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ABSTRACT

Agricultural productivity is severely limited by environmental stresses that affect plants. Envi-

ronmental stresses can be classified as abiotic or biotic. This study focuses on drought and saline

stress, the two significant abiotic stresses causing crop loss worldwide. Crop loss due to drought

and saline stress are major factors that threaten global food security. This problem is exacerbated

by the growing world population, which is expected to rise by 2 billion in the next thirty years.

Fortunately, plants have internal mechanisms to defend against environmental stresses. These

mechanisms are deployed through complex networks of molecules known as signaling pathways.

Environmental stress stimuli can trigger signaling pathways that activate or inhibit downstream

genes to implement defensive measures and restore homeostasis. Signaling pathways are not only

limited in their capability to defend against stresses but are also responsible for mediating other

activities, including protein synthesis, cell death, and differentiation. Thus understanding the sig-

naling pathways in plants is key to developing plants that can defend against environmental stresses

and are nutritionally valuable.

We studied the drought signaling pathways in Arabidopsis to identify the genetic regulators

of drought-responsive genes. Additionally, we examined the lysine biosynthesis pathway in rice

under normal and saline stress conditions. Lysine is an essential amino acid present in the low-

est quantity compared to all the other amino acids in rice. Amino acids are the building block

of proteins and play a crucial role in maintaining the human body’s healthy functioning. Thus,

increasing the lysine content in rice will help improve global health. We modeled both the drought

signaling and lysine synthesis pathways using Bayesian networks. We chose Bayesian networks

as they allow us to integrate pathway information from literature with experimental data. Using

Bayesian networks, we identified that ATAF1 is a negative regulator of drought and DAPF is the

most potent regulator of lysine. These regulators can be targeted using genetic intervention meth-

ods such as CRISPR-CAS9 to make plants robust against drought and increase lysine content in

rice. Our work with drought signaling pathways was validated through wet-lab experiments.
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NOMENCLATURE

IPCC Intergovernmental Panel on Climate Change

bZIP basic-domain leucine zipper

ABA Abscisic acid

AREB/ABF ABA-responsive element-binding protein/factor

JA Jasmonic Acid

MAPK Mitogen-Activated Protein Kinase

MLE Maximum Likelihood Estimate

LKR Lysine ketoglutarate reductase

SDH Saccharopine dehydrogenase

DHPS Dihydrodipicolinate synthase

AK Aspartate kinase

GRN Gene regulatory network

GMO Genetically modified organisms

MSU Michigan State University

TF Transcription factor

BN Bayesian network

PGM Probabilistic graphical model

LPD Local probability distribution

i.i.d Independent and identically distributed

LW Likelihood weighting
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1. INTRODUCTION AND LITERATURE REVIEW *

Drought is a natural hazard that affects crops by inducing water stress. Water stress, induced

by drought accounts for more loss in crop yield than all the other causes combined. With the

increasing frequency and intensity of droughts worldwide, developing drought-resistant crops to

ensure food security is essential. In section 2 of this dissertation, we model multiple drought

signaling pathways in Arabidopsis using Bayesian networks to identify potential regulators of

drought-responsive reporter genes. Genetically intervening at these regulators can help develop

drought-resistant crops. We create the Bayesian network model from the biological literature and

determine its parameters from publicly available data. We conduct inference on this model using a

stochastic simulation technique known as likelihood weighting to determine the best regulators of

drought-responsive reporter genes. Our analysis reveals that activating MYC2 or inhibiting ATAF1

are the best single node intervention strategies to regulate the drought-responsive reporter genes.

Additionally, we observe that simultaneously activating MYC2 and inhibiting ATAF1 is a better

strategy. The Bayesian network model indicated that MYC2 and ATAF1 are possible regulators of

the drought response. Validation experiments showed that ATAF1 negatively regulated the drought

response. Thus intervening at ATAF1 has the potential to create drought-resistant crops.

In section 3, we focus on modeling the lysine biosynthesis pathway in rice. Lysine is the

first limiting essential amino acid in rice because it is present in the lowest quantity compared to

all the other amino acids. Amino acids are the building block of proteins and play an essential

role in maintaining the human body’s healthy functioning. Rice is a staple food for more than

half of the global population; thus, increasing the lysine content in rice will help improve global

health. To this end, we study the lysine biosynthesis pathway in rice (Oryza sativa) to identify

the regulators of the lysine reporter gene LYSA (LOC_Os02g24354). Genetically intervening

*Parts of this section are reprinted with permission from Lahiri A, Zhou L, He P, Datta A
(2021) Detecting drought regulators using stochastic inference in Bayesian networks. PLoS ONE 16(8):
e0255486. https://doi.org/10.1371/journal.pone.0255486 and Lahiri A, Rastogi K, Datta A, Septiningsih
EM. Bayesian Network Analysis of Lysine Biosynthesis Pathway in Rice. Inventions. 2021; 6(2):37.
https://doi.org/10.3390/inventions6020037
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at the regulators has the potential to increase the overall lysine content in rice. We model the

lysine biosynthesis pathway in rice seedlings under normal, and saline (NaCl) stress conditions

using Bayesian networks. We estimate the model parameters using experimental data and have

identified the gene DAPF(LOC_Os12g37960) as a positive regulator of the lysine reporter gene

LYSA under normal and saline stress conditions. Based on this analysis, we conclude that the

gene DAPF is a potent candidate for genetic intervention. Upregulating DAPF using methods

such as CRISPR-Cas9 gene editing strategy has the potential to upregulate the lysine reporter gene

LYSA and increase the overall lysine content in rice.

2



2. DETECTING DROUGHT REGULATORS USING STOCHASTIC INFERENCE IN

BAYESIAN NETWORKS *

2.1 Introduction

Drought is a natural hazard characterized by prolonged periods of dry conditions which can

lead to economic, humanitarian, and ecological crises. In the context of agriculture, drought occurs

when the amount of water available is not enough to sustain crops; such deficiency of water may

arise from the lack of precipitation, soil water deficit, and reduced levels of ground or reservoir

water [1, 2]. It is important to study the effect of droughts on agriculture as it is usually one of the

first sectors to be impacted [3]. The United Nations Food and Agriculture organization reported

that between 2005-2015 the agricultural sector of the developing countries suffered a loss of $

29 Billion due to droughts[4]. In the United States, the state of California alone incurred a loss

of 3.8 billion dollars from 2014-2016 due to the droughts which occurred from 2012 to 2016[5].

Although the long term global drought trends have been a subject of debate, recent regional studies

have shown an increasing trend of intensity and frequency of droughts across the Mediterranean,

Western Africa, Central China, and Southwest and Central Plains of Western North America [6,

7, 8, 9, 10]. According to the special report published by the Intergovernmental Panel on Climate

Change (IPCC) in 2018, human activities have contributed to global warming, and, at the current

rate of warming, temperatures will rise by 1.5 °C between 2030 and 2052 [11]. This warming of the

climate is projected to increase the frequency and intensity of droughts, especially in the southern

African and Mediterranean regions [12]. Droughts are not caused by global warming alone; recent

studies have shown that in the southwestern regions of the United States, droughts are expected to

be more frequent and hotter due to structural changes in forested ecosystems and mass mortality

of trees [13]. Along with being expensive events, droughts also threaten food security by affecting

the global crop yield. With food security being a grand challenge due to a rising global population,

*Parts of this section are reprinted with permission from Lahiri A, Zhou L, He P, Datta A (2021) De-
tecting drought regulators using stochastic inference in Bayesian networks. PLoS ONE 16(8): e0255486.
https://doi.org/10.1371/journal.pone.0255486
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frequent and more intense droughts in the future only serve to exacerbate this problem [14]. Thus,

it is of paramount importance to develop crops that are robust against drought.

While the risk of imminent droughts has motivated the scientific communities’ efforts in de-

veloping drought resilient plants, it has also led plants to develop and evolve their internal defense

mechanisms to protect against droughts. Under drought conditions, plants can implement various

strategies to conserve water to ensure their survival. For instance, plants can develop longer roots

to search for water, shed their leaves early, slow their growth, or develop spines to conserve water

in response to drought [15]. In addition to a plant’s internal defense mechanism against drought,

farmers have relied on traditional plant breeding methods such as selection and hybridization to

combat drought. These methods have been successful in developing drought resistant plants in the

past; however, progress has been slow due to the limited understanding of genetic and molecular

interactions in the signaling pathways involved in the defense response of plants against drought

[16]. Thus it is essential to develop a strong understanding of these signaling pathways. In sec-

tion 2.4, we use Bayesian networks (BNs) to model the various drought signaling pathways of the

model plant Arabidopsis. We use BNs as they allow us to combine biological pathway information

along with experimental data, which is essential for developing a complete understanding of the

interactions that take place inside a plant under drought conditions. We then perform inference us-

ing likelihood weighting in the BN model to identify targets in the pathways that regulate drought

responsive genes. Genetically intervening (activating/inhibiting) at these target sites using methods

such as CRISPR-Cas9 can help develop drought resistant plants [17].

2.2 Plant Defense Mechanisms

Most living organisms can escape harsh environments by seeking refuge in favorable loca-

tions however, plants are immobile organisms and have to adapt to these conditions. If plants do

not adapt to stressful conditions then their growth, development, yield, and seed quality may be

hampered [18]. Plant stress can be categorized into two groups, biotic and abiotic. Biotic stress

includes attacks on the plant by herbivores, bacteria, fungi, and other pathogens, whereas under

abiotic stress the plant faces detrimental environmental conditions such as extreme temperatures,

4



droughts,and mineral toxicity. Plants defend against such stress by activating complex networks

of signaling pathways. These pathways are often activated with the help of small molecules such

as Ca2+, reactive oxygen species, nitrogen, or phytohormones such as ethylene, jasmonic acid,

abscisic acid, and salicylic acid, which serve as biological stress sensors [19]. These pathway

activators often initiate a protein phosphorylation cascade to directly target defensive proteins or

transcription factors to regulate the stress responsive genes [20]. Under stressed conditions, the nat-

ural metabolic homeostasis of plants is disrupted and, by activating the stress signaling pathways,

plants achieve a new state of homeostasis; this process is commonly referred to as acclimation

[21].

When a plant comes under drought conditions, it typically responds by implementing drought

escape, avoidance, and tolerance strategies [22]. Drought escape strategies involve the plant de-

veloping high plasticity and completing its life cycle before the onset of drought, whereas under

drought avoidance, the plant learns to maintain high water content in its tissues by increasing water

uptake and reducing water loss [22, 23, 24]. Drought tolerant strategies are characterized by the

plant developing traits such as epicuticular wax formation, osmotic adjustment, cellular elastic-

ity, and protoplasmic resistance. These strategies allow the plant to survive in drought conditions

with low tissue water content[24]. Plants do not deploy these defensive responses one at a time;

instead, they implement a combination of these strategies to cope against drought [23]. Such a

diverse range of defensive responses is achieved through the actions of Gene Regulatory Networks

(GRNs) [24, 25]. GRNs are complex networks of genetic regulators called Transcription factors

and their target genes; GRNs are directly responsible for altering the gene expression of plants

when they receive environmental cues such as drought [26]. Due to these reasons, we are inter-

ested in modeling the various GRNs, that are activated in plants in response to drought. Modeling

these genetic interactions will help us establish a deep understanding of how plants deploy phe-

notypical defensive behavior through the actions of genes and transcription factors. Such a model

will also help us identify the key regulators of drought response. The various GRNs involved in

drought response in Arabidopsis are described in the following section.
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2.3 Drought Signaling Networks

In this section of the dissertation, we build a BN model from several signaling pathways in-

volved in the drought response of Arabidopsis. Since the plant’s response to drought happens in

a complex manner, it is necessary to build a comprehensive network model that can capture the

multivariate and stochastic interactions taking place under drought conditions. Drought responses

in plants are largely regulated by Abscisic acid (ABA) dependent and independent pathways [27].

