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 ABSTRACT 

 

Reliable quantification of well connectivity is a crucial aspect in forming a good 

understanding of a reservoir, which in turn helps in formulating future development 

plans such as rate optimization and offset wells. This assumes an even greater 

importance when applied to high-capital projects such as CO2 EOR and polymer floods. 

Conventional methods for assessing well connectivity include tracer tests and numerical 

simulation-based techniques such as streamlines. However, these methods of 

connectivity detection tend to be either computation-intensive (i.e. numerical simulation) 

or resource-intensive (such as tracer tests).  

This dissertation makes three major contributions related to machine-learning 

applications for connectivity detection and rate optimization. Firstly, I propose a novel 

approach for connectivity quantification and rate optimization during a waterflood under 

geologic uncertainty in reservoir properties such as permeability and porosity. A 

machine-learning (ML) based approach which is quick and scalable for rate optimization 

over multiple geologic realizations is proposed instead.  

Secondly, a machine-learning framework is built on the statistical recurrent unit 

(SRU) model that interprets well-based injection/production data into inter-well 

connectivity without relying on a geologic model. Furthermore, a streamline-based 

validation procedure is also proposed which provides physics-based backing to the 

results obtained from data analytics.  
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Thirdly, this dissertation proposes a workflow that integrates unsupervised 

machine learning and streamline techniques to select representative geologic realizations 

based on their flow features. The workflow may be used to identify key wells for 

implementing optimized rate schedules, while taking into account the uncertainty in the 

geologic model. 
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CHAPTER I  

INTRODUCTION1 

 

Reliable quantification of well connectivity is a crucial aspect to forming a good 

understanding of a reservoir, which in turn helps in formulating future development 

plans such as rate optimization and offset wells (Chen et al. 2020b). This assumes an 

even greater importance when applied to high-capital projects such as CO2 EOR and 

polymer floods.  

Conventional methods for assessing well connectivity include tracer tests (Zhang 

et al. 2016, Suarsana and Badril 2011) and numerical simulation-based techniques such 

as streamlines (Datta-Gupta and King 2007). Streamlines explicitly reveal the flow paths 

in the reservoir and quantify the interaction between injectors and producers via well-

pair flux allocations. Extensive literature has shown the capacity of streamlines over a 

variety of grid systems, including Cartesian grids (Pollock 1988), corner point grids 

(Cordes and Kinzelbach 1992; Jimenez et al. 2010), unstructured grids (Prevost et al. 

                                                 

1 Part of this chapter is reprinted with permission from Sen, Deepthi, et al. "Data-Driven Rate 

Optimization Under Geologic Uncertainty." SPE Annual Technical Conference and Exhibition. OnePetro, 

2020. Copyright 2020 Society of Petroleum Engineers. Further reproduction is prohibited without 

permission. 

 
1 Part of this chapter is reprinted with permission from Sen, Deepthi, et al. "Machine learning based rate 

optimization under geologic uncertainty." Journal of Petroleum Science and Engineering 207 (2021): 

109116. 

 
1 Part of this chapter is reprinted with permission from Chen, Hongquan, et al. "Model-Free Assessment of 

Inter-Well Connectivity in CO2 WAG Projects Using Statistical Recurrent Unit Models." SPE Annual 

Technical Conference and Exhibition. OnePetro, 2021. Copyright 2021 Society of Petroleum Engineers. 

Further reproduction is prohibited without permission. 
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2002; Rasmussen 2010; Zhang et al. 2012), and dual porosity single permeability models 

(Chen et al. 2020c).  

However, these conventional methods tend to be either computation-intensive 

(i.e. numerical simulation) or resource-intensive (such as tracer tests). In recent years, 

data-driven methods that derive valuable insights from commonly recorded field data 

have proved to be quite successful in applications in the oil and gas domain related to 

drilling (Veettil and Clark 2020, Jahani et al. 2021), petrophysics (Sen, Ong, et al. 

2020b), reservoir engineering (Yousef et al. 2006, Tian and Horne 2019, Sen, Chen, et 

al. 2020, Liu et al. 2019) and production. The current study explores various 

methodologies to leverage the power of machine-learning for building workflows that 

can perform tasks such as connectivity detection and rate optimization in an efficient 

way. The study is broadly aimed at inferring the reservoir connectivity between injectors 

and producers in a field under recovery operations such as waterflood or CO2 water 

alternating gas (WAG) injection.  

Chapter II : Data-Driven Rate Optimization under Geologic uncertainty 

Waterflood is carried out by injecting water into the reservoir through injectors to 

increase/maintain reservoir pressure while oil is being extracted at the producers. Well 

rates optimization is critical to a successful waterflood project via improved injection 

efficiency and reduced water cycling. However, waterflood optimization can be a 

challenging task due to the number of parameters involved, the computational load 

required for repeated numerical reservoir simulation and the inherent uncertainty in the 

reservoir models. Chapter II of this dissertation describes the development of a neural 
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network based proxy model that estimates the streamline-based connectivity between 

injectors and producers during a waterflood. This method is also an attempt at using a 

data-driven technique to infer an aspect of flow physics (i.e. the TOF) under the 

constraints of flow rates and heterogeneity, and using this to perform rate optimization in 

a quick manner. The computational efficiency of the developed proxy model makes it 

suitable for rate optimization under geologic uncertainty wherein the optimization has to 

be run on a large number of realizations.  

Chapter III: Model-Free Assessment of Inter-well Connectivity using Statistical 

Recurrent Unit Models 

The statistical recurrent unit (SRU) was introduced by Oliva et al. (2017) as an 

un-gated alternative to more complex RNN architectures such as LSTMs (Hochreiter 

and Schmidhuber 1997) and GRUs (Chung et al. 2015). The SRU was shown to capture 

long term dependencies at least as much as the latter models, simply by using moving 

averages of temporal information at different scales. Therefore, the SRU architecture is 

simpler and more interpretable compared to LSTMs and GRUs, enabling easier training 

and incorporation of additional constraints such as well locations. In this chapter, we 

propose an SRU based framework for inferring inter-well connectivities. The proposed 

workflow contains two key components: SRU model specifically framed to the CO2 

WAG problem and the inter-well connectivity assessment based on the SRU model and 

variable importance calculation. 

Variable importance is an assessment of the contribution of each input on the 

output (Breiman 2001). It can be a promising method of inferring well connectivity from 
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a data-driven model. That is, the variable importance computed from an explainable 

data-driven model, should ideally correspond to the actual influence that an input signal 

(such as those from an injector) has on the output (production at producer). In this way, 

an explainable and predictive data-driven model may be used to derive insights on the 

actual reservoir connectivity in a quick and efficient way, without the need to run 

computationally costly reservoir simulations. 

Chapter IV: Identification of Key Wells for Optimization Considering Geologic 

Uncertainty 

In Chapter II, it is established that the optimal schedule based on one individual geologic 

model may not necessarily result in favorable outcomes for the real field due to the 

geologic inconsistencies between the real and the model. Therefore, the geologic 

uncertainty is typically represented by an ensemble of history matched realizations of the 

reservoir. Subsequently, optimal schedules for each well shall also be expressed as a 

distribution rather than single values. The corresponding uncertainty assessment is 

crucial to decision making regarding field implementation. In this chapter, we focus on 

formulating and accelerating the generation of the distribution of optimal rates of each 

well in waterflood projects, while considering geologic uncertainty. 

We start with the generation of history-matched geologic realizations, given a set 

of observed data. Subsequently the k-means algorithm is used to cluster the time-of-flight 

field at the end of history, to group the realizations into 𝑁𝑐𝑙𝑢𝑠𝑡 sets, each with its 

representative realization (centroid). In this manner, the geologic uncertainty described by 

𝑁𝑟𝑒𝑎𝑙 (𝑁𝑟𝑒𝑎𝑙 = 200 for SAIGUP case) realizations are represented using merely 𝑁𝑐𝑙𝑢𝑠𝑡 =
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15 centroid realizations. Rate optimization is performed solely on the centroid realizations 

and the distribution of rate changes assigned to each well was shown to be similar to the 

values obtained by optimizing the entire ensemble. The uncertainty analysis generated 

using the TOF-based centroid realizations may be used to inform the selection of key wells 

for implementation of rate change.  
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CHAPTER II  

DATA-DRIVEN RATE OPTIMIZATION UNDER GEOLOGIC UNCERTAINTY2 

 

Waterflood is by far the most extensively used improved oil recovery method post 

primary depletion. This is carried out by injecting water into the depleting reservoir 

through injectors to increase/maintain reservoir pressure while oil is being extracted at 

the producers. This process has been explored by studies at various scales, ranging from 

nanoscale (Xiong et al. 2019) to field scale management (Chen et al. 2020b) due to the 

strong impact of heterogeneity over the subsurface flow.  The presence of high-

permeability streaks in a highly heterogeneous reservoir may lead to early water 

breakthrough at the producers, resulting in premature rate decline and reduced oil 

recovery per barrel of water injected. Hence, optimization of well rates during a 

waterflood is critical to an effective waterflood project via improved injection efficiency 

and reduced water cycling. However, waterflood optimization can be a challenging task 

due to the number of parameters involved, the computational load required for repeated 

numerical reservoir simulation and the inherent uncertainty in the reservoir models. 

                                                 

2 Part of this chapter is reprinted with permission from Sen, Deepthi, et al. "Data-Driven Rate 

Optimization Under Geologic Uncertainty." SPE Annual Technical Conference and Exhibition. OnePetro, 

2020. Copyright 2020 Society of Petroleum Engineers. Further reproduction is prohibited without 

permission. 

 
2 Part of this chapter is reprinted with permission from Sen, Deepthi, et al. "Machine learning based rate 

optimization under geologic uncertainty." Journal of Petroleum Science and Engineering 207 (2021): 

109116. 
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 Asheim (1988) combined two-phase reservoir simulation with numerical 

optimization via total differentiation of the simulator equation. Optimization was 

performed to maximize net present value (NPV) subject to constraints on reservoir flow 

dynamics, total flow capacity and well constraints.  

 Sudaryanto and Yortsos (2001) developed an injection optimization workflow for 

single-phase incompressible flow based on optimal control theory. This was tested on a 

rectangular bounded system with two injectors and one producer. The optimal strategy 

for the test cases considered was found to be of the bang-bang type where the injectors 

operate at extreme values in the allowable range. Balaji et al. (2017) incorporated 

geomechanics into a bang-bang type optimization scheme. 

Zhai et al. (2016) inferred interwell connectivity between well rate allocations through 

numerical tracer experiments. The time dependence of oil cut in the production was 

modeled using a sigmoid decline. This proxy model was used to perform rate 

optimization on a two-phase system.  

 Nævdal et al. (2006) developed a closed-loop control approach using ensemble 

Kalman filters (EnKF) in order to maximize the NPV subject to constraints. This 

approach requires a simulator to be run for each member in the ensemble, so that a 

control vector that maximizes the objective function can be computed by solving the 

adjoint equation using steepest descent. Wang et al. (2009) developed a closed loop 

reservoir management workflow that maximizes the NPV and tested and compared three 

kinds of optimization techniques – steepest descent, simultaneous perturbation stochastic 

approximation (SPSA) and EnKF. Steepest descent was found to be the most effective 
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for the test cases studied. Chen et al. (2010) also applied an EnKF with covariance 

localization for data assimilation in the SPE Brugge case (Peters et al. 2010) and 

performed rate optimization on the mean model from the ensemble. Other non-linear 

filtering schemes such as the unscented Kalman filter (Wan and Van Der Merwe 2000) 

and various kinds of particle filters (Gustafsson et al. 2002) may also be employed for 

similar closed-loop control approaches to waterflood optimization. In particular, Raihan 

and Chakravorty (2008a, 2008b) have developed an efficient non-linear filtering scheme 

that overcomes issues such as particle depletion, which may potentially be incorporated 

into a waterflood optimization setup. 

Field-scale waterflood optimization using rate control has been carried out by 

delaying the time of waterfront breakthrough at the producers. Grinestaff (1999) and 

Grinestaff and Caffrey (2000) introduced the concept of streamlines to production 

optimization by deriving qualitative insights from streamline simulation of the North 

West Fault Block in Prudhoe Bay. Brouwer et al. (2001) performed rate optimization by 

reducing the distribution in the arrival times of the flood front for a time-independent 

flow field. This approach was extended to time-dependent flow fields in Brouwer and 

Jansen (2002).  Alhuthali et al. (2007) proposed a methodology that involves equalizing 

the arrival time of the waterfront at producers in separate subregions of the reservoirs. 

The arrival time was calculated by running a reservoir simulator and tracing streamlines 

explicitly. Chen et al. (2020b) proposed a streamline-based gradient-free method for 

maximizing oil production at the end of production time under constraints such as 

fieldwide injection and production rates, minimum well producing pressure and 
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allowable ranges on well rates. Using this method, it is required to solve the flow 

equation and trace streamlines using the computed fluxes. The optimization proceeds by 

equalizing the well-pair efficiencies rather than the arrival times as proposed by 

Alhuthali et al. (2007).  Van Essen et al.  formulated an approach to optimize well rates 

under geologic uncertainty wherein the objective function was computed as the expected 

value of cumulative revenue over several geologic realizations. Alhuthali et al. (2008) 

applied this methodology to develop a streamline-based rate optimization scheme under 

geologic uncertainty that equalizes the arrival times in a probabilistic sense over multiple 

realizations. The methods described above requires solving the flow partial differential 

equation (PDE) and this may not be computationally feasible for large-scale field 

applications when one has to optimize over multiple realizations. 

In recent years, machine-learning based methods have found considerable 

success in applications related to drilling (Veettil and Clark 2020), petrophysics (Sen et 

al. 2020b) and reservoir engineering (Yousef et al. 2006). The computational demand 

associated with performing field-wide reservoir simulation has prompted the use of 

machine-learning based proxy models that mimic the reservoir response, given a set of 

inputs. Proxy modeling is especially useful in applications such as field-wide waterflood 

optimization, which may otherwise require several iterations and multiple simulation 

runs per iteration for convergence. Tian and Horne (2016) proposed a machine-learning 

based model for quantifying injector-producer connectivity using a modified Pearson 

correlation coefficient between injection and production histories. The computed 

connectivities were validated using a machine-learning based multiwell testing scheme 
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that learns the variation in injection pressures with respect to various features defined on 

the production rates. Even though this workflow provides useful insights on the reservoir 

geology without assuming a prior model, the trained model cannot be directly used for 

rate optimization since this does not function as a proxy model that can predict 

waterflood performance given the rates and a geologic model. 

One of the most commonly used proxy models for waterflood optimization– the 

capacitance resistance model (CRM) was developed by Yousef et al. (2006) for 

predicting production trends in mature fields under waterflooding. As a first-principle 

model, the CRM treats the reservoir system as an RC electrical circuit wherein the 

resistance and the capacitance represent the interwell connectivity and drainage volume, 

respectively. These parameters are estimated by fitting injection and production data to a 

CRM equation. This concept has been explored in detail and the results of its 

applicability under various conditions are available in the literature (Cao et al. 2014, 

Sayarpour et al. 2008). In particular, Prakasa et al. (2017) and Kansao et al. (2017) 

applied CRM-based techniques for waterflood optimization. However, since the CRM 

model captures the field heterogeneity information implicitly from well history, it is not 

possible to train a single CRM over multiple realizations of geology. Lee et al. (2010) 

developed a method for improved CRM model fitting using hybrid constraint nonlinear 

optimization. However, the method was only tested for small test cases. Lin et al. (2010) 

used CRM to detect the existence and orientation of high permeability streaks between 

injectors and producer by characterizing the lag time for each injector-producer pair. 

This information may be used to gain insights for the rate optimization process. 
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Liu et al. (2012) modeled the reservoir as a collection of independent subsystems, each 

consisting of one injector and one producer. The reservoir response was modeled as an 

aggregation of impulse responses to injection rates. The rate optimization was 

formulated as the maximization of a linear objective function (total oil produced) in the 

discrete frequency domain, subject to linear constraints. Nwachukwu et al. (2018) used a 

machine-learning based approach to predict NPV given the well locations, well rates and 

well-block properties. The primary inputs were used to generate secondary features such 

as ‘diffusive time of flight’ (as a measure of connectivity) and well angle, which were 

subsequently fed into a gradient boosted machine learning model (XGBoost). Diffusive 

time of flight, defined as the travel time of the pressure wave front, is a measure of well 

connectivity and is calculated using the Fast Marching Method (FMM). They also 

studied the effects of geological uncertainty by using an ensemble of realizations. 

However, they did not extend the workflow to larger field cases. 

 In this work, we adopt the workflow proposed by Alhuthali et al. (2007) and 

Alhuthali et al. (2008) in performing rate optimization by equalizing arrival times over 

multiple realizations by employing a machine-learning based proxy model for estimating 

the arrival time, given the well rates and reservoir property fields. Our method is also an 

attempt at using a data-driven technique to infer an aspect of flow physics (i.e. the TOF) 

under the constraints of flow rates and heterogeneity, and using this to perform rate 

optimization in a quick manner. This is in contrast with approached that use proxy 

models to directly predict the NPV, which may be susceptible to several operational and 

economic factors. The rest of the chapter is organized as follows: In Section 2, we 
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outline the approach to rate optimization that has been implemented in this chapter. 

Section 3 details the mathematical background behind our workflow. Section 4 describes 

the results obtained on applying the workflow first to a simple 2D heterogeneous case 

and then to a 3D field case. Section 5 summarizes the chapter and the directions for 

future efforts. 

 

Approach 

Consider a heterogeneous two-phase reservoir with 𝑁𝐼 injectors, injecting at rates 

𝒒𝑰 = [𝑞𝐼1
 , … , 𝑞𝐼𝑁𝐼

] and 𝑁𝑃 producers, producing at rates 𝒒𝑷 = [𝑞𝑃1
, … , 𝑞𝑃𝑁𝑃

]. We wish 

to compute the optimal rates 𝒒𝑰
∗ and 𝒒𝑷

∗  that maximize the cumulative oil production. 

This is achieved by maximizing the sweep efficiency of the waterflood defined as 

𝜂 =
𝑃𝑉𝑠𝑤𝑒𝑝𝑡

𝑃𝑉𝑡𝑜𝑡𝑎𝑙
 

(1) 

 

Here 𝑃𝑉𝑡𝑜𝑡𝑎𝑙 is the total pore volume of the reservoir model and 𝑃𝑉𝑠𝑤𝑒𝑝𝑡 is the sum of 

pore volumes of gridblocks that have been ‘swept’ by the fluid front at a given time.  

Alhuthali et al. (2007) showed that 𝜂 is maximized when the arrival times of the injected 

fluid front at the producers are equalized.  

The arrival time of the injected fluid front at producer 𝑃𝑖 is represented by the 

minimum time of flight (TOF), calculated as the average TOF of the fastest 20% 

streamlines that end in 𝑃𝑖. This quantity is denoted by 𝜏𝑖 (Alhuthali et al. 2007). The 

TOF represents the travel time of a neutral tracer along the streamlines. Typically, the 
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evaluation of 𝜏𝑖 requires calculating the flux in the reservoir system and subsequent 

streamline-tracing using Pollock’s method (Pollock 1988). We circumvent the need to 

compute the flux and streamline tracing by using a trained proxy model that directly 

predicts 𝜏𝑖 given the well rates and geology. This is a key differentiating aspect of this 

work, wherein we develop a machine-learning based proxy for a physics-informed 

intermediate output, which is subsequently used for well rate optimization.  

