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 ABSTRACT 

 

Decadal variations of the Atlantic meridional overturning circulation (AMOC) play a 

key role in decadal climate predictions. Previous studies suggest that forced ocean — 

sea-ice (FOSI) model simulations, which can represent historical decadal variation of 

AMOC under the observation-based atmospheric forcing, can be used to initialize 

decadal climate predictions with high skill in the North Atlantic. However, the 

methodology of the FOSI initialization can generate large ocean initialization shocks, 

potentially lowering model predictive skill based on seasonal climate prediction studies. 

This study aims to address the initialization shock issue by developing and evaluating an 

alternative initialization strategy in which historical AMOC decadal variation is 

simulated in a fully coupled predictive model. It is shown that a simple initialization 

strategy that restores model sea-surface temperature (SST) and sea-surface salinity (SSS) 

to those of FOSI can effectively reproduce historical AMOC decadal variation and the 

associated dense water propagation in FOSI. This approach can be viewed as an 

extension of the SST-restoring technique widely used in the seasonal prediction 

community with a key emphasis on the inclusion of SSS restoring. Extensive model 

sensitivity experiments, including using observed SST and SSS as restoring target, are 

conducted to further investigate the role of SSS restoring in simulating historical AMOC 

decadal variability. The results suggest that restoring coupled model SSS to observed 

climatological SSS while restoring SST to full observed values can reproduce historical 

AMOC decadal variation in FOSI, indicating that the role of SSS restoring is primarily 
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to correct coupled model salinity bias, ensuring a realistic surface density distribution 

that is essential for a realistic simulation of AMOC decadal variation. Preliminary 

decadal prediction experiments using this simple coupled initialization strategy show 

that the historical AMOC decadal variation replicated by SST- and SSS- restoring in a 

coupled predictive model can indeed lead to improved model prediction skill in the 

North Atlantic compared to FOSI initialization. This new initialization strategy offers a 

potential improvement to decadal climate predictions by reducing initialization shock 

using only observed SST and SSS that are more readily available.  
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CHAPTER I  

INTRODUCTION  

1.1 Benefits and Challenges of Decadal Climate Prediction 

El Niño-Southern Oscillation (ENSO), Pacific Decadal Variability (PDV) and 

Atlantic Multidecadal Variability (AMV) are the most dominant modes of global sea 

surface temperatures (SST) after removing the warming trend (Tung et al., 2019). 

Among these three, ENSO is the dominant mode at interannual timescales and has 

already been studied extensively. Since the seminal work of Bjerknes (Bjerknes, 1969), a 

vast amount of research has been carried out to understand the structure and evolution of 

ENSO (Wallace et al., 1998 and references therein), as well as ENSO mechanism 

(Philander, 1990; Neelin et al., 1998; Dijkstra, 2006). This understanding along with the 

establishment of the tropical ocean-atmosphere observing system (TAO array, 

https://www.pmel.noaa.gov/gtmba/building-tao) has laid the foundation for seasonal 

climate prediction, which has been in operation since the 1980s. Skillful ENSO-based 

seasonal climate predictions have brought immeasurable benefits for society (e.g. Latif 

et al., 1998; Hansen et al., 2002). 

However, seasonal climate predictions alone are not sufficient to solve climate 

issues that occur over the longer timescales (Kushnir et al., 2019). Sahel droughts over 

West Africa, for example, cannot be fully explained by ENSO-related SST in the Pacific 

(Giannini et al. 2003) and occur on decadal timescales (Rodríguez-Fonseca et al., 2015 

and references therein; Villamayor et al., 2015). Atlantic major hurricane frequency also 

exhibits multidecadal variability based on observations since the 1940s (Landsea et al., 
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1999; Goldenberg et al., 2001; Yan et al., 2017). Observational studies point out that 

AMV is a leading factor causing sea level pressure anomalies between subtropical and 

subpolar North Atlantic, which can have a major impact on the North Atlantic 

westerlies, precipitation, surface heat loss and so on (Zhang et al., 2019 and references 

therein). Given considerable impact of decadal climate variability on society and 

environment, developing the capability of decadal climate prediction can be extremely 

valuable and beneficial (Smith et al., 2019). Nevertheless, compared to ENSO-based 

seasonal climate predictions, decadal climate prediction efforts which started much later 

in the early 2000s (Meehl et al., 2009) are much more challenging. This may be due to 

combined reasons of 1) a less well-established theoretical basis for decadal climate 

prediction and 2) an inadequate observing system for initializing decadal climate 

prediction. 

One of the active research areas in decadal climate prediction is the predictability 

of the AMV in the North Atlantic, and many studies indicate that AMV’s impact may be 

far beyond the North Atlantic with some studies suggesting an impact of AMV on PDV 

(e.g. Zhang & Delworth, 2007). The traditional definition of AMV index is a linearly 

detrended SST anomalies averaged over the entire North Atlantic subject to a low-pass 

filter. Regression of the AMV index on SST anomalies reveals an inhomogenous 

warming amplitudes (horseshoe pattern) in the North Atlantic with strong warming in 

the subpolar North Atlantic and cooling in the South Atlantic (Figure 1.1). The leading 

driver of AMV is still under considerable debate because of certainties raised from the 

relatively short observation record, and the deficiency of a coupled climate model 
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leading to large model bias (e.g. Ruprich-Robert et al., 2021).  The weak coupling 

between atmosphere and ocean also makes it difficult for coupled climate models to 

fully capture AMV dynamics (e.g. Kim et al., 2018). 

Many studies suggest AMV is a result of internal ocean circulation variations 

associated with the Atlantic Meridional Overturning Circulation (AMOC). AMOC 

transports heat meridionally to the high latitudes of the North Atlantic and helps bring 

high-latitude changes to the tropics (Zhang et al.,2016). Yan et al. (2018) showed that 

low-frequency (LF) AMOC can generate AMV by regressing LF SST on LF AMOC 

index in the North Atlantic using multimodal simulations. The “horseshoe” patterns of 

AMV appeared in all simulations, exhibiting stronger amplitudes when the strength of 

AMOC was stronger. Zhang et al.(2019) summarized observed key elements of AMV 

such as the propagation of AMV SST anomalies along the “horseshoe” pathway, the 

anticorrelated variations between the upper and deep ocean temperature in the Subpolar 

North Atlantic (SPNA), the positive correlation between observed AMV and LF 

turbulent surface heat flux and so on, which could be reproduced by AMOC-driven 

AMV. For example, Zhang et al. (2016) found the surface turbulent heat flux damps the 

North Atlantic SST in a Coupled General Circulation Model (CGCM), however, it can 

play a leading role in the non AMOC-driven AMV model (a slab ocean model). The 

anticorrelation between subsurface and SST in tropical North Atlantic, another observed 

key element of AMV, also exists in CGCMs, which possibly results from the combined 

effects of AMOC and the thermocline adjustment (Zhang, 2007). In addition, it has been 

hypothesized that AMOC can provide a deep ocean memory for AMV decadal 
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prediction. Many modeling studies suggest a realistic AMOC initialization can lead to 

skillful decadal predictions of SST in the North Atlantic (Yeager et al., 2012; Karspeck 

et al., 2015 and references therein), and the stronger LF AMOC amplitudes in the 

simulations can lead to more predictable LF North Atlantic SSTs (Yan et al., 2018). 

Therefore, it is important to initialize a realistic AMOC variation for decadal prediction. 

Although the theory of AMOC-driven AMV is persuasive and has been 

supported by some observations, other studies show that AMV is a LF SST variation 

mainly forced by atmosphere (e.g., Booth et al., 2012; Cane et al., 2017; Clement et al., 

2015; Murphy et al., 2017). Radiative forcing, such as greenhouse gases and sulfate 

aerosols, and stochastic atmospheric forcing like the North Atlantic Oscillation (NAO) 

are considered two major sources of forcing for AMV. Booth et al. (2012) showed that 

anthropogenic aerosol forcing in the 20th century may produce an AMV-like pattern if 

climate models properly include aerosol-cloud microphysical effects, which is deficient 

for many coupled climate models. However, Zhang et al. (2013) argued that the model 

used by Booth et al. (2012) overestimated the aerosol effects leading to a decreasing 

warming trend in the upper ocean North Atlantic and a salinification trend in the SPNA, 

which are unrealistic. Mann et al. (2020) and Mann et al. (2021) directly questioned the 

existence of internal decadal or multidecadal oscillations in the climate model 

simulations. They pointed out the volcanic radiative forcing before the industrial period 

(1000-1835CE) and the competition of greenhouse gas and aerosols after the year 1850 

are the driving force behind the so-called “AMV”.  Mann et al. (2020) suggested that LF 

variability of radiative forcings can determine the LF SST variability after removing 
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linear trends. Mann et al. (2016) suspected it is the Pinatubo eruption (the second-largest 

volcanic eruption in the 20th century) in 1991, rather than the phase of internal decadal 

variability, which leads to the cold SSTs in the mid-1990s, an important information of 

initial conditions resulting in the success of predicting the early-2000s hiatus of global 

warming (Meehl et al., 2014). Clement et al. (2015) simulated AMV pattern using a slab 

ocean model, suggesting the NAO is the leading cause of AMV. However, the negative 

correlations between the net surface flux and the LF SST in SPNA are inconsistent with 

the observed AMV elements (Zhang et al., 2016). The successful prediction at decadal 

lead times also provide evidence shows the predictable AMV signal cannot be simply 

from the surface heat flux forcing, because the atmospheric forcing is unpredictable 

beyond its persistence (Zhang et al., 2016; Manne et al. 2020). 

In this study, we are taking the view that LF AMOC is a dominant driver of 

AMV, even though we are fully aware of the controversy about this issue. The focus of 

this study is on how to improve the representation of historical AMOC decadal variation 

in coupled climate models, rather than on the driver of AMV. We hypothesize an 

improved AMOC representation can lead to more skillful forecast of SST on decadal 

timescales.  

1.2 AMOC and Decadal Variability 

AMOC can be characterized by a streamfunction (Unit: Sv, 1 Sv=106 m3/s) of the 

zonal integrated meridional and vertical volume transport in depth or density coordinates 

(e.g., Buckley and Marshall, 2016; Zhang, 2010a, 2010b; Li et al., 2018). At any given 

time, this so-called overturning streamfunction is defined as follows: 
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AMOC*(y, z) = 	∫ ∫ vdxdz67
68

9
* ,                                                      (1) 

or,                            AMOC:(y, σ) = 	∫ ∫ vdxdσ67
68

:
:<=>

,                                                  (2) 

where AMOC* and AMOC: represent the AMOC streamfunction in depth and density 

coordinates, respectively, v is the meridional velocity, 𝜂 is the height of the free surface, 

𝜎ABC is the density surface. xe and xw are the eastern and western boundaries at a 

particular depth or density. Kwon and Frankignoul (2014) discussed the different focus 

of the circulation represented by AMOC* and AMOC:. They showed that AMOC* 

emphasizes the location of deep water formation, while AMOC: focuses on water mass 

formation and transformation. AMOC* and AMOC: are similar south of 40°N because the 

relatively weak density gradients between eastern and western basin. The higher 

latitudes, the more obvious differences occur between  AMOC* and AMOC:.  

As mentioned previously, decadal variability of AMOC is important for the 

variation in meridional transport of ocean heat, salinity, and carbon to adjust the balance 

between low and high latitudes, and between surface and deep oceans (Kostov et al., 

2014; Buckley and Marshall, 2016), which in turn can impact on the climate not only in 

the North Atlantic sector, including Europe and North America, but also the globe. 

However, the continuous measurement of the AMOC only began in the year 2004 when 

the RAPID-MOCHA array was established along 26.5°N in the North Atlantic (Smeed 

et al., 2019). Before 2004, AMOC can only be reconstructed based on paleo proxies, 

SST and Argos. The reconstructed AMOC suffers from larger uncertainties occasionally 

leading to controversial results due to different reconstructed methods and resolutions 
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(Mann et al., 2021). The birth of RAPID provided a new and reliable reference for the 

recent evolution of AMOC (e.g. Bryden et al, 2005; Moat et al., 2020). However, 26.5°N 

is a latitude where wind-driven ocean circulation plays a leading role in AMOC 

variability (Larson et al., 2020), and thus the RAPID time series does not provide a key 

constrain for AMOC-related decadal prediction. In contrast, the deep convection region 

in the high latitudes provide more critical information for predicting AMOC changes at 

decadal timescales.  

To better observe AMOC variation, and its connectivity with the tropics through 

the deep boundary current system, a new observational project – Overturning in the 

Subpolar North Atlantic (OSNAP) was launched in 2014 (Lozier et al., 2017; 

https://www.o-snap.org/). The observing system is divided into two legs: leg one extends 

from southern Labrador to the southwestern tip of Greenland (OSNAP West), the second 

leg extending from the southeastern tip of Greenland to Scotland (OSNAP East). The 

analysis from the 21-month OSNAP observations questioned the contribution of 

Labrador Sea Waters (LSW) formation to the AMOC variability which has been 

regarded as a key in the traditional view based on non-eddy-resolving climate model 

simulations (Lozier et al. 2019). Lozier et al. argued those non-eddy-resolving climate 

models simulate unrealistically strong LSW formation, and thus over-emphasize the role 

of LSW in AMOC decadal variability. However, a recent study by Yeager et al. (2021) 

shows, based on a multi-century eddy-resolved coupled climate model simulation, 

increasing model resolution results in a much improved simulation of LSW which is 

consistent with OSNAP observations, and still the decadal AMOC variation in the eddy-
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resolving model simulation is driven by LSW. Thus, the LSW-dominated AMOC 

decadal variation in non-eddy-resolving climate model simulations may still be a valid 

mechanism. This study will use a non-eddy resolving climate model to simulate 

historical AMOC decadal variation. 

Danabasoglu et al. (2016) compared the variation of AMOC from 1958 to 2007 

among twenty non-eddy-resolving ocean—sea-ice coupled models forced by the same 

observation-based atmospheric forcing. They showed nearly all models displayed a 

consistent decadal variation in the AMOC: steady from the late 1950s to the mid- to late-

1970s followed by an intensification till the mid- to late-1990s, and then a weakening 

towards the end of integration. These results are consistent with the AMOC variation 

inferred from observed surface fields (Latif et al., 2004; Huck et al., 2008; Swingedouw 

et al., 2013). This inverted U-shaped time variation is regarded as a defining 

characteristic of the AMOC decadal variation that is critical for decadal predictions. 

Capturing this AMOC decadal variation in initialized predictions is a key reason that 

initialized predictions have a better skill in forecasting North Atlantic SST at decadal 

times than uninitialized predictions (e.g., Robson et al., 2012; Yeager and Robson, 

2017). 

1.3 Initialization Methods for Decadal Climate Prediction 

1.3.1 A Brief Description of Initialization Technique 

Initial conditions are critically important for skillful decadal prediction (e.g.  

Boer et al., 2013; Yeager and Robson, 2017; Yeager et al., 2018). There are several 



 

9 

 

strategies to generate initial conditions, including a “brute force” method, “nudging” 

method, hindcast initialization, and coupled data assimilation (Meehl, 2021). 

The “brute force” method refers to a procedure where initiations are derived from 

an existed analysis or reanalysis product after interpolating the dataset to the model grid 

(Meehl, 2021). One disadvantage of this method is the existence of possible mismatches 

between different components (ocean and atmosphere for instance) and mismatches 

between analysis/reanalysis state and model state, which may lead to initialization 

shocks and large model drift.  