ABA acts a sensor of drought in plants. Under drought conditions, the ABA levels increase rapidly

in plants which allows them to subsequently respond by closing their stomata and inducing drought

responsive genes [28]. ABA regulates the expression of these genes through transcription factors

in its drought signaling pathway. The basic-domain leucine zipper (bZIP) transcription factor

and its subfamily of ABA-responsive element-binding protein/factor (AREB/ABF) constitute the

primary transcription factors through which ABA regulates drought responsive genes [29, 30].

Under drought conditions, ABA induces AREB1(ABF2), AREB2(ABF4), ABF1, and ABF3 from

this transcription factor family in the vegetative tissues of Arabidopsis [31]. ABA and another

plant phytohormone Jasmonic Acid (JA) regulate the expression of the drought responsive gene

RD22 in Arabidopsis via the transcription factors MYB2 and MYC2 [32, 33]. MYB2 and MYC2

act as a point of crosstalk between the ABA and JA signaling pathways. On the other hand,

Dehydration-responsive element binding protein 1 (DREB1)/CBF (C-repeat binding factor) and

DREB2 transcription factor families operate independently of the ABA dependent pathway to reg-

ulate the drought responsive gene RD29A. This is achieved by the actions of transcription factors

DREB1A(CBF3), DREB1B(CBF1), DREB1C(CBF2), and DREB2A [34, 33]. DREB1A, DREB1B,

and DREB1C are negatively regulated by a transcription factor MYB15 and positively regulated by

another transcription factor, ICE1 [35, 36, 37]. While ICE1 negatively regulates MYB15, it is sup-

pressed by transcription factors HOS1 and upregulated by transcription factor SIZ1 [38]. Among

the various members of the DREB1 and DREB2 family, DREB2A and DREB1D(CBF4) play an

interesting role in regulating drought response. Unlike the other DREB transcription factors dis-

cussed here, which function independently of the ABA pathway, DREB2A and DREB1D can be
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induced by the ABA pathway through the ABRE transcription factor family under drought condi-

tions [33, 39, 40]. Therefore DREB2A and DREB1D serve as another point of crosstalk for both

ABA dependent and independent pathways in regulating drought responsive genes. DREB2A was

found to be further regulated by DRIP1. Singh et al. (2015) found that transgenic Arabidopsis

overexpressing DRIP1 delayed the expression of drought responsive genes regulated by DREB2A

[33]. Downstream of the DREB and ABRE transcription factors is the drought responsive gene

RD29A which is heavily regulated by these transcription factors [29, 40, 41, 42].

A recent study by Li et al. (2017) identified a drought stress-activated mitogen-activated pro-

tein (MAP) kinase cascade in cotton that regulates the expression of a drought responsive tran-

scription factor GhWRKY59. GhWRKY59 directly binds to the W-boxes of the transcription factor

GhDREB2 to regulate drought response in cotton[43]. We include this ABA independent pathway

in our analysis of the drought regulatory network in Arabidopsis, where the MAP Kinase cas-

cade is known to converge at the transcription factor DREB2A. In building our network model, we

also study the WRKY transcription factor family which is traditionally associated with defense re-

sponse against pathogens. However, many studies have now shown that WRKY transcription factor

is involved in the defense response against drought [44, 45, 46]. The WRKY transcription fac-

tors WRKY40, WRKY60, WRKY18 are induced by ABA to regulate the expression of RD29A [47].

WRKY18, WRKY60 are known to positively regulate the expression of RD29A, whereas WRKY40

inhibits RD29A and WRKY60 [48]. Our previous paper on modeling the WRKY transcription factor

in Arabidopsis under drought further confirmed these regulatory behaviors of the WRKY transcrip-

tion factor family [49]. It should be noted that there is often crosstalk between ABA dependent

and other independent pathways, we noted two instances of this earlier. Another instance of the

crosstalk between the JA and ABA pathways was highlighted by Mintgen et al. (2014), where

WRKY60 from the ABA pathway suppresses the expression of MYB2 in the JA pathway to regulate

the drought responsive gene RD22 [50]. Other than RD22, MYB2 and MYC2 also regulate the

expression of another drought responsive gene ERD1 [33]. According to a study by Ollas et al.

(2016), MYB2 and MYC2 regulated the expression of ERD1 through a cluster of transcription fac-
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tors (ANAC019, ANAC055, and ATAF1) belonging to the NAC transcription factor family. ERD1

was found to be further regulated by the transcription factor zinc finger homeodomain 1 (ZFHD1)

and the gene RD26 (ANAC072) in the ABA pathway [51]. In addition to the drought responsive

genes RD29A, ERD1, and RD22, we also consider the gene RD20 in our network model. RD20

was found to be directly upregulated by the gene RD26(ANAC072) [51]. The biological interac-

tions discussed above are summarized in Figure 2.1. In section 2.4, we create a Bayesian network

model based on these signaling pathways to predict the best regulator(s) for the drought responsive

genes (marked in blue in Figure 2.1).

Figure 2.1: Drought signaling pathways in Arabidopsis. The orange circular nodes represent
elements directly regulated by ABA whereas the purple nodes represent elements regulated by JA.
The two nodes colored with a mix of orange and purple represent elements regulated by both JA
and ABA pathways (Crosstalk). The blue diamonds represent drought responsive reporter genes.
The plain circular nodes with no colors represent the transcription factors, genes and proteins
involved in the regulation of drought responsive reporter genes in an ABA independent manner.
The green and red arrows represent positive and negative regulation. The arrows going into and
out of ATAF1 are marked black to indicate that the nature of regulation is not known at this time.
(Reprinted from [128])
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2.4 Materials and Methods

2.4.1 Bayesian Network Model

We observed in the previous section that plants deploy a diverse range of defense mechanisms

to survive under drought conditions. These phenotypical defense responses are mediated through

complex networks of signaling pathways at the genomic level. Biological signaling pathways have

been successfully modeled using methods such as linear models, Boolean networks, probabilistic

Boolean networks, Bayesian networks, and small molecule level models [52, 53, 54, 55, 56, 57].In

order to develop a thorough understanding of these multivariate and stochastic interactions, we

create a BN model of the drought signaling pathways. Unlike some modeling techniques which

are solely driven by data, a BN model allows us to integrate pathway information in the form of

prior knowledge along with experimental data [58]. BNs are directed acyclic graphs that represent

the causal probabilistic relationships among a set of random variables and provide the conditional

decomposition of the joint probability distribution of these random variables [59, 60]. Thus BNs

serve as an ideal modeling paradigm to study the drought signaling pathways [58]. In this section,

our objective is to create a BN model of the drought signaling pathways outlined in Figure 2.1

and use this model to determine which transcription factor, protein or gene is the best regulator

of drought responsive reporter genes (blue diamonds in Figure 2.1). The predictions made by the

model can help us identify potential targets for genetic intervention techniques like CRISPR-Cas9

to create drought resistant crops.

Figure 2.2 represents the BN model of the signaling pathways shown in Figure 2.1. Every

node (circle) in the network represents a gene, protein, or transcription factor in the drought sig-

naling pathway. The black arrows or edges connecting the nodes represent the causal biological

relationships we discussed in the previous section. We assume each of the nodes are binary ran-

dom variables that can assume 1 for activation and 0 for inhibition. Since the nodes are random

variables, associated with each of them is a parameter θ which describes the local marginal or con-

ditional probability distribution for that node. For instance, the conditional probability parameter
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associated with the node representing MKK4 is given by θMKK4|MAP3K15. This parameter represents

the activation or inhibition probability of the node representing MKK4 conditioned on the state

of the node representing MAP3K15. Similarly, for the node representing the transcription factor

ICE1, the local conditional probability distribution is given by θICE1|HOS1,SIZ1. Henceforth, we will

refer to local conditional or marginal probability distribution as just local probability distributions

(LPD). We learn these LPDs from experimental biological data; once these LPDs are learned, the

BN model is complete and can be used for carrying out inference simulations to determine the best

modulator for the drought responsive genes.

Figure 2.2: Bayesian Network Model of Drought Signaling Pathway. Every circular node repre-
sents a biological element in the drought signaling pathway. Every edge or black arrow represents
the causal biological relationship between the nodes. Associated with every node is a θ parameter
that represents the local probability distribution of the node.(Reprinted from [128])
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2.4.2 Parameter Estimation in Bayesian Networks

BNs consist of two major components: a directed acyclic graph (DAG) and a set of local prob-

ability distributions. The DAG can be learned from data or constructed from domain knowledge.

Learning BNs from data, also known as structure learning in the literature, is an NP-Hard problem

and requires us to choose a DAG from several candidate DAGs [61]. This is not very practical as

we observed in in the prior sections that pathway interactions are well defined, and there can only

be a single DAG representing them. Furthermore, in the context of Arabidopsis under drought,

we are limited by the sizes of publicly available datasets. These datasets are not large enough to

construct a reliable DAG, so we elected to create the BN model in Figure 2.2 using pathway in-

formation from the existing biological literature. While a DAG can be learned either using data or

from domain knowledge,the local probability distributions associated with the DAG have to be esti-

mated from experimental data. There are several ways to estimate the local probability distribution

in a BN model. Typically, either a frequentist approach such as a Maximum Likelihood Estimate

(MLE) or a Bayesian approach is employed. Though methods such as MLE are simple and provide

a point estimate, they are only driven by data and do not take any relevant prior information into

account [62]. On the other hand, a Bayesian approach provides us with the posterior distribution,

which is driven by both data in the form of likelihood and relevant information in the form of a

prior distribution. However, the Bayesian approach has two significant drawbacks. The first one

is computing the normalizing constant or the probability of data (evidence)[63]. The normalizing

constant very rarely has a closed form solution and hence can be computationally expensive to

determine. The second drawback pertains to the choice of a prior distribution. Since the choice of

the prior distribution is subjective and there exists no established method to select one, different

choices of prior distribution will lead to different results [64]. Nonetheless, the Bayesian approach

is logically rigorous and unlike frequentist approaches, once the prior distribution is established

the Bayesian approach follows deductive logic. In this section, we use a Bayesian approach to

estimate the local probability distributions for the BN model outlined in Figure 2.2. We assumed

that the nodes are binary random variables, which implies that for any node X in the BN, X=1
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(success) when the node is activated and X=0 (failure) when the node is inhibited. Then for a

single observation for any node X in the BN can be modeled as a Bernoulli random variable.

