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ABSTRACT

The verification and validation of Pronghorn is imperative for predicting the fluid velocity,

pressure, and temperature in advanced reactors, specifically high temperature gas-cooled reac-

tors. Pronghorn is a coarse-mesh, intermediate-fidelity, multidimensional thermal-hydraulics code

developed by Idaho National Laboratory. The Pronghorn compressible/incompressible Navier-

Stokes equations are validated by using the pressure drop measurements and axial velocity aver-

aged from the particle image velocimetry data obtained at the engineering-scale pebble bed facility

at Texas A&M University. Additionally, the Pronghorn energy equations with the valid correla-

tions for the solid-fluid convective heat transfer coefficient and effective thermal conductivities

predict fluid and solid temperatures well in the SANA pebble bed region.

Pronghorn and STAR-CCM+ porous media models using the Handley, KTA, and Carman cor-

relations comparably estimate the pressure drop better than other functions with a maximum 3.34%

average relative difference compared to the experimental measurements. The precise average peb-

ble bed porosity estimation has a large impact on the pressure drop. The implementation of the

volume-averaged porosity in several sectors, with each sector’s thickness larger than the repre-

sentative elementary length, has the potential to improve pressure drop modeling or provide more

detailed velocity profiles in nuclear reactors with high aspect ratios. In addition, the pressure gra-

dients and volume- or surface-averaged axial velocities from the realizable two-layer k − ε and

shear stress transport k − ω models are in good agreement with the porous media simulations and

particle image velocimetry data.

The bed porosity study concludes that the MATLAB and VGSTUDIO reconstruction methods

provide the average bed porosities close to the reference with less than the 1.22% relative differ-

ence. The sensitivity study of the radial porosity values verifies the 1.1% average relative difference

for 75% of the original reconstructed geometries’ full bed height. At a minimum, the whole bed

volume within the pebble diameter length in axial direction is necessary to bring the close radial

locations of local porosity oscillations. Furthermore, the new oscillatory porosity function derived
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based on the Martin porosity correlation or the Hunt and Tien exponential function can be utilized

for approximating the radial porosity of pebble bed experiments.

iii



DEDICATION

This dissertation is dedicated to my parents, Joungha Lee and Gyehyeong Ahn.

iv



ACKNOWLEDGMENTS

I would like to give special thanks to my committee chair, Dr. Yassin Hassan, for his guidance

and enduring support. His instruction has helped shape various novel ideas related to the pebble

bed experiments.

I also want to thank my committee members, Dr. Duy Nguyen, Dr. Rodolfo Vaghetto, and

Dr. Victor Ugaz for technical support and advice. The idea about volume-averaging approach

of radial porosity in porous media simulations came from Dr. Duy Nguyen, and our initial at-

tempt contributes to the improvement of pressure drop and averaged axial velocity in pebble bed

experiments.

I would like to extend my sincere thanks to researchers at Idaho National Laboratory, Dr. Paolo

Balestra, Dr. Sebastian Schunert, Dr. Richard Skifton, and Dr. Minseop Song, who have provided

me regular feedback and shared their expertise on porous media modeling, pebble bed reconstruc-

tion, particle image velocimetry technology, and computational fluid dynamics modeling.

v



CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professors Yassin Has-

san and Rodolfo Vaghetto of the Department of Nuclear Engineering, Senior R&D Staff Dr. Duy

Nguyen at Oak Ridge National Laboratory, and Professor Victor Ugaz of the Department of Chem-

ical Engineering.

Dr. Robert Muyshondt and Mr. Blake Maher provided the MATLAB pebble bed reconstruc-

tion algorithms, pressure drop measurements, and the axial velocity and turbulent kinetic energy

profiles obtained by the particle image velocimetry technology. In addition, the pressure drop

measurements at a different pebble bed facility were given by Mr. Stephen King. All other work

conducted for the dissertation was completed by the student, under the advisement of her commit-

tee members, as well as Advanced Reactor Technologies - Gas-Cooled Reactor Methods Lead Dr.

Paolo Balestra, R&D Scientist Dr. Richard Skifton, and Computational Physicist Dr. Sebastian

Schunert at Idaho National Laboratory.

Funding Sources

This research was partially funded by the Office of Nuclear Energy of the U.S. Department

of Energy, NEAMS project, under Contract No. DE-NE0008983. This research made use of

the resources of the High Performance Computing Center at Idaho National Laboratory, which

is supported by the Office of Nuclear Energy of the U.S. Department of Energy and the Nuclear

Science User Facilities under Contract No. DE-AC07-05ID14517. This manuscript has been

authored by Battelle Energy Alliance, LLC under Contract No. DE-AC07-05ID14517 with the

U.S. Department of Energy. The United States Government retains and the publisher, by accepting

the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up,

irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or

allow others to do so, for U.S. Government purposes.

vi



NOMENCLATURE

General

AVR Arbeitsgemeinschaft versuchsreaktor (Germany)

BC Boundary condition

Bi Biot number

CAD Computer-aided design

CDF Cumulative distribution function

CFD Computational fluid dynamics

CFL Courant-Friedrichs-Lewy

Ec Eckert number

Eu Euler number

FE, FEM Finite element, finite element method

FS Factor of safety

FV, FVM Finite volume, finite volume method

Fr Froude number

GCI Grid convergence index

Gr Grashof number

HTGR High temperature gas-cooled reactor

HTR-PM High temperature gas-cooled reactor pebble bed module

HTR-10 High temperature gas-cooled reactor 10 (China)

INL Idaho National Laboratory

LHS Latin hypercube sampling

LOFC Loss of forced circulation
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MIR Matched index of refraction

MOOSE Multiphysics Object-Oriented Simulation Environment

Nu Nusselt number

PBMR Pebble bed modular reactor

PBR Pebble bed reactor

PDF Probability density function

PISO Pressure-implicit with splitting of operators

PIV Particle image velocimetry

Pe Peclet number

Pr Prandtl number

RE Richardson extrapolation

REV Representative elementary volume

RIMS Refractive index matched scanning

RMSE Root mean square error

RMSRE Root mean square relative error

ROI Region of interest

RRMSE Relative root mean square error

Re Reynolds number

Ri Richardson number

SD Standard deviation

SEM Standard error of the mean

SST Shear stress transport

SUPG-CFEM Streamline upwind Petrov-Galerkin continuous finite ele-
ment method

St Strouhal number or Stanton number
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TAMU Texas A&M University

TH Thermal-hydraulics

THTR Thorium hochtemperatur reaktor (Germany)

TRISO Tri-structural isotropic particle fuel

TR-PIV Time-resolved particle image velocimetry

V&V Verification and validation

Mathematical Symbols

Cp,f , Cp,s Fluid isobaric specific heat, solid isobaric specific heat
[J/(kg·K)]

d Distance from the wall [m]

dp Pebble diameter [m]

D Bed diameter [m]

Dh Hydraulic diameter [m]

Ef Fluid total energy per unit mass [J/kg]

Es Young’s modulus [Pa]

f
′ Characteristic frequency [-]

Fs Safety factor [-]

g Gravitational acceleration vector [m/s2]

gy Gravitational acceleration in the y direction [m/s2]

h Mesh size or specific bed length cut for the porosity study
[m]

H Total length of the porous medium [m]

Hf Fluid total enthalpy per unit mass [J/kg]

H(y) Height, where spheres rest in the y direction [m]

I Turbulence intensity [-]
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k Turbulent kinetic energy [m2/s2] or k-dimensional space [-]

kf , ks Fluid thermal conductivity, solid thermal conductivity
[W/(m·K)]

K Permeability [m2]

l Turbulent length scale [m]

lε Wolfstein length scale, where ε is the turbulent dissipation
rate [m]

L Characteristic length scale [m]

n Refractive index [-]

N Total number of cells or number of measurements [-]

NA Number of spheres per unit area [-]

NL Number of spheres per unit length [-]

p Order of accuracy or norm [-]

p̄ Formal order of accuracy [-]

p̂ Observed order of accuracy [-]

P Pressure [Pa]

P Time-averaged pressure [Pa]

q
′′′

f , q′′′
s , q′′′

t Fluid volumetric heat source, solid volumetric heat source,
total volumetric heat source [W/m3]

r Refinement ratio [-], radial distance from the center of the
pebble bed [m], or fit point distance [mm]

Red Wall-distance Reynolds number,
√
kd/ν [-]

Reh Reynolds number based on hydraulic diameter, ρfuD/µ for
free flow region, where ε = 1, or 2ρfudpε/(3(1 − ε)µ) for
porous bed [-]

Rep Particle Reynolds number, ρfusdp/µ [-]

Re∗ Modified Reynolds number, Rep/(1− ε) [-]
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SF Geometric packing factor [-]

Sij Mean strain-rate tensor, where i and j are the indices of vec-
tors [1/s]

t Time [s] or t-value [-]

Tb Bulk temperature [K]

Tf , Ts Fluid temperature, solid temperature [K]

Tsuf Surface temperature [K]

∆T Difference between the hot wall and reference temperatures,
Tsuf − Tb [K]

u Interstitial/physical velocity [m/s]

u Time-averaged velocity vector [m/s]

uave Volume- or surface-averaged velocity [m/s]

us Superficial velocity, εu [m/s]

uτ Friction velocity,
√

τw/ρf [m/s]

u
′ Fluctuating velocity [m/s]

u
′
iu

′
j Reynolds stress tensor, where i and j are the indices of vec-

tors [m2/s2]

U Characteristic velocity [m/s]

Vspheres Total volume of spheres [m3]

Vtotal Total volume of the cylinder [m3]

∆Vi Volume of the i-th cell [m3]

W Interphase friction factor [1/s]

Wij Mean rotation tensor, where i and j are the indices of vectors
[1/s]

x Coordinate vector [m]

∆x Interval length between the cylindrical layers for porosity
study [m]
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α Solid-fluid convective heat transfer coefficient [W/(m3·K)]

β Thermal expansion coefficient [1/K]

δij Kronecker delta, where i and j are the indices of vectors [-]

ε Porosity [-] or turbulent dissipation rate [m2/s3]

ε̄ Average bed porosity [-]

εijk Permutation tensor, where i, j, and k are the indices of vec-
tors [-]

εmin Minimum porosity [-]

εr Solid emissivity [-]

ε∞ Average bed porosity at infinite column diameter [-]

κf , κs Effective fluid thermal conductivity, Effective solid thermal
conductivity [W/(m·K)]

µ Dynamic viscosity [Pa·s]

µt Turbulent eddy viscosity [Pa·s]

ν Kinematic viscosity [m2/s]

νp Poisson’s ratio [-]

νt Turbulent kinematic viscosity, µt/ρf [m2/s]

ρf , ρs Fluid density, solid density [kg/m3]

σ′ Stefan-Boltzmann constant [W/(m2·K4)]

τ Tortuosity [-]

τw Wall shear stress [Pa]

ω Specific turbulent dissipation rate [1/s]

ωk Angular velocity [1/s]
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1. INTRODUCTION

The verification and validation (V&V) of Pronghorn is critical for predicting the fluid velocity,

pressure, and temperature in advanced reactors, specifically high temperature gas-cooled reactors

(HTGRs). The HTGR is an advanced Generation IV reactor concept and offers advantages over

commercial nuclear power reactors. Using the direct Brayton gas-turbine cycle, the high operating

temperature allows for a thermal efficiency of about 40% to 50%, which is higher than typical light

water reactors’ efficiency of∼30% [1–3]. HTGRs produce process heat for industrial applications,

such as hydrogen production, along with electricity generation [1, 4]. They also bring inherent

safety features, such as passive decay heat removal, and tri-structural isotropic (TRISO) particle

fuels retain radioactive fission products inside the silicon carbide layer well [5, 6]. Lastly, the

primary coolant of helium gas has a comparably high thermal conductivity and is inert to avoid

undesirable reactions, such as nuclear fuel degradation [1]. Therefore, it is imperative to improve

and benchmark Pronghorn for pebble bed reactor (PBR) analysis, not only during a loss of forced

convection (both pressurized and depressurized) in the pebble bed and upper plenum but also

during reactor operation.

Although the studies related to correlations (of porosity, pressure drop, effective thermal con-

ductivities, and solid-fluid convective heat transfer coefficient) for porous beds have been per-

formed in different engineering applications [7–10], the validation of correlations applicable for

pebble bed experiments (furthermore, HTGRs) in Pronghorn is necessary. Given that the prelimi-

nary results [11] show an excellent agreement of Pronghorn porous media flow models with STAR-

CCM+ for the fluid and solid temperatures in the SANA pebble bed experiments, the initial valida-

tion of the porosity and pressure drop correlations applicable for HTGRs in the Pronghorn porous

media models is achieved in [12]. The experimental average bed porosity is calculated in lieu of

applying the porosity correlations, and the porosity study from [13] is used for volume-averaging

the oscillatory porosity in different sectors. The MATLAB and VGSTUDIO reconstructed geome-

tries from [13] are also utilized to develop the explicit meshes for turbulence modeling.
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Several pressure drop correlations implemented in Pronghorn are validated with Texas A&M

University (TAMU) isothermal pressure drop measurements, and the Pronghorn simulation results

are verified by STAR-CCM+. The studies related to the interaction of the near-wall and bulk

flows in the PBRs are performed by considering the bed diameter in the pressure drop functions

or volume-averaging the radial porosity in the annular cylinders, including the solid cylinder in

the middle of the porous bed, with the formation of the Navier-Stokes/Darcy-Forchheimer model.

Moreover, the 3D pebble bed meshes are used for the realizable two-layer k − ε and shear stress

transport (SST) k − ω models. The corresponding pressure drop and volume- or surface-averaged

axial velocities are compared with the values from the Pronghorn porous media simulations and

the particle image velocimetry (PIV) data.
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2. LITERATURE REVIEW & THEORY*

2.1 Porous Media Modeling

The macro-scale modeling approach is established to predict the mass, momentum, and heat

transfer phenomena in porous media [14]. Macro-scale variables are defined in the representative

elementary volume (REV). The model is valid when the length scale of the REV is less than the

characteristic length of the flow domain and greater than the pore-scale lengths [15]. The REV is

the smallest sample volume, which simulations or experiments can provide the results indicative of

the macroscopic property by homogenizing the micro-heterogeneity [16]. The continuum concept

is applied by taking an average of properties within the REV [15]. Figure 2.1 describes the change

of porosity (the property of interest) which depends on the sample volume size. For instance,

when the medium is inhomogeneous and the porosity varies in space, the numerical simulations

or experiments would represent the macroscopic properties by averaging them within the REV.

However, the model still requires knowledge of the closures for estimating the effective properties

based on the pore-scale characteristics.

Figure 2.1. Porosity change depending on sample volume size. Reprinted from [15, 16].

*Parts of this chapter are adapted with permission from [11, 12].
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Pronghorn uses the Darcy-Forchheimer model with the Navier-Stokes equations at the contin-

uum scale [17]. The Darcy’s law is applicable when the flow velocity has a linear relationship

with the pressure gradient. In the low Re range, inertial forces are negligible in porous media. For

the high Re fluid flows, the non-linear effect of the superficial velocity is expected. In the strong

inertia regime, the inertial effect is estimated by a quadratic term of the superficial velocity [14].

Takhanov discusses that the pressure loss in the non-Darcy regime can be properly described by the

Forchheimer equation [17], and it is also supported by Zimmerman [18]. Generally, the quadratic

term in the Forchheimer model is derived from inertial effects in the laminar regime. Takhanov

and Zimmerman conclude that the Forchheimer equation can adequately predict the pressure drop

over the entire range of Reynolds number.

2.2 Pronghorn

Pronghorn is a coarse-mesh, intermediate-fidelity, multidimensional thermal-hydraulics (TH)

code developed by Idaho National Laboratory (INL) [10, 19, 20]. It allows the modeling of mul-

tidimensional phenomena at higher fidelity than system analysis tools. It also reduces the compu-

tational cost by homogenizing small-scale features relative to conventional computational fluid

dynamics (CFD) codes. Figure 2.2 shows the hierarchy of TH modeling and its characteris-

tics. Pronghorn is flexible in coupling INL Multiphysics Object-Oriented Simulation Environ-

ment (MOOSE) based simulation tools, such as RELAP-7 for the system safety analysis, BISON

for the fuel performance, and Griffin for the neutronics applications. Furthermore, the built-in

equations of state in MOOSE can be used for determining the material properties of various com-

pressible/incompressible fluids.
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Figure 2.2. Hierarchy of TH modeling. Reprinted from [19].

2.3 Governing Equations for Porous Media Simulations

Modern Pronghorn utilizes the fully compressible Euler equations, which account for the con-

servation of fluid mass, momentum, energy, and solid energy [10,21]. The fluid continuity equation

is given by:

ε
∂ρf
∂t

+∇ · (ερfu) = 0. (2.1)

The conservation of momentum equation for fluid is:

ε
∂(ρfu)

∂t
+∇ · (ερfuu) + ε∇P − ερfg +Wρfu = 0. (2.2)

The compressible Navier-Stokes model is formulated by adding the viscous force term to Equa-

tion 2.2 as:

ε
∂(ρfu)

∂t
+∇ · (ερfuu) + ε∇P − ερfg +Wρfu−∇ · (εµ∇u) = 0. (2.3)

5



The fluid energy conservation equation is:

ε
∂(ρfEf )

∂t
+∇ · (εHfρfu)− ερfg · u−∇ · (κf∇Tf )

+α(Tf − Ts)− q
′′′

f = 0, and
(2.4)

the solid energy conservation equation is described as:

(1− ε)ρsCp,s
∂Ts

∂t
−∇ · (κs∇Ts) + α(Ts − Tf )− q

′′′

s = 0. (2.5)

Legacy Pronghorn uses a pseudo-steady momentum equation derived from Equation 2.2 by

removing the unsteady and advection terms [21]. By substituting this derived equation into Equa-

tion 2.1, a pressure Poisson equation for mass conservation is shown as:

ε
∂ρf
∂t

+∇ ·
[
ε2

W
(−∇P + ρfg)

]
= 0, and (2.6)

its fluid energy conservation is described by:

ερfCp,f
∂Tf

∂t
+ ερfCp,fu · ∇Tf −∇ · (κf∇Tf ) + α(Tf − Ts)− q

′′′

f = 0. (2.7)

Specifically for the SANA experiments, the thermal non-equilibrium porous media model from

the third-party CFD software, STAR-CCM+, is modified to use the formulation identical to the

Pronghorn compressible Euler equations. Both legacy and modern Pronghorn equations are vali-

dated with the SANA experiments. Pronghorn compressible/incompressible Navier-Stokes equa-

tions are also verified by STAR-CCM+ thermal equilibrium porous media simulations and vali-

dated with the TAMU isothermal pressure drop measurements and PIV data.

2.4 Equations of State & Material Properties

The nitrogen dynamic viscosity and its thermal conductivity are calculated as functions of

temperature and density based on [22]. The specific heat and molecular weight of nitrogen gas are

obtained from [23]. The ideal gas law is used to correlate fluid density, temperature, and pressure.

