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ABSTRACT

The global energy landscape is going through major shifts triggered by consumer preferences,

regulations, and technological development. My dissertation develops optimization models to de-

rive insights into strategic decisions in energy operations management. In the first essay, I examine

how blockchain-enabled peer-to-peer energy trading shifts electricity consumers’ investment in re-

newable energy. Using the equilibrium model, I show that electricity consumers are always better

off by participating in the virtual network, with their resulting cost savings averaging 9.7%. I also

prove that blockchain is able to fully coordinate heterogeneous participants in the network to mini-

mize the total cost in the system. The second essay addresses how a Transmission System Operator

(TransCo) can optimally invest in a long-distance transmission line to allow renewable energy de-

velopment by a Power Generation Company (GenCo) in a geographically remote region. Using

a continuous-time, infinite-horizon, Stackelberg game between TransCo and GenCo, I show that

transmission and generation act as complements with regard to the value functions for both com-

panies. I derive the value-maximizing transmission fee charged by TransCo to GenCo for each unit

of energy exported via transmission lines. I characterize a Pareto-improving cost-sharing contract

through which both companies can improve the value of their investment. The third essay focuses

on how to better manage a decentralized supply chain of an oil-field service company. To mini-

mize the transportation and inventory holding costs of different members in a cross-docking supply

chain, I formulate multi-period, mixed-integer programming models. I use structural properties of

optimal solutions to show that different collaborations in the supply chain can generate significant

cost savings for individual supply chain members, whereas the quantified cost savings exhibit sig-

nificant variations depending on product weight and holding cost. I also develop a Stackelberg

pricing game between an independent logistics company and oil wells seeking to lower their costs

by outsourcing their operations. I provide the best response of oil wells to the price of outsourcing

services and the structure of the logistics provider’s optimal pricing policy.
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1. INTRODUCTION

The global energy landscape is going through major shifts triggered by consumer preferences,

regulations, and technological development (Fitschen et al. 2021). Due to the growing social pref-

erence, renewable energy has now come to represent a major source of power supply in the energy

sector. For instance, renewable energy’s share in United States electricity generation has nearly

doubled over the last decade, from 10% in 2010 to 17.6% in 2018 (United States Energy In-

formation Administration 2019). The last decade has also seen a significant growth of private

investment in renewables, prompted by favorable energy policies and technological advancement

(United States Department of Energy 2021). In particular, better access to low-cost renewable en-

ergy improves the affordability of individual ownership of renewable energy, leading more private

investors and consumers to explore the opportunity of participating in renewable energy genera-

tion.

With the continued interest in renewable energy investments, there is a wide range of research

needs to better understand how energy investors can invest in renewable energy. These investments

involve strategic choices, because investments in general are irreversible, and there is uncertainty

over the future return from the long-term investment (Dixit and Pindyck 1994). In particular,

renewable energy investment can have more far-reaching consequences than other types of invest-

ments, as it will determine social, economic, and environmental outcomes for decades to come.

Hence, understanding how to make the optimal investment in renewable energy bears significant

social and economic implications for most public and private sectors. Yet, many questions regard-

ing the optimal level of investment in renewable energy remain unexplored.

With this regard, my dissertation focuses on providing strategic insights related to a wide range

of renewable energy investments, from small-scale residential solar panels to commercial-scale

wind power plants. The first essay focuses on how peer-to-peer energy trading impacts consumer

investments in residential proprietary renewable generation. I analyze how consumers can opti-

mally invest in renewable generation capacity to minimize their electricity costs in a peer-to-peer
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energy trading network, and how one such decentralized power system can coordinate heteroge-

neous consumers, compared to a centralized power system. To capture the potential of abundant

renewable energy sources and avoid the economic and social consequences of the lack of trans-

mission lines, the second essay focuses on the transmission grid development problem. While it is

the transition to clean energy that motivated my research, rapid transitions in the energy landscape

have also affected conventional energy carriers, primarily those in the oil and gas industry. Stag-

nant demand and increasing production costs for fossil fuels prompt lower operating margins for

all companies in this industry. Hence, the third essay focuses on how the oil-field service indus-

try can improve operational efficiency, which has become imperative in order to keep companies’

businesses profitable. In what follows, I briefly describe each essay in sequence.

1.1 Implications of Peer-to-Peer Trading of Electricity on Renewable Energy Investments

Virtual microgrids refer to a local network of electricity consumers who are organized for

peer-to-peer energy trading and its impact on consumer investment in renewable energy. Although

virtual microgrids are becoming a practical reality in a number of electricity markets, little is known

about how consumers in virtual microgrids can optimally invest in renewable energy, the resulting

cost savings for consumers, and the ability of blockchain technologies to coordinate participants

in a decentralized virtual microgrid.

In this essay, I formulate and solve an equilibrium model of investment in renewable energy by

consumers in a virtual microgrid. I investigate how virtual microgrids impact consumers partici-

pating in the network, their optimal capacity investment, and pricing under equilibrium. I show that

participating in virtual microgrids can generate significant cost savings for electricity consumers—

9.7% on average. I also show that a virtual microgrid in equilibrium can achieve the minimum

system-wide cost equivalent to that of a centralized energy distribution system such as a physical

microgrid. Hence, blockchain is able to coordinate different participants in a decentralized en-

ergy trading network, giving support to the growing investment in blockchain-related projects in

renewable energy and electricity markets.

Virtual microgrids have an overarching impact on the future of renewable energy investments
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and blockchain technology development. This research contributes by providing insights into how

electricity consumers can make more cost-effective decisions pertaining to their participation in

virtual microgrids. Also, electric utilities can use these results to assess the impact of virtual

microgrids on their revenues. Investors can better understand the impact of a virtual microgrid on

renewable energy investments. Researchers can study more complex virtual microgrid settings, as

well as tackle other problems related to energy sharing.

1.2 Transmission Grid Development and Implications for Renewable Energy Investment

Limited transmission grid capacity hinders renewable energy development. Because the poten-

tials for large-scale commercial renewable energy projects are often found far from population load

centers, this essay focuses on how transmission system operators can optimally invest in a long-

distance transmission line to allow renewable energy development by a power generation company

in a geographically remote region.

In the presence of stochastic demands for renewable electricity on both ends of the transmis-

sion line, I formulate a continuous-time, infinite-horizon, Stackelberg game of capacity investment

between TransCo and GenCo. It is shown that for any demand distributions at both regions, trans-

mission and generation act as complements with regard to the value functions for both companies.

This essay derives the explicit expressions for optimal transmission and generation capacities

installed by each company. Using this result, I characterize the value-maximizing transmission

fee charged by TransCo to GenCo for each unit of energy exported from the low-demand remote

region to the high-demand urban region.

1.3 Optimal Shipping, Collaboration, and Outsourcing Decisions in an Energy Supply Chain

The third essay, “On Value and Structure of Collaborations in a Hybrid Cross-docking Supply

Chain,” focuses on shipping decisions in a decentralized, multi-stage energy supply chain with a

hybrid cross-docking facility. Hybrid cross-docking is an industry practice that allows products to

be held in inventory at the cross-dock instead of being immediately shipped out.

Motivated by industry practices, I explore how individual supply chain members benefit from

3



those collaborations and identify conditions that facilitate the realization of their benefits. I formu-

late multi-period, mixed-integer programming models to minimize transportation and inventory

holding costs of different members in a hybrid cross-docking supply chain and establish struc-

tural properties of optimal solutions. I make use of those results to identify conditions under which

hybrid cross-docking is more cost efficient than traditional cross-docking, which consolidates mul-

tiple products from suppliers for immediate fulfillment of downstream orders. I make use of this

result to find that upstream collaboration results in 4.9% to 16.4% average cost savings for the

cross-dock, while downstream collaboration generates 1.9% to 22.1% in average cost savings for

the oil well plants, depending on product weight and holding cost.

The study explores outsourcing of operations by oil well plants in cross-docking supply chains

to an independent logistics provider. I develop a Stackelberg pricing game between an independent

logistics company and oil well plants seeking to lower their costs by outsourcing their operations.

I identify the structure of oil well plants’ best response to the price of outsourcing services and the

structure of the logistics provider’s optimal pricing policy.

In summary, my dissertation offers strategic insights into energy operations management prob-

lems grounded in industry practice, and the literature in economic theory, and inventory theory.

Each essay derives new theoretical results and addresses timely and relevant issues for both aca-

demic researchers and practitioners in the energy sector.

The remainder of this dissertation is structured as follows. In Chapter 2, I address the impact

of peer-to-peer energy trading networks on consumer investments in renewable energy. In Chapter

3, I examine the strategic interaction of transmission and generation and its impact on investments

in transmission and generation capacities. Chapter 4 formulates optimization models of a decen-

tralized supply chain in the context of the oil-field service industry. Chapter 5 offers concluding

remarks and summarizes contributions.
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2. VIRTUAL MICROGRIDS: IMPLICATIONS FOR BLOCKCHAIN TECHNOLOGIES

FOR THE PEER-TO-PEER TRADING OF ELECTRICITY, AND RENEWABLE ENERGY

INVESTMENTS

2.1 Introduction

Blockchain represents a cryptographically secure database (i.e., ledger) that achieves data se-

curity and identity authentication while eliminating the need for intermediaries (Olsen and Tomlin

2020). As such, blockchain is transforming the way we record, verify, and arrange transactions,

with the focus shifting away from centralized structures (e.g., exchanges, trading platforms, energy

companies) towards decentralized systems (e.g., end customers, energy consumers interacting di-

rectly). For those reasons, outside of the financial sector, the energy sector is considered to be

an industry where blockchain technologies will have great potential to disrupt the functioning of

existing markets and regulatory structures. This is because blockchain makes it possible to by-

pass prevailing market structures (and authority of electric utilities) by providing consumers with

a digital platform to trade energy directly with each other (Hertz-Shargel 2019). By ensuring the

security and authenticity of financial and physical flows across the electricity grid, blockchain tech-

nology enables organization of electricity consumers with individual ownership of renewable en-

ergy production (such as solar panels) into a decentralized network of interconnected demand and

production nodes. Such a network of interconnected demands and consumer-owned, distributed,

renewable energy resources is referred to as a virtual microgrid (Bremdal and Ilieva 2019), as it

operates over the utility’s existing transmission grid without needing its own transmission lines.

One example of such a microgrid is the Brooklyn Microgrid, a fully operational blockchain-

enabled microgrid that allows its participants to trade the surplus of their self-produced solar en-

ergy with their neighbors (Mengelkamp et al. 2018). The Brooklyn Microgrid was launched in

2016 in the Brooklyn borough of New York City when 50 homes were connected into a virtual

energy market for locally-generated renewable energy. The Brooklyn Microgrid is made possible
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by blockchain technology that counts and logs every unit of energy created by each home’s solar

panel system, and a blockchain application of ‘smart contracts’1 that make those units of energy

available to the open market to be bought and sold in the local community. This process enables

consumers to produce and sell power locally (instead of putting it into the central grid), and receive

income from the energy thus sold. As such, a blockchain-enabled virtual microgrid, such as the

Brooklyn Microgrid, represents a new business model in the energy sector with the potential to

disrupt traditional processes and buyer-seller relationships in electricity markets.

In addition to the Brooklyn Microgrid, which was the first project to facilitate a blockchain-

based electricity transaction, our work is also motivated by a growing number of other blockchain-

related energy projects already in existence or under development and testing. Some of those

projects include a residential electricity trading market in Australia, peer-to-peer trading networks

among households with and without rooftop solar in Bangladesh, and a network of some 8,000

electricity consumers in Germany trading stored energy with each other (Marcus 2019).

Blockchain-enabled virtual microgrids raise a number of questions of importance to electric-

ity consumers, renewable energy advocates, electric utilities, and blockchain technology investors.

Some of those questions concern the level of optimal investment in renewable energy by each par-

ticipant in a virtual microgrid, and key drivers of that investment. Others are related to the cost

savings realized by each participant in a virtual microgrid and factors that maximize those savings.

Yet others deal with optimal pricing and volume of energy traded. There are also questions con-

cerning the ability of blockchain technologies to coordinate participants in a decentralized virtual

microgrid, as independent decision makers, in the direction of minimizing the total cost in the

system. To the best of our knowledge, those questions have not been considered in the academic

literature, nor do there seem to be any references to their answers in practitioner journals.

In this chapter, we address these and other questions related to the implications of virtual mi-

1Smart contracts are software functions that maintain internal data about participants and their devices. They
also serve as protocols “designed to facilitate, verify, or enforce the negotiation or execution of a contract” (Babich
and Hilary 2020), and their execution is automatically triggered by some externally verified event (Olsen and Tomlin
2020). A smart contract might, for example, store the number of kilowatt hours of energy produced by a solar panel,
and then, following a virtual trade, direct a smart meter to increment that value and the utility to read the value.
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crogrids for renewable energy investments, blockchain technologies, consumer savings and peer-

to-peer trading of electricity. For that purpose, we formulate and solve an equilibrium model of

a decentralized virtual microgrid, in which each participating electricity consumer first decides,

at the beginning of the time horizon, on the level of renewable generation capacity (such as solar

energy) to invest in. Then, throughout the time horizon, he satisfies his (stochastic) demand for

electricity either from his own installed generation capacity, or by means of blockchain-mediated

purchases of electricity available from his peers in the virtual microgrid. If this combination of his

own energy generation and purchases of electricity available in the microgrid cannot fully satisfy

a consumer’s demand for electricity at any time, he resorts to buying electricity from his electric

utility.

Our first contribution is to explicitly determine the optimal level (i.e., capacity) of investment

in renewable energy for each participant in the microgrid. We also establish how the resulting

production of electricity is rationed for his own use versus for sale to other participants. Contrary

to conventional wisdom, the optimal level of generation capacity for each participant in a virtual

microgrid is not necessarily higher than that of an identical, single, cost-minimizing consumer

without access to a microgrid. Instead, a novel insight we arrive at is that the sign of the difference

between the two optimal capacity levels depends on the price of peer-to-peer electricity traded in

the microgrid. Hence, it is the intra-microgrid price of traded electricity that determines the impact

of blockchain-enabled virtual microgrids on the magnitude of renewable energy investments.

Our second contribution is to obtain, for each participant, the price of peer-to-peer electricity

traded in a virtual microgrid that minimizes his total electricity-related costs. We derive an ex-

plicit expression for this optimal price even though the objective function for the corresponding

minimization problem is not, in general, convex in the price of traded electricity. In that manner,

we obtain the full set of equilibrium outcomes for this problem. We also establish that the cost-

minimizing price of traded electricity is increasing in the marginal cost of investment in renewable

energy, and convex in the electricity rate charged to consumers by their electricity utility.

Our third contribution is to prove that an electricity consumer is always better off within a
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virtual microgrid than without. The resulting cost savings to each microgrid participant average

9.7% in our numerical studies. By showing that a blockchain-enabled microgrid always provides

an incentive for consumers to self-organize into a virtual market for the trading of self-generated

electricity, our work helps illuminate an answer to “one of the biggest questions surrounding the

future of (virtual) microgrids in the U.S” regarding “justifying the business case” (Peck 2016).

Our final contribution is to evaluate the power of blockchain to coordinate individual electricity

consumers in a decentralized virtual microgrid towards minimizing the total cost in the system.

We prove that, under equilibrium outcomes, the cost performance of a blockchain-enabled virtual

microgrid exactly matches that of a centralized microgrid optimized for total cost. Thus, when

participants in a virtual microgrid act optimally in minimizing their own individual costs, they

achieve full coordination of the entire system and realize its minimum total cost.

The rest of this chapter is organized as follows. In Section 2, we present a review of related

literature. In Section 3, we formulate the model. In Section 4, we derive equilibrium outcomes in

a virtual microgrid. Section 5 addresses some key implications of virtual microgrids for electricity

consumers and blockchain technology investors. In Section 6, we offer concluding remarks.

2.2 Literature Review

This chapter is primarily related to the literature on renewable energy systems. Reviews of

this literature can be found in Parker et al. (2019) and Agrawal and Yücel (2021). Of particular

relevance to our research are those papers that focus on optimal capacity of renewable energy in-

vestments in the presence of uncertainty. Hu et al. (2015) establish optimal capacity of renewable

distributed generation when yield and demand are uncertain, and show that data granularity mat-

ters because coarse data may not reflect intermittency of renewable generation. Kök et al. (2018)

explore the effect of pricing policies (flat vs. peak) on investment and find that flat pricing leads to

increased investment in solar energy by the centralized utility, while peak pricing generates higher

levels of solar investment in distributed generation. Aflaki and Netessine (2017) demonstrate that

when demand for electricity is uncertain, due to the interaction between intermittency and pric-

ing, the share of renewable capacity in the generation portfolio may be reduced by higher carbon
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prices and market liberalization. Angelus (2021) identifies optimal timing and capacity of a con-

sumer’s investment in distributed renewable generation under stochastically evolving demand for

electricity.

All of those papers deal with investments by individual market participants, either utilities,

firms, or consumers, who are not organized (into microgrids or otherwise), and who buy and/or

sell electricity only to and from the central transmission grid, without having the ability to trade

energy with each other. In this chapter, we consider consumers organized into a microgrid, and

find that their option to trade electricity with each other fundamentally alters the level of installed

renewable generation capacity. To the best of our knowledge, our research is the first to address

investment in distributed renewable energy within a (virtual) microgrid platform. In addition, we

also address optimal pricing within such a microgrid, and explore the resulting consequences for

consumers’ cost savings and renewable energy investments.

Several recent papers in the renewable energy literature have dealt with optimal pricing of elec-

tricity. Alizamir et al. (2016) consider heterogeneous investors in renewable technologies in the

presence of feed-in tariffs, information diffusion, and learning, and determine optimal feed-in tar-

iffs and the threshold structure of the optimal stopping problem for each investor. In evaluating the

impact of pricing policies on renewable energy investments, Kök et al. (2018) optimize the peak

and flat electricity price charged by the utility. Angelus (2021) determines optimal electricity pric-

ing for a utility serving consumers who have the option to invest in distributed renewable power

generation. Adelman and Uçkun (2019) develop asymptotically linear, social welfare-maximizing,

electricity price schedules for the utility when its consumers deploy smart, price-responsive appli-

ances. In contrast to this literature, this chapter is not concerned with optimal pricing of an utility’s

electricity rate or optimal feed-in-tariffs for renewable energy (since, in our model, a virtual mi-

crogrid cannot export electricity to the utility); instead, we determine optimal peer-to-peer pricing

for the electricity traded within a virtual (decentralized) microgrid.

A number of other papers on renewable energy operations, albeit not on the topic of microgrids,

is also worth mentioning. Wu and Kapuscinski (2013) find that curtailing intermittent renewable

9



energy reduces system costs and emissions. Zhou et al. (2016) investigate negative electricity

prices that can arise from excess wind energy. Sunar and Birge (2019) show that an undersupply

penalty rate can result in commitment inflation by renewable generators. Babich et al. (2020)

address solar panel investment under feed-in-tariff versus tax-rebate policies. Agrawal et al. (2019)

provide managerial insights and policy implications for non-ownership business models for solar

energy.

Because the model and results in this chapter concern peer-to-peer trading of electricity, we

also contribute to the growing body of research literature on peer-to-peer markets and the sharing

economy (for a recent review, see Benjaafar and Hu (2020)), in which the exclusive ownership and

consumption of resources is replaced with shared use and consumption. Specifically pertinent to

our work are those papers that address optimal pricing and/or capacity in peer-to-peer networks.

Cachon et al. (2017), for example, study several contractual forms for a platform that offers a

service via a pool of independent providers. They establish that surge pricing, commonly used in

practice, although not optimal generally, achieves nearly the optimal profit for the platform. Jiang

and Tian (2018) find that, when a firm strategically chooses its retail price, consumers’ sharing of

the firm’s products with high marginal costs increases both the consumer surplus and the firms’

profit, whereas their sharing of products with low marginal costs can lead to decreases in both.

Benjaafar et al. (2019) introduce a model of collaborative consumption to characterize equilibrium

outcomes, including ownership and usage levels, consumer surplus, and social welfare, and show

that consumers always benefit from collaborative consumption. Using a closed queueing network,

Benjaafar et al. (2021) obtain explicit upper and lower bounds on the optimal fleet size in a vehicle

sharing system, and derive insights pertaining to the fleet’s vehicle buffer capacity.

While it is the sharing economy that gives rise to the problem considered in this chapter, our

model differs from the existing ones in this area in several important ways. First, a blockchain-

enabled, virtual network does not require a separate marketplace intermediary (such as Uber and

Lyft for transportation services, Instacart and Postmates for home deliveries, and TaskRabbit and

Handy for household tasks) to provide a platform for peer-to-peer resource sharing. This elimi-
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nates the need for transaction fees, contracts with the intermediary entity, and platform-imposed

pricing. Second, in contrast to existing work that distinguishes between ‘owners’ and ‘nonowners’

in the sharing economy, so that “owners are able generate income from renting their products to

nonowners” (Benjaafar et al. 2019), in a virtual microgrid every participant is both a consumer and

a producer. (As such, microgrid participants have come to be referred to as “prosumers” (Bichler

et al. 2010), which is the term that we use in this chapter as well). Thus, each prosumer gener-

ates income both from other participants and for other participants in the microgrid. Third, in our

model, it is not the product itself (e.g., solar panels) that is shared between microgrid participants,

but rather a product (i.e., electricity) of that product. This distinction is important because the shar-

ing economy literature generally assumes that an owner has only one product (e.g., a car) to share,

so that network capacity is determined by each owner’s decision about whether or not to participate

in resource sharing (Cachon et al. 2017). By comparison, each participant in a blockchain-enabled

microgrid chooses not only whether to participate in resource sharing through virtual electricity

trading, but also: (1) how much renewable energy capacity to install for that participation; and,

(2) how much of his self-generated electricity to use for his own demand versus to make available

for sale to other participants. Finally, in a virtual microgrid, the fee for resource sharing is not

determined by some marketplace intermediary, but rather by microgrid participants themselves.

2.3 Model Formulation

In this section, we describe the equilibrium model of a blockchain-enabled virtual microgrid.

We formulate a continuous-time, infinite horizon, stochastic optimization model of a decentralized

microgrid formed by heterogeneous prosumers, such as households, who act independently in

minimizing their individual total cost of electricity. This type of decentralization is made possible

by data security, identity authentication, and smart contract execution provided by blockchain.

Electricity demand (rate) for each prosumer i ∈ {1, 2, . . . , n} in the microgrid at time t is a

stationary random variable Xi. To facilitate analysis, we assume that Xi is uniformly distributed

on Ii = [ai, bi] with n = 2 and w := b1−a1 = b2−a2, so that a virtual microgrid considered in

the model consists of two non-identical prosumers with equal interval widths for the domain of
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their demand probability distributions. Having two participants in a blockchain-enabled microgrid

is enough to capture the dynamics of peer-to-peer electricity trading and analytically explore its

impact on each prosumer’s optimal capacity, price of energy traded in the microgrid, and resulting

cost savings.

Most countries in the world and most states in the United States have regulated retail electric-

ity markets for residential consumers (Prentis, 2015). In such markets in the U.S., consumers are

served by their regulated electric utility, and their long-term electricity price (i.e., “the rate”) is

negotiated by each state’s Public Utility Commission (PUC) and the utility. Following that nego-

tiation, the PUC approves a rate that subsequently stays in place usually for a number of years.

Once determined, this price is allowed to increase only at the rate of inflation. Accordingly, in our

model, the utility announces a PUC-approved electricity rate pe at the beginning of the time hori-

zon, so that, at any subsequent time t, the electricity rate paid by the consumers for each kilowatt

of energy purchased from their utility is pe eηt, where η is the inflation rate. We refer to pe as the

base (electricity) rate.

Each heterogeneous consumer invests in his own renewable energy resource (e.g., solar panels)

of capacity Ci at time t= 0, so that, at the beginning of the time horizon, microgrid participants

are involved in a simultaneous noncooperative game with complete information. We will refer to

this first-stage game as the capacity game. Capacity Ci of a renewable energy resource represents

the upper limit on the amount of electricity generated by that resource at any time t. Consumer

investment in renewable energy tends to be long-term and irreversible, because once installed, a

renewable energy system, such as solar panels, is difficult to resell or reinstall. For most house-

holds, this type of investment is also one-time, due to its high cost and long lifetime. Thus, once

installed at the beginning of the time horizon, capacity Ci stays in place through the end of the

time horizon. Let k denote the marginal cost of investment for each unit of renewable generation

capacity. It follows that each Consumer i incurs investment cost kCi at the beginning of the time

horizon.

Following the installation of his renewable capacity Ci, Consumer i becomes Prosumer i, and
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he utilizes that capacity to produce electricity throughout the time horizon. At any time t, his

self-generated electricity can be sold to other microgrid participants and/or used satisfy his own

demand. Each prosumer can also buy electricity from other prosumers whenever his demand ex-

ceeds his own capacity. In this manner, prosumers in a virtual microgrid can trade self-produced

electricity in a peer-to-peer fashion on their own virtual energy market. Hence, at each time t,

every microgrid participant has to decide how much of his capacity Ci to use for his own demand,

and how much electricity to sell to (or buy from) other microgrid participants. In that manner,

following their investments in renewable generation, prosumers in a virtual microgrid play a re-

peated, simultaneous noncooperative game with complete information. This second-stage game is

the energy game.

If, at any time t, Prosumer i cannot meet his demand for electricity either through his own

generation or by means of electricity purchased from his microgrid counterpart(s), he satisfies that

excess demand directly from his utility at the regulated electricity price peeηt.

Since renewable energy is effectively costless to generate, each prosumer is willing to sell all of

his self-generated electricity in excess of his demand. If, on the other hand, his electricity demand

exceeds his generation capacity at any time, then, because satisfying that excess demand from the

utility costs peeηt, he is willing to buy the needed amount of electricity from other participants

in the microgrid at any price below pee
ηt. Let π(t) denote the market clearing price for electricity

trades in a virtual microgrid. We assume the following regarding the clearing of the energy market.

Assumption 1. In a virtual microgrid: (i) the energy market always clears; and (ii) the market

clearing price π(t) satisfies π(t)∈ [0, pee
ηt] at all times.

By part (i), as long as one microgrid participant has excess electricity demand and another

microgrid participant has excess supply, energy trades will occur. By part (ii), the resulting market

clearing price for the traded energy will not exceed peeηt at any time t. Otherwise, if π(t) exceeds

pee
ηt at some time t, it becomes cheaper for a prosumer to purchase all of his needed electricity

from the utility at time t than to buy any electricity from other microgrid participants. As this

outcome is clearly suboptimal for all microgrid participants, we eliminate it from consideration.
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Because different blockchain energy applications follow different protocols for arriving at the

market clearing price for their energy trades2, in this chapter we do not assume any particular mech-

anism for that market price formation; instead, we follow a more general approach of assuming

only the existence of a market clearing mechanism and associated market clearing price.

Any energy exchange between the two prosumers in a virtual microgrid occurs over the utility’s

main electrical grid and does not require central intermediaries such as the utility to facilitate the

trade. Motivated by the example of Brooklyn Microgrid, we assume that microgrid participants

can sell their excess energy only to each other and not to their utility. By not requiring the utility

to compensate prosumers for excess electricity generated in a microgrid through programs such

as net-metering, we can capture the value of the energy trade enabled by a virtual microgrid. In

that manner, we also avoid the utility “death spiral” that can occur when, due to net-metering

purchases that erode their profits, utilities are forced to increase their electricity rates, rendering

renewable energy investments even more attractive, thus further undermining utility profitability

(see Satchwell et al. 2015, and Darghouth et al. 2016).

We index microgrid participants by i or j; i, j∈{1, 2} and i 6=j. We use the notation:

Zit := energy produced by Prosumer i at time t that is used to satisfy his own demand;

Yijt := energy produced by Prosumer i at time t that is sold to Prosumer j.

Consequently, Zit and Yijt represent energy-related decision variables in our model. The two

prosumers choose their energy-related decision variables simultaneously, and those decision vari-

ables satisfy the following feasibility constraints for each Prosumer i ∈ {1, 2} at time t:

Zit, Yijt ≥ 0

Zit + Yijt ≤ C1

Zit + Yijt + Zjt + Yjit ≤ min(xi + xj, Ci + Cj).

2In the Brooklyn Microgrid, for example, the market clearing price is determined with buyers and sellers setting
their own bids for electricity purchases and sales. Blockchain application platform PowerLedger that supports resi-
dential electricity trading market in Australia mentioned in the Introduction allows the market clearing price to be set
exogenously by the operators of the platform, and for the market to be cleared in arbitrarily small time periods.
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The second constraints limit the total energy produced (i.e., the sum of the energy produced

used to satisfy own demand plus the energy produced that is sold to other participants in the mi-

crogrid) by each Prosumer i to the level of his generation capacity Ci. The third constraint limits

the total energy produced in the microgrid to the smaller of the total demand and total capacity in

the microgrid, since, as already stated, the energy generated by participants in a virtual microgrid

cannot be sold outside of their virtual microgrid.

Let xi be a realization of random variable Xi that, as already stated, represents electricity

demand for Prosumer i. Let fi
(
xi, xj, Zit, Yijt, Yjit, t, π(t)

)
denote the cost rate to Prosumer i at

time t, given energy-related decisions Zit, Zjt, Yijt, and Yjit, and market clearing price π(t) in the

microgrid. Based on our modeling assumptions, we obtain:

fi
(
xi, xj, Zit, Yijt, Yjit, t, π(t)

)
= pee

ηt
[
xi − Zit − Yjit

]+ − π(t)Yijt + π(t)Yjit, (2.1)

using the standard notation [y]+ := max(y, 0). Hence, each Prosumer i’s optimal energy-related

decisions at any time t become the solution of the following (constrained) minimization problem:

min
Zit,Yijt

fi
(
xi, xj, Zit, Yijt, Yjit, t, π(t)

)
(2.2)

subject to: Zit, Yijt ≥ 0 (2.3)

Zit ≤ min(xi, Ci) (2.4)

Zit + Yijt ≤ Ci (2.5)

Zit + Yijt ≤ min(xi + xj, Ci + Cj)− Zjt − Yjit. (2.6)

Let Zit

(
xi, xj, Ci, Cj, Zjt, Yjit, t, π(t)

)
and Y ijt

(
xi, xj, Ci, Cj, Zjt, Yjit, t, π(t)

)
denote a solution

of the minimization problem given in (2.2)− (2.6). We seek a subgame-perfect, pure-strategy

Nash equilibrium of this second-stage, simultaneous game played between microgrid participants

at each point in the time horizon. Let Z∗it
(
xi, xj, Ci, Cj, t, π(t)

)
and Y ∗ijt

(
xi, xj, Ci, Cj, t, π(t)

)
, for

i, j∈{1, 2} and i 6= j, denote that pure-strategy equilibrium. Since such a strategy represents each

prosumer’s best response to the other prosumer’s equilibrium decisions, then, for i, j ∈{1, 2} and

i 6=j, we get:
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Z∗it
(
xi, xj, Ci, Cj, t, π(t)

)
= Zit

(
xi, xj, Ci, Cj, Z

∗
jt(xj, xi, Cj, Ci, t, π(t)), Y ∗jit(xj, xi, Cj, Ci, t, π(t)), t, π(t)

)
,

Y ∗ijt
(
xi, xj, Ci, Cj, t, π(t)

)
= Y ijt

(
xi, xj, Ci, Cj, Z

∗
jt(xj, xi, Cj, Ci, t, π(t)), Y ∗jit(xj, xi, Cj, Ci, t, π(t)), t, π(t)

)
.

We will refer to the decision set {Z∗it, Y ∗ijt} as Prosumer i’s optimal energy policy.

Using each prosumer’s optimal energy policy, define, for i, j∈{1, 2} and i 6=j, the following:

Fi
(
Ci, Cj, xi, xj, t, π(t)

)
:=fi

(
xi, xj, Z

∗
it(·), Y ∗ijt(·), Y ∗jit(·), t, π(t)

)
.

For any realizations xi and xj of Xi and Xj , Fi is the cost rate for Prosumer i at time t under

his optimal energy policy, market clearing price π(t), and capacity investments Ci and Cj .

Let Vi
(
Ci, Cj, π(·)

)
denote the expected discounted present value of all electricity-related costs

for Prosumer i when both prosumers use their optimal energy policies, given a market clearing

price function π(·) for energy trades, and installed capacities Ci and Cj in the microgrid. Hence,

Vi
(
Ci, Cj, π(·)

)
=

∫ ∞
0

e−rt EXi,Xj
[
Fi
(
Ci, Cj, xi, xj, t, π(t)

)]
dt+ kC1, (2.7)

where r is a discount rate, and EXi,Xj denotes the expectation over random variables Xi and Xj .

Because π(·) enters Vi as a function rather than just a state variable, Vi represents a functional. For

the integral in (2.7) to exist, the following assumption on the clearing price function is required.

Assumption 2.
∫∞

0
e−rtπ(t)dt exists and is finite.

Quantities Ci and Cj represent capacity-related decision variables in our model. For i, j ∈

{1, 2} and i 6= j, let Ci

(
Cj, π(·)

)
be the capacity that minimizes Vi

(
Ci, Cj, π(·)

)
, given Cj and

π(·). Then,

Ci

(
Cj, π(·)

)
:= arg min

Ci≥0
Vi
(
Ci, Cj, π(·)

)
. (2.8)

We seek a pure-strategy Nash equilibrium of this first-stage, simultaneous game played by

virtual microgrid participants at the beginning of the time horizon. Let C∗i
(
π(·)

)
denote the corre-
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sponding pure-strategy equilibrium decision for Prosumer i, as a functional of the market clearing

price function π. It follows that, for i, j∈{1, 2} and i 6=j,

C∗i
(
π(·)

)
= Ci

(
C∗j (π(·)), π(·)

)
. (2.9)

We refer to C∗i
(
π(·)

)
as Prosumer i’s optimal capacity selection. Next, we look to determine

conditions on the market clearing price function that minimizes each prosumer’s total electricity

costs in an equilibrium. Let V ∗i
(
π(·)

)
represent Prosumer i’s total expected discounted cost as a

functional of π(·), under equilibrium outcomes for energy and capacity-related decisions. Thus,

V ∗i
(
π(·)

)
:= Vi

(
C∗i (π(·)), C∗−i(π(·)), π(·)

)
.

For each Prosumer i, let π∗i (·) denote the market clearing price function that minimizes his total

expected discounted cost of electricity under his optimal capacity selection. Thus, we obtain

π∗i (·) := arg min
π(·)

V ∗i
(
π(·)

)
. (2.10)

Hence, π∗i (·), referred to as the optimal (market clearing) price function represents a function

that minimizes the functional V ∗i
(
π(·)

)
. We will refer to the optimization problem given in (2.10)

as the market clearing price problem. In the next section, in addition to solving for a prosumer’s

optimal energy policy and optimal capacity selection, we also provide a characterization of π∗i (·).

2.4 Optimal Decisions in a Virtual Microgrid

We derive optimal energy policy in Section 2.4.1. In Section 2.4.2, we establish each pro-

sumer’s optimal level of renewable generation capacity. In Section 2.4.3, we characterize the mar-

ket clearing price function. Section 2.4.4 numerically illustrates our results and provides additional

insights.

2.4.1 Energy Policy Decisions

The following theorem specifies each prosumer’s optimal energy policy and his resulting cost

rate. All proofs are deferred to the Appendix.

Theorem 1. There exists a unique, subgame-perfect Nash equilibrium of the energy game at each

time t. The resulting optimal energy policy for each Prosumer i is stationary and given by
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Z∗i (xi, xj, Ci, Cj) = min[xi, Ci];

Y ∗ij(xi, xj, Ci, Cj) = min
[
(Ci − xi)+, (xj − Cj)+

]
.

Prosumer i’s cost rate under this subgame-perfect Nash equilibrium is

Fi
(
Ci, Cj, xi, xj, t, π(t)

)
=pe e

ηt
[
xi − Ci − (Cj − xj)+

]+ − π(t) min
[
(Ci − xi)+, (xj − Cj)+

]
+ π(t) min

[
(Cj − xj)+, (xi − Ci)+

]
. (2.11)

Thus, in equilibrium, each prosumer in a virtual microgrid uses his installed renewable gen-

eration capacity Ci to first fulfill his own demand for electricity. Then, he makes available the

remainder of that generation capacity for sale to other participants in the virtual microgrid. Those

other participants also use their installed generation capacity to meet their own demand first, and

rely on peer-to-peer purchases of electricity to satisfy any excess of that demand over their capacity.

In practice, this energy policy would be implemented by smart contract application of blockchain

that keeps track of each unit of energy created by prosumers. This application would also include

instructions to make all units of energy in excess of a prosumer’s own demand available on the

open market, to be bought by other microgrid participants. In that manner, the energy policy de-

scribed in Theorem 1 can be executed automatically, without any (additional) external input from

prosumers.

2.4.2 Renewable Generation Capacity

Having derived the optimal energy policy for each prosumer, we now proceed to determine

his optimal capacity selection under that policy. The maximum benefit rate to Prosumer i from

installing one unit of capacity occurs when the energy generated by that unit is used to substitute

for the purchase of electricity from his utility at price pe eit. Thus, his maximum discounted benefit

over the time horizon from having installed capacityCi at t = 0 is
∫∞

0
e−rtpee

itCi dt=
pe
r−iCi. Since

the cost of investing in Ci is kCi then, if− pe
r−i +k ≥ 0, a prosumer’s cost of installing renewable

generation exceeds his maximum benefit from that installation, and he will not invest in renewable
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energy. Our interest in this chapter, is in those settings in which a consumer does have the incentive

to make an investment in renewable power generation, so that a virtual microgrid can come into

existence. Consequently, going forward, we make the following assumption (using λ :=r−η).

Assumption 3. k <
pe
λ
.

For notational convenience, going forward we also define Π as follows:

Π :=

∫ ∞
0

e−rtπ(t)dt. (2.12)

Thus, Π represents the discounted present value of one unit of energy continuously traded in

the microgrid during the time horizon. As such, Π can be interpreted as the marginal value of

energy traded in a virtual microgrid. By Assumption 2, Π is well-defined and finite. The following

proposition lays the foundation for the subsequent results in this chapter (using w := b1 − a1 =

b2 − a2).

Proposition 1. For each Prosumer i, the functional Vi
(
Ci, Cj, π(·)

)
can be expressed as a function

Vi(Ci, Cj,Π) of Ci, Ci and Π that is given by the following.

(a) If C1 + C2 > a1 + a2 + w, then

Vi(Ci, Cj,Π)=kCi +
pe

6λw2
(ai+w − Ci)2(ai+3aj−Ci − 3Cj+4w) +

Π

6w2
(Ci−Cj−ai+aj)

(2.13)

×
[
a2
i + a2

j + C2
i + 4CiCj + C2

j − 3w(Ci + Cj) + ai(4aj − 2Ci − 4Cj + 3w) + aj(−4Ci − 2Cj + 3w)
]
.

(b) If 0 ≤ C1 + C2 ≤ a1 + a2 + w, then

Vi(Ci, Cj,Π) = kCi +
pe

6λw2

[
−a3

j + 3CiC
2
j + C3

j − 3ajCj(2Ci + Cj− 2w) + 3a2
j(Ci + Cj − w)

+ 3wa2
i +3wC2

i −3wC2
j −6w2Ci+ 3w3− 3ai

[
a2
j− 2ajCj+ C2

j + 2w(Ci − w)
]]

+
Π

6w2
(Ci−Cj−ai+aj)

×
[
a2
i +a

2
j+C

2
i +4CiCj+C

2
j −3w(Ci+Cj)+ai(4aj−2Ci−4Cj+3w)−aj(4Ci+2Cj−3w)

]
. (2.14)

The fact that a prosumer’s optimal cost Vi can be expressed as a function instead of a functional

greatly facilitates subsequent analysis. Proposition 1 provides explicit expressions for the cost
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function Vi(Ci, Cj,Π) for two distinct regions of total capacity C1+C2 in the microgrid. Because

a1+a2+w=a1+a2+
b1−a1

2
+b2−a2

2
= b1+a1

2
+b2+a2

2
=µX1

+µX2
, the first region addressed in the proposition

(i.e., C1+C2>a1+a2+w) refers to the setting in which the total capacity in the microgrid exceeds

its total average demand. The second region (i.e., C1 +C2≤ a1 +a2 +w) corresponds to the total

capacity in the microgrid being below its total average demand. As a result, the economics driving

prosumers’ electricity costs are different in those two regions. Thus, it is the ordering between

total capacity and total (average) demand that determines the actual form of a prosumer’s expected

cost function Vi. We refer to the region C1 +C2 >µX1
+µX2

as the excess capacity region and to

the region C1+C2≤µX1
+µX2

as the excess demand region.

In both regions of Proposition 1, the first terms in the expressions for Vi represent the up-front

cost of investing in renewable energy generation of given capacity. The second terms denote the

expected discounted cost of Prosumer i’s purchases of electricity directly from his utility, which

occur any time his demand exceeds the sum of his own generation capacity and his counterpart’s

excess capacity. The third terms in expressions (2.13) and (2.14) represent the expected discounted

cost of peer-to-peer purchases of electricity for each Prosumer i, net of his peer-to-peer sales.

To proceed with our analysis, we first provide a structural result concerning the upper and lower

bounds on the optimal level of installed renewable generation capacity for each prosumer.

Proposition 2. The functional C∗i
(
π(·)

)
can be expressed as a function of the marginal value of

energy traded in a virtual microgrid (i.e., C∗i (Π)). Further, C∗i (Π)∈Ii.

Even though a virtual microgrid enables peer-to-peer trading of energy, as shown in Proposi-

tion 2, no participant in such a microgrid will find it optimal to invest in capacity that is either in

excess of his maximum demand or below his minimum demand, regardless of the market clearing

price function. As a consequence, in a virtual microgrid considered in this chapter, in spite of their

heterogeneity, neither participant acts as only a buyer or only as a seller of electricity throughout

the time horizon; instead, every participant is both a seller and a buyer of electricity (albeit at

different times).

The following theorem makes use of this structural result to provide an explicit solution for
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optimal capacity selection for each prosumer in a virtual microgrid, under equilibrium outcomes.

Theorem 2. There exists a unique Nash equilibrium of the capacity game in a virtual microgrid.

Under that equilibrium, Prosumer i’s optimal capacity selection is given by:

C∗i (Π) =


CAi (Π) if Π > 4k − 3pe

2λ
;

CBi (Π) if Π ≤ 4k − 3pe
2λ
,

where CAi (·) and CBi (·), as functions of the marginal value of energy traded, are defined as:

CAi (Π) := bi −
√

6λkpe − 4λ2kΠ + λ2Π2 − λΠ

3pe − 2λΠ
(bi − ai) (2.15)

CBi (Π) := ai +

√
3p2

e − 4λ2kΠ + λ2Π2 + 2peλ(Π− k) + λΠ− pe
pe + 2λΠ

(bi − ai). (2.16)

Theorem 2 identifies two distinct regions of model parameters, each with its own distinct ex-

plicit expression for a prosumer’s optimal capacity selection in a virtual microgrid. The first region,

given by Π > 4k− 3pe
2λ

, derives from the excess-capacity region of Proposition 1, while the second

region, defined by Π ≤ 4k − 3pe
2λ

, derives from the excess-demand region. The former can also

be interpreted as a region with a lower marginal cost of investment k (i.e., k< Π
4

+ 3pe
8λ

), while the

latter can be viewed as a region with a higher marginal cost of investment (i.e., k≥ Π
4

+ 3pe
8λ

). Thus,

in the region of lower marginal cost, the total generation capacity optimally invested in a virtual

microgrid (i.e., CA1 + CA2 ) exceeds the total average demand in the microgrid, while in the region of

higher marginal cost, total optimal capacity installed in the microgrid (i.e., CB1 + CB2 ) is below the

total average demand. Figure 2.1 illustrates those relationships and the results of Theorem 2.

Having derived explicit expressions for a prosumer’s optimal capacity selection, we now pro-

ceed with the corresponding sensitivity analysis. Our objective in doing so is to illuminate some

key features of renewable capacity investments in a virtual microgrid and provide insight into the

behavior of microgrid participants in response to changing external parameters. We begin with an

analysis of the sensitivity of each prosumer’s optimal capacity selection to the utility’s base elec-

tricity rate pe and marginal cost k. In what follows, all regularity properties, such as monotonicity
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Figure 2.1: Optimality Regions for C∗i (Π)

and convexity, are stated in their ‘strict’ sense.

Proposition 3. Optimal capacity selection C∗i (Π) is increasing in pe and decreasing in k.

To provide intuition for the results of Proposition 3, consider Prosumer 1, whose each unit

of capacity C∗1(Π), when operating at time t, is used to generate electricity for sale to Prosumer 2

and/or to satisfy his own demand. If a unit of Prosumer 1’s generation capacity is used to satisfy his

own demand at any time t, then that unit of capacity is saving him pe e
ηt dollars in costs whenever it

replaces a purchase from his electric utility. Hence, the marginal value of each unit of his renewable

generation capacity is increasing in pe, so that Prosumer 1’s optimal capacity selection C∗1(Π) is

increasing in pe. The same holds true for Prosumer 2. Similarly, as k increases, the marginal cost

of investment in renewable generation capacity is higher, so that C∗1(Π) and C∗2(Π) are reduced.

Next, we explore the sensitivity of Prosumer i’s optimal capacity selection to the mean µXi

and standard deviation σXi of his demand distribution. By a well-known property of uniform

distributions, σXi = (bi − ai)2/12. Thus, b1 − a1 = b2 − a2 implies that σX1 =σX2 =σ.

Proposition 4. Optimal capacity selection C∗i (Π) is increasing in µXi , and increasing in σ for

Π>4k− 3pe
2λ

, and decreasing in σ for Π≤4k− 3pe
2λ

.

It is not surprising that the optimal installed capacity for each participant in a virtual microgrid

22



is increasing in his mean demand, as higher demand for electricity necessitates higher levels of

generation capacity. What is perhaps more surprising is that optimal capacity selection C∗i (Π) is

not monotonic in demand volatility, but rather increasing in demand volatility for smaller values

of k (i.e., for k < Π
4

+ 3pe
2λ

) and decreasing in demand volatility for larger values of k (i.e., for

k≥ Π
4

+ 3pe
2λ

). This type of behavior, in which optimal capacity is increasing in the volatility of the

underlying demand for low values of the marginal investment cost, and decreasing in that volatility

for high values of that marginal cost, was first observed in Angelus (2019) in the context of a very

different, single-consumer model of investment in renewable power generation. That the identical

qualitative behavior emerges, under equilibrium outcomes, in our model of a blockchain-enabled

virtual microgrid, points to a deeper relationship between the volatility of each consumer’s demand

for electricity and the optimal level of generation capacity used to satisfy that demand.

2.4.3 Peer-to-Peer Pricing of Traded Electricity

Having the explicit solution for each prosumer’s optimal level of renewable generation in a

virtual microgrid, we now address the market clearing price in a virtual microgrid.

Proposition 5. Let functions Ω(·) and Φ(·) be defined as follows:

Ω(Π) :=

√
6λkpe − 4λ2kΠ + λ2Π2 − λΠ

3pe − 2λΠ
; (2.17)

Φ(Π) :=

√
3p2

e − 4λ2kΠ + λ2π2 + 2peλ(Π− k) + λΠ− pe
pe + 2λΠ

. (2.18)

Then, V ∗i (Π) = V ∗i
(
π(·)

)
:= Vi

(
C∗i (π(·)), C∗−i(π(·)), π(·)

)
is given by:

V ∗i (Π) =


k
[
bi − (bi − ai)Ω(Π)

]
+

2pe(bi − ai)
3λ

Ω3(Π) if π > 4λk − 3
2
pe;

k
[
ai + (bi − ai)Φ(Π)

]
+
pe(bi − ai)

[
3− 6Φ(Π) + 4Φ3(Π)

]
6λ

if π ≤ 4λk − 3
2
pe.

(2.19)

Proposition 5 provides explicit expressions for V ∗i as a function of Π. Therefore, the market

clearing price problem given in (2.10) can be rewritten as:

Π∗i := arg min
Π

V ∗i (Π), (2.20)
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since the market clearing price function π(t) is found, by means of Proposition 2 and 5, to impact

equilibrium outcomes only through its integral Π. Consequently, any price function π(t) whose

integral Π minimizes V ∗i (Π) will be a solution to the market clearing price problem given in (2.10).

Theorem 3. The cost function V ∗i (Π) is unimodal, and the following hold for each Consumer i.

(a) Let Π∗i be as defined in (2.20). Then Π∗i is unique, and it is given by

Π∗1 = Π∗2 =


pe
(
λk +

√
2λkpe

)
2λ(2pe − λk)

if k < pe
2λ

;

pe

(
pe + 3λk −

√
2pe(pe − λk)

)
2λ(pe + λk)

if k ≥ pe
2λ
.

(b) Each prosumer’s optimal cost V ∗i (Π∗i ) is given by

V ∗i (Π∗i ) =


k

(
bi −

(bi − ai)
3

√
2λk

pe

)
if k < pe

2λ
;

k

(
ai + (bi − ai)

√
1

2
− λk

2pe

)
+

(bi − ai)
(

3pe − (2pe + λk)
√

2− 2λk
pe

)
6λ

if k ≥ pe
2λ
.

(c) Each prosumer’s optimal capacity level C∗i (Π∗i ) is given by

C∗i (Π∗i ) =


bi − (bi − ai)

√
kλ

2pe
if k < pe

2λ
;

ai + (bi − ai)

√
1

2
− kλ

2pe
if k ≥ pe

2λ
.

By Theorem 3, the marginal value Π∗i of the energy traded in a virtual microgrid that minimizes

a prosumer’s total expected electricity-related costs is identical for each participant in a virtual

microgrid. Accordingly, we will denote that value as Π∗ and refer to it as the optimal marginal

value of energy traded. A key implication of Theorem 3 is that it is possible for all participants

in a resource-sharing network, even when acting as independent entities, to have identical, cost-

minimizing resource-sharing market clearing price functions. The importance of this result lies

in the fact that, in the absence of market clearing price disparity in a virtual microgrid, there is

no need for a separate market entity to mediate the price-setting process, so that prosumers can
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self-organize into virtual microgrids on their own. Further, having all microgrid participants agree

on their preferred market clearing price function facilitates the design of blockchain protocols

for a virtual microgrid because, under equilibrium outcomes, it is not necessary for a blockchain

application to keep track of the different buy/sell prices at all times in the system, or to manage real-

time engagement of prosumers to in price-setting mechanisms such as continuous energy auctions.

Theorem 3 also provides explicit expressions for the optimal marginal value of energy traded

Π∗i : one for the low values of the marginal cost of investment and another for the high values of

that marginal cost. We explicitly characterize the value of Π that minimizes each prosumer’s cost

function V ∗i (Π) even though that cost function is, in general, not convex in Π. (In reality, neither of

the two segments that define V ∗i (Π) is convex on its own domain). The proof of Theorem 3 relies

on a technical result pertaining to a characterization of unimodal functions by means of functional

composition (see Lemma 6 in the Appendix).

By providing explicit expressions for optimal capacity level C∗i (Π∗i ) and the optimal marginal

value of energy traded Π∗i associated with each microgrid participant in our model, Theorem 3

completes the characterization of equilibrium outcomes in a blockchain-enabled virtual microgrid.

We next analyze the sensitivity of optimal peer-to-peer electricity pricing, capacity, and each

prosumer’s optimal cost in a virtual microgrid to some key model parameters.

