operator Ei individually

as it affects only the j-th physical qubit, we can write this as a linear combination of the Pauli

operators I , Xj , Yj , and Zj , as they span the space of 2 × 2 complex matrices. This means that

if we perform a measurement to extract the syndrome associated with Ei, we end up in one of the

states |ψ⟩, Xj |ψ⟩, Yj |ψ⟩, or Zj |ψ⟩. This is true for each physical qubit, so we can construct an

inverse operator, and since this is true for all Ej , we can recover the original state for any linear

combination of the Ej .

Finally, the third obstacle can be overcome by only performing syndrome measurements that

collapse the the superposition and entanglement between the ancilla qubits, which leaves the state

in the form |ψ⟩⊗ |x⟩, where x is the bitstring associated with the measured syndromes. This limits

the number of measurements we can perform to the number of ancilla we add to the system.
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1.3.1 Quantum Error-Correcting Codes

An ((n,K, d))2 quantum code C is a K-dimensional subspace of a quantum system on n qubits

H = C2n , with an orthonormal basis comprised of the quantum states {|c1⟩ , . . . , |ck⟩}, such that

any error affecting less than d − 1 physical qubits can be detected (or equivalently, any error

affecting less than ⌊d− 1⌋ /2 physical qubits can be corrected). Associated with the code is the

orthogonal projector P =
∑K

i=1 |ci⟩ ⟨ci| that projects onto the subspace.

We define our error basis En to be the n-fold tensor product of elements from the Pauli group:

En = {ω · E1 ⊗ E2 ⊗ · · · ⊗ En | Ei ∈ E , ω ∈ {±1,±i}} ,

and we define the Hamming weight wt(E) of an element of E ∈ En to be the number of non-

identity tensor components it contains. The Knill-Laflamme conditions give necessary and suffi-

cient conditions for a set of errors D to be detectable by a quantum code C:

Theorem 1 ([60]). An error set D is detectable by a quantum code C with projector P if and only

if

PEP = λEP

holds for all E ∈ D, where λE ∈ C.

Roughly, this means that after the application of a recovery operator, a detectable error affects

the code by no more than global multiplication by a scalar depending only onE (which is harmless

as global scalars do not affect quantum information). We say the code has minimum distance d if

and only if every E ∈ En of weight less than d is detectable.

Example 2. As an example, we present the original quantum code, Shor’s ((9, 2, 3))2 code [93].

This code can be thought of as a 3-qubit bit-flip repetition code concatenated (in a coding theory

sense) with a 3-qubit phase-flip repetition code. We denote the two encoded basis states by
∣∣0〉 and
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∣∣1〉, and define them as

∣∣0〉 = 1

2
√
2
(|000⟩+ |111⟩)⊗ (|000⟩+ |111⟩)⊗ (|000⟩+ |111⟩) ,∣∣1〉 = 1

2
√
2
(|000⟩ − |111⟩)⊗ (|000⟩ − |111⟩)⊗ (|000⟩ − |111⟩) .

We can correct any single bit-flip error (i.e., a single qubit Pauli-X error) on the first triplet of

qubits by determining whether the first and second qubits are the same and then by determining

whether the second and third qubits are the same, which can be done by measuring the operators

Z1Z2 (i.e., Z-operators on the first and second qubits and identities everywhere else) and Z2Z3

respectively, revealing the erroneous qubit. Bit-flip errors on the second and third triplets may be

corrected in the same way. Similarly, we can correct any single phase-flip error (Pauli Z-error)

by noticing that a Z-error on any of the qubits of the first triplet will result in the same phase-flip,

and similarly for the other two triplets of qubits. Therefore, it is only necessary to identify which

triplet is affected and not the individual qubit. Therefore, it is sufficient to measure the operators

X1X2X3X4X5X6 andX4X5X6X7X8X9, in order to identify the block and correct the phase-error.

Since Paul-Y errors are a combination of both X- and Z-type errors, they are also identified in this

manner.

As we are able to correct any 1-qubit Pauli error, this minimum distance of Shor’s 9-qubit code

is at least 3.

1.3.2 Quantum Stabilizer Codes

Here we will focus on a particular class of quantum codes called stabilizer (or additive) codes,

which are the quantum analog of linear and additive classical codes. Select n − k independent

commuting elements of En that are not scalar multiples of the identity and denote the group of

order 2n−k generated by them as S , which we call the stabilizer group. The elements of S share 2k

eigenstates |ci⟩ with eigenvalue 1, so that for all S ∈ S we have S |ci⟩ = |ci⟩. We define this set of

eigenstates to be our stabilizer code C, and since K = 2k we call it an [[n, k, d]]2 code.

In particular, the errors in the stabilizer group do not have any effect on the codewords, so it is
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unnecessary to detect them. Any error that anticommutes with at least one element of the stabilizer

can be detected by making a measurement based off of the stabilizer generators. The only errors

that cannot be detected are those that commute with every element of the stabilizer group, which

are given by the centralizer N(S) of S in En:

N(S) = {F ∈ En | FS = SF, ∀S ∈ S} .

The question now becomes how to identify elements of N(S). It turns out that every stabilizer

group is defined by a classical additive code C over F4, and that the normalizer is given by the dual

code C⊥. Since S is an abelian group, it follows that S ⊆ N(S), so C ≤ C⊥, that is C must be a

self-orthogonal additive code. From this we can see that the minimum distance d of our quantum

stabilizer code C can be described using purely classical codes:

d = min
{
wt
(
C⊥ \ C

)}
,

that is, it is the minimum weight of codewords in C⊥ \ C. The elements of N(S) form the logical

operators on the encoded qubits.

One purely quantum feature of quantum codes are impure errors: those undetectable errors in

S that have weight less than d. This means that the minimum weight of the classical codes C and

C⊥ might both be larger than the minimum distance of the quantum code C. In general, impure

codes are much harder to both construct and analyze than pure codes, but as we show later they

will prove to be necessary in the construction of hybrid codes.

Example 3. We now reinterpret Shor’s 9-qubit code from Example 2 as a [[9, 1, 3]]2 quantum sta-

bilizer code. To do this we need to identify the Pauli operators that stabilize the encoded basis

states
∣∣0〉 and

∣∣1〉 (i.e., we wish to identify those Paul operators that have both
∣∣0〉 and

∣∣1〉 as

eigenvectors with eigenvalue 1). Note that the eight operators we measured in Example 2 satisfy
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this requirement. We show this here for the operator Z1Z2:

Z1Z2

∣∣0〉 = 1

2
√
2
Z1Z2 (|000⟩+ |111⟩)⊗ (|000⟩+ |111⟩)⊗ (|000⟩+ |111⟩)

=
1

2
√
2
Z1 (|000⟩ − |111⟩)⊗ (|000⟩+ |111⟩)⊗ (|000⟩+ |111⟩)

=
1

2
√
2
(|000⟩+ |111⟩)⊗ (|000⟩+ |111⟩)⊗ (|000⟩+ |111⟩)

=
∣∣0〉 ,

and

Z1Z2

∣∣1〉 = 1

2
√
2
Z1Z2 (|000⟩ − |111⟩)⊗ (|000⟩ − |111⟩)⊗ (|000⟩ − |111⟩)

=
1

2
√
2
Z1 (|000⟩+ |111⟩)⊗ (|000⟩ − |111⟩)⊗ (|000⟩ − |111⟩)

=
1

2
√
2
(|000⟩ − |111⟩)⊗ (|000⟩ − |111⟩)⊗ (|000⟩ − |111⟩)

=
∣∣1〉 .

Since these operators are all independent, they generate the entire stabilizer group. The logical X-

and Z-opertors on the encoded logical qubit are given by Z⊗9 and X⊗9 respectively, and we will

arrange the generators in a form similar to the generator matrices of classical linear codes:



X X X X X X I I I
I I I X X X X X X
Z Z I I I I I I I
I Z Z I I I I I I
I I I Z Z I I I I
I I I I Z Z I I I
I I I I I I Z Z I
I I I I I I I Z Z
X X X X X X X X X
Z Z Z Z Z Z Z Z Z


.

Here, the eight generators of the stabilizers of the stabilizer group S are above the solid line,
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and all ten of the operators generate the centralizer N(S). The minimum weight of this code is the

minimum weight of the setN(S)\S , which is 3. Since there are multiple elements in the stabilizer

with weight less than 3, this code is additionally an example of an impure quantum code.

Another class of quantum codes that will be important later on are a generalization of stabilizer

codes known as sybsystem codes [62]. Briefly, subsystem codes can be thought of as stabilizer

codes that have low weight elements in N(S) \ S . By moving an element from this set into S we

(hopefully) can increase the minimum distance of the code, at the expense of giving up one of the

logical qubits. Viewed in this way, we are increasing the minimum distance of the code by making

the code “more impure".

1.3.3 Nonbinary Quantum Codes

We now turn to from binary quantum codes to the non-binary case. Here, the fundamental

unit of quantum information is the q-level qudit, a unit vector in the Hilbert space Cq, where q is a

prime power. A nonbinary quantum code with parameters ((n,K, d))q is aK-dimensional subspace

C of a Hilbert space H = Cqn that can detect any errors on up to d − 1 physical qudits. As in the

binary case, we define the class of nonbinary stabilizer codes [7, 52] as the quantum analogues of

classical additive codes, and we write their parameters as [[n, k, d]]q, where k = logq(K). While in

general K does not need to be an integral power of q, it will always be an integral power of p, the

characteristic of the finite field Fq.

Just as binary stabilizer codes are defined as the joint eigenspace of a subgroup of the n qudit

error group generated by tensor products of the Pauli matrices, nonbinary stabilizer codes are

definied in a similar way using nice error bases [56, 57, 59]. Let Fq be a finite field of characteristic

p, where q = pℓ. We define the trace function tr : Fq → Fp by

tr(x) =
ℓ−1∑
i=0

xp
i

.

Let a, b ∈ Fq and denote by |x⟩ the computational basis of Cq labeled by the elements x ∈ Fq. The
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unitary operators X(a) and Z(b) are defined by

X(a) |x⟩ = |x+ a⟩ and Z(b) |x⟩ = ωtr(bx) |x⟩ ,

where ω is the primitive p-th root of unity e2πi/p. The set

E = {X(a)Z(b) | a, b ∈ Fq}

forms a nice error basis for Cq, modeling errors on a single qudit.

This can be extended to a system of n qudits by taking tensor products of the elements of E :

let a = (a1, . . . , an) ∈ Fnq and define the unitary operators X(a) = X(a1) ⊗ · · · ⊗ X(an) and

Z(a) = Z(a1)⊗ · · · ⊗ Z(an). Then

En =
{
X(a)Z(b) | a,b ∈ Fnq

}
is a nice error basis for Cqn and

Gn =
{
ωcX(a)Z(b) | a,b ∈ Fnq , c ∈ Fp

}
is the error group generated by the elements of En (if Fq has characteristic 2, replacing ω with

i and letting c ∈ Z4 produces the standard version of complex Pauli matrices). When q is

prime, the finite field Fq can be generated as an additive group by a single element, so Gn =

⟨ωI,Xj(1) , Zj(1) | j ∈ [n]⟩, where Xj(1) operates only on the j-th qubit. When q is not a prime,

but a prime power, any element in the field may be written as a0 + a1α + · · · + aℓ−1α
ℓ−1 where

ai ∈ Fp and α is a root of an irreducible polynomial in Fp of degree ℓ. Using this we have

Gn = ⟨ωI,Xj(α
i) , Zj(α

i) | 0 ≤ i < ℓ, j ∈ [n]⟩.

The weight wt(·) of an element E ∈ Gn is the number of tensor components of E that are

not scalar multiples of the identity matrix. Any two elements E and E ′ of Gn, where E =
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ωcX(a)Z(b) and E ′ = ωc
′
X(a′)Z(b′), satisfy the following commutation relation:

EE ′ = ωtr(b·a′−b′·a)E ′E.

Let S be some abelian subgroup of Gn that does not contain a scalar multiple of the identity

matrix. A stabilizer code C is the joint +1-eigenspace of S, that is

C =
⋂
E∈S

{
v ∈ Cqn | Ev = v

}
.

The group S is called the stabilizer group of the code and has order qn−k, generated by ℓ (n− k)

elements of Gn.

The centralizer of the stabilizer group are those elements in Gn that commute with every el-

ement of S , which is traditionally denoted by N(S). The elements of N(S) /SZ(Gn), where

SZ(Gn) is the group generated by S and the center Z(Gn) of the group Gn, are cosets whose

elements are Pauli operators on the logical qudits. We denote the logical operators on the i-th

logical qudit by Xi(a) and Zi(b), with a, b ∈ Fq. These operators are not unique, as any element

in the same coset will have the same effect on the quantum code C. The labeling of these operators

is somewhat arbitrary, their only requirement being that they satisfy the following commutation

and non-commutation relations that generalize the commutation and anticommutation relations of

the Pauli matrices:
[
Xi(a), Xj(b)

]
= 0,

[
Zi(a), Zj(b)

]
= 0,

[
Xi(a), Zj(b)

]
= 0 if i ̸= j, and

Xi (a) Zi(b) = ωtr(−b·a)Zi(b) Xi (a). For example, the operators can be trivially relabeled by

swapping the Xi and Zi operators.

1.3.4 Weight Enumerators and Linear Programming Bounds

For classical codes, the distance between codewords is given by the Hamming distance:

dH(x, y) = |{i | xi ̸= yi}| .
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The distance distribution A of an (n,M, d)q classical code C is a vector of length (n+ 1), where

Ai =
1

M
|{(x, y) | x, y ∈ C, dH(x, y) = i}| ,

meaning that Ai is the number of codewords at distance i from each other, normalized by the size

of the code. The polynomial

A(z) =
n∑
i=0

Aiz
i

is called the distance enumerator of the code. The minimum distance d of the code is the smallest

index i ̸= 0 such that Ai is non-zero.

The Hamming weight of a codeword is the distance from the all zero codeword, that is wtH(x) =

dH(x, 0
n). If C is an additive code, that is a code which is closed under addition of the codewords,

then A counts the number of codewords of each weight, so

Ai = |{x | x ∈ C,wt(x) = i}| ,

and we call A the weight distribution and A(z) the weight enumerator of the code. The weight

enumerator of an additive code C is connected to the weight enumerator B(z) of its dual code C⊥

by the MacWilliams identity [30, 69]:

B(z) =
(1 + (q − 1) z)n

M
A

(
1− z

1 + (q − 1) z

)
.

For a nonadditive code, the MacWilliams identity may still be formally defined in the same way,

although the resultant polynomial in general does not correspond to the distance enumerator of any

code [68, 28].

Moving to quantum codes, we can define the weight of elements of nice error bases in two

equivalent ways. Each element E ∈ En can be associated with a unique codeword (a | b) =

(a1, . . . , an | b1, . . . , bn) of length 2n. The distance between two codewords of this type is given
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by the symplectic distance:

ds((a | b) , (a′ | b′)) = |{k | (ak, bk) ̸= (a′k, b
′
k)}| .

The symplectic weight wts(E) is then the distance of E from the operator I⊗n. We use this

notation in Chapter 4. Alternatively, we can define the Hamming weight wtH(E) as we did in

Sections 1.3.1 and 1.3.3, as the number of non-Identity tensor compenents in an operator from a

nice error basis. We use this notation in Chapter 2.

The most well studied class of quantum codes are the stabilizer codes [39]. Recall that the

stabilizer code is the qk-dimensional joint +1-eigenspace of S its stabilizer group. Associated

with the stabilizer group is its centralizer N(S), the group of all elements in the error group Gn

that commute with every element in S. These are the operators that act as the logical operators on

the encoded states of the code.

Shor and Laflamme [94] defined a pair of weight enumerators A(z) and B(x) for quantum

codes in the following fashion:

Ai =
1

K2

∑
E∈En

wt(E)=i

tr(EP ) tr(E∗P )

and

Bi =
1

K

∑
E∈En

wt(E)=i

tr(EPE∗P ) ,

where P is the orthogonal projector onto the code C. In general, the weight enumerators of quan-

tum codes do not seem to admit as nice a combinatorial interpretation as they do for classical

codes. However, for stabilizer codes there is such an interpretation, as A(z) counts the number of

elements of each weight in the stabilizer group S and B(z) counts the number of elements in the

centralizer N(S) (both modulo the phases on the Pauli elements). Additionally, each element of

the stabilizer and centralizer can be associated with a unique (up to phase) codeword of length 2n.
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Let C be the code containing the set of codewords associated with S. Then its symplectic dual C⊥

is the code associated with N(S). Additionally, since S ≤ N(S) (as S is Abelian), we have that

C ⊆ C⊥, that is C is self-orthogonal.

The two Shor-Laflamme weight enumerators are connected via the quantum MacWilliams

identity:

B(z) =
(1 + (q2 − 1) z)

n

M
A

(
1− z

1 + (q2 − 1) z

)
,

which is the MacWilliams identity on an alphabet of size q2. There are several other equalities and

inequalities that are useful: 0 ≤ Ai ≤ Bi for all i follows from the Cauchy-Schwarz inequality,

A0 = 1,
n∑
i=0

Aj = qn

K
. Importantly, we use weight enumerators to completely determine the

minimum distance of a quantum code, using the equalities Ai = Bi for all i < d.

Since the parameters of any quantum code must satisfy each of these equalities and inequalities,

we can set up a system of linear inequalities to get an upper bound on the parameters of quantum

codes. Using linear programming, we can determine which sets of parameters do not satisfy these

inequalities and therefore are not allowable parameters for quantum codes [11, 52]. These linear

programming bounds often produce reasonably sharp bounds, and can often be improved with the

addition of the quantum shadow inequalities of Rains [87].

1.4 Organization of Dissertation

The organization of the remaining of this dissertation is as follows: Chapter 2 covers the basics

of quantum-classical hybrid codes and investigates their weight enumerators, before giving mul-

tiple families of genuine hybrid codes, the first known in the literature. Chapter 3.3 investigates

hybrid codes where the quantum and classical information is protected to different degrees with

two separate minimum distances for each, before giving a general construction for hybrid codes

from the well-studied subsystem codes, particularly the Bacon-Shor subsystem codes, and then an

application of protecting against faulty syndrome measurement errors with hybrid codes. Chapter

4 gives an interpretation for the Shor-Laflamme weight enumerators of the nonadditive codeword

stabilized codes. Finally, in Chapter 5 we provided some concluding remarks and some future
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research directions.
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2. CONSTRUCTIONS OF HYBRID CODES

The majority of this chapter came from the conference paper [73]1 and its expanded journal

paper [75]2. Section 2.3.2 is from [74]3 and Example 19 is adapted from [77].

2.1 Background

Hybrid codes simultaneously encode classical and quantum information into quantum digits

such that the information is protected against errors when transmitted through a quantum channel.

The simultaneous transmission of classical and quantum information was first investigated by De-

vetak and Shor [31], who characterized the set of admissible rate pairs. Notably, they showed that,

at least for certain small error rates, time-sharing a quantum channel is inferior to simultaneous

transmission. Constructions of hybrid codes were first studied by Kremsky, Hsieh, and Brun [61]

in the context of entanglement-assisted stabilizer codes and by Bény, Kempf, and Kribs [18, 19]

who outlined an operator-theoretic construction.