The electric graphite density, thermal conductivity, and isobaric specific heat from [24–26] are

used for the pebble properties.
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The TAMU isothermal pebble bed experiments are designed by having water, air, or p-Cymene

going through the porous bed. The constant density model is applied in both Pronghorn and STAR-

CCM+ for incompressible fluids, such as p-Cymene and water, while the ideal gas law is applied to

determine the air density. The water and air properties are obtained from [27–29], and p-Cymene

fluid properties are from [30].

For constructing the heated pebble bed experiments, which bring the similar fluid behavior

and heat transfer of the prototype reactor, the initial scaling analysis is accomplished in Section

5.4. The equations of state for helium from [31] can be used for defining the fluid properties at

the scaled-down high temperature gas-cooled reactor pebble bed module (HTR-PM) experimental

facility. Acrylic spheres may be used in lieu of matrix graphite pebbles, and the physical properties

of acrylic and matrix graphite are described in [10,25,32–36]. The matrix graphite properties used

in the HTR-PM prototype reactor are obtained at the mean value of the primary coolant inlet and

outlet temperatures. However, the current operating temperature range obtained by the scaling

study exceeds the melting point of acrylic. Therefore, further studies related to finding compatible

fluid and solid materials at the feasible operating temperature range would be necessary.

2.5 Porosity Correlations

The average bed porosity, ε̄, of a randomly packed bed of pebbles is determined by dividing

the fluid volume by the total volume of the porous bed. This value is calculated by hand and 3D

pebble bed reconstructions using MATLAB algorithms and VGSTUDIO. These methods are more

accurate in place of using the porosity functions derived by other researchers. Nevertheless, several

average bed porosity correlations in Table 2.1 are studied for the validation purposes. The validity

condition of the average bed porosity function is the specific range of aspect ratio, D/dp. Table 2.1

also contains the experimental setups, such as the bed diameter, pebble diameter, materials, and the

packing method, applied for determining correlations. The standard deviation (SD) of the average

bed porosity is estimated by the error propagation, or the most conservative SD is chosen from

the literature. The root mean square error (RMSE), absolute difference, or relative difference is

obtained between the experiments and some correlations while other literature discuss the standard

7



error of the mean (SEM) of correlation rather than the SD. Lastly, Cheng uses several experiments

performed by different authors to develop the average bed porosity function in Table 2.2.

The radial porosity profiles obtained from MATLAB and VGSTUDIO reconstructed geome-

tries are compared with the oscillatory/exponential radial porosity correlations in Table 2.3 and

Table 2.4, and consequently, the new oscillatory porosity function is developed in Equation 5.1.

Table 2.5 contains the experimental data on which the correlations are developed based. Not all

the particle shapes or materials used in the experiments are included, however, those similar to the

TAMU pebble bed experiments’ are listed in Table 2.5.

The average bed porosity functions in Table 2.1 are often used in porous media simulations

to determine the macro-scale effects, such as pressure drop, whereas the functions in Table 2.3

and Table 2.4 show more details of radial porosity. The oscillatory/exponential porosity correla-

tions provide the micro-heterogeneous information inside the REV. Therefore, the new oscillatory

porosity function is applied directly and also after volume-averaging it in different numbers of

sectors for comparing pressure drop and averaged axial velocities.
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Table 2.1. Continued.

Author
Validity

condition
Correlation

Cheng
[48]

1.1 < D
dp

< 50.5

((
0.8
(
D−dp
dp

)0.27)−3

+

(
0.38

[
1 +

(
dp

D−dp

)1.9])−3
)−1/3

±0.00039 from Fand and Thinakaran [44], ±0.00103 from Fand
et al. [49], ±0.00097 from Raichura [50], or ±0.00287 from

Montillet et al. [51] (SEM for Fand and SD for others)

Table 2.2. Experimental setups for the average bed porosity function developed by Cheng.

Author
Bed diameter

(mm)

Pebble
diameter

(mm)

Material for spheres/
packing method

Material for
the column

Reichelt [52]
41.5, 79.8,

139
9.71,
14.9

Glass balls/
random packing

-

Fand et
al.† [49]

5.588,
6.4516,
7.0104

3.994,
4.9997,
5.9901

Glass spheres/
randomly dropping
small batches of dry

spheres

Stainless
steel circular

cylinder

Raichura [50] 51 3 ∼ 10

Near-spherical glass
beads/

dropping a few pebbles
at a time (Closest

packing in every layer)

Stainless
steel tube

Montillet et
al. [51]

22.23 ∼
99.905

5.82 ∼
9.95

Glass particles/
random packing

-

Calis et
al. [53]

12.7 ∼ 26
(Length of
the square)

9.5, 12.7
High-precision

polyethylene spheres

Polymethyl
methacrylate

square
channel

Cheng [54]
16.4

(Length of the
square)

16
Glass beads/

close random packing
Square steel

pipe

†Including the experiments from [49], Cheng uses other experiments from Fand and
Thinakaran [44], and they are described in Table 2.1.
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Table 2.4. Radial exponential porosity correlations.

Author Validity condition Correlation

Vortmeyer
and

Schuster
[59]

D
dp
≥ 2.61 from

Benenati and
Brosilow [60]

ε∞

[
1 + 1−ε∞

ε∞exp(1)
· exp

(
1− 2 d

dp

)]

Cheng and
Hsu [61]

5.99 ≤ D
dp
≤ 47.61

from Yagi and
Kunii [62]

ε∞

[
1 + exp

(
−2 d

dp

)]

Hunt and
Tien

[58, 63]

D
dp

= 11.14, 12.8

from Valstar et
al. [64]

ε∞

[
1 +

(
1
ε∞
− 1
)
exp

(
−6 d

dp

)]

White and
Tien [65]

D
dp

= 8.82, 13.7

for spheres,
D
dp

= 6.7, 13.4 for

Berl saddles from
Roblee et al. [66]

(
1 +

[
1−ε∞
ε∞

]
·
(
1− e

−2 d
dp

)1/2)−1

More applicable to irregular particles, such
as Berl saddles
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Table 2.5. Experimental setups for radial porosity correlations.

Author
Bed

diameter
(mm)

Pebble
diameter

(mm)

Material for spheres/
packing method

Material
for the
column

Correlation

Roblee et
al. [66]

170.18
12.446,
19.304

Spheres made of
composition cork/
random packing

Cardboard
cylinder

Cohen and
Metzner,
de Klerk,
White and

Tien

Benenati and
Brosilow [60]

41.25
2.032 ∼
15.799

Spherical lead shots/
random packing

-

Cohen and
Metzner,
de Klerk,
Martin,

Vortmeyer and
Schuster†

(dp = 4 mm),
White and

Tien

Ridgway and
Tarbuck [67]

152.4
8, 9, 10,
12, and

20

Polythene spheres/
vibration by a motor

Horizontal
cylinder
of dura-
lumin

de Klerk

Goodling et
al. [68]

52.5 ∼
101.9

3.175 ∼
9.525

Polystyrene spheres/
random packing

Plastic
pipe

de Klerk

Yagi and
Kunii [62]

-
0.76∼
19.2

Glass beads, cement
clinkers, celite balls,

lead shots/
random packing

Steel
Cheng and

Hsu

Valstar et
al. [64]

41
3.19,
3.68

Glass and steel spheres/
random packing

Stainless
steel

Hunt

†Vortmeyer and Schuster perform experiments with 4 mm glass spheres separate from Benenati
and Brosilow’s.
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2.6 Pressure Drop Correlations

The pressure drop, ∆P , of the fluid due to pebbles in the reactor is estimated by using corre-

lations in Table 2.6. Overall, the friction factor varies depending on the pebble diameter, porosity,

and fluid properties (such as fluid density and dynamic viscosity). Some correlations use the as-

pect ratio, D/dp, to consider the near-wall effects, and others use the tortuosity to introduce the

transverse flow effect. Overall, the average bed porosity is utilized for quantifying the superfi-

cial velocity, modified Re, and the consequent pressure drop in porous bed. The experimental

arrangements for the empirical pressure drop correlations in Table 2.7 are described in a similar

manner compared to Table 2.5 except the column length, fluid material, and operating conditions

are itemized additionally. Some pressure drop functions use the experiments from other literature

in Table 2.8, Table 2.9, Table 2.10, and Table 2.11.

The Carman-type pressure drop correlation has the inertial resistance term inversely propor-

tional to the modified Re raised to a certain power, and this exponent is between 0 and 0.5 for the

strong entrance and/or mixing effects [69]. For instance, the exponents of 0.13, 0.1, 1/6, and 0.2

are used in the Jones and Krier [70], Carman [71], Tallmadge [72], and Hicks [73] pressure drop

correlations, respectively. Liu et al. argue that generally the zero exponent is utilized when the flow

is laminar, and the exponent is likely to be greater than zero for the turbulent flow. However, some

other pressure drop functions still use the zero exponent for the turbulent flow regime in Table 2.6
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Table 2.7. Experimental setups for pressure drop correlations.

Author
Bed

diameter
(mm)

Pebble
diameter

(mm)

Material for
spheres/packing method

Material for the
column/column

height (mm)

Material for the
fluid/operating

condition

Ergun [74] 15.2 -
Glass

spheres/random packing
with vibration

-

Nitrogen/fluid mass
flow rate from
0.1086 g/s to

0.362 g/s, exit at
21oC and
0.95 atm

Handley
[79]

76.2 3, 6, 9

Glass spheres/pouring
particles into the bed

with continuous
tamping

-/101.6, 152.4,
203.2

Air/heat transfer

Özahi et
al. [80],
Çarpin-

lioğlu and
Özahi [97]

103 16
Glass beads/

random loose packing

Polyvinyl
chloride pipe/
25, 40, 60, 150

Air/
mean exit fluid

superficial
velocity from
1.08 m/s to
2.85 m/s,

isothermal
condition

Yu et
al. [82]

360, 480,
600

12,
16, 20

Aluminous refractory
spheres/random packing

-/100 ∼ 500

Blast furnace gas,
blended gas,
natural gas/

heated
experiments

Hayes et
al. [88]

25.3
2.5 ∼
6.01

No material, but smooth
uniform spheres/-

Plexiglass
tubing/305 mm

test section
Water/-

Fand et
al. [95]

86.6
2.098 ∼

4.029
Same as [44] and described in Table 2.1

Mehta and
Hawley

[93]
12.7 -

Uniform spherical glass
beads/no specific
packing method

Glass column/
457.2

Water/isothermal
condition
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Table 2.7. Continued.

Author
Bed

diameter
(mm)

Pebble
diameter

(mm)

Material for
spheres/packing

method

Material for the
column/column

height (mm)

Material for the
fluid/operating

condition

Hassan
and

Kang [7]
120.65 33.02

Polymethyl
methacrylate/random

packing

Same material
as spheres/

1,524 (Multiple
pressure

measurements
throughout the

column)

Water/no heat

Liu et
al.† [69]

4.47
1.917,
3.184

Glass beads/wet
packing with gentle

tapping

Polyethylene
tubing, circular
with elliptical

deforma-
tion/400 mm
total (30 mm
and 100 mm

pressure taps)

Water for high
flow rates and

hydraulic oil for
low flow

rates/21oC

Jones and
Krier [70]

50.8 0.96 ∼ 6 Glass beads/- -/200

Air/physical
velocity at

10 m/s at the
room

temperature
with the 1 mm

pebble diameter

Rose and
Rizk‡

[107]
115 11.2, 31

Porcelain
spheres/random

packing
-/762 Air/-

†Liu et al. use Fand and Thinakaran’s experiments in Table 2.1 with dp = 3.04 mm and
D = 5.588 mm. In addition, Liu et al. consider Fand’s experiments in this table with
dp = 3.072 mm [44, 95].
‡Rose and Rizk also use Burke and Plummer’s experiments in Table 2.9, Bakhmeteff and
Feodoroff’s experiments, and Mavis and Wilsey’s experiments in Table 2.11.
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Table 2.8. Experimental setups for the pressure drop correlations derived by Macdonald et al. and
Wu et al.

Author
Bed

diameter
(mm)

Pebble
diameter

(mm)

Material for
spheres/packing

method

Material for the
column/column

height (mm)

Material for the
fluid/operating

condition

Rumpf
and

Gupte [84]
100

0.408 ∼
0.677

Polystyrene
balls/uniformly
random packed

Metal cylinder/- Air flow/20oC

Kyan et
al. [85]

44.45

0.008 ∼
0.028
(Fiber
diame-

ter)

Glass, nylon, Dacron
fibrous bed/randomly

packed

Plexiglass test
section/

pressure drop
measured within

the 76.2 mm
bed

Water and
aqueous
glycerol/
viscosity

varying from
0.001 Pa·s to

0.022 Pa·s

Dudgeon
[86]

571.5
16, 24.9,

29
Glass marbles/

random packing
-/1,219.2

Water/superficial
velocity from

0.00024 m/s to
0.34 m/s, flow

direction: top to
bottom

Fancher
and

Lewis [87]

19.05,
25.4

0.375 ∼
1 (Ave.
grain
size)

Lead shots, Ottawa
sand, flint sand (Un-
consolidated)/shaken

-/335 ∼ 15,480

Bradford crude
oil, air, tap wa-
ter/superficial

velocity of
water up to

0.024 m/s or oil
up to

0.0036 m/s

Wang et
al.† [91]

100 10 Glass balls/cyclones

Acrylic Perspex
glass

column/100 mm
interval

Air/superficial
velocity up to
0.6 m/s at the

ambient
condition

†Wang’s experiments are for the Wu pressure drop function, and others are for the Macdonald
pressure drop correlation. Wu et al. also use Yu’s experiments in Table 2.7.
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Table 2.9. Experimental setups for the pressure drop correlation derived by Eisfeld and
Schnitzlein†.

Author
Bed

diameter
(mm)

Pebble
diameter

(mm)

Material for
spheres/packing

method

Material for the
column/column

height (mm)

Material for the
fluid/operating

condition

Andersson
[108]

75.545 5.21
Glass beads/
inaccessible

Inaccessible
Water/

inaccessible

Burke and
Plummer

[103]

17.94,
34.1,
52.5,
78.1

1.48,
3.08,
6.34

Lead shots/
random pouring or

hammering the
column

Glass, galvanized
iron pipe/-

Air saturated with
water vapor/

superficial velocity
from 0.033 m/s to
0.621 m/s at 27oC

Ergun and
Orning
[109]

25.4
0.227 ∼

0.57
Glass beads/random

packing
Glass tube/762

Hydrogen,
nitrogen, carbon

dioxide/superficial
velocity up to

1 m/s, isothermal
condition

Leva [110]
20.93 ∼

77.93
2.25 ∼
18.54

Glass spheres/
dumping the packing

material randomly

Standard pipe/
276.23 ∼

946.15 (Air),
298.45 (N2)

Air, nitrogen/
mass flow rate:

0.51 g/s ∼ 13.2 g/s
(Air),

0.6 g/s ∼ 2.86 g/s
(N2),

average
temperature:

18.9oC ∼ 30oC
(Air),

21.4oC ∼ 25.3oC
(N2)

Wentz Jr
and Thodos

[98]
355.6 31.242

Smooth plastic
phenolic

spheres/cubic,
body-centered cubic,

and face-centered
cubic orientations

Cylindrical wind
tunnel/38.608 ∼

251.46

Air/superficial
velocity from

0.76 m/s to 4.1 m/s

†Eisfeld and Schnitzlein furthermore use Jeschar’s and Reichelt’s in Table 2.1 and Table 2.2, respectively.
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Table 2.10. Experimental setups for the pressure drop correlation derived by Carman† [71].

Author
Bed

diameter
(mm)

Pebble
diameter

(mm)

Material for
spheres/packing

method

Material for the
column/column

height (mm)

Material for the
fluid/operating

condition

Schriever
[111]

50
0.252 ∼

1.025

Glass
spheres/loose to

tight packing
-/100, 220

Oil
(Nujol)/98.5oC ∼

99.4oC

Green and
Ampt
[112]

30.05,
21.31

0.25 ∼
0.938

Glass
beads/different
compactness

Glass capillary
tube/

121.3, 236

Water and air/
air at 8.5oC ∼

10.5oC

Muskat
and Botset

[113]
31.7 0.632

Glass beads/
random packing
without shaking

Steel tube/920
Air at the
isothermal
condition

Chalmers
et

al. [114]

38.1 ∼
76.2

1.27 ∼
4.06

Lead shots/
pounding with

hammers until the
stabilization

Brass tubing/
203.2 mm for

pressure
measurements

Natural gas/
superficial

velocity from
0.0015 m/s to

0.063 m/s,
initial

temperature of
21.1oC

Furnas
[115]

46, 52
1.38 ∼

9.05

Lead shots/
vibrating the
container for

packing

Iron pipe/762
Air/1 m/s at

25oC to 1,000oC

†Burke and Plummer’s experiments in Table 2.9 are also accounted for developing the Carman
pressure drop function.
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Table 2.11. Experimental setups for the pressure drop correlation derived by Rose† [106].

Author
Bed

diameter
(mm)

Pebble
diameter

(mm)

Material for
spheres/packing

method

Material for the
column/column

height (mm)

Material for the
fluid/operating

condition

Bakhmeteff
and

Feodor-
off [116]

76.2
0.96 ∼

9.17
Lead shots/

uniform packing
Brass pipe/

609.6, 1,524

Water/reduced
superficial
velocity

(us/ε
2/3) from

0.00018 m/s to
0.46 m/s

Mavis and
Wilsey
[117]

152.4
0.16 ∼

1.8, 0.68
∼ 0.93

Iowa river sand,
nearly

uniform-sized
Ottawa sand/

grains collected
upon shaking

Cast iron pipe/
914.4

Water/superficial
velocity from

1.23× 10−5 m/s
to 0.00071 m/s at

15.6oC

Traxler
and Baum

[118]

27.8,
22.3

0.001066,
0.00108
(Pore di-
ameter)

Silica dust/
uniform packing

by hand or
machine tapping

Glass tube/
50, 100

Air/superficial
velocity from

4.4× 10−5 m/s to
5.7× 10−5 m/s at

25oC

Chilton
and

Colburn
[119]

76.2
3.175 ∼

25.4

Zinc balls,
porcelain balls,

granules, pebbles/-
-/1,155.19

Air/heat transfer,
mass velocity

from
1.17 kg/(m2·s) to

7.76 kg/(m2·s)

†Fancher and Lewis’s in Table 2.8, Burke and Plummer’s in Table 2.9, Green and Ampt’s, and
Muskat and Botset’s experiments in Table 2.10 are used for the Rose pressure drop function.

2.7 Solid-Fluid Convective Heat Transfer Coefficient

The solid-fluid convective heat transfer coefficient, α, is calculated by multiplying the convec-

tive heat transfer coefficient at the pebble surfaces by the interaction area density [10].

