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ABSTRACT

Cognitive fatigue is a pressing issue across multiple job domains, especially within safety crit-

ical systems, where fatigue-driven lapses in operator performance and behavior have resulted in

costly errors. While the importance of rest and fatigue management is known and widely acknowl-

edged, sustainable solutions to address the core problem remain far and few between.

A major bottleneck remains a lack of clarity on the nature of the phenomenon, where a task in-

variant operational definition is impeded by individual differences, confounds related to workload,

motivation or saturation, and the classic incongruities between performance or perception-centric

views of the construct. Furthermore, mitigation strategies have rarely strayed beyond consumables

(e.g. caffeine) or pharmacological aids that are used on an ad-hoc basis. Therefore, there is an

imminent need to develop alternatives that could sustainably redress these conditions, and advance

solutions that are explicitly informed by user cognitive states.

To that end, this dissertation investigates the operational significance, the mechanistic rele-

vance, and fieldability barriers associated with the use of non-invasive brain stimulation (NIBS)

as a fatigue countermeasure. Low intensity electrical stimulation of brain regions responsible for

cognitive faculties such as attention, vigilance, and working memory has shown promise across a

myriad task contexts, and lends confidence to its use as a fatigue countermeasure in related exper-

iments. A fatiguing working memory exercise serves as the sandbox to investigate the parameters

of interest for NIBS on fatigue effects. Stimulation was shown to enhance task performance, while

the subjective perceptions of fatigue remain unaltered. Cerebral hemodynamics reveal structural

and functional disparities of fatigue effects over the time course of the experiment, with cardiac

activity, captured unobtrusively, shown to mirror the changes observed across task-relevant corti-

cal networks. This observation lends confidence to the predictive potential of cardiac measures as

neurocognitive indices of fatigue states, however, the search for the underlying ground truth that

qualifies these states remains an open question. This dissertation explores the specific challenges

and benefits that come from taking performance and perception-centric views of fatigue, while

ii



proposing alternatives derived from cardiac heuristics to successfully forecast these states over a

desired prediction horizon.

Together the evidence found in this dissertation provide the necessary foundation for the devel-

opment of a closed-loop framework for mitigating fatigue states in related experiments. However,

the domain translation and task-invariability demands of these observations demand more ecolog-

ically valid task contexts, and extensive validation studies in future assessments.
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1. INTRODUCTION

Work responsibilities in today’s world demand a high level of cognitive function, sometimes

with minimal to no physical exertion, or opportunities to recover under persistent task demands

[1, 2]. Work days are no longer bounded by hours of daylight or related constructs that defined

schedules since the early 1900s [3]. In fact, these distinctions have been skewed further with the

onset of “work-from-home” and the hybrid work culture that has taken precedence since the on-

set of the pandemic [4]. As humans continue to invest in this altered format and the demanding

schedules that follow, cognitive fatigue is now a ubiquitous human condition resulting in high lev-

els of burn out across job domains [5]. In fact, the term “languishing” has entered our collective

rhetoric, and has become a very familiar experience to us all [6]. This predilection and the incre-

mental burden of work demands can contribute to symptoms such as increased distractibility [7],

lack of motivation [8], changes in how we process information [9], and also an inability to manage

moods [9]. Indeed, the underlying fatigue that drives these changes is known to inhibit our ability

to detect errors, or take remedial action and promotes error-prone and risky behaviors in all indi-

viduals [10]. It comes as no surprise then, that these deficits have shown to result in progressively

worsening health situations, performance and in some instances, an inability to serve essential job

functions, e.g., impairment of treatment decisions by doctors [11], operator lapses in air traffic

control [12], and in hospice care [13]. In safety-critical job domains such as emergency response

(ER), or front-line medical practice, these problems take a particularly insidious turn, driven by

multiple contributing factors such as long work hours, harsh working conditions, shift schedules,

sleep deprivation, heightened risk, workload, and understaffed operations [14].

Sections of this chapter are reproduced with permission from "Towards a Closed-loop Neurostimulation Platform
for Augmenting Operator Vigilance." by Karthikeyan, R., & Mehta, R. K. published in the 2020 IEEE International
Conference on Systems, Man, and Cybernetics (SMC) (pp. 3976-3983). Copyright IEEE.

1



1.1 Contributions

This dissertation explores the opportunities that enable, deficiencies that demand, and the

mechanistic barriers that impede the development of effective, use-inspired solutions to combat

cognitive fatigue. Specifically we consider the relevance of non-invasive brain stimulation as a

fatigue countermeasure. The fatigue problem plagues different domains at different scales, yet, a

consistent task invariant understanding of the phenomenon, a representation of associated biomark-

ers, and (or) sustainable mitigation strategies remain far from a reality. The reasons for this are

several fold, including but not limited to the inherent complexity and subjectivity that underlies the

human experience of these states, the lack of consistent experiment paradigms to study their mani-

festations, the challenge of conducting effective longitudinal investigations on healthy populations,

and the absence of promising alternatives that look beyond pharmacological solutions. Therefore,

the goal of this dissertation is to cut through some of these challenges by (1) providing clarity

on the nature of fatigue during sustained cognitive activity, specifically fatigue as induced by the

time-on-task effect, (2) introducing the prospect of neuromodulation as a countermeasure to those

states, and (3) exploring techniques to forecast “fatigability” before it is perceptually available or

evidenced in outward human behavior.

1.2 Motivating Factors

In safety-critical socio-technical systems, sustained attention or vigilance, and working mem-

ory form core competencies necessary to fulfill several primary job performance requirements [15].

With increasing time-on-task demands, operator cognitive states can be compromised as vigilance

decrements begin [16], and individuals struggle to remain goal oriented. There are varied defini-

tions for this effect, and the associated diminution, but there is some precision in characterizing

it as the ability to sustain attention for an extended duration of time while maintaining optimal

task performance. Therefore, contingent on the nature of the task, the observed decrease in at-

tention capacity over a given time period is ascribed to vigilance loss driven by the time-on-task

effect or task-induced cognitive fatigue [17, 18]. The consequence of vigilance decrements within
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these systems is not trivial, with operator lapses or error identified as a contributor to several well-

researched case studies such as, Three Mile island, and Chernobyl [19]. Some studies attribute

their cause to sleep deprivation, monotony, and (or) boredom [20], while others explore underlying

cognitive factors that prime these states [21]. The ability to predict the onset of these conditions,

and to compliment user cognitive deficits through intervention remains an active research effort

[22, 23, 24].

1.3 A Neural Basis for Cognitive Fatigue

Studies have identified theoretical models, and measures for the quantitative, and qualitative es-

timation of fatigue-driven performance deficiencies in human operators. These include the arousal

theory which posits cortical arousal as a causal indicator for these behaviors. Successive investi-

gations with functional magnetic resonance imaging (fMRI), and electroencephalography (EEG)

suggest that these changes are correlated with cortical arousal; however their causal relationship

remains suspect [25, 26]. In contrast, the underload theory suggests that performance deficiencies

induced by the time-on-task effect is due to the observer’s withdrawal of focused attention to a task

due to task monotony [27].

The underlying neural basis for fatigue is an important consideration in this investigation, and

it remains a complex issue. There are multiple constructs and neural systems elementary to the

relatively non-specific alertness and activation states associated with these phenomena, implying

that they are not uni-dimensional [28]. Some attempts have been made on using EEG workload

indices as predictors for monitoring such states, with the measured Task Load Index, and Engage-

ment Index from lower-frequency alpha as an objective diagnostic measure for time-on-task driven

deficiencies [29]. However, this and related metrics need further investigation on the variability as-

sociated with altering task demands. fMRI studies report that attentional performance is correlated

with BOLD-signals especially in the parietal and pre-frontal cortices [30, 31], nevertheless, these

methods are not optimized for everyday/ ambulatory use-cases. Another study reports the respon-

siveness of cerebral hemodynamics to operator fatigue, and vigilance states using near-infrared

spectroscropy (NIRS) [32] – this non-invasive ambulatory technique shows promise in providing
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correlates for vigilance decrement but is limited by its spatio-temporal resolution, and operat-

ing constraints [33]. On the subject of deficit prediction, there is also emphasis on the need for

wearables that are unobtrusive to task performance requirements, while remaining sensitive to the

physiological, and cognitive triggers that capture operator lapses. For the systems discussed thus

far, this remains an impediment, however, recent efforts suggest that heart rate and its variability

(HR/V) are sensitive metrics for predicting the cognitive demands of sustained attention tasks [34],

in particular, spectral power ratios, time-domain, and some non-linear parameters derived from the

inter-beat interval (IBI). These metrics can be obtained using electrocadiography (ECG) enabled

wearables that are easy-to-use, inconspicuous, and self-contained.

1.4 Non-invasive Brain Stimulation as a Countermeasure

With the ubiquity of fatigue exposure and risk, there is the need to sustainably reverse or oth-

erwise delay the condition using some active, adaptive mechanism. Research in this space dwells

on the use of both conventional and unconventional solutions. Conventional paradigms include –

meditation, yoga, caffeine, and nicotine among others; with each showing varying levels of suc-

cess, and some inherently limited by their mechanism of action [24]. Unconventional solutions

include pharmacological agents such as D-Amphetamine, and Modafinil among others, with each

having unique pharmacodynamics, activations, and long-term addiction potentials [35]. Some of

these modalities are used on a spontaneous, ad-hoc basis, with no clear statistical validation of

their efficacy (e.g., coffee in the workplace). Moreover, there is a need for tools that can act prior

to symptomatic expression, and also those that are mapped to the operator’s "real-time" cognitive

state. Neuromodulation techniques that operationalize non-invasive mechanisms show promise

in enabling some form of preemptive action, and in eliciting the desired response. In particular,

the use of transcranial direct current stimulation (tDCS) has been explored by multiple research

groups [36, 37]. In these studies, a small current (1 to 2 mA) is applied to the user’s scalp for a

short duration of time (up to 40 min.). These small currents are stated to influence levels of corti-

cal excitability, thereby altering user experience of fatigue symptoms such as diminished working

memory, vigilance capacity, etc. Research by Nelson et al. showed promise in vigilance enhance-
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ment via tDCS when administered over the dorsolateral prefrontal cortex (dlPFC), while perform-

ing a simulated air traffic control task [23]. Similar findings have been reported with participants

subject to a psycho-motor vigilance Test (PVT), and the Mackworth clock test [38].

For the scope of this investigation, we consider the foundational aspects of developing a closed-

loop, adaptive mechanism for tDCS administration – e.g. to identify specific brain regions im-

pacted by fatigue processes, the markers that could signal the onset of those impacts, and the

influence that lower bounds in stimulation intensity could bring to these conditions. In the studies

prior, including those related to fatigue and related constructs, tDCS dosages were based on arbi-

trary, sequential time-intervals with non-specific relationships to user cognitive states [23, 38]. Our

ultimate vision is to aid the development of a system that is explicitly, and concurrently informed

by physiological triggers/ thresholds that determine the onset of fatigue. Therefore in subsequent

chapters we provide clarity on the specific fatigue processes of interest, the early evidence in sup-

port of tDCS as a countermeasure to those faculties, and the challenge in finding an objective

ground truth that characterizes these states sufficiently.

1.5 Dissertation Structure

In an ideal world, the steps that underpin this dissertation would read (1) understand the nature

of time-on-task fatigue, (2) identify relevant biomarkers that signal deficiencies driven by (1), and

(3) explore potential countermeasures informed by (2) to address the aforementioned deficiencies.

In reality, however, our experiments, in a true alignment with the origins of psychophysics, was

first centered on understanding the impact of stimulation on brain functions during a fatiguing ac-

tivity, before working backwards to understand the nature of fatigue on the task itself, and to finally

answer the challenge of forecasting those states. Therefore, this dissertation is organized as fol-

lows. In Chapter 2 we introduce our observations on the impact of NIBS on task performance and

perceptions during a fatiguing working memory exercise, we explain the specific mode of cognitive

fatigue of interest in this research, the parameters of concern for neuromodulation, and the metrics

that qualify the experience of fatigue in our participants. Findings discussed in this chapter provide

insight on the benefits enabled by intervention while also highlighting the barriers related to their
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translation. In Chapter 3, we take a high resolution lens to the experience of cognitive fatigue by

relying on the fidelity and spatio-tempoeral resolution of wearable neuroimaging, i.e. functional

near-infrared spectroscopy to explain the manifestation of fatigue during this exercise. We con-

trast neural indices to the fieldability of wearable electrocardiography (ECG) data to investigate

the prospect of unobtrusive indices that signal the subjective experience of fatigue. Findings in this

chapter introduce the relevance of cardiac activity and derived metrics as a reliable neurocognitive

index of fatigue. In Chapter 4 we investigate the prospect of forecasting fatigue states by relying

only on data derived from cardiac activity. However, in exploring this problem, we found other

challenges, specifically those related to the annotation of fatigue or fatigue labels, i.e. how do

we qualify states of fatigue. We discuss the merits of taking a perception-centric view of fatigue

over performance and vice-versa, while proposing heuristics derived from cardiac indices seen in

clinical manifestations of fatigue as a potential alternative. Findings discussed in this chapter raise

the need to expand how we aggregate annotation methods to signal the underlying ground truth.

Chapter 5 presents the conclusions of our effort and the future opportunities that could advance an

operational closed loop NIBS solution as a fatigue countermeasure.
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2. ANODAL TDCS AUGMENTS AND PRESERVES WORKING MEMORY BEYOND

TIME-ON-TASK DEFICITS

2.1 Abstract

Transcranial direct current stimulation (tDCS) of the left dorsolateral prefrontal cortex (dlPFC)

has been shown to promote working memory (WM), however, its efficacy against time-on-task-

related performance decline and associated cognitive fatigue remains uncertain. This study exam-

ined the impact of anodal tDCS of the left DLPFC on performance during a fatiguing visuospatial

WM test. We adopted a repeated measures design, where 32 healthy adults (16 female), underwent

anodal, control and sham tDCS on separate days. They completed an hour long two-back test,

with stimulation intensity, onset, and duration set at 1 mA, at the twentieth minute for 10 min-

utes respectively. Task performance, subjective responses, and heart rate variability (HRV) were

captured during the experiment. Anodal tDCS substantially improved WM relative to sham tDCS

and control for both sexes. These benefits lasted beyond the stimulation interval, and were unique

across performance measures. However, no perceptual changes in subjective effort or fatigue levels

were noted between conditions, although participants reported greater discomfort during stimula-

tion. While mood and sleepiness changed with time-on-task, reflecting fatigue, these were largely

similar across conditions. HRV increased under anodal tDCS and control, and plateaued under

sham tDCS. We found that short duration anodal tDCS at 1 mA was an effective countermeasure

to time-on-task deficits during a visuospatial two-back task, with enhancement and preservation of

WM capacity. However, these improvements were not available at a perceptual level. Therefore,

wider investigations are necessary to determine “how” such solutions will be operationalized in

the field, especially within human-centered systems.

Sections of this chapter are reproduced with permission from "Anodal tDCS Augments and Preserves Working
Memory Beyond Time-on-Task Deficits" by Karthikeyan, R., Smoot, M. R., & Mehta, R. K. published in Scientific
Reports, 11(1), 1-11 (2021). Copyright Springer Nature.

7



2.2 Introduction

Fatigue in the emergency response (ER) domain has been typified as an accepted hazard of

the job, with extended work hours, cognitive and physical demands, and sleep deprivation [39].

However, its impact on worker health and safety demands wider attention on contributory neuro-

physiological mechanisms and countermeasures. Performance decrements due to fatigue endanger

not only the personnel involved, but also the public they serve [40]. Firefighters and emergency

medical technicians, personnel in occupations with high fatigue-risk, are required to multitask us-

ing information from concurrent visual and auditory sources, where their working memory (WM)

is frequently a key determinant of task success [41]. This ability can be significantly undermined

in the field, for example, wild-land firefighters report sleep deficits exceeding ≈ 30 hours each

week, which severely degrades their situational awareness and decision-making [42]. Schmiechel

et al. found that the mere perception of fatigue can impede executive function [43]. Therefore,

multimodal solutions to augment or otherwise preserve WM, beyond the subjective experience of

fatigue, would bring great value to the operations of all first responders.

Neuroimaging studies have shown that Brodmann areas 46 and 9, i.e. primarily the left dorso-

lateral prefrontal cortex (DLPFC) [44] are most associated with WM and related executive func-

tion, and therefore, this region has been a focal point for targeted neuromodulation [45]. Tran-

scranial direct current stimulation (tDCS), a non-invasive brain stimulation technique, was shown

to improve cortical excitability in those regions and in turn promote WM in healthy adults [44].

Studies mainly report a polarity-dependent effect of tDCS on WM, where anodal tDCS of the left

DLPFC with intensity ∈ [1, 2] mA enabled performance enhancements across multiple WM tests

[46, 47, 48, 49]. However, recent meta-analyses identified inconsistencies in the effectiveness of

tDCS [50, 51, 52] owing to small effect sizes, heterogeneous stimulation parameters (e.g., timing,

intensity, or duration) and study designs (e.g. repeated vs. between subjects design) resulting in

variability of the observed impacts on accuracy, response time and other WM performance mea-

sures. Some evidence also questions the efficacy of sham tDCS as a control measure due to its

effect on behavioral and physiological responses [53]. These discrepancies demand wider investi-
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gations into the effectiveness of tDCS with equity in participants and their experiences.

Of particular interest to us is the intersection of WM, cognitive fatigue, and neurostimulation.

In examining the efficacy of tDCS as a fatigue countermeasure, McIntire et al. [54] demonstrated

that anodal tDCS for 30 minutes at 2 mA resulted in improvements on attentional accuracy during

vigilance tasks beyond the effects of sleep deprivation. However, they found no direct effect of

stimulation on WM during those experiments. Similarly, Borragan et al. report that tDCS at 1.5

mA for 25 minutes did not counteract the behavioral influence of cognitive fatigue on a sustained

WM paradigm [55]. Therefore, while the benefits of stimulation toward vigilance or attention

capacity during fatiguing tasks have been reported [54], evidence for the same effect on WM

remains lacking. Hence, research that evaluates the effectiveness of dosage, timing, and duration

in task contexts beyond those previously tested is needed, as these factors drive subsequent use and

acceptance in time-sensitive field applications such as ER.

In our previous investigation, we explored the role of tDCS on sustained attention during a pro-

longed (60 minute) psychomotor vigilance test (PVT) [56], where we relied on the PVT to serve

both as a fatigue induction paradigm and as a measure of attention capacity – informed by related

efforts that consider the influence of time-on-task and its impact on sustained attention [57]. The

time-on-task effect is analogous to fatiguing protocols in the literature [58, 59], where sustained

cognitive demand at fixed or varying workload levels is shown to elicit increases in subjective and

objective fatigue indices. We found that anodal tDCS at 1 mA for 10 minutes enhanced vigilance

capacity on the PVT beyond this time-on-task effect, while response time and accuracy were both

seen to decrease otherwise. These findings were encouraging as they addressed the immediacy

demands that are characteristic of the ER domain by showing the potential benefits of online tDCS

on attention networks notwithstanding task demands that were present and continuing leading into

the stimulation interval. Furthermore, the efficacy of a relatively short stimulation interval (10

minutes) at low current intensity (1 mA) is particularly relevant toward fieldability requirements

in emergency response, where work conditions demand unobtrusive and expeditious modes of in-

tervention. In the current study, we build on this investigation to consider the role of stimulation
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on time-on-task related deficits during a WM exercise. Under sustained periods of cognitive work-

load, human WM is compromised by time-on-task related fatigue [60]. This fatigue can manifest

as an increase in response time, a decrease in accuracy, an increase in self-reported fatigue scores

or a decrease in motivation to continue task performance [60, 61]. Previous investigations have

successfully validated the use of a two-back protocol as a fatigue induction paradigm, specifically

the work by Shigihara and Tanaka et al [62, 63] employed a two-back test for 30 minutes to induce

fatigue in its participant pool before relying on a trail-making task to discern the effects of fatigue

on cognition. The choice of a two-back task also affords the right balance between task workload

and fatigability unlike the one-back or three-back protocols that are either too easy or challenging

to the point of rapid saturation, an observation from our pilot efforts. Therefore, we co-opt this

tested two-back protocol in our present investigation, but consider a singular task for 60 minutes

to both induce fatigue and to evaluate WM across stimulation conditions.