More recently, Grassl, Lu, and Zeng [41] gave linear programming bounds for a class of hybrid

codes and constructed a number of hybrid stabilizer codes with parameters better than those of

hybrid codes constructed from quantum stabilizer codes. In particular, these genuine hybrid codes

outperform “trivial” hybrid codes regardless of the error rate of the channel. Additional work

on hybrid codes has been done from both a coding theory approach [73] and from an operator-

theoretic approach [70], as well as over a fully correlated quantum channel where the space of

errors is spanned by I⊗n, X⊗n, Y ⊗n, and Z⊗n [66]. While they are still relatively unstudied,

multiple uses for hybrid codes have already become apparent, including protecting hybrid quantum

1Results reproduced with permission from “Hybrid Codes” by Andrew Nemec and Andreas Klappenecker, 2018.
In Proceedings of the 2018 IEEE International Symposium on Information Theory, Vail, Colorado, USA, Jun. 2018,
pp. 796-800. Copyright 2018 by IEEE.

2Results reproduced with permission from “Infinite Families of Quantum-Classical Hybrid Codes” by Andrew
Nemec and Andreas Klappenecker, 2021. IEEE Transactions on Information Theory, vol. 67(5), pp. 2847-2856.
Copyright 2021 by IEEE.

3Results reproduced with permission from “Nonbinary Error-Detecting Hybrid Codes” by Andrew Nemec and
Andreas Klappenecker, 2020. American Journal of Science and Engineering, vol. 1(2) pp. 1-4. Copyright 2020 by
AJSE.
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memory [64] and constructing hybrid secret sharing schemes [106].

In this chapter we give some general results regarding hybrid codes, most notably that at least

one of the quantum codes comprising a genuine hybrid code must be impure, as well as show that

a hybrid code can always detect more errors than a comparable quantum code. We also generalize

the weight enumerators given by Grassl et al. [41] for hybrid stabilizer codes to more general

nonadditive hybrid codes and use them to derive linear programming bounds. Finally, we give

multiple constructions for infinite families of hybrid codes with good parameters. The first of these

families are single error-detecting hybrid stabilizer codes with parameters [[n, n− 3:1, 2]]2 where

the length n is odd, where an [[n, k :m, d]]2 hybrid code encodes k logical qubits and m logical

bits into n physical qubits with minimum distance d, and derive a more general construction from

this family that produces several new small-parametered hybrid codes. The second is a collection

of families of single error-correcting hybrid codes constructed using stabilizer pasting, where we

paste together stabilizers from Gottesman’s [[2j, 2j − j − 2, 3]]2 stabilizers codes [37] and the small

distance 3 hybrid codes from [41] and Examples 19, 20, and 21 in this chapter. Each of these

families of hybrid codes were inspired by families of nonadditive quantum codes, especially those

constructed by Rains [86] and Yu, Chen, and Oh [105].

2.1.1 Hybrid Codes

A quantum code is a subspace of a Hilbert space that allows for encoded quantum information

to be recovered in the presence of errors on the physical qudits. Here our encoded message is a

unit vector in the Hilbert space

H =
n⊗
ℓ=1

Cq ∼= Cqn .

We say a quantum code has parameters ((n,K))q if and only if it can encode a superposition of K

orthogonal quantum states into n quantum digits with q levels.

Now suppose that we want to simultaneously transmit classical and quantum messages. Our

goal will be to encode them into the state of n quantum digits that have q-levels each, so that the

encoded message can be transmitted over a quantum channel. A hybrid code has the parameters
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((n,K :M))q if and only if it can simultaneously encode one of M different classical messages and

a superposition of K orthogonal quantum states into n quantum digits with q levels.

We can understand the hybrid code as a collection of M orthogonal K-dimensional quantum

codes Cm that are indexed by the classical messages m ∈ [M ] := {1, 2, . . . ,M}. If we want to

transmit a classical message m ∈ [M ] and a quantum state |φ⟩, then we need to encode |φ⟩ into

the quantum code Cm. We will refer to the each of the quantum codes Cm as inner codes and the

collection C = {Cm | m ∈ [M ]} as the outer code.

2.1.2 Error Detection

The encoded states will be subject to errors when transmitted through a quantum channel. Our

first task will be to characterize the errors that can be detected by the hybrid code. We will set up

a projective measurement that either upon receipt of a state |ψ⟩ in H either (a) returns ϵ to indicate

that an error happened or (b) claims that there is no error and returns a classical message m and a

projection of |ψ⟩ onto Cm.

Let Pm denote the orthogonal projector onto the quantum code Cm for all integers m in the

range 1 ≤ m ≤M . For distinct integers a and b in the range 1 ≤ a, b ≤M , the quantum codes Ca

and Cb are orthogonal, so PbPa = 0. It follows that the orthogonal projector onto C =
⊕M

m=1 Cm is

given by

P = P1 + P2 + · · ·+ PM .

We define the orthogonal projection onto C⊥ by Pϵ = 1−P . For the hybrid code {Cm | m ∈ [M ]},

we can define a projective measurement P that corresponds to the set

{P1, P2, . . . , PM , Pϵ}

of projection operators that partition unity.

We can now define the concept of a detectable error. An error E is called detectable by the
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hybrid code {Cm | m ∈ [M ]} if and only if for each index a, b in the range 1 ≤ a, b ≤M , we have

PbEPa =


λE,aPa if a = b,

0 if a ̸= b

(2.1)

for some scalar λE,a.

The motivation for calling an error E detectable is the following simple protocol. Suppose

that we encode a classical message m and a quantum state into a state |vm⟩ of Cm, and transmit it

through a quantum channel that imparts the error E. If the error is detectable, then measurement

of the state E |vm⟩ = EPm |vm⟩ with the projective measurement P either

(E1) returns ϵ, which signals that an error happened, or

(E2) returnsm and corrects the error by projecting the state back onto a scalar multiple λE,m |vm⟩ =

PmEPm |vm⟩ of the state |vm⟩.

The definition of a detectable error ensures that the measurement P will never return an incorrect

classical message d, since PdEPm |vm⟩ = 0 for all d ̸= m, so the probability of detecting an

incorrect message is zero. An error that is not detectable by the hybrid code can change the

encoded classical, the encoded quantum information, or both.

The condition in Equation (2.1) is equivalent to the hybrid Knill-Laflamme condition [41, The-

orem 4] for detectable errors: an error E is detectable by a hybrid code C with orthonormal basis

states
{∣∣∣c(a)i 〉 | i ∈ [K] , a ∈ [M ]

}
if and only if

〈
c
(b)
i

∣∣∣E ∣∣∣c(a)j 〉 = λE,aδijδab. (2.2)

Compared to the original Knill-Laflamme conditions for fully quantum codes [60] where the scalar

only depended on the detectable error, these hybrid conditions allow for scalars λE,a that may

depend on both the detectable error E and the classical message a, allowing more flexibility in

the design of codes. However, this flexibility comes at the price of no longer being able to send a

superposition of all of the basis states.
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The next proposition shows that hybrid codes can always detect more errors than a comparable

quantum code that encodes both classical and quantum information. This is remarkable given that

the advantages are much less apparent when one considers minimum distance, see [41].

Proposition 4. The subset D of detectable errors of an ((n,K :M))q hybrid code form a vector

space of dimension

dimD = q2n − (MK)2 +M.

In particular, an ((n,K :M))q hybrid code with M > 1 can detect more errors than an ((n,KM))q

quantum code.

Proof. It is clear that any linear combination of detectable errors is detectable. If we choose a basis

adapted to the orthogonal decomposition H = C ⊕ C⊥ with

C = C1 ⊕ C2 ⊕ · · · ⊕ CM ,

then an error E is represented by a matrix of the form

 A R

S T

 ,

where the blocksA and T correspond to the subspaces C and C⊥ respectively. SinceE is detectable,

the MK ×MK matrix A must satisfy

A = λE,11K ⊕ λE,21K ⊕ · · · ⊕ λE,M1K ,

where 1K denote a K × K identity matrix, but R, S, and T can be arbitrary. Therefore, the

dimension of the vector space of detectable errors is given by q2n − (MK)2 +M .

In the case of an ((n,KM))q quantum code, A must satisfy A = λE1KM , so the vector space

of detectable errors has dimension q2n− (KM)2+1, which is strictly less than q2n− (MK)2+M

when M > 1.
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We briefly recall the concept of a nice error basis (see [56, 57, 59] for further details), so that

we can define a suitable notion of weight for the errors. Let G be a group of order q2 with identity

element 1 and U(q) be the group of q × q unitary matrices. A nice error basis on Cq is a set

E = {ρ(g) ∈ U(q) | g ∈ G} of unitary matrices such that

(i) ρ(1) is the identity matrix,

(ii) Tr ρ(g) = 0 for all g ∈ G \ {1},

(iii) ρ(g)ρ(h) = ω(g, h) ρ(gh) for all g, h ∈ G,

where ω(g, h) is a nonzero complex number depending on (g, h) ∈ G × G; the function ω : G ×

G → C× is called the factor system of ρ. We call G the index group of the error basis E . The nice

error basis that we have introduced so far generalizes the Pauli basis to systems with q ≥ 2 levels.

We can obtain a nice error basis En on H ∼= Cqn by tensoring n elements of E , so

En = E⊗n = {E1 ⊗ E2 ⊗ · · · ⊗ En | Ek ∈ E , 1 ≤ k ≤ n}.

The weight of an element in En are the number of non-identity tensor components. We write

wt(E) = d to denote that the element E in En has weight d. A hybrid code with parameters

((n,K :M,d))q has minimum distance d if it can detect all errors of weight less than d.

Example 5. To construct our nonadditive hybrid code C we will combine two known degenerate

stabilizer codes. The first code Ca is the [[6, 1, 3]]2 code constructed by extending the [[5, 1, 3]]2

Hamming code, see [22], where the stabilizer is given by

⟨XXZIZI, ZXXZII, IZXXZI, ZIZXXI, IIIIIX⟩ .

The second code Cb is a [[6, 1, 3]]2 code not equivalent to Ca, see [91]. Its stabilizer is given by

⟨Y IZXXY,ZXIIXZ, IZXXXX, IIIZIZ, ZZZIZI⟩ .
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We can check that the resulting two codes are indeed orthogonal to each other. The resulting

code C is a ((6, 2:2, 1))2 nonadditive hybrid code, since there are several errors of weight one such

that PbEPa ̸= 0, for example E = IIIIXI . This shows that even though Ca and Cb are optimal

quantum codes on their own, together they make a hybrid code with an extremely poor minimum

distance. Later we will see how to construct hybrid codes with better minimum distances.

2.1.3 Genuine Hybrid Codes

In general, it is not difficult to construct hybrid codes using quantum stabilizer codes. As Grassl

et al. [41] pointed out, there are three simple constructions of hybrid codes that do not offer any

real advantage over quantum error-correcting codes:

Proposition 6 ([41]). Hybrid codes can be constructed using the following “trivial" constructions:

1. Given an ((n,KM, d))q quantum code of composite dimension KM , there exisits a hybrid

code with parameters ((n,K :M,d))q.

2. Given an [[n, k :m, d]]q hybrid code with k > 0, there exists a hybrid code with parameters

[[n, k − 1:m+ 1, d]]q.

3. Given an [[n1, k1, d]]q quantum code and an [n2,m2, d]q classical code, there exists a hybrid

code with parameters [[n1 + n2, k1 :m2, d]]q.

We say that a hybrid code is genuine if it cannot be constructed using one of the above con-

structions, following the work of Yu et al. on genuine nonadditive codes [105]. We also refer

to a hybrid stabilizer code that provides an advantage over quantum stabilizer codes as a genuine

hybrid stabilizer code. While all known genuine hybrid codes are in fact hybrid stabilizer codes,

the linear programming bounds in Section 2.2.2 do not prohibit genuine nonadditive hybrid codes,

and may give us some hints as to their parameters.

Multiple genuine hybrid stabilizer codes with small parameters were constructed by Grassl et

al. in [41], all of which have degenerate inner codes. Having degenerate inner codes can allow for
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a more efficient packing of the inner codes inside the outer code than is possible when using nonde-

generate codes, giving a hybrid code with parameters superior to those using the first construction

of Proposition 6. However, they do not exclude the possibility that there is a genuine hybrid code

where all of the inner codes are nondegenerate. Here, we show that for a genuine hybrid code, at

least one of its inner codes must be impure. Recall that a quantum code is pure if trace-orthogonal

errors map the code to orthogonal subspaces. A code that is not pure is called impure.

Proposition 7. Suppose C is a genuine ((n,K :M,d))q hybrid code. Then at least one inner code

Cm of the hybrid code C is impure.

Proof. Seeking a contradiction, suppose that every inner code of the hybrid code C is pure. For

m ∈ [M ], let Pm denote the orthogonal projector onto the m-th inner code of the hybrid code C.

For every nonscalar error operator E of weight less than d, we have

PaEPb = 0,

where a, b ∈ [M ]. Let P = P1 + P2 + · · · + PM denote the projector onto the KM -dimensional

vector space spanned by the inner codes. Then

PEP = 0,

so the image of P is an ((n,KM, d))q quantum code, contradicting that the hybrid code C is gen-

uine.

Since for stabilizer codes the definitions of impure and degenerate codes coincide, genuine

hybrid stabilizer codes necessarily require that one of the inner codes is degenerate. Therefore, one

of the difficulties in constructing families of genuine codes is finding nontrivial degenerate codes.

Unfortunately, there are few known families of impure or degenerate codes, see for example [4, 5],

and they typically have minimum distances much lower than optimal quantum codes, suggesting

they are not particularly suitable to use in constructing genuine hybrid codes.
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2.1.4 Hybrid Stabilizer Codes

All of the hybrid codes constructed by Grassl et al. [41] were given using the codeword stabi-

lizer (CWS)/union stabilizer framework, see [29, 42], which we will briefly describe here. Starting

with a quantum code C0, we choose a set of M coset representatives ti from the normalizer of C0

(we will always take t1 to be I), and then construct the code

C =
⋃
i∈[M ]

tiC0.

In the case of hybrid codes, tiC0 are our inner codes and C is our outer code. If both C0 and C are

stabilizer codes, we say that C is a hybrid stabilizer code.

The generators that define a hybrid code can be divided into those that generate the quantum

stabilizer SQ which stabilizes the outer code C and those that generate the classical stabilizer SC

which together with SQ stabilizes the inner code C0 [61]. The generators that define the [[7, 1:1, 3]]2

hybrid stabilizer code given in [41] are given in (2.3), where the generators of SQ are given above

the dotted line, the generators of SC are between the dotted and solid line, the normalizer of the

inner code C0 is generated by all elements above the double line, and the normalizer of the outer

code is generated by all of the elements.



X I I Z Y Y Z
Z X I X Z I X
Z I X X I Z X
Z I Z Z X I I
I Z I Z I X X
Z I I I I I X
I I I X Z Z X
I I I Z X X I
I I I I X Y Y


(2.3)

Following Kremsky et al. [61], we will often only include the stabilizer generators, as they are

sufficient to fully define the hybrid code, as shown in the following proposition:

Proposition 8. Let C be an [[n, k :m, d]]p hybrid stabilizer code over a finite field of prime order p
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with quantum stabilizer SQ and classical stabilizer SC =
〈
gC1 , . . . , g

C
m

〉
. Then the stabilizer code

Cc associated with classical message c ∈ Fmp is given by the stabilizer

〈
SQ, ω

c1gC1 , . . . , ω
cmgCm

〉
,

where ci is the i-th entry of c and ω is a primitive complex p-th root of unity.

Proof. There are pk+m basis states stabilized by SQ. Each of these basis states is an eigenvector

of gCi , which naturally partitions the code into p cosets based on eigenvalues. Repeating this with

all of the classical generators, we get pm cosets of basis states, each of size pk. Since v being an

eigenvector of gCi with eigenvalue ω−1 means that it is a +1 eigenvector of ωgCi , therefore each

coset is the +1 eigenspace of a stabilizer of the form
〈
SQ, ω

c1gC1 , . . . , ω
cmgCm

〉
, where the string

c ∈ Fmp can be used to index the stabilizer codes.

2.2 Bounds for General Hybrid Codes

Weight enumerators for quantum codes were introduced by Shor and Laflamme [94], and as

with their classical counterparts they can be used to give good bounds on code parameters using lin-

ear programming, see [11, 52]. Grassl et al. [41] gave weight enumerators and linear programming

bounds for hybrid stabilizer codes, but these weight enumerators will not work for nonadditive hy-

brid codes such as the one given in Example 5. In this section, we define weight enumerators for

general hybrid codes following the approach of Shor and Laflamme [94] and Rains [84] and use

them to derive linear programming bounds for general hybrid codes.

2.2.1 Hybrid Weight Enumerators

For an ((n,K :M,d))q hybrid code C defined by the projector P = P1+· · ·+PM and a nice error

base En as defined in Section 1.3.3, we define the two weight enumerators of the code following

Shor and Laflamme [94]:

A(z) =
n∑
d=0

Adz
d and B(z) =

n∑
d=0

Bdz
d,
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where the coefficients are given by

Ad =
1

K2M2

∑
E∈En

wt(E)=d

tr(EP ) tr(E∗P )

and

Bd =
1

KM

∑
E∈En

wt(E)=d

tr(EPE∗P ) .

We can also define weight enumerators using the inner code projectors Pa. Let

A(a,b)(z) =
n∑
d=0

A
(a,b)
d zd and B(a,b)(z) =

n∑
d=0

B
(a,b)
d zd,

where

A
(a,b)
d =

1

K2

∑
E∈En

wt(E)=d

tr(EPa) tr(E
∗Pb)

and

B
(a,b)
d =

1

K

∑
E∈En

wt(E)=d

tr(EPaE
∗Pb) .

Note that A(a,a)(z) and B(a,a)(z) are the weight enumerators of the quantum code associated with

projector Pa. We can then write the weight enumerators for the outer code in terms of the weight

enumerators for the inner codes:

Lemma 9. The weight enumerators of C can be written as

A(z) =
1

M2

M∑
a,b=1

A(a,b)(z) and B(z) =
1

M

M∑
a,b=1

B(a,b)(z) .
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Proof. By linearity of the projector P we have

Ad =
1

K2M2

∑
E∈En

wt(E)=d

tr(EP ) tr(E∗P )

=
1

K2M2

∑
E∈En

wt(E)=d

M∑
a,b=1

tr(EPa) tr(E
∗Pb)

=
1

M2

M∑
a,b=1

A
(a,b)
d .

We can then rewrite the weight enumerator as

A(z) =
n∑
d=0

Adz
d

=
1

M2

n∑
d=0

M∑
a,b=1

A
(a,b)
d zd

=
1

M2

M∑
a,b=1

A(a,b)(z) .

The result for B(z) follows from the same argument.

While the weight enumerator B(z) is the same as the one introduced by the authors in [73],

the weight enumerator A(z) is different. There the A(a,b)(z) weight enumerators with a ̸= b were

ignored, causing A(z) and B(z) to not satisfy the MacWilliams identity. The approach presented

in this paper is more natural, as it treats both the inner and outer codes as quantum codes. The

following result may be found in [84, 94], which we include for completeness:

Lemma 10 ([84, 94]). Let C be a ((n,K :M))q hybrid code with weight distributions Ad and Bd.