α =
6(1− ε)

dp

Nukf
dp

. (2.8)
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For the SANA experiments, the Nu is estimated by the Petrovic and Thodos correlated mass

transfer data [120]:

Nu = 0.357
Pr1/3

ε
Re0.641p , (2.9)

where Pr =
Cp,fµ

kf
. This correlation properly evaluates the Nu for 3 ≤ Rep ≤ 230. For the low

Reynolds SANA system, the Petrovic and Thodos model would more accurately predict the Nu

relative to the KTA, Gnielinski, and Gunn correlations by applying thermal dispersion corrections

[10].

The Nu is calculated by the KTA correlation for the scaling study [121]:

Nu = 1.27
Pr1/3Re0.36p

ε1.18
+ 0.033

Pr0.5Re0.86p

ε1.07
, (2.10)

where the dynamic viscosity and thermal conductivity of the gas are determined at the average

temperature of the fluid and solid. The KTA correlation for the Nu is valid, where 100 < Rep <

105, 0.36 < ε < 0.42, D/dp > 20, and H > 4dp. The aspect ratio of the HTR-PM model is

less than 20 but still higher than 15. Therefore, it is assumed that the near-wall effects do not

have much impact to change the Nu significantly. In addition, the Gunn correlation (valid for

0.35 ≤ ε ≤ 1 and Rep ≤ 105) provides another scaling ratio of the solid-fluid convective heat

transfer coefficient [122]:
Nu =

(
7− 10ε+ 5ε2

) (
1 + 0.7Re0.2p Pr1/3

)
+
(
1.33− 2.4ε+ 1.2ε2

)
Re0.7p Pr1/3.

(2.11)

2.8 Effective Fluid & Solid Thermal Conductivities

Thermal dispersion increases the heat transfer in the fluid due to additional mixing and diffusive

effects caused by tortuous flow paths around the pebbles. It is accounted for the SANA experiments

by computing the effective fluid thermal conductivity, κf , as:

κf = εkf + CoPekf , (2.12)

where Co is a proportionality constant equal to 0.11 [123]. However, the effective fluid thermal
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conductivity can also be estimated by Equation 2.13 for high Reynolds numbers since thermal

dispersion is neglected for most of the PBR porous media models [10, 124, 125].

κf = εkf . (2.13)

The effective solid thermal conductivity, κs, accounts for three parallel heat transfer paths

shown in Figure 2.3 [10]: 1) conduction in a pebble (represented by the blue lines) and radiation

between pebbles (represented by red lines), 2) conduction both in a pebble and in the fluid between

pebbles (represented by green lines), and 3) conduction in a pebble and conduction between peb-

bles through the contact areas (represented by pink lines). Therefore, the effective solid thermal

conductivity is calculated by:

κs = κradiation + κfluid conduction + κsolid conduction. (2.14)

Figure 2.3. Different heat transfer paths in the pebble bed. Reprinted from [10].

First, the Breitbach and Barthels correlation considers the radiative heat transfer in the fluid and

conduction in spheres [126]. It is developed based on the Zehner and Schlünder cell model:
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κradiation =

[(
1−
√
1− ε

)
ε+

√
1− ε

2/εr − 1

B′ + 1

B′
1

1 + 1
(2/εr−1)Λ

]
4σ′T 3

s dp, (2.15)

where B′ = 1.25
(
1−ε
ε

)10/9, and Λ = ks
4σ′T 3

s dp
. The effective solid thermal conductivity goes to

infinity when the porosity becomes one at the walls. Therefore, the Tsotsas modified model for the

radiation component is used within the dp/2 distance from the walls [127, 128]:

κradiation =
(
1−
√
1− ε

) ks
Λkf (2/εr − 1)

+
√
1− ε

ks/kf
Λ(2/εr − 1) + 1

. (2.16)

The Zehner and Schlünder model is used for the solid conduction and fluid conduction [126, 129,

130]:

κfluid conduction = kf
(
1−
√
1− ε

)
+ kf

2
√
1− ε

1− λB′

×
[
(1− λ)B′

(1− λB′)2
ln

(
1

λB′

)
− B′ + 1

2
− B′ − 1

1− λB′

]
,

(2.17)

where λ =
kf
ks

. At last, the Chan and Tien model is built to estimate the effective thermal conduc-

tivity of the contact conduction [10, 131].

κsolid conduction =
1

2 · 0.53
NA

NL

[
3

4

1− ν2
p

Es

4F

d2p

]1/3
dpks. (2.18)

F = SF
p

NA
where p is the pressure exerted by the weight of pebbles. It is calculated by:

p = (1− ε∞)ρsH(y)|gy|. (2.19)

The values of NA, NL, and SF for the simple, body-centered, and face-centered cubic packings are

provided in [131].

2.9 Turbulence Modeling with Explicit Meshing

Turbulence modeling with explicit meshing of the fluid flow region around pebbles can provide

more details of the flow effects in the PBRs compared to the macro-scale approach. The follow-

ing two-equation turbulence models are applied to estimate the pressure drop within specific bed

heights and the fluid axial velocities averaged in the porous bed volumes or the PIV window. Less

computational effort is expected relative to the Reynolds stress transport turbulence model, large

33



eddy simulations, or direct numerical simulations.

2.9.1 Realizable Two-Layer k − ε Model

The realizable two-layer k − ε model explicitly specifies the turbulent dissipation rate, ε, and

turbulent eddy viscosity, µt, in the layer near the wall [132]. The governing equations of the

standard k − ε model follow as [133]:
∂ui

∂xi

= 0. (2.20)

∂ui

∂t
+

∂ujui

∂xj

= − 1

ρf

∂P

∂xi

+
∂

∂xj

(
ν

(
∂ui

∂xj

+
∂uj

∂xi

)
− u

′
iu

′
j

)
. (2.21)

∂k

∂t
+

∂ujk

∂xj

=
∂

∂xj

((
ν +

νt
σk

)
∂k

∂xj

)
− u

′
iu

′
j

∂ui

∂xj

− ε. (2.22)

∂ε

∂t
+

∂ujε

∂xj
=

∂

∂xj

((
ν +

νt
σε

)
∂ε

∂xj

)
+

(
−Cε1u

′
iu

′
j

∂ui
∂xj
− Cε2ε

)
ε

k
. (2.23)

The model coefficients of σk, σε, Cε1, and Cε2 are provided in Table 2.12 [132]. However, the realizable

two-layer k−ε model requires a new formation of the turbulent dissipation rate transport equation, as shown

in Equation 2.24 [134], and a damping function, fµ, which satisfies the realizability of the Reynolds stresses.

Table 2.12. Model coefficients of the k − ε models. Adapted from [132].

Model σk σε Cε1 Cε2 Cµ

Standard k − ε [132] 1 1.3 1.44 1.92 0.09

Realizable two-layer k − ε [134] 1 1.2 max
(

0.43, η
5+η

)
where η = Sk

ε
† 1.9 0.09

†S =
√

2SijSij, Sij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
.

∂ε

∂t
+

∂ujε

∂xj
=

∂

∂xj

((
ν +

νt
σε

)
∂ε

∂xj

)
+ Cε1Sε− Cε2

ε2

k +
√
νε

. (2.24)

The Boussinesq hypothesis describes the momentum transfer due to turbulent eddies modeled by apply-

ing the turbulent eddy viscosity [135]. The Reynolds stress tensor is modeled by [136]:
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− u
′
iu

′
j = νt

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
kδij , (2.25)

given the incompressible flow. The turbulent kinetic energy, k, is defined by:

k =
1

2
u

′
iu

′
i. (2.26)

The turbulent eddy viscosity, µt, is calculated as [132]:

µt = ρf
Cµfµk

2

ε
, (2.27)

where fµ is 1 for the standard k− ε model while the realizable two-layer k− ε model uses fµ as [134,137]:

fµ =
1

Cµ

[
4 +
√
6cos

(
1
3cos

−1
(√

6
SijSjkSki

(SijSij)3/2

))
k
ε

√
SijSij + W̃ijW̃ij

] . (2.28)

Sij is defined in the footnote of Table 2.12, and Wij is calculated as:

Wij =
1

2

(
∂ui
∂xj
− ∂uj

∂xi

)
. (2.29)

W̃ij = Wij − 2εijkωk. (2.30)

Due to the complex near-wall phenomena, the two-layer approach is formulated with the Wolfstein

shear-driven flow. The dissipation rate near the wall is defined as:

ε =
k3/2

lε
, (2.31)

where lε is the Wolfstein length scale function defined by [135, 138]:

lε = 0.42(Cµ)
−3/4d

[
1− exp

(
− Red
0.84(Cµ)−3/4

)]
. (2.32)

The two-layer turbulent viscosity value is determined by:(
µt

µ

)
Two layer

= 0.42Red(Cµ)
1/4

[
1− exp

(
−Red

70

)]
. (2.33)

Consequently, the turbulent viscosity from the k − ε model gets blended with the empirically prescribed

value in the near-wall regions by applying the wall-proximity indicator [132]. Although the two-layer model

is more expensive than wall functions, it is beneficial in capturing the near-wall phenomena [135]. In
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addition, the all-y+ wall treatment uses the blended wall function proposed by Reichardt [139] to calculate

the velocity. Fine meshes with y+ < 5 are used to resolve the viscosity-affected region of the tortuous fluid

flow between pebbles, and y+ is defined by:

y+ =
duτ
ν

. (2.34)

2.9.2 SST k − ω Model

The SST k − ω method models the near-wall effects more adequately than the k − ε models. The

approach utilizes a k − ε model in the free stream with a k − ω model near the wall [132]. The governing

equations of the SST k − ω model are [140, 141]:

∂k

∂t
+

∂ujk

∂xj
=

∂

∂xj

(
(ν + νtσk)

∂k

∂xj

)
− u

′
iu

′
j

∂ui
∂xj
− β∗fβ∗kω. (2.35)

∂ω

∂t
+

∂ujω

∂xj
=

∂

∂xj

(
(ν + νtσω)

∂ω

∂xj

)
+ γS2 − βfβω

2

+2(1− F1)σω2
1

ω

∂k

∂xj

∂ω

∂xj
.

(2.36)

The blending function, F1, is

tanh

[min

(
max

( √
k

0.09ωd
,
500ν

d2ω

)
,

2k

d2CDkω

)]4 , (2.37)

where CDkω is the cross-diffusion coefficient calculated by:

CDkω = max
(
1

ω

∂k

∂xj

∂ω

∂xj
, 10−20

)
. (2.38)

The model coefficients, ϕ, are calculated as:

ϕ = F1ϕ1 + (1− F1)ϕ2, and (2.39)

Table 2.13 provides the new sets of coefficients for the SST k − ω model [132]. In addition, γ is calculated

the same way as Equation 2.39, with γ1 and γ2 defined as:

γ1 =
β1
β∗
1

− σω1κ
2/
√
β∗
1 , and (2.40)

γ2 =
β2
β∗
2

− σω2κ
2/
√

β∗
2 , (2.41)

where κ = 0.41. The turbulent viscosity is calculated by:
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µt = ρfk min
(
α∗

ω
,
0.31

SF2

)
, (2.42)

where α∗ = 1, and

F2 = tanh

(max

(
2
√
k

β∗ωd
,
500ν

d2ω

))2
 . (2.43)

Lastly, the free-shear modification factor, fβ∗ , and the vortex-stretching modification factor, fβ , are:

f∗
β =


1 for χk ≤ 0

1 + 680χ2
k

1 + 400χ2
k

for χk > 0,
(2.44)

where χk = 1
ω3

∂k
∂xj

∂ω
∂xj

and

fβ =
1 + 70χω

1 + 80χω
, (2.45)

where χω = WijWjkSki

(β∗ω)3 .

Table 2.13. Model coefficients of the SST k − ω model. Adapted from [132].

Model σk1 σk2 σω1 σω2 β1 β2 β∗
1 β∗

2

SST k − ω 0.85 1 0.5 0.856 0.075 0.0828 0.09 0.09

2.10 Simulation Uncertainty Quantification

The simulation uncertainty results from three different sources: numerical, input, and model uncertain-

ties [142]. The numerical uncertainty, unum, arises from discretization error, assuming that double precision

round-off error is negligible, and an iterative convergence tolerance set to 10−6 sufficiently converges the

solutions [143]. The input uncertainty, uinput, comes from uncertain input parameters, such as the porosity

and fluid flow rate. The model formulation based on specific assumptions causes the model uncertainty,

umodel, which is considered as a completely epistemic uncertainty due to lack of the inferable knowledge

in the model [144]. Assuming all the errors are independent, the overall simulation uncertainty, uP , is
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determined to be [145]:

uP =
√
u2num + u2input + u2model. (2.46)

2.10.1 Mesh Convergence Study & Numerical Uncertainty Quantification

The mesh convergence study estimates the discretization error in CFD simulations [144,146,147]. When

numerical coarse, medium, and fine mesh solutions are in the asymptotic range and the observed order

of accuracy, p̂, is close to the formal order of accuracy, p̄, of the discretization scheme, the Richardson

extrapolation (RE) can be used to predict the quantity for a mesh with an infinite number of elements [144].

First, given a constant mesh refinement ratio, the observed order of accuracy or observed convergence rate

is determined by [144, 146, 147]:

p̂ =
ln
(
f3−f2
f2−f1

)
ln(r)

, (2.47)

where f is the quantity of interest and the subscripts 1, 2, and 3 represent the fine, medium, and coarse mesh,

respectively. The uniform refinement ratio can be calculated by:

r =
h2
h1

=
h3
h2

> 1. (2.48)

For three-dimensional calculations, the mesh size is calculated by [148]:

h =

[
1

N

N∑
i=1

(∆Vi)

]1/3
. (2.49)

The Richardson extrapolated value of the exact solution is:

f(h=0) ≃ f1 +
f1 − f2
rp̂ − 1

. (2.50)

For practical simulations, the observed order of accuracy is often greater than or equal to 0.5, and it is less

than or equal to the formal order of accuracy [144].

The grid convergence index (GCI) describes the discretization error compared to the asymptotic numer-

ical value in a percentage or without the normalization to ensure a 95% confidence level for the computed

value [144,147]. The two GCIs are computed by Equation 2.51, provided that the refinement ratio for three

different mesh refinement levels is constant.

GCI21 = Fs
|e21|
rp − 1

, and GCI32 = Fs
|e32|
rp − 1

, (2.51)
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where e21 and e32 are the relative errors defined by:

e21 =
f2 − f1

f1
, and e32 =

f3 − f2
f2

. (2.52)

In Equation 2.51, the value of p is selected by Table 2.14. When the observed order of accuracy, p̂, matches

the formal order of accuracy within 10%, the formal order of accuracy can be used for the GCI method [144].

The implementation of min(max(0.5, p̂), p̄) is applied if the discrepancy is above 10%. Furthermore, recent

GCI implementations neglect the normalization, and an uncertainty estimate is provided in the same unit of

the fine mesh solution.

GCI21 = Fs
|f2 − f1|
rp − 1

. (2.53)

The solutions from all three mesh refinement levels are in the asymptotic range of convergence by satisfying

Equation 2.54 [146].

GCI32 = rpGCI21. (2.54)

Table 2.14. Implementation of the GCI method. Adapted from [144].

Condition p Fs∣∣∣ p̂−p̄
p̄

∣∣∣ ≤ 0.1 p̄ 1.25∣∣∣ p̂−p̄
p̄

∣∣∣ > 0.1 min(max(0.5, p̂), p̄) 3.0

The valid assumptions for the applicability of the RE or GCI method are still questionable; however, the

RE is applied with non-uniform meshes [149], the solutions with the oscillatory convergence are used to

calculate the GCI [148, 149], and the RE is used for the unstructured meshes [148, 150].

2.10.2 Input Uncertainty Quantification

Latin hypercube sampling (LHS) is used to estimate the input uncertainty propagation of CFD simu-

lations. It selects one sample from each sub-domain with an equal probability content [151]. It is more

computationally efficient than a simple random sampling (Monte Carlo) method. The uncertainties for the

material properties are trivial due to the small uncertainties from temperature (∼1oC) and pressure measure-

ments. Therefore, the input parameters of the average bed porosity and inlet physical velocity, which notably
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influence the pressure drop, are considered for the LHS method, specifically for porous media simulations.

The geometric uncertainty of 0.794 mm is also accounted for.

2.10.3 Model Uncertainty Quantification

The American Society of Mechanical Engineers V&V standard [152] is followed to determine the model

uncertainty. With a 95% confidence interval, the uncertainty is twice the SEM of the sampling distribution

[145, 151, 153]. Here, the error is the length between a predicted or measured quantity and its true value.

Given the numerical uncertainty is calculated by the GCI method and the input uncertainty is estimated by

LHS, the upper and lower bounds for an asymmetric model uncertainty interval are defined as [145]:

uuppermodel = E −
√
u2num + u2input + u2D.

ulower
model = E +

√
u2num + u2input + u2D,

(2.55)

where uD is the experimental uncertainty, with its quantification method shown in Section 2.11. Here,

E = P −D, where P is the simulation result and D is the experimental data. Consequently, the upper and

lower bounds of the overall simulation uncertainty would be:

uupperP =
√

u2num + u2input +
(
uuppermodel

)2
.

ulower
P =

√
u2num + u2input +

(
ulower
model

)2
.

(2.56)

2.11 Experimental Uncertainty Quantification

The experimental uncertainty comes from systematic and random sources [154]. The calibration error

can be used as the systematic error, δsys, while the random error, δran, of the sampled average is calculated

by using N multiple measurements as [155]:

δran =

√∑N
i=1(fi − f̄)2

N − 1
/
√
N, (2.57)

where fi is the i-th measurement and f̄ is the average of N measurements. By using the root sum squared

method, the experimental uncertainty is calculated by:

uD =
√
δ2sys + (tδran)2, (2.58)

where a t-value is obtained at the specific degrees of freedom, N − 1.
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2.12 Validation Metrics

The deterministic validation metric, such as the RMSE or Minkowski distance, treats the experimental

and simulation data as point values without uncertainties [156]. The RMSE is calculated by:

dRMSE =

√√√√ 1

N

N∑
i

(Pi −Di)2. (2.59)

Similarly, the RMSRE or relative root mean square error (RRMSE) is calculated by [157–160]:

dRMSRE =

√√√√ 1

N

N∑
i

(
Pi −Di

Di

)2

. (2.60)

dRRMSE =

√
1
N

∑N
i (Pi −Di)2

D̄
× 100 (%). (2.61)

The Minkowski distance is determined to be [161]:

lp =

(
N∑
i=1

|Pi −Di|p
)1/p

. (2.62)

With p = 1, the average relative difference between the experimental and simulation data would be:

l̄1 =
1

N

N∑
i=1

|Pi −Di|
|Di|

. (2.63)

In addition, with p = 2, an averaged Euclidean distance, l2/N , can be another deterministic metric.

If uncertainties are provided for either experimental or simulation data, the probabilistic metric, such

as the average of the total normalized Euclidean distance, d̄NE , can be utilized given that the other data is

observed as point values [156]:

d̄NE =

√√√√ N∑
i=1

(Pi −Di)2

σ2
i

/N, (2.64)

where σi is the SD of the i-th data with available uncertainty. The metric tolerance is recommended as

d̄NE ≤ 2.