We also espouse a vision of building a closed-loop solution for non-invasive neuromodulation

in ER applications [56]. Current efforts with the use of electroencephalography show promise to-

ward prescient state recognition [64, 65], however they remain impractical for field-use. Through

this work we investigate the utility of heart rate variability (HRV) as an indicator of WM states

across stimulation conditions. Prior studies have successfully demonstrated performance predic-

tion when relying on HRV [66], however the impact of tDCS and the robustness of these prediction

paradigms remain unclear [67]. The neurovisceral integration model (NVIM) explores functional

associations between cardiac vagal activity, and activation in the prefrontal cortex [68], and could

expand how we utilize HRV as a neurocognitive indicator. Therefore, the present study is focused

on understanding the influence of anodal tDCS on WM performance during the fatiguing visu-

ospatial two-back task. We consider a repeated measures, balanced experiment design with three

conditions – anodal tDCS, sham tDCS, and control towards this goal. We hypothesize that anodal

tDCS over the left DLPFC will prove an effective countermeasure to fatigue-related declines in

WM capacity. Presently, we operationalize fatigue as a trait driven by the time-on-task effect and

we characterize it by relying on a combination subjective self-reports and WM performance. Fur-
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ther, we look toward HRV as a means to understand changes in cognitive task performance using

the NVIM.

2.3 Methods

2.3.1 Experiment Design and Methodology

This study employed a repeated-measures, counterbalanced Latin square design [69], with par-

ticipants returning on separate days to complete a working memory exercise under three distinct

conditions – control, anodal or sham tDCS. Participants were cast into three sex-balanced cohorts

and the order in which each cohort was exposed to the treatment condition was based on the Latin

square. Each session began with informed consent followed by subjective questionnaires on their

mood (Profile of Mood States; POMS [70]) and sleepiness (Karolinska Sleepiness Scale; KSS

[71]) levels (see Fig. 2.1 (a)); before their first sessions participants also responded to a back-

ground questionnaire. The sessions lasted ≈ 60 minutes each, and were divided into 12 blocks

during which time participants completed a WM task. During anodal and sham tDCS conditions a

researcher administered interventions at the start of the fifth block, i.e. approximately 20 minutes

from the start of the session while remaining outside the participant’s field of view. Prior investi-

gations on performance deficits due to the time-on-task effect consider 20−30 minutes as the ideal

window for fatigue onset [63, 57], and it is our goal to explore potential opportunities for inter-

vention around this interval. Furthermore, participants were blinded to the stimulation condition

(sham or anodal), but were aware of control sessions due to the absence of stimulation peripherals.

Between each block, participants responded to a subjective questionnaire related to their levels of

fatigue, effort and perceived discomfort, they were instructed to complete this as quickly as pos-

sible. The average block transition time was ≈ 15 s. In addition, to reduce any anticipatory bias,

participants were not informed of the precise duration of each block or experiment session.

2.3.2 Transcranial direct current stimulation

A 1× 1 tDCS device (Soterix Medical, NY, USA) was used in this study. The primary region

of interest for WM was the left DLPFC, i.e. anode over F3 according to the 10-10 EEG system,
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Figure 2.1: (a) Experiment protocol where ta represents the 10 minute stimulation interval under
the anodal condition, (b) schematic representation of a two-back match-event, and (c) tDCS elec-
trode montage, cathode over the right supraorbital region (FP2), and anode over the left DLPFC
(F3). Image created using Inkscape 1.0.2-2, https://inkscape.org/.

with the right supra-orbital (r-SO) region or FP2 used as the reference location (see Fig. 2.1(c))

[72]. Participants were instrumented with stimulation peripherals during anodal and sham tDCS

conditions only. Before each session participants were acquainted to the sensation of the stimulus.

The current intensity was set to 1 mA, and the current density was 0.028A/m2 (area = 5×7 cm2).

Under anodal tDCS, the stimulation duration was 10 minutes at set point (1 mA); under sham tDCS,

there was a ramp to the set point followed by a ramp to zero, lasting a total duration of ≈ 20 s.

The stimulation onset time was the same for both conditions – at the start of the fifth block, ≈ 20

minutes from the start of each session. Stimulation onset time and condition were withheld from

participants.

2.3.3 Metrics

2.3.3.1 Working Memory Performance

Three performance measures, namely accuracy, specificity, and sensitivity, were used to assess

task performance on the WM test employed in this study. Table 2.1 presents a description of each

measure. For analysis, the data was grouped into five phases I (baseline), II, III (stimulation),

IV and V (terminal), such that phase I to IV consisted of two blocks each, and V was made of

three blocks, with each block lasting five minutes. This phase resolution was adopted – (i) to

12
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Table 2.1: Visuospatial two-back task performance metrics.

Performance measure Description

Accuracy (TP + TN)/(P +N)
Sensitivity (TP )/(P )
Specificity (TN)/(N)
Response delay (ms) Time between stimulus and key-press
TP = True Positives; P = all Positive or response selection events;
TN = True Negatives; N = all Negative or response inhibition events.

Table 2.2: Heart rate variability indices

HRV Measure Description

RMSSD
Root Mean Square of the Sum
of Successive Inter-beat Interval (IBI) Differences

LF
Power density of the Low Frequency (0.04− 0.15 Hz) component in
the IBI spectrum

ensure that the two-block stimulation phase (i.e. blocks 5, 6 in phase III) was preserved uniquely

in our comparisons, while ensuring block integrity across all phases; and (ii) since block 12 was

excluded from our analyses due to a self-reported anticipation-bias, where participants realized

that the experiment was near its end (e.g. by counting the number of blocks) and returned to a state

of alertness.

2.3.3.2 Heart Rate Variability

Cardiac electrical activity was obtained from a chest-based electrocardiogram (ECG) probe and

amplifier interface at 128 Hz (Actiheart 4, CamNTech, Inc., UK). The electrodes were positioned

at the base of the sternum and over the left pectoralis minor muscle. The raw ECG signal was

filtered for motion artifacts [73], and corrected for ectopics with polynomial interpolation [74].

Subsequently, a peak detection algorithm was used to isolate the R peaks of the ECG signal [75].

The time between successive R-R peaks, i.e. the inter-beat-interval (IBI), was then derived from

the processed peak signals. For subsequent analyses, we derived two representative statistics for
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every five minute window in the raw IBI data, one in the time domain (RMSSD) and another in the

frequency domain (LF-power; see Table 2.2). The measures were min −max normalized across

all three sessions, for each individual, before statistical analyses.

2.3.3.3 Subjective Responses

Participants were subject to three one-point subjective questionnaires related to their levels of

fatigue, expended effort and perceived discomfort during the brief transition interval (≈ 10 s) be-

tween each five minute experiment block. Participants rated each subjective attribute on a 10-point

scale, where a score of 1 was “low or minimal”, and a score of 10 was rated “extreme or unbear-

able.” Besides the block transition questionnaires, participants were also subject to the POMS and

KSS surveys before (PRE) and after (POST) each experiment session. We used an abridged version

of the POMS survey with 39 questions across six emotive categories – tension-anxiety, depression-

rejection, anger-hostility, vigor-activity, fatigue-inertia, and confusion-bewilderment[70]. Partici-

pants qualified each emotion on a 5-pt scale with 0 being “not at all”, and 4 being “extremely.” The

score across all descriptors in a category was summed to generate a factor score; and this factor

score was used to generate a composite mood disturbance score. The KSS reflected participant

sleepiness levels ranging from 1 meaning “Extremely Alert” to 10 meaning “Extremely sleepy,

can’t keep awake”.

2.3.3.4 Statistical Analysis

The primary goal of the statistical analysis in this investigation was to explore the influence

of experiment condition on performance, physiological and subjective responses at different time

points (phase), and across both sexes during the WM exercise. Independent analysis techniques

were applied for each dependent measure due to constraints in the data, but a common time scale

was used across performance, HRV, and inter-block subjective responses, where the data was

grouped into five phases. For the POMS and KSS, statistical comparisons were drawn between the

PRE- and POST-experiment reports across each condition. Bonferroni corrections were applied

where relevant to set the significance level at an appropriate threshold for multiple comparisons.
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For purposes of clarity, data in the figures are illustrated using the mean value and the standard

error of the mean (S.E.M.); all graphs were created using Matplotlib 3.4.2 [76].

WM performance measures were not normally distributed, we relied on the non-parametric

Friedman’s test to assess the effects of condition and sex (male, female) in each phase. Values

that were more than three standard deviations from the mean were labeled outliers and excluded

prior to analysis. Kendall’s W was used to determine the effect size. Significant outcomes on the

Friedman’s test were then evaluated with pairwise Wilcoxon signed-rank tests. The HRV metrics

introduced in Table 2.2 agreed with normality and sphericity constraints of the repeated measures

ANOVA. Therefore, we performed a three-way repeated measures ANOVA to test the main and

interaction effects of condition, phase, and sex on each metric. All two way interactions were an-

alyzed to assess simple main effects and simple pairwise comparisons through t-tests. In addition,

we compared the baseline-subtracted median accuracy scores between cohorts using a Kruskal-

Wallis one-way analysis of variance test, and found no significant difference between them in any

phase or condition (H-statistic ∈ [0.46, 5.15]; all p-values> 0.053), suggesting a balanced dis-

tribution of WM capacities across cohorts. Subjective inter-block responses were not normally

distributed, and therefore analyzed using a similar approach to that on performance data. Analyses

on the PRE- and POST-experiment mood and sleepiness surveys relied on simple paired t-tests.

Where relevant, normality was assessed using the Shapiro-Wilk’s test, sphericity using Mauchly’s

test for sphericity, and the homogeneity of variance among participants using the Levene test. All

statistical analyses were performed in R using the rstatix and tidyverse packages.

2.4 Results

2.4.1 Working Memory Performance

During baseline, i.e. phase I and through phase II, there was no effect of condition on any

of the performance measures (all p-values > 0.2). During stimulation and beyond, i.e. phase III

to V, a significant effect of condition was observed on all three metrics (all p < 0.0033; kw ∈

[0.188, 0.407]). Post-hoc analyses revealed that during phases III, IV and V, all measures of
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Figure 2.2: Trends in task performance for each phase as represented by the mean value and its
standard error for each condition (control, anodal, and sham tDCS). The shaded segments repre-
sent consecutive time points where a statistically significant effect of time was found; the asterisk
presents time points (phase) where a significant effect of condition was evidenced.

performance were significantly better under anodal tDCS relative to sham tDCS or control (all

p < 0.0022). A main effect of time was observed across all conditions for the sensitivity and

accuracy measures. For specificity, this was true only under control and sham tDCS (all p <

0.022; kw ∈ [0.056, 0.223]). Overall, we note a decreasing trend in accuracy under sham tDCS

and control. This decrease began from phase II, followed by a marginal improvement from phase

III to IV, before declining further in phase V (all p < 0.008). Under anodal tDCS, we note an

improvement in accuracy from phase II to III, and a gradual decrease across phases III and V (all

p < 0.00086). Sensitivity under anodal tDCS exhibits a trend similar to accuracy across phase

II and V (all p < 0.027). Under sham tDCS and control, sensitivity remained unaltered between

phase I and III and phase I to IV respectively (all p > 0.054). However, in both conditions, we

observed a decrease in the terminal phase (all p < 0.048). Specificity under sham tDCS and control

was seen to improve in baseline and decrease from phase IIto III, followed by contrasting trends

across phase III and V (all p < 0.007; see Fig. 2.2). No effect of sex was found on any condition

or time variable (all p > 0.71).

2.4.2 Heart Rate Variability Measures

No effect of sex was found on any HRV measure considered (all p > 0.89). We found a

significant main effect of time on the RMSSD values across all conditions (all p < 0.0026; η2g ∈

[0.16, 0.23]). Post-hoc comparisons revealed an increase in RMSSD across phase I and II under
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Figure 2.3: Mean and standard error of HRV features across the five phases: RMSSD (time-
domain), LF-power (frequency-domain). The shaded segments represent consecutive time points
where a statistically significant effect of time was found; the asterisk presents time points (phase)
where a significant effect of condition was evidenced.

each condition (all p < 0.007). Under anodal tDCS, this increase in RMSSD was seen to persist

until phase IV, followed by a plateau in phase V (all p < 0.001). Under sham tDCS, we observed

that RMSSD remained relatively unchanged beyond phase II (all p > 0.149). Under control, we

note an increasing trend in RMSSD, with statistically significant differences between phase III

and IV, and phase IV and V (all p < 0.019). A main effect of condition was observed (p <

0.0001; η2g = 0.14), where in phases III and IV, we found that RMSSD under the anodal condition

was significantly higher than that under control or sham tDCS (p < 0.019). For the LF-power

measure, a significant main effect of time was apparent in all three conditions (all p < 0.0016; η2g ∈

[0.08, 0.21]). Post-hoc comparisons revealed an increase in LF power from phase I to II in all

conditions (all p < 0.041). This increasing trend persisted under control and anodal tDCS until

phase IV (all p < 0.003). Beyond phase IV, LF power under anodal tDCS was found to decrease

in the terminal phase (p = 0.002), while remaining unchanged under the control condition (p =

0.191). Under sham tDCS LF-power was found to remain unchanged from phase II to IV (all

p > 0.076), however in the terminal phase LF-power was elevated (p = 0.041); see Fig. 2.3.

2.4.3 Subjective Responses

No effect of condition was found across the subjective dimensions of effort, and fatigue (all p >

0.122). A marginal effect of condition was evident for the discomfort measure where participants
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Figure 2.4: Perceived effort, fatigue, and discomfort scores as a function of time. The shaded seg-
ments represent consecutive time points where a statistically significant effect of time was found;
the asterisk presents time points (phase) where a significant effect of condition was evidenced.

Figure 2.5: PRE- and POST- (a) mood disturbance and (b) sleepiness levels across all conditions
as assessed by the Profile of Mood States survey and the Karolinska sleepiness scale. (c) PRE- and
POST- fatigue-inertia scores from the POMS survey.

reported higher discomfort under sham, and anodal tDCS conditions relative to control during the

stimulation interval, i.e. phase III (p < 0.054; see Fig. 2.4). A significant effect of time was

observed across all three conditions for the discomfort and fatigue measures (all p < 0.0001; kw ∈

[0.27, 0.43]), with participants reporting increased perceptions of fatigue and discomfort over time

(all p < 0.0022). On the effort scores, a significant effect of time was reported only under the

anodal tDCS condition (p= 0.027; kw = 0.08). Post-hoc analyses revealed a marginal decrease of

effort scores in phase III relative to phase I under this condition (p = 0.054). No effect of sex was

found across the subjective responses (all p > 0.561). Furthermore, a significant difference was

found in the PRE- and POST- mood disturbance and sleepiness scores across all conditions (all p
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< 0.009), with a mood disturbance decrement of ≈ 8.4 points and sleepiness increment of ≈ 2.2

points after the completion of each session. No effect of sex or condition was evident for either

measure (all p > 0.316; see Figs. 2.5 (a) and (b)).

2.4.4 Power Analysis

Thirty two participants completed this study (16 female), i.e. 96 sessions across all treatment

variables. We employed a repeated measures design where participants were cast into three sex-

balanced cohorts (10, 10, and 12) with the order in which they were exposed to each treatment

condition (anodal, control or sham) counterbalanced through a Latin square. A power analysis

was conducted to verify if our experiment had sufficient power to detect the effect sizes found sig-

nificant in prior literature when employing a similar WM test, experiment design and stimulation

protocol (η2p = 0.3) [77]. Sample size estimation for a repeated measures ANOVA at a power

level of 0.8, an error probability of 0.05 and partial eta-squared (η2p) of 0.3 using the G*Power

software[78] suite revealed that a total sample size of 15 was required to test our hypothesis for

the desired effect size. Given that we rely on non-parametric tests for significance in a subset of

our variables, a 15% rule of thumb [79] increases the required sample size to 18 for the desired

significance, 32 participants completed our experiments.

2.5 Discussion

The present study explores the role of anodal tDCS as a countermeasure to the time-on-task

(TOT) effect during a fatiguing visuospatial WM exercise. The TOT effect, we hypothesized,

would result in decreasing WM capacity and an increase in the perceptions of fatigue when indi-

viduals are engaged in tasks with sustained cognitive demand for extended periods of time. For

example, in the work by Mockel et al. [58], on a three hour long Simon task [80], perceptions

of fatigue, and performance levels were shown to progressively deteriorate within the first hour

of task and further so with time. Therefore, in some ways, the TOT effect is analogous to the

human fatigue response, although the timescales for typical fatigue experiments are longer. Previ-

ous efforts have established the role of stimulation as a fatigue countermeasure for attention and
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response inhibition when relying on tasks relevant to those constructs, e.g. Go/ No-Go tests, the

Mackworth clock test, etc. [38, 54], indeed, investigations have also shown the efficacy of tDCS

in improving WM in other conditions [81, 82]. However, evidence that supports the use of tDCS

as a countermeasure for TOT effects on WM remains unclear, in fact, antecedent results show a

lack of improvement in WM capacity under fatiguing conditions with intervention at different cur-

rent intensities and duration [54, 55]. While the modes of fatigue onset remain disparate across

these results, informed by prior work related to TOT-fatigue [63, 62], we employed a visuospatial

two-back task to serve as both a fatigue induction mechanism and as a tool to evaluate WM. We

compared performance, subjective and physiological responses, the influence of sex as a factor, and

the effects of stimulation through a single-blind, repeated measures experiment, counterbalanced

for learning across the three treatment conditions.

In both sexes, we found that anodal tDCS improved WM performance, beyond TOT-driven

deficits that were otherwise evident across all performance measures (see Fig. 2.2). These im-

provements were found to last beyond the stimulation interval and enabled distinct changes that

were unique to each performance measure for e.g., sensitivity improved under stimulation while

specificity was maintained. However, no significant perceptual differences in self-reported effort

or fatigue scores were noted between conditions. In general, participants indicated a marginal

decrease in effort-scores under anodal tDCS and greater levels of discomfort during stimulation,

as expected. Fatigue and discomfort reports were found to increase in a condition-agnostic man-

ner over the time-course of the experiment, consistent with our expectations of the TOT effect,

however, perceived effort remained similar throughout the hour long experiment, indicating par-

ticipant motivation to stay on task. While mood and sleepiness changed with time, they were not

significantly influenced by the condition variable.

The visuospatial two-back test, in its protracted format, demands both WM and sustained at-

tention [83]. The central executive [84] is responsible for encoding and updating an internal WM

buffer, recognizing match events, and priming task-relevant actions. The brain regions essential to

this activity include the prefrontal, motor, and visual cortices [85]. These areas enable substantial
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behavioral adaptation, attention or response inhibition, and learning during WM exercises [86, 87].