Then for all integers d in the range 0 ≤ d ≤ n and all a ∈ [M ] we have

1. 0 ≤ Ad ≤ Bd

2. 0 ≤ A
(a,a)
d ≤ B

(a,a)
d .
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Proof. For every orthogonal projector Π : Cqn → Cqn of rank K, we have

0 ≤ 1

K2

∑
E∈En

wt(E)=d

tr(EΠ) tr(E∗Π)

by the non-negativity of the trace inner product. Furthermore, we can write this inequality in the

form

0 ≤ 1

K2

∑
E∈En

wt(E)=d

tr(EΠ) tr(E∗Π)

=
1

K2

∑
E∈En

wt(E)=d

|tr(EΠ)|2

=
1

K2

∑
E∈En

wt(E)=d

|tr((ΠEΠ)Π)|2 .

Using the Cauchy-Schwarz inequality, we obtain

0 ≤ 1

K2

∑
E∈En

wt(E)=d

tr((ΠEΠ) (ΠEΠ)∗) tr(Π∗Π)

=
1

K

∑
E∈En

wt(E)=d

tr(EΠE∗Π) .

Substituting Π = P implies (1) and substituting Π = Pa implies (2).

The main utility of weight enumerators for quantum codes is that they allow for a complete

characterization of the error-correction capability of the code in terms of the minimum distance

of the code. In the following proposition, we prove a similar result for the weight enumerators of

hybrid codes.

Proposition 11. Let C be a ((n,K :M))q hybrid code with weight distributions Ad and Bd. Then C

can detect all errors in En of weight d if and only if A(a,a)
d = B

(a,a)
d for all a ∈ [M ] and B(a,b)

d = 0

for all a, b ∈ [M ] , a ̸= b.
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Proof. Recall that an error is detectable by a code if and only if it satisfies the hybrid Knill-

Laflamme conditions in Equation (2.2), and that a projector onto one of the inner codes Ca may

be written as Pa =
∑K

i=1

∣∣∣c(a)i 〉〈c(a)i ∣∣∣, where
{∣∣∣c(a)i 〉 | i ∈ [K]

}
is an orthonormal basis for Ca.

Suppose that all errors of weight d are detectable by C. Then

A
(a,a)
d =

1

K2

∑
E∈En

wt(E)=d

tr(EPa) tr(E
∗Pa)

=
1

K2

∑
E∈En

wt(E)=d

∣∣∣∣∣
K∑
i=1

〈
c
(a)
i

∣∣∣E ∣∣∣c(a)i 〉
∣∣∣∣∣
2

=
∑
E∈En

wt(E)=d

∣∣∣α(a)
E

∣∣∣2 .
Similarly, we have

B
(a,a)
d =

1

K

∑
E∈En

wt(E)=d

tr(EPaE
∗Pa)

=
1

K

∑
E∈En

wt(E)=d

K∑
i,j=1

∣∣∣〈c(a)i ∣∣∣E ∣∣∣c(a)j 〉∣∣∣2

=
1

K

∑
E∈En

wt(E)=d

K∑
i=1

∣∣∣〈c(a)i ∣∣∣E ∣∣∣c(a)i 〉∣∣∣2

=
∑
E∈En

wt(E)=d

∣∣∣α(a)
E

∣∣∣2 .

Therefore, we have that A(a,a)
d = B

(a,a)
d . Additionally, if a ̸= b, then by Equation (2.2) we have
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〈
c
(a)
i

∣∣∣E ∣∣∣c(b)j 〉 = 0. Therefore,

B
(a,b)
d =

1

K

∑
E∈En

wt(E)=d

K∑
i,j=1

∣∣∣〈c(a)i ∣∣∣E ∣∣∣c(b)j 〉∣∣∣2

= 0.

Conversely, suppose that (a) A(a,a)
d = B

(a,a)
d for all a ∈ [M ] and (b) B(a,b)

d = 0 for all a, b ∈

[M ] , a ̸= b. Condition (a) implies that equality holds for eachE in the Cauchy-Schwarz inequality.

Therefore, we have that PaEPa and Pa must be linearly dependent, so there must be a constant

α
(a)
E ∈ C such that PaEPa = α

(a)
E , or equivalently,

〈
c
(a)
i

∣∣∣E ∣∣∣c(a)j 〉 = α
(a)
E δi,j , for all errors of

weight d. Condition (b) implies that
〈
c
(a)
i

∣∣∣E ∣∣∣c(b)j 〉 = 0 if a ̸= b, for all errors of weight d.

Putting these together, we get the hybrid Knill-Laflamme conditions, so all errors of weight d are

detectable.

2.2.2 Linear Programming Bounds

One of the more useful properties of weight enumerators is that they satisfy the Macwilliams

identity [94]:

B(a,b)(z) =
K

qn
(
1 +

(
q2 − 1

)
z
)n
A(a,b)

(
1− z

1 + (q2 − 1) z

)
. (2.4)

The MacWilliams identities, along with the results from Lemma 10 and Proposition 11 and the

shadow inequalities for qubit codes [87] allow us to define linear programming bounds on the

parameters of general hybrid codes (see [11, 22, 84] for linear programming bounds on quantum

codes). Let

Kj(r) =

j∑
k=0

(−1)k
(
q2 − 1

)j−k (r
k

)(
n− r

j − k

)
(2.5)

denote the q2-ary Krawtchouk polynomials.

Proposition 12. The parameters of an ((n,K :M,d))q hybrid code must satisfy the following con-

ditions:
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1. Aj = 1
M2

M∑
a,b=1

A
(a,b)
j

2. Bj =
1
M

M∑
a,b=1

B
(a,b)
j

3. A(a,b)
0 = 1

4. B(a,b)
0 =


1 if a = b

0 if a ̸= b

5. A(a,a)
j = B

(a,a)
j , for all 0 ≤ j < d

6. B(a,b)
j = 0, for all 0 ≤ j < d, a ̸= b

7. 0 ≤ A
(a,a)
j ≤ B

(a,a)
j , for all 0 ≤ j ≤ n

8. 0 ≤ Aj ≤ Bj , for all 0 ≤ j ≤ n

9. 0 ≤ B
(a,b)
j , for all 0 ≤ j ≤ n

10. B(a,b)
j = K

qn

n∑
r=0

Kj(r)A
(a,b)
r , for all 0 ≤ j ≤ n (MacWilliams Identity)

11. 0 ≤
n∑
r=0

(−1)rKj(r)A
(a,b)
r , for all 0 ≤ j ≤ n, for qubit codes (Shadow Inequalities)

Proof. Conditions 1) and 2) follow from the definition of Aj and Bj . The constraints 3) and 4)

respectively result from substituting E = I into the definition of A(a,b)
0 and B(a,b)

0 .

The Knill-Laflamme error-detecting conditions of the hybrid codes shown in Proposition 11

imply the constraints 5) and 6).

The claims 7) and 8) are a consequence of Lemma 10. Essentially, these two conditions fol-

low from the Cauchy-Schwarz inequalities when applied to the quantum and hybrid projectors,

respectively.

The statement 9) is simply a consequence of the non-negativity of allB(a,b)
j . Conditions 10) and

11) follow from the MacWilliams identities [94] and shadow inequalities [85] respectively.
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Note that conditions 10) and 11) imply the MacWilliams identity and shadow inequality re-

spectively for the outer code.

If we consider only hybrid stabilizer codes, we have that all of the weight distributions for the

inner quantum codes are identical. This along with our error-detecting condition from Proposition

11 give us that a stabilizer hybrid stabilizer code can detect all errors of weight d if and only if

A
(a,a)
d = B

(a,a)
d = Bd. Additionally, straightforward calculations give us the missing piece of the

nested code condition, Ad ≤ A
(a,a)
d for all d. Thus we recover the linear programming bounds of

Grassl et al. when we restrict our bounds to hybrid stabilizer codes, with the exception that we have

the additional constraint of the shadow inequality for the outer code. This constraint strengthens

the bounds found in Table I of [41] and rules out the possibility, for example, of [[10, 4:1, 3]]2,

[[12, 5:1, 3]]2, and [[10, 2:1, 4]]2 hybrid stabilizer codes.

Notably missing in our linear programming bounds is part of the nested code condition found

in the linear programming bounds for hybrid stabilizer codes, namely that Ad ≤ A
(a,a)
d for all d.

In fact we can construct a nonadditive hybrid code that violates this condition, as shown in the

example below.

Example 13. We return to our ((6, 2:2, 1))2 nonadditive hybrid code from Example 5. The weight

distributions for Ca, Cb, and C are

A(a,a) = [1, 1, 0, 0, 15, 15, 0]

A(b,b) = [1, 0, 1, 0, 11, 16, 3]

A =

[
1,

1

4
,
1

4
, 0, 6,

31

4
,
3

4

]
,

where the weight distributions are the coefficients of the weight enumerators. These weight distri-

butions clearly violate the inequality Ad ≤ A
(a,a)
d .

Interestingly, we were unable to find any separation between our bounds with and without the

nested code condition, suggesting the possibility that any hybrid code that meets these bounds

must also satisfy this additional constraint. Since this condition is satisfied by any hybrid code

34



constructed using the CWS framework, it seems that this comparable to the situation with quantum

codes, where all known nonadditive codes meeting the linear programming bounds are CWS codes.

Our bounds suggest the possibility of several nonadditive hybrid codes, such as a ((10, 8:6, 3))2

code.

2.3 Family of Single Error Detecting Hybrid Codes

2.3.1 Binary Error Detecting Hybrid Codes

In [88], Rains et al. constructed a ((5, 6, 2))2 nonadditive quantum code which was later

extended to several families of ((n, qn−3 < K < qn−2, 2))q nonadditive codes with n odd, see

[1, 6, 35, 86, 89, 97]. Rains [86, Theorem 2] also showed that for any ((n,K, 2))2 quantum code

with odd n,

K ≤ 2n−2

(
1− 1

n− 1

)
. (2.6)

In particular, this disallows the existence of odd-lengthed ((n, 2n−2, 2))2 quantum codes.

Here we give a construction for a family of single error-detecting hybrid stabilizer codes such

that n is odd and KM = 2n−2, so these codes have the remarkable feature in that they allow one

to squeeze in an additional classical bit. The generators of these codes are similar to the generators

of the family of even-length stabilizer codes with parameters [[n, n− 2, 2]]q, see [39, 86].

Theorem 14. For n odd, there exists an [[n, n− 3:1, 2]]2 genuine hybrid code with generators

 X⊗n−1 X

Z⊗n−1 I

I⊗n−1 X


Proof. Recall that a number is said to have even parity if it has an even number of 1’s in its binary

expansion. Let J ⊆ Fn−1
2 be the set of even integers with even parity. We define two codes C0 and

C1 as follows:

C0 =
{
1

2
(|x⟩+ |x⟩) (|0⟩+ |1⟩)

∣∣∣∣x ∈ J

}
,
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C1 =
{
1

2
(|x⟩ − |x⟩) (|0⟩ − |1⟩)

∣∣∣∣x ∈ J

}
.

It is clear that the stabilizer of C0 is ⟨X⊗n, Z⊗n−1I, I⊗n−1X⟩ and that the stabilizer of C1 is

⟨X⊗n, Z⊗n−1I,−I⊗n−1X⟩. To show that our hybrid code has minimum distance 2, we note first

that both C0 and C1 have minimum distance 2 when viewed as separate quantum codes. Thus we

only need to look at how single-qubit Pauli errors affect the classical information. Consider two ba-

sis states
∣∣∣c(0)i 〉 and

∣∣∣c(1)j 〉, one from each quantum code. If i ̸= j, it is clear that
〈
c
(0)
i

∣∣∣E ∣∣∣c(1)j 〉 = 0

for any single-qubit Pauli error, since they will be linear combinations of disjoint sets of orthonor-

mal basis vectors. Therefore, we can consider only the case when i = j.

Suppose that a single-qubit error occurs on the first n − 1 qubits, that is E = I⊗ℓ2 ⊗ E ′ ⊗

I⊗n−ℓ−2
2 ⊗ I2, for ℓ ∈ [n− 1]. Then since each of our basis states is separable between the first

n− 1 qubits and the last qubit, we can write

〈
c
(0)
i

∣∣∣E ∣∣∣c(1)i 〉 =
1

4
((⟨x|+ ⟨x|) (⟨0|+ ⟨1|))E ((|x⟩ − |x⟩) (|0⟩ − |1⟩))

=
1

4
((⟨x|+ ⟨x|)E ′ (|x⟩ − |x⟩)) · ((⟨0|+ ⟨1|) (|0⟩ − |1⟩))

=
1

4
((⟨x|+ ⟨x|)E ′ (|x⟩ − |x⟩)) · 0

= 0.

Similarly, if a single-qubit error occurs on the last qubit, that is E = I⊗n−1
2 ⊗ E ′, we have

〈
c
(0)
i

∣∣∣E ∣∣∣c(1)i 〉 =
1

4
((⟨x|+ ⟨x|) (⟨0|+ ⟨1|))E ((|x⟩ − |x⟩) (|0⟩ − |1⟩))

=
1

4
((⟨x|+ ⟨x|) (|x⟩ − |x⟩)) · ((⟨0|+ ⟨1|)E ′ (|0⟩ − |1⟩))

= 0 · ((⟨0|+ ⟨1|)E ′ (|0⟩ − |1⟩))

= 0.

Thus the hybrid code given by C0 ⊕ C1 has minimum distance 2.
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By the bound in Equation 2.7, for a general ((n,K, 2))2 quantum code with n odd, we have

K ≤ 2n−2

(
1− 1

n− 1

)
.

In particular, this precludes the possibility of an ((n, 2n−2, 2))2 code for n odd. Similarly, suppose

that we could construct a code in our family using an [[nq, k, d]]2 quantum code and an [nc,m, d]q

classical code. Then we would have nq+nc = n, k = n−3, andm = 1, and in particular, we have

an [[nq, nq + nc − 3, 2]]2 quantum code. By the quantum Singleton bound, we must have nc ≤ 1,

forcing us to have a [1, 1, 2]2 classical code, which of course does not exist. It follows that all of

the codes in our family must be genuine hybrid codes.

An interesting question is whether or not this family of hybrid codes are optimal, by which

we mean do there exist odd-length ((n, 2n−3 :M, 2))2 codes with M > 2, or ((n, 2n−3 + 1:2, 2))2

codes? For small lengths (n ≤ 19) this family achieves the linear programming bounds for general

hybrid codes given in Section 2.2.2, and we suspect that the family is optimal for all odd n.

2.3.2 Nonbinary Error-Detecting Hybird Codes Over Zq

In the previous section we constructed a family of binary [[n, n− 3:1, 2]]2 error-detecting hy-

brid stabilizer codes where n is odd. In this section we provide a generalization of this family to

hybrid stabilizer codes over Zq, inspired by the non-additive nonbinary quantum codes constructed

from qudit graph states by Hu et al. [50] and Looi et al. [67], as well as the family of single

error-detecting codes given by Smolin, Smith, and Wehner [97].

A quantum code is a subspace of a Hilbert space that allows for the recovery of encoded quan-

tum information even in the presence of arbitrary errors on a certain number of physical qudits. A

quantum code has parameters ((n,K, d))q if and only if it can encode a superposition ofK orthogo-

nal quantum states into the Hilbert space (Cq)⊗n ∼= Cqn , while protecting the quantum information

against all errors ocurring on less than d physical qubits.

Most generalizations of quantum codes from the binary alphabets to the case where q > 2 are

constructed over the finite fields Fq, where q is a prime power, see [7, 52, 85]. In this paper, we
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instead follow [50, 67, 97] and construct codes over Zq for reasons that will become apparent later

with Proposition 16. Let a, b ∈ Zq. We define the unitary operators X(a) and Z(b) on Cq as

X(a) |x⟩ = |x+ a⟩ and Z(b) |x⟩ = ωbx |x⟩ ,

where ω = e2πi/q. The operators X(a) and Z(b)may be viewed as a generalization of the Pauli-X

bit-flip error and the Pauli-Z phase error respectively. The set E = {X(a)Z(b) | a, b ∈ Zq} forms

a nice error basis on Cq, see [56, 57, 59], meaning any error on a single qudit may be written

as a linear combination of elements from E . Additionally, any error on Cqn may be written as a

linear combination of errors from En = E⊗n = {E1 ⊗ E2 ⊗ · · · ⊗ En | Ek ∈ E , 1 ≤ k ≤ n}. By

correcting errors from En we are able to deal with arbitrary errors on the n qudits that are linear

combinations of those errors. The weight wt(E) of an error E ∈ En is the number of non-identity

tensor components it contains.

The first good non-additive quantum code (that is a quantum code that is not a stabilizer code)

was the ((5, 6, 2))2 code given by Rains et al. [88]. This code outperforms the optimal [[5, 2, 2]]2

stabilizer code, and was further generalized by Rains [86] into a family of odd-length non-additive

codes that outperform optimal stabilizer codes. However, for an odd-length ((n,K, 2)) quantum

code we have the following bound:

K ≤ 2n−2

(
1− 1

n− 1

)
, (2.7)

and many families of codes that approach this bound have been constructed. In [75], the authors

gave a construction for a familiy of hybrid stabilizer codes with parameters [[n, n− 3:1, 2]]2 that

beat this bound. Stabilizer codes over rings are defined as defined as the +1-eigenspace of an

abelian group generated by elements from En.

Nonbinary quantum codes with similar parameters were hinted at by Rains in [86], and first

given by Smolin et al. [97] as a generalization of their family of non-additive binary codes. Soon

after, further families were constructed by Hu et al. [50] and Looi et al. [67] using qudit graph
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states. All of these families are codes over integer rings rather than finite fields, and our construc-

tion of nonbinary hybrid stabilizer codes will follow in their footsteps. The reason we choose to

construct codes over Zq rather than Fq is due to the following result of Grassl and Rötteler:

Theorem 15 ([44, Theorem 12]). Let q > 1 be an arbitrary integer, not necessarily a prime power.

Quantum MDS codes C = [[n, n− 2, 2]]q exist for all even length n, and for all length n ≥ 2 when

the dimension q of the quantum systems is an odd integer or is divisible by 4.

While the construction below will certainly produce a hybrid stabilizer code when q ̸≡ 2

mod 4, it will not be a genuine hybrid code, as the previous theorem implies that there will be an

[[n, n− 2, 2]]q stabilizer code that can be transformed into a hybrid code using the first construction

in Proposition 6. When q = 2, Equation 2.7 tells us that there can be no [[n, n− 2, 2]]2 quantum

code, implying that the family given in Section 2.3.1 is indeed genuine. To the best of our knowl-

edge there are no known [[n, n− 2, 2]]q codes when q = 4r + 2, which is why the codes using

the construction below may in fact be genuine. However, since F4r+2 does not exist except when

r = 0, we instead construct our codes over Zq.

Proposition 16. Let n be odd. Then there exists an [[n, n− 3:1, 2]]Zq
hybrid code.