When both the independent experimental and simulation data have uncertainties, the average of the

Kullback-Leibler divergence metric, D̄KL, can describe the average of the information lost per point when

the simulation data estimates the experimental measurements, provided that they both are normal distribution

functions [156].

41



D̄KL =

(
N∑
i

DKL(Di||Pi)

)
/N, (2.65)

where

DKL(Di||Pi) =
1

2

[(
σD,i

σP,i

)2

+

(
Pi −Di

σP,i

)2

− 1 + 2 ln

(
σP,i
σD,i

)]
. (2.66)

Moreover, the average of the symmetrized Kullback-Leibler divergence metric, S̄KL, can be calculated by:

S̄KL =

(
N∑
i

DKL(Di||Pi) +
N∑
i

DKL(Pi||Di)

)
/N, (2.67)

where the reliable validation tolerance is S̄KL < 1. The average Hellinger metric, Have, also estimates the

difference between two probability distributions [162].

Have =

√√√√1− 1

N

N∑
i=1

hi, (2.68)

where hi =

√
2σP,iσD,i

σ2
P,i+σ2

D,i
exp

(
−1

4
(Pi−Di)

2

σ2
P,i+σ2

D,i

)
. Alternatively, the average Kolmogorov-Smirnov distance

metric, d̄KS , calculates the difference between two cumulative distributions [163].

d̄KS =
1

N

N∑
i=1

[
sup

−∞<x<∞

1

2

∣∣∣∣∣erf
(

x− Pi√
2σP,i

)
− erf

(
x−Di√
2σD,i

)∣∣∣∣∣
]
, (2.69)

where erf is the error function. Finally, the average normalized area metric, d̄area, proposed by [164]

accounts for both horizontal and vertical differences between cumulative distributions.

d̄area =
1

N

N∑
i=1

[∫ ∞

−∞

1

2
|erf

(
x− Pi√
2σP,i

)
− erf

(
x−Di√
2σD,i

)
|dx /Di

]
. (2.70)

Table 2.15 summarizes the corresponding validation metrics, tolerance ranges, and data types.

2.13 Pebble Bed Reconstruction

The reconstruction of the pebble bed facility is essential to create the geometry and corresponding mesh

to run numerical simulations. Lin et al. reconstruct the 3D thorium-based molten salt reactor with graphite-

matrix coated pebbles by utilizing the refractive index matched scanning (RIMS) technique [165]. Pieritz et

al. use the x-ray microtomography, which allows the 3D helium-cooled pebble bed reconstruction with high

spatial resolution [166]. Dijksman et al. also apply the RIMS tool to detect soft particles, hydrogels [167].

Similar to [168], the PIV images are used to reconstruct the TAMU isothermal pebble bed experiments,
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Table 2.15. Summary of validation metrics. Adapted from [156].

Validation metric Tolerance Data type

RMSE/RMSRE/RRMSE - Deterministic

Minkowski distance
(Average relative difference &
average Euclidean distance)

- Deterministic

Average of the total
normalized Euclidean

distance
d̄NE ≤ 2

Deterministic
& probabilistic

Average Kullback-Leibler divergence D̄KL < 0.5 Probabilistic

Average of the symmetrized Kullback-Leibler divergence S̄KL < 1 Probabilistic

Average Hellinger metric - Probabilistic

Average Kolmogorov-Smirnov - Probabilistic

Average normalized area metric - Probabilistic

which are designed to predict the pressure drop and velocity profiles in the pebble bed region. Pre-processing

of the PIV images with the high-pass filter retains the particle image intensity by removing the noises from

impurities in the fluid or the undesired laser light reflections. This is for accurately predicting the velocity

profiles in the PIV window. However, for pebble bed reconstruction, a slight index mismatch at pebble

boundaries (causing the refraction) allows to detect the edges of pebbles [167].

First, the pebble bed experiments are reconstructed with the time-resolved particle image velocimetry

(TR-PIV) technology by MATLAB R2021a and VGSTUDIO MAX 3.4. The average bed porosities of the

reconstructed pebble bed geometries are suitably estimated in lieu of applying the porosity correlations. The

sensitivity analysis of the radial porosity with respect to the porous bed volume is described, including the

development of a new radial porosity correlation.

2.14 Non-Dimensionalization of Navier-Stokes Equations

Identifying the dimensionless numbers is necessary to carry out the similarity-based scaling method.

The incompressible Navier-Stokes equations including the Darcy (linear) and Forchheimer (non-linear) drag

terms are shown as [169, 170]:
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ρf

[
∂u

∂t
+∇(u · u)

]
= −∇P + µ∇2u+ ρfg −

µ

K
us −

cFρf

K1/2
|us|us, (2.71)

where cF is a dimensionless form-drag constant defined as:

cF = BA−1/2ε−3/2, and (2.72)

A and B are the shape factors determined empirically. They are utilized to calculate the pressure drop across

the porous media:
∆P

H
=

Aµ(1− ε)2

d2pε
3

us +
Bρf (1− ε)

dpε3
u2s. (2.73)

Based on Equation 2.73, the permeability, K, in Equation 2.71 is:

K =
d2pε

3

A(1− ε)2
. (2.74)

Under natural convection, the fluid motion is driven by the buoyancy force. The non-dimensionalization

of Equation 2.75 results in Equation 2.76.

ρf∇(u · u) = µ∇2u+ ρfgβ(Tf − Tb)−
µ

K
us −

cFρf

K1/2
|us|us, and (2.75)

∇∗(u∗ · u∗) =

[
µ

ρfusdp

]
∇∗2u∗ +

[
gβ(Tsuf − Tb)d

3
p

ν2

]
T ∗
f

Re2p

−
[

µdp
usρfK

]
u∗s −

[
cFdp

K1/2

]
|u∗s|u∗s,

(2.76)

where u∗ = u/us, ∇∗ = dp∇, u∗s = us/us, and T ∗
f = (Tf − Tb)/(Tsuf − Tb). The inverse of the particle

Re, Gr, and the modified Darcy and Forchheimer resistance coefficients are shown in Equation 2.76.

For forced convection, the non-dimensionalized Navier-Stokes equations are described as [171]:[
f

′
dp
us

]
∂u∗

∂t∗
+∇∗(u∗ · u∗) = −∇∗P ∗ +

[
µ

ρfusdp

]
∇∗2u∗ +

[
gdp
u2s

]
g∗

−
[

µdp
usρfK

]
u∗s −

[
cFdp

K1/2

]
|u∗s|u∗s,

(2.77)

where t∗ = t/(dp/us), P ∗ = P/ρfu
2
s, g∗ = g/g, and f

′
= us/dp. Equation 2.77 shows the St, inverse of

particle Re, inverse of the squared Fr, and the modified Darcy/Forchheimer resistance coefficients in order.

The St is neglected at the steady state.
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2.15 Non-Dimensionalization of Energy Equations

The non-dimensionalization of energy equations derives the dimensionless groups, and the fluid energy

conservation equation becomes:

εu∗ · ∇∗T ∗
f − ε

gdp
Cp,f (Tsuf − Tb)

g∗u∗ −
κf

µCp,f

µ

ρfusdp
∇∗2T ∗

f

+
αdp

ρfCp,fus
(T ∗

f − T ∗
s )−

q
′′′
t dp

ρfCp,fus(Tsuf − Tb)
q∗

′′′
f = 0,

(2.78)

where q∗
′′′

f = q
′′′
f /q

′′′
t , and T ∗

s = (Ts − Tb)/(Tsuf − Tb). The Ec/Fr2, inverse of the Pe, St, and the

dimensionless group for the heat production are present in Equation 2.78. The solid energy equation at the

steady state is described as follows:

−∇∗2T ∗
s +

αd2p
κs

(T ∗
s − T ∗

f )−
d2pq

′′′
t

κs(Tsuf − Tb)
q∗

′′′
s = 0, (2.79)

where q∗
′′′

s = q
′′′
s /q

′′′
t . The modified Bi and dimensionless group for the heat production are shown in

Equation 2.79.

2.16 Dimensionless Similarity-Based Scaling Method

The dimensionless similarity-based scaling method from [171–173] is applied for building the heated

pebble bed test facility, and similar approaches are adopted for other experimental facilities from [174–178].

The dynamic similarity of the fluid flow behavior between the full-scale PBR and scaled-down experimental

facility is achieved by maintaining the ratio of the dimensionless numbers to be unity in Equation 2.80 [172].

ΨR =
Ψm

Ψp
= 1, (2.80)

where Ψ is the dimensionless number, and the subscripts R, m, and p represent the ratio, model, and

prototype, respectively.

The scaling study is conducted to describe the temperature change, fluid motion, and pressure drop in

the PBR core. Specifically, for the loss of forced circulation (LOFC) accident scenarios, the Gr and Ri are

observed in Equation 2.81 and Equation 2.82 [172]:

GrR =
Grm
Grp

=

(
gβ∆TL3

ν2

)
m

(
gβ∆TL3

ν2

)−1

p

=
(β∆T )m
(β∆T )p

(
gL3/ν2

)
m

(gL3/ν2)p
, and (2.81)

RiR =
Rim
Rip

=

(
gβ∆TL

U2

)
m

(
gβ∆TL

U2

)−1

p

=
(β∆T )m
(β∆T )p

(
gL/U2

)
m

(gL/U2)p
. (2.82)
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By having the first part of GrR or RiR to be unity and satisfying the ideal gas law
(
β = T−1

f

)
, Equation 2.83

is obtained as:
βm
βp

=
∆Tp

∆Tm
=

(Tf )p
(Tf )m

. (2.83)

By setting the second part of the Gr similarity condition equal to one, Equation 2.84 is described as:(
Lm

Lp

)3/2

=
νm
νp

. (2.84)

The viscosity and density equations (Equation 2.85 and Equation 2.86) for the ideal gas are substituted into

Equation 2.84 to observe the pressure relation between the prototype and model in Equation 2.87 [172].

µ = µo

(
Tf

Tf,o

)0.5

, and (2.85)

ρf = ρf,o
P

Po

Tf,o

Tf
, (2.86)

where the subscript o describes the reference quantity. Assuming that helium is used for cooling the pebble

bed experiments, and the reference fluid material property, reference pressure, and reference temperature

are the same for both the prototype and model,

Pm

Pp
=

(
(Tf )m
(Tf )p

)3/2(
Lp

Lm

)3/2

, and (2.87)

(Tf )m
(Tf )p

=
∆Tm

∆Tp
=

[
Pm

Pp

(
Lm

Lp

)3/2
]2/3

=

(
Pm

Pp

)2/3

LR. (2.88)

Next, the Ri similarity relationship is obtained by:

Um

Up
=

√
Lm

Lp
=
√

LR. (2.89)

The Fr similarity condition brings the similar influence of the gravity on fluid motion, and it is satisfied by

having the Ri similarity [173, 176]:

FrR =
Frm
Frp

=
U2
R

LR
= 1. (2.90)

The modified Darcy resistance coefficient similarity also concludes Equation 2.84 by applying Km
Kp

= L2
R

from the modified Forchheimer resistance coefficient similarity and Um
Up

=
√

Lm
Lp

from the Ri or Fr simi-

larity.
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Lmνm
UmKm

/
Lpνp
UpKp

= 1, and (2.91)

νm
νp

=
Lp

Lm

Km

Kp

Um

Up
= L

3/2
R . (2.92)

During normal reactor operation, the temperature rise in the PBR model core is calculated by Equa-

tion 2.88. By having similar Reynolds numbers given the ideal gas properties [172], the characteristic

velocity scaling ratio would vary depending on the geometric, temperature, and pressure scaling ratios.

UmLm

UpLp
=

νm
νp

, and (2.93)

Um

Up
=

Lp

Lm

(
(Tf )m
(Tf )p

)3/2 Pp

Pm
=

1

LR

(
(Tf )m
(Tf )p

)3/2 Pp

Pm
. (2.94)

2.16.1 Pressure Drop Scaling Ratio

The pressure drop scaling ratio is determined by considering a few pressure drop correlations developed

for porous media. The following pressure drop functions are valid for the relatively high Re regime, which

the prototype HTR-PM fluid occurs at (Re∗ ≃ 5.2E4); the KTA [96], Jones and Krier [70], Carman [71],

Tallmadge [72], Hicks [73], Wentz Jr and Thodos [98], and Lee and Ogawa [102] expect the same pressure

drop scaling ratio of 1:27.51. The pressure drop correlations developed by accounting for the near-wall

effects or tortuosity are valid only for lower Re ranges compared to the Re given for the prototype.

KTA: ∆PR =

[
160

Re∗
+

3

(Re∗)0.1

]
R

[
(1− ε)

ε3dp
ρfu

2
sH

]
R

. (2.95)

Jones and Krier: ∆PR =

[
150

Re∗
+

3.89

(Re∗)0.13

]
R

[
(1− ε)

ε3dp
ρfu

2
sH

]
R

. (2.96)

Carman: ∆PR =

[
180

Re∗
+

2.871

(Re∗)0.1

]
R

[
(1− ε)

ε3dp
ρfu

2
sH

]
R

. (2.97)

Tallmadge: ∆PR =

[
150

Re∗
+

4.2

(Re∗)1/6

]
R

[
(1− ε)

ε3dp
ρfu

2
sH

]
R

. (2.98)

Hicks: ∆PR =

[
6.8

Re∗0.2

]
R

[
(1− ε)

ε3dp
ρfu

2
sH

]
R

. (2.99)
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Wentz Jr and Thodos: ∆PR =

[
0.351

(Re∗)0.05 − 1.2

]
R

[
(1− ε)

ε3dp
ρfu

2
sH

]
R

. (2.100)

Lee and Ogawa: ∆PR =

[
29.32

Rep
+ 1.56Re−n′

p + 0.1

]
R

×
[
12.5

2

(1− ε)2

ε3dp
ρfu

2
sH

]
R

.

(2.101)

where n′ = 0.352 + 0.1ε+ 0.275ε2.

2.16.2 Radial Heat Transfer

Understanding how the heat would be transferred radially through the PBR core is critical to preventing

fuel failure [171]. By overheating, the reactor core temperature may exceed the safety limit and cause a

nuclear core meltdown. These events can possibly release fission products into the coolant and potentially

to outside the reactor housing at which point the public can be exposed.

For both the LOFC accidents and normal operation, the scaling ratio of the fluid specific heat varies

depending on the pressure scaling ratio given the Ec similarity is satisfied. However, the SD of the specific

heat for helium is less than 1% of 5,195 J/(kg·K) at the operating conditions for both the prototype and

model [31]. Therefore, the specific heat scaling ratio is assumed as one, and different pressure operating

conditions are proposed for the prototype and model accordingly. The scaling ratio of the effective fluid

thermal conductivity depends on the fluid dynamic viscosity by using the Pr similarity.

(κf )m
(κf )p

=
µm

µp
. (2.102)

The St similarity relation describes the solid-fluid convective heat transfer coefficient scaling ratio as:

αm

αp
=

1√
LR

(ρf )m
(ρf )p

. (2.103)

Moreover, the dimensionless group for the heat production (derived from the fluid energy equation) gives:

(q
′′′
t )m

(q
′′′
t )p

=
1√
LR

(ρf )m
(ρf )p

∆Tm

∆Tp
=
√
LR

(ρf )m
(ρf )p

(
Pm

Pp

)2/3

. (2.104)

The modified Bi from Equation 2.79 provides the relation as:

αm

αp

(κs)p
(κs)m

=
1

L2
R

. (2.105)
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The dimensionless group for the heat production (derived from the solid energy equation) provides:

(q
′′′
t )m

(q
′′′
t )p

(κs)p
(κs)m

=
1

L2
R

∆Tm

∆Tp
=

1

LR

(
Pm

Pp

)2/3

. (2.106)
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3. GEOMETRY/MESH SETUP WITH BOUNDARY CONDITIONS

3.1 SANA Experiments*

Modern Pronghorn equations are validated by modeling the natural convection in the SANA experi-

ments. These experiments are engineering-scale tests for observing the thermal behaviors and heat removal

characteristics of pebble bed HTGRs [26]. Among the SANA experiments, for this study, a test case with

a short heating element and 0.06 m graphite pebbles is used. This experiment is performed to estimate the

behavior of the gas flow in the upper plenum of HTGRs under air ingress conditions. Nitrogen is selected

as the coolant instead of air to avoid graphite oxidation. The total power transferred into the system through

the inner cylindrical wall is 5 kW. The 0.33 m tall plenum is located above the 0.66 m tall pebble bed, and

the 0.5 m heating rod is located at the center of the bed.

For overall STAR-CCM+ test sets, multiple insulation layers with different thermal conductivities are

provided for the bottom insulation. One relatively thicker insulation layer is added on the top, and the

whole set is enclosed in a steel vessel, as shown in Figure 3.1. Table 3.1 describes the detailed geometry

configuration of the SANA facility and specifies the experimental conditions.

The mesh specifications are different for STAR-CCM+, modern Pronghorn, and legacy Pronghorn. The

mesh for the insulation and steel layers is explicitly defined in STAR-CCM+ while thermal resistance bound-

ary conditions (BCs) are applied in Pronghorn models. A uniform structured quadrilateral mesh is used for

Pronghorn models in Figure 3.2 (right). To have a smooth transition between the mesh size of the bed and

the finer mesh of the steel layer (and help the convergence), a bias on the right side of the bed mesh is

applied as shown in Figure 3.2 (left). The modern Pronghorn mesh is refined in a similar fashion to the

STAR-CCM+ mesh by having comparable numbers of mesh elements in the porous bed region. The legacy

Pronghorn uses a coarser mesh than the other two models because finer meshes can result in convergence

issues.

*Adapted with permission from [11].
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Figure 3.1. Schematic of the SANA facility. Reprinted from [26].

Figure 3.2. STAR-CCM+ (left) and modern Pronghorn (right) fine meshes. Adapted with
permission from [11].

51



Table 3.1. Geometric configuration of the SANA facility and its experimental conditions.
Adapted with permission from [11].

Geometric configuration/experimental condition

Heating power (kW) 5

Height of the packed pebbles (m) 2/3

Length of the heating element (m) 0.5

Height of the top insulation (m) 0.4

Height of the pebble bed (m) 1

Height of the total bottom insulation layers (m) 0.403

Bottom insulation layer
thickness (m)

0.128 (Fire light brick RI 30 B)
0.150 (CERAFORM 100, 1000)

0.050 (THERMOSIL 1100)
0.025 (THERMOSIL 1000)

0.050 (GOSSLEROC GMP 150)

Bottom insulation
thermal conductivity

(W/mK)

0.397 (Fire light brick RI 30 B)
0.074 (CERAFORM 100, 1000)

0.080 (THERMOSIL 1100)
0.041 (THERMOSIL 1000)

0.058 (GOSSLEROC GMP 150)

Inner radius of the pebble bed (m) 0.0705 (radius of the heating rod)

Outer radius of the pebble bed (m) 0.75

Pebble diameter (m) 0.06

Steel vessel thickness (m) 0.005

Steel thermal conductivity (W/mK) 17.0

The BCs used for Pronghorn models are summarized in Table 3.2. The heat flux, q̃total, is imposed on

the left bottom boundary (see Figure 3.2). It is split proportionally by the effective thermal conductivity and

added into the fluid and solid energy equations:
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q̃f =
κf

κf + κs
(q̃total) , and (3.1)

q̃s =

(
1−

κf
κf + κs

)
(q̃total) . (3.2)

Thermal resistance BCs for the insulation and steel layers are utilized for Pronghorn models. They use

nested, inner iterations to compute the fluid or solid temperature at the outer boundaries, which consid-

ers the conduction through the insulation or steel layers and the convective and radiative heat transfers to

the environment. The convective heat transfer coefficient is 15 W/(m2·K), and the steel emissivity is 0.8.