Once we have the trained model, we may use it in place of the forward simulator in 

order to compute the rates that equalize the TOFs at the producers. Additionally, due to 

the speed of the forward run of the proxy model, we can easily compute well rates that 

equalize the TOF in a probabilistic sense over multiple geologic realizations. The overall 

workflow is illustrated in Figure 1. The workflow is discussed more closely in the rest of 

this section. 

 

 

Figure 1 Proposed workflow for rate optimization using proxy model for time of 

flight (TOF) connectivity. (Reprinted with permission from Sen et al., 2020a)  

Proxy model building 
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Assume that the uncertainty in geology is characterized by 𝑁𝐹 heterogeneous fields 𝑭𝒊 , 

1 ≤ 𝑖 ≤ 𝑁𝐹 where 𝑭𝒊 is a vectorized representation of the gridblock-wise reservoir 

properties such as permeability and porosity. In order to build the proxy model, we use 

grid-connectivity transformation (GCT), explained in detail under ‘Mathematical 

Formulation’, to compute a low-dimensional representation of each of the geologic 

characterization.  

The proxy model 𝑓 that is used in this work is such that 𝝉 = 𝑓(𝒙) where 𝝉 =

[𝜏1, 𝜏2, … , 𝜏𝑁𝑃
] and 𝒙 = [𝒒𝑰|𝒒𝑷|𝝂𝒊]. Here, 𝝂𝒊 denotes the GCT basis coefficient vectors 

of the geologic fields 𝑭𝒊 considered. A representation of the training dataset for the 

proxy model, demarcating the inputs and outputs is given in Figure 2. 

 

Figure 2 Schematic representation of the training dataset for proxy model building 

showing inputs and outputs. (Reprinted with permission from Sen et al., 2020a) 
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Dataset Generation 

 

The input dataset for training the model, 𝑿, consists of 𝑁𝑡𝑟𝑎𝑖𝑛 observations (rows) of 𝒙. 

The corresponding output dataset 𝒚 consists of 𝑁𝑡𝑟𝑎𝑖𝑛 rows of 𝝉 ∈ ℝ1×𝑁𝑃, computed by 

running the reservoir simulator and tracing streamlines for each instance in 𝑿. Since 𝜏 

for each of the producers may be different by several orders of magnitude, log-

transformed 𝜏 is used to form 𝒚 for better fit of the training data. 

 

Artificial Neural Network  

 

Artificial neural nets (multilayered percepteron (MLP)) were used to build the proxy 

model for predicting the TOF in this study, although any suitably trained algorithm 

would be admissible. The proxy model was constructed as an MLP, with 𝑁𝑀𝐿𝑃 layers 

and 𝑛𝑛𝑒𝑢𝑖
 neurons in the 𝑖𝑡ℎ layer (1 ≤ 𝑖 ≤ 𝑁𝑀𝐿𝑃) as shown in Figure 3. The neurons in 

the output layer (𝑖 = 𝑁𝑀𝐿𝑃) have linear activation functions. All other neurons use a 

ReLU activation function 𝜎𝑅𝑒𝐿𝑈, where 

𝜎𝑆𝑆(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (2) 

The number of neurons in the output layer (𝑖 = 𝑁𝑀𝐿𝑃) is equal to the dimensionality of 

the output. Dropout layers are added after each layer of neurons to limit overfitting. 

Dropout works by randomly deactivating a fraction of the neurons during the training 
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phase. Dropout layers are bypassed when the model is used for prediction. The model is 

assembled using Keras library with Tensorflow backend (Chollet 2015).  

 

 

Figure 3 A fully connected multi-layer percepteron used to build the proxy model. 

The neurons in the hidden layers have ReLU activation whereas the output layer is 

linearly activated. (Reprinted with permission from Sen et al., 2020a) 

 

K-fold cross-validation  

 

The selection of the best model parameters is guided by its generalization 

performance, which indicates the prediction capacity of the model on a test dataset, 

independent of the dataset on which the model was trained on. K-fold cross-validation is 

a commonly used method for method selection in machine-learning literature (Hastie et 

al. 2009). It provides an estimate of the expected generalization error of the model over 

several training datasets. During k-fold cross-validation (Mishra and Datta-Gupta 2017), 

the entire training dataset is randomly split into k segments. A prediction of each of the k 

segments is generated by training the model on the remaining k-1 segments. This way, 

the average loss is computed over the entire training dataset (Figure 4). This is repeated 
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for different models, by varying the model parameters such as the number of hidden 

layers and number of neurons and the average loss is recorded. The model parameter set 

that minimizes the average loss is chosen. Finally, the chosen model is re-trained on the 

entire dataset. 

 

 

Figure 4 An illustration of k-fold cross validation for k=5 (Mishra and Datta-Gupta 

2017). 

 

 

Rate Optimization Using Proxy Model 

 

 The rate optimization framework used in this chapter follows the workflow of 

Alhuthali et al. (Alhuthali et al. 2008, Alhuthali et al. 2007). For optimizing the rates for 

a single realization, we first divide the wells into a number (𝑁𝑔𝑟𝑜𝑢𝑝) of subgroups based 

on the flux allocations using spectral clustering as explained in a later section. 

Subsequently, we compute the well rates that minimize the sum of variances of 𝜏′𝑠 in 

each of the subgroups. In such a case, we assume that we know the geologic 

characterization with fair degree of certainty. 
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This rate optimization framework was extended to incorporate geologic uncertainty by 

modifying the objective function as the expectation of the variances over multiple 

geologic realizations. Sequential Least Square algorithm implemented in the python 

library (Scipy) is used for solving the minimization problem with constraints. 

The details of rate optimization are provided below. 

 

Mathematical Formulation 

Streamline Tracing 

Streamline tracing involves computing the path traced by a tracer particle that enters the 

reservoir through an injector till it reaches a termination point: a producer, an aquifer or 

a stagnant region. Given a steady state flow-field within the reservoir, streamlines are 

fixed in time. The time-of-flight (TOF) from an injector at location 𝑙 is defined as the 

time a neutral tracer would take to travel from the injector to 𝑙. Mathematically, it is 

defined as 

𝝉𝒍 = ∫
𝝓

𝒖
𝒅𝒔 

(3) 

where 𝑢 is the Darcy velocity, 𝜙 is the porosity and 𝑠 represents streamline connecting 𝑙 

to the injector. Also, 𝜏𝑙 is a function of the interstitial velocity given by 
𝜙

𝑢 
, which is in 

turn dependent on the pressure at each gridblock, and hence on the permeability and 

porosity fields and wellrates.  
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In practice, once the reservoir simulator computes the pressure field and subsequently 

fluxes in the reservoir, streamline tracing is performed using the Pollock’s method 

(Pollock 1988).  

 

Rate optimization 

 

We adopt Alhuthali’s workflow that involves equalizing the arrival time of the 

waterfront at producers in distinct subregions of the reservoir. This effectively 

maximizes the sweep efficiency of the waterflood project at breakthrough. The 

equalization of TOF, as a means to maximize sweep and thereby achieve improved oil 

recovery, is preferred in this study since this bypasses the need to run the simulator for 

the entire duration of well activity. TOF is computed from the flux field obtainable from 

a single timestep simulation with the assigned well rates. This makes the workflow quite 

fast, despite the need to run the simulator to generate the training set for cases where the 

streamline configuration remains fairly static.  

 

Each sub-region is associated with a well subgroup located within it. In Alhuthali et al. 

(2007), these subregions and associated subgroups of wells are chosen by the user. In the 

proposed work, the user specifies the number of subgroups, 𝑁𝑔𝑟𝑜𝑢𝑝. Spectral clustering, 

explained in a latter section, is used to choose the wells in each subgroup. The original 

procedure broadly involves two steps: 

a. Flow simulation and subsequent streamline tracing  
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b. Computation of the difference 𝑒 between the arrival time at each producer 

𝑃𝑖  (1 ≤ 𝑖 ≤ 𝑁𝑃) and the desired arrival time for the subgroup to which 𝑃𝑖 

belongs. Thus, given then 𝑃𝑖 belongs to 𝑚𝑡ℎ subgroup 𝐺𝑚 (1 ≤ 𝑚 ≤ 𝑁𝑔𝑟𝑜𝑢𝑝) 

:  

𝒆𝒊 = 𝝉𝒅𝒆𝒔𝒊𝒓𝒆𝒅,𝒎 − 𝝉𝒊 (4) 

  

Here 𝜏𝑑𝑒𝑠𝑖𝑟𝑒𝑑,𝑚 =
∑ 𝜏𝑖𝑖:𝑃𝑖∈𝐺𝑚

𝑁𝐺𝑚

 where 𝑁𝐺𝑚
 denotes the number of producers in 𝐺𝑚. The 

arrival time 𝜏𝑖 is calculated as the average TOF of the fastest 20% streamlines at 𝑖𝑡ℎ 

producer, as explained in Alhuthali et al. (2007). 

 

The minimization problem for finding optimal well rates for 𝑁𝐼 injectors 𝒒𝑰 =

[𝑞𝑖1, … , 𝑞𝑖𝑁𝐼
], and 𝑁𝑃 producers 𝒒𝑷 = [𝑞𝑝1, … , 𝑞𝑝𝑁𝑃

] is formulated as 

𝒎𝒊𝒏
𝒒

𝒇(𝒒) = 𝒆𝑻𝒆 (5a) 

subject to 𝑁𝑒𝑞 equality constraints and 𝑁𝑖𝑛𝑒𝑞 inequality constraints: 

𝒉(𝒒) = 𝟎  

𝒈(𝒒) ≤ 𝟎  where 𝒉: ℝ𝒏 → ℝ𝑵𝒆𝒒  and 𝒈: ℝ𝒏 → ℝ𝑵𝒊𝒏𝒆𝒒  and 𝒒 =
[𝒒𝑰|𝒒𝑷]. 

(5b) 

Here  

𝒆𝑻𝒆 = ∑ ∑ (𝝉𝒅𝒆𝒔𝒊𝒓𝒆𝒅,𝒎 − 𝝉𝒊(𝒒))
𝟐

𝒊:𝑷𝒊∈𝑮𝒎

𝑵𝒈𝒓𝒐𝒖𝒑

𝒎=𝟏

 

(6) 



 

38 

 

In field applications, the constraints can be related to wells, group of wells, gathering 

stations or the field as a whole (Taware et al. 2017). 

This rate optimization framework was extended to uncertain geologies by modifying the 

objective function as the expectation of the residual over multiple geologic realizations 

(Alhuthali et al. 2008). 

 

Therefore, for the 𝑗𝑡ℎ realization in a pool of 𝑁𝑟𝑒𝑎𝑙 realizations, 

(𝒆𝑻𝒆)𝒋 = ∑ ∑ (𝝉𝒅𝒆𝒔𝒊𝒓𝒆𝒅,𝒎 − 𝝉𝒊(𝒒))
𝟐

𝒊:𝑷𝒊∈𝑮𝒎

𝑵𝒈𝒓𝒐𝒖𝒑

𝒎=𝟏

 

(7) 

The expected value and standard deviation of the squared residual are given by 

𝔼(𝒆𝑻𝒆) =
∑ (𝒆𝑻𝒆)𝒋

𝑵𝒓𝒆𝒂𝒍
𝒋=𝟏

𝑵𝒓𝒆𝒂𝒍
 

(8) 

The minimization problem is then formulated as 

min
𝑞

𝑓(𝒒) = 𝔼(𝒆𝑻𝒆) (9) 

 

Low dimensional projection of heterogeneous field 

 

A key feature of this work is the representation of the heterogeneous field using a 

compact set of orthogonal basis functions that are constructed from the grid-connectivity 

information of the reservoir model. This representation is referred to as grid connectivity 

transformation (GCT) of the heterogeneous field (Bhark et al. 2011). The linear mapping 
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of the high-dimensional field to the spectral domain provides an efficient way to 

parameterize the heterogeneity using a small number of features vectors. However, it is 

to be noted that any low dimensional representation method may be used to parameterize 

the heterogeneous field. The simplest way to parameterize spatial properties would be to 

transform these into another domain via methods such as principal component analysis 

(PCA) based algorithms (Sarma et al. 2007, Ma et al. 2011), Karhunen–Loève transform 

(KLT) (Reynolds et al. 1996), sparse dictionary learning (Khaninezhad et al. 2010) and 

discrete cosine transformation (DCT) (Jafarpour and McLaughlin 2009). Dorn and 

Villegas (2008) used a level-set method to parameterize heterogeneity in a reservoir and 

subsequently perform history-match. More recently, Park and Caers (2020) applied PCA 

to parameterize features of very high dimensions and used scree plot to select the 

optimal number of basis functions, similar to the approach adopted in our study. 

Additionally, deep-learning based algorithms such as variational autoencoders (VAE) 

(Gundersen et al. 2020) and convolutional neural networks (CNN) (Alakeely and Horne 

2020) have been applied successfully in reservoir characterization  problems. For a 

comparison of recent reservoir parameterization methods, the reader may refer to Zhang 

et al. (2021). However, deep-learning-based algorithms for parameterization entail 

significant computational effort and a large dataset size to successfully train a complex 

neural network. Therefore, for the purpose of our study, we use GCT which is a simpler 

and faster algorithm that only requires an SVD decomposition and grid structure. 

In order to apply GCT, the connectivity of reservoir grid is characterized as a graph 𝒢 =

(𝒱, ℰ), wherein the vertice set 𝒱 = {𝓋1, 𝓋2, … , 𝓋𝑁} represent the 𝑁 grid cell centers and 
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the edge set ℰ represents all connections between the vertices in 𝒢. An edge between 

vertices 𝓋𝑖 and 𝓋𝑗  is assumed to exist if the 𝑖𝑡ℎ and 𝑗𝑡ℎ grid-cells share a face. Given 𝒢, 

the graph connectivity is described by Laplacian matrix 𝐿 which may be constructed as  

𝑳 = 𝑫 − 𝑾 (10) 

where 𝑊 is the similarity matrix that indicates the weights of connection between all 

vertices in 𝒢. For our application, 

𝑾𝒊𝒋 = {
𝟏  
𝟎

𝒊𝒇 𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒊𝒐𝒏 𝒆𝒙𝒊𝒔𝒕𝒔 𝒃𝒆𝒕𝒘𝒆𝒆𝒏 𝓿𝒊 𝒂𝒏𝒅 𝓿𝒋

𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
 

(11) 

In eqn 10, 𝐷 denotes the degree matrix of the graph, which denotes the strength of 

connections in each vertex of the graph. 𝐷 is in the form of a diagonal matrix, whose 𝑖𝑡ℎ 

diagonal element is the row-wise sum of the 𝑖𝑡ℎcolumn of 𝑊.  

Eigen-decomposition of 𝐿 yields a set of 𝑁 orthogonal basis vectors 𝚽𝟎 =

[Φ1|Φ2| … |ΦN] where each basis vector Φi represents a harmonic of the grid structure. 

Any spatial field 𝑭 can be linearly mapped to any Φi to yield a GCT basis coefficient 𝝂𝒊 

that represents the amplitude of 𝑭 in the modal frequency corresponding to Φi. Thus 𝑭 

may be reparameterized in terms of 

𝝂 =  𝜱𝑻𝑭 (12) 

where 𝚽 ∈ ℝ𝑁×𝑁𝐵 is a subset of 𝚽𝟎, containing 𝑁𝐵 out of the original 𝑁 basis vectors, 

such that 𝑁𝐵 ≪ 𝑁. Hence the high-resolution spatial field 𝑭 ∈ ℝ𝑁×1 is represented as a 

vector 𝝂 ∈ ℝ𝑁𝐵×1. 
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Spectral Grouping of Wells 

 

We propose the use of spectral clustering to form well groups (Narasingam and Kwon 

2017) for proxy modeling and subsequent rate optimization, instead of a user-specified 

grouping scheme as presented by Alhuthali et al. (2007). Spectral grouping is performed 

based on the injection rate-allocation, which is defined as the fraction of injected fluid 

from an injector allocated to each producer. 

During training phase, we record 𝑁𝑡𝑟𝑎𝑖𝑛 values of the ‘rate allocation’ matrix 𝑅 defined 

by  𝑅𝑖𝑗 =
𝑞𝑖𝑗

𝑞𝑖
 where 𝑞𝑖𝑗 is the volume of fluid that flows to the 𝑗𝑡ℎ producer from the 𝑖𝑡ℎ 

injector. This information is readily available from the streamlines and the associated 

fluxes along the streamlines. The average rate allocation matrix 𝑅𝑚𝑒𝑎𝑛 is calculated over 

the available training dataset. The connectivity between the wells is characterized by a 

graph 𝒢𝑤𝑒𝑙𝑙 = (𝒱𝑤𝑒𝑙𝑙 , ℰ𝑤𝑒𝑙𝑙). Here, 𝒱𝑤𝑒𝑙𝑙 is the set of vertices in the graph, which 

represent the 𝑁𝑃 + 𝑁𝐼 wells. ℰ𝑤𝑒𝑙𝑙 represents all connections in 𝒢𝑤𝑒𝑙𝑙. An edge between 

vertices 𝓋𝑤𝑒𝑙𝑙,𝑖 and 𝓋𝑤𝑒𝑙𝑙,𝑗 is assumed to exist if the 𝑖𝑡ℎ and 𝑗𝑡ℎ wells have a positive 

value for rate allocation. It is assumed that no edge exists between injectors and between 

producers and all connections are undirected. 

Therefore, the similarity matrix 𝑊𝑤𝑒𝑙𝑙 and Laplacian 𝐿𝑤𝑒𝑙𝑙 for 𝒢𝑤𝑒𝑙𝑙 can be represented 

as 

𝑾𝒘𝒆𝒍𝒍 = [
𝟎 𝑹𝒎𝒆𝒂𝒏

𝑹𝒎𝒆𝒂𝒏
𝑻 𝟎

] 
(13) 
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𝑳𝒘𝒆𝒍𝒍 = [
𝑰 −𝑹𝒎𝒆𝒂𝒏

−𝑹𝒎𝒆𝒂𝒏
𝑻 𝒅𝒊𝒂𝒈(𝒔𝒖𝒎(𝑹𝒎𝒆𝒂𝒏, 𝟏)

] 
(14) 

 

The eigen decomposition of 𝐿𝑤𝑒𝑙𝑙 can be written as 

𝑳𝒘𝒆𝒍𝒍 = 𝑼𝜦𝑼𝑻 (15) 

The first 𝑘 eigenvectors (corresponding to the 𝑘 smallest eigenvalues) may be used to 

cluster 𝒱𝑤𝑒𝑙𝑙 into 𝑘 subgroups (Von Luxburg 2007). The value of 𝑘 is predecided by the 

user. 

Applications 

2D Heterogeneous Case 

 

To start with, the proposed algorithm was applied to a 2D 50x50 heterogeneous field, 

with uncertainty in permeability characterization. A pool of 1000 realizations of the 

permeability field was generated using Sequential Gaussian Simulation (SGS) for 

different values of variogram range and azimuth. For illustrative purposes, a few of the 

realizations are shown in Figure 5. The porosity is set to a constant value of 0.2 across 

the field.  
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Figure 5 A pool of equiprobable 𝒌𝑿 realizations are generated using SGS for 

training the model (reprinted with permission from Sen et al., 2020a) 

 

 

 

Table 1 Parameter distributions used in dataset generation for 2D case proxy 

model 

Parameter Distribution 

Variogram range (𝑓𝑡) Discrete[10,20,30] 

Variogram azimuth (°) Discrete[25,65] 

Production rate, 𝑞𝑃 (bbl/d) 𝑈[500,4000] 

Injection rate, 𝑞𝐼 (bbl/d) 𝑈[1000,8000] 

 

Proxy model building 

The model was trained on 600 realizations from the generated pool of 1000 realizations. 

