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ABSTRACT

Functional principal component analysis is a popular technique used for analyzing the intrinsi-

cally infinite-dimensional functions. The functional principal components help explore the varia-

tion patterns of functions and achieve dimension reduction. Some functional data are sequentially

observed on two-dimensional domains. How to analyze the serial correlated two-dimensional

functional data is an important issue. This dissertation consists of two projects developing the

dynamic two-dimensional functional principal component analysis to analyze the serial correlated

functional data with Gaussian distribution or generally, with a distribution from exponential family.

The first project proposes a novel model to analyze serial correlated two-dimensional func-

tional data observed sparsely and irregularly on a domain which may not be a rectangle. The

approach employs a mixed effects model that specifies the principal component functions as bi-

variate splines on triangulations and the component scores as random effects which follow an

auto-regressive model. We apply the roughness penalty for regularizing the function estimation

and develop an effective EM algorithm along with Kalman filter and smoother for calculating the

penalized likelihood estimates of the parameters. This approach was applied on simulated datasets

and on Texas monthly average temperature data of 49 weather stations from January year 1915 to

December year 2014.

The second project proposes the approach to analyze data which follow a distribution from

exponential family and are observed over time on two-dimensional domain. Assuming that the

natural parameter is a dynamic smooth function of the two-dimensional location, we propose a

functional principal component model which models the natural parameter through the combina-

tion of smooth principal component functions on two-dimensional domain and principal compo-

nent scores modeled by autoregressive processes. To address the problem of scalability of large

data which is often seen in practice, a variational EM algorithm is proposed for fitting the model.

Numerical results on simulated data and the motivating Arctic sea-ice-extent data demonstrate the

good performance of the proposed approach.
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1. INTRODUCTION AND LITERATURE REVIEWS

1.1 Principal Component Analysis of Serial Correlated 2-d Functional Data with Gaussian

Distribution

Understanding the variation of weather patterns over time and geological locations is important

in studying the climate change. To investigate the temperature change in Texas, the United States,

we worked on one dataset from the U.S. Historical Climatology Network (Menne et al., 2009,

USHCN), collected by National Oceanic Atmospheric Administration (NOAA). This dataset con-

sists of monthly-average temperatures from year 1915 to year 2014, observed at 49 weather stations

in Texas. Locations of the weather stations are shown in the left panel of Figure 1.1.
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Figure 1.1: The left panel is the distribution of locations of 49 weather stations in Texas. In the
right panel are the connected curves of 3 stations in 2 years (2013–2014), colored corresponding
to the points in the left panel.

This dataset provides great challenges to data analysis. First, the temperature was affected

by both the location of the weather station and the month of measurement. The monthly average

1



temperatures from 3 weather stations observed in year 2013 and 2014 are given in the right panel

of Figure 1.1, where one weather station is in northern Texas, the other two are in the south and

are close to each other. It can be seen that even though all temperatures from the three weather

stations follow the same seasons, the two southern weather stations have similar temperatures while

the northern weather station has lower temperatures in general and larger differences between

winters and summers. On the other hand, there usually are serial correlation between temperatures

observed over time, see for example, Jones et al. (1986) and Hansen et al. (2006), even when the

temperatures were from the same weather station. In addition, the weather stations are sparsely and

irregularly located in Texas, and there are missing observations in various months from different

weather stations.

Previous studies include the topics of functional principal component analysis (FPCA), func-

tional time series, and spatial functional data. There are different methods for the estimation of

FPCA, such as local polynomials (Staniswalis and Lee, 1998; Yao et al., 2005a; Hall et al., 2006),

and splines (Rice and Wu, 2001; James et al., 2000; Zhou et al., 2008). FPCA has shown its

usefulness in many applications (James and Sugar, 2003; Yao et al., 2005b). The aforementioned

papers focused on one-dimensional FPCA, which could not directly be applied to analyze higher-

dimensional functional data. Zhou and Pan (2014a) proposed a mixed effects model-based FPCA

for spatial (2-dimensional) data. Shi et al. (2022) also proposed a two-dimensional FPCA for fea-

ture extraction of image data without any smoothness techniques as the image data was densely

samples in the domain. Chen and Jiang (2017) extended to a multi-dimensional FPCA that could

be used for higher-dimensional functional data.

Recently, there are many extensions of FPCA to deal with functional data with different com-

plex data structure in real applications. Di et al. (2009) proposed a multilevel (hierarchical) FPCA

approach by incorporating the FPCA decomposition into the unknown functions of different levels

in functional ANOVA model. Chiou et al. (2014) studied the multivariate FPCA, where the objects

were a vector of random functions with the same support. Lin et al. (2016) proposed a interpretable

FPCA method through penalizing the support of FPCs to derive the smooth FPCs that were non-

2



zero in the intervals where curves had major variations, while were strictly zero in others. Li et al.

(2016) proposed a supervised FPCA approach borrowing the supervision information from the

other datasets by employed the auxiliary variables into the FPC scores with a multivariate linear

model. While Ding et al. (2022) also considered the supervised FPCA but incorporated the covari-

ate variables into the mean and FPC functions instead of FPC scores. Lila et al. (2016) focused

the smooth principal component analysis on functions whose domain is a two-dimensional mani-

fold. Furthermore, Dai and Müller (2018) extended the FPCA approach to analyze the functional

data on Riemannian manifolds. They achieved the Riemannian FPCA by mapping the manifold

space onto the L2 tangent space. Lin and Zhu (2019) proposed a multiscale functional PCA that

could deal with heteroscedastic functional data and accurately estimate the high-order PCs. Shang

(2014) provided a systematic review of FPCA in exploratory analysis, modeling and forecasting

functional data,classification of functional data. Some advanced topics of FPCA can be found in

the recent review papers Wang et al. (2016), Li et al. (2022). However, the above literature did not

consider the serial correlations among functional objects.

Spatial functional data, which assumes the univariate functional data is spatially-correlated,

and utilizes the methods of spatial statistics (e.g., Kriging) to fit the model, is another related topic.

Previous works, for example, Zhou et al. (2010) extended the reduced-rank models to the spatially-

correlated data, and incorporated the Matérn family to model the spatial correlation. Giraldo et al.

(2012) considered the hierarchical clustering of functional data when they are spatially correlated.

Li and Guan (2014) proposed the FPCA approach onto the spatiotemporal point processes. Some

other additional studies can be found in the papers (Zhang et al., 2016; Zhang and Li, 2021; Kuen-

zer et al., 2021). A comprehensive survey of spatial functional data can be found in Delicado et al.

(2010) and Ruiz-Medina (2012). Although spatial functional data borrowed the location informa-

tion, they could not be applied for forecasting since they treated the time points as the realization

of curves of time.

Functional time series is also a related topic that can shred some light on the challenges from

the Texas temperature data. There were some approaches for functional time series, for example,

3



functional autoregressive (FAR) models (Bosq, 2000; Kokoszka and Reimherr, 2013), two-step

methods through incorporating the time series onto FPC scores after employing a FPCA procedure

(Shen and Huang, 2008; Shen, 2009; Hyndman and Ullah, 2007; Hyndman and Shang, 2009;

Aue et al., 2015; Shang and Hyndman, 2017; Gao et al., 2019). Hörmann and Kokoszka (2012)

provided a comprehensive and theoretical introduction of functional time series. However, the

aforementioned works focused on the univariate functional time series. Even though these works

took the serial correlation of the data into consideration, they did not consider the location effects

of the data. Surface time series can be treated as the extension of one-dimensional functional

time series. Spatiotemporal statistics (Cressie and Wikle, 2015) could be thought as surface data

observed over time. They focused on the Gaussian processes, and achieved the good properties

such as stationarity via the well-developed covariance structure. Martínez-Hernández and Genton

(2020) provided a review to compare the topics of spatial functional data and surface time series

from the perspective of spatiotemporal statistics. However, to the best of our knowledge, the

methods from the perspective of functional data for surface time series are still desirable. Our first

project contributes to the topic of surface time series from the viewpoint of functional data.

In Chapter 2, we propose a model for principal component analysis of serial correlated 2-

dimensional functional data. More precisely, a unified model is used to characterize the serial

correlation on the unobserved FPC scores of two-dimensional functional data to tame the curse of

dimensionality. The latent FPC scores are modeled by multivariate autoregression. Triangularized

bivariate splines are implemented to tackle the irregular shape of domain. All these ideas are

integrated into a hidden Markov model (HMM) and an EM algorithm incorporated with Kalman

filter and smoother is facilitated to estimate the unknown parameters in a single stage.

1.2 Principal Component Analysis of Serial Correlated 2-d Functional Data with A Distri-

bution from Exponential Family

Arctic is an important component of the global climate system. The sea ice of Arctic Circle

has drawn substantial attention in recent years (Vavrus and Harrison, 2003; Meier et al., 2007;

Parkinson, 2014). The decreasing trend of ice cover in Arctic Circle has great impacts on the
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ecosystem of Arctic and the global climate change. For instance, it changes the behaviors of

species that use the ice for their breeding grounds or depend on its presence during their life circle

(Stroeve et al., 2008; Meier et al., 2014a). It also changes the Arctic sea surface temperatures

(Screen et al., 2013) and results in more extreme weather in mid-latitude regions (Sewall and

Sloan, 2004; Cohen et al., 2014). Understanding both spatial and temporal variations of Arctic sea

ice is an important issue (Peng and Meier, 2018).

National Oceanic and Atmospheric Administration (NOAA) and National Snow and Ice Data

Center (NSIDC) collect a Climate Data Record (CDR) of sea ice concentration from passive mi-

crowave data (Meier et al., 2021). The dataset consists of the monthly sea-ice concentrations which

are proportional values between 0 and 1 from January 2001 to December 2020. In each month,

there are 20043 observations in Arctic Circle, resulting in total 4.8× 106 samples within 20 years.

The data densely cover Arctic Circle where each sample point represents a 25km× 25km square.

With the commonly-used 15% cut-off criterion (Peng et al., 2013; Zhang and Cressie, 2019), the

sea-ice concentrations are transformed to the ice-water binary observations that declare whether

a grid cell is covered by sea ice. To be specific, the sample point whose concentration is greater

than 15% will be assigned as ice, otherwise it is water. The cumulative area of all grid cells having

sea-ice concentrations beyond the cut-off is defined as sea-ice-extent (Parkinson et al., 1999). As

an example, Figure 1.2 shows the sea ice cover on March, June, September, December of 2010,

2015, 2020, where the red, blue, and white represent the ice, water, and land regions, respectively.

It indicates that there is a one-year periodicity and declining trend of sea ice extent.

Previous studies of Arctic sea ice data from geographers focused on the spatial effects or tempo-

ral effects separately. For example, Peng et al. (2013) mainly discussed the temporal variations of

the data by visualizing the decreasing trend of time series of sea ice extent. Cavalieri and Parkinson

(2012) and Peng and Meier (2018) researched on the regional effects of Arctic sea ice by divid-

ing Arctic region into different regions and exploring their trends individually. Even though the

aforementioned studies have provided useful information of Arctic sea ice cover, there are no un-

certainty measures from their descriptive statistics. Recently, Zhang and Cressie (2019) employed
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Figure 1.2: The observations of the sea-ice-extent data on March, June, September, December in
2010, 2015, 2020, respectively.

the dynamic spatial generalized linear mixed model to analyze the September sea-ice data over 20

years, while Zhang and Cressie (2020) extended the model to its Bayesian version and used the

Markov chain Monte Carlo (MCMC) algorithms for inference. However, these two methods only

tackled the single-month data in a short term (e.g., 5 time points) due to the high computational

costs of their algorithms. The statistical models for understanding the spatiotemporal patterns of

the Arctic sea-ice-extent data with binary outcomes and valid computational methods to tackle the

computational challenges are still desired.

We aim to develop a statistical model for analyzing the Arctic sea-ice-extent dataset over 20

years from the perspective of functional data analysis. Some models have been proposed to ana-

lyze the binary functional data. For instance, Hall et al. (2008) proposed a latent Gaussian process

approach by assuming that the generalized observations were inherited from an underlying unob-
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served Gaussian process via the link function (logit link for binary and log-link for count data).

While the Gaussian process could be decomposed via functional principal component analysis

(FPCA). The model fitting was achieved by a local linear smoother. Serban et al. (2013) extended

this approach to model the rare event data (small number of 1’s in binary distribution). Goldsmith

et al. (2015) considered the generalized function-on-scalar regression model where the response

was curve, and the link function could be decomposed as the combinations of covariates with vary-

ing coefficient functions and the subject-specific functions and the random deviation functions,

where the subject-specific and random deviation functions can be approximated via FPCA. Huang

et al. (2014) proposed a method for joint modeling and clustering of non-Gaussian functional data

such as binary and count data. Specifically, the authors used a generalized linear mixed model to

link the binary observations to a latent longitudinal process that admitted an FPCA decomposition.

They utilized a multinomial distribution for the clustering problem. They modeled the paired data

similar to Zhou et al. (2008) in the latent process. Li et al. (2018) proposed an Exponential-family

Functional PCA model with low-rank structure to model the one/two-way bivariate functional data.

They utilized the singular value decomposition techniques and introduced the regularization for the

singular vectors. They implemented the iteratively reweighted least squares (IRLS) method to up-

date the parameters. The aforementioned papers, however, did not consider both the spatial effects

and serial correlation of the data. They cannot directly be applied to analyze the sea-ice-extent

data.

Motivated by analyzing the spatiotemporal-dependent and large-scale Arctic sea-ice-extent

data, we propose a unified model in Chapter 3 to study the dynamic two-dimensional functional

data with a distribution from exponential family. Borrowing the idea of functional principal com-

ponent analysis (Zhou and Pan, 2014a), we develop a model for principal component analysis of

serial correlated two-dimensional functional data. Incorporating with the exponential family of

distributions, the proposed model can be applied to analyze the binary/count data observed over

a continuous domain. Based on the bivariate functional PCA on the smooth natural-parameter

function of the exponential-family distributions, the model integrates the vector autoregression
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onto the functional principal component scores, to analyze both the spatial and temporal variabil-

ities. Furthermore, to deal with the scalability issue of the Arctic sea-ice-extent data, a variational

expectation-maximization algorithm has been implemented into the parameters estimation. Nu-

merical examples including simulation studies and real data analysis show the good performance

of our approach. Finally, the model can be applied to forecast the future observations, which

provides useful information in the Arctic sea-ice-extent data analysis.

1.3 Overall Structure

The rest parts of this dissertation are discussed as below. Chapter 2 introduced the dynamic

Gaussian principal component model for two dimensional functional data with serial correlation.

Incorporating the autoregression into the functional principal component scores, the model can

help analyze the serial correlations among the observations. The EM algorithm along with Kalman

filter and smoother is proposed for model fitting. The numerical examples including a simulation

study and Texas temperature data analysis indicate the good performance of the proposed model

compared with the benchmark method.

Chapter 3 discussed the dynamic exponential-family functional principal component model for

two-dimensional binary/count data. The binary/count functional data can be modeled via a dis-

tribution of exponential family. We assume the natural parameters of exponential-family distribu-

tions can be decomposed as the structure of functional principal components analysis discussed in

Chapter 2. A variational EM algorithm is developed for model fitting to reduce the computational

costs.

Chapter 4 provides the summary and discussions of the future extensions of this dissertation.
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2. PRINCIPAL COMPONENT ANALYSIS OF SERIAL CORRELATED TWO

DIMENSIONAL FUNCTIONAL DATA WITH GAUSSIAN DISTRIBUTION

This chapter is organized as follows. In Section 2.1, we propose the model to analyze the

temporal-dependent two-dimensional functional data on an irregular domain. Section 2.2 investi-

gates an EM algorithm to estimate the parameters where the E step is calculated through Kalman

filter and smoother procedures. The empirical performance of the proposed method is illustrated

via a simulation study and Texas temperature data analysis in Sections 2.3 and 2.4, respectively.