The ambient temperature is different for each test run, and the detailed information is given in [26]. The

corresponding thermal resistance boundaries are applied to the fluid temperatures on the top and right top

boundaries of the bed, whereas the solid temperatures are used for the bottom and right bottom boundaries.

Free slip BCs are applied to the fluid velocities on all boundaries.

STAR-CCM+ uses different BCs compared to Pronghorn (see Table 3.3). Thermal resistance BCs are

not available in STAR-CCM+ such that the explicit meshing of insulation and steel layers is required. The

phase-averaged temperature from the porous region is used for the conduction physics in outer layers. Then,

the outer steel boundaries exposed to the environment account for the convective and radiative heat transfers,

except for top and bottom corners (see Figure 3.2). The boundaries of top and bottom corners are set to be

adiabatic. The heat flux through them is expected to be much smaller than the heat flux going through the

outer radial boundary. Therefore, adiabatic BCs are expected to be adequate for comparison with Pronghorn.

The fluid velocity BCs and the heat flux BC imposed on the left bottom boundary are identical to Pronghorn.

3.2 TAMU Isothermal Pebble Bed Experiments I*

The TAMU pebble bed test facility design is shown in Figure 3.3. The experiments estimate the behavior

of the gas flow in the pebble bed, although they assume an isothermal condition. Two different pebble sizes

provide the aspect ratios of 11 and 7.33 to observe the near-wall effects of PBRs. One compressible fluid (air)

and one incompressible fluid (water) are used to measure the pressure drop within the designated porous bed

heights. Table 3.4 describes the detailed geometric configuration of the TAMU pebble bed test facility and

specifies the experimental conditions. Note that the same size of the pebble bed, a bed diameter of 0.1397 m,

is used for both the compressible and incompressible cases. The experiments cover the flow range from the

*Adapted with permission from [12].
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Table 3.2. Boundary conditions for Pronghorn models. Adapted with permission from [11].

Boundary condition

Left bottom

Heat flux BC on Tf , Ts

(split by the effective thermal conductivity),
no penetration, weak boundary based on pressure

Left middle/left top No penetration, weak boundary based on pressure

Right bottom/bottom
Thermal resistance BC on Ts,

no penetration, weak boundary based on pressure

Right top/top
Thermal resistance BC on Tf ,

no penetration, weak boundary based on pressure

Table 3.3. Boundary conditions for STAR-CCM+. Adapted with permission from [11].

Boundary condition

Left bottom
Heat flux BC on Tf , Ts

(split by the effective thermal conductivity)

Left middle/left top/
Adiabatic

outer boundaries of top and bottom corners

Right bottom outer boundary of steel/
Convection & radiation

BC on Tsteel
†

right top outer boundary of steel/
top outer boundary of steel/

bottom outer boundary of steel

Inner wall boundaries contacting the nitrogen gas Slip condition

†Tsteel is the temperature of the outer steel layer.

laminar to turbulent regime for validating the correlations. In other words, the particle Reynolds number

varies from 55 to 678.

In Figure 3.4, for the axisymmetric model, the uniform mesh with 1,024 cells is used for the free flow

region where only the pure fluid is provided, and 12,800 and 14,080 elements are used in the porous region
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Figure 3.3. Schematic of the pebble bed test facility. Reprinted from [179].

Table 3.4. Geometric configuration of the TAMU pebble bed test facility and its experimental
conditions. Reprinted with permission from [12].

Experimental Condition

Working fluid Air, water

Working fluid temperature (oC) 21, 25

Material for the pebbles and cylindrical bed Acrylic

Bed diameter (m) 0.1397

Pebble diameter (m) 0.0127, 0.01905

Bed height (m) 1.219, 1.2954

Aspect ratio (bed diameter/pebble diameter) 11, 7.33

with air and water. For the Pronghorn finite element (FE) cases, the Dirichlet boundary conditions are used

for the inlet velocities. The implicit boundary condition (i.e., a boundary condition that uses the correct

velocity specified for the momentum equation) for the advective term in the mass equation is also specified

at both the inlet and outlet in FE simulations. In addition, the implicit boundary for the advection term in the

momentum equation is determined at the outlet, and the outlet pressure is weakly imposed for the pressure

term in the momentum equation. For the STAR-CCM+ and Pronghorn finite volume (FV) cases, the BCs

55



are the inlet velocity, outlet pressure, and free slip conditions on the walls. The initial conditions are the

ambient temperature and pressure.

Figure 3.4. Geometry and fine mesh of the Pronghorn and STAR-CCM+ models (axisymmetric
modeling). Adapted with permission from [12].

3.3 TAMU Isothermal Pebble Bed Experiments II

The recent isothermal pebble bed experiments are performed to estimate the pressure drop and velocity

profiles in the pebble bed region. The schematics of the new pebble bed test facility are shown in Figure 3.5.

Figure 3.5 (a) and (b) describe the main flow loop and matched index of refraction (MIR) test section with

acrylic spheres [180]. The same bed diameter size and one pebble diameter, 0.01905 m, are obtained from

Section 3.2. Consequently, the aspect ratio, D/dp, is 7.33. A total of 1,350 spheres fill the bed to a height

of 0.5461 m. The pressure drop measurements are made within 0.5334 m of the bed, and the average bed

porosity of 0.4162 is calculated by:

ε̄ =
Vtotal − Vspheres

Vtotal
. (3.3)

The experiments cover the turbulent flow regime by increasing the particle Reynolds number from 324 to

1,036. The working fluid is p-Cymene with n = 1.49. Figure 3.5 (c) shows a radial cross section of the

experimental facility and the layout of the PIV measurement locations [180]. Figure 3.5 (d) represents the

MIR test section partially filled with p-Cymene.

For the Pronghorn and STAR-CCM+ axisymmetric porous media models, a uniform mesh with 5,632

cells is used for the inlet flow region (pure fluid region), and 7,680 cells are used for the porous region in
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Figure 3.5. Overview of the MIR experimental facility. (a) Computer-aided design (CAD)
rendering of the experimental facility during PIV measurements, (b) main flow loop, (c) facility
radial cross section with PIV measurement locations, and (d) visualization of the MIR principle.
Reprinted from [180].

Figure 3.6. Additionally, some STAR-CCM+ simulations include the turbulence quantities specified for the

pebble bed region, and the SST k − ω model with all-y+ wall treatment is applied for the inlet flow region

with no slip condition. This ensures that the specification of the turbulence quantities does not add much of

a discrepancy in the pressure drop and axial velocity in porous bed. Figure 3.7 describes the fine mesh of

the 2D axisymmetric porous media models constructed with more refined mesh near walls for y+ < 1. The

2.3E4 and 3E4 mesh cells are used for the inlet flow and porous regions, respectively. Given the Carman

pressure drop correlation, the 3D porous media models are also verified to bring results similar to those

from the 2D axisymmetric porous media models. Figure 3.8 indicates the geometry and fine mesh of the

3D porous media models. The 9E5 and 1.2E6 mesh cells are used for the inlet free flow region and pebble

bed region, respectively. The structured patch mesh is generated at the pebble bed outlet, and it is extruded

through the pebble bed and fluid regions. Similar to the 2D models, more refined mesh is also given near

the walls for y+ < 1.

The explicit meshing of the random packed beds generated by MATLAB and VGSTUDIO is performed

for turbulence modeling. Figure 3.9 describes the axial cross sections of meshes of the VGSTUDIO random
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Figure 3.6. Geometry and fine mesh of the Pronghorn and STAR-CCM+ axisymmetric porous
media models (TAMU isothermal pebble bed experiments II).

Figure 3.7. Geometry and fine mesh of the STAR-CCM+ axisymmetric porous media models
with the turbulence quantities specified in the porous bed, including the SST k − ω turbulence
model in the fluid region.

packed column within four different bed heights of the porous region. Figure 3.10 shows the close ups of the

axial and radial cross sections of the VGSTUDIO mesh provided the 10dp bed height. The inlet and outlet

are located 2dp away from the packed bed to avoid the reverse flow and the consequent convergence issues.

The fluid flow enters the inlet, located 2dp below the porous region, and the outlet is 2dp above the porous

region. This applies only for the 10dp and 15dp bed heights, while the CFD simulations with the dp and 5dp

bed heights are executed with the 5dp free flow region on top and bottom of the packed bed due to a lower

computational cost. The polyhedral meshes with prism layers are applied with y+ < 5. More details about

the mesh characteristics for turbulence modeling are provided in Table 3.5. Similar meshing is performed

for the MATLAB reconstructed geometry.

The identical boundary conditions for Pronghorn finite element method (FEM), Pronghorn finite volume
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Figure 3.8. Geometry and fine mesh of the 3D STAR-CCM+ porous media models with the
turbulence quantities specified in the porous bed, including the SST k − ω turbulence model in
the fluid region.

Table 3.5. Mesh characteristics for the realizable two-layer k − ε and SST k − ω turbulence
models.

Specific porous bed height (m) dp 5dp 10dp 15dp

Number of mesh cells 4.46E6 1.29E7 2.74E7 4.02E7

Base size (m) 0.002

Number of prism layers 12

Total thickness of prism layers (m) 6.67E-4

Volume growth rate 1.0 1.2 1.0 1.0

method (FVM), and STAR-CCM+ axisymmetric porous media models in Section 3.2 are applied for the

new pebble bed test facility. For both the axisymmetric and 3D STAR-CCM+ porous media simulations

with the turbulence quantities specified in the porous bed, including the SST k − ω turbulence model in

the fluid region, the initial/boundary conditions for the turbulence intensity and turbulent length scale are

approximated as follows:

I = 0.16Re
−1/8
h , and (3.4)

l = 0.07Dh. (3.5)

Turbulence modeling with explicit meshing of the fluid region around pebbles specifies the mass flow

rates at both the inlet and outlet. The turbulence intensity and turbulent length scale at the inlet boundary
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Figure 3.9. Axial cross sections of meshes of the random packed column constructed by
VGSTUDIO for turbulence modeling. Four different heights of the porous region
(h = dp, 5dp, 10dp, and 15dp) are used to derive the velocity profile and pressure gradient.

are estimated based on the hydraulic diameter in the free flow region using Equation 3.4 and Equation 3.5.

Note that the inlet is located a specific distance away from the porous bed. The initial conditions for the

turbulence intensity and turbulent length scale are calculated based on the hydraulic diameter in the porous

region since the quantities of interest, such as the pressure drop and volume- or surface-averaged axial

velocity, are within the porous bed. Additionally, the no slip condition is applied for all walls.
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Figure 3.10. Axial and radial cross sections of the VGSTUDIO mesh given the 10dp bed height.
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4. SIMULATION SETTINGS/NUMERICAL METHODS*

4.1 SANA Experiments

Modern equations aim at improving on the fidelity of the fluid model by including the fluid advection

and time derivative terms in the fluid momentum equations. The STAR-CCM+ v14.06.012 R-8 results are

used to generate reference solutions for quantities that were not measured during the SANA experimental

campaign (e.g., fluid temperature, pressure, and velocities). In addition, axisymmetric modeling accounts

for the cylindrical shape of the SANA facility. This reduces the computational cost significantly for both

Pronghorn and STAR-CCM+.

The KTA drag coefficients in Table 2.6 are used to simulate the isotropic pressure drop in the pebble

bed since the SANA experiments satisfy its validity conditions. The solid-fluid convective heat transfer co-

efficient is calculated by Equation 2.8 in Section 2.7. Here, the Nu is estimated by the Petrovic and Thodos

model, and the thermal dispersion is considered by calculating the effective fluid thermal conductivity by

Equation 2.12. The Breitbach and Barthels correlation, the Zehner and Schlünder model, and the Chan and

Tien model are built on the concept of a heat transfer in Section 2.8 and are used in this study.

Pronghorn uses the streamline upwind Petrov-Galerkin continuous finite element method (SUPG-CFEM)

to discretize legacy and modern Pronghorn equations. The details of the weak form of compressible Euler

equations implemented in modern Pronghorn are shown in [10]. The Newton’s method is used to solve a

system of coupled non-linear equations, and an implicit time advancement scheme with time step control is

adopted by the models. On the other hand, STAR-CCM+ uses the FVM. Under the laminar flow condition,

the pressure-implicit with splitting of operators (PISO) algorithm is used for an unsteady compressible flow.

The time step is modified to satisfy the Courant-Friedrichs-Lewy (CFL) condition, ensuring stability. The

second-order upwind scheme is used for convection. Both Pronghorn and STAR-CCM+ reach a steady state

solution by running a pseudo-transient simulation.

4.2 TAMU Isothermal Pebble Bed Experiments I, II

Pronghorn with the FEM uses the SUPG method to discretize the Navier-Stokes equations. The details

of the weak form of compressible Navier-Stokes equations in Pronghorn are provided in [10]. Similar to

*Adapted with permission from [11, 12].

62



the Pronghorn simulation settings for the SANA experiments in Section 4.1, the Newton’s method is also

used to solve the system of coupled non-linear equations, and Pronghorn furthermore reaches a steady state

solution by running a pseudo-transient simulation. In addition, Pronghorn can also run FV simulations, and

the preliminary pressure drop results are presented in this study. Here, the first-order upwind scheme is

used for advection, and the fully coupled solver is used. The FVM is utilized by STAR-CCM+ v16.02.009,

and it generates the reference solutions. The steady state solutions under the turbulent flow condition are

obtained with the Darcy-Forchheimer model. The second-order upwind scheme is used for convection, and

the segregated SIMPLE solver is used for an steady compressible/incompressible flow.
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5. RESULTS AND DISCUSSION

5.1 SANA Experiments*

First, the mesh convergence test was performed to ensure that the results were spatially converged.

Meshes with three different refinement levels were prepared to study the GCI and to evaluate the discretiza-

tion error. The maximum solid temperature at the bed height of 0.5 m was utilized as the convergence test

quantity, and it was predicted to be 688.01oK for modern Pronghorn by using the RE. By satisfying that the

ratio of GCI32/GCI21r
p is∼1, all solutions were in the asymptotic range of convergence, and the GCI was

a valid estimator. The GCI for fine mesh was 4.78%; the fine mesh provided numerical results close to the

asymptotic solutions with an error band of 4.78%. Similar processes were carried out for the STAR-CCM+

results. See Table 5.1 for further details on the mesh convergence study. In addition, legacy Pronghorn re-

sults were considered mesh independent because the difference in the maximum centerline solid temperature

was about 0.23oK between the medium and fine mesh results in Figure 5.1.

Table 5.1. Mesh convergence study results. Adapted with permission from [11].

Model Modern Pronghorn STAR-CCM+

Maximum solid temperature at bed height = 0.5 m (oK) 688.01 677.22

GCI21 (%) 4.78 5.23

GCI32 (%) 5.61 7.81

The SANA benchmark does not report all quantities that are required for performing a full validation

exercise. The initial fluid temperature (i.e., the temperature of the fluid before the heater is switched on)

and pressure are not provided in the technical report, but this information is required to calculate the total

fluid mass in the system. SANA is a closed system such that the initial mass does not change throughout

the pseudo-transient simulation. Different fluid masses lead to significantly different fluid and solid temper-

atures. In this exercise, the initial fluid temperature of 419.7oK was used to have a system pressure close

*Adapted with permission from [11].

64



Figure 5.1. Convergence in FEM (legacy Pronghorn). Reprinted with permission from [11].

to the standard atmospheric pressure of 101,325 Pa for the modern Pronghorn fine mesh case at the con-

vergence to steady state. The same initial fluid temperature and pressure were used for both Pronghorn and

STAR-CCM+ to ensure that the same amount of nitrogen gas is used in all simulations.

In Figure 5.2, legacy Pronghorn, modern Pronghorn, and STAR-CCM+ overpredict the solid temper-

ature at the bed height of 0.5 m except near the outer wall. Disagreement between the experiments and

models is large near the heater rod, as previously pointed out in [21]. This discrepancy is at least partially

caused by:

• Lack of information about the total amount of fluid in the system,

• Discrepancy between models and the as-built facility, and

• Measurement errors.

In addition, implementing more sophisticated correlations for capturing the near-wall physics may be nec-

essary. The amount of heat provided to the porous region from the heating rod may also be split differently

between two phases.

The Pronghorn (both legacy and modern) and STAR-CCM+ results agree exceptionally well with each

other on fluid and solid temperatures (see Figure 5.2 and Figure 5.3). This leads to two conclusions: 1) the

approximations inherent in the legacy formulations do not strongly affect the solutions in the bed, even in

the presence of a plenum where these approximations are not appropriate; 2) the computational models are
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Figure 5.2. Solid temperature profile at the bed height of 0.5 m. Adapted with permission
from [11].

consistent, and the remaining difference from the experimental results is common between all of them. In

Figure 5.2, the simulated results are shown together with the SANA experimental data. Legacy Pronghorn,

modern Pronghorn, and STAR-CCM+ have the 15.7%, 13.9%, and 15.3% maximum relative differences at

r = 0.1 m near the heating rod. However, the 1.46% minimum relative difference is obtained at r = 0.7 m

for STAR-CCM+ while 0.67% is obtained at r = 0.58 m, and 0.23% is obtained at r = 0.46 m, respectively,

for legacy and modern Pronghorn. In Figure 5.3, the fluid temperature follows a similar trend as the solid

temperature shown in Figure 5.2.

Modern Pronghorn and STAR-CCM+ estimate the solid temperature better than legacy Pronghorn in

terms of the relative difference from the experimental data near the heating rod until the half bed height (see

Figure 5.2, Figure 5.4, and Figure 5.5). Overall, the modern Pronghorn results are closer to the experimental

results than other models at the half bed height (see Figure 5.2). In Figure 5.6, at y = 0.63 m of the bed,

both Pronghorn models estimate the solid temperature better than STAR-CCM+, except at r = 0.7 m.

The velocity streamlines and fluid temperature color maps for legacy Pronghorn, modern Pronghorn, and

STAR-CCM+ are shown in Figure 5.7. The nitrogen gas rises near the heat source, and it flows downward

when reaching the outer wall of the experiment. At the bottom of the experiment, the gas flows inwardly

towards the heater, and it flows outwardly towards the outer wall at the top of the reactor. The predicted

flow pattern in the upper plenum is similar for modern Pronghorn and STAR-CCM+ but significantly dif-
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Figure 5.3. Fluid temperature profile at the bed height of 0.5 m. Adapted with permission
from [11].