“Nudging” method or “restoring” method may be used to reduce, to some extent, 

these mismatches, which may lead to improved forecast skill. This method typically 

involves relaxing the prediction model state to a “truth” which can be derived from a 

reanalysis product or observational source. By combining the observational information 

directly into prediction models, which has already been applied to seasonal climate 

prediction and shown some success in improving model forecast skill (e.g., Chen et al., 

1995), Keelyside et al. (2008) extended this method to decadal prediction and showed an 

improved surface temperature hindcast skill in parts of the North Atlantic. The number 

of selected restoring variables and restoring strength are important: too many variables 

may disrupt the prediction modeling system; too strong “nudging” may lose the 

effectiveness of model adjustment, however, too weak “nudging” may miss the observed 

information.  

Hindcast initialization is to derive initial conditions from a forced model 

simulation where forcing is based on observations. The decadal prediction experiment 
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by Yeager et al. (2018) is based on this initialization method. They took the last forcing 

cycle of forced ocean – sea-ice (FOSI) model simulations using observation-based 

atmospheric forcing to derive initial conditions for a decadal prediction large ensemble 

(DPLE) experiment using the Community Earth System Model (CESM). The results 

show more skillful prediction of North Atlantic SST anomalies and upper ocean heat 

content anomalies than that of uninitialized simulations and persistent predictions at 

decadal timescales. The skill of SST prediction also leads to a skillful prediction of 

monsoonal rainfall associated with the West Africa Monsoon. However, this hindcast 

initialization can suffer from strong initialization shock due to the inconsistency in 

atmospheric forcing between FOSI and a coupled prediction model. This initialization 

shock may have a negative impact on model prediction skill. 

Coupled data assimilation (CDA) is the most expensive and advanced 

initialization method in which available observations in the atmosphere and ocean are 

assimilated simultaneously into a coupled prediction model, and initial conditions for 

predictions are directly generated by the CDA within the coupled model. Ideally, this 

method is the most effective procedure to generate initial conditions, provided that 

continuous observations are available for both the atmosphere and oceans. In practice, 

however, deep ocean observations below 2000 m are sparse, creating difficulties in 

representing AMOC and its decadal variation. For example, Karspeck et al. (2017) 

compared six different ocean data assimilation (ODA) products, less complicated than 

CDA (Penny, 2017), to a multi-model ensemble of FOSI simulations and showed the 

ODA products are less consistent in their year-to-year AMOC changes. They suggest a 
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possible reason for this consistency may be the lack of deep ocean observations that 

cause an imbalanced upper and deeper ocean state. As a result, there are no conclusive 

studies at the moment suggesting that CDA initialization is more superior than other 

methods in initializing decadal climate prediction. 

1.3.2 Initialization Shocks and Prediction Drifts 

Because of insufficient observations and biases in coupled prediction models, all 

initialization techniques we discussed above can introduce errors during predictions, 

which can limit decadal prediction skills. In the following, we discuss two commonly 

encountered errors in decadal prediction: ocean initialization shocks and prediction 

drifts. 

The main cause for the ocean initialization shock is the mismatch between the 

atmospheric forcings used to generate initial conditions, and those in coupled climate 

models used for prediction. Climate models are notorious for their bias problems. Even 

given a perfect observed SST forcing, atmospheric models can generate strong biases in 

surface winds and surface fluxes. An example, Figure 1.2 shows a comparison between 

the observed pseudo wind stress from QuikSCAT during 2000 to 2008, and simulated 

pseudo wind stress from the atmospheric component of CESM version 2 (CESM2) 

forced by observed SST and sea ice. It is evident that there are significant differences 

between the observed and simulated pseudo wind stress. The simulated values are 

generally too weak in the tropics, but too strong in the subtropics and the Southern 

Ocean (Figure 1.2b). This atmospheric model bias pattern in pseudo wind stress carries 

over to the fully coupled CESM2 simulation as revealed by the similarity of the bias 
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patterns between the atmosphere-only (Figure 1.2b) and coupled model simulations 

(Figure 1.2c), suggesting the SST bias in CESM2 is secondarily important for the wind 

stress bias. This biased wind stress will cause imbalance between the predictions and the 

initial conditions, causing the ocean to adjust. Even though the short memory in the 

atmospheric component may not largely impact on the skill of decadal prediction 

(different from sub-seasonal to seasonal predictions), the adjustment may introduce 

spurious ocean waves and SST anomalies which can have an impact on forecast qualities 

due to long-memory in the ocean component. Therefore, to reduce this ocean 

initialization shock, it is highly desirable to initialize predictions with a more balanced 

state in the coupled model. 

Prediction drifts come from the different mean states between initial conditions 

and free simulations (no extra forcings except external forcings) of a coupled prediction 

model. Prediction simulations can drift significantly from initial conditions to the 

coupled prediction model “preferred” states if the difference between the two mean 

states is large. As such, using “brute force” and ODA techniques to initialize decadal 

predictions can lead to major prediction drifts, if a coupled prediction model suffers 

from severe bias problems.  

Model drift problems may be reduced in the case of hindcast initialization, if, an 

identical ocean model is used in hindcast simulation and coupled model prediction, 

simply because biases due to intrinsic ocean model physics and numerics will be the 

same for both the hindcast and coupled simulations. However, even in this case, the 

mean state of the hindcast (e.g., FOSI) and free simulation of the coupled prediction 
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model can be different because of the observation-based forcing used in the hindcast can 

be significantly different from coupled climate models (e.g., Figure 1.2c). Figure 1.3 

shows the difference of upper ocean mean temperature and salt content (upper 500 m) 

between a FOSI simulation and fully coupled CESM2 historical simulations. As can be 

seen, upper ocean temperature in FOSI is colder than CESM2 in mid- and high-latitudes 

and equatorial Pacific, but warmer in other tropical regions. Upper ocean salinity in 

FOSI is saltier in most regions with exception of the North Atlantic. Thus, one can 

expect these differences in the mean states of upper ocean temperature and salinity will 

lead to prediction drifts. These drifts can potentially affect model forecast skill. To 

reduce drift, it is highly desirable to reduce the differences of ocean mean state in initial 

conditions and prediction models. 

1.4 Objectives 

Motivated by the above discussion and previous studies, the fundamental purpose 

of this dissertation is to develop and evaluate a potential coupled model initialization 

technique alternative to the hindcast initialization based on FOSI simulations for decadal 

climate prediction by Yeager et al. (2018). A key requirement for this coupled model 

initialization technique is that it must be able to represent realistic AMOC decadal 

variation in a fully coupled model. Since the same fully coupled model will be used for 

initialization and prediction, one expects the inconsistency of the atmospheric state will 

be reduced, and thus possibly lead to a reduction in the ocean initialization shock and 

potentially improve model forecast skills. To simulate realistic AMOC decadal 

variability in a fully coupled model, we need to constrain upper ocean density variability 
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to observations, as near-surface buoyancy fluxes are shown to play an important role for 

AMOC decadal variability. A straightforward way of constraining model surface 

buoyancy fluxes is to simply “restore” coupled model simulated SST and sea surface 

salinity (SSS) to observed values. Therefore, in this study, we will explore the question: 

To what extent can a fully coupled model simulate historical AMOC decadal variations 

by simply restoring model SST and SSS. Specifically, this study attempts to address the 

following questions: Can “restoring” only SST and SSS, without any constrains on the 

deep ocean circulation, produce a realistic decadal variation of AMOC?  Is this simple 

restoring method capable of  capturing the key dynamical elements of AMOC changes 

that are critical for decadal prediction in the North Atlantic? Will this restored model 

solution be able to produce a more consistent atmospheric state that can potentially 

reduce ocean initialization shocks? How important is restoring SSS for the AMOC 

decadal variability? Are SSS anomalies critical for generating realistic local surface 

buoyancy flux anomalies that force AMOC variability at decadal timescales? Does this 

modeling strategy work in practice? These and other related scientific questions will be 

explored in the following chapters. 

After describing the primary research approach, including a brief description of 

model, datasets, restoring technique, and several analyzed methods in Chapter 2, the 

following three chapters will focus on exploring the above scientific questions. Chapter 

3 will evaluate the SST/SSS restoring technique on its ability of realistically representing 

AMOC decadal variation in the framework of CESM2. Several related key elements of 

AMOC relevant to decadal predictability will also be discussed. Chapter 4 will focus on 
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the role of SSS in simulating AMOC decadal variability. Results from an extensive set 

of model sensitivity experiments will be discussed. In particular, the importance of SSS 

anomalies in simulating realistic AMOC decadal variability will be examined. Chapter 5 

will demonstrate whether SST/SSS restoring initialization improves decadal prediction 

skill compared to hindcast initialization. An overall summary and some future works 

will be presented in Chapter 6.  
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Figure 1.1 (a) Observed AMV index which is defined as the 10-year low-pass-
filtered area-weighted average of SST anomalies over the North Atlantic (80°W to 
0°E, 0–65°N), and (b) the regression of SST anomalies on the observed AMV index. 
The figure is edited from Zhang et al. (2019). The dataset is from Hadley Centre 
Sea Ice and Sea Surface Temperature data set (HADISST; Rayner et al., 2003). The 
SST anomaly at each grid point is computed by removing the local component 
regressed on the global mean SST anomaly.  
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Figure 1.2 (a) magnitude of pseudo wind stress from QuikSCAT; (b) difference 
between CESM2 atmosphere-only simulations and QuikSCAT; (c) difference 
between CESM2 coupled historical simulation and QuikSCAT. The atmosphere -
only result is based on ensemble average of 10 members forced by observed SST 
and ice (http://www.cesm.ucar.edu/working_groups/CVC/ simulations/cam6-
prescribedsst.html). The CESM2 result is based on ensemble average of 11 
members of CESM2 historical climate simulations (see more details in Danabasoglu 
et al., 2020). All results are based on the period of 2000-2008 and pseudo wind 
stress, defined as wind stress dividing by both air density and drag coefficient, is in 
unit of m2/s2 . The horizontal resolution of all CESM2 simulations is nominal 1°.  
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Figure 1.3 Difference of upper 500 m averaged temperature (left; unit: oC) and 
upper 500m averaged salinity (right; unit: psu) between FOSI and fully coupled 
CESM2 historical climate simulation. The analysis period is the temporal mean 
between 1975 and 2014. 
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CHAPTER II  

METHODS 

2.1 Model Description 

All the numerical experiments in this study are based on the NCAR CESM2— 

the latest generation of CESM, with a nominal 1° horizontal resolution forced by 

historical climate forcings following the protocol of Coupled Model Intercomparison 

Project (CMIP) phase 6 from the year 1958 to 2014. The information related to code and 

downloading scripts is available at 

https://escomp.github.io/CESM/versions/cesm2.1/html/downloading_cesm.html. 

CESM2 consists of atmosphere, ocean, land, sea ice, river, and coupler, and is one of the 

most widely used climate models in the research community (Danabasoglu et al. 2020). 

The atmosphere component is the Community Atmosphere Model Version 6 

(CAM6) with a Finite Volume dynamical core (Lin & Rood, 1997). Compared with the 

previous versions, CAM6 has all new physics parameterizations except for the radiation 

physics (Rapid Radiative Transfer Model for General circulation models, RRTMG; 

Iacono et al., 2008). The horizontal resolution is 1.25° in longitude and 0.9° in latitude 

with 32 vertical levels and the model top is set at 2.26 hPa. 

The ocean component is the Parallel Ocean Program Version 2 (POP2; Smith et 

al., 2010), a z-level vertical coordinate ocean general circulation model. The North Pole 

in POP2 is placed on Greenland instead of its geographical location in order to avoid 

numerical issues within the Arctic Ocean. Thus, the POP2 grid in the high latitudes in 

the Northern Hemisphere are highly non-uniform, while the grid in the Southern 
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Hemisphere is the spherical coordinate. The horizontal resolution is 1.125° in the zonal 

direction and varies in the meridional direction with finest resolution of 0.27° at the 

equator and coarsest resolution in the northwestern Pacific Ocean. There are 60 z-levels 

in the vertical, with the finest resolution of 10 m in the upper 160 m. Although, the POP 

version in CESM2 is the same with Community Climate System Model version 4 

(CCSM4) and CESM1, it is noted that there are some improvements including 

increasing mesoscale eddy diffusivities at depth, moving the Caspian Sea to land 

components as a lake and so on. 

Sea-ice component uses CICE Version 5.1.2 (CICE5; Hunke et al., 2015). The 

horizontal resolution shares the same grid gx1v7 with the ocean component. The vertical 

resolution is increased to eight layers in order to better resolve the temperature and 

salinity profiles than previous versions.  

The Community Land Model Version 5 (CLM5; Lawrence et al., 2019) is used 

for the land component. The horizontal resolution of the land component is identical to 

that of the atmosphere component. Soil biogeochemistry scheme is not included in our 

experiments.  

The Model for Scale Adaptive River Transport (MOSART; Li et al., 2013) is 

used for river transport with grid resolution 0.5° x 0.5°, which is totally different from 

previous CESM versions.  

The coupler in CESM2 is based on a new modeling framework, known as the 

Common Infrastructure for Modeling the Earth (CIME; http://github.com/ESMCI/cise).  
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More details for the description and improvement of CESM2 are provided in 

Danabasoglu et al. (2020). 

2.2 Datasets 

2.2.1 Observations and Analysis Datasets 

The NOAA Extended Reconstructed Sea Surface Temperature, version 5 

(ERSSTv5; Huang et al., 2017) is used in this study for SST comparison, and as one of 

the restored target variables in model sensitivity experiments. ERSSTv5 is a monthly 

SST dataset from 1854 to present on a 2° x 2° grid (88.0°N - 88.0°S, 180.0°W – 

180.0°E), based on statistical interpolation of the International Comprehensive Ocean-

Atmosphere Data Set (ICOADS) release 3.0 data which contains observations from 

many different observing systems. Argo float data has been used since approximately 

year 2000, which improves the agreement with SST estimates from satellite 

observations. 

The three-dimensional temperatures and salinities are from the monthly mean 

dataset, the UK Met Office EN4.2.1 objective analysis (Good et al., 2013), with 

horizontal resolution of 1o from 1900 to present (89.0°N - 83.0°S, 1.0°E – 360.0°E). It is 

used for subsurface comparison with the model simulations. This dataset is based on a 

collection of historical ocean temperature and salinity profiles in the global oceans to 

which a series of quality control checks have been applied, including uncertainty 

estimates. It should be noted the analyses relax to climatology which covers over 1971-

2000 from EN2 when any observations are absent. Thus, a trend may be unrealistic if 

there were no observations. The uncertainty has apparently been improved globally as 
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time develops, particularly after the 2000s as Argo float data has been encompassed, and 

increases when the depth is deeper than around 300 m for both temperature and salinity 

which may be due to the historical lack of observations at depth (see details in Good et 

al., 2013 Figure 7). Decade-year uncertainty maps could bring us more details of to what 

extent EN4.2.1 has been improved at surface level over the period of our numerical 

experiments (Figure 2.1). The uncertainty is obviously decreased in the open seas. 

However, most of western boundary current regions and the Labrador Sea region (LS) 

are still waiting for further improvement.  

