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ABSTRACT 

This study seeks to minimize the likelihood of casing failure using data analysis and machine 

learning algorithms. The study focuses on the design of a data-driven workflow that can address 

several challenging aspects that pertain to casing failure including: (1) identification of potential 

risk factors amongst different exposures through the adoption of risk analysis techniques (case-

control study design), (2) evaluation of the type and magnitude of  the impact for each risk factor, 

determined through the application of different association measurements, (3) identification of the 

levels within each potential risk factor that impose the highest risk on casing failure, (4) 

acknowledgement of the depths most susceptible to casing failure implemented through non-

parametric and semi-parametric survival analysis techniques, (5) prediction of the overall 

probability of casing failure given the information for pre-defined risk factors via the application of 

multiple classification learning algorithms , and finally (6) have a scheme for mitigating casing 

failure. To account for the rigidity of machine learning algorithms and to allow for more control 

from the user’s end, risk assessment techniques were implemented, particularly, semi-quantitative 

probability-impact risk assessment matrices (PI-RAMs). These matrices were based on results 

obtained from frequency and survival analysis. PI-RAMs were used as feedback means to the initial 

predictions obtained from conventional ML algorithms to not only provide a better intuition of the 

overall risk, but also the contribution of each risk factor. 

One major limitation to the proposed framework is the compliance of field engineers with 

the recommendations, due to cost-related concerns. This motivated the focus on yet another 

perspective of mitigating failure, that is the enhancement of casing integrity evaluation techniques, 

specifically fatigue failure induced from thermal stress. A steam injection simulated case has been 

used for the design and validation of the proposed data-driven model. A correct estimation of fatigue 

life of different casing parts must be made. The accuracy of fatigue life estimation is contingent on 
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the accuracy of local strain estimations. Two classes of factors impact local strains: 1) active/direct 

(temperature changes, casing material, etc.) and (2) passive/indirect factors (such as cement cracks 

or leaks). Although physics-based models can account for direct factors, they still fail to account 

for indirect factors, leading to false conclusions on casing fatigue life and abusive consumption of 

casing parts beyond their capabilities. 

The proposed data-driven estimator takes as input all direct and indirect factors, and outputs 

the corresponding local strains that reflect those effects. Then, using the casing material properties, 

along with estimated strains as input for Manson’s Eq. and estimating the fatigue life of those casing 

parts. Based on estimated fatigue life, the model can give recommendations on changing casing 

parts that are abused throughout any process (such as steam injection, or hydraulic fracturing). This 

would, ultimately, prevent or reduce the chances of the occurrence of casing failure. Using the 

proposed model, engineers can have a better understanding of the casing durability and ability to 

withstand the downhole conditions and practices. 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

Reader Guide: In this chapter, the discussion starts with an introduction of the problem of casing 

failure which would be the focus of this study (Section 1.1). In this section, I briefly discuss: (1) 

the functionality of casing strings, (2) the importance of proper casing design, (3) downhole 

challenges and severe conditions imposed on casing strings, (4) criticality of casing failure, (5) 

previous contributions in identifying primary causes of casing damage, as well as, failure modes, 

(6) previous contributions in mitigating, or ultimately, avoiding casing failure including physics-

based and data-driven approaches, and (7) the limitations of previous solutions and implemented 

techniques. Next, the motivation and main objectives of the work implemented and presented in 

this dissertation are highlighted (Section 1.2). Then, the framework/tool proposed for tackling the 

challenge of mitigating casing failure is presented (Section 1.3). In this section, I introduce the 

major contributions of this study along with an overview of my already published work that is 

related to the content of this dissertation. Following that, the outline of this dissertation is laid out 

(Section 1.4). In this section, I highlight the key steps taken in the following chapters in order to 

achieve the objectives of this study. Finally, a description of the data set compiled for the study is 

provided, along with the field from which the data was collected, as well as targeted formations 

(Section 1.5). 

 

1.1 Problem Statement 

Casing strings are an indispensable component in the design of any well and serve numerous 

purposes in oil and gas wells including supporting the oil and gas production, preventing loose 

formation from interfering into the borehole activities and, ultimately, ensuring normal operations 

during drilling and completion processes (Hua Tong et al. 2016). They also constitute a significant 

portion of the total well cost. The cost of casing pipes can constitute up to 20-30% of the total cost 

of the well (Alade 2018).   
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Safe and economical sizing of casing is, therefore, an important task in oil and gas well design 

(Junior et al. 2015). If casings are not sized correctly, then such casings are prone to failure at their 

early stage of operation. Design of casing string calls for knowledge of the operating conditions 

imposed on the casing as well as the concepts related to pipe properties (Bowers 1955; Halal et al. 

1996; Akpan 2005; Edaigbini 2015; Thattil 2017). 

Throughout the life of the well, several challenges and severe conditions are posed on casing 

strings owing to the existing and induced downhole stresses (Fleckenstein et al. 2001; Li and 

Samuel 2016; Feng and Gary 2017). Variations in in-situ stress associated to well location, 

reservoir characteristics, diagenesis, and local geo-stress distribution, all contribute to existing 

downhole stresses. Conversely, drilling and completion induced stresses are instigated from, well 

stimulation operations, well configurations, and production related stresses. These added stresses 

undermine casing integrity and put it at risk of casing failure.  

Casing failure has always been the thorny problem in the process of oil field development (Dai et 

al. 2018). Over the past four decades, an escalating trend of casing failures have been observed; 

indicating that the current casing design for unconventional and horizontal wells might not be 

adequate. This has resulted in a higher-than-expected failure rate. According to Davies et al. 2014, 

recent worldwide statistics from countries such as Canada, China, Netherlands, Norway, United 

Kingdom, and the US on conventional and unconventional wells show that roughly 26,600 wells 

out of 380,000 wells have had at least one type or another of integrity failure. In addition, out of 

14,297 wells in the US Gulf of Mexico, a whopping 45% of tubular failures were recorded during 

the 1980s. According to the Journal of Petroleum Technology (JPT), information collected from 

client operators shows that in certain US shale and tight oil fields, between 20%–30% of horizontal 

wells are integrally compromised to some degree due to hydraulic fracturing operations (Jacobs 
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2020). In their study, Salehi et al. 2009 reported that: in a carbonate oilfield in Iran, forty-eight 

casing collapses were noticed due corrosion, reservoir compaction, and geo-mechanical effects. 

They added that the incidents continued to escalate over the years. Another study by Xi et al. 2018 

stated that, out of 101 wells drilled in Weiyuan shale play, a failure rate of 34% was noted. 

There is a multitude of factors attributing to different casing failure modes and mechanisms. Local 

buckling along the casing wall, not extending to its center, was described as a failure mode by 

Wang et al. 2014. Whereas, in the case of columnar buckling, the center of the casing is completely 

bent and deformed. Yin et al. 2018a, b, c indicated that casing failure is induced during volume 

fracturing, formation deformation, and the consequent rock slippage. This is especially true for 

formations that are renowned for causing wellbore stability problems, such as shale. Additionally, 

both hydraulic and natural fracture slips tend to buckle the casing in the lateral section of shale gas 

horizontal wells during fracturing operations. Chipperfield et al. 2007; Zeng and Yao 2015; Hou 

et al. 2016, argued that huge displacement volumes with numerous stimulation stages along with 

high pumping pressures create a complex stress field leading to eventual deformation, leap, and 

ultimate shearing of casing pipes. 

Factors such as rock strata displacement along bedding plane or sharply inclined faults were known 

to cause shear failure (Wang et al. 2011). Casing shear failure due to fracture slip during fracturing 

operations was reported by Yin et al. 2018a, b, c. Alterations in stress and pressure triggered by 

heating and injection was found to induce casing shear owing to formation shear (Dusseault et al. 

2004). Han et al. 2006a, b reported that the presence of thick fragile shale lithology coupled with 

excessive vertical heterogeneity were amongst the underlying causes of casing shear failure. 

Vudovich et al. 1988 summarized that casing failure types are interconnected with casing failing 

in one or more of the failure types, namely, collapse or burst, which is credited to radial stresses. 
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Casing collapse is principally classified into elastic, plastic, transitional, and yield. Differentiating 

these mechanisms are based on the slenderness ratio which is a ratio of casing diameter to its 

thickness, according to industry standards. Wang et al. 2014 suggested that collapse failure is an 

outcome of various mechanical loading from the casing itself, sand, and cement. Kiran et al. 2017 

also noted that existence of voids and cement channels at the casing-cement interface could cause 

up to 60% drop in casing collapse resistance. Huang and Gao 2015 attributed the mechanism to 

imbalanced external loads surpassing the casing yield strength which alter its circular alignment 

to an oval configuration. Bastola et al. 2014, concluded that the increase in initial ovality would 

ultimately decrease the pipe's resistance causing collapse. Abdideh and Khah 2018 reported the 

phenomena of collapse as an abnormal formation displacement on the casing string leading to its 

ultimate collapse. 

According to Wilson 2018, metal loss in casing strings, due to corrosion, can cause potential 

leakage. An average-metal-loss value above seventy percent leads to the probability of casing 

failure reaches unity and zero when it is under thirty percent. Zhang et al. 2016 confirmed that, 

during directional drilling, casing wear still lingers to be a leading problem as it causes degradation 

in casing strength, casing deformation, potentially casing failure. The characteristics of surface 

wear can be categorized into surface fatigue wear, abrasive wear, adhesive wear, and corrosive 

wear (Andersson, 2011). Casing wear instigated by drill string rotation may be classified as typical 

abrasive and adhesive wear (Best 1986). During extended reach drilling, Gao et al. 2010 and Shen 

and Beck 2014, noticed that casing wear occurs as a direct result from the contact between the 

stationary casing and the rotating drill string. Mao et al. 2018 indicated that the rate of wear 

differed with increasing drill pipe rotational speeds, non-linearly. The nonlinear behavior was 

attributed to the combination of corrosive, abrasive wear, and erosive wear.  
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According to Barton, 2003, several reports of critical elbow failures due to erosion have appeared 

on drilling units, production platforms, and different subsea equipment in the past. A study by Bai 

and Bai 2018 reported that, sand erosion due to sand particulates is the most widespread cause of 

erosion challenges in casing systems. Computational fluid dynamics (CFD) simulations showed 

that pipe erosion is more rampant at 45° angle in elbows (Ogunsesan et al. 2019). 

According to Lin et al. 2016, corrosion develops pits and cracks on both the outer and inner walls 

of the casing, when subjected to corrosive conditions. Burst and collapse loads acting on the 

corroded casing will trigger further stress concentration and ultimately reduce the casing strength. 

Strength degradation can substantially diminish casing life, and even cause well failure. Yuan et 

al. 2012 analyzed five–eight years of operational casing using FEA. The authors advised using 

higher strength casing such as P110 and T-95 for production casing. 

Bai and Bai 2018 recognized that fatigue is an irreversible, gradual, and localized structural 

damage that arises and continuously accumulates when a material is structurally exposed to cyclic 

loading (Gao and Hsu, 1998). Those cyclic could either be repeated, fully reversed, or fluctuating 

loads with either low or high cycles (Liu et al., 2015; Cirimello et al. 2018; Chen et al. 2018a, b). 

Lim et al. 2012 described that, during drilling in stormy weather in offshore operations; currents 

and wave, and heave motions of the sea are transported down the riser to the wellhead, to the 

casing structure causing fatigue failures at essential casing joints and welds. Furthermore, casing 

pipe fatigue failure could happen either during production, due to alternating temperatures and 

cyclic loading of pressure or during stimulation, due to temperature differentials between the 

reservoir fluids and stimulation fluids (Kiran et al. 2018). Liu et al. 2018 adds that casing joint 

fatigue has been reported during multistage hydraulic fracturing with varying temperature between 

stages. 
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Three categories of threading connections are specified by API, long and short rounded threaded 

couplings, buttress with asymmetrical trapezoidal thread couplings, and extreme-line connection 

thread without couplings. However, many well integrity challenges surround casing connections 

and seals, especially, in shale gas horizontal, HPHT, and deep-water wells. In order to 

reduce/remove voids existing in the cement slurry, operators rotate the casing in the lateral section 

during cementing jobs. However, this rotation puts the casing connection under excessive rotating-

bending loads causing connection failures (Hamilton et al. 2019). Conversely, Jellison et al. 1998 

suggested that local buckling and shear failure were the main culprits behind connection failure. 

The aftermaths of casing failure are catastrophic and can include the possibility of blowouts, 

damage of adjacent wells, decreased production, environmental pollution, injuries or fatalities, loss 

of assets, negative financial implications pertinent to the cost of material as well as the non-

productive time associated with repair (Payne et al. 1993). The aforementioned impacts along with 

today's focus on protection of the environment and the ambitions of the industry to operate safely 

in environmentally sensitive areas have urged the need for improved cross-disciplinary tools and 

work processes within the area of casing failure and risk management (Liu et al. 2012). 

To date, various techniques have been implemented to avoid or mitigate casing failures. Most of 

the attempts were physics-based solutions that tackled one or few aspects on a small scale. The 

solutions were either analytical (Li and Samuel 2016; Lin et al. 2016; Cirimello et al. 2017), 

experimental (Han et al. 2006a, b; Ferla et al. 2009; Jinan et al., 2012; Zhang et al. 2012; Shen et 

al. 2014), or numerical in nature (Fleckenstein et al. 2001; Han et al. 2006a, b; Yuan et al. 2012; 

Lavrov et al. 2015; Hu et al. 2016; Feng and Gary 2017; Patel et al. 2018; Ogunsesan et al. 2019). 

However, former studies – based on conventional physics-based approaches – were found to 
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perform unreliably and did not attain wide-scale execution (Maharaj 1996; Dall’Acqua et al. 2013). 

This is mainly due to the dynamic complexity of the underlying problem. 

Recently, with the advancement of data science and machine learning algorithms, attention has 

been geared towards the integration of data-driven solution in numerous oil and gas applications 

including reservoir characterization (Anifowose 2013; Akande et al. 2015; Hoeink and Zambrano 

2017; Tiwari et al. 2018; Nanjo and Tanaka 2019), production optimization (Cao et al. 2016; 

Ounsakul et al. 2019), drilling (Zhao et al. 2017; Pollock et al. 2018; Yang et al. 2019) and well 

completion (Prislin et al. 2017; Ounsakul et al. 2019). Those efforts have been successful in 

resolving various challenging aspects that were, otherwise, unachievable using conventional 

physics-based approaches.  

Yet, contributions in the area of casing failure have been minimal. To date, few attempts were 

published in the topic of predicting casing failure by (Noshi et al. 2018a, b; Noshi et al. 2019; Song 

and Zhou 2019; Tang 2019; Tan et al. 2020). The authors attempted to implement classical 

classification models to predict the probability of casing failure based on various risk factors 

deduced from historical cases. In addition, the authors managed to identify some features, or risk 

factors, that had the greatest impact on the occurrence of casing damage. This leaves drillers and 

drilling engineers with very little information on mitigating the risks that the casing is exposed to 

during drilling, completions, and production operations. 

Implementation of data-driven solutions, nevertheless, has been a real challenge especially in the 

area of casing failure, in terms of, gathering enough failure data which has tied the hands of the 

industry into finding a proper solution. The lack of enough data has been due to a multitude of 

reasons, such as, reputation concerns, legal issues, competitors, partners, investors, avoiding legal 

actions and respecting customer privacy. This, in turn, has led the cases of casing failure to be 
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overlooked, under-reported or handled rather reactively instead of proactively. This urges the need 

to develop a common working platform for drilling engineers and the other disciplines involved 

in well planning, improving cross communication between different disciplines. 

The study introduces the building blocks of this methodology through the development of a data-

driven “casing failure mitigation” tool that has the capability of: (1) quantification of impact type 

and magnitude for potential risk factors, (2) identification of the levels within each potential risk 

factor that impose the highest risk on casing failure, (3) acknowledgement of the depths that are 

susceptible to casing failure, (4) adjustment of high risk casing design specifications in the 

direction of reducing the overall probability of casing damage and, ultimately, mitigating casing 

failure. 

1.2 Dissertation Objectives and Related Published Work 

In this dissertation, the primary objective is to develop a framework that can explore, analyze, and 

tackle several challenging aspects that pertain to the problem of casing failure in an attempt to 

better understand, also, mitigate the occurrence of that problem in the future. Motivated by the 

importance of the challenging problem of casing failure, the lack of a solid physical foundation 

capable of explaining, in full, the reasoning behind such a damaging incident and the deficiency 

of the know-how needed for its mitigation, a data-driven approach was adopted to be the 

cornerstone of the proposed workflow. 

The proposed data-driven workflow will have the capability of: (1) quantification of impact type 

and magnitude for potential risk factors, (2) identification of the levels within each potential risk 

factor that impose the highest risk on casing failure, (3) acknowledgement of the depths that are 

susceptible to casing failure, (4) prediction of the overall probability of casing failure given the 

information for pre-defined risk factors and, (5) adjustment of high risk casing design 



 

9 
 

specifications in the direction of reducing the overall probability of casing damage and, ultimately, 

mitigating casing failure. This will be achieved through: 

• Designing a workflow to be used for analyzing various exposures and conditions, then, 

extracting the potential risk factors that highly impact the occurrence of casing failure. The 

designed workflow will be based on a classical risk analysis study design, that is, case-

control design in order to handle the relative rareness of the event of casing failure in the 

provided data set compiled from the Granite Wash formation (Chapter 2). 

• Quantification of the impact type and magnitude of already identified potential risk factors 

for a better assessment of the inter-relationship between the various risk factors and the 

occurrence of casing failure. To that end, various association measurement techniques are 

integrated in the previously designed workflow (Chapter 2). 

• Designing a workflow to be used for analyzing and assessing the significance of the 

subcategories within the potential risk factors, in addition to, identification of the depths 

that are most susceptible to casing failure/damage. This workflow will be based on another 

widely used statistical family of techniques known as survival analysis techniques. Those 

techniques will be modified in accordance with the focus and goal set for the proposed 

workflow (Chapter 3). 

• Implementation and testing of various supervised machine learning algorithms, in 

particular, classification algorithms in order to predict the possibility of casing failure given 

the initial design specifications based on the pre-defined potential risk factors. This step 

will be part of the two-step “correction-prediction” procedure adopted in the proposed 

workflow in order to mitigate and, ultimately, avoid casing failure (Chapter 4). 

• Integration of semi-quantitative risk assessment techniques in the designed workflow as a 

second step in the two-step “correction-prediction” procedure adopted in the workflow 
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(Chapter 4). This will give the tool the capability to correct and adjust high risk design 

specifications in the direction of reducing the overall risk of casing failure. This, in turn, 

will give the developed tool the allowance to handle casing failure proactively rather than 

actively. 

• Validation of the developed “casing failure mitigation” tool against real cases of casing 

failure from the historical data set compiled from the Granite Wash formation in the 

Anadarko Basin (Chapter 4).  

 

Following, a concise overview is given of my work already published related to the content of this 

dissertation. The three papers published are listed below, together with their abbreviated abstracts, 

for a quick orientation: 

1) Noshi, C. I., Noynaert, S. F., and Schubert, J. J. 2018. Casing Failure Data Analytics: A Novel 

Data Mining Approach in Predicting Casing Failures for Improved Drilling Performance and 

Production Optimization. Presented at the SPE Annual Technical Conference and Exhibition, 

Dallas, Texas, USA, 24–26 September. SPE-191570-MS. https://doi.org/10.2118/191570-MS.  

Abstract - Recent casing failures in the Granite Wash play in the western Anadarko Basin have 

sparked deep concerns to operators in North Texas and Oklahoma. Hydrostatic tests made in the 

field show that present API standards do not assure adequate joint and bursting strength to meet 

multi-staged hydraulically fractured well requirements. Past and present literature has been packed 

with numerous casing failures incidents. Despite the extensive documentation and 

recommendations, a mounting trend of failure is still on the rise. To find possible solutions for 

these failures, this study is a continuation of an on-going effort to minimize the likelihood of failure 

using machine learning algorithms. The study applied both descriptive visual representations such 

as Mosaic and Box Plots and predictive algorithms including Artificial Neural Networks (ANN) 

https://doi.org/10.2118/191570-MS
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and Boosted Ensemble trees on eighty land-based wells in the Anadarko basin, of which twenty 

possessed casing and tubing failures. The study used a predictive analytics software and python 

language to evaluate twenty-six different features compiled from drilling, fracturing, and geologic 

data. Comparison of different classification models showed the superiority of artificial neural 

network (ANN) compared to other models, in terms of, prediction accuracy (67% E), overall 

performance and model balance (33.33% FP, 33.33% FN) (Noshi et al. 2018a). 

 

2) Noshi, C. I., Noynaert, S. F., and Schubert, J. J. 2018. Failure Predictive Analytics Using Data 

Mining: How to Predict Unforeseen Casing Failures? Presented at the Abu Dhabi International 

Petroleum Exhibition & Conference, Abu Dhabi, UAE, 12–15 November. SPE-193194-MS. 

https://doi.org/10.2118/193194-MS.  

Abstract - Despite numerous studies in the subject matter, industry has yet to resolve casing failure 

issues. A more interdisciplinary approach is taken in this study integrating eighty land-based wells, 

from the panhandle, using a data-driven approach to predict the reasons behind casing failure. 

Principal component Analysis (PCA) was used for dimensionality reduction. Supervised and 

unsupervised approaches were selected respectively based on the response. The algorithms used 

in this study included Support Vector Machine, Boot strap, Random Forest, Naïve Bayes, XG 

Boost, and K-Means Clustering. Nine models were then compared against each other to determine 

the winner. Features contributing to casing failure were identified based on best algorithm 

performance, that was, SVM. Results showed that: lesser amounts of proppant along with an 

increased timing from drilling to fracturing operations had higher casing failure rate chances. 

While sudden failure occurred immensely at very low proppant concentration. Reduced proppant 

mass accompanied with a lower casing setting depth increased the likelihood of casing failure. A 

lower frac start month and a shallower casing setting depth caused high casing failure likelihood. 

https://doi.org/10.2118/193194-MS
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Moreover, the probability of failure is higher when acid is pumped while the probability of failure 

decreases with decreasing hole size. A higher mean temperature and bottom hole temperature 

increased the probability of success. The probability of failure is high when the pipe shrinkage 

length is between four and seven ft long. The probability of success decreased with increased hole 

size and decreased bottom hole temperature. The probability of failure decreased as base water 

increased and bottom hole temperature was not a controlling parameter in that case. The 

probability of failure decreased in hole sizes between 6 – 6.5 in and the time between drilling and 

fracturing was not a controlling parameter in this case. Finally, the probability of failure was 

reduced with cement presence and a higher bottom hole temperature. Box plots showed that 

fracturing during the first six month has a more significant probability of failure (Noshi et al. 

2018b).  

 

3) Noshi, C. I., Noynaert, S. F., and Schubert, J. J. 2019. Data Mining Approaches for Casing 

Failure Prediction and Prevention. Presented at the International Petroleum Technology 

Conference, Beijing, China, 26–28 March. IPTC-19311-MS. https://doi.org/10.2523/IPTC-19311-

MS. 

Abstract - The study assembled comprehensive data from eighty land-based wells during drilling, 

fracturing, workover, and production operations. Twenty wells suffered from casing failure while 

the remaining sixty offset wells were compiled from well reports, fracturing treatment data, drilling 

records, and recovered casing data. Results of the survival analysis showed that the following 

conditions (subgroups/levels) are the most risky compared to their companions within their 

corresponding risk factors: (a) drilling during winter or spring seasons, (b) implementation of acid 

treatment for depths greater than 10,000 ft, (c) having no cement support, (d) witnessing dogleg 

bending stress ≥ 95,600 lb./ft for depths greater than 10,000 ft, (e) bottomhole temperature ≥ 166 

https://doi.org/10.2523/IPTC-19311-MS
https://doi.org/10.2523/IPTC-19311-MS
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degree Fahrenheit, (f) lateral section shrinkage ≥ 10 in/100 ft (g) max inclination ≤ 95.5 degree for 

depths greater than 8,500 ft, (h) dogleg severity ≥ 15 degree per hundred foot for depths greater 

than 8,500 ft, (j) frequency of severe dogleg ≥ 13. Based on Risk Analysis, fracturing during spring 

turned out to increase the risk of casing failure by over 200%, an increase of one unit in the lateral 

section shrinkage increases the risk by 15% and an increase of one degree of maximum inclination 

increases the risk by 30%. On the other hand, cementing reduces the risk of casing failure by nearly 

54%, while having a casing thickness greater than 0.65 in (P110) tends to reduce the risk of casing 

failure by nearly 90% (Noshi et al. 2019). 

1.3 Novel Casing Failure Mitigation Tool Developed in The Study 

The major concern of this study is to design a novel tool, based on a data-driven workflow, that 

leverages several statistical techniques to automatically mitigate future casing failures. In other 

words, we seek a tool that, given a set of input features, not only could predict the occurrence of 

casing failure but also could give guidance on how an engineer should proceed, in terms of design 

adjustments, to avoid the occurrence of casing failure in the future. 

In addition to mitigating casing failure, the developed workflow has the capability of addressing 

additional, yet important, challenging aspects of the problem of casing failure including: (1) 

quantification of impact type and magnitude for potential risk factors, (2) identification of the 

levels within each potential risk factor that impose the highest risk on casing failure, (3) 

acknowledgement of the depths that are susceptible to casing failure. 

The proposed “casing failure mitigation” tool is based on a two-step “prediction-correction” 

procedure; where we add “feedback” to the initial predictions provided by the conventional 

machine learning algorithms that would serve as a guide that could help drilling engineers adjust 

their design and ultimately mitigate casing failure. This is accomplished through the integration of 
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semi-quantitative risk assessment techniques, in particular, probability-impact risk assessment 

matrices (PI-RAMs). 

A case in point is the example illustrated in Figure 22. First, design specifications initially 

suggested by a drilling engineer for a particular well are fed to the “casing failure mitigation” tool. 

Next, design specifications are evaluated in terms of the risk imposed on casing failure (Figure 

22a). In case of high risk, design specifications are automatically adjusted so that imposed risk is 

reduced and ultimately casing failure is avoided or mitigated (Figure 22c). 

 

 

Figure 22. (a) Application of semi-quantitative probability-impact risk assessment matrices (PI-RAMs) on 

a case with initial status of “high” risk. (b) Using PI-RAMs, adjustments were done to the features 

of interest leading to reduction in risk status to “medium”. (c) Further adjustments to the features 

of interest using PI-RAMs led to reduction of risk status to “low”. 

 

The tool design is based on four major statistical families of techniques (highlighted in “blue” in 

Figure 23), those are, risk analysis, survival analysis, supervised machine learning (ML) 

algorithms and semi-quantitative risk assessment techniques. 
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Figure 23. The developed workflow for the “automated” casing failure mitigation tool. Rectangles 

highlighted in “blue” correspond to the four major steps involved in the casing failure mitigation 

process which will be explained in detail throughout the thesis. Rectangles highlighted in “green” 

and “red” correspond to the input and output for the tool, respectively. Rectangle highlighted in 

“grey” correspond to the data set used for constructing the tool. 

 

Supervised ML algorithms (Chapter 4) along with semi-quantitative risk assessment techniques 

(Chapter 4) are used as the cornerstone for the two-step “prediction-correction” procedure; where 

ML algorithms provide initial prediction of the probability of casing failure occurrence based on 

the input design specifications. Following that, the semi-quantitative risk assessment techniques 

(e.g., PI-RAMs) are used to automatically adjust the design specifications according to their impact 

type and the overall case evaluation until risk is reduced below pre-defined threshold. 

Regarding the risk analysis (Chapter 2) and the survival analysis (Chapter 3), they constitute an 

integral part of the tool as they provide the necessary information to be later used as a basis for the 
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construction of ML predictive models, as well as risk assessment matrices (PI-RAMs).  That 

information include: (1) identification of potential risk factors that are strongly associated with 

casing failure, (2) identification of the subgroups within each risk factor that impose the highest 

impact, (3) evaluation of the type and magnitude of the impact for each risk factor, (4) 

determination of the likelihood of the occurrence of the different scenarios within each risk factor. 

(Detailed discussion will be provided in the following chapters 2 through 4). 

This study not only presents a methodology aiming to form the foundation for a new standard for 

casing risk assessment in the Anadarko Basin, but it can be applied to any geological area with 

different scenarios and can be developed into a more generalized tool in the future. 

1.4 Dissertation Outline 

In the remainder of Chapter 1, the geology and the data set used in this study along with some 

descriptive statistics are explained in (Sections 1.5). 

Chapter 2 is dedicated to risk analysis family of techniques where I identify potential risk factors 

contributing to the problem of casing failure (Sections 2.1). In addition, I seek to identify the type 

and measure the magnitude of those potential risk factors. First, the various variable classes 

involved in the analysis and the different inter-relationship scenarios that might exist between them 

are identified (Sections 2.2 and 2.3). Then, the two possible study designs (i.e., case-control and 

cohort) are discussed, in some detail, emphasizing the key distinctions between them (Section 2.4). 

Afterwards, I proceed to explain the different sampling approaches involved in the study designs 

(Section 2.5). 

Following that, I discuss the different association measurements used for testing the correlation 

between various exposures and the outcome (Section 2.6). Furthering the investigation, I seek 
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evaluating the type and magnitude each potential risk factor has on the occurrence of casing failure 

(Section 2.7). Due to dependency between the various exposures, or features, and the integral rule 

it has on the output of the analysis, different models with different combinations of exposures are 

tried out. In order accomplish that, another well-established family of techniques, known as subset 

selection techniques, is sought out (Section 2.8).  To determine the best model with the optimal set 

of features, I set some criteria including Akaike’s Information Criteria (AIC) and Bayesian 

Information Criteria (BIC) (Sections 2.9 and 2.10). 

Chapter 3 is dedicated to survival analysis methods and builds forward on the results obtained in 

chapter 2 as I further my investigation to another concern of this study. Based on the information 

provided for the potential risk factors, I attempt to identify the depths that are susceptible and most 

vulnerable to casing failure. In addition, I seek to find the subgroups, or levels, within each risk 

factor that impose the highest risk. For that purpose, another classic statistical analysis technique, 

known as survival analysis, is implemented.  

Discussion starts with laying the foundation of classical survival analysis techniques, as well as 

some modifications done by the author to the conventional analysis scale (Section 3.1). Then, I 

briefly discuss the various survival/hazard functions used for describing event distribution (Section 

3.2). Afterwards, I proceed with discussing various methods used for estimating survival 

distributions. First, I discuss non-parametric estimators, in particular, Kaplan-Meier estimator 

(Section 3.3.1). Then, I move to semi-parametric estimators, in particular, proportional hazards 

(Cox) model, where some limitations in the non-parametric counterparts are addressed (Section 

3.3.2). 

In chapter 4, I take one final step towards the construction of the “automated casing failure 

mitigation” tool based on the information drawn from the analyses conducted in preceding 
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chapters. To achieve that goal, I discuss one family of machine leaning techniques, that is, 

supervised learning algorithms. Discussion starts with laying out the key distinctions between 

conventional physics-based and modern machine learning algorithms (Section 4.1). For the 

purposes of this study, I only investigate learning algorithms for classification problems such as 

logistic regression (Section 4.2.1), decision trees (Section 4.2.2), random forest (Section 4.2.3), 

support vector classifier (Section 4.2.4), support vector machine (Section 4.2.5) and neural 

networks (Section 4.2.6). Then, I discuss different criteria for evaluating the performance of the 

models in terms of prediction accuracy, model balance and overall performance (Section 4.3).  

To add another level of controllability to serve as feedback means to the model initial predictions, 

discussion is extended to another area of statistical analysis, that is, risk assessment (Sections 4.4 

and 4.5). However, discussion is limited to semi-qualitative risk assessment techniques, 

particularly, probability-impact risk assessment matrices, PI-RAM, (Section 4.6). I explain the 

basis for those techniques and how they are formulated. I, then, present some history cases from 

the oil and gas industry where implementation of those techniques showed a huge potential 

(Section 4.7). Then, I end the discussion with demonstration of the presented methods on the 

history data set (Section 4.8). 

In chapter 5, results obtained from all the analyses conducted in the preceding chapters are 

discussed, highlighting key findings and major takeaways. Discussion starts with a layout of the 

major contributions achieved throughout the study (Section 5.1). Then, attention is geared towards 

evaluating the proposed solution(s) through the implementation of SWOT analysis (Section 5.2). 

Afterwards, a set of recommendations is provided for the reader in order to efficiently utilize and 

benefit from the proposed workflow (Section 5.3). Finally, we end our discussion with addressing 
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some of the aspects in our study that could be improved upon in the future for more 

refined/enhanced results (Section 5.4).     

Chapter 6 provides a bird’s-eye view of the achievements of this study and the major takeaways. 

The starting point is the results obtained from risk analysis and the potential risk factors identified 

throughout the process. Then, I show how those initial results were used as a primer for survival 

analysis; where more scrutinized examination was done to identify the subgroups/levels within the 

various risk factors that had the highest impact on the occurrence of casing failure. Following that, 

I showcase the importance of those results when fitting classification learning algorithms for 

casing failure prediction. And, finally, I show how integrating survival analysis with frequency 

analysis help establishing the risk assessment matrices that were used as a feedback step following 

initial predictions provided by ML algorithms which served as the basis for the two-step 

“correction-prediction” procedure used to establish the “casing failure mitigation” tool.   
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Figure 24. Workflow adopted in this thesis for general steps involved in risk factor analysis. Risk factor 

analysis comprises of four families of techniques, as shown at the top. Yet, two families are 

investigated in this study: prospective and retrospective designs. Key difference is the direction 

of inference, as highlighted in the top dotted rectangles. Within retrospective design, two 

sampling approaches are adopted, and the key distinction is shown in the dotted rectangles at the 

middle. Association measurements used for determining the potential risk factors and steps 

involved in the process is highlighted in the bottom dotted rectangle.  
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Figure 25. Workflow adopted in this thesis for general steps involved in survival analysis. The top dotted 

rectangle highlights the two major families of techniques used to estimate the survival/hazard 

distribution of the subcategories within each potential risk factor. Depending on the selected 

family of techniques, the key steps involved in the process are highlighted in the bottom dotted 

rectangles. 
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1.5 Data Set Used in This Study 

The data set used in this study incorporated information extracted from an extensive geographical 

area the Granite Wash play located in Texas and Oklahoma. The High Plains Prospect is situated 

in the Western Anadarko Basin of the Panhandle with three major formations targeted, namely, the 

Cleveland Sandstone, Granite Wash, and the Marmaton (Figure 26). 

The area has a complex tectonic setting with abundant faults and folds exhibiting a complex 

stratigraphic setup, vastly inconsistent lithologies, and congruently diverse reservoir properties 

accompanied by erratic formation types and varied porosity and permeability values (Moore 

1979). 

The Cleveland formation is a tight gas sandy formation spanning both the Lipscomb and Ochiltree 

Counties in the Texas Panhandle and permeability ranges from 0.03–1.1 millidarcy. The formation 

is composed of clean sand blocks with thin shaley laminations. It is exceptionally fine grained with 

a very high-water saturation owing to the presence of fine sandstone with interbedded shales. In 

this formation, essentially all the wells were detected to have drilling-induced fractures. The 

productive sandstone is composed of an average by total rock volume of three percent clay and 

thirteen percent cement. 