For every training datapoint, one of the 600 realizations was chosen randomly, and well 

rates were assigned randomly from distributions given in Table 1. Flow simulation was 

then carried out using ECLIPSE (Schlumberger 2018) and streamline tracing was 

performed using our in-house post-processing software DESTINY (Chen et al. 2020b). 
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A total of 1000 training datapoints were generated in this way. The detailed process is 

given below. 

 

GCT Transformation 

The first step of our workflow consists of representing each of the heterogeneous fields 

as a linear combination of GCT basis functions. The GCT basis functions for the 50x50 

grid is computed by setting up the graph Laplacian matrix and its subsequent eigen-

decomposition. It is to be noted that this is independent of the property field and needs to 

be done just once during the entire workflow. We compute the first 300 basis functions, 

which correspond to the smallest 300 eigenvalues of the graph Laplacian.  

As explained earlier, each of the property fields may be expressed as a linear 

combination of these basis functions and its basis coefficients (which are property-

dependent). This concept is illustrated in Figure 6. Here the original permeability field is 

expressed as a linear combination of the property dependent basis functions 𝜈1, 𝜈2, … and 

the GCT basis functions that represent a particular modal frequency of the grid structure. 

A higher resolution representation is obtained by increasing the number of basis 

functions used in the representation.  

However, a more efficient way to represent the field would be to choose the basis 

functions that are associated with higher magnitudes of basis coefficients. This may be 

done by sorting the basis coefficients for a particular field, in the descending order of 

magnitude and choosing the first few basis coefficients (and its associated basis 

functions). In this work, since we have several realizations of permeability, we compute 
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the “average” permeability across all training realizations. The drop-off in basis 

coefficient magnitude (of the mean permeability field) with an increasing number of 

sorted coefficients is shown in Figure 7. We choose the first 10 basis functions 

(corresponding to the highest 10 basis coefficients) out of the computed 300. As seen in 

Figure 7, the drop off is very steep up till around 4 basis functions. Hence we can safely 

assume that 10 basis functions would capture most of the heterogeneity. The additional 

buffer of 6 basis functions was included keeping in mind the strong dependence of the 

predicted variable to the heterogeneity. We see that the accuracy of the model improves 

with increasing number of basis functions. Using merely 4 basis functions may yield a 

good reconstruction of the field. However, the information captures from 4 basis 

functions may be insufficient for TOF prediction due to the latter’s strong dependence 

on heterogeneity. 

In case we want to represent two or more properties, this procedure is to be repeated for 

each property. Therefore, if we were to represent porosity, we would use the basis 

functions corresponding to the highest basis coefficients for the ensemble mean of the 

porosity. 

Subsequently, each of the permeability realizations is expressed in terms of these 10 

basis functions. The reconstruction of a reference permeability field using sorted basis 

functions is shown in Figure 8. 
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Figure 6 Representation of a 𝒌𝑿 realization in terms of GCT basis functions and 

coefficients for the 50x50 grid (reprinted with permission from Sen et al., 2020a) 

 

Figure 7 Drop-off in magnitude of basis-coefficient with increasing number of basis 

functions. Only the first 10 are chosen as input features to proxy model for 2D case 

(reprinted with permission from Sen et al., 2020a) 

 

 

Figure 8 Reconstructed perm field using basis functions sorted based on magnitude 

of basis coefficients of the ensemble mean field of the training dataset (reprinted 

with permission from Sen et al., 2020a) 
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Streamline tracing 

The next step in the workflow is to assign randomly sampled rates (both injection and 

production) all the wells. The reservoir simulations are performed using ECLIPSE 

running on Intel® Xeon® CPU with a base processor speed of 2.2 GHz. Once the flow 

field is computed, DESTINY is used to trace streamlines. DESTINY calculates the TOF 

for each of the streamlines that end at each producer. The average time of flight of the 

fastest 20% of all the streamlines ending at the 𝑖𝑡ℎ producer is calculated and stored as 

𝜏𝑖.  

 

Model Selection using k-fold cross-validation 

Six different architectures of neural networks tested are shown in Table 2. We perform 

5-fold cross-validation, as described under the section ‘Proxy model building’, by means 

of which the dataset is split into 5 sections randomly. At each iteration of 5-fold cross-

validation, a model is trained on 4 out of 5 folds and validated on the remaining fold. In 

other words, each of the models is trained on a dataset under an 80%-20% 

training/validation split. Furthermore, 5-fold cross-validation ensures that each datapoint 

serves as validation exactly once. The individual and total RMSE calculated from this 

validation performance across the entire dataset is given in Table 2. 

We note that there is a reduction in the total RMSE with increasing model complexity. A 

model consisting of a single hidden layer with 50 neurons is chosen since the RMSE 
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stabilizes at this point. While one could choose a more complex network, the increase in 

accuracy achieve by doing so is meagre. 

The neural network was trained for 500 epochs using the Adam optimizer with a 

learning rate of 0.001. The batch size was chosen to be 400. The predictions on the entire 

dataset via 5-fold cross-validation is shown in Figure 9. The primary reason for the 

scatter in the predictions is the non-linearity of the predicted variable (TOF), and the 

parsimonious representation of heterogeneity through basis functions which focuses on 

preserving the large scale continuity rather than small scale variations in the 

heterogeneity. We also see some bias in the predictions of higher values of TOF. 

However, the impact of these predictions on optimization is expected to be marginal 

because the higher TOFs tend to represent the stagnant areas in the velocity field. 

Table 2 Model Selection using 5-fold cross-validation 

Architecture 
RMSE 

Total 

RMSE 

P1 P2 P3 P4  

[10] 0.42 0.44 0.49 0.53 0.94 

[20] 0.4 0.42 0.46 0.49 0.88 

[50] (Chosen) 0.4 0.4 0.45 0.46 0.85 

[100] 0.39 0.39 0.44 0.45 0.84 

[50,50] 0.39 0.39 0.44 0.45 0.84 

[100,100] 0.39 0.38 0.43 0.44 0.83 
 

 

Table 3 Neural network architecture for proxy modeling (2D case) 

Layer no. 𝑵𝒏𝒆𝒖𝒓𝒐𝒏𝒔 Activation Dimensions 

Input Output 

1 (Input layer) 0 N/A N/A 𝑁𝐼 + 𝑁𝑃 + 𝑁𝑏𝑎𝑠𝑖𝑠 = 15 

2 50 ReLU 15 50 

3 (Output layer) 𝑁𝑃 = 4 Linear 50 4 
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Figure 9 Model fit on test set using MLP with a single hidden layer with 50 neurons 

Rate Optimization (reprinted with permission from Sen et al., 2020a) 

Rate optimization by equalizing the arrival times was performed using the SCIPY 

(library) implementation of the sequential least squares algorithm on Python. The trained 

model was used to compute the minimum times of flight at each producer.  

 

Optimization without Uncertainty 

The workflow was first tested on a single realization (shown in Figure 10 (a)) under the 

assumption that there is no uncertainty in the underlying geology. The waterflood 

performance is quantified in terms of the total cumulative oil recovery. In addition, we 

impose constraints on field-wide injection and production rates at values 𝑞𝑡𝑜𝑡𝐼
 and 𝑞𝑡𝑜𝑡𝑃

. 

Hence the optimization problem is posed as described earlier: 

𝒎𝒊𝒏
[𝒒𝑰|𝒒𝑷]

‖𝒆(𝒒𝑰, 𝒒𝑷)‖𝟐   (16a) 
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𝒔. 𝒕.  ∑ 𝒒𝑰𝒊

𝑵𝑰

𝒊=𝟏

= 𝒒𝒕𝒐𝒕𝑰
 ; ∑ 𝒒𝑷𝒋

=

𝑵𝑷

𝒋=𝟏

𝒒𝒕𝒐𝒕𝑷
 

(16b) 

 

The base unoptimized case for the experiment is where all the injection rates and 

production rates are set to be equal. Hence for the unoptimized case, 𝑞𝐼1 = 1000 𝑏𝑏𝑙/𝑑 

and 𝑞𝑃1 = 𝑞𝑃2 = ⋯ = 𝑞𝑃4 = 250 𝑏𝑏𝑙/𝑑. These are also the initial guesses to the 

optimization problem. The values of 𝑞𝑡𝑜𝑡𝐼
 and 𝑞𝑡𝑜𝑡𝑃

are both set to 1000 𝑏𝑏𝑙/𝑑, setting 

the voidage-replacement ratio at unity. It is to be noted that the unit voidage-replacement 

ratio is not a requirement for optimization.  

The resulting oil saturation after running the forward simulator with the assigned 

optimized rates (Figure 10 (b)) for 20 years is shown in Figure 10 (c). The cumulative oil 

recovery is also plotted with respect to time for the equal rates and optimized cases. The 

times of earliest breakthrough for each case is marked as BT1 (equal rates case) and BT2 

(optimized case). This clearly shows the delayed breakthrough due to the equalization of 

arrival times at the producers.  
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Figure 10 For a single realization (a), considering no uncertainty, we compare the 

equal rates base (b top) case and the optimized rates (b bottom) case. The oil 

saturation profiles (c) and cumulative oil production plots (d) show the 

improvement in the sweep and thereby oil recovery after optimization. The earliest 

breakthrough time is marked on (d) as BT1 (equal rates case) and BT2 (optimized 

case) (reprinted with permission from Sen et al., 2020a) 

 

Optimization under Uncertainty 

The trained model was then used to obtain a well rate scheme optimized in a 

probabilistic sense over multiple realizations. We do so by solving the problem posed in 

eqn 9: 

All 600 realizations used in training was used for optimization as well (Figure 11 

(a)). At each iteration, a pool of 500 realizations from the training set is chosen with 

replacement in order to compute the value of the objective function. Doing so ensures a 

sufficiently large ensemble of residuals such that the probability density function (PDF) 

of the residuals have converged in distribution (via the central limit theorem) at each 
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iteration. Once convergence is reached, the objective function 𝔼(𝒆𝑻𝒆) is evaluated and 

the optimization proceeds as per sequential least squares algorithm. 

The optimized rates obtained by solving eqn 9 was tested on a new test realization 

outside the training dataset (Figure 11(b)). For comparison, a blind realization chosen 

randomly from the training dataset was optimized and these rates were applied on the 

test realization.  

 

Figure 11 (a) The objective function for optimization under uncertainty is 

computed by sampling multiple realizations with replacement from the training 

pool (b) The obtained optimal well rates were tested on a new test realization 

outside of the training pool. (reprinted with permission from Sen et al., 2020a) 

 

 

The cumulative oil production profiles for the equal rates case (Case 1) and the 

optimization case based on a single blind realization (Case 2) are represented by the blue 

and red curves in Figure 12. The resulting oil saturation profile from running an 

extended simulation for 15 years is given in Figure 13 (Case 1 and Case 2). The 

breakthrough in Case 2 is observed to happen earlier than in Case 1. This highlights the 

fact that rate optimization without considering geological uncertainty can lead to early 
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breakthrough and poorer oil recovery than an unoptimized case.  The cumulative oil 

recovery plot using well rates obtained by optimizing over multiple realizations is shown 

by the green curve in Figure 12. The earliest breakthrough is delayed compared to the 

preceding cases (BT3 in comparison to BT1 and BT2) and the resulting oil saturation 

profile (Figure 13 (Case 3)) shows more symmetry and increase in sweep. 

 

Figure 12 A comparison of cumulative oil production for optimization under 

uncertainty – equal rates case (blue), blind realization optimization case (red) and 

multiple realization optimization case (green) (reprinted with permission from Sen 

et al., 2020a) 

 

 

  

Figure 13 Comparison of oil saturation profiles at the end of 15 years for equal 

rates case (Case 1), blind realization optimization case (Case 2) and multiple 
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realization optimization case (Case 3) (reprinted with permission from Sen et al., 

2020a) 

 

A bulk of the computational requirement for the workflow is at the training 

dataset generation stage where the forward simulator has to be run to generate each 

datapoint (Table 4). However, at the deployment phase, a single forward run of the 

proxy model is faster than the conventional simulator-based approach by almost three 

orders of magnitude (Table 5). This makes the proxy model well-suited for multiple 

realization optimization where the evaluation of the objective function at each iteration 

requires several forward simulations for a converged result. 

 

Table 4 Computational requirement for training data generation 

Task CPU Time (s) (2D Case) 

Eclipse run + saving data 6 

Streamline tracing + saving 2 

Overheads 1 

Total 9 

Total for 1000 datapoints 2.5 hrs 

 

Table 5 Computational requirement at deployment phase 

Task CPU Time (s) (2D Case) 

Proxy model 0.001 

Eclipse 2 

Streamline Tracing 0.02 
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3D Brugge Case  

 

Field Description 

 

The machine-learning based rate optimization workflow was tested on the Brugge 

benchmarking case described by Peters et al. (2010). The Brugge dataset is a publicly 

available dataset containing 104 realizations of x-permeability (𝑃𝐸𝑅𝑀𝑋), z-permeability 

(𝑃𝐸𝑅𝑀𝑍), porosity (𝜙), net to gross ratio (𝑁𝑇𝐺) and initial water saturations (𝑆𝑊𝐶𝑂𝑁) 

of a faulted reservoir with 20 producers and 10 injectors. The field described by the 

model is comprised of a half dome which is elongated east-west and with a large fault at 

its northern boundary. The field also has a smaller internal fault positioned at an angle of 

~20° to the northern boundary. The reservoir property fields and zone thicknesses are 

representative of a North Sea Brent-type field. The size of the reservoir model is 139 ×

48 × 9 gridblocks. The reservoir may be divided into roughly 4 zones in the z-direction:  

 Zone 1: Layers 1 – 2 

 Zone 2: Layers 3 – 4 

 Zone 3: Layers 5 – 6  

 Zone 4: Layers 7 – 9 

 

For our application, we consider uncertainty in x-permeability, 𝑘𝑋, and porosity, 𝜙 

.Therefore, the NTG, water-oil contact and relative permeability curves are kept constant 

across all realizations. Furthermore, z-permeability 𝑘𝑍 is computed from a 𝑘𝑋 by 

assuming a constant 
𝑘𝑍

𝑘𝑋
= 0.1. Figure 14 shows three of the 𝜙 and 𝑘𝑋 realizations.  
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Figure 14 Three of 104 realizations of porosity and permeability available in the 

Brugge benchmarking dataset (reprinted with permission from Sen et al., 2020a) 

 

Proxy model building 

For generating each training datapoint, a realization was sampled from a pool of 104 

realizations (available from (Hoffimann)) and well rates were assigned randomly. Flow 

simulation was then carried out using ECLIPSE and streamline tracing was performed 

using our in-house post-processing software DESTINY. A total of 1000 datapoints were 

generated in this way. The detailed process is given below. 

 

GCT transformation 

As with the 2D case, the first step of our workflow consists of representing each of the 

heterogeneous fields as a linear combination of GCT basis functions. Each of the 

property fields may be expressed as a linear combination of these basis functions and its 

basis coefficients (which are property-dependent). This concept is illustrated in Figure 

15. 
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 In order to better represent the heterogeneity, the basis coefficients of the ensemble 

mean of the training pool was sorted based on magnitude. The drop in magnitude of the 

basis coefficients with increasing number of basis functions for porosity and 

permeability are shown in Figure 16. It is clear from Figure 16 that the drop-off levels 

off by around 20 basis functions. However, for our purpose, the basis functions 

corresponding to the highest 30 values of coefficients were chosen for representing each 

of the individual realizations, in order to ensure that most of the heterogeneity 

information is captured. The reconstruction of a reference perm field using the first 30 

basis functions is shown in Figure 17. 

 

 

Figure 15 Representation of a 𝒌𝑿 realization in terms of GCT basis functions and 

coefficients. (reprinted with permission from Sen et al., 2020a) 
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Figure 16 The drop-off in the magnitude of basis coefficients is plotted against the 

number of basis functions, for permeability and porosity of the Brugge ensemble 

mean. 𝑵𝒃𝒂𝒔𝒊𝒔 is chosen to be 30 for both fields (marked by orange line). (reprinted 

with permission from Sen et al., 2020a) 

 

 

Figure 17 The GCT basis functions are sorted based on the magnitude of their 

corresponding basis coefficient in the ensemble mean of the training set.  Only the 

first 30 are chosen as input features to the proxy model (reprinted with permission 

from Sen et al., 2020a) 

 

Streamline tracing 

 The next step in the workflow is to assign rates (both injection and production) 

randomly to all the wells. Well rates are sampled from uniform distributions – 

𝑈[500,4000]𝑏𝑏𝑙/𝑑 for producers and 𝑈[1000,8000]𝑏𝑏𝑙/𝑑 for injectors. The reservoir 
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simulations are performed using ECLIPSE running on Intel® Xeon® CPU with a base 

processor speed of 2.2 GHz. Once the flow field is computed, DESTINY is used to trace 

streamlines. DESTINY calculates the TOF for all streamlines that end at each producer. 

The average time of flight of the fastest 20% of all the streamlines ending at the 𝑖𝑡ℎ 

producer is calculated and stored as 𝜏𝑖. Figure 18 illustrates this step.  

 

Figure 18 Illustration of reservoir flow simulation, subsequent streamline tracing 

and generation of response dataset. (Reprinted with permission from Sen et al., 

2020a) 

 

A total of 1000 observations containing the following were generated: 

 Basis coefficients for 𝑘𝑋 (𝝂𝒌𝒙) 

 Basis coefficients for 𝜙 (𝝂𝝓) 

 Well rates (𝒒𝑰, 𝒒𝑷) 

 Times of flights (𝝉) 

Rate allocations for each case, were also computed and saved for running the spectral 

grouping algorithm. 

 

Spectral Grouping 

 

In order to impose physical constraints on the dependencies between producers and 

injectors learnt by the model, we treat the problem as a set of 𝑁𝑔𝑟𝑜𝑢𝑝 smaller 
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independent proxy models, each with an associated subgroup of injectors and producer. 

Therefore, we build  𝑁𝑔𝑟𝑜𝑢𝑝 proxy models 𝑓1, … , 𝑓𝑁𝑔𝑟𝑜𝑢𝑝
 such that  

𝝉𝒋 = 𝒇𝒋(𝒙𝒋),     𝒋 = 𝟏, … , 𝑵𝒈𝒓𝒐𝒖𝒑 (18) 

Here, for the 𝑗𝑡ℎ subgroup 𝐺𝑗,  𝝉𝒋 = [𝜏𝑃𝑘𝑃
] and 𝒙𝒋 = [𝒒𝑰𝒋

|𝒒𝑷𝒋
| 𝝂𝒌𝒙|𝝂𝝓]

𝑇

where 𝒒𝑰𝒋
=

[𝑞𝐼𝑘𝐼
], 𝒒𝑷𝒋

= [𝑞𝑃𝑘𝑃
]. The subscripts 𝑘𝑃 and 𝑘𝐼 are such that 𝑘𝑃 = 𝑟 𝑖𝑓 𝑃𝑟 ∈ 𝐺𝑗  (1 ≤ 𝑟 ≤

𝑁𝑃) and 𝑘𝐼 = 𝑠 𝑖𝑓 𝐼𝑠 ∈ 𝐺𝑗  (1 ≤ 𝑠 ≤ 𝑁𝐼).   