2.1 Mixed-effects Model for Serial Correlated 2-d Functional Data

Let Ω be a compact subset of R2, and (x, y) be the 2-dimensional index variable on Ω. Suppose

Z(x, y) is a stochastic process on Ω with finite second moment,
∫

Ω
E{Z2(x, y)}dxdy < ∞. De-

note the mean function of Z(x, y) as µ(x, y) = E{Z(x, y)} and the covariance function of Z(x, y)

as

K(x1, y1;x2, y2) = E
[
{Z(x1, y1)− µ(x1, y1)}{Z(x2, y2)− µ(x2, y2)}

]
.

Under mild conditions, Mercer’s lemma (Mercer, 1909) shows that there exists an orthonormal se-

quence {φj}j in L2(Ω) as eigenfunctions, and a decreasing non-negative sequence {ζj}j as eigen-

values, such that the covariance function can be expanded as

K(x1, y1;x2, y2) =
∞∑
j=1

ζjφj(x1, y1)φj(x2, y2).

The orthonormality of φj’s means that
∫

Ω
φjφj′ dxdy = δjj′ , where δjj′ is the Kronecker delta.

Applying Karhunen-Loève theorem (Karhunen, 1946; Loève, 1946), the random surface Z(x, y)

admits the following expansion

Z(x, y) = µ(x, y) +
∞∑
j=1

αjφj(x, y), (2.1)
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where αj’s are uncorrelated random variables with mean zero and variances {ζj}j . Following

Ramsay and Silverman (2005), the random variable αj and the eigenfunction φj(x, y) are called

the j-th FPC score and principal component function, respectively.

Assume that Z(x, y) can be well approximated by its projection on the space spanned by the

first J eigenfunctions and treat the rest of terms as the noise, we arrive at the following model

Z(x, y) = µ(x, y) +
J∑
j=1

αjφj(x, y) + ε(x, y), (2.2)

where ε(x, y) is a random variable with mean 0 and variance σ2.

When there are n independent copies of Z(x, y), denoted by Z1(x, y), . . . , Zn(x, y), Zhou

and Pan (2014a) proposed a mixed effects model-based approach and model the PC scores as

the random effects. When the random surfaces Zt(x, y), t = 1, . . . , n, have time and location-

dependent mean function µt(x, y) = E{Zt(x, y)} and Zt(x, y)− µt(x, y) are serial correlated, we

need consider both dependence between the locations and time points.

We first assume that location effect and the time effect are separable such that µt(x, y) =

µ1(x, y)µ2(t). Note that if one multiplies µ1(x, y) by a non-zero constant c and divides µ2(t) by c,

the value of µt(x, y) does not change. For identifiability purpose, we require that the L2-norm of

µ1(x, y) be identity, i.e.,

‖µ1(x, y)‖2 = 1. (2.3)

Next borrowing the idea of FPCA as in (2.2), we propose the model

Zt(x, y) = µ1(x, y)µ2(t) +
J∑
j=1

αj,tφj(x, y) + εt(x, y), t = 1, . . . , n, (2.4)

where αj,t is the j-th FPC score at time t, φj(x, y) is the j-th PC function which are orthonormal,

i.e.,
∫

Ω
φjφj′ = δj,j′ , with δj,j′ being the Kronecker delta, and εt(x, y) is a white noise process with

mean zero and variance σ2.

Furthermore, αj = {αj,t}nt=1, j = 1, . . . , J , are independent stationary time series. For each j,
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the time series {αj,t}nt=1, follows the p-th order autoregressive model (AR(p)). To be specific,

αj,t =

p∑
i=1

kiαj,t−i + ηj,t, ηj,t
ind∼ N(0, σ2

j ), j = 1, . . . , J, t = 1, . . . , n, (2.5)

where ki’s and ηj,t’s are the autoregressive coefficients and white noises of the AR(p) models,

respectively. For the identifiability of the principal components, we assume that σ2
1 > · · · > σ2

J .

Note that when ki = 0, i = 1, . . . , p, the FPC scores αj,t’s are mutually independent and

normally distributed. Then the proposed model (2.4) degenerates to the mFPC model in Zhou and

Pan (2014a). For notation simplicity consideration, we called the proposed model the temporal-

dependent functional PC (tFPC, for short) model.

Assuming that the functions µ1(x, y), µ2(t) and φj(x, y) are smooth, we can approximate them

by basis expansions. For the approximation of bivariate functions µ1(x, y) and φj(x, y), we utilize

the orthonormal bivariate spline basis functions constructed on triangulations (Lai and Schumaker,

2007) due to its advantage on irregular domains. In the following Section 2.1.1, we introduce the

details of bivariate basis on triangulations. As for the basis expansion of univariate function µ2(t),

we can choose from the commonly used regression spline (de Boor, 1978), Bernstein polynomial

(Lai and Schumaker, 2007), and Fourier basis (Ramsay and Silverman, 2005), etc.

To be specific, let b(x, y) denote nb-dimensional vectors of orthonormal bivariate basis func-

tions with ∫
Ω

b(x, y)bT(x, y)dxdy = Inb , (2.6)

and c(t) denote nc-dimensional vectors of univariate basis functions. We write the basis expansions

of the smooth functions as

µ1(x, y) = b(x, y)Tθb, µ2(t) = c(t)Tθc,

and

φj(x, y) = b(x, y)Tθj, j = 1, . . . , J,
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where the basis coefficients θb ∈ Rnb with ‖θb‖ = 1, θc ∈ Rnc , and θj ∈ Rnb , j = 1, . . . , J , are

orthonormal. Denote Θ = (θ1, . . . ,θJ) ∈ Rnb×J and αt = (α1,t, . . . , αJ,t)
T, model (2.4) can be

rewritten as

Zt(x, y) = b(x, y)Tθbθ
T
c c(t) + b(x, y)TΘαt + εt(x, y), (2.7)

and (2.5) becomes

αt =

p∑
i=1

kiαt−i + ηt,

where ηt ∼ N(0,HJ) with covariance matrix HJ = diag(σ2
1, . . . , σ

2
J).

Suppose the sparsely sampled 2-dimensional surfaces are observed at time t = 1, . . . , T . At

time point t, there are nt randomly sampled points (xt1, yt1), . . . , (xtnt , ytnt) on the surface.

Denote zt = (Zt(xt1, yt1), . . . , Zt(xtnt , ytnt))
T, Bt = (b(xt1, yt1), . . . ,b(xtnt , ytnt))

T, εt =

(εt(xt1, yt1), . . . , εt(xtnt , ytnt))
T, and ct = c(t) for notational simplicity. Model (2.7) for both

observed data and latent variables can then be written as

zt = Btθbθ
T
c ct + BtΘαt + εt, εt ∼ N(0, σ2Int),

αt =

p∑
i=1

kiαt−i + ηt, ηt ∼ N(0,HJ),
(2.8)

and the identifiability constraints are the same as mentioned above.

Denote k = (k1, . . . , kp)
T. For model (2.8), the unknown parameters to be estimated are

Ξ = {θb,θc,Θ,k, σ2, {σ2
j}Jj=1}.

2.1.1 Bivariate Spline Basis Functions on a Triangulation

In this section, we discuss the construction of the 2-dimensional orthonormal basis function

b(x, y). One trivial choice is the tensor-product B spline basis functions, i.e., b(x, y) = b1(x) ⊗

b2(y). However, the tensor-product B spline basis functions will cause two problems: (1) the

computational cost is usually expensive due to a large number of tensor-product basis functions;

and (2) this basis can only used in regular regions like rectangle. To overcome these challenges,

we alternatively introduce the Bernstein bivariate polynomial splines on triangulations. The book
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Lai and Schumaker (2007) presented the mathematical properties of the bivariate spline. Zhou and

Pan (2014a) applied such bivariate splines into their mFPC model. Due to the great properties of

Bernstein bivariate spline, there emerged many applications in spatial statistical models (Yu et al.,

2020; Wang et al., 2020). Figure 2.1 depicts the triangulation example that will be used in our

simulation study. As we can see, unlike the commonly used tensor product of univariate basis

functions, this bivariate basis can easily handle the irregular shapes on R2.

Denote δ as a triangle, which has the counter-wise vertices (v1,v2,v3). Then for any point

v ∈ R2, there is a unique representation in the form v = b1v1 +b2v2 +b3v3. The three coefficients

(b1, b2, b3) are called the barycentric coordinates of v with respect to the triangle δ. Given a non-

negative integer d and for any i, j, k such that i + j + k = d, the Bernstein polynomials of degree

d relative to triangle δ are defined as

Bd
ijk(v) =

d!

i!j!k!
bi1b

j
2b
k
3.

Let Pd(δ) be the space of polynomials defined on the triangle δ with degree d. Then the

Bernstein polynomials Bd
ijk, i + j + k = d, form a basis for Pd(δ). That is, for any function

s ∈ Pd(δ), we have

s(v) =
∑

i+j+k=d

γijkB
d
ijk(v).

For an irregular domain, we can construct a triangulation ∆ = {δ1, . . . , δM} whose union cov-

ers the irregular region Ω (see, for example, Lai and Schumaker, 2007). We construct the Bernstein

polynomial basis functions with respect to each δi, and the collection of all such polynomials form

a basis for Pd(∆), the space of continuous piecewise polynomials of degree d on ∆. With addi-

tional smoothness conditions that the derivatives up to r degree are continuous, the bivariate basis

functions b(x, y) are constructed. The details of smoothness conditions are referred to Zhou and

Pan (2014a).
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2.2 Model Fitting

2.2.1 Penalized Complete Data Log Likelihood

Following model (2.8), it is natural to estimate the unknown parameters Ξ by maximizing the

log likelihood function with some penalization to regularize the estimates of the smooth functions.

However, since the latent FPC scores {αt}Tt=1 follow an AR(p) model, it is not feasible to integrate

out {αt}Tt=1 to get an analytical form of the log likelihood function of Ξ. By treating {αt}Tt=1 as

missing data, we can get an analytical form of the complete data log likelihood and then apply the

EM algorithm (Dempster et al., 1977) for parameter estimation.

The negative twice log likelihood is

−2lc(Ξ; {zt}nt=1, {αt}nt=1) = −2 log p(z1, . . . , zn,α1, . . . ,αn).

The joint probability p(z1, . . . , zn,α1, . . . ,αn) can be decomposed into the multiple of the

probability density p(α1, . . . ,αn) and the likelihood of observations given the latent variables,

i.e., p(z1, . . . , zn|α1, . . . ,αn). Thus, the negative twice log likelihood can be written as

−2 log p(z1, . . . , zn,α1, . . . ,αn)

= −2 log p(α1, . . . ,αn)− 2 log p(z1, . . . , zn|α1, . . . ,αn),

(2.9)

The AR(p) time structure indicates that the first part in (2.9) can be decomposed as the joint density

of initial states α1, . . . ,αp and the later states αt|αt−1, . . . ,αt−p for t = p+ 1, . . . , n

−2 log p(α1, . . . ,αn) = −2 log p(α1, . . . ,αp)− 2 log p(αp+1, . . . ,αn|α1, . . . ,αp)

= −2 log p(α1, . . . ,αp)− 2
n∑

t=p+1

log p(αt|αt−1, . . . ,αt−p).
(2.10)
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The second term of (2.10) has the explicit expression as

− 2
n∑

t=p+1

log p(αt|αt−1, . . . ,αt−p)

=
J∑
j=1

n∑
t=p+1

{
log σ2

j +
1

σ2
j

(αj,t − k1αj,t−1 − · · · − kpαj,t−p)2

}
,

which comes from the conditional probability αt|αt−1, . . . ,αt−p ∼ N(
∑p

i=1 kiαt−i,HJ). As for

the initial states, according to the independence of αj for j = 1, . . . , J , and referred to Box et al.

(2015), the first term of (2.10) can be derived as

−2 log p(α1, . . . ,αp) = −2
J∑
j=1

log p(α1j, . . . , αpj)

=
J∑
j=1

{
p log σ2

j − log |Mj|+
1

σ2
j

Spj(k)

}
,

where Spj(k) = α̃T
j Mjα̃j =

∑p
i=1

∑p
k=1m

(j)
ik αj,iαj,k are the residual sum of squares, with α̃j =

(αj,1, . . . , αj,p)
T and k = (k1, . . . , kp)

T. Further, the inverse covariance matrices are

Mj =



γ0 γ1 . . . γp−1

γ1 γ0 . . . γp−2

...
... . . . ...

γp−1 γp−2 . . . γ0



−1

∈ Rp×p (2.11)

where the elements in the matrices γi = E(αj,t+iαj,t)/σ
2
j = E(αj,tαj,t+i)/σ

2
j , i = 0, . . . , p−1, and

j = 1, . . . , J . Therefore, the first part of (2.9) is

−2 log p(α1, . . . ,αn) =
J∑
j=1

{
n log σ2

j − log |Mj|+
1

σ2
j

Sj(k)

}
,
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where the total residual sum of squares is

Sj(k) = Spj(k) +
n∑

t=p+1

(αj,t − k1αj,t−1 − · · · − kpαj,t−p)2 = k̃TDjk̃,

with k̃T = (1,kT) = (1, k1, . . . , kp) and

Dj =



D11,j −D12,j −D13,j . . . −D1,p+1,j

−D12,j D22,j D23,j . . . D2,p+1,j

...
...

...
...

−D1,p+1,j D2,p+1,j D3,p+1,j . . . Dp+1,p+1,j


, (2.12)

and the elements Dik,j = Dki,j = αj,iαj,k + αj,i+1αj,k+1 + · · ·+ αj,n+1−kαj,n+1−i. Further details

can be referred to Box et al. (2015, Appendix A7.4). Following the relationship between observed

variables zt and latent variables αt, the second part of the complete data log likelihood (2.9), i.e.,

the likelihood of the observed data given latent variables can be written as

− 2 log{p(z1, . . . , zn|α1, . . . ,αn)}

= −2
n∑
t=1

log p(zt|αt)

=
n∑
t=1

nt log σ2 +
1

σ2

n∑
t=1

(zt −Btθbθ
T
c ct −BtΘαt)

T(zt −Btθbθ
T
c ct −BtΘαt).

Letting lc(Ξ; {zt}nt=1, {αt}nt=1) denote the complete data log likelihood, it hence can be written as

− 2lc(Ξ; {zt}nt=1, {αt}nt=1)

=
J∑
j=1

{
n log σ2

j − log |Mj|+
1

σ2
j

Sj(k)

}
+

n∑
t=1

nt log σ2

+
1

σ2

n∑
t=1

(zt −Btθbθ
T
c ct −BtΘαt)

T(zt −Btθbθ
T
c ct −BtΘαt),

(2.13)

We next introduce the roughness penalty for the regularization of the estimates of the smooth
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functions. For the univariate function µ2(t), as in Zhou et al. (2008), we use the integrated squared

second derivatives and the roughness penalty takes the form

∫
T

{
∂2µ2(t)

∂t2

}2

dt = θTc

[∫
T

{
∂2c(t)

∂t2
∂2c(t)T

∂t2

}
dt

]
θc := θTc Pθc.

For a generic bivariate function f(x, y), we use the thin plate penalization (Ruppert et al., 2003)

which is defined as

∫
Ω

[{
∂2f(x, y)

∂x2

}2

+ 2

{
∂2f(x, y)

∂x∂y

}2

+

{
∂2f(x, y)

∂y2

}2
]

dxdy.

Denote

Γ =

∫
Ω

{
∂2b(x, y)

∂x2

∂2b(x, y)T

∂x2
+ 2

∂2b(x, y)

∂x∂y

∂2b(x, y)T

∂x∂y
+
∂2b(x, y)

∂y2

∂2b(x, y)T

∂y2

}
dxdy.

With basis expansions, the thin plate penalty for µ1(x, y) and φj(x, y) can be written as, respec-

tively, θbΓθb and θjΓθj , j = 1, . . . , J .

Thus, the penalized complete data log likelihood has the expression

− 2lc(Ξ; {zt}nt=1, {αt}nt=1) + Penalty(λ; Ξ)

=
J∑
j=1

{
n log σ2

j − log |Mj|+
1

σ2
j

Sj(k)

}
+

n∑
t=1

nt log σ2

+
1

σ2

n∑
t=1

(zt −Btθbθ
T
c ct −BtΘαt)

T(zt −Btθbθ
T
c ct −BtΘαt),

+ λµsθ
T
b Γθb + λµtθ

T
c Pθc + λpc

J∑
j=1

θTj Γθj,

(2.14)

where λ = (λµs , λµt , λpc) are the regularization parameters.
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2.2.2 EM Algorithm

To estimate the parameters, instead of minimizing (3.8), the EM algorithm iteratively mini-

mizes

Q(Ξ|Ξ(0)) = E
[
− 2lc(Ξ; {zt}nt=1, {αt}nt=1)|{zt}nt=1,Ξ

(0)
]

+ Penalty(λ; Ξ),

where Ξ(0) are the current guesses of the parameter values (i.e.values of the parameters from the

previous iteration).