World Ocean Atlas 2013 version 2 (WOA13v2; Zweng et al., 2013) SSS is also 

used here as one of the restoring targets. Unlike EN4.2.1 salinity, WOA13v2 is a set of 

objectively analyzed climatological in situ salinity with horizontal resolution of 1° 

averaged from 1955 to 2012, which is widely used for ocean model initialization and 

validation. However, the dataset still bears some limitations due to the sparse 

observations and inconsistent sampling in some regions and depths. 

The monthly Global Precipitation Climatology Project Version 2.3 combined 

precipitation data set (GPCPv2.3; Adler et al., 2003) is used as the “truth” to compare 

the predicted precipitation in the Sahel region in Chapter 5. GPCPv2.3 is an integration 

of various satellite data sets over land and ocean, and a gauge analysis over land started 

from 1979. The resolution is 2.5°× 2.5° (88.75°N – 88.75°S, 1.25°E – 358.75°E). GPCP 

products provide the most complete precipitation analysis and uncertainty over land due 

to the careful combination of satellite-based rainfall estimates.  
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2.2.2 Simulations 

Two existing CESM2 simulations are used in this study. One is CESM2 FOSI 

forced by the adjusted Japanese 55-year atmospheric reanalysis (JRA-55-do) product 

(Tsujino et al., 2018) and corrected by WOA13v2 freshwater flux at 1-year restoring 

timescale, which has been integrated for 5 forcing cycles, totaling 267 years of global 

ocean and sea-ice simulation. The first four cycles covered the 1958-2009 period and the 

fifth cycle extended from 1958 to 2016. Kim et al. (2018) showed that FOSI has a 

generally good agreement with the observations especially in the fields which have 

impact on the variability of AMOC at decadal timescales. Since long-term AMOC 

observations are not available, we will use FOSI simulation as the “truth” when 

validating AMOC decadal variations from our experiments. In addition, we will use 

FOSI SST and FOSI SSS from the last cycle as restoring target variables. This modeling 

framework that assumes FOSI simulation as the “truth” provides us a convenient and 

consistent method to evaluate the effectiveness of restoring SST and SSS in a fully 

coupled CESM2 to replicate AMOC decadal variation. 

The other existing simulation used in this study is the CESM2 historical 

simulations (HIST) that include 11 ensemble members. All the members, following the 

CMIP phase 6 protocol, are integrated from 1850 to 2014 initialized by 11 different 

model years of the long CESM2 preindustrial control simulation. Danabasoglu et al. 

(2020) provide more details about the choice of initial conditions and forcings for HIST. 

HIST and all our numerical experiments share the same model code with identical model 

resolution. FOSI simulations are based on the same ocean and sea ice model used in 
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CESM2. This experimental design helps to minimize the simulation differences due to 

inconsistent model physics and numerics. 

2.3 “Restoring” Technique 

The “Restoring” technique is considered as a primitive coupled data assimilation 

approach. It is a common modeling method designed to constrain certain model 

variables to a specified target value which can be taken from either observations or 

experiments. The model variables are nudged to the specified field at a particular 

restoring timescale. Take temperature as an example, the effect of restoring can be 

modeled as: 

EF
EG
= 	− FIJKLMNFOPQRLO

S
 ,                                             (3) 

where 𝑇AUEVW is the simulated temperature, 𝑇GXYZVG is the specified temperature and 𝜏 is a 

timescale, often referred to as restoring timescale. The solution to equation (3) is 

𝑇AUEVW = 	𝑇GXYZVG + 𝑇]𝑒
NO_ ,                                        (4) 

where 𝑇] is the difference between 𝑇AUEVW and 𝑇GXYZVG at the initial time (t=0). 𝑇AUEVW 

approaches	𝑇GXYZVG faster as 𝜏 decreases. That is, the longer the restoring timescale 𝜏, the 

weaker restoring. However, too strong restoring of one variable may lead to large 

inconsistencies with other variables or with the same variable at different depths 

(Karspeck et al., 2017; Ortega et al., 2017). A proper 𝜏 should be chosen to balance the 

reality and model solution. 
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In this study, different restoring timescales, 3 days, 5 days and 10 days, have 

been tested to determine a suitable restoring strength before large ensemble experiments 

are carried out. The results from those restoring-time-scale-related sensitivity 

experiments show similarity in the temporal evolution of globally averaged temperature 

and salinity, ENSO patterns and AMOC, although annual SST and SSS biases become 

larger as the restoring strength is weaker. Given the similarity, the 10-day-restoring 

timescale is selected for all the strong restoring experiments.  

2.4 Diagnostics and Analysis 

2.4.1 Labrador Sea Water Thickness 

Labrador Sea water thickness (ZLSW) is defined as the depth of the Labrador Sea 

water mass (LSWM,51oN-65oN, 65oW-45oW; Yeager, 2020), based on the surface water 

mass formation (WMF) analysis. Langehaug et al. (2012) derived an equation for 

estimating annual water mass transformation (WMT) between two density surfaces 𝜎 

and 𝜎 + ∆𝜎, 

𝐹B(𝜎) = 	
a

bc∆d
∑ 𝐷C,B𝑑𝐴B
bc
Cia    ,                                         (5) 

where Fi represent the WMT at grid i, NT = 12 is the number of months in a year, Dn,i is 

the surface density flux (unit: kg/m2/s) in month n and at grid i, and Ai is the area at grid 

i. Thus, WMF is defined as 𝐹B(𝜎) − 𝐹B(𝜎 + ∆𝜎). The upper and lower boundaries of the 

LSWM are the depths where WMF are close to zero in LS region. 

In CESM2, WMF in LS completely dominates the total WMF in the North 

Atlantic subpolar region and determines the development of the simulated AMOC in the 
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deep ocean, underlying the persistence of the deep ocean anomaly associated with 

AMOC changes which determines the ocean memory at decadal time scales (Yeager, 

2020). Therefore, ZLSW is a vital metric to evaluate the potential predictability at decadal 

time scales. The correlation of ZLSW anomalies between the proposed experiments and 

FOSI will be used to further analyze the extent to which the various restoring strategies 

can have an impact on reproducibility of the deep ocean anomalies in FOSI. 

2.4.2 Potential Predictability Variance Fraction 

Potential predictability variance fraction (PPVF) is defined as the ratio of the 

signal variance estimated from ensemble mean to the total variance of all ensemble 

members (e.g., Boer et al., 2013; Yeager, 2020), that is,  

PPVF = 𝜎jBZk 𝜎GUGk⁄ 			→ 1  ,                                         (6) 

where 𝜎jBZk  is the variance from ensemble mean and 𝜎GUGk  is the total variance from 

individual members. The arrow suggests the upper limitation of this equation. A higher 

PPVF represents a narrower spread of one variable among ensemble members, 

indicating the signal is better represented in each individual member with a relatively 

lower noise. 

2.4.3 Drift Adjustment 

As mentioned in Chapter 1, initialized predictions suffer from model drifts. 

These unrealistic trends caused by drifts towards the model climate could offset the 

anomaly signals and degrade prediction skill. Thus, drift adjustment should be applied 

before further evaluating the skill of predictions. A simple method of drift adjustment is 

to treat the drift as a function of lead time (e.g., Boer et al., 2013; Yeager et al., 2018). In 
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other words, the drift is hypothesized as a constant when the predicted time is fixed. The 

drift 𝑑 at a given lead time 𝜏 should be: 

𝑑S = 	𝑃∙∙S −	𝑂∙S = 	
a

r×s
∑ ∑ 𝑃AtSs

tia
r
Aia −	 a

s
∑ 𝑂tSs
tia    ,                (7) 

where 𝑃∙∙S is the predictions averaged by all the ensemble members M and the number of 

start times Y, and 𝑂∙S is the climatology of the observations averaged by the number of 

same start times. 

The prediction at specific member, start time and lead time after drift adjustment 

should be: 

𝑃AtSE = 𝑃AtS −	𝑑S = 	𝑃AtS − (𝑃∙∙S − 	𝑂∙S) = 	𝑂∙S +	𝑃AtSu   ,                   (8) 

where 𝑃AtSu  is the prediction anomaly, defined as 𝑃AtS −	𝑃∙∙S at the specific member m, 

start time y and lead time 𝜏. 

𝑃AtSu = 𝑃AtSE −	𝑂∙S = 𝑃AtS − (𝑑S + 𝑂∙S)  ,                            (9) 

The prediction anomaly relative to the identically sampled climatology removes 

the effect of the drift. Similar equation happens to the observations with 𝑑S = 0. That is, 

𝑂tSu  = 𝑂tS −	𝑂∙S  ,                                                 (10)  

Thus, the prediction anomaly is feasible to compare to observations instead of the 

raw data, which largely avoids the impact of model drifts. This drift adjustment will be 

applied in Chapter 5 to present the preliminary results of decadal predictions. 
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2.4.4 Hindcast Evaluation Metrics 

Following the verification framework outlined by Goddard et al. (2003), three 

metrics are considered for use in this study to assess the skill of predictions. These are 

anomaly correlation coefficient (ACC), RMSE, and mean-square skill score (MSSS). 

ACC is the correlation coefficient of timeseries from two different datasets after 

removing the long-term mean climatologies or linear trends or model drifts. In this 

study, Pearson correlation coefficient is applied, defining 

𝜌(𝑃,𝑂) = 	 a
bNa

∑ (xyNz{
d{

)(|yNz}
d}

)b
Bia   ,                                  (11) 

where 𝑃B and 𝑂B are the values at the specific time point from two timeseries, P and O, 

representing the prediction and observation, respectively. 𝜇x and 𝜇| are the mean states 

from those two timeseries, and 𝜎x and 𝜎| are their standard deviation. t-test is used to 

estimate significant intervals for ACC after Fisher’s Z transformation. ACC difference 

(∆ACC) is the difference between two simulations’ ACC skills which are each 

associated with the same dataset. Generally, ∆ACC is the ACC difference between 

objective predictions and reference predictions, and the positive score indicates the 

higher skill from objective predictions. 

ACC measures the relative association between two variables. However, relative 

magnitude between those two variables could not be assessed using ACC. Instead, 

RMSE and MSSS are introduced to make up the deficiency, which are defined as 

𝑅𝑀𝑆𝐸 =	�∑ (xyN|y)��
y��

b
   ,                                          (12) 

𝑀𝑆𝑆𝑆 = r��QL�	N		r��J��
r��QL�

= 1 −	r��J��
r��QL�

  ,                              (13) 
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where P and O still stand for the prediction and observation timeseries, respectively. 

MSE is the mean-square-error, the squared RMSE. 𝑀𝑆𝐸U��  is the MSE from objective 

prediction relative to observations and 𝑀𝑆𝐸YV�  is the MSE from reference prediction 

which is also relative to observations. 

RMSE is a simple metric which directly evaluates the bias of the prediction from 

the observations. A higher value indicates a lower prediction skill with a farther 

deviation from the observations. MSSS normalizes the MSE difference between the 

reference and the objective prediction. Same to the criteria of ∆ACC, a higher skill score 

of MSSS suggests a better performance in the objective prediction. 
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Figure 2.1 EN4.2.1 error standard deviation for (a) SST average of 1960-1969, (b) 
SST average of 2005-2014, (c) SSS average of 1960-1969, and (d) SSS average of 
2005-2014. 

(a) (b)

(c) (d)
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CHAPTER III  

A COUPLED MODELING STRATEGY TO SIMULATE HISTORICAL DECADAL 

VARIATIONS OF ATLANTIC MERIDIONAL OVERTURNING CIRCULATION* 

3.1 Motivation 

As discussed in Chapter 1, AMOC is very important for climate adjustment. 

Strengthened AMOC leads to convergence of ocean heat transport in SPNA, driving LF 

temperature anomalies in the North Atlantic (Wills et al., 2019). A realistic simulation of 

AMOC can potentially lead to skillful decadal predictions. However, how to simulate 

realistic historical AMOC decadal variations in a fully coupled model is a nontrivial task 

which requires some careful considerations. One issue to be considered is coupled model 

biases and their impact on the representation of AMOC. For example, AMOC mean state 

biases are tightly linked to SSS bias in the North Atlantic (Drews et al., 2015). Kim et al. 

(2018) compared coupled and atmosphere-only simulations using CESM, and suggested 

the model might be deficient in representing air-sea coupling that in turn leads to 

underestimation of the strength of multidecadal NAO, which then results in 

underestimation of LF AMOC variability. Xu et al. (2019) also pointed out that CGCMs 

generally simulate a weaker linkage between AMOC and NAO compared to simulated 

AMOC response to the NAO in FOSI simulations. 

FOSI experiments using observation-based atmospheric forcings generally 

simulate a well-defined decadal variation of AMOC. This well-simulated AMOC 

decadal variation has motivated the use of FOSI-based initialization for decadal climate 

prediction. As shown by Yeager et al. (2018), this initialization technique is capable of 

* Part of the articles are published in Zhang, Q., Chang, P., Yeager, S. G., Danabasoglu, G., & Zhang, S. (2022). Role of Sea-Surface 
Salinity in Simulating Historical Decadal Variations of Atlantic Meridional Overturning Circulation in a Coupled Climate 
Model. Geophysical Research Letters, e2021GL096922 
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producing skillful SST and upper ocean heat content forecasts at decadal time scales in 

the North Atlantic. However, the hindcast initialization technique, as discussed in 

section 1.3, endures large ocean initialization shocks and model drifts, and one possible 

solution may be to reduce the ocean initialization shock introduced by FOSI-based 

initialization. 

It has been shown in seasonal climate prediction studies that the initialization 

shock problem can be alleviated by restoring SST or wind stress towards observations in 

a coupled prediction model during the initialization procedure, leading to improvements 

in seasonal prediction skill (e.g., Chen et al. 1995; Zhu et al., 2017; Tang et al., 2018; 

Wang et al., 2019). Keenlyside et al., (2008) attempted to extend this SST-restoring 

technique to decadal predictions. Because the atmospheric forcing is generated by the 

coupled system, rather than taken from an independent, observation-based data set as in 

FOSI simulation, the inconsistency in atmospheric forcing, and thus the initialization 

shock are much reduced. In this chapter, we will further extend the use of this restoring 

technique in fully coupled climate models by using not only SST restoring but also SSS 

restoring. As discussed previously, SSS is an important variable for simulating AMOC 

variability because of its strong influence on surface density in SPNA and LS regions 

(e.g., Swingedouw et al. 2013; Park et al., 2016; Ortega et al., 2017). However, 

compared to SST, SSS is less well observed (see Chapter 2 discussion on EN4.2.1 

dataset), and observed AMOC record is too short to be used for the AMOC-decadal-

variation study. Therefore, in order to fully evaluate the impact of both SST- and SSS-

restoring on simulating AMOC decadal variations, a careful experimental design is 
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required. In the following section, we discuss a modeling framework developed to test 

effectiveness of SST- and SSS-restoring on simulating AMOC decadal variation in a 

fully coupled CESM simulation. 

3.2 Experiment Design 

To address the shortness of observed AMOC records, and less reliable SSS 

observations, we design a model-based framework to test the hypothesis that restoring 

SST and SSS in a fully coupled model can lead to historical AMOC simulation. In this 

framework, we assume ocean model is perfect, and thus FOSI simulation can present 

observed temperature and salinity, as well as AMOC decadal variations. In other words, 

we are treating FOSI simulation as “observation” and using it to validate our SST- and 

SSS-restoring coupled model simulations. Specifically, we will use the fifth cycle of 

CESM-ocean FOSI simulation for model validation. 