Proposition 6. (a) The optimal marginal value of energy traded Π∗ is increasing in k, decreasing

in pe for λk < pe ≤ 3(
√

3−1)
2

λk, and increasing in pe for pe >
3(
√

3−1)
2

λk;

(b) A prosumer’s optimal cost V ∗i (Π∗i ) is increasing in k, pe, µXi , and σ;

(c) A prosumer’s optimal capacity level C∗i (Π∗i ) is decreasing in k, increasing in pe, increasing in

µi, increasing in σ if k < pe
2λ

, and decreasing in σ if k ≥ pe
2λ

.

To acquire insight into the behavior described in Proposition 6(a), note that increasing k raises

the marginal cost of investment in renewable energy. When pe is fixed, the marginal benefit of this

investment increases only with the market clearing price function π(t). Consequently, since the

optimal marginal value of energy traded Π∗ seeks to minimize the total cost to a prosumer, then, as

k increases, Π∗ must increase as well. The effect of increasing the base rate pe, on the other hand,
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is twofold: first, a higher base rate results in higher fees paid by each prosumer for his purchases

of electricity from the utility; however, because a unit of renewable energy capacity also replaces,

at times, a unit of energy purchased from the utility, a higher base electricity rate also increases

the marginal benefit of that capacity. The impact of those two opposing effects on the optimal

marginal value of energy traded is such that, for a narrow range of smaller values of pe (compared

to λk) defined by
(
λk, 3(

√
3−1)
2

λk
]
, the optimal marginal value of energy traded Π∗ is decreasing

in pe. For all other values of pe, Π∗ is increasing in pe. As a result, Π∗ is convex in pe.

By part (b) of Proposition 6, increasing the base electricity rate pe increases the total cost of

electricity for each participant in a virtual microgrid. This follows directly from the expression

for his cost rate given in (2.11). Further, increasing mean demand increases his expected cost of

satisfying that demand, due to the increased (expected) amount of purchased electricity both from

other microgrid participants and his electric utility. Increasing mean demand raises the cost of his

investment in renewable energy because, by Proposition 4, optimal capacity selection C∗i (Π) is in-

creasing in µXi . As a result, a prosumer’s optimal cost V ∗i (Π∗i ) is increasing in his average demand.

This optimal cost is also increasing in σ, because higher demand volatility leads to increased like-

lihood of the prosumer’s demand exceeding his installed renewable generation capacity and his

having to resort to purchasing electricity either from his peers in the microgrid or his utility.

Because k represents the marginal cost of investment in renewable energy generation, it is not

surprising that, by part (c) of Proposition 6, optimal capacity level C∗i (Π∗) is decreasing in that

marginal cost. Increasing pe, on the other hand, raises the marginal value of that capacity, so

that C∗i (Π∗) is increasing in pe. Also, C∗i (Π∗) is increasing in demand volatility for low values

of marginal cost k, and increasing in demand volatility for high values of k. The intuition for

this behavior derives from considerations similar to those for the newsvendor model, in which the

optimal order quantity is decreasing in σ for low values of the critical ratio (i.e., high values of

the marginal cost), and increasing in σ for high values of the critical ratio (i.e., low values of the

marginal cost).
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2.4.4 Equilibrium Outcomes Quantified

We now quantify equilibrium outcomes in a blockchain-enabled virtual microgrid. We dis-

cretize time into hours, and assume that participants in the microgrid have identical ranges of

demand, so that I1 = I2 := [a, b]. We make use of the mean and standard deviation of the hourly

residential household energy consumption data in San Francisco for 2013 (US DoE, 2014) to obtain

estimates of a and b. The resulting domain of the uniform distribution of a consumer’s electricity

demand is [1.15 kWh, 10.57 kWh]. The annual discount rate used is 10%.

To facilitate arriving at insights from our numerical studies, we assume a particular form of the

market clearing price function, namely π(t) = πeηt, where π := π(0) is referred to as the base

energy exchange price. It then follows from the definition of Π that the optimal market clearing

price function π∗(t) is given by π∗(t) = π∗eηt, where π∗ = λΠ∗. Table 2.1 displays the optimal

base energy exchange price π∗ as a function of base electricity rate pe and marginal cost k.

Marg. Cost k Base Electricity Rate pe (in cents/kWh)
(in $/kW) 10 12 14 16 18 20 22 24 26 28 30

1000 1.57 1.67 1.77 1.86 1.95 2.03 2.11 2.19 2.26 2.33 2.40
2000 2.55 2.68 2.80 2.92 3.03 3.14 3.24 3.35 3.45 3.54 3.64
3000 3.53 3.64 3.76 3.89 4.01 4.14 4.26 4.37 4.49 4.60 4.71
4000 4.58 4.64 4.74 4.86 4.98 5.10 5.23 5.35 5.47 5.60 5.71
5000 5.68 5.71 5.76 5.85 5.95 6.07 6.19 6.32 6.44 6.57 6.69
6000 6.71 6.82 6.85 6.89 6.96 7.06 7.17 7.28 7.41 7.53 7.65
7000 7.68 7.85 7.96 7.99 8.02 8.08 8.17 8.27 8.38 8.50 8.62
8000 8.68 8.83 8.99 9.10 9.13 9.15 9.21 9.28 9.38 9.48 9.60

Table 2.1: Optimal Base Energy Exchange Price π∗ (in cents/kWh)

As predicted by Proposition 6, the optimal base energy exchange price π∗ shown in Table 2.1

is increasing in both k and pe. (Because pe >
3(
√

3−1)
2

λk for all parameter choices in Table 2.1,

those monotonicity observations are also implied by Proposition 6.) At the same time, π∗ appears

to be increasing in k much faster than in pe for the values shown in the table. The optimal base

energy exchange price can also be observed to be relatively small, on average, compared to the
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base electricity rate, as π∗ averages only about 31% of pe across all entries in Table 2.1.

Table 2.2 displays each prosumer’s optimal capacity level C∗i (Π∗) as a function of base elec-

tricity rate pe and marginal cost k. (Since prosumers are identical in this numerical study, so are

their optimal capacity levels.) In accordance with Proposition 6, that optimal capacity level is

found to be decreasing in the marginal cost of investment, and increasing in the base electricity

rate. Further, except for a few entries in the bottom right corner, the values in this table exceed the

prosumer’s average demand for electricity, even at the very high end of the range of that marginal

cost.

Marg. Cost k Base Electricity Rate pe (in cents/kWh)
(in $/kW) 10 12 14 16 18 20 22 24 26 28 30

1000 8.32 8.52 8.67 8.79 8.89 8.98 9.05 9.12 9.17 9.23 9.27
2000 7.39 7.66 7.88 8.05 8.20 8.32 8.42 8.52 8.60 8.67 8.73
3000 6.67 7.01 7.28 7.49 7.66 7.81 7.94 8.05 8.15 8.24 8.32
4000 6.07 6.46 6.77 7.01 7.22 7.39 7.54 7.66 7.78 7.88 7.97
5000 5.51 5.98 6.32 6.59 6.82 7.01 7.18 7.32 7.45 7.56 7.66
6000 4.89 5.51 5.91 6.21 6.46 6.67 6.85 7.01 7.15 7.28 7.39
7000 4.14 5.00 5.51 5.86 6.13 6.36 6.56 6.73 6.88 7.01 7.13
8000 3.11 4.41 5.08 5.51 5.83 6.07 6.28 6.46 6.62 6.77 6.89

Table 2.2: Optimal Capacity Level C∗i (π∗) (in kW)

In summary, the set of optimal energy policies
{
Z∗i , Y

∗
ij

}
and capacity levels

{
C∗i
}

, together with

the optimal marginal value of energy traded Π∗, represent equilibrium outcomes for participants in

the blockchain-enabled virtual microgrid considered in this chapter. Our derivation of explicit ex-

pressions for those equilibrium outcomes makes it possible not only to conduct sensitivity analysis

on those outcomes, but also to obtain their numerical values and examine their behavior.

2.5 Implications of Virtual Microgrids

We now analyze some key ramifications of blockchain-enabled virtual microgrids. In Section

2.5.1, we compare the expected cost for a prosumer in a virtual microgrid to that of a single con-

sumer, without access to a microgrid, who seeks to minimize his total electricity-related costs of
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electricity by investing in renewable energy generation. In Section 2.5.2, we evaluate the implica-

tions of blockchain-enabled virtual microgrids for the magnitude of renewable energy investments.

In Section 2.5.3, we explore how well blockchain technology coordinates the participants of a de-

centralized virtual microgrid relative to a fully centralized microgrid optimized for total cost.

2.5.1 Cost Savings

To evaluate the implications of a blockchain-enabled microgrid for electricity consumers’ cost

savings, we now contrast the results obtained in the previous section to those derived herein for a

single, cost-minimizing, consumer without access to a virtual microgrid. Without a virtual micro-

grid, an electricity consumer can still invest in renewable power generation; however, any energy

produced by his installed renewable energy capacity in excess of his demand can no longer be sold

to another consumer for profit (or to his utility, under the model assumptions), nor can he purchase

electricity from anyone other than his electric utility.

In analyzing a single, cost-minimizing consumer, we assume that his (random) demand X

for electricity at any time t is stationary and uniformly distributed on I := [a, b]. Just like the

participants in a blockchain-enabled virtual microgrid, at time t = 0, this consumer invests in his

own distributed renewable energy generation by deciding on capacity c to install at that time. His

marginal cost of investment is also k, so that his total cost of investment at time t = 0 is kc.

Following the installation of his renewable generation capacity, this consumer uses that capac-

ity to satisfy his demand for electricity and only resorts to purchasing electricity from the regulated

utility when his demand X exceeds his generation capacity c. Therefore, his cost rate at any time

t is pe eηt(X − c)+. Let v(c) denote the total discounted expected value of all electricity costs

incurred by this consumer from t = 0 through the end of the time horizon. Thus, we have:

v(c) =

∫ ∞
0

e−rt EX
[
pe e

ηt(X − c)+
]
dt+ kc = pe

∫ ∞
0

∫ b

a

e−λt EX
[
(X − c)+

]
dx dt+ kc. (2.21)

This consumer’s optimal generation capacity c∗ is then given simply as:

c∗ := arg min
c≥0

v(c).

We will refer to this optimization problem as the single consumer’s capacity problem, and to
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v∗ := v(c∗) as the single consumer’s minimum cost.

Proposition 7. For the single consumer’s capacity problem, the following hold:

c∗ = b− λk

pe
(b− a) and v∗ = bk − λk2(b− a)

2pe
.

It follows from Proposition 7 that a single consumer’s optimal capacity is concave increasing in

base electricity rate pe and decreasing linearly in k, the marginal cost of investment. His minimum

cost is concave increasing in each of pe and k.

To render the comparison between a virtual microgrid participant and a single, cost-minimizing

consumer meaningful, we assume that: (a) the participants in a virtual microgrid have identical

ranges of their probability distributions of demand, so that I1 = I2; and (b) the range of demand

for microgrid participants is identical to that of a single, cost-minimizing consumer without a

microgrid, so that I1 = I2 = I = [a, b]. Consequently, we drop the subscript i from the variables

used to describe optimal capacity and optimal cost for each prosumer in a virtual microgrid.

The following key theorem shows that an electricity prosumer always benefits from engaging

in peer-to-peer energy trading made possible in a blockchain-enabled virtual microgrid.

Theorem 4. For any Π ∈
[
0, pe

λ

)
, V ∗(Π) < v∗.

Theorem 4 guarantees that an electricity prosumer is always better off with a virtual microgrid

than without one. This is true regardless of the market clearing price function in the microgrid,

so that a blockchain-enabled microgrid need not have the optimal marginal value of energy traded

for its constituents to realize cost savings from participating. This theorem also helps explain

(and justify) the growing interest in virtual microgrids such as the Brooklyn Microgrid, as each

prosumer is better off with it than without, no matter what price he buys and sells electricity for.

The question that naturally arises on the heels of Theorem 4 concerns the exact amount of cost

savings generated by a consumer joining a virtual microgrid. To quantify those cost savings and

provide meaningful comparisons, we again consider a virtual microgrid with identical prosumers.

We assume the same model parameters as those used in Tables 1 and 2 of Section 4.3.
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Table 2.3 displays cost savings for a prosumer in a virtual microgrid under equilibrium out-

comes relative to the minimum cost of a single, cost-minimizing prosumer without access to a

microgrid. Thus, the values shown in Table 2.3 represent the ratio v∗−V ∗(Π∗)
v∗

, evaluated across

a range of the base electricity rates (from 10 cents/kWh to 30 cents/kWh, in increments of two

cents) and marginal costs of investment in renewable generation (from $1000/kW to $8000/kW, in

increments of $1000).

The percentage cost savings displayed in the table appear to be concave in both k and pe.

Those cost savings are also at their highest when k and pe are either both low or both high, and

they peak at about 11.1%, regardless of the combination of values used for the marginal cost and

base electricity rate. While those savings are not insignificant (averaging 9.7% across the entries

in Table 2.3), they also exhibit considerable variation, as they can reach as low as 1.4%.

k Base Electricity Rate pe (in cents/kWh)
(in $/kW) 10 12 14 16 18 20 22 24 26 28

1000 9.6% 9.1% 8.7% 8.3% 8.0% 7.7% 7.4% 7.2% 7.0% 6.8%
2000 11.0% 10.8% 10.5% 10.2% 9.9% 9.6% 9.3% 9.1% 8.9% 8.7%
3000 11.0% 11.1% 11.1% 10.9% 10.8% 10.6% 10.4% 10.2 10.0% 9.8%
4000 10.1% 10.8% 11.1% 11.1% 11.1 11.0% 10.9% 10.8% 10.6% 10.5%
5000 8.5% 9.9% 10.6% 10.9% 11.1% 11.1% 11.1% 11.1% 11.0% 10.9%
6000 6.3% 8.5% 9.7% 10.4% 10.8% 11.0% 11.1% 11.1% 11.1% 11.1%
7000 3.9% 6.7% 8.5% 9.6% 10.2% 10.7% 10.9% 11.0% 11.1% 11.1%
8000 1.4% 4.7% 7.0% 8.5% 9.5% 10.1% 10.5% 10.8% 11.0% 11.1%

Table 2.3: Consumer Cost Savings Generated by a Virtual Microgrid (in %)

In summary, under equilibrium outcomes, a blockchain-enabled virtual microgrid can generate

significant cost savings for an electricity prosumer. At the same time, the exact amount of those

savings very much depends on the characteristics of the underlying microgrid electricity market,

such as the marginal cost of renewable energy investment and base electricity rate. As a result,

even though a prosumer is always better off with a virtual microgrid than without, when analyzing

an investment in a virtual microgrid, care should be taken to accurately capture the details of the

particular electricity market being considered for the investment.
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2.5.2 Size of Renewable Energy Investments

In a virtual microgrid with identical consumers, for any market clearing price function π(t),

each consumer will install the optimal capacity selection C∗(Π). From the perspective of renew-

able energy investments, a key question becomes whether a consumer would invest more or less

in renewable energy generation with a virtual microgrid than without. To answer that question,

we compare optimal capacity of a participant in a virtual microgrid under equilibrium outcomes to

that of a single, cost-minimizing consumer who invests in renewable energy generation.

It may seem intuitive that a consumer’s optimal capacity investment with a virtual microgrid

would be higher than without it, because, with a microgrid, each consumer’s excess capacity can be

used to generate and sell electricity to other microgrid participants. As a result, the marginal value

of each unit of renewable generation capacity would appear to be higher with a virtual microgrid,

so that the resulting optimal capacity would then necessarily also be higher for any market clearing

price function in the microgrid. As it turns out, the reality of the relative sizes of renewable energy

investments with and without a virtual microgrid turns out to be more complicated. The following

theorem provides an explicit, “threshold-type” resolution of this issue.

Theorem 5. Let C∗(Π) and c∗ be as established in Theorem 2 and Proposition 7, respectively.

Then, there exist a threshold marginal value Π of energy traded in a microgrid such thatC∗(Π)<c∗

whenever Π< Π, and C∗(Π)≥c∗ whenever Π≥ Π. Further,

(a) If k< pe
2λ

, then Π= pe(2pe−3λk)
2λ(pe−λk)

and C∗(Π∗)<c∗;

(b) If k≥ pe
2λ

, then Π= pe(pe−λk)
2λ2k

and C∗(Π∗)≥c∗.

By Theorem 5, there exists a threshold marginal value of energy traded in a virtual microgrid

such that the optimal capacity selection for each participant in the microgrid is higher than the

optimal capacity for a single, cost-minimizing consumer without a microgrid, whenever the actual

marginal value of energy traded exceeds that threshold; otherwise, the single, cost-minimizing con-

sumer optimally invests in a higher level of renewable energy capacity. Therefore, the “marginal

value" intuition described above regarding each consumer’s optimal renewable energy investments
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in a virtual microgrid does not (fully) capture the complexity of the underlying capacity decision.

As it turns out, the energy trading option in a virtual microgrid plays a significant role in

this decision. This is because, with peer-to-peer energy trading, the capacity decision for each

participant in the microgrid involves a unique tradeoff between: (1) buying more capacity, which

can be used to satisfy own demand and sell electricity to other participants, while incurring a

higher investment cost; and (2) buying less capacity, incurring a smaller investment cost, and

relying (more) on energy purchases from other participants to meet own demand for electricity.

Hence, when the marginal value of energy traded in a virtual microgrid is small, then in equi-

librium, using energy purchases from other participants to satisfy own demand starts to substitute,

for each prosumer, for his investing in renewable energy capacity. In other words, at low electric-

ity trading prices in a virtual microgrid, each prosumer starts to rely more on energy purchases

rather than his own electricity generation to meet his demand. As a result, his optimal capacity

investment ends up being lower than that of a single, cost-minimizing consumer, since the latter,

by definition, does not have access to low-priced energy purchases from prosumers in a microgrid.

Similarly, when the marginal value of energy traded in the microgrid is high, then the above

tradeoff shifts in the other direction, and each participant in the microgrid finds it more beneficial,

in equilibrium, to invest more in renewable generation capacity. This is because, with more gen-

eration capacity, he can not only meet more of his own demand with his own generation, but also

generate significant revenue from selling electricity to other participants in the microgrid at pre-

vailing higher prices. Hence, with higher electricity trading prices in a virtual microgrid implied

by a higher marginal value of energy traded, each prosumer’s optimal capacity investment ends up

being higher than that of a single, cost-minimizing consumer, as the latter cannot sell his excess

electricity.

Theorem 5 also provides explicit expressions for the marginal energy value threshold Π, whose

representation depends on whether the marginal cost of investment k is low (i.e., less than pe
2λ

), or

high (i.e., greater than pe
2λ

). The proof of Theorem 5 establishes that this threshold value is always

in the interval (0, pe), so that this “threshold-type" characteristic of renewable energy investments
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is present, in all blockchain-enabled virtual microgrids, regardless of the particular features of the

underlying electricity market. When marginal cost k is low, each prosumer’s optimal capacity level

C∗(Π∗) is smaller than the single-consumer’s optimal capacity c∗ because, in that case, Π∗ < Π.

Similarly, when marginal cost k is high, each prosumer’s optimal capacity level C∗(Π∗) is higher

than the single-consumer’s optimal capacity c∗ since, then, Π∗>Π.

In summary, participating in a virtual microgrid and being able to trade electricity with its con-

stituents fundamentally alters the magnitude of a prosumer’s investment in renewable energy. This

observation, in turn, becomes an important point to keep in mind for those electricity consumers

considering joining a virtual microgrid, as that decision can impact their level of capital needed

for renewable energy investment and their subsequent cost savings generated. We are not aware

of any mention in the research literature or media coverage of blockchain-enabled energy projects

(such as the Brooklyn Microgrid) of the fact that consumers who join a virtual microgrid may not

want to install the same amount of solar panel capacity, for example, as those who do not.

2.5.3 Coordination Power of Blockchain

Blockchain represents, to the best of our knowledge, the only technology capable of facilitating

organization of electricity consumers into decentralized virtual microgrids by coordinating their

financial and energy flows for the purpose of peer-to-peer trading of electricity.

In contrast to the decentralized, blockchain-enabled, virtual microgrid analyzed in this chapter,

a traditional, physical microgrid comprises a network of energy production and demand nodes,

with its own transmission lines, that operates in parallel to the central transmission grid. A number

of different designs and algorithms have been used to successfully operate microgrid controllers

that centrally manage all operational aspects of such microgrids (Su et al. 2013, Khan et al. 2016,

Askarzadeh 2017). Those algorithms generally aim to minimize the total cost in the system. While

a virtual microgrid does not require the infrastructure investment needed for a traditional, centrally-

controlled microgrid, a key question regarding the use of blockchain technologies to operate a

virtual microgrid concerns its power to coordinate the relevant decision makers (i.e., participants in

a microgrid) towards not only optimizing their individual cost, but also reducing the total cost in the
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system, much like centralized controller would do for a traditional microgrid. From the perspective

of widespread adoption of virtual microgrids by residential and other consumers, providing insight

into this issue is an important task that has remained outstanding in the literature.

For that purpose, in this section we compare the cost performance of a blockchain-enabled vir-

tual microgrid under equilibrium outcomes to the cost performance of a fully centralized microgrid

optimized for total cost. Since our focus in this section is on coordination performance only, we

do not consider infrastructure costs (i.e., transmission and distribution lines) needed to set up a

traditional microgrid; instead, we only analyze direct electricity-related costs, including the cost of

investment in renewable power generation incurred by the constituents of such a microgrid.

We retain the assumptions regarding consumer i (i ∈ {1, 2}) and his demand for electricity

Xi∼U [ai, bi] at time t. In a traditional microgrid, a central agent invests in renewable generation

capacity C at time t = 0, and this generation capacity subsequently serves the demand from both

consumers. When the demand in such a centralized microgrid (i.e., X1 +X2) exceeds the installed

generation capacity, the microgrid draws power from its electric utility to satisfy the resulting

excess demand. Therefore, at any time t, the cost rate of the traditional centralized microgrid is

pee
ηt(x1+x2−C)+, where, as usual, x1 and x2 denote realizations of random demands X1 and X2.

Let F(C) be the expected discounted present value of all electricity-related costs in a central-

ized microgrid over the time horizon, including the investment in capacity C at time t=0. Thus,

F(C) =

∫ ∞
0

e−λt EX1,X2

[
pe(x1 + x2 − C)+

]
dt+ kC. (2.22)

The central agent chooses the capacity to minimize the expected total cost F(C). Thus, in a

centralized microgrid, we define the optimal (centralized) capacity C∗ as

C∗ = arg min
C
F(C).

Also, we will refer to F∗ := F(C∗) as the minimum (centralized) cost. The following proposition

derives optimal centralized capacity and minimum centralized cost.

Proposition 8. In a centralized microgrid optimized for total cost, the following hold.
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(a) The optimal centralized capacity is given by

C∗ =


a1 + a2 + 2w − w

√
2λk

pe
if k < pe

2λ
;

a1 + a2 + w

√
2

(
1− λk

pe

)
if k ≥ pe

2λ
.

(b) The minimum centralized cost is given by

F∗ =


k

(
b1 + b2 −

2w

3

√
2λk

pe

)
if k < pe

2λ
;

k(a1 + a2) +

w

(
3pe − 2(pe − λk)

√
2− 2λk

pe

)
3λ

if k ≥ pe
2λ
.

Having established analytical expressions for the minimum cost in a traditional, centralized

microgrid, we now compare that minimum cost to the total cost in a blockchain-enabled virtual

microgrid under equilibrium outcomes. Let V ∗ := V ∗1 (Π∗1) + V ∗2 (Π∗2) denote that total cost.

Theorem 6. For any positive base electricity rate pe, F∗ = V ∗.

By Theorem 6, a virtual microgrid with a decentralized coordination of prosumers by means

of blockchain technology achieves the same total minimum cost in the system as a microgrid

with a fully centralized control designed to minimize total system costs. At the same time, a

blockchain-enabled virtual microgrid does not require expensive infrastructure of central control

devices needed to run a centralized microgrid. Further, as already mentioned, a centralized micro-

grid generally also requires its own transmission and distribution network, whereas a blockchain-

enabled microgrid, such as the Brooklyn Microgrid, provides a virtual marketplace for energy

trading that runs on the existing transmission grid.

In summary, blockchain can achieve the same degree of coordination of prosumers in a de-

centralized virtual microgrid (referred to as “virtual horizontal coordination” in Babich and Hilary

(2020)) as a centralized microgrid controller set up to minimize total costs in the system. Our

finding that a blockchain-enabled microgrid achieves complete virtual horizontal coordination is
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of significance for future adoption of virtual microgrids in electricity markets worldwide.

2.6 Concluding Remarks

Blockchain-related energy projects are emerging as a major area of application of blockchain

technologies, as those technologies are making it possible for individual consumers and produc-

ers of renewable energy to bypass existing markets and self-organize into decentralized virtual

networks for the purpose of trading self-generated electricity. In this chapter, we provided an

analytical model of a decentralized microgrid that captures the dynamics of virtual trading of self-

generated electricity and associated peer-to-peer financial and energy flows enabled by blockchain

technologies.

For the resulting two-stage, simultaneous noncooperative game, we characterized equilibrium

outcomes, including each consumer’s optimal energy policy and capacity of installed renewable

generation. We also derived the marginal value of energy traded in a virtual microgrid that min-

imizes each participant’s total electricity costs. That value was shown to be increasing in the

marginal cost of investment, and convex in the base electricity rate. We found that each prosumer’s

optimal cost was increasing in all key parameters of the model: base electricity rate, marginal cost

of investment, and mean and standard deviation of his demand distribution. His optimal capacity

level, on the other hand, is uniformly increasing in all model parameters but the standard deviation

of demand.

Some key results, from the perspective of electricity prosumers, concern the implications of

virtual microgrids for their cost savings and renewable energy investments. In that regard, we

established that each of heterogeneous, cost-minimizing prosumers is always better off within a

virtual microgrid than without, regardless of the market clearing price function in the microgrid. A

prosumer’s expected cost savings, under equilibrium outcomes, were found to average 9.7% in our

numerical studies. We also determined that the impact of virtual microgrids on the magnitude of

renewable energy investments can be characterized with a threshold structure; that is, there exists

a threshold marginal value of energy traded such that the optimal capacity for each prosumer in

the microgrid is higher than that of the single, cost-minimizing consumer without a microgrid
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whenever the actual marginal value of energy traded in the microgrid exceeds that threshold.

With regard to future development and investment into blockchain-related energy projects, our

key result is that, in equilibrium, a blockchain-enabled microgrid fully coordinates all the partici-

pants of a decentralized virtual microgrid in minimizing the total electricity-related cost in the sys-

tem. A virtual microgrid therefore achieves the same total cost of electricity for its participants as

a fully centralized, traditional microgrid that additionally requires expensive investment in control

devices and other expensive equipment. Further, the optimal energy policy derived in this chapter

for each participant in a virtual microgrid is easily executable by smart contracts application of

blockchain, which facilitates the realization of participant cost savings.

From the perspective of sustainability and community engagement with local renewable en-

ergy projects such as the Brooklyn Microgrid, our results provide support for the belief, held by

most Brooklyn Microgrid participants, that they are “laying the groundwork” for a future in which

communities produce their own electricity, and retain profits from that electricity while moving

towards increased renewable energy use and away from fossil fuels (Peck 2016).

We conclude by pointing out some caveats and potential directions for future research. First,

we assumed a regulated electricity market in which there is no uncertainty in the price charged for

electricity purchased from the central transmission grid. It would be of interest to also consider

unregulated electricity markets in which competition would induce price uncertainty, or at least

nonstationarity, so that at times it may be more beneficial for a microgrid participant to buy power

from the central transmission grid rather than from other prosumers in his virtual microgrid. In

that case, one might expect a lower optimal energy exchange price and potentially even greater

cost savings for a microgrid participant due to his option to choose, at any time, the lower of the

two prices for the purchase of needed electricity.

Second, there may exist circumstances (such as different forms of the demand probability dis-

tribution) under which heterogeneous prosumers would not all arrive at the same cost-minimizing

marginal value of energy traded in the microgrid. In such settings, it might be necessary to develop

an auction-type mechanism for the determination of the peer-to-peer electricity trading price. The
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resulting analysis would represent a worthwhile extension of our research.

Third, while we assume that electricity generated by a microgrid participant cannot be stored

in any way, an important development in electricity markets has been an increased availability of

residential battery storage. With battery storage, a prosumer would not necessarily be motivated

to always sell all of his excess electricity to other microgrid participants, but would likely want to

store some of it for his own future use. With battery storage, the set of equilibrium outcomes would

expand to include the optimal capacity of storage installed by each consumer. This would result

in increased complexity of the corresponding minimization problem, while potentially enhancing

cost savings available to microgrid participants. Research into consumer investment in renewable

energy under storage availability would be of great academic and societal interest.
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3. TRANSMISSION GRID DEVELOPMENT AND IMPLICATIONS FOR RENEWABLE

ENERGY INVESTMENT

3.1 Introduction

Renewable energy has now come to represent an indispensable source of electricity genera-

tion. Due to ambitious political targets to reach the deep de-carbonization of electric grids, wind

and solar energy installations have grown rapidly over the last decade. In Europe, wind energy

installations grew by 10 GW in 2009 and 2010 alone. The cumulative photovoltaic capacity over

the European countries reached 29 GW in 2010 (Schaber et al. 2012). At the same time, the grow-

ing renewable generation capacity demands an increasing electricity transmission capacity on the

current grid infrastructure. Procuring sufficient transmission capacity is considered one of the most

urgent tasks to support the sustainable transition of a carbon-dependent economy to a low-carbon

economy. Borrowing one wind energy industry stakeholder’s comment, “the list of top three chal-

lenges for wind industry [are] . . . transmission, transmission, and transmission.” (Fischlein et al.

2013)

Currently, transmission capacity expansion planning is administered by federal and state juris-

diction - regional transmission organizations or independent system operators in the United States.

Traditionally, the installation of a transmission grid is centrally planned and developed as a re-

sponse to an increase in market demand in the region. Over the next decade, long-term goals of

developing and operating new transmission grids should support the projected growth of renewable

electricity generation. Because renewable generation is intermittent and time/space-dependent,

high penetration of renewable energy would increase the frequency of over-generation or under-

generation compared to the transmission capacity or demand experienced at load centers. This

increased imbalance is costly for both energy producers and transmission grid operators alike. For

instance, excess electricity is often sold at a negative wholesale price to relieve congestion in trans-

mission grids (Zarnikau 2011, Zhou et al. 2016). In the western part of Texas, wind developers

commonly experience a negative wholesale electricity price due to insufficient transmission capa-
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bility (Zarnikau 2011). Southern California Edison reported that transmission constraints caused

the wind energy loss of about 15 MW for 6% – 8% of the time as of 2010 (Rogers et al. 2010).

The limited transmission capability in the current grids has been impeding renewable energy

development for more technical and economic constraints. First, the majority of commercial re-

newable energy projects are developed in rural regions remote from load centers where the current

grid infrastructures are built around. Also, because many renewable energy projects have been

driven by non-utility independent power producers, political and meteorological factors draw those

projects to be developed in regions remote from the load centers (United States Department of En-

ergy 2019). Over the next decade, more renewable energy will be developed in remote offshore.

Global Wind Energy Council (GWEC) forecasts that offshore wind capacity alone will surge to

234 GW by 2030 (Pullen and Sawyer 2011). Second, planning and constructing a transmission

grid generally takes a much longer time than developing a renewable power plant. For instance,

while developing a wind farm takes only about one year, developing a fully operational transmis-

sion grid can take at least five years or longer (Fischlein et al. 2013). Without the well-ahead

planning to develop sufficient transmission capacity over the next decades, significant social and

environmental values generated via renewable energy development can be lost due to the lack of

transmission lines.

Developing these long-distance grids has some important differences from merely upgrading

the current transmission infrastructure, which has been considered by many jurisdictions, including

the U.S. and several European countries. First, renewable projects can be deployed in regions with

higher meteorological potential when dedicated transmission lines are available because the devel-

opment of a renewable energy project is less constrained by the current grid infrastructure. Also,

transmission grid planners can avoid expensive upgrades to the current transmission infrastructure.

For instance, the cost of upgrading onshore transmission grids in New England to support wind

energy deployment was estimated at 1 $ billion. Extended transmission grids will generate savings

by reducing the upgrades and repairs needed with the old transmission grids. Second, developing

transmission grids can generate a potential of higher revenue for energy producers. Higher trans-
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mission capacity implies these energy producers can transmit more energy generated to remote

high population centers, and more potential demand fulfilled with renewable energy. Thus, the

economic benefit of expanding the transmission network in the United States is estimated at $ 1.5

trillion under a high renewable penetration scenario (Krishnan et al. 2013). Yet, little is known

about the strategic questions related to a long-distance transmission grid.

These qualitative arguments motivate me to consider how we can capture the potential of abun-

dant renewable energy sources and avoid economic and social consequences of increasing fossil

fuel consumption. In this chapter, we study how a transmission company (TransCo) can optimally

invest in a long-distance transmission line, that connects a low-demand remote region to a high-

demand urban region, to allow renewable energy development by a power generation company

(GenCo) in a geographically remote region. We formulate and solve a continuous-time, infinite-

horizon, Stackelberg game between TransCo and GenCo in the presence of stochastic demand for

renewable electricity on both ends of the transmission line. We show that transmission and gen-

eration act as complements with regard to the value functions for both companies. We determine

explicit expressions for optimal transmission and generation capacities installed by each company.

We use this result to derive the value-maximizing transmission fee charged by TransCo to GenCo

for each unit of energy exported from the low-demand, remote region to the high-demand ur-

ban region. Finally, we characterize a Pareto-improving cost-sharing contract through which both

companies improve the value of their investment. We identify key drivers of those investments and

quantify their size across a range of model parameters.

The remaining of this chapter is organized as follows. In Section 3.2, we review the literature.

In Section 3.3, we formulate our model. In Section 3.4 we characterize the structural properties and

equilibrium outcomes of the solutions to optimal generation and transmission capacity selection.

Section 3.5 explores strategic interaction between transmission and generation, In Section 3.6, we

provide concluding remarks.
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3.2 Literature Review

This chapter is primarily related to the literature on renewable energy operations. Hu et al.

(2015) establish the optimal level of renewable generation capacity under intermittent supply and

stochastic demand and show that data granularity matters because coarse data may not reflect

intermittency of renewable generation. Kök et al. (2018) study the effects of utilities’ different

pricing policies (peak vs. flat) on renewable energy investment and find that flat pricing can lead to

a higher investment in renewable generation from the utility, while peak pricing leads to increased

investment in distributed generation. Aflaki and Netessine (2017) show that higher carbon prices

and market liberalization may reduce the share of renewable capacity in the generation portfolio

due to the interaction between generation intermittency and pricing. Angelus (2021) identifies

optimal timing and capacity of investment in a distributed renewable generation for a consumer

whose demand for electricity is stochastically evolving. In contrast to this literature, our focus is

on those settings where the return on the investment in renewable energy (through selling electricity

to market participants) is constrained by the available transmission capacity.

Several recent papers in the renewable energy literature have dealt with optimal pricing of

electricity. Alizamir et al. (2016) determine the optimal feed-in-tariff under information diffu-

sion and the structure of the optimal investment timing for heterogeneous consumers. Kök et al.

(2018) determine the optimal peak and flat electricity price. Adelman and Uçkun (2019) develop

asymptotically linear, social welfare-maximizing, electricity price schedules for a utility that serves

price-responsive strategic consumers. Al-Gwaiz et al. (2017) demonstrate that curtailing renew-

able generation can increase market competition. Angelus (2021) determines optimal electricity

pricing for a utility that serves a consumer who has the option to invest in distributed renewable

generation. In contrast to these papers, our research is not concerned with determining the optimal

pricing of a utility’s electricity pricing. We instead address how the regulated electricity price can

change the investments by individual market participants (renewable power companies), which

also impacts the optimal level of transmission grid capacity investment.

It is worth mentioning a number of other papers that deal with operations management prob-
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lems in renewable energy systems. Wu and Kapuscinski (2013) find that curtailing intermittent

renewable energy reduces system costs and emissions. Sunar and Birge (2019) show that an un-

dersupply penalty rate can result in commitment inflation by renewable generators. Babich et al.

(2020) address how subsidy designs (feed-in-tariff versus tax-rebate) impacts solar panel invest-

ment. Agrawal and Yücel (2021) provide managerial insights and policy implications for non-

ownership business models for solar energy.

Because our research is concerned with optimizing the transmission capacity investment and

impacts for renewable energy thereof, we also contribute to the literature about transmission ex-

pansion planning. For general topics in transmission expansion planning, we refer the interested

readers to a comprehensive review by Hemmati et al. (2013). Only a few research studies deal with

the problems related to expanding transmission infrastructure for renewable energy delivery. Den-

holm and Sioshansi (2009) establish that energy storage systems reduce transmission costs when

they are closely located to wind farms. Qi et al. (2015) determine the optimal level of transmis-

sion capacities with energy storage systems and show that the marginal values of storage capacity

decrease faster than that of transmission capacity. In contrast to these papers, we first solve for

the investment in generation capacity from a renewable power producer, and then determine the

optimal level of transmission capacity investment by the transmission company. By separating

the problem of investing in transmission grids from the renewable energy investment problem, we

address the impact of transmission capacity on renewable energy investment and its strategic im-

plications for the stakeholders in renewable energy and transmission grid infrastructures. Also,

different from most previous transmission planning models that minimize the cost of operation

and investment, our model provides insights for a new business model for transmission grids by

accounting for the revenue generated from electricity transmission grid usage.

3.3 Model Formulation

We consider a setting with two geographically separate regions, a sparsely-populated rural

Region 1 and a densely-populated urban Region 2. Each region has its own intrinsic (and uncertain)

demand for renewable energy. Region 1 is abundant in renewable energy resources such as solar
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or wind, while sources of renewable energy in Region 2 are either not existent or not possible to

develop due to zoning and other restrictions.

We formulate a continuous-time, infinite-horizon model with two decision makers: a transmis-

sion infrastructure company and a renewable power generation company. Transmission companies

are generally state-regulated transmission system operators, while renewable power generation

companies are typically private, profit-maximizing business entities.

Prior to the start of the time horizon, we assume there are no power transmission lines between

Region 1 and Region 2, and no installed renewable power generation in Region 1. At the beginning

of the time horizon, the transmission infrastructure company moves first, and decides on the level

of transmission (grid) capacity to be installed between Regions 1 and 2. This transmission capac-

ity represents the maximum power (in MW) that can be transmitted over that line at any time t.

Knowing the level of transmission grid capacity T to be installed, the renewable power generation

company moves next and chooses how much renewable power generation capacity G to develop in

Region 2. This generation capacity represents the maximum power (in MW) that can be generated

by installed renewable energy sources at any time t. Thus, T andG represent the decision variables

in our model.

As linear costs for renewable energy-related investments are standard in the literature (Hu et al.

2015, Aflaki and Netessine 2017, Kök et al. 2018), we assume that the cost to the transmission

company to install transmission capacity T is kTT , where kT is referred to as the marginal cost of

transmission capacity. Similarly, the cost to the power generation company to develop renewable

generation capacity G is kGG, where kG is the marginal cost of renewable generation capacity.

3.3.1 Generation Company’s Profit Maximization Problem

Following the investments in transmission and renewable power generation capacity at the be-

ginning of the time horizon, the energy company uses its renewable generation capacity to produce

electricity, and generate revenues by selling that electricity both locally to Region 1 and, over the

installed transmission line, to Region 2. We assume that the generation company has a locked-

in feed-in tariff or a long-term price contract for any renewable electricity it generated over the
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time horizon. As described in Alizamir et al. (2016), feed-in-tariffs represent commonly used in-

struments that attract investments in renewable energy by offering long-term guaranteed purchase

agreements to producers of renewable energy to sell their electricity into the grid. Thus, for every

unit of electricity (expressed in MWh) sold to either Region 1 or Region 2 at any point during the

time horizon, the renewable energy company receives p dollars in revenue. Since renewable en-

ergy is effectively costless to generate, the variable cost of electricity generation for the generation

company is assumed to be zero. Finally, for every unit of energy sold to Region 2 over the installed

transmission line, the transmission company imposes a charge s (in $/MWh) on the generation

company.

Let random variables X1 and X2 denote demand for electricity at any time t in Regions 1 and

2, respectively. We assume that X1 and X2 have continuous probability densities and use x1 and

x2 to denote particular realizations of X1 and X2. As demand is never unbounded in practice, X1

and X2 are assumed to have finite support; thus, X1 ∼ (0, b1) and X2 ∼ (0, b2) for some b1 and b2.

LetRG be the revenue rate for the generation company at any time t. Then, for any given level

of transmission capacity T and generation capacity G, and the realizations x1 and x2 at time t, that

revenue rate at time t is given by

RG(G, T, x1, x2) = p min[x1, G] + (p− s) min
[
(G− x1)+, x2, T

]
, (3.1)

where we use the standard notation x+ = max(x, 0). The first term represents the generation

company revenue from selling electricity locally to Region 1, while the second term denotes the

revenue from its selling any leftover energy over the installed transmission line to Region 2. Due to

the transmission fee s, the unit electricity revenue from satisfying the local demand in Region 1 is

higher than from selling electricity exported to Region 2. Therefore, the generation company first

seeks to sell as much electricity as possible to Region 1 before sending any excess of its generated

power over the transmission line to Region 2. Further, the volume of electricity sold to Region

2 is constrained by the installed transmission capacity between the two regions, by the demand

in Region 2, and by the amount of power (G − x1)+ left over after satisfying the (instantaneous)

demand x1 in Region 1.
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Let ΠG(G, T ) represent the generation company’s total expected discounted profit over the

time horizon, as a function of generation capacity G and transmission capacity T . Let λ denote the

continuous-time discount rate. We then obtain that:

ΠG(G, T ) =

∫ ∞
0

e−λt EX1,X2

[
RG(G, T, x1, x2)

]
dt− kGG, (3.2)

where the expectation operator EX1,X2 indicates that the expectation is taken over X1 and X2.

Because the transmission company decides on the capacity of its transmission investment be-

fore the generation company decides on the capacity of its renewable generation investment, the

problem for the generation company is to choose, for any given transmission capacity T , its best

response function G(T ) that maximizes ΠG(G, T ). Thus,

G(T ) := arg max
G≥0

ΠG(G, T ). (3.3)

We refer to this optimization problem as the generation capacity selection problem. Let ΠG(T ),

referred to as the generation company’s best expected profit, be its expected profit under its best

response function G(T ). Thus,

ΠG(T ) := ΠG

(
G(T ), T

)
. (3.4)

3.3.2 Transmission Company’s Value Maximization Problem

As a state-regulated system operator, the transmission company seeks to maximize the overall

value of its investment in transmission line of capacity T between Region 1 and Region 2. This

value consists of both pecuniary and non-pecuniary benefits. The former represents the expected

discounted value of the revenue stream from transmission fees paid by the generation company for

any electricity sold to Region 2 over the time horizon, net of the investment cost. The correspond-

ing revenue rate to the transmission company, for any given T and G, can therefore be expressed

as:

s min
[
(G− x1)+, x2, T

]
,

at any time t. The non-pecuniary benefits to the transmission company derive from providing con-

sumers with renewable energy, which is deemed to be of societal benefit. Following the approach
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of Babich et al. (2020) in capturing societal benefit to government organizations from renewable

energy generation, we assign benefit v to each unit of renewable energy delivered via the installed

transmission line and used to satisfy the demand of electricity consumers in Region 2. Thus, the

total benefit rate to the transmission company at any time during the time horizon, as a function of

T , and given the generation company’s best response G(T ), can therefore be expressed as:

BT (T, x1, x2) = (s+ v) min
[
(G(T )− x1)+, x2, T

]
. (3.5)

The resulting value function for the transmission company is obtained as:

VT (T ) =

∫ ∞
0

e−λt EX1,X2

[
VT
(
T, x1, x2

)]
dt− kTT. (3.6)

The transmission company’s objective is to maximize its value function VT by choosing the

optimal transmission capacity T to install. Let T ∗ denote that optimal transmission capacity.

Thus,

T ∗ := arg max
T≥0

VT (T ), (3.7)

which we refer to as the transmission capacity problem. We also define the following:

V∗T := VT (T ∗) referred to as the transmission company’s optimal value; (3.8)

G∗ := G(T ∗) referred to as the optimal generation capacity; (3.9)

Π∗G := ΠG(T ∗) referred to as the generation company’s optimal profit. (3.10)

Thus, T ∗ and G∗ represent the values of optimal controls for the problem, while V∗T and Π∗G refer

to the values of the objective functions under those optimal controls for the two entities involved

in the power transmission and generation investment problem considered in this chapter.

3.4 Optimality Results

3.4.1 Bounds and Structural Properties

We begin our analysis of the transmission capacity and generation capacity problems formu-

lated in the previous section by providing some bounds on optimal decisions and structural results

for those problems. For that purpose, we first introduce some conditions on model parameters.
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Because those condition hold in effectively all practical settings relevant to our model, they are

non-restrictive.

The revenue from one unit of capacity owned by the generation company and used to produce

electricity for sale to Region 2 continuously throughout the time horizon is
∫∞

0
e−λt(p−s)dt =

(p−s)
λ

. Because this equation represents the maximum revenue that can be received when a unit

of capacity in Region 1 is used to satisfy demand in Region 2, then if (p−s)
λ
≥ kG, the power

generation company would never invest in any renewable energy capacity intended for sale to

Region 2. Because our focus is on those settings in which the development of renewable energy

sources in Region 1 is intended to (profitably) serve the demand in Region 2, we make the following

assumption.

Assumption 4. kG <
p− s
λ

.

Similarly, if one unit of transmission capacity is used continuously during the time horizon to

export energy from Region 1 to Region 2, the net present value of the benefits received by the

transmission company is
∫∞

0
e−λt(s+v)dt = (s+v)

λ
. Consequently, if this maximum discounted

benefit received by the transmission company from investing in that one unit of transmission ca-

pacity were smaller than the cost of installing that unit, the company would not find it worthwhile

to install any transmission grid capacity between Region 1 and Region 2. To avoid such settings

that are not relevant to our analysis, we assume the following restriction on model parameters.

Assumption 5. kT <
s+ v

λ
.

The following lemmas establish upper bounds on optimal decisions for the problem. They

derive from the finite support of X1 and X2. All proofs are deferred to the Appendix.

Lemma 1. G(T ) ≤ b1 + T.

Consequently, for any given installed transmission capacity T , the generation company will

never find it optimal to develop renewable energy capacity in excess of the sum of the maximum

demand in its local market in Region 1 and transmission capacity T into Region 2, regardless of
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the feed-in-tariff rate p. This is due to the fact that any electricity generation in excess of b1 + T

has no place to go, and can therefore produce no revenue for the power generation company.

Lemma 2. T ∗ ≤ min[G∗, b2].

Hence, it is never optimal for the transmission company to install any transmission capacity in

excess of either the power generation capacity developed in Region 1 or the maximum demand in

Region 2. The bounds on optimal decisions described in Lemmas 1 and 2 facilitate also the deriva-

tion of our subsequent results regarding optimal values of transmission and generation capacities.

One of the challenges inherent in coordinating supporting investments in transmission and gen-

eration capacities concerns the issue of their complementarity. In particular, if the two investments

are substitutes, joint investment can be expected to reduce profits for both companies, while if

the two investments are complements, joint investment would enhance the profitability of each.

The economists’ view on this issue is that transmission and generation are both complements and

substitutes (see, for example, Joskow (2002)). This is because they act as complements when

transmission investment is needed to enable export sales from a generation investment, and as sub-

stitutes when transmission capacity starts to substitute for generation capacity at a demand location

since it enables purchases of imported electricity. The following theorem resolves this dilemma,

in the context of our model of independent investments in renewable power generation at a remote

location of low demand and transmission capacity from that location to a (distant) location of high

demand.

Proposition 9. For any G and T such that T ≤ min[G, b2], G and T are complements with regard

to both ΠG and VT .

Thus, in the domain of decision variables in which, by Lemma 2, optimal decisions are located,

transmission capacity and generation capacity act as complements for both entities in the invest-

ment game considered in this chapter. This result holds for any (continuous) probability densities

of X1 and X2, as well as any level of electricity and transmission pricing. This finding that trans-

mission capacity and generation capacity are complementary in the domain of interest motivates
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the need to better coordinate the two investments, as each one enhances the profitability of the

other.

3.4.2 Characterization of Optimal Generation Capacity

To facilitate our analysis going forward, we assume that Xi for i ∈ {1, 2} is uniformly dis-

tributed on the interval Ii = [0, bi] at any time t. Also, in most practical settings relevant to our

model, the demand in remote regions with renewable energy sources is usually at least an order

of magnitude smaller than the demand of the closest urban center, whose demand those sources

are intended to serve. Thus, to reflect that practical reality that the demand in remote, sparsely-

populated Region 1 is significantly smaller than in urban, densely populated Region 2, we assume

that b2 ≥ nb1 for some integer n>1. Our first step in characterizing optimal transmission and gen-

eration capacities for the problem considered in this chapter involves the derivation of an explicit

expression for the generation company’s profit function ΠG.

Theorem 7. The generation company’s best expected profit ΠG(T ) is given as follows:

(a) If G ∈
[
T, b1

)
, then

ΠG(G, T )=
p

λb1

[
G2

2
+G(b1−G)

]
+
p−s
λb1b2

[
(b2−T )(G−T )T+

b2T
2

2
+

(G−T )T 2

2
− T 3

6

]
−kGG.

(3.11)

(b) If G ∈
[
max(T, b1), b1 + T

]
, then

ΠG(G, T )=
pb1

2λ
− p− s

6λb1b2

[
b3

1+3b2
1(b2−G)+3b1G(G−2b2)+(3b2−G−2T )(G−T )2

]
−kGG. (3.12)

(c) For any G ∈
[
max(T, b1), b1 + T

]
, ∂

2 ΠG(G,T )
∂G2 < 0.

Theorem 7 provides explicit expressions for the generation company’s profit function ΠG(G, T )

whenG ∈
[
T, b1

]
orG ∈

[
max(T, b1), b1 +T

]
. This characterization will suffice for our purposes

because, by Lemmas 1 and 2, optimal transmission capacity T ∗ and optimal generation capacity

G∗ are never found in the regions where G < T or G > b1 + T .

Next, we define k0 as the threshold cost of generation investment as:
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k0 :=

(
1− b1

2b2

)
p− s
λ

, (3.13)

and the threshold transmission capacity T0 as:

T0 := b2 −

√
b2

(
b2 −

2b1kGλ

p− s

)
. (3.14)

Since b2 ≥ 2b1 and kG <
p− s
λ

by Assumption 4, threshold transmission capacity T0 is well-

defined. Having introduced those definitions, we are now in a position to characterize the genera-

tion company’s best response function G(T ).

Theorem 8. Define functions Gα,Gβ : [0, b2]→ R+ as

Gα(T ) := b1

(
1− kGλ

p

)
+

(p− s)(2b2 − T )T

2pb2

;

Gβ(T ) := b1 + b2 −

√
(b2 − T )2 +

2b1b2kGλ

p− s
.

Then, the generation company’s best response function G(T ) is given as follows:

(a) If kG ≤ k0 and T ≤ T0, or if kG > k0, then G(T ) = Gα(T );

(b) If kG ≤ k0 and T > T0, then G(T ) = Gβ(T ).