The E step. In the E step, we calculate Q(Ξ|Ξ(0)). Denote α̂t = E(αt|{zt}nt=1,Ξ
(0)), Σ̂t =

Var(αt|{zt}nt=1,Ξ
(0)), and D̂j = E(Dj|{zt}nt=1,Ξ

(0)), j = 1, . . . , J . We obtain

Ŝj(k) := E[Sj(k)|{zt}nt=1,Ξ
(0)] = (1,kT)E(Dj|{zt}nt=1,Ξ

(0))(1,kT)T = (1,kT)D̂j(1,k
T)T.

(2.15)

Using (2.13)–(2.15), it shows that

Q(Ξ|Ξ(0)) =
J∑
j=1

{
n log σ2

j − log |Mj|+
1

σ2
j

Ŝj(k)
}

+
n∑
t=1

nt log σ2

+
1

σ2

n∑
t=1

{
(zt −Btθbθ

T
c ct −BtΘα̂t)

T(zt −Btθbθ
T
c ct −BtΘα̂t) (2.16)

+ tr(BtΘΣ̂tΘ
TBt)

}
+ λµsθ

T
b Γθb + λµtθ

T
c Pθc + λpcθ

T
j Γθj,

Hence, to calculate the value of (2.16), we only need calculate α̂t, Σ̂t, and D̂j , j = 1, . . . , J .

Note that model (2.8) can be viewed as a state-space model (Durbin and Koopman, 2012). To

be specific, denote βt = (αT
t+p, . . . ,α

T
t )T, t = 1, . . . , n, where αt = 0 when t ≥ n. Denote
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S =
(
0, · · ·0, I

)
∈ RJ×(p+1)J and

T =

kT ⊗ IJ×J 0J×J

I(pJ)×(pJ) 0(pJ)×J

 =



k1I k2I · · · kpI 0

I 0 · · · 0 0

0 I · · · 0 0

...
...

...
...

0 0 · · · I 0


∈ R(p+1)J×(p+1)J ,

model (2.8) can be rewritten as

zt = Btθbθ
T
c ct + BtΘSβt + εt,

βt = Tβt−1 + ξt,

(2.17)

where ξt = (ηT
t+p,0, · · · ,0)T ∼ N(0, H̃) with H̃ = diag(HJ ,0, · · · ,0) ∈ RJ(p+1)×J(p+1).

Now with the state-space model (2.17), Kalman filter and smoother (Durbin and Koopman,

2012) can be used to obtain b̂t = E(βt|z1, . . . , zn) and Vt = Var(βt|z1, . . . , zn), and we get

α̂t = E(αt|z1, . . . , zn,Ξ
(0)) = Sb̂t,

Σ̂t = Var(αt|z1, . . . , zn,Ξ
(0)) = SVtS

T.

Following (2.12), D̂j , j = 1, . . . , J , can be obtained through computing D̂i,k,j := E(Di,k,j|Z,Ξ(0))

as

D̂i,k,j = E(αj,iαj,k + · · ·+ αj,n+1−kαj,n+1−i|Z,Ξ(0))

= E(αj,i|Z,Ξ(0))E(αj,k|Z,Ξ(0)) + · · ·+ E(αj,n+1−k|Z,Ξ(0))E(αj,n+1−i|Z,Ξ(0))

+ Cov(αi,j, αk,j|Z,Ξ(0)) + · · ·+ Cov(αj,n+1−k, αj,n+1−i|Z,Ξ(0))

= α̂j,iα̂j,k + . . . α̂j,n+1−kα̂j,n+1−i +
n+1−i−k∑

t=1

V(1+p−i)J+j,(1+p−k)J+j,t,

where α̂j,t is the j-th element of α̂t and V(1+p−i)J+j,(1+p−k)J+j,t is the ((1 + p− i)J + j, (1 + p−
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k)J + j)-th element of Vt, t = 1, . . . , n.

The procedure of Kalman filter and smoother (Durbin and Koopman, 2012) involves first ap-

plying Kalman filter algorithm then applying Kalman smoother recursion, we give the details in

the following paragraphs.

Let bt|t−1 and Qt|t−1 respectively be the one-step prediction of βt and its uncertainty, i.e.,

bt|t−1 = E{βt|z1:(t−1),Ξ
(0)} and Qt|t−1 = Var(βt|zt−1, . . . , z1,Ξ

(0)), t = 1, . . . , n. Denote the

estimation of the state at time t and its uncertainty as bt|t = E(βt|zt, . . . , z1,Ξ
(0)) and Qt|t =

Var(βt|zt, . . . , z1,Ξ
(0)), respectively. The Kalman filter operates in a prediction-correction loop.

The prediction step updates


bt|t−1 = T(0)bt−1|t−1

Qt|t−1 = T(0)Qt−1|t−1(T(0))T + H̃(0),

where T(0) and H̃(0) correspond to T and H̃ plugging in the current values of Ξ(0). In the correction

step, we denote Ft = Qt|t−1(BtΘ
(0)S)T{(BtΘ

(0)S)Qt|t−1(BtΘ
(0)S)T+σ2(0)Int}−1 as the Kalman

gain matrix, and update


bt|t = bt|t−1 + Ft{zt −Btθ

(0)
b (θ(0)

c )Tct −BtΘ
(0)Sbt|t−1}

Qt|t = Qt|t−1 − Ft(BtΘ
(0)S)Qt|t−1,

where Θ(0), σ2(0), θ(0)
b , and θ(0)

c correspond to the current values of Θ, σ2, θb, and θc, respectively.

For the initialization, we adopt the commonly used non-informative values that b0|0 = 0 and

Q0|0 = 0.

Next, we apply Kalman smoother recursion to obtain b̂t and Vt, t = n − 1, . . . , 1, using the

updating formula, 
b̂t = bt|t + Lt(b̂t+1 − bt+1|t)

Vt = Qt|t + Lt(Vt+1 −Qt+1|t)L
T
t ,
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where Lt = Qt|t(T
(0))TQ−1

t+1|t with the initial values b̂n = bn|n and Vn = Qn|n due to their

definitions.

The M step. In M step, we find the minimizer of Q(Ξ|Ξ(0)) in (2.16). The explicit form of

minimizer is usually difficult to derive. Note that in (2.16), the parameters, θb,θc,Θ,k, σ2, and

{σ2
j}Jj=1, are separated. Alternatively, we use block-wise optimization and discuss the updating

rules for each parameter when the others are fixed at the current values.

The optimization problem with respect to θb ∈ Rnb in (2.16) is equivalent to minimizing

(θb −m)TA(θb −m), with the constraint that θTb θb = 1, where

m =

{ n∑
t=1

(θ(0)T
c ct)

2BT
t Bt + σ2(0)λµsΓ

}−1 n∑
t=1

(θ(0)T
c ct)B

T
t (zt −BtΘ

(0)α̂t)

and

A =
n∑
t=1

(θ(0)T
c ct)

2BT
t Bt + σ2(0)λµsΓ.

By treating the sphere of θb as an embedded sub-manifold of the nb-dimensional Euclidean space,

θb can be updated using the gradient decent algorithm on a sub-manifold (Absil et al., 2009). The

gradient descent iteration for a sub-manifold includes four steps:

i calculate the negative gradient of the objective function in the Euclidean space without any

constraint;

ii project the obtained negative gradient function onto the tangent space of manifold;

iii evaluate the updating value along the direction of the projected negative gradient in step ii

with a given step size;

iv retract the calculated value in step iii back to the manifold structure.

The step size in the above step iii can be determined using the Armijo backtracking method (see,

for example, Chapter 4.2 of Absil et al., 2009). Algorithm 1 specializes our implementation for

using the gradient decent algorithm on the sphere manifold to solve the optimization problem

(2.16) with respect to θb with more details therein.
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Algorithm 1 Gradient decent algorithm to update θb.

Require: A,m, and scalars β, γ ∈ (0, 1). Initialization θ̂
(0)

b .
for k = 1, 2, . . . do

i) Compute ηk = −2
{
A(θ̂

(k−1)

b −m)− θ̂
(k−1)

b

(
θ̂

(k−1)

b

)T
A(θ̂

(k−1)

b −m)
}

.

ii) Find the smallest integer n ≥ 0 such that f{R
θ̂
(k−1)
b

(βnηk)} ≤ f(θ̂
(k−1)

b ) − γβnηT
kηk,

where R
θ̂
(k−1)
b

(βnηk) = (θ̂
(k−1)

b + βnηk)
/
‖θ̂

(k−1)

b + βnηk‖.

iii) θ̂
(k)

b = R
θ̂
(k−1)
b

(βnηk).

iv) Repeat until ‖θ̂
(k)

b − θ̂
(k−1)

b ‖ is small enough.
end for
return θ̂b = θ̂

(k)

b .

We propose to update θc, σ2, and σ2
j , j = 1, . . . , J , by setting the corresponding block-wise

derivatives to be zero. To be specific, by taking derivative of (2.16) with respect to θc and set it to

zero, we update θc by

θ̂c =

{ n∑
t=1

(Btθ̂bc
T
t )T(Btθ̂bc

T
t ) + σ2(0)λµtP

}−1 n∑
t=1

(Btθ̂bc
T
t )T(zt −BtΘ

(0)α̂t).

Analogously, the updating formula for σ2 is

σ̂2 =
1∑n
t=1 nt

n∑
t=1

{
(zt −Btθ̂bθ̂

T

c ct −BtΘ
(0)α̂t)

T(zt −Btθ̂bθ̂
T

c ct −BtΘ
(0)α̂t)

+ tr(BtΘ
(0)Σ̂tΘ

(0)TBT
t )
}
,

and the updating formula for σ2
j is σ̂2

j = Ŝj(k
(0))/n, j = 1, . . . , J , where Ŝj(k(0)) is defined in

(2.15).

For Θ, we first update the columns of Θ = (θ1, . . . ,θJ) sequentially. Minimizing (2.16) with

respect to θj is equivalent to minimizing

n∑
t=1

∥∥∥∥∥zt −Btθ̂bθ̂
T

c ct −
∑
j′ 6=j

Btθj′α̂tj′ −Btθjα̂tj

∥∥∥∥∥
2

+
n∑
t=1

tr(BtΘΣ̂tΘ
TBT

t ) + σ2λpcθ
T
j Γθj,

22



which has an analytical form

θ̂j =

{ n∑
t=1

(α̂2
tj + Σ̂t,jj)B

T
t Bt + σ̂2λpcΓ

}−1

×
n∑
t=1

BT
t

{
(zt −Btθ̂bθ̂

T

c ct)α̂tj −
∑
j′ 6=j

(α̂tj′α̂tj + Σ̂t,j′j)Btθ̂j′
}
.

To guarantee the orthonormality of Θ̂, we utilize the spectral decomposition of Θ̂ĤJΘ̂
T

, where

ĤJ = diag(σ̂2
1, . . . , σ̂

2
J). To be specific, let Θ̂ĤJΘ̂

T
= Q̃D̃Q̃T, where Q̃ is orthonormal and D̃

is a diagonal matrix with decreasing diagonal elements. We then replace Θ̂ and ĤJ by Q̃ and D̃,

respectively. Furthermore, replace α̂t with Q̃TΘ̂α̂t, such transformation preserves the variance of

Θ̂α̂t.

Finally, we aim to minimize (2.16) with respect to k, which is equivalent to minimizing

J∑
j=1

{
− log |Mj|+

1

σ̂2
j

Ŝj(k)

}
, (2.18)

where Mj and Ŝj(k) are given in (2.11) and (2.15), respectively. Note that the value of log |Mj|

is invariant with the change of sample size n, while the second term in (2.18) is n-dependent. To

simplify the computation, we use the second term
∑J

j=1

{
(1/σ̂2

j )Ŝj(k)
}

to approximate (2.18).

Since Ŝj(k) = (1,kT)D̂j(1,k
T)T has a quadratic form with respect to k, using the weighted least

squares, we obtain

k̂ =

( J∑
j=1

1

σ̂2
j

D̂pj

)−1 J∑
j=1

1

σ̂2
j

d̂j,

where d̂j = (D̂12,j, . . . , D̂1(p+1),j)
T and D̂pj is the bottom right p× p major submatrix of D̂j .

2.2.3 Model Selection

The general guideline for constructing triangulation is that we should avoid having triangles

with a very small interior angle and that there is no triangle that contains no data point. We refer

to Chapter 4 of Lai and Schumaker (2007) for a detailed discussion of triangulations. When the
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penalized spline method is used, the number of basis functions is not crucial in many applications

as long as it is moderately large, since the roughness penalty helps regularize the estimation and

prevent overfitting (Ruppert et al., 2003). Furthermore, the smoothness of the 2-dimensional basis

functions b(x, y) is determined by the order d of polynomials and the order r of the smoothness

parameter on the connected edges of triangulations. Practically, these two orders can also be

given by the users based on the prior knowledge of the data. The number of principal component

functions is determined by the empirical proportion of variances of temporal FPC scores. The order

p of autoregressive model for the latent variables can be selected using a data-driven criteria like

Akaike information criteria (AIC, Akaike, 1974) or Bayesian information criteria (BIC, Schwarz,

1978), such that p minimizes

J∑
j=1

{
n log σ̂2

j +
1

σ̂2
j

Ŝj(k̂)
}

+ 2p,

or
J∑
j=1

{
n log σ̂2

j +
1

σ̂2
j

Ŝj(k̂)
}

+ log(n)p.

The regularization parameters λµs , λµt , and λpc can be determined by minimizing the value of

K-fold leave-location-out cross validation (CV), with a typical choice of K = 5 or K = 10.

Nevertheless, since there are three regularization parameters, the classical full grid-search will be

impractical due to high computational cost. Alternatively, we propose to use the simplex method

(Nelder and Mead, 1965) to find the local optima. The overall selection procedure for the regu-

larization parameters (λµs , λµt , λpc) contains two steps. In the first step, we assign a few number

of grid points sparse enough to cover a wide range of regularization parameters, and apply k-fold

CV to determine the best candidate according to the crossed predictive errors. Afterwards, we

treat the selected point as the initial value and use the simplex method to obtain the final selected

regularization parameters with local optimality.
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2.3 Simulation Studies

In this section, we present the results of a simulation study to assess the performance of the

proposed tFPC method and compare with that of mFPC in Zhou and Pan (2014a). The irregular

domain Ω was set to be a 2 × 2 square with a hole in the middle, as shown in Figure 2.1. We

generated data on this region according to model (2.4) and (3.3) with J = 2 principal components

and order of the AR model p = 2. The mean function and the PC functions are given as follows,

µt(x, y) = µ1(x, y)µ2(t),

where
µ1(x, y) = 5

{
exp

(√
0.1x2 + 0.2y

)
+ exp

(
−
√

0.1x2 + 0.2y
)}
,

µ2(t) = 1 or µ2(t) = cos(2πt/12) + t/n,

φ1(x, y) = 0.8578 sin(x2 + 0.5y2),

φ2(x, y) = 0.8721 sin(0.3x2 + 0.6y2)− 0.2988 sin(x2 + 0.5y2).

Note that the PC functions are orthonormal such that
∫

Ω
φ2

1(x, y)dxdy = 1,
∫

Ω
φ2

2(x, y)dxdy = 1

and
∫

Ω
φ1(x, y)φ2(x, y)dxdy = 0.