Proof. Let a, b ∈ Znq , m ∈ Zq, and ω a primitive q-th root of unity. Define the following states:

|ϕa,b⟩ =
1

qn

∑
c∈Z2n

q

ω
∑n

i=1(c2i−1−ai)(c2i−bi) |c⟩

|ψm⟩ =
1
√
q

∑
c∈Zq

ωmc |c⟩

Define the inner code Cm as follows:

Cm =

〈
|ϕa,b⟩ ⊗ |ψm⟩

∣∣∣∣∣a, b ∈ Znq ,m ∈ Zq
n∑
i=1

ai = 0,
n∑
i=1

bi = m

〉
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The state |ϕa,b⟩ is the tensor product of two-qubit states of the form

|ϕai,bi⟩ =
1

q

∑
c∈Z2

q

ω(c1−ai)(c2−bi) |c⟩ .

For two of these states |ϕai,bi⟩ ,
∣∣ϕa′i,b′i〉 we have

〈
ϕai,bi

∣∣ϕa′i,b′i〉 = 1

q2

∑
c∈Z2

q

ω(c1−a
′
i)(c2−b′i)−(c1−ai)(c2−bi)

=
ωa

′
ib

′
i−aibi

q2

∑
c∈Z2

q

ωc1(b
′
i−bi)+c2(a′i−ai)

=
ωa

′
ib

′
i−aibi

q2

∑
c1∈Zq

ωc1(b
′
i−bi)

∑
c2∈Zq

ωc2(a
′
i−ai)



=


1 if ai = a′i and bi = b′i

0 otherwise
.

Therefore for the full states |ϕa,b⟩ , |ϕa′,b′⟩ we have the same:

⟨ϕa,b|ϕa′,b′⟩ =


1 if a = a′ and b = b′

0 otherwise
.

Similarly, for |ψm⟩ , |ψm′⟩ we have

⟨ψm|ψm′⟩ =


1 if m = m′

0 otherwise
.

Thus all of the codewords are orthogonal to one another.

Consider two codewords |ϕa,b⟩⊗|ψm⟩ , |ϕa′,b′⟩⊗|ψm′⟩. Suppose that a Pauli-X(u) error occurs

on the first n−1 qudits. Without loss of generality, we can assume that the error occurred on either
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the first or second qudit. If m ̸= m′, ai ̸= a′i, or bi ̸= b′i for 1 < i ≤ n, then

(⟨ϕa,b| ⊗ ⟨ψm|)X(u) (|ϕa′,b′⟩ ⊗ |ψm′⟩) = 0

by the orthogonality relations above. Therefore we can restrict our attention to the case where

m = m′, ai = a′i, and bi = b′i for 1 < i ≤ n). We note that these restrictions along with the

requirement that the ai and a′i sum to 0 and bi and b′i sum to m and m′ respectively completely

determine the values of a1 and b1 and in particular we must have a1 = a′1 and b1 = b′1. If the error

occurred on the first qudit, we have

⟨ϕa1,b1|X(u) |ϕa1,b1⟩ =
1

q2

∑
c∈Z2

q

ω−(c1−a1)(c2−b1) ⟨c1c2|

∑
c∈Z2

q

ω(c1−a1)(c2−b1) |(c1 + u) c2⟩


=

1

q2

∑
c∈Z2

q

ω−(c1−a1)(c2−b1) ⟨c1c2|

∑
c∈Z2

q

ω(c1−a1−u)(c2−b1) |c1c2⟩


=

1

q2

∑
c2∈Z2

q

ωu(b1−c2)

=


1 if u = 0

0 otherwise
.

A similar argument holds if the error occurs on the second qudit, thus the code can detect any

single Pauli-X(u) error that occurs on the first n− 1 qudits.

Now suppose that a Pauli-Z(v) error occurs on the first n− 1 qudits. As above, we restrict our

attention to the case where a = a′, b = b′, m = m′, and the error occurs on one of the first two
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qudits. If the error occurs on the first qudit we have

⟨ϕa1,b1|Z(v) |ϕa1,b1⟩ =
1

q2

∑
c∈Z2

q

ω(c1−a1)(c2−b1)−(c1−a1)(c2−b1)+vc1

=
1

q

∑
c1∈Zq

ωvc1

=


1 if v = 0

0 otherwise
.

The same argument holds if the error occurs on the second qudit, thus the code can detect any

single Pauli-Z(v) error that occurs on the first n− 1 qudits.

Now suppose that a Pauli error E occurs on the last qudit. If a ̸= a′, b ̸= b′, or m ̸= m′, then

the orthogonality of the first n− 1 qudits gives us

(⟨ϕa,b| ⊗ ⟨ψm|)E (|ϕa′,b′⟩ ⊗ |ψm′⟩) = 0,

so again we only need to examine the case where the two codewords are the same.

If we have a Pauli-X(u) error on the last qudit we have

⟨ψm|X(u) |ψm⟩ =
1

q

∑
c∈Zq

ω−mc ⟨c|

∑
c∈Zq

ωmc |c+ u⟩


=

1

q

∑
c∈Zq

ω−mu

= ω−mu,

meaning that the error is degenerate. Note that since the value depends on the classical information

m, each inner code can detect the error but the outer code (as a quantum code) cannot.
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If a Pauli-Z(v) error occurs on the last qudit we have

⟨ψm|Z(v) |ψm⟩ =
1

q

∑
c∈Zq

ω−mc ⟨c|

∑
c∈Zq

ωmc+vc |c⟩


=

1

q

∑
c∈Zq

ωvc

=


1 if v = 0

0 otherwise
.

We also mention in passing that this construction can be generalized further to codes over

Frobenius rings by replacing the primitive root of unity by an irreducible additive character of the

additive group of the ring [72, 55].

2.4 A More General Construction

In this section we give a generalization of the construction of distance-2 hybrid stabilizer codes

in Theorem 14. The main idea behind this construction is to start with a stabilizer code of length

n, then extend the stabilizer code into an impure code of length n + m, chosing the stabilizer

generators of the outer hybrid code in a nonstandard way.

Theorem 17. Let C be an [[n, k, d]]2 stabilizer code with normalizer N(S). Then there is an

[[n+m, k :m, d]]2 hybrid code if there are m elements {ti}i∈[m] from separate, independent cosets

of Gn/N(S) such that ⟨tiN(S)⟩i∈[m] forms a group and for each coset tN(S) we have

minwt {tN(S)− S} ≥ d− wt(at) ,

where t = ta11 t
a2
2 · · · tamm and at is the binary vector a1a2 . . . am.

Proof. Each coset corresponding to one of the elements ti has an associated error syndrome based

on whether or not its elements commute or anticommute with each stabilizer generator. We en-
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code these commutation/anticommutation relations in an (n− k) ×m binary matrix H such that

hji is 0 if the elements of tiN(S) commute with the j-th stabilizer generator of S and 1 if they

anticommute.

We now extend the stabilizer generators of S by m qubits by appending to the end of the j-th

stabilizer the Pauli operator ⊗
i∈[m]

Xhji ,

as well as adding m new stabilizer generators that are each an X-operator on one of the appended

qubits (so there is one weight-1 stabilizer generator for each appended qubit). We call the group

generated by the n − k appended stabilizer generators S ′ and the group generated by all n −

k +m stabilizer generators S ′
0, which will stabilize the outer and inner quantum codes C ′ and C ′

0

respectively. We note that the code C ′
0 is the same as the impure extension that results from the

application of [22, Theorem 6] to our original code C (applied m times to obtain a code of length

n+m), although here we have chosen a nonstandard choice of stabilizer generators.

Using the assumptions in the statement of the theorem, we now prove that C ′ is an [[n+m, k :m, d]]2

hybrid stabilizer code. From the previous paragraph we know that C ′ has length n + m and can

encode k logical qubits and m classical bits. Therefore, we only must show that the minimum

distance of this hybrid code is d. To do this, we look at the set N(S ′) − S ′
0 and show that it has

no elements of weight less than d. Note that N(S ′) are all the Pauli operators that commute with

every element of S ′. Therefore, the elements of N(S) appended with m identity operators on the

end are elements of theN(S ′). AnyX-operators on the lastm qubits will have no effect as they are

in the inner stabilizer S ′
0, so we need only look at operators made from Z-errors and I-operators.

Suppose that F is a Z-type error represented by a binary vector aF = a1a2 . . . am where ai is either

a 0 or a 1 depending on whether the i-th tensor component of the error is I or Z. It is clear that

this error will commute and anticommute with the same stabilizer generators as any element from

the corresponding coset tN(S) (extended by m identity operators) with at = aE . Therefore, any

element of the form E ⊗ F with E ∈ tN(S) will commute with all the stabilizer generators of S ′,

and since we know from our assumption that the weight of E ⊗F is at least d, we can see that any
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element of N(S ′) excluding those in S ′
0 must have weight at least d, finishing the proof.

In the case of distance-3 stabilizer codes

Corollary 18. If a non-perfect [[n, k, 3]]2 stabilizer code exists, then there is an [[n+ 1, k :1, 3]]2

hybrid stabilizer code.

Proof. Since our quantum code is non-perfect it does not meet the quantum Hamming bound

[34, 60] for distance-3 codes 3n + 1 ≤ 2n−k, so there are more possible syndromes than there are

single-qubit errors. Therefore, there is at least one coset of Gn/N(S) with a minimum weight of

2. The result then follows directly from the previous theorem.

Using Theorem 17 and Corollary 18, we construct several new hybrid stabilizer codes:

Example 19. We now construct a [[9, 3:1, 3]]2 hybrid stabilizer code. Starting with Gottesman’s

pure 8-qubit code [37], we extend it [52, Lemma 69] to an impure [[9, 3, 3]]2 code. This code can

alternatively be viewed as a subsystem code with gauge operators IIIIIIIIX and IIIIIIIIZ.

Due to the structure of the original code, each single-qubit error will have a syndrome that begins

with 01, 10, or 11 for anX-, Z-, or Y -error respectively. Therefore we can choose any coset whose

syndrome starts with 00 for applying Theorem 17.



X X X X X X X X I
Z Z Z Z Z Z Z Z I
X I X I Z Y Z Y I
X I Y Z X I Y Z I
X Z I Y I Y X Z X
I I I I I I I I X


. (2.8)

This code has better parameters than both the [[9, 1:2, 3]]2 code of Kremsky et al. [61] and the

[[9, 2:2, 3]]2 code of Grassl et al. [41], and since it meets the linear programming bounds for hybrid

stabilizer bounds it is a genuine hybrid stabilizer code.

Similarly, we can extend this code a second time and obtain a new [[10, 3:2, 3]]2 hybrid stabilizer

code that is not equivalent to the one given in [41]:
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

X X X X X X X X I I
Z Z Z Z Z Z Z Z I I
X I X I Z Y Z Y I I
X I Y Z X I Y Z I X
X Z I Y I Y X Z X I
I I I I I I I I X I
I I I I I I I I I X


. (2.9)

This code also meets the linear programming bounds for hybrid stabilizer codes, so it is also

a genuine hybrid code. On the other hand, extending the code a third time results in a new

[[11, 3:3, 3]]2 hybrid stabilizer code, but this code transmits less quantum information than the

[[11, 4:2, 3]]2 code in [41], so in some sense it has worse parameters. However, we can still use

Gottesman’s 8-qubit code to construct a new hybrid stabilizer code with these better parameters:



X X X X X X X X I I I
Z Z Z Z Z Z Z Z I I I
X I X I Z Y Z Y X I Z
X I Y Z X I Y Z I X Z
X Z I Y I Y X Z Z Z X
I I I I I I I I X I Z
I I I I I I I I I X Z


. (2.10)

While this code was not constructed using Theorem 17, it shares some similarities to the pre-

vious two codes, as it is a stabilizer code with an appended “gadget” that turns it into a hybrid

stabilizer code. In this case it is doubly interesting, as it “beats” the quantum Hamming bound in a

certain sense: we might expect the code to satisfy the single-error varient of the quantum Hamming

bound 3n + 1 ≤ 2n−k−m, where each error has a distinct syndrome, but due to the impure nature

of the code some errors share syndromes and the code violates the bound (for the similar example

of subsystem codes “beating” the quantum Hamming bound, see [58]). It would be interesting

to see if this gadgets could be unified with the construction in Theorem 17 for a more general

construction.

Example 20. We construct a new [[7, 1:1, 3]]2 hybrid stabilizer code that is not equivalent to the

one given in [41] using Theorem 17. Starting with the non-perfect 6-qubit code given by Shaw et
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al. [91], we know automatically from Corollary 18 that a hybrid stabilizer code with the desired

parameters exists.



Y I Z X X Y I
Z X I I X Z I
I Z X X X X I
I I I Z I Z X
Z Z Z I Z I X
I I I I I I X


. (2.11)

As with the similarly parametered hybid stabilizer code in [41], this code does not meet the

linear programming bounds for hybrid stabilizer codes, but has parameters superior to all other

known hybrid codes.

Example 21. In this example we use Theorem 17 to construct three new genuine hybrid stabilizer

codes with parameters [[18, 11:1, 3]]2, [[19, 11:2, 3]]2, and [[20, 11:3, 3]]2 defined by the stabilizer

generators given in Eq. 2.12, 2.13, and 2.14 respectively. The [[17, 11, 3]]2 quantum stabilizer code

all three codes are built off of the corresponding entry in Grassl’s online code table [40].



Y Z Z I Z X I Y X I Y Z Y X I Z Z I
Z X Z I Z Y Z X Y I X I X Y I Y X I
I I X I Z Y Z Y X X Z Y I I X X Y X
I I Z X I Z I Y Y Y X X Z Y Y X X X
Z Z Z Z X X I Z Y Z I Y I Y I X Y X
I Z I Z Z I Y X Y X Z Y Z X Z Z X I
I I I I I I I I I I I I I I I I I X


, (2.12)
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

Y Z Z I Z X I Y X I Y Z Y X I Z Z I X
Z X Z I Z Y Z X Y I X I X Y I Y X I I
I I X I Z Y Z Y X X Z Y I I X X Y X I
I I Z X I Z I Y Y Y X X Z Y Y X X X I
Z Z Z Z X X I Z Y Z I Y I Y I X Y X X
I Z I Z Z I Y X Y X Z Y Z X Z Z X I I
I I I I I I I I I I I I I I I I I X I
I I I I I I I I I I I I I I I I I I X


, (2.13)



Y Z Z I Z X I Y X I Y Z Y X I Z Z I X I
Z X Z I Z Y Z X Y I X I X Y I Y X I I X
I I X I Z Y Z Y X X Z Y I I X X Y X I X
I I Z X I Z I Y Y Y X X Z Y Y X X X I I
Z Z Z Z X X I Z Y Z I Y I Y I X Y X X X
I Z I Z Z I Y X Y X Z Y Z X Z Z X I I I
I I I I I I I I I I I I I I I I I X I I
I I I I I I I I I I I I I I I I I I X I
I I I I I I I I I I I I I I I I I I I X


. (2.14)

Here we note that there are nonadditive quantum codes with parameters similar to the [[9, 3:1, 3]]2

and [[10, 3:2, 3]]2 from Example 19, and we ask if the same is true for lengths 18, 19, and 20. To

our knowledge the most comprehensive search of nonadditive codes was done by Rigby et al. [89],

but there they limited their search of distance-3 codes to lengths of n ≤ 12. It would be interesting

if there is a gadget-like construction of nonadditive codes similar to the one for hybrid codes in

Theorem 17 that allows for the construction of length 18, 19, and 20 nonadditive codes.

We will use the codes from Examples 19, 20, 21 as the building blocks of infinite families of

hybrid codes in Section 2.5.

Example 22. Here we give a distance-4 hybrid stabilizer code with parameters [[11, 2:1, 4]]2, build-

ing off of the [[10, 2, 4]]2 quantum stabilizer code from Grassl’s online code table [40]. This code
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improves the parameters of the [[11, 1:2, 4]]2 code from [41].



X Z I Z I X I Z Z I X
I Y I Z Z Y I I Z Z X
I Z X I I Y I Y Z X X
I Z Z Y I Y Z I I Z I
I I Z Z Y Y Z X Z X I
I Z Z I Z Z X X Z Z I
I Z I I I Z Z Z Y Y I
Z Z Z Z Z Z I I I I I
I I I I I I I I I I X


. (2.15)

2.5 Families of Hybrid Codes from Stabilizer Pasting

In this section, we construct two families of single-error correcting hybrid codes that can en-

code one or two classical bits. An infinite family of nonadditive quantum codes was constructed

by Yu et al. [105] by pasting together (see [38]) the stabilizers of Gottesman’s [[2j, 2j − j − 2, 3]]2

codes [37] with the non-Pauli observables of the ((9, 12, 3))2 and ((10, 24, 3))2 nonadditive CWS

codes [104, 103] which function in the same role as the Pauli stabilizers in stabilizer codes.

Here, we will make use of the generators for the [[7, 1:1, 3]]2, [[9, 3:1, 3]]2, [[10, 3:2, 3]]2, and

[[11, 4:2, 3]]2 hybrid stabilizer codes given by Eq. 2.11, 2.8, 2.9, and 2.10 respectively in Examples

19 and 20. Alternatively, we could make use of the [[7, 1:1, 3]]2, [[10, 3:2, 3]]2, and [[11, 4:2, 3]]2

hybrid stabilizer codes constructed by Grassl et al. [41]. Note that in each case, the generators

above the dotted line define a pure [[n, n− 5, 2]]2 quantum code.

The next theorems describe families of hybrid quantum codes. Notice that 22m+5 ≡ 25

(mod 3) and 22m+6 ≡ 26 (mod 3), so the length n given in Theorems 23 and 24 is well-defined.

Theorem 23. Let m be a nonnegative integer and n a positive integer given by

n =
22m+5 − 32

3
+ a,

where the parameter a is a small positive integer that is specified below. Then there exists
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(a) an [[n, n− 2m− 6:1, 3]]2 hybrid code for a = 7, 9 and

(b) an [[n, n− 2m− 7:2, 3]]2 hybrid code for a = 10, 11.

Proof. Roughly speaking, we construct our code by partitioning the first (22m+5 − 32)/3 qubits

into disjoints sets, forming a perfect code on each partition, and use one of the four small hybrid

codes on the remaining last a qubits. These codes are then “glued" to one another by using stabi-

lizer pasting. Other than a small number of degenerate errors introduced by the small hybrid code

that must be handled individually, each single-qubit Pauli error has a unique syndrome, allowing

for the correction of any single-qubit error.

We will now describe the code construction in more detail. We take the n = (22m+5 − 32)/3+a

qubits and partition them into disjoint sets

Um ∪ Um−1 ∪ · · · ∪ U1 ∪ Va,

where |Uℓ| = 22ℓ+3 and |Va| = a. The set Um contains the first 22m+3 qubits, Um−1 the next 22m+1

qubits, and so forth. The final a qubits are contained in Va.

Let ℓ ∈ [m]. On the qubits in the set Uℓ, we can construct a stabilizer code of length 22ℓ+3 with

2ℓ+5 stabilizer generators, following Gottesmann [37]. The 2ℓ+5 stabilizer generators are given

as follows. Two of these generators are the tensor product of only Pauli-X and Z operators, which

we call XUℓ
and ZUℓ

respectively. We define the other 2ℓ+ 3 stabilizers by

Sℓj = XhjZhj−1+h1+h2ℓ+3 ,

for j ∈ [2ℓ+ 3]. Here we let hj be the j-th row of the (2ℓ+ 3) × 22ℓ+3 matrix Hℓ, whose i-

th column is the binary representation of i, h0 is defined to be the all-zero vector, and Xhj =

Xhj,0Xhj,1 . . . Xh
j,22ℓ+3−1 , with Zhj defined similarly.