Let us suppose that we have a BN model with N nodes. Then the probability with which any

node X attains a state of 1 is given by θX . Thus if we make n (>0) independent and identically

distributed observations (i.i.d) observations for each node in the BN, and if for a given node X, we

observe k instances when the node attains a state of 1, then the likelihood for node X is given by:

P (X|Pa(X), θX) ∼ Binomial(n, θX) (2.1)

Binomial(n, θX) =
n!

k!(n− k)!
θkX(1− θX)

n−k (2.2)

Pa(X) in Equation(2.1) refers to the parents, if any, of node X. Since we are using a Bayesian

approach to estimate the LPD of Node X, we need to select a prior distribution on the node X.

Considering the computational complexity required in calculating the normalizing constant, and

since the likelihood function associated with our model follows a binomial distribution by design,

we assume the prior distribution on θX to follow a Beta distribution. Since the Beta and Binomial

distributions belong to conjugate families, we know that the posterior distribution of θX will also

follow a Beta distribution [65]. This is formulated as follows:

θX ∼ Beta(αX , βX) (2.3)

P (θX |X) ∼ Beta(α’
X , β

’
X) (2.4)

where α’
X =αX +k and β’

X = βX + (n-k).

In equation (2.3), αX and βX represent the shape parameters of the Beta distribution, and in

equation (2.4) these parameters get updated for the posterior distribution on θX . We assume αX =1

and βX =1 for our calculations as the Beta(1,1) distribution corresponds to the standard uniform

distribution over the interval [0,1] [66]. Setting the prior distribution to the standard uniform distri-
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bution guarantees that we have no information regarding the prior distribution of θX . We chose the

Beta(1,1) distribution as our prior because we do not have any domain knowledge information re-

garding the prior distribution of every node in the BN model. If we had such information regarding

the prior distribution, they could be incorporated into this model. However, it is to be noted that

choosing a different prior distribution may not allow us to reach a closed form solution for the pos-

terior distribution on θX . Since the result we get in Equation (2.4) is a distribution and not a point

estimate like what we would have obtained had we used a frequentist approach, we approximate

the values for θX with the expected value of the posterior distribution. We do this approximation

for the posterior distributions estimated at every node in the BN. This approximation for the node

X has been presented in Equation (2.5).

θX ≃ E[θX |X] =
α’
X

α’
X + β’

X

(2.5)

Once these parameters are learned the BN is complete as we have both the DAG and the set of

conditional probabilities. In section 2.4.3, we study the effect on drought responsive genes for

intervening (activating/ inhibiting) at various nodes, then summarize our findings in the results

section.

2.4.3 Sampling Based Inference in Bayesian Networks

In this section, we are interested in using the BN model in determining which nodes are the

best regulators of the drought responsive reporter genes RD29A, RD20, RD22, and ERD1. Specif-

ically, we want to study the effect on the reporter genes of intervening at the non-reporter genes.

In other words, we will fix the state of every non-reporter gene node one at a time to either 0

or 1, and observe how this action (intervention) affects the LPDs for the nodes representing the

drought responsive reporter genes. This kind of simulation in BNs is known as inference. Infer-

ence techniques are categorized as either exact or approximate. Exact inference techniques such

as Enumeration, Variable Elimination, and Pearl’s Message Passing Algorithm are particularly ef-
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ficient in polytrees or singly connected networks. One such application of exact inference was

demonstrated by Vundavilli et al. to find significant nodes in the breast cancer signaling pathway

[67]. Ideally, we would like to use an exact inference technique to calculate the LPDs in our BN

model. However, exact inference techniques will be computationally expensive to implement as

our network is multiply connected, i.e., there are at least two nodes in our BN model connected by

more than one path. For instance, we can see that the nodes DREB1A and ICE1 are directly con-

nected and are also connected through MYB15, hence making our BN model multiply connected.

While exact inference algorithms work in polynomial time in polytrees, it has been shown to be

NP-Hard in more generalized BNs, hence implementing them in multiply connected networks may

not be practical [68]. Therefore, the size and structure of the BN govern our choice of inference

techniques. This is the reason why, for determining the regulators of drought responsive reporter

genes, we employ an approximate inference technique known as likelihood weighting.

Likelihood Weighting (LW) is an approximate inference technique based on stochastic simula-

tions. Inference techniques based on stochastic simulations usually involve drawing samples from

a sampling distribution, calculating an approximate posterior probability based on the samples,

and then showing that the posterior probability converges to the actual probability [69]. In the

context of our model, the sampling distribution will be specified by the BN in the form of LPDs.

Unlike exact inference techniques, LW is generally insensitive to the network topology, however,

convergence in estimating the posterior probabilities can be slow if they are close to 0 or 1 [70].

We will now describe the mathematical formulation for LW.

Consider a BN consisting of N nodes such that the DAG follows a topological ordering of

{X1,X2,..,XN}. Suppose we make an observation on the node XE in the BN, we will refer to XE as

the evidence node. Now suppose our objective is to find the effects of this observation on another

node XQ, known as the query node in the BN. Specifically, we want to estimate the posterior

probability Pr(XQ=xq|XE=xe), where ’xq’ and ’xe’ are some instantiation of nodes XQ and XE. At

this step we begin performing LW by drawing M samples from the BN for every node except for

the evidence node XE, in topological order. The generated dataset (ξ) will be a matrix with M rows
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and N columns, where each row represents an N-dimensional sample (datapoint) and columns

represent nodes in the BN. Thus after the first iteration of the sample generation process, the

datapoint will be of the form ξ(1) = { x1
(i=1) ,x2

(i=1),....,xe
(i=1),..,xN

(i=1)}. We will repeat this process

M-1 more times to obtain M such samples , thus that dataset will be of the form ξ = ξ{i=1,2,..,M} =

{ x(i)
1,x(i)

2,....,xe,..,x(i)
N}. It should be noted that xe, does not change across the M samples. This

is because XE is the evidence variable that has been observed and fixed. The samples for the rest

of the non-evidence nodes are generated according to the LPDs associated with those nodes. For

example we draw a sample x1 for root node X1 according to Pr(X1). Similarly we draw a sample

x2 for the node X2 according to Pr(X2 | X1 =x1) and so on. It should be noted that all the children

of node XE have a fixed instantiation for XE, that is xe. We then approximate Pr(XQ=xq|XE=xe) as

follows:

Pr(XQ = xq|XE = xe) ≃

lim
M→∞

∑M
i 1[x

(i)
q = xq]Pr(XE = xe|(Pa(XE))

(i))∑M
i Pr(XE = xe|(Pa(XE))(i))

(2.6)

The proof for Equation (2.6) is not trivial and is presented in a paper by Menon [71]. A pseudo

code for estimating the conditional probabilities using LW is presented in algorithm 1.We will now

demonstrate LW on an example BN.
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Algorithm 1: Psudo Code for likelihood weighting in Bayesian Networks
Input:

1: BN : The Bayesian Network

2: Q: The Query Variable, Let Q=q,

that is node Q is instantiated to some value of interest q.

3: E: The Evidence variable. Let E=e,

that is node E is instantiated to some observed value e.

4: M: Number of Samples.

Output: Probability: Estimate of P(Q=q|E=e)

5: Initialization: X1,X2,..,XN Topological Ordering of BN

Sampled_Data= {} {} ,M by N matrix to store sampled data

Weight= {1,...,1}, an array of size M, consisting of weights

with values initialized to 1.

Counts[k]=0, where k ∈ domain of Q

6: while iter= 1 to M do

7: for each node X in BN in topological order do

8: if X=Xi is in E then

9: Sampled_Data[iter][Xi]= x , where x is the value of Xi

10: Weight[iter]= Weight[iter] * P(Xi=x | Pa (Xi))

11: else

12: Sampled_Data[iter][Xi]= Generate random sample from P(Xi=x|Pa(Xi))

13: end if

14: end for

15: iter=iter+1

16: end while

17: k = List of row indices in Sampled_Data where Q=q

18: Probability = Sum (Weights [k])/ Sum(Weights)

19: return Probability
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Figure 2.3 describes an example BN consisting of four genes A,B,C, and D. We consider the

nodes representing the genes as binary random variables, which can take on the values of 1 for acti-

vation and 0 for inhibition. The LPDs for this example BN are already estimated and are presented

in Figure 2.3. For the purpose of this example, we assume that Gene A positively regulates gene

B, while it negatively regulates gene C. Gene D is upregulated by gene B, while gene C downreg-

ulates it. These effects are reflected in the LPDs for each node. Now suppose, we are interested in

gene D being positively regulated, and we decide to intervene at Gene B and set it to 1. Therefore,

node B=1 serves as the evidence variable, and let us consider node D as the query variable. Then

we are interested in finding the probability P(D|B=1) using LW.

Figure 2.3: Example BN with LPDs. Gene A positively regulates Gene B and negatively regulates
Gene C. Gene B positively regulates Gene D and Gene C negatively regulates Gene D. (Reprinted
from [128])
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In order to estimate this probability, we will need to query the BN and generate samples first.

We use the topological ordering of{A,B,C,D}, another valid ordering is {A,C,B,D}. The sample

generation process is described in the following steps:

1. Set the weight variable ’Wi’ to 1. W(i)=1

2. The matrix Sampled_Data[iter][Xi]= is empty. This matrix will store the value of nodes

A,B,C,D.

3. We start topologically at node A. Since A is not an evidence node, we sample it according

to its LPD, specifically P(A). Assume this sample results in A=1.

4. We now move on to node B. Since B is an evidence node, we do not sample it. We update,

W(i)=1. P(B=1|A=1)= 1. (0.9)= 0.9.

5. We now go to node C. Since C is not an evidence node, we sample it according to its LPD,

specifically P(C|A=1). Let us assume the result of this process is C=0.

6. We now sample node D with its LPD of

P(D|B=1,C=0). Assume that this results in D=1.

7. The sample generated is (A=1,B=1,C=0,D=1) with W(i=1) =0.9. Thus

Sampled_Data[1][All Columns] = [1,1,0,1]

8. We repeat steps 1-7, M-1 more times to obtain a total of M samples.

9. We can then calculate P(D|B=1) as follows:

P (D = 1|B = 1) =

∑M
i=1Wi1[D(i) = 1]∑M

i=1 Wi

P (D = 0|B = 1) =

∑M
i=1 Wi1[D(i) = 0]∑M

i=1 Wi
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Therefore for M=5 , if we generated sample, it would result in a 5 by 4 matrix (Sampled_Data[iter],[Xi]).