In the simulation study, we considered four setups: i) µ2(t) = cos(2πt/12) + t/n with AR(2)

coefficients k1 = 0.8 and k2 = 0.1; ii) µ2(t) = cos(2πt/12) + t/n with AR(2) coefficients

k1 = k2 = 0; iii) µ2(t) = 1 with AR(2) coefficients k1 = 0.8 and k2 = 0.1; iv) µ2(t) = 1 with

AR(2) coefficients k1 = k2 = 0. Note that in setup (ii) and (iv) the AR(2) model degenerates to

a white noise model such that FPC scores are independent. In each setup, we used two levels of

variances: σ2 = 1, (σ2
1, σ

2
2) = (1, 0.1); or σ2 = 0.1, (σ2

1, σ
2
2) = (0.1, 0.01). To simulate a data

set, we set the number of time points n = 500. At each time t, t = 1, · · · , 500, the number of

observed locations was drawn from {50, 51, . . . , 60} uniformly and each location was randomly

drawn from a uniform distribution on the irregular domain. We ran the simulation 100 times for

each combination of the four setups and the two levels of variances. Both the proposed tFPC model

and the mFPC model to were applied on each simulated data.
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Figure 2.1: An example of triangularization: a square with a hole in the middle used in the simu-
lation study.

Since the mFPC model assumes a mean function constant over t, to apply the mFPC model

in setup i) and ii), we took a two-step approach: 1) estimated the mean function µt(x, y) by basis

expansion, and 2) applied the mFPC model on the residuals. To construct the basis functions in

step 1), We first ignored the location effect and constructed a crude estimate of overall time effect

by regressing the data on time domain basis functions 1, t, plus Fourier basis functions sin(2kπt
12

),

cos(2kπt
12

), k = 1, · · · , 10; the fitted function is defined as ν̃(t). The basis functions for estimating

µ1(x, y)µ2(t) were generated by multiplying ν̃(t) with bivariate basis functions on the domain Ω

described in next paragraph.

For both approaches, on the domain Ω, the triangulations were presented in Figure 2.1. The

bivariate basis functions were constructed from Bernstein polynomials with d = 3 (cubic order

splines) and r = 1 (continuous first derivative across the connected edges), same as that in Zhou

and Pan (2014b). See Section 2.1.1 of Supplementary Materials for details on basis construction.

On the time domain, in setup i) and ii), to model µ2(t) with tFPC approach, we used basis functions

1, t, plus Fourier basis functions sin(2kπt
12

), cos(2kπt
12

), k = 1, · · · , 10.
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Setup σ2, (σ2
1, σ

2
2) Model PA MIAE µt(x, y) MIAE Zt(x, y)

tFPC 4.8426 (0.0809) 0.1206 (0.0054) 0.1433 (0.0003)
1.0, (1.0, 0.1)

mFPC 6.4969 (0.3397) 0.2189 (0.0089) 0.1805 (0.0023)
tFPC 4.7622 (0.0780) 0.0377 (0.0017) 0.0452 (0.0001)

i)
0.1, (0.1, 0.01)

mFPC 8.3236 (0.3948) 0.0737 (0.0032) 0.0589 (0.0008)
tFPC 9.4752 (0.1582) 0.0478 (0.0011) 0.1409 (0.0003)

1.0, (1.0, 0.1)
mFPC 19.142 (0.8928) 0.0697 (0.0008) 0.1590 (0.0009)
tFPC 9.4025 (0.1642) 0.0145 (0.0003) 0.0442 (0.0001)

ii)
0.1, (0.1, 0.01)

mFPC 23.103 (0.3607) 0.0256 (0.0003) 0.0523 (0.0002)
tFPC 4.6808 (0.0778) 0.1014 (0.0055) 0.1359 (0.0003)

1.0, (1.0, 0.1)
mFPC 5.1745 (0.2513) 0.1341 (0.0083) 0.1525 (0.0019)
tFPC 4.7334 (0.0775) 0.0543 (0.0029) 0.0430 (0.0001)

iii)
0.1, (0.1, 0.01)

mFPC 4.9064 (0.0920) 0.0603 (0.0038) 0.0475 (0.0001)
tFPC 9.3640 (0.1545) 0.0291 (0.0011) 0.1362 (0.0003)

1.0, (1.0, 0.1)
mFPC 11.770 (0.6829) 0.0429 (0.0022) 0.1398 (0.0008)
tFPC 9.4162 (0.1608) 0.0108 (0.0003) 0.0434 (0.0001)

iv)
0.1, (0.1, 0.01)

mFPC 11.707 (0.7475) 0.0110 (0.0003) 0.0442 (0.0002)

Table 2.1: The means and standard errors of PAs and MISEs for the mean function µt(x, y) and
the stochastic surface Zt(x, y). The results are based on 100 simulation runs.

In setup iii) and iv) the mean function is constant over t, which is the assumption in the mFPC

model, for fair comparison between the two approaches, we modified the model fitting procedure

in tFPC approach by assuming that µ2(t) = 1 is known.

For simplicity, the number of PCs and the order of AR in our simulation study were set to be

the same as the true ones. We selected the three penalty parameters (λµs , λµt , λpc) by minimizing

the value of 5-fold leave-location-out CV with simplex method.

To quantitatively measure the performance of the estimation of the mean function and the

stochastic surfaces, we use the mean integrated absolute errors (MIAE) defined as

1

n

n∑
t=1

∫
Ω

|f(x, y, t)− f̂(x, y, t)|dxdy,

where the integration is evaluated as a scaled sum over 1976 grid points distributed evenly on the

spatial domain (the grid points are 51× 51 points evenly distributed on the rectangle with those in

the hole been removed).
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Figure 2.2: The temporal principal component functions in the first setting of simulation study. The
first and second principal functions are depicted in the first and second rows, respectively. From
left to right are the true PC functions, the estimation of the proposed tFPC, and of the alternative
mFPC.

To evaluate the performance of the estimations of the principal component functions, We use

the principal angle (PA) as follows: We first evaluated the principal component functions on 1976

grid points evenly distributed over the domain and obtained two matrices V̂ and V, corresponding

to the estimated and the true principal component functions. We then compute the principal angle

as angle = cos−1(ρ) × 180/π where ρ is the minimum singular value of the matrix QT
V̂

QV with

QV̂ and QV being the orthonormal matrices of the QR decomposition of V̂ and V, respectively

(Golub and Van Loan, 2013).

The means and standard errors of MIAEs of the mean function and stochastic surfaces and PAs

of the PC functions from the 100 simulation runs are given in Table 2.1. It is clear from this table

that the tFPC model outperforms the mFPC model in setup i), ii) and iii) where the tFPC model

gives smaller average MIAEs and PAs. In setup iv), the two models have smaller average PAs but
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Figure 2.3: The individual functions in first setting of simulation study. From left to right are
the contours at time points t = 100, 200, 300, and 400. The true function, the estimation of
the proposed tFPC, and of the alternative mFPC are depicted in the first, second, and third rows,
respectively.

similar results in mean function and stochatic surface estimation.

The contour plots and heat maps of the true and estimated temporal principal component func-

tions of one random replicate in setting i) with σ2 = 0.1 are depicted in Figure 2.2. Compared

with mFPC, the estimated temporal PC functions using proposed tFPC is slightly closer to the true

ones. We then depict the contour plot and heat map of the true individual functions and their best

linear unbiased prediction (BLUP) by two methods in Figure 2.3. It is confirmed that the results of

tFPC is consistently better in the sense that its predicted contours are more precise.

Finally, the estimated real-valued parameters, including the autoregressive coefficients and the

variances of time series and observational noise, are summarized in Tables 2.2 and 2.3 for our
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Setting k̂1 (k1 = 0.8 or 0) k̂2 (k2 = 0.1 or 0) σ̂2 (σ2 = 1) σ̂2
1 (σ2

1 = 1) σ̂2
2 (σ2

2 = 0.1)
i) 0.8342 (0.0059) 0.0594 (0.0053) 0.9994 (0.0009) 1.0085 (0.0080) 0.0928 (0.0018)
ii) 0.0027 (0.0041) 0.0009 (0.0040) 0.9978 (0.0009) 0.9878 (0.0069) 0.0952 (0.0010)
iii) 0.8088 (0.0046) 0.0864 (0.0045) 1.0001 (0.0009) 0.9994 (0.0077) 0.0972 (0.0011)
iv) -0.0002 (0.0042) -0.0017 (0.0040) 0.9991 (0.0009) 0.9903 (0.0070) 0.0956 (0.0010)

Table 2.2: The performance of parameters estimating in the simulation study for the noise level
σ2 = 1 and (σ2

1, σ
2
2) = (1, 0.1). Reported are the means of estimations and the standard errors (in

parenthesis) based on 100 data replications.

Setting k̂1 (k1 = 0.8 or 0) k̂2 (k2 = 0.1 or 0) σ̂2 (σ2 = 0.1) σ̂2
1 (σ2

1 = 0.1) σ̂2
2 (σ2

2 = 0.01)
i) 0.8440 (0.0056) 0.0528 (0.0051) 0.0998 (0.0001) 0.1007 (0.0008) 0.0086 (0.0002)
ii) 0.0011 (0.0042) -0.0002 (0.0040) 0.0997 (0.0009) 0.0989 (0.0007) 0.0094 (0.0001)
iii) 0.8063 (0.0044) 0.0865 (0.0043) 0.0998 (0.0001) 0.0997 (0.0008) 0.0098 (0.0001)
iv) -0.0015 (0.0042) -0.0027 (0.0039) 0.0998 (0.0001) 0.0989 (0.0007) 0.0096 (0.0001)

Table 2.3: The performance of parameters estimating in the simulation study for the noise level
σ2 = 0.1 and (σ2

1, σ
2
2) = (0.1, 0.01). Reported are the means of estimations and the standard errors

(in parenthesis) based on 100 data replications.

proposed tFPC model. Overall, it shows that the parameters are estimated accurately in all settings

using tFPC model. Note that settings ii) and iv) are the cases that the PC scores are i.i.d. random

variables. Our proposed tFPC model is able to estimate the autoregressive coefficients close to

zeros implying the robustness of this method.

2.4 Texas Temperature Data Analysis

In this section, we apply the proposed model to study the climate change of Texas by an-

alyzing Texas temperature data downloaded from United States Historical Climatology Network,

Version 2.5 (USHCN v2.5, https://cdiac.ess-dive.lbl.gov/epubs/ndp/ushcn/

ushcn.html). Our data set consists of monthly average temperatures from January 1915 to De-

cember 2014 recorded by 49 weather stations located in Texas. The locations of these weather

stations are shown in Figure 2.4.

With an area of 696,200 km2, Texas has diverse physical geography and climate types. In

general, in the eastern half of Texas, where lie the Gulf Coastal Plains and the North Central Plains,
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the climate is humid subtropical; in the western half, where lie the deserts and tall mountains,

climate is semi-arid. Due to various reasons, 6.82% of the data were missing. In particular, only 3

stations have complete records while about 13 stations miss more than 120 months of data. There

is no clear pattern in the missing of the data.

To apply the proposed tFPC model on the data, we first smoothed the data by removing the

location effect and time effect. We took two-step method. We first removed the location effect by

fitting a nonparametric regression zt(x, y) = µ(x, y) + εt(x, y) = b(x, y)Tθµ + εt(x, y), where we

utilized the same Bernstein polynomial basis on triangulations as the bivariate basis b(x, y). We

used the penalized least squares approach with the roughness penalty matrix Γ discussed in Section

2.2. While the penalty parameter was selected by cross-validation. After removing the location

effect and denoting z̃t(x, y) = zt(x, y)−b(x, y)Tθ̂b, we applied another nonparametric regression

such that z̃t(x, y) = ν(t) + ηt(x, y) = c(t)Tθν + ηt(x, y). Similarly, we used the penalized least

squares to obtain the time effect c(t)Tθ̂ν and removed it from z̃t(x, y). Finally, we obtained the

data without both location effect and time effect zt(x, y)demean = zt(x, y)−b(x, y)Tθ̂µ− c(t)Tθ̂ν .
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Figure 2.4: Triangulation used in the application to the Texas temperature data analysis.
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The triangulations were constructed as in Figure 2.4 to cover the irregular domain of Texas and

that there are some weather stations in each triangle. On these triangles, the Bernstein polynomial

bivariate splines were constructed with d = 3 (cubic order splines) and r = 1 (continuous first

derivative across the connected edges) as used in Zhou and Pan (2014b). As for the temporal basis,

considered the seasonal effect and the climate change over the 100 years, we used the Fourier

basis functions sin(2kπt
12

), cos(2kπt
12

), k = 1, · · · , 25, plus cubic polynomials. Following Section

3.4, by checking the empirical proportions of variances of temporal FPC scores, the number of

principal components was chosen as J = 3. Using a criteria like AIC, we selected the order of

autoregressive model to be p = 4. The three penalty parameters λµs , λµt , and λpc were selected by

5-fold CV with simplex method.
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Figure 2.5: The estimated means of September, December in 1930, 1970, 2014, respectively.

The top row of Figure 2.5 depicts the estimated mean functions µ(xi, yi)+ν(tj)+µ1(xi, yi)µ2(tj)

(fixed tj , and varied (xi, yi) within the domain) in September on 1930, 1970, 2014, respectively.
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Figure 2.6: Left: the estimated trends of different cities. Right: the estimated one period of
different cities.

While the bottom row of Figure 2.5 presents the estimated mean functions in December on the

same years. The contours of these figures show that the overall temperature has a decreasing trend

from 1930 to 1970, while there is a increasing trend from 1970 to 2014.

The left panel of Figure 2.6 shows the overall trends µ(xi, yi) + ν(t) + µ1(xi, yi)µ2(t) (fixed

(xi, yi), varied t within 1200 months.) of Austin, Dallas, Houston, and El Paso. The average

temperature trends generally decrease when the latitudes of cities increase, while El Paso has a

similar trend with Dallas. Besides, the right panel of Figure 2.6 depicts one-period of different

cities. As we can see from this figure, the cities with lower latitude generally have smaller ranges

in one period. While El Paso has a larger temperature range within one period compared with

Dallas (which has higher latitude). It may be caused by the location in mountain region of El Paso

compared with the locations in plain region of other cities.

To show the main patterns of spatial variation, we also depict the contour plot and heat map

of the estimated principal component functions in Figure 2.7. The first PC surface varies slightly

almost over the whole state of Texas, which indicates the average deviation of the temperature in

Texas. The second PC surface varies in parallel with the latitude of Texas, which indicates that the

variation of the temperature is due to the change of latitude. As we know, the altitude of western
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Texas gradually decrease forward to eastern, while the eastern Texas is a plain. The contour lines

of the third PC surface varies the same with the geospatial location of Texas meaning that the third

PC function may be considered as the altitude effects.

First PC function

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

−106 −102 −98 −94

26
28

30
32

34
36

 0.02 

 0.02 

Second PC function

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

−106 −102 −98 −94

26
28

30
32

34
36

 −0.03 

 −0.02 

 −0.01 
 0 

 0.01 

 0.02 

 0.03 

Third PC function

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

−106 −102 −98 −94

26
28

30
32

34
36

 −
0.

03
 

 −
0.

01
 

 0
.0

1 

 0
.0

2  0.03 

Figure 2.7: The first three principal component functions for the real data analysis.

To compare the proposed method of tFPC with the alternative mFPC model, we left one

weather station at Albany (location: 99.27W, 32.72N) out as the predicted target and used the

temperature data of the other 48 weather stations as the training data. In other words, the monthly

temperature at Albany was predicted along 100 years by tFPC model trained from other weather

stations. To apply mFPC model on the training data, note that the change of Texas temperature is

more than 20 degrees Celsius from winter to summer, and i.i.d assumption on mFPC model may

be violated. For fair comparison, we thus separated the data in each month to train mFPC model.

After fitting the models and comparing with the observed values in the testing weather station, we

calculated the prediction error (PE). Figure 2.8 depicts boxplot of PE of the proposed tFPC and the

alternative mFPC for each month. It shows that tFPC outperforms mFPC in most months such as

January to March and October to December, and has the similar results in the other months.

We also compare the performance of short-term forecasting using tFPC and mFPC models.

The training set of tFPC model is the first 99 years and the test set is the following three months.

In other words, we applied the tFPC model to the data of training set (January 1915–December
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Figure 2.8: Monthly prediction error (PE) at New Brunfels for two methods.