Thus, Theorem 8 obtains two distinct expressions for the generation company’s best response

function based on the size of the marginal cost of generation capacity kG and the level of trans-

mission capacity T . The first expression, G(T ) = Gα(T ) applies either when the marginal cost

of power generation investment is high (i.e., kG ≥ k0), or when that marginal cost and transmis-

sion capacity T are both low (i.e., kG < k0 and T < T0). The second expression applies when

that marginal cost of investment is low and the transmission capacity is high (i.e., kG < k0 and

T ≥ T0).

The following proposition now provides the explicit expression of total expected discounted

profit for GenCo following the installment of the optimal generation capacity.

Proposition 10. Define functions Πα,Πβ : [0, b2]→ R+ as:
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Πα(T ) =

12b1b2(p− kGλ)
[
b1b2(p− kGλ)+(p− s)(2b2 − T )T

]
−(p− s)T 2

[
12b2

2s+4b2(p− 3s)T−3(p− s)T 2
]

24b1b2
2λp

;

(3.15)

Πβ(T ) =
1

6b1b2λ

{
3b2

1b2(p− 2kGλ) + 2(p− s)(b2 − T )2

(√
2b1b2kGλ

p− s
+ (b2 − T )2 − (b2 − T )

)

−b1

[
3(p− s)T 2 + 6b2

2kGλ− b2

(
4kGλ

√
2b1b2kGλ

p− s
+ (b2 − T )2 + 6(p− s)T

)]}
.

(3.16)

The generation company’s best expected profit ΠG(T ), for any T ∈ [0, b2] is given as follows:

(a) If kG ≤ k0 and T ≤ T0, or kG > k0, then ΠG(T ) = Πα(T );

(b) If kG ≤ k0 and T > T0, then ΠG(T ) = Πβ(T ).

We now proceed with the corresponding sensitivity analysis. Our objective is to shed light on some

key features of renewable generation capacity investments under a transmission grid and provide

insights into the behavior of the generation company in response to varying external parameters.

In what follows, all regularity properties, such as monotonicity, are stated in their ‘strict’ sense.

Proposition 11. For any T ∈ [0, b2], the generation’s company best expected profit ΠG(T ) is: (a)

increasing in T ; and (b) is increasing in p, and decreasing in kG and s.

Part (a) of Proposition 11 shows that the profit for generation company (GenCo) is increasing

in the transmission capacity. Consider GenCo who installed a best response of generation capacity

below the maximum demand of the load center 1. Because GenCo sells electricity first to the load

center 1, at any time, the excess electricity can be sold to the load center 2 via the transmission

grid. With more transmission capacity, GenCo can sell more electricity to the load center 2. For

GenCo, whose installed capacity exceeds the maximum demand of the load center 1, because his

generation always exceeds the demand of the load center 1, at any time, the revenue increases in
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the transmission capacity.

To provide intuition for the results of part (b), consider GenCo, for whom each unit of capacity

C∗(T ) is used to satisfy the demand of the load center 1 and possibly, to generate electricity

transmitted for sale to the load center 2. If a unit of GenCo’s generation capacity is used to satisfy

the load center 1 demand, then that unit of capacity is generating him a discounted revenue of p
λ

; if

his unit capacity is used to satisfy the load center 2 demand, then the unit of capacity is generating

him a discounted revenue of p−s
λ

after accounting for the unit transmission cost s. Hence, the

marginal value of each unit of generation capacity is increasing in p, so that GenCo’s optimal profit

function Π∗G is increasing in p. Similarly, as kG or s increases, the profit for GenCo is reduced.

3.4.3 Characterization of Optimal Transmission Capacity

Having elaborated the optimal generation capacity selection, we now address the explicit ex-

pression of the total expected discounted profit for transmission company (TransCo).

Proposition 12. Let

Vα,T (T ) := −kTT +
(s+ v)T

12b1b2
2λp
×
[
6b1b2(p− kGλ)(2b2 − T )−T

[
4b2(2p− 3s)T − 6b2

2(p−2s)−3(p− s)T 2
]]
.

(3.17)

Vβ,T (T ) := −kTT +
s+ v

6b1b2λ(p− s)
×[

2

√
2b1b2kGλ

p− s
+ (b2 − T )2

[
(p− s)(b2 − T )2−b1b2kGλ

]
−(p− s)

[
2b3

2 − 6b2
2T + (3b1 − 2T )T 2−6b2T (b1 − T )

]]
.

(3.18)

The profit function for TransCo is given as follows:

(a) If i) kG ≥k or ii) kG <k and T < T0(b1, b2), then VT (T ) = Vα,T ;

(b) If kG <k and T ≥ T0(b1, b2), then VT (T ) = Vβ,T .

Proposition 12 provides two distinct explicit expressions for ΠT (T ) based on the results of

Theorem 8. The first expression derives from the high marginal cost of an energy generation

investment (i.e., kG ≥k) or low marginal investment cost and low transmission capacity (i.e., kG <
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k, T < T0(b1, b2)). The second expression draws on the parameter region of the low marginal cost

of the energy generation investment and high transmission capacity (kG <k and T ≥ T0(b1, b2)).

Moving forward, we assume that kT < (p−kGλ)(s+v)
pλ

. The following theorem characterizes the

optimal transmission capacity selection based on Proposition 12.

Theorem 9. If b1
b2
< 2p−3s

3p−3s
then,

(a) Vα,T (T ) is either unimodal (with a unique maximizer) or strictly increasing in T ;

(b) Vβ,T is either unimodal (with a unique maximizer) or strictly increasing or strictly decreas-

ing in T .

Further, if b1
b2
< 3

2
−
√

1
4

+ 2pkTλ
(p−s)(s+v)

then there exists a unique optimal transmission capacity,

and it is the maximizer of Vβ,T (T ). Also,

(c) for kG <k, Vα,T is strictly increasing in T ;

(d) Vβ,T is either unimodal (with a unique maximizer) or strictly increasing in T .

Note by Proposition 12, one cannot derive a closed-form solution of (3.17) and (3.18) for

the optimal level of investment in transmission capacity T ∗. However, we can use (3.17) and

(3.18) to characterize the optimal transmission capacity. Theorem 9 shows that there exists a

unique transmission capacity that maximizes the total value for TransCo. If b1
b2
< 2p−3s

3p−3s
, then T ∗

is the unique maximizer of Vα,T (T ) or Vβ,T (T ). In addition, if b1
b2
< 3

2
−
√

1
4

+ 2pkTλ
(p−s)(s+v)

, then

T ∗ = arg maxT≥0 Vβ,T (T ). This result lays foundations on understanding a wide range of policies

for transmission grid expansion planning in practice. It turns out that one key factor driving the

optimality of transmission capacity installed is the relative size of renewable electricity demands

at both ends of transmission lines. In general, if there is a potential of huge renewable electricity

demands to be captured, TransCo would be better off providing sufficient transmission capacities

for GenCo to capture that demand.
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3.5 Synergistic Effect of Transmission Grid for Renewable Energy Investment

3.5.1 Pareto Improving Contract Design

Having established that transmission and generation act as complements with regard to the

value functions for both TransCo (i.e., transmission company) and GenCo (i.e., generation com-

pany), the question that naturally arises concern if GenCo can coordinate with TransCo to mutually

increase both companies’ value functions. In other words, is there a Pareto-improving contract de-

sign for GenCo and TransCo?

In this section, we address when the coordination between GenCo and TransCo can mutu-

ally increase both companies’ value functions, and structural properties of the contract. Suppose

GenCo shares the cost of transmission line investment. Let r ∈ [0, 1] be the fraction of the total

transmission investment cost GenCo pays under the contract. Thus, GenCo’s cost for transmission

line investment is rkTT . The Transmission line installment cost for TransCo is then (1 − r)kTT .

The expected discounted profit for GenCo is now given as:

ΠG(r,G, T ) =

∫ ∞
0

e−λt EX1,X2 [RG(G, x1, x2, T )]dt− kGG− rkTT. (3.19)

Let G̃(r, T ) and Π̃G(r, T ) be the best response for GenCo, and GenCo’s discounted profit under

the cost sharing, respectively. By (3.19), G̃(r, T ) = G(T ) and Π̃G(r, T ) = ΠG(T ) − rkTT .

Going forward, we will explicitly include r as a variable for the function ṼT . The total expected

discounted profit for TransCo under the cost sharing contract now becomes:

ṼT (r, T ) =

∫ ∞
0

e−λt EX1,X2 [BT
(
G(r, T ), T

)
]dt− (1− r)kTT, (3.20)

Let T̂ be the optimal transmission capacity for TransCO under the cost sharing contract. Then,

T̂ (r) = arg max
T≥0

ṼT (r, T ). (3.21)

Finally, let Ĝ be the optimal generation capacity for GenCo, and Π̂G(T ) represent GenCo’s total

expected discounted profit under the optimal generation capacity.
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Ĝ(r) =G
(
T̂ (r)

)
. (3.22)

and,

Π̂G(r) :=ΠG

(
T̂ (r)

)
− rkT T̂ (r). (3.23)

We assume throughout this section that T̂ (0) < f3(b1, b2). We first provide the structural

analysis based on the above cost sharing contract. The following proposition establishes how the

cost sharing contract impacts the optimal transmission capacity.

Proposition 13. For any r > 0, (a)
∂T̂ (r)

∂r
> 0; (b)

∂ṼT
(
r, T̂ (r)

)
∂r

> 0.

Proposition 13 shows that tcost sharing between GenCo and TransCo increases the optimal

investment level for the transmission capacity. It is also established that TransCo would be always

better off with the cost sharing contract. These results show that the cost sharing, through GenCo

partially paying for the cost of the transmission grid installment, strictly increases the profit for

TransCo and TransCo’s optimal investment level of the transmission grid capacity. We make use

of this structural result to provide necessary and sufficient conditions under which the cost sharing

contract improves the expected profit for GenCo in the following Theorem.

Theorem 10. Let

g1(r) :=
∂ΠG(T )

∂T

∣∣∣∣
T̂ (r)

; (3.24)

g2(r) := − ∂2ṼT (T )

∂T 2

∣∣∣∣∣
T̂ (r)

. (3.25)

If k2
T <

g1(0)g2(0)

T̂ (0)
2 , then there exists r̂ > 0 such that both GenCo and TransCO are better off.

Theorem 10 shows that under a sufficiently small cost-sharing factor r, the contract mutually

increases the total profit (or value) generated by TransCo and GenCo. One direct implication of

Theorem 10 for transmission grid investment is the existence of a Pareto-improving cost sharing
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contract that will simultaneously increase the total value of TransCo and the total profit for GenCo.

Considering the majority of renewable energy development has been impeded by the lack of trans-

mission grid capacity, the potential Pareto-improving contract implies that transmission grid plan-

ners should start exploring their options to initiate discussions with independent renewable energy

power producers from an early stage of transmission grid planning.

3.5.2 Sensitivity Analysis

We now analyze the sensitivity of the optimal level of investment for the transmission capacity

and the generation capacity to some key model parameters.

Proposition 14. (a) T̂ is increasing in p, decreasing in kT and kG; (b) Ĉ is decreasing in kT .

By Proposition 14, increasing electricity price p raises the optimal level of transmission capac-

ity investment. Under a higher electricity price, GenCo would invest in higher generation capacity,

ceteris parabus, resulting in a higher marginal revenue for each unit of transmission capacity in-

stalled. When p is fixed, the marginal benefit of investment in transmission capacity decreases

in the marginal costs of investment kG, and kT . Part (b) shows that the optimal generation ca-

pacity decreases in the marginal cost of investment in transmission capacity, following from the

complementary nature of transmission and generation in our problem.

Next, we show how the optimal level of capacity investment is determined vis-à-vis a given

transmission fee s and the social benefit v. In the following results, we include s as a variable for

the optimal level of transmission capacity investment T̂ (s).

Theorem 11. Define

v∗ :=
b1b2(p− kGλ) + pT̂ (0)

(
b2 − T̂ (0)

)(
2b2 − T̂ (0)

)
T̂ (0)

.

For all v ≥ v∗, T̂ (s) is decreasing in s. For all v < v∗, there exists s∗ ∈ (0, p) such that T̂ (s)

is increasing in s if s ≤ s∗ and decreasing in s if s > s∗.

It turns out there are two different scenarios to determine the optimal level of investment in
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transmission lines. If the social benefit of renewable energy transmission (v) is low, the optimal

transmission capacity investment decreases monotonically in the transmission fee. If there exists

sufficient social benefit in developing renewable energy, then there exists a unique transmission fee

(s∗) that will result in the highest level of investment in transmission lines.

Going forward, we define:

W(s) := VT (s, T̂ (s)). (3.26)

Hence, the TransCo’s optimal total value is a function that explicitly includes the transmission

fee s as a variable. The following theorem addresses the structural properties of TransCo’s total

value as a function of a given transmission fee. Similar to the findings in Theorem 11, we find

a “threshold-type” resolution that characterizes the impact of the transmission fee on the optimal

total value.

Theorem 12. Let

v :=
6b1b2(p− kGλ)

(
2b2 − T̂ (0)

)
+ pT̂ (0)

(
6b2

2 − 8b2T̂ (0) + 3T̂ (0)2
)

3T̂ (0)
(
2b2 − T̂ (0)

)2 .

For all v ≥ v,W(s) is decreasing in s. For all v < v,W(s) is unimodal in s.

Theorem 12 shows the complexity of the optimal pricing policy for transmission with consider-

ation of the social benefit accrued from renewable energy development. By Theorem 12, TransCo’s

total value decreases in the transmission fee under a high social benefit. While it is a high social

benefit of renewable energy that drives the minimum transmission fee, if the perceived social value

of renewable energy is low, then there exists a unique transmission fee that maximizes the total

value for TransCo. Given that the marginal value of a transmission fee is not self-evident for most

transmission companies in practice, this result lays foundations to understand why there exist dif-

ferent types of transmission pricing in practice. While current open access to transmission systems

requires transmission pricing based on many dimensions, our result suggests that the social benefit

generated from renewable energy development should be accounted for with a higher priority in
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transmission pricing.

Theorem 12 also shows that pricing transmission in practice depends upon the potential benefits

from renewable electricity development. For instance, based on Theorem 12, if the perceived value

of renewable electricity production is high, then the minimum transmission fee leads not only to

the maximum value generated for TransCo, but also the highest level of investment in transmission

capacity that extends the remote renewable energy producers’ access to transmission systems.

3.5.3 Optimal Generation Capacity and Transmission Capacity Quantified

We now make use of our results to quantify equilibrium outcomes. We use the maximum

demand for electricity b1 = 20MW for Region 1, and b2 = 200MW for Region 2. The social

benefit from the unit generation of renewable electricity is $ 30/MWh. Annual discount rate is

10%. Values shown in Table 3.1 represent the optimal level of generation capacity investment

for GenCo, evaluated across a range of feed-in-tariff rates (from 100 $/MWh to 600 $/MWh, in

increments of 100 $/MWh) and marginal costs of investment in renewable generation capacity

(from 500,000 $/MWh to 1,200,000 $/MWh, in increments of 100,000 $/MWh).

Marg. Gen. Cost Feed-in-tariff rate p (in$/MWh)
kG (in $/MW) 100 200 300 400 500 600

500,000 136.33 146.21 153.53 159.43 164.33 168.47
600,000 135.68 145.86 153.28 159.22 164.15 168.31
700,000 135.02 145.51 153.02 159.01 163.97 168.15
800,000 134.36 145.15 152.77 158.81 163.79 167.99
900,000 133.69 144.80 152.51 158.6 163.61 167.83

1,000,000 133.02 144.44 152.25 158.39 163.43 167.67
1,100,000 132.34 144.08 151.99 158.18 163.25 167.51
1,200,000 131.66 143.71 151.73 157.96 163.06 167.34

Table 3.1: Optimal Generation Capacity Quantified (in MW)

Table 3.1 shows that the optimal generation capacity level is increasing in the feed-in-tariff rate p

and decreasing in the marginal cost of investment in renewable generation capacity kG. The values
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(i.e., level of optimal generation capacity) in this table well exceed the average electricity demand

from both regions, even at the very low feed-in-tariff rate or the very high end of the marginal cost

of investment in generation capacity.

The values in Table 3.2 represent the level of optimal transmission capacity. It is shown that

the optimal transmission capacity level is increasing in the feed-in-tariff rate p and decreasing in

the marginal cost of investment in renewable generation capacity kG. Similar to what we observe

from optimal generation capacity, values in this table shows that optimal transmission capacity

well exceeds the average electricity demand from both regions.

Marg. Gen. Cost Feed-in-tariff rate p (in$/MWh)
kG (in $/MW) 100 200 300 400 500 600

500,000 119.22 127.84 134.73 140.42 145.19 149.25
600,000 119.13 127.81 134.72 140.41 145.18 149.24
700,000 119.04 127.78 134.7 140.39 145.17 149.24
800,000 118.93 127.74 134.68 140.38 145.16 149.23
900,000 118.81 127.7 134.66 140.36 145.15 149.22

1,000,000 118.67 127.65 134.63 140.35 145.13 149.21
1,100,000 118.53 127.61 134.6 140.33 145.12 149.2
1,200,000 118.38 127.55 134.57 140.31 145.11 149.18

Table 3.2: Optimal Transmission Capacity Quantified (in MW)

To summarize, our derivation of explicit expressions of the total profit (or value) function for

TransCo and GenCo allows us to conduct sensitivity analysis on equilibrium outcomes, and to

evaluate behaviors of both companies. It is also shown that new transmission lines can generate a

significant increase in investment for renewable energy development by providing access to a large

demand for renewable electricity in remote, urban centers.

3.6 Discussion

Limited transmission lines hinder the potential development of large shares of renewable en-

ergy and impede the transition from fossil fuel dependency to renewable energy supply. To capture
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the potential of abundant renewable energy sources and avoid the economic and social conse-

quences of fossil fuel consumption, we study a continuous-time, infinite-horizon non-cooperative

game between a transmission grid developer (TransCo) and a renewable electricity generation com-

pany (GenCo). Based on practical settings grounded in renewable energy development practice,

we consider a long-distance transmission line that connects a remote, renewable energy-rich, rural

region to an urban, high-population center.

In this chapter, we analyzed a two-stage game of capacity investment between TransCo and

GenCo and characterized the resulting equilibrium outcomes, including the capacity of installed

renewable generation, and the capacity of the transmission line. GenCo’s optimal profit was shown

to be increasing in the installed transmission capacity, and the feed-in-tariff rate, while decreas-

ing in the marginal cost of generation capacity investment and the transmission fee. We derived

GenCo’s optimal investment in generation capacity based on the installed transmission capacity

and other key parameters of the model: feed-in tariff, transmission fee, and the marginal cost of

generation capacity investment. Although the resulting problem for TransCo’s capacity investment

was found to have no exact solution, we proved the total value function for TransCo is unimodal

in the installed transmission capacity. It is also shown that there exists a unique solution for the

transmission capacity investment that maximizes the total value for TransCo.

With regard to the future development and investment in transmission lines and renewable

energy, one of the industry challenges inherent in coordinating investments in transmission and

generation capacities concerns the issue of their complementarity. We found that investment in

transmission capacity and generation capacity act as complements for both TransCo and GenCo

in the investment game, for any probability densities of regional demand, as well as any level of

electricity and transmission fee. As these two investments are complements, joint investments can

enhance the profitability of both companies. To capture the potential benefits of coordination, we

consider a simple cost-sharing contract, where GenCo pays a fraction of the total cost of trans-

mission line investments. We proved the existence of a Pareto-improving contract that mutually

increased the profitability of TransCo and GenCo. To the best of our knowledge, this is the first
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time that the results about synergistic effects of transmission capacity and generation capacity have

been established in the literature, despite the acknowledged importance of transmission capacity

for the future of renewable energy development and global climate goals. From the perspectives

of renewable energy developers and transmission grid operators, the analyses in this chapter pro-

vide support to a joint effort by TransCo and GenCo on transmission grid investments to achieve

mutually increased benefits for both entities.

We conclude this chapter by discussing potential avenues for future research. One can extend

the research in this chapter by including some other technologies that support the integration of

growing renewable generation capacity in lieu of costly investment in transmission grids. Energy

storage, for instance, can be used as a major buffer to reduce transmission congestion by storing

over-generated energy for later use in times of supply shortage and decreasing the variability of

energy generation. The value of energy storage systems for transmission networks has been exten-

sively reported in Electric Advisory Committee (EAC) reports. Although not competing directly

with long-distance transmission grids as considered in this chapter, it will be of interest how an in-

terconnected residential-scale distributed generation system impacts the profitability of renewable

energy producers and transmission grid developers. For instance, the deployment of a microgrid

system, an interconnected distributed generation system that can generate and distribute energy

off the main utility’s grid, would reduce transmission capacity requirements because some energy

can be consumed at the site of generation without any transmission. Although these two tech-

nologies are by no means substitutes for long-distance transmission lines, extending the analysis

in this chapter can be worth investigating and will enrich our understanding of the transmission

grid investment for renewable energy development. Another potential avenue of research lies in

transmission network expansion. It would be of interest how the economic and social values of

transmission lines change as more nodes are connected to the network. The optimal design and

pricing in a transmission network that maximizes the profitability of the transmission company

and minimizes the transmission congestion are of significant importance for the future of renew-

able energy development as well as for the reaching global climate goals.
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4. HYBRID CROSS-DOCKING OPERATIONS IN AN ENERGY SUPPLY CHAIN

4.1 Introduction

Cross-docking is an industry practice that utilizes a facility (also referred to as “the cross-

dock”) to receive products from suppliers and sort those products into respective groupings corre-

sponding to the downstream supply chain members’ requirements (Vogt 2004). With traditional

cross-docking, inbound product boxes and pallets from suppliers are sorted at the cross-dock for

immediate outbound shipment to plants (Gürbüz et al. 2007). As traditional cross-docking does

not allow for any holding of inventory at the cross-dock facility, this supply chain practice has been

most successfully used for high-volume, short leadtime products in steady demand contexts, such

as perishable consumer goods. Walmart, for instance, delivers 85% of its merchandise to its stores

using traditional cross-docking to reduce the time it takes to get that merchandise to store shelves

and minimize the resulting costs of inventory holding (Ruffa 2008).

By comparison, the supply chains for some industries in the energy sector are characterized by

long leadtimes from suppliers, and low-volume, slow-moving, non-perishable products. One such

industry is the oilfield service business that provides equipment and services needed to construct

and maintain oil wells. Because “oilfield services companies have established themselves as the

heavy lifters of the oil and gas industry” (Marcel et al. 2016), the global oilfield services market

size reached $267 billion in 2019 and is projected to exceed $346 billion by 2027 (Fortune Business

Insights 2020).

The particular features of the supply chain for oilfield service companies have given rise to a

novel supply chain practice referred to as hybrid cross-docking. In contrast to traditional cross-

docking, hybrid cross-docking allows for (a certain degree of) inventory holding at the cross-

dock in order to accommodate slow-moving products with long lead times and demand variability.

Accordingly, the hybrid cross-dock refers to a cross-dock facility with sufficient storage space to

allow incoming products to be held in inventory from one period to another. Products arriving at
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the hybrid cross-dock in each period are then blended with products held in inventory to complete

outbound shipments to oil-well plants. Hence, while traditional cross-docks with high-volume,

steady-demand products are focused on managing transportation costs only, managers of a hybrid

cross-dock are compelled to also take into account their inventory holding costs.

Our research into hybrid cross-docking supply chains emerged from a collaboration with a

major oilfield service company (OSC) that is a key provider of products and services required for

the drilling and maintenance of oil wells in the Middle East. OSC faces challenges in managing its

operations due to three key factors: (1) decentralized nature of its supply chain, in which different

business entities operate at different stages in the system; (2) high costs of transportation and

inventory management at the cross-dock facility, due to product variety and demand forecasts that

vary from one period to another; and (3) evolving supply chain structures, due to upstream and

downstream collaborations and outsourcing in the system.

In this chapter, we seek to address those challenges and take a step in the direction of providing

an understanding of how to better manage decentralized, hybrid cross-docking supply chains by

characterizing optimal shipping, collaboration, and outsourcing decisions. In spite of the growing

importance of hybrid cross-docking in the oilfield services industry and certain other industries

as well (Kulwiec 2004), little is presently known about how to manage inventory and make trans-

portation decisions in hybrid cross-docking supply chains, the type of collaborations their inventory

flexibility allows, and the cost savings potentially realized by those collaborations.

Consequently, our first objective in this chapter is to determine conditions under which it is

optimal for the cross-dock to hold inventory. Thus, we seek to establish when a hybrid cross-dock

results in lower total costs for an oilfield service company (OSC) relative to the traditional (i.e.,

pure) cross-dock. In that manner, we aim to provide a roadmap for those managers seeking to re-

alize cost savings from hybrid cross-docking facilities. Our second objective pertains to two types

of collaborations currently being evaluated in the industry partner’s supply chain. In particular,

through “upstream collaboration,” suppliers from geographically proximate regions group their

product deliveries into joint shipments to the cross-dock facility. By means of “downstream col-
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laboration” on the other hand, multiple oil well plants consolidate their individual shipments from

the cross-dock facility at an intermediate downstream warehouse. To assess benefits generated by

these collaborations, we provide structural results and quantify the resulting cost savings. While

joint transportation and inventory sharing has been studied in the freight transportation literature

(Cruijssen et al. 2007, Krajewska et al. 2008), we am not aware of any research on collaborations

in cross-docking supply chains.

The third objective is related to the fact that oil well plants, as customers of oilfield service

companies, have increasingly been turning to independent, third-party logistics providers in an

effort to outsource their transportation and inventory management and thus reduce their costs. Due

to the impact of such outsourcing on cross-docking operations and the structure of the resulting

cross-docking supply chain, it is of importance to our OSC industry partner (as well as to the

oil wells it serves) to understand conditions under which oil well managers find it optimal to

outsource their operations to an independent logistics provider. Although outsourcing of operations

by downstream supply chain members has been considered in the literature on joint transportation

and inventory replenishment (Cetinkaya and Lee 2000, Teo and Shu 2004, Song et al. 2008), the

conditions under which it is profitable for individual oil well owners to outsource their operations

have not been well understood, especially in the context of cross-docking operations. Thus, we

aim to provide an analysis of such conditions and derive relevant managerial insights.

To achieve our first two objectives, we formulate multi-period, mixed-integer programming

models to arrive at optimal shipping policies under different supply chain structures. We make use

of those results to obtain corresponding optimal costs and compare those across the supply chain

structures of interest. Consequently, our first contribution is to identify structural properties of op-

timal solutions for an individual supply chain member’s transportation and inventory management

problems. These structural results make it possible for us to determine conditions under which

a cross-dock facility should optimally operate as a hybrid cross-dock rather than as a traditional

one. Our second contribution is to quantify the value of collaborations in a cross-docking supply

chain. We find that upstream collaboration results in 4.9% to 16.4% in average cost savings for the
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cross-dock, while downstream collaboration results in 1.9% to 22.1% in average cost savings for

the oil well plants, depending on product weight and unit holding costs.

To assess the impact of outsourcing on cross-docking operations, we formulate and solve a

Stackelberg pricing game in which a third-party logistics company first sets an outsourcing price

(per unit weight of product) for its services. Subsequently, oil well plants decide whether or not to

outsource their operations to the logistics company. Based on the optimal response of each plant

to the outsourcing price set by a logistics provider, that provider determines its profit-maximizing

price for its outsourcing services. Accordingly, our third contribution is to identify the structure

of the optimal outsourcing decision for each plant as a function of the outsourcing price, and

establish the structure of the logistics provider’s optimal pricing policy under both deterministic

and stochastic demand forecasts.

The remainder of the chapter is organized as follows. Section 4.2 presents the literature review.

In Section 4.3, we formulate optimization problems in a cross-docking supply chain with and with-

out collaborations. Section 4.4 provides structural properties of solutions to those problems. Sec-

tion 4.5 quantifies the impact of collaboration on individual supply chain members. In Section 4.6,

we derive equilibrium outcomes for the outsourcing/pricing game played between plants and a

third-party logistics company, and quantify those outcomes under deterministic demand forecasts.

Section 4.7 generalizes those results to stochastic demand forecasts. In Section 4.8, we provide

concluding remarks.

4.2 Literature Review

Our research is related to three streams of research. The first of those pertains to the capacitated

lot-sizing problem. The literature in this stream generally assumes deterministic demand and deals

with either multiple products or multiple stages in the system. In the single-stage, multi-product,

capacitated lot-sizing literature,

Yano and Newman (2001) reduce a two-product lot-sizing problem to an equivalent single-

product problem with aggregated demands. Anily and Tzur (2005) prove that a multi-product

lot-sizing problem is polynomially solvable if transportation and inventory holding cost are con-
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stant. Federgruen et al. (2007) consider a capacitated multi-product lot-sizing problem and arrive

at asymptotically optimal solutions. In the single-product, multi-stage capacitated lot-sizing litera-

ture, Florian et al. (1980) prove that a lot-sizing problem in a serial system with stationary capacity

is NP-hard. Van Hoesel et al. (2005) show that the multi-stage lot-sizing problem is solvable in

polynomial time if transportation and inventory cost functions are linear. Zhang et al. (2012) pro-

pose a heuristic solution algorithm for a multi-stage, lot-sizing problem with intermediate demand.

Zhao and Zhang (2020) establish that capacitated multi-stage lot-sizing problems with intermedi-

ate demand are NP-hard. Research in this chapter builds on this research to provide analyses of

multi-product, multi-stage capacitated lot-sizing problems. In our model, the intermediate stage is

the cross-dock facility that faces demand from plants (i.e., oil wells). Besides being NP-hard (Zhao

and Zhang 2020), multi-product, multi-stage problems addressed in our chapter pose an additional

challenge in the form of “sorting” - a regrouping of incoming products at intermediate stages into

outgoing shipments. (Sorting is not present in either single-stage or single-product lot-sizing prob-

lems, as the need for sorting arises from having multiple products and at least one intermediate

stage where those products need to be regrouped).

Work
Number of
Products

Supply Chain
System

Operations at the
Distribution Center

Chen et al. (1994)

Single vehicle
(batch) with
time-varying

capacities

Single-product Inventory only

Anily and Tzur (2005) Multiple-products Single-Stage Inventory Mngmt.

Van Hoesel et al. (2005) Single-product Two Stages Inventory Mngmt. & Distr.

Federgruen et al. (2007) Multiple-products Single-Stage Inventory Mngmt.

Zhang et al. (2012) Single-product Multiple-Stages Inventory Mngmt. & Distr.

Zhao and Zhang (2020) Single-product Multiple-Stages Inventory Mngmt. & Distr.

Levi and Shi (2013) Uncapacitated single
vehicle single-product Inventory only

Our chapter Multiple-products Three Stages Inventory Mngmt. &
Sorting & Distr.

Table 4.1: Comparison of Capacitated Lot-Sizing Research
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The second related literature stream concerns joint replenishment and (capacitated) transporta-

tion problems. Of particular relevance to our work are the papers that deal with joint inventory and

transportation decisions under deterministic demands. Those papers generally consider single-

product, two-stage systems consisting of a warehouse and multiple plants. Federgruen and Zheng

(1992) propose a transportation and inventory holding policy that obtains a near-optimal system-

wide cost. Chen et al. (2001) establish that the joint replenishment problem in such a distribution

system is NP-hard. Gürbüz et al. (2007) analyze a hybrid policy for a joint inventory and trans-

portation problem in which the warehouse monitors the inventory position at plants and replen-

ishes their inventory based on an order-up-to inventory policy. Using linear programming relax-

ation, Levi et al. (2008) derive a near-optimal policy guaranteed to achieve cost within 80% of the

optimal. our work contributes to this literature by addressing joint inventory replenishment and

transportation problems in a multi-product, three-stage, hybrid-cross docking distribution system,

and under both decentralized and collaborative settings.

To the best of our knowledge, the only paper to address transportation decisions in a hybrid

cross-docking supply chain is Jones et al. (2017). They consider a centralized hybrid-cross docking

supply chain under full container loads and focus on complexity analysis and heuristic solution

algorithms. In contrast, to better reflect current practice in the oilfield services industry, we analyze

a decentralized, hybrid cross-docking supply chain with suppliers, cross-dock, and plants acting as

independent decision makers. We allow both partial and full container loads, so that each decision

maker has to decide not only on the number of containers (also, trucks) to use, but also how

much product to have in each container (also, truck). Further, our focus is on structural properties

of optimal transportation decisions and cost savings that arise from upstream and downstream

collaborations rather than on heuristic solutions. The scope of our study also includes outsourcing

decisions by downstream supply chain members and the resulting optimal pricing by a logistics

provider.

The third literature stream of relevance to our research is concerned with using pricing con-

tracts to reduce costs in a supply chain. Cachon (2003) provides a comprehensive review of this
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literature. A number of papers consider pricing contracts in single-period, stochastic demand,

newsvendor-type settings. Lariviere and Porteus (2001) explore the efficiency of a pricing con-

tract between a price-setting supplier and a newsvendor plant who determines a stocking level.

Dong and Rudi (2004) show that a price-setting supplier benefits from lower demand correlation

when inventory can be transshipped among multiple plants. Chen et al. (2001) establish that, with

non-identical plants, nonlinear quantity discount contracts cannot achieve full supply chain co-

ordination. Bernstein and Federgruen (2005) extend the study of pricing contracts to competing

plants with demand uncertainty. Bernstein et al. (2006) show that interdependencies among sup-

ply chain members make it possible to achieve full supply chain coordination. In our model, we

address a simple pricing contract between plants and an independent logistics provider in a multi-

period, multi-product, multi-stage system. While our basic model assumes deterministic demand

forecasts, we extend the structural results to settings with stochastic demand forecasts.

4.3 Model Formulation

Motivated by the supply chain of our industry partner, we consider a three-stage cross-docking

supply chain consisting of suppliers, a cross-dock facility, and plants (i.e., oil well facilities). Each

oil well facility determines its monthly demand forecast for products for the entire planning horizon

(consisting of three to six months) and places the corresponding orders with the cross-dock in

advance of the planning horizon. Each oil well is responsible for picking up their ordered products

at the cross-dock in each period, transporting those products to its own storage facility, and storing

them until they are needed. Each oil well minimizes its own associated transportation and inventory

holding costs by determining the optimal amount of each product to pick up from the cross-dock

in each period and the optimal number of trucks to use to transport those products from the cross-

dock to its storage facility (hereon, we will refer to the oil well (plants) supplied by the cross-dock

facility as “plants”).

Based on the orders received from the plants, the OSC procures products from overseas suppli-

ers whose deliveries arrive in each period to a cross-dock facility that the OSC owns and operates

in Dubai’s Free-Trade-Zone (see Figure 4.1). In particular, the OSC decides on the amount of each
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product and the number of containers to be used for the shipping of each product from each over-

seas supplier in each period. In the current practice, products are typically single-sourced (i.e., one

supplier per product). Products that arrive at the cross-dock facility are either sorted for immediate

pick-up by the plant or they are placed in inventory for pick-up in a later period. The cross-dock

seeks to minimize the total cost of transporting products from the suppliers and holding (some of)

them in inventory while satisfying the oil wells’ demands. In this supply chain, backlogging is

not allowed, as the required products are generally indispensable for the proper functioning of oil

wells.

Because the plants submit their orders for the entire planning horizon to the cross-dock prior

to the beginning of that planning horizon, those demand forecasts can be viewed as deterministic.

(Given the NP-hard nature of the capacitated lot-sizing problem (Florian et al. 1980), it is also

standard in the literature to work with deterministic demand models (Yano and Newman 2001,

Anily and Tzur 2005, Federgruen et al. 2007). In our study, capacity constraints take the form

of the maximum weight of each container shipped to the cross dock, as well as the maximum

weight of products on each truck used by the plants to pick up orders from the cross-dock. Given

the duration of each period (i.e., a month), and the proximity of Middle East oil wells to the cross-

dock facility in Dubai, the transportation from the cross-dock to the plants occurs effectively within

the same period.

Current Oil-Field Service Company Supply Chain

Cross-dock facility
(Dubai Free-Trade-Zone)

Oil Well
(Saudi Arabia)Supplier 1 

Supplier 2 

Supplier 3 

The cross-dock is responsible for the 
transportation of products to the cross-

dock facility and the holding of inventory 

Oil Well
(Egypt)

Oil Well 
(Kuwait)

Each oil well is responsible for the transportation 
of its products to its own storage facility and the 

holding of inventory in that facility

Figure 4.1: Oilfield Service Cross-Docking in a Decentralized Supply Chain
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Section 4.3.1 formulates the cross-dock’s optimization problem in a decentralized supply chain.

Section 4.3.2 presents the cross-dock’s optimization problem under upstream collaboration. In

Section 4.3.3, we formulate a plant’s optimization problem in a decentralized supply chain. Sec-

tion 4.3.4 presents a plant’s optimization problem under downstream collaboration. In what fol-

lows, we use b c to denote the floor function (e.g., b1.5c = 1), and d e to denote the ceiling function

(e.g., d1.5e = 2).

4.3.1 Cross-Docking Operations in a Decentralized Supply Chain

The total cost for the cross dock incurred over the planning horizon consists of the cost of ship-

ping products from overseas suppliers to the cross-dock facility and the cost of holding products

in inventory until they are picked up by the plants. The cross-dock seeks to minimize those costs

by choosing the quantity of each product to be delivered by overseas suppliers in each period and

the number of containers in which to ship those products. Because the cross-dock receives orders

from the plants for each period in the planning horizon before the beginning of that horizon, the

cross-dock’s orders for delivery in each period t can be also be made prior to the beginning of the

planning horizon. The following summarizes our notation for the cross-dock’s cost minimization

problem.

PARAMETERS:

T Number of periods in the planning horizon;

Q Number of different product types demanded by the plants

dit Aggregate amount of product i demanded by the plants from the cross-dock in period t;

hcd Cost of holding a unit weight of product in inventory at the cross-dock for a single period;

wi Weight of a product i;

ccd Cost of shipping one container from a supplier site to the cross-dock facility;

W Capacity (in weight) of a shipping container;

Diτ Cumulative demand for product i from period 1 through period τ : Diτ =
∑τ

t=1 dit.
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DECISION VARI-

ABLES:

nit Number of containers with product i delivered to cross-dock at the beginning of period t;

yit Quantity of product i (in units) delivered to cross-dock at the beginning of period t.

Because each product is single-sourced, in a decentralized supply chain the cost-minimization

problem for the cross-dock is separable in the products. Consequently, to provide an understanding

of the structural properties of optimal solutions for the cross-dock’s cost-minimization problem, it

suffices to consider only a single product. For that reason, in this section, we drop index i from

the notation. Let CCD(n,y) denote the cross-dock’s total shipment and inventory holding costs

over the planning horizon incurred by shipping container vector n = {n1, n2, . . . , nT} and product

quantity vector y = {y1, y2, . . . , yT}. We refer to the decision set (n,y) as a shipping plan.

Let It denote the inventory level of product at the cross-dock at the end of period t associated

with shipping plan (n,y). The objective function of the cross-dock is given by the sum of inventory

holding and shipping costs over the planning horizon. (Due to the short length of that horizon, we

forgo any discounting). Hence,

CCD(n,y) =
T∑
t=1

(hcdwIt + ccdnt). (4.1)

The following mixed-integer program represents the cross-dock’s single-product cost mini-

mization problem in a decentralized supply chain.

Cross-dock’s Cost Minimization in a Decentralized Supply Chain:
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min
n,y

CCD(n,y) (4.2)

s.t. It = It−1 + yt − dt t = 1, . . . , T ; (4.3)

Wnt ≥ wyt t = 1, . . . , T ; (4.4)

I0 = 0

It ≥ 0 and integer t = 1, . . . , T ;

nt integer t = 1, . . . , T.

Expressions (4.3) represent inventory balance equations given that demands from plants have

to be satisfied in every period, while (4.4) denotes the relevant capacity constraints. The latter

ensure that in any period, the total weight of the product shipped to the cross-dock facility does not

exceed the total capacity of the containers shipped.

4.3.2 Cross-Docking Operations under Upstream Collaboration

Because additional facilities are increasingly being built around oil wells in the Middle East,

ordering products to construct and maintain those facilities and holding them in inventory has

been incurring significant transportation and inventory holding costs for the focal company. For

that reason, the OSC has been looking into supply chain strategies to reduce those costs. One

such strategy, referred to as upstream collaboration, involves having suppliers in geographically

proximate regions share containers to ship products from their overseas locations to the cross-dock.

To provide insight into cost savings enabled by upstream collaboration, we formulate a cost

minimization problem for the cross-dock with Q inbound products, one from each supplier, in

which geographically-proximate suppliers share containers to ship their products.

Let Cuc(nc,y) denote the cross dock’s total cost over the planning horizon under upstream col-

laboration incurred by shipping container vector nc = {n1, n2, . . . , nT} and product quantity matrix

y= {y1, . . . ,yQ}, where yi :={yi1, yi2, . . . , yi,T}T . (Under upstream collaboration, suppliers share
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shipping containers, but each supplier loads his own ordered amount of product into each shared

container). Let Iit denote the inventory level of product i at the cross-dock facility at the end of

period t associated with shipping plan (nc,y). Under upstream collaboration, the objective cost

function Cuc for the cross-dock can therefore be written as a sum of inventory holding and shipping

costs over the planning horizon as follows:

Cuc(nc,y) =
T∑
t=1

Q∑
i=1

hcdwiIit +
T∑
t=1

ccdnt.

The following formulation represents the resulting cross-dock’s cost minimization problem

under upstream collaboration.

Cross-dock’s Cost Minimization under Upstream Collaboration:

min
nc,y

Cuc(nc,y) (4.5)

s.t. Iit = Ii,t−1 + yit − dit i = 1, . . . , Q; t = 1, . . . , T, (4.6)

Wnt ≥
Q∑
i=1

wiyit t = 1, . . . , T ; (4.7)

Ii0 = 0 i = 1, . . . , Q;

Iit, yit ≥ 0 i = 1, . . . , Q; t = 1, . . . , T ;

nt ≥ 0 and integer t = 1, . . . , T.

While inventory balance equations given in (4.6) are identical to those in a decentralized sup-

ply chain, the capacity constraints given in (4.7) are different. This is because, under upstream

collaboration, two suppliers share containers to (jointly) ship their individual products.

4.3.3 Plant’s Operations in a Decentralized Supply Chain

Given its demand forecast, each plant determines its order schedule to minimize its total costs

over the planning horizon. Those costs include transportation costs for trucks used to transport

products from the cross-dock to the oil well facility and inventory holding costs at the site for
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any products ordered in excess of the demand in each period. A plant seeks to minimize those

costs by choosing the number of trucks to use from the cross-dock to its site, and the quantity of

each product to transport on those trucks. Similar to the cross-dock, each plant develops his own

demand forecast for all T periods in the planning horizon, and then uses that demand forecast to

make those decisions. In what follows, we make use of the following additional notation.

PARAMETERS:

M Number of plants;

q
(m)
it Demand for product i (in units) forecast by plant m for period t;

h Cost of holding a unit weight of product in inventory at a plant’s site;

wi Weight of product i;

cd Per truck transportation cost (same for all plants);

U Capacity (in weight) of a single truck;

Φiτ Total demand for product i (in units) observed by all plants from period 1 through period τ ;

Φiτ =
∑M

j=1

∑τ
t=1 q

(j)
it .

DECISION VARI-

ABLES:

x
(m)
it Quantity of product i (in units) picked up by plant m at the beginning of period t;

v
(m)
t Number of trucks used by plant m transport products at the beginning of period t.

Let C(m)
R (v(m),x(m)) denote the total transportation and inventory holding cost for plant m

incurred over the planning horizon by truck transportation vector v(m) = {v(m)
1 , . . . , v

(m)
T } and

product quantity matrix x(m) =
{
x

(m)
1 , . . . ,x

(m)
Q

}
, where xi :=

{
x

(m)
1t , . . . , x

(m)
1T

}T . Let φ(m)
it

denote the inventory level of product i (in units) at plant m at the end of period t associated with

shipping plan (v(m),x(m)). In a decentralized supply chain, C(m)
R is given by:

C(m)
R

(
v(m),x(m)

)
=

T∑
t=1

Q∑
i=1

hwiφ
(m)
it +

T∑
t=1

cdv
(m)
t . (4.8)

The first term is the total inventory holding cost, and the second term is the total cost of truck
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transport from the cross-dock to plant m’s location. The following formulation represents plant

m’s cost minimization problem in a decentralized supply chain.

Plant’s Cost Minimization in a Decentralized Supply Chain:

min
v(m),x(m)

C(m)
R

(
v(m),x(m)

)
(4.9)

s.t. φ
(m)
it = φ

(m)
i,t−1 + x

(m)
it − q

(m)
it i = 1, . . . , Q; t = 1, . . . , T ; (4.10)

Uv
(m)
t ≥

Q∑
i=1

wix
(m)
it t = 1, . . . , T ; (4.11)

φ
(m)
i0 = 0 i = 1, . . . , Q;

φ
(m)
it , x

(m)
it ≥ 0 i = 1, . . . , Q; t = 1, . . . , T ;

v
(m)
t ≥ 0 and integer t = 1, . . . , T.

Expression (4.10) represents the inventory balance equations given that a plant’s demand has

to be satisfied in every period, while capacity constraints given in (4.11) require that the combined

capacity of the trucks used by the plant is sufficient to hold the desired product quantities.

4.3.4 Plant’s Operations under Downstream Collaboration

Because each oil well facility is responsible for the transport of its products from the cross-dock

and for holding them in inventory until they are needed, those facilities have been exploring ways

to reduce the resulting costs. In particular, managers of geographically proximate oil wells are

considering consolidating their order pick-ups from the cross-dock. In addition to sharing trucks

to consolidate shipments from the cross-dock to their facilities, those plants are also looking into

operating a joint warehouse to store their products, thus consolidating inventory and eliminating

the need to hold inventory at their own (usually more expensive) locations. We refer to this type of

collaboration among downstream members of a hybrid cross-docking supply chain as downstream

collaboration.

With downstream collaboration, geographically proximate plants seek to minimize the joint

total cost of transportation and inventory holding. Let xit denote the amount of product to be

delivered to the joint warehouse at the beginning of period t; vt represent the number of trucks used
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in each period t, and φit denote the associated inventory of product i left at the joint warehouse at

the end of period t. Let CRdc(v,x) represent the collaborating plants’ total cost over the planning

horizon incurred by truck transportation vector v = {v1, v2, . . . , vT} and product quantity matrix

x = {x1, . . . ,xQ}, where xi :={xi1, . . . , xi,T}T . (Collaborating plants share trucks, but each plant

has his own order quantity loaded on each truck to meet his own demand.) we thus obtain

CRdc(v,x) =
T∑
t=1

Q∑
i=1

hwi φit +
T∑
t=1

cd vt. (4.12)

The objective function for the collaborating plants CRdc consists of the inventory holding cost at

the shared warehouse
∑T

t=1

∑Q
i=1 hwi φit, and transportation cost

∑T
t=1 cd vt associated with the

use of shared number of trucks vt in each period t.

The following formulation represents the cost minimization problem faced by m plants who

participate in downstream collaboration.

Plants’ Cost Minimization under Downstream Collaboration

min
v,x

CRdc(v,x)

s.t. φit = φi,t−1 + xit −
m∑
j=1

q
(j)
it i = 1, . . . Q; t = 1, . . . , T ; (4.13)

Uvt ≥
Q∑
i=1

wixit t = 1, . . . , T ; (4.14)

φi0 = 0 i = 1, . . . Q;

φit, xit ≥ 0 i = 1, . . . Q; t = 1, . . . , T ;

vt ≥ 0 and integer t = 1, . . . , T.

Constraints (4.13) – (4.14) ensure that the plants collaborate in both inventory holding and

transportation of products, and that the number of trucks used in each period is sufficient for the

weight of the products carried in each truck. The inventory balance equations in (4.13) differ from

those given in (4.10) for a decentralized supply chain in that plants’ shipments are stored in the
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shared warehouse, rather than in individual plants’ facilities.

4.4 Optimal Shipping Plans and Cost Savings

In what follows, Section 4.4.1 describes a cross-dock’s optimal shipping plan in a decentralized

supply chain. In Section 4.4.2, we analyze a cross-dock’s optimization problem under upstream

collaboration. Section 4.4.3 identifies structural properties of an individual plant’s optimal trans-

portation and inventory policies in a decentralized supply chain. In Section 4.4.4, we characterize

cost savings for plants involved in downstream collaboration.

4.4.1 Cross-Dock’s Optimal Shipping Plan in a Decentralized Supply Chain

To facilitate the derivation of structural properties of the optimal shipping plan for a cross-dock

in decentralized supply chain, define σcd := hcd
ccd

. Thus, σcd represents the size of the unit product

holding cost relative to each container’s shipping cost. We refer to σcd as the cross-dock’s relative

cost.

Let I∗t denote the inventory held at the cross-dock in period t under the optimal shipping plan

(n∗,y∗) in a decentralized supply chain. Define ι∗ :=
∑T

t=1 I
∗
t and N∗T =

∑T
t=1 n

∗
t . Thus, ι∗

denote the sum of inventory amounts held at the cross-dock, while N∗T is the sum of all product

shipments into the cross dock during the planning horizon, under the optimal shipping plan. The

following lemma characterizes N∗T and ι∗. All proofs are deferred to the Online Appendix.

Lemma 3. N∗T and ι∗ are functions of (only) σcd.

Consequently, N∗t and ι∗ are functions of the cross-dock’s relative cost only. This result makes

it possible to characterize the corresponding functional dependence on σcd.

Lemma 4. The following properties hold for N∗T (σcd) :

(a)
⌈
wDT
W

⌉
≤ N∗T (σcd) ≤

∑T
t=1

⌈
wdt
W

⌉
for all σcd.

(b) N∗T (σcd) is a piece-wise constant, monotonically increasing function of σcd, and is continuous

everywhere except at
∑T

t=1

⌈
wdt
W

⌉
−
⌈
wDT
W

⌉
points.
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Thus, the number of total containers shipped during the planning horizon increases in the cross-

dock’s relative cost. The upper bound
∑T

t=1

⌈
wdt
W

⌉
for N∗T is the number of containers shipped to

the cross-dock under traditional cross-docking (i.e., without any inventory holding), whereas the

lower bound,
⌈
wDT
W

⌉
, represents the number of containers shipped when the cross-dock places all

orders for delivery in the first period. Going forward, we make use of constants ι0 and σ0 defined

as follows:

ι0 :=
T−1∑
t=1

(⌈
wDt

W

⌉
W

w
−Dt

)
and σ0 =

∑T
t=1

⌈
wdt
W

⌉
−
⌈
wDT
W

⌉
+ 1

w ι0
, (4.15)

where Dt denotes cumulative demand faced by the cross-dock for periods 1 through t.

Theorem 13. If
∑T

t=1

⌈
wdt
W

⌉
=
⌈
wDT
W

⌉
, then ι∗(σcd) = 0 for all σcd. Otherwise,

(a) if σcd < 1
W

, then ι∗(σcd) = ι0 and N∗T (σcd) =
⌈
wDT
W

⌉
;

(b) if 1
W
≤ σcd < σ0, then ι∗(σcd) is a piece-wise constant and monotonically decreasing function

of σcd, and is continuous except at
∑T

t=1

⌈
wdt
W

⌉
=
⌈
wDT
W

⌉
points;

(c) If σcd ≥ σ0, then ι∗(σcd) = 0 and N∗T (σcd) =
∑T

t=1

⌈
wdt
W

⌉
.