However, with time-on-task, individuals invariably feel fatigued or otherwise depleted [57]. The

onset of TOT-fatigue is marked by a decrease in neural activity across regions responsible for main-

taining task-related behaviors, that are preempted by an increase in activation in regions peripheral

to those networks [88]. These neurocognitive changes are supported by subjective fatigue scores,

typically self-reported, or indirectly referenced from performance decrements [89]; in our protocol

we rely on both modalities to operationalize TOT-fatigue. As reported, we found that subjective

fatigue scores increased with time while PRE-POST surveys showed worsening mood after the

completion of the experiment (see Figs. 2.5 (a) and (b)). Specifically, a substantial and statistically

significant increase was found in the fatigue-inertia emotive category (see Fig. 2.5 (c)). According

to the work by Schwartz et al. [90], the minimally important clinically-relevant difference (MICD)

indicating fatigue on the POMS survey was 5.6 points, roughly 1.1 points for each category, and

the MICD on a 1-pt fatigue questionnaire, similar to the one used in this investigation, was 2.4.

In our observations, changes in the POMS mood disturbance scores, the POMS fatigue-inertia

scores and the inter-block 1-pt fatigue responses exceeded these thresholds with a mean decrement

of 8.45 ± 0.98 points, and increments of 3.077 ± 0.35 and 2.94 ± 0.14 points respectively, sig-

naling the negative influence of sustained task performance on fatigue perception and reaffirming

our TOT-fatigue hypothesis. Furthermore, this change was also reflected in performance behaviors

as participants displayed a reduction in accuracy, sensitivity and specificity during both control

and sham tDCS conditions beyond phase II, i.e. roughly twenty minutes into the experiment (see

Fig. 2.2). Therefore, we reason that the observed changes in participant behaviors are driven by

TOT-fatigue.

In light of the above evidence, the key finding in our work was affirmation that anodal tDCS at

1 mA for 10 minutes improved WM beyond TOT deficits. This improvement was seen both as the

enhancement of WM capacity relative to baseline (accuracy, sensitivity), and as the preservation of

performance levels over time (specificity; see Fig. 2.2). In addition, the effects were both concur-

rent and beyond transient, lasting for up to 20 minutes after the stimulation interval. Furthermore,
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we observed these changes in an experiment protocol, where intervention was provided after 20

minutes of sustained cognitive demand, which is noteworthy given mixed evidence thus far from

studies that considered the online effects of tDCS on WM and contradictory observations of its

effect on fatigue [52, 51]. Furthermore, earlier investigations with offline or online stimulation for

longer durations and at current intensities greater than 1 mA reported no positive effect on WM

under fatiguing or fatigued conditions [54, 55]. Additionally, we found no improvements in mood

and sleepiness due to stimulation, contrary to some prior observations. Besides differences in the

format of the WM task or stimulation parameters, we believe differences in the fatigue induction

paradigm could be responsible for some of these divergent observations. For e.g., McIntire et

al[54] explored fatigue driven by extended wakefulness, while our protocol demanded sustained

attention for ≈ 70 minutes. Therefore, the nature of fatigue on the task is a factor to consider in

future investigations.

Curiously, we note that although performance levels improved under anodal tDCS, changes in

the level of perceived effort and fatigue remained similar across conditions (see Fig. 2.4). A recur-

rent hypothesis in this domain attributes cognitive enhancements enabled by tDCS to changes in

neural efficiency [91], however subjective reports indicate that these “benefits” are mostly imper-

ceptible, which demands consideration on how these intervention modes will be operationalized

within human-centered systems. In addition, the self-reported fatigue scores appeared in contrast

to those seen in the motor domain, where tDCS was shown to alleviate levels of perceived fa-

tigue [92, 93]. The reasons for this disparity are perhaps related to the fundamentally distinct

neurocognitive footprint of muscular and cognitive fatigue [94], regardless, larger studies with

concurrent neuroimaging are necessary to unpack the neural mechanisms that underlie these dis-

tinctions, which remains the focus of our future efforts.

On performance improvements under anodal tDCS, we found that stimulation did not produce

the same effect on sensitivity and specificity measures. During sham tDCS and control we dis-

covered that sensitivity remained unchanged until the terminal phase, while specificity decreased

beginning from phase III. Secondly, under anodal tDCS, sensitivity increased concomitant with
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stimulation, while specificity was maintained throughout the 60 minute task. It is likely that

these distinctions are due to the fundamental differences in the behaviors these measures cap-

ture. Sensitivity identifies response selection, in this context, it characterizes event recognition

and the commission of a prepotent motor response, while specificity identifies response inhibition

and reflects the ability to withhold motor impulses [95]. Bender et al. demonstrated that these are

fundamentally distinct cognitive operations governed by functionally and structurally independent

brain regions [96], which may explain some of the observed differences. Studies also identify

distinct cortical networks that underlie these processes, e.g. Rowe et al. showed the central role

of frontoparietal networks, including the DLPFC, in response selection both when associated with

WM and other tasks of willed action [97]; while others recognize the inferior frontal gyri (IFG),

parieto-temporal junction, and supplementary motor areas as those essential toward inhibitory be-

haviors [98]. Filmer et al. [99], when using similar stimulation parameters, reported augmentation

in response selection during anodal tDCS of the left lateral prefrontal cortex, while other efforts

point to the role of the right IFG in enhancing task-relevant response inhibition under tDCS [100].

Therefore, we reason that the non-focal nature of 1× 1 tDCS driven by the electrode size, current

intensity and current density may be contributing to the differential impacts on response selection

or inhibition behaviors observed in our investigation. Future investigations into the role of fatigue

or time-on-task on these specific cognitive processes are necessary to shed light on the precise

nature of their response and receptivity to stimulation.

HRV indexes the interaction between the central autonomic network and cardiac activity. The

neurovisceral integration model posits that the main role of the prefrontal cortex during a WM

task is toward attentional inhibition [68]. Empirical evidence points to a functional link between

attentional inhibition mediated by the prefrontal cortex and vagal activity [101]. In our WM task,

we expected that this would manifest as an increase in HRV during the early periods followed by a

decrease due to TOT fatigue. However, HRV as indexed by RMSSD and LF-power increased under

anodal tDCS until it plateaued in the terminal phase, while it appeared to increase throughout the

experiment under control. In contrast, under sham tDCS, we found that the HRV indices increased
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through baseline before plateauing during the remainder of the experiment. Contextualized by

performance data and subjective responses, we reason that HRV trends under sham or anodal tDCS

agree with the expectations of the NVIM, however the control outcomes deviate from the model.

It is possible that this deviation can be interpreted as the cumulative effect of fatigue and sustained

WM demand on participants, with prior research indicating the linearly additive effects on HRV

and similarly confounding observations [67]. Future investigations should consider HRV as an

independent variable in investigating the influence of stimulation, which along with behavioral

state dynamics and task state dynamics will serve as a crucial element in the development of

fieldable closed-loop solutions for neuromodulation [102].

2.6 Limitations

We reported an anticipation bias in some participants during the terminal block, which required

that we exclude it from our analyses, while this did not impact the trends observed in performance

or subjective response, it remains a factor to consider in future study designs to avoid unanticipated

influences on participant motivation while on task. Second, we do not adapt workload on the task to

individual WM capacity, this appears as common practice in some earlier investigations on tDCS

[103], however, we reasoned that a prolonged task format would elicit a consistent TOT-fatigue

response in our participants which was determined to be the case. Third, our participant blinding

strategy was potentially inadequate – during the experiments, participants were blinded to sham

or anodal tDCS, based on existing best practices [104]. The consistent discomfort scores between

the two conditions indicates that our blinding between stimulation sessions was likely satisfactory,

however, the absence of stimulation peripherals during control may have skewed participant ex-

perience during that condition. Fourth, we do not capture motivation or engagement levels during

active task performance. We made this decision to avoid disruptions to the participant’s experience

while on task, however, these measures could have improved how we understand the impact of

tDCS on WM under fatigue [105]. Overall, our findings support the need for future investigations

into the neural underpinnings that drive WM improvements, above and beyond the deficits induced

by TOT-fatigue.
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2.7 Conclusions

Cognitive fatigue can have serious consequences in safety-critical domains such as ER. Our

research showed that, under controlled conditions, WM can be enhanced beyond the influence of

TOT-fatigue with the help of anodal tDCS. Further investigation is necessary to provide clarity

on the specific neural origins of these changes and their perceptual relevance to the human in the

loop. Moreover, future explorations must consider how WM enhancements under abstract condi-

tions in the laboratory translate to real-world ER WM demands. Additionally, although our work

points to the positive influence of stimulation on task output, subjective feelings of effort, fatigue,

and discomfort were not seen to benefit from neuromodulation, which demands consideration on

“how” these technologies will be operationalized within human-centered, high-risk socio-technical

systems.
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3. A WINDOW INTO THE TIRED BRAIN: NEUROPHYSIOLOGICAL DYNAMICS OF

VISUOSPATIAL WORKING MEMORY UNDER FATIGUE

3.1 Abstract

The neural and physiological drivers of fatigue are complex, coupled, and poorly understood.

Investigations that combine the fidelity of neural indices and the field-readiness of physiological

measures can drive translational research in recognizing and mitigating fatigue states in opera-

tional settings. We examine the spatio-temporal dynamics of neural activity and its physiological

correlates in heart rate and its variability (HR/V) during a fatiguing visuospatial working mem-

ory task. Sixteen healthy adults, balanced by sex, completed a 60-minute fatiguing visuospatial

working memory task. Changes in task performance, subjective measures of effort and fatigue,

cerebral hemodynamics, and HR/V were analyzed. Peak brain activation, functional and effective

connections within relevant brain networks were contrasted against spectral and temporal features

of HR/V. We fouund that task performance elicited increased neural activation in regions respon-

sible for maintaining working memory capacity. With the onset of time-on-task effects, resource

utilization was seen to increase beyond task-relevant networks. Over time, functional connections

in the prefrontal cortex were seen to weaken, with changes in the causal relationships between key

regions known to drive working memory. HR/V indices were seen to closely follow activity in the

prefrontal cortex. This investigation provided a window into the neural and physiological under-

pinnings of working memory under the time-on-task effect, with changes in functional and causal

brain networks that unpack its influence on executive function. HR/V was largely shown to mirror

changes in cortical networks responsible for working memory, therefore supporting the possibility

of unobtrusive state recognition under ecologically valid conditions. Potential applications of this

research include the development of a fieldable index for cognitive fatigue, and in bringing clarity

to the nature of fatigue under the time-on-task effect.

Sections of this chapter are reproduced with permission from "A Window into the Tired Brain: Neurophysiolog-
ical Dynamics of Visuospatial Working Memory under Fatigue" by Karthikeyan, R., Carrizales, J., Johnson, C., &
Mehta, R.K. Currently in-review at Human Factors.
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3.2 Introduction

The brain relies on a complex network of resources to facilitate working memory (WM) and

associated executive functions [106]. The ability to sustain attention together with WM capacity

remain central components of effective job performance in domains such as emergency response,

frontline medical practice, and air-traffic control, where personnel are required to exhibit high

levels of comprehension, reasoning, and vigilance for extended periods of time [88]. In these

safety-critical systems, executive functions may be compromised by fatigue due to lapses in work

conditions, the workload, hours on the job, or a combination of related factors. Fatigue due to

time-on-task is known to induce additional cognitive burden, which can impair WM and limit our

ability to manage task demands [58]. In particular, tasks that afford limited opportunities for in-

dividuals to implement compensatory strategies, for example, those with a high workload and a

need for sustained attention, are known to be most vulnerable to the effects of fatigue [107]. In the

laboratory, typical fatigue-WM experiments employ a battery of tests, such as the n-back test [61]

the Sternberg task [108], the Simon task [58], etc., that provide a performance-oriented measure

of the fatigue state experienced by an individual. Indeed, studies have also considered the use of

these WM tests as the fatigue induction mechanism by manipulating the time-on-task variable [62].

In some cases, even shorter task durations with high workload have elicited an operationally sig-

nificant fatigue response [109].Therefore, there exists a complex mapping between the workload,

motivation, and time, among other factors, that appear to drive the human fatigue response [107].

Different techniques have been proposed to estimate cognitive fatigue including objective in-

dices, and behavioral measures or self-reports [110, 111]. In the field, there is a need to obtain

these measures in an unobtrusive manner, while remaining sensitive to the overall cognitive state

changes experienced by the human. Behavioral self-reports are known to be interruptive [112],

place additional cognitive demands [113], and occur at timescales that lag the fatigue states of

the individual [114], at which point intervention may no longer be feasible. Objective indices on

the other hand can be prescient and, in some instances, unobtrusive, yet there remain challenges

regarding their use in the field [115, 116], especially under the constraints of an emergency re-

27



sponse setting [110]. Therefore, there exists an unfulfilled need for fieldable and proactive fatigue

estimation tools in safety-critical field applications. A key requirement to meet this demand is to

bridge the gap between the fidelity offered by objective neural indicators and the fieldability of

physiological indicators and self-reports. The barriers to this goal are primarily mechanistic, given

the complex neurophysiological dynamics of time-on-task fatigue, working memory, and human

attention; and the lack of valid data sets to explore this problem at depth.

Neuroimaging studies have studied the activation of related brain regions during different types

of WM tasks [117, 118], the relationship between activation and working memory load [119], and

the role of network measures, such as connectivity and causality [120, 121], to develop insights

around brain function and the neural underpinnings of WM. For example, workload-related ac-

tivation differences in the prefrontal cortex and changes in effective connectivity [120], i.e. the

influence that one neural system exerts over another [122], during an n-back WM test using func-

tional near infrared spectroscopy (fNIRS). The influence of fatigue on WM and its neural correlates

have been investigated using similar tools, where studies report the effect of time-on-task on exec-

utive function using complex network analyses on electroencephalogram (EEG)-based connectiv-

ity features and identified the presence of small-world characteristics that were representative of

fatigue states [123]. Other studies have successfully utilized fNIRS based indices to predict work-

load demands and fatigue correlates when performing ecological valid WM tasks [124]. However,

translational work that extend these observations to physiological, unobtrusive indicators such as

heart rate and its variability (HR/V) remain far and few between. In one investigation, researchers

found that mental fatigue led to an increase in HR/V with time-on-task, and counter to their initial

hypothesis, found no relationship to motivation-related task engagement in either behavioral or

physiological measures during a fatiguing protocol [125]. They allude to an exhaustion of neural

resources or changes in cognitive control as possible factors that drive this process, however more

evidence is needed to support this hypothesis.

The neurovisceral integration model (NVIM) [126] provides a framework to juxtapose vagal

activity, prefrontal cortex (PFC) activation, and executive function, one we speculate will help
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elucidate the ambiguities of earlier findings. Vagal activity can serve as a useful analogue to

neural data while relying on unobtrusive sensing instruments. Specifically, the work by Thayer

et al. provides evidence to suggest that the primary role of the PFC during a WM task is toward

sensory inhibition, where with increased PFC activity we expect an increase in parasympathetic

tone, and therefore an increase in HRV [127]. However, study designs, and associated findings

remain variable, with conflicting observations on the relationship between HRV indices and WM

demand. For example, in a recent study, authors extended the NVIM to explore comparisons

between neural activity and HRV during a response inhibition task [128], where they found that

respiratory sinus arrythmia, a marker of vagal activity was negatively correlated with cerebral

oxygenation at baseline – consistent with prior observations from the NVIM [129]. However,

this relationship was seen to deviate from model expectations during active task demands. This

reasserts the need for further exploration on task-specificity and environmental demands to assess

the relevance of the NVIM framework. Addressing gaps in this space remains critical towards the

development of robust state estimation methods free from the practical encumbrances of current

neuroimaging tools.

To that end, the present study is centered on understanding WM capacity under the influence of

time-on-task fatigue using neural and physiological indices. We approach this problem by employ-

ing a protracted version of a visuospatial two-back test which demands high WM under constant

workload, and sustained attention. The primary aim was to examine the spatio-temporal dynam-

ics of neural activity, and the temporal dynamics of physiological responses during this fatiguing

visuospatial WM task. A secondary aim was to compare neurophysiological signal behaviors to

expectations from the NVIM framework. Together, fNIRS and HRV based indices may enable

advances toward a robust predictive framework for recognizing fatigue-related WM deficits in op-

erational settings.
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Figure 3.1: (a) Schematic representation of the experiment protocol. (b) Two-back match event
where the user is expected to respond with a keypress. (c) Schematic representation of the probe-
map used for neuroimaging via fNIRS. The probe-map consisted of eleven regions of interest
derived from the 10-10 EEG system, where the red circles represent infrared (IR) sources, and the
blue circles depict the IR detectors.

3.3 Methods

3.3.1 Participants

Sixteen participants were recruited (age: 25.12 ± 3.31 years; 8 female) from the local student

population. For three participants, we had to interrupt the experiment when they needed a break,

therefore only thirteen among them (seven female) produced unsegmented neural data compati-

ble for subsequent analyses. All participants were self-reported to be right-hand dominant and

provided informed consent before the start of the protocol. All procedures were approved by the

university’s Institutional Review Board and proceeded in accordance with the Ethics Code of the

American Psychological Association.

3.3.2 Protocol

On informed consent, participants were equipped with relevant bio-instruments and responded

to questionnaires on their background and demographics. Participants were then instructed to

rest for five minutes with their eyes closed in a seated position to capture a baseline across all

sensing instruments. They were then introduced to the visuospatial WM task, which included a

training period, followed by the main experiment task. The task consisted of 12 blocks, with each

block lasting a duration of five minutes. Between blocks, participants responded to single-element
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questionnaires on their perceived fatigue, effort, and discomfort on a scale of 1 to 10, with ‘1’

being “low or minimal”, and ‘10’ being “extreme or very high”. The specific phrase for each

question was as follows: 1. Please rate the effort you expended in performing this task, 2. Please

rate how fatigued you are from performing this task, and 3. Please rate your level of discomfort

while performing this task. The time between any two blocks did not exceed 30s. The complete

protocol is shown in Fig. 3.1 (a).

3.3.3 Visuospatial Working Memory Task

The experimental task employed in this study was a visuospatial two-back WM, consistent

to the one reported in our earlier work (Karthikeyan et al., 2021). The task was presented on a

static webpage using a desktop computer, where participants tracked a green circle (diameter =

20 mm) within a 3 x 3 grid (side = 130 mm), while seated comfortably in front of the screen

(diagonal ≈ 600 mm) at a distance of ≈500 mm. The circle would appear in different sections

of the grid; if the position of the circle matched the one from two steps prior, then participants

would respond with a keypress. The inter-stimulus time was 1000ms, and the image persistence

time was 900ms. The match probability was set to 0.6, where the interface provided a fixed,

temporally randomized number of match events in each block (N = 94; see Fig. 3.1(b)). Before

participants began the experiment, they could practice the two-back task under a training mode.

The training interface provided feedback on response correctness and response time. During the

experiment, this feedback was withheld from participants. The interface recorded every keypress

or lapse event on the task with time stamps and a response correctness flag (hit, miss or false

alarm). For subsequent discussions in this study, the performance measure used was the overall

accuracy, which is defined as the ratio of hits + correct omissions to hits + correct omissions +

misses + false alarms.