Figure 5.4. Solid temperature profile at the bed height of 0.03 m. Adapted with permission
from [11].

ferent for legacy Pronghorn, confirming the unsuitability of legacy Pronghorn’s approximations in the upper

plenum. In the plenum, vortices are predicted by legacy Pronghorn, while no vortex is estimated by modern

Pronghorn and STAR-CCM+. Nevertheless, fluid and solid temperatures in the bed are in good agreement

across all three simulations. Therefore, for the SANA plenum experiment, the flow in the upper plenum has

a negligible influence on temperatures in the bed.
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Figure 5.5. Solid temperature profile at the bed height of 0.09 m. Adapted with permission
from [11].

Figure 5.6. Solid temperature profile at the bed height of 0.63 m. Adapted with permission
from [11].

5.2 TAMU Isothermal Pebble Bed Experiments I*

The average bed porosity of a random packed bed was estimated by twelve different average poros-

ity correlations from [10]. Mueller, Sato, and Zou and Yu correlations were investigated because their

experimental setups are similar to the TAMU isothermal experiments, and the parameters of the TAMU

*Adapted with permission from [12].
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Figure 5.7. Velocity streamlines and fluid temperature profile. Adapted with permission
from [11].

experiments fall within the correlations’ validity conditions. These correlations were developed by the re-

searchers with pebble and bed diameters similar to the current experiments, including the random packing

method and the pebble material, such as acrylic glass. On the other hand, other correlations derived from
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experiments different from the TAMU experiments were excluded. For instance, Beavers et al. [42] derived

the correlation by using a rectangular bed, and Foumeny et al. [43] vibrated the cylinder for packing the

pebbles. In Figure 5.8, red lines represent the aspect ratios of 11 and 7.33 used for the air and water cases,

respectively. The uncertainty bands are provided for the Mueller and Sato correlations by propagating the

SDs of the pebble diameter. The uncertainties were calculated by multiplying the SDs by 2 for the 95%

confidence level given the normal distributions, and they are less than 1% of the average porosities at the

corresponding aspect ratios of 11 and 7.33. Note that the Zou and Yu model is accounted for with both the

loose and dense packing methods. The average porosities calculated by the above correlations vary within

the porosity range by ∼0.05, which is relatively large compared to the values of the averages. This would

likely provide the differences in pressure drop when the empirical pressure drop correlations are applied in

the Darcy-Forchheimer model (see Table 5.2).

Figure 5.8. Comparison of average porosity correlations. Adapted with permission from [12].

The optimal porosity function was determined by examining the porosity functions in Table 5.2; these

functions were used with the pressure drop correlations listed in Table 5.3 to produce Figure 5.9. As a
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Table 5.2. Average porosities estimated by different correlations. Adapted with permission
from [12].

Model/average porosity ε̄ (air) ε̄ (water)

Mueller 0.385 0.395

Sato (pebbles gently dumped) 0.394 0.4152

Zou and Yu (dense packing) 0.378 0.3861

Zou and Yu (loose packing) 0.4164 0.4329

result, the Zou and Yu average porosity function with dense packing estimated the pressure drop better than

others, specifically for air cases. Given that both the experimental and correlation data are deterministic, the

Zou and Yu model with dense packing has the lowest RMSEs, RRMSEs, and average Euclidean distances

(commonly known as average L2 norm) in pressure drop among the porosity functions in Table 5.2. The

probabilistic experimental data led to the same conclusion such that the Zou and Yu dense packing model

performed exceedingly well in predicting the pressure drop with the lowest averages of the total normalized

Euclidean distance given the Eisfeld and Schnitzlein correlation and KTA correlation (see Table 5.3). On

the other hand, in Figure 5.10, the Zou and Yu loose packing model approximated the pressure drop more

appropriate than other models for the water cases with regard to the validation metrics in Table 5.4.

Table 5.3. Validation metrics for the Zou and Yu dense packing model (air). Adapted with
permission from [12].

Validation metrics/model (1D correlation) Ergun Eisfeld and Schnitzlein KTA

Average relative difference (%) 8.496 12.76 13.19

RMSE (Pa) 12.04 43.07 26.53

RRMSE (%) 5.488 19.63 12.09

Average L2 norm (Pa) 34.06 121.8 75.04

Average of the total normalized Euclidean distance 2.966 4.56 4

The specification of turbulence quantities did not improve the pressure drop significantly. The turbulent

quantities were specified for the pebble bed region for Rep = 274 ∼ 365 (see Figure 5.11 for the Foumeny
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Figure 5.9. Pressure drop comparison with the Zou and Yu dense packing model (air). Reprinted
with permission from [12].

Table 5.4. Validation metrics for the Zou and Yu loose packing model (water). Adapted with
permission from [12].

Validation metrics/model (1D correlation) Eisfeld and Schnitzlein KTA

Average relative difference (%) 37.61 39.82

RMSE (Pa) 52.04 51.17

RRMSE (%) 18.89 18.58

Average L2 norm (Pa) 194.7 191.5

Average of the total normalized Euclidean distance 0.7963 0.7833

function), and the SST k − ω model with all-y+ wall treatment was used for the free flow region with no

slip condition. Due to the insignificant pressure drop change by providing the turbulence quantities to the

compressible Navier-Stokes equations with the Darcy-Forchheimer model, the axisymmetric porous media

simulations were performed without the turbulence properties for the whole Re range for both Pronghorn

and STAR-CCM+.

After determining the average porosity, the pressure drop correlations valid in the specific Re and aspect

ratio ranges were implemented in both Pronghorn and STAR-CCM+ to estimate the pressure drop in the

72



Figure 5.10. Pressure drop comparison with the Zou and Yu loose packing model (water).
Reprinted with permission from [12].

pebble bed. Generally, the GCIs for fine meshes were less than 1% with the lowest and highest particle

Reynolds numbers for air and water; therefore, the uncertainty bars were estimated as a 1% conservative

uncertainty of the predicted pressure drop in Figure 5.11 and Figure 5.12. Peculiarly, they were evaluated as

1.5% of the pressure drop as approximated by STAR-CCM+ with the Foumeny function given the turbulence

quantities in the porous region. Therefore, the fine meshes overall provided numerical results close to the

asymptotic solutions with the uncertainties less than 1% and ensure a higher than 99% confidence level for

the computed values.

In Figure 5.11, although the Ergun correlation is developed with the substantially small pebble and

bed diameters, and pebbles are packed with vibration, it predicts the experimental pressure drop data well

with an 8.5% average relative difference for both the 1D correlation and Pronghorn FEM compared to

the experiments and an 8.34% average relative difference for STAR-CCM+. Macdonald et al. used much

smaller particles than the pebbles used in the current experiments; however, the similar packing material and

method may have resulted in pressure drop measurements within the 50% prediction band of the Macdonald

correlation from [83]. The Foumeny function predicts the pressure drop the most accurately among other

valid correlations in [10] (see Table 5.5); however, the Cheng, Eisfeld and Schnitzlein, Harrison, and Liu
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Figure 5.11. Pressure drop estimated by empirical correlations (air). Adapted with permission
from [12].

functions, which use the bed diameter to account for the near-wall effects, deteriorate the pressure drop

calculation. Figure 5.13 describes the gauge pressure and velocity magnitude profiles for Rep = 365 given

the Foumeny function.

For the experiments with the nearly incompressible fluid (water), the Montillet dense packing model

brings the lowest RMSEs, RRMSEs, average L2 norms, and averages of the total normalized Euclidean

distance with Pronghorn and STAR-CCM+. The Montillet function was developed based on the similar

pebble and bed sizes, including the random packing of glass particles, and it considers the near-wall effects
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Figure 5.12. Pressure drop estimated by empirical correlations (water). Adapted with permission
from [12].

to improve the pressure drop prediction. Although the average relative differences in Table 5.5 are beyond

the 10.4% maximum relative difference in [51], in Figure 5.12, overall, the overlap of the 95% confidence

interval bars of the experiments and simulation results is more than half of a single arm. Therefore, the

two-tailed p-value is ≤0.05, and this provides strong evidence for the null hypothesis of the zero difference

in means [181–183]. In other words, the statistical significant effect is most likely small.
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Table 5.5. Validation metrics for the Foumeny and Montillet functions. Adapted with permission
from [12].

Validation
met-

rics/model

Foumeny
(air)

Montillet (dense packing, water)

Pronghorn
FEM

Pronghorn
FVM

STAR-
CCM+

Pronghorn
FEM

Pronghorn
FVM

STAR-
CCM+

Average relative
difference (%) 7.454 7.707 7.779 26.69§ 27.37§ 26.92§

RMSE (Pa) 9.2754 9.161 9.355 10.9 12.19 11.23

RMSRE 0.1032 0.1055 0.105 0.6687∗∗ 0.6742∗∗ 0.6715∗∗

RRMSE (%) 4.227 4.175 4.264 3.958 4.424 4.075

Average L2 norm (Pa) 26.23 25.91 26.46 40.79 45.59 42

Average of the total
normalized Euclidean

distance
2.902 3.082† 3.094‡ 0.1621 0.1821 0.1671

†The Ergun function provides a similar average of the total normalized Euclidean distance of 3.028 by Pronghorn
FVM for air.
‡The Ergun function provides a similar average of the total normalized Euclidean distance of 3.012 by STAR-CCM+
for air.
§The Meyer function brings similar average relative differences of 24.21%, 24.16%, and 24.26% for Pronghorn FEM,
Pronghorn FVM, and STAR-CCM+, respectively.
∗∗The Meyer function shows similar RMSREs of 0.6298, 0.6347, and 0.6324 for Pronghorn FEM, Pronghorn FVM,
and STAR-CCM+, accordingly.
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Figure 5.13. Gauge pressure and velocity magnitude profiles estimated by the Foumeny function
with Pronghorn and STAR-CCM+ for Rep = 365. Reprinted with permission from [12].
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5.3 TAMU Isothermal Pebble Bed Experiments II

5.3.1 Pebble Bed Reconstruction

The new pebble bed facility was reconstructed by the MATLAB algorithms and VGSTUDIO. While

the detailed MATLAB pebble bed reconstruction process is provided in [180], the following VGSTUDIO

reconstruction method brought the average bed porosity and radial porosity profile used in the porous media

simulations in Section 5.3.5. First, a total of 100 PIV images were prepared and averaged at each axial

location [180]. Six images in the axial direction were stitched together to bring the full height of the pebble

bed test section in Figure 5.14. The PIV images were taken with a uniform spacing of 4.064 mm, which

place about 4 to 5 images for capturing each sphere.

Figure 5.14. Visualization of image processing for reconstructing the pebble bed. (a) Original
images at six different axial locations, (b) full view of the stitched image, (c) Hough transform of
image (b) with potential circle detection marked with red circles. Reprinted from [180].
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After the full views of the channel were constructed, the PIV images were realigned and scaled based

on the reference bed height so that they all shared the same coordinate system. Next, the PIV images were

transferred into the binary images by applying white pixels for pebbles with the black background of the

fluid region after detecting the pebble boundaries. This eliminated the voxel noises in the 3D object. Due

to the limited number of images, buffer images were added between 35 PIV images. The horizontal and

vertical resolutions were verified to be the same since the images were displayed with square pixels. After

stacking the clean images into 3D by using VGSTUDIO, the region of interest (ROI) was created by the

geometry analysis tool. The least squares method (“Gauss”) found the best fits by providing a set of data

points on the spheres. Empty voxels of the buffer layers were modified to white voxels in the ROI specified

with all the pebbles in the cylindrical bed. This was for creating the complete solid pebbles, and similarly,

other empty voxels were assigned to the inverted ROI for developing the fluid region. At last, the gray-scale

value distribution was used to observe the material peaks and detect the adequate location of the isosurface

line for determining the surfaces.

The reconstruction process of converting the PIV images into the 3D pebble bed is described in Fig-

ure 5.15. The fit point distance was observed to verify that the Gaussian least squares method was applied

adequately to detect pebbles in Figure 5.16. The 90% of the fit points have less than or equal to 0.324 mm

of the fit point distance.

Figure 5.15. 2D PIV images to 3D pebble bed reconstruction.
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Figure 5.16. Probability distribution function (PDF) and cumulative distribution function (CDF)
of the fit point distance.

When pebble surfaces were determined, the foam analysis was performed to observe the thickness of

the fluid region between pebbles as the strut thickness. In Figure 5.17 and Figure 5.18, the highest strut

thickness is 30.88 mm, and the strut thickness is close to zero when pebbles are touching each other, or

pebbles are toughing the cylindrical wall. Figure 5.18 shows that the mean thickness is around 8.78 mm,

which is smaller than the pebble radius, and the SD of the thickness is 4.17 mm. The thickness of the fluid

region is relatively high at a few locations at the bottom of the bed. It could be from the missing pebbles

due to non-detected circles from the PIV images, or large random gaps may be generated during the packing

process. The strut thickness is provided at the arbitrary radial (y = 68.55 mm) and axial (z = -1.78 mm)

cross sections given the origin is located at the center of the bed in Figure 5.19. The strut thickness value

randomly distributes between ∼0 and 24.7 mm in these 2D cross sections, which indicates the random

packing structure of the pebbles.

A total of 1,047 pebble locations from MATLAB and VGSTUDIO were compared within the bed height

of 0.4223 m. The scipy.spatial.KDTree class created a set of k-dimensional points with the MATLAB data,

and the scipy.spatial.KDTree.query function queried the kd-tree for nearest neighbors from the VGSTUDIO

data. Here, k would be 3 for the three-dimensional space. Consequently, two sets of the pebble center coor-

dinates from the MATLAB and VGSTUDIO data were paired, and the histogram of the Euclidean distance

between these pebble centers is shown in Figure 5.20. The averaged Euclidean distance is 3.309 mm, and
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Figure 5.17. Strut thickness in 3D reconstructed pebble bed.

the SD is 1.814 mm. Figure 5.21 shows the visual comparison of the pebble locations obtained by MATLAB

and VGSTUDIO in 3D (left) and 2D (right) views. While the majority of the Euclidean distances between

the paired pebble center coordinates are less than dp/2, the Euclidean distances from the twelve sets of peb-

ble locations are greater than dp/2, represented in Figure 5.22. Twelve sets of the pebble locations were

81



Figure 5.18. Strut thickness distribution.

located near the reconstructed bed surfaces (either top or wall). Generally, pebbles near the top surface were

fitted with the points in less than a sphere volume, which could feasibly add errors in the pebble detection.

About 1.1% of pebbles provided the relatively large Euclidean distances, but these values are still less than

the pebble diameter. Therefore, the average porosity values from MATLAB and VGSTUDIO are expected

to be similar while CFD modeling with an explicit mesh of the porous bed may require further improvement

of the MATLAB clustering algorithms for accurately estimating the fluid behavior in the pebble bed.

The pebble bed was reconstructed either with the original pebble diameter or 99% of it for avoiding the

singularity point issues in finite element analysis, described in [101]. Note that the fabrication tolerance of

pebbles in the experiments is about 1% compared to the original pebble diameter, and 206 pixels per inch

by VGSTUDIO provides the 0.65% size per pixel, also in reference to the original pebble diameter. Macros

were written by using the data of pebble center coordinates for automating the generation of spheres in

SOLIDWORKS 2020 SP05. After creating the pebbles, the fluid volume was extracted by constructing the

cylindrical bed in a CAD model (see Figure 5.23), and the consequent average porosity value was found.

Table 5.6 includes the average bed porosity values computed by different reconstruction methods and by

hand. The relative differences of the average bed porosity values with respect to the reference data from
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Figure 5.19. Strut thickness at the arbitrary radial (left) and axial (right) cross sections of the
reconstructed bed.

Figure 5.20. Histogram of the Euclidean distance between the paired pebble centers.
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Figure 5.21. 3D and 2D pebble center locations.

Equation 3.3 are less than 1.22%. However, reducing the pebble diameter overall by 1% can change the

average bed porosity by ∼4%, which may have an impact on the pressure drop prediction in the porous bed.

Table 5.6. Average bed porosity calculation.

Reconstruction method or hand calculation
MATLAB VGSTUDIO Hand calculation

Pebble
diameter (m)

0.99dp 0.4378 0.434 0.4335 ± 0.01046
dp 0.4213 0.417 0.4162 ± 0.01076

The average and maximum volumes of the overlap between two spheres in percentage are shown in

Table 5.7, and the histogram of the overlap volume is described in Figure 5.24. The MATLAB algorithms

provided the maximum overlap between two spheres as 24% by volume in the reconstruction with the orig-

inal pebble diameter, and the average overlap was under 1%. Overall, VGSTUDIO produced less average

and maximum overlap volumes compared to those values from MATLAB. Therefore, more accurate recon-

struction was accomplished by VGSTUDIO. The overlap was calculated by using the distance between the
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Figure 5.22. Pebble locations with the Euclidean distance between the paired pebble centers
> dp/2. Red spheres are located by VGSTUDIO while blue spheres are from MATLAB.

sphere centers, smaller than either 0.99dp or dp. These overlaps could occur due to slight errors in cali-

bration or improper clustering of the circles in images, especially for MATLAB. Additionally, the statistics

of the distance between the centers of touching spheres are provided in Table 5.8. In the reconstructed ge-

ometries, these pebbles were touching each other, slightly overlapped, or observed with a small gap due to
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Figure 5.23. Fluid volume in SOLIDWORKS. The axial cross section view is provided to
observe the internal structure.

the reconstruction errors. The relative difference in the average minimum distance for VGSTUDIO with

reference to the original diameter is 0.25% while MATLAB provides 1.9%, and the relative SDs from MAT-

LAB are higher than those from VGSTUDIO, which also verifies that the VGSTUDIO reconstruction is

comparatively accurate.
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Figure 5.24. Histogram of the overlap between two spheres by volume.

Table 5.7. Studies related to the overlap volume.

Reconstruction
method

MATLAB VGSTUDIO

Pebble
diameter (m)

0.99dp dp 0.99dp dp

Average
overlap

volume (%)

0.7039 ±
2.092

0.5863 ±
1.881

0.03883 ±
0.05933

8.313 × 10−3 ±
0.02202

Maximum
overlap

volume (%)
23.43 24.01 0.2996 0.4387
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Table 5.8. Statistics of the minimum distance between the centers of touching spheres.