 

The well groupings are formed using spectral clustering, as presented under the section 

‘Mathematical Formulation’. The average rate allocation 𝑅𝑎𝑣𝑔 was computed by taking 

the sum of each of the allocated fluid volumes to every producer from every injector and 

dividing by the sum of injection rates. A representation of the resulting 𝑅𝑎𝑣𝑔 is 

illustrated in Figure 19. The graph Laplacian matrix for rate allocation was then set up as 

described before. In our work, 𝑘 is chosen to be 2, following Alhuthali et al. (2008). The 

clustering of the first two eigenvectors (corresponding to the smallest two eigenvalues) 

is performed using k-means clustering. The resulting well grouping is shown in Figure 

20. 
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Figure 19 The average rate allocation from the training dataset. These are used to 

generate well groups by spectral clustering (reprinted with permission from Sen et 

al., 2020a) 

 

 

Figure 20 Results of spectral well grouping scheme for 𝒌 = 𝟐 (reprinted with 

permission from Sen et al., 2020a) 
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Model Selection using k-fold Cross-validation 

 

5-fold cross-validation was used to choose the best model hyperparameters for the neural 

network model for each of the two well groups. The average RMSE is shown in Table 6. 

The neural network architecture chosen is given in  

 

Table 7 Neural network architecture for proxy modeling (Brugge case) 

. Each network was trained for 500 epochs using the Adam optimizer with a learning 

rate of 0.001. The batch size was chosen to be 400. 

 

Table 6 Model selection using 5-fold cross-validation for the MLP corresponding to 

each well group. The architecture is represented as a tuple wherein the 𝒏𝒕𝒉 element 

represents the number of neurons in the 𝒏𝒕𝒉 hidden layer 

Group1 Group 2 

Architecture Total RMSE Architecture Total RMSE 

[10] 1.30 [10] 1.55 

[20] 1.23 [20] 1.45 

[50] 1.22 [50] 1.38 

[100] (Chosen) 1.21 [100] (Chosen) 1.37 

[50,50] 1.21 [50,50] 1.37 

[100,100] 1.21 [100,100] 1.37 

 

Layer no. 𝑵𝒏𝒆𝒖𝒓𝒐𝒏𝒔 Activation Dimensions 

Input Output 

1 (Input Layer) 0 N/A N/A 𝑁𝐼 + 𝑁𝑃 + 𝑁𝑏𝑎𝑠𝑖𝑠 = 75  

2 100 ReLU 75 100 

3 (Output Layer) 𝑁𝑃 = 10  Linear 100 10 (each group) 
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Table 7 Neural network architecture for proxy modeling (Brugge case) 

 

 

The model fit obtained for the chosen model is shown in Figure 21. As explained in the 

2D case, the primary reason that we do not obtain an excellent fit (>90%) is the high 

non-linearity of the predicted TOF with respect to heterogeneity as well as the loss in 

heterogeneity information due to the reduced order representation. The fit may be 

improved by increasing the number of basis functions used in the representation. 

However, the effect of this degradation in fit on the optimization is not significant as 

seen in Figure 24, wherein we compare the performance of the proxy model based 

optimization with a full-physics based optimization.  

  It is evident that the model performance degrades for producers with very high 

minimum times of flight. These are cases where the producer is practically disconnected 

from any of the injectors, such that the minimum time of flight recorded corresponds to a 

few number of highly tortuous streamlines. This degradation in performance barely 

affects rate optimization since the flux along these bundles are very small. 

 

Layer no. 𝑵𝒏𝒆𝒖𝒓𝒐𝒏𝒔 Activation Dimensions 

Input Output 

1 (Input Layer) 0 N/A N/A 𝑁𝐼 + 𝑁𝑃 + 𝑁𝑏𝑎𝑠𝑖𝑠 = 75  

2 100 ReLU 75 100 

3 (Output Layer) 𝑁𝑃 = 10  Linear 100 10 (each group) 
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Figure 21 Model fit from 5-fold cross-validation (reprinted with permission from 

Sen et al., 2020a) 

 

Rate Optimization 

Rate optimization by equalizing the arrival times within each of the subgroups 

(obtained using spectral clustering) was performed using the ‘Scipy’ (Python library) 

implementation of the sequential least squares algorithm on Python. The trained model 

was used to compute the minimum times of flight at each producer.  

Optimization without Uncertainty 
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The workflow was first tested on a single realization, under the assumption that there is 

no uncertainty in the geology. We impose a unit voidage replacement ratio constraint. 

Hence the optimization problem is posed as the following: 

𝒎𝒊𝒏
[𝒒𝑰|𝒒𝑷]

‖𝒆(𝒒𝑰, 𝒒𝑷)‖𝟐   (16a) 

𝒔. 𝒕.  ∑ 𝒒𝑰𝒊

𝑵𝑰

𝒊=𝟏

= 𝒒𝒕𝒐𝒕𝑰
; ∑ 𝒒𝑷𝒋

𝑵𝑷

𝒋=𝟏

= 𝒒𝒕𝒐𝒕𝑷
 

(16b) 

 

The base unoptimized case for the experiment is where all the injection rates and 

production rates are set to be equal. Hence for the unoptimized case, 𝑞𝐼1 = 𝑞𝐼2 = ⋯ =

𝑞𝐼10 = 3000 𝑏𝑏𝑙/𝑑 and 𝑞𝑃1 = 𝑞𝑃2 = ⋯ = 𝑞𝑃20 = 1500 𝑏𝑏𝑙/𝑑  . These are also the 

initial guesses to the optimization problem. The increased sweep after optimization is 

evident from the rightmost panel in Figure 22 where the TOF from injector of each 

gridblock on Layer 1 is plotted. The improvement in oil recovery is evident in a 

comparison of the oil saturation profiles at the end of 30 years resulting from the 

unoptimized and optimized cases, as shown in Figure 23. The region in red corresponds 

to the volume unswept by the flood front. The sweep efficiency is also plotted against 

time for the unoptimized base case and optimized case in Figure 24.  

In order to compare the efficacy of using the proxy model for optimization with full-

physics optimization, we performed streamline-based optimization (Chen et al. 2020b) 

on the same case. These results are shown in Figure 24, wherein we find that the 

improvement in recovery from using the full-physics method (~10% increment) is not 
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substantial in comparison with the proposed method (~8% increment). Furthermore, the 

error in our proxy model (with an average R2 score of 76%, as seen in Figure 21) results 

in a ~2% reduction in cumulative recovery. One could train a more accurate proxy 

model by increasing the number of data points in the training process. 

 Furthermore, aerial representations of optimized rate changes resulting from the 

streamline-based optimization and those from the proposed workflow are given in Figure 

25 (a) and (b). It is seen that the proposed workflow correctly identifies the 7 out of 10 

wells for which the rates have to be increased (as per the streamline-based schedule).  

These include the injector I-8, along with producers P-1, P-2, P-8 and P-9 (located in the 

interior of the edge flood). Furthermore, both optimizations methods allocate reduced 

rates to the producers that are close to the edge injectors - BR-P-11 to BR-P-19, so as to 

equalize the arrival times of the flood fronts and thereby increase sweep. 

 

 

Figure 22 Injection and production rates with sweep visualization in Layer 1 in a 

Brugge realization before and after optimization. The area in red represents the 

‘unswept’ regions in the model. (Reprinted with permission from Sen et al., 2020a) 
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Figure 23 Oil saturation profile at the end of 30 years for the equal rates case 

compared with the optimized rates case (reprinted with permission from Sen et al., 

2020a) 

 

 

 

Figure 24 Cumulative oil production comparison in rate optimization based on a 

single geologic realization: the equal rates (with 𝒒𝑰𝟏 = 𝒒𝑰𝟐 = ⋯ = 𝟑𝟎𝟎𝟎 𝒃𝒃𝒍/𝒅 and 

𝒒𝑷𝟏 = 𝒒𝑷𝟐 = ⋯ = 𝟏𝟓𝟎𝟎 𝒃𝒃𝒍/𝒅), optimal rates based on the proxy model, optimal 
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rates based on the simulation model (reprinted with permission from Sen et al., 

2020a) 

 

 

Figure 25 A comparison of rate changes calculated using (a) the streamline-based 

optimization method and (b) the proposed machine-learning based workflow are 

shown 

 

Optimization under Uncertainty 

The trained model was then used to obtain a well rate scheme optimized in a 

probabilistic sense over multiple realizations in order to account for uncertainty in 

geology. We do so by solving the problem posed in Eq 9. 

All 36 realizations used in training was used for optimization as well. The 

optimization pool was made of 200 realizations, which was formed by sampling with 

replacement from the 36-realization training dataset. Doing so ensures a sufficiently 

large ensemble of residuals such that the PDF of residuals have converged in distribution 

(via the central limit theorem) at each iteration. Once convergence is reached, the 
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objective function 𝔼(𝒆𝑻𝒆) is evaluated and the optimization proceeds as per sequential 

least squares algorithm.  

The optimized rates obtained by solving Eq 9 was tested on a test realization outside the 

training dataset. The rate changes prescribed by the optimization (i.e. optimized rate 

minus the initial equal rate) to each well is shown in Figure 26, along with the residual 

oil at 20 years for each case. From Figure 26 we observe that: 

a. The ‘outer’ producers (closest to the edge injectors) are assigned smaller rates 

whereas the ‘inner’ producers are assigned higher rates as compared to the 

equal rates base case. This reallocation of rates leads to increased oil recovery 

from the regions marked by blue ellipses in the oil saturation plot. 

b. Along with the inner injectors BR-P-9 and BR-P-10, three injectors (BR-I-7, 

BR-I-8 and BR-I-10) are assigned higher rates, leading to increased recovery 

from the region marked with the red ellipse in the oil saturation plot. 

 

In order to better visualize the effect of equalizing time-of-flight, the streamlines at the 

last timestep from both the unoptimized and optimized case is given in Figure 27. The 

unoptimized case (left) shows the presence of early breakthrough pathways, indicated by 

streamlines with small total time-of-flight (in blue), mostly between the edge injectors 

and the ‘outer’ producers. These have been removed in the optimized case (right) by 

time-of-flight equalization.  

Moreover, there exist regions (marked in red ellipses) with remaining oil that are 

sparsely covered by streamlines with large total time-of-flight in the unoptimized case. 

After optimization, the increased rate assignment to injectors BR-I-7, BR-I-8 and BR-I-

10, as well as the ‘inner’ producers (especially BR-P-1, BR-P-9 and BR-P-10) ensure 

that the streamlines are evenly distributed in these regions.  
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Figure 26 Well rates and remaining oil before and after optimization (reprinted 

with permission from Sen et al., 2021) 

 

 

 

Figure 27 TOF analysis (reprinted with permission from Sen et al., 2020a) 

 

For further comparison, a single realization chosen from the training dataset was 

optimized and these rates were applied on the test realization. The resulting cumulative 

oil production optimization under uncertainty is plotted in Figure 28 along with that 

from optimizing the single realization, as well as the unoptimized case. Both the 
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optimized cases (based on a single realization and multiple realizations) show improved 

recovery as compared to the unoptimized case, with the latter optimization (considering 

uncertainty) being marginally better than the former. The benefit of considering 

uncertainty in the optimization is more apparent in Figure 29, when considering the 

distribution of cumulative oil recoveries obtained by implementing the optimized rates 

on multiple realizations in the ensemble. Figure 29 (a) and (b) shows the distribution and 

expected value of the cumulative oil recovery. The inclusion of uncertainty in the 

optimization increases the expected cumulative recovery (from the equal rates base case) 

by ~7%, whereas, without it, the improvement is only ~3%. 

 

This is further illustrated in Figure 30, which shows the resulting oil saturation maps at 

various layers at the end of the simulation. An improvement in sweep as a result of 

optimization, in comparison with the unoptimized case, is visible at Layers 1, 6 and 8. 

Furthermore, the improvement in oil recovery as a result of accounting for multiple 

realizations, rather than a single realization, is also evident in Figure 28 and Figure 30. 

The improvement in sweep brought about by multiple realization optimization is evident 

especially in the oil saturations maps at Layers 1 and 6.  
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Figure 28 The cumulative oil production in a test case by using the optimization 

results from a single blind realization compared with that obtained by equalizing 

arrival time in a probabilistic sense (over multiple realizations) (reprinted with 

permission from Sen et al., 2020a) 

 

 
Figure 29 A comparison of the (a) distributions and (b) expected values of 

cumulative oil recovery resulting from using equals rates, optimized rates 

(considering uncertainty) and optimized rates (without considering uncertainty). 

(Reprinted with permission from Sen et al., 2021) 
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Figure 30 Oil saturation profile at the end of 30 years for the equal rates case 

compared with the optimized rates case. (Reprinted with permission from Sen et 

al., 2020a) 

 

Similar to the 2D case, the generation of the training dataset accounts for the bulk of 

computational requirement of the workflow, with the generation of each datapoint by 

simulation and streamline tracing taking around 16 seconds on an Intel® Xeon® CPU. 

However, at the deployment phase, we are able to reduce the CPU time for the forward 

run from 4 seconds to 0.006 seconds (around 3 orders of magnitude), as shown in Table 

8 and Table 9. 

Table 8 Computational requirement for training data generation (Brugge Case) 

Task CPU Time (s)  

Eclipse run + saving data 9 

Streamline tracing + saving 5 

Overheads 1 

Total 16 

Total for 1000 datapoints 4.4 hrs 
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Table 9 Computational requirement at deployment phase (Brugge Case) 

Task CPU Time (s)  

Proxy model 0.006 

Eclipse 4 

Streamline Tracing 0.3 

 

Conclusions 

 

We developed and implemented a machine-learning based workflow for rate 

optimization for two-phase flow in geologic heterogeneous media. A key differentiating 

aspect of our workflow is the use of a proxy model in predicting a physics-informed 

intermediate output, i.e., the minimum TOF at the producer, as a measure of inter-well 

connectivity. Because there is considerable uncertainty in the underlying geology of a 

field under waterflood, we demonstrated the need for accounting for multiple geologic 

realizations while performing waterflood optimization. However, the optimization over 

multiple realizations is computationally intensive since it requires several forward runs 

of the reservoir simulator at each iteration. Our proposed workflow overcomes this 

limitation by mapping the minimum TOF to the well rates heterogeneity using a proxy 

model, thereby speeding up the forward run by three orders of magnitude. This speed-up 

enables us to perform the optimization by equalizing the minimum TOF considering 

multiple realizations. However, the application of the proposed methodology to 

problems that require streamline regeneration, such as varying well rates/constraints or 

addition of offset wells, would require specification of more inputs to the proxy model 

such as time or well locations/configurations along with well rates. The extension of this 

methodology to such problems shall be explored in the next stage of the study. 
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The key contributions of this chapter are listed below: 

 The heterogeneous field properties were projected on a lower-dimensional space 

using grid-connectivity transformation and expressed in terms of the basis 

coefficients. The TOF at the producers were mapped to the well rates and the basis 

coefficients using a multilayered perceptron-based proxy model.  

 The proxy model was used to estimate the TOF without having to solve the flow 

equation and trace streamlines. Fieldwide rate optimization was performed by 

equalizing the estimated TOF within the well subgroups. 

 The proxy model incorporates the effects of heterogeneity on a physics-informed 

characterization of interwell connectivity (minimum TOF at producer). 

Furthermore, the forward run of the proxy model is faster than the conventional 

simulator by three orders of magnitude, which makes this suitable for optimization 

over multiple geologic realizations.  

 The proxy model was used to perform rate optimization over multiple geologic 

realizations on a 2D heterogeneous case. The results show superior oil recoveries 

to the cases that were unoptimized or optimized over a single realization. 

 The practical feasibility of the approach was demonstrated through application to 

the SPE benchmark Brugge field case. A systematic grouping of the wells and 

application of the algorithm to the well groups resulted in improved oil recovery 

compared to cases that were unoptimized or optimized over a single realization.  
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CHAPTER III  

INTER-WELL CONNECTIVITY DETECTION IN CO2 WAG PROJECTS USING 

STATISTICAL RECURRENT UNIT MODELS3 

 

 

Reliable quantification of well connectivity is a crucial aspect to forming a good 

understanding of a reservoir, which in turn helps in formulating future development 

plans such as rate optimization and offset wells (Chen et al. 2020b). This assumes an 

even greater importance when applied to high-capital projects such as CO2 EOR and 

polymer floods.  

Conventional methods for assessing well connectivity include tracer tests (Zhang 

et al. 2016, Suarsana and Badril 2011) and numerical simulation-based techniques such 

as streamlines (Datta-Gupta and King 2007). Streamlines explicitly reveal the flow paths 

in the reservoir and quantify the interaction between injectors and producers via well-

pair flux allocations. Extensive literature has shown the capacity of streamlines over a 

variety of grid systems, including Cartesian grids (Pollock 1988), corner point grids 

(Cordes and Kinzelbach 1992; Jimenez et al. 2010), unstructured grids (Prevost et al. 

2002; Rasmussen 2010; Zhang et al. 2011; Zuo et al. 2021) and dual porosity dual 

permeability models (Chen et al. 2020a).  

                                                 

3 Part of this chapter is reprinted with permission from Chen, Hongquan, et al. "Model-Free Assessment of 

Inter-Well Connectivity in CO2 WAG Projects Using Statistical Recurrent Unit Models." SPE Annual 

Technical Conference and Exhibition. OnePetro, 2021. Copyright 2021 Society of Petroleum Engineers. 

Further reproduction is prohibited without permission. 
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However, these conventional methods tend to be either computation-intensive (i.e. 

numerical simulation) or resource-intensive (such as tracer tests). In recent years, data-

driven methods that derive valuable insights from commonly recorded field data have 

proved to be quite successful in applications in the oil and gas domain related to drilling 

(Veettil and Clark 2020, Jahani et al. 2021), petrophysics (Sen, Ong, et al. 2020b), 

reservoir engineering (Yousef et al. 2006, Tian and Horne 2019, Sen, Chen, et al. 2020a 

and 2021, Liu et al. 2019) and production (Zhou et al. 2018, Pan et al. 2021). 

One of the earliest instances of using injection and production data to infer well 

connectivity was introduced by Heffer et al. (1997) wherein a Spearman rank correlation 

based approach was used to identify preferential flow paths between injectors and 

producers. Tian and Horne (2016) introduced a modification to the Pearson’s correlation 

coefficient (Benesty et al. 2009) to identify injection and production rates that vary 

concurrently. The modified Pearson’s correlation coefficient cannot be used for 

prediction in a stand-alone fashion without being coupled with another predictive model.  

Albertoni et al. (2003) applied multivariate linear regression to injection and production 

data to infer inter-well connectivity. This approach had the added benefit of being a 

predictive tool that estimates total liquid production at a producer, given water injection 

rates. However, the authors did not extend this method to problems with varying GOR. 

Yousef et al. (2006) introduced a capacitance-resistance model (CRM) to include the 

effects of both flow rates and BHP in a similar framework to develop a predictive tool 

and infer well connectivity purely from data. However, the authors outline a number of 

pre-requisites for applying the CRM model, such as the absence of long producer shut-
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ins and constant GOR. These shortcomings may limit the use of CRM to a real-field 

WAG injection case. However, a number of modifications to the CRM have been 

developed by various authors, each for specific cases (Sayarpour 2008, de Holanda et al. 

2018, Holanda et al. 2018). 

Major limitation of the above-mentioned works is the inability to model general 

non-linearity in production trends arising from factors such as varying GOR and 

frequent shut-ins. A potential way to redress this shortcoming is by using a universal 

approximator like neural networks that can theoretically model any measureable 

function to an arbitrary degree of accuracy (Hornik et al. 1989). An extension of the 

neural network to sequential data, called the recurrent neural network (RNN), was first 

introduced by Hopfield (1982) and later by Rumelhart et al. (1986). From thereon, 

RNNs have been applied to various applications ranging from handwriting and speech 

recognition (Graves et al. 2008, Dutta and Sarma 2012) to regression applications such 

as trade forecasting (Dunis and Huang 2002) and hydrological forecasting (Coulibaly 

and Baldwin 2005). In the past, RNNs have been applied successfully to oil and gas 

problems such as formation top detection (Sen, Ong, et al. 2020), well-control 

optimization (Kim and Durlofsky 2021) and production prediction (Tian and Horne 2017 

and 2019, Bao et al. 2020). However, connectivity detection based on RNN models is 

not yet demonstrated. 