Theorem 13 identifies specific conditions under which it is optimal for the cross-dock not to

hold inventory during the problem horizon. First, if
∑T

t=1

⌈
wdt
W

⌉
=
⌈
wDT
W

⌉
, then it follows from

Lemma 4 that N∗T (σcd) =
∑T

t=1

⌈
wdt
W

⌉
=
⌈
wDT
W

⌉
for all σcd. In that case, it is optimal for the

cross-dock facility not to hold inventory during the planning horizon, regardless of the value of

σcd. Second, even if condition
∑T

t=1

⌈
wdt
W

⌉
=
⌈
wDT
W

⌉
is not satisfied, by part (c), there exists a

threshold value σ0 of the relative unit cost such that it is optimal for the cross-dock not to hold

any inventory during the planning horizon for all σcd ≥ σ0. Under either of those conditions,

a cross-dock facility should optimally operate as a traditional cross-docking facility, because all

arriving products to the cross-dock, under the optimal shipping plan, are immediately routed to the

outbound trucks destined for the plants. Thus, the first contribution of Theorem 13 is to provide

explicit and quantifiable guidelines to managers regarding when to use traditional cross-docking

and when to resort to the use of hybrid cross-docking operations.
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Part (a) shows that, when the cross-dock’s unit relative cost is low enough, all orders from

the plants for the entire planning horizon are shipped to the cross-dock in the first period. In that

case, the unit holding cost is sufficiently small relative to the unit shipping cost that it is optimal to

save on the shipping costs by sending all orders together, in a single shipment, to save on shipping

costs (at the expense of the comparatively smaller inventory holding costs). In that case, the total

number of units held in inventory is the highest, and implementing the optimal shipping plan

clearly requires a hybrid cross-dock rather than a traditional one.

Part (b) establishes a region of the unit relative cost over which the total inventory held at the

cross-dock is piece-wise constant and monotonically decreasing in σcd. This result comes about

because the number of total containers shipped N∗T (σcd) over the planning horizon is increasing

in σcd by Lemma 4. The larger the number of containers used to fulfill the same plant’s demand,

the less inventory (in excess of each period’s demand) is shipped to the cross-dock in any period t.

Consequently, ι∗(σcd) is decreasing as more containers are used to fulfill the same plants’ demand.

In summary, it is the cross-dock’s relative cost that determines what type of cross-dock facility

is optimal to have in a supply chain. When that relative cost is high (i.e., greater than σ0), a

traditional cross-dock is sufficient to implement the optimal shipping plan. For all smaller values

of the relative cost, optimal shipping plan results in inventory carry-over from one period to another

and it becomes necessary to develop hybrid cross-docking functionality. These findings can thus

be used to help guide managers in their choice of the type of the cross-dock facility to have in their

supply chains.

Having characterized the optimal shipping plan for a hybrid cross-dock in a decentralized sup-

ply chain, we now analyze its total optimal cost as well. Let f(σcd, ccd) be the cross-dock’s optimal

total cost over the planning horizon as a function of σcd and ccd. We can write f(σcd, ccd) as

f(σcd, ccd) = ccd

[
T∑
t=1

(σcdwI
∗
t (σcd) + n∗t (σcd))

]
.

The following theorem describes some useful regularity properties of f(σcd, ccd).
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Theorem 14. Optimal total cost f(σcd, ccd), is a piecewise-linear and increasing function of σcd.

Further, if σcd ≥ σ0, then ∂f
∂σcd

= 0 everywhere except at
∑T

t=1

⌈
wdt
W

⌉
−
⌈
wDT
W

⌉
points.

The optimal total cost for the cross-dock is a piecewise-linear, increasing function of σcd. If

the unit holding cost is sufficiently large relative to the container shipping cost, then that optimal

total cost is piecewise-constant, with discontinuities occurring at (a small number of) well-defined

points. For sufficiently large values of the relative cost σcd, the total inventory under the optimal

shipping policy becomes zero by Theorem 13, and the total optimal cost becomes independent of

σcd, as the OSC no longer finds it optimal to keep any inventory at the cross-dock facility. At that

point, a traditional cross-dock suffices for the implementation of the optimal shipping plan.

4.4.2 Cross-dock’s Cost Savings under Upstream Collaboration

Next, we seek to characterize cross-dock’s savings under upstream collaboration. Let λit =

wi dit and Λiτ =
∑τ

t=1 λit for i = 1, . . . , Q, and t = 1, . . . , T . Thus, λit represents the total weight

of product i demanded at the cross-dock in period t, while Λiτ represents the cumulative weight of

product i demanded at the cross-dock from period 1 through τ .

Let C∗CD denote the cross-dock’s optimal cost in a decentralized supply chain and C∗uc denote its

optimal cost under upstream collaboration. Let ∆CD := C∗CD−C∗uc. Thus, ∆CD represents the cross-

dock’s maximum cost savings over the planning horizon from upstream collaboration relative to to

the cost under its optimal shipping plan in decentralized supply chain.

Theorem 15. For each i = 1, . . . , Q, define σi as

σi :=

∑T
t=1

⌈
λit
W

⌉
−
⌈

ΛiT
W

⌉
+ 1∑T−1

t=1

(⌈
Λit
W

⌉
W − Λit

) .
If σcd ≥ max

i
σi, then

∆CD = ccd

{
Q∑
i=1

T∑
t=1

⌈
λit
W

⌉
−

T∑
t=1

⌈
Q∑
i=1

λit
W

⌉}
.

Theorem 15 provides an explicit expression for the cross-dock’s benefit from upstream col-

laboration for sufficiently high unit relative cost. For high enough values of σcd, the benefit from
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upstream collaboration can be expressed as the difference in transportation costs for the supply

chain with and without upstream collaboration. If the unit inventory holding cost is high relative

to the transportation cost per unit weight, then by using more containers to ship products from

suppliers, the cross-dock is able to optimally not hold any inventory during the planning horizon.

Consequently, the resulting cost savings from upstream collaboration reduce to the savings from

the transportation costs alone. In Section 4.5, we quantify the benefits of upstream collaboration

when it is optimal for the cross-dock to operate in the hybrid mode and carry inventory from one

period to another.

4.4.3 Plant’s Optimal Shipping Plan in a Decentralized Supply Chain

In characterizing plant’s optimal shipping policy in a decentralized supply chain, we first de-

fine σr := h
cd

. Hence, σr represents the relative size of the unit product holding cost at the plant

warehouse relative to unit truck cost. Accordingly, we refer to σr as plants’ relative cost. Let

V
(m)
τ denote the total number of trucks used to transport products from the cross-dock to plant m

from period 1 through period τ ; thus, V (m)
τ =

∑τ
t=1 v

(m)
t . The following theorem provides some

structural properties of the optimal transportation policy for a plant’s problem in a decentralized

supply chain.

Theorem 16. Let V(m)∗=
{
V

(m)
1

∗
, . . . , V

(m)
T

∗}
represent the optimal shipping vector for plant m.

(a) If σr < 1
U

, then V (m)
τ

∗
=

⌈∑Q
i=1 wi Φ

(m)
iτ

U

⌉
for anyτ≤ T ;

(b) If σr ≥ 1
U

, then V (m)
τ

∗
≤
∑τ

t=1

⌈∑Q
i=1 wi q

(m)
it

U

⌉
for anyτ≤ T .

When the per-truck transportation cost is higher than the cost of holding one truck-load of prod-

uct inventory for a month, a plant uses the smallest possible number of trucks to get his products

from the cross-dock facility. Part (b) of Theorem 16 provides an explicit expression for an upper

bound of the number of trucks shipped to the plant over the planning horizon in all other cases.
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4.4.4 Plant’s Cost Savings under Downstream Collaboration

To provide insight into plants’ cost savings under downstream collaboration, let C(m)∗
Rdc

denote

the optimal cost when m plants collaborate in their transportation and warehousing operations.

Let C(j)∗
R be plant j’s optimal cost in a decentralized supply chain. The following result lays the

foundation for understanding the impact of shipment consolidation on the plants’ total cost.

Theorem 17. For each m = 1, . . . ,M , define ϑm as

ϑm :=

∑T
t=1

⌈∑Q
i=1

wi q
(m)
it

U

⌉
−
⌈∑Q

i=1 wi Φ
(m)
iT

U

⌉
+ 1

∑T−1
τ=1

(⌈∑Q
i=1 wi Φ

(m)
iτ

U

⌉
U −

∑Q
i=1 wi Φ

(m)
iτ

) .
If σr ≥ max

m
ϑm and

T∑
t=1

M∑
m=1

⌈∑Q
i=1 wi q

(m)
it

U

⌉
=

T∑
t=1

⌈∑M
m=1

∑Q
i=1wi q

(m)
it

U

⌉
,

then C(m)∗
Rdc

=
∑m

j=1 C
(j)∗
R . More generally, C(m)∗

Rdc
≤
∑m

j=1 C
(j)∗
R for any m ∈ {1, 2, . . . ,M}.

While it is not surprising that participating plants’ optimal costs under downstream collabo-

ration never exceed their optimal costs in a decentralized system, Theorem 17 also derives the

conditions under which collaborating plants’ total cost is not impacted by their downstream col-

laboration. In particular, if downstream collaboration in a cross-docking supply chain does not

affect the optimal total number of trucks used for shipping products from the cross-dock facility,

the benefits of that collaboration disappear. In that situation, considering the costs involved in

setting up a collaboration among plants in practice (coordination costs, administrative costs, etc),

plants will generally be better off without such collaboration.

4.5 Value of Collaboration Benefits

To provide additional managerial insight regarding collaborations in a cross-docking supply

chain, in this section we quantify the cost savings generated from upstream and downstream col-

laborations. In what follows, we use a planning horizon of T = 6 months because, in the oil-
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field service industry, order planning and scheduling is generally carried out three to six months

out, based on point forecasts of future demands. For all numerical studies that follow, parame-

ter values were provided by the OSC. In particular, the weight capacity W of each container is

W = 27, 760kg and the transportation cost ccd is $2,359 per container. In Sections 4.5.1 and 4.5.2

we quantify benefits from upstream and downstream collaboration, respectively.

4.5.1 Benefit to the Cross-Dock from Upstream Collaboration

In evaluating the benefit to the cross-dock from upstream collaboration, we define the value of

that upstream collaboration V CCD, as

V CCD :=
C∗CD − C∗uc
C∗CD

× 100,

where, as already stated, C∗CD denotes the cross-dock’s optimal cost in a decentralized supply chain,

while C∗uc is the cross-dock’s optimal cost under upstream collaboration.

Thus, V CCD denotes the cost savings for the cross-dock from upstream collaboration relative

to the decentralized supply chain. In our first numerical study, we consider two geographically

proximate suppliers, each providing a single product, and vary the cross-dock’s unit inventory

holding cost hcd (expressed in dollars per kilogram per month) and the ratio r of the two product

weights: r = w2

w1
. This study explores 18 sets of model parameters: six values of the unit inventory

holding cost (hcd ∈ {0.05, 0.10, 0.15, 0.20, 0.25, 0.30}) × three values of the product weight ratio

(r ∈ {0.5, 1.0, 1.5}).

OSC also provided us with a (confidential) data set with its monthly demand forecasts by

product type. The OSC’s actual shipping plan for each planning horizon is developed using those

monthly demand forecasts for each six-month period. At the same time, those six-month forecasts

change from one six-month period to another. Hence, to capture the benefit to the cross-dock from

upstream collaboration under varying demand forecasts, for each of the 18 model parameter sets

described above, we simulated 100 sets of six-month forecasts by means of a normal distribution

whose mean for each month is the historical average for that month, and whose standard deviation

is the historical standard deviation for that month. For each of those 18 parameter sets, and for
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each simulated six-month demand forecast, we determine C∗CD and C∗uc, and then use their values to

calculate V CCD. Then, for each parameter set, we derive AverageV CCD by averaging V CCD over

those 100 simulations. Figure 4.2 displays AverageV CCD as a function of hcd for each value of r.
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Figure 4.2: Upstream Collaboration
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Figure 4.3: Downstream Collaboration

In Figure 4.2, average percentage cost savings for the cross-dock from upstream collaboration

range from 5.4% to 16.4% for r = 0.5; from 5.7% to 10.7% for r = 1.0; and from 4.9% to

7.5% for r = 1.5. Those average percentage cost savings are also found to be increasing and

concave in hcd, and decreasing in r (except for hcd = 0.05). The slope of AverageV CCD in

Figure 4.2 can be observed to be decreasing in r; thus, the higher the product weight ratio, the

slower average cost savings for the cross-dock increase as a function of its unit inventory holding

cost. As a consequence, while there is little variability in average cost savings from unit holding

cost variation for the high product weight ratio (∼ 1.6%), there is significant variability in those

savings for the low product weight ratio (∼ 11%). This weight ratio-driven variability reveals that

upstream collaboration is more impactful for lower product weight ratios, but only at higher unit

holding costs.

In summary, the cost savings for the cross-dock from upstream collaboration can more than

triple in size depending on the ratio of product weights and their holding cost at the cross-dock fa-

cility. Our studies indicate that upstream collaboration is most beneficial for low weight-ratio, high
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holding-cost products, while at lower holding costs those benefits are both small and effectively

independent of product weight ratio. At the same time, at lower values of the holding cost, there

is effectively no impact of product weight ratio on the realized cost savings. As far as we know,

these findings are new to both industry and the research literature. It is also worth noting that the

benefits realized from upstream collaboration would be significantly reduced if the OSC’s cross-

dock facility were traditional rather than hybrid; it is because of its inventory holding functionality

that a hybrid cross-dock facility allows for the degree of cost savings from upstream collaboration

evidenced in Figure 4.2.

4.5.2 Benefit to the Plants from Downstream Collaboration

In evaluating the benefits to plants from their downstream collaboration in cross-docking sup-

ply chain, we define the value of that downstream collaboration as

V CR :=
C∗R − C∗Rdc
C∗R

× 100,

where, as already defined, C∗R represents the total optimal cost for those plants in a decentral-

ized supply chain, while C∗R denotes their combined optimal cost under downstream collaboration.

Hence, V CR represents their combined cost savings from participating in downstream collabora-

tion relative to their combined optimal cost in a decentralized supply chain.

Our second numerical study is structurally similar to the first one. We consider two geograph-

ically proximate plants that face demands for two types of products, and we explore 18 model

parameter sets: six values of the unit inventory holding cost (h ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}) ×

three values of the product weight ratio (r ∈ {0.5, 1.0, 1.5}). The confidential data file from OSC

also includes each plant’s monthly demand forecasts. While plants’ decisions for each six-month

planning horizon are made using those demand forecasts, the forecasts vary from one six-month

planning horizon to another. Therefore, we capture the benefit from downstream collaboration

under the practical reality of varying demand forecasts, again simulated 100 sets of six-month

forecasts by means of the normal distribution whose mean for each month is the historical average

of each plant’s demand for that month, and whose standard deviation is the historical standard
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deviation for that month. For each of those 18 parameter sets, and for each simulated six-month

demand forecast, we determined C∗R and C∗Rdc , and then used those values to calculate V CR. Then,

for each model parameter set, we arrived at AverageV CR by averaging V CR over those 100 sim-

ulations. Figure 4.3 shows AverageV CR as a function of the plants’ unit inventory holding cost h,

for each value of r.

As displayed in Figure 4.3, average cost savings for collaborating plants can be either decreas-

ing, increasing, or concave in their unit inventory holding cost depending on product weight. In

particular, for r = 0.5, they start at 22.1% for h = 0.1 and drop to 14.1% at h = 0.6; and, for

r = 1.5kg, they start at 9.9% for h = 0.1 and increase to 15.1% at h = 0.6. For r = 1.0, average

cost savings first decrease before reaching the minimum of 1.9% at h = 0.3; then, they increase

up to 2.3% for h = 0.6. Thus, in contrast to the cost savings from upstream collaboration, the

unit holding cost does not have a monotonic impact on the benefit realized by plants from their

downstream collaboration. Further, the highest (average) cost savings in Figure 4.3 occur at the

lowest level of the unit inventory holding cost. While these observations reveal some fundamental

differences in the two types of collaborations considered in this chapter, the greatest cost savings

for both types of collaborations are realized at the lowest product weight ratio, though at different

unit holding costs.

In summary, when it comes to evaluating the benefits from each type of collaboration in a

hybrid cross-docking supply chain, it becomes important for managers to carefully evaluate the

realized cost savings based on relevant optimization models, such as the ones analyzed in this

chapter. Interestingly, what appears to be conventional wisdom in the oilfield service industry is

that, under high unit inventory costs, downstream collaboration will always generate significant

cost reductions. This industry wisdom, however, appears to be of limited value: as shown in Fig-

ure 4.3, when r = 1.0, the savings from downstream collaboration are quite low, staying below

3% for most values of the unit inventory holding cost, and even falling below 2% at times. This

is because the magnitude of cost savings from downstream collaboration very much depends on

product weight ratio. In most practical settings, such small cost savings of 3% or less are typi-
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cally not worth the cost of investment in setting up a downstream collaboration and the ongoing

administrative cost of running it.

4.6 Outsourcing Downstream Operations

Because oil companies have historically been very focused on oil exploration and production,

the development of their capabilities in other areas such as logistics operations has remained lim-

ited. As a result, in order to reduce their high costs of transportation and inventory management, oil

well facilities have been looking to outsource their operations to third-party logistics companies.

Because outsourcing of operations to independent logistics providers has financial and operational

impact on the cross-dock and the oil wells it serves, it is of importance to all parties concerned

to acquire a better understanding of that impact. For that reason, in this section we explore the

outsourcing of downstream operations by plants in a hybrid cross-docking supply chain.

we consider a simple pricing contract as such contract is commonly offered by independent

logistics providers to the oil wells in the Middle East. We analyze how such a contract impacts

each plant’s decision to outsource their operations. Formally, we develop and solve a Stackelberg

pricing game between a logistics provider and plants under deterministic demand. At the beginning

of the planning horizon, a logistics provider moves first by announcing price p to be charged for

each unit weight of outsourced products. Subsequently, each plant makes a one-time decision

whether to outsource its operations to the logistics provider for the duration of the entire planning

horizon. The resulting best response function for each plant is analyzed in Section 4.6.1. Based on

each plant’s best response, the logistics provider determines his optimal price p∗, whose structure

is derived in Section 4.6.2. In Section 4.6.3, we quantify that optimal price and discuss managerial

insights.

4.6.1 Plants’ Best Response

Let χm represent plant m’s decision regarding outsourcing operations to an independent lo-

gistics provider at the beginning of the planning horizon: χm = 1 if the plant outsources, and

χm = 0 otherwise. The plant’s outsourcing cost is then given by p χm
∑T

t=1

∑Q
i=1wiq

(m)
it , where

89



∑T
t=1

∑Q
i=1 wiq

(m)
it is the total weight of the plant’s demand over the planning horizon.

Let ∆(m)(p, χm) the net benefit to plantm from outsourcing operations to the logistics provider,

as function of the outsourcing price p and the decision to outsource χm. Using the notation from

Section 4.3.3, ∆(m)(p, χm) can be written as

∆(m)(p, χm) = χm

[
C(m)∗
R − p

T∑
t=1

Q∑
i=1

wiq
(m)
it

]
, (4.16)

where C(m)∗
R is plantm’s optimal cost without collaboration (i.e., in a decentralized system). Define

χ∗m(p) := arg max
χm∈{0,1}

∆(m)
(
p, χm

)
.

Thus, χ∗m(p) represents the plant’s best response to the logistics provider’s outsourcing price p.

In what follows, for each m = 1, 2, . . . ,M , define

p(m) :=
C(m)∗
R∑T

t=1

∑Q
i=1wiq

(m)
it

. (4.17)

Theorem 18. (a) For any outsourcing price p, the optimal outsourcing decision χ∗m(p) of plant m

is

χ∗m(p) =


1 if p ≤ p(m)

0 otherwise,

where p(m) is as defined in (4.17).

(b) Suppose that M plants are ordered so that p(1) ≥ p(2) ≥ · · · ≥ p(M). Then, one of the following

holds true: (i) if p ≤ p(M), the number of outsourcing plants is M ; or (ii) if p(m) ≥ p > p(m+1) for

some m ∈ {1, 2, . . . ,M − 1}, the number of outsourcing plants is m; or (iii) no plant outsources.

Hence, each plant’s optimal outsourcing policy is a threshold policy: plant m outsources if and

only if the outsourcing price p is below his optimal threshold price p(m). Further, that threshold

price p(m) increases in the plant optimal cost without collaboration C(m)∗
R , and decreases in the total

weight of the plant’s demand over the planning horizon, given by
∑T

t=1

∑Q
i=1wiq

(m)
it . Going for-

ward, without loss in generality, we relabel plants in a cross-docking supply chain as prescribed in
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Theorem 18 (b). Accordingly, if plant m finds it optimal to outsource operations to an independent

logistics provider, then plants 1 through m− 1 will find it optimal to do so as well.

4.6.2 The Logistics Provider’s Optimal Outsourcing Price

A logistics provider seeks to maximize profit from its outsourcing services over the planning

horizon. As each plant develops its demand forecast for all T periods at the beginning of the

planning horizon, those forecasts are also available to the logistics provider for all outsourcing

plants. Knowing those demand forecasts, the first step in that profit maximization is to determine

the logistics provider’s optimal shipping plan for any given outsourcing price p.

Let x(lp)
it be the quantity of product i transported from the cross-dock facility to the logistics

provider’s warehouse at the beginning of period t. Let v(lp)
t be the number of trucks used by

the logistics provider to transport products in period t, and φ(lp)
it be the inventory level of prod-

uct i at the logistics provider’s warehouse at the end of period t. Define truck shipping vec-

tor vlp = {v(lp)
1 , v

(lp)
2 , . . . , v

(lp)
T } and product quantity matrix xlp =

{
x1

(lp), . . . ,xQ
(lp)}, where

xi
(lp) := {x(lp)

i1 , x
(lp)
12 , . . . , x

(lp)
yT }T . Let hlp denote the unit inventory holding cost at the logis-

tics provider’s warehouse, and clp denote the per truck transportation cost faced by the logistics

provider. We make the following assumption.

Assumption 6. hlp ∈ (0, h) and clp ∈ (0, cd).

Thus, a logistics provider faces lower unit operating costs than a plant. Because logistics

providers specialize in the transportation and warehousing of their customers’ inventory, it stands

to reason that due to such specialization and economies of scale, the resulting unit operating costs

would be lower than those of an oil well whose main focus is on exploration and development of

oil reserves. (A logistics provider can, for example, choose his warehouse in a low-cost location,

while an oil well generally keeps its inventory on-site).

Let Πlp(vlp,xlp, p) represent the logistics provider’s profit over the planning horizon. Then,
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Πlp(vlp,xlp, p) := p

M∑
m=1

T∑
t=1

Q∑
i=1

wiχ
∗
m(p) q

(m)
it︸ ︷︷ ︸

Revenue from plants’ outsourcing

−

(
T∑
t=1

Q∑
i=1

hlpwiφ
(lp)
it +

T∑
t=1

clpv
(lp)
t

)
︸ ︷︷ ︸

Inventory holding and transportation cost

= p

M∑
m=1

T∑
t=1

Q∑
i=1

wiχ
∗
m(p) q

(m)
it − Clp(vlp,xlp, p),

where, as before, q(m)
it , represents demand for product i observed by plant m in period t, while

Clp(vlp,xlp, p) =
T∑
t=1

Q∑
i=1

hlpwiφ
(lp)
it +

T∑
t=1

clpv
(lp)
t (4.18)

denotes the total cost for the logistics provider. Given the outsourcing price p and correspond-

ing χ∗m(p) as each plant’s best response function, the logistics provider first seeks to maximize

Πlp(vlp,xlp, p) by deciding on his shipping and transportation schedules, vlp and xlp, for each

price p.

For any given outsourcing price p, the logistics provider has no influence over his revenue from

plants’ outsourcing, but rather only over his total inventory and transportation cost Clp(vlp,xlp, p).

Hence, given outsourcing price p, the logistics provider actually faces a cost-minimization problem

given in the following formulation.

Logistics Provider’s Cost Minimization Problem:

min
vlp,xlp

Clp(vlp,xlp, p) (4.19)

s.t. φ
(lp)
it = φ

(lp)
i,t−1 + x

(lp)
it −

M∑
m=1

χ∗m(p)q
(m)
it , i = 1, . . . , Q; t = 1, . . . , T ; (4.20)

Uv
(lp)
t ≥

Q∑
i=1

wix
(lp)
it , t = 1, . . . , T ; (4.21)

v
(lp)
t ≥ 0 and integer, t = 1, . . . , T ;

φ
(lp)
i0 = 0, i = 1, . . . , Q;

φ
(lp)
it , x

(lp)
it ≥ 0, i = 1, . . . , Q; t = 1, . . . , T.
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Equations (4.20) represent the inventory balance equations for each product i given that the

total demand for all plants served by the logistics provider has to be satisfied in each period t.

Equations (4.21) ensure that the combined capacity of all trucks used by the logistics provider to

transport products is sufficient for the required amount of each product in each period.

Let (v∗lp(p), x
∗
lp(p)) represent a solution to the above logistics provider’s minimization problem

as a function of outsourcing price p. Let C∗lp(p) denote the logistics provider’s resulting minimum

cost obtained for any given p. Thus, C∗lp(p) := Clp
(
v∗lp(p),x

∗
lp(p), p

)
.

Define Π∗lp(p) and p∗ as follows:

Π∗lp(p) = p
M∑
m=1

T∑
t=1

Q∑
i=1

wiχ
∗
m(p) q

(m)
it − C∗lp(p) (4.22)

p∗ = arg max
p≥0

Π∗lp(p). (4.23)

Thus, p∗ represents the outsourcing price that maximizes the logistics provider’s total profit

over the planning horizon. The following theorem provides a characterization of p∗.

Theorem 19. (a) Π∗lp(p
(1)) > 0;

(b) There exists an integer m ∈ {1, 2, . . . ,M} such that p∗ = p(m);

(c) For any m ∈ {1, 2, . . . ,M} such that m plants find it optimal to outsource their operations to

the logistics provider, C∗lp
(
p(m)

)
<
∑m

j=1 C
(j)∗
R .

Part (a) of Theorem 19 implies that the logistics provider can always make a profit by pricing

his outsourcing services at p(1). By part (b), the logistics provider’s optimal outsourcing price is the

threshold price p(m) for some plant m. This result significantly reduces the computational effort of

finding the optimal outsourcing price. This is because, instead of searching in a continuous interval

for that price, it suffices to compare the logistics provider’s profit at only M discrete prices, and

choose the price that yields the highest profit. By part (c), the logistics provider’s optimal cost is

smaller than the outsourcing plants’ optimal cost in a decentralized supply chain.
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4.6.3 Outsourcing Price Quantified

Next, we numerically solve for p∗ and discuss implications. Let Πlp(n) denote the logistics

provider’s profit when the outsourcing price is pn (i.e., the number of outsourcing plants is n). We

illustrate the behavior of Πlp(n) with two numerical examples. We consider a cross-docking supply

chain with four geographically proximate plants (i.e., M = 4) and two products (i.e., Q = 2). We

use the planning horizon of six months, hlp = 0.03$/kg, cd = $2, 359 per each truck, w1 = 300kg

and w2 = 450kg. The only difference in the two numerical examples shown in Figures 4.4 and

4.5 is in the values of demand forecasts used by each plant. While actual values of those demand

forecasts are confidential, in Figure 4.4: (i) plant 1’s demands are the same as his demands in

Figure 4.5; (ii) plants 2 and 3 face identical six-dimensional vectors of demands for each product

with lower mean and variability across the planning horizon than they do in Figure 4.5; (iii) plant

4 faces constant demand across the planning horizon. In Figure 4.5, each plant faces the same

six-dimensional vector of monthly demands.

1 2 3 4

$ 211,094

0

n

Π
lp

(n
)

Figure 4.4: Scen. 1

1 2 3 4

$ 211,632

0

n

Π
lp

(n
)

Figure 4.5: Scen. 2

In Figure 4.4, the logistics provider’s profit is highest when p∗ = p(3), which is the price at

which three plants optimally outsource their operations to the logistics provider. In this numerical

example, p∗ = $0.8/kg, with Πlp(3) = $211, 094. The profit function Πlp(n) can be observed to
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be quasi-concave in the number of outsourcing plants, as this function is first increasing and then

decreasing in n.

By comparison, in Figure 4.5, the optimal outsourcing price is given by p∗ = p(4), as it is

optimal for all four plants to outsource their operations. The profit function Πlp(n) is shown

to be monotonically increasing in the number of outsourcing plants. Thus, p∗ = $0.5/kg, and

Πlp(4) = $211, 362. Further, Πlp(n) exhibits diminishing returns, so that the contribution of each

additional plant to the logistics provider’s bottom line is decreasing. This is in contrast to Figure 4.4

in which the third outsourcing plant contributes more to Πlp(n) than does the second. Another key

implication of these observations is that the structure of Πlp(n) depends in a fundamental way

on the underlying demand forecasts over the planning horizon for each plant. As a result, any

structural properties of Πlp(n) are intrinsically tied to the actual values of the demand forecasts

developed by the plants.

4.7 Outsourcing Downstream Operations under Demand Uncertainty

In realistic setting, the optimization of outsourcing price involves some degree of demand un-

certainty. Thus, we now explore how plants can determine whether to outsource or manage their

own operation without collaboration in a stochastic demand environment. We examine how de-

mand uncertainty impacts the optimal outsourcing price and under what conditions plants out-

source. We base our discussion of demand uncertainty on the outsourcing and pricing problem,

but the approach we use in this section applies to other problems considered in this paper.

At t = 0, before demand realization, individual plants decide whether to outsource or manage

their operations without collaboration. Following the practice of the focal company, all decisions

are made before the planning horizon of three months (T = 3, a quarter of year).

We assume that plant’s demand q(m)
it is a random variable with a discrete probability distribu-

tion. We use S to represent the total number of possible demand realizations during the planning

horizon, and refer s to represent a given scenario of demand realization, s = 1, 2, . . . , S. For

computational tractability, we assume I = 2 throughout Section 4.7.
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4.7.1 Plant’s Best Response under Demand Uncertainty

Let ρ(sm) be the occurrence probability of scenario s with demand q(sm)
it of plant m during the

planning horizon T . Also, Let φ(sm)
it represent the inventory level of product i at the plant site

in scenario s. Also, v(m)
t be the number of the trucks shipped to plants. Let C(m)

Rz
(vZ,xZ) be the

plant’s expected total cost where vZ and xZ represent a truck ship vector and a shipment quantity

vector, respectively. Then, C(m)
Rz

(vZ,xZ) is given by

C(m)
Rz

(vZ,xZ) =
S∑
s=1

T∑
t=1

2∑
i=1

ρ(sm)hwiφ
(sm)
it +

T∑
t=1

cdv
(m)
t .

The first term represents the expected inventory holding cost over all the total S scenarios.

Because the plant’s choice of the shipment quantity vector xZ is made before the beginning of the

planning horizon, the inventory level depends on realized demand. The second term corresponds

to the transportation cost. The number of trucks to ship is determined before demand realization,

the transportation cost is fixed for all demand scenario s. The plant’s objective is to minimize the

total expected cost by solving the following optimization problem.

Plant’s Problem under Demand Uncertainty :

min C(m)
Rz

(vZ,xZ) (4.24)

s.t. φ
(sm)
it = φ

(sm)
i,t−1 + x

(m)
it − q

(sm)
it , i = 1, 2, t = 1, 2, . . . , T, s = 1, 2, . . . , S; (4.25)

Uv
(m)
t ≥

2∑
i=1

wix
(m)
it , t = 1, 2, . . . , T ; (4.26)

v
(m)
t ≥ 0 and integer, t = 1, 2, . . . , T ; (4.27)

φ
(sm)
i0 = 0, i = 1, 2, s = 1, 2, . . . , S (4.28)

φ
(sm)
it ≥ 0, i = 1, 2, t = 1, 2, . . . , T, s = 1, 2, . . . , S. (4.29)

x
(m)
it ≥ 0, i = 1, 2, t = 1, 2, . . . , T, (4.30)

Constraint (4.25) represents the inventory balance equation under scenario s. The size of order
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for product i, x(m)
it , is fixed through all demand scenarios, since the plant has to plan x(m)

it before

demand is realized. Constraint (4.26) ensures that the trailer truck capacity is sufficient to deliver

the products to the plants.

To facilitate the analysis, let C(m)∗
Rz

be the optimal objective value (the cost for plant m) ob-

tained from plant’s Problem under demand uncertainty and ∆
(m)
z

(
p
)

be the cost difference for

plant m with and without outsourcing under a outsourcing price p. Also, let χmZ (p) represents the

plant’s decision of whether to outsource to the logistics provider under demand uncertainty. Then,

∆
(m)
z

(
p
)
, as a function of χmZ , is given by

∆(m)
z

(
p, χmZ (p)

)
= χmZ (p)

[
C(m)∗
Rz
− p

T∑
t=1

2∑
i=1

S∑
s=1

wiρ
(sm)q

(sm)
it

]
(4.31)

Define

χ∗mZ (p) := arg max
χmZ∈{0,1}

∆(m)
z

(
p, χmZ (p)

)
(4.32)

Thus, χ∗mZ (p) represents the plant’s best response that maximizes its expected cost savings.

The following Lemma provides the structure of the best response for individual plants.

Theorem 20. For any m = 1, 2, . . . ,M , define

p
(m)
Z :=

C(m)∗
Rz∑T

t=1

∑2
i=1

∑S
s=1 wiρ

(sm)q
(sm)
it

.

For any outsourcing price p, the plant’s best response is given by

χ∗mZ (p) =

1, if p ≤ p
(m)
Z ;

0, otherwise.

Further, suppose p(1)
Z ≥ p

(2)
Z ≥ . . . ≥ p

(M−1)
Z ≥ p

(M)
Z . If p(k+1)

Z < p ≤ p
(k)
Z , then the number of

plants outsourcing is k for some k ∈ {1, 2, ...,M − 1}.
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By Theorem 20, the optimal outsourcing decision of plant m is given as a threshold-type pol-

icy, similar to what we have observed in Theorem 18. For any outsourcing price lower than the

threshold p(m)
Z , the plant’s expected total cost would be lower if it outsources its operations to the

logistics provider. Using this structural results, Theorem 20 provides the number of outsourcing

plants for a given outsourcing price. If p > p1
Z then there is no plant that outsourced to the logistics

provider; if p ≤ p
(M)
Z , then all plants outsourced. Going forward, we will refer to p(m)

Z as plant

m’s stochastic threshold outsourcing price because it concerns the optimization of the plant’s cost

under stochastic demand.

4.7.2 Optimal Outsourcing Price under Demand Uncertainty

Having established the plants’ best response under demand uncertainty, we now turn to the

optimal outsourcing price. Let D be a random matrix of all plants’ demand. For instance, for a

supply chain with four plants that requires two products over the planning horizon of three months,

D is a 4 × 3 × 2 matrix. With multiple plants, the logistics provider needs to consider exponen-

tial number of sample paths for demand realization. To solve this stochastic discrete optimization

problem with the exponential sample paths, we use a Monte-Carlo simulation-based approach

known as sample average approximation (SAA). In this procedure, we solve the sample average

function, which approximates the expected objective function of the logistics provider, using a

random sample generated from the random matrix D. The procedure - from generating a random

sample to solving the sample average optimization problem - is repeated until a specified precision

is achieved. Let κ represents the sample size. For each iteration, independently and identically

distributed (i.i.d) κ realizations of the random demand are generated and used to solve the opti-

mization problem. We use v to refer to the replication number - the number of total iterations until

a stopping criterion is reached.

Having sufficient replication number ensures that there is a guarantee that an optimal solution

for the true problem is produced. One can view such a procedure as Bernoulli trials with probability

of success P = P (κ). Here, the success means that a calculated optimal solution with κ samples is

an optimal solution to the true problem. It follows that this probability P (κ) tends to 1 as κ→∞
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(Kleywegt et al. 2002). However, for a finite κ, the probability P can be small. The probability of

producing an optimal solution of the true problem at least once in v replication is 1 − (1 − P )v,

which tends to 1 as v increases.

To determine the replication number, let πs(p) be the objective value of the logistics provider’s

pricing problem for a sample path s = 1, 2, . . . , κwithin each replication. Let π(p) = 1
κ

∑κ
s=1 πs(p).

Thus, π(p) represents the sample average function. Then, the optimal outsourcing price to this

replication is given by p∗ = arg maxp≥0 π(p). Also, the optimal objective value for this replication

is given by π∗ = π(p∗). Let π(j)∗ be the optimal objective value of the j th replication. Also, let

π(v) = π(1)∗+π(2)∗+...+π(v)∗

v
. Then, π(v) represents the average of the optimal objective values over

all v replications. Let V v
k be the sample variance over v replications, each with the sample size k.

The 100(1−α) percent confidence interval for the expected objective value E[Π∗] is then given by

π(v) ± tv−1,1−α/2

√
V vk
v
.

If we keep increasing replications until
tv−1,1−α/2

√
V v
k
v

π(v) ≤ λ, then π(v) has a relative error at most

λ
1−λ with a probability of 1− α (Law 2015). To determine the size of the replication number v for

the given sample size κ that ensure an estimate of E[Π∗] with a relative error of λ and a confidence

interval of 100(1− α) percent, we use the following procedure (Law 2015).

• Step 1: Set v0 = 30 random replications (each with κ = 100 sample paths), and set v = v0.

• Step 2: Calculate π(v) and tv−1,1−α/2

√
V vk
v

over v replications.

• Step 3: If
tv−1,1−α/2

√
V v
k
v

π(v) < λ
1+λ

, then use π(v) as the point estimate for Π∗ and stop. Otherwise,

replace v by v + 1, proceed with another iteration of simulation, and go to Step 2.

It is standard from the literature that λ < 0.05 is a sufficiently small relative error (Law 2015,

Geismar et al. 2020). To achieve λ < 0.05, we use the replication number v = 30 with the

sample size κ = 100. We consider three different supply chains that is defined based on the

number of plants (M = 2, 3, 4). The planning horizon for supply chains is three months. For

each supply chain, we start by varying the level of demand uncertainty. We randomly generate
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demand data uniformly distributed and centered around a given mean demand µ, within the interval

[(1 − ζ/2)µ, (1 + ζ/2)µ]. ζ represents a scale parameter for our study which we use to vary the

level of demand uncertainty. We use three levels of scale parameter (ζ = 10%, 20%, 40%) for

each supply chain.

Table 4.6 provides the plants’ optimal decisions and the outsourcing price p∗ and the plants’

optimal decisions χ∗mZ (p∗) averaged over 30 replications. It shows that the outsourcing price de-

creases as the number of plants increases; by lowering the outsourcing price, more plants would

outsource their operations, leading to a higher profit. For a same level of demand uncertainty, more

plants are outsourced if the outsourcing price is lower. For the scale parameter of ζ = 10%, the

outsourcing price is reduced by 12.4%, from 0.121 $/kg to 0.106 $/kg, when the number of plants

increases from 2 to 4. With a lower outsourcing price, more plants outsource their operations. For

the scale parameter of 10%, in 23 among 30 replications (76%), it is optimal for plant 3 to out-

source at the outsourcing price of 0.11$/kg. At the same level of demand uncertainty, it is optimal

for the plant to outsource 28 among 30 replications (93%) at the outsourcing price 0.106 $/kg.

At a higher level of demand uncertainty plants would have to pay a higher price for outsourcing.

However, even at a higher outsourcing price, it may be profitable for plants to outsource, if they

face high levels of demand uncertainty. For instance, under the scale parameter of 10%, plant 3

outsources in 23 among 30 replications at the outsourcing price of $0.11, and outsources in all 30

replications at $0.128. One possible explanation is that the high variability in individual plants’

demand can be reduced by aggregating demand. Thus, in aggregate, the logistics provider face a

lower demand variability than the sum of demand variabilities individual plants face. Hence, more

plants would outsource even at a higher outsourcing price.

4.8 Conclusion

In this chapter we analyzed a cross-docking supply chain encountered in the oilfield service

industry of the energy sector. Due to long lead times from suppliers and low-volume, slow-moving

non-perishable products, this industry has pioneered the use of hybrid cross-docking that, in con-

trast to traditional cross-docking, allows products to be held at the cross-dock facility from one
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ζ=10% ζ=20% ζ=40%

plant Plant m Outsourcing Plant m Outsourcing Plant m Outsourcing
M (m) Outsourcing Price ($/kg) Outsourcing Price ($/kg) Outsourcing Price ($/kg)

2 plant 1 1 0.121 1 0.130 1 0.145
plant 2 1 1 1

3 plant 1 1 0.110 1 0.128 1 0.141
plant 2 1 1 1
plant 3 0.76 1 1

4 plant 1 1 0.106 1 0.117 1 0.129
plant 2 1 1 1
plant 3 1 1 1
plant 4 0.93 0.97 0.97

Table 4.6: Plants’ Outsourcing under Demand Uncertainty

period to another. Further, the decentralized nature of cross-docking supply chains in the oil-field

service industry has allowed supply chain members to reduce their operational costs by participat-

ing in different types of collaborations, such as upstream collaboration between the cross-dock and

its suppliers and downstream collaboration among plants.

To provide a better understanding of hybrid cross-docking and arrive at optimal transportation

and inventory policies for managing hybrid cross-docking facilities and the oil wells served by

those facilities, we formulated and analyzed multi-period, multi-product, multi-stage optimization

models in the context of both decentralized cross-docking supply chains and those with coordinated

upstream or downstream shipping decisions. We identified structural properties of optimal trans-

portation and inventory policies for those models. We made use of our findings to provide some

practical guidelines to managers, including specific conditions under which the optimal shipping

policy calls for using a hybrid cross-dock as opposed to a traditional cross-docking facility.

Our results made it possible to quantify savings from upstream and downstream collabora-

tions in a cross-docking supply chain. Cost savings from upstream collaboration were found to

be monotonically increasing in the unit holding cost at the cross-dock facility and decreasing in

product weight, while ranging from 5.4% to to 16.4%. Cost savings from downstream collab-
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oration exhibited less regularity but more variability, as they ranged from 1.9% to 22.1%. This

observed variability highlights the importance of using appropriate analytic models in practice to

evaluate the level of enabled cost-savings before investing in such collaborations, as the result-

ing cost savings may not always justify initial investment in and ongoing administrative costs of

collaborations.

To address the growing need of oil wells to reduce costs by outsourcing operations to inde-

pendent logistics providers and explore the implication of that practice for cross-docking supply

chains, we developed and solved a Stackelberg pricing game between a logistics provider and

plants. Assuming deterministic demand forecasts, we derived each plant’s best response function to

the logistics provider’s outsourcing price, and then established the structure of the provider’s profit-

maximizing pricing strategy. These results are extended to stochastic demand forecasts in spite of

the NP-hard nature of the original deterministic game. We found that the logistics provider can

always find a price that results in (strictly) positive average profits, and that his profit-maximizing

price can be found by a simple search among a small number of discrete price thresholds defined

explicitly in this chapter.

There are a number of ways to extend the research in this chapter. One such direction is

to analyze full supply chain integration and quantify the resulting benefits in the context of a

multi-period, multi-stage, multi-product supply chain. Even though full supply chain integration

is uncommon in the oil-field service industry, there are other industries in which complete supply

chain coordination is plausible. For those industries, optimal transportation and inventory policies

and the cost savings thus generated may be of considerable interest. Further, while in this chapter

we analyze a simple pricing contract between a logistics provider and plants in a cross-docking

supply chain, another worthwhile generalization of our work would involve an analysis of more

sophisticated contracts between logistics providers and plants, such as quantity discount contracts

or quantity flexibility contracts.
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5. SUMMARY AND CONCLUSIONS

Motivated by the rapid transitions in the global energy landscape, my dissertation explores op-

erations management problems faced by energy companies, investors, consumers, and policymak-

ers. In the first essay, I examine how electricity consumers can optimally invest in the renewable

energy generation capacity to participate in a blockchain-enabled peer-to-peer energy trading net-

work, also referred to as a virtual microgrid. To capture the potential benefit of a resource-sharing

network for individual electricity consumers, I explore how consumers can optimally invest in

renewable energy in a virtual microgrid and key drivers of that investment. Using a simultane-

ous two-stage noncooperative game between consumers in a virtual microgrid, I show that each

heterogeneous, cost-minimizing consumer is always better off within a virtual microgrid than with-

out, regardless of the market-clearing price. Using equilibrium outcomes, I show that electricity

consumers are always better off in a virtual microgrid, with the average cost savings of 9.7%.

At a system-level, I show that blockchain is able to coordinate heterogeneous, independent

consumers in a decentralized virtual network with regard to minimizing the total cost of the system.

Compared to a centralized system, I show that blockchain can fully coordinate all participants of

a decentralized resource-sharing network, such that it can achieve the same total cost as a fully

centralized network, that is optimized for minimizing the total cost.

The first essay contributes to knowledge by showing that blockchain-related energy projects

can generate significant cost savings for each participant in a decentralized virtual network as well

as achieving the full coordination of all participants in minimizing the total cost in the system.

From the perspective of sustainability and community engagement with energy systems, these

results provide support to a community-based energy sharing networks, where local participants

can produce their own electricity and retain profits, while our society moves toward increased

renewable energy use and away from fossil fuels. Such results also open several avenues for

future research, including the performance of energy sharing networks for unregulated electricity

markets, sustainable business models for one such a network.
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Theoretical contributions of the first essay are as follows. First, I present new results to the

literature on renewable energy systems by addressing investments in renewable energy within a

resource-sharing network. Second, the model and analysis used in this essay extend those used in

the emerging stream of research in the sharing economy. While previous research in this stream

generally concerns that an owner has only one product (e.g., solar panels) to share, the model

studied in this essay concerns sharing a product (e.g., electricity) of that product.

Motivated by the continuing increase of renewable energy development and the lack of trans-

mission lines thereof, the second essay focuses on the optimal transmission grid investment and its

implications for renewable energy development. This essay contributes to transmission expansion

planning research by providing strategic insights into the interaction of generation and transmis-

sion and their implications for the optimal level of investments in each capacity. Grounded in

industry practices, Transmission system operator (TransCo) invests in transmission lines, while a

generation company (GenCo) separately invests in renewable power generation at a remote loca-

tion of low demand that can be sold to the location of high demand only via transmission lines. For

the resulting two-stage Stackelberg capacity investment game, I derive the equilibrium outcomes,

including the capacity of installed renewable generation, and the capacity of transmission lines.

Theoretically, the second essay has two contributions to the academic literature. First, in the

context of long-distance transmission development, I show that transmission and generation ca-

pacity act as complements for any probability densities of regional demand, in contrast to the

traditional economists’ view on the substitutability of transmission and generation (Joskow 2002).

Because transmission investment is needed to enable export sales from generation investments,

joint investment can be expected to enhance the profitability for both companies. Second, with

regard to the future development and joint investment in the transmission grid, this essay con-

tributes to the stream of literature on transmission expansion planning by proving the existence of

a Pareto-improving contract that mutually increases the profitability for TransCo and GenCo.

The third essay devises an optimization framework to analyze a decentralized, hybrid cross-

docking supply chain encountered in an oil-field service industry. Due to long lead times from

104



suppliers and low-volume, slow-moving non-perishable products, this industry has pioneered the

use of hybrid cross-docking that allows products to be held at the cross-dock from one period to

another. In order to analyze decentralized supply chains and those with coordinated upstream or

downstream shipping decisions, this essay formulates multi-period, multi-product, and multi-stage

optimization models.

With regard to decentralized cross-docking supply chain, this study presents new structural

properties of optimal shipping and inventory holding policies, and determines conditions under

which a cross-dock facility should optimally operate as a hybrid cross-dock rather than as a tra-

ditional one. I also use the structural results to quantify the resulting cost savings from upstream

and downstream collaboration for individual supply chain members, that range from 1.9%-22.1%,

depending on product weight and holding cost.

For the growing need for outsourcing operations to independent logistics providers, this study

finds that the logistics providers can always find an outsourcing price that results in strictly positive

average profits. I also establish that profit-maximizing outsourcing prices can be found by a simple

search among a small number of discrete price thresholds. The explicit structure of these price

thresholds in this essay can be used by managers in the oil field service industry to seek improve-

ment in their cost performance by strategically outsourcing to independent logistics providers.

From a modeling perspective, the third essay has two contributions to the literature. First,

in the literature on economic lot-sizing, multi-product, multi-stage capacitated lot-sizing consid-

ered in this chapter is shown to be NP-hard (Zhao and Zhang 2020). Because the intermediate

stage in our model acts as a cross-docking facility that performs “sorting” of multi-products, there

are additional complexities in the problem. The results in this chapter contribute to better under-

standing the impact of these added layers of complexities by providing structural properties of

optimal solutions. Second, I address joint inventory replenishment and transportation problems in

a multi-product, three-stage, hybrid cross-docking distribution system, under both decentralized

and collaborative settings.
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APPENDIX A

SUPPLEMENT TO CHAPTER 2

Proof of Theorem 1. Consider the minimization problem given in (2.2). It follows from (2.1) that

∂fi
∂Zit

=−peeηt <−π(t) = ∂fi
∂Yijt

by Assumption 1, as long as xi−Zit−Yjit≥ 0. Thus, to fulfill his

demand, Prosumer i would first increase Zit as much as possible before resorting to using any of

Yjit. By (2.4), (2.5), and (2.6), we get

Zit ≤ min
[
(xi − Yjit)+, min(xi, Ci), Ci − Yijt, min(xi+xj, Ci+Cj)− Zjt − Yjit − Yijt

]
.

By (2.3) and (2.5), Yi :=[0, Ci] represent the strategy space of Yijt. Define

Zi(y) := min
[
(xi − y)+, min(xi, Ci), Ci − y, min(xi+xj, Ci+Cj)− Zjt − Yjit − y

]
Yijt := arg max

y∈Yi
Zi(y).

Hence, Yijt represents a maximizer of Zi over the feasible set Yi. Then, because Prosumer i

would always increase Zit at the expense of Yijt to fulfill his demand, we obtain

Zit = Zi(Yijt). (A.1)

Using (2.5) and (2.6), we then get

Y ijt = min
[
Ci − Zit, min(x1 + x2, C1 + C2)− Zjt − Yjit − Zit

]
. (A.2)

We now analyze the different cases based on the realizations of min(xi+xj, Ci+Cj), min(xi, Ci),

and min(xj, Cj). There are six such cases to consider, because neither (i) Ci+Cj >xi+xj, xi<

Ci, xj<Cj; nor ii) Ci + Cj < xi + xj, xi > Ci, xj > Cj is feasible.

Case 1. C1 + C2 ≥ x1 + x2, C1 ≥ x1, C2 ≥ x2. For a pure-strategy Nash equilibrium, we use

(A.1) to get
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Z∗1t ≤ min
[
(x1 − Y ∗21,t)

+, x1, C1 − Y ∗12,t, x1 + x2 − Z∗2t − Y ∗21,t − Y ∗12,t

]
,

Z∗2t ≤ min
[
(x2 − Y ∗12,t)

+, x2, C2 − Y ∗21,t, x2 + x1 − Z∗1t − Y ∗12,t − Y ∗21,t

]
. (A.3)

Thus, we obtain Z∗1t ≤ x1, Z
∗
2t ≤ x2. Hence, based on the definition and properties of the best

response functions in (A.1), (A.2), and (A.3), if there exists a unique pure-strategy {Z̃1t, Z̃2t, Ỹ12,t, Ỹ21,t}

such that

(x1−Ỹ21,t)
+, C1−Ỹ12,t, x1+x2−Z̃2t−Ỹ21,t−Ỹ12,t ≥ x1,

(x2−Ỹ12,t)
+, C2−Ỹ21,t, x1+x2−Z̃1t−Ỹ12,t−Ỹ21,t ≥ x2,

Ỹ12,t = min
[
C1−Z̃1t, x1+x2−Z̃2t−Y21,t−Z̃1t

]
, Ỹ12,t = min

[
C2−Z̃2t, x1+x2−Z̃1t−Y12,t−Z̃2t

]
,

(A.4)

then neither prosumer has the incentive to deviate from the given strategy set, and we can conclude

that the given strategy set is a unique Nash equilibrium. Because (A.4) holds only when Z1t =

x1, Y12,t = 0, Z2t = x2, Y21,t = 0, the unique pure-strategy Nash equilibrium is Z∗1t = x1, Y
∗

12,t =

0, Z∗2t=x2, Y
∗

21,t=0.