3.3.4 Bio-instruments

Participants were equipped with a head cap that housed sensor and detector probes of a con-

tinuous wave functional near-infrared spectroscopy (fNIRS) device (NIRSport2, NIRx Medical
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Technologies LLC, USA). Cortical hemodynamics was obtained using the fNIRS device at 50Hz.

Near infrared spectra were captured at two wavelengths (λ = 760 and 850nm). There was a total

of 16 infrared (IR) sources and 16 IR detectors that characterized blood flow in the brain across

46 channels. These channels were originally focused on 11 regions: anterior prefrontal cortex

(aPFC), dorsomedial PFC (mdPFC), right dorsolateral PFC (r-dlPFC), left dorsolateral PFC (l-

dlPFC), intermediate frontal cortex, right Broca’s area, left Broca’s area, premotor cortex (PMC),

supplementary motor area (SMA), secondary and tertiary visual cortex (V2-V3), and the primary

visual cortex (V1; see complete probe-map in Fig. 3.1(c)). For the statistical investigations and re-

sults reported in this study, we focus on a subset of those regions, namely, l- and r- dlPFC, mdPFC,

aPFC, SMA/PMC and the visual cortices (V; aggregating both V1 and V2-V3 regions as one). In

addition to the fNIRS device, participants were instrumented with a chest-worn electrocardiogra-

phy (ECG) device (Actiheart 4, CamNTech, Inc., UK) that was used to collect ECG data at 128Hz.

Electrodes were placed at the base of the sternum and just beneath the left pectoralis minor muscle.

3.3.5 Signal Processing and Feature Extraction

3.3.5.1 fNIRS

Light intensity recorded from the fNIRS device was first converted to optical density. The

optical density signal was low pass filtered at 3 Hz to attenuate high frequency noise. Motion ar-

tifacts were removed through peak detection and spline interpolation. The smoothed signals were

band-pass filtered (0.016∼ 0.5 Hz) to reduce the effect of slow wave drifts and physiological noise

in the data [130]. Lastly, the change in oxygenated, deoxygenated, and total hemoglobin concen-

tration (∆HbO/R/T) was derived using the modified Beer-Lambert principle using the HOMER2

toolbox [131] on MATLAB. For the scope of the analyses presented in this article we relied on

the ∆HbO data which was used to derive region-wise peak activation (∆HbOpeak), functional

and effective connectivity measures. The raw time-series ∆HbO was sampled with a window of

duration 15s which accommodates the underlying periodicity of the hemodynamic response. The

peak values and functional connectivity (FC) measures were derived across each window, after
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grouping channels based on the relevant regions of interest (ROIs). For FC measures, we relied on

Pearson’s correlation coefficients that were transformed using Fisher’s method [132]. Two ROIs

were considered functionally connected only when the corresponding Fisher’s z-score was >= 0.4

[133].

Time-domain effective connectivity (EC) analysis was performed to determine directed causal

networks across the ROIs, namely l-dlPFC, r-dlPFC, mdPFC, PMC, SMA and V regions, using the

Multivariate Granger Causality (MVGC) toolbox [134]. The MVGC, an autoregressive model, is

based on the concept of Granger Causality, which posits that a time-series variable A drives another

time-series variable B if the time-series history of A along with that of B improves the prediction

of B better than its own time-history. For a complete guide to this method of analysis and the use of

the MVGC toolbox, see [134]. The Grainger Causality magnitude was used as a measure of causal

strength in our observations. Connections that were found significant were subject to Bonferroni

corrections to account for multiple comparisons.

3.3.5.2 Heart Rate Variability

The raw ECG signal from the Actiheart was filtered for motion-related artifacts using a multi-

resolution threshold [73], and ectopic beats were identified and removed by polynomial interpo-

lation [74]. A peak detection algorithm was used to identify R peaks within the ECG signal [75].

The time between successive R peaks, i.e., normal-to-normal (NN) interval was then derived from

the processed peak signals. We derived five representative statistics for every five-minute window

for statistical analysis, three in the time domain (mean heart rate (HR), standard deviation of NN

interval (SDNN), and root mean squared of successive differences (RMSSD)), and two in the fre-

quency domain (low-frequency (0.04 - 0.15 Hz; LF) and high frequency (0.15-0.4 Hz; HF) power).

These features were chosen given their empirical associations with executive function based on the

NVIM [135]. All features were min-max normalized for each participant before statistical analysis

[136].
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3.3.6 Statistical Analyses

3.3.6.1 Data Partition

The fNIRS data, HR/V features, single-element subjective responses, and performance mea-

sure were partitioned into five phases – I to V; where the time-series variables were each char-

acterized by their block mean. Each phase consisted of two experiment blocks from phase I to

IV, while phase V was made of three blocks. Each block lasted a duration of five minutes, with

≈ 30s of transition time between them, where participants responded to the single-element subjec-

tive questionnaires. The last block (no. 12) was dropped from our analyses due to a self-reported

anticipatory bias in some participants (N=6).

3.3.6.2 Analyses

The performance measure (accuracy) was not normally distributed, therefore we relied on the

Friedman’s test, a non-parametric equivalent to the one-way repeated measures analysis of variance

(ANOVA), to assess the main effect of phase. Kendall’s W (Kw) is reported as an estimate for effect

size on the Friedman’s test, with Wilcoxon signed rank tests for post-hoc analyses. On the fNIRS

data, a one-way repeated measures ANOVA was applied to assess the main effect of phase on peak

activation in each region, and between regions for functional and effectivity connectivity measures.

Notably, we relied on aggregated activation data, i.e. mean across related regions, when analyzing

changes in functional and effective connectivity. Therefore, while activation was captured across

8 regions, only 5 were used for connectivity analyses for clarity in our visuals and inference (see

Figs. 3.2 and 3). On the ANOVA, we report the generalized eta-squared (η2g) as a measure of effect

size [137]. All possible pairwise comparisons were made using paired t-tests to assess significance

between levels of the within subjects’ factor (phase). In subsequent discussions we primarily rely

on comparisons between neighboring phases (i.e. between I-II, II-III, etc.) as highlighted in our

plots. Heart rate-based measures were partitioned phase-wise, and subject to a one-way repeated

measures ANOVA. Subjective responses were also non-normal, and therefore analyzed using non-

parametric tests identical to those employed on the performance data. Bonferroni adjusted p-values
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Figure 3.2: Peak activation across the five phases for each region of interest (ROI). All regions
showed a significant main effect of time, shaded segments represent consecutive time points that
were significantly different from each other. Error bars represent standard error. The plots are
visualized with jitter on the x-axis for clarity of the error bars.

were used as a threshold to determine significance where relevant.

3.4 Results

3.4.1 Neural Activation

A significant main effect of time was found in peak activation across all brain regions (F(4, 48)

∈ [6.82, 17.34], all p < 0.04, η2g ∈ [0.04 - 0.26]). 3.2 depicts the peak activation trend across each

region. Post-hoc pairwise comparisons (10 in total for each region) revealed a consistent pattern

of differences in the l-dlPFC, r-dlPFC, PMC and V2-V3 regions, where we observe an increase

in peak activation going from phase I to phases II, III, and IV respectively (t(12) ∈ [-4.47, -3.92],

all p < 0.001); no significant differences were observed between phases II-III (all p > 0.72). Peak

activation was found to increase further from phase III-IV (t(12) ∈ [-3.62, -3.51], all p < 0.0021),

and finally decrease from phase IV-V (t(12) ∈ [2.31, 2.59], all p < 0.02). In the aPFC, mdPFC,

SMA and V2-V3 regions, the increasing trend between peak values of phase I and phases II, III

and IV persisted (t(12) ∈ [-2.42, -1.98], all p < 0.036) with significant increments between each

phase until phase IV, and a decrease in activation from phase IV-V, consistent with all other regions

(t(12) ∈ [-2.72, 2.15], all p < 0.051).
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Figure 3.3: The graphic presents the mean z-score of functional connectivity strength by ROI
across all participants at each phase, only those regions with significant connections are repre-
sented. Cranial positions shown here are approximate representations of the regions of interest.

Table 3.1: Mean z-scores of functional connectivity in each phase.

FCmean across each phase

Connection I II III IV V

l-r dlPFC 0.969± 0.088 0.783I ± 0.075 0.758± 0.085 0.690III ± 0.088 0.645IV ± 0.090
l-dlPFC - aPFC 0.951± 0.092 0.871I ± 0.078 0.758II ± 0.084 0.833III ± 0.092 0.821± 0.103
l-dlPFC - SMA 0.609± 0.083 0.563I ± 0.076 0.543± 0.080 0.463III ± 0.078 0.491± 0.088
l-dlPFC - V 0.447± 0.104 0.474± 0.086 0.420± 0.089 0.340± 0.084 0.360± 0.098
r-dlPFC - aPFC 0.963± 0.088 0.955± 0.096 0.957± 0.101 0.877III ± 0.098 0.827IV ± 0.107
r-dlPFC -SMA 0.666± 0.103 0.573I ± 0.080 0.514II ± 0.090 0.543± 0.089 0.488IV ± 0.090
r-dlPFC - V 0.485± 0.100 0.455± 0.103 0.393± 0.102 0.337± 0.093 0.380± 0.099
aPFC - SMA 0.631± 0.106 0.585I ± 0.086 0.565± 0.099 0.594± 0.099 0.558± 0.105
aPFC - V 0.420± 0.106 0.460± 0.088 0.395± 0.086 0.346± 0.089 0.352± 0.100
SMA - V 0.589± 0.1214 0.582± 0.107 0.629± 0.108 0.538III ± 0.089 0.526± 0.102

*superscripts indicate when the mean z-score value of that phase was significantly different than the mean value in
the preceding phase, as revealed through post-hoc comparisons, with all p < 0.003. The gray text cells represent
insignificant functional connections (mean z-score < 0.4).

3.4.2 Functional Connectivity

Fig. 3.3 presents mean z-score of FC across all region-pairs at each time point. In general,

we observe that (i) network-wide FC is positive, (ii) a global decrease in FC strength is apparent

from phase I to V; and (iii) the number of significant connections were seen to decrease with

time. Table 3.1 presents the functional connectivity strengths for each region and time-point. Here

we aggregated activation data across the visual cortex i.e. V1, V2/V3 channels, the SMA/ PMC
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and aPFC/ mdPFC regions for convenience. A significant effect of time was observed in the

connectivity strength across all inter-PFC connections, all PFC - visual cortex (V) connections,

and between the SMA/PMC - V regions (F (4, 48) ∈ [4.26, 22.34], all p < 0.04, η2g ∈ [0.14 - 0.36]).

Connectivity in the PFC, across l-dlPFC, r-dlPFC and aPFC regions, had a mean magnitude of

0.961 in phase I; l-dlPFC and r-dlPFC associations were found to decrease from phase IV-V ( t(12)

= 3.61; p = 0.0017); while l-dlPFC – aPFC connections were shown to exhibit marginal recovery

through phase III-V (t(12) ∈ [-3.74, -3.52]; all p < 0.0021). Connectivity of the PFC with the

visual cortices was weak yet significant, and relatively unchanged across phase I-II (all p > 0.716);

a similar observation was found for connections between the PFC and SMA/PMC regions (all p >

0.143). In the terminal stages, i.e. phase IV to V, these connections were seen to weaken or were

found insignificant.

3.4.3 Effective Connectivity

There was a main effect of time on the effective connectivity strengths across a subset of signif-

icant networks in this experiment (F (4, 48) ∈ [3.42, 26.34], all p < 0.002, η2g ∈ [0.08, 0.19]); Fig.

3.4 presents all effective connections deemed significant in each phase using the causal strength

metric. We found unique changes in causal dynamics over time, all significant observations are

reported in Table 3.2, where significance is determined based on the p-values reported by the

mvgc-pval function in the MVGC toolbox [134]. In phase I, we observed unidirectional effec-

tive connections originating from the l-dlPFC to the aPFC/ mdPFC and r-dlPFC regions (Fmean =

0.066; all p < 0.001; where Fmean is the mean causal strength). Significant unidirectional causality

was also found between regions in the PFC, SMA/PMC and the visual cortices (Fmean = 0.056; all

p < 0.001). In phase II we observed a decrease in Fmean compared to those levels seen in phase

I (t(12) ∈ [1.62, 2.31]; all p < 0.03), along with changes in causal directions, with bidirectional

connectivity evidenced between the l-dlPFC-r-dlPFC and aPFC-r-dlPFC regions (Fmean = 0.051;

all p < 0.001). In phase III connections between the l-dlPFC and visual cortex were not significant

(all p > 0.71), and the direction of network causality in the PFC was reversed, with aPFC, r-dlPFC

regions driving the l-dlPFC (Fmean = 0.052; all p < 0.001). This change persisted in phase IV,
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Figure 3.4: Effective connectivity during the visuospatial working memory task where arrows
indicate the direction of causality. Only significant connections are shown. For bi-directional
connections, the average strength is represented. Cranial positions shown here are approximate
representations of the regions of interest.

where we also observed bidirectional causal connections between the aPFC - V regions (Fmean =

0.061; p < 0.001). In the transition from phase IV-V we found new causal pathways of significance

where the SMA was observed to drive the l-dlPFC (Fmean = 0.066; p < 0.001), which until phase

IV was shown to drive causal networks to the aPFC and r-dlPFC regions (Fmean = 0.049; all p <

0.001).

Table 3.2: Significant effective connections across the phases of the experiment

Connections Effective Connectivity

Phase From To Fmean σ

I

aPFC r-dlPFC* 0.064 0.0015

aPFC V 0.041 0.0024

l-dlPFC aPFC 0.069 0.0021

l-dlPFC r-dlPFC 0.051 0.0045

l-dlPFC V 0.050 0.0003

r-dlPFC aPFC* 0.065 0.0005

r-dlPFC V 0.048 0.0017

SMA aPFC 0.065 0.0041

SMA r-dlPFC 0.064 0.0051
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SMA V 0.046 0.0052

II

aPFC r-dlPFC* 0.053 0.0041

aPFC V 0.067 0.0069

l-dlPFC aPFC 0.069 0.0013

l-dlPFC r-dlPFC" 0.050 0.0005

l-dlPFC V 0.039 0.0027

r-dlPFC l-dlPFC” 0.052 0.0048

r-dlPFC aPFC* 0.051 0.0061

r-dlPFC V 0.046 0.0017

SMA aPFC 0.046 0.0027

SMA rDLPFC 0.041 0.0023

SMA V 0.041 0.0052

aPFC l-dlPFC 0.046 0.0013

aPFC V* 0.067 0.0082

r-dlPFC l-dlPFC 0.049 0.0016

r-dlPFC aPFC 0.056 0.0019

III r-dlPFC V 0.046 0.0024

SMA aPFC 0.062 0.0006

SMA rDLPFC 0.052 0.0032

V aPFC* 0.063 0.0017

aPFC l-dlPFC 0.046 0.0022

aPFC V* 0.063 0.0061

r-dlPFC l-dlPFC 0.048 0.0053

r-dlPFC aPFC 0.068 0.0012

IV r-dlPFC V 0.046 0.0017

SMA aPFC 0.062 0.0042
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SMA rDLPFC 0.052 0.0036

V aPFC* 0.066 0.0092

aPFC l-dlPFC 0.054 0.0071

aPFC V* 0.061 0.0036

r-dlPFC l-dlPFC 0.050 0.0022

V r-dlPFC aPFC 0.061 0.0043

SMA aPFC 0.069 0.0061

SMA l-dlPFC 0.055 0.0052

V aPFC* 0.064 0.0027

*represent bi-directional connections that were found significant.

3.4.4 Heart Rate-based Measures

A significant main effect of time was found across all four heart-rate based measures (F (4, 48)

∈ [7.71, 14.46], all p < 0.0001, η2g ∈ [0.08, 0.13]; Fig. 3.5). In mean HR we observed a significant

increase from phase III-IV and IV-V as shown in Fig 3.5) (t(12) ∈ [-3.61, -3.32]; p < 0.003). For

the LF measure, post-hoc comparisons revealed significant differences in the mean values between

phase I, and all subsequent phases. Notably, we found that LF power density increases relative to

phase I in all other phases (t(12) ∈ [-3.15, -2.79]; all p < 0.01). A similar increase was found going

from phase II to III (t(12) = -2.11; p = 0.028); the measure was found to plateau across phase III-IV

(p = 0.132), before decreasing across phase IV-V (t(12) = 3.33; p = 0.003). A significant increase

in HF was evident between phase I and II (t(12) = -2.38; p = 0.017); thereafter HF was seen to

remain unaltered across phase II - III (p = 0.051) before decreasing from phase III-IV (t(12) =

2.46; p = 0.015) and plateauing across phase IV-V (p = 0.76). In SDNN and RMSSD we observed

significant increases across phase I-II (t(12) ∈ [-3.211, -1.89]; all p < 0.041), and II to III (t(12) ∈

[-2.91, -2.23]; all p < 0.023), while a plateau was observed between phase pairs III to IV (all p >

0.054), and a decrease in phase IV-V (t(12) ∈ [3.55, 3.83]; all p < 0.002).
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Figure 3.5: Trends in HR-based measures across the five phases. The plot represents the min-max
normalized values for each feature. A significant effect of time was observed across all measures
with a small to moderate effect size. Time domain features – Mean HR, RMSSD, and SDNN.
Frequency domain features – spectral power densities in the LF (0.04 - 0.15Hz) and HF (0.15
- 0.40Hz) regimes. Shaded segments represent consecutive time points that were significantly
different from each other, error bars represent standard error. The plots are visualized with jitter
on the x-axis for clarity of the error bars.

3.4.5 Performance Accuracy

A main effect of time was found on the performance accuracy metric (χ2
4 = 27.62, n = 13, p <

0.0001, Kw = 0.21). Post-hoc analyses revealed a marginal increase in accuracy going from phase

I to phase II (t(12) = -1.91; p = 0.041), a decrease in accuracy from phase III to phase IV (t(12) =

1.76; p = 0.052), and a further decrease in accuracy levels from phase IV to phase V (t(12) = 3.33;

p = 0.003); see Fig. 3.6 (a).

3.4.6 Subjective Responses

A main effect of time was found on all three subjective responses, i.e., perceived – effort,

fatigue, and discomfort (χ2
4 ∈ [47.4, 65.93], n = 13, all p < 0.0001, Kw ∈ [0.08, 0.18]). Post-hoc

comparisons revealed an increase on all three self-reports early in the experiment (phase I-II; t(12)

∈ [-2.81, -2.43]; all p < 0.016). This increasing trend persisted through phase III-V for discomfort

and fatigue reports (t(12) ∈ [-2.73, -2.33]; all p < 0.019); however, effort scores did not vary

significantly beyond phase II (all p > 0.082); see Fig. 3.6 (b).
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Figure 3.6: (a) Performance accuracy (%) during the time course of the experiment. (b) Subjective
single-element responses on effort, fatigue and discomfort. Shaded segments represent consecutive
time points that were significantly different from each other, error bars represent standard error.
The plots are visualized with jitter on the x-axis for clarity of the error bars.

3.5 Discussion

In this study, we examined the spatio-temporal dynamics of brain activity, and changes in heart

rate and its variability (HR/V) during a fatiguing visuospatial two-back WM test. In particular, we

were interested in the time-on-task effect and related deficits during the WM exercise. We know

that prolonged cognitive activity at fixed or varying workload levels is known to elicit an increase

in both subjective and objective fatigue indices and a decrease in WM performance [59, 57]; and

that this fatigue can manifest as a decrease in accuracy, an increase in self-reported fatigue scores

or a decrease in the motivation to continue on task [60, 58]. Therefore, we hypothesized that these

changes will be evidenced in the present study, driven by a combination of factors underlying

the experience of the participant, including, learning during the initial stages of the experiment, a

struggle to optimize available neural resources for staying on task, and a decline in the motivation

to continue the exercise under the absence of additional rewards.