The statistical recurrent unit (SRU) was introduced by Oliva et al. (2017) as an 

un-gated alternative to more complex RNN architectures such as LSTMs (Hochreiter 

and Schmidhuber 1997) and GRUs (Chung et al. 2015). The SRU was shown to capture 
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long term dependencies at least as much as the latter models, simply by using moving 

averages of temporal information at different scales. Therefore, the SRU architecture is 

simpler and more interpretable compared to LSTMs and GRUs, enabling easier training 

and incorporation of additional constraints such as well locations. 

Variable importance is an assessment of the contribution of each input on the 

output (Breiman 2001). It can be a promising method of inferring well connectivity from 

a data-driven model. That is, the variable importance computed from an explainable 

data-driven model, should ideally correspond to the actual influence that an input signal 

(such as those from an injector) has on the output (production at producer). In this way, 

an explainable and predictive data-driven model may be used to derive insights on the 

actual reservoir connectivity in a quick and efficient way, without the need to run 

computationally costly reservoir simulations. 

With the above in mind, we propose a SRU based framework for inferring inter-

well connectivities. The proposed method contains two key components: SRU model 

specifically framed to the CO2 WAG problem and the inter-well connectivity assessment 

based on the SRU model and variable importance calculation. The rest of this chapter is 

organized as follows. First, the proposed methodology is explained in detail, focusing on 

the overall workflow - the statistical recurrent unit modeling and the variable importance 

quantification. Second, we apply the proposed framework to the CO2 WAG problem 

with selected inputs and customized loss function. Third, the specified workflow is 

tested using a field-scale CO2-WAG injection case. Finally, we summarize our findings 

and explore avenues for future research. 
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Methodology 

In this work, we develop an SRU-based framework, for estimating connectivity between 

injectors and producers using the time-elapsed well measurements. Furthermore, we 

demonstrate the validity of the inferences by comparing with a physics-based measure of 

connectivity – the streamline flux allocations. 

 

Connectivity Inference Workflow 

The general workflow for connectivity inference is shown in Figure 31. The first 

step (Figure 31(a)) is to fit a machine learning model to the data. In our application, we 

train an SRU model for each producer that predicts its gas production rate given the 

producing pressure and injector-wise injection rates. The next step (Figure 31(b)) is to 

ensure the reliability of the proxy model by testing its performance on a dataset that has 

not been seen during training (test set). A model with good predictive power on the test 

set is an indication that the connections that it learned during training are representative 

of the true connections that exist in the field. Once we have a reliable model, we can 

quantify the influence of any injector on the producer by computing the permutation 

variable importance (Breiman 2001) which quantifies the contribution of injector’s rates 

in the accuracy of prediction of producer’s gas production. In this way, a variable 

importance map can be plotted showing the major connections in the field (Figure 

31(c)).  
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Figure 31 Connectivity inference workflow using machine learning (reprinted with 

permission from Chen et al., 2021) 

 

The mathematical notations are introduced here for the ease of reading of 

subsequent sections. The dataset used for modeling a particular producer consists of the 

input matrix 𝑋𝑇×𝑀 and the output matrix 𝑌𝑇×1. T is the number of time steps, M is the 

number of features (predictor/independent variables) which can be gas or water injection 

rate of selected injectors or pressure of the producer. When X is viewed as time series, 

𝑋𝑇×𝑀 = [𝑥1, 𝑥2, … , 𝑥𝑇]𝑇, where 𝑥𝑡 = [𝑧1(𝑡), 𝑧2(𝑡), … , 𝑧𝑀(𝑡)] is a row vector (1<t<T) 

and 𝑧𝑖(𝑡) represents the i-th feature value at step t.  When X is viewed as a set of 

features, 𝑋𝑇×𝑀 = [𝑧1, 𝑧2, … , 𝑧𝑀], where 𝑧𝑖 = [𝑧𝑖(1), 𝑧𝑖(2), … , 𝑧𝑖(𝑇)]𝑇 is a column vector 

(1<i<M). These two perspectives will be employed to explain SRU and permutation 

variable importance in the following sections. 𝑌𝑇×1 = [𝑦1, 𝑦2, … , 𝑦𝑇]𝑇, 𝑦𝑡 is the gas 

production rate of the producer at step t in current study. 

Statistical Recurrent Network 

A commonly used approach for modeling time-series data consists of computing the 

output as a function of the current information of the system, commonly called the 

‘state’. Such an approach to time-series model is employed in various algorithms ranging 
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from hidden Markov models (Sen et al. 2014) to different variants of RNN (Sherstinsky 

2020, Hochreiter and Schmidhuber 1997, Chung et al. 2015). Broadly speaking, the 

RNN predicts the output at a time step as a function of the input at the current time step 

as well as the information passed on from the previous time step. Regardless of 

architectural variations, the RNN (Sherstinsky 2020) has two sets of inputs: 

 Inputs pertaining to the current time step  

 Information passed from the previous time step(s) 

An RNN to predict production rate is shown in Figure 32, illustrating the general 

concept where the output at t is computed from the inputs at t as well as the recurrence, 

which in this case, is merely the output at t-1. In Figure 32, a weighted sum of the inputs 

from the current time step 𝑡 (𝑧1(𝑡), … , 𝑧𝑀(𝑡)) and the output at 𝑡 − 1 (i.e. 𝑦𝑡−1) pass 

through an activation function (denoted 𝜎) to produce the output 𝑦𝑡. 

 

Figure 32 A schematic representation of a RNN to predict the inputs  z_1,…z_M. 

The output at t is computed as a function of inputs at t and the previous output at t-

1. This type of recurrence enables the RNN cell to compute the output as a function 

of the history. (Reprinted with permission from Chen et al., 2021) 
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The SRU used for our problem is based on the work by Oliva et al. 2017. This 

architecture adds a layer of complexity to the basic RNN (Figure 32) by introducing a 

mechanism to keep track of short term and long term dependencies between input and 

output by means of exponential moving averages. Given an input sequence 

{𝑥1, 𝑥2, … , 𝑥𝑇} and output sequence {𝑦1, 𝑦2, … , 𝑦𝑇}, the SRU first computes an 

instantaneous state 𝛾𝑡 as a function of the input, as given below: 

𝛾𝑡 = 𝑓(𝑥𝑡) (1) 

where 𝑓(𝑥𝑡) represents a neural network. 

Subsequently, a cumulative state 𝜇𝑡 may be computed as the exponential moving 

average at different scales (𝛼𝑠 ∈ {𝛼1, 𝛼2 … }) as given below. 

𝜇𝑡,𝛼𝑠
= (1 − 𝛼𝑠)𝛾𝑡 + 𝛼𝑠𝜇𝑡−1,𝛼𝑠

 (2) 

A schematic representation of the calculations involved are shown in Figure 33. 

Consider a time-series problem illustrated in Figure 33(a) with the input time-series 

{𝑥1, … , 𝑥𝑇} and a corresponding time-series of the dependent variable {𝑦1, … , 𝑦𝑇}, which 

are to be predicted. Assuming a window size 𝑁𝑤 = 3, the first prediction would be made 

at 𝑡 = 3. The instantaneous states 𝛾1, 𝛾2, 𝛾3 are computed from the respective inputs 

𝑥1, 𝑥2 and 𝑥3 by passing these through a neural network 𝑁𝑁1. Subsequently, the 

cumulative states at each scale (number of scales is 2 in the illustration) is computed for 

𝑡 = 1,2,3 as in Eq. 2 and Figure 33(c), from the computed 𝛾’s. This computation may be 

represented as a weighted average of the 𝛾’s as shown in Figure 33(b). Ultimately, the 

output 𝑦3 is computed by passing the cumulative states 𝜇’s through a neural network 

𝑁𝑁2.  
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In this study, 𝑁𝑁1 and 𝑁𝑁2 are dense neural networks with rectified linear 

activation function (ReLU), which is a piecewise linear function that will output the 

input directly if it is positive, otherwise, it will output zero.  

 

Figure 33 Detailed illustration of the SRU architecture (2 scales in the illustration) 

as applied to a time-series problem described in (a) with inputs {𝒙𝟏, … 𝒙𝟏𝟎} and 

predicted variable {𝒚𝟏, … 𝒚𝟑}. (b)  The instantaneous states (𝜸𝟏, 𝜸𝟐, 𝜸𝟑) are 

computed from the inputs at each time step in the window, x1, x2 and x3. Next, the 

short term (𝝁𝒔𝒄𝟏
) and a long term (𝝁𝒔𝒄𝟐

) cumulative states are computed from the 

instantaneous states, capturing the short-term and long-term information. The 

output at t=3 is then a function of 𝝁𝒔𝒄𝟏
and 𝝁𝒔𝒄𝟐

. (c) The computation of 𝝁𝒔𝒄𝟏
 and 

𝝁𝒔𝒄𝟐
 is performed recurrently, as an exponential moving average of the 

instantaneous state at t and the cumulative state at t-1. (reprinted with permission 

from Chen et al., 2021). 
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Permutation Variable Importance 

 

Variable importance (VI) refers to any metric that quantifies the contribution of any 

feature 𝑧𝑖 in the accuracy of prediction of 𝑌. A wide variety of VI measures have been 

reported in literature. Commonly used VI metrics include those based on assumed linear 

relationships (Achen 1982, Bring 1996) and others that employ some kind of 

decomposition of the covariance matrix (Kruskal 1987, Budescu 1993, Zuber et al. 

2011). A comprehensive study of various importance measures and its application was 

provided by Grömping (2015).  

In the present work, we adopt a machine-learning specific VI scheme, first 

introduced by Breiman (2001) (as an application to random forest models). Herein, VI of 

a feature 𝑧𝑖 is measured in terms of the increase in prediction error from using a random 

permutation of the rows of 𝑧𝑖. Therefore, given a dataset [𝑌, 𝑋] where 𝑋 =

[𝑧1, 𝑧2, … , 𝑧𝑀], we first compute the original prediction error (loss). In this work, we 

define the loss as the mean squared error over the dataset:  

𝑒𝑜𝑟𝑖𝑔 = 𝑙𝑜𝑠𝑠(𝑌, 𝑋) = 𝑀𝑒𝑎𝑛𝑡 ((𝑦𝑡 − 𝑦𝑝𝑟𝑒𝑑,𝑡)
2

)  (3) 

Next, we randomly permute the rows of the feature 𝑧𝑖, to get 𝑧𝑖
𝑠ℎ𝑢𝑓

. Here, the superscript 

𝑠ℎ𝑢𝑓 represents a single permuted ordering of the set of row indices {1,2, … , 𝑇}. The 

perturbed prediction error is then given as  

𝑒𝑠ℎ𝑢𝑓,𝑖 = 𝑙𝑜𝑠𝑠(𝑌, 𝑋𝑠ℎ𝑢𝑓,𝑖) (4) 
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Where 𝑋𝑠ℎ𝑢𝑓,𝑖 = [𝑧1, 𝑧2, … , 𝑧𝑖
𝑠ℎ𝑢𝑓

, … , 𝑧𝑀]. The shuffling and 𝑒𝑠ℎ𝑢𝑓 computation may be 

done repeatedly to get the expected value of 𝑒𝑠ℎ𝑢𝑓 over the permutations of 𝑧𝑖. The 

variable importance of 𝑧𝑖 to 𝑌 is then computed as  

𝑉𝐼𝑖 =  𝐸(𝑒𝑠ℎ𝑢𝑓,𝑖) − 𝑒𝑜𝑟𝑖𝑔 (5) 

An illustration of the permutation variable importance is shown in Figure 34. Consider a 

dataset, X being gas injection rates at injectors 𝐼1 and 𝐼2 and pressure data at producer 

 𝑃1, Y being the gas production rate at producer 𝑃1. The prediction error may be 

computed as the mean squared difference between the observed values and the 

corresponding model predictions. In order to compute the variable importance of injector 

𝐼1 to 𝑃1, we permute the values of input under 𝐼1 and then re-predict using the model. 

The shuffling leads to an increase in the resulting prediction error. The new error is 

𝑒𝑠ℎ𝑢𝑓. By repeatedly shuffling the columns of 𝐼1 and computing 𝑒𝑠ℎ𝑢𝑓, we obtain 

𝐸(𝑒𝑠ℎ𝑢𝑓). Now the variable importance of 𝐼1 is the difference between 𝐸(𝑒𝑠ℎ𝑢𝑓) 

and 𝑒𝑜𝑟𝑖𝑔. Higher this difference, greater is the importance of 𝐼1 to 𝑃1.  

Since the predictions for different producers are made via different SRU models (with 

separate sets of NN weights), a comparison between VI’s with different producers (e.g. 

𝐼1 − 𝑃1 vs 𝐼1 − 𝑃2, or 𝐼1 − 𝑃1 vs 𝐼2 − 𝑃2) is inherently meaningless.  In other words, the 

relative strength of connections inferred via the proposed method is meaningful only 

when these inferences are made based on the same SRU model. Therefore, once we 

obtain 𝐸(𝑒𝑠ℎ𝑢𝑓) values for all injectors contributing to the same producer 𝑃1, we 
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normalize these values with respect to their maximum value. That is, the strongest 

connection to 𝑃1 will have a normalized VI of 1.0.  

𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑉𝐼𝑖
=

𝑉𝐼𝑖

𝑉𝐼𝑚𝑎𝑥
 

(6) 

This kind of producer-wise normalization of VI’s is performed for all producers in the 

model. The resulting VI map shows the dominant connections with respect to each 

producer. 

 

 

Figure 34 An illustration of permutation variable importance computation. The 

features 𝒛𝟏, 𝒛𝟐 and 𝒛𝟑 denote the gas injection rates at 𝑰𝟏 𝒂𝒏𝒅 𝑰𝟐  and pressure at 

𝑷𝟏 respectively. The predicted and observed gas production at 𝑷𝟏 is given by 𝒚𝒑𝒓𝒆𝒅 

and 𝒚𝒐𝒃𝒔. The variable importance of 𝑰𝟏 to 𝑷𝟏 is computed by shuffling 𝒛𝟏 and 

recording the expected increase in error in 𝒚𝒑𝒓𝒆𝒅. (Reprinted with permission from 

Chen et al., 2021) 
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Framework Specification for CO2 WAG Problem 

 

The Methodology section has already established the SRU framework for general 

time series problems. This section covers the application designs specific to typical CO2 

WAG problems.  

The features selected as input to a machine learning model can significantly 

affect the performance of machine learning applications. The omission of dominant 

features may prevent the model from capturing the true behavior of the system. 

Moreover, given a limited amount of data, addition of non-dominant features may cause 

overfitting (Hawkins 2004). To address this issue, a problem-specific tailoring of the 

input may reduce the chance of unreasonable model coefficients and thus improve the 

prediction accuracy. Another way to prevent overfitting of a machine learning model 

would be the technique of regularization, where a penalty term is added to the loss 

function to control the excessively fluctuating function so that the coefficients don’t take 

extreme values. 

To adapt the SRU framework for successful application to the CO2 WAG 

problem, a series of customizations are introduced. These include the selection of input 

features and regularization using the well location information.  The customized 

application of SRU is demonstrated on synthetic model simulations under typical CO2 

WAG operations as the following. The producers are under stable pressure constraints 

though limited pressure variations are imposed. A typical CO2 formation volume factor 
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of 1.0 RB/MSCF (0.0056 cf/scf), reported by Cherdasa et al. 2018, is used in our model. 

The CO2 WAG ratio of each injector is sampled between 0.25 and 0.5,  referring to the 

work by Olalotiti-Lawal, Onishi, Datta-Gupta, et al. (2019) and Ren and Duncan (2019). 

The customizations are decided based on the prediction accuracy on the test dataset and 

the connectivity accuracy as per the streamline method. 

The first subsection describes a technique to understand the effects of various 

input features such as gas injection rates and water injection rates. Moreover, we shall 

describe various derived features such as cumulative injection, which may contribute to 

a better predictive model. However, we also demonstrate that the decision to add more 

input features should be made considering the length and quality of training data that is 

available.  

The second subsection describes the model regularization using well location 

information. Specifically, in cases where multiple injectors may have similar injection 

trends, the model should be able to pick out the more adjacent injector, rather than a 

distant one, in order to infer reasonable well connectivity maps. Two methods, preset 

radius and penalty function, are introduced to account for well locations, and the 

accuracy of the connectivity maps are examined using the streamline-based 

measurements.  

Selection of Input Features 

 

The first step in fitting the SRU is to decide on the input features going into the 

model. We start with a synthetic 3D heterogeneous model with four corner injectors and 
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a single central producer, as shown in Figure 34 (a). The 3D model is of the dimension 

50 × 50 × 10 and the injectors are rate-controlled (with assigned rates shown in Figure 

34  (b)) and the producer is operational at stable BHP, shown in Figure 34 (c). The 

simulated gas production at P-1 is shown in Figure 34 (c).  

 

 

(a) 

 

(b) 
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(c) 

Figure 35 A synthetic 3D WAG case with a (a) 10-layer heterogeneous permeability 

field with 4 injectors and a central producer. The water and gas injection rates 

assigned to the four wells are shown in (b). The stable BHP constraint and 

simulated gas production at P-1 is given in (c). (Reprinted with permission from 

Chen et al., 2021) 

 

 

First, we compare the effects of water injection vs gas injection for various 

lengths of training data to understand the relative contribution of each to the gas 

production. Later, we employ a similar analysis to decide the best set of inputs for 

training a model, given a dataset. At this stage, we shall also consider the addition of 

derived input features such as cumulative gas and water. By doing so, we also study the 

interplay between the number of features and the length of the dataset and its effect on 

the goodness of the model. 

Water injection vs. Gas Injection 

To compare the contribution of water injection vs gas injection, we train two models, 

one with just gas injection (red curve in Figure 36) and another with just water injection 

(green curve in Figure 36). The gas production observations (blue circles in Figure 36) 
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were generated by adding noise to the simulated production from Figure 35 (c). To start 

with, we choose a small training dataset of length (𝑁𝑡𝑟𝑎𝑖𝑛) 49 time steps, and predict for 

the rest of history. The training and test regions are shown in white and red backgrounds 

in the left panel of Figure 36. On the right panel, we see the cumulative production for 

the test case, as per the observation as well as the prediction of each model. 

We see that the model that was trained on water alone, does a very poor job at 

prediction, as compared to the model trained on gas injection alone. As we increase the 

training length, even though both models do get better, only the gas injection-based 

model results in consistently good prediction (for 𝑁𝑡𝑟𝑎𝑖𝑛 = 147).  This shows that in this 

case, the gas production rate a strong function of the gas injection and water injection 

has a weak impact. 

 

Figure 36 Comparison of SRU model prediction using water injection alone 

(WWIR) with that using gas injection alone (WGIR), for various training lengths. 

The SRU gas production rate predictions are shown on the left panel, where the 

training region is shown in the background and test region in the red background. 