2013), and used the trained model to predict the temperature of 49 weather stations for January

2014–March 2014. To be specific, the temporal FPC scores were forecasted according to the

trained AR(p) model (2.5). For the mean effect, we adopted the extrapolation of Fourier basis on

the time domain due to the product form (2.4) of the mean function. As for mFPC model, we

separated the monthly temperature average data for January, February, and March from the first 99

years to train mFPC models monthly, and predicted the temperatures of the following three months.

We compared the predicted values of temperature with the true ones of 49 weather stations. The

results of the residual boxplots are presented in Figure 2.9, which confirms the advantage of using

tFPC in terms of forecasting.

35



−5.0

−2.5

0.0

2.5

Jan Feb Mar
month

P
E

method

mFPC

tFPC

Figure 2.9: The prediction error of two methods for the monthly temperature in January–March,
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3. PRINCIPAL COMPONENT ANALYSIS OF SERIAL CORRELATED TWO

DIMENSIONAL FUNCTIONAL DATA WITH A DISTRIBUTION FROM

EXPONENTIAL FAMILY

This chapter is organized as follows. In Section 3.1, we propose a principal component model

for serial correlated 2-dimensional functional data with a distribution from exponential family. In

Section 3.2, we present the details of penalized likelihood, while the variational-EM algorithm are

emphasized in Section 3.3 to solve the scalability problem. Section 3.4 introduces the implemen-

tation details of model selection. Simulation studies and the Arctic sea-ice-extent data analysis are

discussed in Sections 3.5 and 3.6, respectively. Technical details can be found in Appendix A.

3.1 Mixed Effects Model for Serial Correlated 2-d Functional Data with A Distribution

from Exponential Family

Denote (x, y) ∈ Ω as a 2-dimensional index variable in a compact subset Ω ⊂ R2 and t ∈

{1, . . . , T} as the time variable. Let Zt(x, y) be the sequential random variables at (x, y) and time

point t. Assume that Zt(x, y) follows a distribution from exponential family,

p
(
Zt(x, y)|γt(x, y)

)
= h

(
Zt(x, y)

)
exp

{
Zt(x, y)γt(x, y)− g

(
γt(x, y)

)}
, (3.1)

where γt(x, y), h(·), g(·) are the natural-parameter function, normalization function, and cumulant

function, respectively. Some commonly-used distributions such as binary distribution with success

probability function pt(x, y) and Poisson distribution with intensity function λt(x, y) can be written

as the form of exponential-family distributions (3.1). The natural-parameters of binary and Poisson

are γt(x, y) = log{pt(x, y)/(1− pt(x, y))} and γt(x, y) = log λt(x, y), respectively.

Suppose that natural-parameter function γt(x, y) can be decomposed as

γt(x, y) = E{γt(x, y)}+
J∑
j=1

αj,tφj(x, y) + εt(x, y),
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where E{γt(x, y)}, αj,t, and φj(x, y) are the mean function, functional principal component (FPC)

scores with serial correlation, and smooth FPC functions, respectively. εt(x, y) is the white noise

with mean 0 and variance σ2. The FPC functions admit orthonormality, i.e.,

∫
Ω

φi(x, y)φj(x, y)dxdy = δij,

where δij is the Kronecker delta. We further assume that the mean function E{γt(x, y)} can be sep-

arated into the multiplication of a smooth bivariate function of location µ1(x, y) and a continuous

function of time µ2(t). Thus the model can be rewritten as

γt(x, y) = µ1(x, y)µ2(t) +
J∑
j=1

αj,tφj(x, y) + εt(x, y). (3.2)

As stated in (3.2), the natural-parameter function γt(x, y) consists of three parts, the mean

function, the FPCs, and the measurement error. While the part of mean function is treated as the

fixed effect, the FPCs are considered as the random effects whose randomness comes from the

FPC scores {αj,t}. We can view model (3.2) as a mixed-effects model of γt(x, y).

Assume the FPC scores with serial correlation {αj,t} in (3.2) follow the p-th order auto-

regressive (AR(p)) model

αj,t =

p∑
`=1

k`αj,t−` + ηj,t, j = 1, . . . , J, t = 1, . . . , T, (3.3)

where k`’s are the coefficients of AR(p) models, and ηj,t’s follow a normal distribution with mean 0

and variance σ2
j , j = 1, . . . , J , independently. For the identifiability of the FPC scores, we assume

that the coefficients k`’s of AR(p) models are identical with respect to any j-th FPC scores and the

variances σ2
j ’s are monotonically decreasing, i.e., σ2

1 > σ2
2 > · · · > σ2

J .

One special attention in (3.2) is that the magnitude of mean functions can shift between µ1 and

µ2. It only can be identified up to a scaling constant. For example, {cµ1(x, y)} × {µ2(t)/c} are

equivalent to µt(x, y) = µ1(x, y)µ2(t) for a nonzero constant c. For the identifiability of the mean
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functions µ1 and µ2, we impose a L2-norm constraint on µ1(x, y) such that

‖µ1(x, y)‖2 = 1. (3.4)

Since µ1(x, y), µ2(t), φj(x, y) are functions which are intrinsically infinite-dimensional, it is

impossible to obtain the estimation of these functions directly. Instead, we approximate the func-

tions by basis expansions

µ1(x, y) = b(x, y)Tθb, µ2(t) = c(t)Tθc,

and

φj(x, y) = b(x, y)Tθj, j = 1, . . . , J,

where θb ∈ Rnb ,θc ∈ Rnc and θj ∈ Rnb , j = 1, . . . , J are the basis coefficients. b(x, y) =

(b1(x, y), . . . , bnb(x, y))T are the nb-dimensional vectors of bivariate basis functions and c(t) =

(c1(t), . . . , cnc(t))
T are the nc-dimensional vectors of univariate basis functions. For the identifia-

bility consideration, we assume that b(x, y) is orthonormal, i.e.,

∫
Ω

b(x, y)bT(x, y)dxdy = Inb .

In the numerical examples discussed in Sections 3.5 and 3.6, we consider using the triangulated

Bernstein polynomial functions (Lai and Schumaker, 2007) as the bivariate basis functions b(x, y)

due to its advantage on irregular domains. Further properties of Bernstein polynomial functions

can be referred to Zhou and Pan (2014b). Two examples of triangulations are given in Figures 2.1

and 3.8. As for the univariate basis functions c(t), the commonly-used Fourier basis functions and

polynomial basis functions can be applied to capture the seasonality and trends, respectively. With

the basis expansions, we rewrite the model in (3.2) as

γt(x, y) = b(x, y)Tθbθ
T
c c(t) + b(x, y)TΘαt + εt(x, y),
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where Θ = (θ1, . . . ,θJ) and αt = (α1,t, . . . , αJ,t)
T. Meanwhile, vectorizing the p-th order auto-

regressive model of FPC scores, (3.3) is rewritten as

αt =

p∑
`=1

k`αt−` + ηt,

where ηt ∼ N(0,HJ) with the covariance matrix HJ = diag(σ2
1, . . . , σ

2
J). Note that the constraint

in (3.4), the orthonormal constraints of the FPC functions and bivariate basis functions b(x, y)

imply that

‖θb‖2 = 1 and ΘTΘ = I. (3.5)

Suppose we have nt randomly sampled points (xt1, yt1), . . . , (xtnt , ytnt) on the surface at time point

t = 1, . . . , T . Denote the observed data and the corresponding latent variables at time t as

zt ≡ (Zt(x1, y1), . . . , Zt(xnt , ynt))
T, γt ≡ (γt(x1, y1), . . . , γt(xnt , ynt))

T.

Write Bt = (b(xt1, yt1), . . . ,b(xtnt , ytnt))
T and εt = (εt(xt1, yt1), . . . , εt(xtnt , ytnt))

T and let

g(γt) =
(
g(γt(x1, y1)), . . . , g(γt(xnt , ynt))

)T. For notational simplicity, denote ct = c(t) and

k = (k1, . . . , kp)
T. The proposed model given in (3.1)–(3.3) can be rewritten as

p(zt|γt) = exp{zT
t γt − 1Tg(γt)}

nt∏
i=1

h(zi,t),

γt = Btθbθ
T
c ct + BtΘαt + εt, εt ∼ N(0, σ2Int),

αt =

p∑
`=1

k`αt−` + ηt, ηt ∼ N(0,HJ),

(3.6)

subject to the constraints in (3.5). We call the proposed model as temporal-dependent exponential-

family functional principal component (tEFPC, for short) model.

The unknown parameters to be estimated are Ξ = {θb,θc,Θ, σ2,HJ ,k}.
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3.2 Penalized Complete Data Likelihood

Denote Z = {zt}Tt=1, γ = {γt}Tt=1, and α = {αt}Tt=1. The marginal likelihood L(Ξ; Z) =∫ ∫
p(Z,γ,α)dγdα does not have an analytical expression with respect to Z. Hence it is diffi-

cult to obtain the estimates of the parameters Ξ directly by maximizing the marginal likelihood.

Instead we propose to use an expectation-maximization (EM) algorithm to estimate Ξ, which will

be discussed in Section 3.3. In this section, we first introduce the complete data log-likelihood

lc(Ξ; Z,γ,α) = log p(Z,γ,α), which can be separated into the following three parts:

lc(Ξ; Z,γ,α) = log p(Z|γ) + log p(γ|α) + log p(α). (3.7)

The first part on the right hand side of Equation (3.7) can be derived as

log p(Z|γ) =
T∑
t=1

{zT
t γt − 1Tg(γt)}.

While the second part of (3.7) is

log p(γ|α) = −1

2

T∑
t=1

nt log σ2− 1

2σ2

T∑
t=1

{γt−Btθbθ
T
c ct−BtΘαt}T{γt−Btθbθ

T
c ct−BtΘαt}.

The third part is the distribution of the FPC scores α, which can be written as

log p(α) = −1

2

J∑
j=1

{
T log σ2

j − log |Mj|+
1

σ2
j

Sj(k)
}
,

Thus the complete data log likelihood can be derived as

lc(Ξ; Z,γ,α) =
T∑
t=1

(
zT
t γt − 1Tg(γt)

)
− 1

2

T∑
t=1

nt log σ2

− 1

2σ2

T∑
t=1

(
γt −Btθbθ

T
c ct −BtΘαt

)T(
γt −Btθbθ

T
c ct −BtΘαt

)
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− 1

2

J∑
j=1

(
T log σ2

j − log |Mj|+
1

σ2
j

Sj(k)
)
.

where Mj is the precision matrix of (αj,t, . . . , αj,t+p−1)T, and Sj(k) = (1,kT)Dj(1,k
T)T is the

sum of squares from the j-th component of α. The quadratic matrix Dj is

Dj =



D11,j −D12,j −D13,j . . . −D1(p+1),j

−D12,j D22,j D23,j . . . D2(p+1),j

...
...

...
...

−D(p+1)1,j D(p+1)2,j D(p+1)3,j . . . D(p+1)(p+1),j


,

with its components Dik,j = Dki,j = αj,iαj,k + αj,i+1αj,k+1 + · · ·+ αj,n+1−kαj,n+1−i. The details

can be found in Box et al. (2015) and Chapter 2 of this dissertation.

When implementing tEFPC, the number of basis functions should be moderately large enough

to capture the location/time variations of the natural-parameter function. However, a large number

of basis functions may result in the overfitting problem. We introduce the penalized likelihood to

avoid the overfitting issue. The objective function of penalized likelihood that we try to minimize

is the combination of the complete data log-likelihood and the regularization component, i.e.,

Obj(Ξ, λ) = −2lc(Ξ; Z,γ,α) + Penalty(λ),

where Penalty(λ) is the roughness penalty used to regularize the flexibility of functions, with tun-

ing parameters λ to be selected. Specifically, we penalize the integrated squared second derivatives

of functions. For the univariate function µ2(t) = c(t)Tθc, the penalty is

∫
T

{
∂2µ2(t)

∂t2

}2

dt = θTc

∫
T

{
∂2c(t)

∂t2
∂2c(t)T

∂t2

}
dtθc = θTc Pθc,
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where P denote the roughness penalty matrix of the univariate basis, i.e.,

P =

∫
T

{
∂2c(t)

∂t2
∂2c(t)T

∂t2

}
dt.

For the bivariate function f(x, y) (i.e., µ1(x, y) and φj(x, y)), we use the thin-plate penalization

(Ruppert et al., 2003) as the roughness penalty, i.e.,

∫
Ω

[{
∂2f(x, y)

∂x2

}2

+ 2

{
∂2f(x, y)

∂x∂y

}2

+

{
∂2f(x, y)

∂y2

}2
]

dxdy.

Let Γ denote

∫
Ω

{
∂2b(x, y)

∂x2

∂2b(x, y)T

∂x2
+ 2

∂2b(x, y)

∂x∂y

∂2b(x, y)T

∂x∂y
+
∂2b(x, y)

∂y2

∂2b(x, y)T

∂y2

}
dxdy;

then, the penalties for µ1(x, y) and φj(x, y) can be written as θbΓθb and θjΓθj , j = 1, . . . , J ,

respectively. Hence, the overall roughness penalty is

Penalty(λ) = λµsθ
T
b Γθb + λµtθ

T
c Pθc + λpc

J∑
j=1

θTj Γθj,

where λ = (λµs , λµt , λpc) are the regularization parameters. In summary, the penalized complete

data log likelihood is

Obj(Ξ, λ) = −2
T∑
t=1

{zT
t γt − 1Tg(γt)}+

T∑
t=1

nt log σ2

+
1

σ2

T∑
t=1

{γt −Btθbθ
T
c ct −BtΘαt}T{γt −Btθbθ

T
c ct −BtΘαt}

+
J∑
j=1

{
T log σ2

j − log |Mj|+
1

σ2
j

Sj(k)
}

+ λµsθ
T
b Γθb + λµtθ

T
c Pθc + λpc

J∑
j=1

θTj Γθj.

(3.8)
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With the penalized complete data log-likelihood, we therefore utilize the EM algorithm to

iteratively update the locally optimal estimated values of parameters. The detailed EM algorithm

will be introduced in Section 3.3.

3.3 The EM algorithm

3.3.1 The E-Step

In the E-step, denote Ξ(0) as the values of parameters derived from the previous iteration of the

EM algorithm. At the current step, let Q(Ξ; Ξ(0)) be the conditional expectation of (3.8), i.e.,

Q(Ξ|Ξ(0)) = E[−2 log p(Z,γ,α) + Penalty(λ)|Z,Ξ(0)].

Denote γ̂t = E[γt|Z,Ξ(0)], Γ̂t = var[γt|Z,Ξ(0)], α̂t = E[αt|Z,Ξ(0)], Σ̂t = var[αt|Z,Ξ(0)],

Λ̂t = cov[γt,αt|Z,Ξ(0)]. Write Ŝj(k) = E[Sj(k)|Z,Ξ(0)] = (1,kT)D̂j(1,k
T)T, where D̂j =

E[Dj|Z,Ξ(0)]. Using the derivations (3.8) in the last section, it shows that

Q(Ξ; Ξ(0)) = −2
T∑
t=1

{zT
t γ̂t − 1TE[g(γt)|Z,Ξ(0)]}+

T∑
t=1

nt log σ2

+
1

σ2

T∑
t=1

{
(γ̂t −Btθbθ

T
c ct −BtΘα̂t)

T(γ̂t −Btθbθ
T
c ct −BtΘα̂t)

+ tr(Γ̂t) + tr(BtΘΣ̂tΘ
TBT

t )− 2tr(BtΘΛ̂T
t )
}

+
J∑
j=1

{
T log σ2

j − log |Mj|+
1

σ2
j

Ŝj(k)
}

+ λµsθ
T
b Γθb + λµtθ

T
c Pθc + λpc

J∑
j=1

θTj Γθj, (3.9)

To obtain the conditional expected values and variances above, it is crucial to derive the conditional

distribution p(γ,α|Z,Ξ(0)), which is

p(γ,α|Z,Ξ(0)) =
p(Z|γ,Ξ(0))p(γ|α,Ξ(0))p(α|Ξ(0))∫

p(Z|γ,Ξ(0))p(γ|α,Ξ(0))p(α|Ξ(0))dαdγ
.
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However, it is impossible to analytically derive the denominator integral

∫
p(Z|γ,Ξ(0))p(γ|α,Ξ(0))p(α|Ξ(0))dαdγ,

due to the high-dimensional Z. It requires us to find other convenient ways to approximate the

conditional distribution p(γ,α|Z,Ξ(0)). In the following sections, we discuss two approaches that

can be applied to achieve the target.