Case 2. C1 + C2 ≥ x1 + x2, C1 ≥ x1, C2 < x2: We use (A.1) to get

Z∗1t ≤ min
[
(x1 − Y ∗21,t)

+, x1, C1 − Y ∗12,t, x1 + x2 − Z∗2t − Y ∗21,t − Y ∗12,t

]
,

Z∗2t ≤ min
[
(x2 − Y ∗12,t)

+, C2, C2 − Y ∗21,t, x2 + x1 − Z∗1t − Y ∗12,t − Y ∗21,t

]
. (A.5)

Thus, we obtain Z∗1t ≤ x1, Z
∗
2t ≤ C2. Hence, based on the definition and properties of the best

response functions in (A.1), (A.2), and (A.5), if there exists a unique pure-strategy {Z̃1t, Z̃2t, Ỹ12,t, Ỹ21,t}

such that

113



(x1−Ỹ21,t)
+, C1−Ỹ12,t, x1+x2−Z̃2t−Ỹ21,t−Ỹ12,t ≥ x1,

(x2−Ỹ12,t)
+, C2−Ỹ21,t, x1+x2−Z̃1t−Ỹ12,t−Ỹ21,t ≥ C2,

Ỹ12,t = min
[
C1−Z̃1t, x1+x2−Z̃2t−Y21,t−Z̃1t

]
, Ỹ12,t = min

[
C2−Z̃2t, x1+x2−Z̃1t−Y12,t−Z̃2t

]
,

(A.6)

then neither prosumer has the incentive to deviate from the given strategy set, and we can conclude

that the given strategy set is a unique Nash equilibrium. Because (A.6) holds only when Z1t =

x1, Y12,t = x2−C2, Z2t = C2, Y21,t = 0, the unique Nash equilibrium is Z∗1t = x1, Y
∗

12,t = x2 −

C2, Z
∗
2t = C2, Y

∗
21,t = 0.

Case 3. C1 + C2 ≥ x1 + x2, C1 < x1, C2 ≥ x2. We use (A.1) to get

Z∗1t ≤ min
[
(x1 − Y ∗21,t)

+, C1, C1 − Y ∗12,t, x1 + x2 − Z∗2t − Y ∗21,t − Y ∗12,t

]
,

Z∗2t ≤ min
[
(x2 − Y ∗12,t)

+, x2, C2 − Y ∗21,t, x2 + x1 − Z∗1t − Y ∗12,t − Y ∗21,t

]
. (A.7)

Thus, we obtain Z∗1t ≤ C1, Z
∗
2t ≤ x2. Using the definition and properties of the best response

functions in (A.2), (A.1) and (A.7), if there exists a unique pure-strategy set {Z̃1t, Z̃2t, Ỹ12,t, Ỹ21,t}

such that

(x1−Ỹ21,t)
+, C1−Ỹ12,t, x1+x2−Z̃2t−Ỹ21,t−Ỹ12,t ≥ C1, (x2−Ỹ12,t)

+,

C2−Ỹ21,t, x1+ x2−Z̃1t−Ỹ12,t−Ỹ21,t ≥ x2,

Ỹ12,t = min
[
C1−Z̃1t, x1+x2−Z̃2t−Y21,t−Z̃1t

]
, Ỹ12,t = min

[
C2−Z̃2t, x1+x2−Z̃1t−Y12,t−Z̃2t

]
,

(A.8)

then neither prosumer has the incentive to deviate from the given strategy set, and we can conclude

that the given strategy set is a unique Nash equilibrium. Since (A.8) holds only when Z1t =

C1, Y12,t = 0, Z2t = x2, Y21,t = x1 − C1, the unique pure-strategy Nash equilibrium is Z∗1t =

C1, Y
∗

12,t=0, Z∗2t=x2, Y
∗

21,t=x1 − C1.
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Case 4. C1 + C2 < x1 + x2, C1 < x1, C2 > x2. We use (A.1) to get

Z∗1t ≤ min
[
(x1 − Y ∗21,t)

+, C1, C1 − Y ∗12,t, C1 + C2 − Z∗2t − Y ∗21,t − Y ∗12,t

]
,

Z∗2t ≤ min
[
(x2 − Y ∗12,t)

+, x2, C2 − Y ∗21,t, C1 + C2 − Z∗1t − Y ∗12,t − Y ∗21,t

]
. (A.9)

Therefore, we obtain Z∗1t≤C1, Z
∗
2t≤x2. Based on the definition and properties of the best re-

sponse functions in (A.1), (A.2), and (A.9), if there exists a unique pure-strategy {Z̃1t, Z̃2t, Ỹ12,t, Ỹ21,t}

such that

(x1−Ỹ21,t)
+, C1−Ỹ12,t, C1+C2−Z̃2t−Ỹ21,t−Ỹ12,t ≥ C1, (x2−Ỹ12,t)

+,

C2−Ỹ21,t, C1+C2−Z̃1t−Ỹ12,t−Ỹ21,t ≥ x2,

Ỹ12,t = min
[
C1−Z̃1t, C1+C2−Z̃2t−Y21,t−Z̃1t

]
, Ỹ12,t = min

[
C2−Z̃2t, C1+C2−Z̃1t−Y12,t−Z̃2t

]
,

(A.10)

then neither prosumer has the incentive to deviate from the given strategy set, and we can conclude

that the given strategy set is a unique Nash equilibrium. Since (A.10) holds only when Z1t =

C1, Y12,t = 0, Z2t = x2, Y21,t = C2−x2, we obtain the unique Nash equilibriumZ∗1t = C1, Y
∗

12,t =

0, Z∗2t = x2, Y
∗

21,t = C2 − x2.

Case 5. C1 + C2 < x1 + x2, C1 > x1, C2 < x2. We use (A.1) to get

Z∗1t ≤ min
[
(x1 − Y ∗21,t)

+, x1, C1 − Y ∗12,t, C1 + C2 − Z∗2t − Y ∗21,t − Y ∗12,t

]
,

Z∗2t ≤ min
[
(x2 − Y ∗12,t)

+, C2, C2 − Y ∗21,t, C1 + C2 − Z∗1t − Y ∗12,t − Y ∗21,t

]
. (A.11)

Thus, we obtain Z∗1t ≤ x1, Z
∗
2t ≤ C2. Hence, using the definition and properties of the best re-

sponse functions in (A.1), (A.2), and (A.11), if there exists a unique pure-strategy {Z̃1t, Z̃2t, Ỹ12,t, Ỹ21,t}

such that
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(x1−Ỹ21,t)
+, C1−Ỹ12,t, C1+ C2−Z̃2t−Ỹ21,t−Ỹ12,t ≥ x1, (x2−Ỹ12,t)

+,

C2−Ỹ21,t, C1+C2−Z̃1t−Ỹ12,t−Ỹ21,t ≥ C2,

Ỹ12,t = min
[
C1−Z̃1t, C1+C2−Z̃2t−Y21,t−Z̃1t

]
, Ỹ12,t = min

[
C2−Z̃2t, C1+C2−Z̃1t−Y12,t−Z̃2t

]
,

(A.12)

then neither prosumer has the incentive to deviate from the given strategy set, and we can conclude

that the given strategy set is a unique Nash equilibrium. Since (A.12) holds only when Z1t =

x1, Y12,t = C1−x1, Z2t = C2, Y21,t = 0, we obtain the unique Nash equilibrium Z∗1t = x1, Y
∗

12,t =

C1 − x1, Z
∗
2t = C2, Y

∗
21,t = 0.

Case 6. C1 + C2 < x1 + x2, C1 < x1, C2 < x2. We use (A.1) to get

Z∗1t ≤ min
[
(x1 − Y ∗21,t)

+, C1, C1 − Y ∗12,t, C1 + C2 − Z∗2t − Y ∗21,t − Y ∗12,t

]
,

Z∗2t ≤ min
[
(x2 − Y ∗12,t)

+, C2, C2 − Y ∗21,t, C1 + C2 − Z∗1t − Y ∗12,t − Y ∗21,t

]
. (A.13)

Thus, we get Z∗1t ≤ C1, Z
∗
2t ≤ C2. Hence, using the definition and properties of the best re-

sponse functions in (A.1), (A.2), and (A.13), if there exists a unique pure-strategy {Z̃1t, Z̃2t, Ỹ12,t, Ỹ21,t}

such that

(x1−Ỹ21,t)
+, C1−Ỹ12,t, C1+C2−Z̃2t−Ỹ21,t−Ỹ12,t ≥ C1, (x2−Ỹ12,t)

+,

C2−Ỹ21,t, C1+C2−Z̃1t−Ỹ12,t−Ỹ21,t ≥ C2,

Ỹ12,t = min
[
C1−Z̃1t, C1+C2−Z̃2t−Y21,t−Z̃1t

]
, Ỹ12,t = min

[
C2−Z̃2t, C1+C2−Z̃1t−Y12,t−Z̃2t

]
,

(A.14)

then neither prosumer has the incentive to deviate from the given strategy set, and we can conclude

that the given strategy set is a unique Nash equilibrium. Because (A.14) holds only when Z1t =

C1, Y12,t = 0, Z2t = C2, Y21,t = 0, we obtain the unique Nash equilibrium Z∗1t = C1, Y
∗

12,t =

0, Z∗2t = C2, Y
∗

21,t = 0.
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The results for the above six cases can be written as Z∗1 = min(x1, C1), Z∗2 = min(x2, C2),

Y ∗12 = min[(C1−x1)+, (x2−C2)+] and Y ∗21 = min[(C2−x2)+, (x1−C1)+]. It then directly follows

that

Fi
(
Ci, Cj, xi, xj, t, π(t)

)
=pe e

ηt
[
xi−Ci−(Cj−xj)+

]+−π(t) min
[
(Ci− xi)+, (xj−Cj)+

]
+π(t) min

[
(Cj−xj)+, (xi−Ci)+

]
.

Proof of Proposition 1. It follows from expressions (2.7) and (2.11) that

Vi(Ci, Cj, π(·)) =
1

w2

{∫ ∞
0

∫ bi

ai

∫ bj

aj

pe e
−(r−η)t

[
xi − Ci − (Cj − xj)+

]+
dxjdxidt

+

∫ ∞
0

∫ bi

ai

∫ bj

aj

π(t) e−rt
[
min

[
(Cj − xj)+, (xi − Ci)+

]
−min

[
(Ci − xi)+, (xj − Cj)+

]]
dxjdxidt

}
+ kCi.

Integrating the above expression over t, using λ = r − η and Π =
∫∞

0
e−rtπ(t)dt, yields

Vi(Ci, Cj, π(·)) =
1

w2

{∫ ∞
0

∫ bi

ai

∫ bj

aj

pe e
−λt[xi − Ci − (Cj − xj)+

]+
dxjdxidt

+

∫ ∞
0

∫ bi

ai

∫ bj

aj

π(t) e−rt
[
min

[
(Cj − xj)+, (xi − Ci)+

]
−min

[
(Ci − xi)+, (xj − Cj)+

]]
dxjdxidt

}
+ kCi.

=
1

λw2

∫ bi

ai

∫ bj

aj

pe
[
xi − Ci − (Cj − xj)+

]+
dxjdxi

+
1

w2

∫ bi

ai

∫ bj

aj

Π
[
min

[
(Cj − xj)+, (xi − Ci)+

]
−min

[
(Ci − xi)+, (xj − Cj)+

]]
dxjdxi + kCi.

(A.15)

It follows from (A.15) that the functional Vi
(
Ci, Cj, π(·)

)
can be expressed as a function

Vi(Ci, Cj,Π) of Ci, Ci and Π. Further, the first term in (A.15) is then given by
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1

λw2

∫ bj

aj

∫ bi

ai

pe
[
xi−Ci−(Cj−xj)+

]+
dxidxj

=
pe
λw2

[∫ bi

ai

∫ Cj

aj

[
xi−Ci−Cj+xj

]+
dxjdxi+

∫ bi

ai

∫ bj

Cj

[
xi−Ci

]+
dxjdxi

]
.

Let Ii(Ci, Cj) =
∫ bi
ai

∫ Cj
aj

[
xi−Ci−Cj +xj

]+
dxjdxi and Ij(Ci, Cj) =

∫ bi
ai

∫ bj
Cj

[
xi−Ci

]+
dxjdxi.

Then,

Ii =

∫ bi

Ci

∫ Cj

max[aj ,Ci+Cj−xi]
(xi − Ci − Cj + xj)dxjdxi

=

∫ bi

Ci

(xi − Ci − Cj)
[
Cj −max(aj, Ci + Cj − xi)

]
dxi +

∫ bi

Ci

[
x2
j

2

∣∣∣∣Cj
max[aj ,Ci+Cj−xi]

]
dxi.

Thus, we obtain

Ii =

∫ min[bi,Ci+Cj−aj ]

Ci

[
(xi − Ci − Cj)(xi − Ci) +

C2
j − (Ci + Cj − xi)2

2

]
dxi

+

∫ bi

min[bi,Ci+Cj−aj ]

[
(xi − Ci − Cj)(Cj − aj) +

(
C2
j

2
−
a2
j

2

)]
dxi.

We now evaluate the integrals in the above expression to arrive at

I1 =
x3
i

6

∣∣∣∣min[bi,Ci+Cj−aj ]

Ci

− (Cj + 2Ci)
x2
i

2

∣∣∣∣min(bi,Ci+Cj−aj)

Ci

+ Ci(Ci + Cj)
[
min(bi, Ci + Cj − aj)− Ci

]
− C2

i

2

[
min(bi, Ci + Cj − aj)− Ci

]
+ (Ci + Cj)

x2
i

4

∣∣∣∣min[bi,Ci+Cj−aj ]

Ci

+ (Cj − aj)
x2
i

2

∣∣∣∣bi
min(bi,Ci+Cj−aj)

− (Cj − aj)
(
Ci +

Cj
2
− aj

2

)[
bi −min(bi, Ci + Cj − aj)

]
.

The above expression for I1 depends on the value of min(bi, Ci +Cj − aj) = bi. Accordingly,

we distinguish two cases: Ci+Cj > bi+aj and Ci+Cj ≤ bi+aj . For Vj(Cj, Ci,Π), we also

distinguish separate cases for Ci+Cj>bj+ai and Ci+Cj>bj+ai. Since bi − ai = bj − aj = w,
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then bi + aj = bj + ai = ai + aj + w.

Case 1: Ci + Cj > ai + aj + w. We solve for Vi. The first term in (A.15) can be expanded as:

1

λw2

∫ bj

aj

∫ bi

ai

pe
[
xi − Ci − (Cj − xj)+

]+
dxidxj

=

∫ ai+w

ai

∫ Cj

aj

pe
λw2

[xi − Ci − Cj + xj]
+dxjdxi +

∫ ai+w

ai

∫ a2+w

Cj

pe
λw2

[xi − Ci]+dxjdxi.

=

∫ ai+w

Ci

∫ Cj

Ci+Cj−xi

pe
λw2

(xi − Ci − Cj + xj)dxjdxi +

∫ ai+w

Ci

∫ aj+w

Cj

pe
λw2

(xi − Ci)dxjdxi

=
pe

6λw2
(ai + w − Ci)2(ai + 3aj − Ci − 3Cj + 4w) (A.16)

For the remaining terms in (A.15), observe that min
[
(Ci − xi)

+, (xj − Cj)
+
]

= 0 if either

Cj − xj ≤ 0 or xi − Ci ≤ 0. Consequently, the remaining terms in (A.15) become

− Π

w2

∫ bi

ai

∫ bj

aj

min
[
(Ci − xi)+, (xj − Cj)+

]
dxjdxi +

Π

w2

∫ bi

ai

∫ bj

aj

min
[
(Cj − xj)+, (xi − Ci)+

]
dxjdxi

= − Π

w2

∫ Ci

ai

∫ aj+w

Cj

min[Ci − xi, xj − Cj]dxjdxi +
Π

w2

∫ ai+w

Ci

∫ Cj

aj

min[Cj − xj, xi − Ci]dxjdxi.

= − Π

w2

[∫ aj+w

Cj

∫ Ci+Cj−xj

ai

(xj − Cj)dxidxj +

∫ aj+w

Cj

∫ Ci

Ci+Cj−xj
(Ci − xi)dxidxj

]

+
Π

w2

[∫ ai+w

Ci

∫ Ci+Cj−xi

aj

(xi − Ci)dxjdxi +

∫ ai+w

Ci

∫ Cj

Ci+Cj−xi
(Cj − xj)dxjdxi

]

=
Π

6w2

[
(Ci − Cj − ai + aj) (A.17)

×
[
a2
i + a2

j + C2
i + 4CiCj + C2

j − 3w(Ci + Cj) + ai(4aj − 2Ci − 4Cj + 3w) + aj(−4Ci − 2Cj + 3w)
]]
.

Combining (A.16) and (A.17), we get
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Vi(Ci, Cj,Π) = kCi +
1

6λw2

[
pe(ai+w−Ci)2(ai+3aj−Ci−3Cj+4w) + λΠ(Ci−Cj−ai+aj)

(A.18)

×
[
a2
i + a2

j + C2
i + 4CiCj + C2

j − 3w(Ci + Cj) + ai(4aj − 2Ci − 4Cj + 3w) + aj(−4Ci − 2Cj + 3w)
]]
.

Case 2: C1 + C2 ≤ a1 + a2 + w. The first term in (A.15) can be expanded as

1

λw2

∫ bj

aj

∫ bi

ai

pe
[
xi − Ci − (Cj − xj)+

]+
dxidxj

=

∫ ai+w

ai

∫ Cj

aj

pe
λw2

[xi − Ci − Cj + xj]
+dxjdxi +

∫ ai+w

ai

∫ aj+w

Cj

pe
λw2

[xi − Ci]+dxjdxi

=

∫ Cj

aj

∫ ai+w

Ci+Cj−xj

pe
λw2

(xi − Ci − Cj + xj)dxidxj +

∫ ai+w

Ci

∫ aj+w

Cj

pe
λw2

(xi − Ci)dxjdxi

=
pe

6λw2

[
− a3

j + 3CiC
2
j + C3

j − 3ajCj(2Ci + Cj − 2w) + 3a2
j(Ci + Cj − w)

+ 3wa2
i + 3wC2

i − 3wC2
j − 6wjCi + 3w3 − 3a1

[
a2
j − 2ajCj + C2

j + 2w(Ci − w)
]]
(A.19)

Similarly, we expand the remaining terms in (A.15) to get

− Π

w2

∫ bi

ai

∫ bj

aj

min
[
(Ci − xi)+, (xj − Cj)+

]
dxjdxi +

Π

w2

∫ bi

ai

∫ bj

aj

min
[
(Cj − xj)+, (xi − Ci)+

]
dxjdxi

=− Π

w2

∫ Ci

ai

∫ aj+w

Cj

min[Ci − xi, xj − Cj]dxjdxi +
Π

w2

∫ ai+w

Ci

∫ Cj

aj

min[Cj − xj, xi − Ci]dxjdxi.

=− Π

w2

[∫ Ci

ai

∫ Ci+Cj−xi

aj

(xj − Cj)dxjdxi +

∫ Ci

ai

∫ aj+w

Ci+Cj−xi
(Ci − xi)dxjdxi

]

+
Π

w2

[∫ Cj

aj

∫ ai+w

Ci+Cj−xj
(Cj − xj)dxidxj +

∫ Cj

aj

∫ Ci+Cj−xj

Ci

(xi − Ci)dxidxj

]
,

so that the remaining terms in (A.15) become
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Π

6w2

[
(Ci − Cj − ai + aj) (A.20)

×
[
a2
i + a2

j + C2
i + 4CiCj + C2

j − 3w(Ci + Cj) + ai(4aj − 2Ci − 4Cj + 3w) + aj(−4Ci − 2Cj + 3w)
]]
.

Combining (A.19) and (A.20), we get

V1(Ci, Cj,Π) = kCi +
1

6λw2

{
pe

[
−a3

j + 3CiC
2
j + C3

j − 3ajCj(2Ci + Cj − 2w) + 3a2
j(Ci + Cj − w)

+ 3wa2
i + 3wC2

i − 3wC2
j − 6w2Ci + 3w3 − 3ai

[
a2
j − 2ajCj + C2

j + 2w(Ci − w)
]]

(A.21)

+λΠ(Ci−Cj−ai+aj)

×
[
a2
i +a

2
j+C

2
i +4CiCj+C

2
j −3w(Ci+Cj)+ai(4aj−2Ci−4Cj+3w)+aj(−4Ci−2Cj+3w)

]}
. �

In what follows, we make use of the following Lemma.

Lemma 5. For any marginal value of energy traded Π∈
[
0, pe

λ

)
, C∗2(Π) = C∗1(Π) + a2 − a1.

Proof. Fix Π. Define X̂ :=X1−a1 +a2, so that X̂ is a random variable uniformly distributed on

I2 =[a2, b2]. Let x̂ be a realization of X̂ . Let C∗2(Π) be the optimal capacity selection for Prosumer

2. Then,
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V1

(
C1, C

∗
2(Π), π(·)

)
=

∫ ∞
0

e−rt EX1,X2

[
F1(C1, C

∗
2(Π), x1, x2, t, π(t))

]
dt+ kC1

=
1

w2

{∫ ∞
0

∫ b1

a1

∫ b2

a2

pe e
−(r−η)t

[
x1 − C1 − (C∗2(Π)− x2)+

]+
dx2dx1dt

+

∫ ∞
0

∫ b1

a1

∫ b2

a2

π(t) e−rt
[
min

[
(C∗2(Π)− x2)+, (x1 − C1)+

]
−min

[
(C1 − x1)+, (x2 − C∗2(Π))+

]]
dx2dx1dt

}
+ kC1

= kC1 +
1

w2

{∫ ∞
0

∫ b2

a2

∫ b2

a2

pe e
−(r−η)t

[
x̂− a2 + a1 − C1 −

[
C∗2(Π)− x2

]+]+

dx2 dx̂ dt

+

∫ ∞
0

∫ b2

a2

∫ b2

a2

π(t) e−rt
[
min

[
(C∗2(Π)−x2)+, (x̂−a2+a1−C1)+

]
−min

[
(C1−x̂+a2−a1)+,

(
x2−C∗2(Π)

)+]]
dx2dx̂dt

}
=

∫ ∞
0

e−rt EX̂,X2

[
F1(C1 + a2 − a1, C

∗
2(Π), x1, x2, t, π(t)

]
dt+ kC1. (A.22)

It follows from (2.8) and (2.9) that C∗1 = arg minC1
V (C1, C

∗
2). Using (A.22) we thus obtain

that

C∗1 = arg min
C1

{∫ ∞
0

e−rt EX̃,X2
[F1(C1 + a2 − a1, C

∗
2 , x1, x2)]dt+ kC1

}
= arg min

C1

{∫ ∞
0

e−rt EX̃,X2
[F1(C1 + a2 − a1, C

∗
2 , x1, x2)]dt+ k(C1 + a2 − a1)

}
, (A.23)

where the last equality holds since k(a2 − a1) is constant. Expression (A.23) thus represents the

capacity selection problem of a Prosumer with demand X̃ , who invests in capacity C1+a2−a1 to

minimize his expected cost, given the marginal value of energy traded Π. Since that consumer’s

electricity demand X̃ and the Prosumer 2’s demandX2 are identical by definition of X̃ , his optimal

capacity must be C∗2(Π). Since his optimal capacity investment from (A.23) is given by C∗1(Π)+

a2−a1, it follows that C∗1(Π)+a2−a1 =C∗2(Π). �

Proof of Proposition 2. Because, by Theorem 1, for each Prosumer i, the functional Vi
(
Ci, Cj, π(·)

)
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can be expressed as a function Vi(Ci, Cj,Π) of Ci, Ci and Π, then it follows from expressions (2.8)

and (2.9 that the functional C∗i
(
π(·)) can be also expressed as a function of the marginal value of

energy traded in a virtual microgrid (i.e., C∗i (Π)). Next, fix Π. We first show that C∗i (Π) ≤ bi. Let

b̃1 = b1 + ε for some ε > 0. Suppose C∗1(Π) = b̃1. We use Lemma 5 to obtain that

C∗2(Π) = C∗1(Π) + a2 − a1 = b̃1 + b2 − b1 = b̃2 > b2,

since b̃ > b1. It follows from (2.11) that

F1

(
C∗1(Π), C∗2(Π), x1, x2, t,Π

)
=F1

(
b̃1, b̃2, x1, x2, t,Π

)
=pee

it
[
x2 − b̃2 − b̃1 + x1

]+
+ min π(t)eηt

[
b̃1 − x1, (x2 − b̃2)+

]
=0,

since C∗1(Π) = b̃1 > b1 ≥ x1 for every x1 ∈ I1, and C∗2(Π) = b̃2 > b2 ≥ x2 for every x2 ∈ I2. It

then follows from (2.11) that V1

(
C∗1(Π), C∗2(Π)

)
= V1(b̃1, b̃2,Π) = kb̃1.

Let C̃1 = b1, so that, by Lemma 5, C̃2 = C̃1 + a2 − a1 = b2. Using (2.11), we then obtain

V1(C̃1, C̃2,Π) = V (b1, b2,Π) = kb1. Consequently,

V1

(
C∗1(Π), C∗2(Π),Π

)
− V1

(
C̃1, C̃2,Π

)
= k(b̃1 − b1) = kε > 0.

Since V1

(
C∗1(Π), C∗2(Π),Π

)
> V1

(
C̃1, C̃2,Π

)
, we obtain a contradiction of our assumption that

C∗1(Π) = b̃1 > b1 is the optimal capacity investment for consumer 1. It follows that C∗1(Π) ≤ b1.

Next, we show C∗i (Π) ≥ a. Let ã1 = a1−ε for some ε > 0. Assume C∗1(Π) = ã1. Then, by

Lemma 5,

C∗2(Π) = C∗1(Π) + a2 − a1 = ã1 + a2 − a1 = ã2 < a2,

since ã1 < a1. It follows from (2.11) that

F1

(
C∗1(Π), C∗2(Π), x1, x2, t,Π) = F1(ã1, ã2, x1, x2, t,Π) = pe(x1 − ã1),

since C∗1(Π) = ã1<x1 for every x1 ∈ I1, and C∗2(Π) = ã2<x2 for every x2∈ I2. We use (2.11) to

get
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V1

(
C∗1(Π), C∗2(Π),Π

)
= V1(ã1, ã2,Π) =

∫ ∞
0

e−λt E
[
F1(ã1, ã2, x1, x2, t,Π)

]
dt+ kã1

=
pe
λw2

∫ b1

a1

∫ b2

a2

pe(x1 − ã1)dx2dx1 + kã1 =
pe
λw

∫ b1

a1

(x1 − ã1) dx1 + kã1

=
pe(b1 + a1)

2λ
− peã1

λ
+ kã1.

Define C̃1 := a1, so that C̃2 = C̃1 + a2− a1 = a2. Using identical steps to those above, we get

V1(C̃1, C̃2,Π) = V1(a1, a2,Π) =
pe(b1 + a1)

2λ
− pea1

λ
+ ka1.

It follows that

V1

(
C∗1(Π), C∗2(Π),Π

)
− V1

(
C̃1, C̃2,Π

)
=
pe(a1 − ã1)

λ
+ k(ã1 − a1) = (a1 − ã1)

(pe
λ
− k
)
> 0.

Since V1

(
C∗1(Π), C∗2(Π),Π

)
> V1

(
C̃1, C̃2,Π

)
, we obtain a contradiction with our assumption

that C∗1(Π) = ã1 is the optimal capacity investment for consumer 1. It follows that C∗1(Π) ≥ a1.

�

Proof of Theorem 2. We consider two cases: C1 +C2 > a1 + a2 +w and C1 +C2 ≤ a1 + a2 +w.

Case 1: C1 + C2 > a1 + a2 + w. To simplify notation, for i , j ∈ 1, 2 and i 6= j, we make use of

bi = ai + w. Using expression (2.13), we differentiate Vi with respect to Ci to obtain

∂Vi
∂ Ci

= k +
1

λw2

[pe
2

(Ci − ai + w)(ai + 2aj − Ci − 2Cj + 3w) (A.24)

+
λΠ

2

[
a2
i − a2

j − 2ajCi + C2
i + 2ajCj + 2CiCj − C2

j − 2Ciw + 2ai(aj − Ci − Cj + w)
]]

= 0.

(A.25)

Further,

∂2Vi
∂ C2

i

=
(pe − λΠ)(ai + w − Ci + aj + w − Cj) + λΠw

λw2
. (A.26)
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Since ai + w − Ci > 0 for i ∈ 1, 2, then for any Π ∈
[
0, pe

λ

]
, ∂2Vi
∂ C2

i
> 0. Therefore, we use

(A.24) to get

Ci(Cj,Π) = ai+aj+2w−Cj+
λΠw−

√
(Cj−aj)2(p2

e−3peλΠ+2(λΠ)2)−2w(pe−λΠ)2(Cj−aj)+W
pe − λΠ

,

(A.27)

whereW = 2aj(pe−λΠ)w2(p2
e−peλΠ+(λΠ)2+2kλ(pe−λΠ)). BecauseC∗i (Π) =Ci(Cj(C

∗
i (Π)),Π)

by (2.9), solving for C∗i (Π) we get

C∗i (Π) = ai + w −
√

6λkpe − 4λkλΠ + (λΠ)2 − λΠ

3pe − 2λΠ
w. (A.28)

Since λΠ ≤ pe, the term under the square root in expression (A.28) is positive. Thus, C∗1(Π)

and C∗2(Π) exist and are well-defined. We now determine conditions for C∗1(Π) + C∗2(Π) > a1 +

a2 + w to hold. Using (A.28), we can rewrite C∗1(Π) + C∗2(Π) > a1 + a2 + w as

w

(
3

2
pe −

√
6λkpe − 4λ2kΠ + λ2Π2

)
> 0.

Since w > 0, for C∗1(Π) + C∗2(Π)> a1 + a2 + w to hold, it is sufficient (and necessary) that

3
2
pe−

√
6λkpe − 4λ2kΠ + λ2Π2 > 0. Because 3

2
pe+

√
6λkpe−4λ2kΠ+λ2Π2 > 0, this condition

translates into

[
3

2
pe −

√
6λkpe − 4λkλΠ + λ2Π2

]
×
[

3

2
pe +

√
6λkpe − 4λ2kΠ + λ2Π2

]
=

9

4
p2
e − 6λkpe + 4λ2kΠ− λ2Π2 > 0.

Let ζ1(Π) := 9
4
p2
e − 6λkpe + 4λ2kΠ− λ2Π2. Then, we have

ζ1(Π) = (λΠ− 4kλ+
3

2
pe)(

3

2
pe − λΠ).

Since λΠ ≤ pe by assumption, then ζ1(Π) > 0 if and only if Π > 4k − 3pe
2λ

.
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Case 2: C1 + C2 ≤ a1 + a2 + w. Using (2.14), we differentiate Vi with respect to Ci for to obtain

∂Vi
∂ Ci

= k +
1

λw2

[pe
2

[
a2
j − 2ajCj + C2

j − 2w(ai − Ci − w)
]

(A.29)

+
λΠ

2

[
a2
i − a2

j − 2ajCi + C2
i + 2ajCj + 2CiCj − C2

j − 2Ciw + 2ai(aj − Ci − Cj + w)
]]

= 0.

(A.30)

Differentiating further, we obtain

∂2Vi
∂ C2

i

=
w(pe − λΠ) + (−ai − aj + Ci + Cj)λΠ

λw2
.

Since λΠ ∈ [0, pe], then ∂2Vi
∂ C2

i
≥ 0 for all Ci ∈ Ii for i ∈ 1, 2. Using (A.29), for i , j ∈ 1, 2 and

i 6= j we get

Ci(Cj,Π)=ai+aj − Cj

+

√
2w(pe − λΠ)(C2 − a2)− (C2 − a2)2(pe − 2λΠ)λΠ + w2(p2

e + λ2Π(Π− 2k))+λΠ−pe
λΠ

.

Hence, because C∗i (Π) =Ci(Cj(C
∗
i (Π)),Π) by (2.9), solving for C∗i (Π) we get

C∗i (Π) = ai +
w
[√

3p2
e − 4λ2kΠ + λ2Π2 + 2peλ(Π− k) + λΠ− pe

]
pe + 2λΠ

. (A.31)

Next, we show that the term under the square root in (A.31) is positive. Since

3p2
e − 4λ2kΠ + λ2Π2 + 2peλ(Π− k) = −(4λΠ + 2pe)λk + 3p2

e + 2peλΠ + λ2Π2,

and −(4λΠ + 2pe) < 0, it follows that for any λk < pe

−(4λΠ + 2pe)λk + 3p2
e + 2peλΠ + λ2Π2 > −(4λΠ + 2pe)λk + 3p2

e + 2peλΠ + λ2Π2
∣∣
λk=pe

= (pe − λΠ)2 ≥ 0.

Next, we specify conditions under which C∗1(Π) + C∗2(Π) ≤ a1 + a2 + w should hold true.
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Using (A.31), after algebraic manipulations, we rewrite C∗1(Π) + C∗2(Π) ≤ a1 + a2 + w as

3

4
p2
e + Π(Π− 4kλ) + 2pe(Π− kλ) ≤ 0. (A.32)

Define ζ2(Π) := 3
4
p2
e+λ

2Π(Π−4k)+2peλ(Π−k). Then, ζ2(Π) =
(
λΠ + pe

2

) (
λΠ− 4kλ+ 3

2
pe
)
.

If λΠ ≤ 4kλ − 3
2
pe, then ζ2 ≤ 0. Therefore, we conclude that, if Π ≤ 4k − 3pe

2λ
, then C∗1(Π) +

C∗2(Π) ≤ a1 + a2 + w.

We next show that the expressions for C∗i (Π) in (A.31) are strictly positive by showing that

√
3p2

e − 4λ2kΠ + λ2Π2 + 2peλ(Π− k) + λΠ− pe > 0.

Since λΠ ≤ pe, we obtain that
√

3p2
e − 4λ2kΠ + λ2Π2 + 2peλ(Π− k)−λΠ +pe > 0. Hence,

because

[√
3p2

e − 4λ2kΠ + λ2Π2 + 2peλ(Π− kλ) + λΠ− pe
]

×
[√

3p2
e − 4λ2kΠ + λ2Π2 + 2peλ(Π− k)− λΠ + pe

]
= 2(pe + 2λΠ)(pe − λk) > 0,

it follows that
√

3p2
e − 4λ2Πk + λ2Π2 + 2peλ(Π− k)+λΠ−pe > 0. Thus, C∗i (Π) is strictly pos-

itive.

Next, we establish that C∗i (Π) is continuous in Π. Let CAi (Π) and CBi (Π) be as established in

(A.28), (A.31). Then, CAi (4k − 3pe
2λ

) = CBi (4k − 3pe
2λ

) = bi+ai
2

which completes the proof. �.

Proof of Proposition 3. Based on Theorem 2, we distinguish two cases.

Case 1: Π>4k− 3pe
2λ

. Then, C∗i (Π)=CAi (Π). We first show that ∂C
A
i

∂pe
> 0. By Theorem 2, we get

∂CAi
∂pe

=
3(bi − ai)

(
λ2Π2 + 3kλpe − 2kλ2Π− λΠ

√
λ2Π2 + 6kpeλ− 4kλ2Π

)
(3pe − 2λΠ)2

√
6kpeλ− 4kλ2Π + λ2Π2

.

Let γ(pe) :=λ2Π2+3kλpe−2kλ2Π−λΠ
√
λ2Π2+6kpeλ−4kλ2Π. Then, to show that ∂C

A
i

∂pe
>0,
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it suffices to show that γ(pe)>0. Since λΠ≤pe by assumption, then 3kλpe−2kλ2Π>0. Thus, we

obtain λ2Π2+3kλpe−2kλ2Π+λΠ
√
λ2Π2+6kpeλ−4kλ2Π>0. Hence, to show that γ(pe) > 0, it

suffices to show that

γ(pe)×
[
λ2Π2 + 3kλpe − 2kλ2Π + λΠ

√
λ2Π2 + 6kpeλ− 4kλ2Π

]
= k2λ2(3pe − 2λΠ)2 > 0.

Since λΠ ≤ pe, then k2λ2(3pe − 2λΠ)2 > 0. Thus, we conclude that ∂ CA1
∂pe

> 0. Finally, by

Theorem 2,

∂CAi
∂k

= − λ(bi − ai)√
6λkpe − 4λ2kΠ + λ2Π2

< 0.

Case 2: Π≤ 4k− 3pe
2λ

. Then, C∗i (Π) =CBi (Π). We first show that ∂CBi
∂pe

> 0. Using Theorem 2, we

get

∂CBi
∂pe

=
kλ(pe + 2λΠ) + λΠ(5pe + λΠ)− 3λΠ

√
3p2

e − 4λ2kΠ + λ2Π2 + 2peλ(Π− k)

(pe + 2λΠ)2
√

3p2
e − 4λ2kΠ + λ2Π2 + 2peλ(Π− k)

.

(A.33)

Define Λ(Π) := kλ(pe+2λΠ)+λΠ(5pe+λΠ)−3λΠ
√

3p2
e − 4λ2kΠ + λ2Π2 + 2peλ(Π− k).

It follows from (A.33) that ∂C
B
i

∂pe
> 0 if and only if Λ(Π) > 0. Observe that kλ(pe+2λΠ)+λΠ(5pe+

λΠ) + 3λΠ
√

3p2
e − 4λ2kΠ + λ2Π2 + 2peλ(Π− k) > 0 for any case. Thus, to show Λ(Π) > 0, it

suffices to show

Λ(Π)×
[
kλ(pe+2λΠ)+λΠ(5pe+λΠ)+3λΠ

√
3p2

e−4λ2kΠ+λ2Π2+2pe(λΠ−kλ)
]

=(pe+2λΠ)2(k2λ2+10kλ2Π−2λ2Π2)>0.

Let φ(Π):=(pe+2λΠ)2(k2λ2+10kλ2Π−2λ2Π2). Since λΠ≤4λk−3
2
pe then 10kλ2Π−2λ2Π2 =

2λΠ(5kλ−λΠ)>0. Thus, we obtain that φ(Π) > 0 and ∂CBi
∂pe

> 0. Finally, by Theorem 2,

∂CBi
∂k

= − λ(bi − ai)√
3p2

e − 4λ2kΠ + λ2Π2 + 2pe(λΠ− λk)
< 0. �
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Proof of Proposition 4. We first re-parameterize CAi and CBi with µXi , σ. Since µXi = (ai + bi)/2,

and σi=(bi−ai)2/12, then it follows that ai = µXi −
√

3σ and bi = µXi +
√

3σ. We thus obtain

CAi (µXi , σ) := µXi +
√

3σ −
√

6λkpe − 4λ2kΠ + λ2Π2 − λΠ

3pe − 2λΠ

√
12σ, (A.34)

CBi (µXi , σ) := µXi −
√

3σ +

√
3p2

e − 4λ2kΠ + λ2Π2 + 2pe(λΠ− kλ) + λΠ− pe
pe + 2λΠ

√
12σ.

(A.35)

It follows that ∂CAi
∂µXi

=
∂CBi
∂µXi

= 1 > 0. Next, we show that ∂C
A
i

∂σ
> 0. Using (A.34) we get

∂CAi
∂σ

=

√
3(3pe − 2

√
λ2Π2 + 6λkpe − 4λ2kΠ)

3pe − 2π
.

We show that 3pe−2
√
λ2Π2 + 6λkpe − 4λ2kΠ > 0. Since 3pe+2

√
λ2Π2 + 6λkpe − 4λ2kΠ >

0, to show that 3pe − 2
√
λ2Π2 + 6λkpe − 4λ2kΠ > 0, it suffices to establish that

[
3pe − 2

√
λ2Π2 + 6λkpe − 4λ2kΠ

]
×
[
3pe + 2

√
λ2Π2 + 6λkpe − 4λ2kΠ

]
= (3pe − 2λΠ)(3pe + 2λΠ− 8λk) > 0.

Since λΠ>4λk− 3
2
pe, then 3pe+2λΠ−8λk>0. Thus, (3pe−2λΠ)(3pe+2λΠ−8λk)>0, and

∂CAi
∂σ

>0.

Finally, we show that ∂C
A
i

∂σ
< 0. Using (A.35) we get

∂CBi
∂σ

=

√
3
(
−3pe + 2

√
3p2

e + λΠ(λΠ− 4λk) + 2pe(λΠ− λk)
)

pe + 2λΠ
.

Since 3pe+2
√

3p2
e+λΠ(λΠ−4λk)+2pe(λΠ− λk)>0, to show that

−3pe+2
√

3p2
e+λΠ(λΠ−v4λk)+2pe(λΠ− λk)<0, it suffices to show that
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[
−3pe + 2

√
3p2

e + λΠ(λΠ− 4λk) + 2pe(λΠ− λk)
]

×
[
3pe + 2

√
3p2

e + λΠ(λΠ− 4λk) + 2pe(λΠ− λk)
]

= (pe + 2λΠ)(3pe + 2λΠ− 8λk) < 0.

Since λΠ≤4λk−3
2
pe, then 3pe+2λΠ−8λk≤0. Thus, we get (pe+2λΠ)(3pe+2λΠ−8λk)<0 and

∂CBi
∂σ

<0. �

Proof of Proposition 5. Based on Theorem 2, we distinguish two cases.

Case 1: Π > 4k − 3pe
2λ

. Then, C∗i (Π) = CAi (Π), and using (2.13) we get

V ∗1 (Π) = kC∗1 +
1

6λw2

{
pe(a1 + w − C∗1)2(a1 + 3a2 − C∗1 − 3C∗2 + 4w) + λΠ

[
(C∗1 − C∗2 − a1 + a2)

× (a2
1+a2

2+(C∗1)2+4C∗1C
∗
2 +(C∗2)2−3w(C∗1 +C∗2)+a1(4a2−2C∗1−4C∗2 +3w)+a2(−4C∗1−2C∗2 +3w)

]}
.

By Lemma 5, C∗2(Π) = C∗1(Π) + a2 − a1. We use this equivalence in the above expression to

get

V ∗1 (Π) = kC∗1 +
1

6λw2

[
pe(a1 + w − C∗1)2(a1 + 3a2 − C∗1 − 3C∗2 + 4w)

]
= k
[
a1 + w − Ω(Π)w

]
+

2pe
[
Ω(Π)w

]3
3λw2

= k
[
b1 − (b1 − a1)Ω(Π)

]
+

2pe(b1 − a1)

3λ
Ω3(Π).

Using similar steps, we obtain that

V ∗2 (Π) = k
[
b2 − (b2 − a2)Ω(Π)

]
+

2pe(b2 − a2)

3λ
Ω3(Π).

Case 2: Π ≤ 4k − 3pe
2λ

. Then, C∗i (Π) = CBi (Π), and using (2.14) we get
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V ∗1 (Π) = kC∗1 +
1

6λw2

{
pe

[
− a3

2 + 3C∗1(C∗2)2 + (C∗2)3 − 3a2C
∗
2(2C∗1 + C∗2 − 2w) + 3a2

2(C∗1 + C∗2 − w)

+3wa2
1+3w(C∗1)2−3w(C∗2)2−6w2C∗1 +3w3−3a1

[
a2

2−2a2C
∗
2 +(C∗2)2+2w(C∗1−w)

]]
+λΠ(C∗1−C∗2−a1+a2)

×
[
a2

1+a2
2+(C∗1)2+4C∗1C

∗
2 +(C∗2)2−3w(C∗1 +C∗2)+a1(4a2−2C∗1−4C∗2 +3w)+a2(−4C∗1−2C∗2 +3w)

]}
.

Using again the identity C∗2(Π) = C∗1(Π) + a2 − a1, the above expression can be reduced to

V ∗1 (Π) = kC∗1 +
pe

6λw2

{
−a3

2 + 3C∗1(C∗2)2 + (C∗2)3 − 3a2C
∗
2(2C∗1 + C∗2 − 2w) + 3a2

2(C∗1 + C∗2 − w)

+ 3wa2
1 + 3w(C∗1)2 − 3w(C∗2)2 − 6w2C∗1 + 3w3 − 3a1

[
a2

2 − 2a2C
∗
2 + (C∗2)2 + 2w(C∗1 − w)

]}
= k
[
a1+wΦ(Π)

]
+
pe
[
3−6Φ(Π)+4Φ3(Π)

]
6λ

w

= k
[
a1+(b1−a1)Φ(Π)

]
+
pe(b1−a1)

[
3−6Φ(Π)+4Φ3(Π)

]
6λ

.

Using similar steps, we obtain

V ∗2 (Π) = k
[
a2+(b2−a2)Φ(Π)

]
+
pe(b2−a2)

[
3−6Φ(Π)+4Φ3(Π)

]
6λ

. �

In what follows, we make use of a technical result concerning the preservation of unimodal

functions under functional composition. As far as we know, this result is new to the literature.

Lemma 6. Let g : R+ → R+ be a continuous, monotone function and h : R+ → R+ be a

continuous, unimodal function with a finite minimizer (maximizer) y∗. Let f be defined as f=h ◦ g.

Let x∗ := g−1 (y∗). Then, the following hold:

(a) f is unimodal;

(b) x∗ is a minimizer (maximizer) of f ;

(c) If y∗ is the unique minimizer (maximizer) of h, then x∗ is the unique minimizer (maximizer) of

f .
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Proof. Because g is monotone (and in the paper we use all the regularity properties in their ‘strict’

sense) then g−1 is well-defined. Further, because g is continuous and monotone, then g−1 is con-

tinuous and monotone as well. Since y∗ is finite by assumption, then because g−1 is continuous,

x∗ is also finite.

If g is increasing then g(x)<y∗ for any x<x∗, and g(x)>y∗ for any x>x∗. If g is decreasing,

then g(x) > y∗ for any x < x∗, and g(x) < y∗ for any x > x∗.

Suppose first that h has a finite minimizer y∗. Then, because h is unimodal, for any y1 < y2 ≤

y∗, we have that h(y1) ≥ h(y2) ≥ h(y∗). Also, for any y1 > y2 > y∗, we have h(y1) ≥ h(y2) ≥

h(y∗).

Suppose first that g is increasing. Let x∗ be as defined in the Lemma. Then, for any x1 <

x2 < x∗, we have that g(x1) < g(x2) < g(x∗) = y∗. Therefore, h
(
g(x1)

)
≥ h

(
g(x2)

)
≥

h
(
g(x∗)

)
= h(y∗) as established above because h is unimodal. Thus, for any x1 < x2 < x∗,

f(x1) ≥ f(x2) ≥ f(x∗). Similarly, for any x1 > x2 > x∗, we have that g(x1) > g(x2) > g(x∗) =

y∗. It follows that h
(
g(x1)

)
≥ h

(
g(x2)

)
≥ h

(
g(x∗)

)
= h(y∗); therefore, for any x1 > x2 > x∗,

f(x1) ≥ f(x2) ≥ f(x∗). It follows that f is unimodal, with a minimizer x∗.

Suppose next that g is decreasing. Then, for any x1 < x2 < x∗, we have that g(x1) > g(x2) >

g(x∗) = y∗. Therefore, h
(
g(x1)

)
≥ h

(
g(x2)

)
≥ h

(
g(x∗)

)
= h(y∗) as established above because

h is unimodal. Thus, for any x1 < x2 < x∗, f(x1) ≥ f(x2) ≥ f(x∗). Similarly, for any

x1 > x2 > x∗, we have that g(x1) < g(x2) < g(x∗) = y∗. It follows that h
(
g(x1)

)
≥ h

(
g(x2)

)
≥

h
(
g(x∗)

)
= h(y∗); therefore, for any x1 > x2 > x∗, f(x1) ≥ f(x2) ≥ f(x∗). It follows that f is

unimodal, with a minimizer x∗. This completes the proof of parts (a) and (b).

To prove part (c), let y∗ be the unique minimizer of h. Assume x∗ is not a unique minimizer of

f . Let x̃, x̃ 6= x∗ be another minimizer of f . Then, since f is unimodal, we have f(x̃) = f(x∗).

Hence, h
(
g(x̃)

)
= h

(
g(x∗)

)
= h(y∗). Since h is unimodal by assumption, it follows that g(x̃) is

another minimizer of h. Further, since g is monotone and x̃ 6= x∗, we get that g(x̃) 6= y∗. This

implies that h does not have a unique minimizer, which contradicts the original assumption; hence,

y∗ is the unique minimizer. The proof when h has a unique finite maximizer follows the same
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steps. �

For the proofs of Theorems 3 and 4, we make use of the following Lemma.

Lemma 7. For any Π∈
[
0, pe

λ

)
, the optimal capacity selection C∗i (Π) is increasing in Π.

Proof. Based on Theorem 2, we distinguish two cases.

Case 1. Π > 4k − 3pe
2λ

. Then, C∗i (Π) = CAi (Π). We use Theorem 2 to get

∂CAi
∂Π

=
(bi − ai)

(
4kλ2Π− 3peλΠ− 6kλpe + 3pe

√
λ2Π2 + 6kpeλ− 4kλ2Π

)
(3pe − 2λΠ)2

√
6kpeλ− 4kλ2Π + λ2Π2

. (A.36)

Define r(Π) := 4kλ2Π− 3peπ− 6kλpe + 3pe
√
λ2Π2 + 6kpeλ− 4kλ2Π. To show ∂CAi

∂π
> 0, it

suffices to show that r(Π) > 0. Since λΠ ≤ pe, and kλ < pe at any case, it follows that−4kλ2Π+

3peλΠ+6kλpe > 0. Thus, we obtain−4kλ2Π+3peλΠ+6kλpe+3pe
√
λ2Π2 + 6kpeλ− 4kλ2Π >

0. Hence, because

r(Π)×
[
−4kλ2Π + 3peλΠ + 6kλpe + 3pe

√
λ2Π2 + 6kpeλ− 4kλ2Π

]
= 4kλ(3pe − 2λΠ)2(pe − kλ) > 0.

we obtain r(Π) > 0 and conclude that ∂C
A
i

∂Π
> 0.

Case 2. Π ≤ 4k − 3pe
2λ

. Then, C∗i (Π) = CBi (Π). We use Theorem 2 to get

∂CBi
∂Π

=
(bi − ai)

(
3pe
√

3p2
e − 4λ2kΠ + λ2Π2 + 2pe(λΠ− kλ) + 2kλ(pe + 2λΠ)− pe(5pe + λΠ)

)
(pe + 2λΠ)2

√
3p2

e − 4λ2kΠ + λ2Π2 + 2pe(λΠ− kλ)
.

(A.37)

Let R(Π) := 3pe
√

3p2
e − 4λ2Πk + λ2Π2 + 2pe(λΠ− kλ) + 2kλ(pe + 2λΠ)− pe(5pe + λΠ).