Table 1 shows this matrix with an extra column for weights belonging to each sample. From the

samples and weights in Table 1, we can now estimate P(D=1|B=1) and P(D=0|B=1) as follows:

P (D = 1|B = 1) =
∑5

i=1 Wi1[D(i)=1]∑5
i=1 Wi

= W1∗1+W2∗0+W3∗1+W4∗0+W5∗1
W1+W2+W3+W4+W5

= 0.9∗1+0.3∗0+0.9∗1+0.9∗0+0.3∗1
0.9+0.3+0.9+0.9+0.3

= 2.1
3.3

= 0.636364

P (D = 0|B = 1) =
∑5

i=1 Wi1[D(i)=0]∑5
i=1 Wi

= W1∗0+W2∗1+W3∗0+W4∗1+W5∗0
W1+W2+W3+W4+W5

= 0.9∗0+0.3∗1+0.9∗0+0.9∗1+0.3∗0
0.9+0.3+0.9+0.9+0.3

= 1.2
3.3

= 0.363636
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Table 2.1: Sample Data from Example Bayesian Network. (Reprinted from [128])

index A B C D Weight(Wi)

1 1 1 0 1 0.9

2 0 1 1 0 0.3

3 1 1 1 1 0.9

4 1 1 0 0 0.9

5 0 1 0 1 0.3

2.5 Dataset and Simulation

To estimate the LPDs for the nodes in the BN model, we needed gene expression data (e.g.,

microarray, RNA-Seq, eQTL, etc.) for Arabidopsis under drought conditions. We searched the

NCBI GEO database and selected the dataset GSE42408 [72, 73]. We chose this dataset as it

had gene expression data for the genes of interest in our BN model from 104 recombinant inbred

lines of Arabidopsis under drought conditions. Furthermore, this dataset had the most number

of data points per gene compared to other datasets found during the search of the NCBI GEO

database, which also led to its selection for our analysis. This dataset contains 104 eQTL (ex-

pression quantitative trait loci) data points for Arabidopsis under drought conditions. The data

for each node is normalized using min-max feature scaling. We further compute the normalized

means for each node and use it as a threshold for binarizing the data. The processed data was then

used to learn the LPDs for each node and perform inference using LW. We chose a sample size

(M) of 600,000 in the LW algorithm to ensure convergence in estimating the conditional probabil-

ities. The model building and all the associated data processing tasks were completed using the R

programming language [74]. The Bnlearn package was used to perform inference using LW [75].

All the code and data files are also made available publicly at the following GitHub repository:

https://github.com/adilahiri/Drought_Regulators.
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2.6 Results

Figure 2.4 displays the dataset GSE42408 after it was normalized and binarized. Each bar

in Figure 2.4 represents the inhibition and activation counts for each node in the BN. We use

the Bayesian approach as discussed in section 3.1, with Beta (1,1) as the prior distribution for

each node to estimate the LPDs. For the inference analysis, the query nodes were the drought

responsive reporter genes RD29A, RD20, RD22, and ERD1. We were interested in the activation

of ERD1 and the inhibition of RD29A, RD20, and RD22. Though all these reporter genes have

been shown to confer drought resistant characteristics, they also impart undesirable traits such as

sterility, reduced seed yield, and dwarfing [51]. Thus activating all of them is not optimal, hence

for our analysis, we are interested in finding a single node which upon intervention would increase

the chances of the reporter gene ERD1 being activated and the reporter genes RD29A,RD20, and

RD22 being inhibited. Since the LW yields a probability for the status of every drought reporter

node based on performing an intervention at an evidence node, we establish a composite scoring

metric defined in Equation (2.7) below.

Score(Evidence = {0, 1}) =

Pr(RD29A = 0|Evidence = {0, 1})

Pr(RD22 = 0|Evidence = {0, 1})

Pr(RD20 = 0|Evidence = {0, 1})

Pr(ERD1 = 1|Evidence = {0, 1}). (2.7)

This metric multiplies the conditional probability for all the drought responsive reporter genes

into a single number which is easy to interpret. A high score represents a suitable candidate for

intervention. In figures 2.5 and 2.6, we present the score for intervening at each of the non-reporter

nodes one at a time in the BN. The non-reporter nodes are activated in Figures 2.5, whereas in

Figure 2.6, they are inhibited. From Figure 2.5, it is clear that when MYC2 is activated, it results
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Figure 2.4: Activation vs Inhibition plot. This figure represents the data after it has been normal-
ized and then binarized. There are a total of 104 data points per node. The blue part of each bar
represents activation counts whereas the orange part represents the inhibition counts.(Reprinted
from [128])

in the highest score, whereas ANAC072 and ZFHD1 have the second and third highest scores,

respectively. On the other hand, in Figure 2.6, ATAF1 has the highest score for inhibition, followed

by ANAC019. Our analysis shows that activating MYC2 or inhibiting ATAF1 maximizes the scores

under single node intervention. Thus these are the best strategies to activate ERD1 and inhibit

RD29A, RD20, and RD22. We observe that the score for MYC2 is the lowest when it is inhibited

(Figure 2.6) and the score for ATAF1 is lowest when it is activated (Figure 2.5), this makes logical

sense for the analysis.
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Figure 2.5: Activation Scores for non-reporter gene nodes. Associated with each node is a blue
bar which represents the score for activating that node.(Reprinted from [128])

Figure 2.6: Inhibition Scores for non-reporter gene nodes. Associated with each node is an
orange bar which represents the score for activating that node.(Reprinted from [128])
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The above results from the single node intervention analysis motivated us to study effects on the

drought reporter genes when we simultaneously intervened at MYC2 and ATAF1. In Figure 2.7, we

present the score of simultaneously activating MYC2 and inhibiting ATAF1. Upon comparing this

score to the individual scores of activating MYC2 and inhibiting ATAF1, we notice that the score

for the combined intervention is slightly higher, indicating the synergistic effect of intervening

strategically at the two nodes. Furthermore, both MYC2 and ATAF1 are established regulators of

the drought response [76, 77]. MYC2 is known to be a positive regulator of the drought responsive

reporter genes RD20,RD22,and ERD1 [78, 79, 80]. A study found MYC2 to have no significant

regulatory effect on RD29A in Arabidopsis [81]. In contrast to the positive drought regulatory

nature of MYC2, ATAF1 is known to negatively regulate the expression of RD29A and RD22 [82].

The regulatory effects of ATAF1 on RD20 and ERD1 are not yet known. Due to MYC2 being a

positive regulator for most of the drought responsive reporter genes and ATAF1 being a negative

regulator for two of the drought responsive reporter genes, it is biologically consistent for them to

be the best regulators under activation and inhibition, respectively.
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Figure 2.7: Comparing the scores of multi-node and single node intervention under optimal
response case. Simultaneous (multi-node) intervention on MYC2 and ATAF1 has a slightly higher
score than single node intervention.(Reprinted from [128])

Experimental Validation

To validate the conclusions from the Bayesian network model, we isolated Arabidopsis ataf1

(SALK_057618C) and myc2 (myc2-1, SALK_061267C; myc2-2,

SALK_128938C) mutants from the Arabidopsis Biological Resource Center (ABRC) [83]. The

ataf1 mutant has a T-DNA insertion in the third exon of the ATAF1 (AT1G01720) genomic DNA,

both myc2 mutants have a T-DNA insertion in the exon of the MYC2 (AT1G32640) genomic

DNA (Figure 2.8 A). We germinated wild-type (WT) Col-0 and ataf1 mutant on the half-strength

Murashige and Skoog (MS) medium with or without 300 mM mannitol treatment (Figure 2.8 B).
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The addition of mannitol reduces water potential of growth media, which is often used to mimic

drought stress (Mu et al., 2019)[84]. Although the germination rate of the ataf1 mutant was lower

than WT in the medium without mannitol, the ataf1 mutant had more green cotyledon seedlings

(Figure 2.8 B) and higher green cotyledon rate (Figure 2.8 C) than WT seedlings under 300 mM

mannitol treatment. The difference became significant at nine days after germination. We also

compared the green cotyledon inhibition rate of WT and ataf1 mutant on MS medium with or

without mannitol. Consistently, the ataf1 mutant showed lower green cotyledon inhibition rate

than WT, and the tendency became more pronounced with the increase of growth time (Figure 2.8

D). We also germinated WT and myc2 mutants on the MS medium with or without 300 mM man-

nitol treatment (Figure 2.8 E). However, there is no significant difference in the green cotyledon

rate between WT and myc2 mutants with or without mannitol treatment (Figure 2.8 F). Similarly,

the green cotyledon inhibition rate between WT and myc2 mutants also did not show a significant

difference (Figure 2.8 G). Thus, our data show that the ataf1 mutant was more tolerant to the man-

nitol treatment, and suggests that ATAF1 plays a role in plant drought stress response. Our test

conditions, such as plant growth stage, treatment, or the combination, may not be suitable to reveal

the difference between WT and myc2 mutants.
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Figure 2.8: Results from validation experiments. A.The scheme of the ATAF1 and MYC2
genomic DNA and T-DNA insertion. The panel is a schematic illustration of the ATAF1 and
MYC2 genomic DNA with exons (solid box), intron (lines) and 3’ untranslated region (open
box). The position of T-DNA insertion of ataf1 (SALK_057618C), myc2 (SALK_061267C,
SALK_128938C)was labeled. B.The ataf1 mutant is more resistant to mannitol treatment. Wild-
type (WT) Col-0 and ataf1 mutant seeds were germinated on 1/2 MS medium with or without
300 mM mannitol. 30 seeds per genotype were used for each replicate. The photos were taken
four-week post-germination. C.Quantification of cotyledon greening on plates corresponding to
B. Seedlings with green cotyledon expansion were counted at 6-9 days post-germination. Data
are shown as means ± SD (standard deviation) from three independent replicates (n=3, *, p<0.05,
Student’s t-test). D.Quantification of cotyledon greening inhibition rate on plates corresponding
to B. Seedlings with green cotyledon expansion were counted at 6-9 days post-germination. Data
are shown as means ± SD from three independent replicates (n=3, *, p<0.05, Student’s t-test).
E.Growth of WT and myc2 mutants on MS plates. WT and myc2 mutant seeds were germinated
on 1/2 MS medium with or without 300 mM mannitol. 30 seeds per genotype were used for
each replicate. The photos were taken four-week post-germination. F.Quantification of cotyledon
greening on plates corresponding to E. Seedlings with green cotyledon expansion were counted
at 6-9 days post-germination. Data are shown as means ± SD from three independent replicates
(n=3, no statistical significance with Student’s t-test). G. Quantification of cotyledon greening on
plates corresponding to E. Seedlings with green cotyledon expansion were counted at 6-9 days
post-germination. Data are shown as means ± SD from three independent replicates (n=3, no sta-
tistical significance with Student’s t-test).(Reprinted from [128])
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2.7 Experimental setup

A. thaliana mutants ataf1 (SALK_057618C) and myc2 (SALK_061267C, SALK_128938C)

were obtained from the Arabidopsis Biological Resource Center (ABRC). The wild-type (Col-0)

and mutant plants were grown in a growth room at 23 °C, 45 % humidity, and 75 µE m−2 s−1

light with a 12-hr light /12-hr dark photoperiod. To detect cotyledon greening rate, 30 seeds per

genotype were sterilized and germinated on half-strength Murashige and Skoog (MS) medium

with or without 300 mM Mannitol treatment in each replicate. Seedlings with green cotyledon

expansion were counted at 6-9 d post-germination, data are shown as means ± SD from three

independent repeats (n=3, *, p<0.05, Student’s t-test). The photos were taken four-weeks post-

germination.
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3. BAYESIAN NETWORK ANALYSIS OF LYSINE BIOSYNTHESIS PATHWAY IN RICE*

3.1 Introduction

Proteins are one of the primary building blocks of all life on Earth and are present in every

cell in the human body. Proteins are a crucial macro-nutrient in the human diet; they help build

and repair cells and are essential for the human body’s growth and development[85]. Proteins

are comprised of long chains of amino acids; once the human body digests the proteins, they are

broken down into their constituent amino acids [86]. There are twenty naturally existing amino

acids that encode the 20,000 (approximate) unique proteins in the human body [87]. Among

these amino acids, nine are classified as essential, and eleven are classified as non-essential [86,

87]. Amino acids produced by the human body are considered non-essential, whereas the amino

acids that cannot be synthesized by the body are considered essential [87]. Essential amino acids

include phenylalanine, valine, tryptophan, threonine, isoleucine, methionine, histidine, leucine,

and lysine [88]. Since essential amino acids cannot be synthesized, they need to be introduced to

the human body through diets rich in complete proteins. A protein food source is considered a

complete protein if it contains all the essential amino acids [89]. Typically animal-based proteins

are considered sources of complete protein. On the other hand, plant-based proteins are considered

incomplete as they do not contain all the essential amino acids [89, 90].