The second formation is the Granite Wash tight gas play, composed of a succession of very 

different stacked pay zones, each of which should be developed differently. Lithology is composed 

of gravels, clean sands, and shale. The reservoirs are considered depleted due to production since 

2002.  

The third formation is the Marmaton group which encompasses Roger Mills County, Oklahoma 

and Wheeler County, Texas. The group contains interbedded gas-bearing sandstones and 
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conglomerates that thin into shale formations topped by limestones that taper laterally into shales 

in the north-eastern direction (basinward) in Hemphill and Roger Mills Counties with the units 

gradually updipping. 

 

 

Figure 26. Describing the different wells drilled in the three formations presented in this study, namely The 

Marmaton, Cleveland, and Granite Wash (After Nostra Terra Oil & Gas Company PLC. 2018). 

 

The study area spreads across seven counties: Ochiltree, Lipscomb, Roberts, Hemphill, Wheeler, 

Harper, and Roger Mills (Figure 27). In Wheeler County, the horizontal producing intervals 

include Marmaton Wash “B”, “C”, “D” Wash produces gas and condensate, while the Cottage 

Grove Wash produces oil and gas. Reservoirs in Wheeler County have as much as eighteen percent 

rock volume comprised of chlorite and a highly variable clay content with high Sw (Moore 1979). 

Ochiltree County is situated in the Texas Panhandle containing three prolific horizons. These 
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include the Cleveland, Mississippian, and Morrowan formations.  

 

 

 

Figure 27. The Western Anadarko Basin showing the 7 different counties and 3 formations (After Karis 

2015). 

 

A total of eighty wells were originally gathered with twenty-six different variables in a spreadsheet 

(Kim 2017). The first step included cleaning and arranging the data in a suitable format. Feature 

engineering commenced with a cut off value of thirty-six percent; any column with missing data 

values of more than or equal thirty-six percent was removed from the data set. The cut-off 

threshold value was based on a trade-off between the amount of missing data per well and the 

number of wells with missing data. Having a higher value for the cut-off threshold would have led 

to a loss of a measurable number of wells. On the other hand, having a lesser value for the cut-off 

threshold would have led to having a high amount of missing data. According to the selected cut-
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off value, two off-set wells were removed from the data, totaling to seventy-eight total wells used 

in this study. The data compiled was then divided into two parts: the wells with noted casing 

failures and offset wells with no obvious integrity issues. 

Three neighboring wells for each of the failed well were selected for the analytical process. For 

comparison purposes, the chosen offset wells were drilled within five years of the failed wells within 

proximity to ensure similar application of drilling and completion technologies and practices (Kim 

2017).  

The data compiled for the offset wells were collected from a variety of public data repositories 

including Texas Railroad Commission (RRC), Frac Focus Chemical Disclosure Registry, 

Oklahoma Corporation Commission Oil and Gas Conservation Division, and Drillinginfo were 

used as a reference database. Different Completion and frac job documents were deduced from the 

aforementioned data repositories including W2 report, direction survey Gyro, direction survey 

MWD, W15 (casing design reports), Hydraulic fracturing fluid information disclosure. Various 

information was extracted from the collected files including well information, completion 

information, tubing records, treatment records, formation records, casing records, and other frac-

related information (Kim 2017). The preceding information is displayed as a workflow for data 

collection and information gathering as shown in Figure 28. 

After gathering all the required well information, the data went through a preprocessing step 

starting with data formatting. This included the construction of subset data frames and merging 

multiple datasets. Then, data type check including high level (whether continuous or categorical), 

low level (subcategories/levels within categorical variables) data type check, data dimension check 

(making sure that all input/output variables are of same dimension), and metadata check (making 

sure variables’ names and definitions are unified). The clean data set then went through a data 
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engineering procedure starting with data scaling and standardization either basic scaling or z-score 

standardization. Then levels and sub-categories were defined based on data factorization. The 

preceding information is displayed as a workflow for data collection and information gathering as 

shown in Figure 29. For detailed discussion, the reader can refer to Endel et al. 2015; Furche et 

al. 2016.  

Initial statistical analysis of the provided history data set; using basic contingency tables, showed 

that: the rate of casing failure was highest during the winter season with five out of seven wells 

failing (71.40%), followed by the fall season with only two out of twelve wells failing (16.67%). 

The spring season had seven out of twelve wells failing (58.33%), and finally, the summer season 

with six out of fourteen wells failed (42.86%). Concerning the “cement” variable, the data showed 

an increased rate of casing failure with lack of cement. As for the “acid” variable, the presence of 

an acid job was accompanied with increased risk of casing failure and well damage. In addition, 

an increased shrinkage of the lateral section, a longer lateral length, and a higher average DLS 

showed an increased probability of casing failure. Whereas a smaller casing thickness and a 

reduced amount of proppant used contributed to higher casing failure probability. 
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Figure 28. Workflow adopted in this thesis for data collection and information gathering. The data 

repositories included Texas Railroad Commission and Fracfocus Registry. Several files were 

extracted from the repositories including directional survey, hydraulic fracturing fluid 

information disclosure, field description, Casing design (W-15), etc. 
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Figure 29. Workflow adopted in this thesis for data wrangling, cleaning, preprocessing and feature 

engineering. Six major steps are involved in the process (highlighted in the rectangles in the 

middle column), namely, data formatting, data-type check, data imputation, data scaling, variable 

categorization and new feature definition. Steps involved in each of those processes are 

highlighted in their corresponding dotted rectangles. 
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CHAPTER II  

RISK ANALYSIS 
 

Reader Guide: In this chapter, I address some of the first and foremost concerns of this study; (1) 

Identifying potential risk factors amongst different exposures initially provided in the data set, (2) 

evaluating the type of the impact each risk factor has on the occurrence of casing failure and (3) 

measuring the magnitude of that impact. To that end, I seek to design a workflow based on a well-

established family of techniques, known as risk analysis techniques (Section 2.1). This workflow 

will, later, be integrated in the design and construction of “casing failure mitigation” tool. 

Discussion starts with considering the various variable classes involved in the analysis and the 

different inter-relationship scenarios that might exist between them (Section 2.2 and Section 2.3). 

Then, the foundation for the two study designs (i.e., case-control and cohort) is laid out and discuss, 

in great detail, the key distinctions between them (Section 2.4). Afterwards, different sampling 

approaches involved in the study designs are explained (Section 2.5). Following that, I discuss the 

different association measurements used for testing the correlation between various exposures and 

the outcome and decide on the significant risk factors (Section 2.6). Then, I further my 

investigation into evaluating the type and magnitude each potential risk factor has on the 

occurrence of casing failure (Section 2.7). 

Due to dependency between the various exposures, or features, and the integral rule that effect has 

on the output of the analysis, different models with different combinations of exposures are tested 

and evaluated. In order to accomplish that, I seek another well-established family of techniques, 

known as subset selection techniques (Section 2.8).  To determine the best model with the optimal 

set of features, some criteria are discussed including Akaike’s Information Criteria (AIC) and 

Bayesian Information Criteria (BIC) with slight modification to align with model design (Section 

2.9). Following that, I implement techniques discussed in previous two sections on the provided 

data set in order to settle on the best model with the optimal set of features to continue with in 

subsequent analyses (Section 2.10). Finally, I highlight the work done in this chapter to address 

the aforementioned concerns, as well as, the major achievements, or takeaways, from the analyses 

conducted (Section 2.11). 
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2.1 Introduction 

Literature is rife with contributions devoted to investigating and explaining the causing effects of 

casing failure in numerous historical cases. To date, the majority of those contributions were based 

on physics-based approaches either analytical (Li and Samuel 2016; Lin et al. 2016; Cirimello et 

al., 2017), experimental (Han et al. 2006a, b; Ferla et al. 2009; Jianiun et al. 2012; Zhang et al. 

2012; Shen et al. 2014), or numerical in nature (Fleckenstein et al. 2001; Han et al. 2006a, b; Yuan 

et al. 2012; Lavrov et al. 2015; Hou et al. 2016; Feng and Gary 2017; Patel et al. 2018; Ogunsesan 

et al. 2019). Although, those contributions have provided a valuable insight into identification of 

some of the potential causing effects of casing failure, they failed to provide enough information 

on how to mitigate, or avoid, the occurrence of casing failure in the future, hence, did not attain 

wide-scale execution (Maharaj 1996; Dall’Acqua et al. 2013). This is partly due to their inability 

to quantify the impact; whether the type or magnitude, those potential risk factors had on the 

probability of the occurrence of casing failure. 

This chapter represents the first step taken by the author towards designing a data-driven based 

tool that is capable of automatically mitigating and, ultimately, avoiding future casing failures. In 

this chapter, I address the concern of impact quantification for various potential risk factors as I 

seek to identify the impact type, as well as its magnitude for various potential risk factors 

considered in this study. This serves as a continuation of previous efforts to not only identify but 

also explain the impact of possible causing effects of casing failure. To achieve that, I seek to 

design a data-driven workflow based on traditional risk analysis statistical techniques. This 

workflow will give the allowance to (1) identify potential risk factors and (2) quantify their impact. 

Later, this workflow will be integrated in the design of the “casing failure mitigation” tool which 

is the pinnacle of this study.  
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Conventionally, risk-factor analysis includes two principal analytical study designs, those are, (1) 

cohort and (2) case-control designs (Keogh et al. 2014). In cohort studies, individuals are sampled, 

and their exposure status is determined initially; then the outcome is observed. In this study, 

individuals refer to all drilling/producing wells (failed and not failed), exposure status refers to all 

different sorts of exposure/treatment including – but not limited to – casing records (e.g. casing 

size, casing grade, etc.), fracture records (e.g. fracture length, fracture depth, base water total 

volume, etc.). As for the “final” status, it simply refers to the outcome which is – in this case – the 

casing failure.   In case-control studies, cases, and non-cases (also known as controls) are sampled, 

and the “outcomes” being compared are the covariates (including exposure). Cases are usually a 

subset of the “individuals” that did actually experience the outcome. In this study, cases refer to 

the drilling/producing wells that encountered casing failure. On the contrary, non-cases, or simply 

controls, refer to wells that did not encounter casing failure. 

Cohort and case-control designs can be distinguished primarily by the direction of inference: 

cohort studies reason forwards from the exposure to final outcome (Mann 2003). That is why 

cohort studies are also known as prospective observational studies. while case-control studies start 

with the final outcome and go back to find all possible causes (Porta 2014). That is why case-

control studies are also known as retrospective studies. Graphical representation of both designs 

is provided in Figure 32. 

2.2 System Description 

The starting point for this discussion is having a population of study individuals (drilling/producing 

wells) that are assumed to be statistically independent. This assumption is critical since the primary 

objective is to understand the effect of exposures, e.g., treatments or conditions, on the final 

outcome, i.e., casing failure (Figure 30). Exposures are usually represented by a random variable, 
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𝑋, and the outcome by a random variable, 𝑌. 

Another class of interest is “intrinsic” variables, typically represented by the random variable, 𝑊 

(Borgan et al. 2018). Depending on the study setting, these variables may affect 𝑋 or 𝑌 or both; an 

aspect that will be further investigated in the subsequent section. In this study, both 𝑋 and 𝑊 are 

explanatory variables. This means that both 𝑋 and 𝑊 are independent variables which control, or 

explain, the variation in the outcome, 𝑌.  

For a variable to be considered as an exposure, 𝑋, it must be relevant, even if not realizable, to ask: 

how would the outcome of an individual have changed had their exposure been different from 

what it is, other things being equal? A typical example of variables that could be classified as 

exposure is the acid treatment, cement treatment or casing design, etc. Those are the variables that 

would be of interest to study their impact on the outcome (casing failure).  

By contrast, intrinsic variables represent properties of individuals (drilling/producing wells) that 

are immutable, or fixed, when studying the possible effect on 𝑌 of changing the exposure 𝑋. A 

typical example of intrinsic variable would be the field where history wells are located or the type 

of formation, for instance. 

 

 

Figure 30. The effect of an exposure, 𝑿, on an outcome, 𝒀. The arrow represents statistical dependence, 

i.e., direction of inference, from 𝑿 to 𝒀. 
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2.3 Interrelationships in Observational Studies 

The below figure (Figure 31) showcases four different types, or scenarios, of inter-relationship 

between exposure, 𝑋, intrinsic variable, 𝑊, and the outcome, 𝑌, which could exist in cohort, as 

well as, case-control studies (Keogh et al. 2014). 

 

 

Figure 31. General specification: relationships between exposures, X, intrinsic variables, W, and outcome, 

Y, in observational studies (Reproduced from Keogh et al. 2014). 

 

In Figure 31-a, the assumption is that the intrinsic variable has a potential impact on the outcome 

but not the exposure. Hence, 𝑊 does not interfere in the effect of 𝑋 on 𝑌. In this case, ignoring W 

causes no systematic error, or bias, in the estimated effect of 𝑋 on 𝑌, though controlling for 𝑊 may 

yield some improvement in precision for predicting the outcome, 𝑌. A typical example would be 

to have the “formation type” as the immutable/fixed intrinsic variable and the “dogleg severity 

measured depth” as the exposure with the outcome of interest set to be “casing failure”. Even 

though the “formation type” has no potential effect on the “dogleg severity measured depth”, it 

still has an impact on the outcome that is the risk of casing failure. 
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In Figure 31-b, the assumption is that intrinsic variable affects both the outcome as well as, the 

exposure. Yet, there is no effect of exposure on the outcome given the intrinsic variable. This case, 

however, is rare especially in the context of this study since all the exposures of interest are 

somehow connected to the outcome. 

 

Figure 31-c follows the same assumption as Figure 31-b except for the inclusion of an arrow from 

𝑋 to 𝑌, which implies that the exposure has an impact on the outcome. In this case, neglection of 

the intrinsic variable would lead to an erroneous/biased estimate of the effect of 𝑋 on 𝑌 given 𝑊. 

A case in point is having the “formation type” as the intrinsic variable, while having the “fracture 

design” as the exposure. It is obvious, then, that the intrinsic variable has an impact on both the 

outcome and the exposure. Meanwhile, the exposure has an impact on the outcome. 

 

Figure 31-d, is analogous to Figure 31-a, with the only distinction that the assumption is reversed 

as we have 𝑊 affects 𝑋 but not 𝑌. That is, the outcome is independent of the intrinsic variable 

given the specified exposure. Similar to the case explained in Figure 31-b, this case is quite rare in 

the context of this study and all the intrinsic variables are connected to the outcome. 

For the purpose of the study and based on the former discussion, only cases 1 and 3; represented 

by Figure 31-a and Figure 9-c, respectively, were encountered during the analysis to be presented 

later in subsequent sections.   

 

2.4 Analysis Approaches in Observational Studies 

As mentioned previously, there are two major approaches or designs though which the system – 

described in previous sections – can be investigated/analyzed: (1) cohort, or prospective, study and 

(2) case-control, or retrospective, study. Following is a brief discussion of the case-control design 

and its key components. 
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2.4.1 Foundation of Cohort Study 

In cohort studies, individuals are sampled, and their exposure status is determined initially; then 

the outcome is observed (Armenian 2009). In this study, individuals refer to all drilling/producing 

wells (failed and not failed), exposure status refers to all different sorts of exposure/treatment 

including – but not limited to – casing records (e.g., casing size, casing grade, etc.), fracture records 

(e.g., fracture length, fracture depth, base water total volume, etc.). As for the “final” status, it 

simply refers to the outcome which, in this case, is the casing failure (Figure 32-b). 

For instance, if cohort design were to be implemented, the starting point would have been to 

drill/produce from new wells and try out different sorts/variations of exposures (e.g., different 

casing designs, different acid treatments, different fracture designs, etc.). Then, the outcome; 

whether this drilling/producing well would fail or not, is observed. 

2.4.2 Foundation of Case-Control Study 

In case-control study, the starting point is to sample individuals observed to have a specific 

outcome (𝑌 = 1), referred to as cases (drilling/producing wells that encountered casing failure). 

Then, a suitable number of controls are chosen accordingly, often one (preferably three) control(s) 

for each case (Armenian 2009). Controls are defined as members of the population at risk of failure 

that are not cases yet (𝑌 = 0). In the context of this study, controls are wells that did not experience 

casing failure during their lifetime. Exposures and intrinsic variables are then determined 

retrospectively on the chosen wells; cases and controls (Figure 32-c). 

 

So, the essence of a case-control study is that we start with the outcome and look backward to find 

the exposure (i.e., explanatory/independent variable) of interest. For example, if case-control 

design were to be followed to study the association between an exposure and outcome, then the 
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starting point would be having drilling/producing wells that had either failed or not (i.e., historical 

case studies). Then, based on a comparison between exposures for failed (cases) and those for non-

failed (controls) wells, the relationship between exposures and the outcome is determined.   

Another core characteristic is that the ratio of cases-to-controls is not necessarily the same as in 

the true population. In the population, that ratio could be very small in case the outcome is rare, 

yet in the case-control study this ratio can be as high as one to one. The privilege of having this 

sort of control lies in the ability of leading a balanced analysis of different exposures which 

ultimately will lead to a sound conclusion on the potential causes. 

 

 

Figure 32. (a) key elements of population model before the sampling; (b) cohort study design where 

exposures are determined then outcome is observed; (c) case-control study design where outcome 

is determined then exposures are defined (Reproduced from Keogh et al. 2014). 
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2.4.3 Key Distinctions Between Cohort and Case-Control Designs 

Even though cohort and case-control designs might share some similarities, there are key 

distinctions between the two designs that are critical to their application, hence, the decision on 

which to be adopted in the study.  

One major distinction is the sampling design. For cohort design, since there is no prior knowledge 

of the wells that are going to fail given a specific set of exposures, then the study may end up 

having only the wells that failed or the opposite. This may lead to biased results and ultimately a 

false conclusion. For instance, if we were to study the relationship between casing grade and casing 

failure using the cohort design, and assuming that we have 1,000,000 wells to be drilled that we 

don’t know which one of them would fail using a specific casing grade (e.g., Grade P110). Because 

of the large number of wells, we ought to choose – at random – a subset (e.g., 100 wells) to be 

drilled using that specific casing grade (i.e., P110). The problem here is the possibility that those 

100 wells may all fail, for instance. This would lead to a conclusion that the grade P110 is imposing 

a high risk on casing failure. However, in those 1,000,000 wells, there might be another 100 wells 

that – if P110 casing were to be used – they wouldn’t fail. In this case, we would have concluded 

that the grade P110 has no impact on casing failure since we have equal number of wells that failed 

and those who did not fail using same casing grade. 

This problem could be solved by using the case-control design. Since, for case-control design, 

historical case studies are used, then we already know which wells did fail and those that did not. 

Accordingly, when sampling, we could choose a balanced number of failed wells (cases) and non-

failed wells (controls) for analysis. This way we can eliminate any biases that may result from 

sampling and have a more balanced/fair conclusion.  

Another problem with cohort study design is that since there is no prior knowledge of the outcome 



 

38 
 

(casing failure) for each selected individual (drilling/producing well), there is a need for sampling 

a huge number of wells in order for the sample to be representative of the outcome and the true 

population. The term “representative” reflects the fact that sampled wells should comprise all 

different sorts of exposure that exists in the true population. This, however, might not be feasible 

when the outcome is relatively rare, such as the one we are interested in this study.  

This problem can be handled by following case-control design. With prior knowledge of the 

outcome (wells that encountered casing failure), there is no necessity for having an enormous 

sample size in order for the sample to be representative of the true population and the outcome. 

Only enough to accrue a sufficient number of cases and a comparable number of controls. Thus, 

the case-control design is ideal for studying rare outcomes.        

Another key distinction that gives the edge to case-control studies is the utilization of the odds 

ratio (OR). Odds ratio approximates the relative risk by comparing exposed to unexposed in a 

cohort study. In this study, the term “exposed” refers to the drilling/producing wells that 

experienced the exposure of interest (e.g., specific acid treatment, cement treatment, etc.), while 

the term “unexposed” refers to the remaining wells that did not experience that specific exposure. 

For instance, if the impact of acid treatment on casing failure were to be tested, then the odds ratio 

would compare the wells that had acid treatment with those who did not. Based on the reasons 

mentioned previously, case-control design shows superiority over the cohort design for several 

reasons. Accordingly, the author has chosen to adopt this design in subsequent analysis. 

 

2.5 Classification of Case-Control Study 

Although the basic design principle of case-control study is that cases (wells experienced casing 

failure) should be representative of all cases in the population and controls (wells that did not 
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experience casing failure) should be representative of the source population of cases, this is not 

ideal. There still could be some bias, notably differences in the representation of cases and controls 

relative to their source populations.  

This might lead to what is known as “confounding” effect. In the context of this study, the term 

“confounding” indicates the misrepresentation of the sample to source population. To minimize 

the effect of confounding, controls are generally individually- or group-matched to cases using 

known risk factors that are not of primary interest. The “matching” concept will be explained in 

detail in the sequel. 

Before we proceed with the measurement techniques used to determine the inter-relationship 

between the outcome and different exposures, it is imperative to discuss another important trait of 

case-control design, that is, concerned with sampling cases and their corresponding controls.  

Within the standard framework of case-control study, there are two main approaches of sampling 

(Borgan et al. 2018): (1) unmatched sampling and (2) matched sampling (Figure 33). In the 

unmatched case-control study, a shared control group for all cases is selected essentially at random 

(Figure 33-a). Contrarily, in the matched case-control study – as the name suggests – controls are 

selected case by case in such a way that they are constrained to match individual cases in certain 

specified respects, that is, so that to each case is attached one or more controls (Figure 33-b).  

In this study, the latter approach has been followed. For each well that experienced failure (case), 

three corresponding neighboring wells with no experience of casing failure (controls) were 

selected. Each case and its corresponding controls were matched based on specific variables 

including their field, their location, targeted formation(s). So, for each well that experienced casing 

failure, three other wells that did not experience any casing failure were selected as controls, yet 
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they were drilled in the same field, within small vicinity and targeted the same formation(s). This 

matching has the potential of conducting a fair and balanced analysis when it comes to deciding 

the potential causes of casing failure among the different exposures in place. 

 

 

Figure 33. (a) An unmatched case-control study; (b) a matched case-control study, in which the cases are 

matched to one or more controls (Reproduced from Borgan et al. 2018). 

 

2.6 Analysis Measurement Techniques 

Now, after introducing the study design (i.e., case-control design) adopted for the subsequent 

analysis; discussing the motivation behind that selection and key components of that design, it is 

important to introduce the variety of techniques used for testing the association between different 

exposures and the outcome. Hence, the focus of this section is two-fold. First, a comprehensive 

review of several measures of testing the association of exposures (e.g., acid treatment, cementing, 

fracture design, etc.) to the outcome (casing failure) is presented; showing how association can be 
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estimated for binary exposures and outcome. Second, a layout of logistic regression analysis of 

matched case-control data is presented where multi-level and continuous exposures are handled. 

 

The simplest type of exposure is binary, meaning that any individual (drilling/producing well) is 

either exposed or unexposed to the feature of interest. The association analysis, then, would require 

calculating the “prevalence of exposure” in the case group and in the control group and to examine 

whether the exposure prevalence differs by case and control status. However, in most cases, the 

exposures might have more than two levels or even continuous. In turn, this would require a more 

formal measure of association and certainly something more complex in order to consider those 

possibilities. 

Before we start with our discussion of association measurements, it is important to introduce the 

various notations that will be used throughout the analysis. Exposures are represented by a random 

variable, normally a vector, 𝑋, while the outcome is represented by a random variable, also a 

vector, 𝑌. For a binary exposure (taking values 0 and 1), 𝑋 taking a value 0 represents no exposure 

to a risk factor and 1 as exposure. For a binary outcome, 𝑌 taking a value 0 represents no failure 

and 1 as a failure. In our analysis, each individual (drilling/producing well) falls into one of four 

types indexed first by exposure status and then by outcome status. The study population, then, 

defines probabilities as follows: 

 

Table 1 Probabilities associated with binary explanatory and binary response variables. 

 𝒀 = 𝟎 𝒀 = 𝟏 

𝑿 = 𝟎 𝑃00 𝑃01 

𝑿 = 𝟏 𝑃10 𝑃11 

 

where, 
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𝑃𝑥𝑦 = 𝑃𝑟(𝑋 = 𝑥, 𝑌 = 𝑦) (1) 

where 𝑋 is the exposure of interest, 𝑌 is the outcome (casing failure) and, 
 
 

𝑃00 + 𝑃01 + 𝑃10 + 𝑃11 = 1 (2) 

There are two ways in which the population in question may be investigated: (1) from a prospective 

or (2) retrospective standpoint. Since the design adopted for the analysis is case-control design, 

the focus will be on the latter (i.e., retrospective). In this setting, the probability of interest is the 

probability of exposure, 𝑋, conditional on the outcome, 𝑌. Mathematically, conditional 

probabilities for exposure, 𝑋, given outcome, 𝑌, is defined as 

 

𝑃𝑟(𝑋 = 𝑥, 𝑌 = 𝑦) =
𝜋𝑥𝑦

𝜋0𝑦 + 𝜋1𝑦
 (3) 

 
In other words, in case-control study, the interest is in evaluating the change in the exposure, 𝑋, 

given the outcome, 𝑌. Case in point, assuming that we are interested in measuring the association 

between having an acid treatment, as the exposure, and the outcome, that is casing failure. Then, 

we would be interested to calculate the probability of wells that had acid treatment (𝑋 = 1) given 

that they experienced casing failure (𝑌 = 1) and compare it with the wells that had acid treatment 

(𝑋 = 1) given that they did not experience casing failure (𝑌 = 0). Similar comparison is conducted 

for the wells that did not have acid treatment (𝑋 = 0). In the following section, I briefly discuss 

the different ways of comparison, formally known as measurements of association. 

2.6.1 Measurements of Association 

The discussion in this section is limited to binary exposures and outcomes, however, later in this 

chapter, a more general discussion of association measurements will be presented in Section 2.6.2. 

There are numerous ways to measure the association between an exposure, X, and the risk of the 
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event, i.e., the outcome, Y, in the population. They include: (1) risk difference, (2) relative risk, 

(3) relative risk difference and (4) odds ratio. The four methods are briefly introduced, however, 

only the odds ratio (OR) was selected for subsequent analysis for reasons that will be stated later.  

 

2.6.1.1 Risk Difference (RD) 

It is defined as the difference between the event incidence rates in exposed and unexposed 

individuals. For exposed subjects (𝑋 = 1) and unexposed subjects (𝑋 = 0), risk difference is 

defined as 

 

𝑅𝐷 = 𝜆𝑒 − 𝜆𝑢 (4) 

where 𝜆𝑒 is the outcome rate in the exposed group, while 𝜆𝑢 is the outcome rate in the unexposed 

group.  

The risk difference is a useful measure when the association of exposure with the actual number 

of cases is of interest. A positive risk difference indicates a positive association between exposure 

and the outcome, a negative risk difference indicates a negative association between exposure and 

the outcome, and a risk difference of zero indicates no association between exposure and the 

outcome. 

2.6.1.2 Relative Risk (RR) 

It measures the proportional increase in the outcome, 𝑌, associated with exposure, 𝑋 (Porta 2014). 

It is defined by 

 

𝑅𝑅 =
𝜆𝑒
𝜆𝑢
=
𝑃𝑟(𝑌 = 1|𝑋 = 1)

𝑃𝑟(𝑌 = 1|𝑋 = 0)
=
𝜋11 (𝜋10 + 𝜋11)⁄

𝜋01 (𝜋00 + 𝜋01)⁄
 (5) 

A relative risk greater than one indicates a positive association between exposure and the outcome, 
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a relative risk less than one indicates a negative association between exposure and the outcome 

and a relative risk equal to one indicates no association between exposure and the outcome. 

2.6.1.3 Relative Risk Difference (RRD) 

It measures the difference in outcome incidence at two different levels of exposure, relative to the 

incidence rate at some baseline level of exposure, often no exposure (Porta 2014). For 𝜆𝑒1 and 𝜆𝑒2 

denoting incidence at two different levels of exposure, and 𝜆𝑢 the incidence at no exposure (i.e., 

baseline level), relative risk difference is defined as 

 

𝑅𝑅𝐷 =
𝜆𝑒1 − 𝜆𝑒2
𝜆𝑢

=
𝑃𝑒1 [1 − 𝑃𝑒1]⁄ − 𝑃𝑒2 [1 − 𝑃𝑒2]⁄

𝑃𝑢 [1 − 𝑃𝑢]⁄
 (6) 

 
When the second level of exposure, 𝜆𝑒2, is the baseline level, 𝜆𝑢, the RRD reduces to 
 
 

𝑅𝑅𝐷(𝑡) = 𝑅𝑅(𝑡) − 1 (7) 

2.6.1.4 Odds Ratio (OR) 

It compares the two probabilities 𝑃𝑟(𝑌 = 1|𝑋 = 1) and 𝑃𝑟(𝑌 = 1|𝑋 = 0). To achieve this, first, 

it is important to define the “odds” of an arbitrary event 𝐴 with probability 𝑃𝑟(𝐴) to be the ratio 

𝑃𝑟(𝐴)/[1 − 𝑃𝑟(𝐴)]. The odds of the outcome 𝑌 = 𝑦 given exposure 𝑋 = 𝑥 are therefore 

𝑃𝑟(𝑌 = 𝑦|𝑋 = 𝑥) 
 

1 – 𝑃𝑟 (𝑌 = 𝑦|𝑋 = 𝑥) 
(8) 

 
It is evident that these odds in Eq. (8) are calculated from a prospective study but not from a 

retrospective, or case-control, study. The cornerstone of the analysis of case-control studies is that 

the ratio of the odds of 𝑌 = 1 given 𝑋 = 1 and of 𝑌 = 1 given 𝑋 = 0 calculated from the prospective 

study are the same as the formerly corresponding ratio of odds in the case-control study of 𝑋 = 1 

given 𝑌 = 1 to that given 𝑌 = 0. That is 
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𝑃𝑟(𝑌 = 1|𝑋 = 1)⁄𝑃𝑟(𝑌 = 0|𝑋 = 1) 𝑃𝑟(𝑋 = 1|𝑌 = 1)⁄𝑃𝑟(𝑋 = 0|𝑌 = 1) 
= 

𝑃𝑟(𝑌 = 1|𝑋 = 0)⁄𝑃𝑟(𝑌 = 0|𝑋 = 0) 𝑃𝑟(𝑋 = 1|𝑌 = 0)⁄𝑃𝑟(𝑋 = 0|𝑌 = 0) 
(9) 

 
Using the notation in Table 1, the odds ratio, (Edwards 1963), can be written as 

𝑒𝜓 =
𝑃11 ∙ 𝑃00
𝑃10 ∙ 𝑃01

 (10) 

where 𝜓 is the log odds ratio. The four rates: 𝜋11, 𝜋10, 𝜋01 and 𝜋00 are defined in Error! Reference source not 

found. 

Introducing notations for case-control study: 

 

Table 2 Retrospective (case-control) sampling: separate samples from subpopulations Y = 0, 1 with 

relevant conditional probabilities. 

 

 𝒀 = 𝟎 𝒀 = 𝟏 

𝑿 = 𝟎 𝑃00 𝑃01 

𝑿 = 𝟏 𝑃10 𝑃11 

𝑷𝒓(𝑿 = 𝒙|𝒀 = 𝒚) 𝑃10 (𝑃10 + 𝑃00)⁄ = 𝜃0 𝑃11 (𝑃11 + 𝑃01)⁄ = 𝜃1 

Now, using the notation introduced for the case-control study in Table 2.1(c), the odds ratio can 

also be written as 

𝑒𝜓 =
𝜃1 (1 − 𝜃1)⁄

𝜃0 (1 − 𝜃0)⁄
 (11) 

 
In many applications of case-control studies, as in this study, the probabilities of the occurrence of 

the outcome (𝑌 = 1) are small, as shown in Section 2.4.2 and Section 2.4.3. This is the main driver 

for adopting such a study design as it has the capability of conducting a balanced and unbiased 

analysis of relatively rare events (e.g., casing failure). 
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2.6.2 Logistic Regression 

In this section, the discussion held in previous section is extended to include a more general view 

of how association of exposures and outcome is measured regardless of the levels that an exposure 

might have (Wright 1995; Menard 2002). The methods outlined are based on the log odds ratio, 

(Edwards 1963) introduced previously, using data from a case-control study. Assuming that 

observations are available on 𝑛 independent individuals (drilling/producing wells, in our study). 

For the analysis of a case-control study we suppose initially that 𝑛1 individuals, the cases, are 

selected at random from the subpopulation with 𝑌 = 1 and 𝑛0 individuals, the controls, are selected 

at random from the subpopulation with 𝑌 = 0, generating the data shown in Error! Reference 

source not found.. By design, 𝑛0 ⁄ 𝑛1 is kept as a small integer as possible. 

 

Table 3 Summary of data from a case-control study of 𝑛 individuals; 𝑟 = 𝑟0 + 𝑟1. 

 𝒀 = 𝟎 𝒀 = 𝟏 Total 

𝑿 = 𝟎 𝑛0 − 𝑟0 𝑛1 − 𝑟1 𝑛 − 𝑟 

𝑿 = 𝟏 𝑟0 𝑟1 𝑟 

Total 𝑛0 𝑛1 𝑛 

 

Since the odds ratio (OR) are considered an integral part of the formulation of logistic regression, 

it is essential to start this discussion with describing a method for the estimation of the odds ratios. 

The frequencies 𝑟1, 𝑟0 in Error! Reference source not found., which are the numbers of exposed 

cases and controls respectively, are values of independent binomially distributed random variables. 

This leads to the joint probability (Cramer 2002). 
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𝑃𝑟(𝑅1 = 𝑟1, 𝑅0 = 𝑟0) = (
𝑛1
𝑟1
) 𝜃1

𝑟1(1 − 𝜃1)
𝑛1−𝑟1 × (

𝑛0
𝑟0
) 𝜃0

𝑟0(1 − 𝜃0)
𝑛0−𝑟0 (12) 

 
where 𝜃1 is the probability of exposure 𝑋 = 1 for a case and 𝜃0 is that for a control. It is the 

comparison of the proportions of exposed individuals in the case group and in the control group 

that informs us of a possible association between exposure and outcome. 

It is convenient to begin the formal analysis by considering the null hypothesis, that of no 

difference between the case and control groups in terms of exposure: 𝜃1 = 𝜃0. A sufficient statistic 

for the unknown common value is the total frequency 𝑅 = 𝑅0 + 𝑅1, which is a binomially 

distributed random variable of index 𝑛 = 𝑛0 + 𝑛1.We therefore condition on its observed value as 

the only way to obtain a test distribution not depending on a nuisance parameter. The test statistic 

may be either 𝑟1 or 𝑟0; we will choose the former. 