Our key findings were as follows, participants exhibited a largely stagnated trend in perfor-

mance accuracy beyond the initial phase, before it worsened through the terminal stages of the

experiment. We observed an increase in peak ∆HbO across key regions in the PFC, regions pe-

ripheral to the PFC, and the visual cortex until the penultimate experiment phase, where we note
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a global decrease in activation levels. These were accompanied by a decline in the number of

significant functional associations across brain regions and an increase in perceived fatigue. Fi-

nally, the trends in peak activation were mirrored in HR/V, where mean HR remained relatively

unchanged until phase II before increasing significantly until phase V, while temporal and spec-

tral HRV features were seen to increase till the penultimate phase before diminishing (RMSSD,

SDNN) or remaining unaltered (LF, HF - power) through the terminal phase. On the task we be-

lieve a few key processes were at play, early in the experiment (i.e. phase I-II) participants were

likely “learning” the task until a stable performance threshold was reached beyond this period, par-

ticipants expended effort to maintain task performance (III-IV), before they reached a state where

they were unable to continue at that level or meet task demands altogether (IV-V)

Some of these observations are clearer when we consider the nature of the task. The visu-

ospatial two-back test demands sustained attention and WM. Although workload on the N-back

task was not adapted (N=2; constant), in its prolonged format , perceived workload was likely to

vary [138], therefore eliciting distinct neural and physiological responses associated with the time-

on-task effect [139], for example early in the experiment we believe that the perceived workload

is high as participants learn to perform the task, beyond this period we anticipate the perceived

workload to stagnate until time-on-task related effects render the task too demanding to continue.

There are recognizable brain regions essential to the behavioral adaptation, attention and response

inhibition, and learning characteristic of such WM exercises [84], including – the prefrontal, mo-

tor, and visual cortices [140]. However, with time-on-task, we believe that fatigue dominates the

behavioral and neurophysiological responses that drive this process [120]. In our study, we found

that participants’ self-reports of fatigue increased with time, although their perceived effort re-

mained unaltered beyond phase II. Concomitantly, we observed a significant decline in two-back

performance accuracy during the latter half of the experiment. Fatigue is often characterized as

the “the reluctance of further effort” [61], and given our observations with the self-reports and in

performance outcomes, we reason that the changes seen during this experiment are largely fatigue

related.
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WM is primarily mediated by networks in the PFC, where domain-specific models postulate

that the lateral PFC is functionally organized to process visuospatial information [141]. A key com-

ponent of this network is the l-dlPFC region, which embodies specific computational mechanisms

for monitoring and manipulating those representations [141]. The primary role of the frontal cor-

tex during such WM tasks is towards attention inhibition, i.e., reducing the influence of distracting

streams of information and to retain focus on the task at hand [142, 143]. Therefore, an increase

in PFC activity, early in the experiment, is indicative of the effort employed by the participants in

learning the WM task [144]. Beyond this period, activation in PFC regions was mostly stable, i.e.,

through phase II-III. One explanation for this is the static workload on the task, which is unlikely

to elicit a fatigue response early on [145]. However, beyond phase III, we found that neural activity

increased significantly into phase IV, and this was true across all regions, even those peripheral to

the PFC. We reason that this indicates the onset of mental fatigue due to time-on-task effects, which

prior investigations reveal is preempted by an increase in activation in regions peripheral to those

essential for task-related behaviors [146]. Causse et al.in [146], argue that this is symptomatic of

the additional resource demand placed by the need to sustain performance at some threshold, when

performance accuracy itself appears to have saturated, further alluding to adaptations arising from

fatigue in the form a distributed utilization of cerebral resources.

3.6 Conclusions and Limitations

Cognitive fatigue can have serious consequences in safety-critical domains such as emergency

response. Our study captured fatigue-related neurophysiological dynamics during a 60-minute

visuospatial WM task. We found that WM performance was significantly impacted by fatigue-

related changes in neural activity. The changes in neural activity, and declines in functional and

causal connections, were shown to be temporally coupled with heart rate and its variability. This

observation reaffirms the prospect of operationalizing unobtrusive sensing paradigms for recog-

nizing fatigue states in an applied setting. However, larger investigations under ecological valid

conditions are necessary to ensure the generalizability and task-independence of our observations.

Brain activation across most of the regions monitored in this study showed an increasing trend,
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but beyond phase IV we found a global decrease in activation levels. This is likely due to a fatigue-

driven lack of motivation to continue the task, especially in the absence of any additional rewards

[61]. Our reasoning and inferences around the influence of fatigue and related task disengagement

are further supported by our observations with the connectivity data, where we found elevated

functional associations in the PFC early during the experiment, when performance was improving

with participant learning on the task. Unlike our observations on regional activation, functional

connections were seen to largely diminish in strength with time-on-task, with some connections

between the prefrontal and visual cortices lost altogether in the later stages of the experiment.

These observations are in alignment with prior evidence around the influence of time-on-task in-

duced cognitive fatigue on functional connectivity, where bilateral connections in the PFC and

peripheral regions were found to decrease over time [57].

The observations in effective connectivity reaffirm the centrality of the lateral PFC in enabling

WM performance [141]. Early in the task, we found that the l-dlPFC was a prominent driver of

connections in the PFC with unidirectional connections to the aPFC and r-dlPFC regions. These re-

gions were also shown to exhibit effective connections with the visual cortices. Over time however,

we observed (i) a role reversal in some of these pathways, with the r-dlPFC, aPFC and SMA region

found to be driving l-dlPFC activity across phase III - V, (ii) some causal relationships between the

prefrontal and visual cortex were lost altogether, and (iii) an overall decrease in network density

as a function of time was observed. The reorganization of causal pathways is likely fatigue driven,

with prior investigations reporting topology alterations, disintegrations, and directionality changes

driven by fatigue due to time-on-task [147, 148, 149]. While the specific neural mechanisms that

originate these changes remain unclear, we hypothesize that this could be an effect of the resource

demand placed by sustained task performance, where with time-on-task additional cortical regions

are recruited to preserve individual performance at some threshold. This hypothesis is supported

by the observation that, beyond phase III, we found the r-dlPFC and APFC regions driving activity

in the l-dlPFC region, a pathway that was not previously deemed significant.

Interestingly, the influence of fatigue in our observations was not limited to neural indices. We
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found distinctive parallels in the response of HR/V measures. The neurovisceral integration model

(NVIM) posits that the key role of the prefrontal cortex during a WM task is toward attentional

inhibition [68]. This inhibitory process is reflected in cardiac activity through the control of the

vagus nerve. In our experiments we expected that this influence would manifest as an increase in

heart-rate variability (HRV) during the early stages before fatigue-driven declines in the latter parts.

The temporal characteristics of HRV, i.e. RMSSD and SDNN largely align with this expectation,

i.e. as PFC activity increased with time-on-task, heart rate variability also increased. Mean HR was

largely unchanged early in the experiment (phase I – III), however, beyond this interval, we found

a significant increase in mean HR concomitant with a decrease in HRV measures. This fits our

expectation of sympathetic dominance or parasympathetic withdrawal under cognitive saturation

due to time-on-task [34, 68]. Furthermore, in the spectral domain, we found that the LF and HF-

power densities mirrored these trends. Under controlled conditions, vagal activity is known to

be associated with LF-power [150], and our observations corroborate this idea. The finding in

this study that the dynamics of HR/V aligned with the NVIM and were seen to reflect changes in

neural activity is one that is both interesting and in need of further investigation. In particular, there

is need for clarity on the specific processes driving these relationships, for example, lower HR/V

early on could be driven by learning on the task, before vagally-mediated effects or the influence of

time-on-task fatigue. Nevertheless, we are optimistic that this could be a path forward in our search

for robust and prescient state recognition in the field. Especially knowing that the recognition of

WM deficits in emergency responders may benefit from technologies that capture such underlying

neurophysiological dynamics unobtrusively.

Limitations of the study are as follows. First, in our experiments we found an anticipation bias

in some participants (N= 6) during the terminal block, where they returned to an artificial state

of alertness, this required that we remove the last block from our analyses to ensure that the true

nature of time-on-task related fatigue is preserved. Second, we did not capture motivation or en-

gagement levels during active task performance to minimize disruptions to the participant’s experi-

ence. However, these measures could have improved how we understand the impact of motivation
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on fatigue and WM decline, which is shown to offset fatigue states in related experiment [151].

Third, besides the task demand, wearing the fNIRS instruments for a prolonged period of time is

in itself uncomfortable, which may have skewed participant experiences and self-reports. Fourth,

given the duration of the task, vascular nonlinearities may perturb the hemodynamic response sig-

nal and therefore our inferences [152]. While we account for issues such as sensor drift and avoid

event-related analyses, the effects of vascular recovery and habituation need careful consideration.

Finally, although our end goal is to translate laboratory results into fieldable fatigue detection solu-

tions, our task and setup are not wholly congruent with real-world WM demands; this necessitates

ecological valid experiment paradigms with stakeholders actively engaged in those responsibil-

ities. Nevertheless, our findings support future investigations into the neural and physiological

underpinnings that drive WM and related performance decline due to fatigue.
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4. WHAT’S IN A LABEL? ANNOTATION DIFFERENCES IN FORECASTING

COGNITIVE FATIGUE USING ECG DATA AND SEQ2SEQ ARCHITECTURES

4.1 Abstract

In this paper we consider strategies to annotate fatigue states during a prolonged visuospa-

tial working memory exercise. Specifically, we look to address the need to forecast these states

when relying on unobtrusive indices derived from cardiac electrical activity. We formulate this

challenge as a multi-step-ahead, multivariate time-series forecasting problem, where we consider

the effect of annotation variations for fatigue labels on model success and reliability. We found

that a sequence to sequence (Seq2Seq) LSTM architecture was particularly faithful in identifying

fatigue representations using heart-rate and its variability (HR/V). We also discuss the prospect

of a heuristic-derived annotation index for fatigue that relies on changing patterns of HR/V as a

signal for state changes in the human. We contrast perception-, performance- and heuristic-indices

across other modeling variables such as the forecast horizon, the input vector horizon, and towards

sample generalizability. Our findings indicate that, under controlled conditions, HR/V can serve as

a useful neurocognitive index of fatigue, however, impact of activity, time scale, and other pertur-

bations demand further investigation to evaluate the diagnosticity and robustness of the proposed

indices.

4.2 Introduction

Cognitive fatigue is known to have significant consequences on human performance and behav-

ior. In this paper we discuss strategies to discern fatigue states a-priori to their perceptual relevance

to the human operator. This is an important problem because when subjective fatigue states become

apparent it may be too late for individuals to find effective supplementation strategies and (or) to

address the associated performance deficits [153]. This issue of fatigue is particularly relevant in

risk-intensive and safety-critical task domains such as emergency response, or front-line medical

practice, where slips or lapses can have significant consequences. There is an abundance of evi-
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dence to suggest that cognitive fatigue impairs critical executive faculties relevant to a wide-range

of human executive functions such as situational awareness, working memory, attention capacity

and vigilance [108]. Indeed, fatigue has been identified as among the key contributing factors

in extraordinary disasters such as the Space-Shuttle Challenger, the Bhopal Gas Tragedy or more

recently in the Deep Water Horizon oil spill [107, 154].

The importance of fatigue research is acknowledged widely by the human factors community,

and current mitigation efforts largely relate to effective workload management and (or) sustainable

shift practices in job domains such as emergency response, medical services or aviation [155].

While these measures are helpful they remain far from sufficient, the practical encumbrances of

these guidelines demand consideration on how one could presciently and reliably forecast the onset

of these states using unobtrusive/ wearable sensors. Cognitive fatigue, or fatigue as we refer to it

for convenience in this work, reflects fundamental changes in neuronal function, a characteristic

that is both influenced by the intrinsic motivation that an individual brings to the task at hand

[156] and also the workload associated with performing the task itself. Therefore, the search for

unambiguous biomarkers that reflect these traits is of interest to the larger community. Clinical

researchers have explored this possibility in patients of Multiple Sclerosis who suffer from chronic

fatigue [157, 158, 159], a body of work that directs some of our current research. However a larger

question related to the experience of fatigue on the task demands further consideration.

There’s some ambiguity on the nature of fatigue itself, especially knowing that a task invariant

definition for the construct remains far from crystallized. For the purposes of this investigation,

we primarily consider the effect of time-on-task fatigue, where individuals when engaged in a

cognitive task for a long duration of time may experience a loss in productivity (efficiency) and

worsening mood typical of an under-arousing and prolonged exercise [61]. Some researchers agree

that cognitive fatigue in this context is synergistic with sleepiness states and can further exacerbate

performance impairments [160]. A whole body of research operationalizes this definition espe-

cially in the context of driving and related drowsiness [161, 162]. In both contexts, the source

of fatigue is derived from the task itself either from the associated workload, the duration, or a
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combination of the two resulting in some loss of productivity and negative outcomes. Studies on

vigilance are especially relevant to reaffirm this task-induction hypothesis [20]. Incidentally, it

could be argued that under the right circumstances and input conditions, even short duration of a

sufficiently complex task may induces a fatigue experience consistent with that due to significant

sleep deprivation, a possibility we discuss at length in Chapter 3. Especially a task where the

workload and monotony afford little room for the individual to deploy compensatory strategies to

recoup. In contrast, a task that is inherently interesting is seen as fatigue-resistant [163].

Given the myriad task-specific factors that influence these states, an operational definition for

fatigue which is both sufficient and task invariant remains a challenging prospect [164]. Prior liter-

ature presents a myriad neuroscientific evidence [165], performance [166], sleep [167], circadian,

[168], general health and task-derived factors that either add to or detract from a clear definition.

Further, there is no consensus yet on the best techniques or tools to measure these states, therefore

two common approaches are to take either a perception-oriented definition, i.e. subjective self-

reports, or a performance-oriented definition, where decrements in performance capacity indexed

by response correctness and time together serve as an index of fatigue [169]. The differences here

largely originate from the domain where they are applied, example, in the clinical setting fatigue

experience of patients predominate the need for care and subsequent prognosis [170], whereas in

other settings such as emergency response performance demands take a precedent and therefore a

tendency to operationalize fatigue in a performance-driven manner. However, in practice, perfor-

mance measures are hard to define for most real-world tasks, and hence the ease of self-reports

often appeal to convenience over correctness.

For the scope of the work presented in this paper, these distinctions (along performance and

perception dimensions) are both interesting and important. In our experiments we found that while

participants were fatigued by the task, intervention enabled a performance improvement while the

subjective perceptions of fatigue continued to worsen with time [171]. Indicating that performance

indicators and perception labels may not align and are susceptible to distortions due to annotator

variability, performance saturation, etc. In the present study, we largely characterize fatigue as a
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consequence of the time-on-task effect, where with extended attention demand and sustained work-

load individuals are driven towards a regime of parasympathetic withdrawal, lack of motivation,

and therefore performance deficiencies. We characterize these states as sub-optimal performance

zones and discuss a technique on operationalizing heart variability as a predictor of those states.

We expand on the relevance of heart rate variability using the neurovisceral integration model in

Section 4.3. In this article we formulate this challenge as one similar to a multi-step ahead time-

series forecasting problem (see [172] for a detailed review of techniques), with some evidence

pointing to HR/V as a reliable index for fatigue in the clinical context, we investigate if it can

serve a similar function under the time-on-task effect in a neurotypical population. Furthermore,

we study the role of perception, performance, and underlying heuristics that derive from clinical

research as indicators of fatigue. We also assess the effectiveness of a sequence to sequence deep

learning model in the context of a noisy, low dimensional index such as heart rate variability.

4.2.1 Contributions

The key contributions of this work can be summarized as follows:

• We investigate the reliability of HR-based indices as a neurocognitive index for fatigue. We

operationalize a sequence to sequence deep learning architecture to forecast fatigue states as

a multistep-ahead, multivariate problem.

• We compare the differences that arise from annotation variability, specifically we consider

the effect of performance-based labels, perception-based labels, a weighted-combination of

both, and propose a heuristic-based alternative.

The rest of this chapter is organized as follows. In Section 4.3 we introduce background related

to the relevance of HR/V as a neurocognitive index for fatigue and related attention regulation. In

Section 4.4 we introduce the data, experiment protocol and modeling workflow. In Section 4.5 we

present our results, followed by our discussion and conclusions in Sections 4.6 and 4.7 respectively.
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4.3 Cardiac Activity as a Cognitive Index

In this section we expand on the rationale behind why cardiac activity has more to offer as

a neurocognitive index, specifically relying on the neurovisceral integration model proposed by

Thayer et al. [126] along with a brief overview of the current evidence from clinical and non-

clinical research in this domain. Individual differences in autonomic balance are long known

to be associated with a multitude of cardiovascular health and cognitive dysfunctions [68]. It

is understood that vagally mediated heart rate and its variability (HR/V) is linked with neural

structures implicated in executive function, and are known to support structures that contribute

to several attention and executive functions [173]. Therefore there’s sufficient historic evidence

to suggest that cardiac activity, specifically, the beat-to-beat variability can serve as an index for

efficient and effective cognitive task performance [127].

4.3.1 A Model for Neurovisceral Integration

This perspective is better understood through the neurovisceral integration model (NVIM),

which outlines the functional and structural relationships between prefrontal cortex activation and

cardiac activity. Specifically, the correlation between autonomic, attention and emotion regulation

or dysregulation mediated by the vagus nerve [126]. According to the NVIM, the functions of pre-

frontal and sub-cortical inhibitory circuits essential for self-regulation rely on the inhibitory inputs

provided by the vagus nerve [174, 175]. Self regulation refers to our ability to control thoughts,

emotions and attention behaviors therefore permitting individuals to remain goal-oriented across

various environments. In [68], the authors describe several networks relevant to these constructs,

and one such agglomeration is referred to as the Central Autonomic Network (CAN). The CAN

is responsible for both top-down and bottom-up behavioral responses that are both adaptive and

flexible to task demands. The spatial/ structural elements that constitute this network include the

anterior cingulate, insular, orbitofrontal, and ventromedial prefrontal cortices, the central nucleus

of the amygdala, the paraventricular and related nuclei of the hypothalamus, the periaquaductal

gray matter, the parabrachial nucleus, the nucleus of the solitary tract (NTS), the nucleus am-
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biguus, the ventrolateral medulla, the ventromedial medulla, and the medullary tegmental field

[150]; these structures are known to be bi-directional and non-rigid, meaning information can flow

both ways either bottom-up or top down and additional resources can be recruited to meet specific

task/ environmental demands.

The communication across these networks serve as critical elements of the feed-forward and

feedback circuitry that determine attention responses such as response selection or inhibition, and

therefore form a central component of the cognitive faculties of interest in this study. Under normal

operating conditions the PFC is responsible for staying alert to changing safety cues in the envi-

ronment by the inhibitory control mechanisms over the sympathoexcitatory subcortical circuits

and the amygdala, an organ that is essential to our threat response and also to our susceptibility

to distractions. Under threats/ distractions, the inhibitory control is diminished and sympathoex-

citatory circuits dominate leading to a default mode threat response. Therefore reduced prefrontal

regulation can lead to hyper vigilance type behaviors and perseverative cognition that are know to

result in diminished resource capacities over time [175]. We hypothesize that under fatigue states

such as the one induced by the time-on-task effect, critical signalling pathways across this network

may be compromised either due to the imprecise attention scoping of prefrontal circuitry or due to

fundamental changes leading to task disengagement, therefore there is a case to be made for the

relevance of cardiac vagal activity as an index for task-induced cognitive fatigue.