The SST- and SSS-restoring simulations will be based on the same CESM, where 

monthly mean SST and SSS from the fifth cycle of FOSI are used as restoring target 

files for an ensemble of 6 coupled CESM2 simulations (hereafter referred to as REST). 

The restoring time scale of REST is 10 m over 10 days from January 1, 1958 to 

December 31, 2014. Each ensemble member is initialized from the start of the fifth cycle 

of the FOSI simulation and integrated for the same period as one FOSI cycle, i.e., from 

1958 to 2014 with the historical climate forcing. The atmosphere, land, and runoff restart 

files of REST are from one CESM2 historical simulation, and ensemble members are 

generated by applying round-off perturbations to the initial atmospheric temperature 

field. No restoring is applied in regions covered by sea ice in REST. In addition to 
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validate REST against FOSI, we also compare REST and the ensemble of CESM2 HIST 

for the same period. 5-year running mean is applied for LF analysis. 

3.3 Results 

Figures 3.1a-c present a comparison of the mean AMOC among FOSI, REST, 

and HIST in density-latitude space which focuses on the water formation and 

transformation in the high latitudes, referred to as AMOC(𝜎k), as discussed in Chapter 1. 

𝜎k indicates the density relative to the pressure at the depth of 2000 m. REST 

successfully reproduces AMOC(𝜎2) spatial structure and the mean transport of FOSI. 

REST maximum transport (21.7 Sv) is only slightly larger than in FOSI (20.8 Sv). In 

contrast, HIST shows the strongest transport with 26.8 Sv. In general, the high detrended 

LF standard deviations (STDs) fall into two regions in all simulations: one in the lighter 

water class representing the upper limb and the other in the denser water class 

representing the lower limb where the southward denser currents carry the long-lasting 

predictive memory (Yeager, 2020; Yeager et al. 2021). The location and magnitude of 

the lower limb STD in REST are similar to those in FOSI, both occurring in a denser 

water class (>36.875𝜎k) than in HIST (>36.775𝜎k). Unlike in HIST where decadal 

variance only contributes to 27.23% of the total variance in the lower limb between 

45°N and 60°N, the decadal variance contribution in FOSI and REST reaches 81.24% 

and 86.95%, respectively (decadal variance contribution is defined as LF variance 

divided by the total variance). The good agreement between REST and FOSI suggests 

that by constraining only the surface density variations through SST and SSS restoring, 

we can indeed reproduce overall AMOC(𝜎2) structure and its decadal variability. We 
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note that AMOC(𝜎2) in REST does not suffer from any structural distortions and 

remains similar to those in FOSI and HIST, unlike in three-dimensional ocean data 

assimilation products where the vertical inconsistency in the mean AMOC structure is 

reported (e.g., Karspeck et al., 2017; Lu et al., 2020). 

The temporal variation of AMOC in these simulations is shown in Figure 3.1d 

where AMOC indices, defined as anomalies of the maximum annual-mean AMOC(𝜎k) 

transport at 45°N, are compared. Consistent with Danabasoglu et al. (2016), the AMOC 

index in FOSI presents an “inverse U” shape with a peak in the mid-1990s. This decadal 

variation is unlikely a result of the external climate forcings, but more likely caused by 

internal dynamics of the coupled climate system, because the AMOC index in HIST 

shows a different temporal variation – a slight increase from 1975 to mid-1980s 

followed by a steep decreasing trend. In contrast, the AMOC index in REST clearly 

reveals a decadal variation that bears a close resemblance to that in FOSI with a very 

similar amplitude, indicating that with both SST and SSS restoring the coupled model is 

capable of replicating decadal variations in AMOC(𝜎k). The small ensemble spread of 

the AMOC index in REST indicates a weak within-ensemble-variability and a 

consistency among the ensemble members in simulating AMOC decadal variations. In 

contrast, the ensemble spread of the AMOC index is considerably larger in HIST than in 

REST. This is true even if the ensemble size of HIST is randomly decreased to the same 

size of REST (not shown). These results suggest the signal-to-noise ratio (the ensemble 

mean divided by STD of the inter-ensemble spread) of AMOC decadal variations is 
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significantly amplified by the strong SST and SSS restoring, from 24.12 in HIST to 

26.13 in REST with the same ensemble size. 

Figure 3.2 further demonstrates the successful replication of FOSI AMOC(𝜎k) 

decadal variability from REST in the whole North Atlantic basin. ACC skill score 

between FOSI and REST could reach 0.8 in both upper and lower limbs north of 45°N 

and the lower limb, holding the high score, could extend to the equator, whereas, 

positive ACC skill score between FOSI and HIST only constrains in the high latitudes. 

The score south of 45°N is close to zero. It suggests that LF historical AMOC variability 

in REST is well-represented, particularly in the denser regions. Figure 3.2c shows the 

improved skill of representing AMOC(𝜎k) decadal variability in REST by only restoring 

SST and SSS compared to HIST. The positive values are almost filled in the whole 

∆ACC map. 

To further validate whether the decadal AMOC variation in REST is consistent 

with the mechanism proposed by Yeager (2020) emphasizing the importance of AMOC 

lower limb in decadal prediction, we examine the LF co-evolution of AMOC(𝜎2) and sea 

surface height (SSH). Yeager (2020) suggested the deep flow associated with decadal 

AMOC variations can induce an SSH response which is critical in sustaining decadal 

prediction skill. Here, the phase evolutions of AMOC(𝜎2) and SSH are firstly compared 

among FOSI, REST, and HIST (Figure 3.3 & Figurer 3.4), followed by their LF 

variability relation between these two variables shown in Figure 3.6.  

Figure 3.3 shows decadal phases of AMOC(𝜎2) from 1975 to 2014. The upper 

and lower limbs in FOSI exhibit the different phase evolutions led by different driven 
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factors. The upper limb, which is largely impacted by external forcings, show an 

increasing trend, consistent to the global warming signal. The lower limb related to 

dense water, dominated by buoyancy forcings, show the “inverse U” pattern. Both REST 

and HIST replicate the increasing trend of FOSI in the upper limb because these three 

simulations share the same external forcings. However, the phases in the lower limb of 

REST and HIST in period 1975-1984, and period 1995-2004 are completely opposite. 

The lower limb phase in REST follows the “inverse U” pattern. In contrast, the one in 

HIST only shows a decreasing trend. Similar results happen to SSH decadal phase 

evolution (Figure 3.4). Based on the FOSI LF STD of SSH in the North Atlantic (Figure 

3.5), the dominant variations locate in the western SPNA where LF AMOC variability 

originates, and the boundary of SPNA and subtropical gyre. The SSH phases in these 

regions show a “positive-negative-negative-positive”, that is, “U” pattern in both FOSI 

and REST, while, an increasing pattern in HIST. Thus, the separated phase evolutions 

for AMOC(𝜎2) and SSH suggest that REST follows the decadal variations of FOSI not 

only in AMOC (particularly the lower limbs), but SSH as well , totally different to 

HIST. 

Figure 3.6 verifies the response relation between dense AMOC(𝜎k) and SSH. 

The selected AMOC(𝜎k) and SSH anomalies in time and latitude are the locations where 

LF dominates. In both FOSI and REST, maximum positive anomalies of lower limb 

AMOC(𝜎k) appear between 1985 and 1995, ahead of the peak of AMOC index at 45°N, 

indicating that the source of the decadal variations originates from the dense water 

anomalies in LS. In contrast, AMOC(𝜎k) variations in HIST show a dominant decreasing 
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trend with little indication of decadal variations. The zonal-averaged SSH anomalies in 

western SPNA (40°W-55°W) in FOSI and REST show a similar evolution pattern, both 

displaying a delayed response to the change in the AMOC(𝜎k) lower limb, suggesting 

that in both FOSI and REST the deep circulation changes are driving the upper ocean 

circulation changes as reasoned by Yeager (2020). The magnitude of the decadal 

variations in REST is, however, smaller than that in FOSI, likely due to the ensemble 

average in REST. In comparison, no such delayed response in SSH is found in HIST. 

These results confirm the similarity between FOSI and REST in simulating AMOC and 

its variability, specially the lower limb of AMOC(𝜎k) and subpolar gyre decadal 

variations, which are distinctively different from HIST. 

Observations reveal a similar but opposite sign of decadal variation in 

temperature and salinity in the deep ocean of SPNA to that in the upper ocean (Polyakov 

et al., 2005). This vertical structure of the decadal variation is consistent with a 

downward propagation of temperature and salinity anomalies as shown in EN4.2.1. Both 

FOSI and REST capture the vertical propagation to a depth range of ~2000 m, consistent 

with EN4.2.1 (Figure 3.7). HIST is able to simulate some vertical decadal propagation, 

but the depth of the vertical propagation is shallower and the phase of the propagating 

signal is not in line with those in FOSI and REST. It suggests the SST and SSS restoring 

strategy enables the fully coupled model to simulate the observed SPNA decadal 

variations down to at least 2000 m depth. 

Labrador Sea Water thickness (ZLSW) is considered as a critical factor for 

understanding AMOC’s role in decadal prediction because it represents an important 
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deep ocean memory in the North Atlantic (Yeager, 2020). The ACC of ZLSW between 

FOSI and REST (Figure 3.8a) shows this deep ocean memory in FOSI is well 

represented by REST. High correlation values of above 0.9 exist in the eastern and 

western flanks of the mid-Atlantic ridge (MAR), where deep water mass information 

accumulates and persists (Yeager, 2020). However, the positive ACC of ZLSW between 

FOSI and HIST only exists in SPNA and the decadal variation in HIST fails to propagate 

to the MAR (Figure 3.8b). PPVF is calculated for REST and HIST in order to estimate 

the potential predictable variance in the REST and HIST ensemble, respectively (Figure 

3.8c&d). They show the ensemble mean of ZLSW anomalies (∆ZLSW) in REST represents 

over 60% of the total variance in all ensemble members in the northern North Atlantic 

and reaches 90% or higher in much of the region south of 45°N, while PPVF in HIST is 

slightly higher than that in REST only in the western SPNA because of the consistent 

decreasing trends among all HIST ensemble members, and reach the highest in the 

western MAR where the correlations are not statistically significant. 

Finally, we examine replicability of global upper 295-m averaged ocean 

temperature (T295m) in REST and HIST compared to FOSI, and the wind stress 

differences in FOSI and REST compared to HIST (Figure 3.9). T295m is critical for 

skillful decadal prediction in the North Atlantic and other regions (Yeager et al., 2018). 

The LF T295m ACC between EN4.2.1 and FOSI, REST, and HIST, respectively, are 

shown in Figure 3.9a-c after removing linear trends. Both FOSI and REST reproduce the 

observed T295m variability in SPNA. FOSI does a better in the subtropical regions but 

REST has higher ACC values in the tropical North Atlantic (Figure 3.9d). Outside of the 
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North Atlantic, FOSI and REST show similar distributions of high ACC in much of the 

Pacific and Indian Oceans. Overall ACC values are nevertheless slightly higher in FOSI 

than in REST, the horizontal average of which is 0.56 ± 0.28 in FOSI and 0.52 ± 0.27 in 

REST between 65°S and 65°N, particularly in the tropical eastern Pacific where ENSO 

related variance dominates. For example, ACC in the Niño3 region is 0.88 ± 0.06 in 

FOSI and 0.82 ± 0.06 in REST. This is expected because FOSI is forced by the observed 

atmospheric forcing, whereas in REST the ocean is forced by the simulated atmospheric 

forcing in CESM2 with SST restored to the FOSI SST. Given this difference, it is 

remarkable REST can reproduce so well the observed T295m variability over wide areas 

of the global ocean, which is a significant improvement over HIST (Figure 3.9b&c). In 

addition, the mean atmospheric wind forcing in REST remains close to that in HIST. 

The difference of mean wind stresses between FOSI and HIST and between REST and 

HIST are shown in Figure 3.9e&f, respectively. The large differences in the Southern 

Ocean and SPNA between FOSI and HIST are largely reduced between REST and 

HIST, and the tropical wind forcing in REST is also closer to that of HIST compared to 

the observations used in FOSI. The global RMSE of wind stresses is 0.0143 N/m2 

between FOSI and HIST and reduces to 0.0058 N/m2 between REST and HIST. In the 

tropical Pacific (5°S-5°N, 150°E-80°W), the averaged wind stress RMSE decreases from 

0.0070 N/m2 between FOSI and HIST to 0.0037 N/m2 between REST and HIST. These 

results suggest that the imbalance between atmospheric forcing and ocean state could be 

reduced and higher prediction skill would be obtained if decadal predictions were 
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initialized from REST. Verifying this claim, however, requires carrying out ensembles 

of decadal prediction runs. 

3.4 Conclusion and Discussion 

In this chapter, we introduce and evaluate a modeling strategy for realistically 

simulating AMOC and related decadal ocean variability in a fully coupled climate model 

within a framework where FOSI is regarded as “observation” or “truth”. By conducting 

an ensemble of 6 coupled CESM2 simulations, referred to as REST, where SST and SSS 

are restored to the monthly-mean FOSI-simulated SST and SSS. We assess the skill of 

REST to replicate AMOC and associated deep ocean decadal variations in SPNA of 

FOSI that are shown to be critical for decadal climate predictions. The major findings of 

our study are summarized as follows: 

1) AMOC structure and its transport, as well as LF STD, are well reproduced in 

REST,  

2) REST not only realistically reproduces the decadal variation of AMOC and 

the associated upper ocean circulation changes in FOSI, but also faithfully 

replicates AMOC-related decadal variations in the deep ocean, particularly 

the Labrador Sea Water thickness anomalies that have been shown to be 

critical for decadal predictions, 

3) REST also realistically simulates global upper ocean heat content variability 

with ACC skills comparable to those in FOSI, 
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4) REST produces an atmospheric forcing whose mean state is more consistent 

with that of HIST compared to the mean atmospheric forcing between JRA-

55 used in FOSI and HIST. 

These findings open a perspective for the potential use of this coupled model 

strategy as an alternative to FOSI or full-depth ocean data assimilation for initializing 

decadal predictions. Compared to the FOSI initialization used by Yeager et al. (2018), 

this modeling strategy has the potential to reduce ocean initialization shock, because the 

mean atmospheric forcing to the ocean model is much closer to that in the coupled 

model used for prediction (e.g., Figure 1.2; Figure 3.9 e&f). This should reduce the 

imbalance between atmospheric forcing and ocean state at the initial stage of prediction 

simulations. Compared to full-depth ocean data assimilation, this modeling strategy does 

not suffer from the problem of inconsistent vertical structure of ocean states due to the 

lack of sufficient ocean observations below 2000 m (Karspeck et al. 2017). However, 

whether this modeling strategy can lead to an actual skill improvement in decadal 

climate prediction remains to be seen. Some preliminary prediction results will be 

presented in Chapter 5. 
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Figure 3.1 Time mean AMOC(𝝈𝟐) (color fill) and linearly detrended 5-year 
running mean (LF) standard deviation (STD, contoured at 1 Sv interval) in (a) 
FOSI, (b) REST, and (c) HIST. The black dashed line at (a) 36.875𝝈𝟐, (b) 36.875𝝈𝟐, 
and (c) 36.775𝝈𝟐 indicates the density surface where the maximum AMOC 
transport locates, separating the upper and lower limb of AMOC(𝝈𝟐). AMOC 
index (maximum transport anomaly at 45°N) time series for the 1975-2014 period 
from FOSI (blue), ensemble mean of REST (red), and ensemble mean of HIST 
(black) are shown in (d). Pink and grey shadings indicate the range of respective 
ensemble spreads in REST and HIST, respectively. The STDs in (b) and (c) are the 
average of individual members. The anomalies in (d) are with respect to the 1975-
2014 period. (unit: Sv; 1 Sv = 106 m3/s) 
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Figure 3.2 Anomaly Correlation Coefficients (ACC) of 5-year running mean (LF) 
AMOC(𝝈𝟐) between (a) FOSI and REST, and (b) FOSI and HIST, (c) ACC 
differences (∆ACC) between (a) and (b). The green contours are the mean state of 
FOSI AMOC(𝝈𝟐, contoured at 8 Sv interval). Regions where ACC is not significant 
at the 95% level are shown as white. 
  