Then, under the null hypothesis, the corresponding random variable 𝑅1 has the distribution derived 

by dividing Eq. (14) by the marginal binomial probability for 𝑅: 

 

𝑃𝑟(𝑅1 = 𝑟1, 𝑅 = 𝑟) =
(
𝑛1
𝑟1
) (
𝑛0
𝑟0
)

(
𝑛
𝑟
)

 
 

(13) 

 
The same argument shows that for a non-null situation the conditional probability has the 

generalized hypergeometric form 

𝑃𝑟(𝑅1 = 𝑟1, 𝑅 = 𝑟) =
(
𝑛1
𝑟1
) (
𝑛0
𝑟0
) 𝑒𝑟1𝜓

∑ (
𝑛1
𝑘
) (

𝑛0
𝑟 − 𝑘

) 𝑒𝑘𝜓
𝑛1
𝑘=0

 
 

(14) 

 

Where the odds ratio, 𝑒𝜓 
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𝑒𝜓 =
𝜃1 (1 − 𝜃1)⁄

𝜃0 (1 − 𝜃0)⁄
 (15) 

The maximum likelihood estimate for the odds ratio is obtained by equating to zero the derivative 

with respect to 𝜓 of the log of the likelihood, Eq. (16). The estimated odds ratio 𝜓  is therefore 

obtained by solving 

 

𝑟1 −
∑ (

𝑛1
𝑟1
) (
𝑛0
𝑟0
) 𝑒𝑘𝜓̂𝑘

∑ (
𝑛1
𝑘
) (

𝑛0
𝑟 − 𝑘

) 𝑒𝑘𝜓̂𝑘

= 0 
 

(16) 

Conditionally on 𝑛1 and 𝑛0 the frequencies in Table 4 follow binomial distributions and the ratios 

𝑟1⁄𝑛1 and 𝑟0⁄𝑛0 provide unbiased estimates of the conditional probabilities 𝜃1 and 𝜃0 respectively. 

It follows that a simple, and intuitive, estimate of the log odds ratio, (Edwards 1963), defined as 

 

𝜓̂ = 𝑙𝑜𝑔
𝑟1(𝑛1 − 𝑟1)

𝑟0(𝑛1 − 𝑟1)
 (17) 

 

2.6.2.1 Logistic Model for Cohort-Study Data 

Logistic regression is a useful way to estimate odds ratios (OR) after adjustment for potential 

confounding variables. This section expands the definition of 𝑥 to include not only exposures of 

interest but also adjustment variables and effect-modifying variables. It describes logistic 

regression in the very simple situation where all explanatory variables are binary, and the data 

come from a cohort or case-control study design. 

 

Let 𝑥𝐸 = 1 for exposed subjects and 𝑥𝐸 = 0 for unexposed subjects, and 𝑥𝐴 = 1 for subjects belong 

to first level/category of the binary variable and 𝑥𝐴 = 0 for subjects belong to the second 

level/category of the binary variable. 

For 𝑥 = 𝑥𝐸, the logistic model, (Cramer 2002), is defined as 
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𝑙𝑜𝑔𝑖𝑡 (𝑃𝑥,∆𝑡(𝑡)) = 𝛼 + 𝛽𝑥𝐸 (18) 

 

The logistic model permits the estimation of the crude odds ratio 𝑂𝑅(𝑡) = 𝑒𝛽 based on regression 

coefficient estimates, since 𝑙𝑜𝑔𝑖𝑡(𝑝) = 𝑙𝑜𝑔 [𝑝/ (1 − 𝑝)]. 

 

 
Table 4 Coefficient interpretation in a binary exposure logistic model. 

𝒍𝒐𝒈𝒊𝒕 (𝑷𝒙,∆𝒕(𝒕)) 

𝒙𝑬  = 𝟏 𝒙𝑬  = 𝟎 Difference Odds Ratio (OR) 

𝛼 + 𝛽 𝛼 𝛽 𝑒𝛽 

 

 

Adding the second variable 𝑥𝐴 to the model permits estimation of a variable-adjusted odds ratio. 

The regression model, (Cramer 2002), will be adjusted as follows 

𝑙𝑜𝑔𝑖𝑡 (𝑃𝑥,∆𝑡(𝑡)) = 𝛼 + 𝛽𝐴𝑥𝐴 + 𝛽𝐸𝑥𝐸 (19) 

  

 

Table 5 Coefficient interpretation in a binary exposure logistic model. 

𝒍𝒐𝒈𝒊𝒕 (𝑷𝒙,∆𝒕(𝒕)) 

Binary Variable 𝒙𝑬 = 𝟏 𝒙𝑬 = 𝟎 Difference 
Odds Ratio 

(OR) 

 (𝒙𝑨  = 𝟎) 𝛼 + 𝛽𝐸 𝛼 𝛽𝐸 𝑒𝛽𝐸 

 (𝒙𝑨  = 𝟏) 
 

𝛼 + 𝛽𝐴 + 𝛽𝐸 
 

𝛼 + 𝛽𝐴 
 

𝛽𝐸 
 

𝑒𝛽𝐸 
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𝑥,∆𝑡 

2.6.2.2 Logistic Model for Case-Control Study Data 

Under the case-control design, there is no direct estimate of 𝑃𝑥,∆𝑡(𝑡) in the population, but letting 
 
 

𝑆 = {
1 𝑆𝑎𝑚𝑝𝑙𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑎𝑠𝑒/𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑠𝑎𝑚𝑝𝑙𝑒
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(20) 

 

one can estimate the related quantity 
 
 

𝑃𝐶𝐶 (𝑡) = 𝑃(𝑡 ≤ 𝑇 ≤ 𝑡 + ∆𝑡|𝑇 ≥ 𝑡, 𝑋 = 𝑥, 𝑆 = 1) 
𝑥,∆𝑡 (21) 

 
using sample proportions. Let 𝜋 denote the ratio of case (𝐷 = 1) to control (𝐷 = 0) sampling 

probabilities for population members. Assuming there is no selection bias, 𝜋 does not depend on 

exposure, and here we also assume it does not depend on other variables. The ratio 𝜋 is typically 

far greater than one, as cases in the population are rare and usually have a much higher probability 

of being sampled than disease-free controls. The following equations show how logistic models, 

(Cramer 2002), for 𝑃𝐶𝐶 (𝑡) are related to logistic models for 𝑃𝑥,∆𝑡(𝑡): 

 

 

𝑙𝑜𝑔𝑖𝑡[𝑃𝑥,∆𝑡
𝐶𝐶 (𝑡)] = 𝑙𝑜𝑔 [

𝑃(𝐷 = 1|𝑥𝐸 , 𝑥𝐴, 𝑆 = 1)

𝑃(𝐷 = 0|𝑥𝐸 , 𝑥𝐴, 𝑆 = 1)
] 

(22) 

𝑃(𝐷 = 1, 𝑥𝐸, 𝑥𝐴, 𝑆 = 1) 
= 𝑙𝑜𝑔 [ ] 

𝑃(𝐷 = 0, 𝑥𝐸, 𝑥𝐴, 𝑆 = 1) 

 
(23) 

𝑃(𝑆 = 1|𝑥𝐸, 𝑥𝐴, 𝐷 = 1) ∙ 𝑃(𝐷 = 1|𝑥𝐸, 𝑥𝐴). 𝑃(𝑥𝐸, 𝑥𝐴) 
= 𝑙𝑜𝑔 [ ] 

𝑃(𝑆 = 1|𝑥𝐸, 𝑥𝐴, 𝐷 = 0) ∙ 𝑃(𝐷 = 0|𝑥𝐸, 𝑥𝐴). 𝑃(𝑥𝐸, 𝑥𝐴) 

 
(24) 

= 𝑙𝑜𝑔 𝜋 + 𝑙𝑜𝑔[𝑃(𝐷 = 1|𝑋𝐸 = 𝑥𝐸, 𝑋𝐴 = 𝑥𝐴)] (25) 

= 𝑙𝑜𝑔 𝜋 + 𝑙𝑜𝑔[𝑃𝑥,∆𝑡(𝑡)] (26) 

 

Table 6 shows that, as for the odds ratio from a 2x2 table, log odds ratio coefficients in logistic 

models based on 𝑃𝑥,∆𝑡
𝐶𝐶 (𝑡) from case-control studies have the same interpretations as the analogous 

coefficients in logistic models for 𝑃𝑥, ∆𝑡(𝑡) in cohort studies. It is only the intercept term that does 

not have a population interpretation, for it depends not only on the baseline risk of outcome in the 
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population but also on the often-unknown ratio of sampling probabilities, 𝜋. 

 

Table 6 Coefficient interpretation in a binary exposure logistic model fit to case-control data. 

𝒍𝒐𝒈𝒊𝒕 (𝑷𝑪𝑪 (𝒕)) 
𝒙,∆𝒕 

Binary Variable 𝒙𝑬  = 𝟏 𝒙𝑬 = 𝟎 Difference Odds Ratio (OR) 

Level/Category 1 

(𝒙𝑨 = 𝟎) 
log 𝜋 + 𝛼 + 𝛽𝐸 log 𝜋 + 𝛼 𝛽𝐸 𝑒𝛽𝐸 

Level/Category 2 

(𝒙𝑨 = 𝟏) 

 

log 𝜋 + 𝛼 + 𝛽𝐴 + 𝛽𝐸 
 

log 𝜋 + 𝛼 + 𝛽𝐴 
 

𝛽𝐸 + 𝛾 
 

𝑒𝛽𝐸+𝛾 

 

2.7 Numerical Demonstration 

Based on the odds ratio (OR) and following the case-control design, the different exposures in the 

data set had been analyzed and potential risk factors were identified. The complete results obtained 

from risk analysis are summarized in Appendix (A). A snapshot of the results obtained for one 

model is presented in Table 7. The risk analysis laid out in Table 7 can be broken down into three 

parts/sections: (1) model features, (2) model coefficients and (3) feature impact. 

We start with the first part/section; that is “model features”. The type of exposures, or features, 

that are considered for risk analysis is extremely critical for the final conclusions. The dependency 

between different exposures, or features, plays an integral rule in defining the association/impact 

different exposures have on the overall outcome.  

Accordingly, special attention had been paid towards the selection of the optimal set of exposures 

to be considered for subsequent risk analysis. Conventionally, this challenge is tackled by trying 

out different combinations of the exposures, or features, initially considered. Then, risk analysis is 
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applied on all those combinations. Results obtained from the risk analysis are compared, and the 

best model is selected based on a pre-determined criterion. Detailed discussion of the techniques 

used for comparing different models, as well as the criteria for selecting the optimal model will be 

presented in the following sections (Sections 2.8 and 2.9). 

The second part/section of the analysis is “model coefficients”. As shown from the formulation of 

odds ratio model; presented in previous section, there is a set of parameters/coefficients, each 

corresponds to one of the exposures/features considered for the analysis, that needs to be calculated 

in order to have a model that is capable of estimating risk impacts. The estimates provided in the 

second part of  Table 7 are the values of the coefficients corresponding to this particular set of 

exposures/features used for constructing that model, in particular. The estimates for the coefficient 

are heavily dependent on the set of exposures/features selected as a base for the model. This urges 

the need for having a systematic way of choosing the right set of exposures/features as a base for 

the model of interest, which – as mentioned earlier – will be the focus of the next section. 

The third part of the analysis deals with “exposure/feature impact”. The importance of applying 

risk analysis is two-fold: (1) defining the impact type, and (2) defining the impact magnitude.  

First, we consider the impact “type”. When analyzing the impact any exposure might have on the 

outcome, there are three impact types; either the exposure has slight/no impact on increasing the 

risk of the outcome, or the exposure increases the risk of the having the outcome, or the exposure 

reduces the risk of having the outcome (Table 7, Section 3, Column 3-6). As for the impact 

“magnitude”, how far the odds ratio is from unity defines the magnitude of the impact an exposure 

has on either increasing or reducing the risk of the outcome (Table 7, Section 3, Column 7). 
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For an exposure with slight/no impact on increasing risk of the outcome, the odds ratio takes a 

value of unity. For instance, according to Table 7, the “measured depth” and “dogleg severity 

measured depth” have slight/no impact on the risk of experiencing “casing failure” with less than 

1%. 

For an exposure that increases the risk of the outcome, the odds ratio takes a value greater than 

unity. For instance, according to Table 7, the “fracturing season”, “acid treatment”, “maximum 

inclination” and “lateral section shrinkage” increase the risk of “casing failure” by nearly 73%-

293%, 35%, 30% and 15% respectively. 

Finally, for an exposure that reduces the risk of the outcome, the odds ratio takes a value less than 

unity. For instance, according to Table 7, the having “cement” support, increasing “casing 

thickness”, increasing “drill-frac time interval” and reduce the risk of “casing failure” by 53%, 

100% and 9%, respectively.  
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Table 7 Results from the application of risk analysis on the data set using odds ratio (OR). The 

definition of odds ratio (OR) follows case-control design. 

AIC = 93.772       

Model Features:       

CEMENT FRAC_SEASON DL_SEVERE_MD   

LATERAL_SHRINKAGE MAX_INCL  BHT    

DL_FREQ_10PLUS DRILL_FRAC_INTERVAL ACID   

DL_BEND_STRESS CSG_THICKNESS     

Coefficients: 
     

Risk Factor Level Estimate Std. Error p-value 

(Intercept)  -2.15E+01 1.77E+01 0.0225 

CSG_THICKNESS  -6.77E+00 1.90E+01 0.0722 

DL_BEND_STRESS  6.76E-06 2.70E-05 0.0802 

FRAC_SEASON Spring 1.37E+00 1.00E+00 0.0171 

 Summer 5.50E-01 1.08E+00 0.0610 

 Winter 1.53E+00 1.20E+00 0.0204 

MD  -1.04E-04 4.02E-04 0.0795 

ACID Yes 3.16E-01 8.82E-01 0.0720 

CEMENT Yes -6.25E-01 8.51E-01 0.0463 

BHT  -3.49E-02 3.55E-02 0.0325 

LATERAL_SHRINKAGE  1.47E-01 2.09E-01 0.0483 

MAX_INCL  2.65E-01 1.98E-01 0.0181 

DL_SEVERE_MD  2.32E-04 3.79E-04 0.0541 

DRILL_FRAC_INTERVAL  1.17E-02 1.07E-02 0.0277 

DL_FREQ_10PLUS  -8.85E-02 7.97E-02 0.0266 

 
Risk Factor 

 
Level 

 
OR 

 
LL 

 
UL 

 
Risk 

 
Impact 

CSG_THICKNESS  0.001145 7.22E-20 1.81E+13 ▼ 100% 

DL_BEND_STRESS  1.000007 0.999954 1.000060 ▼ 1% 

FRAC_SEASON Spring 3.937058 0.55419 27.96954 ▲ 293% 

 Summer 1.733069 0.209701 14.32291 ▲ 73% 

 Winter 4.607039 0.437345 48.53103 ▲ 360% 

MD  0.999896 0.999109 1.000683 ▲ 1% 

ACID Yes 1.371966 0.243384 7.733821 ▲ 37% 

CEMENT Yes 0.535253 0.101012 2.836260 ▼ 53% 

BTH  0.965693 0.900787 1.035276 ▼ 4% 

LATERAL_SHRINKAGE  1.157817 0.768677 1.743959 ▲ 15% 

MAX_INCL  1.303575 0.884043 1.922200 ▲ 30% 

DL_SEVERE_MD  1.000232 0.99949 1.000975 ▲ 0% 

DRILL_FRAC_INTERVAL  1.011722 0.990679 1.033213 ▲ 0% 

DL_FREQ_10PLUS  0.915278 0.782973 1.069940 ▼ 9% 
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2.8 Subset Selection 

In the previous section, I have discussed the problem of the dependency between different 

exposures, or features, and their rule in defining the association/impact different exposures have 

on the overall outcome. The way this issue was addressed was through trying out different 

combinations of the exposures, or features, initially considered. Then, a model is fit to each 

combination. Results obtained from the different models are compared, and the best model is 

selected based on pre-determined criteria.  

In this section, I briefly address the various methods that are used for comparing the performance 

of different models, the key distinctions between the different methods, as well as the criteria for 

selecting the optimal model. The first part of the discussion will be devoted to subset selection 

techniques. Subset selection comprises of two broad families of techniques for model selection: 

the best subset and stepwise model selection procedures. 

2.8.1 Best Subset Selection 

To perform best subset selection, a separate least squares regression best subset is fitted for each 

possible combination of the 𝑝 predictors. That is, we fit all 𝑝 models that contain exactly one 

predictor, all (
𝑝
2
) = 𝑝(𝑝 − 1)/2 models that contain exactly two predictors, and so forth. 

Identification of the best model amongst the resulting models is implemented. The problem of 

selecting the best model from among the 2𝑝 possibilities is usually broken up into two stages. First 

stage identifies the best model (on the training data) for each subset size, in order to reduce the 

problem from one of 2𝑝 possible models to one of 𝑝 + 1 possible models. Then, in order to select 

a single best model, we must simply choose among these 𝑝 + 1 options. Implementation of 

conventional 𝑅𝑆𝑆 and 𝑅2 statistics for selection of the best model will always end up with a model 

involving all the variables, because the 𝑅𝑆𝑆 of these 𝑝 + 1 models decreases monotonically, and 
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the 𝑅2 increases monotonically, as the number of features included in the models increases. 

Therefore, second stage, cross-validated prediction error estimators, such as 𝐴𝐼𝐶 or 𝐵𝐼𝐶 are used 

instead to select among ℳ0, ℳ1, … , ℳ𝑝 models. 

2.8.2 Stepwise Selection 

For computational reasons, best subset selection cannot be applied with very large number of 

predictors 𝑝. Best subset selection may also suffer from statistical problems when 𝑝 is large. The 

larger the search space, the higher the chance of finding models that look good on the training data, 

even though they might not have any predictive power on future data. Thus, an enormous search 

space can lead to overfitting and high variance of the coefficient estimates. 

For both reasons, stepwise methods, which explore a far more restricted set of models, are attractive 

alternatives to best subset selection. Accordingly, stepwise selection methods were selected for 

subsequent analysis. 

 

2.8.2.1 Forward Stepwise Selection 
 

Forward stepwise selection is a computationally efficient alternative to best forward stepwise 

selection subset selection. While the best subset selection procedure considers all 2𝑝 possible 

models containing subsets of the 𝑝 predictors, forward stepwise considers a much smaller set of 

models. 

Forward stepwise selection begins with a model containing no predictors, and then adds predictors 

to the model, one-at-a-time, until all the predictors are in the model. In particular, at each step the 

variable that gives the greatest additional improvement to the fit is added to the model. 

Unlike best subset selection, which involved fitting 2𝑝 models, forward stepwise selection involves 

fitting one null model, along with 𝑝 − 𝑘 models in the 𝑘𝑡ℎ iteration, for 𝑘 = 0, . . . , 𝑝 − 1. This 
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amounts to a total of 1 + 𝑝 (𝑝 + 1)/2 models, which constitutes a substantial difference. 

Accordingly, forward stepwise selection has computational advantage over best subset selection. 

However, forward stepwise does not guarantee to find the best possible model out of all 2𝑝 models 

containing subsets of the 𝑝 predictors especially with high-dimensional setting (where 𝑛 < 𝑝). 

2.8.2.2 Backward Stepwise Selection 

Like forward stepwise selection, backward stepwise selection provides an efficient alternative to 

best subset selection. However, unlike forward stepwise selection, it begins with the full least 

squares model containing all 𝑝 predictors, and then iteratively removes the least useful predictor, 

one-at-a-time. 

Like forward stepwise selection, the backward selection approach searches through only 1 + 𝑝 (𝑝 

+ 1)/2 models, and so can be applied in high-dimensional settings (where 𝑝 is too large) to apply 

best subset selection. Also, like forward stepwise selection, backward stepwise selection is not 

guaranteed to yield the best model containing a subset of the 𝑝 predictors. Backward selection 

requires that the number of samples, 𝑛, is larger than the number of variables, 𝑝, (so that the full 

model can be fit). In contrast, forward stepwise can be used even when 𝑛 < 𝑝, and so is the only 

viable subset method when p is very large. 

2.9 Choosing the Optimal Model 

 
As discussed in previous section, subset selection techniques are used for comparing the 

performance of different models fit to different combinations of exposures, or feature. Here, we 

discuss the different criteria that could be used to determine which of these models is best. In order 

to select the best model with the least test error, we need to estimate this test error. There are two 

common approaches: 

1) Indirect estimation of test error: making an adjustment to the training error to account 
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for the bias due to overfitting. 

2) Direct estimation of the test error: using either a validation set approach or a cross- 

validation approach. 

Here, only indirect test error estimator approach is considered for discussion. 

2.9.1 Akaike Information Criterion (AIC) 

The AIC criterion, (Akaike 1973), was initially defined for evaluating and comparing regression 

models with different number of predictors. In case of classification model, a modified version of 

AIC could be used and is defined as follows 

 

𝐴𝐼𝐶 = −2(𝐿𝑑 − 𝐿𝑆) + 2𝑑 (27) 

where 𝐿𝑑 is the log-likelihood of the model with 𝑑 predictors (for 𝑑 ≪ 𝑛), while 𝐿𝑆 is the log-

likelihood of the “saturated” model fitted on all 𝑛 predictors. 𝑑 is the number of predictors subset 

from the total number of 𝑛 predictors. The term −2(𝐿𝑑 − 𝐿𝑆) is defined as the “deviance”. 

Deviance is a goodness-of-fit statistic for a statistical model that is used to compare two different 

models. For classification model, deviance can be defined as the log-likelihood ratio of the full 

(saturated) model compared to the reduced model. Accordingly, AIC is – essentially – deviance 

penalized for model complexity. The “lower” the residual deviance, the “lower” the AIC, the 

“better” the model. 

2.9.2 Bayesian Information Criterion (BIC) 

BIC is derived from a Bayesian point of view, (Schwarz 1978), but similar to 𝐴𝐼𝐶, with the only 

difference that an “empirical” estimate of the model complexity; the term “2𝑑” in Eq. (27), is used 

as the penalty. For a classification model with 𝑑 predictors, the BIC is, then, given by 
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𝐵𝐼𝐶 = −2(𝐿𝑑 − 𝐿𝑆) + 2 ∗ 2
𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (28) 

Like AIC, the BIC will tend to take on a “small” value for a model with a “low” deviance, and so 

generally we select the model that has the “lowest” BIC value. 

2.10 Numerical Demonstration 

In our analysis, Akaike Information Criterion (AIC) was selected as the criterion for identification 

of the best model to proceed with. Results of the AIC values for the different models analyzed are 

presented in Figure 34. Based on a tradeoff between the AIC reduction and the model size, model 

10 has been selected as the “best” compared to other models analyzed. 

 

Figure 34. AIC results for the best models of each size for the collected Granite Wash data set. 

 

Graphical representation of the risk analysis results for the best model selected is presented on a 

radar plot (Figure 35). In this plot, impact values of the different exposures/features are presented. 

A dotted polygon was set at value 1 corresponding to the “no” impact zone, where odds ratio is 

equal to unity. Any exposures that lie inside the polygon are considered to have positive impact 

(i.e., reduce the risk of casing failure). On the other hand, any exposures that lie outside the polygon 

are considered to have negative impact (i.e., increase the risk of casing failure). 
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Figure 35. Risk factor analysis results for best selected model (based on AIC). 

 

For completeness and comparison purposes, results of risk analysis implemented on all the 

different models with various combinations of the exposures/features are summarized in Appendix 

A. A graphical representation of the risk impacts corresponding to each exposure/feature for each 

model is presented in Figure 36. 

In Figure 36, twelve plots corresponding to the twelve different exposures that were settled on 

based on the analysis are presented. For each plot, the x-axis indexes, or lists, the different model 

numbers, while the y-axis represents the impact value. The color of the plot corresponds to the 

“type” of the impact that exposure has on the outcome (casing failure). The red corresponds to 

increased risk, the green corresponds to reduced risk and the grey corresponds to slight/no risk.



 

 

 

 

Figure 36. Odds ratio (OR) for various risk factors in a variety of model combinations. 
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2.11 Conclusions  

In this chapter, I addressed one of the limitations of previous contributions done in the area of 

casing failure, that is, impact quantification of potential risk factors. To that end, I designed a data-

driven workflow based on risk-factor analysis family of techniques that gives the allowance to 

evaluate the impact type, as well as the magnitude for potential risk factors. Quantification of 

various risk factors’ impacts adds an invaluable insight to mitigating and, ultimately, avoiding 

future casing failures. This could be achieved through integration of such information in the design 

of the proposed “casing failure mitigation” tool, to be discussed in Chapter 4. 

The data-driven workflow, designed in this chapter, is based on three main components: (1) 

definition of proper study design, (2) definition of proper sampling approach and (3) definition of 

suitable association measurement.  

Regarding study designs, two major designs were initially discussed: cohort and case-control study 

design. Based on the direction of inference, sampling design and analysis biases, case-control 

design was adopted. In case-control study design, knowing the outcome (casing failure), we move 

backwards to test the different exposures, defines the potential risk factors and measure their 

impact.   

Regarding sampling techniques, two approaches were presented and briefly discussed: (1) 

unmatched and (2) matched approach. Motivated by the structure of each analysis approach and 

the information provided in the data set, matched analysis approach was selected to proceed with. 

Following that approach, each case (well experienced casing failure) was matched with three 

controls (well that did not experience casing failure) based on different features (e.g., the field, the 

location, the formation, etc.). 
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To conduct the comparison between cases and controls, several association measurements were 

introduced and briefly addressed including risk difference (RD), relative risk (RR), relative risk 

difference (RRD) and odds ratio (OR). Odds ratio was, then, selected as the criterion for measuring 

the association/impact of different exposures on the outcome. Using the odds ratio, I managed to 

identify the potential risk factors, the type of impact they have (positive, negative or slight/no) and 

measure the magnitude of their impact. 

Based on the initial results of the analysis, only thirteen features – out of the initial twenty-six 

features – were considered as potential risk factors of casing failure. Those potential risk factors 

were generally related to casing records, fracture records and drilling conditions. 

Owing to the implementation of odds ratio (OR), I also managed to define the type of impact each 

potential risk had on the occurrence of casing failure; either positive, negative, or slight-to-no 

impact. Results showed that, for instance, “fracturing season” and “maximum inclination” had a 

negative impact on casing failure, while “cementing”, “casing thickness” and “drill-frac time 

interval” had a positive impact. As for, “measured depth” and “dogleg severity measured depth” 

both had nearly no impact on the occurrence of casing failure.  

In addition to evaluating risk type, using odds ratio (OR), we managed to measure the magnitude 

of the impact each potential risk factor had on the overall probability of casing failure. For instance, 

fracturing during spring turned out to increase the risk of casing failure by over 200%, an increase 

of one unit in the lateral section shrinkage increases the risk by 15%. On the other hand, cementing 

reduces the risk of casing failure by nearly 54%, while having a casing thickness greater than 0.65 

in (P110) tends to reduce the risk of casing failure by nearly 90%. Those results were beneficial 

for generating probability-impact risk assessment matrix (PI-RAM) that was addressed later in the 

study.  
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Due to the dependency between different exposures, several combinations of the presented 

exposures/features were tested. A model was fit and analyzed for each combination. Then, the 

results from the different models were compared using subset selection techniques. Based on 

computational and statistical reasons, the stepwise family of techniques were selected for fitting 

and comparing the performance of the different models. 

To define the best model to continue with, different criteria were discussed including AIC and 

BIC. Since the aforementioned criteria were, initially, designed for regression models, they had to 

be modified in order to suit the type of the machine learning algorithms implemented in the 

analysis (classification models). But it was the AIC criterion that, eventually, was chosen to 

identify the best model with optimal set of features/exposures. 
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CHAPTER III 

SURVIVAL ANALYSIS 
 

Reader Guide: In chapter 2, having initial set of exposures and using the designed workflow based 

on risk-factor analysis, I managed to identify the potential risk factors that are strongly associated 

with the occurrence of casing failure in the provided data set. In addition, I managed to identify 

their impact on the outcome; whether positive, negative or slight. Moreover, I managed to quantify 

their “overall” impact on the outcome and rank them accordingly. 

In this chapter, I further my investigation by addressing the following concerns: (1) having a 

granular view of the impact each risk factor has on casing failure, in other words, testing the impact 

of the various subcategories within each potential risk factor, and (2) identifying the depths 

throughout the well that are most vulnerable to casing failure based on the provided information 

for different risk factors. To tackle those two challenges, I am designing another workflow that is 

based on another classical statistical analysis technique, known as “survival analysis”.  

Discussion starts with an overview of survival analysis family of techniques and their applications, 

along with a brief layout of the modifications/adjustments proposed by the author in order to align 

with this chapter’s objectives (Section 3.1). Then, I present various survival/hazard functions used 

for describing an event, e.g., casing failure, distribution (Section 3.2). Those functions are 

important in terms of describing the behavior in which survival probability changes with respect 

to analysis scale (i.e., measured depth).  

Following that, I proceed with discussing various methods used for estimating the aforementioned 

survival distributions (Section 3.3). I start with non-parametric estimators, in particular Kaplan-

Meier estimator (Section 3.3.1). Due to their flexibility, non-parametric estimators provide the 

perfect solution for analyzing the significance of various subcategories within potential risk 

factors. I, then, move to semi-parametric estimators, in particular proportional hazards (Cox) 

model; where I address some of the limitations in the non-parametric counterparts (Section 3.3.2). 

Finally, I highlight the work done in this chapter, as well as the major achievements from the 

analyses conducted (Section 3.4). 
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3.1 Introduction 

In Chapter 2, I highlighted one of the major limitations previous contributions – particularly in the 

area of casing failure – had, that is, their inability to provide a viable measure to mitigate, or even, 

avoid casing failure. One reason that contributed to such limitation was the inability to quantify 

the impact that various potential risk factors have on the occurrence of the casing failure. I tackled 

that challenge by designing a data-driven workflow, based on risk analysis techniques, that has the 

capability of evaluating the impact type, as well as the magnitude of the various risk factors. 

Another reason that contributed to this limitation was the inability to tackle the impact of potential 

risk factors throughout the well, in addition to, how variation in a particular risk factor might affect 

the probability of casing failure accordingly. In this chapter, I tackle that challenge through 

designing another data-driven workflow based on “survival analysis” techniques. This workflow 

will give the allowance to evaluate the significance of the different subcategories within each 

potential risk factor, in addition, track their impact throughout the well length. 

Survival analysis is a well-established statistical methodology that is of interest to researchers in 

many different fields including biology, sociology, technical reliability, econometrics, etc. The 

motivation behind the application of survival analysis is, normally, to analyze event history and 

predict the occurrence of that event/outcome with respect to time (Miller 1997). In other words, 

survival analysis is concerned about the time needed until a specific event/outcome occurs. 

In survival analysis, different methodologies are used to describe the occurrence of any 

event/outcome such as survival curves and hazard rates, and to analyze the dependence on 

covariates. Survival and hazard terminologies are interchangeable. In essence, the two approaches 

complement each other, and both could be used to convey the same output. Traditionally, survival-

based methodologies were used for positive outcomes, while hazard-based methodologies were 
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used when negative outcome is the case. 

 

Although techniques involved in survival analysis normally include time scale in their construction 

and formulation, yet – motivated by our own research interests – the analysis scale has been 

tweaked. So, the data would, now, be presented and analyzed with respect to “reached measured 

depth” instead of the conventional analysis scale that is “time” (Figure 16). The author believes 

that this slight modification has the potential for resolving the objectives set for this chapter. 

For classical survival analysis, where “time” is the analysis scale, individuals considered for the 

study are assumed to have the same starting point, usually the date when the study begins. In the 

context of this study, the definition of the starting point is different. Since the analysis scale has 

been adjusted to reflect the “measured depth” reached before the occurrence of the casing failure, 

the starting point is now defined in terms of spatial coordinates. This point was selected to be the 

datum/well surface. Hence, the depth will be measured from surface until the point of failure 

(Figure 37). 
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Figure 37. Line plot in the proposed analysis scale (x-axis); that is the measured depth reached until casing 

failure, for the eighty wells considered in the study compiled from the Granite Wash formation 

(y-axis). 

 

 

Before we proceed with the discussion, it is important to introduce some essential elements and 

key notes that will be used in subsequent analysis. Based on the previously implemented risk 

analysis (Chapter 2), conclusions were drawn regarding the potential risk factors among different 

exposures initially considered and the association, or impact, they had on the outcome of interest 

(casing failure). Those risk factors were selected as a starting point for survival analysis.  

Risk factors deduced from the risk analysis included both numerical variables, as well as 

categorical variables. Numerical risk factors have been categorized into two or more classes/levels 

for reasons that has to deal with some of the implemented survival estimators, e.g. Kaplan-Meier 

estimator (detailed discussion is provided in Section 3.3.1). The number of classes/levels was 

purely defined based on the statistical inference from the frequency analysis conducted on the data 

set that was compiled from Granite Wash formation. A snapshot of the results obtained from 
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frequency analysis is presented in Figure 38. The remaining results from the frequency analysis 

are summarized in Appendix (B). As for the final risk factors and their categories, that will be used 

for proceeding analysis, they are summarized in Table 8. 

 

 

Figure 38. Graphical representation of the two statistically significant categories of “dogleg severity” risk 

factor; represented by blue and brown colors, obtained from the application of frequency analysis 

on “dogleg severity”.   
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Table 8 Description of the different risk factors considered in survival analysis. 

Variable Description Codes/Values 

MD Measured Depth ft 

CSG_THICKNESS Casing Wall Thickness in 

FRAC_TEMP Fracture Temperature ⁰F 

BHT Bottomhole Temperature ⁰F 

DRILL_FRAC_INTERVAL Drilling-Fracturing Time 

Interval 

Days 

DL_SEVERITY Dogleg Severity ⁰/100ft 

DL_FREQ_10PLUS Frequency of Doglegs > 

10⁰/100ft 

Dimensionless 

DL_SEVERE_MD Measured Depth of 

Maximum Dogleg 

ft 

MAX_INCL Maximum Inclination ⁰ 

DL_BEND_STRESS Dogleg Bending Stress lbf 

LATERAL_SHRINKAGE Shrinkage of Lateral Section ⁰F/100ft 

FRAC_SEASON Fracturing Season 1 = Fall 

2 = Spring 

3 = Summer 

4 = Winter 

ACID Acid Usage 1 = Yes 

0 = No 

CEMENT Cement Usage 1 = Yes 

0 = No 

FAIL_DEPTH Measured Depth of Failure ft 

STATUS Censoring 1 = Failure 

0 = Survived 
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3.2 Representations of Survival Distribution 

In this section, I briefly address the basic functions that are used for defining a survival distribution. 

Those functions are critical in terms of describing the behavior in which survival/hazard 

probabilities change with respect to analysis scale (measured depth). These functions include: (1) 

the survival function, (2) the hazard function, (3) the cumulative distribution function. As 

mentioned in Section 3.1, all definitions, formulations and methodologies will be adjusted to align 

with the one of the research concerns, that is, defining the depths that are most vulnerable to casing 

failure based on analyzing the provided information for the different risk factors and estimating 

survival, or conversely the hazard, probability accordingly.    