It suffices to show that R(Π) > 0 to show ∂CBi
∂Π

> 0. Since λΠ ≤ pe and kλ < pe, we obtain that

for any Π, 3pe
√

3p2
e − 4λ2Πk + λ2Π2 + 2pe(λΠ− kλ) − 2kλ(pe + 2λΠ) + pe(5pe + λΠ) > 0.

Because
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R(Π)×
[
3pe
√

3p2
e − 4λ2Πk + λ2Π2 + 2pe(λΠ− kλ)− 2kλ(pe + 2λΠ) + pe(5pe + λΠ)

]
= 2(pe + 2λΠ)2(p2

e + kλpe − 2k2λ2) > 0,

we obtain R(Π) > 0 and ∂CBi
∂Π

> 0. �

Proof of Theorem 3. Determining the minimizer of V ∗i (Π) requires multiple steps due the fact

that V ∗i , as given in Proposition 5, is defined by two distinct segments neither of which is convex

in Π. In what follows, Let Ω,Φ :
[
0, pe

λ

)
→R+ be as defined in Proposition 5. Define functions VAi

and VBi as

VAi (Ω) := k
[
bi − (bi − ai)Ω

]
+

2pe(bi − ai)
3λ

Ω3 (A.38)

VBi (Φ) :=
pe(bi − ai)(4Φ3 − 6Φ + 3)

6λ
+ (ai + (bi − ai)Φ)k. (A.39)

Following Theorem 2, we now distinguish two cases.

Case 1: Π>4k− 3pe
2λ

. Then, C∗i =CAi . By Proposition 5, we then have V ∗i (Π) = VAi
(
Ω(Π)

)
. Since

Ω(Π) > 0 for any Π ∈
[
0, pe

λ

]
, we get

∂2V ∗i
∂Ω2

=
∂2VAi
∂Ω2

=
4(bi − ai)pe

λ
Ω > 0.

Thus, for any Π ∈
[
0, pe

λ

]
, VAi is convex, and thus unimodal in Ω. Let Ω∗i be defined by

∂VAi
∂Ω

∣∣∣∣
Ω=Ω∗

i

=
2(bi − ai)pe

λ
(Ω∗i )

2 − k(bi − ai) = 0, (A.40)

which leads to

Ω∗i =

√
kλ

2pe
.

We now verify that the remaining assumptions of Lemma 6 hold for functions VAi and Ω. First,

using the definition of Ω, it follows from Theorem 2, that CAi = bi − Ωw. Therefore,
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∂CAi
∂Π

=
∂

∂Π
(bi − Ωw) = −w∂Ω

∂Π
> 0.

By Lemma 7, optimal capacity C∗i (Π, pe) is increasing Π. Therefore, ∂C
A
i

∂Π
> 0. It follows that

∂Ω
∂Π
<0 since w>0. Thus, Ω is monotone in Π. It is straightforward that Ω is continuous in π.

Since λΠ > 4λk− 3
2
pe by assumption, then Ω(Π) is defined on the following disjoint intervals:

(k,Π) ∈
(

0,
3pe
8λ

)
×
[
0,
pe
λ

]
; and (k,Π) ∈

(
3pe
8λ

,
5pe
8λ

)
×
(

4k − 3pe
2λ

,
pe
λ

]
.

Since ∂Ω
∂Π
<0, then Ω(Π) ∈

[
Ω
(
pe
λ

)
,Ω(0)

]
for k∈

(
0, 3pe

8λ

)
, and Ω(Π)∈

[
Ω
(
pe
λ

)
,Ω
(
4k − 3pe

2λ

)]
for k∈

[
3pe
8λ
, 5pe

8λ

)
. Our objective is to prove that Ω∗i is the unique minimizer of VAi when k ∈

(
0, pe

2λ

)
.

For that purpose, we will first show that Ω
(
pe
λ

)
≤ Ω∗i ≤ Ω(0) when k ∈

(
0, 3pe

8λ

)
, and that

Ω
(
pe
λ

)
≤ Ω∗i ≤ Ω

(
4k − 3pe

2λ

)
when k ∈

[
3pe
8λ
, pe

2λ

)
.

We begin by showing that Ω
(
pe
λ

)
≤ Ω∗i ≤ Ω(0) when k ∈

(
0, 3pe

8λ

)
. We have that

Ω(0) =

√
6kpeλ− 4kλ2Π + λ2Π2 − λΠ

3pe − 2λΠ

∣∣∣∣∣
Π=0

=

√
2kλ

3pe
,

Ω
(pe
λ

)
=

√
6kpeλ− 4kλ2Π + λ2Π2 − λΠ

3pe − 2λΠ

∣∣∣∣∣
Π= pe

λ

=

√
1 +

2kλ

pe
− 1.

For any Π ∈
[
0, pe

λ

]
, we have

Ω(0)− Ω∗i =

√
2kλ

3pe
−

√
kλ

2pe
> 0.

Thus, we conclude that Ω∗i < Ω(0). Further,

Ω∗i − Ω
(pe
λ

)
= 1 +

√
kλ

2pe
−

√
1 +

2kλ

pe
.

Since 1 +
√

kλ
2pe

+
√

1 + 2kλ
pe

> 0, to show that Ω∗i − Ω(pe) > 0, it suffices to show that

(
Ω∗i − Ω

(pe
λ

)) [
1 +

√
kλ

2pe
+

√
1 +

2kλ

pe

]
=

√
2kλ

pe
− 3kλ

2pe
> 0. (A.41)
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Since k < 3pe
8λ

, then √
2kλ

pe
− 3kλ

2pe
=

√
kλ

pe

[
√

2− 3

2

√
kλ

pe

]
> 0.

It follows that Ω∗i−Ω
(
pe
λ

)
> 0. We now turn to the case of k ∈

[
3pe
8λ
, pe

2λ

)
and Π ∈ [4k− 3pe

2λ
, pe
λ

].

First, it follows from (A.41) that, for any Π ∈ [4k − 3pe
2λ
, pe
λ

], Ω(Π) > Ω
(
pe
λ

)
since k < 5pe

8λ
. Next,

consider the difference Ω
(
4k − 3pe

2λ

)
− Ω∗i We have that

Ω

(
4k − 3pe

2λ

)
− Ω∗i =

1

2
−

√
kλ

2pe
=

√
1

2

[√
1

2
−

√
kλ

pe

]
Thus, Ω

(
4k − 3pe

2λ

)
> Ω∗i when k ∈

[
3pe
8λ
, pe

2λ

)
. To conclude our proof that Ω∗i is the unique

minimizer of VAi , it remains to show that VBi
(
Φ
(
4k − 3pe

2λ

))
≥ VAi (Ω∗i ) when k ∈

[
3pe
8λ
, pe

2λ

)
.

For that purpose, we make use of expression (A.38) and (A.39) to get

VBi
(

Φ

(
4k − 3pe

2λ

))
=
k(bi + ai)

2
+
pe(bi − ai)

12λ
,

VAi (Ω∗i ) = k

(
bi −

√
2(bi − ai)

3

√
kλ

pe

)
.

Define ρi(k) := VBi
(
Φ
(
4λk − 3

2
pe
))
− VAi (Ω∗i ). Using the above, we therefore obtain

ρi(k) =

(bi − ai)
(

4

√
2

pe
(kλ)3/2 − 6kλ+ pe

)
12λ

. (A.42)

We now show ρi(k) ≥ 0 for any k ∈
[

3pe
8λ
, pe

2λ

)
. We get

∂ρi
∂k

=
bi − ai

2

(√
2kλ

pe
− 1

)
. (A.43)

Further,
∂2ρi
∂k2

=

√
λ(bi − ai)
2
√

2kpe
> 0.

Thus, ρi is convex in k. By (A.43), arg min
k

ρi(k) = pe
2λ
. Using (A.42), we get ρi

(
pe
2λ

)
= 0.

Since ρi(k)≥ρi
(
pe
2λ

)
, then ρi(k)≥0. Hence, VBi

(
Φ
(
4k − 3pe

2λ

))
≥VAi (Ω∗i ) for any k∈

[
3pe
8λ
, pe

2λ

)
.

Therefore, Ω∗i is the unique minimizer of VAi when k < pe
2λ

. Thus, when k < pe
2λ

, the required
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conditions of Lemma 6 are satisfied by functions VAi and Ω, and the unique minimizer Ω∗i of VAi .

Case 2: Π≤4k− 3pe
2λ

. Then, C∗i =CBi , and V ∗i (Π) =VBi
(
Ω(Π)

)
. As Φ(Π)>0 for any Π∈

[
0, pe

λ

]
,

then

∂2VBi
∂Φ2

=
4pe(bi − ai)Φ

λ
> 0

Hence, for any Π∈
[
0, pe

λ

]
, VBi

(
Φ
)

is convex and thus unimodal in Φ. Let Φ∗i be defined by

∂VBi
∂Φ

∣∣∣∣
Φ=Φ∗

i

= w

(
k +

pe(2(Φ∗i )
2 − 1)

λ

)
= 0,

which leads to

Φ∗i =

√
pe − kλ

2pe
.

We now verify that the remaining assumptions of Lemma 6 hold for functions VBi and Φ. First,

using the definition of Φ, it follows from Theorem 2, that CBi = ai + wΦ. Therefore,

∂CBi
∂Π

=
∂

∂Π
(ai + wΦ) = w

∂Φ

∂Π
> 0.

By Lemma 7, optimal capacity C∗i (Π, pe) is increasing Π. Therefore, ∂C
B
i

∂Π
> 0, and it follows

that ∂Φ
∂Π

> 0 since w > 0. Thus, Φ is monotone in Π. It is also straightforward that Φ is continuous

in Π. Next we show that VBi has a unique minimizer.

Because Π≤4k− 3pe
2λ

by assumption, Φ(Π) is defined on the following disjoint intervals:

(k,Π) ∈
(

3pe
8λ

,
5pe
8λ

)
×
[
0, 4k − 3pe

2λ

]
; and (k,Π) ∈

(
5pe
8λ

,
pe
λ

)
×
[
0,
pe
λ

]
.

Since ∂Φ
∂Π

> 0, then Φ(Π) ∈ [Φ(0),Φ
(
4k − 3pe

2λ

)
] for k ∈ [3pe

8λ
, 5pe

8λ
) and Φ(Π) ∈

[
Φ(0),Φ

(
pe
λ

)]
for k ∈ [5pe

8λ
, pe
λ

). Next, we establish that Φ∗i is the unique minimizer of VBi when k ∈
[
pe
2λ
, pe
λ

)
.

For that purpose, it suffices to show that Φ(0) ≤ Φ∗i ≤ Φ
(
4k − 3pe

2λ

)
when k ∈ [ pe

2λ
, 5pe

8λ
), and

that Φ(0) ≤ Φ∗i ≤ Φ
(
pe
λ

)
when k ∈

[
5pe
8λ
, pe
λ

)
. We first show that Φ(0) ≤ Φ∗i ≤ Φ

(
pe
λ

)
when

k ∈
[

5pe
8λ
, pe
λ

)
.
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Φ(0) =

√
3p2

e − 4λΠk + λ2Π2 + 2pe(λΠ− kλ) + λΠ− pe
pe + 2λΠ

∣∣∣∣∣
Π=0

=

√
3− 2kλ

pe
− 1,

Φ (pe) =

√
3p2

e − 4λ2Πk + λ2Π2 + 2pe(λΠ− kλ) + λΠ− pe
pe + 2λΠ

∣∣∣∣∣
Π= pe

λ

=

√
2(pe − kλ)

3pe
.

We thus obtain that Φ
(
pe
λ

)
− Φ∗i =

√
pe−kλ
pe

(√
2
3
−
√

1
2

)
> 0. Next, observe that

Φ∗i − Φ(0) =

√
1

2
− kλ

2pe
−

√
3− 2kλ

pe
+ 1.

Because kλ < pe, it follows that
√

1
2
− kλ

2pe
+
√

3− 2kλ
pe

+ 1 > 0. Consequently, to show that√
1
2
− kλ

2pe
−
√

3− 2kλ
pe

+ 1 > 0, it suffices to show that

[√
1

2
− kλ

2pe
−

√
3− 2kλ

pe
+ 1

]
×

[√
1

2
− kλ

2pe
+

√
3− 2kλ

pe
+ 1

]

=
1

4

(√
1− kλ

pe

)(
4
√

2− 6

√
1− kλ

pe

)
.

Since k > pe
9λ

then 4
√

2 − 6
√

1− kλ
pe
> 0. It follows that Φ∗i > Φ(0) in case of k ∈ [5pe

8λ
, pe
λ

).

Consequently, we obtain Φ(0) ≤ Φ∗i ≤ Φ
(
pe
λ

)
for k ∈ [5pe

8λ
, pe
λ

).

We next examine that Φ(0) ≤ Φ∗i ≤ Φ
(
4k − 3pe

2λ

)
in the case of k ∈ [ pe

2λ
, 5pe

8λ
). From previous

results, it follows that Φ∗i > Φ(0) for k ∈ [3pe
8λ
, 5pe

8λ
). Also, since

Φ

(
4k − 3pe

2λ

)
=

√
3p2

e − 4λ2kΠ + λ2Π2 + 2pe(λΠ− kλ) + λΠ− pe
pe + 2λΠ

∣∣∣∣∣
Π=4k− 3pe

2λ

=
1

2
,

then,

Φ

(
4k − 3pe

2λ

)
− Φ∗i =

1

2
−

√
1

2
− kλ

2pe
> 0. (A.44)
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From (A.44), we conclude that if k ∈ [ pe
2λ
, 5pe

8λ
) then Φ

(
4k − 3pe

2λ

)
≥ Φ∗i . To conclude that Φ∗i is

the unique minimizer of VBi when k ≥ pe
2λ

, it now suffices to show that VBi (Φ∗i ) ≤ VAi
(
Ω
(
4k − 3pe

2λ

))
.

For that purpose, we use expressions (A.38) and (A.39) to obtain

VBi (Φ∗i ) =
k(bi − ai)

3

√
2− 2kλ

pe
+
pe(bi − ai)

6λ

(
3− 2

√
2− 2kλ

pe

)
,

VAi
(

Ω

(
4k − 3pe

2λ

))
=
k(bi + ai)

2
+
pe(bi − ai)

12λ
.

Define ϑi(k) := VAi
(
Ω
(
4k − 3pe

2λ

))
− VBi (Φ∗i ). Consequently, we obtain

ϑi(k) =

(bi − ai)
(

6kλ− 4kλ

√
2− 2kλ

pe
+ pe

(
4

√
2− 2kλ

pe
− 5

))
12λ

. (A.45)

We now show ϑi(k) ≥ 0 for any k ∈
[
pe
2λ
, 5pe

8λ

)
. We have that

∂ϑi
∂k

=
(bi − ai)

(√
pe(pe − kλ)−

√
2(pe − kλ)

)
2
√
pe(pe − kλ)

;
∂2ϑi
∂k2

=
(bi − ai)λ

2
√

2pe(pe − kλ)
> 0. (A.46)

Thus, ϑi(k) is convex in k. Using (A.46) we obtain arg min
k

ϑi(k) = pe
2λ
. We also use (A.45) to

obtain ϑi
(
pe
2λ

)
= 0. Since ϑi(k) ≥ ϑi

(
pe
2λ

)
, then we obtain ϑi(k) ≥ 0. Consequently, we conclude

that VBi (Φ∗i ) ≤ VAi
(
Ω
(
4k − 3pe

2λ

))
for any k ∈

[
pe
2λ
, 5pe

8λ

)
.

Therefore, Φ∗i is the unique minimizer of VBi when k ≥ pe
2λ

. Thus, when k ≥ pe
2λ

, the required

conditions of Lemma 6 are satisfied by functions VBi and Φ, and the unique minimizer Φ∗i of VBi .

If k < pe
2λ

, then, for any Π ∈
[
0, pe

λ

]
, V ∗i (Π) ≥ VAi (Ω∗i ); if k ≥ pe

2λ
, then, for any Π ∈

[
0, pe

λ

]
,

V ∗i (Π) ≥ VBi (Φ∗i ). Consequently all the required conditions of Lemma 6 hold. We can therefore

now apply Lemma 6 to conclude V ∗i is unimodal and that its unique minimizer Π∗ is given by

Π∗i = Ω−1 (Ω∗i ) =
pe
(
λk +

√
2λkpe

)
2λ(2pe − λk)

when k < pe
2λ

, and by
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Π∗i = Φ−1 (Φ∗i ) =
pe

(
pe + 3λk −

√
2pe(pe − λk)

)
2λ(pe + λk)

when k ≥ pe
2λ

. To obtain the consumer’s optimal cost V ∗i (Π∗), we substitute the above expressions

for Π∗ into expression (2.15). To obtain the consumer’s optimal capacity level, we substitute

the above expressions for Π∗ into expressions (2.15) and (2.16), and simplifying the resulting

equations. �

Proof of Proposition 6. To prove part (a), for k ∈
(
0, pe

λ

)
and pe ∈ (0,∞) define

P1(k, pe) :=
pe(kλ+

√
2kλpe)

2λ(2pe − kλ)
; (A.47)

P2(k, pe) :=
pe

(
pe + 3kλ−

√
2pe(pe − kλ)

)
2λ(pe + kλ)

. (A.48)

It follows from Theorem 3 that Π∗ = P1(k, pe) for k < pe
2λ

, and Π∗ = P2(k, pe) for k ≥ pe
2λ

. We

first show that ∂Π∗

∂k
> 0 for any k ∈

(
0, pe

λ

)
. If k < pe

2λ
, then since Π∗ = P1(pe, k), we use (A.47)

to get

∂Π∗

∂k
=
∂P1(pe, k)

∂k
=
p2
e(4
√
pekλ+

√
2kλ+ 2

√
2pe)

4
√
pekλ(2pe − kλ)2

> 0,

since pe > kλ by assumption. If k ≥ pe
2λ

, then Π∗ = P2(pe, k), and we use (A.48) to get

∂Π∗

∂k
=
∂P2(pe, k)

∂k
=
p2
e

(
4
√
pe(pe − kλ)−

√
2kλ+ 3

√
2pe

)
4
√
pe(pe − kλ)(kλ+ pe)2

> 0,

since −
√

2kλ+ 3
√

2pe > 0. Thus, ∂Π∗

∂k
> 0 for any k ≥ pe

2λ
.

We next examine ∂Π∗

∂pe
. If k < pe

2λ
, then since Π∗ = P1(pe, k), we use (A.47) to get
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∂Π∗

∂pe
=

2
√

2pe
√
pekλ− 3

√
2kλ
√
pekλ− 2k2λ2

4λ(2pe − kλ)2

=
2
√

2
√
pekλ(pe − 2kλ) +

√
2(kλ)

3
2 (
√
pe −

√
2kλ)

4λ(2pe − kλ)2
> 0,

since pe > 2kλ. If k ≥ pe
2λ

, then since Π∗ = P2(pe, k), we again use (A.48) to get

∂Π∗

∂pe
=
∂P2(pe, k)

∂pe
=

√
pe(pe − kλ)(6k2λ2 + 4pekλ+ 2p2

e) +
√

2(3pek
2λ2 − 3p2

ekλ− 2p3
e)

4λ
√
pe(pe − kλ)(kλ+ pe)2

.

For notational convenience, define

D(k) :=
√
pe(pe − kλ)(6k2λ2 + 4pekλ+ 2p2

e) +
√

2(3pekλ(kλ− pe)− 2p3
e).

Thus, ∂Π∗

∂pe
> 0 if and only if D(k) > 0. Now, observe that, since 3pekλ(kλ − pe)≤ 0, then

−
√
pe(pe − kλ)(6k2λ2 + 4pekλ+ 2p2

e) +
√

2(3pekλ(kλ− pe)− 2p3
e) < 0. Thus, if

D(k)×
[
−
√
pe(pe − kλ)(6K2λ2 + 4pekλ+ 2p2

e) +
√

2(3pekλ(kλ− pe)− 2p3
e)
]

= 2pe(pe + kλ)2(pe − 2kλ)(2p2
e + 6peλk − 9λ2k2) < 0,

then D(k) > 0. Note that 2pe(pe + kλ)2(pe − 2kλ) ≤ 0 since k ≥ pe
2λ
. Also,

2p2
e + 6peλk − 9λ2k2 = −9λ2(k − (1−

√
3)pe

3λ
)(k − (1 +

√
3)pe

3λ
).

Since k ∈ [ pe
2λ
, pe
λ

), then k < (1+
√

3)pe
3λ

implies D(k) > 0, and k > (1+
√

3)pe
3λ

implies D(k) < 0.

Consequently, ∂Π∗

∂pe
≤ 0 if pe ≤ 3(

√
3−1)
2

λk and ∂Π∗

∂pe
> 0 if pe >

3(
√

3−1)
2

λk.

To prove part (b), we use ai = µXi −
√

3σ and bi = µXi +
√

3σ, to obtain, by Theorem 3, the

following:
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V ∗i (Π∗i ) =


k

(
µXi +

(
√

3− 2

√
2λk

3pe

)
σ

)
if k < pe

2λ
;

k

(
µXi −

√
3σ +

√
6(1− λk

pe
)σ

)
+

(
3pe − (2pe + λk)

√
2− 2λk

pe

)
σ

6λ
if k ≥ pe

2λ
.

(A.49)

We first show that ∂V
∗
i (Π∗

i )

∂pe
> 0. If k < pe

2λ
, then it follows from (A.49) that

∂V ∗i (Π∗i )

∂pe
=

√
2λ

3

(
k

pe

)3/2

σ > 0.

If k ≥ pe
2λ

then

∂V ∗i (Π∗i )

∂pe
=

(√
2λk(pe + λk) + p2

e(3
√

1− λk
pe
− 2
√

2)
)
σ

λp2
e

√
3
(

1− λk
pe

) .

It also follows that, if k ≥ pe
2λ

, then

∂2V ∗i (Π∗i )

∂k ∂pe
=

1

p2
e

√
3λkσ

2− 2λk
pe

> 0. (A.50)

It thus follows from (A.50) that, for any k ≥ pe
2λ

, ∂V ∗
i (Π∗

i )

∂pe
≥ ∂V ∗

i (Π∗
i )

∂pe

∣∣∣
k= pe

2λ

= σ
2
√

3λ
. Con-

sequently, we obtain that ∂V ∗
i (Π∗

i )

∂pe
> 0. We also obtain from (A.49) that, for any k ∈

(
0, pe

λ

)
,

∂V ∗
i (Π∗

i )

∂µXi
= k.

Next, we show that ∂V
∗
i (Π∗

i )

∂σ
> 0. From expression (A.49) we obtain

∂V ∗i (Π∗i )

∂σ
=


k
(

3− 2
√

2
√

λk
pe

)
√

3
if k < pe

2λ
;

(pe − λk)
(

3− 2
√

2− 2λk
pe

)
√

3λ
if k ≥ pe

2λ
.

It therefore follows that ∂V
∗
i (Π∗

i )

∂σ
> 0. Finally, we show that ∂V

∗
i (Π∗

i )

∂k
> 0. Again by (A.49) ,
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∂V ∗i (Π∗i )

∂k
=


µXi +

√
3σ

(
1−

√
2λk

pe

)
if k < pe

2λ
;

√
6σ
√
pe(pe − λk) + (µXi −

√
3σ)pe

pe
if k ≥ pe

2λ
.

Since k < pe
2λ

then 1 −
√

2λk
pe

> 0, then ∂V ∗
i (Π∗

i )

∂k
> 0 if k < pe

2λ
. If k ≥ pe

2λ
, on the other hand,

then it follows from ai = µXi −
√

3σ > 0 that ∂V
∗
i (Π∗

i )

∂k
> 0.

To prove part (c), we use Theorem 3 to reparameterize C∗i (Π∗i ) using µXi , and σ as follows:

C∗i (Π∗i ) =


µXi +

(
√

3−

√
6kλ

pe

)
σ, if k < pe

2λ
,

µXi −
(√

3−
√

6− 6kλ
pe

)
σ. if k ≥ pe

2λ
.

(A.51)

Thus, C∗i (Π∗i ) is increasing in µXi . We next show that ∂C
∗
i (Π∗

i )

∂pe
> 0. Using (A.51), we get

∂C∗i (Π∗i )

∂pe
=



√
3kλ

2p3
e

σ, if k < pe
2λ

;

√
3σ

pe

√
2pe
kλ

( pe
kλ
− 1
) , if k ≥ pe

2λ
.

It follows that ∂C
∗
i (Π∗

i )

∂pe
> 0 for any pe > 0. Next, if k < pe

2λ
, then we use (A.51) to get

∂C∗i (Π∗i )

∂σ
=
√

3−

√
6kλ

pe
.

Since k < pe
2λ

, then ∂C∗
i (Π∗

i )

∂σ
> 0. If k ≥ pe

2λ
, then

∂C∗i (Π∗i )

∂σ
= −
√

3 +

√
6− 6kλ

pe
.

Since k ≥ pe
2λ

, then ∂C∗
i (Π∗

i )

∂σ
≤ 0. We now show that ∂C

∗
i (Π∗

i )

∂k
< 0. Using (A.51) we get
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∂C∗i (Π∗i )

∂k
=



−

√
3λ

2pek
σ, if k < pe

2λ
;

−
√

3λσ

pe

√
2− 2kλ

pe

, if k ≥ pe
2λ
.

From the above, we obtain ∂C∗
i (Π∗

i )

∂k
< 0 for any k > 0. �

Proof of Proposition 7. Observe from (2.21) that, if c ≥ b, then v(c) = kc and v(c) is increasing

in c. Therefore, to minimize the total cost of installation and electricity related costs following the

installation, an electricity consumer would never install any generation capacity in excess of b. It

follows that c∗ < b.

Using c∗ < b, we solve for v(c) given in (2.21) to obtain

v(c) =
pe

b− a

∫ ∞
0

e−λt
∫ b

a

[
(X−c)+

]
dx dt+kc =


pe(b− c)2

2λ(b− a)
+ kc, if a ≤ c < b

pe(b+ a− 2c)

2λ
+ kc, if c < a.

(A.52)

If c < a, then, by (A.52), ∂v(c)
∂c

=−pe
λ

+k < 0. Thus, if c < a, the total cost is decreasing in c.

Hence, optimal capacity is never less than a. Since a≤c∗≤ b, then ∂2

∂c2
[v(c)]= pe

λ(b−a)
> 0. Solving

∂
∂c

[
pe(b+a−2c)

2λ
+kc

]
= 0 yields the desired expression of c∗. The expression for v∗ follows from

substituting c∗ into (2.21). �

Proof of Theorem 4 Following Theorem 2, we again distinguish two cases.

Case 1: Π>4k− 3pe
2λ

. Then, C∗i =CAi . As Π > 4k − 3pe
2λ

, we use the following disjoint intervals in

the proof: (a) k∈
(
0, 3pe

8λ

)
, Π∈

[
0, pe

λ

]
; (b) k∈

[
3pe
8λ
, 5pe

8λ

)
, Π∈

(
4k − 3pe

2λ
, pe
λ

]
. Using Propositions

5 and 7, define

∆1(Ω) := v∗ − V ∗(Π) = k(b− a)Ω(Π)− 2pe(b− a)Ω(Π)3

3λ
− k2λ(b− a)

2pe
,
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where Ω(Π) is as defined in expression (2.17) of Proposition 5. Observe that

∂2∆1

∂ Ω2
=

∂2

∂ Ω2

[
k(b− a)Ω− 2pe(b− a)Ω3

3λ
− k2λ(b− a)

2pe

]
= −4(b− a)pe

λ
Ω < 0.

Thus, ∆1(Ω) is concave in Ω. It also follows from Theorem 2 that CAi = bi − Ωw. Hence,

∂CAi
∂Π

=
∂

∂Π
(bi − Ωw) = −w∂Ω

∂π
> 0.

By Lemma 7, C∗i (Π, pe) is increasing Π. Therefore, ∂CAi
∂Π

> 0. It follows that ∂Ω
∂Π
< 0. Next,

since ∆1(Ω) is concave in Ω, and ∂ Ω
∂Π

< 0 on Π ∈
[
0, pe

λ

]
, then for any k ∈ (0, 3pe

8λ
) and Π ∈

[
0, pe

λ

]
,

∆1

(
Ω(Π)

)
≥ min

[
∆1

(
Ω(0)

)
,∆1

(
Ω
(pe
λ

))]
. (A.53)

Similarly, for any k ∈ [3pe
8λ
, 5pe

8λ
) and Π ∈ [4k − 3pe

2λ
, pe
λ

],

∆1

(
Ω(Π)

)
≥ min

[
∆1

(
Ω

(
4kλ− 3

2
pe

))
,∆1

(
Ω
(pe
λ

))]
. (A.54)

We now show that ∆1

(
Ω(0)

)
> 0 for k ∈ (0, 3pe

8λ
). We have

∆1

(
Ω(0)

)
= v∗(0)− V ∗(0) = −k

2λ(b− a)

2pe
+ k(b− a)

√
2kλ

3pe
− 2pe(b− a)

3λ

(√
2kλ

3pe

)3

(A.55)

= (b− a)k

√
kλ

pe

[
5

9

√
2

3
−

√
kλ

4pe

]
. (A.56)

Since kλ < 3
8
pe, then 5

9

√
2
3
−
√

kλ
4pe

> 5
9

√
2
3
−
√

3
32
> 0. Therefore, we obtain Ω(0) > 0.

Next, we show that ∆1

(
Ω
(
pe
λ

))
> 0 for k ∈ (0, 5pe

8λ
). We get

∆1

(
Ω
(pe
λ

))
= v∗ − V ∗

(pe
λ

)
= k(b− a)

[√
1 +

2kλ

pe
− 1− 2pe

3λ
(

√
1 +

2kλ

pe
− 1)3 − kλ

2pe

]
.

(A.57)
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Define θ :=
kλ

pe
, so that θ ∈ (0, 5

8
). Also define

G(θ) :=
√

1 + 2θ − 1− 2

3θ
(
√

1 + 2θ − 1)3 − θ

2
. (A.58)

To show that ∆1

(
Ω
(
pe
λ

))
>0, it suffices to show that G(θ)>0 for any θ∈(0, 5

8
). Observe that

∂2G(θ)

∂θ2
=

∂2

∂θ2

[√
1 + 2θ − 1− θ

2
− 2θ

3
(
√

1 + 2θ − 1)3

]
= − 1

(2θ + 1)3/2
+

2
(√

2θ + 1− 1
)2

θ(2θ + 1)3/2
−

4
(√

2θ + 1− 1
)

θ(2θ + 1)

−
4
(√

2θ + 1− 1
)3

3θ3
+

4
(√

2θ + 1− 1
)2

θ2
√

2θ + 1

=
2(
√

2θ + 1− 1)2 − θ
θ(2θ + 1)

3
2

−
4(
√

2θ + 1− 1)
[
(
√

2θ + 1− 1)2(2θ + 1) + 3θ2 − 3θ(
√

2θ + 1− 1)
√

2θ + 1
]

3θ3(2θ + 1)

=
3θ + 4− 4

√
2θ + 1

θ(2θ + 1)
3
2

−
4(
√

2θ + 1− 1)
[
(4θ + 2)(θ + 1−

√
2θ + 1)− 3θ(θ + 1−

√
2θ + 1)

]
3θ3(2θ + 1)

=
3θ + 4− 4

√
2θ + 1

θ(2θ + 1)
3
2

− 4(
√

2θ + 1− 1)(θ + 2)(θ + 1−
√

2θ + 1)

3θ3(2θ + 1)
(A.59)

We now show that ∂
2G(θ)
∂θ2 <0. Based on (A.59), it suffices to show that 3θ+4−4

√
2θ+1<0 and

−(θ+1−
√

2θ+1)<0 for θ∈ (0, 5
8
). First, 3θ + 4− 4

√
2θ + 1 < 0 since 3θ + 4 + 4

√
2θ + 1 > 0

and

(3θ + 4− 4
√

2θ + 1)(3θ + 4 + 4
√

2θ + 1) = 9θ2 − 8θ < 0,

for θ < 5
8
. Next, −(θ + 1−

√
2θ + 1) < 0, since

√
2θ + 1 + θ + 1 > 0, and

−(θ + 1−
√

2θ + 1)(
√

2θ + 1 + θ + 1) = −θ2 < 0.

Thus, ∂
2G(θ)
∂θ2 < 0 for θ ∈ (0, 3

8
). Since G(θ) is concave in θ, then, for any θ ∈ (0, 3

8
),

G
(
θ
)
> min

[
lim
θ→5/8

G(θ), lim
θ→0

G(θ)

]
. (A.60)

It follows from (A.58) that
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lim
θ→0+

[√
1 + 2θ − 1− θ

2
− 2

3θ

(√
1 + 2θ − 1

)3
]

=

lim
θ→0+

√1 + 2θ − 1− θ

2
− 2

3

(√
1

θ
+ 2−

√
1

θ

)2 (√
1 + 2θ − 1

) = 0. (A.61)

Further,

lim
θ→ 5

8

+

√
1 + 2θ − 1− θ

2
− 2

3θ

(√
1 + 2θ − 1

)3

=
13

240
> 0. (A.62)

Thus, (A.61) and (A.62) imply that G(θ) > 0. Consequently, we conclude that ∆1

(
Ω
(
pe
λ

))
>

0.

Finally, we show that ∆1

(
Ω
(
4k − 3pe

2λ

))
> 0 for k ∈ [3pe

8λ
, 5pe

8λ
). We obtain

∆1

(
Ω

(
4k − 3pe

2λ

))
= v∗ − V ∗

(
Ω

(
4k − 3pe

2λ

))
=

(b− a) (6kpeλ− 6k2λ2 − p2
e)

12peλ
.

To show that ∆1

(
Ω
(
4k− 3pe

2λ

))
> 0, it suffices to show that 6kpeλ−6k2λ2−p2

e > 0 for k ∈

[3pe
8λ
, 5pe

8λ
). Let Λ := kλ and define %(Λ) := 6kpeλ − 6k2λ2 − p2

e = 6Λpe − 6Λ2 − p2
e. Then, since

∂2%
∂Λ2 <0, we get

%(Λ) > min

[
%

(
3

8
pe

)
, lim

Λ→ 5
8
pe

%(Λ)

]
.

Observe that %
(

3
8
pe
)

=%
(

5
8
pe
)

= 13
32
p2
e>0. Thus, %(Λ)>0. It follows that ∆1

(
Ω
(
4k− 3pe

2λ

))
>

0 for k ∈ [3pe
8λ
, 5pe

8λ
). Consequently, we can conclude from (A.53) and (A.54) that ∆1

(
Ω(Π)

)
> 0.

Case 2: Π≤4k− 3pe
2λ

. Then, C∗i =CBi . Since Π ≤ 4k − 3pe
2λ

we make use of the following disjoint

intervals in the proof: (a) k ∈ [3pe
8λ
, 5pe

8λ
), Π ∈ [0, 4k − 3pe

2λ
]; (b) k ∈ [5pe

8λ
, pe
λ

), Π ∈
[
0, pe

λ

]
. Using

Theorem 2 and Proposition 5, we can write

V ∗(Π) = kCB(Π)−
pe

[(
a+ b− 2CB(Π)

)3 − 4
(
b− CB(Π)

)3
]

6λ(b− a)2
. (A.63)
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Using expression (A.63), this time we define ∆2

(
CB
)

as

∆2

(
CB
)

:= v∗−V ∗(Π) = bk−k
2λ(b− a)

2pe
+
pe

[(
a+ b− 2CB(Π)

)3 − 4
(
b− CB(Π)

)3
]

6λ(b− a)2
−kCB(Π).

Observe that

∂2∆2

∂(CB)2
=

4pe(a− CB)

λ(b− a)2
< 0.

Thus, ∆2(CB) is concave in CB. By Lemma 7, ∂C
B

∂Π
>0. Hence, for any k∈ [5pe

8λ
, pe
λ

) and Π∈
[
0, pe

λ

]
,

∆2

(
CB(Π)

)
≥ min

[
∆2

(
CB(0)

)
,∆2

(
CB
(pe
λ

))]
. (A.64)

Similarly, for any k ∈ [3pe
8λ
, 5pe

8λ
) and Π ∈

[
0, 4k − 3pe

2λ

]
,

∆2

(
CB(Π)

)
≥ min

[
∆2

(
CB(0)

)
, ∆2

(
CB
(

4k − 3pe
2λ

))]
. (A.65)

We first show that ∆2

(
CB
(
pe
λ

))
> 0 for k ∈ [5pe

8λ
, pe
λ

). We get that

∆2

(
CB
(pe
λ

))
= v∗ − V ∗(pe) =

(b− a)(pe − kλ)
(

10
√

6
√
pe(pe − kλ) + 27kλ− 27pe

)
54peλ

.

To show that ∆2

(
CB
(
pe
λ

))
> 0, it suffices to show that 10

√
6
√
pe(pe − kλ)+27kλ−27pe > 0

for k ∈ [5pe
8λ
, pe
λ

). Define g(Λ) := 10
√

6
√
pe(pe − Λ) + 27Λ− 27pe, where, as in Case 1, Λ = kλ.

Since ∂2g
∂Λ2 = −

√
75pe

2(pe−Λ)3 < 0, then g(Λ) is concave in Λ. It follows that, for any Λ ∈ [5
8
pe, pe),

g(Λ) > min

[
g

(
5

8
pe

)
, lim

Λ→pe
g(Λ)

]
.

Observe that g(5
8
pe) = 39

8
pe > 0. Also, g(pe) = 0. It follows that ∆2

(
CB
(
pe
λ

))
> 0 for k ∈

[5pe
8λ
, pe
λ

).

Next, we show that ∆2

(
CB(0)

)
> 0 for k ∈ [3pe

8λ
, pe
λ

). We get
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∆2

(
CB(0)

)
=v∗ − V ∗(0)

=
(b− a)

[
31p2

e − kλ
(

3kλ− 2
√
pe(3pe − 2kλ)

)
− 6pe

(
3
√
pe(3pe − 2kλ) + 2kλ

)]
6peλ

.

To show
[
31p2

e−kλ
(

3kλ−2
√
pe(3pe−2kλ)

)
−6pe

(
3
√
pe(3pe−2kλ)+2kλ

)]
> 0 for k ∈

[3pe
8λ
, pe
λ

), define

G(Λ) := 31p2
e − Λ

(
3Λ− 2

√
pe(3pe − 2Λ)

)
− 6pe

(
3
√
pe(3pe − 2Λ) + 2Λ

)
= 31p2

e − 3Λ2 − 12peΛ + (2Λ− 18pe)
√
pe(3pe − 2Λ). (A.66)

Since pe > Λ then 31p2
e−3Λ2−12peΛ > 0 and 18pe−2Λ > 0. Thus, we obtain 31p2

e−3Λ2−

12peΛ + (18pe − 2Λ)
√
pe(3pe − 2Λ) > 0. Hence, to show that G(Λ) > 0, it suffices to show that

G(Λ)
[
31p2

e − 3Λ2 − 12peΛ + (18pe − 2Λ)
√
pe(3pe − 2Λ)

]
= (pe − Λ)2

(
9Λ2 + 98peΛ− 11p2

e

)
> 0.

Define %(Λ) :=9Λ2 + 98peΛ− 11p2
e. Since ∂%

∂Λ
= 18Λ + 98pe > 0 then, for any Λ ∈ [3

8
pe, pe),

%(Λ) ≥ %(3
8
pe) = 43225

4096
p4
e > 0. Thus, G(Λ) > 0, and we conclude that ∆2

(
CB(0)

)
> 0 for

k∈ [3pe
8λ
, pe
λ

).

Finally, we show that ∆2

(
CB
(
4k − 3pe

2λ

))
> 0 for k ∈ [3pe

8λ
, 5pe

8λ
). Note that ∆2

(
CB
(
4k − 3pe

2λ

))
=

∆1

(
Ω
(
4k − 3pe

2λ

))
, since CA

(
4k − 3pe

2λ

)
= CB

(
4k − 3pe

2λ

)
= b+a

2
. From our analysis of Case 1,

we get ∆2

(
CB
(
4k− 3pe

2λ

))
> 0 for k ∈ [3pe

8λ
, 5pe

8λ
). Thus, based on (A.64) and (A.65), we get

∆2

(
CB(Π)

)
>0. �

Proof of Theorem 5. Since consumers are identical, in what follows we drop the subscript i when

denoting each consumer’s optimal capacity in a virtual microgrid.

Case 1: Π > 4k − 3pe
2λ

. By Theorem 2, C∗(Π) = CA(Π), where CA(Π) is as established in (2.15).

We use Theorem 2 and Lemma 7 to derive π such that CA(Π) = c∗. From those we obtain
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b−
√

6λkpe − 4λ2kΠ + λ2π2 − λΠ

3pe − 2λΠ
(b− a) = b− λk

pe
(b− a).

It follows from the above that Π is uniquely given by Π = pe(2pe−3kλ)
2λ(pe−kλ)

=
pe(pe− 3

2
kλ)

2λ(pe−kλ)
when

Π > 4k − 3
2
pe
λ

. Since Π > 4k − 3pe
2λ

, we consider separately k ∈
(
0, 3pe

8λ

)
and k ∈

[
3pe
8λ
, pe

2λ

)
.

Assume k∈
(
0, 3pe

8λ

)
. We show that λΠ∈(0, pe). Since pe> 8

3
kλ then Π= pe(2pe−3kλ)

2λ(pe−kλ)
>0. Also,

pe − λΠ = pe −
pe(2pe − 3kλ)

2(pe − kλ)
=

kλpe
2(pe − kλ)

> 0,

since pe > kλ. Therefore, λΠ ∈ (0, pe) when k < 3pe
8λ
. Finally, since k < 3pe

8λ
, then 4λk− 3

2
pe < 0.

Since Π > 0, then λΠ > 4λk − 3
2
pe is indeed satisfied for k < pe

2λ
.

Assume k ∈
[

3pe
8λ
, pe

2λ

)
. It is straightforward that λΠ∈(0, pe). Further,

λΠ− 4kλ+
3

2
pe =

(5pe − 4kλ)(pe − 2kλ)

2(pe − kλ)
> 0,

since k < pe
2λ

. Since C∗i (Π) is increasing in Π by Proposition 3, it follows that, when k < pe
2λ

,

c∗>C∗(Π) for Π< pe(2pe−3λk)
2λ(pe−λk)

, and c∗≤C∗(Π) for Π≥ pe(2pe−3λk)
2λ(pe−λk)

Case 2: Π ≤ 4k − 3pe
2λ

. By Theorem 2, C∗(Π) = CB(Π), where CB(Π) is as established in (2.16).

We use Theorem 2 and Lemma 7 to derive Π such that CB(Π) = c∗. We obtain

a+

√
3p2

e − 4λ2kΠ + λ2Π
2

+ 2pe(λΠ− kλ) + λΠ− pe
pe + 2λΠ

(b− a) = b− λk

pe
(b− a).

It follows that Π is uniquely given by Π = pe(pe−kλ)
2kλ2 . Further, Π > 0. Since Π ≤ 4k − 3pe

2λ
, we

separately consider k ∈
[

5pe
8λ
, pe
λ

)
and k ∈

[
pe
2λ
, 5pe

8λ

)
. Observe that

pe − λΠ = pe −
pe(pe − kλ)

2kλ
= −pe(pe − 3kλ)

2Kλ
> 0,

for either k ∈
[

5pe
8λ
, pe
λ

)
or k ∈

[
pe
2λ
, 5pe

8λ

)
. Thus, we conclude that λΠ ∈ (0, pe).

We now verify that Π indeed satisfies Π ≤ 4k − 3pe
2λ

for k ≥ pe
2λ

. We get 4kλ − 3
2
pe − λΠ =
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9k2λ2−(pe+kλ)2

2kλ
.

Observe that if pe ≤ 2kλ, then 4kλ− 3
2
pe ≥ λΠ. Therefore, this condition is satisfied for both

k ∈
[

5pe
8λ
, pe
λ

)
and k ∈

[
pe
2λ
, 5pe

8λ

)
. Finally, because C∗i (Π) is increasing in Π by Proposition 3, it

follows that, when k ≥ pe
2λ

, c∗>C∗(Π) for Π< pe(pe−λk)
2λ2k

, and c∗≤C∗(Π) for Π≥ pe(pe−λk)
2λ2k

.

To complete the proof, we make use of Theorem 3 and Lemma 7 to get

C∗(Π∗)− c∗ =


(b− a)

√
λk

pe

(√
λk

pe
−
√

1

2

)
if k < pe

2λ
;

(b− a)

√
1− λk

pe

(√
1

2
−

√
1− λk

pe

)
if k ≥ pe

2λ
.

It follows that C∗(Π∗)− c∗ < 0 if k < pe
2λ

and C∗(Π∗)− c∗ ≥ 0 if k ≥ pe
2λ

. �

Proof of Proposition 8. We first prove that, in a centralized microgrid, optimized for total cost,

C∗ ∈ [a1 + a2, b1 + b2]. For that purpose, we make use of (2.22) to get

F(C) =
1

λ
EX1,X2

[
pe(x1 + x2 − C)+

]
+ kC. (A.67)

Let fXi(xi) denote the probability density of Xi. Thus,

fX1(x1) =


1

w
if x ∈ [a1, b1]

0 otherwise;
fX2(x2) =


1

w
if x ∈ [a2, b2]

0 otherwise.

Define Z :=X1+X2. Let z be a realization of Z, and fZ be the probability density of Z. Then,

F(C) =
1

λ
EZ

[
pe(z − C)+

]
+ kC

fZ(z) =

∫
fX1(z − x2)fX2(x2)dx2.

Since fX2(x2) = 1
w

on [a2, b2] and is zero otherwise, we get,

fZ(z) =

∫ b2

a2

1

w
fX1(z − x2)dx2. (A.68)
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Note that fX1(z−x2)=0 unless a1≤z − x2≤b1 (in other words, z − b1 ≤ x2 ≤ z − a1). Also,

z∈ [a1+a2, b1+b2] (i.e., z∈ [a1+a2, a1+a2+2w]). Thus, if a1+a2≤z≤a1+a2+w, then, by (A.68),

fZ(z) =

∫ z−a1

a2

1

w2
dx2 =

z − (a1 + a2)

w2
. (A.69)

If a1 + a2 + w ≤ z ≤ a1 + a2 + w, then we use (A.68) to get

fZ(z) =

∫ b2

z−b1

1

w2
dx2 =

∫ a2+w

z−(a1+w)

1

w2
dx2 =

a1 + a2 + 2w − z
w2

. (A.70)

Thus, we obtain

fZ(z) =


z − (a1 + a2)

w2
, if z ∈ [a1 + a2, a1 + a2 + w];

a1 + a2 + 2w − z
w2

, if z ∈ [a1 + a2 + w, a1 + a2 + 2w].

(A.71)

We now show that C∗≥a1+a2. Assume that C∗<a1+a2. Then, we use (A.71) to get

F(C∗) =
1

λ

∫ a1+a2+2w

a1+a2

pe(z − C∗)fZ(z)dz + kC∗

=
1

λ

[∫ a1+a2+w

a1+a2

pe(z − C∗0)

(
z−(a1+a2)

w2

)
dz+

∫ a1+a2+2w

a1+a2+w

pe(z−C∗)
(
a1+a2+2w−z

w2

)
dz

]
+kC∗

=
(
k − pe

λ

)
C∗ +

pe(a1 + a2 + w)

λ

F(a1 + a2) =
1

λ

∫ a1+a2+2w

a1+a2

pe
[
z − (a1 + a2)

]
fZ(z)dz + k(a1 + a2)

=
(
k − pe

λ

)
(a1 + a2) +

pe(a1 + a2 + w)

λ
.

It follows that

F(C∗)−F(a1 + a2) =
(
k − pe

λ

) [
C∗ − (a1 + a2)

]
.

Since pe
λ
> k and C∗ < a1+a2 we getF(C∗) > F(a1+a2) This contradicts the assumption that

C∗ is the optimal capacity defined by C∗ = arg minC F(C). Thus, we conclude that C∗ ≥ a1 + a2.

Next, we show that C∗ ≤ b1 + b2. Assume C∗ > b1 + b2. Then, pe(x1 + x2 −C∗)+ = 0. Hence,
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F(C∗) = kC∗. Similarly, F(b1 + b2) = k(b1 + b2).

Thus, F(C∗)−F(b1 +b2) = k(C∗−(b1 +b2)) > 0. Since F(b1 +b2) < F(C∗) contradicts the

assumption that C∗ is the optimal capacity defined by C∗ = arg minC F(C). Thus, we conclude

C∗ ≤ b1 + b2.

Because, as just established, C∗ ∈ [a1 + a2, b1 + b2], we now get

F(C) =
1

λ

[∫ b1+b2

a1+a2

pe(z − C)+fZ(z)dz

]
+ kC. (A.72)

Since

fZ(z) =


z − (a1 + a2)

w2
if z ∈ [a1 + a2, a1 + a2 + w];

a1 + a2 + 2w − z
w2

if z ∈ [a1 + a2 + w, a1 + a2 + 2w],

we consider separately C ≤ a1 + a2 + w and C > a1 + a2 + w when deriving C∗.

Case 1: C > a1 + a2 + w. Using (A.72) we obtain

F(C) =
pe
λ

∫ a1+a2+2w

C
(z−C)·a1 + a2 + 2w − z

w2
dz+kC =

pe(a1 + a2 + 2w − C)3

6λ
+kC. (A.73)

We then make use of (A.73) to obtain

∂F(C)
∂C

= −pe(a1 + a2 + 2w − C)2

2λw2
+ k;

∂2F(C)
∂C2

=
pe(a1 + a2 + 2w − C)

λw2
. (A.74)

Since C ≤ a1 + a2 + 2w, we obtain ∂2F(C)
∂C2 > 0 from (A.74). Setting ∂F(C)

∂C = 0, we get

C∗ = a1 + a2 + 2w − w

√
2λk

pe
. (A.75)

We now check C > a1+a2+w.Using (A.75), we can rewrite C∗ > a1+a2+w asw
√

2λk
pe

< w.

Therefore, C∗ > a1 + a2 + w if and only if k < pe
2λ
. Then, by (A.73) and (A.75),
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F(C∗) = k(a1 + a2 + 2w)− w2
√

2λk3/2

3
√
pe

= k

(
b1 + b2 −

2w

3

√
2λk

pe

)
.

Case 2: C ≤ a1 + a2 + w. Using (A.72) we obtain

F(C) =
pe
λw2

[∫ a1+a2+w

C
(z − C)(z − a1 − a2)dz +

∫ a1+a2+2w

a1+a2+w

(z − C)(a1 + a2 + 2w − z)dz

]
+ kC

=
pe
6λ

[
3a1 + 3a2 − 3C + 4w − (a1 + a2 − C − 2w)(a1 + a2 + w − C)2

w2

]
+ kC. (A.76)

From (A.76), we then obtain

∂F(C)
∂C

=
pe (a2

1 + a2
2 + 2a1(a2 − C)− 2a2C − C2 − 2w2)

2λw2
+ k and

∂2F(C)
∂C2

=
pe(C − a1 − a2)

λw2
.

Since C ≥ a1 + a2, we obtain ∂2F(C)
∂C2 > 0. Therefore, setting ∂F(C)

∂C = 0 yields

C∗ = a1 + a2 + w

√
2

(
1− λk

pe

)
. (A.77)

We now check that C ≤ a1 + a2 + w. Using (A.77), we rewrite C∗ ≤ a1 + a2 + w as

w

√
2

(
1− λk

pe

)
≤ w. (A.78)

It follows from (A.78) that C∗ ≤ a1 +a2 +w if and only if k ≥ pe
2λ

. Then, by (A.76) and (A.77),

F(C∗) = k(a1 + a2) +
w
(

3p2
e − 2

√
2pe(pe − λk)(pe − λk)

)
3λpe

= k(a1 + a2) +

w

(
3pe − 2(pe − λk)

√
2− 2λk

pe

)
3λ

.