3.3.1.1 Laplace approximation - Kalman filter and smoother approach

In this section, we discuss the Laplace approximation–Kalman Filter and Smoother method

(shortly, LapKFS). Laplace approximation (Zhang and Cressie, 2019; Durbin and Koopman, 2012)

is a method to approximate the conditional distribution p(γ,α|Z,Ξ(0)) by a Gaussian distribution

p̃(γ,α|Z,Ξ(0)), i.e.,

p(γ,α|Z,Ξ(0)) ≈ p̃(γ,α|Z,Ξ(0)),

where the mean of the Gaussian distribution p̃(γ,α|Z,Ξ(0)) is the mode of complete data log

likelihood log p(Z,γ,α; Ξ(0)) with respect to (γ,α), and the variance is approximated by the

Hessian matrix of log p(Z,γ,α; Ξ(0)).

Following the suggestion from Chapter 10 of Durbin and Koopman (2012), we further incor-

porate Laplace approximation into the intrinsic state-space structure in (3.6). We first vectorize

the unobserved variables γt and βt = (αT
t+p, . . . ,α

T
t )T as ξt. After rewriting the model (3.6)

with respect to ξt, we replace the exponential-family distribution p(zt|ξt,Ξ(0)) by its Gaussian

approximation. The Kalman filter and smoother can be applied to obtain the approximating condi-

tional distribution p̃(ξt|Z,Ξ(0)), t = 1, . . . , T . Finally, the approximating conditional distribution

p̃(γ,α|Z,Ξ(0)) is derived. The details of LapKFS approach can be found in Section A.1 of Ap-

pendix.
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3.3.1.2 Variational inference approach

The LapKFS approach, however, is still computationally expensive when γt and αt are high-

dimensional. Specifically, in the procedures of LapKFS, the latent variables γt and αt are inte-

grated as a (nt+(p+1)J)-dimensional vector ξt. The inversion of the covariance matrix associated

with ξt leads to theO((nt+(p+1)J)3) computational costs, which is not scalable when nt is very

large in the application of sea-ice-extent data analysis.

To overcome the scalability issue, we propose a variational inference approach to obtain the

approximating conditional distribution p̃(γ,α|Z,Ξ(0)). Variational inference (Palmer et al., 2006;

Chiquet et al., 2018; Blei et al., 2017) assumes variables come from a given variational distribu-

tion with unknown parameters, for example, the Gaussian distribution with the mean and variance

parameters to be determined. It approximates the conditional distribution p(γ,α|Z,Ξ(0)) by min-

imizing the Kullback-Leibler (KL) divergence between this conditional distribution and the given

variational distribution. By assuming specific structure (e.g., independence) of the given variational

distribution, variational inference can avoid the problem of the large-scale matrix inversion. Thus

it greatly reduce the computational costs. In the rest of this section, we introduce the mean-field

variational family (Blei et al., 2017) and apply it to approximate p(γ,α|Z,Ξ(0)).

We first rewrite the likelihood as the scaled version with respect to {γti}t,i and {αj,t}j,t, i.e.,

logp(Z,γ,α) ≡
T∑
t=1

nt∑
i=1

{ztiγti − g(γti)}

− 1

2σ2

T∑
t=1

nt∑
i=1

(γti − bT
tiθbθ

T
c ct −

J∑
j=1

bT
tiθjαj,t)

2 − 1

2

T∑
t=1

nt log σ2

− T − p
2

J∑
j=1

log σ2
j −

T∑
t=p+1

J∑
j=1

1

2σ2
j

(αj,t −
p∑
`=1

k`αj,t−`)
2 +

J∑
j=1

log p(αj,1, . . . , αj,p),

where zti = zt(xi, yi), γti = γt(xi, yi), and bti = bt(xi, yi). Since
∑J

j=1 log p(αj,1, . . . , αj,p) is in-

variant with respect to T , its likelihood contribution can be omitted when T � p. Letting q(γ,α)

be the variational distribution, we aim to find the optimal distribution that minimizes the KL diver-
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gence between the conditional distribution p(γ,α|Z) and the variational distribution q(γ,α). We

further assume the variational distribution q(γ,α) admits the mean-field assumption such that

p(γ,α|Z) ≈ q(γ,α)
∆
=

T∏
t=1

nt∏
i=1

q(γti)
T∏
τ=1

J∏
j=1

q(αj,τ ),

where the components γti and αj,τ follow the Gaussian distributions with specific unknown mean

and variance parameters, i.e.,

q(γti) = N(γti;µti, φ
2
ti), i = 1, . . . , nt; t = 1, . . . , T

q(αj,τ ) = N(αj,τ ; ντj, ϕ
2
τj), j = 1, . . . , J ; τ = 1, . . . , T.

The variational parameters {µti, φ2
ti, ντj, ϕ

2
τj} can be learnt by minimizing the KL divergence be-

tween p(γ,α|Z) and q(γ,α),

{µ̂ti, φ̂2
ti, ν̂τj, ϕ̂

2
τj} = argmin

µti,φ2ti,ντj ,ϕ
2
τj

KL
{
p(γ,α|Z)‖q(γ,α)

}
,

which is equivalent to maximizing the Evidence Lower Bound (ELBO, Blei et al., 2017), i.e.,

{µ̂ti, φ̂2
ti, ν̂τj, ϕ̂

2
τj} = argmax

µti,φ2ti,ντj ,ϕ
2
τj

ELBO(q)

= argmax
µti,φ2ti,ντj ,ϕ

2
τj

{
E[log p(γ,α,Z)]− E[log q(γ,α)]

}
.

The maximum of ELBO can be obtained via coordinate ascent algorithm (Blei et al., 2017). As-

suming we have the variational parameters {µ(0)
ti , φ

2(0)
ti , ν

(0)
τj , ϕ

2(0)
τj } obtained from the previous step

of coordinate ascent algorithm, the updating formulas for the parameters {µti, φ2
ti, ντj, ϕ

2
τj} are

presented as below.

In the following part of this section, we introduce the Coordinate Ascent Variational Infer-

ence (CAVI, Blei et al., 2017) method to obtain the optimal estimate of the unknown varia-

tional parameters {µti, φ2
ti, ντj, ϕ

2
τj}. Assuming we have the updating results in the previous step
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{µ(0)
ti , φ

2(0)
ti , ν

(0)
τj , ϕ

2(0)
τj }, we then update the parameters of the current step sequentially. Denote

log p(γ,α,Z) the complete data log likelihood, we will derive the updating formulas with respect

to {γti} and {αj,τ} separately.

Firstly, we will show that the distribution p(γ,α,Z) can be approximated by a Gaussian dis-

tribution p̃(γ,α,Z), which is conjugate with

q(γ,α) =
T∏
t=1

nt∏
i=1

q(γti)
T∏
τ=1

J∏
j=1

q(αj,τ ).

Thus the updating formulas of the variational parameters are proportional to the following parts

q(γti) ∝ exp{Eqγ−ti,α [log p̃(γti,γ−ti,α,Z)]}, (3.10)

q(αj,τ ) ∝ exp{Eqα−{j,τ},γ [log p̃(αj,τ ,α−{j,τ},γ,Z)]}, (3.11)

where qγ−ti,α = qγ,α/q(γti), and qα−{j,τ},γ = qγ,α/q(αj,τ ), respectively.

Updating formula for variational parameters µti, φ2
ti For the updating formula of γti part,

we first derive the log likelihood partially corresponding to γti, i.e.,

log p(γti,γ−ti,α,Z) ≡ ztiγti − g(γti)−
1

2σ2
(γti − bT

tiθbθ
T
c ct −

J∑
j=1

bT
tiθjαtj)

2. (3.12)

Since g(γti) is not linear or quadratic terms of γti, we approximate it by the Taylor approximation

of the second order around the previous mean estimation E[γti],

g(γti) ≈ g(E[γti]) + g′(E[γti])(γti − E[γti]) +
g′′(E[γti])

2
(γti − E[γti])

2.

By utilizing E[γti] = µ
(0)
ti , we can rewrite the formula (3.12) above as
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log p(γti,γ−ti,α,Z)

≡ ztiγti −
{
g(µ

(0)
ti ) + g′(µ

(0)
ti )(γti − µ(0)

ti ) +
g′′(µ

(0)
ti )

2
(γti − µ(0)

ti )2

}
− 1

2σ2

{
γ2
ti − 2(bT

tiθbθ
T
c ct +

J∑
j=1

bT
tiθjαtj)γti

}
≡ −1

2

{ 1

σ2
+ g′′(µ

(0)
ti )
}
γ2
ti +

{ 1

σ2
(bT

tiθbθ
T
c ct +

J∑
j=1

bT
tiθjαtj)

+ g′′(µ
(0)
ti )[µ

(0)
ti + g′′(µ

(0)
ti )−1(zti − g′(µ(0)

ti ))]
}
γti

∆
= log p̃(γti,γ−ti,α,Z),

where p̃(γti,γ−ti,α,Z) is the approximating Gaussian distribution with respect to γti. The vari-

ance of p̃(γti,γ−ti,α,Z) is

1
/{ 1

σ2
+ g′′(µ

(0)
ti )
}
,

and the mean is

{ 1

σ2
(bT

tiθbθ
T
c ct +

J∑
j=1

bT
tiθjαtj) + g′′(µ

(0)
ti )[µ

(0)
ti + g′′(µ

(0)
ti )−1(zti − g′(µ(0)

ti ))]
}/{ 1

σ2
+ g′′(µ

(0)
ti )
}
.

Since the approximating distribution p̃(γti,γ−ti,α,Z) is conjugate to the variational distribution

q(γti), the variational distribution of γti is proportional to

q(γti) ∝ exp{Eqγ−ti,α [log p̃(γti,γ−ti,α,Z)]}.

Notice that E[αti] = ν
(0)
ti , we then have

Eqγ−ti,α [log p̃(γti,γ−ti,α,Z)]

= −1

2

{ 1

σ2
+ g′′(µ

(0)
ti )
}
γ2
ti +

{ 1

σ2
(bT

tiθbθ
T
c ct +

J∑
j=1

bT
tiθjν

(0)
tj )

+ g′′(µ
(0)
ti )[µ

(0)
ti + g′′(µ

(0)
ti )−1(zti − g′(µ(0)

ti ))]
}
γti
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≡ − 1

2φ
2(1)
ti

{
γti − µ(1)

ti

}2

where,

φ
2(1)
ti =

{
1

σ2
+ g′′(µ

(0)
ti )

}−1

,

µ
(1)
ti = φ

2(1)
ti

[
1

σ2
(bT

tiθbθ
T
c ct +

J∑
j=1

bT
tiθjν

(0)
tj ) + g′′(µ

(0)
ti )
{
µ

(0)
ti + g′′(µ

(0)
ti )−1(zti − g′(µ(0)

ti ))
}]
.

We have

q(γti) ∝ exp{Eqγ−ti,α [log p̃(γti,γ−ti,α,Z)]} = exp{− 1

2φ
(1)
ti

(γti − µ(1)
ti )2},

and it follows a Gaussian distribution. Thus we obtain the updating formulas for φ2
ti and µti as

φ
2(1)
ti and µ(1)

ti .

Updating formula for variational parameters ντj, ϕ2
τj Similarly, we can obtain the updating

formulas for variational parameters ντj and ϕ2
τj . We first derive the likelihood partially correspond-

ing to αj,τ . Here we separately consider the following two scenarios, i) τ ≥ p+ 1; ii) 1 ≤ τ ≤ p.

For scenario i) τ ≥ p+ 1, we assume αj,T+1, αj,T+2, . . . , αj,T+p = 0. The log likelihood is

log p(αj,τ ,α−{j,τ},γ,Z)

≡ − 1

2σ2

nτ∑
i=1

(γτi − bT
τiθbθ

T
c cτ −

J∑
l 6=j

bT
τiθlαl,τ − bT

τiθjαj,τ )
2 (∗)

− 1

2σ2
j

(αj,τ −
p∑
`=1

k`αj,τ−`)
2 (∗∗)

− 1

2σ2
j

(αj,τ+1 − k1αj,τ − k2αj,τ−1 − · · · − kpαj,τ−p+1)2 (3.13)

− 1

2σ2
j

(αj,τ+2 − k1αj,τ+1 − k2αj,τ − · · · − kpαj,τ−p+2)2

. . .

− 1

2σ2
j

(αj,τ+p − k1αj,τ+p−1 − k2αj,τ+p−2 − · · · − kpαj,τ )2 (∗ ∗ ∗)
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∆
= log p̃(αj,τ ,α−{j,τ},γ,Z),

where p̃(αj,τ ,α−{j,τ},γ,Z) is the Gaussian distribution with respect to αj,τ . Since the distribution

p̃(αj,τ ,α−{j,τ},γ,Z) is conjugate to the variational distribution q(αj,τ ), the variational distribution

of αj,τ is proportional to

q(αj,τ ) ∝ exp{Eqα−{j,τ},γ [log p̃(αj,τ ,α−{j,τ},γ,Z)]}.

Note that part (∗) of (3.13) is proportional to

− 1

2σ2

nτ∑
i=1

{
(bT

τiθj)
2α2

τj − 2bT
τiθj(γτi − bT

τiθbθ
T
c cτ −

J∑
l 6=j

bT
τiθlατl)ατj

}
,

while part (∗∗) is proportional to

− 1

2σ2
j

(α2
τj − 2

p∑
`=1

k`ατ−`,jατj).

As for part (∗ ∗ ∗):

− 1

2σ2
j

[k2
1α

2
τ,j − 2k1(ατ+1,j − k2ατ−1,j − · · · − kpατ−p+1,j)ατ,j]

− 1

2σ2
j

[k2
2α

2
τ,j − 2k2(ατ+2,j − k1ατ+1,j − k3ατ−1,j − · · · − kpατ−p+2,j)ατ,j]

− . . .

− 1

2σ2
j

[k2
pα

2
τ,j − 2kp(ατ+p,j − k1ατ+p−1,j − k2ατ+p−2,j − · · · − kp−1ατ+1,j)ατ,j]

= − 1

2σ2
j

{
p∑
`=1

k2
`α

2
τ,j − 2[

p∑
`=1

k`ατ+`,j −
p∑
`=1

p∑
i 6=`

k`kiατ−i+`,j]ατ,j}.

Therefore, take the summation of the parts (∗), (∗∗) and (∗ ∗ ∗) together, and take the expectation
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Eqα−τj ,γ [log p̃(ατj,α−τj,γ,Z)], we have

− 1

2
{ 1

σ2

nτ∑
i=1

(bT
τiθj)

2 +
1

σ2
j

(1 +

p∑
`=1

k2
` )}α2

j,τ (∆)

+

{
1

σ2

nτ∑
i=1

bT
τiθj(µ

(0)
τi − bT

τiθbθ
T
c cτ −

J∑
l 6=j

bT
τiθlν

(0)
τl )

+
1

σ2
j

(

p∑
`=1

k`ν
(0)
τ−i,j +

p∑
`=1

k`ν
(0)
τ+i,j −

p∑
`=1

p∑
i 6=`

k`kiν
(0)
τ−i+`,j)

}
αj,τ (∆∆)

So the updating formula for scenario i) is

ϕ
2(1)
τ,j = { 1

σ2

nτ∑
i=1

(bT
τiθj)

2 +
1

σ2
j

(1 +

p∑
`=1

k2
` )}−1

ν
(1)
τ,j = ϕ

2(1)
τ,j

{
1

σ2

nτ∑
i=1

bT
τiθj(µ

(0)
τi − bT

τiθbθ
T
c cτ −

J∑
l 6=j

bT
τiθlν

(0)
τl )

+
1

σ2
j

(

p∑
`=1

k`ν
(0)
τ−`,j +

p∑
`=1

k`ν
(0)
τ+`,j −

p∑
i=1

p∑
l 6=i

kiklν
(0)
τ−l+i,j)

}
.

where ν(0)
T+1,j, ν

(0)
T+2,j, . . . , ν

(0)
T+p,j = 0.