3.2.1 The Survival Function, 𝑺(𝒅) 

The survival function defines the expected proportion of individuals (drilling/producing wells) that 

have not yet experienced the event/outcome (casing failure) by the specified measured depth, 𝑑 

(Figure 39-a). It should be noted that survival function does not consider the impact of different 

exposures/risk factors on the overall probability. In other words, the survival function provides the 

unconditional probability that the event of interest has not happened by depth 𝑑, formally, 

 

𝑆(𝑑) = 𝑝𝑟(𝐷 > 𝑑) (29) 

 
where 𝐷 is a random variable that denotes the survival depth. Like any probability distribution, the 

survival function ranges between 0 and 1. It takes the value 1 at depth 𝑑 = 0 (the surface, in our 

case), and tends to decrease, or remain constant, as the measured depth, 𝑑, increases; since more 

and more individuals (drilling/producing wells) will experience the event of interest (casing 

failure), and never drops below 0. 
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3.2.2 The Hazard Function, 𝒉(𝒅) 

The hazard function is, simply, the instantaneous failure rate. In other words, it is the probability 

that, given that a subject has survived up to depth 𝑑, it is expected to fail in the next small interval 

of depth, [𝑑, 𝑑 + 𝛿), divided by the length of that interval, 𝛿, (Figure 39-b). Mathematically, this 

may be expressed as (Maxim 2008) 

 

ℎ(𝑑) = lim
𝛿→0

𝑝𝑟(𝑑 < 𝐷 < 𝑑 + 𝛿 | 𝐷 ≥ 𝑑)

𝛿
 (30) 

 
 

As mentioned before (Section 3.1), hazard and survival functions, are complementary. The core 

aspect that differentiates both functions is the perspective from which each function deals with the 

problem of interest. The survival function assumes an individual (drilling/producing well) will 

survive up to a certain measured depth. On the other hand, the hazard function assumes that an 

individual (drilling/producing well) will fail after a certain depth. Based on the outcome/event of 

interest or the researcher’s convenience, it is decided which notion to adopt in subsequent analysis.  
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Figure 39. (left) Survival function with high initial probability (~ 1) that decreases exponentially until hits 

“zero” probability threshold at the depth of failure, D. (Right) Hazard function with low (~zero) 

initial probability that increases exponentially until reaches unity at the depth of failure, D. 

 

3.2.3 The Probability Density Function, 𝒇(𝒅) 

Now, after introducing the two key functions (survival and hazard functions) used for describing 

any survival distribution, it is equally important that we link the two together. This will give the 

allowance for calculating one function given that the other is known. This sort of conduit is known 

as the probability density function.  

Before we proceed with the definition of the probability density function, it is imperative to 

introduce another simple concept; that is the cumulative distribution function (also known as 

cumulative risk function). Cumulative distribution function can be considered as the complement 

of the survival function, (Miller 1971), and is defined as 

 

𝐹(𝑑) = 𝑝𝑟(𝐷 ≤ 𝑑) (31) 
 

This leads us to the definition of the probability density function, (Ord 1971), which is simply the 

rate of change of the cumulative distribution function, or minus the rate of change of the survival 

function, Formally 
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𝑓(𝑑) = −
𝜕

𝜕𝑑
𝑆(𝑑) =

𝜕

𝜕𝑑
𝐹(𝑑) (32) 

 
The hazard function can, then, be related to the probability density function and survival functions, 

(Miller 1971), through the following equation 

ℎ(𝑑) =
𝑓(𝑑)

𝑆(𝑑)
 (33) 

 
This means that the hazard at depth 𝑑 is the probability that an event/outcome (casing failure) will 

occur in the neighborhood of depth, 𝑑, divided by the probability that the individual 

(drilling/producing well) will survive until the measured depth, 𝑑. It is this relationship that allows 

us to compute the survival function, 𝑆(𝑑), corresponding to a hazard function, ℎ(𝑑). 

3.3 Survival Curve Estimation 

The upcoming sections build on the definitions and functions that were introduced in previous 

sections (Section 3.2.1 and Section 3.2.2). In the upcoming sections, I proceed with the discussion 

of different techniques that are used for estimating survival, or conversely hazard, probabilities at 

certain measured depths. 

Generally, there are three broad families of estimators that are used for the aforementioned 

purposes. Here, the discussion is limited to only two: (1) non-parametric estimators and (2) semi-

parametric estimators. Non-parametric estimators, by definition, provide estimates of survival 

probabilities based purely on the history data set. On the contrary, semi-parametric estimators have 

a more formal way of conveying the survival probabilities based on the assumption that survival 

functions follow parametric distribution. 

For completeness and comparison purposes, the foundation of both families of techniques will be 



 

75 
 

laid out in detail and results of the analysis using both approaches will be presented, as well.  

3.3.1 Nonparametric Survival Curve Estimation 

Here, I discuss, in detail, the first family of survival curve estimators; the non-parametric 

estimators. The focus will be on the Kaplan-Meier estimator, since it is one of the most widely 

used non-parametric estimators of the survival function (Kaplan 1958). This estimator is, basically, 

the product over the various failure depths, di, of the conditional probabilities of surviving up to 

the next failure depth. Mathematically, it is defined by 

 

𝑆(𝑑) = ∏(
𝑛𝑖 − 𝑙𝑖
𝑛𝑖

)

𝑑𝑖≤𝑑

 (34) 

where 𝑛𝑖 is the number of wells at risk – yet did not fail – at depth 𝑑𝑖, and 𝑙𝑖 is the number of the 

wells who already failed at that measured depth. 

To illustrate how survival curves are initiated using Kaplan-Meier estimator, a trivial example is 

provided based the baseline survival curve, known as the “null” model. In this case, the impact of 

the different risk factors (e.g., acid treatment, cementing, etc.) is totally ignored and the focus is 

only on final outcome; that is the wells at risk of failure, ni, and wells that already failed, li (column 

2 and 3 in Table 9). We use those information as inputs for the estimator, Eq. (34), and calculate 

the survival probability at each of the known failure depths (column 4 in Table 9). The output of 

those calculations is the corresponding survival curve (Figure 40). 
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Table 9 Basic statistics for Kaplan-Maier survival estimator with 95% confidence intervals. 

Confidence Interval 

Depth Wells at risk Wells failed Survival Function Std. dev. lower 95% upper 95% 

𝒅𝒊 𝒏𝒊 𝒍𝒊 𝑺(𝒅) 𝝈 - - 

7927 60 1 0.983 0.0165 0.9515 1 

7954 59 1 0.967 0.0232 0.9223 1 

8280 58 1 0.95 0.0281 0.8964 1 

8400 57 1 0.933 0.0322 0.8723 0.999 

8846 56 1 0.917 0.0357 0.8493 0.989 

9052 55 1 0.9 0.0387 0.8272 0.979 

9297 54 1 0.883 0.0414 0.8057 0.968 

9403 53 1 0.867 0.0439 0.7848 0.957 

10074 52 1 0.85 0.0461 0.7643 0.945 

10100 51 1 0.833 0.0481 0.7442 0.933 

11065 47 1 0.816 0.0502 0.7228 0.92 

11096 45 1 0.797 0.0523 0.7013 0.907 

11129 44 1 0.779 0.0542 0.6801 0.893 

11537 37 1 0.758 0.0566 0.655 0.878 

12830 23 1 0.725 0.0631 0.6117 0.86 

12920 22 1 0.692 0.0683 0.5707 0.84 

12938 21 1 0.659 0.0725 0.5315 0.818 

14705 11 1 0.599 0.0873 0.4506 0.797 

16558 2 1 0.3 0.2164 0.0728 1 
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Figure 40. Survival probability developed in this study of null model with respect to measured depth. The 

estimates of survival probabilities at each measured depth are represented in “solid” red line. The 

confidence levels: upper and lower, are represented by the top and bottom “dotted” red lines, 

respectively.    

 

In Figure 40, survival probability, i.e., the probability of not experiencing casing failure, is 

represented on the y-axis, while the reached (drilled) measured depth is represented on the x-axis. 

According to Figure 40, the survival probability is “inversely” proportional to the reached 

measured depth. Since the history wells were either deviated or horizontal, the probability of 

casing failure was expected to increase with increasing the depth due to multiple reasons including: 

(a) increased dogleg severity and maximum inclination, (b) increased temperature differentials, (c) 

increased shrinkage of lateral section and (d) inexistence of proper cement support for some cases. 

Those reasons led to increased stresses on the casing string, hence, increased risk of casing failure.   
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The previous example (explained in Table 9 and Figure 40), however, neglected all the potential  

risk factors (i.e. null model) and the sole purpose of introducing it was to familiarize the reader 

with the process of constructing survival curves using non-parametric estimators, more specifically 

Kaplan-Meier estimator. The actual analysis is introduced in the upcoming section, where the 

impact of various risk factors/covariates (e.g., acid treatment, cementing, dogleg severity, etc.) on 

survival probability will be considered.  

3.3.1.1 Comparing Survival Curves 

In this section, we address the objective of adopting this family of techniques, in particular, and 

survival analysis, in general. As mentioned in the beginning of this chapter that one of the 

research’s interests – and the focus of this chapter – is to define the places/depths throughout the 

well that are most vulnerable to casing failure. This require estimating the probability of survival, 

or more conveniently, the probability of failure at various depths. To that end, we have adopted 

the classical “survival” analysis techniques with little adjustment to the analysis scale to align with 

our interests. 

In the previous section, we discussed who survival curves can be constructed using one of the two 

major estimation approaches; that is non-parametric estimators (Kaplan-Meier estimator). Yet, we 

totally ignored the impact of different risk factors on the survival curves. In this section, we discuss 

– in detail – how the impact of different risk factors can be tested and incorporated in the 

construction of survival curves. 

To study the impact of various risk factors on survival curves, each risk factor is considered 

separately. Then, each risk factor is categorized into two – or more – levels/groups. For each 

level/group, a survival curve is constructed. Survival curves for all levels/groups within each risk 

factor are compared. Based on that comparison, it can be concluded for every depth, the impact 
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each of those levels/groups have on the survival curve. Also, it can be decided which of those 

groups have the highest impact.  

We start our discussion with a simple case; assuming a two-level risk factor (acid treatment, for 

instance). The goal – as mentioned – is to test the equivalence of the two groups (i.e., the well had 

an acid treatment, 1, or not, 0). Typically, we are interested in testing a null hypothesis, 𝐻0, that 

the two-population means are equal versus an alternative hypothesis, 𝐻𝐴, that the means are not 

equal (two-sided test) or that the mean for one group is greater than that for the other group (one-

sided test). In other words, we initially assume that both groups (Yes Acid and No Acid) have the 

same impact on survival curves, and we want to examine this assumption (i.e., null hypothesis). If 

our initial assumption (i.e., null hypothesis) is true, then, we should expect the alignment of the 

two survival curves corresponding to the two groups and we end up with one survival curve as we 

had in the case in previous section. If the initial assumption is false, then we should expect two 

different survival curves for the two groups. Based on the condition we have (having acid 

treatment, for instance), one can follow the survival curve that corresponds to that condition and 

estimate the failure probability at the depth of interest. If the conditions change with depth, then 

one can move between the different survival curves and estimate the failure probability, 

accordingly.    

The way we test the null hypothesis is through computing a test statistic from the observed data 

and reject the null hypothesis if the test statistic exceeds a particular constant. The significance 

level (known as, p-value) of the test is defined as the probability that we reject the null hypothesis 

when the null hypothesis is in fact true. 

Regarding the non-parametric tests of equivalence of two survival functions. We adopt the log-

rank test, 𝜒2, (Nathan 1966) which is defined as follows 
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𝑈𝑎
2

𝑉𝑎
~𝜒1

2
 (35) 

where, 

𝑈𝑎 =∑(𝑑𝑎𝑖 − 𝑒𝑎𝑖)

𝑁

𝑖=1

=∑𝑑𝑎𝑖 −∑𝑒𝑎𝑖 (36) 

𝑉𝑎 = 𝑣𝑎𝑟(𝑈𝑎) =∑𝑣𝑎𝑖 (37) 

eai is defined as the expected mean, while dai is the observed mean and vai is defined as the expected 

variance. N is the total number of wells. 

3.3.1.2 Numerical Demonstration 

The log-rank test, or simply Chi-square, is calculated for each level/group (Table 10; column 6) 

within each risk factor using Eqs. (35)-Error! Reference source not found.. Inputs for those 

equations can be found in Table 10; columns 3-5. Then, Chi-square values for all levels/groups 

within each risk factor are added together to form the overall Chi-square value for each risk factor. 

The Chi-square then are compared with pre-determined thresholds (Table 11; column 3). Based 

on that comparison, the null hypothesis is either accepted or rejected. According to results shown 

in Table 11; column 4, every level/group within each risk factor has a distinct and different impact 

on the survival curves. This conclusion is critical when deciding which survival curve to follow 

when estimating failure probability at the depth of interest given specific set of values for the 

different risk factors. 
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  Table 10 Data and calculations of the log-rank test statistic. 

  

Feature Class 𝑵 ∑ 𝒅𝒂𝒊 ∑ 𝒆𝒂𝒊 𝝌𝟐 
𝟏 p-value 

Fracture Season Fall 12 2 3.58 0.701  

 Spring 17 7 5.24 0.588  

 Summer 20 5 7.42 0.787  

 Winter 11 5 2.76 1.827  

     3.9 0.3 

Acid No 43 13 12.19 0.0532  

 Yes 17 6 6.81 0.0953  

     0.2 0.7 

Cement No 28 10 7.94 0.534  

 Yes 32 9 11.06 0.383  

     1 0.3 

Dogleg Bending Stress (lbf) < 95800 54 17 16.49 0.0156  

 > 95800 6 2 2.51 0.1027  

     0.1 0.7 

Measured Depth (ft) < 13500 41 13 10.86 0.42  

 > 13500 19 6 8.14 0.561  

     1.1 0.3 

Bottomhole Temperature (oF) < 166 31 11 8.74 0.584  

 > 166 29 8 10.26 0.498  

     1.1 0.3 

Shrinkage of Lateral Section (in/100F) < 10.7 4 2 0.75 2.0856  

 > 10.7 56 17 18.25 0.0857  

     2.2 0.1 

Maximum Inclination (degree) < 95.5 50 16 15.56 0.0124  

 > 95.5 10 3 3.44 0.0561  

     0.1 0.8 

Measured Depth of max. Dogleg < 10900 49 16 14.11 0.254  

 > 10900 11 3 4.89 0.733  

     1.1 0.3 

Frequency of Dogleg > 10 < 13 30 10 8 0.502  

 > 13 30 9 11 0.365  

     0.9 0.3 

Dogleg Severity (o/100ft) < 15 51 16 15.94 0.00019  

 > 15 9 3 3.06 0.000994  

     0 1 

Fracture Temperature (oF) < 49.5 18 8 4.81 2.111  

 > 49.5 42 11 14.19 0.716  

     2.9 0.09 

Drilling-Fracturing Time Interval (Days) < 75 58 18 18.465 0.0117  

 > 75 2 1 0.535 0.4042  

     0.4 0.5 
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Table 11 Data and calculations of the log-rank test statistic. 

Feature 𝝌𝟐 
𝟏 

𝒎𝒂𝒙(𝝌𝟐) 
𝟏 Reject 𝑯𝟎 ? 

Fracture Season 3.9 7.815 Yes 

Acid 0.2 3.841 Yes 

Cement 1 3.841 Yes 

Dogleg Bending Stress (lbf) 0.1 3.841 Yes 

Measured Depth (ft) 1.1 3.841 Yes 

Bottomhole Temperature (F) 1.1 3.841 Yes 

Shrinkage of Lateral Section (ft/100F) 2.2 3.841 Yes 

Maximum Inclination (degree) 0.1 3.841 Yes 

Measured Depth of max. Dogleg 1.1 3.841 Yes 

Frequency of Dogleg > 10 0.9 3.841 Yes 

Dogleg Severity (o/100ft) 0 3.841 Yes 

Fracture Temperature (oF) 2.9 3.841 Yes 

Drilling-Fracturing Time Interval (Days) 0.4 3.841 Yes 
 

 

Based on the former discussion, a conclusion was drawn that different levels/groups within each 

risk factor of interest have different impacts on the outcome (casing failure). Now, it is imperative 

to have a more focused/granular view on how changing between levels/groups within each risk 

factor affect the overall survival/failure of the drilling/producing well.  

To that end, I seek to construct survival curves for each level/group within each and every risk 

factor. Then, combine survival curves for all levels/groups within a risk factor in a single plot for 

comparison. The relative positioning of survival curves with respect to each other will reflect the 

relative impact each level/group has on the survival curve compared to other levels/groups within 

the same risk factor. 

Case in point, considering the “fracturing season” as one of the potential risk factors. The goal, 
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then, is to differentiate the impacts of the different levels/groups; winter, spring, fall and summer, 

on the outcome (casing failure). In Figure 41, survival probability, i.e., probability of not 

experiencing casing failure, is represented on the y-axis, while the reached measured depth is 

represented on x-axis. The four categories within “fracturing season”; fall, spring, summer and 

winter, are represented by red, green, cyan and mauve, respectively.  

As shown in Figure 41, survival curves corresponding to “winter” and “spring” seasons are, 

generally, in a lower position than those corresponding to “fall” and “summer”. Considering the 

fact that we are, essentially, comparing “survival” probabilities, this relatively low positioning 

indicates that drilling during “winter” or “spring” puts the well in a higher risk of failure than 

drilling during the other two seasons. This is understandable since, for relatively cold seasons, the 

temperature differential between the fracturing fluid and reservoir is high and the shrinkage in 

lateral section will be high, as well. This, in turn, induces additional stresses on the casing string, 

hence, imposes a higher risk of casing failure.  
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Figure 41. Graphical representation of survival curves developed in this study based on change in drilling 

season. Survival curve corresponding to “winter” is highlighted in mauve. Survival curve 

corresponding to “spring” is highlighted in green. Survival curve corresponding to “summer” is 

highlighted in cyan. Survival curve corresponding to “fall” is highlighted in red.  

 

Similar to “fracturing season” risk factor, explained in Figure 41, the remaining potential risk 

factors were analyzed through survival curves. The following conclusions, for the remaining 

potential risk factors, have been reached regarding conditions that relatively increase the risk of 

casing failure compared to their companions (other levels/groups within same risk factor):   

 

• Implementation of “acid” treatment at relatively lower depths (< 8,500 ft) imposes no 

increased risk on casing failure as opposed to not having acid treatment. However, for 

intermediate depths, ranging from 8,500 – 10,000 ft, as well as relatively high depths (> 

10,000 ft) the risk imposed by having acid treatment becomes much higher than that 

imposed by not having acid treatment (~ 1.5-fold higher).  

• Similar to acid treatment, having no “cement” support at lower depths (< 8,500 ft) imposes 
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no higher risk on casing failure compared to having a cement support. Yet, for intermediate 

depths (8,500 – 10,000 ft) and high depths (> 10,500 ft), having a cement support starts to 

play an integral rule in reducing the risk of casing failure; reaching nearly 2-fold less than 

the risk imposed by not having cement support. 

• Regarding “dogleg bending stress”, 𝜎𝑏𝑒𝑛𝑑𝑖𝑛𝑔, at low depths (< 8,500 ft) and intermediate 

depths (8,500 – 10,000 ft), relatively high 𝜎𝑏𝑒𝑛𝑑𝑖𝑛𝑔 (> 95.8k lb./ft2) are needed to impose 

high risk on casing failure. Conversely, at high depths (> 10,000 ft), relatively lower 

𝜎𝑏𝑒𝑛𝑑𝑖𝑛𝑔 could be sufficient to impose high risk on casing failure. This inverse 

proportionality between allowed 𝜎𝑏𝑒𝑛𝑑𝑖𝑛𝑔 and reached depth is due to the deviation of the 

well. For deviated and horizontal wells, inclination reaches its highest values at high 

depths. This, in turn, imposes high stresses on casing string. Accordingly, lower than usual 

𝜎𝑏𝑒𝑛𝑑𝑖𝑛𝑔 will lead to higher risk of casing failure at those high depths where inclination is 

the highest.   

• Considering “bottomhole temperature”, BHT, at relatively low depths (< 8,500 ft) along 

with intermediate depths (8,500 – 10,000 ft), BHT has no differentiating rule on either 

increasing or decreasing casing failure. However, with high depths (> 10,000 ft), high BHT 

(> 170 oF) imposes higher risk on casing failure than relatively low BHT. This could be 

due to high temperature differentials between fracturing fluid and bottomhole which leads 

to high shrinkage of lateral section, hence, higher risk of casing failure. 

• Similar to BHT, the variation in the magnitude of “lateral shrinkage” tends to have no 

noticeable impact on the risk of casing failure for low depths (< 8,500 ft), as well as 

intermediate depth (8,500 – 10,000 ft). Yet, for high depths (> 10,000 ft), change in lateral 
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section starts to play an integral rule on increasing/reducing the risk of casing failure. For 

such high depths, a small increase in “lateral shrinkage” (≤ 10 ft/100ft) doubles the risk of 

casing failure. This is due to the high stress already imposed on the casing string due to 

high inclinations and high temperature differentials, as well. 

• Similar to “bending stress”, “maximum inclination”, 𝛼𝑚𝑎𝑥, possesses an inverse 

proportionality with respect to the measured depth. So, for low and intermediate depths, 

𝛼𝑚𝑎𝑥 of a value > 95.5⁰ is needed to increase a high risk of failure on casing string. On the 

other hand, for high depths (> 10,000 ft), relatively lower 𝛼𝑚𝑎𝑥 would be sufficient to 

nearly double the risk of failure. This is for the same reason explained in the previous two 

points. 

• Regarding “frequency of severe dogleg”, 𝜔𝐷𝐿𝑆, for low depths (< 8,500 ft), 𝜔𝐷𝐿𝑆 has no 

indicative influence on increased/reduced risk of casing failure. For intermediate depths 

(8,500 – 10,000 ft), lower value 𝜔𝐷𝐿𝑆 of (ranging from 7 – 12) is indicative of increased 

risk of casing failure. As for high depths (> 10,000 ft), a higher than normal 𝜔𝐷𝐿𝑆 (> 13) 

would be indication of increased risk of casing failure. This direct proportionality between 

𝜔𝐷𝐿𝑆 and depth is owing to the fact that, for deviated wells, inclination increases with 

respect to depth. 

• Similar to “maximum inclination”, “dogleg severity”, DLS, is inversely proportional to 

reached measured depth. This means that, for low and intermediate depths (< 10,000 ft), 

the allowance for high DLS (≥ 15⁰/100ft) is high. Conversely, for high depths (> 10,000 

ft), the allowance for high DLS (≥ 15⁰/100ft) is much less.   

• Finally, for” fracture temperature”, 𝑇𝑓𝑟𝑎𝑐, it is only with high depths (> 10,000 ft) that low 
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𝑇𝑓𝑟𝑎𝑐 (≤ 49.5 ⁰F) imposes a high risk of casing failure for the same reasons as BHT. 

Graphical representations of the results from the application of non-parametric survival curve 

estimators, i.e., Kaplan-Meier estimator, on the aforementioned potential risk factors are 

summarized in Appendix (D). 

From previous discussion, it is obvious that non-parametric estimators (e.g., Kaplan-Meier 

estimator) show a huge flexibility, in terms of the relative positioning of the levels/groups with 

respect to depth. For instance, within a particular risk factor, Group A might impose a higher risk 

than another Group B within a specific range of depth, yet, in different depth range Group B might 

impose a higher risk than Group A. This sort of flexibility helps reflecting the reality of the 

situation that: it is not necessary to have one level/group within a risk factor that imposes the 

highest risk throughout the well.   

However, one major disadvantage emerged during incorporating risk factors/covariates. Creating 

a model for each group/level within a particular risk factor becomes infeasible as the number of 

levels/groups increase or when the risk factor is continuous (e.g., dogleg severity). To incorporate 

a continuous variable, it must be categorized into several levels/groups and a model is created for 

each group. It is the categorization process that makes it infeasible. It is for this reason, I will be 

discussing another family of techniques, that is the semi-parametric survival curve estimators.  

3.3.2 Semi-Parametric Survival Curve Estimation 

In previous section (Section 3.3), it was mentioned that two broad families of techniques; 

parametric and non-parametric survival curve estimators, can be used for survival analysis. Non-

parametric estimators were, first, introduced (Section 3.3.1). Detailed discussion of the different 

steps involved in the process, as well as, analysis outputs from the provided data set were 
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presented (Section 3.3.1.1 and Section 3.3.1.2). In this section, discussion is extended to the 

second family of techniques used for survival analysis. The motivation behind discussing semi-

parametric estimators is address the limitations discussed in Section 3.3.1.2. First, like non-

parametric estimators (e.g., Kaplan Meier estimator), semi-parametric estimators (e.g., Cox 

regression) allow for flexible baseline. However, unlike non-parametric estimators, semi-

parametric estimators allow having different survival functions, corresponding to different 

levels/groups, within the same fitted model. Hence, they better handle risk factors, or covariates, 

of multiple levels, as well as continuous covariates.  

3.3.2.1 Proportional Hazards Model (Cox Regression Model) 

In essence, semi-parametric survival curve estimators decompose the hazard or instantaneous risk 

into (1) a non-parametric baseline, shared across all individuals (drilling/producing wells), and (2) 

a relative risk, which describes how risk factors/covariates impact the outcome (casing failure). 

Being one of the widely used semi-parametric models, Cox regression model will be the focus of 

this section. Here, we formulate the “relative risk” since it comprises the core of Cox model.  

Similar to non-parametric estimators, the starting point is the definition of the alternative 

hypothesis that assumes difference between survival distributions of levels/groups within a risk 

factor/covariate. For simplicity, a two-level covariate is considered. The alternative hypothesis can 

be defined, in terms of survival function, (Cox 1972), as 

𝐻𝐴: 𝑆1(𝑑) = [𝑆0(𝑑)]𝜓 (38) 

 

Equivalently, alternative hypothesis can be defined, in terms of proportional hazards, as 

 
 

ℎ1(𝑑) = 𝜓 ℎ0(𝑑) (39) 
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where 𝜓 the proportional hazards constant, indexes the difference between the two survival (or, 

hazard) distributions. 

 

Extension of the model to include other covariate information, represented by a vector z, yields 

 
 

𝜓 = 𝑒𝑧𝛽 (40) 

Then, the Cox regression model (Cox 1972) can be defined as 

𝜆𝑛(𝑑) = 𝜆0(𝑑)⏟  
𝑏𝑎𝑠𝑙𝑖𝑛𝑒

𝑒𝑥𝑝(𝛽𝑇𝑧𝑛)⏟      
𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑖𝑠𝑘

 (41) 

where 𝜆0(𝑑), the baseline risk, and 𝑧𝑛 is a vector of risk factors/covariates for the individual 

(drilling/producing well), n. 

In order to use Cox regression model for estimating the hazard, it is imperative to calculate the 

relative risk. In order to accomplish that, we implement “Partial Likelihood” function, which is 

similar to the “Likelihood” function used for the parametric survival curve estimators. Detailed 

discussion on “Partial Likelihood” can be found in Appendix (C). 

3.3.2.2 Comparing Survival Curves (Using Partial Likelihood Function) 

Here, discussion of the partial likelihood starts by considering the simple case of comparing two 

groups of survival data. The partial likelihood allows for the usage of an unspecified baseline 

survival distribution to define the survival distributions of subjects based on their covariates. 

 

The partial likelihood differs from a likelihood in two ways. First, it is a product of expressions, 

one for each failure time, while censoring times do not contribute any factors. Second, the factors 
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of a partial likelihood are conditional probabilities. 

Consider now the first failure depth 𝑑1. The set of all wells “at risk” for failure at this depth is 

denoted by 𝑅1: (Just before the first failure, this set is comprised of all the wells.) Among the wells 

in the risk set 𝑅1, all are at risk of failure (i.e., of experiencing the event), and one of them, say well 

𝑖, does fail. The probability that well 𝑖 is the one who fails is the hazard, ℎ𝑖(𝑑) = 

𝜓 ℎ0(𝑑), for that well divided by the sum of the hazards of all the wells: 

𝑝1 =
ℎ𝑖(𝑑1)

∑ ℎ𝑘(𝑑1)𝑘∈𝑅1

=
ℎ0(𝑑1)𝜓𝑖

∑ ℎ0(𝑑1)𝜓𝑘𝑘∈𝑅1

=
𝜓𝑖

∑ 𝜓𝑘𝑘∈𝑅1

 (42) 

After the event at 𝑑1, that well drops out of the risk set 𝑅1, as do any censored observations that 

occur after 𝑑1 up to and including the second failure depth 𝑑2, resulting in a new (and smaller) risk 

set 𝑅2. We then repeat this calculation to obtain 𝑝2, and so on up to the last failure time. 

The partial likelihood, (Edwards 1992), is the product 

∏(
𝜆0(𝑡) ∙ exp(𝛽

𝑇𝑧𝑛)

∑ 𝜆0(𝑡) ∙ exp(𝛽𝑇𝑧𝑛)
𝑁
𝑘=1

)

𝛿𝑛

(∑ 𝜆0(𝑡) ∙ exp(𝛽
𝑇𝑧𝑛)

𝑁

𝑘=1
)
𝛿𝑛

𝑆𝑛(𝑡)

𝑁

𝑛=1

  

Assuming that there are N failure depths. In each factor the baseline hazard cancels out of the 

numerator and denominator, so that it plays no role in the final partial likelihood. The maximum 

partial likelihood estimate is the value of 𝜓 that maximizes this function. After defining the value 

of relative risk, 𝜓; that maximizes the “partial likelihood” function, we use the “partial hazards” 

model, or simply, Cox model for estimating hazard functions for different levels/groups within 

various risk factors/covariates.  

3.3.2.3 Numerical Demonstration 

The way Cox model handles partial hazards is divided into stages. First, the model picks one of 
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the levels/groups within the risk factor and sets it as a “reference” point for subsequent 

calculations. Then, the model calculates the relative impact other levels/groups have on the 

outcome compared to the reference point. This process is, then, repeated for all risk 

factors/covariates. 

The output of the analysis is represented in terms of “hazard ratio”. A hazard ratio of value equal 

to unity indicates no impact. A value of hazard ratio greater than 1 indicates an increased risk and 

a value of hazard ratio less than 1 indicates a reduced risk.   

Results obtained from the application of Cox model on the data set are summarized in Table 12 

and Figure 42. As expected, the conclusions drawn from the application of semi-parametric 

estimators (Cox model) match those obtained from the implementation of non-parametric 

estimators (Kaplan-Meier estimator). What gives the edge to semi-parametric estimators over non-

parametric estimators, however, is the manner both techniques handle multiple covariates. For 

non-parametric estimators, as shown before, the survival function corresponding to each covariate 

needs to be fit on a separate model. This has shown to be infeasible and quite cumbersome for 

complex covariates (e.g., multi-level covariates and continuous covariates). Unlike non-parametric 

estimators, semi-parametric estimators have the ability to handle all risk factors/covariates of 

interest on a single model fit. 
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Table 12 Basic Statistics of the statistical model using 10 selected features. 

Feature/Covariate Class Coef. exp(co.) SE z p 
DL_BEND_STRESS >95800(lbf) 1.0343 2.8133 0.9375 1.103 0.2699 

CEMENT Yes -0.3324 0.7172 0.6116 -0.543 0.5868 

MD >13500(ft) -0.5052 0.6034 0.6888 -0.733 0.4633 

BTH >166(F) -0.7635 0.4660 0.6570 -1.162 0.2452 

LATERAL_SHRINKAGE >10.7(in/100F) -2.3007 0.1002 0.9399 -2.448 0.0144 

MAX_INCL >95.5(o) 0.5716 1.7710 0.8556 0.668 0.5041 

DL_SEVERE_MD >10900(ft) -0.1813 0.8342 0.9662 -0.188 0.8511 

DL_FREQ_10PLUS >13 -0.6780 0.5076 0.5935 -1.142 0.2533 

FRAC_TEMP >49.5(F) -1.0852 0.3378 0.535 -2.028 0.0425 

DRILL_FRAC_INTERVAL >75(days) 1.8279 6.2209 1.2375 1.477 0.1397 



 

93 
 

 

 

 

Figure 42. Hazard ratio envelope for the statistical model using 10 selected features. 
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3.4 Conclusions 

In this chapter, investigation continued addressing some of the causations of a major limitation 

previous contributions had concerning their inability to provide a viable measure to mitigate casing 

failure. Two major drivers of that limitation are: (1) the inability to “quantify” the impact that 

various potential risk factors have on the occurrence of the casing failure and (2) the inability to 

tackle the impact of potential risk factors throughout the well length, in addition, how variation in 

a particular risk factor might affect the probability of casing failure accordingly. 

I chapter 2, I tackled the first challenging aspect by designing a data-driven workflow, based on 

risk analysis techniques, that has the capability of evaluating the impact type, as well as the 

magnitude of the various risk factors.  

In this chapter, I tackled the second challenging aspect through designing another data-driven 

workflow based on “survival analysis” techniques. Using the designed workflow, I managed to 

evaluate/test the significance of the different subcategories within each potential risk factor. In 

addition, I managed to track their impact throughout the well length which was otherwise not 

feasible. The information drawn from this chapter and the previous chapter hold a great potential 

for developing an advisory system for drillers and drilling managers and ultimately an automated 

casing failure mitigation system. Conclusions drawn from the analysis would be of great value 

when adjusting design specifications of high risk; using the proposed “casing failure mitigation” 

tool that would be based on “correction-prediction” procedure (Chapter 4). 

Although the designed workflow was based on survival analysis, yet, motivated by the research 

interests, little modification was made to the analysis scale (conventionally, time scale) so it now 

corresponds to reached “measured depth”.  
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First, several survival/hazard functions that are used to draw conclusion on survival distribution 

were introduced. To provide a systemic way of constructing survival distributions, two broad 

families of survival curve estimators were discussed: (1) non-parametric estimators, e.g., Kaplan 

Meier estimator, and (2) semi-parametric estimators, e.g., Cox model. 

Due to their simplicity and their graphical representations, non-parametric estimators were used 

for tracing the changes in the impact of subgroups/levels within each potential risk factor 

throughout the well length. That served our first goal for this chapter.  

Results of the analysis showed that the following conditions (subgroups/levels) are the riskiest 

compared to their companions within their corresponding risk factors with respect to depth: 

(1) Regarding “fracturing season”, it’s been noticed that for depths less than 8,500 ft, no 

significant difference in risk impact between different seasons. Yet, fracturing during 

“winter” or “spring” still puts the well at a higher risk of failure than the other two seasons: 

with an increase of risk by 20% and 7%, respectively, for depths ranging from 8,500 – 

10,000 ft, while 30% and 20%, respectively, for depths greater than 10,000 ft. 

(2) Regarding “acid treatment”, it has been noticed that: implementation of “acid” treatment 

at depths less than 8,500 ft imposes no increased risk on casing failure as opposed to not 

having acid treatment. However, for depths ranging from 8,500 to 10,000 ft, as well as 

depths greater than 10,000 ft, the risk imposed by having acid treatment becomes much 

higher (7.5% and 12% increase, respectively) than that imposed by not having acid 

treatment. In addition, the risk constantly increases with increasing reached depth. 

(3) Regarding “cementing”, it has been noticed that: having no “cement” support at depths less 

than 8,500 ft imposes no higher risk on casing failure compared to having a cement support. 

Yet, for depths ranging from 8,500 to 10,000 ft, as well as depths greater than 10,000 ft, 
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having a cement support starts to play an integral rule in reducing the risk of casing failure; 

reaching nearly 30% less than the risk imposed by not having cement support for depths 

greater than 10,000 ft. 