The cumulative production rates for the test region alone are shown in the right 

panel. (Reprinted with permission from Chen et al., 2021) 
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Inclusion of derived features 

In this section, we shall study the effects of adding several input features on the 

training length required for a good regression fit. To this end, we compare four sets of 

inputs for each injector. The resulting predictions are shown in Figure 37: 

1. WGIR: Gas injection alone (Model 𝑀1, solid red line in Figure 37) 

2. WWIR+WGIR: Gas injection and water injection (Model 𝑀2, dotted blue line) 

3. WGIR+WGIT: Gas injection and cumulative gas injection (Model 𝑀3, dotted red 

line) 

4. WGIR+WGIT+WWIR+WWIT: Gas injection, water injection, cumulative gas 

injection and cumulative water injection (Model 𝑀4, dotted green line) 

For the short training dataset of 𝑁𝑡𝑟𝑎𝑖𝑛 = 49, we see that the gas injection alone offers 

the best prediction. For this dataset of insufficient length, having more inputs results in a 

degradation of prediction performance. As we increase the dataset length to 𝑁𝑡𝑟𝑎𝑖𝑛 = 98, 

both 𝑀1 and 𝑀3 predict well. The addition of water information (as in 𝑀2 and 𝑀4) 

hardly helps. As we increase the training dataset even further, all models predict 

accurately, as long as we have included the dominant input, which is the gas injection 

rates. However, it is clear that if our dataset is noisy and of insufficient length, it is safer 

to limit the input to the most dominant features. 
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Figure 37 Comparison of SRU model prediction using four different input sets, for 

various training lengths. The SRU gas production rate predictions are shown on the 

left panel, where the training region is shown in the white background and test 

region in the red background. The cumulative production rates for the test region 

alone are shown in the right panel. The input sets being compared are gas injection 

along (WGIR, solid red), gas injection plus cumulative gas (WGIR+WGIT, dotted 

red), gas injection and water injection (WWIR+WGIR, dotted blue), gas and water 

injection along with their respective cumulatives (WGIR+WGIT+WWIR+WWIT, 

dotted green). The observed values of gas production are shown in blue circles. 

(Reprinted with permission from Chen et al., 2021) 

 

Selection of Injectors  

 

In this section we consider the choice of the injector set that is used to make the 

prediction at a particular producer. Especially in cases where multiple injectors have 

similar injection trends, it becomes necessary to impose some kind of location-based 

constraints on the SRU, in such a way that adjacent injectors exert more influence on a 

producer. Therefore, we examine ways to include location information into our model.  
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There are two possible approaches that we implement in this chapter. One way is to set a 

preset search radius where we consider only injectors which are within a specified radius 

around the producer. Subsequently, we do away with the pre-specified radius and 

perform a dynamic selection of injectors using a penalty function at the training stage. 

For the analysis, we use a 3D synthetic field of dimension 50 × 50 × 10 with 12 rate-

controlled injectors and 12 BHP-controlled producers, shown in Figure 38.  

 

Figure 38 3D synthetic model with 12 injectors and 12 producers, used for testing 

the proposed methods for inclusion of location information. The search radius for 

producer P-6 is also plotted, within which all injectors are assumed to be capable of 

influencing the gas production at P-6, under the preset search radius method. 

(Reprinted with permission from Chen et al., 2021) 

 

Reference Connectivity Map by Streamlines 

Streamlines are the flow paths derived from the instantaneous velocity field 

under subsurface conditions (Datta-Gupta and King 2007). When streamlines are traced 

such that each streamline carries equal volumes of fluid (under reservoir conditions) to a 

producer, the streamline numbers from different injectors to the that producer reflect the 
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interwell connectivity of the injector-producer pair. Accounting for the velocity field 

variation over time, the average streamline number over all training time steps, denoted 

as 𝑁𝑠𝑙𝑛,𝑖 (where 𝑖 represents injector ID), is used to measure the physics-based 

connectivity. Similar to the metrics of normalized variable importance (VI), the 

connectivities represented by the streamline numbers with respect to the same producer 

are also normalized to their maximum value. 

𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑆𝐿𝑁𝑖   
=

𝑁𝑠𝑙𝑛,𝑖

𝑁𝑠𝑙𝑛,𝑚𝑎𝑥
 

(7) 

Several streamline snapshots of the synthetic case are given in Figure 39(a)-(c) and the 

final streamline-based connectivity map is show in Figure 39(d). 

 

Figure 39 Streamlines traced at various time steps are shown in (a)-(c). The color 

indicates the gas concentration along the streamlines. The time-averaged streamline 

connectivity as computed by Eq. 7 is shown in (d). (Reprinted with permission from 

Chen et al., 2021) 

 

Preset Search Radius Method 

While making a prediction at a particular producer using an SRU with a preset search 

radius, we only consider injectors which fall within a specified radius around the 

producer. For example, in Figure 38, for predicting gas production at P-6, we consider 
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only injectors I4, I5, I7 and I8 (which fall within the demarcated search radius) to have 

any influence. In other words, the prediction at P6 will be a function of the injection 

rates at I4, I5, I7 and I8. All weights that connect to other injectors are constrained to be 

zero. 

The prediction results for all 12 producers using SRU trained with the preset 

search radius method are shown in Figure 40, Figure 41 and Figure 42. We can see that, 

while the prediction is reasonable for most of the wells, there are a few wells where the 

models are quite inadequate, such as P-8 and P-12 (Figure 42). 

The SRU-based connectivity map was then generated by computing the 

permutation variable importance, as described in the previous section. This is shown in 

Figure 43(a). In order to validate the connectivity map, the simulator was run, followed 

by streamline tracing. Then we computed the average streamline-based fluxes over all 

training time steps, shown in Figure 43(b). Comparing these two, we see that for P12, 

the SRU based connectivity is missing two major fluxes between P12 and I8 and P12 

and I11. These connections were not picked up by the SRU because these injectors are 

outside the search radius of P12. This explains the poor regression performance for this 

well. 
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Figure 40 SRU regression results for producers P-1, P-2, P-3 and P-4 using the 

preset search radius method (red curve) and penalty function method (green 

curve). The left panel shows the SRU predictions along with the observed gas 

production rates. The region with white background denotes training and that with 

red background denotes testing. The right panel shows a close-up view of the 

testing performance for clarity. (Reprinted with permission from Chen et al., 2021) 

 

 

 

Figure 41 SRU regression results for producers P-5, P-6, P-7 and P-8 using the 

preset search radius method (red curve) and penalty function method (green 

curve). The left panel shows the SRU predictions along with the observed gas 
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production rates. The region with white background denotes training and that with 

red background denotes testing. The right panel shows a close-up view of the 

testing performance for clarity. (Reprinted with permission from Chen et al., 2021) 

 

 

Figure 42 SRU regression results for producers P-9, P-10, P-11 and P-12 using the 

preset search radius method (red curve) and penalty function method (green 

curve). The left panel shows the SRU predictions along with the observed gas 

production rates. The region with white background denotes training and that with 

red background denotes testing. The right panel shows a close-up view of the 

testing performance for clarity. (Reprinted with permission from Chen et al., 2021) 

 

 

Figure 43 The SRU-based connectivity map using the preset search radius method 

is shown in (a). The streamline-based flux allocation averaged over all training time 

steps is given in (b). (Reprinted with permission from Chen et al., 2021) 
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Penalty Function Method 

In order to mitigate the problem of missed connections due to poor choice of 

search radius, we introduce a penalty function for training the SRU in such a way that 

long injector-producer connections are automatically penalized during training. This 

way, we eliminate the need to pre-specify the search radius and thereby, we use all 

injectors for modeling the gas production at all producers. However, SRU weights for a 

particular producer are computed by minimizing a loss function, given in Eq. 8, which 

has an extra regularization term along with the usual MSE loss.  

𝐿𝑜𝑠𝑠 =
1

𝑇
∑((𝑦𝑜𝑏𝑠(𝑡) − 𝑦𝑝𝑟𝑒𝑑(𝑡))

2
𝑇

𝑡=1

+ 𝑐 ∑ {∑|𝑤𝑖𝑗|

𝑁𝑤𝑖

𝑗=1

} 𝑑𝑖

𝑁𝑖

𝑖=1

 

(8) 

In Eq. 8, the first part of the loss expression is the MSE loss computed from the observed 

data and the corresponding prediction whereas the second part of the expression is the 

proposed penalty function. Let there be 𝑁𝑤𝑖
 trainable weights that are associated with 

(and only with) the 𝑖𝑡ℎ injector (out of a total of 𝑁𝑖 injectors). The absolute value of 

these weights (𝑤𝑖1, 𝑤𝑖2, … , 𝑤𝑖𝑁𝑤𝑖
) are multiplied with the distance from the producer to 

the 𝑖𝑡ℎ injector and summed together. This sum is multiplied by a penalty coefficient 𝑐 

and added to the MSE to obtain the loss function that is minimized during training. This 

way, long connections are automatically penalized more and the strength of the 

regularization is set by the penalty coefficient, 𝑐 in this expression.  

Having defined the penalized loss in this manner, the next task is to decide on the best 

value of 𝑐. We trained several SRU models with different values of 𝑐 and recorded the 
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training MSE, shown in Figure 44(a). As we increase the penalty coefficient, the training 

MSE is flat at first (from 𝑐 = 0 to 𝑐 = 0.0003), and then starts to increase. The 

connectivity detected in this flat portion is shown from Figure 44(c) to (g), with Figure 

44 (c) having zero penalty, and Figure 44 (g) having a value of 0.0003, which falls 

almost at the elbow of the plot in Figure 44 (a).  

The streamline-based flux map, which is used as benchmark for validation, is 

shown in Figure 44(b). We see that for the zero penalty case, the SRU picks up several 

false connections in addition to the true ones. However, as we increase the penalty 

coefficient slowly, these spurious connections disappear, without any drop in training 

MSE. This way, we choose 0.0003 as our preferred penalty coefficient, whose regression 

quality is shown by the green curve in Figure 40 to Figure 42. We note the clear 

improvement in both training and test predictions by using the penalty function method 

over the preset search radius method. This improvement is even more significant in 

wells such as P-12, wherein the regression quality is improved, as the distant 

connections to I-8 and I-11 are captured by the latter method. 

However, a caveat in using the penalty method is illustrated in Figure 45 

wherein, distant yet important connections are removed if we use a higher value of 

penalty. Here, as we increase 𝑐 from 0.0001 to 0.01, not only does the training error 

increase but we also lose longer connections such as those between producer P-12 and 

injectors I-8 and I-11. This emphasizes the importance of choosing an appropriate value 

𝑐 that is large enough to prevent false connections, yet not too large as to cause a high 

increase in training error and loss of information.  
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Figure 44 The results of connectivity detection using the SRU trained with the 

penalty function method is illustrated. The degradation in training MSE with 

increase in the penalty coefficient is plotted for each well. The streamline-based 

fluxes that are used as a benchmark connectivity is shown in (b). Maps (c) to (g) 

shows the SRU-based well connectivity for various values of penalty coefficient in 

the highlighted flat region of the plot (ranging from zero to 0.0003). It is seen from 

(c) to (g) that increasing penalty removes spurious connections while maintaining 

the training performance. The connectivity map for 𝒄 = 𝟎. 𝟎𝟎𝟎𝟑 (at the elbow of 

(a)) is substantially close to the streamline-based map. (Reprinted with permission 

from Chen et al., 2021) 
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Figure 45 Increasing the penalty coefficient beyond the elbow in (a) corresponding 

to 𝒄 = 𝟎. 𝟎𝟎𝟎𝟑 leads to significant loss of connectivity information, as shown in 

maps (d) to (f). The streamline-based flux map and the connectivity map at 𝒄 =
𝟎. 𝟎𝟎𝟎𝟑 are shown for comparison. (Reprinted with permission from Chen et al., 

2021) 

 

Field-Scale Application  

The proposed methodology was applied to a model cut out from a real field case 

introduced by Olalotiti-Lawal, Onishi, Kim, et al. (2019), which focused on a CCUS 

project wherein a mature oil field under CO2 was subjected to water-alternating gas 

injection. A test region in the model, shown in Figure 46, with 15 injectors and 14 

producers was chosen for this study. Unlike the synthetic models used in our prior 

applications, the model exhibits a high degree of areal and vertical heterogeneity, as 

evident in Figure 46(b). 
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Figure 46 Field-scale case model description showing well configuration and 

heterogeneity (areal and vertical). (Reprinted with permission from Chen et al., 

2021) 

  

The injectors are operated under the rate constrained mode with realistic injection 

rate schedules, samples of data shown in Figure 47. The producers operate under stable 

BHP conditions and samples of the simulated data are shown in Figure 48. Additionally, 

unlike the previous synthetic cases studied, both injectors and producers have 

intermittent periods of shut-in, which are a common occurrence in a real-field setting. 
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Figure 47 The gas injection rates (WGIR, in Mscf/d) in red and water injection 

rates (WWIR, in bbl/d) in blue for a selected number of injectors are shown here. 

The injection rates include intermittent shut-ins, which are common in a real-field 

setting. (Reprinted with permission from Chen et al., 2021) 

 

 

Figure 48 The gas production rates WGPR (Mscf/d) in red and the stable BHP 

levels (psia) in dash black for a selected number of producers are shown here. The 

producers are subject to intermittent shut-ins, which are common in a real-field 

setting. (Reprinted with permission from Chen et al., 2021) 
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SRU Application and Connectivity Map 

We trained a number of SRU models with varying penalty coefficients and recorded the 

training MSE as shown in Figure 49. 

 

 

Figure 49 Variation of training loss (mean squared error) for each producer with 

different values of penalty coefficients. (Reprinted with permission from Chen et 

al., 2021) 

 

An optimal penalty coefficient of 0.0003, at the knee of the plot (Figure 49), was chosen, 

and the resulting regression performance is shown in Figure 50. The relative test error 

for each well was computed as given in Eq. 9 and this is shown in Figure 50(a).  

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑇𝑒𝑠𝑡 𝐸𝑟𝑟𝑜𝑟 =
∑ ((𝑦𝑜𝑏𝑠(𝑡) − 𝑦𝑝𝑟𝑒𝑑(𝑡))

2
𝑇
𝑡=1

∑ (𝑦𝑜𝑏𝑠(𝑡))
2𝑇

𝑡=1

 (9) 

Since we have 14 producers, we show the only the wells corresponding to P10, P50 and 

P90 relative errors in Figure 50(b). For example, out of all the wells for which we make 

predictions, producer P-9 exhibits one of the best testing performance, whereas P-4 
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represents the median prediction performance. Likewise, producer P-2, whose relative 

test error corresponds to P90 in the error distribution indicates one of the worst 

regression performance of the SRU in this case. 

Subsequently, the permutation variable importance was computed for each 

injector-producer pair as explained in the earlier section. In order to validate the 

connectivity map based on SRU variable importance, we traced streamlines at each time 

step and computed the average gas phase production allocation. The streamline 

configurations at a few time steps are shown in Figure 51. 

 

 

         

Figure 50 The distribution of the relative test error for all 14 producers, computed 

as shown in Eq. 9. (b) A selected number of regression fits (corresponding to P90, 
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P50 and P10 errors) are shown. The left panel shows the regression fit for the 

training and test regions. The middle panel shows the test region zoomed in for 

better clarity. The right panel shows the cumulative gas production as per observed 

data and the SRU predictions. (Reprinted with permission from Chen et al., 2021) 

 

 

Figure 51 Streamline configurations at different time steps. The colors indicate the 

producer (sink) at which the streamline terminates. (Reprinted with permission 

from Chen et al., 2021) 

 

The average streamline connectivity was computed by averaging these flux 

allocations across all time steps. A comparison between the streamline-based 

connectivity map and the SRU-based connectivity map is given in Figure 52. The top 

panel Figure 52 (a, b) shows all the connections inferred by both methods. The strong 

fluxes were filtered by setting a threshold on the normalized connectivities and plotted in 
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the bottom panel Figure 52(c, d). It is seen that the strong connection inferred by the 

SRU is in almost perfect agreement with those based on streamlines. However, we see 

that the inferences of weaker fluxes are highly unreliable and indicates the need for a 

better model, which may be achieved with more data. 

A major advantage of the SRU-VI method is its time efficiency. For training a 

dataset of 550 days (sampling frequency is 1 observation per day), the SRU takes around 

1 minute to train each well. Moreover, the prediction time for the entire dataset (of 700 

datapoints) is ~0.5 second per producer. The computation time for VI for an injector-

producer pair is dependent on the number of random permutations we perform while 

computing the expectation in Eq. 5. In our work we used 10 permutations, bringing the 

computation time to ~5 seconds per injector-producer pair. 
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Figure 52 Connectivity maps generated from the proposed methodology compared 

with average streamline fluxes. The proposed method picks up all strong fluxes 

even though the inference of weak fluxes is highly uncertain. (Reprinted with 

permission from Chen et al., 2021) 

 

Computation of Well Pair Injection Allocation and Production Allocation from 

SRU-Based Variable Importance 

 

The next stage of study is directed at estimating the volumes of gas injection and 

production allocation from the connectivity obtained using SRU and permutation 

variable importance. In the previous sections, we established that the SRU-derived 

variable importance is in close correspondence with the average streamline based 
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connectivity, especially for stronger fluxes. In order to demonstrate this further, we first 

computed the streamline based production allocation ratio for each well pair 

(𝐶𝑢𝑚𝑢𝑃𝑟𝑜𝑑𝐴𝑙𝑙𝑜𝑐𝑅𝑎𝑡𝑖𝑜𝐼𝑖𝑃𝑗
) , i.e., well pair production allocation (𝐶𝑢𝑚𝑢𝑃𝑟𝑜𝐴𝑙𝑙𝑜𝑐𝐼𝑖𝑃𝑗

)  

normalized by the sum of allocation along each producer.  

𝐶𝑢𝑚𝑢𝑃𝑟𝑜𝑑𝐴𝑙𝑙𝑜𝑐𝑅𝑎𝑡𝑖𝑜𝐼𝑖𝑃𝑗
=

𝐶𝑢𝑚𝑢𝑃𝑟𝑜𝐴𝑙𝑙𝑜𝑐𝐼𝑖𝑃𝑗

Σ𝑗𝐶𝑢𝑚𝑢𝑃𝑟𝑜𝐴𝑙𝑙𝑜𝑐𝐼𝑖𝑃𝑗

 (10) 

Next, we similarly computed the variable importance ratio (𝑉𝑎𝑟𝐼𝑚𝑝𝑅𝑎𝑡𝑖𝑜𝐼𝑖𝑃𝑗
) , 

as the well pair wise variable importance (𝑉𝑎𝑟𝐼𝑚𝑝𝐼𝑖𝑃𝑗
) normalized by its sum along 

each producer.  

𝑉𝑎𝑟𝐼𝑚𝑝𝑅𝑎𝑡𝑖𝑜𝐼𝑖𝑃𝑗
=

𝑉𝑎𝑟𝐼𝑚𝑝𝐼𝑖𝑃𝑗

Σ𝑗𝑉𝑎𝑟𝐼𝑚𝑝𝐼𝑖𝑃𝑗

 (10) 

A scatter plot of the variable importance ratio versus the production allocation 

ratio for the strong fluxes in the synthetic 3D WAG case (Figure 35) is shown in Figure 

53 (c) and demonstrate the close correspondence between the two. Therefore, it is 

possible to estimate the streamline-based well pair production allocation ratio using the 

SRU-based variable importance. 

 

Figure 53 A comparison of (a) SRU-based and (b) streamline based connectivity 

can be made by (c) plotting the well pair production allocation ratio (from 
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streamlines) against the variable importance ratio (from SRU). The points rough 

fall on the x=y line, indicating a good correspondence. 

 

 Under the assumption that the variable importance ratio and the production 

allocation ratio are close in value, one may compute the well pair production allocation 

volumes by simply multiplying the variable importance ratio by the cumulative gas 

production from a producer (𝑄𝑃𝑗
).  