For scenario ii) 1 ≤ τ ≤ p, we will not have part (∗∗) in (3.13). Denote ν(0)
0,j , ν

(0)
−1,j, . . . , ν

(0)
−p,j = 0,

then we have the similar results, i.e.,

ϕ
2(1)
τ,j = { 1

σ2

nτ∑
i=1

(bT
τiθj)

2 +
1

σ2
j

p∑
`=1

k2
`}−1

ν
(1)
τ,j = ϕ

2(1)
τ,j

{
1

σ2

nτ∑
i=1

bT
τiθj(µ

(0)
τi − bT

τiθbθ
T
c cτ −

J∑
l 6=j

bT
τiθlν

(0)
τl )

+
1

σ2
j

(

p∑
`=1

k`ν
(0)
τ+`,j −

p∑
i=1

p∑
l 6=i

kiklν
(0)
τ−l+i,j)

}
.

Once we update all the parameters in a loop, we need to calculate the ELBO as the stopping

criterion. If |ELBO(l) − ELBO(l−1)| < ξ, then we stop the iteration of updating procedures in E
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step. The empirical ELBO can be obtained by

ELBO(q) = E[log p(γ,α,Z)]− E[log q(γ)]− E[log q(α)]

≈
T∑
t=1

nt∑
i=1

ztiµ
(l)
ti −

T∑
t=1

nt∑
i=1

[
g(0) + g′(0)(µ

(l)
ti − 0) +

g′′(0)

2
(µ

2(l)
ti + φ

2(l)
ti )
]
− 1

2

T∑
t=1

nt log σ2

− 1

2σ2

T∑
t=1

nt∑
i=1

{
(µ

(l)
ti − bT

tiθbθ
T
c ct −

J∑
j=1

bT
tiθjν

(l)
tj )2 + φ

2(l)
ti +

J∑
j=1

(bT
tiθj)

2ϕ
2(l)
tj

}
− T − p

2

J∑
j=1

J∑
j=1

log σ2
j −

T∑
t=p+1

J∑
j=1

1

2σ2
j

{
(ν

(l)
tj −

p∑
i=1

kiν
(l)
t−i,j)

2 + ϕ
2(l)
tj +

p∑
i=1

k2
iϕ

2(l)
t−i,j

}

After the convergence of iteratively updating formulas for {µti, φ2
ti, ντj, ϕ

2
τj}, we can approxi-

mate the conditional distribution p(γ,α|Z,Ξ(0)) by

q(γ,α) =
T∏
t=1

nt∏
i=1

q(γti)
T∏
τ=1

J∏
j=1

q(αj,τ ),

where
q(γti) = N(γti; µ̂ti, φ̂

2
ti), i = 1, . . . , nt; t = 1, . . . , T

q(αj,τ ) = N(αj,τ ; ν̂τj, ϕ̂
2
τj), j = 1, . . . , J ; τ = 1, . . . , T,

with the final updated parameters {µ̂ti, φ̂2
ti, ν̂τj, ϕ̂

2
τj}.

So we can obtain the required values γ̂t ≈ Eq(γ,α)[γt|Z,Ξ(0)] = µ̂t, α̂t ≈ Eq(γ,α)[αt|Z,Ξ(0)] =

ν̂t, Γ̂t ≈ varq(γ,α)(γt|Z,Ξ(0)) = diag(φ̂2
t1, . . . , φ̂

2
tnt), Σ̂t ≈ varq(γ,α)(αt|Z,Ξ(0)) = diag(ϕ̂2

t1, . . . , ϕ̂
2
tJ),

and Λ̂t ≈ covq(γ,α)[γt,αt|Z,Ξ(0)] = 0.

3.3.2 The M-Step

In the M step, given the estimates Ξ(0) = {θ(0)
b ,θ(0)

c ,Θ(0), σ2(0), {σ2(0)
j }Jj=1,k

(0)} at the previ-

ous step, we aim to minimize Q(Ξ|Ξ(0)) in (3.9). However, the analytical minimizer is difficult to

derive. Instead, we use block-wise optimization to update parameters Ξ. The updating formula for
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σ2 has the analytic form

σ̂2 =
1∑T
t=1 nt

T∑
t=1

{(γ̂t −Btθ
(0)
b θ

(0)T
c ct −BtΘ

(0)α̂t)
T(γ̂t −Btθ

(0)
b θ

(0)T
c ct −BtΘ

(0)α̂t)

+ tr(Γ̂t) + tr(BtΘ
(0)Σ̂tΘ

(0)TBT
t )− 2tr(BtΘ

(0)Λ̂T
t )}.

Remark: in the binary case, γt controls the outcomes {0, 1} up to a scaling constant. To avoid

the identifiability issue, we follow the sugggestion from Heagerty and Lele (1998) to assume the

default value σ2 = 1.

The updating formula for σ2
j is

σ̂2
j =

Ŝj(k
(0))

n
, j = 1, . . . , J.

The optimization problem with respect to θb can be simplified as minimizing the following f(θb),

f(θb) = (θb −m)TA(θb −m), such that θTb θb = 1, (3.14)

where

m =

{ T∑
t=1

(θ(0)T
c ct)

2BT
t Bt + σ̂2λµsΓ

}−1 T∑
t=1

(θ(0)T
c ct)B

T
t (γ̂t −BtΘ

(0)α̂t),

A =
T∑
t=1

(θ(0)T
c ct)

2BT
t Bt + σ̂2λµsΓ.

Note that (3.14) is a manifold optimization problem of Rayleigh quotient on the sphere, which can

be solved using the gradient descent algorithm on the sphere (Absil et al., 2009). The stepwise

solutions for updating θb can be referred to Chapter 2 of this dissertation.

The coefficients of the univariate mean θc can be updated analytically by solving the roots from
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the derivative of the objective function

1

σ2

T∑
t=1

(γ̂t −Btθ̂bθ
T
c ct −BtΘα̂t)

T(γ̂t −Btθ̂bθ
T
c ct −BtΘα̂t) + λµtθ

T
c Pθc.

Thus the updating formula of θc can be written as

θ̂c =
{ T∑

t=1

(Btθ̂bc
T
t )T(Btθ̂bc

T
t ) + σ̂2λtP

}−1
T∑
t=1

(Btθ̂bc
T
t )T(γ̂t −BtΘ

(0)α̂t).

For Θ, we first update Θ = (θ1, . . . ,θJ) sequentially. The objective function for θj is

T∑
t=1

‖γ̂t −Btθ̂bθ̂
T

c ct−
∑
j′ 6=j

Btθj′α̂j′,t −Btθjα̂j,t‖2

+ σ̂2λpcθ
T
j Γθj +

T∑
t=1

tr(BtΘΣ̂tΘ
TBT

t )− 2
T∑
t=1

tr(BtΘΛ̂T
t ),

which has an analytic form

θ̂j = {
T∑
t=1

(α̂2
tj + Σ̂t,jj)B

T
t Bt + σ̂2λpcΓ}−1

×
T∑
t=1

BT
t {(γ̂t −Btθ̂bθ̂

T

c ct)α̂j,t −
∑
j′ 6=j

(α̂j′,tα̂j,t + Σ̂t,jj′)Btθ̂j′ − Λ̂t,j},

where Λ̂t,j is the j-th column of Λ̂t. To guarantee the orthonormality of Θ̂, we utilize the spectral

decomposition Θ̂ĤJΘ̂
T

= Q̃D̃Q̃T, where ĤJ = diag(σ̂2
1, . . . , σ̂

2
J). As a result, Q̃ has orthonor-

mal columns and D̃ is a diagonal matrix with decreasing diagonal elements. Afterwards, we re-

place Θ̂ and ĤJ by Q̃ and D̃, respectively. Also, we transform the estimated α̂t as α̂t ← Q̃T Θ̂α̂t.

This orthogonalization procedure preserves the variance of Θ̂α̂t and realize the orthonormality of

Θ̂.

55



Finally, to update the coefficients k of AR(p) model, it is equivalent to minimizing

J∑
j=1

{
− log |Mj|+

1

σ̂2
j

Ŝj(k)

}
. (3.15)

Note that the contribution of − log |Mj| can be ignored when the sample size T is relatively large.

We simply minimize the objective function
∑J

j=1

{
Ŝj(k)

/
σ̂2
j

}
to approximate the exact solution

of (3.15). It leads to the analytic form

k̂ =
( J∑
j=1

1

σ̂2
j

D̂pj

)−1
J∑
j=1

1

σ̂2
j

d̂j,

where d̂j = (D̂12,j, . . . , D̂1(p+1),j)
T and D̂pj is the right-bottom p× p major submatrix of D̂j .

3.4 Model Selection

When applying the penalized spline method for estimating underlying functions, we usually

use moderately large number of basis functions. This is reasonable since the roughness penalty

regularizes the estimation and prevents overfitting. Furthermore, the number of bivariate basis

functions nb is determined by the order d of polynomials and the order r of the smoothness pa-

rameter on the connected edges of triangulations. In practice, we set d = 3 as cubic order splines,

and r = 1 for the continuous first derivative across the connected edges, which is good enough

to accurately estimate the functions. For the number of univariate basis functions nc, it will not

greatly affect the model performance in the following simulation studies and Arctic sea-ice-extent

data analysis when we choose a moderate one.

The regularization parameters (λµs , λµt , λpc) are determined by K-fold cross-validation (CV).

The number of principal component functions will be determined by the empirical proportion of

variances of FPC scores. The order p of autoregressive model for the latent variables will be

selected using Akaike information criteria (AIC, Akaike, 1974).

56



3.5 Simulation Studies

In this section, we present the results of two simulation cases to assess the performance of

the proposed tEFPC model with Variational-EM (VEM) algorithm and LapKFS-EM (LapEM)

approach.

The domain Ω was set to be a 2 × 2 square with a hole in the middle as shown in Figure 2.1.

The length of time points was T = 200. We randomly generated m locations (xi, yi), i = 1, . . . ,m

within the domain Ω and set the locations at different time points were the same. To compare

the effects of different sample size, we specified the number of locations m = 300, 400, 500, 600.

Two simulated datasets of binary case and Poisson case were generated on Ω according to the

model (3.1)–(3.3). In the binary case, the cumulant function at time point t is g(γt(x, y)) =

log{1 + exp(γt(x, y))}, while in the Poisson case, the data at time point t were generated from

the Poisson distribution, p{zt(x, y) = n} = λt(x, y)n exp{−λt(x, y)}/(n!), with the intensity

parameter function λt(x, y) = exp{γt(x, y)}.

The t-th surface γt(x, y) was generated by the combination of mean functions and J = 2 FPC

functions. Specifically, functions µ1(x, y), µ2(t), φj(x, y)’s were generated as

µ1(x, y) = {exp(
√

0.1x2 + 0.2y) + exp(−
√

0.1x2 + 0.2y)}/2,

µ2(t) = cos(2πt/12), for binary distribution and,

µ2(t) = 1 + cos(2πt/12), for Poisson distribution, (3.16)

φ1(x, y) = 0.8578 sin(x2 + 0.5y2),

φ2(x, y) = 0.8721 sin(0.3x2 + 0.6y2)− 0.2988 sin(x2 + 0.5y2),

where the fractional numbers of φ1(x, y) and φ2(x, y) were assigned to make them orthornormal

on the domain. We considered the noised surface γt(x, y) with white noise εt(x, y) ∼ N(0, 1).

Moreover, the FPC scores α1,t and α2,t were set to be the AR(2) model

αj,t = k1αj,t−1 + k2αj,t−2 + ηj,t, j = 1, 2,
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m Methods PA MIAE mean MIAE indiv
VEM 18.899 (22.703) 0.2227 (0.0755) 0.3819 (0.0777)

300
LapEM 15.904 (12.075) 3.0286 (2.3364) 0.5417 (0.2519)
VEM 11.199 (10.339) 0.1950 (0.0938) 0.3286 (0.0411)

400
LapEM 15.958 (11.558) 3.6025 (2.8154) 0.5910 (0.4247)
VEM 7.9704 (5.5771) 0.1784 (0.0701) 0.2944 (0.0322)

500
LapEM 14.081 (7.6816) 3.9495 (2.6635) 0.5406 (0.2743)
VEM 6.6017 (3.3290) 0.1821 (0.1590) 0.2755 (0.0396)

600
LapEM 15.928 (11.453) 3.7494 (2.3416) 0.5539 (0.2566)

Table 3.1: The averages with standard deviations (in parenthesis) of different criteria over 100
repeated simulations with different sample size in the case of binary distribution.

m Methods PA MIAE mean MIAE indiv
VEM 5.8883 (4.4304) 0.3392 (0.1274) 0.2121 (0.0516)

300
LapEM 11.155 (3.1671) 0.7675 (0.0971) 0.4170 (0.0538)
VEM 5.3047 (5.3436) 0.3326 (0.1203) 0.1983 (0.0214)

400
LapEM 10.384 (4.2993) 0.7825 (0.0926) 0.4459 (0.0290)
VEM 4.9288 (2.9607) 0.3124 (0.1155) 0.1910 (0.0162)

500
LapEM 9.3949 (2.0503) 0.7632 (0.0928) 0.4371 (0.0277)
VEM 3.7108 (1.2559) 0.3005 (0.1217) 0.1863 (0.0161)

600
LapEM 8.5924 (2.1931) 0.8137 (0.1170) 0.4922 (0.0375)

Table 3.2: The averages with standard deviations (in parenthesis) of different criteria over 100
repeated simulations with different sample size in the case of Poisson distribution.

with the coefficients k1 = 0.8, k2 = 0.1, and the noises η1,t ∼ N(0, 1), η2,t ∼ N(0, 0.25).

We applied the proposed model in Section 3.1 to the simulated data. The triangulations were

presented the same in Figure 2.1, on which the bivariate splines basis functions were constructed.

For the function of time, we used Fourier basis functions with dimension nc = 11 to approximate

the unknown functions. The number of PCs and the order of AR in the simulation study were

set to be the same as the true ones for simplicity. The VEM and LapEM approaches were both

implemented for the comparison. The penalty parameters (λµs , λµt , λpc) were selected by 5-fold

CV in Section 3.4 with sequential grid search suggested in Li et al. (2018). The penalty parameters

of LapEM approach were set to be the same as VEM approach due to the barricade of higher
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Figure 3.1: The CPU time comparison between VEM and LapEM in both binary and Poisson
distributions. The CPU time is counted in seconds.

computational costs in LapEM approach.

To quantitatively measure the performance of estimating the mean µ1(x, y)µ2(t) and individual

surfaces γt(x, y), we calculated the mean integrated abosolute errors (MIAE) through

∫
T

∫
Ω

|f(x, y, t)− f̂(x, y, t)|dxdydt,

where the integration was evaluated as a scaled sum over a collection of 1976 dense grid points

distributed evenly on the domain. We used the principal angle (PA) to evaluate the performance

of the FPC function estimations. PA is defined as angle = cos−1(ρ) × 180/π between the linear

space spanned by the true principal component functions V and its estimation V̂, where ρ is

the minimum singular value of the matrix QT
V̂

QV. QV̂ and QV are denoted as the orthonormal

matrices of the QR decompositions of V̂ and V respectively. The computational costs of VEM

and LapEM approaches were assessed from the average CPU time of running one EM algorithm.

Our simulation studies were run on the same computation platform of 2.40 GHz Intel(R) Xeon(R)

E5-2680 CPU without implementing any parallel acceleration techniques.

The average of PAs, MIAEs of the mean and each individual function for binary and Poisson

distributions are summarized in Tables 3.1 and 3.2, respectively. In both binary and Poisson cases,

the VEM approach has smaller values than the LapEM approach in PAs, MIAE of mean and
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Figure 3.2: The mean functions in the binary case of simulation study. From left to right are
respectively the functions at time points t = 50, 100, 150, and 200. The first row represents
the true mean functions while the second row represents the estimated mean functions by VEM
approach.
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Figure 3.3: The principal component functions of binary case in simulation study. The first and
second row are the first and second principal component functions respectively. The left column
represents the true functions, while the right column represents the estimated functions.

individual functions. Besides, the logarithms of CPU time (in seconds) against different number

of locations m by two approaches are presented in Figure 3.1, where the red line represents the

logarithm of CPU time compared with LapEM approach and blue line represents its counterpart

of VEM approach. It shows that VEM approach reduced more than 90% of CPU time of LapEM
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Figure 3.4: The probability surfaces of binary case in simulation study. From left to right are
respectively the probability functions at time points t = 50, 100, 150, and 200. The first row
represents the true probability functions while the second row represents the estimated functions
by VEM approach.
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Figure 3.5: The mean functions in the Poisson case of simulation study. From left to right are
respectively the functions at time points t = 50, 100, 150, and 200. The first row represents
the true mean functions while the second row represents the estimated mean functions by VEM
approach.

approach in both binary and Poisson cases when m = 300. As the number of sample points m

increased, the more CPU time was reduced by VEM approach compared with LapEM approach.