(4) Regarding “dogleg bending stress”, it has been noticed that at depths ranging from 8,500 

to 10,000 ft, as well as, depths < 10,000 ft, relatively high DL bending stress (> 95.8k 

lb./ft2) are needed to impose high risk on casing failure (~ 7.5% increase). Conversely, at 

depths > 10,000 ft, relatively lower DL bending stress (less than 95.8k lb./ft2) could be 

sufficient to impose a higher risk of casing failure (~ 12-13% increase).  

(5) Regarding “bottomhole temperature”, it has been noticed that for depths < 8,500 ft, 

relatively higher BHT (> 166 oF) is needed in order to have a mere increase in risk of casing 

failure (~ 3.2% increase). In contrast, for depths ranging from 8,500 to 10,000 ft, as well 

as, those > 10,000 ft, relatively less BHT (< 166 oF) could be enough to impose a significant 

increase in risk of casing failure (~ 5.1-12.8% increase).  

(6) Regarding “lateral shrinkage”, it has been noticed that the variation in the magnitude of 

“lateral shrinkage” tends to have no noticeable impact on the risk of casing failure for 

depths < 8,500 ft. Yet, for depths ranging from 8,500 to 10,000 ft, as well as, those > 10,000 

ft, slight changes in lateral section (less than 10 ft/100ft) could play an integral rule in 

increasing the risk of casing failure (~ 26% increase).  

(7) Regarding “maximum inclination”, as well as “DL severity”, it has been noticed that – 

similar to “bending stress” – “maximum inclination” and “DLS” possesses an inverse 

proportionality with respect to the measured depth. So, for depths < 8,500 ft and those 

ranging from 8,500 – 10,000, a relatively high value of max. inclination, as well as DLS is 

needed in order to have a noticeable impact on increasing risk. Yet, for depths > 10,000 ft, 
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relatively lower values would be sufficient to nearly increase the risk by 9-12%.  

(8) Regarding “frequency of severe dogleg”, it has been noticed that it follows a direct 

proportionality with respect to the measured depth. So, for depths ranging from 8,500 – 

10,000, a relatively lower value of DLS frequency (< 13) could be indicative of increased 

risk (~ 4.6% increase). And, for depths > 10,000 ft, relatively higher values (> 13) would 

be a strong indication of increased risk (~ 16.3%). 

(9) Finally, for” fracture temperature”, it has been noticed that, it follows direct proportionality 

with respect to the measured depth, for the same reasons as BHT.  

However, one limitation was noticed: with increased number of features/risk factors or 

subgroups/levels within risk factors, some complexities were introduced in the analysis. That’s 

when semi-parametric came into play as semi-parametric estimators had the ability to incorporate 

all risk factors in one model, unlike the non-parametric estimators. Besides, semi-parametric 

compromises for multi-level, as well as continuous variables.  
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CHAPTER IV  

CASING FAILURE MITIGATION TOOL DESIGN 

 

Reader Guide: In this chapter, the information provided by the analyses conducted in chapters 2 

and 3 are leveraged to construct the proposed “automated casing failure mitigation” tool, which 

will be based on a two-step “prediction-correction” procedure. Based on the input information 

(initial design specifications), the tool provides an initial prediction of the probability of casing 

failure, then automatically adjust, or correct, the design specifications in order to reduce the risk 

below a pre-defined threshold.   

To tackle the first goal of the tool, that is concerned with prediction, a family of machine learning 

algorithms; formally known as supervised learning algorithms, is implemented (Section 4.1). In 

general, machine learning can be viewed as an alternative to the conventional engineering 

approach for the design of an algorithmic solution (Mitchell 1997; Goodfellow et al. 2016; 

Brynjolfsson 2017; Simeone 2018b). 

We start our discussion with investigating learning algorithms for classification problems such as 

logistic regression (Section 4.2.1), decision trees (Section 4.2.2), random forest (Section 4.2.3), 

support vector classifier (Section 4.2.4), support vector machine (Section 4.2.5) and neural 

networks (Section 4.2.6). In addition, we discuss different criteria for evaluating the performance 

of the models in terms of prediction accuracy, model balance and overall performance (Section 

4.3).  

To add a level of controllability to serve as feedback to the model predictions, the discussion is 

extended to another area of statistical analysis: risk assessment (Sections 4.4 and 4.5). The 

discussion will be limited, however, to semi-qualitative risk assessment techniques, particularly, 

probability-impact risk assessment matrices, PI-RAM, (Section 4.6). The basis for those 

techniques, as well as their formulation will then be laid out. History cases from the oil and gas 

industry will be presented to showcase the huge potential for such methodology (Section 4.7). 

Afterwards, application of the presented methods on the historical data set will be demonstrated 

(Section 4.8). Finally, highlights of the work done in this chapter, as well as the major takeaways 

from the analysis conducted will be pointed out (Section 4.9). 
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4.1 Introduction 

In previous chapters, I addressed the main drivers of a major limitation previous contributions had 

concerning their inability to provide a viable measure to mitigate casing failure. Those were: (1) 

the inability to “quantify” the impact that various potential risk factors have on the occurrence of 

the casing failure and (2) the inability to tackle the impact of potential risk factors throughout the 

well length, in addition, how variation in a particular risk factor might affect the probability of 

casing failure accordingly. 

I chapter 2, I tackled the first challenging aspect by designing a data-driven workflow based on 

“risk-factor” analysis techniques. The developed workflow had the capability of evaluating the 

impact type, as well as the magnitude of the various risk factors (Section 2.7). In chapter 3, I 

tackled the second challenging aspect through designing another data-driven workflow based on 

“survival analysis” techniques. Using the designed workflow, I managed to evaluate/test the 

significance of the different subcategories within each potential risk factor, in addition, I managed 

to track their impact throughout the well length which was otherwise not feasible (Section 3.3.1.2 

and Section 3.3.2.3).  

The information drawn from the two previous chapters hold a great potential for developing an 

advisory system for drillers and drilling managers and ultimately an automated casing failure 

mitigation system. Consequently, in this chapter, the information provided from the analyses 

conducted in Chapter 2 and Chapter 3 are leveraged to construct the proposed automated “casing 

failure mitigation” tool, which will be based on a two-step “prediction-correction” procedure 

(overview provided in Section 1.3). 

Based on the input information (initial design specifications), the tool will provide an initial 
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prediction of the probability of casing failure, then automatically adjust, or correct, the high-risk 

design specifications in order to reduce the overall risk of casing failure below a pre-defined 

threshold. This tool, hence, will serve as an advisory system for drillers and drilling managers to 

automatically mitigate, or avoid, future casing failures which was otherwise not feasible. 

What gives the edge to the proposed tool is that, unlike previous attempts that followed physics-

based approach, this tool is based on data-driven workflow. Figure 43 highlights the key 

distinctions between the two approaches. Conventional engineering design flow starts with the 

acquisition of domain knowledge required for the problem of interest. Then, a mathematical model 

that capture the physics of the study is constructed. Based on that model, an optimized algorithm 

is produced that offers performance guarantees under the assumption that the given physics-based 

model is an accurate representation of reality (Figure 43-a). In contrast, the machine learning 

approach substitutes the step of acquiring domain knowledge with the task of collecting a sufficient 

data set (known as the “training” set) that captures the behavior of interest. The training set is, 

then, fed to a learning algorithm to produce a trained “machine” that carries out the desired task, 

e.g., prediction of casing failure, in our case (Figure 43-b). 
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Figure 43. (a) Conventional engineering design flow; and (b) baseline machine learning methodology 

(Reproduced from Simeone 2018a). 

 

Machine learning comprises of two major families of techniques: supervised learning and 

unsupervised learning techniques (Simeone 2018a). In supervised learning, the training set consists 

of pairs of input and desired output, and the goal is that of learning a mapping between input and 

output spaces (Shalev-Shwartz et al. 2014; Klimberg et al. 2016a; Arpit et al. 2017). In 

unsupervised learning, the training set consists of unlabeled inputs, that is, of inputs without any 

assigned desired output, and the goal is to discover properties of the mechanism generating the 

data or cluster the data points that are close to each other (Hastie et al. 2009). Based on the former 

discussion, along research interests, that is, prediction of casing failure, supervised learning 

techniques were selected for subsequent analysis.  

As for the second goal of this chapter, we investigate some of the risk assessment techniques. Risk 

assessment is an inherent part of a broader risk management strategy to help eliminate any potential 

risk-related consequences (Rausand 2013; Zackmann 2014; Popov et al. 2016). The risk 

assessment process consists of a sequence of steps and sub-steps. The steps in the process are 

shown in Figure 44. 
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Figure 44. The six steps of a risk assessment (Reproduced from Rausand 2013). 

 

Generally, risk assessment follows one of three major analytic approaches; qualitative, quantitative 

or semi-quantitative. In quantitative risk assessment, probabilities and consequences are 

determined purely qualitatively. In quantitative risk assessment, however, numerical estimates are 

provided for probabilities and consequences. Semi-quantitative risk assessment, in essence, is a 

quantitative approach, yet probabilities and consequences are quantified within ranges. Based on 

the provided data set, semi-quantitative approach was adopted for conducting the risk assessment.     

Based on the former discussion, the focus of this chapter will be: (1) discussion of various 

supervised learning models, their key distinctions, major limitations and overall prediction 

performance, and (2) discussion of risk assessment techniques, history cases in oil and gas 

industry, construction and application of PI-RAMs on the provided data set. 

4.2 Supervised Learning Techniques 

In this section, I address the first of the proposed tool, that is, providing initial predictions of the 
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probability of casing failure given input values for pre-defined potential risk factors (Chapter 2). 

To that end, I will be implementing various machine learning algorithms to fulfill that goal. 

Following the research interest, that is, prediction of casing failure, supervised learning techniques 

were selected for the analysis. 

The essence of the supervised learning is that the machine (i.e., the learning algorithm) is given a 

dataset, along with the right answers to a question corresponding to that data set. In our case, the 

question would be: would a casing failure occur given the conditions at hand? To determine the 

answer to that question, the learning algorithm has to learn the key characteristics/patterns within 

each data point in the dataset. Based on those key characteristics, the algorithm should be able to 

give the right answer (predict casing failure, in this case). To put that into mathematical terms, in 

supervised learning, the goal is to infer a function, 𝑓, that maps from the input data to the desired 

output. The input data are represented by vector, 𝑋, and the output is represented by vector, 𝑌. 

𝑌 = 𝑓(𝑋) + 𝜀 (43) 

To find the optimal supervised learning technique that perfectly fits the study goal, two integral 

components need to be defined: (1) the outcome type and (2) the learning algorithm. Regarding 

the first component, supervised learning techniques can be categorized, based on the type of the 

outcome, into two major classes or groups: classification and regression techniques. The goal set 

(predict whether a casing failure would occur or not) falls into the classification learning domain.  

As for the second component, Literature is rife with learning algorithms that fit similar purposes, 

such as logistic regression, supervised hierarchal clustering, decision trees, support vector 

machines (SVMs), bootstrap forest (bootstrapping), naïve-bayes, and xgboost. Following is brief 
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introduction to a variety of supervised learning techniques. Detailed discussion will be provided 

in the upcoming sections. 

Logistic regression is somehow a modification to “linear regression” technique for classification 

problems. In logistic regression, rather than modeling the outcome, e.g., casing failure, directly (as 

in “linear regression”), Figure 45 (left), it models the probability of each of the categories of the 

outcome (e.g., “failure” or “no failure”). Then, use that as a basis for the classification, Figure 45 

(right). 

 

 

Figure 45. Example reproduced from Hastie et al. 2009; showing classification using the Default data. The 

orange ticks indicate the 0/1 values coded for default (No or Yes). Left: Estimated probability of 

default using linear regression. Right: Predicted probabilities of default using logistic regression. 

 

Another family of techniques is tree-based methods (Gerrity 1979; Sprague 1980; Waller 1988). 

Those methods involve segmenting the input space into a number of regions, then assign a value 

(for regression trees) or a label (for classification trees) to an observation based on the region where 
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it belongs (Figure 46). Tree-based methods include simple decision trees, random forest and 

bootstrap forest. Tree-based methods are simple and useful for interpretation, yet, for some cases, 

they may not be competitive with other supervised learning approaches, such as SVMs, in terms 

of prediction accuracy (Misra et al. 2019). 

 

 

Figure 46. Example reproduced from Hastie et al. 2009; showing a snippet of unpruned classification tree 

for “Heart” data. 

 

Support vector machine (SVM) is another approach for classification that was developed in the 

1990s and is considered as one of the best classifiers in terms of accuracy (Cortes et al. 1995). 

Support vector machine, in essence, can be viewed as a generalization of a much simpler classifier 

known as the “maximal margin classifier”. Unlike maximal marginal classifier, which only 

assumes that classes can be separated by a linear boundary, Figure 47 (Left), SVM has the ability 

to handle non-linear class boundaries through the implementation of kernels, Figure 47 (Right).    
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Figure 47. Example reproduced from Hastie et al. 2009. Left: Maximal marginal classifier with linear 

boundary. Right: An SVM with radial kernel. 

 

Artificial neural networks (ANN), or simply, neural networks (NN), is one of the widely used 

supervised learning techniques (Hopfield 1982; Sarle 1994).  A neural network is a two-stage 

model, typically represented by a network diagram (Figure 48). This network comprises of three 

major layers; input, hidden and output layer, and could be applied to regression or classification 

problems. The central idea is to extract linear combinations of the inputs as derived features 

(hidden layer), and then model the target (output layer) as a nonlinear function (known as 

“activation” function) of these features. 
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Figure 48. Schematic of feed-forward neural network (reproduced from Mohammed et al. 2017). 

 

In the following sections, detailed discussion of select supervised learning algorithms, their 

intuition, mathematical formulation and key distinction. In addition, major results from the 

application of the learning techniques on the provided data set are presented.  

4.2.1 Logistic Regression 

As mentioned before (Section 4.1), logistic regression can be viewed as a modification to linear 

regression for classification problems. To further investigate that concept, we start with the 

definition of a simple linear regression model 

𝑃(𝑌 = 1|𝑋) = 𝛽0 + 𝛽1𝑋 (44) 

where 𝑃(𝑌 = 1|𝑋) is the probability of having the outcome, Y, given the input, X. 𝛽0 is the 

intercept, or formally, the expected value of the outcome assuming independence of the given 

input. 𝛽1 is the slope. 
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For a classification problem, assuming a binary outcome (e.g., casing failure) represented by 1 or 

0, using a typical linear regression model might lead to some serious errors in the overall 

prediction. For instance, having a very small value for input (close to zero) might lead to negative 

outcome. On the other hand, having a relatively large value for the input might lead to prediction 

of the outcome greater than 1. Both cases would be misrepresentations of the true outcome and not 

sensible since probabilities must take a value between 0 and 1. 

To fix that problem, we model 𝑃(𝑌 = 1|𝑋),  or simply, 𝑃(𝑋) using a function that gives outputs 

between 0 and 1. For our discussion, we implement the logistic function, (Cramer 2002), that is 

defined as 

𝑃(𝑌 = 1|𝑋) = 𝑃(𝑋) =
𝑒𝛽0+𝛽1𝑋

1 + 𝑒𝛽0+𝛽1𝑋
 (45) 

Using that definition to construct the model, we managed to keep 𝑃(𝑋) confined between 0 and 1 

regardless of the input value. In this case, having a low input value would yield a 𝑃(𝑋) close, but 

never below, zero. Also, having a high input value would yield a 𝑃(𝑋) close, but never greater 

than, one. 

To fit that model to the given data set, in other words, to estimate the unknown coefficients 𝛽0 and 

𝛽1, we use the “maximum likelihood function”. This method was introduced in great detail, 

previously, in chapter 3. Here we touch on the key aspects of that method. 

The intuition behind using the concept of “maximum likelihood” to fit our logistic regression 

model, Eq. (45), is that: we seek estimates for the coefficients; 𝛽0 and 𝛽1, such that the predicted 

probability 𝑃(𝑋) for each individual corresponds as closely as possible to the individual’s 
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observed status. In other words, we try to find the coefficients; 𝛽0 and 𝛽1, such that plugging these 

estimates into our model, Eq. (45), yields a number close to “one” for all wells that experienced 

casing failure, and a number close to “zero” for all wells that did not.  

So, initially, we have the “likelihood function” (Edwards 1992) defined as 

𝑙(𝛽0, 𝛽1) = ∏ 𝑝(𝑥𝑖)

𝑖:𝑦𝑖=1

∏ [1− 𝑝(𝑥𝑖`)]

𝑖`:𝑦
𝑖`
=0

 
(46) 

and the goal is to find the value of 𝛽0 and 𝛽1 that maximizes that likelihood function. 

For binary outcome (e.g., casing failure) using multiple predictors/inputs, the logistic model, Eq. 

(45), can be generalized as follows (Cramer 2002) 

𝑃(𝑌 = 1|𝑋) = 𝑃(𝑋) =
𝑒𝛽0+𝛽1𝑋+⋯+𝛽𝑝𝑋

1 + 𝑒𝛽0+𝛽1𝑋+⋯+𝛽𝑝𝑋
 (47) 

4.2.2 Classification Decision Tree 

As mentioned earlier (Section 4.1), decision trees, or generally, tree-based methods are useful both 

for the ease of interpretation and for the manner they handle qualitative predictors as they don’t 

require the usage of dummy variables. In this section, we discuss the simplest of tree-based 

methods, that is, basic decision trees. This is important for laying the foundation for more complex 

tree-based methods, such as random forest which will be discussed next. For the purposes of our 

study, we will limit the discussion to classification trees only. 

Constructing a decision tree is a two-step method. First, we split the predictor space; that is a set 

of possible features/risk factors, into distinct and non-overlapping regions. Then, for each 



 

110 
 

observation that falls into a particular region, we assign a label to that observation based on the 

most occurring class of the training observations in that particular region. 

When growing a tree, we follow a recursive binary splitting approach to grow a very large and 

complex tree, based on the training data set, and we stop when each terminal node has fewer than 

a minimum number of observations. 

Afterwards, we start searching for a subtree (one with less terminal nodes) that has the lowest test 

error rate. The process of cutting down a tree is formally known as “pruning”. The reason why we 

implement the “pruning” when searching for the best subtree instead of stop growing the tree early 

on when the reduction in the error rate exceeds a pre-determined threshold is that: the latter 

approach might seem short-sighted as a seemingly worthless split early that can cause the tree to 

stop growing might be followed by a very good split that should have led to a huge reduction in 

error rate. 

For classification trees, the criteria for making the binary splits are classification error rate, E, Gini 

index, G, and cross-entropy, D. The classification error rate is defined as the fraction of the training 

observations in a region that do not belong to the most common class in that particular region. It 

is, then, defined as (Hastie 2013) 

𝐸 = 1 −max
𝑘
(𝑝 𝑚𝑘) (48) 

where 𝑝 𝑚𝑘 is the proportion of training observations in the mth region that are from kth class. 

The Gini index, on the other hand, measures the total variance across the K classes and it is defined 

as follows 
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𝐺 = ∑𝑝 𝑚𝑘(1 − 𝑝 𝑚𝑘)

𝐾

𝑘=1

 (49) 

The Gini index can be viewed as a measure of node purity as it takes on a small value if all 𝑝 𝑚𝑘 

are close to zero or one. 

Finally, for the cross-entropy, (Hastie 2013) it is defined as 

𝐺 = −∑𝑝 𝑚𝑘 ∙ 𝑙𝑜𝑔(𝑝 𝑚𝑘)

𝐾

𝑘=1

 (50) 

Similar to the Gini index, cross-entropy takes on a small value if all 𝑝 𝑚𝑘 are close to zero or one. 

So, it can also be considered as a measure of node purity. 

When building a classification tree, either the Gini index or the cross-entropy are typically used to 

evaluate the quality of a particular split, since these two approaches are more sensitive to node 

purity than is the classification error rate. In case the prediction accuracy of the final pruned tree 

is the goal, then using classification error rate is preferable. 

4.2.3 Random Forests 

Random forests are considered an improvement over the basic decision trees, discussed in previous 

section. One major problem with the application of basic decision trees is that they suffer from 

high variance. Meaning that if we randomly split the training data into two groups, then fit a 

decision tree to both halves, the results could be a bit different. In contrast, a procedure with low 

variance will yield similar results if applied repeatedly to distinct data sets. Random forests tackle 

that problem by implementing a modified version of a methodology known as bootstrap 

aggregation, or simply, bagging. 
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Bagging follows the essence that averaging any set of observations would reduce the variance 

between the obtained results. Typically, different 𝐵 training sets are taken from the population. 

Then, separate prediction model is fit to each training set, 𝑓𝑖(𝑥) 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝐵. Finally, the 

resulting predictions are averaged, 𝑓𝑎𝑣𝑔(𝑥). This process can be summarized as follows (Hastie 

2013) 

𝑓𝑎𝑣𝑔(𝑥) =
1

𝐵
∑𝑓𝑏(𝑥)

𝐵

𝑏=1

 (51) 

For classification bagged tree, for each tested observation, the class predicted by each of the B 

trees is recorded. Then, the overall prediction is determined by the majority vote (i.e., the most 

commonly occurring class among the B predictions). 

The reasons why random forests are considered as a modified version of bagging is that they 

decorrelates the trees. This means that when building a tree, for each split, a random sample of 

predictors is chosen as a split candidates from the full set of predictors. The importance of having 

random split candidates is that if there are some strong predictors, then following the typical 

bagging procedure we will end up with nearly the same set of split candidates for the majority of 

the trees. This would lead eventually to having similar trees and the predictions from those trees 

will be highly correlated. 

4.2.4 Support Vector Classifier 

As mentioned previously (Section 4.1), support vector machines family of techniques is one of the 

best classifiers in terms prediction accuracy. Support vector machines include the basic maximal 

margin classifier, support vector classifier and, of course, support vector machine. The essence of 

all those techniques is to find a classification boundary (hyperplane) that can perfectly separate the 
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different classes, hence, allowing for a more accurate prediction/labeling of new observation. 

In this section, the focus will be on the support vector classifier. Support vector classifier is 

considered a modified version of the basic maximal margin classifier. Both classifiers are linear, 

Eq. (52) and both seek a “hyperplane” that can separate the different classes and help providing a 

better prediction/labeling. However, the key distinction between both techniques – and what gives 

edge to support vector classifier – is the way those hyperplanes are constructed. 

𝑓(𝑥) = 𝛽0 +∑𝛼𝑖〈𝑥, 𝑥𝑖〉

𝑛

𝑖=1

 (52) 

Maximal margin classifier suffers from two major. First, it requires that each observation to be on 

the right side of the hyperplane. This leads the constructed hyperplane to be extremely sensitive to 

a change in a single observation (Figure 49). 

 

 

Figure 49. (Example reproduced from Hastie 2009) Left: Two classes of observations are shown in blue 

and in purple, along with the maximal margin hyperplane. Right: An additional blue observation 

has been added, leading to a dramatic shift in the maximal margin hyperplane shown as a solid 

line. The dashed line indicates the maximal margin hyperplane that was obtained in the absence 

of this additional point. 
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Second, since the perpendicular distance from the nearest observation to the hyperplane defines 

the level of confidence in the model predictions, for cases where this distance is extremely small, 

the level of confidence drops heavily affecting the overall performance of the classifier. 

The way the support vector classifier handles those problems, is that it allows for a few training 

observations to be misclassified in order to do a better job in the overall classification of the 

remaining observation. This is formally known as “soft margin”. In other words, instead of seeking 

the largest possible margin so that every observation is not only on the correct side of the 

hyperplane but also on the correct side of the margin (as in maximal margin classifier), we instead 

allow some observations to be on the incorrect side of the margin, or even the incorrect side of the 

hyperplane (Figure 50). 
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Figure 50. (Reproduced from Hastie 2013) Left: A support vector classifier was fit to a small data set. The 

hyperplane is shown as a solid line and the margins are shown as dashed lines. Purple 

observations: Observations 3, 4, 5, and 6 are on the correct side of the margin, observation 2 is 

on the margin, and observation 1 is on the wrong side of the margin. Blue observations: 

Observations 7 and 10 are on the correct side of the margin, observation 9 is on the margin, and 

observation 8 is on the wrong side of the margin. No observations are on the wrong side of the 

hyperplane. Right: Same as left panel with two additional points, 11 and 12. These two 

observations are on the wrong side of the hyperplane and the wrong side of the margin. 

 

4.2.5 Support Vector Machine  

The support vector machine (SVM) is considered an extension of the support vector classifier. 

SVM seeks to enlarge the predictor/feature space in order to accommodate a non-linear boundary 

between the classes, wherever needed, using “kernels”.  The kernel approach is simply an efficient 

computational approach for enacting this idea. 

Similar to the support vector classifiers, SVMs (Cortes 1995) can be defined, in terms of the 

“kernel”, K, as 
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𝑓(𝑥) = 𝛽0 +∑𝛼𝑖𝐾〈𝑥, 𝑥𝑖〉

𝑛

𝑖=1

 (53) 

where  𝐾〈𝑥, 𝑥𝑖〉 is the “kernel”. The kernel is what defines the shape of the classification boundary. 

It could be linear, Eq (54), polynomial, Eq. (55), or radial, Eq. (56). A graphical representation of 

the polynomial kernel and the radial kernel is provided in Figure 51. 

𝐾〈𝑥𝑖, 𝑥𝑖`〉 =∑𝑥𝑖𝑗 ∙ 𝑥𝑖`𝑗

𝑝

𝑗=1

 (54) 

𝐾〈𝑥, 𝑥𝑖〉 = (1 +∑𝑥𝑖𝑗 ∙ 𝑥𝑖`𝑗

𝑝

𝑗=1

)

𝑑

 

(55) 

𝐾〈𝑥, 𝑥𝑖〉 = 𝑒𝑥𝑝(−𝛾∑(𝑥𝑖𝑗 ∙ 𝑥𝑖`𝑗)
2

𝑝

𝑗=1

) 

(56) 
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Figure 51. (Reproduced from Hastie 2009) Left: An SVM with a polynomial kernel of degree 3. Right: An 

SVM with a radial kernel is applied. 

 

4.2.6 Artificial Neural Networks (ANNs) 

Artificial neural networks, or simply, neural networks (NN) are popular machine learning 

techniques that simulate, in a gross manner, the networks of nerve cells (neurons) in biological 

organisms. The basic structure of a neural network contains several computation units, called 

neurons. Those units are connected to each other through weights, 𝑊𝑖. The weights in neural 

networks are analogous to the strengths of synaptic connections in biological organisms. 

The basic neural network function known as the “perceptron” (Rosenblatt 1960), is comprised of 

one layer, where it directly propagates computations from the input neurons (one layer) to a single 

output neuron through intermediate variables (i.e., weights). Learning occurs by changing the 

weights connecting the neurons. Then, weights are adjusted according to “feedback” on how well 

the predicted output for a particular input matches the annotated output label in the training data. 
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Figure 52. The basic architecture of the perceptron (Reproduced from Goodfellow 2016). 

 

Mathematically, the output can be defined, in terms of the “perceptron”, (Freund 1999) as 

𝑦̂ = 𝑠𝑖𝑔𝑛(𝑊̅ ∙ 𝑋̅ + 𝑏) = 𝑠𝑖𝑔𝑛 (∑𝑤𝑗𝑥𝑗

𝑑

𝑗=1

+ 𝑏) (57) 

where 𝑦̂ is the predicted output; either +1 or -1. 𝑋̅ is the vector of input features. 𝑊̅ is the vector 

of the weights/edges corresponding to the input features. 𝑑 is the number of input features, or 

equivalently, neurons in input layer and 𝑏 is the bias neuron. ∑ 𝑤𝑗𝑥𝑗
𝑑
𝑗=1  is basically the linear 

function that is computed at the output. 

The error in the outcome is, then, minimized through the adoption of least-square algorithm 

applied for all training instances, (Hastie 2013) as follows 

min
𝑊̅

∑ (𝑦 − 𝑦̂)2

(𝑋̅,𝑦)∈𝐷

= min
𝑊̅

∑ (𝑦 − 𝑠𝑖𝑔𝑛(𝑊̅ ∙ 𝑋̅))
2

(𝑋̅,𝑦)∈𝐷

 (58) 
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where 𝑦 is the true outcome. (𝑋̅, 𝑦) is the input-output pair for an instance in the training data set. 

𝐷 is the training data set. This minimized function is known as the “loss function”. There is a wide 

variety of loss functions including sigmoid function and tanh function. 

Based on the calculated error, the weights are updated through the following relation (Hastie 2013) 

𝑊̅ ⇐ 𝑊̅+∝ (𝑦 − 𝑦̂)𝑋̅ (59) 

where ∝ is known as the “learning rate”. (𝑦 − 𝑦̂)𝑋̅ is an approximation of the gradient.    

A generalization of the simple one-layer “perceptron” is the multi-layer NNs. Multilayer neural 

networks contain additional, intermediate, computational layers other than the input and the output 

layers. Those additional layers are referred to as “hidden” layers because the computations 

performed are not visible to the user (Figure 53). The architecture of multilayer NNs is referred 

to as feed-forward networks, because successive layers feed into one another in the forward 

direction from input to output. This architecture assumes that all nodes in one layer are connected 

to those of the next layer. Once the number of layers and the number/type of nodes in each layer 

have been defined, the only remaining detail is the loss function that is optimized in the output 

layer. 
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Figure 53. The basic architecture of a feed-forward network with two hidden layers and a single output 

layer (Reproduced from Goodfellow 2016). 

 

4.3 Numerical Demonstration 

In the previous sections, detailed discussion of a variety of supervised machine learning 

algorithms; their key distinctions, major advantages, and limitations, was provided. Motivated by 

the research interest, as well as the type of the outcome (i.e., prediction of casing failure) to be 

analyzed, the discussion was limited to classification problems. 

Several learning algorithms were tested on the provided data set and the results were compared in 

order to reach a solid conclusion on the best/optimal model (in terms of overall performance and 

prediction accuracy) to be adopted for future analysis. The implemented learning algorithms fall 

into four major families of techniques: (1) regression, (2) tree-based, (3) support vector machines 

and (4) deep learning.  

Several criteria were considered for evaluating and comparing the different models. For evaluating 

the prediction accuracy of the model, the “classification error rate” was used for determining the 
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overall accuracy. As for evaluating the model performance and balance, two different criteria were 

used: (1) the “false negative” rate and (2) the “false positive” rate. 

False negative (FN), formally known as “type II” error, is defined as rejecting a true null 

hypothesis, while false positive (FP), formally known as “type I” error, is defined as accepting a 

false null hypothesis. In our case, the “false negative” would correspond to the number of instances 

when the model did not predict a casing failure while there was failure in reality. In contrast, the 

“false positive”, in our case, would be the number of instances where the model predicted a casing 

failure while it was not true in reality (Figure 54). 

 

 

Figure 54. Tabularized relations between truth/falseness of the null hypothesis and outcomes of the test. 

 

Ideally, the best model would have a zero “false positive”, as well as zero “false negative”. In 

reality, however, the chance of having similar condition is quite low due to many reasons including 

– but not limited – sampling biases, model biases, noise, etc. Yet, there are many variations of 
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“false positive” and “false negative” that might be acceptable, depending on the “type” of the 

outcome. 

For our case, the outcome, that is, casing failure is negative. Accordingly, having a – somewhat – 

“conservative” model might seem a plausible solution for mitigating that outcome. In other words, 

we seek a model that lies on the pessimistic side of reality, hence, predicts more casing failure 

cases than what there are in reality. This, in turn, would reduce the chances of facing a casing 

failure in the future. Statistically speaking, we seek a model that does not have a high overall 

accuracy but also a relatively low “false negative” and relatively high “false positive”. 

The values corresponding to the three different criteria based on testing different supervised 

learning techniques on the data set are presented in Table 13. Regarding the model prediction 

accuracy, based on the overall accuracy, the best three models are: (1) artificial neural networks, 

(2) support vector machine and (2) support vector classifier, sharing the same overall accuracy of 

66.67%. 

Regarding the model overall performance, based on the “false negative” and “false positive” rate, 

the best three models are: (1) artificial neural network, (2) support vector machine and (3) logistic 

regression. Artificial neural network (ANN) has the lowest “false negative” of 33.33% and highest 

“false positive” of 33.33%. Following that, the support vector machine (SVM) with “false 

negative” of 33.33% and “false positive” of 50%. Finally, logistic regression with “false negative” 

of 50% and “false positive” of 33.33%. 

Based on the “overall accuracy” alone, one might assume that artificial neural network and support 

vector machines are both equally good since both share the same overall accuracy (66.67%). 

However, with considering the other two criteria, ANN would be a better of a choice than SVM 
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since ANN seems more conservative than SVM. 

Besides the previous case, there are many instances where “false positive” and “false negative” 

can have a huge impact on the final conclusion/evaluation of a model performance. For instance, 

considering the case of support vector classifier (with tuning) and support vector machine (with 

tuning), although both might share the same overall accuracy, yet there is one major issue that give 

the edge to SVM.  

From Table 13, it is noticed that support vector classifier (with tuning) has a 100% false negative 

rate and 0% false positive rate. This means that the model is heavily skewed, and it always predicts 

casing failure. Hence, choosing that model to use in future cases is a risky choice, although it might 

have a comparable “overall accuracy”. 

Although, supervised learning algorithms show a good potential for predicting the outcome of 

interest (i.e., casing failure), they are basically “black box”. The Majority of machine learning 

algorithms, although are robust in terms of prediction accuracy, they don’t give the allowance for 

more control over the problem from the user’s end. In the next section, we tackle that issue by 

following of the risk assessment approaches, that is, probability-impact risk assessment matrix.  
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Table 13 Results from testing various supervised learning algorithms of the data set. 

Supervised Learning 

Algorithm 

Overall 

Accuracy 

False Positive False Negative 

(Type I Error) (Type II Error) 

(%) (%) (%) 

Regression:   

Linear Regression 61.11 8.33 100 

Logistic Regression 61.11 33.33 50 

Tree-based Methods:   

Decision Tree 61.11 16.67 83.33 

Random Forest 

(Without tuning) 
55.56 0 100 

Random Forest 

(With tuning) 
61.11 16.67 83.33 

Support Vector Machines:   

Support Vector Classifier 

(Without tuning) 
55.56 33.33 66.67 

Support Vector Classifier 

(With tuning) 
66.67 0 100 

Support Vector Machine 

(Without tuning) 
55.56 50 33.33 

Support Vector Machine 

(With tuning) 
66.67 0 100 

Deep Learning:    

Artificial Neural Network 

(Without tuning) 
66.67 8.33 83.33 

Artificial Neural Network 

(With tuning) 
66.67 33.33 33.33 
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4.4 Risk Assessment 

Classical risk management includes three main phases: (1) a hazard assessment including a hazard 

analysis (hazard characterization and frequency analysis) and a consequence analysis 

(consequence scenario and severity of consequences), (2) a risk assessment including – but not 

limited to – risk estimation and tolerance criteria, and (3) a proper risk management plan through 

mitigation and feedback. These phases must be sequential but also iterative (Figure 55).  