For the set Va, let HQ
j be the generators of the quantum stabilizer SQ of the length a hybrid

code defined by the generators in (2.11), (2.8), (2.9), or (2.10), and HC
j be the generators of the

classical stabilizer SC (since the length 7 and 9 hybrid codes only have one generator in SC , we
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can remove HC
2 ). The stabilizer can be pasted together as shown in (2.16), where suitable identity

operators should be inserted in the blank spaces:



XUm

ZUm

Sm1 XUm−1

Sm2 ZUm−1

...
... . . .

Sm2m−6 Sm−1
2m−8 · · ·

Sm2m−5 Sm−1
2m−7 · · · XU2

Sm2m−4 Sm−1
2m−6 · · · ZU2

Sm2m−3 Sm−1
2m−5 · · · S2

1 XU1

Sm2m−2 Sm−1
2m−4 · · · S2

2 ZU1

Sm2m−1 Sm−1
2m−3 · · · S2

3 S1
1 HQ

1

Sm2m Sm−1
2m−2 · · · S2

4 S1
2 HQ

2

Sm2m+1 Sm−1
2m−1 · · · S2

5 S1
3 HQ

3

Sm2m+2 Sm−1
2m · · · S2

6 S1
4 HQ

4

Sm2m+3 Sm−1
2m+1 · · · S2

7 S1
5 HQ

5

HC
1

HC
2



(2.16)

Suppose that we have a single-qubit Pauli error on the block Um. Since the code is pure, the

syndrome of each error will be distinct and such that the Pauli-X , Y , and Z sydromes will start

with 01, 11, and 10 respectively. However, this leaves all of the syndromes starting with 00 unused,

so Pauli-X , Y , and Z errors on the block Um−1 will have distinct syndromes starting with 0001,

0011, and 0010 respectively. Continuing on, any single-qubit Pauli error occurring on the block Uk

will have a distinct syndrome starting with 2 (m− k) zeros.

All of the syndromes of errors occurring on the block Va start with 2m 0s. Here our code is

not pure, but it is almost pure, with the only degenerate errors being the weight 2 errors in SC . For

example, when Va has 11 qubits, it will have three weight 1 degenerate errors: X9 (a Pauli-X error

on the ninth qubit of the block), X10, and Z11, each with the syndrome 00001 (preceeded by 2m
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zeros). If we measure this syndrome, we apply the operator IIIIIIIIXXZ to the state, which

maps the original encoded state to itself up to a global phase. Note, however, that while this global

phase is the same for encoded states of the same inner code for a given error, it may differ for

encoded states from different inner codes. In fact, this is exactly what prevents the outer code from

being a distance 3 quantum code rather than a distance 3 hybrid code. The argument for when Va

has 7, 9, and 10 qubits is similar.

Since we know how to correct any single-qubit Pauli error based on its syndrome, each of the

codes must have minimum distance 3.

Theorem 24. Let m be a nonnegative integer and n a positive integer given by

n =
22m+6 − 64

3
+ a,

where the parameter a is a small positive integer that is specified below. Then there exists

(a) an [[n, n− 2m− 7:1, 3]]2 hybrid code for a = 18,

(b) an [[n, n− 2m− 8:2, 3]]2 hybrid code for a = 19, and

(c) an [[n, n− 2m− 9:3, 3]]2 hybrid code for a = 20.

Proof. The proof is the same as that for Theorem 23, except that we resize the Uℓ blocks so that

|Uℓ| = 22ℓ+4 and the replace the codes on these blocks with Gottesman’s codes with lengths 22ℓ+4,

as well as using the length 18, 19, and 20 hybrid codes defined by the generators in Eq. 2.12, 2.13,

and 2.14 from Example 21 on the V block of qubits.

Here we show that these hybrid codes are better than optimal quantum stabilizer codes using a

result of Yu et al. [102].

Proposition 25. Let m be a nonnegative integer and n a positive integer given by

n =
22m+5 − 32

3
+ a,

where a ∈ {7, 9, 10, 11}. Then there does not exist an [[n, n− 2m− 5, 3]]2 stabilizer code.
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Proof. When a = 7, 9, 10, we have

n =
22m+5 − 32

3
+ a

=
22m+5 − 8

3
+ (a− 8)

=
8

3

(
4m+1 − 1

)
+ (a− 8) .

By a result of Yu et al. [102, Theorem 1], distance 3 stabilizer codes with lengths of the form

8

3

(
4k − 1

)
+ b,

where b ∈ {−1, 1, 2}, can exist if and only if

2m+ 5 ≥ ⌈log2(3n+ 1)⌉+ 1.

But in this case we have

⌈log2(3n+ 1)⌉+ 1 =
⌈
log2

(
22m+5 + 3a− 31

)⌉
+ 1

>
⌈
log2

(
22m+5 − 22m+4

)⌉
+ 1

= 2m+ 5,

so when a = 7, 9, 10, there is no distance 3 stabilizer code of length n.

When a = 11, a different case of [102, Theorem 1] applies, so distance 3 stabilizer codes with

lengths of this form can exist if and only if

2m+ 5 ≥ ⌈log2(3n+ 1)⌉ .
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However, this gives us

⌈log2(3n+ 1)⌉ =
⌈
log2

(
22m+5 + 2

)⌉
>
⌈
log2

(
22m+5

)⌉
= 2m+ 5,

so when a = 11, there is likewise no distance 3 stabilizer code of length n.

Proposition 26. Let m be a nonnegative integer and n a positive integer given by

n =
22m+6 − 64

3
+ a,

where a ∈ {18, 19, 20}. Then there does not exist an [[n, n− 2m− 6, 3]]2 stabilizer code.

Proof. This proof follows the same logic as the proof of Proposition 25. Note that for a =

18, 19, 20, we can rewrite

n =
4m+3 − 1

3
− b

where b ∈ {1, 2, 3}. By [102, Theorem 1], a stabilizer code with a length in this form can exist if

and only if

2m+ 6 ≥ ⌈log2(3n+ 1)⌉+ 1.

But this gives us

⌈log2(3n+ 1)⌉+ 1 =
⌈
log2

(
22m+6 − 3b

)⌉
+ 1

= 2m+ 6,

meaning that no [[n, n− 2m− 6, 3]]2 stabilizer codes exist for these values of n.

As with our family of error-detecting hybrid codes, it would be interesting to know whether any

of these codes meet the linear programming bounds from Section 2.2.2. Since none of the hybrid
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codes we started with meet these bounds, it is doubtful that any of the hybrid codes constructed

from stabilizer pasting would also meet this bound, leaving it unclear whether or not these codes

are optimal among all hybrid codes.

2.6 Conclusion

In this paper we have proven some general results about hybrid codes, showing that they can

always detect more errors than comparable quantum codes. Furthermore we proved the neces-

sity of impurity in the construction of genuine hybrid codes. Additionally, we generalized weight

enumerators for hybrid stabilizer codes to nonadditive hybrid codes, allowing us to develop linear

programming bounds for nonadditive hybrid codes. Finally, we have constructed several infinite

families of hybrid stabilizer codes that provide an advantage over optimal stabilizer codes. Ad-

dtitionally, we generalized our family of single error-detecting codes from the binary case to the

nonbinary case over the integer residue rings Zq. While it is known that the construction gives

genuine hybrid codes when q = 2, the existence of quantum codes with the similar parameters

when q ≡ 0, 1, 3 mod 4 means the construction does not produce genuine hybrid codes in all

cases. One open question is whether or not the codes given by the construction are always genuine

when q ≡ 2 mod 4. As the code family here is the only construction of nonbinary hybrid codes,

further investigation is needed.

Both of our families of hybrid codes were inspired by the construction of nonadditive quantum

codes. In hindsight this is not very surprising, as the examples of hybrid codes with small parame-

ters given by Grassl et al. [41] were constructed using a CWS/union stabilizer construction. Most

interesting is that all known good nonadditive codes with small parameters have a hybrid code

with similar parameters. This would suggest that looking at larger nonadditive codes such as the

quantum Goethals-Preparata code [42] or generalized concatenated quantum codes [45] might be

helpful in constructing larger hybrid codes. Alternatively, it may be possible to use the existence

of hybrid codes to point to where nonadditive codes may be found. For instance the existence of

an [[11, 4:2, 3]]2 hybrid code suggests a nonadditive ((11, K, 3))2 code with K < 32 might exist,

although none have been found in past searches [89].
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As previously suggested by Grassl et al. [41], one possible way to construct new hybrid codes

with good parameters is to start with degenerate quantum codes with good parameters. Another

possible approach to constructing new hybrid stabilizer codes is to find codes such that there are

few small weight errors that are in the normalizer but not in the stabilizer, and then add those small

weight errors to the generating set of the stabilizer to get a degenerate code. Here, the original

code becomes the outer code of the hybrid code and the degenerate code the inner code.
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3. ENCODING CLASSICAL INFORMATION IN GAUGE SUBSYSTEMS OF QUANTUM

CODES

The majority of the material in this chapter comes from the journal paper [77]1.

3.1 Background

Hybrid codes allow for the simultaneous transmission of both quantum and classical informa-

tion across a quantum channel. Devetak and Shor [31] showed for certain small error rates that

simultaneous transmission is superior to the time-sharing of a quantum channel, and subsequent

work on the topic has been focused primarily on information-theoretic results [48, 49, 101]. The

first examples of finite-length hybrid codes were given by Kremsky, Hsieh, and Brun [61] as a

generalization of entanglement-assisted quantum codes, and later Grassl, Lu, and Zeng [41] gave

multiple examples of good hybrid codes with small parameters using a codeword stabilizer con-

struction. Surprisingly, these codes provide an advantage over optimal quantum codes regardless

of the error rate.

Further examples of good hybrid codes were constructed by the authors [75, 74] (Sections 2.3,

2.4, and 2.5 in this dissertation) over the Pauli channel and by Li, Lyles, and Poon [66] over a

fully correlated quantum channel where the space of errors is spanned by I⊗n, X⊗n, Y ⊗n, and

Z⊗n. Additional work on hybrid codes from an operator-theoretic perspective has also been done

by Bény, Kempf, and Kribs [18, 19] and Majidy [70]. While few good hybrid code constructions

are known, there are already multiple areas in which they can be used, including the protection

of hybrid quantum memory [64] and the construction of hybrid secret sharing schemes [106].

Additionally, the work on higher rank matrical ranges by Cao et al. [25] was inspired by hybrid

codes.

Previous work on hybrid codes has assumed that both the quantum and classical information

1Results reproduced with permission from “Encoding Quantum Information in Gauge Subsystems of Quantum
Codes” by Andrew Nemec and Andreas Klappenecker, 2022. To appear in International Journal of Quantum Infor-
mation. Copyright 2022 by IJQI.
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should be protected from all errors of weight up to the same minimum distance d. In this paper

we introduce hybrid codes with two separate minimum distances for quantum and classical infor-

mation. Loosening this restriction on the minimum distance allows us to construct new hybrid

stabilizer codes by encoding classical information in the gauge qudits of subsystem codes, making

use of gauge fixing. Using this result, we show how to construct hybrid codes from classical codes

using Bacon-Casaccino subsystem codes [14] including a family of good hybrid codes constructed

using Bacon-Shor subsystem codes and conjecture that all hybrid stabilizer codes must satisfy a

variant of the quantum Singleton bound. Finally, we also show how hybrid codes can be used to

protect against faulty syndrome measurement errors and how they can lead to new constructions

of quantum data-syndrome codes [10, 36].

3.1.1 Subsystem Codes

Subsystem codes (also called operator quantum error-correcting codes) are a generalization of

stabilizer codes that enforce a tensor product structure on the code subspaceQ = A⊗B. Quantum

information is encoded into subsystem A, while subsystem B, known as the gauge subsystem,

is useful for fault tolerance [2] and designing improved decoding algorithms [90]. However, no

information is encoded in subsystem B, so in a certain sense it is unused space.

One way to view subsystem codes is through the stabilizer formalism of the previous section.

Informally, a subsystem code can be viewed as a stabilizer code where only a subset of the log-

ical qudits are used to encode quantum information. The logical qudits containing the quantum

information correspond to the K-dimensional subsystem A, while the unused gauge qudits corre-

pond to the R-dimensional subsystem B. Similar to stabilizer codes, we write the parameters of

a subsystem code as [[n, k, r, d]]q where k = logq(K) and r = logq(R). A subsystem code has

ℓ (n− k − r) mutually commuting generators Si that generate the abelian stabilizer group S of the

subsystem code. The KR-dimensional subspace Q is then the +1-eigenpace of the elements of

the stabilizer group S.

To induce the subsystem A ⊗ B on Q, we define the gauge group G, which consists of those

Pauli operators on Q that act as the identity on A. These include elements in S, as well as the
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logical operators on the subsystem B, which are generated by ℓr pairs of gauge operators GX
i

and GZ
i such that GX

i and GZ
j do not commute if i = j and commute otherwise, GX

i and GX
j all

commute, and GZ
i and GZ

j all commute. The gauge group is then given by

G =
〈
ω,S, GX

i , G
Z
i | i ∈ [ℓr]

〉
.

Each pair GX
i and GZ

i corresponds to some pair of logical operators Xi(a) and Zi(a) on the stabi-

lizer codeQ, but they are written differently to better distinguish them from the logical operators on

the subsystem A, which are given by L = N(S) /G. For further details on the stabilizer formalism

of subsystem codes, see Kribs and Poulin [63] and Poulin [82].

3.2 Hybrid Codes

We now would like to simultaneously transmit a classical message along with our quantum

information. A hybrid code has parameters ((n,K :M,d :c))q if and only if it can simultaneously

encode a superposition of K orthogonal quantum states as well as one of M different classical

messages into the Hilbert space H = Cqn , while detecting all errors of weight less than d and c

on the quantum and classical information respectively. The hybrid code C may be thought of as a

collection of M orthogonal quantum codes Cm of dimension K, indexed by the classical message

m ∈ [M ] = {1, 2, . . . ,M}, as seen in Figure 3.1. We refer to the codes Cm as the inner codes and

C = {Cm | m ∈ [M ]} as the outer code. To send a quantum state |φ⟩ and a classical message m,

we simply encode |φ⟩ into the quantum code Cm.

If the quantum and classical minimum distances are the same (i.e., d = c), we write ((n,K :M,d))q.

If both the outer code and all of the inner codes are stabilizer codes, we refer to the code as a hybrid

stabilizer code and write its parameters as [[n, k :m, d :c]]q where k = logq(K) and m = logq(M).

Grassl et al.[41] presented a set of necessary and sufficient conditions for the error-correcting

capabilities of hybrid codes with d = c that generalize the Knill-Laflamme conditions [60] for

quantum codes. Here we generalize these conditions further to allow for hybrid codes with d ≤ c.

Theorem 27. An ((n,K :M,d :c))q hybrid code with d ≤ c can detect up to d − 1 errors to the
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H

C

C00 C01 C10 C11

Figure 3.1: Each hybrid code C is a collection of orthogonal quantum codes Ci indexed by a
classical message i, here represented as a binary string in {00, 01, 10, 11}.

quantum information and up to c− 1 errors to the classical information if and only if

1. PaEPa = λE,aPa, for all a ∈ [M ] and all error operators E such that wt(E) < d, and

2. PaFPb = 0, for all a, b ∈ [M ], a ̸= b, and all error operators F such that wt(F ) < c.

Proof. Suppose that (1) and (2) hold. If the weight of an error E on the system is less than d, then

(1) implies that the hybrid code can detect an error on the quantum information of weight less than

d, following directly from the Knill-Laflamme conditions for quantum codes [60]. Additionally,

(2) implies that the image of the codes under all the errors of weight less than c are all mutually or-

thogonal, that is, for a ̸= b, Pa ⊥ ⟨EPb : wt(E) < c⟩. This means that by applying a measurement

based on our projectors Pa we can always detect an error to the classical information. If instead

an error F with d ≤ wt(F ) < c affects the system, then we can no longer detect the error on the

quantum information, but since PaFPb = 0, a ̸= b, still holds for the error F , we can perform a

measurement and detect an error to the classical information.

Now suppose that either (1) or (2) fails to hold. If (1) fails to hold, then the Knill-Laflamme

conditions tell us that there is an error to the quantum information of weight less than d that the

code cannot detect. If (2) fails to hold, then there is an error F of weight less than c such that

for some a ̸= b, Pa and FPb will not be orthogonal, meaning we will not be able to completely

distinguish between the two of them.
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As with quantum codes, an error-correction variant of the conditions immediately follows.

Corollary 28. An ((n,K :M,d :c))q hybrid code with d ≤ c can correct up to
⌊
d−1
2

⌋
errors to the

quantum information and up to
⌊
c−1
2

⌋
errors to the classical information if and only if

1. PaE†FPa = λE,F,aPa, for all a ∈ [M ] and all error operatorsE,F such that wt(E) ,wt(F ) ≤⌊
d−1
2

⌋
, and

2. PaE†FPb = 0, for all a, b ∈ [M ], a ̸= b, and all error operatorsE,F such thatwt(E) ,wt(F ) ≤⌊
c−1
2

⌋
.

Note that when c < d there is a potential problem. Consider the following: let Ca and Cb

be 1-dimensional inner codes in a hybrid code with Pi = |ψi⟩ ⟨ψi| the projector onto Ci, and

suppose the code satisfies conditions (1) and (2) in Theorem 27. We may still have an error E with

c ≤ wt(E) < d such that ⟨ψa|E |ψb⟩ = α ̸= 0. Setting up a measurement and supposing that |ψb⟩

is sent, we get

(Pa + Pb)E |ψb⟩ = |ψa⟩ ⟨ψa|E |ψb⟩+ |ψb⟩ ⟨ψb|E |ψb⟩

= α |ψa⟩+ λE,b |ψb⟩ ,

which is a superposition of encoded states from the two inner codes. However, as we will show

here and in Section 3.3, we can still construct hybrid codes with c < d by encoding the quantum

and classical information using a subsystem structure on the encoding subspace.

Given a code C with a subsystem structure A⊗B on it, let {|φi⟩| i ∈ [K]} and {|vi⟩ | i ∈ [M ]}

be orthonormal bases for A and B respectively. We define the operators

Pa,b =

(
K∑
i=1

|φi⟩ ⟨φi|

)
⊗ |va⟩ ⟨vb| ,

which allows us to write the following error-detection conditions similar to those for subsystem

codes [79].
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Theorem 29. Let C be an ((n,K :M,d :c))q hybrid code with a subsystem structure A ⊗ B on it,

with {|φi⟩ | i ∈ [K]} and {|vi⟩ | i ∈ [M ]} as orthonormal bases for A and B respectively. Let

Pa = Pa,a be the projector onto the inner code Ca. Then C can detect up to d − 1 errors to the

quantum information and up to c− 1 errors to the classical information if and only if

1. PaEPb = λE,a,bPa,b, for all a, b ∈ [M ] and all E such that wt(E) < d, and

2. PaFPb = 0, where a ̸= b, for all a, b ∈ [M ], a ̸= b, and all F such that wt(F ) < c.

Proof. The proof is the same as the proof of Theorem 27, except we must now check the case

when c < d. Here we will first project the code onto the subspace C using the projector

P =
∑
j∈[M ]

Pj =

∑
i∈[K]

|φi⟩ ⟨φi|

⊗

∑
j∈[M ]

|vj⟩ ⟨vj|

 ,

measure the classical information in subsystem B in the {|va⟩} basis to determine which code was

sent, and then use the recovery procedure associated with that code.