Reconstruction method MATLAB VGSTUDIO
Pebble diameter (m) 0.99dp dp 0.99dp dp
Average minimum

distance (mm)
18.53 18.7 19.02 19.1

Relative SD (%) 5.026 4.765 0.6596 0.9112

5.3.2 Radial Porosity Study

At every 0.12dp cylindrical layer, the local porosity was found to generate the oscillatory radial porosity

profiles. See Figure 5.25 for the locations of the radial surfaces, which the local porosities were obtained

at. Here, the full bed height was utilized for acquiring the porosity. The radial porosity profiles with the

0.12dp interval length are similar to the profiles with the 0.073dp interval length in Figure 5.26. Overall,

the maximum relative difference between the corresponding porosity profiles, derived with different interval

lengths, is 0.6%. Therefore, the following porosity study was completed by taking the local porosity at

every 0.12dp cylindrical layer, assuming that there are small discrepancies in the porosity values, except

for generating the new radial porosity function. The average relative difference between the MATLAB

and VGSTUDIO porosity profiles in Figure 5.27 is 2.3%. It can be seen that VGSTUDIO is preferable

by observing the maximum overlap between pebbles by volume and relative SD of the minimum distance

between the centers of touching spheres (see Table 5.7 and Table 5.8). However, the average bed porosity

and oscillatory radial porosity from MATLAB are relatively accurate and may also be applicable for the

porous media simulations.

The sensitivity of radial porosity was studied within different bed heights, such as dp, 5dp, 10dp, 15dp,

and 20dp (reference data), in Figure 5.28. The distance between two consecutive points on a reference func-

tion, which are in the same state of oscillation, is about one pebble diameter. The MATLAB and VGSTUDIO

radial porosity profiles follow the similar trend. The 15dp bed height provided the radial porosity close to

the reference data with the 1.1% average relative difference for both MATLAB and VGSTUDIO. These

precise porosity values would result in the accurate pressure drop prediction in porous media simulations.

About a 3% average relative difference was obtained with the 10dp bed height, and further porous media

simulations are suggested to confirm that the radial porosity with the 10dp bed height would provide the

88



Figure 5.25. Radial cross section of the reconstructed bed including the radial surfaces, where the
local porosities are determined.

proper pressure drop estimation. This applies the same for the 5dp bed height, which provided the 4.4% and

5% average relative differences for MATLAB and VGSTUDIO, respectively. With the dp height, the 7%

average relative difference of the porosity was derived with close radial oscillation locations compared to

the reference values. The near-wall porosity was approximated adequately among all the heights due to the

larger areas of the outer radial surfaces compared to the inner radial surfaces in Figure 5.28. In Figure 5.29,

the radial porosity was determined by taking a quarter, a half, and three quarters of the dp bed volume, and

these volumes are described in Figure 5.30. The local porosities are more randomized and the resulting

radial porosity is more oscillating with less than the full volume of the dp bed volume. Therefore, at least

the full volume of the dp volume is necessary to bring the radial porosity oscillation locations similar to

those with the 20dp bed height.

The radial porosity obtained by VGSTUDIO with the 0.073dp interval length and original pebble diame-

ter size (the most accurate porosity data from the pebble bed reconstruction) was compared with the existing

correlations in Table 2.3 and Table 2.4. In Figure 5.31, the radial porosity functions proposed by Cohen and

Metzner, Martin, and de Klerk do not match the porosity from the VGSTUDIO pebble bed reconstruction

precisely, therefore, the new oscillating porosity correlation was derived by applying the non-linear least
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Figure 5.26. Oscillatory radial porosity profile.

Figure 5.27. Comparison of the radial porosity profiles from MATLAB and VGSTUDIO.

squares method with bounds on the coefficients. The new porosity function was derived based on the Martin

porosity correlation in Table 2.3, however, the coefficients were adjusted accordingly given the aspect ratio

of 7.33, shown in Equation 5.1. The standard error of the regression is 0.02372 (5.7% of the average bed

porosity), and the residual sum of squares (in other words, the cost function) is 0.02701. In Figure 5.31,

with the de Klerk function, the discontinuous radial porosities exist at d/dp = 0.637 since the infinite or
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Figure 5.28. Sensitivity study of radial porosity on bed height.

Figure 5.29. Sensitivity study of radial porosity on partial volume of the dp bed volume.

minimum porosity is not considered to predict the near-wall porosity. On the other hand, the Martin func-

tion uses two different regions based on the 2d/dp − 1 distance, and the minimum porosity is expected at
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Figure 5.30. The quarter, half, and three quarters of the dp bed volume.

d = dp/2. Furthermore, the Hunt and Tien function estimates the porosity from the VGSTUDIO pebble

bed reconstruction better than other exponential porosity functions in Table 2.4 provided that the average

relative difference is 2.5%.

ε =



εmin + (1− εmin)(

∣∣∣∣2ddp − 1

∣∣∣∣)2.3 if − 1 ≤ 2d

dp
− 1 ≤ 0.

ε∞ + (εmin − ε∞)exp

[
− 1

10
(
2d

dp
− 1)

]
cos

[
π

0.885
(
2d

dp
− 1)

]
if

2d

dp
− 1 > 0.

(5.1)

Average relative difference = 3.3%.

5.3.3 Average Porosity Correlations

The average bed porosities were determined by MATLAB and VGSTUDIO, and they were validated

with the experimental reference data in Section 5.3.1. Furthermore, some average bed porosity correlations

with specific validity conditions were examined for future references in Figure 5.32, similar to the approach

in Section 5.2. Sato et al. predict the average porosity better than other functions in Table 2.1 with the 0.24%

relative difference given the aspect ratio of 7.33, represented as the red lines in Figure 5.32. The Sato exper-

imental specifications are similar to the TAMU isothermal experimental setups, such as the random packing

method, pebble diameter, column diameter, material for pebbles, and the material for the column. The pa-

rameters of the current experiments also fall within the correlation’s validity conditions. The uncertainty

bands are provided for the Sato function and the Benyahia and O’Neill correlation. They were calculated by

multiplying the SDs by 2 for the 95% confidence level given the normal distributions. The Sato uncertainty
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Figure 5.31. Comparison of the porosity from the VGSTUDIO pebble bed reconstruction with
the radial porosity functions in Table 2.3 and Table 2.4.

is less than 1% of the average porosity at the aspect ratio of 7.33 while Benyahia and O’Neill provide 7.2%

of the average value.

Other correlations still have comparable relative differences up to 1.6% in Figure 5.32. Although the

aspect ratio is smaller than 10 for the current experiments, the Aerov function estimated the average porosity

well. Gentle tapping by de Klerk, Benyahia, and O’Neill did not add much discrepancies in the average
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Figure 5.32. Average bed porosity with respect to the aspect ratio (p-Cymene).

porosity values. The experimental porosity is within both the absolute difference value provided by Dixon

and the relative difference in percentage by de Klerk in Table 2.1. However, the studies related to different

aspect ratios are recommended since the average porosity profiles with respect to the aspect ratio are different

by the researchers in Figure 5.32.
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5.3.4 Simulation Uncertainty Quantification

The numerical uncertainties were determined by the GCI method. Although the factor of safety (FS)

method can be utilized to overcome the drawbacks of the GCI method, the numerical uncertainties obtained

by the GCI method were larger than the values from the FS method. These drawbacks are described as:

no smooth variation of Fs follows when the solutions are far from the asymptotic range [144], and an

insufficient statistical analysis is shown to determine the uncertainty estimate [184]. Therefore, conservative

uncertainties from the GCI method were added to ultimately derive the total simulation uncertainties.

The input uncertainties were computed by LHS, and the summary of the uncertain input parameters

for porous media simulations is listed in Table 5.9. The 95% symmetric probability bands of the average

porosity, inlet physical velocity, bed diameter, pebble diameter, and the specific bed height for pressure drop

measurements were utilized to provide a pseudo-random sample from each equal probability interval. A

total of 10 latin hypercube samples were used by evaluating the means and SDs of input parameters given

their relative differences are less than 1%. Figure 5.33 shows how the relative difference in percentage

evolves by increasing the number of samples. Figure 5.34 represents the CDF of the average bed porosity,

and the equal probability bins in [0, 1) were converted to [0.025, 0.975) for providing the samples in the

95% confidence interval. In other words, the sample scaling was completed with specific lower and upper

bounds, and these bounds were also applied for other input parameters. Figure 5.35 verifies that a sample

was adequately chosen from each probability bin, and only the distribution of a few input parameters is

represented due to the limited space. Note that the probability data is provided before scaling for simple

visualization purposes. After quantifying the numerical, input, and consequent model uncertainties using

Equation 2.55, the simulation uncertainties were derived with Equation 2.56. They were factored by 2

and applied as the Pronghorn and STAR-CCM+ simulation error bars in Figure 5.36, Figure 5.38, and

Figure 5.39.
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Figure 5.33. Relative difference change with respect to the number of samples.

Figure 5.34. CDF of the average bed porosity.
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Figure 5.35. Distribution of latin hypercube samples.

Table 5.9. Summary of the uncertain input parameters for porous media simulations.

Input parameter Mean value Uncertainty/uncertainty band

Average bed porosity [-] 0.4162 5.078 × 10−3/[0.4111, 0.4213]

Inlet physical velocity† [m/s] 0.01609 5.547 × 10−4/[0.01554, 0.01665]

Bed diameter [m] 0.1397 7.938 × 10−4/[0.1389, 0.1405]

Pebble diameter [m] 0.01905 1.905 × 10−4/[0.01886, 0.01924]

Specific bed height for pressure
drop measurements [m] 0.5334 7.938 × 10−4/[0.5326, 0.5342]

†Only the data for Rep = 324 is provided due to the limited space; however, an uncertainty band was derived
individually for each Reynolds number to quantify the corresponding input uncertainty.

5.3.5 Porous Media Simulations

There are no significant differences in the pressure drop data obtained by the 3D and axisymmetric

STAR-CCM+ porous media simulations with the turbulence quantities specified in the porous bed and the

SST k − ω model used for the free flow region in Figure 5.36. The all-y+ wall treatment with no slip

condition for the free flow region was utilized for these specific simulations given the Carman pressure

drop correlation. In addition, a laminar model in both the porous and free flow regions did not change the

pressure drop significantly (less than a 1% relative difference) and the similar trend is shown in [12]. In
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Figure 5.37 (middle and right), the axial velocity goes to zero at the wall, and the fluid moves rapidly near

the centerline of the cylinder in the free flow region. However, it did not influence both the pressure drop

and volume-averaged axial velocity in the porous region substantially. Therefore, the axisymmetric porous

media simulations (incompressible Navier-Stokes equations with the Darcy-Forchheimer model) without

the turbulence properties were overall utilized for the V&V of Pronghorn. The mesh convergence tests were

performed for all porous media simulations, and the GCIs for fine meshes were obtained at ≤1%. This

shows that the fine meshes, in general, provided numerical results close to the asymptotic solutions with the

≤1% uncertainty and ensured a confidence level of at least 99% for the computed values.

Figure 5.36. Pressure drop comparison of the 2D axisymmetric laminar model with the 3D and
axisymmetric STAR-CCM+ porous media simulation results with the turbulence quantities
provided in the porous bed and the SST k − ω model in the free flow region.

The pressure drops predicted by the Pronghorn and STAR-CCM+ porous media models using the pres-

sure drop correlations in Table 2.6 agree well with the experimental pressure drop, as shown in Figure 5.38.
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Figure 5.37. STAR-CCM+ dimensionless axial velocity and pressure drop provided the Carman
function (Rep = ∼800). Axisymmetric model (left), axisymmetric model with the turbulence
quantities specified in the porous bed and the SST k − ω model in the free flow region (middle),
3D model with the turbulence quantities specified in the porous bed and the SST k − ω model in
the free flow region (right).

In Figure 5.38 and Figure 5.39, the Handley, KTA, and Carman correlations comparably estimate the pres-

sure drop, pressure gradient, and friction factor better than other correlations in terms of the validation

metrics in Table 5.10. In Figure 5.39, both the experimental and simulation data are within the uncertainty

or error ranges given for the correlations. Despite the fact that the Handley function was developed with

relatively small porosity and aspect ratios, the current experimental Rep range was within its validity condi-
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tion. Consequently, the function provided the average relative differences from 2.56% to 3.34% between the

experimental data and Pronghorn FEM, Pronghorn FVM, and STAR-CCM+ simulation results. Although

the KTA function might not be valid for smaller Reynolds numbers (Rep = 324 and 386), and the Carman

function was derived with the aspect ratios larger than 10, the KTA and Carman functions also brought the

approximate average relative differences to the values obtained by the Handley function in Table 5.10. The

Handley and Carman correlations estimated the pressure drop better than KTA for Rep ≥ 800 by observing

the absolute difference in pressure drop between the experimental data and simulation results while the KTA

function performed better with Rep < 800 in Figure 5.38. The pressure drop data obtained by Pronghorn

FEM, Pronghorn FVM, and STAR-CCM+ using the Reichelt, Eisfeld and Schnitzlein, Brauer, Jones and

Krier, and Hicks functions were reasonable with the 5.1% maximum average relative difference. There-

fore, the Carman-type pressure drop correlations, such as the KTA and Carman functions, with suitable

coefficients for the friction factors estimated the pressure drop more appropriately than previous efforts by

considering the bed diameter to pebble diameter ratio (aspect ratio) for the near-wall effects.

Table 5.10. Validation metrics for the Handley, KTA, and Carman pressure drop functions.

Validation
metrics/
model

Handley KTA Carman

Pronghorn
FEM

Pronghorn
FVM

STAR-
CCM+

Pronghorn
FEM

Pronghorn
FVM

STAR-
CCM+

Pronghorn
FEM

Pronghorn
FVM

STAR-
CCM+

Average
relative

difference
(%)

3.01 2.56 3.34 2.92 3.1 2.81 2.87 2.6 3.08

RMSE (Pa) 8.05 6.53 9.24 14.1 16.3 12.8 6.8 6.6 7.32

RMSRE 0.0364 0.0323 0.0389 0.0361 0.0369 0.0357 0.0406 0.0376 0.0425

RRMSE (%) 2.1 1.7 2.41 3.68 4.25 3.33 1.77 1.72 1.91

Average L2

norm (Pa) 29 23.6 33.3 50.9 58.8 46 24.5 23.8 26.4

Average of
the total

normalized
Euclidean
distance†

0.577 0.502 0.624 0.55 0.584 0.532 0.596 0.541 0.63

†The experimental error is considered for this specific validation metric.
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Figure 5.38. Pressure drop with respect to the particle Reynolds number.

By only accounting for the numerical and input uncertainties, the overlap of the 95% confidence uncer-

tainty intervals of the experiments and the Handley, KTA, and Carman simulation results was more than half

of a single arm. This provides strong evidence for the null hypothesis of the zero difference in the average

values, equivalent to the analysis in Section 5.2. Only the numerical and input uncertainties were considered

because propagating the model uncertainties resulted in asymmetric total simulation uncertainties, and the

probability distributions were no longer Gaussian distributions.
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Figure 5.38. Continued.

The average relative differences, RMSEs, RMSREs, RRMSEs, and average L2 norms were obtained

by assuming that both the experimental and simulation data were deterministic. The KTA function showed

relatively higher RMSEs, RRMSEs, and average L2 norms than the Handley and Carman models due to

the discrepancies in pressure drop for Rep ≥ 800. The averages of the total normalized Euclidean distance

were calculated by considering the experimental uncertainties, provided that the simulation data were point

values. They are less than the tolerance in Table 2.15 for all Pronghorn and STAR-CCM+ porous media
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Figure 5.39. Pressure gradient and friction factor for the Handley, KTA, and Carman correlations.
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simulations with the pressure drop correlations in Figure 5.38. In Table 5.11, assuming that both the exper-

imental and simulation data distributions are probabilistic and Gaussian (by considering the numerical and

input uncertainties only), the average Kullback-Leibler divergences are within the tolerance in Table 2.15

for Rep ≥∼800 using the Handley and Carman models. The averages of the symmetrized Kullback-Leibler

divergence for the same Rep range are close to the tolerance value of 1. Additionally, the d̄KS and d̄area

metrics use the discrepancies between the CDFs [156]. While d̄KS only considers the vertical differences,

d̄area also accounts for the horizontal differences. The zero d̄KS or d̄area indicates the agreement between

the CDFs from the experiments and simulations. Figure 5.40 shows an instance of the CDFs of the ex-

perimental pressure drop and STAR-CCM+ simulation output given the Carman function. The pressure

drops at different particle Reynolds numbers produce different areas between the CDFs, represented as the

red shaded areas in Figure 5.40. Including the Handley, KTA, and Carman functions, other correlations in

Figure 5.38 achieved the relatively low average normalized area metrics (less than or close to 5%) within

the entire Rep range used for the experiments. Figure 5.41 also verifies the agreement of the dimensionless

pressure drop and axial velocity profile between the Pronghorn FEM, Pronghorn FVM, and STAR-CCM+

porous media models.

Figure 5.40. Quantification of the vertical and horizontal discrepancies between the CDFs from
the experiments and simulations (µ = mean, σ = SD).
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Table 5.11. Validation metrics for the Handley and Carman pressure drop functions, provided that
the experimental and simulation data are probabilistic.

Validation
metrics/
model

Handley Carman

Pronghorn
FEM

Pronghorn
FVM

STAR-
CCM+

Pronghorn
FEM

Pronghorn
FVM

STAR-
CCM+

Average Kullback-Leibler
divergence† 0.369 0.3 0.429 0.282 0.283 0.288

Average of the symmetrized
Kullback-Leibler

divergence†
1.37 1.1 1.58 1.07 1.12 1.06

Average Hellinger metric†,‡ 0.349 0.314 0.375 0.305 0.306 0.308

Average
Kolmogorov-Smirnov† 0.306 0.248 0.361 0.205 0.211 0.233

Average normalized area
metric§ 0.0318 0.0278 0.0344 0.0316 0.029 0.0332

†The validation metrics were obtained within or close to the tolerances for Rep ≥ ∼800.
‡The zero value of Have represents the exact agreement between the experimental and simulation results [156].
§The average normalized area metrics were obtained from Rep equal to 324–1036.

Next, the pressure drop or friction factor with the relatively high particle Reynolds number (Rep ≥ 800)

was improved by utilizing the volume-averaged radial porosity function, Equation 5.1. Applying an oscilla-

tory porosity function directly in the porous media simulations would not improve the pressure drop results.

This is because the variable porosity is the micro-heterogeneous information, and the pressure drop correla-

tions are generally developed based on the superficial velocity accounting for the average bed porosity. The

macroscopic quantities, defined within at least the d2p surface or d3p volume as the REV, are necessary for the

valid macroscopic approach. Figure 5.42 describes how the new oscillatory function or its volume-averaged

porosity was applied in the porous bed region for the Pronghorn FEM and STAR-CCM+ simulations. The

dimensionless axial velocities and the corresponding porosity profiles from the center of the porous bed

to the wall are represented in Figure 5.43. The magnitude of the axial velocity increases as the porosity

increases. With the new oscillatory porosity function, the agreement in the dimensionless axial velocities

between the Pronghorn FEM and 3D STAR-CCM+ models is acceptable with less than the 5% average rela-

tive difference. Herein, the numerical errors obtained by the GCI method were applied as the error bars. The

Pronghorn FEM mesh was refined by a factor of 2 compared to the original mesh described in Section 3.3,
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Figure 5.41. Carman porous media simulations performed by Pronghorn FEM, Pronghorn FVM,
and STAR-CCM+ for Rep = ∼800.

and this brought the GCIs under 5% with the oscillatory porosity. Meanwhile, other meshes were kept the

same as presented in Section 3.3 for the GCIs less than 5%. The trend of the oscillatory axial velocities in

Figure 5.43 is similar to the data provided in [9].