 

45 

 

 

 

Figure 3.3 AMOC(𝝈𝟐) decadal anomalies in FOSI (upper), REST (middle), and 
HIST (lower). The four columns from left to right are the 10-year-time-average 
anomalies of 1975-1984, 1985-1994, 1995-2004, and 2005-2014, which are with 
respect to the 1975-2014 period. 
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Figure 3.4 The same with Figure 3.3, except for SSH. The green box in the first 
panel is the region (45°-60°N,15°-45°W) defined as SPNA where Figure 3.8 refers. 
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Figure 3.5 Sea surface height (SSH) LF STD after removing its linear trend. REST 
and HIST are the averaged STD from each member’s STD. The green line indicate 
zonal-averaged region (40°W-55°W, 40°N-60°N) where Figure 3.6 refers. 
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Figure 3.6 LF AMOC(𝝈𝟐) anomalies along dense density surfaces in the deep ocean 
(upper, unit: Sv) and LF negative zonal-averaged SSH anomalies between 40°W 
and 55°W (bottom, unit: cm) in (a) FOSI, (b) ensemble mean of REST, and (c) 
ensemble mean of HIST. The dense density surface in each simulation corresponds 
to the maximum LF STD of AMOC(𝝈𝟐). 
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Figure 3.7 LF, area-averaged, linearly detrended (left) potential temperature (unit: 
°C) and (right) salinity (unit: psu) anomalies as a function of depth and time in (a, 
b) EN4.2.1, (c, d) FOSI, (e, f) ensemble mean of REST, and (g, h) ensemble mean of 
HIST. The area-average is computed over the North Atlantic region (45°-60°N,15°-
45°W) shown in first panel of Figure 3.4. 0-2500 m depth range is shown in all the 
panels. 
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Figure 3.8 ACC of LF Labrador Sea Water thickness (ZLSW) between FOSI and (a) 
ensemble mean of REST, and (b) ensemble mean of HIST. Dots indicate regions 
where correlation is not significant at 95% level. The square root of the potential 
predictable variance fraction (PPVF) of ZLSW anomalies (∆ZLSW) in (c) REST and 
(d) HIST. The black contours in (a-d) show the 3000-m isobath. 
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Figure 3.9 ACC of LF, linearly detrended T295m between EN4.2.1 and (a) FOSI, 
(b) ensemble mean of REST, and (c) ensemble mean of HIST. (d) ∆ACC between 
REST and FOSI (REST minus FOSI). Wind stress differences (∆𝝉, unit: N/m2) (e) 
between FOSI and HIST (FOSI minus HIST), and (f) between REST and HIST 
(REST minus HIST). Regions where ACC is not significant at the 95% level are 
shown as white. 
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CHAPTER IV  

SENSITIVITY EXPERIMENTS OF SURFACE RESTORING TECHNIQUES 

4.1 Motivation 

It is worth emphasizing that SSS restoring is essential in REST to replicate the 

AMOC decadal variability in FOSI simulation, because SSS can influence near-surface 

density in SPNA, which is critical for the deep convection in the high latitudes of North 

Atlantic. However, SSS changes in SPNA can be induced by local or remote influences. 

The local influence primarily comes from NAO-related atmospheric variability while the 

remote influence can come from the tropics. For example, changes in tropical 

precipitation can lead to the redistribution of freshwater in the tropical Atlantic, which 

then can propagate to SPNA along the Gulf Stream and North Atlantic Current, 

modifying SSS in the deep convection region and causing changes in AMOC and AMV 

( Latif et al., 2000; Mignot & Frankigonoul, 2005). If this tropical remote influence 

outweighs the local influence, then by assimilating only SST into coupled climate 

models we should be able to capture the decadal variation of AMOC and AMV.  

Indeed, several modeling studies have suggested that SST-only assimilation can 

simulate realistic decadal variations of AMOC. For example, Counillon et al. (2016) 

assimilated observed SST, using an Ensemble Kalman Filter method, to an isopycnal 

coordinate ocean model within the Norwegian Climate Prediction Model and showed a 

comparable AMOC decadal variation to that in FOSI. However, we should note that 

since they used an isopycnal coordinate ocean model, their assimilation scheme used a 

conjugate adjustment of salinity, which can affect salinity in the model. In other words, 
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even though no salinity data is directly assimilated into their model, there was a salinity 

adjustment introduced to the model to compensate for surface density changes due to 

assimilating SST. Keenlyside et al. (2008) ran strongly (4 days) restored-SST 

simulations between 30°S-30°N with buffer zones to 60°S and 60°N in the Southern and 

Northern Hemisphere, respectively, using the ECHAM5/MPI-OM model and showed an 

improved surface temperature hindcast skill in parts of the North Atlantic. However, 

SST in LS and western North Atlantic where salinity plays an important role in forming 

the North Atlantic Deep Water remained at a relatively low level. This is in sharp 

contrast to the results from CESM DPLE that show highest SST forecast skill in the 

SPNA, hinting the importance of local forcing in the North Atlantic. Dunstone & Smith 

(2010) showed that the positive results in Keenlyside et al. (2008) were unable to 

reproduce, suggesting that the improvement of decadal prediction skill by restoring 

strong SST may be model-dependent. 

Nevertheless, the question of how important SSS is for a realistic simulation of 

AMOC decadal variation in a fully coupled climate model is still open. The focus of this 

Chapter is on addressing this question. Specifically, we will conduct an extensive set of 

CESM sensitivity experiments to examine the following questions: Is SSS-restoring in 

the coupled CESM simulation critical to reproduce AMOC decadal variation in FOSI? If 

so, which component of SSS, climatology or anomalies, or both, are more important for 

a realistic simulation of AMOC decadal variation? Can AMOC decadal variation be 

simulated by restoring model SSS to observed SSS instead of FOSI SSS? Given the 
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large uncertainty in the observed SSS dataset as discussed in Chapter 2, can we use 

observed SSS climatology as a restoring target to simulate AMOC decadal variation? 

In the following, we first introduce all the sensitivity experiments conducted in 

this study in Section 4.2 and then present their results in Section 4.3. Conclusions and 

discussions of the results are presented in Section 4.4. 

4.2 Sensitivity Experiment Design 

We conducted 6 sets of experiments to address the scientific questions listed 

above. As in REST, all the simulations are based on CESM2 and each set contains an 

ensemble of 6 simulations. The differences among different sets lie in the treatment of 

restoring term in the model. We give a brief summary of each experiment and its 

purpose in the following. A complete list of sensitivity experiments is shown in Table1. 

Strong SSS-restoring (S-SSS): This ensemble and its companion ensemble weak 

SSS-restoring described below are designed to test model AMOC simulation sensitivity 

to SSS restoring time scale. In this experiment the modeled SST is restored to the 

observed monthly mean SST from ERSSTv5 with a restoring time scale of 10 days over 

upper 10 m, while SSS is restored to the observed monthly mean SSS climatology from 

WOA13v2 with the same 10-day restoring time scale over upper 10 m. By comparing 

the results of this experiment to those of REST, we can also learn whether realistic 

AMOC decadal variation can be simulated by using observed SST and observed SSS 

climatology, instead of monthly mean SST and SSS from FOSI. 

Weak SSS-restoring (W-SSS): This is the companion experiment to the above S-

SSS. It is identical to S-SSS except that the SSS restoring time scale is changed to 365 
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days from 10 days in S-SSS. Together with S-SSS this experiment is designed to evaluate 

the impact of SSS restoring on simulating AMOC decadal variation. 

Monthly-Mean SSS-restoring (M-SSS): This ensemble is similar to REST except 

that observed monthly-mean SST from ERSSTv5, instead of FOSI SST, is used as the 

restoring SST target. Therefore, this experiment can be used to test the effect of 

observed vs. FOSI SST on AMOC simulation with the mismatched monthly-mean FOSI 

SSS. When compared to its companion ensemble Climatological SSS-restoring 

described below, this experiment can also be used to examine the impact of restoring to 

monthly-mean SSS vs. climatological SSS on AMOC decadal variation. 

Climatological SSS-restoring (C-SSS): This ensemble is the same as M-SSS 

except that the simulated SSS in CESM2 is restored to the climatology of monthly-mean 

SSS derived from FOSI. A comparison between M-SSS and C-SSS can help address the 

importance of including SSS anomalies in the restoring simulations. 

Anomaly-restoring (A-RES): In this ensemble, the CESM2 simulated SST and 

SSS are restored to a reconstructed monthly-mean SST and SSS datasets that consist of 

the anomalies derived from FOSI and climatologies derived from CESM2 HIST. In the 

framework of REST where we assume FOSI SST and SSS as “observations”, this 

experiment only “assimilates observed” SST and SSS anomalies into the coupled 

system. Therefore, its purpose is to test whether SST and SSS anomalies are determining 

factors for simulating realistic AMOC decadal variation. 
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4.3 Results 

4.3.1 Impact of Strong vs. Weak SSS Restoring 

We first compare the results of S-SSS to those of REST, which have been 

demonstrated to be skillful in replicating historical AMOC decadal variability in Chapter 

3. The differences between S-SSS and REST are in the former 1) the SST is strongly 

restored to monthly-mean ERSSTv5 instead of FOSI monthly-mean SST and 2) the SSS 

is strongly restored to observed monthly climatological SSS from WOA13v2 dataset 

instead of FOSI monthly-mean SSS in the latter. The mean state differences between 

FOSI SST and ERSSTv5 are small in low- and mid-latitudes (Figure 4.1a), because in 

FOSI the model SST is strongly constrained by the observed surface air temperature that 

is closely related to the observed SST. The main differences come from the Southern 

Ocean and the SPNA. The global-averaged FOSI SST RMSE between 65°S-65°N 

compared to ERSSTv5 is 0.47°C. However, the annual-mean correlation coefficients 

between FOSI SST and ERSSTv5 are higher than 0.8 in most regions including the 

eastern SPNA (Figure 4.1c). The western SPNA is somewhat lower with a value of ~0.6. 

The global-averaged correlation between 65°S-65°N reaches 0.83±0.31. Therefore, we 

do not expect that restoring to ERSSTv5 SST in S-SSS can cause a major difference in 

the simulation results between REST and S-SSS, although the simulated SST and upper 

ocean heat content in S-SSS should be closer to observations in S-SSS than those in 

REST. The impact of changing the SSS restoring target to the observed SSS climatology 

in S-SSS from FOSI SSS in REST can be potentially large, because the FOSI simulation 

is nudged to observed climatological freshwater flux at 1-year restoring timescale. The 
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global FOSI SSS RMSE between 65°S-65°N is 0.28 psu compared to WOA13v2 SSS. 

Figure 4.1b reveals significant FOSI SSS saline biases compared to the observation in 

most regions, but fresh biases only exist in SPNA. This raises an interesting question: 

Can the AMOC decadal variation still be replicated by SSS restoring using observed 

SSS climatology as restoring target? 

We examine this question by comparing AMOC(z) streamfunction transport, 

phase propagations of denser LSW and SSH, and ∆ZLSW in S-SSS, FOSI and REST. As 

shown in Figure 4.2, S-SSS shows a high fidelity in replicating the AMOC decadal 

variation in FOSI and REST. The detrended AMOC maximum transport time series in S-

SSS tracks closely with that in FOSI and REST (Figure 4.2a). The correlation between 

LF detrended AMOC overturning streamfunctions in S-SSS and FOSI is above 0.7 in 

much of the region where AMOC is strong and exceeds 0.9 in the maximum AMOC cell 

(Figure 4.2b), similar to the correlation patterns between FOSI and REST (not shown). 

The maximum decadal variations of AMOC(𝜎k) is along 36.925𝜎k, lighter than the 

density in both FOSI and REST (Figure 3.6), but still in the lower limb region (denser 

than 36.775𝜎k, not shown). The phase pattern of LF detrended dense AMOC in S-SSS is 

comparable to the pattern in FOSI and REST with the peak value ahead of the year 1995 

(Figure 4.2c & Figure 4.3). The maximum value occurs in early 1990s in S-SSS, even 

more consistent with that in FOSI (early 1990s) compared to REST (late 1980s). The 

decadal variations of LF detrended SSH in S-SSS (lower panel in Figure 4.2c), similar to 

FOSI and REST (lower panels in Figure 4.3), follows the phase transition of dense 

AMOC, meridionally propagating from high-latitudes (55°N – 60°N) to mid-latitudes 
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(~45°N). The phase transition of SSH from the positive to negative in S-SSS is also more 

consistent with that in FOSI and later than that in REST, due to the earlier phase 

transition of dense AMOC in S-SSS and FOSI. Figure 4.2d & e show the ACC of 

detrended ZLSW between S-SSS and FOSI in the North Atlantic and PPVF in S-SSS, 

respectively. ACC of ZLSW reaches 0.8 almost everywhere except the Gulf stream 

extension and northeastern Atlantic near Africa coast. The value of PPVF is above 0.8 in 

most regions. Particularly, the deep convection region, eastern and western flanks of 

MAR can reach above 0.9, suggesting the high potential predictability from dense 

AMOC decadal signals. Therefore, we conclude that using the observed SSS monthly 

climatology as restoring target, S-SSS can replicate AMOC decadal variation with 

similar or perhaps higher fidelity than REST.  

The fact that replicability of AMOC decadal variation using SST/SSS restoring 

in coupled CESM2 simulations is independent of using FOSI SST and SSS suggests that 

the results presented here are not likely model dependent. It also suggests that SSS 

anomalies may not play an important role in generating surface density anomalies in 

SPNA that drive AMOC decadal variation. The main role of SSS restoring is to reduce 

salinity bias in CESM and the surface density anomalies for driving AMOC decadal 

variations are primarily determined by SST anomalies. We will discuss this issue further 

in the subsequent subsection. 

Having now established the fact that S-SSS can replicate AMOC decadal 

variation with high fidelity, we can assess the importance of SSS restoring in simulating 

AMOC variability by comparing S-SSS to W-SSS. As shown in Figure 4.4a, reducing the 
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SSS-restoring strength in W-SSS leads to a shutdown of deep convection in LS. This is 

partly caused by positive feedback between AMOC weakening and sea-ice growth. 