𝑃𝑟𝑜𝑑𝐴𝑙𝑙𝑜𝑐𝐼𝑖𝑃𝑗
= 𝑉𝑎𝑟𝐼𝑚𝑝𝑅𝑎𝑡𝑖𝑜𝐼𝑖𝑃𝑗

× 𝑄𝑃𝑗
 (10) 

The results of doing so are given in Figure 54, wherein we are able to generate 

reasonable estimates of the actual well pair cumulative production allocation using the 

SRU. Figure 54 (a) and (b) show the cumulative production allocation of each well pair 

as computed using the proposed workflow and using streamlines respectively. The 

thickness of the red lines are indicative of the strength of the allocation in MMSCF. 

Furthermore, a scatterplot of the well pair cumulative production allocations obtained 

from SRU against those from streamlines (Figure 54 (c)) demonstrate a good 

correspondence. 
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Figure 54 (a) Well pair cumulative production allocation volumes were computed 

from the SRU-based variable importance and compared with (b) the values obtained 

from streamlines. (c) A scatterplot of the SRU-based volumes versus the streamline-

based volumes demonstrate a good agreement between the two. 

 

 

 Subsequently, we estimate the well pair cumulative injection allocation from the 

production allocation that we computed in Figure 54. In order to do so, we need to first 

test the relationship between the cumulative injection allocation and the cumulative 

production allocations for the case under study (Figure 55). For the current model, we 

see that, even though the instantaneous injection allocation and instantaneous production 

allocation show little correspondence (Figure 55 (a)), the cumulative injection and 

production allocation are seen to be linearly correlated (Figure 55 (b)). 
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Figure 55 (a) The instantaneous streamline-based well pair production allocation 

plotted against the corresponding well pair injection allocation for the synthetic 3D 

WAG model shows  no clear relationship between the two. However, (b) shows a 

clear linear proportionality between the cumulative production allocation and 

injection allocation (computed over a period of time). 

 

This observation may be utilized to convert the production allocation volumes 

into injection allocation values as per the following equation: 

𝐶𝑢𝑚𝑢𝐼𝑛𝑗𝐴𝑙𝑙𝑜𝑐𝐼𝑖𝑃𝑗
=

𝐶𝑢𝑚𝑢𝑃𝑟𝑜𝐴𝑙𝑙𝑜𝑐𝐼𝑖𝑃𝑗

Σ𝑗𝐶𝑢𝑚𝑢𝑃𝑟𝑜𝐴𝑙𝑙𝑜𝑐𝐼𝑖𝑃𝑗

× 𝐶𝑢𝑚𝑢𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑖 (10) 

In this equation, 𝐶𝑢𝑚𝑢𝐼𝑛𝑗𝐴𝑙𝑙𝑜𝑐𝐼𝑖𝑃𝑗
refers the well pair cumulative injection 

allocation, from injector 𝐼𝑖 to producer 𝑃𝑗. 𝐶𝑢𝑚𝑢𝑃𝑟𝑜𝐴𝑙𝑙𝑜𝑐𝐼𝑖𝑃𝑗
 refers to the well pair 

cumulative production allocation from 𝐼𝑖 to 𝑃𝑗 that was computed in step 1 using the 

variable importance connectivity and the total production at 𝑃𝑗. 𝐶𝑢𝑚𝑢𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑖 

represents the cumulative injection at 𝐼𝑖. The resulting values of well pair cumulative 

injection allocation from SRU are compared with the actual streamline-derived values in 

Fig… The comparison shows that the SRU-derived and streamline-derived volumes 

align closely along the 𝑦 = 𝑥 line in Figure 56. 
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Figure 56 (a) Well pair cumulative injection allocation volumes were computed 

from the SRU-based variable importance and compared with (b) the values 

obtained from streamlines. (c) A scatterplot of the SRU-based volumes versus the 

streamline-based volumes demonstrate a good agreement between the two. 

 

Figure 56 (a) and (b) show the cumulative injection allocation of each well pair 

as computed using the proposed workflow and using streamlines respectively. The 

thickness of the blue lines are indicative of the strength of the allocation in MMSCF. 

Furthermore, a scatterplot of the well pair cumulative injection allocations obtained from 

SRU against those from streamlines (Figure 56 (c)) demonstrate a good correspondence. 

 

 

Summary and Conclusion 

 

In this work we establish a machine-learning framework using the statistical recurrent 

unit for general time series problems. Using the proposed SRU as a proxy model for 

predicting production rates, we perform injector-producer connectivity detection by 

computing the variable importance of injection rates on the production rates. 
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 The inputs, outputs and loss function of the SRU model are customized to the CO2 

WAG problem. We perform input feature selection to capture underlying patterns 

with limited data. A penalty function is introduced to include well location 

information for regularizing the neural net weights. 

 Streamlines are used for quantifying physics-based inter-well connectivity for 

comparison with the SRU model.  

 Synthetic and field-scale tests show that the dominant connections identified by 

the data-driven SRU method and streamline method are in close agreement. 

Moreover, time-cost for the data-driven method is trivial. This makes the proposed 

method highly efficient and advantageous for practical field applications. 

 The approach can be easily extended to estimate injection and production 

allocation volumes between well pairs 
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CHAPTER IV  

ACCELERATING WATER FLOOD OPTIMIZATION UNDER GEOLOGIC 

UNCERTAINTY BY FLOW FEATURE CLUSTERING 

 

Introduction 

 

Waterflooding involves the injection of water into the depleting reservoir through 

injectors to increase/maintain reservoir pressure while oil is being extracted at the 

producers. This is one of the most extensively used improved oil recovery methods 

employed post primary depletion. The presence of high-permeability streaks in a reservoir 

may lead to early water breakthrough at the producers, resulting in premature rate decline 

and reduced oil recovery per barrel of water injected. Hence, optimizing well rates for a 

flow field in favor of recovering remaining oil and reducing water cycling is critical to the 

success of waterflood projects. Given a geologic model, there exists several simulation-

based approaches for waterflood optimization. However, the optimal schedule based on 

one individual geologic model may not necessarily result in favorable outcomes for the 

real field due to the geologic inconsistencies between the real and the model (Sen et al. 

2020). Geologic uncertainty is typically represented by an ensemble of history matched 

realizations of the reservoir. Subsequently, optimal schedules for each well shall also be 

expressed as a distribution rather than single values. The corresponding uncertainty 

assessment is crucial to decision making regarding field implementation. In this study, we  
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focus on formulating and accelerating the generation of the distribution of optimal rates 

of each well in waterflood projects, while considering geologic uncertainty. 

            An extensive literature survey on waterflood optimization was provided by 

Sen et al. (2020). Sudaryanto and Yortsos (2001) developed an injection optimization 

workflow for single-phase incompressible flow based on optimal control theory, which 

was tested on a rectangular bounded system with two injectors and one producer. Nævdal 

et al. (2006) developed a closed-loop control approach using ensemble Kalman filters 

(EnKF) in order to maximize the NPV subject to constraints. This approach requires a 

simulator to be run for each member in the ensemble, so that a control vector that 

maximizes the objective function can be computed by solving the adjoint equation using 

steepest descent. Alhuthali et al. (2007) proposed a streamline-based methodology that 

involves equalizing the arrival time of the waterfront at producers in separate subregions 

of the reservoirs. Chen et al. (2020b) proposed a streamline-based gradient-free method 

for maximizing the cumulative oil production under constraints such as field injection and 

liquid production rates, allowable ranges on well rates and bottomhole pressures, and 

operational events like infill well drillings and well conversions.  

            Since all the methods described are simulation-based, a geologic model of 

the reservoir becomes a key requirement for their applicability. A geologic model is 

typically initialized with structural and geophysical measurements and in turn calibrated 

(via history-matching) by dynamic measurements from the field, such as well and field-

level pressures and fluid rates. The geologic uncertainty may be represented by multiple 

realizations generated by history matching techniques, which can be carried out by 
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evolutionary methods like differential evolution (Hajizadeh et al. 2018) and multi-

objective genetic algorithm (Ferraro and Verga 2009), or statistical methods like 

ensemble-smoother with multiple data assimilation (ESMDA) (Emerick and Reynolds 

2013) and ensemble-based nonlinear orthogonal matching pursuit algorithm (Elsheikh et 

al. 2013). These methods generate an ensemble of realizations that can reproduce the 

observations to a sufficient degree, but usually require large numbers of simulations and 

are typically performed using coarse-scale models. The streamline-based history matching 

methods (He et al., Cheng et al., Chen et al. 2020b and 2021, Liu et al. 2020) can efficiently 

tune the fine-scale geologic models mapped from the coarsen-scale realizations, so that 

misfit between simulation curves and observed data can be further reduced in well-level 

for fine-scale models.    

In order to capture the full range of geologic uncertainty, a large number of history-

matched realizations are typically required. Subsequent applications like rate optimization 

will hence require simulation runs over all realizations and can be computationally 

prohibitive for models with a large number of cells. Therefore, sampling methods that 

reduce the realization pool size while preserving the geological uncertainty are needed to 

mitigate the workload engaged in such ensemble-based studies. Clustering refers to any 

unsupervised method that groups a dataset into subsets such that similar datapoints fall in 

the same subset (Rokach and Maimon 2005). K-means clustering is one of the most used 

and easily implementable clustering algorithms. This involves the grouping of datapoints 

to say, K clusters, in such a way that the within-cluster sum of squares is minimized 

(Hartigan and Wong 1979). Other clustering algorithms include spectral clustering (Von 
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Luxburg 2007), DBSCAN (Birant and Alp 2007), and affinity propagation (Dueck 2009). 

Cluster analysis has long been used to perform model selection in order to identify model 

groups that show similar recovery responses, and thereby capture the uncertainty (Baker 

2015). Sharma et al. (2008) conducted a systematic uncertainty analysis of oil-in-place in 

carbonate reservoirs, whereas K-means clustering was used to sample from the component 

distributions. More recently, clustering was used in the context of unconventional wells, 

for quantifying uncertainty in production forecasting (Ravikumar and Lee, 2020).  

In this study, we describe a comprehensive workflow for the uncertainty analysis 

of optimal rates for each well engaged in waterflood optimization, where the history 

matching process generates geologic realizations, the streamline method performs rate 

optimization for each realization, and the uncertainties of optimal well rates are 

summarized and demonstrated using boxplots and spatial bubble plots. On top of that, we 

also propose a clustering-method, based on the flow features extracted using streamlines, 

to scale down the workload to a smaller set of geologic realizations, while preserving the 

uncertainty from the full-ensemble. The rest of this chapter is organized as follows: The 

section on ‘Methodology’ provides a detailed description of the workflow and the various 

algorithms that have been used in this work. Next, the workflow is applied to a 2D 

synthetic case, starting with generation of the history-matched ensemble to the well-wise 

uncertainty analysis of optimal rates. Subsequently, we apply the workflow to the 3D 

SAIGUP model (Matthews et al. 2008) to demonstrate the feasibility of the workflow for 

application to a field-scale scenario. Finally, the ‘Conclusions’ section summarizes the 

study.  
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Methodology 

 

 In this work, we propose a clustering-based approach to reduce the number of 

optimization runs required for obtaining reliable optimized schedules, while accounting 

for geologic uncertainty. A brief summary of the workflow is shown in Figure 57. 

1. History-matching. Given a series of observed historical data on the production 

watercut and well bottom-hole pressures for time periods 𝑡 = 1,2, … , 𝑇ℎ𝑖𝑠𝑡, we 

start with generating multiple realizations of history matched models. For this 

purpose, we may use an evolutionary method or any statistical algorithm such as 

Ensemble Smoother with Multiple Data Assimilations (ESMDA).   

2. Streamline Tracing and Clustering. We compute the gridblock-wise streamline-

based time of flight (TOF) for each realization from the resulting flux field at the 

end of history (i.e. at 𝑡 = 𝑇ℎ𝑖𝑠𝑡) and apply k-means clustering algorithm to generate 

𝑁𝑐𝑙𝑢𝑠𝑡 subsets of the realizations.  

3. Rate Optimization and Uncertainty Analysis. The rate optimization algorithm 

is performed on the representative realizations for each cluster (cluster centroids) 

for a number of time periods (say 𝑡𝑜𝑝𝑡). Doing so, we obtain the optimized 

schedules for 𝑡 = 𝑇ℎ𝑖𝑠𝑡 + 1, … , 𝑇ℎ𝑖𝑠𝑡 + 𝑡𝑜𝑝𝑡 for each centroid realization. In order 

to quantify and visualize the uncertainty in the optimal schedule, we compute the 

average optimal rate during the optimization window as: 
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𝑞𝑥
∗ =

∑ 𝑞𝑥𝑇ℎ𝑖𝑠𝑡+𝑡

𝑡𝑜𝑝𝑡

𝑡=1 Δ𝑇𝑡

∑ 𝑡Δ𝑇𝑡
𝑡𝑜𝑝𝑡

𝑡=1

 (1) 

Where 𝑞𝑥𝑇ℎ𝑖𝑠𝑡+𝑡
 is the optimal rate assigned to well 𝑥 at the 𝑡𝑡ℎ optimization 

interval, which is of length Δ𝑇𝑡. 

A boxplot of 𝑞𝑥
∗  for the set of centroid realizations may be used to represent the 

uncertainty in the optimal schedule. Moreover, the average rate change may be 

computed as 

Δ𝑞𝑥
∗ = (𝑞𝑥

∗ − 𝑞𝑥
𝑟𝑒𝑓

) (2) 

 

A bubble plot of this quantity is used in this work to demonstrate the spatial 

uncertainty in optimal rates. 

 

Figure 57 Proposed workflow for waterflood rate optimization under 

geologic uncertainty 
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History Matching 

 

History matching refers to a model calibration technique that involves simulating 

the historical reservoir response and comparing these with field observations. This is 

essentially an inverse problem wherein we try to update a geologic model by seeking to 

match its responses with observed data. Typically, the discrepancies between the various 

responses and observations are evaluated as an objective function, which is to be 

minimized. Minimization of this objective function proceeds by iterative updates to the 

model, which may be computed via a wide variety of algorithms. It is to be noted that 

history-matching is typically an extremely underdetermined problem, which may yield a 

large number of equally satisfactory reservoir descriptions (which fit observed data).  

Typically used algorithms for history-matching include variants of evolutionary 

algorithms such as multi-objective genetic algorithm, differential evolution (Hajizadeh et 

al. 2009) and particle swarm optimization (Lee and Karl 2019). Other history matching 

techniques include gradient-based algorithms such as multi-scale history-matching using 

streamlines (Chen et al. 2020a; Chen et al. 2020b; Liu et al. 2019), and adjoint method 

(Chen et al.1974; Li et al. 2003). A number of ensemble-based history-matching technique 

have gained popularity in recent years that include ESMDA (Emerick and Reynolds 2013) 

and ensemble-based non-linear orthogonal matching pursuit algorithm (Elsheikh et al. 

2013). In this work, we use ESMDA for generating the history-matched realizations, 

considering its ease of implementation and significantly faster convergence than most 

evolutionary algorithms. 
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Clustering Realizations 

 

In this work, we use clustering to reduce the number of realizations over which 

optimization has to be carried out, while accounting for the full range of geologic 

uncertainty. In order to do so, we have to form feature vectors that parameterize the 

geologic uncertainty in a way that retains all relevant information which may affect the 

results of optimization. One way to do this is to parameterize each geologic field (such as 

permeability, porosity etc.) separately and use all of these features as input into the 

clustering algorithm. However, such an approach would require a large number of feature 

vectors in case of geologic uncertainty in multiple parameters. We propose to perform 

clustering on the time-of-flight field, which is calculated from the flux field at the end of 

history, which, in turn encompasses the effects of all model properties – both certain and 

uncertain.  The computation of the gridblock-wise TOF was computed using the Pollock 

algorithm implementation in the in-house software ‘Destiny’. Subsequently, the gridblock 

TOF field was converted into a gridblock TOF rank field. In this way, the gridblock with 

the highest value of TOF will be given a rank of 1 whereas the one with the lowest TOF 

will be ranked 𝑁𝑔𝑟𝑖𝑑 where 𝑁𝑔𝑟𝑖𝑑 represents the total number of gridblocks in the model. 

Ranking was done since raw gridblock TOF may assume very high magnitudes in cells 

which are close to stagnation points, and this may degrade the performance of the 

clustering algorithm. 

Clustering was performed using k-means algorithm which proceeds by computing 

the squared distance between each realization and a randomly chosen set of 𝑁𝑐𝑙𝑢𝑠𝑡 
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‘centroids’, which are assumed to representative of all realizations belonging to each 

cluster. Each realization is assigned the cluster with the closest centroid. The ‘centroids’ 

are then updated by recalculating the mean of the realizations within the cluster. In effect, 

the k-means algorithm partitions the dataset into 𝑁𝑐𝑙𝑢𝑠𝑡 clusters such that the within-cluster 

variance (referred to as ‘inertia’) is minimized. Mathematically, the problem is expressed 

as follows. Given a set of data points 𝑥1, 𝑥2, … , 𝑥𝑁𝑟𝑒𝑎𝑙
 we are to find the set of clusters 

ℂ∗ = {𝐶1, 𝐶2, … , 𝐶𝑘} such that: 

ℂ∗ = arg min
ℂ

∑ ∑ ‖𝑥 − 𝜇𝑖‖
2

𝑥∈𝐶𝑖

𝑘

𝑖=1

 (3) 

Where 𝜇𝑖 is the centroid of cluster 𝐶𝑖. 

A major shortcoming of k-means is the requirement that the user specifies 𝑁𝑐𝑙𝑢𝑠𝑡. 

Typically, this is done by repeatedly running k-means with varying 𝑁𝑐𝑙𝑢𝑠𝑡and plotting the 

resulting inertia. Subsequently we choose a value for 𝑁𝑐𝑙𝑢𝑠𝑡 such that any increase from 

this value results in minimal decrease in inertia.  

 

Rate Optimization 

Rate optimization refers to the computation of well rates that maximizes a 

specified reward function, which may be the cumulative oil production, NPV or 

waterflood sweep efficiency. To summarize these, Asheim (1988) developed an 

optimization that was coupled with a reservoir simulator, which was used to maximize net 

present value (NPV) subject to constraints on reservoir flow dynamics, total flow capacity 

and well constraints.  Brouwer et al. (2001) performed rate optimization by reducing the 
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distribution in the arrival times of the flood front for a time-independent flow field. 

Alhuthali et al. (2007) proposed a methodology that involves equalizing the arrival time 

of the waterfront at producers in separate subregions of the reservoirs. The arrival time 

was calculated by running a reservoir simulator and tracing streamlines explicitly. A 

machine-learning based workflow that builds upon Alhuthali’s methodology was 

introduced by Sen et al (2020). Chen et al. (2020b) proposed a streamline-based gradient-

free method for maximizing oil production at the end of production time under constraints 

such as fieldwide injection and production rates, minimum well producing pressure and 

allowable ranges on well rates. This algorithm was implemented on a real field (Mangala, 

India) under polymer flooding, demonstrating the efficacy of the algorithm (Chen et al. 

2020).  

Owing to its computational efficiency and proven results on real-field settings, 

Chen’s algorithm was used to perform the rate optimization for the realization subset 

generated by clustering the flow field. The objective of this algorithm is to minimize the 

overall water cut within the optimization period under constraints such as field injection 

rate target, field production rate target, pressure constraints, rate and rate change limits. 

This is done by computing the well-pair efficiency, which is the ratio of oil volumes 

produced per water injected.  

𝑒𝑖𝑝 =
𝑂𝑅𝑖𝑝

𝑞𝑖𝑝Δ𝑡
 (4) 
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Here 𝑂𝑅𝑖𝑝 refers to the volumes of mobile oil within the streamtube bundle starting from 

injector 𝑖 and ending at producer 𝑝, and 𝑞𝑖𝑝 is the streamline-based injection allocation 

from 𝑖 to 𝑝. The duration of the optimization window is denoted by Δ𝑡.   