4.3.2 Clinical and Non-clinical Evidence

Numerous studies with neuroimaging have found relationships between the inhibitory prefrontal-

subcortical circuits and cardiac vagal tone, a relationship indexed by vagally mediated resting HRV

[101]. Recent findings also suggest that this relationship is tied to the performance of those cir-

cuitry such that a higher resting HRV is associated with effective and adaptive responses to en-

vironmental demands [176, 177]. In fact, the chaos that underlies the beat-to-beat fluctuations is

argued as an essential component of our capacity to adapt to fight or flee scenarios [178]. Therefore

the continuous activation of the prefrontal cortex is essential to the optimal, flexible and sustained

processing of input information that allows dynamic interaction and adaptation to changing de-
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mands of a task or its environment, e.g. as you read the text on this article, hold a conversation,

navigate a busy street or respond to stimuli on a game window, and a myriad other examples in

our day to day experience. This prefrontal network is also shown to be essential to inhibitory

processes, such as ones that allow us to filter distractions and stay goal-oriented across those en-

gagements [179]. Researchers have found a lot of robust relationships between resting state HRV

and cognitive functions, such as higher resting HRV exhibit effective behavioral responses (e.g.,

faster response times and better accuracy) on executive cognitive tasks [180]. In contrast, lower

resting HRV is associated with hypoactive prefrontal regulation; this results in hyperactive subcor-

tical structures, which leads to maladaptive cognitive and emotional self-regulation. For example,

people with lower resting HRV often fail to recognize safety cues or to habituate to novel, neutral

stimuli [180, 178]. Recent evidence also point to these observations beyond resting state, where

similar relationships are reported during active task engagement as a function of successive differ-

ences in these measures, and over time (see an overview here [135]).

Furthermore, clinical research supports the use of non-invasive HR/V measures as a reli-

able tool for predicting fatigue severity in chronic fatigue syndrome/ myalgic encephalomyelitis

(CFS/ME). With specific observations identifying both time- and frequency-domain parameters

that were associated with self-reported cognitive dysfunctions, anxiety, sleep quality, and depres-

sion in clinical out-patients [181]. Specifically, Escorihuela et al. report that CFS/ME patients

had lower mean RR, SDNN, RMSSD and pNN50 than healthy controls, and lower LF, HF and

HFnu but higher LF/HF. Specifically the trends associated with these measures were also impor-

tant in their diagnosticity. Even though the first set of these HR/V parameters were obtained from

the time domain analysis and the second set from the frequency domain analysis, they all indicate

that CFS/ME patients showed decreased HR/V and trends, associated with autonomic dysfunction,

sleep quality and anxiety/depression symptoms. Other studies on patients with multiple sclerosis

also relate to similar ideas on how fatigability or fatigue risk is captured by changes in the tempo-

ral/ spectral characteristics of HR/V (e.g. [182, 183]). Therefore there is a need for more research

to find transferable evidence in support of HR/V as a fatigue index in non-clinical settings.
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In summary, the healthy heart is not a metronome [184], and the beat-to-beat fluctuations of the

heart, i.e. heart rate variability, can serve as an information rich index, sensitive to the fatigue states

of an individual. The cardiac autonomic network is long known to serve a central role in mediating

self-regulation of attention, workload and performance of certain cognitive functions. Critically the

CAN mediates cardiac response through the vagus nerve a pathway that is perturbed by fatigue/

workload related constraints. Therefore, operating on this hypothesis, we explore reliable fatigue

state estimation using only electrocardiogram (ECG) data.

4.4 Methods

4.4.1 Data set

The data utilized in this study derives from experiments on cognitive fatigue, where 32 par-

ticipants returned on separate days to complete a fatiguing working memory exercise under three

different treatment conditions – control, sham or intervention. Furthermore, the order in which

participants were subject to each condition was counterbalanced by partitioning them into three

sex-balanced groups. The experimenters relied on a Latin square design for this repeated measures

study. Participants began each session by responding to subjective questionnaires related to their

mood and sleepiness levels on the day, following which they completed a 60-minute visuospatial

two back working memory task on a desktop computer (see Fig. 2.1). Each experiment session

lasted roughly 60 minutes, with a brief single element subjective questionnaire after every five

minutes. The aggregated distribution of participant responses to those questions as a function of

time was presented in Fig. 2.4 The average transition time was ∼ 15s. Participants were not made

explicitly aware of the experiment duration and (or) the number of subjective questionnaires in-

volved to avoid biases in their experience. In this present article we only rely on data collected

from the control condition of this experiment protocol. In addition to the 32 participants who com-

pleted the whole multi-day exercise, we also include data from 7 other individuals who completed

the control conditions but not every other session. In the control condition, participants familiar

with the activity underwent the task in the absence of peripheral instruments related to the broader
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context of the experiments reported in [171].

4.4.2 Participants

In this investigation, we recruited a total of 54 participants, 32 among them completed all

experiment conditions. We rely on those participants who participated and completed the control

mode of the experiment, i.e. N = 39 (23 female) for the reported analyses. All experimental

procedures were approved by Texas A&M University’s Institutional Review Board (IRB2019-

1591DCR), and proceeded in accordance with a strict infection control plan and the ethics code of

the American Psychological Association. Participants provided written informed consent before

the start of each experiment and were reimbursed for their time.

The median age of the participants was 27 ∈ [18, 34] years. All participants were neurotypical.

34 out of the 39 participants in this study reported good quality of sleep (> 6 hours) in days

preceding the experiment session, with a sleep quality rating median score of 7 on a 10 point scale.

Here 0 indicated a state of "severe exhaustion" due to lack of sleep, and 10 indicated a state of being

"extremely well rested". Roughly 70% (N = 27) of our participants reported a daily activity level of

4000-8000 steps, with 2 reporting activity levels in excess of 10000 steps and the remaining below

4000. Participants reported a median score of 8 on a 10 point scale, with regards to their level

of motivation to participate in the study, where 0 indicated "absolutely no motivation" to proceed,

and 10 being extremely motivated. In addition, during recruitment, participants were subject to

a list of exclusion criteria [185] that included past neurological disorders, use of over the counter

medication and caffeine habits.

4.4.3 Working Memory Task

Participants were subject to an hour long visuospatial two-back WM test, while seated in front

of a personal computer and provided a keyboard to record their responses. On the task, they

tracked the position of a circle within a 3 × 3 grid. If the position of the circle matched the one

from two steps prior, they responded by pushing the space-bar (see Fig. 3.1). The inter-stimulus-

interval was 1s with a persistence time of 900ms. The two-back match probability was 0.6; the
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interface served a fixed number (N = 94) of randomly timed match events within each five minute

block. Before starting their first session, participants were introduced to the task and allowed

to practice for a minimum of five minutes under a training mode to ensure that they understood

task instructions. In this mode, the interface provided textual feedback on their response time and

correctness (RED = incorrect, GREEN = correct). During the actual experiments this feedback

was withheld; participants began each session on self-indicating their willingness to proceed after

the practice period. The interface recorded every key-press and stimulus match event presented

to the participant along with a timestamp, response correctness tag (hit, miss, or false alarm), and

response time (in ms).

4.4.4 Measures of Interest

4.4.4.1 Cardiac Activity

In these experiments we collected electrocardiogram (ECG) data using a chest worn, two lead

amplifier and probe device (Actiheart 4, CamNTech, Inc., UK). Participants were first instrumented

with the device to collect a baseline signal and to ensure an acceptable signal-to-noise ratio before

beginning each experiment. The electrodes were positioned at the base of the sternum and over the

left pectoralis minor muscle. The raw ECG signal was sampled at 128Hz.

4.4.4.2 Subjective Responses

We query the participants’ subjective state along three dimensions, i.e. perceived effort, fa-

tigue and discomfort on an ordinal scale (1 - 10). Participants respond to these questions every five

minutes during the 60 minute exercise, therefore each individual provides 12 samples of their sub-

jective state in this protocol. In our present investigation, the fatigue responses are operationalized

to serve as a perception-based index of fatigue.

4.4.4.3 Task Performance

On the task, we had different performance measures that qualified the participant’s task behav-

iors. In the present context we rely on accuracy as the sole performance index in our experiments,

which is defined as defined as the ratio of hits + correct omissions to hits + correct omissions +
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misses + false alarms. In these experiments, a hit is when the user correctly responds to a target

sequence, a miss is when the user fails to respond to a target sequence, a false alarm is when the

user incorrectly responds to a non-target sequence, and correct omissions are events where the

user withholds their response for non-target sequences. A target sequence is a two-back match

event. The overall performance trend and distribution of participants included in this investigation

is shown in Fig. 4.3.

4.4.5 Feature Extraction

Cardiac electrical activity was obtained from the ECG probe and amplifier interface at 128Hz.

The raw ECG signal was filtered for motion-related artifacts [73], and corrected for ectopics with

polynomial interpolation [74]. Subsequently, a peak detection algorithm was used to isolate the

R peaks from the ECG signal [75]. The time between successive R-R peaks, i.e. the inter-beat-

interval (XIBI) or normal-to-normal (NN) interval was then derived from the processed peak sig-

nals for subsequent feature engineering. The corrected inter-beat-interval (XIBI) obtained from

the continuous ECG signal was subject to participant-level feature-scaling (min-max normaliza-

tion) and were then partitioned into time windows of 300swith a step size of 1. Temporal, spectral,

and nonlinear features were then extracted from each window resulting in 50 features for heart rate

and its variability (HR/V) using the Neurokit2 library [187]. The non-linear features were fur-

ther categorized as measures of asymmetry [188], fragmentation [189], complexity and geometry

[184] (see Table 4.1 [186] © 2022 IEEE). With this technique, the composite HR/V feature matrix

XHRV ∈ R2 had on average the following dimensions [∼ 560× 50]. Subjective measures, i.e. the

fatigue response scores were preserved in the original scale, but min-max normalized across par-

ticipants so that values were ∈ [0, 1] with Xsub ∈ R of shape [12× 1]. Performance measures were

sampled on the interface as response omission and commission behaviors, we aggregated binary

scores associated with each target sequence, i.e. do you have a correct response or not? over every

30s window to derive accuracy as defined in the preceding section, therefore for the roughly 60

minute exercise we derived an accuracy vector Xperf ∈ R of shape [120× 1] for each participant.
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Table 4.1: Short-term heart rate variability (HR/V) features for each window (60s)
of the filtered ECG signal. Reprinted with permission from [186] © 2022 IEEE

Temporal

Measures of
central
tendency

RMSSD RMS of successive differences (SD) of NN intervals
SDNN Standard deviation of NN
SDSD Standard deviation of SD

MeanNN Mean of NN
pNN50 Proportion of intervals > 50ms
MadNN Median absolute value of SD
CVNN SDNN/MeanNN
CVSD RMSSD/MeanNN
TINN Base width of NN histogram
HTI HRV triangular index

IQRNN Inter-quartile range of NN

Spectral

Power
density

ULF
VLF
LF

Ultra low (0 – 0.0033Hz)
Very low (0.0033 - 0.04Hz)
Low (0.04 – 0.15Hz)

HF
VHF

High (0.15 – 0.4 Hz)
Very high (0.4 – 0.5 Hz)

Nonlinear

Poincaré
geometry

SD1,2
Transverse and longitudinal
variability of poincaré plot

CVI Cardiac vagal index
CSI Cardiac sympathetic index

Asymmetry
SD1d, a

Short-term deceleration (d)
and acceleration (a)

C1d/C2d
C1a/C2a

Contribution of HR d, a on
short-term, and long-term HR/V

SDNNd/a
Total variance from d
or a changes

Fragmentation

PIP Percentage of inflection points

IALS
Inverse of average length of a,
d segments

PSS Percentage of short segments

PAS
Percentage of NN intervals
in alternating segments

Complexity
ApEn Approximate entropy

SampEn Sample entropy
* NN = Normal to Normal interval (ms); F = frequency (Hz).
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Figure 4.1: Schematic representation of the resampling technique and the input feature vector
and targets of the mulitvariate, multi-step ahead forecasting problem. (a) Input feature vector and
target vectors are resampled to a common resolution, resulting in r samples across all participants.
(b) The input multidimensional feature vector and target vector are split into input and output
sequences with a forecast and prediction horizon of size 3 with r0 observations in training, and
r − r0 observations in the validation set.

4.4.6 Feature Representation

The feature representation problem is unique to this specific work given the need to contrast

how different annotation techniques can lend to the underlying predictive power of the HR/V sig-

nal. We rely on a multidimensional input feature space i.e. XHRV ∈ R2 [∼ 560 × 50], and target

vectors Xperf and Xperf ∈ R of shape [12 × 1] and [120 × 1] respectively. We rely on a fea-

ture representation method as depicted in Fig. 4.1 (a), where every measure is re-sampled to a
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common resolution. During re-sampling, we aggregate over (down-sample) the higher resolution

signal using a fixed sampling horizon and nearest neighbor mapping. When up sampling the lower

resolution signal, i.e. subjective fatigue scores and accuracy, we consider the best fit second-order

spline on the raw data and rely on a nearest neighbor map to the desired time stamp. These methods

are pictorially represented in Fig. 4.1 (a). With the re-sampling techniques described here, every

feature and target vector now share a consistent dimension i.e. [∼ 500, n] where n = 50 for HR/V

measures and 1 for the target vectors. All subsequent analyses rely on this data format as the base

resolution. For training the models of interest in this study, the re-sampled observations where fur-

ther split into input and output sequences of fixed lengths (see Fig. 4.1 (b)), while we investigate

the effect of varying the prediction horizon and input vector dimensions on forecasting errors, the

baseline problem is of multi-step ahead forecasting, for which we consider an input vector horizon

consisting of three observations say [t− 2∆t, t−∆t, t] and an equivalent forecast horizon of three

observations [t, t + ∆t, t + 2∆t] where ∆t, the step size, depends on the feature resolution and

∈ [30, 300] s. In the sections to follow we elaborate on our workflow and algorithms of interest.

4.4.7 Problem Formulation and Techniques

The mutlivariate time-series of interest here can be described as below. We have a two-

dimensional vector XHRV ∈ R2, containing 50 features of HR/V (see Table 4.1), where each

feature xi ∈ R and i ∈ [1, 50]. Therefore, we can represent the input feature space as,

X =



x11 ... x1t

x21 ... x2t

:

xn1 ... xnt


A segment of this vector can be referred to as Xt

t−p, where we have p elements or steps in

the input feature space such that the first feature would be [x1t−p, ..., x1t] and so on. Now for the

multi-step ahead formulation of the forecasting problem, the target vector for this segment with a
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forecast horizon of h steps would be Yt+h
t = [yt, yt+1, ..., yt+h]. The target vector here could be

either perception-, performance- or heuristic-based depending on the type of data involved. We

consider four multi-step ahead forecasting methods to contrast across these annotation techniques.

Specifically, the statistical multiple output multivariate linear regression, the nonlinear support

vector regression method, the ensemble gradient boosting regression trees, and finally a sequence

to sequence deep learning architecture that uses Long Short Term Memory.

Multi-output Multiple Linear Regression

In multiple linear regression, we try to find the optimal combination of coefficients using mul-

tiple predictor variables, therefore here for the single-step case the problem can be defined as

yt = β0 +β1x1t−p+ ...+βnx1t+ ε, where, β are the coefficient terms, and ε is the model error. The

effective optimization problem now reduces to one of minimizing the least squares cost for each

output Yj where j = [t, t+ 1, ..., t+ h], i.e.

minimize
w

1

P

p∑
p=1

(Xt
t−p)

Tw −Yt+h
t

Support Vector Regression

Given training vectors xi ∈ Rp , i = 1, .., n, and a target vector y ∈ Rn ε-Support Vector

Regression solves the following primal problem:

minw,b,ζ,ζ∗
1
2
wTw + C

∑n
i=1 (ζi + ζ∗i )

subject to yi − wTφ (xi)− b ≤ ε+ ζ∗i

wTφ (xi) + b− yi ≤ ε+ ζ∗i

ζi, ζ
∗
i ≥ 0, i = 1, . . . , n

The expectation is that we penalize samples whose prediction is at least ε away from true target.

Furthermore, the objective is penalized further by ζ∗i or ζ∗i depending on whether the prediction

lies above or below the error bound. The mutlioutput and multivariate extension of the above

optimization problem is detailed in [190].
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Gradient Boosting Regression Tree

In gradient boosting regression, given a sample set with input variables say x = [x1t−p, ..., x1t]

and corresponding output variable y = [yt − p, ..., yt], the objective is to find an optimal mapping

F (x) that minimizes the loss L(y, F (x)). GBRTs arrive at an optimal solution gradually through

the weighting of some intermediate function h(x) that minimizes this loss. Here, the function h(x)

is a basic regression tree derived by combining the input variables in the feature space and the

negative gradient of the loss function in the previous model, therefore, the GBRT starts with some

constant function F0(x) and builds the model in a greedy way. The model is formulated as below:

arg min
γ

t∑
k=t−p

L(yk, γ)

Fm(x) = Fm−1(x) + γmhm(x)

Where Fm(x) is the integral over prediction values of the basic regression trees. hm(x) is the mth

regression tree and γm is the coefficient of themth regression tree. This specific formulation of this

model is for the univariate, single-step case. Extension towards the multivariate and multi-output

formulations are explained in detail here [191].

Long Short Term Memory

The proliferation of deep learning architectures have considerably bolstered the time-series

forecasting problem space. Specifically, Recurrent Neural Networks [192] enable neural networks

to persist short-term dependencies in the input feature space, however they suffer from issues such

as vanishing or exploding gradients that can skew the optimality constraints needed for the given

application. Long Short-Term Memory networks overcome this problem of exploding or vanishing

gradients by allowing the model to persist long-term dependencies in the input feature space [193].

An LSTM network is comprised of memory cells with self-loops (see Fig. 4.2). The self-loop

allows it to preserve temporal information encoded on the cell’s state. The flow of information
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through the network is handled by writing, erasing and reading from this memory state. These

operations are handled by three constituent gates i.e the input, output and forget gates. The cell

operation is formulated as below:

it = σ
(
xtUi + ht−1Wi

)
ft = σ

(
xtUf + ht−1Wf

)
ot = σ (xtUo + ht−1Wo)

C̃t = tanh (xtUg + ht−1Wg)

Ct = σ
(

ft ∗ Ct−1 + it ∗ C̃t

)
ht = tanh (Ct) ∗ ot

where it, ft, and ot refer to the input, forget and output gates at time t, respectively. xt and ht are the

number of input features and number of hidden units. W and U are weight matrices with a bias. σ

is the sigmoid activation function. The architecture of a single LSTM cell is represented in Fig. 4.2

(a) (adapted from [194]). The input gate decides if the driving signal should modify the memory

state or not, this decision is made with the help of a sigmoid activation function. Now, going back

to the parent problem, where we have an input vector XHRV ∈ R2 and a target vector say y ∈ R,

the network relies on a back-propagation through time (BPTT) [195] algorithm to optimize the

cost function defined as below:

L =
M∑
t=1

(y[t] − ŷ[t])2

where, ŷ ∈ R is the forecasted target value at some future time step.