Because AMOC transports a significant amount of heat northward into SPNA, a 

weakening in AMOC can lead to a cooling in SPNA, causing more sea-ice to form. As 

sea-ice continues to expand, it causes more ice coverage in LS. This will lead to a further 

reduction in deep convection, and subsequently a further weakening in AMOC. This 

positive feedback eventually leads to a complete shutdown of deep convection in LS and 

a collapse of AMOC in W-SSS. In contrast, S-SSS, where SSS is strongly restored to the 

observed SSS climatology, can reproduce the sea-ice extent and mixed layer depth in 

FOSI (Figure 4.4b & c). 

As the LS deep convection change in W-SSS is dominated by a decreasing trend, 

the detrended LF mixed-layer depth variance is very weak compared to that in S-SSS and 

FOSI (Figure 4.4d-f). Interestingly, the LF mixed-layer depth variance over the Irminger 

Sea region in W-SSS remains similar to that in S-SSS, indicating that the impact of the 

SSS-restoring is mainly confined to LS. Since AMOC variance in CESM2 is primarily 

controlled by the variability of LS deep convection, AMOC also experiences a linear 

decreasing in W-SSS (not shown). 

In summary, the results from S-SSS and W-SSS indicate that AMOC decadal 

variation in REST and S-SSS is unlikely forced by remote influence from the tropics, 

because otherwise we would expect to see a similar AMOC response from S-SSS and W-

SSS as both experiments used the same SST-restoring. The findings also indicate a 

realistic SSS climatology in SPNA is critical for simulating historical AMOC decadal 
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variation in a coupled model, but realistic SSS anomalies may be less important for 

AMOC simulations, at least in the framework of CESM2. In the next subsection, we will 

further address this issue by comparing M-SSS and C-SSS. 

4.3.2 Role of SSS-climatology vs. SSS-anomaly in SSS-restoring 

In this subsection, we first compare M-SSS and C-SSS to further examine the 

importance of SSS-climatology and SSS-anomaly in SSS-restoring. Recall that these two 

experiments are nearly identical except that the model SSS is restored to monthly-mean 

FOSI SSS in M-SSS, whereas it is restored to monthly climatological FOSI SSS in C-

SSS.  

The maximum AMOC(𝜎k) streamfunctions are examined in Figure 4.5. The 

structure of the 40-year mean AMOC in density space is similar. The maximum values 

in M-SSS and C-SSS both locate around 55°N at the surface of 36.925𝜎k, but are in 

different strengths. AMOC in C-SSS is stronger than the one in M-SSS even though the 

mean state of constrained SST and SSS are the same. The detrended LF STDs of 

AMOC(𝜎k)  in SPNA (50°N - 60°N) lower limb region are similar in both M-SSS and C-

SSS, indicating that the surface information in both experiments is able to propagate to 

the deep ocean in SPNA. Figure 4.5c & d reveal the decadal variations of AMOC 

maximum values in density space along the latitudes from 20°N to 60°N after removing 

linear trends from M-SSS and C-SSS. The historical AMOC decadal variations in both 

experiments show an “invert U” pattern from high latitudes to low latitudes with a 

stronger amplitude in C-SSS. The timeseries along 45°N are selected as representatives 

to show more details (Figure 4.5e). It is clear the maximum value of AMOC index in C-
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SSS occurs at the same time with the one in M-SSS, both slightly earlier than FOSI with 

similar strengths, indicating that the peak value may depend on the monthly-mean SST 

restoring, rather than the monthly-mean SSS restoring or together. Thus, even with 

restoring to climatological SSS the model is still capturing the decadal variation of 

AMOC.  

The decadal variations of detrended dense AMOC and zonal-averaged SSH 

anomalies are analyzed to examine the relationship between AMOC and upper ocean 

variability in M-SSS and C-SSS (Figure 4.6). The locations of maximum LF STD of 

AMOC(𝜎k) for both M-SSS and C-SSS are along the density surface of 37.025𝜎k, 

indicating that the deep structure of AMOC(𝜎k) variability is influenced by the mean 

state of surface density. In addition, both M-SSS and C-SSS clearly show that zonal-

averaged SSH anomalies generated from the high latitudes propagate meridionally to the 

mid-latitudes. However, it is worth noting that there exists transition time difference 

between these two experiments. The mid-1990s phase transition in FOSI (Figure 4.3a) is 

delayed to mid-2000s in M-SSS but comparable in C-SSS. It is possible explained by the 

unpaired monthly-mean SST- and SSS-restoring in M-SSS, leading to the mismatched 

phase transition, although the large similarity exists between ERSSTv5 and FOSI SST 

(Figure 4.1). Instead, the SSS-climatology restoring in C-SSS, correcting the surface 

density mean state and getting rid of the possible uncertainty from surface density 

anomaly, simulates much closer phase transition to FOSI. It suggests the role of SSS-

restoring is to adjust the deep convection through correcting surface density mean state. 



 

62 

 

The unpaired SST and SSS anomaly restoring may break the historical AMOC decadal 

variation, degrading the performance of deep ocean. 

A-RES, in which model SST and SSS anomalies are restored to monthly FOSI 

SST and SSS anomalies while keeping the climatological SST and SSS to the same as 

those in the free-coupled simulations, HIST, is analyzed to further assess the relative 

importance of climatological SSS vs. SSS anomalies in simulating AMOC decadal 

variations. SST and SSS anomalies in A-RES are corrected to anomalous FOSI’s values 

but the mean SST and SSS states are kept to those in HIST. Therefore, A-RES can shed 

further light on whether it is more important to correct mean SST and SSS bias in the 

model or keep realistic SST and SSS anomalies to replicate the historical AMOC 

decadal variation.  

Figure 4.7 shows AMOC mean states and the corresponding decadal variations in 

REST and A-RES. Although the mean state of SST and SSS in A-RES is restored to that 

of HIST, AMOC(𝜎k) in A-RES (Figure 4.7b) is still weaker than that in HIST (Figure 

3.1c), but stronger than that of REST (Figure 3.1b/Figure 4.7a ). The density surface that 

separates the upper and lower limbs in A-RES is 36.825𝜎k, which is also in-between 

HIST (36.775𝜎k) and REST (36.875𝜎k). These results suggest that the mean AMOC is 

not simply determined by the mean SST and SSS states. This is likely because the 

density is a nonlinear function of temperature and salinity, and thus the same mean SST 

and SSS do not necessarily give rise to the same mean surface density. 

The LF detrended STD in the upper limb in A-RES is comparable to that of FOSI 

due to FOSI SST and SSS anomalies restoring (Fig.3.1a & Fig. 4.7b). In contrast, the LF 
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detrended STD in the lower limb (Figure 4.7b) is weaker than that in both FOSI and 

REST (Fig.3.1a & Fig.4.7a), indicating that the near-surface anomaly may not be able to 

propagate into the deep ocean in A-RES. In addition, the strength of AMOC decadal 

variations along latitudes is much weaker in A-RES compared to REST, particularly 

north of 45°N. The amplitude in A-RES is even weaker than 0.4 Sv south of 35°N 

(Figure 4.7c & d). The peak value in A-RES occurs consistent to FOSI and REST at 

45°N (Figure 4.7e), indicating SST and SSS anomaly restoring contribute to AMOC 

decadal variation locally. However, the weak strength of AMOC decadal variation in A-

RES fails to propagate the dense water southwards. Together with the timeseries of 

detrended AMOC index in M-SSS and C-SSS (Figure 4.5e), it directly demonstrates that 

SST and SSS anomaly restoring may mainly affect the upper limb of AMOC and less 

touch the lower limb of AMOC.  

The relation between decadal variations of AMOC lower limb and SSH in A-RES 

is shown in Figure 4.8. Unlike FOSI and REST in Figure 4.3, the transition phases of 

AMOC and SSH in A-RES are mismatched. It is difficult to identify a clear southward 

propagation in SSH, suggesting that AMOC variability in the abyssal ocean does not 

drive SSH variability as reasoned by Yeager (2020) in A-RES. Together with the over 

twice weaker amplitude in dense AMOC compared to FOSI and REST, it is evident that 

A-RES fails to simulate a comparable historical AMOC decadal variation that drives the 

upper ocean (Figure 4.3 and Figure 4.8). 

Overall, this subsection demonstrates the role of SSS climatologies and SSS 

anomalies in simulating decadal variability of AMOC. SSS climatology is the dominant 
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factor, which corrects the near-surface density mean state to dictate the deep convection, 

while SSS anomaly restoring only plays a role in the upper ocean without bias correction 

of mean state. Even so, unrealistic SSS anomaly restoring may still mess up the deep 

ocean variability, like M-SSS. Thus, SSS-climatology restoring may be the optimal 

choice for the restoring technique, considering the large uncertainty of SSS anomaly in 

the reality.   

4.4 Conclusion and Discussion 

In this chapter, we mainly discuss the role of SSS in simulating historical decadal 

variability of AMOC and model AMOC simulation sensitivity to the treatment of SSS 

restoring in CESM2 framework. The results from a suite of CESM2 sensitivity 

experiments indicate: 

1) Strong SSS restoring is essential to produce decadal variability in CESM2 through 

dictating the deep convection in the Labrador Sea; 

2) Compared to correcting SSS anomaly, correcting climatological SSS has a more 

dominant impact on simulations of AMOC decadal variation. A realistic SSS 

climatology along with a strong realistic SST restoring is critical for maintaining 

a realistic Arctic sea-ice extent and mean near-surface density state in the North 

Atlantic, which are vital for simulating deep convection activities in the Labrador 

Sea and ensuring propagation of dense water anomalies in the deep ocean;  

3) Local near-surface density anomalies in the Labrador Sea that drive the decadal 

variability of AMOC are primarily controlled by SST anomalies in the North 

Atlantic, indicating the importance of local surface heat flux forcing; 
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4) Only constraining SST and SSS anomalies while keeping model climatology intact 

can lead to inconsistencies between anomalies and mean state, which can have a 

negative impact on anomaly propagation, causing the simulated AMOC decadal 

variation too weak and too confined near the source region;  

5) Finally, the skillful simulation of AMOC decadal variation does not depend on 

FOSI solution, and similar results are obtained using observed monthly SST 

combined with observed SSS climatology, suggesting these results may be more 

general than for the CESM only. 

Understanding the role of SSS in simulating historical decadal variations of 

AMOC has important implication to how we should assimilate ocean observations into 

climate models to generate realistic AMOC variation. Since observed SSS data is much 

sparser than observed SST, how to assimilate SSS into climate models is an issue. Our 

sensitivity experiments suggest that assimilating observed SSS climatology should be 

sufficient for a realistic simulation of AMOC decadal variation. If this result holds, it 

may suggest that assimilating monthly mean SST observation, such as ERSSTv5, and 

SSS climatology, such as WOA13v2, may be a strong candidate for initializing decadal 

predictions. However, it remains to be demonstrated that this alternative initialization 

can lead to improved decadal prediction skill. 



 

 

Table 1 List of sensitivity experiments 

Experi
ments 

Ensemble 
Size 

Restoring 
Target: 

SST 

Restoring 
Target: SSS 

Restoring 
Timescales 
(day): SST 

Restoring 
Timescales 
(day): SSS 

Purpose 

S-SSS 6 
Monthly-

mean 
ERSSTv5 

Monthly 
climatological 

WOA13v2 
SSS 

10 10 Examine 
the impact 

of SSS-
restoring 

on AMOC 
simulation W-SSS 6 

Monthly-
mean 

ERSSTv5 

Monthly 
climatological 

WOA13v2 
SSS 

10 365 

M-SSS 6 
Monthly-

mean 
ERSSTv5 

Monthly-mean 
FOSI SSS 10 10 

Examine 
the 

relative 
importan
ce of SSS 
climatolo

gy vs. 
anomalie

s 

C-SSS 6 
Monthly-

mean 
ERSSTv5 

Monthly 
climatological 

FOSI SSS 
10 10 

A-RES 6 

Monthly-
mean 

FOSI SST 
anomalies 
+ monthly 
climatolog
ical HIST 

SST 

Monthly-mean 
FOSI SSS 

anomalies + 
monthly 

climatological 
HIST SSS 

10 10 

 



 

 

 

Figure 4.1 FOSI bias in SST and SSS compared to observations. Mean state 
differences between (a) FOSI SST and ERSSTv5, (b) FOSI SSS and WOA13v2 
SSS. (c) Correlation coefficients between annual-mean FOSI SST and annual-mean 
ERSSTv5. Time period for both FOSI and ERSSTv5 is 1975 - 2014. Climatological 
period for WOA13v2 is between 1955 and 2012. 
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Figure 4.2 Replicability of S-SSS to FOSI and REST in decadal variability of 
AMOC and its related features. (a) Detrended annual-mean AMOC(z) 
streamfunction maximum transport anomaly time series for the 1975-2014 period 
from FOSI (blue), ensemble mean of REST (red), and ensemble mean of S-SSS 
(green); (b) ACC of detrended LF AMOC(z) between ensemble mean of S-SSS and 
FOSI; (c) LF detrended AMOC (𝝈𝟐) along 36.925𝝈𝟐(upper, unit: Sv) and LF 
detrended zonal-averaged sea surface height (SSH) anomalies (multiplied by -1) 
between 40°W and 55°W (bottom, unit: cm) in ensemble mean of S-SSS; (d) ACC 
of LF detrended ZLSW between ensemble mean of S-SSS and FOSI; (e) The square 
root of PPVF of ∆ZLSW in S-SSS. Light red and light green shadings in (a) indicate 
the range of respective ensemble spreads in REST and S-SSS. The black contours 
and dots in (d) and (e) show the 3000-m isobath and regions where correlation is 
not significant at 95% level, respectively.  

(a) (b) (c)

(d) (e)

!!= 36.925
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Figure 4.3 Same to Figure 3.6 a &b but removing linear trends. 



 

 

 

Figure 4.4 March mixed-layer depth and sea-ice edge (15% sea-ice concentration). 
The mean states of mixed-layer depth (color fill) and sea-ice edge (red line) in 
March for (a) W-SSS, (b) S-SSS, and (c) FOSI; detrended LF STD of mixed-layer 
depth in March for (d) W-SSS, (e) S-SSS, and (f) FOSI. 
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Figure 4.5 Comparisons of AMOC(𝝈𝟐) between M-SSS and C-SSS. Time mean 
AMOC(𝝈𝟐, color fill) and its LF detrended STD (contoured at 1 Sv interval) in (a) 
M-SSS and (b) C-SSS. The black dashed line at (a) 36.925𝝈𝟐 and (b) 
36.925𝝈𝟐indicates the density surface where the maximum AMOC transport 
locates, separating the upper and lower limb of AMOC(𝝈𝟐).  The LF detrended 
maximum AMOC(𝝈𝟐) anomaly time series from 20°N to 60°N is shown in (c) M-
SSS and (d) C-SSS. The LF detrended AMOC indices (the detrended maximum 
AMOC(𝝈𝟐) anomaly time series at 45°N) for the 1975-2014 period from FOSI 
(blue), ensemble mean of M-SSS (green), and ensemble mean of C-SSS (red) are 
shown in (e). Light green and light red shadings indicate the range of respective 
ensemble spreads in M-SSS and C-SSS. 

(a) M-SSS

(b) C-SSS

(c) M-SSS

(d) C-SSS

(e)
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Figure 4.6 Same to Figure 4.3 except for ensemble mean of (a) M-SSS and (b) C-
SSS. The AMOC density surfaces where the strongest LF detrended STDs of 
AMOC locate are both 37.025𝝈𝟐. 