Suppose that (1) and (2) are true, and let |φa⟩ = (|φ⟩ ⊗ |va⟩) be the encoded state and E the

error on the encoded state. If wt(E) < c, then

PE |φa⟩ =
∑
j∈[M ]

PjEPa |φa⟩

= PaEPa |φa⟩ ,

by condition (2). It follows from condition (1) that

PE |φa⟩ = PaEPa |φa⟩

λE,a |φa⟩ .

Performing a measurement on the subsystem B will not have an effect on the encoded state and it

will inform us of which code was used.
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If c ≤ wt(E) < d, then by condition (1) we have

PE |φa⟩ =
∑
j∈[M ]

PjEPa |φa⟩

=
∑
j∈[M ]

λE,j,aPj,a |φa⟩

= |φ⟩ ⊗
∑
j∈[M ]

λE,j,a |vj⟩ .

Measuring the subsystem B in the {|vi⟩} basis, we get λE,x,a (|φ⟩ ⊗ |vx⟩) / |λE,x,a|, where x may

not be the original classical message. However, we are still able to detect an error to the quantum

information.

The converse follows the same logic as the proof of Theorem 27, making use of the subsystem

variant of the Knill-Laflamme conditions.

Similar to Theorem 27, we immediately get the error-correction variant of Theorem 29.

Corollary 30. Let C be an ((n,K :M,d :c))q hybrid code with a subsystem structure A ⊗ B on

it, with {|φi⟩ | i ∈ [K]} and {|vi⟩ | i ∈ [M ]} as orthonormal bases for A and B respectively. Let

Pa = Pa,a be the projector onto the inner code Ca. Then C can correct up to
⌊
d−1
2

⌋
errors to the

quantum information and up to
⌊
c−1
2

⌋
errors to the classical information if and only if

1. PaE†FPb = λE,F,a,bPa,b, for all a, b ∈ [M ] and all E,F such that wt(E) ,wt(F ) ≤
⌊
d−1
2

⌋
,

and

2. PaE†FPb = 0, for all a, b ∈ [M ], a ̸= b, and all E,F such that wt(E) ,wt(F ) ≤
⌊
c−1
2

⌋
.

We leave the cases where errors to either the quantum or classical information are corrected

while errors to the other are only detected for future research.

3.2.1 Genuine Hybrid Codes

Constructing hybrid codes from quantum codes is not a particularly difficult task. When d = c,

Grassl et al. [41] gave several simple constructions of hybrid codes from quantum codes:
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Proposition 31 (Grassl et al.[41]). Hybrid codes can be constructed using the following “trivial"

constructions:

1. Given an ((n,KM, d))q quantum code of composite dimension KM , there exists a hybrid

code with parameters ((n,K :M,d))q.

2. Given an [[n, k :m, d]]q hybrid code with k > 0, there exists a hybrid code with parameters

[[n, k − 1:m+ 1, d]]q.

3. Given an [[n1, k1, d]]q quantum code and an [n2,m2, d]q classical code, there exists a hybrid

code with parameters [[n1 + n2, k1 :m2, d]]q.

We call a hybrid code with d = c genuine if there is no code constructable using Proposition

31 with the same parameters. Grassl et al. [41] showed the first examples of genuine hybrid

codes, constructing multiple small-parametered hybrid codes, while the authors constructed several

infinite families of genuine hybrid stabilizer codes using stabilizer pasting [75]. Note that by

calling such codes “genuine”, we do not mean to imply that the hybrid codes constructed using the

approaches of Proposition 31 are in any sense “fake”. Hybrid codes constructed using one of these

three methods are in a sense wasting a quantum resource, in that they are transmitting classical

information using space that could have been used to transmit quantum information.

Similar to the case where there is a single minimum distance, we can construct trivial hybrid

codes with two minimum distances using the following construction that generalizes the third

construction of Proposition 31:

Proposition 32. Given an ((n1, K1, d))q quantum code and an (n2,M2, c)q classical code, there

exists a hybrid code with parameters ((n1 + n2, K1 :M2, d :c))q.

Proof. Use the quantum code to encode the quantum information on the first n1 physical qudits and

use the classical code to encode the classical information on the remaining n2 physical qudits.

To generalize the first and second constructions to allow for two minimum distances, we will

define a partial order on the parameters of hybrid codes to determine which codes have “better"

64



parameters than others:

Definition 33. Given two hybrid codes C and C ′ with parameters ((n,K :M,d :c))q and ((n,K ′ :M ′, d′ :c′))q

respectively, we say C ⪯ C ′ if KM ≤ K ′M ′, K ≤ K ′, d ≤ d′, and c ≤ c′ are all true.

Note that while we write C ⪯ C ′, we are only comparing the parameters of the codes and not

the codes themselves.

Proposition 34. The relation ⪯ defines a partial order on the set of hybrid code parameters.

Proof. The reflexivity, antisymmetry, and transitivity of ⪯ all follow directly from the fact that ≤

is a partial order.

If C ⪯ C ′, we say that C ′ has at least as good parameters as C. Intuitively, this covers the

case when C ′ has at least one parameter greater than the corresponding parameter in C, with all

other parameters being equal. For example, an [[8, 3, 3]]2 quantum code has better parameters than

an [[8, 1, 3]]2 quantum code, as the former can encode two more logical qubits than the latter. We

also give preference to codes that can transmit more quantum information if the total amount of

information that can be transmitted by each code is the same. For example, we can compare the

[[9, 1:2, 3]]2 hybrid code of Kremsky et al. [61] with the [[9, 2:2, 3]]2 code of Grassl et al. [41],

with the latter having better parameters since it can encode one logical qubit more than the former.

Similarly, we can compare both of these codes with the [[9, 3:1, 3]]2 code we construct in Example

19, which has better parameters than both, as we can use it to construct a [[9, 2:2, 3]]2 by using

one of the logical qubits to transmit a classical bit. However, we cannot compare any of these

three codes with the [[9, 1:4, 3:2]]2 code we construct in Example 44, since it transmits more total

information (has a larger sum k +m) but has a lower classical distance.

We call a hybrid code (with K,M > 1, although the partial order is also defined on purely

quantum and classical codes) genuine if it is a maximal element in the partially ordered set and has

parameters that cannot be achieved by a code constructed using Proposition 32, and we call it a

genuine hybrid stabilizer code if it satisfies the same conditions on the partially ordered set induced

by ⪯ on the subset of hybrid stabilizer codes. Intuitively, this means that a genuine hybrid code
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is one in which any one parameter of the code cannot be improved without sacrificing some other

parameter, with the exception that we can sacrifice one bit of classical information for one qudit of

quantum information. When restricted to the case with c = d, we recover the original definition of

genuine codes.

3.2.2 Hybrid Stabilizer Codes

For the remainder of the paper we will restrict our attention to hybrid stabilizer codes, which

have a particularly nice structure. Starting with a quantum stabilizer code C0 with stabilizer group

S0, we choose M translation operators ti from different cosets of N(S0) in Gn in such a way that

the cosets form a group (we will always take t1 to be the identity). The hybrid code C is then the

union of the translated codes:

C =
⋃
i∈[M ]

tiC0

The stabilizer generators of the inner code C0 can be divided into a quantum stabilizer SQ and a

classical stabilizer SC such that S0 = ⟨SQ,SC⟩ [61]. The quantum stabilizer SQ is the stabilizer of

the outer code C and is generated by those generators of S0 that commute with all of the translation

operators ti. The classical stabilizer SC is generated by the remaining stabilizer generators of S0,

each of which does not commute with at least one translation operator. We can associate each of

the ℓm generators gi of SC with an operator Zj(αi), for i ∈ {0, . . . , ℓ− 1}, j ∈ [⌊m⌋], which

acts on the j-th virtual qudit, as well as Z⌈m⌉(αi) for i ∈ {0, . . . , ℓ (m− ⌊m⌋)− 1} if m is not a

power of q. Similarly, we can associate each of the generators of the translation operators Xj(αi)

for i ∈ {0, . . . , ℓ− 1}, j ∈ [⌊m⌋], as well as X⌈m⌉(αi) for i ∈ {0, . . . , ℓ (m− ⌊m⌋)− 1} if m

is not a power of q. These operators satisfy the commutation relations from Section 1.3.3, and

we can associate each classical message a ∈ F⌈m⌉
q with the translation operator ta = X(a) =

X1(a1) ·X2(a2) · · ·X⌈m⌉
(
a⌈m⌉

)
. In addition to mapping between the inner codes, these translation

operators are also logical operators for the outer code C.

The quantum and classical stabilizers are sufficient to fully define a hybrid code. The following

result was originally given in the binary case by Kremsky et al. [61] and by the authors in the case
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of prime fields [75]. Here we generalize it to arbitrary finite fields.

Theorem 35. Let C be an [[n, k :m, d :c]]q hybrid stabilizer code over a finite field of characteristic

p, where q = pℓ, with quantum stabilizer SQ and classical stabilizer SC = ⟨gi | i ∈ [ℓm]⟩, where

gi = Z(bi), bi ∈ F⌈m⌉
q . Then the inner stabilizer code taC0 associated with the classical message

a ∈ F⌈m⌉
q is stabilized by 〈

SQ, ω
− tr(bi·a)gi | i ∈ [ℓm]

〉
,

where ω is a primitive p-th root of unity.

Proof. Let |φ⟩ be an encoded state of C0, so that ta |φ⟩ is an encoded state of taC0. Since elements

of the quantum stabilizer commute with ta and stabilize |φ⟩, they are all elements of the stabilizer

of taC0. In the case of ω− tr(bi·a)gi, it follows from the commutation relations that ta |φ⟩ is one of

its +1-eigenstates, so it is also in the stabilizer of taC0.

3.3 Hybrid Codes from Subsystem Codes

In this section we show how every subsystem code leads to a hybrid code with the same quan-

tum error-correcting properties. While the tensor structure of classical-quantum systems (see De-

vetak and Shor [31] and Bény et al. [19]) suggests that subsystem codes might be useful in con-

structing hybrid codes, it is not immediately obvious whether or not they can protect the encoded

classical information from errors. The main idea behind our construction is to follow the reasoning

of Theorem 29 and encode the quantum information in the subsystem A stabilized by the stabilizer

group S, and then use gauge fixing to encode the classical information into the subsystem B.

3.3.1 Gauge Fixing Construction

Gauge fixing is a technique that takes commuting gauge operators of the subsystem code and

uses them to generate a larger stabilizer group S0. In essence, we are taking a subset of the gauge

qudits and fixing them to certain states. Since the states are fixed, no information can be encoded

on those qudits, but any errors that occur on them is now either a pure error or in the stabilizer S0.

Gauge fixing is well known in quantum error-correction for its use in code switching [20, 81],
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which allows for a way around Eastin and Knill’s famous no-go theorem in fault tolerance [33].

Our construction picks a commuting set of ℓr independent gauge operators of the subsystem code,

and then multiplies them by a phase, which forces the gauge qudits to change to a different fixed

state. For example, in a binary subsystem code if the gauge operator GZ
i is fixed, it means that

the i-th gauge qubit will be fixed as the +1 eigenstate of the operator, so we have a logical |0⟩

that is fixed. If instead we fix the operator −GZ
i , the i-th gauge qubit will be fixed as |1⟩, the −1

eigenstate of the operator.

Theorem 36. Let C be an [[n, k, r, d]]q subsystem code. Then there exists an [[n, k :r, d :c]]q hybrid

code.

Proof. Let S = ⟨Si⟩ be the stabilizer group of C, which will be the stabilizer of the hybrid code’s

outer code. Choose 2ℓr operators GX
i and GZ

i where i ∈ [ℓr], so that

G =
〈
ω,S, GX

i , G
Z
i | i ∈ [ℓr)]

〉
.

Without loss of generality, we will fix a gauge and let

S0 =
〈
S, GZ

i | i ∈ [ℓr]
〉

be the stabilizer of our inner stabilizer code C0.

The centralizer of S and S0 are given by

N(S) =
〈
ω,S, GX

i , G
Z
i , Xj, Zj | i ∈ [ℓr] , j ∈ [ℓk]

〉
and

N(S0) =
〈
ω,S0, Xi, Zi | i ∈ [ℓk]

〉
respectively. The quantum minimum distance of the hybrid code is the minimum weight of one

of the logical operators on the quantum information, so it will be the identical to the minimum
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distance of the subsystem code, given by d = wt(N(S) \ G).

The classical minimum distance c is given by the minimum weight of a logical operator on the

classical information, so c = wt(N(S) \N(S0)). For any two elements ta, tb /∈ N(S), taC0 and

tbC0 will be orthogonal to each other if and only if ta and tb are in different cosets of N(S0). We

will use the gauge operators GX
i to construct our translation operators as in Theorem 35. Any error

element of the error group Gn may be written (modulo a global phase) as E = RSTUV , where

R ∈ S is an element of the quantum stabilizer, and S, T , U , and V are coset representatives of

the classical stabilizer S0/S, the logical quantum operators N(S0) /S0, the logical classical or the

translation operators N(S) /N(S0), and the pure errors Gn/N(S) respectively. We now have three

cases to consider: (i) wt(E) < c, d, (ii) c ≤ wt(E) < d, and (iii) d ≤ wt(E) < c:

(i) Suppose wt(E) < c ≤ d. Then E /∈ N(S) \ G and E /∈ N(S) \ N(S0), meaning that any

error is of the form RSV . If V is not the identity, then the error can be detected, but if not

then the error has no effect on either the quantum or classical information.

(ii) Suppose c ≤ wt(E) < d. Then E /∈ N(S) \ G, so any error is of the form RSUV . If V is

not the identity then the error can be detected, but if not then the classical information may

be corrupted. However, the quantum information will be preserved.

(iii) Suppose d ≤ wt(E) < c. Then E /∈ N(S) \ N(S0), so any error is of the form RSTV .

As in (ii), if V is not the identity then the error can be detected, but if not then the quantum

information may be corrupted, while the classical information will be preserved.

Therefore the hybrid code is able to detect all errors in the quantum and classical information less

than their respective minimum distances.

From the proof, we can see that encoding the classical message in the phases of the classical

stabilizer generators that occurs in Theorem 35 is in effect gauge fixing. The relationship between

the stabilizer and gauge groups of the original subsystem code and the quantum and classical

stabilizer groups and the translation operators of the hybrid code are shown in Figure 3.2.
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Figure 3.2: The relationship between a 6 qubit subsystem code (left) and the hybrid stabilizer code
(right) derived from it, such as the one given in Example 38. In the hybrid code the translation
operators are the logical classical operators and S = SQ.

Additionally, since all hybrid stabilizer codes may be written as a subsystem code, they may

all be obtained using this construction. This allows us to make use of results for subsystem codes

and apply them to hybrid stabilizer codes. For instance, in [58] Klappenecker and Sarvepalli

showed that any Fq-linear Clifford subsystem code satisfies the quantum Singleton bound, and it

is conjectured that any subsystem code satisfies the bound [3, 58]. We extend this conjecture to

hybrid stabilizer codes:

Conjecture 37. An [[n, k :m, d :c]]q hybrid stabilizer code satisfies the following variant of the

(quantum) Singleton bound:

k +m ≤ n− 2 (d− 1) .2

2After the publication of [77], this conjecture was partially proven by Mamindlapally and Winter in [71] for the
more general case of entanglement-assisted hybrid codes, though with a single minimum distance d = c, using entirely
information theoretic methods. In addition, the code must also satisfy the similar inequality

k +
1

2
m ≤ n− (d− 1) .
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3.3.2 Examples of New Hybrid Codes

We now give several examples of new hybrid codes constructed from subsystem codes using

Theorem 36.

Example 38. Using the 6-qubit subsystem code was given by Shaw et al. [91] and the construction

detailed in Theorem 36, we get a [[6, 1:1, 3:2]]2 hybrid code with the following generators:



Y I Z X X Y
Z X I I X Z
I Z X X X X
Z Z Z I Z I
I I I X I I
Z I X I X I
I Z I I Z Z
I I I Z I Z


.

Here the stabilizer generators of the subsystem code are given above the dotted line and the

gauge operator GZ is directly below it, so that the Pauli elements above the single solid line define

the inner code C0. The logical operators on the quantum information are below the single solid

line, while the logical operator on the classical information, i.e., the translation operator that takes

C0 to C1 and vice versa, is given below the double solid line.

Each individual single-qubit error has a distinct syndrome, with the exception of Y4 (the Pauli-

Y on the 4th qubit), Z4, and Z6, which all share the same syndrome. The errors Z4 and Z6 each

map the codeword to an orthogonal subspace, so the quantum information remains unaffected, but

it is impossible to determine the classical information as there are two elements of weight 2 in

the outer code’s centralizer, although the presence of an error on the classical information can be

detected. Since X4 is in the stabilizer of the code, the error Y4 may be viewed as the same as Z4.

By using both the quantum and classical Singleton bounds, we find that there cannot be any

hybrid code with equivalent parameters constructed from Proposition 32. Since the linear pro-

gramming bounds for hybrid stabilizer codes [41] rule out the existence of a [[6, 1:1, 3]]2 code, this

code is in fact genuine and saturates the bound of Conjecture 37.
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Example 39. We now show how to construct a hybrid code out of Kitaev’s well known [[18, 2, 3]]2

toric code [53] which can be converted into an [[18, 2, 12, 3]]2 subsystem code similar to the way

used by Poulin to convert Shor’s 9-qubit code into a subsystem code [82]. Using the construction

from Theorem 36, we can construct an [[18, 2:12, 3:2]]2 hybrid code.



X X I X X I X X I X X X X X X I I I
I X X I X X I X X I I I X X X X X X
Z Z Z Z Z Z I I I Z Z I Z Z I Z Z I
I I I Z Z Z Z Z Z I Z Z I Z Z I Z Z
X I X I I I I I I X I I I I I X I I
X X I I I I I I I I X I I I I I X I
I I I X I X I I I X I I X I I I I I
I I I X X I I I I I X I I X I I I I
X X I X X I X X I I I I I I I I I I
I X X I X X I X X I I I I I I I I I
Z I I Z I I I I I Z Z I I I I I I I
I Z I I Z I I I I I Z Z I I I I I I
I I I Z I I Z I I I I I Z Z I I I I
I I I I Z I I Z I I I I I Z Z I I I
I I I I I I I I I Z Z I Z Z I Z Z I
I I I I I I I I I I Z Z I Z Z I Z Z



.

Using both the classical and quantum Singleton bounds together, we can see that a hybrid code

with these parameters cannot be constructed from a pair of quantum and classical codes using

Proposition 32. This code also saturates the bound of Conjecture 37.

All of the previous examples are of hybrid codes with d = 3, but the construction can be used

on codes with higher minimum distances.