According to the National Academy of Medicine, the recommended dietary allowance (RDA)

of protein intake is 0.8 g/kg/day [91, 92]. A diet deficient in protein can cause edema, thinning of

hair, and muscle mass loss in adults [93]. Though protein deficiency is rare in the developed world,

it is still prevalent in impoverished and underdeveloped countries, especially among children [93,

94]. Plant-based proteins accounted for 57 % of the global protein supply and were followed

by protein sourced meat and dairy, which accounted for 18% and 10%, respectively [95]. Even

though plant-based proteins constitute a majority of the global protein supply, according to the

*Parts of this section are reprinted with permission from Lahiri A, Rastogi K, Datta A, Septiningsih
EM. Bayesian Network Analysis of Lysine Biosynthesis Pathway in Rice. Inventions. 2021; 6(2):37.
https://doi.org/10.3390/inventions6020037
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World Health Organization (WHO) the demand for animal-based protein has been on the rise due

to urbanization, population growth, and rising economies. The WHO predicts the annual meat

production to reach 376 million tonnes by 2030, a 72% increase since 1997-1999 when the yearly

meat production was 218 million tonnes [96]. This global increase has placed a burden on the

livestock sector, especially in Europe and the Americas, where animal-based protein intake is

higher than plant-based proteins [97]. In the USA and European countries, proteins from animal-

based sources ranged from 55% to 71 % (depending on countries) of the total protein intake, a

significant proportion of which were from red meat [98].

Animal-based protein sources such as meat, milk, and eggs are richer in essential amino acids

and have a higher food protein quality in terms of digestibility, net protein utilization, and bio-

logical value compared to plant-based protein sources like legumes and cereals [97]. However,

animal-based proteins, specifically processed and red meats, have been linked with cancer, type 2

diabetes, and cardiovascular diseases [99, 100, 101]. Apart from health concerns, proteins sourced

from animals have a significant impact on climate change. According to the Food and Agricul-

ture Organization of the United Nations, the livestock supply chain accounts for 14.5% of global

anthropogenic greenhouse gas emissions[102]. With the global population set to reach 9.8 billion

by 2050 and the increasing demand for animal-based proteins, the challenges associated with food

security and climate change will only be exacerbated[96, 103]. Hence, a shift towards plant-based

protein sources may help reduce the carbon footprint, risks of chronic illness, and food insecurity.

While plant-based proteins may not contain all the necessary essential amino acids, a diet contain-

ing a diverse range of plant proteins can help overcome this limitation [104]. Cereal plants such as

wheat, rice, and maize constitute the primary protein sources in developing countries [105, 106].

With the majority of the world’s population living in developing countries, it will therefore be

beneficial to increase the protein content in cereal plants to ensure food security and prevent mal-

nutrition.
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3.1.1 Lysine Content in Rice

Lysine is produced in the aspartate pathway along with three other essential amino acids thre-

onine, methionine, and isoleucine [107]. Lysine is also the first limiting essential amino acid in

cereal and legume crops because it is present in the lowest quantity [107, 108, 109]. This is why

lysine deficiency is a common problem in developing nations that rely heavily on cereal crops

[107, 110]. A lysine deficient diet can reduce immunity, decrease protein levels in the blood, and

cause retardation of mental and physical development in children [108]. Rice is a cereal plant

that is an important food source for more than 50% of the global population [111]. About 95%

of global rice is produced in developing countries, among which 92% are countries in Asia [112].

Rice accounts for 50% of the dietary caloric supply for 520 million living in poverty in Asia [113].

Like most cereal crops, rice is deficient in lysine, so in this study, we are interested in identifying

the genetic regulators of lysine in rice, since intervening at these regulators has the potential to

increase the free lysine content in rice [114]. Enriching lysine content in rice will be a step to-

wards ensuring food security and preventing malnutrition especially in the vulnerable sectors of

the global population.

Over the last 50 years, lysine metabolism has been extensively studied. It has been shown

that lysine is a self-regulating amino acid as the lysine biosynthesis pathway has two inhibition

feedback loops. These feedback loops are activated by the free lysine content, which negatively

regulates the enzymes dihydrodipicolinate synthase (DHPS) and aspartate kinase (AK) [108, 115].

AK is the first enzyme of the lysine biosynthesis pathway and is also inhibited by threonine, another

essential amino acid synthesized by the aspartate pathway [108, 115]. Lysine is also degraded

through the enzymes lysine ketoglutarate reductase (LKR) and saccharopine dehydrogenase (SDH)

bifunctional enzymes [115]. The LKR and SDH enzymes are present in the saccharopine pathway

and they initiate the lysine catabolism process through the TCA cycle (tricarboxylic acid cycle)

[108]. The metabolic pathway of lysine biosynthesis and catabolism in presented in Figure 3.1

[116, 117, 118]. Thus lysine can be enriched in cereal plants by enhancing its production in the

biosynthesis pathway, preventing its catabolism, or combining these two approaches. A study by
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Long et al. (2013) focused on enhancing lysine through metabolic engineering of rice.

Figure 3.1: Lysine metabolic pathway for synthesis and catabolism.(Reprinted from [56])

These transgenic lines of rice overexpressed AK and DHPS. They observed that LKR and SDH

levels were significantly higher in seeds of these rice lines, implying that the catabolic enzymes

LKR and SDH were counteracting the effects of transgene AK and DHPS [118]. This method

increased the free lysine content by 1.1 times in transgenic lines compared to the wild type. This

study also implemented a LKR-RNAi line, which showed a 10 fold increase in lysine content, and
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a combination LKR-RNAi with AK/DHPS overexpressing lines led to a 60 fold increase in free

lysine content. In a different study, Yang et al. (2016) developed two pyramid transgenic lines in

rice. The lysine content in these transgenic lines showed increased lysine content up to 25 fold.

This was achieved by enhancing the biosynthesis pathway and suppressing the catabolism pathway

at the same time [119]. Unlike many lysine enhancement studies, which lead to reduced yield, oil

content, and phenotype change, no significant trait changes were observed in this case, and the

developed transgenic rice was deemed favorable for commercialization [120, 121, 122].

While these studies have demonstrated that lysine content can be enhanced through careful

metabolic engineering of high-lysine transgenic lines, these are not yet commercialized. Further-

more, transgenic crops rely on introducing foreign genes (transgenes) into the host crop, making

them vulnerable to public rejection. That is why in this section, we are interested in understanding

the underlying genetic regulatory networks (GRNs) that govern these complex interactions. The

GRNs can help us identify the genetic regulators of lysine which can be targeted using gene-editing

methods such as CRISPR-Cas9. Unlike transgenic crops, the final product of gene editing can be

cleared of any foreign DNA segments. Instead of relying on transgenic insertions, gene editing

instead knocks out or replaces targeted native genes in the genome of the crop to give rise to de-

sirable traits. The United States Department of Agriculture (USDA) has allowed gene edited crops

to be labeled as non-GMO, which will make gene edited crops significantly less controversial than

transgenic crops [123]. A recent study by Shew et al. showed that gene edited crops were preferred

over GMO crops in multiple countries [124]. Thus by studying the underlying GRN involved in

lysine regulation in rice we can identify potential targets for gene editing.

LKR and SDH are known regulators of lysine in the catabolic pathway, and genetically in-

tervening at them can prevent lysine degradation [125]. Therefore in this section, we focus on

identifying lysine regulators in the biosynthesis pathway. Overexpressing the regulators in the

biosynthesis pathway through gene editing techniques such as CRISPR-Cas9 has the potential to

increase the free lysine content in rice. In Figure 3.2, we derive the GRN of the lysine biosynthesis

pathway in rice (Oryza Sativa) from the KEGG pathways database [126]. Each rectangular box
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in Figure 3.2 represents a gene in the lysine biosynthesis pathway. The gene names are annotated

according to their respective MSU IDs (LOC_Os##g#####) [127].

Figure 3.2: Gene regulatory network for lysine biosynthesis pathway in rice. The gene names
are presented according to their MSU IDs. The letters in red font are aliases for the respective
genes. For e.g. LOC_Os01g70300 will be referred to as gene A. Genes I-N have been given
names in the literature, these have been mentioned in the figure alongside their respective MSU
IDs.(Reprinted from [56])

In addition to the MSU IDs, the boxes contain letters in red font within parenthesis. These
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letters are used as aliases for genes in the later sections of this dissertation. Genes I-N have been

given names in the literature and these names have been mentioned in the boxes alongside their

MSU IDs, for e.g. gene K (LOC_Os03g09910) is also known as ALD1. The genetic interactions

converge at LYSA (LOC_Os02g24354 or gene N) which positively regulates the amino acid lysine

(L-Lysine, where the α carbon is in the S configuration ). This makes LYSA (gene N) a reporter

gene of lysine. Thus our objective is to identify genes that will upregulate LYSA.

To identify the LYSA regulators, we will model the GRN of the lysine biosynthesis pathway

using Bayesian Networks (BN). We will then use publicly available data to infer the BN model’s

parameters. The model can then be used to identify the genes that upregulate LYSA. This modeling

pipeline is similar to our previous work where we identified regulators of drought response in

Arabidopsis [49, 128]. We identify the LYSA regulators under normal and saline stress (NaCl)

conditions. Soil salinity is one of the significant environmental constraints on the crop life cycle.