Subsequently the field-level efficiency is also calculated in a similar manner, by taking 

the ratio of the mobile oil in all streamtube bundles to the total injection allocation over 

all bundles (throughout the optimization interval). 

𝑒𝑖𝑝 =
Σ 𝑂𝑅𝑖𝑝

Σ 𝑞𝑖𝑝Δ𝑡
 (5) 

The injection and production rates are reallocated in such a way that well pairs that 

perform worse than the field average, are allocated lesser volumes, as per: 

𝑞̂𝑖 = Σ𝑝𝜆𝑖𝑝𝑞𝑖𝑝 (6) 

𝑞̂𝑝 = Σ𝑖𝜆𝑖𝑝𝑞𝑖𝑝 (7) 

Where 𝑞̂𝑖 is the updated injection rate of injector 𝑖 and 𝑞̂𝑝 is the updated production rate 

of producer 𝑝. 

Finally, the updated rates are rescaled to fulfill field-level rate constraints. 

𝑞𝑖
𝑢𝑝𝑑𝑎𝑡𝑒 =

Σ𝑖𝑞𝑖

Σ𝑖𝑞̂𝑖
𝑞̂𝑖 (8) 

𝑞𝑝
𝑢𝑝𝑑𝑎𝑡𝑒 =

Σ𝑝𝑞𝑝

Σ𝑝𝑞̂𝑝
𝑞̂𝑝 (9) 

This process is carried out iteratively over each optimization window. For a detailed 

description of the algorithm, the reader is referred to Chen et al. (2020b). 

 

Synthetic Field Application: SAIGUP model 
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The SAIGUP model stands for Sensitivity Analysis of the Impact of Geological 

Uncertainties on Production forecasting in clastic hydrocarbon reservoirs. In this 

application, we use the upscaled model of dimensions 40 × 120 × 20, with each 

gridblock of areal dimensions 75𝑓𝑡 × 75𝑓𝑡. The model is highly faulted with close to 

20,000 non-neighbor connections. We consider a pattern flooding with 6 injectors and 6 

producers. The initial setup is shown in Figure 58. 

 

Figure 58 SAIGUP faulted grid (Matthews et al. 2008)  showing well configuration 

for pattern flooding 

 

 

Ensemble Generation using ESMDA 

 

The observed data, is given in Figure 59 (red background) and was generated by 

simulating production from the true realization (Figure 60 (a)). The observation spans 210 

days and as with the 2D case, it consists of the following measurements, recorded every 

30 days: 
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a. Field-wide liquid production rates in STB/d 

b. Field-wide water injection rates in BBL/d  

c. Well BHPs for all injectors and producers, in psia. 

d. Oil production rates in STB/d for all producers 

e. Water production rates in BBL/d for all producers 

f. Water injection rates in BBL/d for all injectors 

 

Figure 59 Observed data for SAIGUP case 

 

In order to perform the ensemble-based history match, we start with a prior 

ensemble of 200 permeability fields, a few of which are shown in Figure 60(c-d). The 

ensemble mean of the prior is shown in Figure 60(b). Unlike the 2D case, we have some 

degree of prior knowledge on the permeability field in the regions close to the wells, as is 
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typically the case in a real setting. For comparison purposes, the true permeability field, 

wherefrom the observed data was generated in given in Figure 60 (a). ESMDA was 

performed with 5 assimilation steps, wherein the data misfits where calculated as the 

difference between the observed data and the corresponding responses of each ensemble 

member. The well and field responses of the prior models and the resulting posteriors 

(after 5 assimilations) are shown in Figure 61 as grey and blue plots respectively. The 

posterior responses are seen to converge towards the observed data with reduced variance 

than the prior responses. A few of the resulting posterior permeability fields (obtained 

from the priors in Figure 60(c-e)) are shown in Figure 60(g-i). The ensemble mean of the 

posterior, shown in Figure 60(f), exhibits significant permeability trends which are also 

present in the true permeability field (Figure 60 (a)). 
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Figure 60 A comparison of prior and posterior permeability field, the latter of 

which is obtained using ESMDA with 5 assimilations. 
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Figure 61 Field and well responses of prior and posterior SAIGUP models 

illustrating the history-match process via ESMDA 

 

Clustering 

 

Once we have a set of 200 history-matched realizations, the next step is to group 

these into a number of clusters (𝑁𝑐𝑙𝑢𝑠𝑡) based on an appropriate feature, prior to rate 

optimization. In the 2D case, the gridwise TOF field was ranked and parameterized to 

generate feature vectors, based on which, we performed clustering using k-means 

clustering. For the SAIGUP model, with 96000 gridblocks, the direct application of this 

approach was found to yield an unwieldly number of clusters. This would later on require 

us to perform optimization on too many representative realizations. 

In order to avoid this problem, we averaged the gridblock-wise TOF field (at the 

end of history) along the z direction, so that we have a 2D map of averaged TOF (with 
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4800 gridblocks). Subsequently, these were ranked and parameterized, as in the 2D case, 

and feature vectors were generated for clustering.  

K-means was used for clustering, wherein 𝑁𝑐𝑙𝑢𝑠𝑡 was chosen to be 15, based on 

the inertia vs. 𝑁𝑐𝑙𝑢𝑠𝑡 plot shown in Figure 62. Having a 2D map also renders the 

visualization of clustering results feasible, as apparent from a few selected results from 

clustering, shown in Figure 63.  

 

 

Figure 62 While using the k-means algorithm for clustering, the choice of an 

appropriate 𝑵𝒄𝒍𝒖𝒔𝒕 has to be made by plotting the reduction in inertia against 

increasing 𝑵𝒄𝒍𝒖𝒔𝒕. For the SAIGUP case, we choose 𝑵𝒄𝒍𝒖𝒔𝒕 = 𝟏𝟓 since the inertia 

almost levels off around this value. 
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Figure 63 A few selected results from clustering the vertically averaged ranked 

grid-wise TOF. Each box corresponds to a particular cluster, and a few of its 

member ranked TOF fields are displayed in each box. 

 

Rate Optimization  

 

As with the 2D case, the reference (unoptimized) case is the ‘do-nothing’ case 

wherein all the wells (in all realizations) are rate-constraint at their respective values at the 

end of history. The resulting field-wide water injection, oil production and water 

production for the ensemble at reference case are given in Figure 64. The region in pink 

background represents the duration of history, wherein the uncertainty in responses have 

been minimized using ESMDA. The white region represents the optimization period, 

where there is considerable uncertainty in oil and water production, under constant field 

injection and liquid production rates.  
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Figure 64 Reference case for optimization for field-scale SAIGUP, wherein all wells 

are constrained at the end-of-history rates 

 

 

The subsequent streamline-based optimization is performed for a total of 150 days at 15 

day intervals under constrained field liquid production and field water injection rates. In 

order to demonstrate the improvement in oil recovery brought about by optimization, the 

values of these constraints are set to the average field liquid production and average field 

water injection of the reference case in the optimization period (white region in Figure 

64). Furthermore, secondary BHP constraints on both injectors (maximum BHP at 7000 

psia) and producers (minimum BHP at 5000 psia) are carried over from history.   
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Optimization on a Single Realization 

 

Streamline-based optimization is demonstrated on a single realization shown in 

Figure 65(a). The historical field oil production is plotted in Figure 65 (d) (red region). 

The pore-volume weighted summation of the end-of-history oil saturation is shown in 

Figure 65(b). On performing rate optimization, the prescribed rate changes for each well 

(averaged across the optimization period) is indicated by the green and red circles in  

Figure 65(c), where the green (and red) circles denotes an increased (and decreased) rate 

allocation. The size of the circles is indicative of the magnitude of rate change.  
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Figure 65 Application of streamline-based rate optimization on a sample realization 

shown in (a) The weighted sum of oil saturation map (in the vertical direction) at 

the end of history is shown in (b) and the rate changes prescribed by the 

optimization algorithm, averaged across the entire optimization period is shown in 

(c) wherein green and red circles denote a positive and negative rate change 

respectively. The size of the circle is proportional to the magnitude of the 

prescribed rate change. The resulting improvement in field-wide oil production is 

illustrated in (d) by the green curve (optimized case) as compared to the grey curve 

(reference case). 

 

 

The re-distribution of streamlines (and hence the sweep improvement) that results 

from the rate changes in Figure 65(c), can be seen in Figure 66. Furthermore, the PV-
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weighted summation of remaining oil at the end of the optimization period (for both the 

reference and the optimized cases) is also given. The reduction in remaining oil after 

optimization, especially in the circles regions, demonstrates the increased sweep 

efficiency brought about by optimization. 

 

Figure 66 The sweep of the waterflood (a) before and (b) after optimization may be 

visualized by plotting the streamlines, along with their TOF from injector. 

Optimization facilitates a redistribution of streamlines, resulting in a more efficient 

sweep pattern that in turn leads to more recovered oil. The increase in oil recovery 

can be seen in the remaining oil map at the end of the optimization period in the 

reference (c) and optimized (d) cases. The blue circles indicate the regions where 

increased sweep (due to optimization) leads to less remaining oil. 
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Rate Optimization over Multiple Realizations 

 

The rate optimization was performed on the 𝑁𝑐𝑙𝑢𝑠𝑡 = 15 centroid realizations, 

obtained by performing k-means clustering on the TOF field at the end of history. The 

resulting optimized schedules for each centroid were weighted in proportional to its cluster 

membership. Subsequently, the 𝑞𝑥
∗  and Δ𝑞𝑥

∗  were computed for each optimal schedule and 

their distributions were generated by weighting each 𝑞𝑥
∗  (and Δ𝑞𝑥

∗) by the corresponding 

number of realizations in the cluster (cluster membership). The resulting spatial rate 

change map and distribution boxplots are given in  Figure 67(a) and (b).  

In Figure 67 (a), the size of the bubbles indicate the magnitude of the median Δ𝑞𝑥
∗  (over 

the weighted centroid set) and the red/green colors correspond represent negative/positive 

rate changes. Moreover, the transparency of the bubbles are indicative of the relative 

uncertainty of the rate change of each schedule, expressed as the ratio between the standard 

deviation and the median of rate change. For instance, a well with a small value of median 

rate change and a relatively large value of standard deviation, such as I-1, is marked by 

increased transparency in Figure 67 (a). 

Figure 67 (b) shows the distribution of 𝑞𝑥
∗   for each well in the form of boxplots. 

The rates assigned to each well is also marked by a red dot on the boxplot. One can see 

from the boxplots that rate change may be implemented on most producers with a high 

degree of certainty, such as P-1, P-3, P-4, P-5 and P-6. Broadly speaking, production must 

be re-allocated from P-1, P-5 and P-6 to primarily P-3 and to a lesser extent, P-4 and P-2. 
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On the contrary, there is a high degree of uncertainty surrounding rate changes to all the 

injectors, with the exception of I-5, as per Figure 67 (a).  

 
Figure 67 (a) The bubble plot showing spatial distribution of the average rate 

change (𝚫𝒒𝒙
∗ ) for each well on running the optimization on all centroid realizations 

individually. (b) The boxplots shows the distributions of average rate, 𝒒𝒙
∗ , for each 

well (obtained on optimizing each of the centroids). The rate assigned to the 

respective wells in the reference case (𝒒𝒙
𝒓𝒆𝒇

) is shown by the red dot. 

 

The resulting field responses obtained by optimizing each of the centroid 

realization are shown in Figure 68. The reference responses are shown in grey whereas 

the optimized field-level injection/production rates are given in blue/green. For similar 

field injection and total liquid production rates (Figure 68 (a, b)), there is significant 

improvement in oil production (Figure 68 (c)) for all the centroid realizations, 

accompanied by reduction in water production (Figure 68 (d)). 
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Figure 68 The field response plots demonstrates that, under similar (a) field 

injection and (b) field total liquid production rates, there is significant  

improvement in (c) field oil production and (d) reduced water production post 

optimization (shown in green), as compared to the reference case (shown in grey). 

 

In order to validate this approach, we need to compare the 𝑞𝑥
∗  distributions obtained 

using the centroids, with those obtained using the full ensemble. This is illustrated in 

Figure 69 and Figure 70. Figure 69 (a) shows the rate change (Δ𝑞𝑥
∗) obtained using only 

the 15 centroids whereas Figure 69 (b) shows the same obtained using the full ensemble 

of 200 realizations. A comparison between these demonstrate the high accordance 

between the centroid-based and full ensemble-based Δ𝑞𝑥
∗ . 
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Figure 69 The spatial distribution of the rate changes (optimized rate minus 

reference rate) obtained on performing optimization on (a) solely the centroids set 

and (b) the full ensemble of the SAIGUP realizations. The size of the bubbles 

corresponds to the median of 𝚫𝒒𝒙
∗  over the realizations and the transparency 

corresponds to the standard deviation. 

 

Similarly, the boxplots in Figure 70 (a) and (c) represent the distributions of average rate 

change 𝑞𝑥
∗  for each well in the model, as obtained by rate-optimizing the 15 centroid 

realizations (taking into account their respective cluster membership). Figure 70 (b) and 

(d) show the distributions obtained by rate optimizing the full ensemble of 200 

realizations. These boxplots also demonstrate a high accordance between the centroid-

based and full ensemble-based analyses, thus validating our proposed workflow.  

 Moreover, we were able to perform the analysis by running the optimization on 

solely the cluster centroids as opposed to the full ensemble, thereby reduce the time-cost 

by a factor of  (1 −  
𝑁𝑐𝑙𝑢𝑠𝑡 

𝑁𝑟𝑒𝑎𝑙
). For this particular case, where 𝑁𝑟𝑒𝑎𝑙 = 200 and 𝑁𝑐𝑙𝑢𝑠𝑡 = 15, 

the reduction in optimization time was ~93%, while preserving the uncertainty 

information.  
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Figure 70 A comparison of the distributions of average optimized rates for each 

well obtained by using solely the centroid sets (a,c) and those obtained by using the 

full ensemble (b,d) for the SAIGUP case. The red dots represent the reference rates 

(𝒒𝒙
𝒓𝒆𝒇

). 
 

 

Conclusions 

This chapter describes a comprehensive workflow starting with the generation of 

history-matched geologic realizations, given a set of observed data. Subsequently the k-

means algorithm was used to cluster the time-of-flight field at the end of history, to group 

the realizations into 𝑁𝑐𝑙𝑢𝑠𝑡 sets, each with its representative realization (centroid). In this 

manner, the geologic uncertainty described by 𝑁𝑟𝑒𝑎𝑙 (𝑁𝑟𝑒𝑎𝑙 = 240 for 2D case and 

𝑁𝑟𝑒𝑎𝑙 = 200 for SAIGUP case) realizations were represented using merely 𝑁𝑐𝑙𝑢𝑠𝑡 = 15 

centroid realizations. Rate optimization was performed solely on the centroid realizations 
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and the distribution of rate changes assigned to each well was shown to be similar to the 

values obtained by optimizing the entire ensemble. The uncertainty analysis generated 

using the TOF-based centroid realizations may be used to inform the selection of key wells 

for implementation of rate change.  

 

To summarize, the key contributions of this chapter are listed below: 

• TOF field is used to cluster an ensemble of history-matched realizations, of a 2D 

heterogeneous field as well as the field-scale 3D SAIGUP model. 

• The set of centroids (15 realizations) is used to represent the geologic uncertainty 

of the full ensemble (200 realizations in case of SAIGUP model). 

• Optimization on the centroid set and that on the full ensemble show similar 

uncertainty in each well’s optimal schedule. 

• The resulting uncertainty analysis for individual wells can be used to advise the 

selection of wells for implementing optimal rates. 



 

 

CHAPTER V  

CONCLUSIONS 

 

This study explored various applications of machine learning in inferring the 

inter-well connectivity in a field under water flood and CO2 WAG injection via proxy 

models such as neural networks and statistical recurrent units.  The workflow was 

applied in the context of rate optimization under geologic uncertainty. A chapter-wise 

summary follows: 

 In  Chapter II, a neural network based proxy model was introduced that can infer 

the reservoir connectivity in terms of the average time-of-flight of the fastest 20% 

streamlines, using parameterized forms of reservoir properties (such as permeability and 

porosity) and well rates. The proxy model was seen to be faster than a conventional 

simulator by around 3 orders of magnitude. This computational efficiency made the 

model suitable to be used in a rate optimization framework considering geologic 

uncertainty. The data-driven rate optimization workflow was applied successfully to a 

2D synthetic case as well as the field-scale Brugge model. 

In Chapter III, a purely data-driven workflow for inferring interwell connectivity 

was developed using statistical recurrent units. An SRU-based model was fitted to field 

observations such as gas injection rates, gas production rates and well pressure data. 

After obtaining a sufficiently predictive model, the contribution of each injector to the 

prediction of gas production at each producer was quantified using permutation variable 

importance. The connectivity map from SRU was compared with the average 
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streamline-based connectivity and the former was demonstrated to be highly similar to 

the latter. The workflow was applied to field-scale model under CO2 WAG injection 

with frequent shut-ins, which are typical of real field operations. The connectivity map 

obtained from the proposed methodology was seen to be of high accordance with the 

time-averaged streamline-based connectivity.  

Chapter IV described a comprehensive workflow for identifying key wells for 

implementing waterflood optimization, considering geologic uncertainty. The workflow 

started with the generation of history-matched geologic realizations, given a set of 

observed data. Subsequently the k-means algorithm was used to cluster the time-of-flight 

field at the end of history, to group the realizations into 𝑁𝑐𝑙𝑢𝑠𝑡 sets, each with its 

representative realization (centroid). In this manner, the geologic uncertainty described by 

𝑁𝑟𝑒𝑎𝑙 (𝑁𝑟𝑒𝑎𝑙 = 200 for SAIGUP case) realizations were represented using merely 

𝑁𝑐𝑙𝑢𝑠𝑡 = 15 centroid realizations. Rate optimization was performed solely on the centroid 

realizations and the distribution of rate changes assigned to each well was shown to be 

similar to the values obtained by optimizing the entire ensemble. The uncertainty analysis 

generated using the TOF-based centroid realizations was used to inform the selection of 

key wells for implementation of rate change.  

 

Recommendations for Future Work 

 

The work presented in this dissertation may be continued in a number of directions. A 

few of these are listed below: 
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 The proxy model based approach to rate optimization presented in Chapter II 

may be extended to perform rate optimization over time intervals. In order to do 

so, one way would be to use a recurrent neural network based model that can 

deal with time series data. Another possible direction may be to parameterize the 

temporal changes in connectivity and use these are output variables. 

 A logical extension to the SRU-based study is the inference of production and 

injection allocation volumes, using the variable importance. Such an extension 

was briefly introduced in this dissertation, and its applicability to various 

scenarios may be investigated in future. 

 Since the SRU-based variable importance directly provides the connectivity map, 

one may use the SRU model for performing rate optimization during the WAG 

process. Alternatively, the SRU gas predictions may be used under a rate 

optimization framework, with the objective of minimizing gas production, 

thereby maximizing CO2 storage within the reservoir. 

 Further study may be conducted to compare various types of clustering 

algorithms in the rate optimization workflow introduced in Chapter IV. In this 

dissertation, k-means algorithm was used to perform flow feature clustering. The 

performance of the workflow may be greatly increased by using better types of 

clustering algorithms such as affinity propagation. For instance, in contrast to k-

means, affinity propagation automatically selects the optimal number of clusters, 

eliminating the need to use the elbow method for choosing the best 𝑁𝑐𝑙𝑢𝑠𝑡. 
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