Sequence to Sequence LSTM

The Sequence to Sequence LSTM (LSTM*) architecture was developed to forecast multiple

output sequences given an input sequence of varying lengths, primarily for its use case in NLP

problems [196]. However, the architecture lends itself well to the related problem of multi-step

ahead time-series forecasting. The architecture consists of two LSTM networks – an encoder and
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Figure 4.2: (a) LSTM cell adapted from LSTM Cell by Guillaume Chevalier licensed under Cre-
ative Commons Attribution-Share Alike 4.0 International license [194]; (b) Seq2Seq LSTM archi-
tecture adapted from [197]

a decoder (see Fig. 4.2 (b); adapted from [197]). The encoder converts input sequences into a fixed

length vector, which then serve as the input state for the decoder. The decoder then generates an

output sequence of length h, such that h is the desired forecast horizon. At it’s core the problem

now involves optimizing two cost functions similar to the optimization function for the LSTM,

one for the encoder and the other for the decoder. Notably, the Seq2Seq architecture permits

variability in the input feature length, while this is not a characteristic we utilize in the current effort

it does permit the prospect of accommodating asynchronous sources. This can be advantageous

considering the difference in sampling frequency across ECG, subjective and performance indices

in this study. In our investigation, we also include a simple fully-connected neural network (FC-

NN) to differentiate how the recurrence introduced by the LSTM* could improve forecast accuracy.

4.4.8 Annotating Fatigue States

A primary contribution in this work relates to the ground truth for cognitive fatigue. This

is an important consideration given subjective variability in response to surveys, the differential

sensitivity of single-element questionnaires [198] and the variability in response to performance

demands during the working memory exercise [199]. Furthermore, evidence from our work re-

ported in [171] shows that in task contexts such as the one used in this investigation, performance

and perception measures do not always align, an observation that has been reported since the early
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days of fatigue research e.g. [200, 201]. We also found differential outcomes on performance

behaviors contingent on the baseline performance capacity of the individuals studied which adds

to the uncertainty on the expression of fatigue symptoms while engaged in this task. However,

we know from our pre-post mood assessment questionnaires that all participants, regardless of

baseline performance distinctions or reported perceptions during the task, experienced worsening

mood along every relevant dimension (see Fig. 2.4). In fact the magnitude change of the total

mood disturbance and fatigue-scores reported by the participants is consistent with a clinically sig-

nificant change in fatigue perceptions as found in other studies [90]. Therefore, we are confident

that the exercise is fatiguing, now the question is how do we capture those states of fatigue during

the task as we hypothesize that this is not a binary state change and is in fact a gradient over the

time-course of the participant’s experience. A viewpoint that is supported by the evidence reported

in prior literature e.g. [138, 59] and also the trends evident in the self-report scores (see Fig. 4.3).

Furthermore, our end goal is for such systems to enable a closed-loop countermeasure to those

states of fatigue before their perceptual relevance to the human in the loop, with this vision, an-

other constraint stems for our observation that interventions did produce an operationally signifi-

cant change to performance outcomes but provided no change to perceptions [171]. This finding

takes on an interesting form when we consider our takeaways from stakeholder interviewers, where

several emergency responders shared the opinion that performance improvements were more im-

portant than perceptions in the field. Leading to the present question – what is the most helpful

operational definition for cognitive fatigue states and can we reliably forecast these states when

relying on a low-dimensional signal such as heart rate and its variability. To address these ques-

tions and to speak to the relevance of heart rate as a cognitive index we consider the annotation

strategies as described in the following sections.

4.4.8.1 Perception-based Annotation

Here self-reported fatigue scores, derived from the ten-point scale responses serve as one

among the ground truth labels for fatigue states and therefore a target variable of interest. Several

works in the broad domain of affective computing have reliably shown the physiological estimation
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Figure 4.3: Annotation feature trend and distributions for perception-based, performance-based
and heuristic-derived techniques aggregated across all participants. Twelve data points are reported
where each observations corresponds to a time window (∆t) of 300s. At each point we present
the mean and its standard error (SE). The Kernel Density Estimate plot depicts the cumulative
probability density function for each annotator.

of perceived emotions across multiple dimensions including stress [186], mental workload [202],

valence among others using a similar technique. Therefore the construct of relying on subjective

self-reports in qualifying states of affect is a tried and tested one, yet it does not guarantee whether

the self-reports are well-aligned with physiological representations of the phenomena that result in

them or the a-priori expectations of an experimental investigation. Another challenge relates to the

sparse temporal resolution afforded by these indices, e.g. 12 data points in a 60 minute exercise,

where it’s not feasible to disrupt the experiment paradigm too often to collect this information.

In Fig. 4.3 we observe a worsening trend in fatigue response as a function of time, an ob-

servation that is discussed at length in preceding chapters. Notably, we found statistically sig-

nificant changes in self-reported fatigue scores after every five minute interval and also that the

post-experiment mood-disturbance score on the POMS survey indicated a significant worsening of

fatigue perceptions over time. Therefore, with this evidence, we treat the perception of fatigue as a

high-confidence indicator of subjective state, however evidence to suggest that heart-rate variabil-

ity can index these changes across individuals is yet to be established, especially given the intrusive

nature by which we sample these data which could permit compensatory mechanisms and recovery

during the brief transition periods.
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4.4.8.2 Performance-based Annotation

Here, we consider performance accuracy over the defined time window as a proxy indicator

of fatigue states. Several studies have argued in favor and against the use of performance as an

index for cognitive fatigue given the mixed responses elicited across study designs. A running

concern relates to factors like individual variability, the ceiling effect in some cognitive tasks,

where participants after some training period are able to maintain performance outcomes with

ease, and conversely the lack of proper training exercises or performance stability on the task as a

confound. These were equal concerns during the study development for us too, notably as shown

in Fig. 4.3, overall we found that performance accuracy decreased as a function of time, however,

we did find some learning behaviors early on in the exercise and some anticipatory confounds

during the terminal stages of the experiment which could distort the reliability of performance as

a ground truth indicator of fatigue. Regardless, given the degree of explainability performance

outcomes afford and their operational relevance to faculties in the real world, performance-based

labels merit consideration as a fatigue index.

4.4.8.3 Combining Perception and Performance-based Indices

In addition to exploring the independent effects of performance and perception based indices.

We propose a weighted linear combination of the normalized perception and performance scores

as a measure of fatigue on the task. We also investigate the effect of altering the weighting coeffi-

cients used. This naive approach has been tested in prior studies that look to operationalize machine

learning models for affect detection [203]. Where a weighted aggregation of expert scores that an-

notate facial affect are used to improve the performance of a classifier. This method, although

simplistic, was shown to alter the target function sufficiently to allow improved learnable repre-

sentations in those experiments. We extend this consideration towards the present fatigue problem,

while also discussing the relative information gain by biasing the index towards either perception

or performance. The combined fatigue index Y can be represented as:
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Y [n×1] = Ytar[n×2] ×

1− γ

γ


Where γ ∈ [0, 1] is the bias factor that decides if the weight is skewed towards performance or

perception. Ytar ∈ R2 is the performance and perception target vector, and Y is the aggregated/

combined fatigue score.

4.4.8.4 Cardiac Heuristic Fatigue Index

Here we rely on existing expectations from clinical research on cognitive fatigue in identify-

ing fatigue states using heart variability. Specifically, we consider the following: a reduced heart

rate variability trend, relative to baseline and preceding observations, increases the likelihood of

fatigue, as does an increase in LF power density over time, a known index of parasympathetic

dominance, as informed by the NVIM. Therefore, we define a heuristic-derived fatigue index us-

ing the expression below that combines RMSSD (Xrms), pNN50 (Xpnn50), and LF-power (XLF )

indices such that the target vector Y is now formulated as:

Y [n×1] = f((1− f(∆Xrms)) + (1− f(∆Xpnn50)) + f(∆XLF ))

where, ∆X = Xt−Xt−1, i.e. successive differences, and the f(x) is min−max normalization

such that:

f(x) =
x−min(x)

max(x)−min(x)

Interestingly, the sample trend of the heuristic index largely aligns with the observed trend in

the self-reported fatigue scores. With significant differences in means between the terminal (50-60

minutes) and early (10-20 minutes) stages of the experiment (p < 0.0001; see Fig. 4.3).
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4.4.9 Model Training, Evaluation, and Planned Analyses

In this paper, we evaluate the proposed model and annotation strategies to discus the opportu-

nities and relevance of HR/V as a neurocognitive index for fatigue. In our comparison we rely on

Mean Absolute Error (MAE) as the metric for model performance. MAE can be defined as:

MAE =

∑n
i=1 |ei|
n

where, |ei| = |yip − yit| is the absolute error between the predicted value yp and target yt. We

conduct experiments to assess model performance across the following considerations – (1) choice

of architecture, i.e. performance gains and deficiencies across statistical methods, traditional ma-

chine learning approaches, a single layer fully-connected neural network, and deep learning based

methods; (6) the training paradigm, i.e. the differences in building individualized models against

generalized models where sequence data is aggregated from across all participants during train-

ing; (3) the choice of annotation stategy or fatigue index, we rely on the same independent feature

space, i.e. HR/V features but assess the relevance of performance, perception, and heuristic-based

annotation strategies across every model of interest, we persist with the best performing model for

subsequent analysis; (4) we investigate the boundaries of the forecast horizon, i.e. the number of

steps into the future that can be reliably forecast by the trained model, and (5) the history of data or

the input horizon and its impact on model performance; (6) we also study the effect of input fea-

ture resolution or the window-size used for aggregation across the HR/V feature space; and finally,

(7) we comment on annotator noise or distortion by exploring a method of combining labeling

strategies on forecasting outcomes. While this was not intended to be an exhaustive exercise, these

specific considerations allow us to unpack and discuss potential use cases and variables of interest

for our future efforts.

4.5 Experimental Outcomes

In this section we describe our observations across every planned experiment. We provide ad-

ditional detail to contextualize how certain comparisons were drawn including information related
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to model training, tuning, and performance evaluation. Regardless of the modeling strategy or rel-

evant variables, we used 10-fold, stratified, cross validation on the data, with 75% of participants in

training, and the remaining as a "hold out" test set in each fold to avoid the bias of highly correlated

samples coming from the same group of participants [204]. We optimized for MAE by tuning a

subset of hyper-parameters for each model using a grid-search process. We report the outcomes

of this process under the bench-marking experiments, the optimization parameters for each model

are documented in Table 4.2. Unless otherwise indicated models were trained on individualized

data, such that a unique model is developed for each individual in our sample. All HR/V features

were derived at the limiting window size of 300s which is widely acknowledged to be the correct

temporal resolution to derive the features of interest in this study [184]. There were 50 HR/V

features in all including mean HR and its standard deviation across each window (see Table 4.1),

we retain all 50 features in training across methods except for the heuristic annotation sub-case

where we explicitly avoid RMSSD, pNN50, and LF power from our feature set given that these

measures are relevant to the development of that annotation index. Furthermore, the step-size used

for sampling the features of interest was 30s, although we study this as a variable in one among our

experiments. The MLR, SVR and GBRT algorithms were trained using the scikit-learn libraries

API, while the FC-NN, and LSTM architecture were built using PyTorch with the CUDA API. All

models were trained on compute resources using a Google Colab Pro account.

4.5.1 Model Comparison and Bench-marking

In our model comparisons we observed that the Seq2Seq LSTM (LSTM*) architecture outper-

formed other methods, regardless of the annotation strategy considered (see Fig. 4.4). The MAE

for the LSTM* model was 0.071±0.005 across every annotation strategy of interest and ranged

∈ [0.053, 0.102], with forecasting error found to be comparable across both perception indices

and heuristic methods, while fairing relatively poorly when relying on performance as an index

for fatigue (see Table 4.3). In contrast, we found that the classical MLR, the non-linear SVR and

GBRT had relatively comparable MAEs when relying on performance and heuristic-based indices,

although each method faired poorly relative to the LSTM*. Interestingly, the GBRT algorithm per-
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Table 4.2: Optimization parameters of interest for the models under consideration

Model Parameters

Regularized MLR Solver = ’auto’; α = 0.8

SVR
rbf; γ = scale;
C = 0.5; ε = 0.1

GBRT

n_estimators = 300, criterion = gini,
max_depth = 50, min_samples_split = 2,
min_samples_leaf = 5, max_features = ‘auto‘,
bootstrap = False

FC-NN
input_dim = 50, num_layers = 1, activation = ’relu’,
lr = 0.02, loss = L1, epochs = 500 , batch_size = 50,
optimizer = adam

LSTM*

input_dim = 50, encoder_hidden_layers = 2,
decoder_hidden_layers = 2, activation = ’relu’,
lr = 0.001, loss = L1, epochs = 500 , batch_size = 50,
optimizer = adam

formed comparably when relying on perception indices with MAE ∈ [0.071, 0.080]. The disparity

between performance-based annotation relative to both heuristic and perception-driven methods

was apparent regardless of the modeling technique used, with perception-based indices resulting

in roughly 10− 15% poorer model performance regardless of the technique used. For subsequent

discussions and comparisons of interest in this paper we relied on the LSTM* architecture as the

baseline model given the reliable performance seen across each annotation technique. The explicit

performance trends for this architecture across each annotation technique is shown in Fig. 4.7.

Training Paradigm and Evaluation

Here we contrast the approach to model training and evaluation between individualized or

generalized techniques. In the previous section on bench-marking, we report observations from a

training strategy where a unique model is developed for each individual, by splitting the feature

space into input and output sequence pairs for the desired three step ahead forecasting window.

Here the feature vector is split into test and train segments while preserving the integrity of the

chronological sequence. In this section, we compare the efficacy of the aforementioned approach
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Table 4.3: Model comparison and benchmark evaluation across three annotation methods.The table
presents the MAE ± SE for each method for a three step forecast horizon where ∆t = 30s.

MLR SVR

t t + ∆t t + 2∆t t t + ∆t t + 2∆t

Perception 0.107±0.009 0.109±0.009 0.109±0.009 0.097±0.007 0.098±0.007 0.101±0.007
Performance 0.149±0.009 0.142±0.008 0.139±0.009 0.153±0.008 0.144±0.007 0.141±0.008
Heuristic 0.111±0.004 0.120±0.004 0.124±0.004 0.118±0.004 0.125±0.004 0.130±0.005

GBRT LSTM*

t t + ∆t t + 2∆t t t + ∆t t + 2∆t

Perception 0.071±0.008 0.078±0.009 0.080±0.009 0.065±0.004 0.059±0.004 0.061±0.004
Performance 0.160±0.010 0.159±0.009 0.143±0.008 0.081±0.004 0.094±0.004 0.102±0.005
Heuristic 0.132±0.005 0.132±0.005 0.142±0.006 0.053±0.005 0.056±0.005 0.064±0.006

Figure 4.4: Model comparison and benchmark evaluation across three annotation methods. We rely
on the Mean Absolute Error (MAE) to contrast the regularized Multiple Linear Regression (MLR),
Support Vector Regression (SVR), Gradient Boosting Regression (GBR) models and the Seq2Seq
formulation of the LSTM network. We consider a forecast horizon of three with ∆t = 30s

to a paradigm where the input output sequences of all participants is aggregated into one large

training set to develop what we call a generalized model, i.e. the network weights are optimized

across multi-participant data in training before being evaluated on a hold-out set consisting of

previously unseen participant data. The fundamental problem remains the same, i.e. to forecast

fatigue states across each annotation technique. Our observations from this effort is summarized in

Fig. 4.6 and Table 4.5. We note that the generalized approach fairs poorly across every annotation

method relative to the personalized model development outcomes reported in Table 4.4 for the same
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Figure 4.5: MAE for LSTM* under a generalized training paradigm for each annotation technique.

Effect of Generalization in Training
t t+ ∆t t+ 2∆t

Perception 0.295 ±0.168 0.297±0.163 0.299±0.172
Performance 0.378±0.162 0.340±0.225 0.320±0.137
Heuristics 0.099±0.065 0.134±0.086 0.156±0.097

Figure 4.6: Comparing the outcomes of training paradigm: individualization vs. generalization,
where data is aggregated from across all participants on the 3-steps ahead forecasting problem for
each annotation technique.

architecture. The error margin is significant with roughly an order of magnitude difference for both

perception and performance-based annotation methods under the generalized training approach.

Performance-Perception as a Combined Index

Here we introduce the observations from creating a combined index for fatigue using both per-

formance and perception-based indices as introduced in Section 4.4.8. We found that the weighted

combination of perception and performance enabled marginal improvements in forecast error, and

fared better than when relying on perception/ heuristic indices alone. Our observations on this

are summarized in Fig. 4.4 and Table 4.4. Here we also explore the effect of biasing the fatigue

annotation index towards either the performance index or perception-index to learn where (if any)

the outcome improvements were coming from. We observed that as the bias factor was increased

towards perception, greater improvements were made in the MAE, but these benefits were seen to

largely plateau or diminish beyond a bias (γ) value of 0.6 (see Fig. 4.7).
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Figure 4.7: Performance outcomes of the LSTM* architecture across each annotation strategy
with a 3-step ahead forecast horizon where ∆t = 30s (left); LSTM* architecture performance as a
function of bias (γ) on the combined annotation strategy and for the same forecast horizon.

Table 4.4: LSTM* outcomes on the naive weighted linear combination of perception and per-
formance indices as fatigue labels. With the bias (γ) toward perception-index (see Fig 4.7); SE
∈ ±[0.001, 0.007].

Percept-Performance Annotation

Bias (γ) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

t 0.162 0.131 0.154 0.120 0.092 0.051 0.061 0.068 0.087
t+ ∆t 0.127 0.115 0.153 0.113 0.077 0.049 0.054 0.051 0.056
t+ 2∆t 0.122 0.161 0.102 0.114 0.116 0.053 0.056 0.058 0.061
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Figure 4.8: Lead and lag horizon effects on the performance outcomes of the LSTM* architecture
when using the heuristic annotation technique. Varying the input vector horizon in steps of t+n∆t
for the 3-step ahead forecasting problem (left); Observing the effect of increasing the forecast
window in steps of t+ n∆t for a fixed input horizon of three (right).

4.5.2 Lead and Lag Horizon Tuning

In Fig. 4.8 and Table 4.5 we introduce our observations from varying the input and output

sequence lengths, or the input vector horizon and the forecast horizon respectively. We found

that input vector horizon had a significant impact on forecast outcomes such that as the input

sequence was increased in steps of ∆t = 300s the forecast error was found to decrease as seen

in the related plots. An observation which was found to be true for the entire three-step forecast

horizon. The information gain and corresponding improvement in MAE was found comparable

across all time-steps. Notably, here we only rely on the heuristic-derived annotation strategy for

both experiments. On the lag horizon tuning, we found a limiting effect in terms of the reliable

forecast window enabled by a fixed input sequence length i.e. n = 3 : [t − 2∆t, t − ∆t, t]. We

found that as the forecast horizon increased beyond 3∆t MAE worsened with a change of roughly

60% from the best outcome window. However, values were still comparatively lower than those

seen in other annotation contexts.

4.5.3 Heart Rate Variability Feature Aggregation Resolution

In Fig. 4.9 and Table 4.6 we discuss the influence of feature resolution on modeling outcomes.

Specifically, we explore the step-size tst of the sliding window sampling method applied to the

input feature space and its impact on the LSTM* architecture’s ability to forecast fatigue indices
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Table 4.5: Lead horizon/ Input Vector Horizon impact on the forecast horizon of the LSTM*
architecture when using the heuristic annotation technique. SE ∈ ±[0.007, 0.033].