(a) M-SSS !" = 37.025 (b) C-SSS !" = 37.025

(c) (d)

(e) (f)



 

 

 

Figure 4.7 Same to Figure 4.5 but for REST and A-RES. Time mean AMOC(𝝈𝟐, 
color fill) and its LF detrended STD (contoured at 1 Sv interval) in (a) REST and 
(b) A-RES. The black dashed line at (a) 36.875𝝈𝟐 and (b) 36.825𝝈𝟐indicates the 
density surface where the maximum AMOC transport locates, separating the upper 
and lower limb of AMOC(𝝈𝟐). The LF detrended maximum AMOC(𝝈𝟐) anomaly 
time series from 20°N to 60°N in (c) REST and (d) A-RES. LF detrended AMOC 
indices are shown in (e) for the 1975-2014 period from FOSI (blue), ensemble mean 
of REST (green), and ensemble mean of A-RES (red). Light green and light red 
shadings indicate the range of respective ensemble spreads in REST and A-RES. 

(a) REST

(b) A-RES

(c) REST

(d) A-RES

(e)
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Figure 4.8 Same to Figure 4.6 except for the ensemble of A-RES. The AMOC 
density surface where the strongest LF detrended STD of AMOC locates is 
36.925𝝈𝟐. 
 

 

 

A-RES !"=36.925



 

 

CHAPTER V  

PRELIMINARY ASSESSMENT OF DECADAL PREDICTION SKILL INITIALIZED 

FROM A NUDGED COUPLED MODEL SOLUTION 

5.1 Motivation 

Decadal climate prediction is relatively a new concept and has challenged the 

climate research community (Meehl et al, 2014). It is not a simple extension of seasonal 

climate predictions that have been in operations in decades and shown success in many 

application domains (Penny, 2017), because there are some key differences between 

decadal and seasonal prediction dynamics. For seasonal climate predictions, the key 

dynamics is centered around El Niño-Southern Oscillation (ENSO) – a spectacular 

coupled ocean-atmosphere phenomenon on interannual time scales that involves 

interactions between the tropical atmosphere and upper ocean heat content. For this 

reason, a skillful seasonal prediction requires a realistic initialization of the upper ocean 

heat content in the tropics, which is achieved by assimilating available atmospheric 

observations, and surface and upper ocean observations to coupled prediction models 

(e.g., Zhang et al., 2007; Mulholland et al., 2015).  In contrast, decadal prediction 

dynamics resides in deep ocean variability, particularly AMOC variability in the North 

Atlantic (Yeager 2020), which is much less observed compared to the upper ocean heat 

content variability. The quality of decadal predictions very much depends on a realistic 

initialization of AMOC state, which has proven to be much more difficult primarily due 

to the lack of deep ocean observations, especially in the abyssal ocean below 2000m.  As 

a result, initialization techniques developed for seasonal climate predictions, such as 
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three-dimensional data assimilations, have shown difficulties in decadal climate 

predictions. For example, Karspeck et al. (2017) show that the existing three-

dimensioanl data assimilation products have an inconsistent AMOC vertical structure 

and inconsistent historical AMOC decadal variation, which may lead to poor decadal 

prediction skill. Therefore, Yeager et al. (2018) have advocated for using FOSI, instead 

of three-dimensional data assimilation, to initialize decadal climate prediction. 

As discussed in Chapter 1, unlike the data assimilation products, multi-model 

FOSI simulations revealed a similar AMOC decadal variation despite of large 

differences in the time-mean AMOC state. This result suggests that historical AMOC 

decadal variation is robust and FOSI solution may be used to initialize decadal climate 

prediction. CESM-DPLE with 40 ensemble members and 62 start years in Yeager et al. 

(2018) demonstrates the feasibility of FOSI-initialization in generating skillful decadal 

predictions, particularly in the northern North Atlantic where long ocean memory is 

provided by AMOC decadal variation (Figure 5.1). 

Despite of the initial success of CESM-DPLE, as discussed in the previous 

Chapters, FOSI initialization can suffer from significant ocean initialization shock which 

may degrade the initialization prediction skill based on the experience of seasonal 

prediction (Chen et al., 1995). A potential remedy to this problem is to use surface 

restoring in a coupled prediction model, as shown in Chapter 3 and 4. In this chapter, we 

will test this alternative initialization method to FOSI by a carrying out two ensembles of 

prediction simulations: one ensemble is initialized by FOSI and another is initialized by 

the surface-restored coupled model solution. After a brief description of decadal 
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prediction simulations in section 5.2, a preliminary assessment of the two prediction 

ensembles is discussed in section 5.3 by comparing the predictions to hindcasts, UI and 

persistent prediction. A short discussion will be followed in section 5.4. 

5.2 Experimental Description 

Two initialized decadal prediction ensembles are performed with the same 

CESM2 that was used to generate REST. The first ensemble is initialized from REST, 

named as Decadal Prediction initialized from REST (DPRE), and the other ensemble is 

initialized from FOSI, named as Decadal Prediction initialized from FOSI (DPFO). Each 

ensemble includes 30 start dates (Nov. 1st from 1980 to 2009) and each start date 

includes 10-member, 62-month prediction simulations, totaling 300 CESM2 simulations 

forced by CMIP6 historical external forcings. The DPRE members are generated from 

the 6 members of REST and round-off perturbations to atmospheric initial conditions. 

The initial conditions of land, atmosphere and river components in DPFO are more 

complicated, 6 of which are from REST, plus one from S-SSS (restored to ERSSTv5 and 

WOA13v2 SSS), and the other 3 members are initialized from JRA55 reanalysis 

(Kobayashi et al., 2015) with round-off perturbations added. The JRA55 based initial 

conditions are also used for the Seasonal-to-multiyear Large Ensemble (SMYLE) 

Experiment at NCAR (https://www.cesm.ucar.edu/working-groups/earth-system-

prediction/?ref=nav). The atmosphere model data in SMYLE is directly interpolated 

from JRA55 analysis and the land is forced by CRU JRA (Harris, 2019; Yeager, 2021). 

The different initial conditions of land, atmosphere and river components in DPRE and 

DPFO are not expected to have a major impact on decadal prediction results considering 
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their relatively short memory compared to the ocean memory. Table 2 shows a brief 

overview of these two initialized prediction ensembles. We note that all the initial 

conditions from the surface restoring technique are restored to SST and SSS globally 

including the sea ice regions in this chapter due to the similar results in AMOC and deep 

ocean with/without SST and SSS restoring under the sea ice. 

Besides the two initialized prediction ensembles, uninitialized forecast (UI) and 

persistence forecast will also be used in this chapter as a baseline to assess the prediction 

skill. UIs are the 10-member HIST forced by the same external forcing with DPRE and 

DPFO, which reveals the role of external forcings in the long-term predictions. The 

persistence forecast starts from the year of initialization, which includes the first 2 lead 

months that DPRE and DPFO predict, November and December, persist for the 

following 5 years.  

In addition, annual-mean is defined over January – December and lead year 

means the annual-mean of the prediction. For example, the first lead year, denoted as 

LY1, is the average of month 3 (January) to month 15 (December) from initialized 

predictions. LY0 refers to the first lead month of predictions (November in each start 

year), whose fields are close to initial conditions. The 5-year mean prediction is the 

average of the first 5 lead years of prediction (hereafter LY1-5). All analyses are carried 

out after a drift adjustment is applied, which is introduced in Section 2.4.3. We focus on 

anomaly analyses unless otherwise noted, and all results are based on the average of 10-

ensemble member. 
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5.3 Preliminary Results 

5.3.1 Prediction Skill in Global Upper Ocean 

The decadal prediction skill of global SST is first assessed. Figure 5.2 shows the 

pentadal ACC skill score in DPRE, DPFO, HIST and its difference, ∆ACC, between 

these experiments and persistent prediction derived from ERSSTv5. The positive ACC 

score in DPRE locates in the North Atlantic, Indian Ocean and the Western Pacific, 

where DPFO also shows positive ACC values. However, the positive ACC score in 

DPRE reveals higher values compared to that of DPFO in SPNA, Indian Ocean and 

Western Pacific, and ∆ACC between DPRE and DPFO (DPRE minus DPFO) can reach 

as high as 0.3 in the central SPNA (Figure 5.2e). This improved forecast skill may be 

related to the reduced initialization shock in DPRE compared to DPFO with more 

balanced atmosphere and ocean states in DPRE as shown in previous Chapters. That is, 

reducing initialization shock can improve forecast skill not only on seasonal time scales 

as shown in many previous studies (e.g. Chen et al., 1995; Keenlyside et al., 2005), but 

also on decadal time scales. However, we also note some ∆ACC negative values in the 

eastern Pacific, indicating a worsening forecast skill in DPRE compared to DPFO. One 

possible reason may be that ENSO-related upper ocean heat content variability in DPRE 

initial condition is less realistic than that in DPFO initial condition, because the latter is 

generated using observation-based atmospheric forcing, while the former is generated by 

an atmospheric model forced by observed SST. Any biases in atmospheric model 

simulation of ENSO-related tropical atmosphere variability can lead to errors in tropical 

ocean heat content, deteriorating model ENSO forecast skill in the eastern Pacific.  
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Comparing ACC scores between DPRE and HIST (UI) indicates that the 

improved forecast skill in the initialized prediction is largely confined in SPNA where 

AMOC dominates decadal variability (Figure 5.2c&f). This suggests that external 

forcings make a significant contribution to the high ACC scores outside of SPNA, which 

is consistent with the results from Yeager et al. (2018). In addition, a part of the 

subtropical North Atlantic shows a higher score (~0.15) in DPRE relative to UI. Another 

better performant region in DPRE relative to UI is the eastern Pacific, although the score 

in DPRE remains negative. Compared to persistent prediction, the initialized decadal 

prediction is superior nearly everywhere (Figure 5.2d&g), which is again in agreement 

with Yeager et al. (2018).    

ACC of global upper ocean heat content (T295m) is displayed in Figure 5.3. All 

prediction ensembles show positive ACC scores with an AMV-like pattern in the North 

Atlantic, suggesting the long ocean memory in this region. Compared to UI and 

persistent prediction, the skill in DPRE is higher in the extra-tropical North Atlantic. The 

ACC score in DPRE is also slightly higher than that of DPFO over much North Atlantic, 

although the increase is small with a value of 0.1-0.2 over the SPNA and ~0.4 near the 

coast of Northern Africa. Within SPNA, DPRE shows a higher skill than DPFO just 

south of Greenland, where the ocean current transports relatively warm and salty North 

Atlantic water into LS and affects deep convection in the region, which in turn can have 

an impact on AMOC variability. As shown in Chapter 1 (see Figure 1.2), CESM2 has a 

significant bias in its simulated surface wind stress in SPNA. Therefore, it is plausible 

that DPFO experiences a significant initialization shock in this region because of the 
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large wind stress bias. The improved ACC score in DPRE may be related to the 

reduction of initialization shock in DPRE (Figure 5.4). In the next subsection, we present 

more detailed analyses in the North Atlantic sector where DPRE shows improved ACC 

score than DPFO. 

5.3.2 Prediction skill in North Atlantic Sector 

In this subsection, we focus on the SST in the northern North Atlantic and the 

Sahel precipitation, where decadal variability is pronounced as shown by previous 

studies (e.g. Born et al., 2012; Nicholson & Entekhabi, 1986) and initialized decadal 

prediction shows higher ACC score than UI climate simulations as shown in Yeager et al 

(2018) and in the previous subsection. 

The regionally averaged SSTs from DPRE and DPFO over SPNA at lead year 1 

to 5 are shown in Figure 5.5 superimposed on the observed ERSSTv5. A visual 

inspection clearly indicates that DPRE follows more closely to ERSSTv5 than DPFO 

with less departures from ERSSTv5 at all lead years. For example, the LY1 forecasts in 

DPFO depart further apart from ERSSTv5 than in DPRE, indicative of more rapid drift 

from initial condition (LY0) in DPFO than DPRE. This rapid drift in DPFO is 

particularly evident in year 1982, 1983 and 1984. Another period when DPRE and 

DPFO show a significant difference is during 1998-2004, in which LY1 in DPFO 

consistently shows warmer-than-observed forecasted SST in SPNA.  

The predicted SST time series from lead year 1 to 5 in DPRE, DPFO and HIST is 

shown in Figure 5.6. It is evident that the observation shows a shift in mid-1990s from a 

cold state prior to the mid-1990s to a warm state after the mid-1990s. As such, the SST 
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timeseries may be separated into three periods: 1) a colder state period from 1980 to 

1994, 2) a transition period from 1994 to 1998, and 3) a warmer state period from 1998 

to early 2010s. The predicted SST in DPRE shows a good agreement with the 

observation in all lead years compared to DPFO and HIST. HIST fails to simulate the 

abruptness of the shift, instead predicts a gradual warming from the early 1980s to the 

early 2000s. DPFO predicts these three periods but with a relatively poor agreement with 

the observations in the early 1980s, particularly at long lead times. In contrast, DPRE 

shows a consistently good agreement with the observations in all three periods at all lead 

years. 

The improved prediction skill in DPRE is further confirmed by the ACC and 

RMSE skill scores of regionally averaged SST time series over the SPNA shown in 

Figure 5.7. The skill score at LY0 is included for DPRE and DPFO. It is evident that 

DPFO has higher skill scores at LY0 than DPRE, because the initial condition from 

FOSI is closer to the observations than that from restored coupled model solution. From 

LY1 onwards, the skill score from DPFO drops rapidly and becomes lower than that of 

DPRE. For example, the ACC score of DPRE remains at 0.86 or higher from LY3 to 

LY5, whereas the score of DPFO drops to just above 0.8. In fact, the ACC score of 

DPFO is even below that of HIST from LY3 to LY5, while the score of DPRE is always 

higher than that of HIST. The RMSE skill score shows similar results: DPFO has much 

lower RMSE at LY0 than that of DPRE, but RMSE increases rapidly from LY1 onwards 

and becomes higher in DPFO than in DPRE. The rapid increase of RMSE in DPFO is 

consistent with the notion that there is a significant initialization shock in DPFO, causing 
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a rapid adjustment in the ocean after initialization. In contrast, the RMSE in DPRE 

remains relatively steady throughout LY0 to LY5, indicating a much less initialization 

shock. Overall, both ACC and RMSE scores show that DPRE possesses the best forecast 

skill at LY3 to LY5, more superior than DPFO, HIST and persistent forecast. 