Nearly 5% (77 million hectares) of the global arable land has excess salinity [129]. Due to various

factors such as climate change and irrigation malpractices, the soil salinity is predicted to increase

by 16.2 million hectares by 2050 [130, 131]. Among abiotic stresses, soil salinity is the second

largest cause of crop loss in rice after drought [132, 133].Saline stress primarily affects rice during

its seedling, early vegetative, and reproductive stages [134, 132]. We have extensively studied and

identified regulators of drought response in our previous works [49, 128]. This is why in our current

study we shift our attention to saline stress in rice. We are specifically interested in observing if

the LYSA regulators change under saline stress. Stewart et al. showed that saline stress leads to

the accumulation of aspartic acid (aspartate), which is the first element in the lysine biosynthesis

pathway [135]. Furthermore, it has been reported that under stressed conditions, aspartic acid

catabolizes into asparagines, threonine, lysine, isoleucine, and methionine [136]. Studies involving

maize and wheat showed increased Lysine content under saline stress; however, the precise effect

of saline stress on the Lysine content in rice remains to be explored [137, 138].
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3.2 Materials and Methods

GRNs describe the complex interactions taking place between regulators and their target genes.

Typically regulators consist of transcription factors (TFs),genes, RNA binding proteins, and regula-

tor RNAs that can control the gene expression of the target genes [139, 140, 141]. GRNs govern the

decision-making process in response to endogenous and external stimuli; thus, understanding their

behavior at the genomic level can give us critical insights into achieving desirable phenotypical

traits like increased lysine content [142, 143]. GRNs have been modeled extensively in the past for

a wide range of applications such as discovering novel biological relationships, studying complex

diseases, drug design, and developing pathogen-resistant crops [144, 145, 146, 147, 148]. Common

modeling techniques include differential equations, linear models, Boolean networks, probabilistic

Boolean networks, Bayesian networks, and small molecule level models [52, 67, 53, 54, 55]. Each

technique has its set of advantages and limitations. Therefore, we must consider the nature of the

interactions in the GRN and the overall domain of the study while selecting a modeling method.

In this section, we are interested in modeling the lysine biosynthesis pathway in rice under normal

(unstressed) and saline stress conditions. The interactions taking place in the pathway are sparse,

multivariate, and stochastic in nature. Furthermore with the advent of high throughput technolo-

gies, publicly available genomic data have become easily accessible [149]. Due to these factors,

we will model the lysine biosynthesis pathway using Bayesian networks (BNs). BNs provide a

stochastic framework and allow integration of pathway knowledge and data.

3.2.1 Bayesian Network Modeling

BNs are a class of Probabilistic Graphical Models (PGM) that integrate probability and graph

theory to represent stochastic and causal relationships among variables in a system [150, 151].

BNs consist of two main components (i) a directed acyclic graph (DAG) and (ii) local probability

distributions (LPD) or the network parameters [152]. The DAG is a map that describes the causal

relationships among the system variables, also known as nodes. DAGs specify the dependencies

among the nodes and explain the flow of cause and effect in the overall network. The DAG can
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be derived from the literature or estimated from data using structure learning algorithms [153].

Associated with each node in the DAG is a local probability distribution (LPD) which describes

the stochastic nature of interaction among the connected nodes [151]. The LPDs and the DAGs

together describe the factorization of the joint probability distribution of all the nodes in terms of

their LPDs. In order to formalize this notion consider a BN with N nodes such that it has a DAG

structure G(X,E), where Xi represents the ith node in the set of nodes X and E represents the set

of casual edges between the nodes. Now suppose the LPD for each node Xi is given by P(Xi |

Pa(Xi)), where Pa(Xi) is the set of parent nodes of Xi. Then by the local Markov independence

assumption, each node given its parent nodes, is independent of its nondescendant nodes. We can

then factorize the joint probability of all the nodes in X as:

P (X = {X1, X2, .., Xi, ...XN}) =
N∏
i=1

P (Xi|Pa(Xi)) (3.1)

To model the lysine biosynthesis pathway using BN, we construct a DAG from the Kegg path-

way we discussed in Figure 3.2. Learning the DAG from data is an NP-Hard problem and often

requires selecting a graph structure from a candidate of possible DAGs [154, 155]. This is a com-

putationally expensive task, and the size of publicly available genomic datasets is not sufficiently

large to produce a reliable DAG. Therefore we use pathway information (see Figure 3.2) to con-

struct the DAG for the lysine biosynthesis pathway in Figure 3.3. Every node (represented by

circles) in the DAG represents a gene present in the lysine biosynthesis pathway. These genes

are referenced by their aliases; for instance, gene N represents LYSA. The nodes are connected by

arrows that represent actual biological relationships as described in the pathway. We assume that

genes in the network can be active, dormant, or inhibited. Thus we model each node as a categor-

ical random variable with three states 1(active), 0 (dormant), and -1 (inhibited). Associated with

each node is a rectangular box that describes the LPD (network parameter). For Node A, θA is vec-

tor representing the marginal probability of gene A being active, dormant, or inhibited. Similarly,

θM |L,K is a vector representing the conditional probability of gene M being active, dormant, or in-
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hibited given the states of its parents, gene L and gene K. This completes our discussion of the DAG

for the lysine biosynthesis pathway. In the following section, we will discuss how to estimate the

LPDs. Once all the LPDs have been calculated the Bayesian network model is complete and can

be used to perform gene intervention simulation under normal and saline stress conditions. These

simulations will help us gain insight into the effect of intervening at the various genes. Genes that

upregulate LYSA (gene N) will be considered ideal targets for genetic intervention. Interventions

in the GRN can be carried out using gene editing methods such as CRISPR-Cas9 [143]. A sim-

ple example BN with its LPDs has been shown in section 3.2.3 for the purpose of demonstrating

inference in BN.This example might be useful in developing a better understanding of the DAG

structure and the LPDs.
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Figure 3.3: Directed Acyclic Graph (DAG) of the lysine biosynthesis pathway. Each node
(circle) represents a gene in the pathway. The rectangular boxes represent the local probability
distributions of the respective nodes. Each node is modeled as a categorical random variable with
the following states: active(1), dormant(0), and inhibited (-1).(Reprinted from [56])

3.2.2 Parameter Estimation

Several methods can be employed to estimate the LPDs (network parameters) in a BN. Fre-

quentist approaches such as Maximum Likelihood Estimation (MLE) are common when estimat-

ing the LPDs in a BN [156]. However, we will use a Bayesian approach to estimate the LPDs

for the DAG constructed in the previous section. This is because the sizes of publicly available

datasets are not sufficiently large to be reliably used by data-driven frequentist approaches. Unlike

frequentist approaches, Bayesian estimation produces a posterior probability distribution for the
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LPDs based on data and prior knowledge [157]. The point estimate for the LPDs can be obtained

by approximating the posterior distributions by their expected value or mode [158]. The Bayesian

estimation process is based on Bayes rule where the posterior distribution of a random variable X,

for a dataset D, is given by:

P (X|D) =
P (D|X)P (X)

P (D)
(3.2)

where P(X) is the prior distribution of X

We will now use this approach to derive the general expression for estimating the LPDs for a BN

where the nodes are modeled as categorical random variables. We can then extend our derivation

to the DAG in Figure 3.3.

Consider a BN with a DAG denoted by G containing N(N is a Natural number) nodes. Each

node Xi in G is modeled as a categorical random variable with the following states: active (1),

dormant (0), and inhibited (-1). Thus for any node Xi in G, Xi ∈ S={1,0,-1}, so if Xi =0 , it implies

that the node Xi is dormant. Let the probability with which Xi assumes any of the states in set S be

given by the probability vector θXi
. Then θXi

is of the form [θXi=1,θXi=0,θXi=−1]T , where θXi=s

represents the probability of Xi=s for s ∈ S and Σs θXi=s =1. Now, suppose we have a dataset D

which contains n (n is natural number) independent and identically distributed(i.i.d) observations

for each of the N nodes in G. For a node Xi in G, let MXi
[S=s] represent the frequency of Xi=s in

D (Σs MXi
[s]=n). Then the likelihood under the dataset D can be modeled as:

P (Xi|Pa(Xi), θXi
) ∼Multinomial(θXi

, n) (3.3)

Multinomial(θXi
, n) = n!

∏
s∈S

θ
MXi

[s]

Xi

MXi
[s]!

(3.4)

The Bayesian estimation process requires selecting a prior distribution. Prior distributions can

be selected based on domain knowledge; however in its absence, there are no fixed methods to

choose a prior. The subjective selection of the prior distribution is often cited as a drawback of
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the Bayesian estimation process, as different priors lead to different results for the posterior dis-

tribution [159]. We set the prior distribution on θXi
for each node Xi ∈ G to follow a Dirichlet

distribution. A Dirichlet prior under a multinomial likelihood causes the posterior distribution also

to follow a Dirichlet distribution. This is because the multinomial and Dirichlet distributions be-

long to conjugate families of distributions[160, 161]. Therefore we have the following formulation

for the posterior distribution on θXi
:

θXi
∼ Dirichlet(α) (3.5)

α = [αs=1, αs=0, αs=−1]

Dirichlet(θXi
;α) =

1

β(α)

∏
s∈S

[θXi=s]
αs−1 (3.6)

where β(α) is the Multivariate Beta function

P (θXi
|Xi) = Dirichlet(α′) (3.7)

and

α′ = [αs=1 +MXi
[s = 1], αs=0 +MXi

[s = 0], αs=−1 +MXi
[s = −1]]

α′ = [α′
s=1, α

′
s=0, α

′
s=−1]

In our study we specifically set the prior distribution on each node Xi to be Dirichlet(αs=1

=1,αs=0=1,αs=−1=1), which corresponds to uniform distribution over the open standard 2-simplex

and is a non informative prior [162, 163]. This is an appropriate choice for the prior distribution

in our study as we do not have prior knowledge regarding the distribution of each node in the BN.

Furthermore, this assumption on the prior distribution of the nodes allows us to obtain a closed

form solution for the posterior distribution. Selecting a different prior will often lead to non-

closed form solution for the posterior distribution and calculating the probability of data (P(D))

can be computationally expensive [164]. The formulation in Equation (3.7) represents the posterior

distribution of the node parameter θXi
. We approximate θXi

by its expected value in order to obtain

a point estimate for the LPDs in the BN. The expectation of a Dirichlet distribution is given by
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[165]:

θXi
=


θXi=1

θXi=0

θXi=−1

 ≈ E[θXi
|Xi] =



α′
s=1∑
S α

′
s

α′
s=0∑
S α

′
s

α′
s=−1∑

S α
′
s


(3.8)

Similarly if we have a node Xi with a parent node Yi=s (s ∈ S) under the same Dirichlet and

Multinomial framework, then the LPD associated with θXi|Yi
can formulated as follows:

θXi|Yi=s =


θXi=1|Yi=s

θXi=0|Yi=s

θXi=−1|Yi=s

 ≈ E[θXi|Yi=s|(Xi | Yi = s)] =



αs=1+MXi|Yi [Xi=1,Yi=s]∑
S αs+MXi|Yi [Xi=1,Yi=s]

αs=0+MXi|Yi [Xi=0,Yi=s]∑
S αs+MXi|Yi [Xi=0,Yi=s]

αs=−1+MXi|Yi [Xi=−1,Yi=s]∑
S αs+MXi|Yi [Xi=−1,Yi=s]


(3.9)

In equation (3.9), MXi|Yi
[Xi=1,Yi=s] represents the frequencies when Xi=1 and Yi=s simulta-

neously in the dataset D. Similarly, MXi|Yi
[Xi=0,Yi=s] is the frequency of datapoints in D when

Xi=0 and Yi=s simultaneously, and so on for Xi=-1.Once the node parameters are estimated, gene

intervention simulations can be carried out using inference in the BN. Inference computes the

effect of intervening at each node on the reporter gene LYSA (gene N).