This completes the proof. �

Proof of Theorem 6. The result follows directly from Proposition 8 and Theorem 3. �
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APPENDIX B

SUPPLEMENT TO CHAPTER 3

Proof of Lemma 1: Suppose G(T ) = b1+T+ε, where ε> 0. As x1≤ b1 by assumption, we get
(
G(T )−

x1

)+
=G(T )−x1>T . It then follows from (3.1) and (3.2) thatRG(G, x1, x2, T )=px1+(p−s) min[x2, T ].

Hence,

ΠG

(
G(T ), T

)
=

∫ ∞
0

e−λt EX1,X2

[
px1 + (p− s) min

[
x2, T

]]
dt− kGG(T ).

Let G̃ = b1 + T. Using (3.1) and (3.2) again, we get

ΠG(G̃, T ) =

∫ ∞
0

e−λt EX1,X2

[
px1 + (p− s) min

[
x2, T

]]
dt− kGG̃.

It follows that ΠG(G̃, T )−ΠG

(
G(T ), T

)
= kG

(
G(T )− G̃

)
= kGε > 0. Hence, since ΠG

(
G(T ), T

)
<

ΠG(G̃, T ), we get a contradiction to our assumption that G(T ) is the optimal generation capacity. Thus,

G(T )≤b1+T. �

Proof of Lemma 2: We first show that T ∗ ≤ G(T ∗) = G∗. Suppose T ∗ = G∗ + ε for some ε > 0. Then,

because T ∗ ≥ G∗ ≥ (G∗ − x1)+, using (3.5) and (3.6) we get

VT (G∗ + ε) =

∫ ∞
0

e−λt EX1,X2

[
smin

[
(G∗ − x1)+, x2

]]
dt− kT (G∗ + ε).

Using (3.5) and (3.6) we also obtain that

VT (G∗) =

∫ ∞
0

e−λt EX1,X2

[
smin

[
(G∗ − x1)+, x2

]]
dt− kTG∗.

It follows that VT (G∗)−VT (G∗+ε) = kT ε > 0. Therefore, because VT (G∗+ε) < VT (G∗), the optimal

tranmission capacity cannot exceed G∗. Thus, T ∗ ≤ G∗.

We next show that T ∗ ≤ b2. Suppose T ∗ = b2 + ε for some ε > 0. Because T ∗ > b2 ≥ x2, we get

VT (b2 + ε) =

∫ ∞
0

e−λt EX [smin[(G∗ − x1)+, x2]]dt− kT (b2 + ε).
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Similarly, we get

VT (b2) =

∫ ∞
0

e−λt EX [smin[(G∗ − x1)+, x2]]dt− kT b2.

It follows that VT (b2) − VT (b2 + ε) = kT ε > 0. Thus, because VT (b2 + ε) < VT (b2), the optimal

transmission capacity cannot exceed b2. Hence T ∗ ≤ b2. �

Proof of Proposition 9: Let FXi(x) =
∫ x

0 fXi(xi)dxi. To prove part (a), we show that ∂2

∂T∂GΠG(G,T ) > 0.

∂2 ΠG(G,T )

∂T∂G
=

∂2

∂T∂G

[
1

λ
EX1,X2 RG(G, x1, x2, T )− kGG

]
=

∂2

∂T∂G

[
1

λ
EX1,X2

[
(p− s) min[(G− x1)+, x2, T ]

]]

=
∂2

∂T∂G

[
p− s
λ

∫ b1

0

∫ b2

0
min

[
(G− x1)+, x2, T

]
fX1(x1)fX2(x2)dx2dx1

]
.

To evaluate the above integral, we distinguish the separate cases for G < b1 and G ≥ b1.

If G < b1, then we get

∂2 ΠG(G,T )

∂T∂G

[
p− s
λ

∫ b1

0

∫ b2

0
min[(G− x1)+, x2, T ]fX1(x1)fX2(x2)dx2dx1

]

=
∂2

∂T∂G

[
p− s
λ

∫ b1

0

∫ b2

0
min[(G− x1)+, x2, T ]fX1(x1)fX2(x2)dx2dx1

]

=
∂2

∂T∂G

[
p− s
λ

{∫ G

0

∫ min[G−x1,T ]

0
x2fX1(x1)fX2(x2)dx2dx1

+

∫ G

0

∫ b2

min[G−x1,T ]
min[G− x1, T ]fX1(x1)fX2(x2)dx2dx1

}]

=
∂2

∂T∂G

[
p− s
λ

{∫ G−T

0

∫ T

0
x2fX1(x1)fX2(x2)dx2dx1 +

∫ G

G−T

∫ G−x1

0
x2fX1(x1)fX2(x2)dx2dx1

+

∫ G−T

0

∫ b2

T
TfX1(x1)fX2(x2)dx2dx1 +

∫ G

G−T

∫ b2

G−x1

(G− x1)fX1(x1)fX2(x2)dx2dx1

}]
(B.1)

We now apply the Leibniz integral rule to (B.1) to obtain

∂2 ΠG(G,T )

∂T∂G
=
p− s
λ

fX1(G− T ) [FX2(b2)− FX2(T )] > 0.
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Thus, for any G < b1 and T such that T ≤ min[G, b2], ∂
2ΠG(G,T )
∂T∂G > 0, so that G and T are comple-

ments.

If G ≥ b1 on the other hand, we get

∂2

∂T∂G

[
p− s
λ

∫ b1

0

∫ b2

0
min[(G− x1)+, x2, T ]fX1(x1)fX2(x2)dx2dx1

]

=
∂2

∂T∂G

[
p− s
λ

∫ b1

0

∫ b2

0
min[(G− x1)+, x2, T ]fX1(x1)fX2(x2)dx2dx1

]

=
∂2

∂T∂G

[
p− s
λ

{∫ b1

0

∫ min[G−x1,T ]

0
x2fX1(x1)fX2(x2)dx2dx1

+

∫ b1

0

∫ b2

min[G−x1,T ]
min[G− x1, T ]fX1(x1)fX2(x2)dx2dx1

}]

=
∂2

∂T∂G

[
p− s
λ

{∫ G−T

0

∫ T

0
x2fX1(x1)fX2(x2)dx2dx1 +

∫ b1

G−T

∫ G−x1

0
x2fX1(x1)fX2(x2)dx2dx1

+

∫ G−T

0

∫ b2

T
TfX1(x1)fX2(x2)dx2dx1 +

∫ b1

G−T

∫ b2

G−x1

(G− x1)fX1(x1)fX2(x2)dx2dx1

}]
(B.2)

We now apply Leibniz integral rule to (B.2) to obtain

∂2 ΠG(G,T )

∂T∂G
=
p− s
λ

fX1(G− T ) [FX2(b2)− FX2(T )] .

Hence, for any G ≥ b1 and T such that T ≤ min[G, b2], ∂
2ΠG(G,T )
∂T∂G > 0, so that G and T are comple-

ments.

To show that G and T are complements with regard VT , it suffices to show that ∂2 VT
∂G∂T > 0. We get

∂2 VT (G,T )

∂G∂T
=

∂2

∂T∂G

[
s+ v

λ

∫ b1

0

∫ b2

0
min

[
(G− x1)+, x2, T

]
fX1(x1)fX2(x2)dx2dx1 − kTT

]
=
s+ v

λ

∂2

∂T∂G

∫ b1

0

∫ b2

0
min

[
(G− x1)+, x2, T

]
fX1(x1)fX2(x2)dx2dx1. (B.3)

Following the exact same steps as in the proof of part (a), we obtain ∂2 VT (G,T )
∂G∂T > 0, for all G and T

such that T ≤ min[G, b2], which completes the proof. �

Proof of Theorem 7: We use (3.2) to get

157



ΠG(G,T ) =
1

λ
EX1,X2 RG(G, x1, x2, T )− kGG

=
1

λ
EX1,X2

[
pmin[x1, G] + (p− s) min

[
(G− x1)+, x2, T

]]
− kGG. (B.4)

We distinguish separate cases for G < b1 and G ≥ b1.

If G < b1, then the first term in (B.4) is given by

1

λ
EX1,X2 pmin[x1, G] =

1

λ

∫ b1

0

p

b1
min[x1, G]dx1 =

p

λ(b1)

[
G2

2
+G(b1 −G)

]
.

The second term in (B.4) is

1

λ
EX1,X2(p− s) min

[
(G− x1)+, x2, T

]
=
p− s
λb1b2

{∫ b1

0

∫ b2

0
min

[
(G− x1)+, x2, T

]
dx2dx1

}

=
p− s
λb1b2

{∫ G

0

∫ b2

0
min[G− x1, x2, T ]dx2dx1

}

=
p− s
λb1b2

{∫ G

0

∫ min[G−x1,T ]

0
x2dx2dx1 +

∫ G

0

∫ b2

min[G−x1,T ]
min[G− x1, T ]dx2dx1

}
.

For notational convenience, define

I1 =

∫ G

0

∫ min[G−x1,T ]

0
x2dx2dx1 and I2 =

∫ G

0

∫ b2

min[G−x1,T ]
min[G− x1, T ]dx2dx1.

Then,

I1 =

∫ G

0

∫ min[G−x1,T ]

0
x2 dx2dx1 =

∫ G

0

x2
2

2

∣∣∣∣min[G−x1,T ]

0

dx1 =

∫ max[G−T,0]

0

T 2

2
dx1+

∫ G

max[G−T,0]

(G−x1)2

2
dx1

(B.5)

and
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I2 =

∫ G

0
min[G−x1, T ]

(
b2−min[G−x1, T ]

)
dx1

=

∫ max[G−T,0]

0
T (b2−T )dx1+

∫ G

max[G−T,0]
(G−x1)(b2−G+x1)dx1. (B.6)

If G ≥ b1, then first term in (B.4) is given as

1

λ
EX1,X2 pmin[x1, G] =

1

λ

∫ b1

0

p

b1
Gdx1 =

pG

λ
.

The second term in (B.4) is

1

λ
EX1,X2(p− s) min[(G− x1)+, x2, T ] =

p− s
λb1b2

{∫ b1

0

∫ b2

0
min[G− x1, x2, T ]dx2dx1

}

=
p− s
λb1b2

{∫ b1

0

∫ min[G−x1,T ]

0
x2dx2dx1 +

∫ b1

0

∫ b2

min[G−x1,T ]
min[G− x1, T ]dx2dx1

}
.

This time, for notational convenience, define

I3 =

∫ b1

0

∫ min[G−x1,T ]

0
x2dx2dx1 and I4 =

∫ b1

0

∫ b2

min[G−x1,T ]
min[G− x1, T ]dx2dx1.

Then, we obtain that

I3 =

∫ b1

0

∫ min[G−x1,T ]

0
x2dx2dx1 =

∫ b1

0

x2
2

2

∣∣∣∣min[G−x1,T ]

0

dx1

=

∫ max[G−T,0]

0

T 2

2
dx1 +

∫ b1

max[G−T,0]

(G− x1)2

2
dx1, (B.7)

since b1 ≥ max[G− T, 0] by Lemma 1. Also

I4 =

∫ b1

0
min[G− x1, T ](b2 −min[G− x1, T ])dx1

=

∫ max[G−T,0]

0
T (b2 − T )dx1 +

∫ b1

max[G−T,0]
(G− x1)(b2 −G+ x1)dx1. (B.8)

Because expressions for I1, I2, I3, and I4 depend on the ordering of G and T , to proceed we distinguish
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the following two cases, based on Lemma 1.

Case 1: T ≤ G < b1. By (B.5) and (B.6) we obtain

ΠG(G,T ) =
p

λb1

∫ b1

0
min[x1, G]dx1

+
p− s
λb1b2

{∫ max[G−T,0]

0
T (b2 − T )dx1 +

∫ G

max[G−T,0]
(G− x1)(b2 −G+ x1)dx1

}
− kGG

=
p

λb1

[
G2

2
+G(b1 −G)

]
+
p− s
λb1b2

[
(b2 − T )(G− T )T +

b2T
2

2
+

(G− T )T 2

2
− T 3

6

]
− kGG,

which completes the proof of part (a). It then follows that, for T ≤ G < b1,

∂ΠG(G,T )

∂G
=
p(b1 −G)

b1λ
+

(p− s)
(
2(b2 − T )T + T 2

)
2b1b2λ

− kG. (B.9)

Thus, we get ∂
2ΠG(G,T )
∂G2 = − p

λb1
G < 0.

Case 2: max[b1, T ] ≤ G < b1 + T . By (B.7) and (B.8) we obtain

ΠG(G,T ) =
p

λb1

∫ b1

0
xdx1 +

p− s
λb1b2

[∫ max[G−T,0]

0

T 2

2
dx1 +

∫ b1

max[G−T,0]

(G− x1)2

2
dx1 (B.10)

+

∫ max[G−T,0]

0
T (b2 − T )dx1 +

∫ b1

max[G−T,0]
(G− x1)(b2 −G+ x1)dx1

]
− kGG

=
pb1
2λ
− p− s

6λb1b2

[
b31 + 3b21(b2 −G) + 3b1G(G− 2b2) + (3b2 −G− 2T )(G− T )2

]
− kGG,

(B.11)

which completes the proof of part (b). It then also follows that, for max[b1, T ] ≤ G < b1 + T ,

∂ΠG(G,T )

∂G
=

(p− s)(b1 + 2b2 −G− T )(b1 −G+ T )

2b1b2λ
− kG, if G ∈ [b1, b1 + T ]. (B.12)

Hence, ∂
2ΠG(G,T )
∂G2 = − p−s

λb1b1
(b1+b2−G) < 0. To complete the proof of part (c), we show that ∂ΠG(G,T )

∂G

is continuous everywhere on (T, b1 +T ). If T ≥ b1 then it is always the case that max[b1, T ] ≤ G < b1 +T .

In that case, ∂
2ΠG(G,T )
∂G2 < 0 as already established in Case 2 above.

If T < b1, then it follows from (B.9) that ∂ΠG(G,T )
∂G is continuous everywhere on (T, b1), and from
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(B.12) that ∂ΠG(G,T )
∂G is continuous everywhere on

[
max[b1, T ], b1 +T

]
. We again make use of (B.9) and

(B.12) to obtain

lim
G→b−1

∂ΠG(G,T )

∂G
= lim

G→b+1

∂ΠG(G,T )

∂G
=
∂ΠG(G,T )

∂G

∣∣∣∣
G=b1

=
(p− s)(2b2 − T )T

2b1b2λ
− kG.

Hence, ΠG(G,T ) is a smooth function for any G ∈ [T, b1 + T ), which completes the proof. �

In what follows, we make use of the following lemma.

Lemma 8. (a) TA(k0) = T0(k0) = TB(k0) = b1; (b) If kG ≤ k0, then T0(kG) ≤ b1 and T0 ≤ TA; (c) If

kG>k0, then TA(kG) < b1 and T0 > TA(kG); (d) If kG≤k0, then TB(kG)≥b1 and T0(kG)≤TB(kG); (e) If

kG≤ b1(p−s)
2b2λ

, then TB(kG)≥b2, and TB(kG)<b2 otherwise.

Proof: Part (a) follows directly from the definitions of T0(kG), TA(kG), and TB(kG). To prove part (b), we

use the definition of T0 to obtain

∂T0(kG)

∂kG
=

b1b2λ

(p− s)
√
b2

(
b2 − 2b1kGλ

p−s

) > 0.

Hence, for any kG≤k0, T0(kG)≤T (k0)=b1, by part (a). Further, for any kG>k0, T0(kG)>T (k0)=b1.

To prove part (c), we get

∂TA(kG)

∂kG
= − b1b2λ√

2b1b2(p− kGλ)(p− s) + b22s
2
< 0.

It follows that, for any kG > k0, TA(kG) < TA(k0) = b1. Since kG > k0 implies T0(kG) > TA(k0) =

b1, the result follows. To prove part (d) we use definition of TB to obtain

∂TB(kG)

∂kG
= − b2λ

p− s
< 0.

Hence, for any kG ≤ k0, TB(kG)≥ TB(k0) = b1, by part (a). By part (b), for any kG ≤ k0, TB(kG)≥

T (k0)=b1≥T0(kG). Also, because ∂TB(kG)
∂kG

< 0, and TB
(
b1(p−s)

2b2λ

)
= b2 by definition, we obtain part (e).

�
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Proof of Theorem 8: Based on Theorem 7, we distinguish the following two cases:

Case 1: G ∈
[
T, b1

)
. Using (3.11) we obtain

∂ΠG(G,T )

∂G
=

p

λb1
(b1 −G) +

p− s
2λb1b2

(2b2T − T )T − kG. (B.13)

Since ∂2ΠG(G,T )
∂G2 < 0 by Theorem 7(c), the generation’s company best response function is obtained by

solving ∂ΠG(G,T )
∂G = 0. Thus, using (B.13), we get G(T ) = b1

(
1− kGλ

p

)
+ (p−s)(2b2−T )T

2pb2
. It follows that

b1 > G(T ) is equivalent to T ≤ T0(kG) and G(T ) ≥ T is equivalent to T < TA(kG), where T0(kG) is as

defined in (3.14). Hence, Case 1 occurs when T < min
[
TA(kG), T0(kG)

]
.

Case 2: G ∈
[
max(T, b1), b1 + T

]
. We use (3.12) to obtain

∂ΠG(G,T )

∂G
=

p− s
2λb1b2

(b1 + 2b2 −G− T )(b1 + T −G)− kG. (B.14)

Because ∂2ΠG(G,T )
∂G2 < 0 by Theorem 7(c), the generation’s company best response function is again

obtained by solving ∂ΠG(G,T )
∂G = 0. We make use of (B.14) to getG(T ) = b1+b2−

√
(b2 − T )2 + 2b1b2kGλ

p−s .

It follows thatG(T ) ≥ b1 is equivalent T ≥ T0(kG), and G(T ) ≥ T is equivalent to T ≤ TB(kG). We also

obtain

b1 + T −G(T ) =

√
(b2 − T )2 +

2b1b2(p− kGλ)

p− s
− (b2 − T ) > 0.

Thus,G(T ) < b1 + T by Assumption 4, and Case 2 occurs when T0(kG) ≤ T ≤ TB(kG). Hence, if

T < min[TA(kG), T0(kG)] then G(T ) = Gα; if T0(kG) ≤ T ≤ TB(kG) then G(T ) = Gβ.

We now show that if kG ≤ k0 and T ≤ T0, or if kG > k0, then G(T ) = Gα(T ); if kG ≤ k0 and T > T0,

then G(T ) = Gβ(T ). By Proposition 2, we obtain G(T ∗)≥T ∗. Hence, for the remainder of this proof, we

only consider T such that T ≤ TA(kG) and T ≤ TB(kG), which derives from Gα(T )≥ T and Gβ(T )≥ T ,

respectively.

If kG > k0, then TA(kG) < T0(kG) by Lemma 8 Part (c). Therefore, for any T <TA(kG), if kG > k0

then T <TA(kG) < T0(kG). Hence, G(T ) = Gα because T < min[TA(kG), T0(kG)].

If kG ≤ k0, then T0(kG) ≤ TA(kG) by Lemma 8 Part (b) and T0(kG) ≤ TB(kG) by Lemma 8 Part

(d). Therefore, for any kG ≤ k0, if T < T0(kG), then G(T ) = Gα because T < min[TA(kG), T0(kG)];
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Otherwise, G(T ) = Gβ. �

Proof of Proposition 10: Following Theorem 8, we distinguish two cases.

Case 1: G(T ) = Gα(T ). We use (3.11) to get

ΠG(T )=
p

λb1

[
G

2
(T )

2
+G(T )

(
b1 −G(T )

)]

+
p− s
λb1b2

[
(b2−T )

(
G(T )−T

)
T+

b2T
2

2
+

(
G(T )− T

)
T 2

2
−T

3

6

]
− kGG(T ).

We use G(T ) = Gα(T ) in the above expression to get (3.15).

Case 2: G(T ) = Gβ(T ). We use (3.12) to get

ΠG(T )=
pb1
2λ

+
(p− s)
6λb1b2

[
b31+3b21

(
b2−G(T )

)
+3b1G(T )

(
G(T )− 2b2

)
+(3b2− G(T )− 2T )

(
G(T )− T

)2]− kGG(T ).

We use G(T ) = Gβ(T ) in the above expression to get (3.16). �

Proposition 15. (a) If kG > k0 then T ∗ < TA; (b) if kG ≤ k0 then T ∗ < TB;

Proof of Proposition 15: We distinguish two cases:

Case 1:G(T ) =Gα. In this case, by Theorem 8, G(T )∈ [T, b1]. Thus, Gα(T ∗) > T ∗ and Gα(T ∗) < b1. It

follows directly from Gα(T ∗) > T ∗ that T ∗ < TA. Similarly, it follows from Gα(T ∗) < b1 that T ∗ < T0.

By Lemma 8, TA < T0 if kG > k0, and TA ≥ T0 otherwise. Thus, if kG > k0 then T ∗ < TA. If kG ≤ k0

then T ∗ < T0 ≤ TB, where the last inequality follows from Lemma 8.

Case 2: G(T ) = Gβ . In this case, by Theorem 8, G(T ) ≥ max[b1, T ]. Therefore, Gβ(T ∗) ≥ T ∗ and

Gβ(T ∗) ≥ b1. After algebraic manipulation, we rewrite Gβ(T ∗) ≥ b1 as T ∗ ≥ T0. Also, Gβ(T ∗) ≥ T ∗ is

equivalent to T ∗ ≤ TB after algebraic manipulation. By Lemma 8, T0 ≤ TB only if kG ≤ k0 and T0 > TB,

otherwise. Thus, we obtain that if kG ≤ k0 then T ∗ ≤ TB. �

Proof of Proposition 11: To prove part (a), following Theorem 8, we distinguish two cases.

Case 1: G(T ) = Gα(T ). In this case, by Theorem 8, either kG ≤ k0 and T ≤ T0, or kG > k0. Further, if

kG>k0, then for any (kG, T ) ∈ S, T <TA. By (3.15), we have that
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∂ΠG(T )

∂T
=

(p− s)(b2 − T )

2b1b22λp

[
2b1b2(p− kGλ)− 2b2sT − (p− s)T 2

]
Since T ≤ b2 by Lemma 2, to show ∂ΠG(T )

∂T > 0, it suffices to show that 2b1b2(p−kGλ)−2b2sT−(p−

s)T 2>0. Define g1(T, kG) :=2b1b2(p−kGλ)−2b2sT−(p−s)T 2. Because ∂g1(T,kG)
∂T =−2(b2s+(p−s)T )<0

and ∂g1(T,kG)
∂kG

=−2b1b2λ<0, for any T ≤ T0 and kG ≤ k0, we get

g1(T, kG) ≥ g1(T0, kG) ≥ g1(T0, k0) = 2

(
b1b2p+ b2p

(
−b2 +

√
b2

(
b2 −

2b1k0λ

p− s

)))
= 0.

Thus, ∂ΠG
∂T > 0 if kG ≤ k0 and T ≤ T0. For T ≤ TA and kG > k0, because ∂g1(T,kG)

∂T < 0, we obtain

g1(T, kG) ≥ g1(TA, kG) = 0. Thus, ∂ΠG
∂T > 0 if T ≤ TA and kG > k0.

Case 2: G(T ) = Gβ(T ). Then, by Theorem 8, kG ≤ k0 and T > T0. Further, since (kG, T ) ∈ S, then

T ≤min[TB, b2] when kG ≤ k0. We now show that Gβ(T ) is increasing in T for any T ≤min[TB, b2]. By

(3.16),

∂ΠG(T )

∂T
=

b2 − T

b1b2λ

√
2b1b2kGλ

p− s
+ (b2 − T )2

[
(p− s)(b1+b2−T )

√
2b1b2kGλ

p− s
+ (b2−T )2 − (p−s)(b2−T )2−2b1b2kGλ

]
.

Define

g2(T, kG) :=

[
(p− s)(b1 + b2 − T )

√
2b1b2kGλ

p− s
+ (b2 − T )2 − (p− s)(b2 − T )2 − 2b1b2kGλ

]
,

To show that ∂ΠG(T )
∂T > 0, it suffices to show that g2(T, kG) > 0. By definition, we get

∂g2(T, kG)

∂T

=
−2b1b2kGλ− (p− s)b1(b2 − T )− 2(p− s)(b2 − T )2 + 2(p− s)(b2 − T )

√
(b2 − T )2 + 2b1b2kGλ

p−s√
(b2 − T )2 + 2b1b2kG

p−s

.

Define
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G2(T ) := −2b1b2kGλ− (p− s)b1(b2 − T )− 2(p− s)(b2 − T )2 + 2(p− s)(b2 − T )

√
(b2 − T )2 +

2b1b2kGλ

p− s
.

Then, to show that ∂g2

∂T < 0 it suffices to show that G2(T ) < 0. Because p > s, we obtain, for any

T < b2,−2b1b2kGλ−(p−s)b1(b2−T )−2(p−s)(b2−T )2−2(p−s)(b2−T )
√

(b2 − T )2 + 2b1b2kGλ
p−s < 0.

Therefore, for any T < b2, because

G2(T )×

[
−2b1b2kGλ− (p− s)b1(b2 − T )− 2(p− s)(b2 − T )2 − 2(p− s)(b2 − T )

√
(b2 − T )2 +

2b1b2kGλ

p− s

]

= b1
[
b1(2b2kλ+ (b2 − T )(p− s)

]2
+ 4(b2 − T )3(p− s)2) > 0,

we obtain that G2(T ) < 0. Since G2(T ) < 0, then ∂g2

∂T < 0 for any T < min[b2, TB]. To show that

g2(T, kG)≥0 for any T <min[b2, TB], based on Lemma 8, we now distinguish two cases: b1(p−s)
2b2λ

<kG≤k0

and kG≤ b1(p−s)
2b2λ

.

If b1(p−s)
2b2λ

<kG≤k0, then by Lemma 8, T < min[b2, TB] is equivalent to T < TB. Because ∂g2

∂T < 0, we

obtain for any T < TB that g2(T, kG) > g2

(
TB, kG

)
= 0.

If kG≤ b1(p−s)
2b2λ

, then by Lemma 8, T < min[b2, TB] is equivalent to T < b2. We use ∂g2

∂T < 0 to obtain

that for any T < b2,

g2(T, kG) > g2

(
b2, kG

)
= −2b1b2kGλ+

√
2b1(p− s)

√
2b1b2λ

p− s
.

Because ∂
∂kG

g2

(
b2, kG

)
= − b31b

2
2λ

2

2
√

2(p−s)
(
b1b2kGλ

p−s

) 3
2
< 0, we obtain that for any 0 ≤ kG ≤ b1(p−s)

2b2λ
,

g2

(
b2, kG

)
≥ min

[
g2

(
b2, 0

)
, g2

(
b2,

b1(p−s)
2b2λ

)]
.Because g2

(
b2, 0

)
= g2

(
b2,

b1(p−s)
2b2λ

)
= 0,we get g2

(
T, kG

)
≥

0 for any T < b2. Consequently, ∂
∂T Gβ(T ) > 0 for any T ≤ min[TB, b2]. This completes the proof of part

(a).

To prove part (b), we distinguish two cases based on Theorem 8.

Case 1: kG ≤ k0 and T ≤ T0, or kG > k0 in which case T < TA, since (kG, T ) ∈ S. By Lemma 8, these

conditions are equivalent to T < min [T0, TA] . Also, for any kG,min [T0, TA] ≤ b1 by Lemma 8. By (3.15),
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∂Π(T )

∂p
=

12b21b
2
2(p2 − k2

Gλ
2) + 12b1b2(p2 − kGλs)(2b2 − T )T + T 2

[
3(p2 − s2)T 2 − 4b2(p2 − 3s2)T − 12b22s

2
]

24b1b22λp
,

∂2Π(T )

∂T∂p
=

12(b2 − T )

24b1b22λp
×
[
2b1b2(p2 − kGλs)− T (2b2s

2 + (p2 − s2)T )
]
.

Thus, to show ∂2Π(T )
∂T∂p >0 for any T ≤b2, it suffices to show

[
2b1b2(p2−kGλs)−T (2b2s

2+(p2−s2)T )
]
>0.

Let

g3(T, kG) := 2b1b2(p2 − kGλs)− T (2b2s
2 + (p2 − s2)T ).

Then, because ∂g3(T,kG)
∂T = −2(p2 − s2)T − 2b2s

2 < 0, and ∂g3(b1,kG)
∂kG

= −2b1b2λs < 0, we obtain

that, for any T ≤ min [T0, TA] ≤ b1 and kG < k̄,

g3(T, kG) > g3

(
b1, k̄

)
= b1(p− s) (2b2p− b1(p+ s)) > 0.

Therefore, we obtain ∂2Π(T )
∂T∂p > 0. Thus, for any T ≥ 0,

∂Π(T )

∂p
≥ ∂Π(0)

∂p
=
b1(p2 − k2

Gλ
2)

2λp2
> 0.

Thus, ∂Π(T )
∂p > 0 for Case 1. We now show ∂ΠG

∂kG
< 0 for Case 1. We use (3.15) to get

∂ΠG

∂kG
= −24b21b

2
2λ(p− kGλ) + 12b1b2λ(p− s)(2b2 − T )T

24b1b22λp
. (B.15)

Because p > s and p > kGλ and by Assumption 4, then for any T < b2, we obtain by (B.15) that

∂ΠG
∂kG

< 0.

Finally, we show ∂ΠG
∂s < 0. We use (3.15) to get

∂ΠG

∂s
= − T

24b1b22λp
×[

6b1b2(p− kGλ)(b2 − T ) + 6b22 (b1(p− kGλ)− sT ) + (p− s)T
(
6b22 − 8b2T + 3T 2

)
+ 4sb2T

2
]
.

Thus, to show that ∂ΠG
∂s < 0 for any T ≤ min [T0, TA] ≤ b1, it suffices to show that 6b1b2(p−kGλ)(b2−
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T ) + 6b22 (b1(p− kGλ)− sT ) > 0 and (p − s)T
(
6b22 − 8b2T + 3T 2

)
+ 4sb2T

2 > 0. Because p > kGλ

and p > s, for any T ≤ min [T0, TA] ≤ b1, we get 6b1b2(p− kGλ)(b2−T ) + 6b22 (b1(p− kGλ)− sT ) > 0.

Also, for any T ≤ b2, because ∂
∂T

[
6b22 − 8b2T + 3T 2

]
= −8b2 + 6T < 0, we obtain that, for any T ≤ b1,

6b22 − 8b2T + 3T 2 ≥
(

6b22 − 8b2T + 3T 2
)∣∣∣
T=b1

= 6b22 − 8b2b1 + 3b21 > 0,

because b2 ≥ 2b1 by assumption. Thus, ∂ΠG
∂s < 0 for Case 1.

Case 2: kG ≤ k0 and T0 < T ≤ min[TB, b2]. Using (3.16), we get

∂ΠG

∂p
=

1

6b1b2λ(p− s)2
√

2b1b2kGλ
p−s + (b2 − T )2

×

[
b21b2

(
−4b2k

2
Gλ

2 + 3(p− s)2

√
2b1b2kGλ

p− s
+ (b2 − T )2

)

− 2(p− s)2(b2 − T )3

(√
2b1b2kGλ

p− s
+ (b2 − T )2 − (b2 − T )

)

+ b1(p− s)

(
2b2kGλ(b2 − T )2 + 3(p− s)(2b2T − T 2)

√
2b1b2kGλ

p− s
+ (b2 − T )2

)]

∂2ΠG

∂T∂p
=

(b2 − T )

b1b2λ(p− s)
√

2b1b2kGλ
p−s + (b2 − T )2

×

[
(b2 − T )(p− s)

(√
2b1b2kGλ

p− s
+ (b2 − T )2 − (b2 − T )

)
+ b1(p− s)

√
2b1b2kGλ

p− s
+ (b2 − T )2 − b1b2kGλ

]
.

(B.16)

We first prove that ∂
2ΠG
∂T∂p > 0. Since p > s by Assumption 4, then for any T ≤ b2, we have that

(b2 − T )(p− s)

(√
2b1b2kGλ

p− s
+ (b2 − T )2 − (b2 − T )

)
≥ 0.

Thus, to show ∂2ΠG
∂T∂p > 0, it suffices to show that b1(p − s)

√
2b1b2kGλ
p−s + (b2 − T )2 − b1b2kGλ > 0.

Because p > s, we get that b1(p − s)
√

2b1b2kGλ
p−s + (b2 − T )2 + b1b2kGλ > 0. Consequently, to show that

b1(p− s)
√

2b1b2kGλ
p−s + (b2 − T )2 − b1b2kGλ > 0, it suffices to show that

[
b1(p− s)

√
2b1b2kGλ

p− s
+ (b2 − T )2 − b1b2kGλ

]
×

[
b1(p− s)

√
2b1b2kGλ

p− s
+ (b2 − T )2 + b1b2kGλ

]

= b21
(
(p− s)((p− 2)(b2 − T )2 + 2b1b2kGλ)− b22k2

Gλ
2
)
> 0.
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Define h2(T, kG) := b21
(
(p− s)((p− 2)(b2 − T )2 + 2b1b2kGλ)− b22k2

Gλ
2
)
. Then, for any T ≤ b2, we

obtain that ∂h2(T,kG)
∂T = −2b21(p− s)2(b2 − T ) < 0. To show that h2(T, kG) ≥ 0 for any T ≤ min[b2, TB],

we now distinguish the case of b1(p−s)
2b2λ

<kG≤k0 from the case of kG≤ b1(p−s)
2b2λ

based on Lemma 8.

If b1(p−s)
2b2λ

<kG≤k0, then by Lemma 8, T ≤ min[b2, TB] = TB. Because ∂h2
∂T < 0, then for any T ≤ TB,

h2(T, kG) ≥ h2

(
TB, kG

)
=

b31(p−s)(4b2kGλ+b1(p−s))
4 > 0.

If kG ≤ b1(p−s)
2b2λ

, then by Lemma 8, T ≤ min[b2, TB] = b2. Because ∂
∂T h2 < 0, then for any T ≤

b2, h2(T, kG) ≥ h2

(
b2, kG

)
= b21

(
2b1b2kGλ(p− s)− b22λ2

)
. We obtain that for any 0 ≤ kG ≤ b1(p−s)

2b2λ
,

∂h2

(
b2,kG

)
∂T =2b31b2λ

(
b1(p− s)− b2kGλ

)
> 0. Consequently, we obtain that, for any kG ≤ 0, h2

(
b2, kG

)
≥

h2(b2, 0) = 0. Hence, for any T ≤ min[b2, TB] and kG≤k0, we obtain that

h2(T, kG) ≥ 0. (B.17)

Therefore, for Case 2, we conclude that

b1(p− s)

√
2b1b2kGλ

p− s
+ (b2 − T )2 − b1b2kGλ > 0,

from which it follows that ∂
2ΠG
∂T∂p > 0. Therefore, for any T > T0,

∂ΠG(T )

∂p
>
∂ΠG(T0)

∂p

=
2b1kGλ

(
−3b2 + 2

√
b2(b2 − 2b1kGλ

p−s )
)

+ 2b2

(
b2 −

√
b2(b2 − 2b1kGλ

p−s )
)

+ 3b21(2kGλ+ p− s)

6b1λ(p− s)
.

Define

h3(p) :=2b1kGλ

(
−3b2+2

√
b2

(
b2−

2b1kGλ

p− s

))
+2b2

(
b2−

√
b2

(
b2−

2b1kGλ

p− s

))
+3b21(2kGλ+ p− s).

(B.18)

Then, to show ∂ΠG(T0)
∂p > 0, it suffices to show that h3(p) > 0. By differentiating (B.18), we get

∂2h3(p)

∂p2
= − 6b21b2k

2
Gλ

2√
b2

(
b2 − 2b1kGλ

p−s

)
(p− s)3

< 0.
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Thus, h3(p) is concave in p. Since kG < k0 implies p > 2b2kGλ
2b2−b1 + s, then concavity of h3 implies that

h3(p) > min

[
h3

(
2b2kGλ

2b2 − b1
+ s

)
, lim
p→∞

h3(p)

]
. (B.19)

Further, we have that

h3

(
2b2kGλ

2b2 − b1
+ s

)
=

2b21kGλ(6b2 − b1)

2b2 − b1
> 0,

and

lim
p→∞

h3(p) = lim
p→∞

[
2b1kGλ

(
−3b2 + 2

√
b2

(
b2 −

2b1kGλ

p− s

))
+ 2b2

(
b2 −

√
b2

(
b2 −

2b1kGλ

p− s

))
+ 3b21(2kGλ+ p− s)

]

= lim
p→∞

[
3b21(2kGλ+ p− s)− 2b1b2kGλ

]
=∞ > 0.

It then follows from (B.19) that h3(p) > 0. Hence ∂ΠG
∂p > 0. Next, we show ∂ΠG

∂kG
< 0. We use (3.16)

to get

∂ΠG

∂kG
=

b1

(
2b2kGλ− (p− s)

√
2b1b2kGλ

p− s
+ (b2 − T )2

)
+ (p− s)

(
(b2 − T )2 − b2

(√
2b1b2kGλ

p− s
+ (b2 − T )2

))
(p− s)

√
2b1b2kGλ

p− s
+ (b2 − T )2

.

Define

Γ(T ) := b1

(
2b2kGλ− (p− s)

√
2b1b2kGλ

p− s
+ (b2 − T )2

)
+ (p− s)

(
(b2 − T )2 − b2

(√
2b1b2kGλ

p− s
+ (b2 − T )2

))
.

Thus, to show that ∂ΠG
∂kG

< 0, it suffices to show that Γ(T ) < 0. We obtain that

dΓ

dT
=

(p− s)(b2 − T )√
2b1b2kGλ

p− s
+ (b2 − T )2

×

[
b1 + b2 − 2

√
2b1b2kGλ

p− s
+ (b2 − T )2

]
. (B.20)

We now show that for T ∈
[
T0, min(TB, b2)

]
, and any kG ≤ k0, Γ(T ) is decreasing in T by showing
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that g3(T ) := b1+b2−2

√
2b1b2kGλ

p− s
+ (b2−T )2 < 0 for T ∈

[
T0, min(TB, b2)

]
. First, for any T ≤b2, we

get

dg3(T )

dT
=

∂

∂T

[
b1 + b2 − 2

√
2b1b2kGλ

p− s
+ (b2 − T )2

]
= − 2(b2 − T )√

2b1b2kGλ

p− s
+ (b2 − T )2

< 0.

Further, it follows from the definition of T0 that g3(T0) = b1−b2 < 0. Therefore, since g3(T0) < 0

and g3(T ) is decreasing in T , it follows that g3(T ) < 0 for any T0 ≤ T ≤ b2. Thus, by (B.20), Γ(T ) is

decreasing in T for T ∈
[
T0, min(TB, b2)

]
. Hence, Γ(T ) < Γ(T0) := −b1b2(p− s) < 0, and we conclude

that ∂ΠG
∂kG

< 0.

Finally, we show ∂ΠG
∂s < 0. We use (3.16) to get

∂ΠG

∂s
=

1

6b1b2λ
×

b1b2
 4b1b2k

2
Gλ

2

(p− s)2
√

2b1b2kGλ
p−s + (b2 − T )2

− 6T

+
2b1b2kGλ(b2 − T )2

(p− s)
√

2b1b2kGλ
p−s + (b2 − T )2

+3b1T
2 − 2(b2 − T )2

(√
2b1b2kGλ

p− s
+ (b2 − T )2 − (b2 − T )

)]
.

∂2ΠG

∂T∂s
=

b2 − T

b1b2λ(p− s)
√

2b1b2kGλ
p−s + (b2 − T )2

×

[
b1b2kGλ− b1(p− s)

(√
2b1b2kGλ

p− s
+ (b2 − T )2

)

−(p− s)(b2 − T )

(√
2b1b2kGλ

p− s
+ (b2 − T )2 − (b2 − T )

)]
. (B.21)

Since T ≤ b2, then−(p−s)(b2−T )
(√

2b1b2kGλ
p−s + (b2 − T )2 − (b2 − T )

)
< 0. Therefore, by (B.21),

to show ∂2ΠG
∂T∂s < 0 it suffices to show that b1b2kGλ − b1(p − s)

√
2b1b2kGλ
p−s + (b2 − T )2 < 0. Since p > s,

we get −b1b2kGλ− b1(p− s)
√

2b1b2kGλ
p−s + (b2 − T )2 < 0. Observe that

[
−b1b2kGλ− b1(p− s)

√
2b1b2kGλ

p− s
+ (b2 − T )2

]
×

[
b1b2kGλ− b1(p− s)

√
2b1b2kGλ

p− s
+ (b2 − T )2

]

= b21
(
(p− s)((p− s)(b2 − T )2 + 2b1b2kGλ)− b22k2

Gλ
2
)

= h2(T, kG) ≥ 0,

by (B.17). It follows that b1b2kGλ− b1(p− s)
√

2b1b2kGλ
p−s + (b2 − T )2 ≤ 0. Thus, ∂

2ΠG
∂T∂s < 0.
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Consequently, for any T > T0,

∂ΠG(T )

∂s
<
∂ΠG(T0)

∂s
=

b1kGλ

(
3b2−2

√
b2

(
b2− 2b1kGλ

p−s

))
−3b21b2kGλ−b2(p−s)

(
b22−

√
b2

(
b2− 2b1kGλ

p−s

))
3b1λ(p− s)

.

Define

h4

(
kG
)

:= b1kGλ

(
3b2−2

√
b2

(
b2−

2b1kGλ

p− s

))
−3b21b2kGλ−b2(p−s)

(
b22−

√
b2

(
b2−

2b1kGλ

p− s

))
.

(B.22)

Then, to show ∂ΠG(T0)
∂s , it suffices to show that h4 (kG) < 0. For any kG ≤ k0, we use (B.22) to get

∂2h4(kG)

∂k2
G

=
3b21b2λ

2

(p− s)
√
b2

(
b2 − 2b1kGλ

p−s

) > 0.

It follows from ∂2h4(kG)
∂k2
G

h4(kG) > 0 that, for any kG ∈ [0, k0], h4(kG) ≤ max
[
h4 (0) , h4 (k0)

]
. By

(B.22),

h4(0) = 0; and h4(k0) = −b
2
1(3b2 − b1)(p− s)

2b2
< 0.

Consequently, we conclude ∂ΠG(T0)
∂s < 0. It follows that ∂ΠG(T )

∂s < 0, which completes the proof. �

Proof of Proposition 12: Based on Theorem 7, we distinguish the following two cases:

Case 1: G ∈
[
T, b1

)
. We use expressions (3.5) and (3.6) to obtain

VT (T ) =
s

λb1b2


∫ max[G(T )−T,0]

0
T (b2 − T )dx1 +

∫ G(T )

max[G(T )−T,0]
(G(T )− x1)(b2 − G(T ) + x1)dx1

− kGG(T )

=
p

λb1

[
G(T )2

2
+ G(T )(b1 − G(T ))

]
+
p− s
λb1b2

[
(b2 − T )(G(T )− T )T +

b2T
2

2
+

(G(T )− T )T 2

2
− T 3

6

]
−kTT.

Then, we substitute G(T ) = Gα(T ) given in Theorem 8 to obtain expression (3.17). To show that

G∈
[
T, b1

)
requires kG≤k0 and T ≤T0, or kG>k0, we follow the same steps as in the proof of Theorem 8.
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Case 2: G ∈
[
max(T, b1), b1 + T

]
. We again use expressions (3.5) and (3.6) to obtain

VT (T ) =
p

λb1

∫ b1

0
xdx1 +

p− s
λb1b2

∫ max[G(T )−T,0]

0

T 2

2
dx1 +

∫ b1

max[G(T )−T,0]

(G(T )− x1)2

2
dx1

+

∫ max[G(T )−T,0]

0
T (b2 − T )dx1 +

∫ b1

max[G(T )−T,0]
(G(T )− x1)(b2 − G(T ) + x1)dx1

− kGG(T )

=
pb1
2λ
− p− s

6λb1b2

[
b31 + 3b21(b2 − G(T )) + 3b1G(T )(G(T )− 2b2) + (3b2 − G(T )− 2T )(G(T )− T )2

]
− kTT.

Then, we substituteG(T )=Gβ(T ) given in Theorem 8 to obtain (3.18). To show thatG∈
[
max(T, b1), b1+

T
]

requires kG≤k0 and T >T0, we follow the same steps as in the proof of Theorem 8. �

Proof of Theorem 9: Following Proposition 12, we distinguish the following two cases.

Case 1: kG ≤ k0 and T ≤ T0, or kG > k0. We use (3.17) to get

∂VT (T )

∂T
= −kT + s(b2 − T )

b1b2(p− kGλ) + T (b2(p− 2s)− (p− s)T )

b1b22pλ
(B.23)

∂3VT
∂T 3

=
2(s+ v)(−2b2p+ 3b2s+ 3(p− s)T )

b1bs2λp
(B.24)

∂4VT
∂T 4

=
6(p− s)(s+ v)

b1b22λp
> 0.

If kG ≤ k0, then, by Lemma 8, T ≤ T0 ≤ b1. If kG > k0, then by Lemma 8, T ≤ TA ≤ b1. We first

show that, for any T ≤ b1, VT (T ) is strictly increasing or unimodal in T .

Since ∂4VT (T )
∂T 4 > 0, then, for any T ≤ b1, ∂

3VT (T )
∂T 3 ≤ ∂3

∂T 3VT (T )
∣∣∣
T=b1

. We use (B.24) to obtain that

∂3

∂T 3VT (T )
∣∣∣
T=b1

= 2s(3(p−s)b1−2b2p+3b2s)
b1b22λp

. Because b1 <
b2(2p−3s)

3(p−s) , we obtain ∂3VT (T )
∂T 3 ≤ ∂3

∂T 3VT (T )
∣∣∣
T=b1

<

0.

Because ∂3

∂T 3VT (T ) < 0, then, for any T ≤ b1, ∂
∂T VT (T ) is a concave function of T . By (B.23)

we get that ∂
∂T VT (T )

∣∣
T=0

= (p−kGλ)(s+v)
pλ − kT > 0. Consequently, because ∂

∂T VT (T ) is concave and

∂
∂T VT (T )

∣∣
T=0

> 0, we obtain that, T ≥ 0, VT (T ) is strictly increasing in T or unimodal in T in Case 1.

Case 2: kG < k0 and T ≥ T0. We use (3.18) to get
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∂

∂T
VT (T ) =− kT +

(s+ v)(b2 − T )

3b1b2λ(p− s)
×−2(p− s)

√
2b1b2kGλ

p− s
+ (b2 − T )2 +

b1b2kGλ− (p− s)(b2 − T )2√
2b1b2kGλ
p−s + (b2 − T )2

+ 3(p− s)(b1 + b2 − T )

 .
(B.25)

Also,
∂4

∂T 4
VT (T ) =

12b1b2k
2
Gλ(s+ v)

(
3b1b2kGλ− (p− s)(b2 − T )2

)√
2b1b2kGλ
p−s + (b2 − T )2

[
2b1b2kGλ+ (p− s)(b2 − T )2

]3 (B.26)

We now show that if kG < k0 and T ≥ T0, then ∂3

∂T 3VT (T ) is a) strictly decreasing, or b) unimodal with

a unique minimum, or c) strictly increasing in T .

By (B.26), we get ∂4

∂T 4VT (T )
∣∣∣
T=b2−

√
3b1b2kGλ

p−s

= 0. Also, ∂
∂T

[
3b1b2kGλ− (p− s)(b2 − T )2

]
= 2(p−

s)(b2 − T ) > 0. Thus, by (B.26), ∂4

∂T 4VT (T ) > 0 for any T > b2 −
√

3b1b2kGλ
p−s and ∂4

∂T 4VT (T ) ≤ 0 for any

T ≤ b2 −
√

3b1b2kGλ
p−s .

By definition of T0 given in (3.14), we obtain that b2 −
√

3b1b2kGλ
p−s < T0 if b1 > b2(p−s)

5kGλ
and b2 −√

3b1b2kGλ
p−s > T0 if b1 <

b2(p−s)
5kGλ

. Therefore, if b1 >
b2(p−s)
5kGλ

, then for any T ≥ T0,
∂4

∂T 4VT (T ) > 0 because

T ≥ T0 > b2 −
√

3b1b2kGλ
p−s . Thus, ∂3

∂T 3VT (T ) is strictly increasing in T .

If b1 <
b2(p−s)
5kGλ

, then b2 −
√

3b1b2kGλ
p−s > T0. Therefore, if b1 <

b2(p−s)
5kGλ

, then for any T ≥ T0, because

∂4

∂T 4VT (T ) < 0 for T < b2−
√

3b1b2kGλ
p−s and ∂4

∂T 4VT (T ) > 0 for T > b2−
√

3b1b2kGλ
p−s . Therefore, ∂3

∂T 3VT (T )

is strictly decreasing, or unimodal (with a unique minimum) in T .

We now show that ∂2

∂T 2VT (T ) is either a) strictly decreasing, b) unimodal with a unique minimum, or

c) strictly increasing in T . If b1 ≥ b2(p−s)
5kGλ

then because ∂3

∂T 3VT (T ) is strictly increasing in T , ∂2

∂T 2VT (T ) is

either a) strictly decreasing, b) unimodal with a unique minimum, or c) strictly increasing.

When b1 <
b2(p−s)
5kGλ

, we use (3.18) to get
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∂3

∂T 3
VT (T )

∣∣∣∣
T=T0

=

2(s+ v)

b1b42λ(p− s)2
×

[
b32(p− s)2 − (3b21k

2
Gλ

2 + b1b2kGλ(p− s) + b22(p− s)2)

√
b2

(
b2 −

2b1kGλ

p− s

)]
(B.27)

We now show that for any b1 <
b2(p−s)
5kGλ

, ∂3

∂T 3VT (T )
∣∣∣
T=T0

< 0. By (B.27), to show ∂3

∂T 3VT (T )
∣∣∣
T=T0

<

0, it suffices to show that

b32(p− s)2 − (3b21k
2
Gλ

2 + b1b2kGλ(p− s) + b22(p− s)2)

√
b2

(
b2 − 2b1kGλ

p−s

)
< 0.

Define

η(b1) :=

[
b32(p− s)2 − (3b21k

2
Gλ

2 + b1b2kGλ(p− s) + b22(p− s)2)

√
b2

(
b2 −

2b1kGλ

p− s

)]
(B.28)

For any b1 <
b2(p−s)
5kGλ

, we use (B.28) to obtain that

∂

∂b1
η(b1) =

3b1b2k
2
Gλ

2

(p− s)
√
b2

(
b2 − 2b1kGλ

p−s

) × [5b1kGλ− b2(p− s)] < 0. (B.29)

Consequently, because ∂
∂b1
η(b1) < 0, we obtain, for any b1 ≥ 0, η(b1) ≤ η(0) = 0.

Therefore, for any b1 < b2(p−s)
5kGλ

, ∂3

∂T 3VT (T )
∣∣∣
T=T0

< 0. Thus, if b1 < b2(p−s)
5kGλ

, then ∂2

∂T 2VT (T ) is

either strictly decreasing in T , or unimodal (U-shape) in T because, for any T ≥ T0, ∂3

∂T 3VT (T ) is strictly

decreasing or unimodal in T and ∂3

∂T 3VT (T )
∣∣∣
T=T0

< 0.