It has been shown by previous studies that a skillful decadal forecast of SST in 

the North Atlantic can translate to a skillful forecast of Sahel rainfall over the West 

Africa (e.g., Yeager et al. 2018). This result is confirmed by DPRE. Figure 5.8 shows 

predicted and observed rainfall anomaly time series averaged over the West African 

Sahel (20°W – 10°E, 10°N – 20°N) during boreal summer months of July, August and 

September (JAS) that corresponds to the onset of West Africa Monsoon. The predicted 

rainfall is based on the average of LY1 to LY5. The ACC of the predicted Sahel rainfall 

is 0.68, 0.65, 0.74 and 0.13 for DPRE, DPFO, HIST and persistent prediction, 

respectively. MSSS (an assessment metric related to the magnitude bias comparison 

explained in the section 2.4.4) of DPRE is 0.016, 0.033 and 0.659 with the reference to 

DPFO, HIST and persistent prediction, respectively. There is no obvious improvement 

for decadal prediction of summer Sahel rainfall from DPRE over DPFO. In fact, the 

ACC score is the highest using HIST. This may suggest that the recent trend in Sahel 

rainfall may be dominantly forced by external forcings. However, it may be premature to 

conclude that initialized decadal prediction does not lead to any improvements in 

predicting Sahel rainfall, because 1) the results presented here is based on a relatively 

short period from early 1980s to early 2010s, and 2) the ensemble size 10 may be 

inadequate to evaluate rainfall prediction skill because the larger internal variability in 
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the atmosphere than in the ocean. Therefore, the skill of predicting Sahel rainfall needs 

to be further examined by extending prediction period further back in time and by 

increasing the ensemble size as argued by Yeager et al. (2018). 

5.4 Discussion and Conclusion 

In this chapter, we show some preliminary results from two ensemble decadal 

prediction experiments, DPRE and DPFO. The predicted SST over the northern North 

Atlantic shows improved skill scores in DPRE over DPFO, which supports the notion 

that a more balanced atmosphere-ocean states in DPRE can reduce initialization shock, 

leading to more skillful decadal forecast. However, no significant improvement in 

decadal prediction of summer Sahel rainfall is found in DPRE, which may be attributed 

to the shortness of prediction period and the small ensemble size used in these 

preliminary prediction experiments.  

As we discussed previously, realistic AMOC initialization is vital for skill 

decadal predictions. Reducing initialization shock can help minimize spurious wave 

generation during ocean adjustment caused by imbalance between atmosphere and ocean 

initial state, which can lead to a more smoothed AMOC evolution during a prediction 

cycle (Figure 5.9). Comparing AMOC evolutions between DPRE and DPFO, it is clear 

that AMOC change in DPRE is much smoother and follow more closely to the AMOC 

in FOSI, which is considered as “observation” in our modeling framework. In DPFO, 

LY1 AMOC states are generally much further away from the observation compared to 

those in DPRE, suggesting that there is a rapid drift in these AMOC states from the 

initial states given by FOSI. These “noisy” AMOC evolutions in DPFO are consistent 



 

85 

 

with the notion of imbalanced ocean-atmosphere initial states that cause initialization 

shock. Therefore, the results shown in Figure 5.9 is consistent with those shown in 

Figure 5.5. We hypothesize that the “noisy” SST evolutions are connected with the 

“noisy” AMOC evolutions in DPFO. But future studies need to show how the dynamic 

linkage between the two. 

Finally, we would like to discuss the potential improvement of DPRE. We notice 

that the ocean initial condition from DPRE, REST, has a larger bias and lower ACC than 

the ocean initial condition from DPFO, FOSI (Figure 5.7 LY0), which may degrade the 

prediction skill at short lead times. Particularly, in the tropical Pacific where upper ocean 

heat content plays a dominant role in SST prediction at seasonal time scales the less 

realistic initial condition from REST can have a major negative impact on SST 

prediction. That is, even though the initialization shock may be reduced from REST 

initialization, the short-term forecast skill may still be degraded from the less realistic 

upper ocean initial condition in REST. Figure 5.10 and Figure 5.11 show SST (raw data) 

mean state bias in tropical Pacific and the vertical temperature (raw data) mean state bias 

along the equator from DPRE and DPFO, relative to the initial states from REST and 

FOSI, respectively. It is obvious that the error in DPFO is larger than that in DPRE at the 

first lead month (LM) due to the initialization shock for both surface and vertical 

structures. The thermocline in DPFO adjusts rapidly due to the inconsistent atmospheric 

forcing field between FOSI and DPFO. The bias increases rapidly in DPFO as the lead 

time increases, whereas the error in DPRE develops much slower without apparently 

thermocline adjustment. The magnitude of bias in DPFO is almost twice or even larger 
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than that in DPRE at LM3. These results suggest that the REST initialization strategy 

enables to a smooth transition from the ocean initial state in the upper ocean. Thus, if the 

error in REST could be reduced, there should be a potential to generate higher prediction 

skill, specifically in the regions dominated by upper ocean heat content. 

 

 

 

 

 

 

 



 

 

Table 2 Overview of the experimental setups of the two initialized decadal 
prediction simulations 

 DPRE DPFO 

Model CESM2 (1°) 

Initialization 
ocn/ice REST* FOSI 

atm/lnd/rof REST* REST*/S-
SSS*/SMYLE 

Forcing CMIP6 historical 

Ensembles 

Ensemble size 10 

Start dates Annual; Nov 1, 1980-2009 (N=30) 

Ensemble 
generation 

 

01-06: Nov start days 
from REST* 

07-10: round-off 
perturbation of atm 

initial conditions from 
REST* start days 

01-06: Nov start days 
from REST* 

07: Nov start days 
from S-SSS* 

08-10: Nov start days 
from SMYLE and 

round-off perturbation 
of atm initial 

conditions 
Simulation 

length 62 months 

* Both SST and SSS are restored globally including the region covered by sea ice. 
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Figure 5.1 Decadal prediction skill of annual T295m in CESM-DPLE (from Yeager 
et al., 2018 FIG. 1). ACC skill score between DPLE and EN4.2.1 for lead year (a) 1-
5, (b) 3-7, and (c) 5-9; ∆ACC between DPLE and persistent prediction for lead year 
(d) 1-5, (e) 3-7, and (f) 5-9; ∆ACC between DPLE and uninitialized simulation (UI) 
for lead year (g) 1-5, (h) 3-7, and (i) 5-9. 
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Figure 5.2 Prediction skill of annual SST globally for LY1-5. ACC relative to 
ERSSTv5 from (a) DPRE, (b) DPFO, (c) HIST, and (d) persistent prediction; 
∆ACC between (e) DPRE and DPFO, (f) DPRE and HIST, and (g)DPRE and 
persistent prediction. Color filled grids are regions where ACC pass 95% 
significant level. All fields are mapped to 2° × 2° grids. 
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Figure 5.3 Prediction skill of annual T295m globally for LY1-5. ACC relative to 
EN4.2.1 from (a) DPRE, (b) DPFO, (c) HIST, and (d) persistent prediction; ∆ACC 
between (e) DPRE and DPFO, (f) DPRE and HIST, and (g)DPRE and persistent 
predictions. Color filled grids are regions where ACC pass 95% significant level. 
All fields are mapped to 2° × 2° grids. 
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Figure 5.4 Same to Figure 3.9 e&f but focuses on the North Atlantic. Wind stress 
differences in the North Atlantic between (a) FOSI and HIST, and (b) REST and 
HIST (unit: N/m2). 
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Figure 5.5 regionally averaged SST timeseries in (upper) DPRE and (lower) DPFO 
for the period of 1980-2014. The black line represents ERSSTv5; the ensemble 
mean prediction simulations from each start time are plotted in red lines (DPRE) 
and blue lines (DPFO), respectively; the colorful dots suggest the 10-ensemble-
member-mean at different lead years from LY1 to LY5. The analysis region is in 
45°N-65°N, 75°W-0. 
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Figure 5.6 Regionally averaged SST timeseries at different lead years from 
ERSSTv5 (black), ensemble mean of DPRE (red), ensemble mean of DPFO (blue), 
and ensemble mean of HIST. The analysis region is in 45°N-65°N, 75°W-0, same to 
the one in Figure 5.5. The number after the legend indicates the ensemble member. 
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Figure 5.7 Prediction skill of SST in regionally averaged SPNA relative to 
ERSSTv5. (a) ACC and (b) RMSE at different lead years in DPRE (red), DPFO 
(blue), HIST (black), and persistent predictions (magenta). The solid squares in (a) 
indicate the values that pass 95% significant level. The analysis region is in 45°N-
65°N, 75°W-0.  
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Figure 5.8 Regionally averaged- boreal summer (JAS) precipitation anomaly 
timeseries for the West African Sahel (10°N – 20°N, 20°W – 10°E). GPCPv2.3 
(black) and the ensemble mean of HIST (green) timeseries have been smoothed 
with a 5-year-running-mean; the ensemble mean of DPRE (red) and the ensemble 
mean of DPFO (blue) timeseries are over LY1-5. 
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Figure 5.9 AMOC(z) maximum timeseries at 45°N in DPRE (upper) and DPFO 
(lower) from FOSI (black), HIST (orange), DPRE (red), and DPFO (blue). The 
different filed circle in different colors indicate different lead years.   
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Figure 5.10 SST (raw data; unit: °C) mean state bias in tropical Pacific from DPRE 
(left) and DPFO (right) relative to REST and FOSI from the first lead month to the 
third lead month (LM1 – LM3). 



 

 

 

Figure 5.11 Same to Figure 5.10 but for the vertical temperature (raw data; unit: 
°C) at Pacific equation 
 



 

 

CHAPTER VI  

CONCLUSIONS AND FUTURE WORKS 

The overall goal of this dissertation is to show that 1) the historical AMOC 

decadal variation can be simulated in a coupled climate model that is used for decadal 

climate prediction, 2) such a coupled model simulation can then be used to initialize 

decadal climate prediction and yield improved forecast skill through reducing 

initialization shock. Using FOSI as “truth” due to the lack of long-term AMOC 

observations, we developed and evaluated a coupled modeling strategy to simulate 

historical AMOC decadal variation by restoring only SST and SSS in a coupled model 

simulation. We then investigated the role of SSS restoring in simulating AMOC decadal 

variation by conducting an extensive set of model sensitivity experiments. Finally, we 

carried out ensembles of decadal climate prediction simulations, totaling 600 individual 

initialized predictions in each ensemble, to examine the feasibility of using this coupled 

modeling strategy to initialize decadal predictions. The main conclusions could be 

summarized as follows. 

6.1 Conclusions 

Firstly, the hypothesis that restoring SST and SSS to observations alone in fully 

coupled CESM2 simulations can replicate the historical AMOC decadal variability is 

validated in the framework of FOSI. Using FOSI as observations, a set of 6-member 

coupled CESM2 simulations with SST and SSS restored to FOSI SST and SSS at 10-day 

restoring timescale (REST) was performed for the period of 1958-2014. A detailed 

analysis of AMOC decadal variation reveals that REST can replicate not only FOSI 
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AMOC decadal variation, but also AMOC-related deep ocean anomalies. For example, 

the southward and downward propagation of decadal temperature and salinity anomalies 

from SPNA, as well as LSW propagation in the deep ocean are captured by REST, 

demonstrating the high fidelity of REST in replicating AMOC decadal variability in 

FOSI. In addition, the upper ocean heat content simulated by REST is highly correlated 

with EN4.2.1 observation, further demonstrating that the high fidelity of REST is not 

only limited to the North Atlantic, but also extend to other ocean basins including the 

Pacific and Indian Ocean. Compared to FOSI, the atmospheric state in REST is much 

closer to that of the free coupled simulation (HIST), which rationalizes its potential use 

as an alternative initialization technique to FOSI in decadal prediction to reduce 

initialization shock.  

Although previous studies (e.g. Keenlyside et al., 2018) addressed the 

importance of SST-restoring, strongly SSS-restoring is found to be essential for 

simulating historical AMOC decadal variation. A weak SSS-restoring can lead to 

unrealistic surface buoyancy forcing in LS, which can impede the deep convection, 

AMOC and the associated meridional heat transport, resulting in over-extensive winter 

sea-ice coverage in SPNA, and eventually shutting down AMOC. On the other hand, 

restoring SSS anomaly alone while keeping model mean SSS intact will also not work, 

because the density bias in the model can cause inconsistencies between surface density 

anomalies and mean density distribution in the model, which can weaken the downward 

propagation of surface density anomalies into the deep ocean (denser than 37𝜎k), 

causing surface density anomalies trapped in the upper ocean. This explains why AMOC 
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decadal variation is so weak and shallow in SSS-anomaly-restoring simulations. In 

contrast, the SSS-climatology-restoring simulations which correct the mean density bias 

in the model are more effective for simulating historical AMOC decadal variation. As 

long as model density bias is reduced, surface density anomalies generated by SST 

changes in SPNA can propagate downward into the deep ocean during deep convective 

events in LS and then propagate southward along the deep western boundary in the deep 

basin. Therefore, a major conclusion of this study is that assimilating SSS climatology 

into coupled climate models seems to be more important than assimilating SSS 

anomalies for simulating historical AMOC decadal variation.  

Finally, the hypothesis that REST can be used as an alternative initialization 

technique to FOSI in decadal prediction to improve model forecast skill by reducing 

initialization shock is tested by carrying out a preliminary set of decadal prediction 

experiments. Although the ensemble size is smaller and prediction length is shorter than 

those in CESM-DPLE (Yeager et al., 2018), the initial results reveal that using REST 

initialization in DPRE leads to improved forecast skill in both SST and T295m 

compared to using FOSI initialization in DPFO. The improvement is specifically 

observed in the northern North Atlantic. Further analyses suggest that initialization 

shock reduction in DPRE seems to play a significant role in skill improvement. 

However, there is a room for further improvement of model forecast skill to improve 

simulation of upper ocean heat content in REST. This may be achieved by assimilating 

observed atmospheric forcing anomalies into the coupled predictive model. 
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Overall, SST- and SSS-restoring strategy in a coupled climate model brings a 

new perspective to decadal prediction research. Instead of assimilating three-

dimensional ocean observations into coupled predictive models, which can be 

challenging due to the lack of deep ocean observations, decadal prediction may be 

benefited from assimilating only surface observations, such as SST, SSS and surface 

winds that are more readily available. The reduced initialization shock provided by such 

a modeling approach can potentially lead to improvements in decadal prediction skill.  

6.2 Future Work 

An immediate next step of this research is to examine whether this SST/SSS-

restoring coupled model initialization strategy will remain effective if FOSI SST and 

SSS are replaced by observed SST and SSS as restoring target.  The experiment S-SSS 

in which SST is restored to monthly ERSSTv5 and SSS to climatological WOA13v2 

SSS can be used to initialize decadal prediction ensembles. The advantages of using S-

SSS as initialization are to 1) narrow the difference between initial conditions and 

observations, possibly improving the prediction skill at short lead times; 2) make the 

results more general and independent from a specific model system, i.e. CESM FOSI. 

There are several other possible improvements for initialization technique that 

can be tested. Based on the experience of seasonal prediction that using daily or 6-hourly 

observations as restoring targets can further improve model forecast skills (e.g. 

Keenlyside et al., 2005; Sluka et al., 2016), it is worthwhile repeating the decadal 

prediction experiment using daily SST observations as restoring target in coupled model 

initialization. Reducing model drift is another potential method to improve model 
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forecast skills. Theoretically, using anomaly-restoring coupled model simulations as 

initialization should both reduce initialization shock and model drift. But as shown in 

Chapter 4, anomaly-restoring can lead to inconsistency in surface density anomalies and 

mean density distribution, resulting in unrealistic AMOC decadal variation. One 

potential solution to overcome this inconsistency is to restore SST to observation while 

including a salinity correction based on T/S relation, so that density anomalies are more 

consistent with mean density distribution.  

In summary, many potential improvements can be made to coupled model 

initialization in decadal climate prediction. The results shown in this study present only a 

first step to develop a comprehensive initialization approach for decadal climate 

prediction.  
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