3.2.3 Gene Intervention Simulations

BNs represent the cause and effect relationship among the nodes of the system being mod-

eled. Inference quantifies the cause and effect relationship by allowing us to compute conditional

probability queries. Then for a node of interest X, also known as the query node and an inter-

vention(or evidence) node E in the BN, we can compute the conditional probability P(X|E) using

inference algorithms. This implies, if we instantiate (fix) node E, we can calculate its effect on

node X. Inference algorithms use the network parameters and structural dependencies to compute

the required conditional probabilities. To further elucidate this notion, consider the BN shown in
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Figure 3.4. Let each node of the BN be a binary random variable with states 0 and 1. Suppose we

have estimated the LPDs P(A), P(B|A), P(C|A), P(D|B,C), then we can use inference in this BN to

answer conditional probability queries such as P(D=1|A=1).

Figure 3.4: Example BN with binary nodes.(Reprinted from [56])

We compute P(D=1|A=1) as follows:

P (D = 1|A = 1) =
P (D = 1, A = 1)

P (A = 1)

=

∑
B

∑
C P (A = 1, B, C,D = 1)

P (A = 1)

Using the properties of the BN, all nodes are independent of any non descendant nodes

P (D = 1|A = 1) =

∑
B

∑
C P (A = 1)P (B|A = 1)P (C|A = 1)P (D = 1|B,C)

P (A = 1)

=
∑
B

∑
C

P (B|A = 1)P (C|A = 1)P (D = 1|B,C)
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We can use the LPDs to calculate the exact probability P(D=1|A=1).

Inference techniques such as the one applied in the BN in Figure 3.4 are classified as "exact"

because they compute the true values for the conditional probability query. However, exact in-

ference in BNs has been shown to be NP-hard [166, 167]. While there exist efficient algorithms

for exact inference, they are often limited to simpler DAG structures[166]. For example, Pearl’s

message-passing algorithm works efficiently for singly connected DAG structures [168].Therefore

for larger DAGs, exact inference is not ideal as the computational cost of calculating the condi-

tional probabilities can be expensive. In such cases, we employ approximate inference algorithms,

which produce estimates of the exact conditional probabilities [169]. Approximate inference can

include wide-ranging techniques such as model simplification methods, loopy belief propagation

methods, search based methods, utility based methods, and stochastic simulation methods [170].

In this section, we implement a stochastic simulation-based inference technique called Likelihood

Weighting (LW) to estimate the conditional probability queries in the BN model for the lysine

Biosynthesis pathway. Stochastic simulation techniques estimate the conditional probabilities by

drawing samples from the LPDs. These estimates typically converge to the true conditional prob-

abilities as the number of samples drawn increases. LW can efficiently handle inference of large

multiply connected BNs and is based on forward sampling [170, 171]. Since our BN model is

multiply connected and we are only interested in estimating P(N=1 | E ∈ {A,B,C,...,M}), i.e.,

the probability of upregulating LYSA (gene N), while conditioning on other genes (evidence or

intervention nodes), LW turns out be a suitable method for performing inference.

The LW algorithm estimates the conditional probability, P(X=x | E=e) for a query node X

and an evidence node E by generating samples from a BN model. We fix the sample size (m)

and a topological ordering at the start of the algorithm. The algorithm iterates through a sample

generation process m times, and then computes the conditional probability from the generated

samples. During the sample generation process, the algorithm generates values for the nonevidence

nodes only; it sets the value of the evidence node to its observed (e, in this case) value. The

node values for each sample are generated in the established topological ordering. Each sample
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is assigned a weight of 1 at the start of the sample generation process. The weight is updated

only when an evidence node is encountered while traversing the topological ordering. When this

happens, the sample’s weight is updated by multiplying the current weight with the likelihood of

the evidence node conditioned on the state of its parent nodes. The likelihood is given by the

probability P(E=e | Pa(E)). The process is repeated until m samples are generated. Following this

step, conditional probability is estimated by dividing the sum of the weights of the samples where

X=x by the sum of all the sample’s weights. The pseudo code for the LW algorithm by Stuart

Russell and Peter Norvig is presented in Algorithm 1 [172].

Algorithm 2: Likelihood-Weighting Algorithm

Function LIKELIHOOD-WEIGHTING(X , e, bn,N):
outputs an estimate of P(X|e)
inputs: X, the query variable

e, observed values for variables E
bn, a Bayesian network specifying joint distribution P(X1,..,Xn)
N, the total number of samples to be generated

local variables:W, a vector of weighted counts for each value of X, initially zero
for j=1 to N do

x,w←WEIGHTED-SAMPLE(bn,e)
W[x]←W[x] + w where x is the value of X in x

end
return NORMALIZE(W)

Function WEIGHTED-SAMPLE(bn, e):
outputs an event and a weight
w← 1; x← an event with n elements initialized from e
for each variable Xi in X1,..,Xn do

if Xi is an evidence variable with value xi in e then
w← w × P(Xi =xi | parents(i))

else
x[i]← a random sample from P(Xi | parents(Xi))

end
end
return x,w
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3.2.4 Dataset

To estimate the LPDs in the BN model, we use the dataset GSE98455, which is publicly avail-

able from the NCBI GEO database [173, 174, 175]. This dataset was selected as it contains RNA-

Seq counts for rice seedlings under saline stress and normal (unstressed or control) conditions

and had the highest number of samples (data points) per gene available among publicly available

datasets. The entire dataset contained 57846 rows (genes) and 368 columns (control and saline

stress). Since our BN model contains nodes modeled as categorical variables, the RNA-Seq data

had to be preprocessed. The data preprocessing steps are outlined as follows:

1. The entire dataset was normalized using the ratio of medians methods.

2. We selected the data for the genes A-N, as these were the genes in the BN model. We identi-

fied the data for each of the genes by mapping their dataset IDs to their respective MSU IDs.

This reduced our dataset to a size of 14 rows (Gene A-N) and 368 columns.

3. We further segregated the normalized dataset based on saline stress and normal conditions.

Since the number of columns for saline stress and normal conditions were the same, each of

the resulting datasets had 14 rows and 184 columns.

4. We ran K-means clustering separately on both the saline stress and normal conditions dataset

to convert them from normalized to categorical values. The clustering process categorized

the data in both the datasets into the following values 1 (active), 0 (dormant), and -1 (inhib-

ited). The low expression values were categorized to the value of -1, the high expression

values were categorized to the value of 1, and the remaining expression values in the middle

were categorized to a value of 0.
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Once the categorical values were obtained for both the treatment and control datasets, the

LPDs were estimated under each case using the Bayesian approach described in the Parameter

Estimation section. We then ran LW to simulate gene intervention.The ratio of medians methods

used for normalization is described in the DESeq2 data processing protocols by Love et al.[176].

DESeq2 is one of the most commonly used RNA-Seq data processing protocols and is easily

accessible on the R programming language as a package (DESeq2)[177, 178, 179, 180]. The file

for mapping dataset IDs to MSU IDs was provided to us by the authors of the dataset GSE98455.

We have highlighted their contribution in the acknowledgment section. A visual representation

of the data processing pipeline has been presented in Figure 3.5. Figures 3.6 and 3.7 show the

discretized categorical data for each node in the BN under normal and saline stress conditions,

respectively.

Figure 3.5: Data processing pipeline for RNA-Seq dataset GSE98455.(Reprinted from [56])
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Figure 3.6: Discretized RNA-Seq data under normal conditions.(Reprinted from [56])

Figure 3.7: Discretized RNA-Seq data under saline stress conditions.(Reprinted from [56])
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3.3 Results

The LPDs estimated from the RNA-Seq dataset were used to simulate gene intervention in the

BN. When intervening at a gene, the node representing that gene in the BN was instantiated to

a status of active (1), dormant (0), or inhibited (-1). We applied the LW algorithm with a large

sample size of 600,000 to compute the probability P(N=1 | Gene Intervention) and ensure conver-

gence of the probabilities being estimated. Gene N (LYSA) is set as the query node because it is the

reporter gene for lysine production, thus upregulating gene N (LYSA) may lead to increased lysine

production. We perform intervention at genes A-M one at a time and then in combinations of two

(pairs) at a time. These gene intervention strategies were applied under both normal and saline

stress conditions. In order to measure the causal effect of intervention, we subtract the marginal

probability P(N=1) from P(N=1 | Gene Intervention), for all the possible gene intervention strate-

gies. This difference is defined as the score metric and is used to compare the effectiveness of each

gene intervention strategy. The data processing and probability computation pipeline was written

in the R programming language, and the Bnlearn package was used to perform LW [181, 182, 183].

So,

score = P (N = 1 | Gene Intervention)− P (N = 1). (3.10)

Since there are many possible combinations under single and pairwise gene interventions, we

only include the top five intervention strategies with the highest scores in Figure 3.8 and Tables

3.1 and 3.2. In Figures 3.8 (a) and 3.8(b), we present the scores for single node intervention under

normal and saline stress conditions.
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Figure 3.8: Single node intervention under (a) normal and (b) saline stress condi-
tions.(Reprinted from [56])

It is clear from Figures 3.8(a) and 3.8(b) that activating gene M (DAPF) has the maximum

score. This implies that under both normal and saline stress conditions, genetically activating gene

M (DAPF) has the best chance for upregulating the reporter gene N (LYSA). We also notice that

gene L (AGD2) is also fairly active in its role in upregulating gene N (LYSA). Activating gene L

(AGD2) achieves the second-largest score under normal conditions. Under saline stress conditions,

activating gene L (AGD2) or keeping it dormant also ranks among the top five gene intervention

strategies. Inhibiting gene K (ALD1) achieves the third-highest scores under normal and saline

stress conditions. Additionally, we also observe that midstream genes such as gene I (DAPB1) and

gene J (DAPB2) also play an active role in upregulating gene N (LYSA). However, activating gene

M (DAPF) has a significantly higher score under both conditions, thus gene M (DAPF) servers as

an ideal candidate for gene intervention.
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Table 3.1: Top five pair wise intervention strategies under normal conditions.(Reprinted from
[56])

Index Gene Name/Alias Intervention Gene Name/Alias Intervention Score

1 ALD1 (Gene K) Active DAPF (Gene M) Active 0.1657

2 ALD1 (Gene K) Dormant DAPF(Gene M) Active 0.1653

3 AGD2 (Gene L) Inhibited DAPF (Gene M) Active 0.1639

4 Gene A Active DAPF (Gene M) Active 0.1637

5 Gene C Active DAPF (Gene M) Active 0.1634

Table 3.2: Top five pair wise intervention strategies under saline stress conditions. (Reprinted
from [56])

Index Gene Name/Alias Intervention Gene Name/Alias Intervention Score

1 Gene F Dormant DAPF (Gene M) Active 0.2322

2 ALD1 (Gene K) Dormant DAPF(Gene M) Active 0.2321

3 Gene B Inhibited DAPF (Gene M) Active 0.2312

4 Gene E Inhibited DAPF (Gene M) Active 0.2306

5 Gene A Dormant DAPF (Gene M) Active 0.2305

Tables 3.1 and 3.2 represent the five highest-scoring pairwise intervention strategies for normal

and saline stress conditions. Each table contains gene names or aliases along with their intervention

strategies. The tables are arranged in descending order of the score. Under each condition, the

score amongst different five highest-scoring strategies are almost similar with marginal differences.