The hazard assessment gathers, organizes and summarizes all data relevant to risk assessment and 

management. It includes qualitative and quantitative characteristics of the hazard, addresses 

uncertainties and provides a range of forecasts based on plausible scenarios. The hazard is 

characterized in terms of probability of a measurable physical parameter, exceeding a certain 

threshold, during a period of time. A recurrence interval is then defined. However, if there is no 

past experience with a hazard, there is no basis for any forecast. Such a conventional probabilistic 

approach cannot be applied to non-recurrent hazards. This approach can be considered – somehow 

– qualitative or semi-quantitative in nature. 

In this section, a brief review of risk analysis, as well as survival analysis and their application in 

identification of critical risk factors and their impact on failure probability, respectively. A 

particular attention is paid to the likelihood and the consequences of variation in each of potential 

risk factors. A Probability-Impact Risk Assessment Matrix (PI-RAM) is proposed, to be used as 

part of a global Risk Management (RM) process during the different phases of an E&P project 

(drilling and field development). 

In the following sections, several historical case studies are presented showcasing the application 

of the proposed technique in various fields in Oil and Gas (O&G) industry. Following that, a 
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detailed discussion with demonstration of the proposed workflow on the dataset of interest is 

provided.   

 

 

Figure 55. Risk Management flow chart (Reproduced from Cauquil 2009). 

 

4.5 Risk Management Process 

Risk Management (RM) generally includes the processes concerned with conducting risk 
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management planning, identification, analysis, responses, and monitoring and control on a project; 

most of these processes are updated throughout the project. The objectives of Project Risk 

Management are to increase the probability and impact of positive events and decrease the 

probability and impact of events adverse to the project (PMI 2008; Conroy and Sulton 1998; Raz 

and Michael, 2001; Kayis et al. 2007). The steps involved in the PRM can be summarized as 

follows: 

• Risk Identification 

• Risk Assessment/Analysis 

• Risk Prioritization 

• Risk Response Planning/Management 

• Risk Monitoring and Control 

The focus of this study is on the second step; that is Risk Assessment (RA). This step can be carried 

out fully quantitatively, fully qualitatively or semi-quantitatively. Of course, the fully quantitative 

approach is the most accurate amongst its peers. However, it requires a tremendous amount of data 

that most of the cases don’t have. This, in turn, qualifies the semi-quantitative approach to be a 

plausible option for conducting risk assessment. This approach requires the construction of Risk 

Matrix (RM). 

4.6 Probability-Impact Risk Assessment Matrix (PI-RAM) 

“Risk” can be defined as the statistical probability of damage, loss, or other negative occurrences. 

Risk statistics can be based only on historical information, as it is not possible to calculate the 

probability of something that has not yet taken place. For this reason, risk assessments are 

inherently quantitative, meaning that they are capable of being measured or expressed in numerical 

terms based on historical data that have taken place over a period of time. 
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After risk levels have been established for a particular operational situation, a matrix-driven 

approach is used, based on variables such as frequency and severity, to define what preventative 

or mitigating measures should be put in place. The matrix-driven quantitative risk assessment is a 

two-step process that (1) builds a quantitative risk assessment matrix using historical data and then 

(2) performs an evaluation of that matrix.  

The process starts with defining risk criteria. Risk criteria are normally defined based on the 

operational situation. In this study, risk criteria include tubing record (e.g., tubing OD, tubing 

surface area, tubing grade, tubing design), casing record (e.g. casing OD, casing surface area, 

casing grade, casing design, casing setting depth, hole size), formation record (e.g. formation 

composition, corresponding measured depth), fracture record (e.g. fracture depth, total base water 

volume, total proppant volume), acid record, cement record, as well as, directional survey (e.g., 

dogleg severity, dogleg severity measured depth, inclination). 

Following the definition of appropriate risk criteria, the assessment process begins by gathering 

historical data on various events for each of the defined criteria, relevant to the specific area of 

operation (e.g., casing failure).  

The frequency versus severity of these events is, then, plotted on a color-coded risk matrix (Figure 

56), also known as “Probability-Impact Matrix”, to indicate the actual risk levels in the area of 

operation (PMI, 2008; Cox, 2008; INCOSE, 2011). In Figure 56, the risks are color-coded, 

typically using red to indicate risks having high probability and high impact; orange or yellow to 

indicate risks with intermediate combinations of impact and probability; and green to indicate risks 

having either low impact or low probability or both. 

Frequency and consequence categories can be developed in a qualitative or quantitative manner ( 
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Table 14 and Table 15). Qualitative schemes (i.e., low, medium, or high) typically qualitative 

criteria and examples of each category will ensure consistent risk classification. Multiple 

consequence classification criteria may be required to address different types of consequences. 

However, in this study, the focus is on one consequence; that is casing failure. 

Once assignment of consequences and probabilities is complete, a Risk Matrix (RM) can be used 

as a mechanism for assigning risk (Eq. (60)), using a risk categorization approach. 

𝑅 = 𝐼 × 𝑃 (60) 

Each cell in the matrix corresponds to a specific combination of probability; derived from 

uncertainty of risk occurrence, and consequence/impact; that is the effect of the contingency, 

(Hillson and Hulett 2004) and can be assigned a priority number or some other risk descriptor 

(Table 16). An organization must define the categories that it will use to score risks and, more 

importantly, how it will prioritize and respond to the various levels of risks associated with cells 

in the matrix”. 

It is not always possible to get good historical data on all types of incidents, so as a second step in 

the process, it is imperative to validate the initial quantitative matrix results against a well-defined 

historical case. 
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Figure 56. A typical risk matrix. 

 

Table 14 Likelihood score risk. 

Likelihood Level Score 

Very Low 0 – 20 

Low 21 – 40 

Medium 41 – 60 

High 61 – 80 

Very High 81 – 100 

 

 

 

 



 

131 
 

Table 15 Impact analysis. 

Magnitude of Impact Impact Definition Score Rating 

High Impact / High Probability Very high 1 A 

High Impact / Medium Probability 

High 2 B 

Medium Impact / High Probability 

Medium Impact / Medium Probability Medium 3 C 

Medium Impact / Low Probability 

Low 4 D 

Low Impact / Medium Probability 

Low Impact / Low Probability Insignificant 5 E 

 

Table 16 Calculation of the exposure risk. 

No. Risk 

Occurrence 

Likelihood  
Impact 

Degree of Risk 

Exposure 

Probability Score Probability Risk Rating Score 

1 RT1 Very Low 20 Very High 5 E 12.5 

2 RT2 Low 40 High 4 D 22 

3 RT3 Medium 60 Medium 3 C 31.5 

4 RT4 High 80 Low 2 B 41 

5 RT5 Very High 100 Very Low 1 A 50.5 
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4.7 Historical Case Studies 

4.7.1 Case (1): ADNOC EISM 

In this section, a demonstration of the application of PI-RAM in Oil & Gas industry is presented. 

The analysis provided in the sequel is reproduced from a study shared by ADNOC (ADNOC CoP, 

2004; Alkendi, 2006). In this study, an Environmental Impact Severity Matrix (EISM) was 

designed to rate the severity of the environmental impacts (EI). 

The study investigates several environmental aspects (EA) whether accidental (i.e., non-recurrent); 

as in the case of an oil spill, or recurrent; as in the case of exhaust emissions and consumption of 

raw material. The study also discusses the method used for identifying, evaluating and managing 

the environmental impacts (EIs) of those environmental aspects (EAs). 

The motivation behind the choice of EISM – according to the authors – was two-fold. First and 

foremost was the simplicity of the proposed technique, which made it a viable option for handling 

the different EAs considered in their study. Second, the allowance that EISM gives for the 

involvement of a broad range of non-specialist stakeholders; from environmental engineers to 

instrument engineers, and from operators to asset managers. 

One complication of the implementation of EISM, however, was the multitude of parameters that 

contributed to the magnitude of an EI including the sensitivity and the resilience of the impacted 

resources, the value of the impacted resources to the ecosystem and the community, the level of 

damage, exposure of people, breach of regulation, duration of the event causing the impact, and 

the time it takes the environment to heal. In the study, the parameters were summed in two sets: 

impact effect and impact duration, for simplicity. 
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Impact Effect is basically the magnitude of change to the environment caused by the EA, without 

taking into consideration its duration or persistence. It accounts for the value of the subject 

environmental resource, the magnitude of the impact, human exposure, etc. (Figure 58). 

Meanwhile, Impact Duration is the sum of the duration of the subject environmental aspect and 

how long it will take the environment to recover after ceasing that aspect (Figure 57).  

This disassociation between the level of change to the environment (i.e., Impact Effect) and its 

persistence (i.e., Impact Duration) allowed for a more flexible and consistent evaluation. The value 

of disassociating the impact effect and impact duration comes to light when applying this matrix 

to projects, because it can distinguish between the temporary impacts that come with construction 

and the long-term impacts that come with operating the facility. 

In the study, the risk assessments (RAs) implementing this method (i.e., EISM) were conducted in 

two stages. First, usage of the EISM (assuming that the scenario will happen). This step yielded 

the impact severity which was used – in second step – in combination with the probability to rate 

the risk itself. 

One challenging aspect of the proposed risk assessment methodology was the long-term operations 

as most impacts are linked to the expected age of the facility. This means that as long as the facility 

is running this aspect will be reoccurring. Consequently, the EISM was at risk of being reduced 

from a 5 × 5 matrix to a 5 × 1 vector, or less. This challenge, however, was resolved by 

overlooking the duration of the operation focusing only on the persistence of that impact after 

ceasing the aspect. 
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Figure 57. ADNOC Environmental Impact Severity Matrix (Reproduced from Alkendi 2006). 

 

One case that was explored in the study and analyzed through the proposed Environmental Risk 

Assessment (ERA) method was evaluating risk associated with oil spill in a sensitive area. Two 

scenarios were designed for comparison reasons.  

First scenario assumed an oil spill hits a habitat area (e.g., mangrove forest). Because no 

intervention was made to clean up the spill and because the forest was expected to protect the spill 

from any wearing actions, it was likely for the spill to stay for several years. Consequently, the 

forest was expected to degrade and lose its value as a habitat and a nursery for many marine 

organisms. In this scenario, the impacted area happened to be relatively small (less than 1 km2). 

The effect was, then, rated moderate. And because it was likely to stay for over 10 years, therefore, 

the impact was rated Severe. This outcome is the consequence parameter in the risk matrix, which 
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also takes into consideration the probability. 

The second scenario, on the contrary, assumed immediate clean up. Accordingly, the evaluation 

was different. Removal of the oil minimized the direct impact and accelerate recovery to less than 

10 years. Impact severity rating was, therefore, reduced to Critical status. 

 



 

136 
 

 

Figure 58. Impact Effect Comparison Guide (Reproduced from Alkendi 2006). 
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4.7.2 Case (2): Gas-Hydrate Hazard 

In this section, another demonstration of the application of PI-RAM in Oil & Gas industry is 

presented. The analysis provided in the sequel is reproduced from a study presented by Cauquil, 

Total SA (Cauquil 2009). In this study, a gas-hydrate (GH) hazard-consequence risk assessment 

matrix was proposed, to be used as part of a global risk management process (RMP) during the 

different phases of a Deepwater E&P project (drilling and field development). 

Unlike previous case, this study handles a non-recurrent geohazards; that is gas hydrate (GH). 

Normally, the hazard is characterized in terms of probability of a measurable physical parameter, 

exceeding a certain threshold, during a period of time (known as recurrence interval). However, 

for non-recurrent hazards (e.g., GH) where there is no past experience with a hazard, there is no 

basis for any forecast. Accordingly, conventional probabilistic approaches cannot be applied to 

non-recurrent geohazards like Gas Hydrates (GH). 

The study proposes knowledge-based evaluation workflow for the GH hazard analysis (and the 

possible consequences). As for any PI-RAM based workflow, the adopted approach is qualitative 

or semi-quantitative. The limitation of implementing a fully quantitative approach was the lack of 

extensive and accurate data, as well as the spatial variability of factors and parameters. 

Generally, for hazard assessment, the concept of “Knowledge” implies: (1) capture of the location 

of the hazardous feature, (2) the potential magnitude of the hazard event (i.e., Impact) and the rate 

of occurrence/recurrence of the hazard event (i.e., Likelihood).  

In this study, the location was related to the vertical (depth & thickness) and spatial extension of 

the GH formation and was determined by the data acquisition/interpretation. The magnitude of the 

GH hazard meant the type and concentration of GH in place and – also – was determined by the 
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data acquisition/interpretation. As for the third – and final – aspect that is the likelihood of the 

hazard, although important, was not relevant for GH hazard assessment since it is non-recurrent. 

In other words, at a specific location, there was no rate of occurrence/recurrence of GH, as GH 

were either present or not.  

The GH hazard assessment was conducted on two stages. First, a Deterministic Hazard Assessment 

(DHA) was implemented – based on geological knowledge and field observations – to define the 

Maximal Credible Event (MCE) as the largest possible event that could be produced by a 

geohazard feature. At a second stage, a probabilistic analysis using geostatistics was founded based 

on the DHA in order to spatially extrapolate the GH occurrence. 

The review of GH proxies provided a conceptual geological model based on available indices. 

Based on those geological models, the qualitative likelihood of GH occurrence based on the proxy 

types defined previously was proposed (Figure 59) relying on the number of GH indices collected 

over the area of interest. Based on those information, GH hazard-consequence risk matrix was 

proposed (Figure 60). 

 

 

Figure 59. Gas Hydrate occurrence likelihood levels (Reproduced from Cauquil 2009). 
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Figure 60. Gas Hydrate hazard-consequence risk matrix (Reproduced from Cauquil 2009). 
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4.8 Numerical Demonstration 

In this section, I apply the proposed workflow (PI-RAM) on the dataset of interest. Generally, risk 

analysis (RA) can be applied to multiple outcomes simultaneously (Shen et al. 2014). However, in 

this study, the focus of the presented RA is on a single outcome that is casing failure. The results 

of the analysis are presented in two-dimensional PI-RAMs: (1) Likelihood, i.e., frequency of the 

incidence occurrence, and (2) consequence, i.e., impact on risk probability of casing failure if it 

happens.  

Figure 61 showcases a snippet of the calculations involved in the construction of risk assessment 

matrices for potential risk factors, in particular, “fracturing season”. Results of the RA and final 

risk matrices (RMs) for all the remaining potential risk factors are summarized in Appendix (E). 

In Figure 61, three plots are presented: probability-impact risk assessment matrix (Figure 61; left), 

risk values for different variations of “fracturing season” risk factor (Figure 61; top-right) and 

frequency analysis of the different seasons within “fracturing season” risk factor (Figure 61; 

bottom-right). 

Regarding the “probability”, it was arranged and valued according to the categorization of each 

risk factor, separately. Frequency analysis (Section 3.1) was used as a basis for determining the 

occurrence probability of different sublevels/categories within each potential risk factor (Figure 

61; bottom-right). Survival analysis (Chapter 3), in particular non-parametric survival estimators, 

e.g. Kaplan-Meier estimator (Section 3.3.1), was used as a basis for defining the significance of 

sublevels/categories within each potential risk factor. 

As for the “consequence”, it was arranged and valued according to the reached measured depth. 

Survival analysis (Chapter 3), in particular semi-parametric survival estimators, e.g. Cox model 
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(Section 3.3.2), was used as a basis for defining the impact magnitude of different variations within 

each risk factor with respect to reached measured depth. 

Upon defining the two parameters; “probability” and “consequence”, and using Eq. (60), the 

resulting risk values were assessed, then, classified on a three-level severity scale; slight, moderate 

and severe, (Figure 61; left). The construction of the severity scale was based, purely, on the 

researcher’s judgement and knowledge of historical casing failure case studies (Figure 61; top-

right). 

As shown in the risk assessment matrix for “fracturing season”, (Figure 61; left), fracturing during 

any season at relatively low depths (< 8500 ft) imposes no risk at casing failure. However, starting 

from intermediate depths (> 8500 ft), the time (or generally, season) during which the fracturing 

operation is conducted starts to play a rule in defining the risk imposed on casing failure. For 

intermediate depths; ranging from 8,500-10,000 ft, as well as high depths; greater than 10,000 ft, 

fracturing during “spring” or “winter” imposes the highest risk compared to the two other seasons. 

This could be partially explained by the high temperature difference between the reservoir and 

fracturing fluid assuming that the temperature of fracturing fluid resembles that of well surface. 

This high temperature difference leads, in turn, to high shrinkage of lateral section, accordingly, a 

high bending stress on the casing string. 

The reasons why risk imposed by fracturing during “spring” or “winter” is classified as moderate 

(represented by “yellow” color) for intermediate depths, as opposed to severe (represented by 

“red” color) at high depths, is that the bottomhole temperature tends to increase with increasing 

depth. This means that, for high depths (> 10,000 ft), the temperature difference between fracturing 

fluid and reservoir will be higher than that for intermediate depths (8,500-10,000 ft). Accordingly, 
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shrinkage of lateral section will be greater for high depths than intermediate depths. This, in turn, 

leads to higher bending stress and higher overall risk of casing failure at high depths than 

intermediate depths. 

The importance of having probability-impact risk assessment matrices was to serve as “feedback” 

for the initial predictions obtained from conventional machine learning algorithms, as shown in 

Section 1.3. In other words, PI-RAMs were used as basis for adjusting the input design 

specifications in case they were initially classified as high risk by any of the conventional 

classification machine learning algorithms (Section 4.2). For validation, a series of already 

identified failure cases were reassessed using the developed PI-RAMs (Figure E-21). 
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Figure 61. (left) Risk Assessment Results developed in this study for “Season” Risk Factor. (Top-right) Calculated Risk Values for Different 

Variations of “Season” Risk Factor. (Bottom-right) Summery of Frequency Analysis Used for Determining Likelihood of Various 

Combinations of “Season” Risk Factor.   



 

144 
 

4.8.1 Validation Case (1) 

Now, after I have explained the two-step “prediction-correction” procedure adopted in the proposed 

casing failure mitigation tool, it is important that I test/validate the performance of the developed 

tool against multiple historical cases that experienced casing failure. Figure 62 showcases one of the 

history wells that experienced casing failure. Figure 62 comprises of three levels; layout of initial 

design specifications (Figure 62; top level), layout of adjusted design specifications after first round 

of iterations (Figure 62; middle level) and layout of the final design specifications after the second 

round of iteration (Figure 62; bottom layer). The number of features considers were eleven features 

based on the results obtained from risk analysis (Chapter 2). Each feature was color-coded according 

to the risk imposed by its current value. Three levels of risk severity were considered: high 

(represented by “red” color), moderate (represented by “yellow” color) and low (represented by 

“green” color)  

Initial design specifications included: (1) acid treatment, (2) no casing cementing, (3) dogleg 

bending stress of 43.7k lb./ft2, (4) maximum inclination of 95 deg., (5) dogleg severity of 13.36 

deg./100ft, (6) fracture temperature of 45 oF and (7) drilling-fracturing time interval of 46 days.  

The aforementioned initial design specifications were fed to the tool for evaluation, in particular, the 

optimal classification model. Preliminary evaluation had shown a probability of casing failure and 

classified the case as a “high” risk; indicated by “red” color (Figure 62a). Following that, the tool 

started on adjusting the design specifications’ inputs in the direction of reducing the risk of casing 

failure using feed from PI-RAMs. After the first iteration, the risk was reduced to “moderate” 

severity class; indicated by “yellow” color (Figure 62b) with suggestion of: (1) no implementation 

of acid treatment, (2) application of casing cementing, (3) reduction of dogleg bending stress to 

42.6k lb./ft2, (4) reduction of inclination to 93.9 deg., (5) reduction of dogleg severity to 13 
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deg./100ft, (6) increase of fracture temperature to 58 oF and finally (7) increasing the drilling-

fracturing time interval to 44 days.  

Further iteration over the design specifications has reduced the risk of casing failure to “low” ; 

indicated by “green” color (Figure 62c) with the following suggestions: (1) no implementation of 

acid treatment, (2) application of casing cementing, (3) reduction of dogleg bending stress to 39.2k 

lb./ft2, (4) reduction of inclination to 87.2 deg., (5) reduction of dogleg severity to 12.15 deg./100ft, 

(6) increase of fracture temperature to 64 oF and finally (7) increasing the drilling-fracturing time 

interval to 133 days.  

 

 

Figure 62. A snapshot of the CDM dashboard for a historical case from Granite Wash data set with an 

initial status of high risk. Using PI-RAMs, adjustments were done to the features of interest 

leading to reduction in risk status to medium after the first iteration. Further adjustments to the 

features of interest using PI-RAMs led to reduction of risk status to low. 
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4.8.2 Validation Case (2) 

Initial design specifications included: (1) no acid treatment, (2) no casing cementing, (3) dogleg 

bending stress of 49.5k lb./ft2, (4) maximum inclination of 93.4 deg., (5) dogleg severity of 13.15 

deg./100ft, (6) fracture temperature of 67 oF and (7) drilling-fracturing time interval of 59 days.  

The aforementioned initial design specifications were fed to the tool for evaluation, in particular, 

the optimal classification model. Preliminary evaluation had shown a probability of casing failure 

and classified the case as a “high” risk; indicated by “red” color (Figure 48a). Following that, the 

tool started on adjusting the design specifications’ inputs in the direction of reducing the risk of 

casing failure using feed from PI-RAMs. After the first iteration, the risk was still classified as 

“high” severity class; indicated by “red” color (Figure 48b) with suggestion of: (1) no 

implementation of acid treatment, (2) application of casing cementing, (3) reduction of dogleg 

bending stress to 48.1k lb./ft2, (4) reduction of inclination to 93.15 deg., (5) reduction of dogleg 

severity to 12.67 deg./100ft, (6) increase of fracture temperature to 80 oF and finally (7) increasing 

the drilling-fracturing time interval to 82 days.  

Further iteration over the design specifications has reduced the risk of casing failure to “low” ; 

indicated by “green” color (Figure 48c) with the following suggestions: (1) no implementation of 

acid treatment, (2) application of casing cementing, (3) reduction of dogleg bending stress to 37.8k 

lb./ft2, (4) reduction of inclination to 92.9 deg., (5) reduction of dogleg severity to 11.56 deg./100ft, 

(6) increase of fracture temperature to 88 oF and finally (7) increasing the drilling-fracturing time 

interval to 107 days. 



 

147 
 

 

Figure 63. (a) Application of semi-quantitative probability-impact risk assessment matrices (PI-RAMs) on 

a case from Granite Wash data set with initial status of “high” risk. (b) Using PI-RAMs, 

adjustments were done to the features of interest leading to reduction in risk status to “medium”. 

(c) Further adjustments to the features of interest using PI-RAMs led to reduction of risk status 

to “low”. 

 

4.8.3 Validation Case (3) 

Initial design specifications included: (1) no acid treatment, (2) no casing cementing, (3) dogleg 

bending stress of 48.9k lb./ft2, (4) maximum inclination of 95 deg., (5) dogleg severity of 18.97 

deg./100ft, (6) fracture temperature of 19 oF and (7) drilling-fracturing time interval of 82 days.  

The aforementioned initial design specifications were fed to the tool for evaluation, in particular, 

the optimal classification model. Preliminary evaluation had shown a probability of casing failure 

and classified the case as a “high” risk; indicated by “red” color (Figure 49a). Following that, the 

tool started on adjusting the design specifications’ inputs in the direction of reducing the risk of 

casing failure using feed from PI-RAMs. After the first iteration, the risk was reduced to 

“moderate” severity class; indicated by “yellow” color (Figure 49b) with suggestion of: (1) no 

implementation of acid treatment, (2) application of casing cementing, (3) reduction of dogleg 
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bending stress to 62.1 k lb./ft2, (4) reduction of inclination to 93.4 deg., (5) reduction of dogleg 

severity to 14.27 deg./100ft, (6) increase of fracture temperature to 41 oF and finally (7) increasing 

the drilling-fracturing time interval to 93 days.  

Further iteration over the design specifications has reduced the risk of casing failure to “low” ; 

indicated by “green” color (Figure 49c) with the following suggestions: (1) no implementation of 

acid treatment, (2) application of casing cementing, (3) reduction of dogleg bending stress to 42.8k 

lb./ft2, (4) reduction of inclination to 93.2 deg., (5) reduction of dogleg severity to 12 deg./100ft, 

(6) increase of fracture temperature to 42 oF and finally (7) increasing the drilling-fracturing time 

interval to 200 days. 

 

 

Figure 64. (a) Application of semi-quantitative probability-impact risk assessment matrices (PI-RAMs) on 

a case from Granite Wash data set with initial status of “high” risk. (b) Using PI-RAMs, 

adjustments were done to the features of interest leading to reduction in risk status to “medium”. 

(c) Further adjustments to the features of interest using PI-RAMs led to reduction of risk status 

to “low”. 
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This “prediction-correction” procedure is what gives the edge to the developed workflow in this 

study over other data-driven workflows presented/introduced in literature, specifically, in this 

research area (casing failure). Following this two-step procedure, the proposed tool can handle the 

risk of casing failure proactively rather than reactively. This, in turn, gives the allowance for 

drillers and drilling engineers to adjust their design specifications in order to avoid or mitigate 

potential casing failure. 

4.9 Conclusions 

In this chapter, I leveraged the information provided by the analyses conducted in Chapter 2 and 

Chapter 3 to construct the proposed automated “casing failure mitigation” tool based on a two-

step “prediction-correction” procedure. Based on the input information (initial design 

specifications), the tool provides initial prediction of the probability of casing failure, then 

automatically adjust, or correct, the high-risk design specifications in the direction of reducing the 

overall risk of casing failure below a pre-defined threshold. This gives the allowance for drillers 

and drilling managers to successfully modify their design and ultimately mitigate casing failure 

which was otherwise infeasible.   

Regarding the “prediction” part of the tool, machine learning techniques, particularly, 

classification algorithms were implemented to fulfill that task. Due to the type of the outcome, 

only classification algorithms were considered, such as, logistic regression, basic decision trees, 

random forests, support vector classifier, support vector machines and artificial neural networks. 

The different models were trained and tested on the provided data set, and results were compared 

based on two key elements: (1) prediction accuracy and (2) model balance and overall 

performance. For the prediction accuracy, the “overall classification rate” criterion was used. 
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Regarding the model performance and balance, both “false positive rate” and “false negative rate” 

were implemented. 

Comparison of different classification models, based on the aforementioned criteria, showed the 

superiority of artificial neural network (ANN) compared to other models, in terms of, prediction 

accuracy (67% E), overall performance and model balance (33.33% FP, 33.33% FN). Support 

vector machines (SVMs) came second (67% E, 50% FP, 33.33% FN), followed by logistic 

regression (61% E, 33.33% FP, 50% FN). 

As for the “correction” part of the tool, I sought risk assessment techniques with a focus on semi-

quantitative risk assessment matrices (PI-RAMs). Construction of PI-RAMs involved use of two 

key inputs, namely, exposure occurrence likelihood and exposure impact. Regarding likelihood 

estimation, non-parametric survival curve estimators along with frequency analysis were used. As 

for exposure impact, semi-parametric survival estimators along with risk analysis were 

implemented. 

Upon the development of the “automated casing failure mitigation” tool, it was evaluated/validated 

against some of the historical wells that experienced casing failure. Results for three of the history 

wells that experienced casing failure were presented. Based on the initial design specifications fed 

to the tool, preliminary evaluation concluded a probability of casing failure and classified the case 

as a “high” risk. Following that, the tool started on adjusting the design specifications inputs in the 

direction of reducing the risk of casing failure. After the first iteration, the risk was reduced to 

“moderate” severity class. Further iteration over the design specifications has reduced the risk of 

casing failure to “low”. 

This “prediction-correction” procedure is what gives the edge to the developed workflow in this 

study over other data-driven workflows presented/introduced in literature, specifically, in the 
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casing failure research area. Unlike previous contributions, physics-based or data-driven, that 

handled casing failure reactively, the developed workflow in this study can handle the casing 

failure rather proactively, hence, give the allowance for drillers and drilling managers to constantly 

adjust their designs and ultimately mitigate potential casing failures. 
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CHAPTER V 

DATA DRIVEN PHYSICS-GUIDED CASING FATIGUE LIFE 

ESTIMATION 

 

Reader Guide: In this chapter, I introduce a hybrid fatigue life estimator based on modern machine 

learning algorithms coupled with conventional analytical estimators. In section 5.1, I start the 

discussion by introducing casing fatigue failure as the mode of interest for sequel analysis. Then, 

in section 5.1.1, I discuss the general framework adopted in conventional fatigue life estimators, 

along with the most popular analytical models used in this regard. Following that, in section 5.1.2, 

I highlight the main shortcomings of the analytical models through history cases and provide key 

remarks on potential reasons in section 5.1.3. Afterwards, in section 5.2., I introduce the proposed 

hybrid model where I showcase the proposed framework along with key adjustments to address 

defects in most analytical models. Finally, in section 5.3, I test the proposed solution through a 

simulated case (using ANSYS) for a number of scenarios and validate results against conventional 

techniques. 

 

5.1. Fatigue Failure 

In their study, Gao and Hsu, 1998 defined fatigue as an irreversible, gradual, and localized 

structural damage that arises and continuously accumulates when a material is structurally exposed 

to cyclic loading. 

During drilling in stormy weather in offshore operations; currents and wave, and heavy motions 

of the sea are transported down the riser to the wellhead, to the casing structure causing fatigue 

failures at essential casing joints and welds (Lim et al. 2012). Furthermore, casing pipe fatigue 

failure could happen either during production, due to alternating temperatures and cyclic loading 

of pressure or during stimulation, due to temperature differentials between the reservoir fluids and 

stimulation fluids (Kiran et al. 2018).  Casing joint fatigue is another mode that has been reported 

numerously during multistage hydraulic fracturing with varying temperature between stages (Liu 
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et al. 2018). In all those cases, those cyclic variations induce thermal axial casing stress 

(compressive and tensile) depending on the direction of the change. As a result, two major effects 

may occur from those thermally induced stresses: 1) casing hot-yield and the resultant casing 

collapse failure, and 2) casing fatigue. 

5.1.1. Conventional Fatigue Life Estimators 

Typical steps involved in casing fatigue analysis workflow are as follows: 

1. Definition of wellbore configuration (e.g., casing size, steel grade, connection type, cement 

top, etc.) 

2. Definition of operations history, including cyclic operations (e.g., steam injection, plug & 

perf, etc.) 

3. Thermal flow simulations (using commercial software) to obtain temperature and pressure 

profiles 

4. Selection of critical locations (stress concentration points) such as connections 

5. Calculations of local casing loads/stresses (mainly, thermal loads) 

6. Calculations of elastic-plastic response at the critical locations (to determine strength) 

7. Estimation of fatigue life (how many years to failure) 

In case of low-cycle fatigue (LCF) operations, e.g., steam injection, multistage hydraulic 

fracturing, strain-based methods are used to implement steps 5–7 in the aforementioned fatigue 

workflow. One example of strain-based methods is Manson’s universal slope method, which will 

be considered for subsequent discussion due to its simplicity. 

According to Manson’s equation, fatigue life, 𝑁, is correlated to total cyclic change of local strain, 

∆𝜀𝑡, as follows: 

∆𝜀𝑡 = 𝐾𝑓
𝜎𝑢
𝐸
𝑁−0.12 + 𝜀𝑓

0.6𝑁−0.6 (61) 

Based on local maximum stress, ∆𝜎𝑡, various methods could be used for calculating the total cyclic 

change of local strain, ∆𝜀𝑡.  
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In case of elastic behavior (i.e., local maximum stress, 𝜎𝑡, is less than material yield stress, 𝜎𝑦), 

then, the following equation could be used for calculating the total cyclic change of local strain, 

∆𝜀𝑡.  

∆𝜀𝑡 = 𝐾𝑓 ∆𝜀𝑝 = 𝐾𝑓 𝛼 ∆𝑇 (62) 

In case of plastic behavior (i.e., local maximum stress, 𝜎𝑡, is greater than material yield stress, 𝜎𝑦), 

then, Neuber’s equation could be used for calculating the total cyclic change of local strain, ∆𝜀𝑡. 

∆𝜀𝑡 =
∆𝜎𝑡
𝐸
+ 2(

∆𝜎𝑡
2𝐾∗

)
1 𝑛∗⁄

 (63) 

Figure 44 is a schematic that summarizes steps involved in the calculation of total cyclic change 

of local strain, ∆𝜀𝑡, and ultimately the fatigue life, 𝑁. 
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Figure 44. A schematic of steps involved in calculation of total cyclic change of local strain and fatigue 

life estimation. 

 

From former discussions of fatigue workflow and from the schematic shown in Figure 44, it is 

evident that the correct calculation of total cyclic change of local strain at concentration points is 

key to the accurate estimation of fatigue life of various casing parts and, in turn, mitigation of 

casing failure in the future.  

However, estimation of cyclic local strain could be challenging due to multiple factors that will be 

highlighted in the next section. Wrong cyclic strain calculations will lead to false estimation of 

casing fatigue life. This, in turn, would lead to abuse of casing material beyond its capability and 

increased possibility of failure.  
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In the next section, two instances are highlighted where conventional models failed to calculate 

the true induced strain leading to false estimations of different casing parts’ fatigue life and, 

eventually, the occurrence of casing failure. 

5.1.2. Instances of Failure 

5.1.2.1. Case 1: Steam Injection Operation – Chevron (Wu et al. 2008) 

In this study, authors analyzed casing failure data from Chevron’s Bakersfield Cymric 1Y steam 

injection project. Their focus was on thermally induced tensile/compressive axial stresses in 

restricted/fixed casing due to temperature differentials during steam injection. The major failure 

mode noticed was low-cycle casing fatigue. Accordingly, authors integrated strain-based methods 

in their casing design workflow in order to accurately analyze their case. 

Typically, casing fatigue failure results from alteration of casing axial compressive and tensile 

stresses. In cyclic steam-injection operation, casing undergoes axial compressive stress during 

steam periods and axial tensile stress during soak periods. Depending on temperature changes 

during those two periods (steam and soak), this alteration of stresses can lead to casing fatigue and, 

ultimately, failure. In the study, authors noticed that although pipe body was not affected by the 

alteration of compressive and tensile stresses during the steam-injection operation, pipe 

connections were impacted. The reason for that was attributed to stress concentration effect 

developed around those relatively weak/sensitive locations. Authors used strain-based methods to 

analyze stresses developed at connections and measure their fatigue life. Based on their 

calculations (using Manson Eq.), authors predicted fatigue life of ~930 cycles for casing 

connections. Yet, their predictions contradicted the observed values from history data which were 

around 81-108 cycles. Authors had named few factors that may have led to an unexpected increase 

in total cyclic change of local strain at casing connections including: 1) casing buckling, (2) higher 
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connections’ fatigue factor and (3) cement leak/crack due to casing-cement contact pressure from 

thermal radial expansion of casing during steam period. 

5.1.2.2. Case 2: Multi-stage Hydraulic Fracturing Operation – Halliburton (Liu et al. 2018) 

 

Similar to Case 1, this study was concerned with thermally induced tensile/compressive axial 

stresses in restricted/fixed casing due to temperature variations. The only difference was the source 

of temperature variation, that is, multistage hydraulic fracturing. Fatigue was the dominant failure 

mode in that case, hence, authors integrated strain-based methods in their typical casing design 

workflow. 