Input Vector Horizon = t+ n∆t
n 0 1 2 3 4 5 6

t 0.117 0.098 0.068 0.052 0.044 0.031 0.027
t+ ∆t 0.167 0.113 0.093 0.078 0.061 0.062 0.067
t+ 2∆t 0.123 0.081 0.071 0.072 0.061 0.053 0.044

Figure 4.9: Effect of HR/V feature resolution on LSTM* performance when using each annotation
technique. Varying the input sampling step size (tst) for the 3-steps ahead forecasting problem.

at the resolution of interest. The sampling technique is illustrated in the Fig. 4.9. Notably, we

consider four different overlap margins of roughly 90%, 80%, 30%, and 0% with tst values of

30, 60, 180, and 300 respectively. We found that the step-sizes had a significant effect on MAE

scores across all annotation methods considered, with a consistent trend of worsening MAE as a

function of increase in aggregation. We found an average increase of > 70% in MAE scores when

contrasting the most coarse (tst = 30s) representation with that of the finest resolution (tst = 300),

where XHRV had the following shapes [∼ 560, 50], and [∼ 70, 50] respectively.

4.6 Discussion

In this paper we explore the relevance of heart rate and its variability (HR/V) as reliable neu-

rocognitive indices of fatigue. We study mental fatigue as experienced during an hour long working

memory exercise, induced by the time-on-task effect. This problem is wrought with challenges not

only related to the type of sensing used but also one that relates to the search for ground truth – how

do we qualify these states of fatigue, and would those measures share any parallels with vagally-
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Table 4.6: Effect of HR/V feature resolution on LSTM* performance when using each annotation
technique. Varying the input sampling step size (tst) for the 3-steps ahead forecasting problem. SE
∈ ±[0.006, 0.022]

Feature Vector Resolution
Step size (tst)

(s) 30 60 180 300

t 0.053 0.092 0.218 0.244
t+ ∆t 0.056 0.101 0.237 0.244
t+ 2∆t 0.064 0.139 0.245 0.267

mediated cardiac activity? A pathway that is known to govern the attention and response behaviors

of individuals engaged in similar exercises [68]. In exploring these considerations we also address

the question - "Whats in a label?", more specifically, how do different annotation strategies influ-

ence our ability to forecast fatigue states when relying on HR/V based features as predictors. We

consider performance-based and perception-based fatigue indices, and introduce novel alternatives

that derive from existing fatigue literature on clinical populations, and observed practices in af-

fective computing. We formulate the underlying problem as one of multivariate, multi-step-ahead

time-series forecasting and rely on input sequences of multi-dimensional HR/V features to fore-

cast output sequences of a relevant fatigue score. To this end, we utilize data collected as a part

of a larger investigation on fatigue (see Chapters 2 and 3), where we have unique subjective re-

sponses, performance measures, and ECG data that support these explorations. In building models

for this problem we also assessed the comparative effectiveness of annotation methods, modeling

architecture, lead and lag horizons for forecasting and training, the impact of label combinations,

the choice of training paradigm and evaluation technique, and the effect of input feature resolu-

tion. Our goal is for these observations to advance more focused scrutiny on the transferability and

relevance of HR/V indices in related problems of cognitive dysfunction in the non-clinical setting.

We found that forecast outcomes with perception-labels fared better than those with performance-

labels regardless of the model choice, forecast horizon, approach or feature resolution. We drew

these comparisons primarily due to our observation that performance and perception-scores exhib-

ited some incongruity across experiment conditions in our previous work (see Chapters 2 and 3),
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where while performance tendencies improved, perceptions of effort or fatigue states did not, sug-

gesting that these behaviors are driven by disparate fatigue-impacted underlying faculties [120].

Therefore, the finding that perception-based labels do not lend well to the concept of HR/V as

predictors is not wholly surprising.

Another point to note here are the limitations of the experiment protocol that could bias perfor-

mance behaviors to regimes outside of the typical fatigue experience. For example, we know that

the task format used in this investigation elicited distinct learning, and anticipatory behaviors in a

subset of our participant pool. This was largely due to the differences in training demands and the

lack of appropriate control on experiment termination procedures. Therefore, these are factors that

confound the relevance of performance states as they relate to the fatigue dynamics of HR/V. In

addition, workload on the task was constant and not adapted to individual capacity, a practice that

is common in related studies of working memory [205], which could result in a performance ceil-

ing effect or under-load related task disengagement [20]. However, this does not take away from

the robustness of the fatigue-induction process given the subjective self-reports, and PRE-POST

experiment survey responses (see Fig. 2.5).

On the other hand, our observation that perception-scores fared better as fatigue indices speaks

to their use in the real world, where performance sampling is often inhibited. Factors such as the

nature of the task, dynamic roles and responsibilities hinder the development of objective defini-

tions and assessment methods for performance [206] on the job. Therefore, subjective-responses

provide a more ecologically permissible format for querying the human fatigue states. However,

perception-labels are served by interruptive sampling methods, place emphasis on the need for re-

call, have relatively poor temporal resolution [112, 113, 114], and are therefore also limited in their

potential for real-world use. This need for reliable and unobtrusive alternatives to signal fatigue

states, those that move past the barriers of current techniques, motivated us to consider cardiac

heuristics. These indices rely on existing literature on fatigue in clinical populations, such as those

with Multiple Sclerosis (MS), a condition known to elicit chronic symptoms of fatigue.

The basic principle that guides the engineering of this fatigue index is that lower HR/V is
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known to be associated with diminished cognitive capacities especially in tasks of executive control

or willed action [135, 207, 208], similarly elevated levels of LF-power [180], an index for parasym-

pathetic tone [184]. Interestingly, we found that the fatigue-index derived based on this heuristic

was well correlated with fatigue-perceptions derived from our self-reports (see Fig. 4.3). Further-

more, we observed the best model MAE scores when relying on the heuristic-derived fatigue index

regardless of the technique, approach or other variables of interest in our experiments. These find-

ings signal the possibility of fatigue representations that are fundamentally encoded within cardiac

activity, despite the relatively short duration of exposure to the fatiguing exercise. However, it is

still premature to place confidence in these observations especially because, while we exclude the

features directly related to the fatigue index in the input feature vector i.e.[XRMSSD,XpNN50,XLF ]

during training, there remain highly correlated variables and latent dimensions that could easily

approximate the target vector for the forecast horizons of interest.

We also observed that the Seq2Seq LSTM (LSTM*) architecture outperformed every other

technique considered in our bench-marking exercise, regardless of the annotation method. This is

not surprising given the degree of parameterization enabled by the architecture, and also with the

operating hypothesis that fatigue in this exercise is driven by time-on-task, i.e. it is the cumulative

outcome of activity and not an instantaneous event. Therefore, the temporal component and it’s

persistence is a central aspect of the predictive potential for related biomarkers. In other words, the

ability to preserve long-term relationships in the underling signals and finding correlations across

feature vectors is essential to tracking fatigue perceptions or related heuristics in these experiments.

A function that the LSTM* is particularly well-suited to perform. In addition, we observed that the

model performed poorly when aggregated across particpants, i.e. generalization resulted in poor

model error tracking. We hypothesize that this is likely due to the degree of individual factors that

differentiate HR/V and the periodicity of the fatigue response. Although population level heuristics

do serve us well in this context (e.g. the heuristic-derived fatigue label), clinical observations also

point to a similar degree of individual variability [181, 209].

Another fundamental question of interest here relates to learning a ground truth given multiple
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annotation strategies. As a first step, we consider the naive approach to combine perception and

performance-indices which yielded a minor improvement in outcomes, especially with a bias to-

wards perception-indices (see Fig. 4.7). It’s hard to pin-point where this benefit is derived from,

however we do expect that the function shape is likely altered in a way that is advantageous or

relevant to the underlying representations in the HR/V time series, similar observations have been

found in aggregation techniques for facial affect (e.g. [203]). However, a perspective than can

really push these observations in the right direction is one that looks to treat each annotation tech-

nique as a noisy distortion of the true ground truth, e.g. the work by Raykar et al. proposes an

Expectation Maximization based model to learn across noisy annotators in their work aptly titled,

"Learning from Crowds" [210]. This idea is currently investigated in other contexts of affective

computing such as facial emotion recognition, where multiple annotators may disagree on the de-

gree of "affect" seen in a visual [211]. In those contexts, algorithms have found success to learn

an optimal annotation technique or ground truth from across annotators (individuals), a related

perspective here could be to treat each annotation method as a distortion of the underlying ground

truth, a strategy that could improve the outlook and discussion across the annotation methods of

interest in this study. We also observed that the input vector horizon and forecast horizon both

impacted model performance in different ways. As the input time window increased, model per-

formance improved significantly, we hypothesize that this is likely due to (1) overfitting on the

data, and (2) the effect this has on the number of training and testing samples. Given that the

experiment was only 60 minutes long, changing the input sample window significantly limits the

number of independent observations that remain available for testing. On varying the forecast/ pre-

diction horizon, we found that model performance worsened as a function of ∆t, i.e. the forecasts

were unreliable further ahead in time, which is unsurprising considering how short-term dynamics

and correlations across the underlying HR/V can change with each ∆t. Finally, we found that

the input feature resolution as governed by the step size (tst) parameter negatively impacted MAE

scores, especially at lower resolutions, which was expected given the impact it has on temporal

resolution of the training data, and how sensitive machine learning models are to these changes.
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While these observations signal some optimism towards the techniques we could operationalize to

forecast fatigue states under different constraints, there remain some key limitations which demand

our attention; they are discussed in the section to follow.

4.6.1 Limitations

First, as discussed in the previous section, our observations are limited by the experiment pro-

tocol. A subset of participants reported an anticipation bias towards the end of the experiment that

resulted in an artificial state of alertness. This resulted in changes to the performance tendencies

and therefore is likely a confound to the relevance of those indices as a measure of fatigue, or

distortions of the underlying ground truth (i.e. fatigue). On a related note, we know that learning

played a role early in the experiment and therefore perceived workload and associated fatigue are

enhanced until stable performance capacity or a "plateau" is reached, although it could be argued

that these are factors relevant to the task-induced experience of fatigue. Our current efforts look to

work past these deficiencies with more control on participant training protocols and their task expe-

rience. Second, the reliability of the heuristic index needs more investigation, especially knowing

that there could be latent variables or other higher-order correlations that enable the architecture

to track these indices over time, however, it is worth noting that this method is consistent with

techniques commonly operationalized in time-series forecasting problems today, where the target

and predictor variables are typically identical or related measures e.g. stock prices [212], power

consumption [213], weather indices [214], etc. Third, HR/V is a low dimensional and degenerate

index that is susceptible to several perturbations such as due to breathing or motor activity, the

specific influence of these variables on masking fatigue representations need focused investiga-

tions and protocols. Fourth, while we establish the relevance of HR/V as an index for tracking

perceptions and related indices of fatigue, we do so with the convenience of offline processing

tools. However, we need to investigate the overheads associated with incorporating the feature

extraction workflow and prediction pipeline in "real time", especially to accommodate the need

to retrain learned representations over time contingent on the experiments or activities the user is

engaged in.

82



4.7 Conclusions

In this paper, we discussed methods to forecast fatigue states using a multi-step ahead multi-

variate formulation of the problem, and features derived from heart-rate and its variability as the

predictor variables. We found distinctions in model outcomes that were influenced by the choice

of annotation index, i.e. ground truth, for the time-series fatigue label, where perception-indices

and cardiac heuristics fared better than performance as indexed by features of HR/V. We observed

that the proposed Seq2Seq architecture is particularly efficient in minimizing forecast error, specif-

ically, the Mean Absolute Error across the desired prediction horizon. These observations lend

confidence to the prospect of using a low-dimensional, and unobtrusive wearable sensor such as

ECG devices to reliably forecast perceptions, performance measures, and underling cardiac heuris-

tic indicators of fatigue under controlled experiment conditions. Focused research on translating

these findings to the real world can be transformative to those job domains where fatigue exposure

and risk remain insidious. However, there are specific barriers that demand our immediate research

attention such as, (1) understanding the role of perturbations such as breathing/ activity on the ro-

bustness of these indicators; (2) studying the effect of circadian or sleep-dependent variations on

the dynamics of HR/V; and (3) exploring the task-invariance of these observations by extending

to related cognitive fatigue contexts like driving simulations, vigilance experiments among others

could help advance robust and fieldable fatigue indices.
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5. CONCLUSIONS

This dissertation explored several foundational questions related to the subjective experience

of fatigue, associated biomarkers, the ability to counter those states using non-invasive brain stim-

ulation, and the need to consider multiple ground truths when attempting to forecast fatigue. In

Chapter 2 we shared evidence that anodal tDCS of brain regions responsible for working memory

faculties promoted response commission behaviors, while preserving response inhibition behav-

iors on a visuospatial working memory task. However, the benefits found in performance outcomes

were not seen in perception indices, with participants reporting a condition-agnostic worsening of

mood, sleepiness and fatigue perceptions over the time course of the experiment. This raises im-

portant questions, especially those related to the ethics around how such mechanisms can translate

to real world use cases or the decision making that can operationalize them within job domains.

It is easy to see how one may choose a performance- or perception-centric view contingent on the

objective function that underlies their optimization goal, i.e. promote worker safety or the overall

fiscal gains associated with their job responsibilities, adding to the ethical undertones that demand

more scrutiny.

The neural and physiological drivers of fatigue are complex, coupled, and poorly understood.

Investigations that combine the fidelity of neural indices and the field-readiness of physiological

measures can drive translational research in recognizing and mitigating fatigue states in opera-

tional settings. In Chapter 3 we examined the spatio-temporal dynamics of neural activity and its

physiological correlates in heart rate and its variability (HR/V) during this fatiguing visuospatial

working memory task. We observed that task performance elicited increased neural activation in

regions responsible for maintaining working memory capacity. With the onset of time-on-task

effects, however, resource utilization was seen to increase beyond task-relevant networks. Over

time, functional connections in the prefrontal cortex were seen to weaken, with changes in the

causal relationships between key regions known to drive working memory. HR/V indices were

seen to closely follow activity in the prefrontal cortex. This investigation provided a window into
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the neural and physiological underpinnings of working memory under the time-on-task effect, with

changes in functional and causal brain networks that unpack its influence on executive function.

HR/V was largely shown to mirror changes in cortical networks responsible for working memory,

therefore supporting the possibility of unobtrusive state recognition under ecologically valid con-

ditions. However, this prospect of forecasting fatigue states or behaviors should also consider how

we label fatigue on the task.

Chapter 4 explores the specific issues that originate from the differences in labeling strate-

gies on the ability to forecast those indices. We treat the problem as a multivariate multi-step

ahead forecasting problem where target vectors can be one of performance, perception or cardiac

indices. The operating hypothesis here is that, perceptions queried through subjective question-

naires, performance indicators derived from the task, and the fatigue-driven cardiac heuristics are

likely distortions of an underlying ground truth that relates to the objective fatigue experience of the

individual. Models were found to perform equitably when trying to forecast both perception-based

indices and cardiac-heuristics. However, performance was worse when attempting to forecast per-

formance indices regardless of the technique used. While the observations indicate positively for

the prospect of forecasting fatigue-related indices using cardiac measures, the disparity between

performance and perception indices on model tracking error raises more questions on the optimal

strategy for use under more ecologically valid conditions. These observations together provide a

template of resources that could evolve a closed-loop solution for NIBS in the real world, however,

some immediate research directions demand our attention towards this goal.

5.1 Future Work

5.1.1 Ecological Validity in Task Formats

In Chapter 2, we reported the benefits of stimulation during a well-controlled experiment

paradigm that queried user visuospatial working memory. However, our ultimate goal is to trans-

late these observations toward relevant uses in domains such as emergency response. The domain

adaptation of these findings is essential for their real world use and purported benefits. Examples
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of job domains that relate to the visuospatial working memory demands operationalized in these

experiments is the role of an air traffic controller or individuals responsible for emergency oper-

ations centers (EOCs), where there is need for auditory, verbal and spatial working memory in

encoding incoming streams of information and relaying it to team members in some actionable

form. Therefore, a key effort for us is to architect an experiment paradigm that allows us to move

from the convenience of task formats derived from experimental psychophysics towards task for-

mats synonymous to real-world use cases. However, there is a need to ensure that this transition

is incremental, as the workload and training demands associated with a fully organic test-case are

likely separate research efforts of their own.

5.1.2 Stimulation Parameter Space

The evidence reported in this dissertation serves as the foundation for personalized, non-

invasive, closed-loop neuromodulation. However, unknowns related to the timing, location, in-

tensity, repeated-use, and task-agnosticity of stimulation effects remain. There is a need to system-

atically explore this parameter space towards developing operationally significant tools for both

clinical and non-clinical applications. In doing so, there is a need to – (1) identify causal networks

for cognitive vulnerabilities in the brain (where and why); (2) harness downstream physiological

and behavioral markers for predicting future states (when); (3) modulate targeted brain functions

(what) to support or augment performance using non-invasive, i.e., non-implantable or ingestible,

approaches; and (4) bridge gaps in stakeholder (who) understanding and perceptions of these tech-

nologies, towards wider-adoption and use.

5.1.3 Finding the Ground Truth

While we consider the influence of annotation strategies on our ability to forecast fatigue, we

are still unable to comment on whether any of these techniques reflect a task invariant formulation

of the construct. Moreover, we do not apply any optimization to collate all proposed methods to

find an optimal ground truth. This concept of annotator noise, is not novel, and is one that is widely

discussed in the context of learning from crowds [210], where annotator noise in labeling levels
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of affect can be regarded as some distortion of the underlying ground truth. In these contexts, re-

searchers have considered different algorithms to find an optimal ground truth, example, using the

Expectation Maximization algorithm to find the Maximum Likelihood Estimate that best combines

each annotation for an optimal ground truth. In the present problem, we could apply a similar

technique where we consider the differences across annotation techniques instead of individual

annotators to find an optimal labeling technique for the given data set. However, the ultimate prob-

lem is likely to invovle to stages, (1) to find an optimal ground truth given these noisy annotations,

and (2) validating this technique on an unrelated but inspired data set where the fatigue induction

paradigm is consistent but there are other protocol related changes that deviate from the original

experiment. This effort remains our present focus, and will likely signal the relevance of cardiac

activity as a neurocognitive index with more certainty than presently claimed.

5.1.4 Technology Acceptance in the Real World

Finally, an important consideration for the translation of these ideas into the real world re-

lates to stakeholder understanding, perceptions and acceptance of the proposed technologies. Our

target demographic for the incremental evolution of this closed-loop framework are emergency

responders, who operate in a domain that is significantly impacted by fatigue-related challenges.

While this is a well-suited application domain, the technology acceptance barriers are nuanced,

and our knowledge gaps demand more research. Specifically, we need to consider the prevalence,

social acceptance, potential for misuse, and long-term safety of the end-users in developing tools

or frameworks to assist cognitive faculties regardless of the task domain [215]. This process should

include customer discovery efforts that are centered on interviews to both detail the mechanisms

of the proposed intervention techniques, and to understand the fatigue risks and definitions that

matter the most to these groups. This process is all the more important considering the dichotomy

between performance and perception for both intervention and forecasting, where, we were able to

improve performance outcomes with intervention (see Chapter 2), while our sensing mechanisms

were better primed to forecast perception states (see Chapter 4). Suggesting the need to carefully

determine use-inspired templates to advance these mechanisms for the real-world.
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