Under normal conditions in table 3.1, we observe that activating both gene K (ALD1) and gene M

(DAPF) maximized the scores. While under saline stress keeping gene F (LOC_Os03g55280)
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dormant and activating gene M (DAPF) achieved the highest score. This implies that under each

of the conditions, the respective pairwise intervention strategy with highest scores maximize the

likelihood of upregulating gene N (LYSA).From tables 3.1 and 3.2, it can also be seen that upstream

genes such as genes A,B,C and E are also involved in the upregulation of gene N (LYSA) and

produce comparable scores to those produced by the regulation of downstream genes like gene K

(ALD1) and gene L (AGD2). Across both the conditions, we also observe that gene M (DAPF) is

always upregulated, which serves to be a further indicator of the high regulatory effect of gene M

(DAPF) on gene N (LYSA). We should note that these rankings in Tables 3.1 and 3.2 might vary

slightly upon rerunning the simulations, as LW is based on a stochastic simulation process, which

may cause minor variation in estimating the probabilities required for computing the score metric.

However, this does not affect our overarching conclusion that DAPF is the most potent regulator

of LYSA, as it is present and upregulated in all the top five strategies under pairwise intervention.

Furthermore, under single intervention, DAPF scores significantly higher than the rest of the genes.

The proteins encoded by each of the genes in tables 3.1 and 3.2 are summarized in Table 3.3.

Table 3.3: Protein encoded by intervention genes in Figure 3.8 and Tables 3.1 and 3.2.
(Reprinted from [56])

Gene Alias/Name MSU IDs Protein

Gene A LOC_Os01g70300 Aspartokinase 3, chloroplast precursor, putative, expressed

Gene B LOC_Os03g63330 Aspartokinase, chloroplast precursor, putative, expressed

Gene C LOC_Os07g20544 Aspartokinase, chloroplast precursor, putative, expressed

Gene E LOC_Os09g12290 Bifunctional aspartokinase/homoserine dehydrogenase, chloroplast precursor, putative, expressed

Gene F LOC_Os03g55280 Semialdehyde dehydrogenase, NAD binding domain containing protein, putative, expressed

Gene I/DAPB1 LOC_Os02g24020 Dihydrodipicolinate reductase, putative, expressed

Gene J/ DAPB2 LOC_Os03g14120 Dihydrodipicolinate reductase, putative, expressed

Gene K/ALD1 LOC_Os03g09910 Aminotransferase, classes I and II, domain containing protein, expressed

Gene L/AGD2 LOC_Os03g18810 Aminotransferase, classes I and II, domain containing protein, expressed

Gene M/DAPF LOC_Os12g37960 Diaminopimelate epimerase, chloroplast precursor, putative, expressed
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4. DISCUSSION *

As the severity and duration of droughts around the world are predicted to rise in the coming

years, developing drought resistant crops is increasingly becoming a priority for ensuring global

food security. Thus to develop drought resistant crops, it is necessary for scientists to identify the

potent regulators of the drought response in plants. In section 2, we have presented the drought

signaling pathway in Arabidopsis and observed that drought response is mediated by the ABA

dependent or several ABA-independent pathways. We selected the model plant Arabidopsis for our

study because the genes and proteins in drought response pathways are well defined and identified

for Arabidopsis compared to major crops. We modeled these pathways using BNs, as it provides a

framework to integrate both biological prior knowledge in the form of pathway information along

with experimental data. This feature of BNs was a key factor in our selection of this modeling

technique. In the BN model, we assumed each node to be a binary random variable with the states

of activation or inhibition. We then used the Bayesian approach along with publicly available

experimental data to estimate the LPDs associated with the nodes of the BN model. The prior

distribution for each node was assumed to follow a Beta(1,1) distribution as this corresponds to

the non-informative Uniform distribution on the interval [0,1]. This choice of prior was logical as

we did not know the prior distribution for each of the nodes. Furthermore, choosing a Beta prior

with Binomial likelihood provides us with a closed form solution for the posterior distribution and

reduces our computational requirements. Once the LPDs were learned, we applied an approximate

inference technique called likelihood weighting to perform simulations for intervening at the non-

reporter gene nodes.

After intervening at the nodes representing the non-reporter genes, one at a time, we observed

that the scores were maximized upon activating MYC2 or inhibiting ATAF1. The maximization

*Parts of this section are reprinted with permission from Lahiri A, Zhou L, He P, Datta A
(2021) Detecting drought regulators using stochastic inference in Bayesian networks. PLoS ONE 16(8):
e0255486. https://doi.org/10.1371/journal.pone.0255486 and Lahiri A, Rastogi K, Datta A, Septiningsih
EM. Bayesian Network Analysis of Lysine Biosynthesis Pathway in Rice. Inventions. 2021; 6(2):37.
https://doi.org/10.3390/inventions6020037
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of scores implied that MYC2 and ATAF1 were potential drought regulators, and activating MYC2

or inhibiting ATAF1 was the best strategy to regulate the drought-responsive reporter genes. We

also observed that the score for implementing both these interventions at the same time provides a

slightly improved score value, indicating the synergistic effect of the strategic interventions. These

simulation results indicated that ATAF1 and MYC2 were the most potent regulators of drought

response compared to the other drought regulatory genes modeled in the BN.

From biological literature we note that both MYC2 and ATAF1 are known regulators of drought

response. However, from the validation experiments, we found that MYC2 did not have any ob-

vious drought regulatory response as neither the green cotyledon rate nor the green cotyledon

inhibition rate between WT and myc2 mutants with or without mannitol treatment had significant

differences. On the other hand, ataf1 mutants had more green cotyledon seedlings and higher

green cotyledon rates than the WT seedlings under mannitol treatment, suggesting that ATAF1

negatively regulated drought response. We were unable to show that MYC2 was a drought regu-

lator; this could be due to test conditions or limitations of the Bayesian network model. Testing

factors such as plant growth stage, treatment may have been unfavorable for finding the difference

between WT and myc2 mutants. Besides testing factors, we must also consider some of the lim-

itations of the BN model. While we have considered numerous drought-responsive pathways in

our BN model, there may be other pathways outside our model’s scope, which may interact with

the pathways considered in our BN model. These undiscovered interactions may have potentially

influenced the drought regulators during the validation experiments. In order to avoid neglecting

such interactions, BNs are learned from data using structure learning algorithms. However, this

process typically requires large volumes of data, which is currently unavailable. Furthermore, if

any previously unaccounted interactions are discovered using structure learning algorithms, we

cannot validate them using existing biological literature, and we will need to conduct additional

experiments to validate them. Another reason that might have prevented us from proving MYC2 as

a drought regulator is the difference between the experimental setup of our validation experiments

and the publicly available dataset(GSE42408) used to learn the parameters of the BN model. The
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methods used to induce drought in the dataset GSE42408 are different from the methods used in

our validation experiments; this might have been unfavorable in establishing MYC2 as drought

regulator.

This results in section 2, build upon our previous paper, where we modeled only the WRKY

transcription factor signaling pathway in Arabidopsis under drought and found the transcription

factor WRKY18 to be the best regulator of the drought-responsive gene RD29A [49]. In our current

model, we take into account multiple other pathways, including the WRKY signaling pathway, and

observe that the scores across the WRKY transcription factor family are approximately the same

and are not as high as the scores for MYC2 and ATAF1. The score for WRKY18 may be low due to

crosstalk happening across multiple pathways, which may negatively impact the regulatory effects

of WRKY18. Additionally, we tracked multiple drought-responsive reporter genes in our current

study, so the score of WRKY18 in this study reflects its ability to regulate all the drought-responsive

reporter genes, unlike in the previous paper, where the score is for the regulation of RD29A only.

In the future, we would like to extend our research to include more informative priors instead

of the non-informative Beta (1,1) distribution. We want to explore new methods to incorporate

continuous data into the BN model, rather than to binarize it and lose valuable information. We

noticed that multi-node intervention gave a slightly improved score than single node interventions;

thus, exploring other node combinations for intervention will be an interesting path for future

research.

In section 3, we studied the lysine biosynthesis pathway in rice to identify the genetic regulators

of lysine content. Rice is a staple food source for 50% of the global population; with lysine being

the first limiting essential amino acid in rice, it is vital to identify gene regulators that can boost

lysine content. We modeled the lysine biosynthesis pathway in rice using BNs under normal and

saline stress conditions to identify these regulators. We used BNs because they allow us to integrate

domain knowledge in the form of pathway information with experimental data. We used real-

world RNA-Seq data to estimate the LPDs in the BN and run the gene intervention simulations.

We intervened at the genes one at a time and then in pairwise combinations using the LW inference
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algorithm. We calculated a score metric to measure the efficacy of the gene intervention strategies.

Our analysis revealed that upregulating DAPF (gene M) maximized the probability of the lysine

reporter gene LYSA (gene N) being upregulated under both normal and saline stress conditions.

When DAPF (gene M) was upregulated, it not only achieved the highest score under single gene

intervention but was also present in all the five highest-scoring gene intervention strategies under

pairwise intervention. This implies that DAPF (gene M) is a positive regulator of LYSA (gene N)

and serves as an ideal candidate for genetic intervention. Gene editing can be used to target and

upregulate DAPF (gene M) in rice. Field experiments involving DAPF overexpressing rice can

confirm if this intervention strategy upregulates LYSA and increases the overall lysine content. We

further observed under single gene intervention that midstream genes such as DAPB1 (gene I) and

DAPB2 (gene J) also played significant roles in upregulating LYSA (gene N). On the other hand,

under pairwise intervention, we found upstream genes such as genes A, B, C, and E were also

involved in upregulating LYSA (gene N).

The future steps in our study of lysine will include confirming our finding in this dissertation

by performing validation experiments in the field. We would also like to improve our choice of the

prior distribution on each node. In our current analysis, we used a noninformative prior as we did

not have any knowledge regarding the prior distribution of the nodes in the BN. Using informative

priors may increase the computational costs but has the potential to improve our predictions of

lysine regulators. Furthermore, we are also interested in studying how other essential amino acids

such as Threonine, Methionine, and Isoleucine in the larger aspartate pathway regulate lysine

content. Threonine is known to downregulate the enzyme AK in the lysine biosynthesis pathway;

thus, studying the multilevel regulation among the different amino acids in the aspartate pathway

will help understand lysine production.
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