Based on their calculations (using Manson Eq.), authors predicted fatigue life of ~9216 cycles for 

casing connections. Similar to case 1, their predictions contradicted the observed values from 

history data which were around 15 cycles. Authors had named few factors that could lead to an 

increase in total cyclic change of local strain at casing connections including: 1) rupture of 

protective film due to localized plastic strain, (2) corrosion due to acid solution (possibly saturated 

with H2S gas). Those effects had proven, later, to further reduce the fatigue life to 1/235 of its 

initial value/estimate. 

5.1.2.3. Remarks on Cases 1 & 2 

 

Although authors in both Cases 1 & 2 managed to successfully account for fatigue effects in their 

casing design workflow; using various casing fatigue models (e.g., Manson Universal Slope 

Method and Energy-Based Fatigue Model), their conclusions were utterly false and far from 

observed values in history data.  

The major challenging aspect of the implemented physics-based models was their inability to 

account for various effects that were later found to have a great impact on the durability of different 

casing parts. Those factors are passive in nature, hence, can’t be directly included in the 
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implemented fatigue models. Examples of those factors were 1) corrosion due to acid solution, (2) 

pitting effects, (3) cement leaks/cracks besides any other casing body imperfections. Using the 

proposed modified model, those passive effects can be integrated and accounted for without the 

need for explicit mathematical formulation. 

5.2. Proposed Fatigue Life Estimator 

To mitigate casing failure that results from fatigue, correct estimation of fatigue life of different 

casing parts must be made. As shown earlier, the accuracy of fatigue life estimation is contingent 

on the accuracy of local strain estimations. Two classes of factors impact local strains: 1) 

active/direct (such as temperature changes, casing material, etc.) and (2) passive/indirect factors 

(such as cement cracks or leaks, casing-cement contact pressures, material imperfections/wrong 

field handling, etc.).  

Although conventional models can account for direct factors (Figure 45-Left), they bound to fail 

to account for indirect factors, leading to false conclusions on casing fatigue life and abusive 

consumption of casing parts beyond their capabilities. 

In this paper, a data-driven alternative is proposed that takes as input all direct and indirect factors, 

and outputs the corresponding total local strain that reflect those effects (Figure 45-Right). Then, 

using the casing material properties, along with estimated strains as input for Manson’s Eq. and 

estimating the fatigue life of those casing parts. Based on estimated fatigue life, the model can give 

recommendations on changing casing parts that are abused throughout any process (such as steam 

injection, or hydraulic fracturing). This would, ultimately, prevent or reduce the chances of the 

occurrence of casing failure. 
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Figure 45. (Left) Schematic of the adopted framework for conventional analytical fatigue life estimators, 

(Right) schematic of the proposed framework for the data-driven fatigue life estimator. 

 

5.3. Model Training 

For model training, ANSYS Simulation was performed to analyze the effect of only one indirect 

factor, cement job quality, represented by cement support volume on maximum strain for a 7-inch 

L-80 production casing subjected to cyclic steam injection at 14000 ft. Multiple variations were 

considered for multiple temperature differentials and multiple volumes of cement that is 

supporting the casing. Figure 46 highlights the different steps involved in the stress-strain analysis 

using ANSYS Workbench©: 
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Figure 46. Adopted framework for stress-strain analysis of cyclic steam injection. 

 

In the simulation, dry steam is injected through a 10-ft production casing with multiple temperature 

differentials (50-350 degrees) representing various scenarios of the cyclic operation. In addition, 

various supporting cement volumes were simulated foe the different scenarios for research 

purposes. Properties of the corresponding casing, steam, cement, and formation are summarized 

in Tables 17-19 below. 

 

Table 17 Input Data for L-80 Production Casing. 

Casing Properties Value 

Size – OD (inch) : 7 

Nominal Weight 

(lb./ft) 

: 
23 

Burst (psi) : 6,340 
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Casing Properties Value 

Collapse (psi) : 3,830 

Young’s Modulus 

(psi) 

: 
30 x 106 

Yield Strength (psi) : 85,000 

Tensile Strength 

(psi) 

: 
95,000 

Length (ft) : 10 

Density (lb/ft3) : 473.28 

Poisson Ratio : 0.3 

Thermal 

Conductivity (W/mC) 

: 
28 

Thermal Expansion 

(C-1) 

: 
1.09-05 

Specific Heat (J/Kg) : 453 

 

Table 18 Input Data for Unconsolidated Sandstone Formation. 

Formation Properties Value 

Young’s Modulus 

(MPa) 

: 
1.2 x 106 

Poisson Ratio : 0.27 

Density (lb./ft3) : 473.28 

Thermal Conductivity 

(W/mC) 

: 
28 

Thermal Expansion 

(C-1) 

: 
1.09-05 

Specific Heat 

Capacity (1/⁰F) 

: 
453 
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Table 19 Input Data for Injected Steam during Cyclic Operation. 

Steam Properties Value 

Density of Steam 

(Kg/m3) 

: 36.5107 

Specific Entropy of 

Steam (KJ/Kg K) 

: 5.81334 

Specific Heat of 

Steam (kJ/Kg) 

: 5.1192 

Specific Enthalpy of 

Steam (kJ/Kg) 

: 2771.89 

 

The geometric design of the system of interest is depicted in Figure 47-a below. The 10-ft of 7" L-

80 casing is modelled, followed by an 8-1/2" x 10-3/4" cement-filled annulus, and the formation 

on the outside boundary is approximately 30-in in diameter. As for system meshing, multiple 

factors were considered for improved mesh efficiency including mesh defeaturing, trap curvature, 

and grab proximity. Figure 47-b highlights the results of finning mesh sizing with element edge 

length of 5-in for casing, 1-in for the cement, and 2-in for the target formation. 

Regarding applied loads and boundary conditions, the inner casing surface is subjected to a single 

load approximating the internal pressure caused by the 1000 psi steam injection (as shown in 

Figure 47-c). The applied internal pressure is constant along the 10-ft casing. 
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Figure 47. (a) Results of the geometric design of the system of interest, (b) results of the fine-meshing step 

of the system of interest, and (c) visual representation of the applied boundary conditions applied 

to the system of interest. 

 

Table 20 and Fig. 48 represent the numerical and graphical representation of simulation results for 

one of the 20 different scenarios tested during the training phase, in particular for 100-degree 

temperature differential for multiple cement support volumes. While Figure 49 highlights results 

of all different scenarios tested. 

 

Table 20 Max Strain Values at a 100-Degree Temperature Differential for Different Cement Support 

Volumes. 

Cement Support 

(%) 

Cement Thickness 

(in) 

Total Strain 

(in/in) 

100 1.125 0.0016955 

80 0.900 0.0017978 

60 0.675 0.0019452 

40 0.450 0.0019689 

20 0.225 0.0019882 

0 0.000 0.0020564 
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Figure 48. Results of ANSYS FEA stress-strain simulation for a wide range of cement support volumes 

for a temperature difference of 100-degrees. 

 

 

 

Figure 49. (Left) Maximum strain plot with temperature difference variation for multiple cement support 

volumes. (Right) Maximum strain plot with cement support volume variation for multiple 

temperature differences. 

 

Results of simulation runs along with casing material properties were then coupled with analytical 

fatigue life estimators (e.g., Mansion’s Eq.) to estimate the corresponding fatigue cycle life, as 

shown in Figure 50. 
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Figure 50. (Left) Fatigue cycle life plot with temperature difference variation for multiple cement support 

volumes. (Right) Fatigue cycle life plot with cement support volume variation for multiple 

temperature differences. 

 

Results of conventional analytical models were then compared with those estimated from the 

proposed modified model as shown in Figure 51. 
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Figure 51. A plot of fatigue cycle life for various total local strain values using conventional analytical 

models (blue) as compared to the proposed modified data-driven model. 

 

As shown above, there is a huge difference between results of the proposed modified data-driven 

model and typical analytical models. It’s clear that the proposed model is more sensitive to changes 

in total local strain as compared to the conventional counterparts. For the proposed model, a total 

local strain half of that calculated using conventional models will be enough to keep the casing 

integrity for a certain amount of well overall lifetime. This is due to the consideration of other 

sources of vulnerability which in this case is the lack of supporting cement support 

Using the proposed model would help drilling engineer better plan and design their casing and 

maintain their integrity without abusing the material or risking their failure. 
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CHAPTER VI 

DISCUSSION 
 

Reader Guide: In this chapter, I briefly discuss the results obtained from all the analyses 

conducted in the preceding chapters; highlighting key findings and major takeaways. The 

discussion starts with a layout of the major contributions achieved through the work presented in 

this dissertation (Section 6.1). Then, attention is geared towards evaluating the proposed 

solution(s) through the implementation of SWOT analysis (Section 6.2). Afterwards, I provide a 

set of recommendations for the reader in order to efficiently utilize and benefit from the proposed 

workflow (Section 6.3). Finally, I end the discussion with addressing some of the aspects in the 

study that could be improved upon in the future for more refined/enhanced results (Section 6.4).     

 

6.1 Original Contribution  

Contributions previously introduced in literature in the area of casing failure were devoted to 

investigating and explaining the causing effects of casing failure in numerous historical cases. To 

date, the majority of those contributions were based on physics-based approaches (analytical, 

experimental or numerical). Although, those contributions had provided a valuable insight into 

identification of some of the potential causing effects of casing failure, they failed to provide 

enough information on how to mitigate, or avoid, the occurrence of casing failure in the future, 

hence, did not attain wide-scale execution. This left drillers and drilling engineers with very little 

information on mitigating the risks that the casing is exposed to during drilling, completions, and 

production operations. 

The main drivers of the major limitation previous contributions had concerning their inability to 

provide a viable measure to mitigate casing failure were: (1) the inability to “quantify” the impact 

that various potential risk factors have on the occurrence of the casing failure and (2) the inability 
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to tackle the impact of potential risk factors throughout the well length, in addition, how variation 

in a particular risk factor might affect the probability of casing failure accordingly. 

In this study, I managed to tackle the aforementioned challenging aspects through developing data-

driven workflows based on risk-factor, as well as survival analysis statistical techniques. In 

addition, I managed to develop a data-driven based “casing failure mitigation” tool that is capable 

of proactively handling the causing effects of casing failure through the implementation of a two-

step “prediction-correction” procedure based on the integration of predictive analytics, in addition, 

semi-quantitative risk assessment techniques.  

Application of the developed casing failure mitigation tool will give the allowance for drillers and 

drilling engineers to constantly and automatically adjust their initial design specifications in the 

direction of reducing the overall risk of casing failure and, ultimately, avoiding its occurrence in 

the future. 

 

6.2 SWOT Analysis 

SWOT analysis is a technique used to identify strengths, weaknesses, opportunities, and threats – 

conventionally – related to project planning and management. In this section, we use SWOT 

analysis for evaluating the solution(s) proposed in our study for mitigating casing failure. 

6.2.1 Strengths 

• Early study applying integrated machine learning to inform drilling and drilling engineers on 

how to proactively correct rather than reactively a set of features in drilling, completions, and 

production. 

• Some results of this study’s work (Noshi et al. 2018a, Noshi et al. 2018b; Noshi et al. 2019) 

was used in three studies predicting casing damage (Song and Zhou 2019; Tang 2019; Tan et 
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al. 2020).  

• A generic tool that identifies the parameters that have the greatest impact on casing damage. 

For example, applying the tool to wells in the upper Granite Wash formation, the optimal dog 

leg severity was identified for the minimum risk of failure. 

• Quantification of the impact each of the pre-defined risk factors has on the overall probability 

of casing failure. 

• Tracking the variation in the impact that is caused by variation within potential risk factors 

throughout the length of the well.  

• Closed-loop adjustment by iteratively modifying the key input parameters to prevent failure 

based on five statistical approaches developed in this study. The adopted “prediction-

correction” procedure will inform drillers how to react to mitigate casing failure and well loss. 

• Adaptive data-driven workflow that could be applied to much larger data sets with diverse set 

of features that might not, yet, be supported by physical evidence. 

 

6.2.2 Weaknesses 

• The provided data set of Granite Wash formation is relatively small with limited set of features 

which might lead to inconclusive results, in terms of, identifying all possible causes of casing 

failure. 

• The limitation of the provided Granite Wash formation data set, in terms of, the data size 

imposes a high risk of overfitting during the training/testing phase of the implemented 

classification models.    

• Regarding the construction of risk matrices, the thresholds selected for assigning risk values 

to one of the three pre-determined risk severity classes were set manually based on the author’s 

knowledge of history failure cases. This might induce some errors for more complex cases 
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with much more diverse set of features. 

• Implementation of non-parametric survival estimation techniques, e.g., Kaplan Meier 

estimator, might be infeasible when integrating a much broader set of features; either 

categorical with multiple levels/categories or continuous features.  

 

6.2.3 Opportunities 

• With the constant development of machine learning algorithms, there is an allowance for 

enhancing the tool prediction capability through the integration of more robust and efficient 

classification models. 

• Model validation on a much broader set of casing failure cases from outside the Anadarko 

basin for model generalization. 

• With the acquisition of real-time data, the proposed tool could be further modified to handle 

design specifications in real-time.  

 

6.2.4 Threats 

• Limitation in casing failure data as companies refrain from publishing in order to protect their 

reputation might hinder the progression of data-driven solutions. 

• The tool shouldn’t be used as a standalone model but should become an addition to proper 

casing handling, completion, and production practices. 

 

6.3 Practical Recommendations 

• When handling large data sets that have: (a) a much broader set of features, (b) categorical 

variables with multiple levels/categories or (c) continuous features, it is recommended that the 

user implement semi-parametric or parametric survival curve estimators instead of non-

parametric estimators that were used for this study.   
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• When handling data sets that have features with less variation, frequency analysis might be 

troublesome and there might be a risk of class imbalance. This, in turn, might affect the 

statistical analysis. it is recommended, then, that the user pay attention to the weight of the 

different subgroups/clusters within each feature to guarantee the balance of the analysis. 

• When constructing risk assessment matrices, it is recommended for the user to implement 

quantitative techniques rather than semi-quantitative techniques (adopted in the study). Unlike 

semi-quantitative techniques, fully quantitative techniques have the ability to assign 

continuous risk values to any variation within any feature/risk factor. 

• When accounting for missing values in the provided data set using imputation techniques, it is 

important that the user select an optimal threshold so that they don’t lose more wells (in case 

of high cutoff value) or have a great deal of missing inputs (in case of low cutoff value). 

• When optimizing supervised learning algorithms, it is important that the user check the model 

balance and overall performance. Choosing an optimal model based solely on having high 

prediction accuracy might be misleading in some cases, as the model might be suffering from 

overfitting. This could ultimately lead to misclassification of future cases and affect the 

performance of the tool.  

 

6.4 Future Work 

• Enhancing the tool prediction specificity to account for the mode of casing failure (e.g., 

collapse, burst, tensile, etc.). 

• Enhancing the tool adjustment, or follow-up, actions upon prediction of casing failure. For 

instance, it could provide the engineer with the specific cement composition, optimum number 

of acid gallon for stimulation, type of acid to use, etc. 

• Integration of more geological and metallurgical features, in addition to other features in 
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drilling, completion and production. 

• Integration of data sets from different fields with different conditions.     
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CHAPTER VII  

CONCLUSIONS 
 

Reader Guide: In this chapter, I highlight the work done throughout this dissertation along with 

the major takeaways concluded from the conducted analyses. I start with highlighting the 

contribution of this dissertation in terms of tackling of the problem of casing failure (Section 7.1). 

Afterwards, I present the outlines of the proposed solution, that is, an “automated casing failure 

mitigation” tool (Section 7.2). Following that, I share the key results obtained for each of the four 

major statistical techniques used as a basis for achieving the study’s objectives including: risk 

analysis (Section 7.3), survival analysis (Section 7.4), predictive analytics (Section 7.5) and, 

finally, risk assessment (Section 7.6). Based on the analyses applied in this study, I present some 

practical insights that can benefit from the work conducted (Section 7.7).  

 

7.1 Study Contribution 

This study represents an on-going effort to minimize the likelihood of casing failure and attempts 

to find a possible solution. Contributions previously introduced in literature in the area of casing 

failure were devoted to investigating and explaining the causing effects of casing failure in 

numerous historical cases. To date, the majority of those contributions were based on physics-

based approaches (analytical, experimental or numerical). Although, those contributions had 

provided a valuable insight into identification of some of the potential causing effects of casing 

failure, they failed to provide enough information on how to mitigate, or avoid, the occurrence of 

casing failure in the future, hence, did not attain wide-scale execution. This left drillers and drilling 

engineers with little information on mitigating the risks that the casing is exposed to during 

drilling, completions, and production operations. 

The main drivers of the major limitation previous contributions had concerning their inability to 

provide a viable measure to mitigate casing failure were: (1) the inability to “quantify” the impact 
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that various potential risk factors have on the occurrence of the casing failure and (2) the inability 

to tackle the impact of potential risk factors throughout the well length, in addition, how variation 

in a particular risk factor might affect the probability of casing failure accordingly. 

In this study, I managed to tackle the aforementioned challenging aspects through developing data-

driven workflows based on risk-factor, as well as survival analysis statistical techniques. In 

addition, I managed to develop a data-driven based “casing failure mitigation” tool that is capable 

of proactively handling the causing effects of casing failure through the implementation of a two-

step “prediction-correction” procedure based on the integration of predictive analytics, in addition, 

semi-quantitative risk assessment techniques.  

Application of the developed casing failure mitigation tool will give the allowance for drillers and 

drilling engineers to constantly and automatically adjust their initial design specifications in the 

direction of reducing the overall risk of casing failure and, ultimately, avoiding its occurrence in 

the future.  Additionally, this study not only presents a methodology aiming to form the foundation 

for a new standard for casing risk assessment in the Anadarko Basin, but it can be applied to any 

geological area with different scenarios and can be developed into a more generalized tool in the 

future. 

7.2 Casing Failure Mitigation Automation 

I propose a tool for automated casing failure mitigation (Sections 4.8 and 4.9). This tool is based 

on a two-step “prediction-correction” procedure; where I add “feedback” to the initial predictions 

provided by the conventional ML algorithms that would serve as a guide that could help drilling 

engineers adjust their design and ultimately mitigate casing failure. This is accomplished through 

the integration of semi-quantitative risk assessment techniques probability-impact risk assessment 

matrices (PI-RAMs). 



 

175 
 

First, design specifications initially suggested by a drilling engineer for a particular well are fed to 

the “casing failure mitigation” tool. Next, design specifications are evaluated in terms of the risk 

imposed on casing failure (Sections 4.8 and 4.9). In case of high risk, design specifications are 

automatically adjusted so that imposed risk is reduced and ultimately casing failure is avoided or 

mitigated. The tool is based on four major concepts, those are, risk analysis, survival analysis, 

supervised machine learning (ML) algorithms and semi-quantitative risk assessment. 

Supervised ML algorithms (Chapter 4) along with semi-quantitative risk assessment techniques 

(Chapter 4) are used as the cornerstone for the two-step “prediction-correction” procedure; where 

ML algorithms provide initial prediction of the probability of casing failure occurrence based on 

the input design specifications. Following that, the semi-quantitative risk assessment techniques 

(e.g., PI-RAMs) are used to automatically adjust the design specifications according to their impact 

type and the overall case evaluation until risk is reduced below pre-defined threshold. 

Regarding the risk analysis (Chapter 2) and the survival analysis (Chapter 3), they constitute an 

integral part of the tool as they provide the necessary information to be later used as a basis for the 

construction of ML predictive models, as well as risk assessment matrices (PI-RAMs). That 

information include: (1) identification of potential risk factors that are strongly associated with 

casing failure, (2) identification of the subgroups within each risk factor that impose the highest 

impact, (3) evaluation of the type and magnitude of the impact for each risk factor, (4) 

determination of the likelihood of the occurrence of the different scenarios within each risk factor. 

7.3 Risk Analysis techniques 

First, I focused on testing the association between the different features, or exposures, and the 

occurrence of casing failure. To that end, I implemented a well-established family of techniques, 

known as risk analysis techniques (Section 2.1). Based on the inferential direction of the study and 
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its computational superiority, “case-control” study design was adopted, where cases (failed wells) 

were, basically, compared with controls (non-failed wells) based on the different exposures they 

had experienced (Sections 2.2 through 2.4).  

For a more balanced and reliable analysis, a “matched” analysis approach was followed, where 

each failed well (case) was matched with three other non-failed wells (controls) based on a set of 

common features including location, formation, etc. (Section 2.5). 

As for association measurements, different techniques were briefly introduced from literature, such 

as, relative risk (RR), risk difference (RD), relative risk difference (RRD) and odds ratio (OR). 

However, it was the odds ratio (OR) technique that was selected for evaluating and interpreting 

the results of the analysis (Section 2.6). 

Based on the initial results of the analysis, only thirteen features – out of the initial twenty-six 

features – were considered as potential risk factors of casing failure. The risk factors were related 

to casing design, fracture design and drilling conditions (Section 2.7). 

Owing to the implementation of odds ratio (OR), we had also managed to define the type of impact 

each potential risk had on the occurrence of casing failure; either positive, negative, or slight-to-

no impact. Results showed that, for instance, “frac season” and “maximum inclination” had a 

negative impact on casing failure, while “cementing” and “casing thickness” had a positive impact. 

And “measured depth” and “dogleg severity measured depth” had nearly no impact on the 

occurrence of casing failure (Section 2.7).  

In addition to evaluating risk type, using odds ratio (OR), we managed to measure the magnitude 

of the impact each potential risk factor had on the overall probability of casing failure. For instance, 

fracturing during spring turned out to increase the risk of casing failure by over 200%, an increase 

of one unit in the lateral section shrinkage increases the risk by 15%. On the other hand, cementing 
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reduces the risk of casing failure by nearly 54%, while having a casing thickness greater than 0.65 

in (P110) tends to reduce the risk of casing failure by nearly 90%. Those results were beneficial 

for generating probability-impact risk assessment matrix (PI-RAM) that was addressed later in the 

study (Section 2.7).  

Due to the dependency between different exposures, or features, and their rule in defining the 

association/impact different exposures have on the overall outcome, several models were run and 

tested against various combinations of input features using subset selection techniques (Section 

2.8). Due to computational reasons, as well as, statistical reasons, stepwise selection techniques 

were used for generating the models. Results obtained from the different models were compared, 

and the best/optimal model was selected based on pre-determined criteria including AIC, BIC, Cp, 

and R2 (Sections 2.9 and 2.10). 

7.4 Survival Analysis 

Based on the results obtained from the risk analysis, the focus then shifted to another concern, that 

was, defining the depths that are venerable to casing failure. The motivation behind that was to 

give engineers a guidance on where they should expect to have failure so they can pay attention 

during drilling/production operations. To achieve that goal, we have extended our investigation to 

another classic statistical technique; known as survival analysis (Section 3.1). 

Motivated by the research interests, little modification was made to the analysis scale 

(conventionally time scale) so it corresponded to reached measured depth (Sections 3.1 and 3.2). 

Two broad families of survival analysis techniques were discussed (Section 3.3): (1) non-

parametric estimators, e.g., Kaplan Meier estimator (Section 3.3.1), and (2) semi-parametric 

estimators, e.g., Cox model (Section 3.3.2). 
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Non-parametric techniques, due to simplicity (since there is no need for formal equations/models) 

and their graphical representations, they helped trace the changes in the impact of subgroups/levels 

within each potential risk factor (Sections 3.3.1.1 and 3.3.1.2). That ultimately served our goal. 

However, with increased number of features/risk factors, as well as subgroups/levels within risk 

factors, some complexities were introduced in the analysis. That’s when semi-parametric came 

into play. Semi-parametric estimators had the ability to incorporate all risk factors in one model, 

unlike the non-parametric estimators (Sections 3.3.2.1 and 3.3.2.2). 

Then we moved one step further in the analysis, as we evaluated the impact each subgroup/level 

within each risk factor had throughout the entire well. This added another layer of understanding 

that was not provided by risk analysis. That proved to be of great value, especially, when 

constructing the PI-RAM. 

Results of the analysis showed that the following conditions (subgroups/levels) are the most risky 

compared to their companions within their corresponding risk factors: (1) drilling during winter or 

spring seasons, (2) implementation of acid treatment, (3) having no cement support, (4) witnessing 

dogleg bending stress ≥ 95,600 lb. ft, (5) bottomhole temperature ≥ 166 ⁰F, (6) lateral section 

shrinkage ≥ 10 in/100 ft (7) max inclination ≤ 95.5⁰, (8) dogleg severity ≥ 15⁰/100 ft, (9) frequency 

of severe dogleg ≥ 13 (Section 3.3.2.3). 

7.5 Predictive Analytics 

Afterwards, the attention was geared towards a different – yet equally important – issue, that is, 

prediction of the probability of casing failure using potential risk factors defined from risk analysis 

(Section 4.1). Machine learning techniques, particularly, supervised learning algorithms were used 

to fulfill that task (Section 4.2). Due to the type of the outcome, only the learning algorithms used 

for classification purposes were discussed, such as, logistic regression (Section 4.2.1), basic 
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decision trees (Section 4.2.2), random forests (Section 4.2.3), support vector classifier (Section 

4.2.4), support vector machines (Section 4.2.5) and artificial neural networks (Section 4.2.6). 

The different models were trained and tested on the data set, and results were compared based on 

two major bases: (1) prediction accuracy and (2) model balance and overall performance. For the 

prediction accuracy, the “overall classification rate” criterion was used. Regarding the model 

performance and balance, both “false positive rate” and “false negative rate” were implemented 

(Section 4.3). 

Based on the aforementioned criteria, artificial neural network (ANN) showed a superiority 

compared to other models, in terms of, prediction accuracy, overall performance and model 

balance. Support vector machines (SVMs) came second, followed by logistic regression (Section 

4.3). 

Although supervised learning algorithms showed huge potential for predicting the outcome of 

interest, that is, casing failure, yet they gave no allowance for engineer inputs/interventions. It is 

for that reason that we sought risk assessment techniques (Sections 4.4 through 4.6). 

7.6 Risk Assessment 

Risk assessment techniques had proven its efficiency in many applications in oil and gas industry 

(Section 4.7). In our study, we focused on one type of risk assessment techniques that is semi-

quantitative techniques. The implemented technique was PI-RAM. Results obtained from risk 

analysis, survival analysis and frequency analysis were used for the construction of those matrices. 

Using the PI-RAMs helped have a better intuition of not only the overall risk, but also the 

contribution of each risk factor (Section 4.9). This, in turn, could help experienced engineers have 

a clear view of changes to risk probabilities with changing conditions/designs. 
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Findings of the implemented workflow are in a close match with proven theories. This outcome 

has two important takeaways: (1) it gives validation to the proposed workflow, so,  we can trust 

its performance and its judgement when handling much more complex situations with a much 

bigger data set and much more features that might, yet, not be supported by physical proofs, (2) 

even though the proposed data-driven workflow led to the same results achieved by physics-based 

approached, yet, there still a key distinction between both that we did not have to get through all 

the physics behind that phenomena to reach to the final conclusions. 

7.7 Practical Conclusions 

The analyses applied in this study revealed the following practical insights: 

1. Based on the results of the risk analysis, only thirteen features – out of the initial twenty-six 

features – were considered as potential risk factors of casing failure. The risk factors were 

generally related to casing design (e.g., casing grade, casing surface area, etc.), fracture 

design (e.g., fracture length, fracture stages, etc.), well conditions (e.g., lateral shrinkage, 

bottomhole temperature, etc.) and drilling conditions (e.g., dogleg severity, maximum 

inclination, etc.). 

2. Based on odds ratio (OR) analysis, fracturing during spring turned out to increase the risk 

of casing failure by over 200%, an increase of one unit in the lateral section shrinkage 

increases the risk by 15% and an increase of one degree of maximum inclination increases 

the risk by 30%. On the other hand, cementing reduces the risk of casing failure by nearly 

54%, while having a casing thickness greater than 0.65 in (P110) tends to reduce the risk of 

casing failure by nearly 90%.  

3. Results of the survival analysis showed that the following conditions (subgroups/levels) are 
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the riskiest compared to their companions within their corresponding risk factors: 

a. Regarding “fracturing season”, it’s been noticed that for depths less than 8,500 ft, 

no significant difference in risk impact between different seasons. Yet, fracturing 

during “winter” or “spring” still puts the well at a higher risk of failure than the 

other two seasons: with an increase of risk by 20% and 7%, respectively, for depths 

ranging from 8,500 – 10,000 ft, while 30% and 20%, respectively, for depths 

greater than 10,000 ft. 

b. Regarding “acid treatment”, it has been noticed that: implementation of “acid” 

treatment at depths less than 8,500 ft imposes no increased risk on casing failure as 

opposed to not having acid treatment. However, for depths ranging from 8,500 to 

10,000 ft, as well as depths greater than 10,000 ft, the risk imposed by having acid 

treatment becomes much higher (7.5% and 12% increase, respectively) than that 

imposed by not having acid treatment. In addition, the risk constantly increases with 

increasing reached depth. 

c. Regarding “cementing”, it has been noticed that: having no “cement” support at 

depths less than 8,500 ft imposes no higher risk on casing failure compared to 

having a cement support. Yet, for depths ranging from 8,500 to 10,000 ft, as well 

as depths greater than 10,000 ft, having a cement support starts to play an integral 

rule in reducing the risk of casing failure; reaching nearly 30% less than the risk 

imposed by not having cement support for depths greater than 10,000 ft. 

d. Regarding “dogleg bending stress”, it has been noticed that at depths ranging from 

8,500 to 10,000 ft, as well as, depths < 10,000 ft, relatively high DL bending stress 

(> 95.8k lb./ft2) are needed to impose high risk on casing failure (~ 7.5% increase). 

Conversely, at depths > 10,000 ft, relatively lower DL bending stress (less than 
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95.8k lb./ft2) could be sufficient to impose a higher risk of casing failure (~ 12-13% 

increase).  

e. Regarding “bottomhole temperature”, it has been noticed that for depths < 8,500 ft, 

relatively higher BHT (> 166 oF) is needed in order to have a mere increase in risk 

of casing failure (~ 3.2% increase). In contrast, for depths ranging from 8,500 to 

10,000 ft, as well as, those > 10,000 ft, relatively less BHT (< 166 oF) could be 

enough to impose a significant increase in risk of casing failure (~ 5.1-12.8% 

increase).  

f. Regarding “lateral shrinkage”, it has been noticed that variation in the magnitude 

of “lateral shrinkage” tends to have no noticeable impact on the risk of casing 

failure for depths < 8,500 ft. Yet, for depths ranging from 8,500 to 10,000 ft, as 

well as, those > 10,000 ft, slight changes in lateral section (less than 10 ft/100ft) 

could play an integral rule in increasing the risk of casing failure (~ 26% increase).  

g. Regarding “maximum inclination”, as well as “DL severity”, it has been noticed 

that – similar to “bending stress” – “maximum inclination” and “DLS” possesses 

an inverse proportionality with respect to the measured depth. So, for depths < 

8,500 ft and those ranging from 8,500 – 10,000, a relatively high value of max. 

inclination, as well as DLS is needed in order to have a noticeable impact on 

increasing risk. Yet, for depths > 10,000 ft, relatively lower values would be 

sufficient to nearly increase the risk by 9-12%.  

h. Regarding “frequency of severe dogleg”, it has been noticed that it follows a direct 

proportionality with respect to the measured depth. So, for depths ranging from 

8,500 – 10,000, a relatively lower value of DLS frequency (< 13) could be 

indicative of increased risk (~ 4.6% increase). And, for depths > 10,000 ft, 
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relatively higher values (>13) would be a strong indication of increased risk (~ 

16.3%). 

i. Finally, for” fracture temperature”, it has been noticed that it follows direct 

proportionality with respect to the measured depth, for the same reasons as BHT.   

4. Comparison of different classification models showed the superiority of artificial neural 

network (ANN) compared to other models, in terms of, prediction accuracy (67% E), overall 

performance and model balance (33.33% FP, 33.33% FN). Support vector machines 

(SVMs) came second (67% E, 50% FP, 33.33% FN), followed by logistic regression (61% 

E, 33.33% FP, 50% FN). 

5. The developed automated casing failure mitigation tool could be used by drillers and drilling 

managers to automatically and constantly check and correct their design specification in 

order to mitigate, or avoid, potential casing failure. 

6. The developed data-driven workflows (based on risk analysis) could be used to explore new 

causing effects in far more complicated cases where there is not yet a physical proof to draw 

a solid conclusion. 

7. The developed data-driven workflows (based on survival analysis) could be used to explore 

the significance the variation in risk factors has on changing the overall impact of casing 

failure, in addition, expose the depths that are most vulnerable to casing failure based on the 

given downhole conditions.  
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APPENDIX A 
 

This section is devoted to the results obtained from case-control analysis implemented using 

odds ratio (OR) as the association measurement. 