The pressure drop and corresponding friction factor deteriorated significantly by applying the variable

porosity straight in Figure 5.44. The average bed porosities for all simulations are less than 0.7% different

compared to the experimental reference porosity. Applying the volume-averaged oscillatory porosity within

two annular cylinders and the solid cylinder in the middle of the porous bed overall moved the pressure

drop or friction factor closer to the experimental measurements, compared to the values obtained by the

simulations with one average bed porosity used for the whole porous bed. Three sectored volumes were
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Figure 5.42. Variable porosity or volume-averaged porosity profile applied in the Pronghorn
FEM and STAR-CCM+ simulations.

Figure 5.43. Dimensionless axial velocities and the corresponding porosity profiles from the
center of the bed to the wall, given the new oscillatory porosity function from Equation 5.1 or its
volume-averaged porosity profile with the Brauer function.
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Figure 5.44. Brauer friction factor and pressure drop for Rep ≥ ∼800.

chosen because the 1.22dp thickness of the annular cylinder or radius of the solid cylinder located in the

middle of the bed is larger than the dp representative elementary length. Figure 5.45 verifies that the detailed

porosity information in the REV deteriorated the pressure drop predicted by porous media simulations.

When using up to three sectors, the pressure drop decreased with the volume-averaged oscillatory porosity.

However, with four sectored volumes, the pressure drop increased or moved back close to the value obtained
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with the overall average bed porosity. Although the pressure drop improvement might not be significant

using the volume-averaged variable porosity within sectored volumes larger than the REV, this approach has

the potential to improve the pressure drop or provide more detailed axial velocity profiles in nuclear reactors.

They have much higher aspect ratios than the current pebble bed experiments, which helps in computing the

volume-averaged quantities in many REVs. Wall effects can be considered using this method by having the

relatively larger volume-averaged porosity near walls than the average bed porosity. Figure 5.46 describes

the dimensionless axial velocity averaged in the whole pebble bed, and this quantity agrees well between the

Pronghorn and 3D STAR-CCM+ models. The dimensionless volume-averaged axial velocity obtained by

the Pronghorn FEM model with the oscillatory porosity is ∼17% different compared to the model with the

average bed porosity. Figure 5.43, Figure 5.44, Figure 5.45, and Figure 5.46 were obtained with the Brauer

function, and a similar trend was also achieved with the Jones and Krier function. Due to the limited space

available, only the simulation results using the Brauer function are described.

Figure 5.45. Pressure drop or friction factor change with respect to the number of sectored
volumes applied for volume-averaging the oscillatory porosity (Rep = ∼800).
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Figure 5.46. Comparison of the dimensionless volume-averaged axial velocity in the whole
porous bed between the Pronghorn FEM and 3D STAR-CCM+ models (Rep ≥ 800).

5.3.6 Turbulence Modeling with Explicit Meshing

The porous media simulations cannot provide the details of the complex velocity or vorticity profiles

developed around pebbles because the macroscopic properties, such as the average bed porosity and super-

ficial velocity, are used to homogenize the micro-heterogeneity. It is still questionable if the volume- or

surface-averaged velocities from the turbulence models or high-fidelity PIV data are comparable with those

values from the porous media simulations. First, the GCI study was performed with a refinement ratio of

2 to ensure that fine meshes bring at least a 95% confidence level for the computed quantities of interest,

the dimensionless volume-averaged axial velocity and pressure gradient in the porous bed in Figure 5.47.

The GCI21s were calculated as 0.11% and 1.7% for the dimensionless volume-averaged axial velocity and

pressure gradient, respectively. Figure 5.47 only shows the GCI study for the SST k − ω simulation results

with the 15dp VGSTUDIO reconstructed bed height. In Figure 5.48, Figure 5.50, and Figure 5.51, the error

bars were determined by taking the GCI study for each turbulence model with the different specific bed

height and reconstructed geometry.

The pressure gradient and friction factor obtained by the realizable two-layer k−ε and SST k−ω models
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Figure 5.47. Grid sensitivity analysis with the dimensionless volume-averaged axial velocity and
pressure gradient in the porous bed. The SST k − ω simulation results are with the 15dp
VGSTUDIO reconstructed bed height.

with the MATLAB and VGSTUDIO reconstructed geometries are within or close to the 15% uncertainty

band for the Carman function in Figure 5.48. The similar trends in the pressure gradient and friction factor

were obtained by the realizable two-layer k − ε and SST k − ω models, and increasing the bed height from

dp to 15dp did not necessarily improve these quantities but kept a similar accuracy level. In Figure 5.38,

specifically for Rep = ∼800, the Pronghorn and STAR-CCM+ axisymmetric simulation results and the

Carman function are all within ∼1%. Therefore, the porous media models’ pressure gradient and friction

factor are also comparable with those values from the turbulence models. With the dp bed height, the radial

porosity oscillation locations match well with the reference values in Section 5.3.2. Consequently, the 7%

average relative difference of radial porosity did not add many discrepancies in the pressure gradient or

friction factor. Figure 5.49 describes the axial cross sections of the dimensionless time-averaged pressure

drop obtained by the SST k − ω model for the VGSTUDIO reconstructed geometry given the different bed

heights. The gradual pressure drop seems to be in good agreement between all four bed heights, except the

flow at the inlet of the porous bed had entrance effects.

For the validation purposes of the velocities in the pebble bed near the cylindrical wall, the realizable
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Figure 5.48. Pressure gradient or friction factor obtained by the realizable two-layer k − ε and
SST k − ω models for the MATLAB and VGSTUDIO reconstructed geometries (Rep = ∼800).

two-layer k − ε and SST k − ω models provided the axial velocity data averaged within the PIV window,

which is the 10d2p surface area of the pebble bed from [180]. With Rep = ∼800, the relative difference

between the dimensionless surface-averaged axial velocity from the SST k − ω model and the value from

the PIV data is 4% with the VGSTUDIO reconstructed geometry in Figure 5.50. The realizable two-layer

k − ε model provided the 0.4% relative difference of the surface-averaged axial velocity in the PIV win-

dow. The Carman porous media simulation with the porosity volume-averaged in three different sectors

performed better than other Pronghorn simulations in Figure 5.50. The direct implementation of the oscilla-

tory porosity decreased the axial velocity averaged in the PIV window significantly by∼19%. Furthermore,

Figure 5.51 shows the axial velocities volume-averaged in the fluid region of the porous bed obtained by

the turbulence models. They are reasonable for all four different bed heights because the maximum rela-
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Figure 5.49. Dimensionless time-averaged pressure drop by the SST k − ω model for the
VGSTUDIO reconstructed geometry. Four different specific bed heights are provided with
Rep = ∼800.

tive difference compared to the reference data is 2.75%. In Figure 5.52, Figure 5.53, and Figure 5.54, the

detailed velocity profiles from the SST k − ω model verify that the vertical flow through the porous bed

is much higher compared to the lateral flow. A few small eddies may have less impact on the volume-

or surface-averaged axial velocities due to the dominant axial flow in the porous bed. The dimensionless

time-averaged axial velocity and turbulent kinetic energy profiles in Figure 5.52 and Figure 5.55 follow the

similar trend to those in [185]. Lastly, the turbulent kinetic energy averaged within the PIV window is about

0.00159 m2/s2 with the realizable two-layer k−ε model, and it is different from 0.0024 m2/s2, obtained from

the PIV data. It could be due to the uncertainties propagated for the PIV measurements or the limitations

for two-equation turbulence models used for the pebble bed experiments. Nevertheless, overall the pressure

gradients and averaged axial velocities are in reasonable agreement between the turbulence models, porous

media simulations, and the PIV data.
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Figure 5.50. Comparison of the dimensionless axial velocities surface-averaged in the PIV
window. The Pronghorn porous media simulations are based on the Carman function.

Figure 5.51. Dimensionless volume-averaged axial velocity in the porous bed according to the
specific bed height.
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Figure 5.52. Dimensionless time-averaged axial velocity by the SST k − ω model for the
VGSTUDIO reconstructed geometry. Four different specific bed heights are provided with
Rep = ∼800.
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Figure 5.53. Visualized vector field by the line integral convolution. The SST k − ω model for
the VGSTUDIO reconstructed geometry is shown with the 15dp bed height.

116



Figure 5.54. Dimensionless time-averaged cross-flow velocity by the SST k − ω model for the
VGSTUDIO reconstructed geometry. Four different specific bed heights are used with
Rep = ∼800.
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Figure 5.55. Dimensionless turbulent kinetic energy by the realizable two-layer k − ε model for
the VGSTUDIO reconstructed geometry. Rep = ∼800 with the 10dp and 15dp bed heights.
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5.4 Facility Scaling

Several PBR prototypes were examined to optimize the experimental installations in Table 5.12. Small

modular reactors, such as the pebble bed modular reactor (PBMR 400), MIT PBR, and HTR-PM, are the

HTGR generation IV conceptual designs developed partially based on the earlier experimental and commer-

cial scale reactors. While the Xe-100 reactor is of interest since it is the advanced reactor design that is most

supported in the U.S., its detailed design specifications are not provided to the public. Therefore, the similar

modular reactor, HTR-PM, was used as the prototype for building the scaled-down facility.

Geometric scaling ratios were chosen by considering the feasibility of the experimental setups; the oper-

ating temperature and pressure ranges, total power of the heating element, installation cost, space availabil-

ity, etc. First, the characteristic length scaling ratio, which is the ratio between the model pebble diameter

and prototypic facility pebble diameter, was initially calculated as 1/0.8197. Integral similarity relations

similar to [173, 177, 186] in Table 5.13 were used to calculate the scaling ratios in Table 5.14 and the oper-

ating conditions for the model in Table 5.15. The effective solid thermal conductivity scaling ratio derived

from the correlations in Section 2.8 is different from the value obtained by the modified Bi integral similar-

ity relation. It would be adjusted accordingly when the fluid and solid materials are determined for future

pressure drop and temperature measurements including the PIV study.
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Table 5.13. Integral similarity conditions.

Parameter Integral similarity relation

Axial/radial length scale HR/DR

Pebble diameter length scale (dp)R

Pebble bed core cross-sectional area (ac)R = D2
R

Pebble bed core volume (Vcore)R = (ac)RHR = D2
RHR

Power density (q
′′′
core)R = (ρf )R(dp)

1/2
R P

2/3
R

(forced/natural convection)

Reactor power (Qcore)R = (q
′′′
core)R(Vcore)R = (ρf )R(dp)

1/2
R P

2/3
R D2

RHR

(forced/natural convection)

Characteristic velocity (us)R or uR = ((dp)R)
1/2 (forced/natural convection)

Temperature rise ∆TR = (dp)RP
2/3
R (forced/natural convection)

Mass flow rate (ṁ)R = (ρf )R
√
(dp)RD

2
R (forced convection)

Pressure drop ∆PR =
[
ρfu

2
sH

dp

]
R

(forced convection)

Solid-fluid convective heat transfer

coefficient
αR = 1√

(dp)R
(ρf )R (forced/natural convection)

Effective fluid thermal conductivity (κf )R = µR (forced/natural convection)

Effective solid thermal conductivity (κs)R = (ρf )R(dp)
3/2
R (forced/natural convection)
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Table 5.14. Scaling ratios.

Parameter Scaling ratio

Axial length scale 1:15

Radial length scale 1:2.5

Pebble diameter length scale 1:0.8197

Pebble bed core cross-sectional area 1:6.25

Pebble bed core volume 1:93.75

Power density 1:3.753

Reactor power 1:351.9

Characteristic velocity 1:0.9054

Mass flow rate 1:10.38

Pressure drop 1:27.51

Solid-fluid convective heat transfer coefficient
1) St similarity 1:2.026

2) KTA Nu correlation 1:2.179
3) Gunn Nu correlation 1:2.22

Effective fluid thermal conductivity
1) Pr similarity 1:1.361

2) Correlation (εkf ) 1:1.56

Effective solid thermal conductivity
1) Modified Bi similarity 1:1.361

1) Breitbach and Barthels, Zehner and Schlünder, Chan and Tien correlations 1:10.58
2) Tsotsas, Zehner and Schlünder, Chan and Tien correlations 1:7.618
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Table 5.15. Operating conditions for the engineering-scale PBR facility.

Operating condition

Reactor core height (m) 0.7333

Reactor core diameter (m) 1.2

Reactor core volume (m3) 0.8294

Upper cavity height (m) -

Pebble sphere diameter (mm) 73.2

Overall thermal power (MW(t)) 0.7105

Average power density (MW/m3) 0.8567

Average fuel power density (MW/m3) 1.404

Thermal power generated by an individual pebble (W) 288.4

Reactor inlet temperature (oC) 9.229

Reactor outlet temperature (oC) 279.1

Primary coolant pressure (MPa) 2.06

Primary coolant flow rate (kg/s) 9.25

Average bed porosity 0.39

Primary coolant properties Helium
ρf = 3.491 kg/m3

µ = 1.901× 10−5 Pa·s
kf = 0.1484 W/(m·K)

Temperature rise (oC) 269.9

Interstitial velocity in the porous bed (m/s) 6.007

Superficial velocity in the porous bed (m/s) 2.343

Number of pebbles in the bed ∼2463
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6. CONCLUSION*

The V&V of Pronghorn is achieved by predicting the fluid velocity, pressure, or temperature in the

pebble bed experiments. Multiple pressure drop correlations (using the Darcy-Forchheimer formation) in

the Pronghorn compressible/incompressible Euler/Navier-Stokes equations can predict the fluid velocity

and pressure drop in the porous bed within the uncertainty bands for various type of HTGRs, provided the

specific Reynolds number, aspect ratio, and porosity ranges. The Pronghorn energy equations with several

correlations for the solid-fluid convective heat transfer coefficient and effective thermal conductivities can

also estimate fluid and solid temperatures in the porous bed. This helps in optimizing the HTGR designs

by observing the fluid motion and heat transfer in both normal operation and accident scenarios in advance.

The following highlights the contributions for each research subject and provides the recommendations on

future work.

6.1 Pronghorn Fully Compressible Equation Set Validation against SANA Open Plenum Ex-

periments

Legacy Pronghorn, modern Pronghorn, and STAR-CCM+ compressible Euler porous media model

agree well on fluid and solid temperatures in the pebble bed. The discrepancy between the experimental

data and modern Pronghorn result is the smallest among the compared models near the heater rod and is

about 75.5oK at the half bed height. There are multiple possible causes of why the simulation results and

experimental measurement do not agree better: 1) there is no information of fluid mass in the closed SANA

system on the benchmark specifications, although the mass affects the heat transfer in the experiment signif-

icantly; 2) a discrepancy between the models and the as-built facility; and 3) measurement errors. The flow

pattern in the plenum is poorly predicted by legacy Pronghorn; however, this does not lead to a poor predic-

tion of temperatures in the bed, indicating a limited effect of plenum flow patterns on the bed temperature

distribution.

*Parts of this chapter are adapted with permission from [11, 12].
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6.2 Validation of Pronghorn Pressure Drop Correlations against Pebble Bed Experiments

The Pronghorn (both the FEM and FVM) pressure drop estimation using the compressible/incompressible

Navier-Stokes equations agrees well with the STAR-CCM+ simulation results and 1D correlations, includ-

ing the experimental pressure drop measurements. The Reynolds number varies from the laminar to tur-

bulent regime given different specific aspect ratios. The precise porosity function has more impact on the

pressure drop estimation than previous efforts by considering the aspect ratio for the near-wall effects.

The V&V of Pronghorn Navier-Stokes equations is successfully accomplished by providing the pres-

sure gradients and averaged axial velocities from porous media simulations, which are comparable with the

values from the realizable two-layer k − ε model, SST k − ω model, and the experimental data (pressure

drop and PIV measurements). The average bed and radial porosities for the pebble bed experiments are ac-

curate such that the consequent pressure drop and averaged axial velocities agree well with the experimental

reference values. The Carman-type pressure drop correlations implemented in both Pronghorn and STAR-

CCM+ porous media models generally estimate the pressure drop well in pebble bed experiments with the

incompressible fluid. Volume-averaging the variable porosity in multiple sectors improves the pressure drop

and axial velocity averaged in the PIV window.

6.3 Pebble Bed Reconstruction Using MATLAB Algorithms and VGSTUDIO with the Aver-

age Bed and Radial Porosity Analysis

The accurate prediction of the average bed porosity for pebble bed experiments improves the precision of

pressure drop or friction factor obtained by the porous media models. Both the MATLAB and VGSTUDIO

3D pebble bed reconstructions using the TR-PIV images provide the average bed porosities close to the

reference with the ≤1.22% relative difference. Most of the Euclidean distances between the MATLAB and

VGSTUDIO paired pebble center coordinates are less than dp/2. Decreasing the pebble diameter size by

1% overall results in the 4% relative difference in the average bed porosity compared to the experimental

porosity. This is for removing the potential meshing issues with the singularity points in finite element

analysis.

The MATLAB and VGSTUDIO oscillatory porosity profiles generated by taking the local porosity at

every 0.12dp cylindrical layer are within the 2.3% average relative difference. The sensitivity study of radial

porosity values verifies the 1.1% average relative difference for the 15dp bed height relative to the values
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obtained with the original reconstructed geometries. The radial porosity determined by taking a quarter,

a half, or three quarters of the dp bed volume is more randomized and oscillating. Therefore, at least

the full volume of the dp bed volume is necessary to bring the close radial porosity oscillation locations.

Additionally, the new oscillatory porosity function derived based on the Martin porosity correlation or the

Hunt and Tien exponential function can be utilized for approximating the radial porosity of pebble bed

experiments.

6.4 Scaling Analysis

The integral similarity relations specific for PBRs are derived for designing the heated engineering-scale

pebble bed experiments. They are written in Python for easily changing the geometric and pressure scaling

ratios or material properties, which would be determined based on the feasibility of new experimental setups.

This code computes the consequent scaling ratios of power density, reactor power, velocity, temperature

rise, mass flow rate, pressure drop, solid-fluid convective heat transfer coefficient, and effective thermal

conductivities.

6.5 Recommendations for Further Research

• Further studies on correlations for the solid-fluid convective heat transfer coefficient and effective

thermal conductivities are recommended to capture the near-wall phenomena more suitably.

• Improvement of the MATLAB algorithms may be necessary to accurately predict pebble locations

with a similar accuracy level obtained by VGSTUDIO.

• VGSTUDIO can be utilized for reconstructing the future pebble bed experiments.

• The STAR-CCM+ discrete element method can be used for packing pebbles in a random manner to

properly estimate the average bed and radial porosities.

• While this initial attempt contributes to our understanding, further studies related to volume-averaging

the variable porosity in a different number of sectors are recommended in order to improve nuclear

reactor pressure drop and velocity profile calculations.

• The heated pebble bed experiments must be built by considering the current scaling study for bringing

a similar fluid motion and heat transfer of modular PBRs.
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