Example 40. Here we give an example of a [[12, 1:1, 5:4]]2 hybrid code, constructed by modifying

the extended [[12, 1, 5]]2 stabilizer code from Grassl’s online table of quantum codes [40] in a similar

manner as in Example 19.
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

X Z I Z I X I Z Z I I X
I Y I Z Z Y I I Z Z I X
I Z X I Z X I I I Z Z X
I Z Z Y I Y Z I I Z I I
I I Z Z X X Z Z I Z Z I
I I Z Z I I Y Z Z I Y I
I Z I Z Z Z Z Y I Z Y I
I I I Z I Z I Z X Z X I
I Z I Z I I Z I Z X X I
Z Z Z Z Z Z I I I I I I
I I I I I I I I I I I X



.

Since a code with these parameters cannot be constructed using Proposition 32, and no [[12, 2, 5]]2

code exists, this is a good code, though whether or not it is genuine depends on the existence of

better codes not ruled out by bounds on hybrid codes such as linear programming bounds [41, 75].

3.4 Bacon-Casaccino Hybrid Codes

We give an explicit construction of hybrid codes using the Bacon-Casaccino family of subsys-

tem codes. This family was introduced in the binary case by Bacon and Casaccino [14] and by

Klappenecker and Sarvepalli [58] in the nonbinary case as a generalization of the Bacon-Shor sub-

system codes [13, 93], and allow for the construction of subsystem codes from pairs of classical

linear codes that need not be self-orthogonal. For completeness, we give the result below:

Theorem 41 (Bacon-Casaccino Codes [14, 58]). For i ∈ {1, 2}, let Ci ⊆ Fni
q be an Fq-linear code

with parameters [ni, ki, di]q. Then there exists a subsystem code with the parameters

[[n1n2, k1k2, (n1 − k1)(n2 − k2) ,min{d1, d2}]]q ,

that is pure to dp = min
{
d⊥1 , d

⊥
2

}
, where d⊥i denotes the minimum distance of C⊥

i .

A subsystem code is said to be pure to dp if its gauge group contains no error of weight less

than dp.

We give a brief explanation of this construction, restricting ourselves to the binary case for sim-

plicity. Denote by P1 and P2 the parity-check matrices and G1 and G2 the generator matrices for
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the classical linear codes C1 and C2 respectively. We can use the rows of P1 to define n1−k1 stabi-

lizers Si = ⊗n1
j=1Z

(P1)ij of length n1, and the stabilizer group of the code is S1 = ⟨S1, . . . , Sn1−k1⟩,

which defines a classical stabilizer code able to detect d1− 1 Pauli-X errors. Similarly, we can use

P2 to define n2−k2 stabilizers Ti = ⊗n2
j=1X

(P2)ij that generate the stabilizer group S2. This defines

a classical stabilizer code able to detect d2 − 1 Pauli-Z errors, but here the codewords are given in

the Hadamard basis {|+⟩ , |−⟩} rather than the computational basis {|0⟩ , |1⟩}. By classical stabi-

lizer code, we mean a stabilizer code in which the encoded basis states are protected against noise,

but a superposition of the encoded basis states are not.

To construct a quantum subsystem code out of these two classical stabilizer codes, we arrange

n1n2 qubits on an n1 × n2 rectangular lattice. We use the stabilizers from S1 to operate on each

column, that is each column has a copy of S1 acting on it, and likewise those stabilizers from S2

on the rows. Let T1 be the abelian group generated by S1 acting on the columns and T2 the abelian

group generated by S2 acting on the rows. The group T = ⟨T1, T2⟩ is nonabelian, but we can

construct an abelian subgroup of T that commutes with every element in T using the following

construction: take an element S ∈ S1 and a codeword v ∈ C2, and construct an element of T1 where

Svj acts on column j. In addition to commuting with all of the elements of T1, every element of

this form also commutes with all of the elements of T2. Likewise we can construct elements in T2

that commute with all elements in T . Together, these elements generate the stabilizer group S of

the subsystem code.

Example 42. As an example we present the 9-qubit Bacon-Shor code, a subsystem code version

of the original 9-qubit Shor code. Start with C1 = C2 as the length 3 repetition code with generator

matrix G and parity-check matrix P given by

G =

(
1 1 1

)
and P =

1 1 0

0 1 1

 .
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Using the construction, we find that the stabilizer of the code is given by

S =

〈 Z Z Z

Z Z Z

I I I

,
I I I

Z Z Z

Z Z Z

,
X X I

X X I

X X I

,
I X X

I X X

I X X

〉
.

Here the stabilizers appear as they would on the 3× 3 lattice of qubits.

We can also choose our gauge operators in such a way so that they form four anticommuting

pairs
(
GZ
i , G

X
i

)
:

 Z I I

Z I I

I I I

,
X I X

I I I

I I I

 ,

 I I I

Z I I

Z I I

,
I I I

I I I

X I X

 ,

 I Z I

I Z I

I I I

,
I X X

I I I

I I I

 ,

 I I I

I Z I

I Z I

,
I I I

I I I

I X X

 .

Note that if we pick a gauge and look at the subspace stabilized by the abelian group
〈
S, GZ

1 , G
Z
2 , G

Z
3 , G

Z
4

〉
,

it is the same as the original 9-qubit Shor code (up to a permutation of the qubits).

We can apply our hybrid code construction from Theorem 36 to the Bacon-Casaccino subsys-

tem codes to construct hybrid codes out of a pair of linear codes.

Theorem 43. For i ∈ {1, 2}, let Ci ⊆ Fni
q be an Fq-linear code with parameters [ni, ki, di]q. Then

there exists a hybrid code with the parameters

[[n1n2, k1k2 : (n1 − k1)(n2 − k2) , d :c]]q ,

where d = min{d1, d2}, c ≥ min
{
d,max

{
d⊥1 , d

⊥
2

}}
, and d⊥i denotes the minimum distance of

C⊥
i .

Proof. Without loss of generality, suppose that d⊥2 ≥ d⊥1 . Using Theorems 36 and 41, we construct
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a hybrid code, gauge fixing all of theGZ(a)
i operators. The only thing that needs to be checked is the

classical distance c = wt(N(S) \N(S0)). Since all of the translation operators are tensor products

of X-type operators and the identity matrix, we only need to consider the minimum distance of

operators of this type. Note that it may be possible to do better than this by picking both GZ
i

and GX
j operators that commute to be fixed. Suppose that d⊥2 ≤ d. Then G does not contain any

X-type operators of weight less than d⊥2 , so N(S) also does not contain any X-type operators of

weight less than d⊥2 , giving us the lower bound c ≥ d⊥2 . If d ≤ d⊥2 , there may be an element

of (N(S) \N(S0)) \ G of weight less than d⊥2 , since a logical quantum X-type operator and a

translation operator together might have a weight less than each operator separately. However, this

weight will still be lower bounded by d. Following the same argument with d⊥1 ≥ d⊥2 gives us the

lower bound on the classical minimum distance.

Example 44. We will continue to use the 9-qubit Bacon-Shor subsystem code from Example

42 and show how to turn it into a [[9, 1:4, 3:2]]2 hybrid code. Gauge fix the subsystem code by

letting
〈
S, GZ

1 , G
Z
2 , G

Z
3 , G

Z
4

〉
be the stabilizer of the code C0. To send the classical binary message

m = m1m2m3m4, use
(
GX

1

)m1
(
GX

2

)m2
(
GX

3

)m3
(
GX

4

)m4 as the translation operator.

Similar to the previous examples, we can use the quantum and classical Singleton bounds to

show that this code is superior to any hybrid code constructed using Proposition 32.

As mentioned above, this code cannot be compared to any of the other length 9 hybrid codes

mentioned in this paper, but it does have the distinction of being able to transmit the conjectured

maximal amount of total information, as it achieves the bound in Conjecture 37. In fact, this

property is shared by all of the hybrid Bacon-Shor codes:

Corollary 45. Hybrid codes with parameters

[[
n2, 1:(n− 1)2 , n :2

]]
2

can be constructed from Bacon-Shor subsystem codes, and no code constructed using Proposition

32 can have these parameters. Furthermore, these codes saturate the bound given in Conjecture
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37.

3.5 Application to Faulty Syndrome Measurement Errors

In this section we show how hybrid codes can be applied to help mitigate the effects of faulty

syndrome measurements, and how they can be used to inspire the construction of new quantum

data-syndrome codes. In fault-tolerant quantum computing, we look to prevent errors caused by

quantum gates operating on the quantum information. In some cases, such as trapped ion tech-

nologies, it may be assumed that the error rate for measurements (in the Z-basis), which are called

faulty syndrome measurements, is much greater than the error rate for all other quantum gates [8].

To model this we will assume that the error rate for all non-measurements is 0, so as to focus on

errors caused by faulty measurements.

In [96], Shor gave a syndrome-extraction scheme for stabilizer codes in which each stabilizer

generator is measured multiple times. This effectively means that each bit of the syndrome is pro-

tected against faulty-syndrome errors with its own separate repetition code. Later, more efficient

schemes for protecting against these errors were given by Ashikhmin, Lai, and Brun [8, 9, 10] and

Fujiwara [36] in their formulation of quantum data-syndrome codes.

3.5.1 Correcting Faulty Syndrome Measurement Errors with Hybrid Codes

The main idea behind our scheme will be to start with a hybrid code where the logical classical

information is in a known state (without loss of generality we assume that the m encoded classical

bits are set to |0m⟩). As the logical classical bits are fixed to a set state, they cannot be used for

transmitting information across the quantum channel. Rather, we will use the extra redundency

they provide to protect against faulty syndrome measurements. Once the quantum information has

been received, the decoding procedure occurs in two steps: first, we extract the syndromes of the

quantum stabilizers onto the logical classical bits (in particular, we will put multiple syndromes

onto the same encoded classical bit to form a parity bit for the syndrome), and then we extract both

the quantum syndrome as well as the classical information as normal.

For a stabilizer code, syndrome extraction is typically done by measuring each stabilizer gen-
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Figure 3.3: Quantum circuit for measuring Z and X operators (left and right respectively) with
one ancilla qubit.

erator using an ancilla qubit, where each non-identity component of the generator is placed on the

ancilla using the quantum circuits from Figure 3.3. In effect we are constructing an encoded CNOT

gate whose control is the encoded redundancy qubit associated with the stabilizer generator being

measured and whose target is the ancilla qubit to be measured. We would now like to construct an

encoded CNOT gate whose target is instead the encoded classical bit of our hybrid code.

Define the state |a1 . . . akb1 . . . bmc1 . . . cn−k−m⟩L as the state generated by the abelian group

〈
(−1)a1 Z1, . . . , (−1)ak Zk, (−1)b1 g1, . . . , (−1)bm gm, (−1)c1 s1, . . . , (−1)cn−k−m sn−k−m

〉
,

where Zi are the logical operators on the encoded quantum information, gi the generators of SC ,

and si the generators of SQ. This is an extended version of our encoded basis states, where we

additionally have the added “redundancy” qubits added during the encoding process. An encoded

CNOT gate with the i-th encoded redundancy qubit and j-th encoded classical qubit as its control

and target respectively is given by

∑
a∈Fk

2
b∈Fm

2

c∈Fn−k−m
2

|a1 . . . akb1 . . . bj−1 (bj ⊕ ci) bj+1 . . . bmc1 . . . cn−k−m⟩ ⟨abc| . (3.1)

Example 46. We will demonstrate this scheme for protecting against faulty syndrome measure-

ment errors with the [[7, 1:1, 3]]2 hybrid code from Example 20, and we will place all five er-

ror syndrome measurements and redirect them to the encoded classical qubit, which when mea-
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Figure 3.4: Quantum circuit for extracting the error syndrome from the first stabilizer generator of
the [[7, 1:1, 3]]2 hybrid code from Example 20 and placing it on the encoded classical qubit.

sured will act as a parity bit for the error syndrome. We can get the encoded logical operators

X = ZIXIXII and Z = IZIIZZI by taking the logical operators of the original [[6, 1, 3]]2 code

from [91] and extending them each by a single identity operator.

The quantum circuit that performs the extraction of the error syndrome associated with the

first stabilizer generator and places it on the encoded classical qubit is given in Figure 3.4. The

quantum circuits implementing the other four encoded CNOT gates are included in Appendix A.

These quantum circuits were decomposed using the software3 implementing the work of Can et al.

in [24].

We then proceed to extract both the error syndromes associated with the quantum stabilizer

generators as well as the classical information which is acting similar to a parity bit for the error

syndrome. The error syndromes of all the single-qubit Pauli errors as well as any single bit-flip on

the error syndrome are given in Table 3.1. Note that with the exception of Y7 and Z7, all single-

qubit Pauli errors have distinct syndromes of even weight, meaning that all weight-1 syndromes are

free to be used by single bit-flips caused by faulty syndrome measurements. The syndrome shared

3Available at https://github.com/nrenga/symplectic-arxiv18a.
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Error Syndrome Error Syndrome Error Syndrome
X1 110011 Y1 010010 Z1 100001
X2 001010 Y2 011011 Z2 010001
X3 100010 Y3 101011 Z3 001001
X4 000101 Y4 101101 Z4 101000
X5 000011 Y5 111010 Z5 111001
X6 110101 Y6 011101 Z6 101000
X7 000000 Y7 000111 Z7 000111
F1 100000 F2 010000 F3 001000
F4 000100 F5 000010 F6 000001

Table 3.1: Syndromes of single-qubit Pauli errors and faulty syndrome measurement errors for the
[[7, 1:1, 3]]2 hybrid code. Here Fi represents a bit-flip error on the i-th bit of the error syndrome
caused by a faulty measurement.

by Y7 and Z7 is a result of measuring our classical stabilizer generator from SC , but as it is not a

weight-1 syndrome there is no overlap with the syndromes used by the faulty syndrome measure-

ment errors. Additionally, we do not need to distinguish between the two errors as applying either

a Y - or a Z-operator to the final qubit is sufficient to correct either error. Therefore, this scheme

can correct either one error to the quantum information or one faulty syndrome measurement.

3.5.2 New Quantum Data-Syndrome Codes

An alternate approach to protecting against faulty syndrome measurement errors is the use

of quantum data-syndrome codes [10, 36]. These codes generalize Shor’s syndrome extraction

technique [96] by extracting combinations of the stabilizer generators instead of extracting each of

the n− k generators multiple times. We call an [[n, k, d]]q stabilizer code an [[n, k, d : r]]q quantum

data-syndrome code if it can correct ⌊(d− 1) /2⌋ errors either to the quantum information or to the

extracted error syndrome by measuring n − k + r stabilizer elements (i.e., r additional elements

beyond the normal n− k).

In [36], Fujiwara showed that any [[n, k, 3]]2 stabilizer code can be transformed into an [[n, k, 3 : 1]]2

quantum data syndrome code by measuring an additional stabilizer element combining all of the

n − k stabilizer generators. The following question is also posed: when is it possible to have

quantum data-syndrome codes with r = 0? We give three new quantum data-syndrome codes
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with parameters [[6, 1, 3 : 0]]2, [[7, 1, 3 : 0]]2, and [[9, 3, 3 : 0]]2 inspired by our decoding scheme from

Section 3.5.1.

Example 47. We start by looking at the [[7, 1:1, 3]]2 hybrid code we used in Example 46. The

process of extracting the error syndromes of the stabilizer generators and placing it on the encoded

classical qubit is equivalent to measuring a modified stabilizer element instead of our classical

stabilizer generator. In our example, if we take si to be the syndrome of the i-th stabilizer generator

Si and s′ the syndrome of the classical stabilizer generator S ′, then when we measure the classical

stabilizer generator S ′ we will measure s1 ⊕ · · · ⊕ s5 ⊕ s′. However this is the same syndrome

that would be measured if did not do the encoded CNOT gates in Figure 3.4 and Appendix A and

measured the stabilizer element S1 · · ·S5S
′ instead of S ′. This gives us a code with the following

stabilizer generators:



Y I Z X X Y I
Z X I I X Z I
I Z X X X X I
I I I Z I Z X
Z Z Z I Z I X
Y X X Z Y Z X


. (3.2)

This code has the same syndromes as the hybrid code when used in conjunctions with the

encoded CNOT gates as in Example 46, which are given in Table 3.1, making it a [[7, 1, 3 : 0]]2

quantum data-syndrome code. This code is the same as the inner code C0 of the hybrid code,

although with a different choice of generators. In [36], Fujiwara showed that the 7-qubit Steane

code [98] could also be used as a quantum data-syndrome code with the same parameters as the

code in this example, albeit with a non-standard choice of stabilizer generators. The code here is

non-equivalent to the Steane code, and in particular it is impure, which appears to give us some

potential advantage when constructing the codes, as there are more error syndromes available.

However, since the Steane code also has r = 0, it appears that impurity is not necessary for the

construction of good quantum data-syndrome codes.

In the same way, we can additionally construct a new [[9, 3, 3 : 0]]2 quantum data syndrome
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code from the [[9, 3:1, 3]]2 hybrid code whose stabilizer generators were given in Equation 2.8:



X X X X X X X X I
Z Z Z Z Z Z Z Z I
X I X I Z Y Z Y I
X I Y Z X I Y Z X
X Z I Y I Y X Z X
Z X X Z I Y Y I X


. (3.3)

Here, we must make a modification and add an extra X-operator in the last column, but again

this is still the same inner code as the hybrid code. This modification makes it so that the errors Y9

and Z9 do not have syndromes of weight 1, which would conflict with the syndromes designated

for faulty syndrome measurement errors.

Example 48. Finally, we give a [[6, 1, 3 : 0]]2 quantum data-syndrome code from the [[6, 1:1, 3:2]]2

hybrid code from Example 38, using the same approach as in Example 47:


Y I Z X X Y
Z X I I X Z
I Z X X X X
Z Z Z I Z I
Y X X X Y I

 .

It is interesting that a hybrid code with c < d is sufficient to construct a quantum data-syndrome

code with a minimum distance of d. This might suggest that the classical minimum distance is less

important than the existence of an unused subsystem that the hybrid code provides, meaning that

subsystem codes might be a natural choice for constructing future quantum data-syndrome codes

with r = 0.

We end this section with a brief comparison between the two strategies given for dealing with

faulty syndrome extraction. The first strategy using hybrid codes has the advantage of measuring

the classical stabilizer generators, which are typically low-weight and are less likely to cause faulty

syndrome-extraction errors. On the other hand, they have the disadvantage of having a large over-

head in the form of the encoded CNOT gates in Figure 3.4 and Appendix A, which has the potential

82



for introducing more errors if that possibility is not ignored as we did in this section, requiring the

use of fault-tolerant encoded gates. The second strategy of using quantum data-syndrome codes is

the opposite: we have no need to worry about errors occurring during a preprocessing stage, but

we now have higher-weight stabilizer generators to contend with. The trade-offs between these

two strategies is interesting and requires more study in the future.

3.6 Conclusion

In this paper we have shown how to encode classical information in the gauge qudits of sub-

system codes, allowing us to use previously unused logical qudits to transmit information. The

hybrid codes that arise from this construction are allowed to have separate minimum distances for

the quantum and classical information. We give several examples of good hybrid codes using this

construction on subsystem codes, as well as use the Bacon-Casaccino subsystem code construc-

tion to construct hybrid stabilizer codes from a pair of classical codes and their duals, including

the Bacon-Shor hybrid codes constructed from the classical repetition codes. We also conjecture

that hybrid stabilizer codes must satisfy a variant of the quantum Singleton bound, which follows

from a similar conjecture for subsystem codes. Finally, we give an application where hybrid codes

are used to protect against faulty syndrome measurement errors and show how hybrid codes can

inspire the construction of new quantum data-syndrome codes.