 

 

  MODEL [1 ]    

AIC = 81.024       

 

Model Features: 

      

MAX_INCL FRAC_SEASON BHT    

DRILL_FRAC_INTERVAL       

 
Coefficients: 

      

Risk Factor Level Estimate Std. Error z-value p-value 

(Intercept)  -16.9326 15.34374 -1.104 0.270 

FRAC_SEASON Spring 1.27619 0.9615 1.327 0.184 

 Summer 0.64597 0.98086 0.659 0.510 

 Winter 1.54095 1.0995 1.402 0.161 

BHT  -0.0348 0.02547 -1.366 0.172 

MAX_INCL  0.21509 0.16845 1.277 0.202 

DRILL_FRAC_INTERVAL  0.01019 0.00907 1.124 0.261 

 
Risk Factor 

 
Level 

 
OR 

 
LL 

 
UL 

 
Risk 

 
Impact 

(Intercept)  4.43E-08 3.85E-21 509494.4 - - 

FRAC_SEASON Spring 3.582973 0.544252 23.5878 ▲ 260% 

 Summer 1.907827 0.279004 13.04573 ▲ 90% 

 Winter 4.669031 0.541146 40.28458 ▲ 367% 

BTH  0.965802 0.918779 1.015232 ▼ 4% 

MAX_INCL  1.239976 0.891299 1.725057 ▲ 24% 

DRILL_FRAC_INTERVAL  1.010245 0.992445 1.028365 ▼ 1% 
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  MODEL [2]     

AIC = 81.654       

 

Model Features: 

      

DL_FREQ_10PLUS FRAC_SEASON MAX_INCL   

DRILL_FRAC_INTERVAL BHT      

 
Coefficients: 

      

Risk Factor Level Estimate Std. Error z-value p-value 

(Intercept)  -21.3322 16.37178 -1.303 0.193 

FRAC_SEASON Spring 1.274856 0.968498 1.316 0.188 

 Summer 0.684717 0.988129 0.693 0.488 

 Winter 1.569822 1.127770 1.392 0.164 

BHT  -0.03685 0.026252 -1.404 0.160 

MAX_INCLs  0.276491 0.185307 1.492 0.136 

DRILL_FRAC_INTERVAL  0.01135 0.009356 1.213 0.225 

DL_FREQ_10PLUS  -0.08204 0.071231 -1.152 0.249 

 
Risk Factor 

 
Level 

 
OR 

 
LL 

 
UL 

 
Risk 

 
Impact 

(Intercept)  5.44E-10 6.30E-24 46933.21 - - 

FRAC_SEASON Spring 3.578187 0.536119 23.88170 ▲ 257% 

 Summer 1.983211 0.285928 13.75567 ▲ 98% 

 Winter 4.805794 0.526972 43.82708 ▲ 380% 

BTH  0.963818 0.915481 1.014708 ▼ 4% 

MAX_INCL  1.318495 0.916943 1.895897 ▲ 31% 

DRILL_FRAC_INTERVAL  1.011415 0.993037 1.030133 ▲ 1% 

DL_FREQ_10PLUS  0.921239 0.801197 1.059267 ▼ 8% 
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  MODEL [3]     

AIC = 82.75       

 

Model Features: 

      

LATERAL_SHRINKAGE FRAC_SEASON MAX_INCL   

DL_FREQ_10PLUS DRILL_FRAC_INTERVAL BHT    

 
Coefficients: 

      

Risk Factor Level Estimate Std. Error z-value p-value 

(Intercept)  -22.8954 16.58420 -1.381 0.167 

FRAC_SEASON Spring 1.363045 0.970678 1.404 0.160 

 Summer 0.623232 0.989067 0.63 0.529 

 Winter 1.598323 1.124400 1.421 0.155 

BHT  -0.03951 0.026623 -1.484 0.138 

LATERAL_SHRINKAGE  0.138172 0.151765 0.91 0.363 

MAX_INCL  0.276077 0.186439 1.481 0.139 

DRILL_FRAC_INTERVAL  0.01356 0.009862 1.375 0.169 

DL_FREQ_10PLUS  -0.08408 0.072369 -1.162 0.245 

 
Risk Factor 

 
Level 

 
OR 

 
LL 

 
UL 

 
Risk 

 
Impact 

(Intercept)  1.14E-10 8.71E-25 14907.89 - - 

FRAC_SEASON Spring 3.908075 0.583049 26.19513 ▲ 290% 

 Summer 1.864947 0.268383 12.95917 ▲ 86% 

 Winter 4.944734 0.545801 44.79727 ▲ 394% 

BTH  0.961264 0.912391 1.012755 ▼ 4% 

LATERAL_SHRINKAGE  1.148172 0.852751 1.545939 ▲ 14% 

MAX_INCL  1.317949 0.914531 1.899325 ▲ 31% 

DRILL_FRAC_INTERVAL  1.013653 0.994247 1.033437 ▲ 1% 

DL_FREQ_10PLUS  0.919354 0.797776 1.059461 ▼ 9% 
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MODEL [4] 

AIC = 84.53       

 

Model Features: 

      

LATERAL_SHRINKAGE FRAC_SEASON DL_SEVERE_MD   

DL_FREQ_10PLUS MAX_INCL BHT    

DRILL_FRAC_INTERVAL       

 
Coefficients: 

      

Risk Factor Level Estimate Std. Error z-value p-value 

(Intercept)  -2.06E+01 1.73E+01 -1.191 0.234 

FRAC_SEASON Spring 1.31E+00 9.76E-01 1.346 0.178 

 Summer 4.81E-01 1.04E+00 0.465 0.642 

 Winter 1.47E+00 1.16E+00 1.271 0.204 

BHT  -4.44E-02 2.87E-02 -1.545 0.122 

LATERAL_SHRINKAGE  1.36E-01 1.50E-01 0.905 0.366 

MAX_INCL  2.52E-01 1.92E-01 1.311 0.190 

DL_SEVERE_MD  1.06E-04 2.29E-04 0.465 0.642 

DRILL_FRAC_INTERVAL  1.28E-02 9.98E-03 1.279 0.201 

DL_FREQ_10PLUS  -8.76E-02 7.36E-02 -1.19 0.234 

 
Risk Factor 

 
Level 

 
OR 

 
LL 

 
UL 

 
Risk 

 
Impact 

(Intercept)  1.19E-09 2.47E-24 575473.1 - - 

FRAC_SEASON Spring 3.718162 0.549407 25.163 ▲ 271% 

 Summer 1.617872 0.212585 12.31275 ▲ 61% 

 Winter 4.350393 0.450515 42.00953 ▲ 335% 

BTH  0.956593 0.904236 1.011981 ▼ 5% 

LATERAL_SHRINKAGE  1.145313 0.853594 1.536729 ▲ 14% 

MAX_INCL  1.28664 0.882666 1.875501 ▲ 28% 

DL_SEVERE_MD  1.000106 0.999658 1.000555 ▲ 0% 

DRILL_FRAC_INTERVAL  1.012847 0.993222 1.032859 ▲ 0% 

DL_FREQ_10PLUS  0.916164 0.793158 1.058246 ▼ 9% 
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MODEL [5] 

AIC = 86.078       

 

Model Features: 

      

CEMENT FRAC_SEASON DL_SEVERE_MD   

LATERAL_SHRINKAGE MAX_INCL  BHT    

DL_FREQ_10PLUS DRILL_FRAC_INTERVAL    

 
Coefficients: 

      

Risk Factor Level Estimate Std. Error z-value p-value 

(Intercept)  -2.24E+01 1.75E+01 -1.277 0.201 

FRAC_SEASON Spring 1.41E+00 9.94E-01 1.42 0.155 

 Summer 5.79E-01 1.05E+00 0.55 0.582 

 Winter 1.53E+00 1.17E+00 1.307 0.191 

CEMENT Yes -5.38E-01 8.08E-01 -0.666 0.506 

BHT  -3.73E-02 3.08E-02 -1.21 0.226 

LATERAL_SHRINKAGE  1.09E-01 1.54E-01 0.71 0.478 

MAX_INCL  2.61E-01 1.94E-01 1.347 0.178 

DL_SEVERE_MD  1.54E-04 2.44E-04 0.629 0.529 

DRILL_FRAC_INTERVAL  1.24E-02 1.02E-02 1.215 0.224 

DL_FREQ_10PLUS  -8.86E-02 7.39E-02 -1.198 0.231 

 
Risk Factor 

 
Level 

 
OR 

 
LL 

 
UL 

 
Risk 

 
Impact 

(Intercept)  1.94E-10 2.43E-25 154793.4 - - 

FRAC_SEASON Spring 4.103800 0.584906 28.79298 ▲ 300% 

 Summer 1.783528 0.226884 14.02024 ▲ 78% 

 Winter 4.606826 0.465838 45.55840 ▲ 360% 

CEMENT Yes 0.584138 0.119982 2.843915 ▼ 58% 

BTH  0.963390 0.906912 1.023386 ▼ 4% 

LATERAL_SHRINKAGE  1.115431 0.82487 1.508341 ▲ 11% 

MAX_INCL  1.298576 0.887981 1.899026 ▲ 29% 

DL_SEVERE_MD  1.000154 0.999675 1.000633 ▲ 0% 

DRILL_FRAC_INTERVAL  1.012484 0.992419 1.032955 ▲ 0% 

DL_FREQ_10PLUS  0.915255 0.791773 1.057994 ▼ 10% 
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MODEL [6] 

AIC = 88.009       

 

Model Features: 

      

CEMENT FRAC_SEASON DL_SEVERE_MD   

LATERAL_SHRINKAGE MAX_INCL  BHT    

DL_FREQ_10PLUS DRILL_FRAC_INTERVAL ACID   

 
Coefficients: 

      

Risk Factor Level Estimate Std. Error z-value p-value 

(Intercept)  -22.5015 17.49441 -1.286 0.198 

FRAC_SEASON Spring 1.382646 0.996585 1.387 0.165 

 Summer 0.597784 1.051459 0.569 0.570 

 Winter 1.553488 1.172369 1.325 0.185 

ACID Yes 0.225756 0.86296 0.262 0.794 

CEMENT Yes -0.56512 0.815023 -0.693 0.488 

BHT  -0.03815 0.031091 -1.227 0.220 

LATERAL_SHRINKAGE  0.107123 0.152429 0.703 0.482 

MAX_INCL  0.266527 0.19481 1.368 0.171 

DL_SEVERE_MD  0.000125 0.000268 0.466 0.641 

DRILL_FRAC_INTERVAL  0.012214 0.0102 1.197 0.231 

DL_FREQ_10PLUS  -0.08682 0.074595 -1.164 0.244 

 
Risk Factor 

 
Level 

 
OR 

 
LL 

 
UL 

 
Risk 

 
Impact 

(Intercept)  1.69E-10 2.17E-25 131603.3 - - 

FRAC_SEASON Spring 3.985434 0.565152 28.10516 ▲ 298% 

 Summer 1.818086 0.231523 14.27690 ▲ 81% 

 Winter 4.727933 0.47504 47.05570 ▲ 372% 

ACID Yes 1.253270 0.230929 6.801600 ▲ 25% 

CEMENT Yes 0.568291 0.115029 2.807581 ▼ 56% 

BTH  0.962571 0.905665 1.023052 ▼ 4% 

LATERAL_SHRINKAGE  1.113071 0.825607 1.500627 ▲ 11% 

MAX_INCL  1.305422 0.891097 1.912392 ▲ 30% 

DL_SEVERE_MD  1.000125 0.9996 1.000650 ▲ 0% 

DRILL_FRAC_INTERVAL  1.012289 0.992252 1.032731 ▲ 0% 

DL_FREQ_10PLUS  0.916844 0.792134 1.061187 ▼ 9% 
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MODEL [7] 

AIC = 89.901       

Model Features: 
      

CEMENT FRAC_SEASON DL_SEVERE_MD   

LATERAL_SHRINKAGE MAX_INCL  BHT    

DL_FREQ_10PLUS DRILL_FRAC_INTERVAL ACID   

 

Coefficients: 

      

Risk Factor Level Estimate Std. Error z-value p-value 

(Intercept)  -2.23E+01 1.76E+01 -1.272 0.203 

FRAC_SEASON Spring 1.39E+00 9.98E-01 1.388 0.165 

 Summer 5.30E-01 1.07E+00 0.494 0.622 

 Winter 1.53E+00 1.17E+00 1.305 0.192 

MD  -1.29E-04 3.93E-04 -0.328 0.743 

ACID Yes 2.59E-01 8.66E-01 0.299 0.765 

CEMENT Yes -5.76E-01 8.15E-01 -0.707 0.480 

BHT  -3.30E-02 3.46E-02 -0.953 0.341 

LATERAL_SHRINKAGE  1.53E-01 2.07E-01 0.74 0.459 

MAX_INCL  2.59E-01 1.97E-01 1.317 0.188 

DL_SEVERE_MD  2.12E-04 3.73E-04 0.568 0.570 

DRILL_FRAC_INTERVAL  1.25E-02 1.04E-02 1.202 0.230 

DL_FREQ_10PLUS  -8.56E-02 7.45E-02 -1.149 0.251 

 
Risk Factor 

 
Level 

 
OR 

 
LL 

 
UL 

 
Risk 

 
Impact 

(Intercept)  1.98E-10 2.22E-25 176325.5 - - 

FRAC_SEASON Spring 3.993101 0.564891 28.22644 ▲ 299% 

 Summer 1.698039 0.207342 13.90618 ▲ 69% 

 Winter 4.626766 0.463897 46.14597 ▲ 362% 

MD  0.999871 0.9991 1.000642 ▲ 1% 

ACID Yes 1.295801 0.237163 7.079947 ▲ 29% 

CEMENT Yes 0.561902 0.11365 2.778134 ▼ 56% 

BTH  0.967580 0.904164 1.035443 ▼ 4% 

LATERAL_SHRINKAGE  1.165000 0.777287 1.746106 ▲ 16% 

MAX_INCL  1.295481 0.881325 1.904258 ▲ 29% 

DL_SEVERE_MD  1.000212 0.999482 1.000942 ▲ 0% 

DRILL_FRAC_INTERVAL  1.012611 0.99212 1.033526 ▲ 0% 

DL_FREQ_10PLUS  0.918006 0.793352 1.062247 ▼ 9% 
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MODEL [8] 

AIC = 91.899       

Model Features: 
      

CEMENT FRAC_SEASON DL_SEVERE_MD   

LATERAL_SHRINKAGE MAX_INCL  BHT    

DL_FREQ_10PLUS DRILL_FRAC_INTERVAL ACID   

DL_BEND_STRESS       

 
Coefficients: 

      

Risk Factor Level Estimate Std. Error z-value p-value 

(Intercept)  -2.24E+01 1.76E+01 -1.273 0.203 

DL_BEND_STRESS  -7.71E-07 1.68E-05 -0.046 0.963 

FRAC_SEASON Spring 1.39E+00 9.98E-01 1.388 0.165 

 Summer 5.27E-01 1.07E+00 0.49 0.624 

 Winter 1.54E+00 1.20E+00 1.286 0.199 

MD  -1.28E-04 3.95E-04 -0.323 0.747 

ACID Yes 2.57E-01 8.68E-01 0.296 0.767 

CEMENT Yes -5.69E-01 8.30E-01 -0.686 0.493 

BHT  -3.28E-02 3.48E-02 -0.942 0.346 

LATERAL_SHRINKAGE  1.51E-01 2.09E-01 0.725 0.468 

MAX_INCL  2.59E-01 1.97E-01 1.318 0.188 

DL_SEVERE_MD  2.12E-04 3.73E-04 0.569 0.569 

DRILL_FRAC_INTERVAL  1.25E-02 1.05E-02 1.193 0.233 

DL_FREQ_10PLUS  -8.45E-02 7.80E-02 -1.082 0.279 

 
Risk Factor 

 
Level 

 
OR 

 
LL 

 
UL 

 
Risk 

 
Impact 

DL_BEND_STRESS  0.999999 0.999966 1.000032 ▼ 1% 

FRAC_SEASON Spring 3.997192 0.564849 28.28638 ▲ 299% 

 Summer 1.693661 0.206214 13.91026 ▲ 69% 

 Winter 4.681156 0.445095 49.23273 ▲ 368% 

MD  0.999872 0.999098 1.000647 ▲ 1% 

ACID Yes 1.292664 0.235832 7.085466 ▲ 29% 

CEMENT Yes 0.566000 0.111224 2.880286 ▼ 56% 

BTH  0.967748 0.903955 1.036043 ▼ 4% 

LATERAL_SHRINKAGE  1.163346 0.772904 1.751024 ▲ 16% 

MAX_INCL  1.295689 0.881411 1.904687 ▲ 29% 

DL_SEVERE_MD  1.000212 0.999482 1.000943 ▲ 0% 

DRILL_FRAC_INTERVAL  1.012572 0.992008 1.033562 ▲ 0% 

DL_FREQ_10PLUS  0.919001 0.788654 1.070892 ▼ 9% 
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APPENDIX B 
 

 
(a) 

 
(b) 
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(e) 

 
(f) 
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(g) 

 
(h) 
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(j) 

 
(k) 
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(l) 

Figure B-1. Graphical Representation of Exploratory Data Analytics (EDA) of Data Set. 
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APPENDIX C 
 

In essence, parametric survival curve estimators assume that a survival function follows a 

parametric distribution. The distribution might be exponential; corresponding to constant 

survival/hazard, or what is known as Weibull distribution; corresponding to varying 

survival/hazard. Regardless of the distribution, it is essential that we calculate the unknown 

parameter(s). The theory of “maximum likelihood estimation” provides one way of doing that. 

Maximum Likelihood Estimation 

We start the discussion by considering a simple example; assuming that the survival function 

follows an exponential distribution. The likelihood is calculated, then, by taking a product of 

terms from the exponential distribution, one for each observation. In case there is no censoring, 

the likelihood function takes the general form 

 

𝐿(𝜆; 𝑑1, 𝑑2, … , 𝑑𝑛) = 𝑓(𝑑1, 𝜆) ∙ 𝑓(𝑑2, 𝜆) ∙ ⋯ ∙ 𝑓(𝑑𝑛, 𝜆) = ∏ 𝑓(𝑑𝑖, 𝜆) 

 

(B - 1) 

 

If some observations are censored, we have to make an adjustment to this expression. For an 

observation of an observed failure, we put in the probability density function (PDF). as above. 

But for a right-censored observation, we put in the survival function, indicating that observation 

is known only to exceed a particular value. The likelihood in general then takes the form 

 
𝑛 𝑛 

𝐿(𝜆; 𝑑1, 𝑑2, … , 𝑑𝑛) = ∏ 𝑓(𝑑𝑖, 𝜆)𝛿𝑖 ∙ 𝑆(𝑑𝑖, 𝜆)1−𝛿𝑖 = ∏ ℎ(𝑑𝑖, 𝜆)𝛿𝑖 ∙ 𝑆(𝑑𝑖, 𝜆) 

𝑖=1 𝑖=1 

 

(B -2) 

 
Censoring is basically a way of differentiating between individuals (drilling/producing wells) that 

experienced the outcome (casing failure) from those that did not. For an arbitrary well, 𝑑𝑖, that 

experienced a casing failure, the censoring indicator takes the value 𝛿𝑖 = 1, In this case, we use a 

probability density function (PDF) for our calculations. When a well, 𝑑𝑖, is a censored 

observation, we have 𝛿𝑖 = 0 we enter a survival factor. Alternatively, we may enter a hazard factor 

for each censored observation and a survival factor for every observation, censored or not. 
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For the exponential distribution, the general expression for the likelihood function can be 

simplified as follows: 

 

𝑛 
𝛿𝑖 1−𝛿𝑖 

𝐿(𝜆; 𝑑1, 𝑑2, … , 𝑑𝑛) = ∏[𝜆𝑒−𝑑𝑖/𝜇] ∙ [𝑒−𝜆𝑑𝑖 ] = 𝜆𝑑𝑒−𝜆𝑉 

𝑖=1 

 

(B - 3) 

 

where 𝑑 = ∑𝑛 𝛿𝑖 is the total number of failures and 𝑉 = ∑𝑛 𝑑𝑖 is the total amount of depths i  

the data set. 

After the definition of the likelihood function that constitutes the survival function, it is important 

that we find the value of 𝜆 that maximizes this function. It is for that reason it is also known as 

the maximum likelihood estimate.  

Using the logarithmic transformation simplify the likelihood function; by converting it into a 

sum, a log-likelihood function can be defined as 

 
𝑙(𝜆) = 𝑑 log 𝜆 − 𝜆𝑉 (B - 4) 

 

 
Since the log transformation is monotonic, it only has one minima and one maxima. This, in turn, 

means that the value of 𝜆 that maximizes the log-likelihood also maximizes the original likelihood 

function. 

We use standard calculus to find the first derivative, also called the score function, 

 

𝑙`(𝜆) =
𝑑

𝜆
− 𝑉 (B - 5) 

 
 

which we set equal to zero to obtain the maximum likelihood estimate, 𝜆 ̂ = 𝑑/𝑉. 

 



 

217 
 

APPENDIX D 
 

 

 

Figure D-1. Graphical representation of survival curves based on experience of acid treatment. Survival curve 

corresponding to “not having acid treatment” is highlighted in red. Survival curve corresponding to “having 

acid treatment” is highlighted in green. 
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Figure D-2. Graphical representation of survival curves based on experience of cementing. Survival curve 

corresponding to “not having cement” is highlighted in red. Survival curve corresponding to “having cement” 

is highlighted in green. 
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Figure D-3. Graphical representation of survival curves based on change of dogleg bending stress. 

Survival curve corresponding to “dogleg bending stress < 95.8k lb./ft3” is highlighted in red. Survival 

curve corresponding to “dogleg bending stress > 95.8k lb./ft3” is highlighted in green. 
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Figure D-4. Graphical representation of survival curves based on change of total measured depth. Survival 

curve corresponding to “measured depth < 13.5k ft” is highlighted in red. Survival curve corresponding to 

“measured depth > 13.5k ft” is highlighted in green. 
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Figure D-5. Graphical representation of survival curves based on change of bottomhole temperature.  

Survival curve corresponding to “bottomhole temperature < 166 F” is highlighted in red. Survival curve 

corresponding to “bottomhole temperature > 166 F” is highlighted in green. 
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Figure D-6. Graphical representation of survival curves based on change of lateral section shrinkage. 

Survival curve corresponding to “lateral shrinkage < 10.7 in/100ft” is highlighted in red. Survival curve 

corresponding to “lateral shrinkage > 10.7 in/100ft” is highlighted in green. 
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Figure D-7. Graphical representation of survival curves based on change of maximum inclination.  

Survival curve corresponding to “max. inclination < 95.5 o” is highlighted in red. Survival curve 

corresponding to “max. inclination > 95.5 o” is highlighted in green. 
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Figure D-8. Graphical representation of survival curves based on change of MD of max. DL severity. 

Survival curve corresponding to “MD of max. DL severity < 10.9k ft” is highlighted in red. Survival curve 

corresponding to “MD of max. DL severity > 10.9k ft” is highlighted in green.  
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Figure D-9. Graphical representation of survival curves based on freq. of DL severity (>10 o/100ft). Survival 

curve corresponding to “freq. of DL severity (>10 o/100ft) < 13” is highlighted in red. Survival curve 

corresponding to “freq. of DL severity (>10 o/100ft) > 13” is highlighted in green. 
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Figure D-10. Graphical representation of survival curves based on change of dogleg severity. Survival curve 

corresponding to “DL severity < 15 o/100ft” is highlighted in red. Survival curve corresponding to “DL 

severity > 15 o/100ft” is highlighted in green.  
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Figure D-11. Graphical representation of survival curves based on change of fracture temperature. 

Survival curve corresponding to “fracture temperature < 49.5 F” is highlighted in red. Survival curve 

corresponding to “fracture temperature > 49.5 F” is highlighted in green. 
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APPENDIX E 
 

In this section, we present the full results obtained from the application of semi-quantitative risk 

assessment techniques (Chapter 4); namely, probability-impact risk assessment matrices (PI-

RAMs) on the potential risk factors identified through the implementation of risk analysis 

association measurements.



 

229 
 

  

 

 

Figure E-1. (left) Risk Assessment Results for “Acid” Risk Factor. (Top-right) Calculated Risk Values for Different Variations of “Acid” Risk 

Factor. (Bottom-right) Summery of Frequency Analysis Used for Determining Likelihood of Various Combinations of “Acid” Risk Factor.   
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Figure E-2. (left) Risk Assessment Results developed in this study for “Cement” Risk Factor. (Top-right) Calculated Risk Values for Different 

Variations of “Cement” Risk Factor. (Bottom-right) Summery of Frequency Analysis Used for Determining Likelihood of Various Combinations 

of “Cement” Risk Factor.   
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Figure E-3. (left) Risk Assessment Results for “Dogleg Bending Stress < 95.8” Risk Factor. (Top-right) Calculated Risk Values for Different 

Variations of “Dogleg Bending Stress < 95.8” Risk Factor. (Bottom-right) Summery of Frequency Analysis Used for Determining Likelihood of 

Various Combinations of “Dogleg Bending Stress < 95.8” Risk Factor.   
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Figure E-4. (left) Risk Assessment Results developed in this study for “Dogleg Bending Stress > 95.8” Risk Factor. (Top-right) Calculated Risk 

Values for Different Variations of “Dogleg Bending Stress > 95.8” Risk Factor. (Bottom-right) Summery of Frequency Analysis Used for 

Determining Likelihood of Various Combinations of “Dogleg Bending Stress > 95.8” Risk Factor.   
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Figure E-5. (left) Risk Assessment Results for “Measured Depth < 13.5k” Risk Factor. (Top-right) Calculated Risk Values for Different 

Variations of “Measured Depth < 13.5k” Risk Factor. (Bottom-right) Summery of Frequency Analysis Used for Determining Likelihood of 

Various Combinations of “Measured Depth < 13.5k” Risk Factor.   
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Figure E-6. (left) Risk Assessment Results for “Measured Depth > 13.5k” Risk Factor. (Top-right) Calculated Risk Values for Different 

Variations of “Measured Depth > 13.5k” Risk Factor. (Bottom-right) Summery of Frequency Analysis Used for Determining Likelihood of 

Various Combinations of “Measured Depth > 13.5k” Risk Factor.   
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Figure E-7. (left) Risk Assessment Results for “Bottomhole Temperature < 166F” Risk Factor. (Top-right) Calculated Risk Values for Different 

Variations of “Bottomhole Temperature < 166F” Risk Factor. (Bottom-right) Summery of Frequency Analysis Used for Determining Likelihood 

of Various Combinations of “Bottomhole Temperature < 166F” Risk Factor.   
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Figure E-8. (left) Risk Assessment Results for “Bottomhole Temperature > 166F” Risk Factor. (Top-right) Calculated Risk Values for Different 

Variations of “Bottomhole Temperature > 166F” Risk Factor. (Bottom-right) Summery of Frequency Analysis Used for Determining Likelihood 

of Various Combinations of “Bottomhole Temperature > 166F” Risk Factor.   
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Figure E-9. (left) Risk Assessment Results for “Lateral Shrinkage < 10.7” Risk Factor. (Top-right) Calculated Risk Values for Different 

Variations of “Lateral Shrinkage < 10.7” Risk Factor. (Bottom-right) Summery of Frequency Analysis Used for Determining Likelihood of 

Various Combinations of “Lateral Shrinkage < 10.7” Risk Factor.   
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Figure E-10. (left) Risk Assessment Results for “Lateral Shrinkage > 10.7” Risk Factor. (Top-right) Calculated Risk Values for Different 

Variations of “Lateral Shrinkage > 10.7” Risk Factor. (Bottom-right) Summery of Frequency Analysis Used for Determining Likelihood of 

Various Combinations of “Lateral Shrinkage > 10.7” Risk Factor.   
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Figure E-11. (left) Risk Assessment Results for “Maximum Inclination < 95.5” Risk Factor. (Top-right) Calculated Risk Values for Different 

Variations of “Maximum Inclination < 95.5” Risk Factor. (Bottom-right) Summery of Frequency Analysis Used for Determining Likelihood of 

Various Combinations of “Maximum Inclination < 95.5” Risk Factor.   
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Figure E-12. (left) Risk Assessment Results for “Maximum Inclination > 95.5” Risk Factor. (Top-right) Calculated Risk Values for Different 

Variations of “Maximum Inclination > 95.5” Risk Factor. (Bottom-right) Summery of Frequency Analysis Used for Determining Likelihood of 

Various Combinations of “Maximum Inclination > 95.5” Risk Factor.   
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Figure E-13: (left) Risk Assessment Results for “Dogleg Severe Measured Depth < 10.9k” Risk Factor. (Top-right) Calculated Risk Values for 

Different Variations of “Dogleg Severe Measured Depth < 10.9k” Risk Factor. (Bottom-right) Summery of Frequency Analysis Used for 

Determining Likelihood of Various Combinations of “Dogleg Severe Measured Depth < 10.9k” Risk Factor.   
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Figure E-14. (left) Risk Assessment Results for “Dogleg Severe Measured Depth > 10.9k” Risk Factor. (Top-right) Calculated Risk Values for 

Different Variations of “Dogleg Severe Measured Depth > 10.9k” Risk Factor. (Bottom-right) Summery of Frequency Analysis Used for 

Determining Likelihood of Various Combinations of “Dogleg Severe Measured Depth > 10.9k” Risk Factor.   
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Figure E-15. (left) Risk Assessment Results for “Dogleg Severity Freq. < 13” Risk Factor. (Top-right) Calculated Risk Values for Different 

Variations of “Dogleg Severity Freq. < 13” Risk Factor. (Bottom-right) Summery of Frequency Analysis Used for Determining Likelihood of 

Various Combinations of “Dogleg Severity Freq. < 13” Risk Factor.   
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Figure E-16. (left) Risk Assessment Results for “Dogleg Severity Freq. > 13” Risk Factor. (Top-right) Calculated Risk Values for Different 

Variations of “Dogleg Severity Freq. > 13” Risk Factor. (Bottom-right) Summery of Frequency Analysis Used for Determining Likelihood of 

Various Combinations of “Dogleg Severity Freq. > 13” Risk Factor.   
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Figure E-17. (left) Risk Assessment Results for “Dogleg Severity < 15” Risk Factor. (Top-right) Calculated Risk Values for Different Variations 

of “Dogleg Severity < 15” Risk Factor. (Bottom-right) Summery of Frequency Analysis Used for Determining Likelihood of Various 

Combinations of “Dogleg Severity < 15” Risk Factor.   
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Figure E-18. (left) Risk Assessment Results for “Dogleg Severity > 15” Risk Factor. (Top-right) Calculated Risk Values for Different Variations 

of “Dogleg Severity > 15” Risk Factor. (Bottom-right) Summery of Frequency Analysis Used for Determining Likelihood of Various 

Combinations of “Dogleg Severity > 15” Risk Factor.   
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Figure E-19. (left) Risk Assessment Results for “Fracture Temperature < 50” Risk Factor. (Top-right) Calculated Risk Values for Different 

Variations of “Fracture Temperature < 50” Risk Factor. (Bottom-right) Summery of Frequency Analysis Used for Determining Likelihood of 

Various Combinations of “Fracture Temperature < 50” Risk Factor.   
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Figure E-20. (left) Risk Assessment Results for “Fracture Temperature > 50” Risk Factor. (Top-right) Calculated Risk Values for Different 

Variations of “Fracture Temperature > 50” Risk Factor. (Bottom-right) Summery of Frequency Analysis Used for Determining Likelihood of 

Various Combinations of “Fracture Temperature > 50” Risk Factor.   
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  FEATURE 

  𝒇𝟏 𝒇𝟐 𝒇𝟑 𝒇𝟒 𝒇𝟓 𝒇𝟔 𝒇𝟕 𝒇𝟖 𝒇𝟗 𝒇𝟏𝟎 𝒇𝟏𝟏 𝒇𝟏𝟐 𝒇𝟏𝟑 
D

E
P

T
H

 

7927 Spring No Yes 69256.13 9406 150 7.19 94.2 7370 16 21.15 64 133 

7954 Winter No No 62117.67 12588 170 15.2 95 10227 13 18.97 19 200 

8280 Summer No Yes 37853.5 12343 175 13.45 93.4 7911 7 11.56 24 107 

8400 Winter Yes Yes 101116.8 18532 174 11.26 95.74 15669 12 14.47 17 127 

8846 Spring No Yes 42667 12114 150 13.47 93.9 7844 15 13.03 58 44 

9052 Winter No Yes 84905.49 13260 180 14.31 93.2 8300 17 14.27 41 93 

9297 Fall No No 56064.15 13746 150 15.94 92.9 8551 10 14.9 68 65 

9403 Spring No No 83107.35 10472 150 10.04 94.4 7185 15 25.38 75 69 

10074 Winter Yes Yes 126684.3 13525 170 12.94 92.33 9341 12 29.3 43 128 

10100 Winter No No 42830.74 11950 150 13.57 93.4 7644 12 13.08 42 82 

11065 Spring No No 37591.5 11350 150 13.93 94.4 6685 6 11.48 38 44 

11096 Summer Yes Yes 48037.23 15960 180 14.7 93.15 11297 12 14.67 88 59 

11129 Spring No No 46793 14720 150 17.85 92 8906 12 14.29 73 49 

11537 Summer No No 49479.43 12246 150 13.31 93.1 8158 19 13.15 80 82 

12830 Summer Yes Yes 48855.86 15689 180 13.69 95.89 11531 15 14.92 68 69 

12920 Fall No No 53505.68 11120 150 13.49 94.5 6791 14 16.34 63 37 

12938 Summer Yes Yes 56190.78 11673 150 14.91 96.1 9215 19 17.16 81 56 

14705 Spring Yes No 43747.6 14705 182 18.01 95 8180 12 13.36 45 46 

16558 Spring No No 42536.03 12937 150 13.95 93.1 8280 15 12.99 59 63 

Figure E-21. Assessment of Already Identified Failure Cases in Granite Wash data set Using the Developed Risk matrices (RMs).
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APPENDIX F 
 

The purpose of this appendix is to highlight results of ANSYS simulation runs for various 

scenarios of casing support and induced thermal stresses induced in P-110 production casing. 

Max. Strain Effect on Cement Support Percentage 

Cement support volume has been changes by changing cement support thickness from (10-3/4” to 

8-1/2”) 100% to zero%. Change in casing temperature from 50oC to 350oC. Five different cases 

have been performed such as 0%, 20%, 40%, 60%, 80%, and 100% Cement support and change 

in temperature are 50oC, 100oC, 200oC, 300oC, and 350oC. 

Case 1 

In case 1 at 50 oC temperature for all Cement Support Percentage 

Table F-1 Case 1 Max Strain values at 50oC temperature for different cement percentage. 

Cement Support Percentage Cement Thickness Equivalent Strain (in/in) 

100% 1.125 0.0013632 

80% 0.9 0.0014394 

60% 0.675 0.0015484 

40% 0.45 0.0015807 

20% 0.225 0.001669 

0% 0 0.0017475 
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Figure F-1. Case 1 at 50oC Temperature Differential and Different Cement support Percentage. 

 

 

 

 

 

 

 

 

 

 

 

 

100% 80% 

60% 40% 

20% 0% 



 

252 
 

Case 2 

In case 2 at 100oC temperature for all Cement Support Percentage 

Table F-2 Case 2 Max Strain values at 100oC temperature for different cement percentage. 

Cement Support Percentage Cement Thickness Equivalent Strain (in/in) 

100% 1.125 0.0016955 

80% 0.9 0.0017978 

60% 0.675 0.0019452 

40% 0.45 0.0019689 

20% 0.225 0.0019882 

0% 0 0.0020564 

 

 

 

Figure F-2. Case 2 at 100oC Temperature Differential and Different Cement support Percentage. 
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Case 3 

In case 3 at 200oC temperature for all Cement Support Percentage 

Table F-3 Case 3 Max Strain values at 200oC temperature for different cement percentage. 

Cement Support Percentage Cement Thickness Equivalent Strain (in/in) 

100% 1.125 0.0024107 

80% 0.9 0.002569 

60% 0.675 0.0027993 

40% 0.45 0.0028386 

20% 0.225 0.0028635 

0% 0 0.002973 

 

 

 

Figure F-3. Case 3 at 200oC Temperature Differential and Different Cement support Percentage. 

100% 80% 

60% 40% 

20% 0% 
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Case 4 

In case 4 at 300oC temperature for all Cement Support Percentage 

Table F-4 Case 4 Max Strain values at 300oC temperature for different cement percentage. 

Cement Support Percentage Cement Thickness Equivalent Strain (in/in) 

100% 1.125 0.0031632 

80% 0.9 0.0034218 

60% 0.675 0.0036414 

40% 0.45 0.0036963 

20% 0.225 0.003726 

0% 0 0.0038771 

 

 

Figure F-4. Case 4 at 300oC Temperature Differential and Different Cement support Percentage. 
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Case 5 

In case 5 at 350oC temperature for all Cement Support Percentage 

 

 

Table F-5 Case 5 Max Strain values at 350oC temperature for different cement percentage. 

Cement Support Percentage Cement Thickness Equivalent Strain (in/in) 

100% 1.125 0.0039393 

80% 0.9 0.0039513 

60% 0.675 0.0040633 

40% 0.45 0.0041261 

20% 0.225 0.0041581 

0% 0 0.0043302 

 

 

Figure F-5. Case 5 at 350oC Temperature Differential and Different Cement support Percentage. 
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