Because ∂2VT (T )
∂T 2 is either a) strictly decreasing in T , or b) unimodal (U-shape), or c) strictly increasing

in T , to prove that ∂VT (T )
∂T is either unimodal (U-shape) or decreasing in T , we now show that for any

T ≥ T0, ∂2VT (T )
∂T 2

∣∣∣
T=T0

< 0. By (3.18) we obtain

∂2VT (T )

∂T 2

∣∣∣∣
T=T0

=

− s+ v

b1b22λ(p− s)2
×

[
b1b2(p− s)(2kGλ+ p− s) + 2b21kGλ

2 + 2b2

(
−b2 +

√
b2

(
b2 −

2b1kGλ

p− s

))]
.

(B.30)
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By (B.30) to show ∂2VT (T )
∂T 2

∣∣∣
T=T0

< 0, it suffices to show that[
b1b2(p− s)(2kGλ+ p− s) + 2b21kGλ

2 + 2b2

(
−b2 +

√
b2

(
b2 − 2b1kGλ

p−s

))]
> 0. Define

κ(kG) := b1b2(p− s)(2kGλ+ p− s) + 2b2

(
−b2 +

√
b2

(
b2 −

2b1kGλ

p− s

))
. (B.31)

Because κ(kG) ≤ b1b2(p−s)(2kGλ+p−s)+2b21kGλ
2 +2b2

(
−b2 +

√
b2

(
b2 − 2b1kGλ

p−s

))
, it suffices

to show that κ(kG) > 0 to prove ∂2VT (T )
∂2T

∣∣∣
T=T0

< 0. By (B.31) we get

∂κ

∂kG
= 2b1b2λ(p− s)

1− b2√
b2

(
b2 − 2b1kGλ

p−s

)
 < 0. (B.32)

Consequently, because ∂κ
∂kG

< 0, it follows that for any kG ≤ k0, we obtain that κ(kG) ≥ κ(k0) =

b1(b2 − b1)(p − s)2 > 0. Consequently, κ(kG) > 0 and we conclude that ∂2VT (T )
∂T 2

∣∣∣
T=T0

< 0. Therefore,

∂VT (T )
∂T is either either unimodal (U-shape) or decreasing in T .

Because ∂VT (T )
∂T is either unimodal (U-shape) or decreasing in T , and,

∂

∂T
VT (T )

∣∣∣∣
T=b2

= −kT < 0, (B.33)

we conclude that for any T < b2, VT (T ) is either a) strictly decreasing in T , or b) unimodal (inverted

U-shape), or c) strictly increasing in T .

Finally, we show that if b1
b2
< 3

2 −
√

1
4 + 2pkTλ

(p−s)(s+v) then Vα,T is strictly increasing in T , and Vβ,T is

either unimodal (inverted U-shape) or strictly increasing in T . We use (3.14), (3.17), and (3.18) to obtain

that

∂

∂T
Vα,T (T )

∣∣∣∣
T=T0

=

(
b2 −

√
b2

(
b2 − 2b1kGλ

p−s

))
(s+ v)

b1λ
+

(p+ kGλ)(s+ v)

√
b2

(
b2 − 2b1kGλ

p−s

)
b2λp

− 2kG(s+ v) + (p− s)kT
p− s

(B.34)

175



∂

∂T
Vβ,T (T )

∣∣∣∣
T=T0

=

(
b2 −

√
b2

(
b2 − 2b1kGλ

p−s

))
(s+ v)

b1λ
+

(p+ kGλ− s)(s+ v)

√
b2

(
b2 − 2b1kGλ

p−s

)
b2λ(p− s)

− 2kG(s+ v) + (p− s)kT
p− s

(B.35)

By (B.37) and (B.35), we obtain that

∂

∂T
Vβ,T (T )

∣∣∣∣
T=T0

− ∂

∂T
Vα,T (T )

∣∣∣∣
T=T0

=

kGs(s+ v)

√
b2

(
b2 − 2b1kGλ

p−s

)
b2p(p− s)

> 0. (B.36)

Also, by Lemma 8 we obtain that in case 1, T ≤ T0 ≤ b1. Then, because Vα,T strictly increasing or

unimodal in T , it suffices to ensure ∂
∂T Vα,T (T )

∣∣
T=b1

> 0 to derive the condition under which Vα,T is always

increasing in T . We use (3.17) to obtain

∂

∂T
Vα,T (T )

∣∣∣∣
T=b1

= (b2 − b1)(s+ v)
(b2(2(p− s)− kGλ)− b1(p− s))

b22λp
− kT (B.37)

Using (B.37), we obtain that for any k < k0, if kT < (b2 − b1)(s+ v) (b2(2(p−s)−kGλ)−b1(p−s))
b22λp

∣∣∣
k=k0

=(
1− b1

2b2

)(
1− b1

b2

)
(p−s)(s+v)

λp , then ∂
∂T Vα,T (T )

∣∣
T=b1

> 0. Therefore, if kT <
(

1− b1
2b2

)(
1− b1

b2

)
(p−s)(s+v)

λp

(equivalent to b1
b2
< 3

2 −
√

1
4 + 2pkTλ

(p−s)(s+v) ), then for any T < T0, Vα,T is strictly increasing in T . By (B.36),

Vβ,T is either unimodal (inverted U-shape) or strictly increasing in T . �

Proof of Proposition 13

Case 1: kG ≤ k0 and T < T0. We prove that Vα,T (T ) is strictly increasing in T . Because Vα,T (T ) is either

unimodal or increasing in T by Theorem 9, to show that Vα,T (T ) is strictly increasing in T , it suffices to

show that ∂
∂T VT (T )

∣∣
T=T0

> 0. Define

Φ(kG) :=
∂

∂T
VT (T )

∣∣∣∣
T=T0

=

− kT + (s+ v)

b2 −
√
b2

(
b2 − 2b1kGλ

p−s

)
b1λ

+

(p+ kGλ)

√
b2

(
b2 − 2b1kGλ

p−s

)
b2pλ

− 2kG
p− s

 . (B.38)
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Then

∂

∂kG
Φ(kG) = −

(s+ v)

(
3b1kGλ+ b1p− 2b2p+ b2s+ 2p

√
b2

(
b2 − 2b1kGλ

p−s

))
p(p− s)

√
b2

(
b2 − 2b1kGλ

p−s

) (B.39)

Define Φ(kG) := 3b1kGλ+ b1p− 2b2p+ b2s+ 2p

√
b2

(
b2 − 2b1kGλ

p−s

)
. Because

∂2

∂kG
2 Φ(kG) = − 2b21b

2
2pλ

2

(p−s)2

(√
b2
(
b2−

2b1kGλ

p−s

))3/2 < 0, we obtain that, for any kG ∈ [0, k0), Φ(kG) ≥

min[Φ(0),Φ(k0)]. By definition, we obtain Φ(0) = b1p+b2s > 0 and Φ(k0) = b1(2p−3s)− 3b21(p−s)
2b2

+b2s.

Because ∂
∂b1

Φ(k0) = 2p − 3s − 3b1(p−s)
b2

> 0
(
∵ b1 <

b2(2p−3s)
3(p−s)

)
and Φ(k0)|b1=0 = b2s > 0 we obtain

that Φ(k0) > 0. Consequently, Φ(kG) > 0. Thus, we use (B.39) to obtain that ∂
∂kG

Φ(kG) < 0.

Since ∂
∂kG

Φ(kG) < 0, we use (B.38) to obtain

Φ(kG) ≥ Φ(k0) =
(b2 − b1)(2b2 − b1)(p− s)(s+ v)

2b22pλ
− kT . (B.40)

It follows from the assumption b1
b2
< 3

2−
√

1
4 + 2pkTλ

(p−s)(s+v) , we obtain that kT <
(b2−b1)(2b2−b1)(p−s)(s+v)

2b22pλ
.

Consequently, ∂
∂T Vα,T (T )

∣∣
T=T0

> 0 and we conclude that Vα,T (T ) is strictly increasing in T .

Case 2: kG ≤ k0 and T ≥ T0. By Theorem 9, for any T0 ≤ T ≤ min[b2, TB], to show that Vβ,T (T ) is

unimodal or strictly increasing in T , it suffices to show that that ∂Vβ,T (T )
∂T

∣∣∣
T=T0

> 0. We use (3.17) and

(3.18) to obtain

∂Vβ,T (T )

∂T

∣∣∣∣
T=T0

− ∂Vα,T (T )

∂T

∣∣∣∣
T=T0

=

kG

√
b2

(
b2 − 2b1kGλ

p−s

)
s(s+ v)

b2p(p− s)
> 0.

and ∂Vα,T (T )
∂T

∣∣∣
T=T0

> 0, we obtain that ∂Vβ,T (T )
∂T

∣∣∣
T=T0

> 0. Therefore, Vβ,T (T ) is unimodal or strictly

increasing in T . �

Proof of Proposition 13

Proof of item (a). Since because Πβ,T is unimodal then ∂Π̃T (r,T )
∂T

∣∣∣
T=T̂

= 0. Thus,

∂

∂r

(
∂Π̃T (r, T )

∂T

∣∣∣∣∣
T=T̂

)
=
∂2Π̃T

∂T 2

∣∣∣∣∣
T=T̂

× ∂T̂

∂r
+
∂2Π̃T

∂r∂T

∣∣∣∣∣
T=T̂

= 0. (B.41)
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By (B.41) we then get

∂T̂

∂r
= −

∂2Π̃T
∂T∂r

∣∣∣
T=T̂

∂2ΠT
∂T 2

∣∣∣
T=T̂

. (B.42)

Since Πβ,T is unimodal, it follows that ∂2Π̃T
∂T 2

∣∣∣
T=T̂

< 0. Also, ∂2Π̃T
∂T∂r

∣∣∣
T=T̂

= kT . Consequently, we use

(B.42) to obtain that ∂T̂∂r > 0.

Proof of item (b). For r1 < r2, Π̃T (r2, T̂ (r2)) − Π̃T (r1, T̂ (r1)) ≥ (r2 − r1)kT T̂ (r1) > 0. Consequently,

we get
Π̃T (r2, T̂ (r2))− Π̃T (r1, T̂ (r1))

r2 − r1
> 0. �

Proof of Theorem 10

To show ∂Π̂G(r)
∂r

∣∣∣
r=0

> 0 we use (3.23) to obtain

∂Π̂G(r)

∂r

∣∣∣∣∣
r=0

=
∂ΠG

∂T

∣∣∣∣
T=T̂

× ∂T̂

∂r

∣∣∣∣∣
r=0

− kT T̂ . (B.43)

Because ∂T̂
∂r = −

∂2ΠT
∂T∂r

∣∣∣∣
T=T̂

∂2ΠT
∂T2

∣∣∣∣
T=T̂

we use (B.43) to get

∂Π̂G(r)

∂r

∣∣∣∣∣
r=0

= g1(T̂)× g2(T̂)

kT
− kT T̂ . (B.44)

By Propositions 11, ∂ΠG
∂T > 0. Also, ∂T̂∂r > 0 by Proposition 13. Consequently, if k2

T <
g1(T̂)g2(T̂)

T̂ 2
,

then
∂Π̂G(r)

∂r

∣∣∣∣∣
r=0

> 0. �

Proof of Proposition 14

Proof of Item (a). We first show that ∂T̂∂p < 0. Since because Πβ,T is unimodal then ∂ΠT (p,T )
∂T

∣∣∣
T=T̂

= 0.

Thus,

∂

∂p

(
∂ΠT (p, T )

∂T

∣∣∣∣
T=T̂

)
=
∂2ΠT

∂T 2

∣∣∣∣
T=T̂

× ∂T̂

∂p
+
∂2ΠT

∂p∂T

∣∣∣∣
T=T̂

= 0. (B.45)

Consequently,
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∂T̂

∂p
= −

∂2ΠT
∂T∂p

∣∣∣
T=T̂

∂2ΠT
∂T 2

∣∣∣
T=T̂

. (B.46)

Because ∂2ΠT
∂T 2

∣∣∣
T=T̂

< 0 to show that ∂T̂∂p < 0 it suffices to show that ∂2ΠT
∂T∂p

∣∣∣
T=T̂

> 0. We use Proposi-

tion 12 to obtain that

∂2Πα,T

∂T∂p
=

(b2 − T )(b1b2λ+ s(2b2 − T )T )(s+ v)

b1b22λp
2

> 0; (B.47)

∂2Πβ,T

∂T∂p
=

b1b2k
2
Gλ(b2 − T )(s+ v)

(p− s)2
√

2b1b2kGλ
p−s + (b2 − T )2 (2b1b2kGλ+ (p− s)(b2 − T )2)

> 0. (B.48)

We next show that ∂T̂
∂kG

> 0. Since because Πβ,T is unimodal then ∂ΠT (p,T )
∂T

∣∣∣
T=T̂

= 0. Thus,

∂

∂p

(
∂ΠT (p, T )

∂T

∣∣∣∣
T=T̂

)
=
∂2ΠT

∂T 2

∣∣∣∣
T=T̂

× ∂T̂

∂p
+
∂2ΠT

∂p∂T

∣∣∣∣
T=T̂

= 0. (B.49)

Consequently,

∂T̂

∂kG
= −

∂2ΠT
∂T∂kG

∣∣∣
T=T̂

∂2ΠT
∂T 2

∣∣∣
T=T̂

. (B.50)

Because ∂2ΠT
∂T 2

∣∣∣
T=T̂

< 0 to show that ∂T̂
∂kG

> 0 it suffices to show that ∂2ΠT
∂T∂kG

∣∣∣
T=T̂

< 0. We use

Proposition 12 to obtain that

∂2Πα,T

∂T∂kG
= −(b2 − T )(s+ v)

b2p
< 0; (B.51)

∂2Πβ,T

∂T∂kG
= − b1b2kGλ(b2 − T )(s+ v)

(p− s)
√

2b1b2kGλ
p−s + (b2 − T )2 (2b1b2kGλ+ (p− s)(b2 − T )2)

< 0. (B.52)

Finally, we show that ∂T̂
∂kT

> 0. Since because Πβ,T is unimodal then ∂ΠT (p,T )
∂T

∣∣∣
T=T̂

= 0. Thus,

∂

∂p

(
∂ΠT (p, T )

∂T

∣∣∣∣
T=T̂

)
=
∂2ΠT

∂T 2

∣∣∣∣
T=T̂

× ∂T̂

∂p
+
∂2ΠT

∂p∂T

∣∣∣∣
T=T̂

= 0. (B.53)
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Consequently,

∂T̂

∂kT
= −

∂2ΠT
∂T∂kG

∣∣∣
T=T̂

∂2ΠT
∂T 2

∣∣∣
T=T̂

. (B.54)

Because ∂2ΠT
∂T 2

∣∣∣
T=T̂

< 0 to show that ∂T̂
∂kT

> 0 it suffices to show that ∂2ΠT
∂T∂kT

∣∣∣
T=T̂

< 0. We use

Proposition 12 to obtain that

∂2Πα,T

∂T∂kT
=
∂2Πβ,T

∂T∂kT
= −1. (B.55)

Proof of Item (b). Because

∂Ĝ

∂kT
=
∂G(T )

∂kT

∣∣∣∣
T=T̂

=
∂G(T )

∂T

∣∣∣∣
T=T̂

× ∂T̂

∂kT
, (B.56)

and ∂G(T )
∂T

∣∣∣∣
T=T̂

> 0 by Proposition 11, we obtain that ∂Ĝ
∂kT

< 0. �

Proof of Theorem 11

Since ∂ΠT (s,T )
∂T

∣∣∣
T=T̂

= 0,

∂

∂s

(
∂ΠT (s, T )

∂T

∣∣∣∣
T=T̂

)
=
∂2ΠT

∂T 2

∣∣∣∣
T=T̂

× ∂T̂

∂s
+
∂2ΠT

∂s∂T

∣∣∣∣
T=T̂

= 0. (B.57)

Using (B.57) we get

∂T̂

∂s
= −

∂2ΠT
∂T∂s

∣∣∣
T=T̂

∂2ΠT
∂T 2

∣∣∣
T=T̂

. (B.58)

Because ∂2ΠT
∂T 2

∣∣∣
T=T̂

< 0 to show that T̂ (s) is unimodal in s, it suffices to show that ∂2ΠT
∂T∂s

∣∣∣
T=T̂ (s)

> 0

for s < s and ∂2ΠT
∂T∂s

∣∣∣
T=T̂ (s)

< 0 for s ≥ s. For ΠT (T ) = Πα,T (T ), we use Proposition 12 to obtain that

∂

∂s

∂2Πα,T

∂T∂s
= −2(b2 − T )T (2b2 − T )

b1b22λp
. (B.59)

By (B.59), for any T = T̂ (s) it follows that ∂
∂s

∂2Πα,T
∂T∂s

∣∣∣
T=T̂

< 0. Also,
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Γ(v) =
∂2Πα,T

∂T∂s

∣∣∣∣
s=0, T=T̂ (0)

=
(b2 − T )

(
b1b2(p− kGλ) + p(b2 − T )T

)
b1b22λp

− v(b2 − T )T (2b2 − T )

b1b22λp
.

(B.60)

By (B.62), v∗ > 0 because
(b2−T )

(
b1b2(p−kGλ)+p(b2−T )T

)
b1b22λp

> 0 and v(b2−T )T (2b2−T )
b1b22λp

> 0. For all

v ≥ v∗, it follows from the expression (B.62) that ∂2Πα,T
∂T∂s

∣∣∣
s=0
≤ 0. Since ∂2Πα,T

∂T∂s is strictly decreasing in s,

we conclude that for any v ≥ v∗, T̂ (s) is strictly decreasing in s when ΠT (T̂ (s)) = Πα,T (T̂ (s)).

For all v < v∗, ∂2Πα,T
∂T∂s

∣∣∣
s=0

> 0. Since ∂2Πα,T
∂T∂s is strictly decreasing in s, we conclude that T̂ (s) is

strictly increasing or unimodal in s if ΠT (T̂ (s)) = Πα,T (T̂ (s)).

We now show that for any v < v∗, if ΠT (T̂ (s)) = Πα,T (T̂ (s)), then T̂ (s) is unimodal in s ∈ [0, p).

If s = 0, because v is positive, then RT ≥ 0 for any T ≥ 0. Thus, T̂ (0) ≥ 0. If s = p, then RC won’t

make any profit by selling electricity to the distant load center. Consequently, RC would never use the

transmission grid. Because RC would not use the transmission grid, TC has no incentive to invest in any

transmission capacity; T̂ (p) = 0. Consequently, it follows that T̂ (s) cannot be strictly increasing in s. Thus,

we conclude that for ΠT (T̂ (s)) = Πα,T (T̂ (s)), T̂ (s) is unimodal in s.

For ΠT (T ) = Πβ,T (T ), we use Proposition 12 to obtain that

∂

∂s

∂2Πβ,T

∂T∂s
= −

b1b2k
2
Gλ(b2 − T )

[
b1b2kGλ(4p− s) + (p− s)(b2 − T )2(2p+ s)

]
(p− s)3

√
2b1b2kGλ
p−s + (b2 − T )2 (2b1b2kGλ+ (p− s)(b2 − T )2)2

. (B.61)

By (B.61), it follows that ∂
∂s

∂2Πβ,T
∂T∂s

∣∣∣
T=T̂

< 0. Consequently, ∂2ΠT
∂T∂s

∣∣∣
T=T̂

is strictly decreasing in s.

Thus, for ΠT (T ) = Πβ,T (T ), T̂ (s) is strictly increasing or unimodal or decreasing in s.

We now show that if ΠT (T ) = Πβ,T (T ), then T̂ (s) is strictly increasing or unimodal in s. By Theorem 8

and Proposition 12, if ΠT (T ) = Πα,T (T ) then T̂ (s) < f2(b1, b2); if ΠT (T ) = Πβ,T (T ) then T̂ (s) ≥

f2(b1, b2).

Because ∂f2(b1,b2)
∂s = b1b2kGλ√

b2
(
b2−

2b1kGλ

p−s

)
(p−s)2

> 0, f2(b1, b2) is strictly increasing in s. Consequently,

because T̂ (s) is unimodal in s for ΠT (T ) = Πα,T (T ), and f2(b1, b2) is strictly increasing in s, T̂ (s)

should be strictly increasing or unimodal in s for ΠT (T ) = Πβ,T (T ) (otherwise, T̂ (s) < f2(b1, b2) and

ΠT (T̂ (s)) = Πα,T (T̂ (s)) for any s, because f2(b1, b2) is strictly increasing in s). �
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Proof of Theorem 12

By envelope theorem we obtain

∂W(s)

∂s
=
∂ΠT (s, T )

∂T

∣∣∣∣
T=T̂ (s)

· ∂T̂ (s)

∂s
+
∂ΠT (s, T )

∂s

∣∣∣∣
T=T̂

=
∂ΠT (s, T )

∂s

∣∣∣∣
T=T̂ (s)

. (B.62)

Using (3.17), (3.18) we get

∂2Πα,T (s, T )

∂s2
= −T

2 (2b2 − T )2

6b1b22λp
< 0;

∂2Πβ,T (s, T )

∂s2
= −

b1b2k
2
Gλ
[
(p− s)(b2 − T )2(2p+ s+ 3v) + b1b2kGλ(4p+ s+ 5v)

]
(p− s)4 (2b1b2kGλ+ (p− s)(b2 − T )2)

√
2b1b2kGλ
p−s + (b2 − T )2

< 0.

Hence, for any T̂ (s), ∂2ΠT (s,T )
∂s2

∣∣∣
T=T̂ (s)

< 0. Also, we use (3.17) to obtain that

∂Πα,T (s, T )

∂s

∣∣∣∣
s=0, T=T̂ (0)

=
6b1b2(p− kGλ)(2b2 − T̂ (0)) + T̂ (0)

[
6b22(p− 2v) + 3T̂ (0)2(p− v) + 4b2T̂ (0)(3v − 2p)

]
12b1b22λp

. (B.63)

By (B.63), if v ≥ v, then ∂Πα,T (s,T )
∂s

∣∣∣
s=0,T=T̂ (0)

< 0. Because ∂2ΠT (s,T̂ (s))
∂s2

< 0, we use (B.62) to get

thatW(s) is decreasing in s if v ≥v and unimodal in s otherwise. �
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APPENDIX C

SUPPLEMENT TO CHAPTER 4

Proof of Lemma 3: By definition, for hcd and ccd,

(
ι∗
(
hcd
ccd

)
, N∗T

(
hcd
ccd

))
= arg min

(ι,NT )≥0
(hcdwι+ ccdNT ) .

If hu1
cu1

=
hu2
cu2

, then

(
ι∗
(
hu1

cu1

)
, N∗T

(
hu1

cu1

))
= arg min

(ι,NT )≥0

(
hu1

wι+ cu1
NT

)
= arg min

(ι,NT )≥0

hu1

hu2

(
hu2

wι+ cu2
NT

)
.

Because hu1
hu2

is constant,

arg min
(ι,NT )≥0

hu1

hu2

(
hu2

wι+ cu2
NT

)
= arg min

(ι,NT )≥0

(
hu2

wι+ cu2
NT

)
=

(
ι∗
(
hu2

cu2

)
, N∗T

(
hu2

cu2

))
.

Therefore, if hu1
cu1

=
hu2
cu2

, then
(
ι∗
(
hu1
cu1

)
, N∗T

(
hu1
cu1

))
=
(
ι∗
(
hu2
cu2

)
, N∗T

(
hu2
cu2

))
. �

We make use of the following intermediate results presented below as Lemmas 9 and 10.

Lemma 9. For the cross-dock problem (CD-P),

(a) I∗t−1

(
y∗t mod

W
w

)
= 0 for t = 1, 2 . . . , T ;

(b) y∗t ≤
⌈
wdt
W

⌉
W
w for t = 1, 2 . . . , T.

Proof: Lemma 9(a) is Lemma 1 (Property 1) from Anily and Tzur (2005) (This result also appears in Lemma

1 of Anily and Tzur (2006) and Proposition 2.3 in Jin and Muriel (2009)). Part (a) states that if the initial

inventory at the beginning of t (i.e., I∗t−1) is positive, then the shipping quantity in that period consists of

full containers only. Otherwise, the cross-dock can could reduce the total costs by delaying the shipment

of some of the items that are carried from the previous period. Lemma 9(b) is Lemma 1 (Property 3) from

Anily and Tzur (2005). Part (b) states that the maximum shipment size at any period never exceeds the total

capacity of the minimum number of containers required to cover the demand in that period. Otherwise, the
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cross-dock would reduce the total cost by delaying that shipment of at least one container. �

Lemma 10. For the cross-dock problem (CD-P),

(a)
⌈
wDτ
W

⌉
≤ N∗τ ≤

∑τ
t=1

⌈
wdt
W

⌉
for τ = 1, 2, . . . , T .

(b) If σcd < 1
W , then N∗T =

⌈
wDT
W

⌉
.

Proof: N∗τ ≤
∑τ

t=1

⌈
wdt
W

⌉
, because otherwise there is at least one container whose entire shipment is

for future periods τ + 1, τ + 2, . . . , T . This contradicts Lemma 9(b). Also, the total number of containers

shipped by τ should be greater than or equal to
⌈
wDτ
W

⌉
because the demandDτ cannot be satisfied otherwise.

Thus, we obtain Part (a).

To show Part (b), note thatNT ≥
⌈
wDT
W

⌉
for T = 1, 2, . . . , T by Part (a). AssumeN∗T =

∑T
t=1

⌈
wDT
W

⌉
+

awhen hcd < ccd
W , where a is a positive integer. Let ι =

∑T
t=1 I

∗
t denote the total inventory over the planning

horizon associated withN∗T =
∑T

t=1

⌈
wDT
W

⌉
+a. Let ι′ =

∑T
t=1 I

′
t be the minimum inventory over the plan-

ning horizon if the total number of containers shipped is NT =
∑T

t=1

⌈
wDT
W

⌉
. Then, ι′ − ι ≤ aW

w because

the difference cannot exceed the total capacity of a containers. IfN∗T =
∑T

t=1

⌈
wDT
W

⌉
+a, then the total cost

over the planning horizon is hcdw ι+ccd
{∑T

t=1

⌈
wDT
W

⌉
+ a
}

. Then, hcdw ι+ccd
{∑T

t=1

⌈
wDT
W

⌉
+ a
}
≥

hcdw (ι′ − aW
w ) + ccd

{∑T
t=1

⌈
wDT
W

⌉
+ a
}
> hcdw ι

′ + cd

{∑T
t=1

⌈
wDT
W

⌉}
(The last inequality fol-

lows from hcd <
ccd
W ). Thus, N∗T is not optimal which contradicts the assumption. Therefore, N∗T =∑T

t=1

⌈
wDT
W

⌉
when hcd < ccd

W . �

Proof of Lemma 4: For Problem CD-P, it follows directly Lemma 10 that
⌈
wDT
W

⌉
≤ N∗T ≤

∑T
t=1

⌈
wdt
W

⌉
.

Also, N∗τ is decreasing in the container shipping cost ccd, and is increasing in the unit holding cost hcd.

Hence, N∗T is increasing in σcd = hcd
ccd

. Because N∗T is integer, NT (σcd) is a piece-wise constant, increasing

function of σcd. Because
⌈
wDT
W

⌉
≤ N∗T ≤

∑T
t=1

⌈
wdt
W

⌉
, there are

∑T
t=1

⌈
wdt
W

⌉
−
⌈
wDT
W

⌉
discontinuities. �

Proof of Theorem 13: By Lemma 10(b), if σcd < 1
W , then N∗T (σcd) =

⌈
wDT
W

⌉
. The total inventory

ι∗(σcd) = ι0 follows from N∗T (σcd) =
⌈
wDT
W

⌉
, which proves part (a).

To prove part (b), define set I =
{

1, 2, . . . ,
∑T

t=1

⌈
wdt
W

⌉
−
⌈
wDT
W

⌉
+1
}

. For i ∈ I, define set Σ[i] ={
σcd ∈ {0,∞} |NT (σcd) =

⌈
wDT
W

⌉
− 1 + i

}
. Then, for any i, j ∈ I (i 6= j), Σ[i] ∩ Σ[j] = ∅. Also,

Σ[1] ∪ Σ[2] ∪ Σ[3] ∪ . . . ∪ Σ[|I|] = [0,∞) by Lemma 4 (|I| refers to the cardinality of a set). We establish

the following:

[1] For any i ∈ I, if σ1, σ2 ∈ Σ[i] then ι∗(σ1) = ι∗(σ2).
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[2] For any i = 1, 2, . . . , |I| − 1, if σ1 ∈ Σ[i] and σ2 ∈ Σ[i+1], then ι∗(σ1) > ι∗(σ2)

To prove [1], for σ1, σ2 ∈ Σ[i], (σ1 6= σ2), suppose ι∗(σ1) > ι∗(σ2). By definition, NT (σ1) =

NT (σ2). Thus, f(σ1) > f(σ2). Because f(σ1) = hcdι
∗(σ1) + ccdNT (σ1) > hcdι

∗(σ2) + ccdNT (σ2) =

hcdι
∗(σ2) + ccdNT (σ1). This contradicts the assumption that ι∗(σ1) is an optimal solution for σcd = σ1.

Suppose now ι∗(σ1) < ι∗(σ2). Because NT (σ1) = NT (σ2), we obtain that f(σ1) < f(σ2). Because

f(σ2) = hcdι
∗(σ2) + ccdNT (σ2) > hcdι

∗(σ1) + ccdNT (σ1) = hcdι
∗(σ1) + ccdNT (σ2). This contradicts the

assumption that ι∗(σ2) is an optimal solution for σcd = σ2.

For [2], suppose ι∗(σ1) < ι∗(σ2). By definition, if σ1 ∈ Σ[i] and σ2 ∈ Σ[i+1] then NT (σ1) < NT (σ2).

Therefore, ι∗(σ1) is feasible for σcd = σ2. Thus, because f(σ2) = hcdι
∗(σ2) + ccdNT (σ2) > hcdι

∗(σ1) +

ccdNT (σ2), it contradicts the assumption that ι∗(σ2) is an optimal solution for σcd = σ2.

Because NT (σcd) is an integer and NT (σcd) ∈
[⌈

wDT
W

⌉
,
∑T

t=1

⌈
wdt
W

⌉]
, N∗T (σcd) is discontinuous at∑T

t=1

⌈
wdt
W

⌉
−
⌈
wDT
W

⌉
points. Therefore, by [1], [2], ι∗(σcd) is continuous in σcd ≥ 0 almost everywhere,

except at
∑T

t=1

⌈
wdt
W

⌉
−
⌈
wDT
W

⌉
points, which completes the proof of part (b).

To prove part (c), note that NT (σcd) is an integer and NT (σcd) ∈
[⌈

wDT
W

⌉
,
∑T

t=1

⌈
wdt
W

⌉]
. The total

number of containers
∑T

t=1

⌈
wdt
W

⌉
, which is an upper bound ofNT (σcd), are shipped only if the correspond-

ing total cost CCD is less than that of shipping one less container (i.e.,
∑T

t=1

⌈
wdt
W

⌉
− 1) and holding some

inventory over the planning horizon. If the total cost CCD associated with
∑T

t=1

⌈
wdt
W

⌉
containers shipped is

always less than CCD associated with
∑T

t=1

⌈
wdt
W

⌉
− 1 containers shipped, then

{
T∑
t=1

⌈
wdt
W

⌉}
ccd︸ ︷︷ ︸

(i)

≤

{
T∑
t=1

⌈
wdt
W

⌉
− 1

}
ccd︸ ︷︷ ︸

(ii)

+

T−1∑
t=1

(⌈
wDt

W

⌉
W

w
−Dt

)
hcdw −

(
T∑
t=1

⌈
wdt
W

⌉
−
⌈
wDT

W

⌉)
ccd︸ ︷︷ ︸

(iii)

. (C.1)

Teerm (i) in (C.1) is the total cost over the planning horizon when the total number of containers shipped

is
∑T

t=1

⌈
wdt
W

⌉
. Term (i) does not include any inventory holding cost. The term (ii) represents the to-

tal transportation cost when
∑T

t=1

⌈
wdt
W

⌉
− 1 containers are shipped to the cross-dock. Finally, the term

(iii),
∑T−1

t=1

(⌈
wDt
W

⌉
W
w −Dt

)
is the total inventory when the number of total containers shipped is

⌈
wDT
W

⌉
.
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The next term
(∑T

t=1

⌈
wdt
W

⌉
−
⌈
wDT
W

⌉)
ccd refers to maximum value of inventory reduced by shipping∑T

t=1

⌈
wdt
W

⌉
instead of shipping

⌈
wDT
W

⌉
containers. Accordingly, the sum of equations (ii), (iii) represent

the total transportation and inventory holding cost, when total containers shipped is
∑T

t=1

⌈
wdt
W

⌉
− 1. We

can rewrite (C.1) as (
T∑
t=1

⌈
wdt
W

⌉
−
⌈
wDT

W

⌉
+ 1

)
ccd ≤ hcdw ι0.

Using σcd = hcd
ccd

, we obtain σcd ≥

∑T
t=1

⌈
wdt
W

⌉
−
⌈
wDT
W

⌉
+ 1

w ι0
. �

Proof of Theorem 14: By definition, f(σcd) = hcdwι
∗(σcd) + ccdN

∗
t (σcd) = ccd

(
σcdwι

∗(σcd) +N∗t (σcd)
)
.

By Lemma 4(b) and Theorem 13(b), both N∗T and ι∗ are piece-wise constant functions of σcd, we obtain
∂N∗

T
∂σcd

= 0 and ∂ι∗

∂σcd
= 0 almost everywhere except at

∑T
t=1

⌈
wdt
W

⌉
−
⌈
wDT
W

⌉
points. Therefore,

∂f(σcd)

∂σcd
= ccd

T∑
t=1

w I∗t = ccdw ι
∗(σcd) + ccd

(
σcdw

∂ι∗

∂σcd
+
∂N∗T
∂σcd

)
= ccdw ι

∗(σcd). (C.2)

almost everywhere. By (C.2), f(σcd) is a piecewise-linear and increasing function of σcd because ι∗(σcd)

is a piece-wise constant decreasing function of σcd by Theorem 13(b). Further, if σcd ≥ σ∗cd, then by

Theorem 13(c), ι∗(σcd) = 0. It follows that ∂f
∂σcd

= 0 everywhere except at
∑T

t=1

⌈
wdt
W

⌉
−
⌈
wDT
W

⌉
points.

Proof of Theorem 15: In proving this, we make use of Theorem 13(c) and (4.15). For a supply chain with

upstream collaboration, by replacing dt with
∑Q

i=1 dit and DT with
∑Q

i=1DiT for
∑T
t=1

⌈
wdt
W

⌉
−
⌈
wDT
W

⌉
+1

w ι0

using Theorem 13(c) and (4.15), we obtain that, if

σcd ≥

∑T
t=1

⌈∑Q
i=1

wdit
W

⌉
−
⌈∑Q

i=1
wDiT
W

⌉
+ 1

w
∑T−1

t=1

(⌈∑Q
i=1

wDit
W

⌉
W
w −

∑Q
i=1Dit

) ,
then the total inventory for the cross-dock is zero, and the number of total containers shipped is N∗T =∑T

t=1

⌈∑Q
i=1

wdit
W

⌉
. Thus, we define σuc as

σuc :=

∑T
t=1

⌈∑Q
i=1

λit
W

⌉
−
⌈∑Q

i=1
ΛiT
W

⌉
+ 1∑T−1

t=1

(⌈∑Q
i=1

Λit
W

⌉
W −

∑Q
i=1 Λit

) .
For a supply chain without collaboration, by replacing dt with dit andDT withDiT in

∑T
t=1

⌈
wdt
W

⌉
−
⌈
wDT
W

⌉
+1

w ι0
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using Theorem 13(c) and (4.15), we obtain that, if σcd ≥ max
i

σi, then the total inventory at the cross-dock

is zero and the number of total containers shipped is N∗T =
∑Q

i=1

∑T
t=1

⌈
wdit
W

⌉
. Next, it is straightforward

to show that min
i
σi ≤ σuc ≤ max

i
σi.

Hence, if σcd ≥ max
i

σi, then the cross-dock’s cost difference with and without upstream collaboration

is exactly equal to the transportation cost difference with and without upstream collaboration. Thus, we

obtain ∆CD := C∗CD − C∗CDuc =
{∑Q

i=1

∑T
t=1

⌈
wdit
W

⌉
−
∑T

t=1

⌈∑Q
i=1

wdit
W

⌉}
ccd. �

Proof of Theorem 16: To prove part (a), observe that the total amount of shipment required at the plant by

τ is
∑Q

i=1wi Φiτ . It follows that the total number of trucks shipped by τ is at least
⌈∑Q

i=1 wi Φiτ
U

⌉
to fulfill

Φiτ by τ without backlogging. We now show that if h < cd
U , Vτ =

⌈∑Q
i=1 wi Φiτ

U

⌉
for τ = 1, 2, . . . , T .

Suppose there is at least one period τ , in which
⌈∑Q

i=1 wi Φiτ
U

⌉
+ a trucks were shipped by τ , where a is a

positive integer. Let ϕ(τ) denotes the total amount of inventory by τ (i.e., ϕ(τ) =
∑Q

i=1

∑τ
t=1 wi φit) for

the case Vτ =

⌈∑Q
i=1 wi Φiτ

U

⌉
+ a. Also, let ϕ(τ)′ denote the total amount of inventory by τ for the case

Vτ =

⌈∑Q
i=1 wi Φiτ

U

⌉
. By definition, ϕ(τ)′ − ϕ(τ) ≤ aU . Then,

hϕ(τ)+cd

{⌈∑Q
i=1wi Φiτ

U

⌉
+ a

}
≥ h(ϕ(τ)′−aU)+cd

{⌈∑Q
i=1wi Φiτ

U

⌉
+ a

}
> hϕ(τ)′+cd

⌈∑Q
i=1wi Φiτ

U

⌉
,

where the last inequality holds because h < cd
U . Thus, Vτ =

⌈∑Q
i=1 wi Φiτ

U

⌉
+a is not optimal as it obtains a

higher cost relative to Vτ =

⌈∑Q
i=1 wi Φiτ

U

⌉
for τ=1, . . . , T . This completes the proof of part (a).

To prove part (b), observe that, since Vτ ≥
⌈∑Q

i=1 wiΦiτ
U

⌉
from Part (a), then it follows that

∑Q
i=1wiφit <

U , for any inventory matrix φ = {φit} associated with the optimal shipping plan. Suppose there exists

vτ >

⌈∑Q
i=1 wi qiτ
U

⌉
in the optimal solution. Since

⌈∑Q
i=1 wi qiτ
U

⌉
U −

∑Q
i=1 qiτ ≥ 0, then

Q∑
i=1

xiτ −

(
Q∑
i=1

qiτ −
Q∑
i=1

φi,τ−1

)+

>

(
Q∑
i=1

xiτ

)
modU,

if (
∑Q

i=1 xiτ )modU > 0. Then, vτ is not optimal since the entire shipment of at least one vehicle can

be delayed and reduce inventory holding cost in τ . If (
∑Q

i=1 xiτ )modU = 0, it follows that
∑Q

i=1 φiτ =

U vτ −
∑Q

i=1 qit > U . This contradicts
∑Q

i=1wiφit < U . Thus, vτ is not optimal. Therefore, vτ ≤⌈∑Q
i=1 wi qit
U

⌉
and Vτ =

∑τ
t=1 vt ≤

∑τ
t=1

⌈∑Q
i=1 wi qit
U

⌉
at the optimality. �
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Proof of Theorem 17:

For a supply chain with downstream collaboration, by replacing dt with
∑M

m=1

∑Q
i=1 q

(m)
it andDT with∑M

m=1

∑Q
i=1 Φ

(m)
iT using Theorem 13(c) and (4.15), we obtain that, if

σr ≥

∑T
t=1

⌈∑M
m=1

∑Q
i=1 wi q

(m)
it

U

⌉
−
⌈∑M

m=1

∑Q
i=1 wi Φ

(m)
iT

U

⌉
+ 1

∑T−1
τ=1

(⌈∑M
m=1

∑Q
i=1 wi Φ

(m)
iτ

U

⌉
U −

∑M
m=1

∑Q
i=1wi Φ

(m)
iτ

) , (C.3)

then the total inventory for plants is zero and the number of total containers shipped to plants is∑T
t=1

⌈∑M
m=1

∑Q
i=1 wi q

(m)
it

U

⌉
. Thus, we define ϑdc as

ϑdc :=

∑T
t=1

⌈∑M
m=1

∑Q
i=1 wi q

(m)
it

U

⌉
−
⌈∑M

m=1

∑Q
i=1 wi Φ

(m)
iT

U

⌉
+ 1

∑T−1
τ=1

(⌈∑M
m=1

∑Q
i=1 wi Φ

(m)
iτ

U

⌉
U −

∑M
m=1

∑Q
i=1wi Φ

(m)
iτ

) .
For a supply chain without downstream collaboration, we first replace dt with

∑M
i=1 q

(m)
it and DT with∑Q

i=1 Φ
(m)
iT , m ∈ {1, . . . ,M} using Theorem 13(c) and (4.15). Therefore, we obtain that, if σr ≥ max

m
ϑm

plants hold no inventory over the planning horizon and the number of total containers shipped to each plant

m is
∑T

t=1

⌈∑Q
i=1 wi q

(m)
it

U

⌉
. It is straightforward that min

i
ϑm ≤ ϑdc ≤ max

i
ϑm.

Hence, we obtain that if σr ≥ maxi ϑm, then the plants’ cost difference with and without downstream

collaboration is identical to the difference in the transportation cost for those plants with and without down-

stream collaboration. Therefore,

C(m)∗
R −

m∑
j=1

C(j)∗
R =

{
T∑
t=1

M∑
m=1

⌈∑Q
i=1wi q

(m)
it

U

⌉
−

T∑
t=1

⌈∑M
m=1

∑Q
i=1wi q

(m)
it

U

⌉}
cd.

Therefore, if it is true that

T∑
t=1

M∑
m=1

⌈∑Q
i=1wi q

(m)
it

U

⌉
=

T∑
t=1

⌈∑M
m=1

∑Q
i=1wi q

(m)
it

U

⌉
,

then C(m)∗
Rdc

=
∑m

j=1 C
(j)∗
R .

Let x(j)∗
it and v(j)∗

t (j = 1, 2, . . . ,m) be the optimal solutions for Problem R-P. Then, because
∑m

j=1 x
(j)∗
it

and
∑m

j=1 v
(j)∗
t are feasible solutions for Problem R-Pdc, we obtain C(m)∗

Rdc
≤
∑m

j=1 C
(j)∗
R . �

Proof of Theorem 18: If p > p(m), then it follows from the definition of p(m) given in (4.17) and the
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definition of ∆(m) given in (4.16) that ∆(m)(p, 1) < 0. Because ∆(m)(p, 1) < 0, the net benefit to plant

m from outsourcing is negative at any price p > p(m). Consequently, it is optimal for the plant not to

outsource, so that χ∗m(p) = 0 for any p > p(m). If p ≤ p(m), then it again follows from (4.16) that

∆(m)(p, 1) ≥ 0, and the net benefit to plant m for outsourcing is positive. Thus, it is optimal for the plant

to outsource, so that χ∗m(p) = 1 for any p ≤ p(m). This establishes part (a). If M plants are ordered so that

p(1) ≥ p(2) ≥ · · · ≥ p(M), then part (b) follows directly from part (a). �

Proof of Theorem 19: Let p = p(1). Then, by Theorem 18, only plant 1 outsources to the logistics provider.

Let C(1)∗
R be plant 1’s optimal cost in a decentralized supply chain under deterministic demand and without

outsourcing. Then, by (4.8),

C(1)∗
R := C(1)

R

(
v(1)∗,x(1)∗

)
=

T∑
t=1

Q∑
i=1

hwiφ
(1)∗
it +

T∑
t=1

cdv
(1)∗
t , (C.4)

where v(1)∗ and x(1)∗ are optimal shipment vector and transportation quantity matrix for plant 1, while

quantities {φ(1)∗
it } are inventory levels of product i in period t associated with v(1)∗ and x(1)∗.

Let C∗lp
(
p(1)
)

denote the logistics provider’s optimal cost when outsourcing price is p(1). Then, by

(4.18), it follows from Theorem 6 that

C∗lp
(
p(1)
)

:= Clp
(
v∗lp,x

∗
lp, p

(1)
)

=

T∑
t=1

Q∑
i=1

hlpwiφ
(lp)∗
it +

T∑
t=1

clpv
(lp)∗
t ,

where v∗lp and x∗lp are optimal shipment vector and transportation quantity matrix for the logistics provider

at outsourcing price p(1), while quantities {φ(lp)∗
it } are inventory levels of product i in period t associated

with v∗lp and x∗lp. Next observe that with m = 1, the inventory balance equations for the logistics provider’s

cost minimization problem (Problem LP-P) given in (4.20) become

φ
(lp)∗
it = φ

(lp)∗
i,t−1 + x

(lp)∗
it − q(1)

it ,

for i = 1, . . . , Q and t = 1, . . . , T . Those inventory balance equations are identical to inventory balance

equations for plant 1’s cost minimization problem in a decentralized supply chain (Problem R-P) given in

(4.10). As all other constraints for Problem LP-P are identical to their counterpart constraints for Problem

R-P, the decisions v(1)∗ and x(1)∗, optimal for plant 1 in a decentralized supply chain, are feasible for the

logistics provider under outsourcing price p(1). It follows that
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C∗lp
(
p(1)
)

= Clp
(
v∗lp,x

∗
lp, p

(1)
) [

definition of C∗lp
(
p(1)
)]

≤ Clp
(
v(1)∗,x(1)∗, p(1)

) [(
v∗lp,x

∗
lp

)
are optimal;

(
v(1)∗,x(1)∗) are feasible for the provider

]
=

T∑
t=1

Q∑
i=1

hlpwiφ
(1)∗
it +

T∑
t=1

clpv
(1)∗
t

[
definition of Clp

(
vlp,xlp, p

(1)
)

given in (4.18)
]

<

T∑
t=1

Q∑
i=1

hwiφ
(1)∗
it +

T∑
t=1

cdv
(1)∗
t

[
hlp < h and clp < cd by Assumption 6

]
= C(1)∗

R .
[
definition of C(1)∗

R given in (C.4)
]

Thus, C∗lp(p(1)) < C(1)∗
R . Also, p(1)

∑T
t=1

∑Q
i=1wiq

(1)
it = C(1)∗

R by definition of p(m) given in (4.17). It

follows that Π∗lp
(
p(1)
)

= p(1)
∑T

t=1

∑Q
i=1wi q

(1)
it − C∗lp

(
p(1)
)
> 0, which completes the proof of part (a).

To prove part (b), let p be some outsourcing price charged by the logistics provider such that Π∗lp(p) > 0.

Then by part (a), p(1) ≥ p for otherwise no plant would outsource and the logistics provider’s profit would

be zero. Let m ∈ {1, 2, . . . ,M} be such that p(m) ≥ p > p(m+1). Then by Theorem 18, the number of

plants outsourcing is m and C∗lp(p) = C∗lp(p(m)). Thus, for any p(m) ≥ p > p(m+1), C∗lp(p) is constant.

Therefore, by (4.22), we obtain that, for any p(m) ≥ p > p(m+1),

Π∗lp
(
p(m)

)
−Π∗lp(p) =

(
p(m) − p

) m∑
j=1

T∑
t=1

Q∑
i=1

wiq
(j)
it > 0.

It follows that p∗ = p(m) for some m ∈ {1, 2, . . . ,M}.

To prove (c), suppose, by part (a), that p∗ = p(m) for some m ∈ {1, . . . ,M}. Let C(m)∗
Rdc

be the total

optimal cost of plants 1 through m under downstream collaboration. Then, it follows from (4.12) that

C(m)∗
Rdc

= C(m)
Rdc

(v∗,x∗) =

T∑
t=1

Q∑
i=1

hwi φ
∗
it +

T∑
t=1

cd v
∗
t , (C.5)

where v∗ and x∗ are optimal shipment vector and transportation quantity matrix for plants 1 through m

under downstream collaboration, while quantities {φ∗it} denote inventory levels of product i in each period

t associated with v∗ and x∗. It also follows from the formulation of the plants’ problem under downstream
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collaboration (Problem R-Pdc) given in Section 4.3.4 that the resulting inventory balance equations stated in

(4.13) now become

φ∗it = φ∗i,t−1 + xit −
m∑
j=1

q
(j)
it , (C.6)

for i = 1, 2 . . . , Q and t = 1, . . . , T .

Let C∗lp
(
p(m)

)
denote the logistics provider’s optimal cost when the outsourcing price is p(m). Then, by

(4.18), it follows from Theorem 6 that

C∗lp
(
p(m)

)
:= Clp

(
v∗lp,x

∗
lp, p

(m)
)

=
T∑
t=1

Q∑
i=1

hlpwiφ
(lp)∗
it +

T∑
t=1

clpv
(lp)∗
t ,

where, this time, v∗lp and x∗lp denote optimal shipment vector and transportation quantity matrix for the

logistics provider at outsourcing price p(m), while quantities {φ(lp)∗
it } are inventory levels of product i in

period t associated with v∗lp and x∗lp. Further, with m outsourcing plants, the inventory balance equations

for the logistics provider’s cost minimization problem (Problem LP-P) given in (4.20) become

φ
(lp)∗
it = φ

(lp)∗
i,t−1 + x

(lp)∗
it −

m∑
j=1

q
(j)
it (C.7)

Note that the inventory balance equations for the logistics provider with m outsourcing plants given in

(C.7) are structurally identical to the inventory balance equations given in (C.6) for m collaborating plants.

Therefore, because all other constraints for Problem LP-P are identical to their counterpart constraints for

Problem R-Pdc, it follows that the decisions v∗ and x∗ optimal form plants under downstream collaborations

are feasible for the logistics provider under outsourcing price p(m).

Consequently, we have that
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C∗lp
(
p(m)

)
= Clp

(
v∗lp,x

∗
lp, p

(m)
) [

definition of C∗lp
(
p(m)

)]
≤ Clp

(
v∗,x∗, p(m)

) [(
v∗lp,x

∗
lp

)
are optimal;

(
v∗,x∗

)
are feasible for the provider

]
=

T∑
t=1

Q∑
i=1

hlpwiφ
∗
it +

T∑
t=1

clpv
∗
t

[
definition of Clp

(
vlp,xlp, p

(m)
)

given in (4.18)
]

<

T∑
t=1

Q∑
i=1

hwiφ
(1)∗
it +

T∑
t=1

cdv
(1)∗
t

[
hlp < h and clp < cd by Assumption 6

]
= C(m)∗

Rdc
.

[
expression (C.5)

]
Hence, C∗lp(p(m)) < C(m)∗

Rdc
. It then follows from Theorem 17 that C∗lp(p(m)) < C(m)∗

Rdc
≤
∑(m)

j=1 C
(j)∗
R ,

where C(j)∗
Rdc

is plant j’s optimal cost in a fully decentralized supply chain. �

Proof of Theorem 20

If p > p
(m)
Z then by (4.31), ∆

(m)
Z < 0. Consequently, the total cost saving from outsourcing is negative

for the plant m, thus, it is optimal for the plant not to outsource. By definition given in (4.32), χ∗mZ = 0. If

p ≤ p
(m)
Z , then by (4.31), ∆

(m)
Z ≥ 0 (i.e., total cost saving is positive). Thus, it is optimal for the plant to

outsource. By definition given in (4.32), χ∗mZ = 0. �
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