For the case of binary distributions, the heat maps of the true and estimated mean functions of

one random replicate at time t = 50, 100, 150, 200 with m = 600 by VEM approach are depicted
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Figure 3.6: The principal component functions of Poisson case in simulation study. The first and
second row are the first and second principal component functions respectively. The left column
represents the true functions, while the right column represents the estimated functions.

in Figure 3.2. Figure 3.3 presents the true PC functions and estimated PC functions in the case of

binary distributions. We also present the true probability surface with its estimated counterpart by

VEM approach in Figure 3.4 for the case of binary distribution.

The heat maps of the true and estimated mean function by VEM approach of one random

replicate in m = 100 are depicted in Figure 3.5. Figure 3.6 presents the true PC functions and

the estimated PC functions. We also present the true natural parameter γt(x, y) with its estimated

γ̂t(x, y) by VEM approach in Figure 3.7 for the confirmation of the good estimation of functions.

3.6 Arctic Sea-ice-extent Data Analysis

In this section, we apply the proposed tEFPC model on the Arctic sea-ice-extent (SIE) monthly

dataset (Meier et al., 2021, version 4, https://nsidc.org/data/g02202). The data was

collected by the National Oceanic and Atmospheric Administration (NOAA) and National Snow

& Ice Data Center (NSIDC) and analyzed in Peng et al. (2013) and Meier et al. (2014b). We use

the commonly-used 15% cut-off criterion (Peng et al., 2013; Zhang and Cressie, 2019) to create a

binary variable indicating water or ice. To be specific, if the numeric values are smaller than 15%

and denote as Z = 0, we treat them as water, otherwise we treat them as ice and denote as Z = 1.
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Figure 3.7: The natural-parameter functions of Poisson case in simulation study. From left to right
are respectively the natural-parameter functions at time points t = 50, 100, 150, and 200. The first
row represents the true natural-parameter functions while the second row represents the estimated
functions by VEM approach.

We consider the binary observations located in the region whose latitude is between 66.5◦N and

87◦N. There are more than 4.8× 106 observations within 20 years.

We applied the proposed model with binary distribution to analyze the sea-ice-extent data.

The bivariate basis functions were constructed by the Bernstein polynomial splines on the trian-

gulations covering the irregular domains, which are visualized as the blue triangles in Figure 3.8.

We used the combination of 5-dimensional Fourier basis (1, cos(2πt/12), sin(2πt/12), cos(2 ×

2πt/12), sin(2 × 2πt/12)), linear polynomials (t), and interaction term t cos(2πt/12) as the uni-

variate basis functions for µ2(t) to model the periodicity and trend of data, inflation of period

amplitude, respectively. The number of principal components was selected as J = 2 via the scree

plot. For the order of autoregressive model for FPC scores, we selected p = 2 through AIC. The

penalty parameters λ = (λµs , λµt , λpc) were selected through the 5-fold CV with parallel grid-

search. Due to the higher computational costs of LapEM approach, it was intractable to obtain

the parameter estimation via LapEM in the limited computation resource. We applied the VEM

algorithm, which could be implemented in a reasonable period of time, to estimate the unknown

parameters.
In the bottom panel of Figure 3.9, we visualize the probability of ice p̂(Zt(x, y) = 1) =
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Figure 3.8: The location visualization of the sea-ice-extent monthly data, where the red irregular
region represents the data domain in Arctic Circle. The blue triangles are constructed for bivariate
basis functions.

1/{1 + exp(−γ̂t(x, y))} over the regions of March, September, in 2010, 2020 respectively, where

γ̂t(x, y) were obtained from (3.6) with the parameters estimated by VEM algorithm. Compared

with the observed data in the top panel of Figure 3.9, the tEFPC model provided the well-fitted

heat maps to indicate the probabilities of ice in different months.

We also present the estimated bivariate function µ̂1(x, y) and univariate function µ̂2(t) of the

mean in Figure 3.10. The left panel of Figure 3.10 presents the univariate function µ̂2(t), which

depicts the seasonality and trend of the sea ice dataset. As it shows, the lowest point in one period

of µ̂2(t) gradually decreases, which indicates the probability of ice is decreasing. Besides, the

amplitude of periods is enlarged, showing that the sea ice cover are changing more and more

intensely. The orthonormal function µ̂1(x, y) in the right panel of Figure 3.10 depicts the different

patterns of different regions: if the numeric values of the function are larger than 0, the region will

be more likely to be ice-covered (e.g. the Arctic pole region), otherwise, it would be more likely

to be water (e.g. the Greenland sea region).

The estimated PC surface functions are visualized in Figure 3.11. The first PC surface describes

the major variation patterns of sea-ice data. In the left panel of Figure 3.11, the PC values are

increasing gradually from the north pole (the central point) to the rims of Arctic Circle, which
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Figure 3.9: Top: observations of the sea-ice extent data on March, September in 2010, 2020;
Bottom: the corresponding probability surface estimated by the proposed model.
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Figure 3.10: The estimated univariate function µ̂2(t) and bivariate function µ̂1(x, y).

indicates the global location effects. While the second PC surface in the right panel of Figure 3.11

shows the regional difference of location variation patterns. The right-bottom regions (i.e., the

Greenland sea region) show negative PC values, while the central regions show the positive values.

One application of our proposed model is to forecast the sea-ice-extent. We used data from Jan-

65



PC 1

−0.015

−0.010

−0.005

0.000

0.005

0.010

0.015

PC 2

−0.015

−0.010

−0.005

0.000

0.005

0.010

0.015

Figure 3.11: The estimated surface principal components.
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Figure 3.12: The observations and forecasted probability surface on December, 2020.

uary 2001 to November 2020 to forecast the sea-ice-extent in December 2020. After training the

model with the same procedures above, we can forecast the probability surface p(zT+1(x, y) = 1)

by obtaining the individual function γT+1(x, y). That is p(zT+1(x, y) = 1) = g(γ̂T+1(x, y)), where

γ̂T+1(xi, yi) = b(xi, yi)θ̂bθ̂ccT+1 + b(xi, yi)Θ̂α̂T+1, i = 1, . . . ,m and α̂T+1 =
∑p

`=1 k̂`α̂T+1−`.

Using the cutoff at 0.5, the classification rate is 95.105%. The observations and forecasted proba-

bility in December 2020 are shown in Figure 3.12.
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4. SUMMARY AND DISCUSSIONS

This dissertation discussed the results of dynamic functional principal component analysis in 2-

dimensional data with serial correlation. To be specific, we have proposed a mixed-effects model

with functional principal component analysis to analyze the serial correlated Gaussian data in

two-dimensional surfaces in Chapter 2. The autoregression was incorporated into the functional

principal components for the serial correlation. We implemented the EM algorithm with Kalman

filter and smoother in model fitting. We also extended the first model to deal with the binary or

count data in Chapter 3 by incorporating the distributions of exponential family into the model and

assuming the natural-parameters forms a decomposition similar to the first model.

There are many possible extensions for the proposed models in this dissertation. A natural

extension is to consider the serial-correlated paired 2-dimensional functional data, for example, the

temperature and precipitation, the sea-ice-extent and albedo. Moreover, borrowing the information

of covariates and developing temporal-dependent supervised PCA for two-dimensional functional

data is also of interest, and needs further investigation. Last but not least, as the outliers often

exist in the real datasets, the robust dynamic functional principal component analysis with serial

correlation should also be further explored.
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APPENDIX A

APPENDIX OF CHAPTER 3

A.1 The Details of LapKFS Approach in the E Step

To obtain the conditional distribution p(γ,α|Z,Ξ(0)), we utilize the Bayes’ formula such that

p(γ,α|Z,Ξ(0)) =
p(Z|γ,Ξ(0))p(γ|α,Ξ(0))p(α|Ξ(0))∫
p(Z|γ,Ξ(0))p(γ|α,Ξ(0))p(α|Ξ(0))dZ

.

However, the integral
∫
p(Z|γ,Ξ(0))p(γ|α,Ξ(0))p(α|Ξ(0))dZ is intractable since the likelihood

p(Z|γ,Ξ(0)) is not conjugate to the prior normal distribution p(γ,α|Ξ(0)). Instead, we utilize

the Laplace approximation around the mode techniques to obtain the approximating conditional

distribution p̃(γ,α|Z,Ξ(0)).

We first rewrite the model by vectorizing βt = (αT
t+p,α

T
t+p−1, . . . ,α

T
t )T, such that

p(zt|γt) = exp(zT
t γt − 1Tg(γt))

nt∏
i=1

h(zi,t)

γt = Btθbθ
T
c ct + BtΘSβt + εt

βt = Tβt−1 +ψt

(A.1)

where

T =



k1I k2I . . . kpI 0

I 0 . . . 0 0

0 I . . . 0 0

...
...

...
...

0 0 . . . I 0,


is the coefficient matrix of the state equations and S = (0, . . . ,0, I) ∈ RJ×(p+1)J is a matrix used
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to indicate the component αt in βt. The residual error ψt is Gaussian distributed

ψt = (ηT
t+p,0, . . . ,0)T ∼ N(0, H̃),

where the variance matrix H̃ = diag(HJ ,0, . . . ,0) ∈ RJ(p+1)×J(p+1). Besides, the initial state β1

is also multivariate Gaussian distributed

β1 = (αT
1+p,α

T
p , . . . ,α

T
1 )T ∼ N(0,Q1),

with variance Q1. In practice, Q1 was always assigned as the identity matrix IJ(p+1). Afterwards,

we combine the joint vectors ξt = (γT
t ,β

T
t )T. The distribution of ξt is

ξt =

γt
βt

 =

Btθbθ
T
c ct + BtΘSβt + εt

Tβt−1 +ψt


∼ N

(Btθbθ
T
c ct + BtΘSTβt−1

Tβt−1

 ,

BtΘSH̃(BtΘS)T + σ2I BtΘSH̃

H̃(BtΘS)T H̃

)

=

Btθbθ
T
c ct

0

+

0 BtΘST

0 T


γt−1

βt−1

+ η̃t,

(A.2)

with η̃t ∼ N(0,H), where

H =

BtΘSH̃(BtΘS)T + σ2I BtΘSH̃

H̃(BtΘS)T H̃

 =

σ2Int 0

0 H̃

 .

Denote µ̃t =

Btθbθ
T
c ct

0

 and Tt =

0 BtΘST

0 T

, we rewrite the above formula of ξt as

ξt = µ̃t + Ttξt−1 + η̃t. (A.3)
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Recall,

p(zt|γt) = exp(zT
t γt − 1Tg(γt))

nt∏
i=1

h(zi,t), (A.4)

and γt = S̃ξt with S̃ = (Int ,0nt×(p+1)J). Now we aim to derive the conditional distribution

p(ξ|Z,Ξ(0)). Firstly, the likelihood (A.4) can be rewritten as

p(zt|ξt) = exp{zT
t S̃ξt − 1Tg(S̃ξt)}

nt∏
i=1

h(zi,t).

We can obtain the first- and second-order derivatives of p(zt|ξt) with respect to ξt, i.e.,

∂ log p(zt|ξt)
∂ξt

= (zT
t S̃)T − ∂g(S̃ξt)

∂ξt
,

∂2 log p(zt|ξt)
∂ξ2

t

=
∂2g(S̃ξt)

∂ξ2
t

.

The Laplace approximation approach is to approximate the conditional distribution p(ξ|Z,Ξ(0))

around its mode. We utilize the Newton-Raphson algorithm to iteratively update the estimated

mode in the following discussions.

Assume we have one guess ξ(0), then the new update of ξ+ can be obtained through

ξ+ = ξ(0) −
{
∂2 log p(ξ|Z)

∂ξ2

∣∣∣∣
ξ=ξ(0)

}−1
∂ log p(ξ|Z)

∂ξ

∣∣∣∣
ξ=ξ(0)

,

where the second derivative is

∂2 log p(ξ|Z)

∂ξ2

∣∣∣∣
ξ=ξ(0)

=
∂2 log p(Z|ξ)

∂ξ2 +
∂2 log p(ξ)

∂ξ2

∣∣∣∣
ξ=ξ(0)

,

and the first derivative is

∂ log p(ξ|Z)

∂ξ

∣∣∣∣
ξ=ξ(0)

=
∂ log p(Z|ξ)

∂ξ
+
∂ log p(ξ)

∂ξ

∣∣∣∣
ξ=ξ(0)

.
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Note that ∂
2 log p(Z|ξ)

∂ξ2

∣∣∣∣
ξ=ξ(0)

is a block-wise diagonal matrix with each block ∂2 log p(Zt|ξt)
∂ξ2t

∣∣∣∣
ξt=ξ

(0)
t

. We

then consider the update of ξt one by one for t = 1, . . . , T . Assume the initial guess of ξt is ξ(0)
t .

Borrowing the idea from Durbin and Koopman (2012), the updating procedure to approximate the

conditional distribution p(ξ|Z,Ξ(0)) around its mode can be treated as an approximating linear

dynamic system. The observed equation is

xt = S̃ξt + ε̃t, (A.5)

where

xt = γ
(0)
t − (

∂2 log p(zt|γt)
∂γ2

t

|
γt=γ

(0)
t

)−1∂ log p(zt|γt)
∂γt

|
γt=γ

(0)
t
,

and the innovation term ε̃t ∼ N(0, Σ̃t) with Σ̃t = −
{∂2 log p(zt|γt)

∂γ2
t

|γ=γ(0)

}−1. We hence formulate

a linear dynamic system (A.3) and (A.5). The Kalman filter and smoother algorithms can be

applied to obtain the conditional mean ξ̂t = E(ξt|Z,Ξ(0)) and variance Var(ξt|Z,Ξ(0)) for t =

1, . . . , T .

The Kalman filter procedure is, for t = 1, . . . , T ,

vt = xt − S̃bt, Ft = S̃QtS̃
T + Σ̃t,

bt|t = bt + QtS̃
TF−1

t vt, Qt|t = Qt −QtS̃
TF−1

t S̃Qt,

bt+1 = Ttbt|t + µ̃t, Qt+1 = TtQt|tT
T
t + H.

(A.6)

While we assign the expectation and variance of initial state b1 =

Btθbθ
T
c ct|t=1

0

 and Q1 =

diag(σ2I, I).

The Kalman smoother procedure is a backshifting algorithm. Denote rT = 0,NT = 0. For
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t = T, . . . , 1, the updating formulas are listed below

rt−1 = S̃TF−1
t vt + LT

t rt Nt−1 = S̃TF−1
t S̃ + LT

t NtLt

b̂t = bt + Qtrt−1 Vt = Qt −QtNt−1Qt,

(A.7)

where Lt = Tt − TtQtS̃
TF−1

t S̃. The details of Kalman filter and smoother can be found in He

et al. (2022).

Once we obtain ξ̂t as the updated guess of ξt, we repeat our Newton-Raphson procedures

again until convergence. In summary, the general algorithm for finding the mode of conditional

distribution p(ξ|Z,Ξ(0)) can be listed below.

Given an initial guess of ξ(0) = (ξ
(0)T
1 . . . ξ

(0)T
T )T,

1) implement Kalman filter and smoother based on (A.3) and (A.5) to obtain ξ̂t.

2) replace ξ(0)
t by ξt, for t = 1, . . . , T

3) iteratively do 1) and 2) until the algorithm converged.

Therefore, the approximating Gaussian distribution p̃(ξt|Z,Ξ(0)) can be derived, where the mean

is the mode ξt and the variance is Vt of the final iteration in Kalman filter and smoother algorithm.
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