Previous work on hybrid codes required the construction of good families of degenerate quan-

tum codes to construct families of genuine hybrid codes. By relating hybrid codes to the well-

studied class of subsystem codes and separating the quantum and classical minimum distances of

the code, it should be easier to find families of genuine hybrid codes. One important question raised

by having separate minimum distances is that of bounds for hybrid codes when c ̸= d. In Conjec-

ture 37, the variant of the quantum Singleton bound does not put any restrictions on the classical

distance, so finding bounds such as the linear programming bounds for hybrid codes [41, 75] that

put restrictions on both minimum distances would allow for a better understanding of these codes.

Other topics of future research include the cases where errors to either the quantum or classical

information are corrected while errors to the other are only detected, as we only considered the
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cases where errors were either both detected or both corrected, as well as exploring the connection

between good quantum data-syndrome codes and hybrid or subsystem codes.
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4. WEIGHT ENUMERATORS FOR NONADDITIVE CODES

The material in this chapter comes from the paper [76]1. In this chapter, all codes are assumed

to be binary (i.e., over F2) and we use the notation CGn(S) for the centralizer of the code instead

of the notation N(S) used in the rest of the paper.

4.1 Introduction

The weight enumerators of classical error-correcting codes arise in the derivation of the up-

per bounds for code parameters via linear programming [30]. These weight enumerators admit

a combinatorial interpretation, as for additive codes they count the number of codewords of each

weight in the code, and more generally for nonadditive codes they describe the distances between

each pair of codewords. The weight enumerators of a code and its dual code are connected by the

MacWilliams identity [69].

Shor and Laflamme defined a pair of weight enumerators for quantum codes [94] which were

used by Ashikhmin and Litsyn to develop linear programming bounds for the parameters of quan-

tum codes [11]. Rains also defined the similar unitary enumerators [84], as well as the quantum

analogue of the shadow enumerators [87] which provide sharper linear programming bounds when

used in conjunction with the Shor-Laflamme weight enumerators. Weight enumerators have also

been used to derive linear programming bounds for other quantum code variants, such as subsys-

tem codes [4], asymmetric quantum codes [90], hybrid codes [41], entanglement-assisted codes

[65], and quantum amplitude damping codes [80].

While the Shor-Laflamme weight enumerators do not in general have a known combinatorial

interpretation similar to the weight enumerators of classical codes, they do for the well-known class

of stabilizer codes. The A(z) Shor-Laflamme weight enumerator counts the number of elements

of each weight in the stabilizer group associated with the stabilizer code, while the B(z) Shor-

1Results reproduced with permission from “A Combinatorial Interpretation for the Shor-Laflamme Weight Enu-
merators of CWS Codes” by Andrew Nemec and Andreas Klappenecker, 2022. To appear in IEEE Transaction on
Information Theory. Copyright 2022 by IEEE.
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Laflamme weight enumerator does the same for elements in the centralizer of the stabilizer group

[39]. These correspond to the weight enumerators of a classical self-orthogonal additive code and

its dual code.

For non-stabilizer quantum codes (known as nonadditive quantum codes), little is known about

the weight enumerators. The unitary enumerators may be interpreted as the binomial moments of

the distance distribution of classical codes [12], and the Shor-Laflamme weight enumerator A(z)

can be interpreted as the two-norms of the j-body correlations of the code [51], but their remains

no combinatorial interpretation of the Shor-Laflamme weight enumerator B(z). In this paper, we

show that for the nonadditive codeword stabilized codes [29], the Shor-Laflamme weight enumera-

torB(z) may be interpreted as the distance enumerator of an associated nonadditive classical code,

partially answering a question recently posed by Ball, Centelles, and Huber [15].

4.2 Background

For classical codes, the distance between codewords is given by the Hamming distance:

dH(x, y) = |{i | xi ̸= yi}| .

The distance distribution A of an (n,M, d) classical code C is a vector of length (n+ 1), where

Ai =
1

M
|{(x, y) | x, y ∈ C, dH(x, y) = i}| ,

meaning that Ai is the number of codewords at distance i from each other, normalized by the size

of the code. The polynomial

A(z) =
n∑
i=0

Aiz
i

is the distance enumerator of the code. The minimum distance d of the code is the smallest index

i ̸= 0 such that Ai is non-zero.

The Hamming weight of a codeword is the distance from the all zero codeword, that is wtH(x) =

dH(x, 0
n). If C is an additive code, that is a code which is closed under addition, then A counts
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the number of codewords of each weight, so

Ai = |{x | x ∈ C,wt(x) = i}| ,

and we call A the weight distribution and A(z) the weight enumerator of the code. The weight

enumerator of an additive code C is connected to the weight enumerator B(z) of its dual code C⊥

by the MacWilliams identity [30, 69]:

B(z) =
(1 + z)n

M
A

(
1− z

1 + z

)
.

For a nonadditive code, the MacWilliams identity may still be formally defined in the same way,

although the resultant polynomial in general does not correspond to the distance enumerator of any

code [68, 28].

An ((n,K, d)) quantum code C on n physical qubits is a K-dimensional subspace of the Hilbert

space C2n . Let X and Z be the Pauli operators

X =

0 1

1 0

 and Z =

1 0

0 −1

 .

A basis for the linear operators of the Hilbert space can be given by tensor products of the Pauli

operators:

En =
{
E1 ⊗ · · · ⊗ En | Ei = XaiZbi , ai, bi ∈ F2

}
.

Each element E ∈ En can be associated with a unique codeword (a | b) = (a1, . . . , an | b1, . . . , bn)

of length 2n. The distance between two codewords of this type is given by the symplectic distance:

ds((a | b) , (a′ | b′)) = |{k | (ak, bk) ̸= (a′k, b
′
k)}| .

The symplectic weight wt(E) is the number of non-identity tensor components Ei make up E.
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The most well studied class of quantum codes are the stabilizer codes [39]. An [[n, k, d]] stabi-

lizer code is defined by its stabilizer group S, which is generated by n − k mutually commuting

independent operators Si ∈ Gn (which does not include −I), where

Gn =
{
iℓE | ℓ ∈ Z4, E ∈ En

}
is the error group on n qubits. The stabilizer code is then the 2k-dimensional joint +1-eigenspace

of S. Associated with the stabilizer group is its centralizer in CGn(S), the group of all elements in

Gn that commute with every element in S. These are the operators that act as the logical operators

on the encoded states of the code.

Shor and Laflamme [94] defined a pair of weight enumerators A(z) and B(x) for quantum

codes in the following fashion:

Ai =
1

K2

∑
E∈En

wt(E)=i

tr(EP ) tr(E∗P )

and

Bi =
1

K

∑
E∈En

wt(E)=i

tr(EPE∗P ) ,

where P is the orthogonal projector onto the code C. In general, the weight enumerators of quan-

tum codes do not seem to admit as nice a combinatorial interpretation as they do for classical

codes. However, for stabilizer codes there is such an interpretation, as A(z) counts the number of

elements of each weight in the stabilizer group S and B(z) counts the number of elements in the

centralizer CGn(S) (modulo the phases on the Pauli elements). Additionally, each element of the

stabilizer and centralizer can be associated with a unique (up to phase) codeword of length 2n. Let

C be the code containing the set of codewords associated with S. Then its symplectic dual C⊥ is

the code associated with CGn(S). Additionally, since S ≤ CGn(S) (as S is Abelian), we have that

C ⊆ C⊥, that is C is self-orthogonal.
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4.3 Weight Enumerators of CWS Codes

Codeword stabilized (CWS) codes were introduced by Cross et al. [29] as a framework to

construct quantum codes that includes all stabilizer codes and most nonadditive codes with good

parameters, for example, see [88, 104, 103]. A CWS code is comprised of two objects: a stabi-

lizer group S generated by n mutually commuting independent elements of Gn and containing no

scalar multiples of I , so S stabilizes a single stabilizer state |φ⟩ which comprises a 1-dimensional

stabilizer code, and a collection T of K commuting codeword operators Ti ∈ Gn such that each Ti

is from a separate coset of Gn/S. Without loss of generality, we can choose T1 = I . We note that

the results of this paper also apply to the union stabilizer code construction of Grassl and Rötteler

[42], as it is an alternative way to derive the CWS construction [43].

The set T S =
{
iℓTiSj | Ti ∈ T , Sj ∈ S, ℓ ∈ Z4

}
plays a similar role to the centralizer of a

stabilizer code, and a CWS code is a stabilizer code precisely when T S forms an abelian group

under multiplication. We associate with this set a classical (and in general nonadditive) code C,

constructed using the additive code D associated with the stabilizer group S and the classical

codewords ti associated with the codeword operators Ti, so that

C =
12⋃
i=1

(ti +D) . (4.1)

This code is referred to as the union normalizer code by Grassl and Rötteler [42]. As an example,

the components describing the ((9, 12, 3)) CWS code from [103] is given in Figure 4.1. We show

now that the Shor-Laflamme weight enumerator B(z) of a CWS code is the distance enumerator

of this classical code C associated with the set T S .

Theorem 49. Let C be a CWS quantum code. Let C be the classical symplectic code associated

with the set T S . Then the Shor-Laflamme weight enumerator B(z) of the quantum code C is the

distance enumerator of the classical code C.

Proof. Let P be the projector onto C, S be the stabilizer group of the stabilizer state |φ⟩, and
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T = {T1, T2, . . . , TK} be the set of codeword operators. We can write P as

P =
K∑
i=1

Ti |φ⟩ ⟨φ|T ∗
i .

We can expand the weight enumerator as

Bd =
1

K

∑
E∈En

wt(E)=d

tr(EPE∗P )

=
1

K

∑
E∈En

wt(E)=d

K∑
i,j=1

∣∣⟨φ|T ∗
j ETi |φ⟩

∣∣2 .
Since elements of the Pauli group either commute or anticommute with each other, it follows

that
∣∣⟨φ|T ∗

j ETi |φ⟩
∣∣2 = 1 for all error operators E ∈ T ∗

i TjS. Furthermore, if E /∈ T ∗
i TjS, we may

write E = T ′F , where F ∈ S and T ′ ̸= T ∗
i Tj = TiT

∗
j is a coset representative of T ′S ≠ T ∗

i TjS.

Then

⟨φ|T ∗
j ETi |φ⟩ = ±⟨φ|T ∗

j TiT
′F |φ⟩

= ±⟨φ|T ∗
j TiT

′ |φ⟩

= 0,

as there must be a stabilizer element s ∈ S that anticommutes with T ∗
i TjT

′, and so

±⟨φ|T ∗
j TiT

′ |φ⟩ = ±⟨φ| sT ∗
j TiT

′ |φ⟩

= ∓⟨φ|T ∗
j TiT

′s |φ⟩

= ∓⟨φ|T ∗
j TiT

′ |φ⟩ ,
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implying that ⟨φ|T ∗
j TiT

′ |φ⟩ = 0. Therefore, we have that

∣∣⟨φ|T ∗
j ETi |φ⟩

∣∣2 =

1, E ∈ T ∗

i TjS

0, otherwise

Let S be the set of 2n classical codewords associated with the elements of S, T = {t1, t2, . . . , tk}

the set of classical codewords associated with T , and F a set of 2n classical codewords such that

T ⊂ F and FS = {0, 1}2n. Any codeword may be written as f + s, where f ∈ F and s ∈ S.

Given two pairs of codewords c = (f + s, g + u) , c′ = (f ′ + s′, g′ + u′) ∈ {0, 1}4n, we define

the equivalence relation ∼ such that c ∼ c′ if and only if s + u = s′ + u′, f = f ′, and g = g′.

It is straightforward to check that ∼ is indeed a reflexive, symmetric, and transitive relation, and

therefore an equivalence relation.

Since S is a normal subgroup of (FS)2, the quotient group (FS)2 /S is isomorphic to F 2S.

Denote elements of this set by f + g + w, where f, g ∈ F , w ∈ S. For all pairs of codewords

(f + s, g + u) in the same partition, ds(f + s, g + u) = wts(f + g + w), where w = s + u. This

means that for the classical code C = TS, the distance distribution

Ad =
1

K2n
|{(ti + s, tj + u) | ds(ti + s, tj + u) = d}|

=
1

K
|{ti + tj + w | ti, tj ∈ T,w ∈ S,

wts(ti + tj + w) = d}|.

We associate ti, tj , andw with the quantum operators Ti, Tj , andW . Note that
∣∣⟨φ|T ∗

j ETi |φ⟩
∣∣2 =

1 if and only if E = T ∗
i TjW , meaning that the weight distribution of the quantum code is iden-

tical to the distance distribution of the classical code. In the case that there are two (or more)

pairs of codeword operators such that TiTj = TkTℓ, the operator E might be counted twice by

both
∣∣⟨φ|T ∗

j ETi |φ⟩
∣∣2 and |⟨φ|T ∗

ℓ ETk |φ⟩|
2, but this is offset by E not being checked separately

as E = T ∗
i TjW and E = T ∗

kTℓW .
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G =



1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0
0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 1


Figure 4.1: Generating matrix and coset representatives for the classical code associated with the
((9, 12, 3)) CWS quantum code, with the generating matrix for the linear code D above the dashed
line and the 12 codewords in T below it.

This shows that the Shor-Laflamme weight enumeratorB(z) of the quantum code C is the same

as the distance enumerator of its associated classical code C.

Using the ((9, 12, 3)) CWS code constructed by Yu et al. [103] as an example, the code has

Shor-Laflamme weight enumerators

A(z) = 1 +
2

3
z4 +

32

3
z6 +

64

3
z7 + 9z8
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and

B(z) = 1 + 68z3 + 242z4 + 684z5 + 1464z6

+ 1852z7 + 1365z8 + 468z9.

The nonadditive classical code C associated with the set T S is constructed using Equation 4.1,

where the linear code D is generated by the 9 codewords above the dashed line in Figure 4.1, and

the ti are the 12 codewords of the set T below the dashed line. Calculating the symplectic distance

between each pair of codewords, we find that the distance enumerator

A′(z) = 1 + 68z3 + 242z4 + 684z5 + 1464z6

+ 1852z7 + 1365z8 + 468z9

is identical to the Shor-Laflamme weight enumerator B(z) of the quantum code.

One interesting observation about the ((9, 12, 3)) code is that the distance enumerator A′(z)

of the associated classical code C has all integral-valued coefficients which count the number

of codewords of each weight in the code, so the Shor-Laflamme weight enumerator B(z) also

counts the number of elements of each weight in T S like a Shor-Laflamme weight enumerator for

stabilizer codes. This also holds true for the ((10, 24, 3)) CWS code constructed by Yu et al. [104],

but not for the ((7, 22, 2)) CWS code constructed by Smolin et al. [97], the weight enumerator of

which has nonintegral coefficients.

4.4 Conclusion

In this paper we give a combinatorial interpretation for the Shor-Laflamme weight enumer-

ator B(z) for codeword stabilized codes, by connecting the centralizer analogue to a classical

code. One question that remains is whether there is a similar combinatorial interpretation for the

Shor-Laflamme weight enumerators for nonadditive codes not equivalent to CWS codes. Another

question is which CWS codes are similar to the ((9, 12, 3)) and ((10, 24, 3)) codes whose weight

93



enumerators B(z) count the number of elements in T S , similar to the case with stabilizer codes.
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5. CONCLUSION AND FUTURE DIRECTIONS

In this dissertation, we expand the theory of quantum-classical hybrid codes and nonadditive

quantum code, both of which are generalizations of the well-studied class of quantum stabilizer

codes. Hybrid codes encode quantum and classical information together, and as many quantum

comminications protocols involve both quantum and classical information, they may potentially

lead to more efficient quantum communications schemes. Nonadditive codes promise the ability

to encode more quantum information than a stabilizer code of the same length, at the price of

sacrificing some of the structure inherent to stabilizer codes.

We first gave some general results about hybrid codes, showing that genuine hybrid codes must

be constructed out of impure quantum codes and giving linear-programming bounds for general

hybrid codes. We then gave the first known families of genuine hybrid codes, including a family

of single-error-detecting hybrid codes as well as a more general construction that gave multiple

new hybrid codes of small length. These small-length hybrid codes were then expanded into their

own infinite families of codes using a stabilizer pasting technique. As each of these constructions

were inspired by constructions of nonadditive quantum codes, it would be interesting to further

investigate the relationship between these two classes of codes, and to see if constructions of hybrid

codes can be used to inspire new constructions of nonadditive quantum codes. One future direction

would be to investigate the construction in Section 2.4 can be extended to include the [[11, 4:2, 3]]2

hybrid code in Example 19 which has a different “gadget” appended to the end. Another future

direction would be to see if there are any nonadditive hybrid codes (with the amount of quantum

and/or classical information not a prime power of q) that may be constructed using the CWS/union

stabilizer codes [29, 42] that can encode more information than the codes in Chapter 36.

We also investigated a more general type of hybrid code where the quantum and classical infor-

mation are protected to different degrees, with each having a separate minimum distance. We gave

a very general construction of hybrid codes of this type that starts with quantum subsystem codes,

and give as a special case the hybrid Bacon-Casaccino codes which can be constructed directly
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from a pair of classical linear codes. One interesting open question here are good upper bounds

on the parameters of hybrid codes with two minimum distances. This construction also seems

like it should be generalizable to include gauge subsystems as well as preshared entanglement (see

[47, 61, 92] for partial results along this line). We also showed how hybrid codes can be used to

protect against faulty syndrome measurement errors and how they can inspire new constructions of

quantum data-syndrome codes. A future research direction would be to investigate how subsystem

codes can improve the current quantum data-syndrome codes by requiring fewer measurements,

and whether the “gadgets” in the construction in Section 2.4 can be useful for constructing fault-

tolerant schemes in the vein of flag fault-tolerance [26, 27].

Finally, we give a result regarding the Shor-Laflamme weight enumerators of the nonadditive

codeword stabilized codes, showing that they may be viewed as the distance enumerator of an as-

sociated classical code. This raises many new questions regarding combinatorial interpretations of

the weight enumerators of non-CWS codes and we hope that it may lead to a better understanding

of the structure of nonadditive quantum codes.
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APPENDIX A

QUANTUM CIRCUITS FOR EXAMPLE 46

This appendix contains the remaining four encoded CNOT operators from Example 46 in Sec-

tion 3.5.1. The software used to decompose these quantum circuits can be found at https:

//github.com/nrenga/symplectic-arxiv18a.

H H
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H H

H H

H H

H H Z

H H

Figure A.1: Quantum circuit for extracting the error syndrome from the second stabilizer generator
of the [[7, 1:1, 3]]2 hybrid code from Example 20 and placing it on the encoded classical qubit.
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Figure A.2: Quantum circuit for extracting the error syndrome from the third stabilizer generator
of the [[7, 1:1, 3]]2 hybrid code from Example 20 and placing it on the encoded classical qubit.
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Figure A.3: Quantum circuit for extracting the error syndrome from the fourth stabilizer generator
of the [[7, 1:1, 3]]2 hybrid code from Example 20 and placing it on the encoded classical qubit.
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Figure A.4: Quantum circuit for extracting the error syndrome from the fifth stabilizer generator
of the [[7, 1:1, 3]]2 hybrid code from Example 20 and placing it on the encoded classical qubit.
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