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Abstract 

Building energy consumption accounts for 30% of global 

energy consumption (EIA, 2017). To support the 

development of energy-efficient built environments and 

cities, architects, urban planners, and engineers have 

begun to utilize building performance simulation (BPS). 

Supporting decision-making and steering the design 

toward high performance is crucial in the early design 

phase when decisions have the biggest impact on the final 

building’s energy consumption and costs (Attia et al., 

2012; Hygh et al., 2012; Kanters & Horvat, 2012). 

However, BPS tasks are usually time-consuming. 

Therefore, there is a need for a framework that would 

speed up the BPS process. This paper aims to develop a 

machine learning (ML) algorithm, specifically neural 

networks (NN), that can potentially speed up the process 

of daylighting simulations by executing only a small 

subset of the simulations to predict the performance of 

daylighting of thousands of design configurations. 

Furthermore, the paper will investigate the use of NN to 

predict single and multiple outputs of point-in-time and 

annual based daylighting simulations respectively.  

 

Key Innovations 

• Machine learning algorithm to predict single as 

well as various daylighting simulation outputs. 

• Using high-performance computing (HPC) to 

speed up the production of the dataset needed to 

train the NN model. 

• Using the K-fold strategy to improve prediction 

resulting from executing NN using a small 

training dataset.  

 

Practical Implications 

The framework introduced in this paper could serve as a 

model to speed up the prediction of daylighting 

performance in buildings using NN. Furthermore, the 

integration of HPC could speed up the entire process to 

obtain almost instant predictions of complex daylighting 

simulations instead of working for hours and even days, 

thus empowering architects and engineers to access the 

daylighting performance of various building 

configurations in the early design stages. 

 

Introduction 

A significant amount of energy can be saved by using 

daylight to light buildings to reduce artificial lighting 

consumption and, therefore, reduce heating and cooling 

loads (EIA, 2017; Lee, 2006). Daylighting not only saves 

energy but also improves students’ performance on tests  

(Group, 1999) and increases worker productivity, which, 

in turn, increases the economic value of happy workers (C 

F Reinhart, 2013). 

Although daylighting in buildings has been proven to be 

an asset, carrying out medium- to large-scale daylighting 

simulations to determine the daylighting performance of 

various building configurations can take days or even 

weeks to complete. However, practitioners in the 

construction industry usually adhere to strict project 

deadlines that prevent them from performing lengthy 

simulation tasks (Nguyen et al., 2014). Therefore, there is 

high demand for frameworks that could speed up the 

simulation process.  

One emerging framework that can be utilized to speed up 

such a process is machine learning. Several researchers 

have examined the application of ML to predict the 

performance of the built environment in terms of energy 

consumption, daylighting harvesting, and thermal 

comfort. Researchers have proven that ML algorithms, 

specifically artificial neural networks (ANNs), accurately 

predict the energy consumption and other performance 

aspects of buildings (Wong et al., 2010; Zhao & 

Magoulès, 2012; Zhou & Liu, 2015). For example, Wong 

et al. examined the use of a NN model to predict the 

energy and daylighting performance of an office building. 

The researchers used a parametric building model that had 

nine variables as the input parameters: four variables 

related to the external weather conditions (daily average 

dry-bulb temperature, daily average wet-bulb 

temperature, daily global solar radiation, and daily 

average clearness index), four variables related to the 

building envelope designs (solar aperture, daylight 

aperture, overhang, and side-fins projections), and a day 

type variable (i.e., weekdays, Saturdays, and Sundays). 

The NN model was used to estimate daily electricity use 

for cooling, heating, and electric lighting. The accuracy 

metric for the NN-modeled cooling, heating, electric 

lighting, and total building electricity use was 0.994, 

0.940, 0.993, and 0.996, respectively, indicating the 

excellent strength of the model’s predictive ability. (Zhou 

& Liu, 2015). Other studies proved the success of using 

NN models to accurately predict the thermal performance 

of buildings for the ultimate energy-efficient and 

comfortable building design. For example, Neto and 

Fiorelli used a NN model to predict the thermal 

performance of the administration building of the 

University of Sao Paulo. Neural networks showed 

agreement between energy consumption forecasts and 

actual values, with an average error of about 10% (Neto 

& Fiorelli, 2008). 
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Although recent studies have investigated the use of 

different ML algorithms to predict a single output of 

daylighting simulations, researchers have not fully 

investigated the use of ML, specifically NN, to predict 

various daylighting simulation outputs. In this paper, NN 

is used to examine the accuracy of the prediction made by 

the NN model when used with a point-in-time single-

output daylighting simulations and multiple-output 

annual daylighting simulations.   

 

Method 

As mentioned in the previous section, this paper discusses 

two applications of the proposed NN to predict the 

performance of daylighting in a room. The first 

application of the NN algorithm is examined using   

single-output point-in-time simulations, and the second 

one is examined using multiple-output  annual daylighting 

simulations.  

For both applications, the author used a 4x5m small office 

room located in New York City, which has one window 

oriented in different ways (see Table 1). The geometric 

model of the room contains ten different parametric 

variables (Table 1). Some parameters, such as the ceiling 

height and the lightshelf depth, are geometrically related; 

other parameters, such as the ceiling reflectance values 

and transmittance values, define the optical properties of 

the room’s material. Each parameter contains a set of 

different values, with total of 25 different values that lead 

to 5,120 unique room configurations. 

Radiance and Daysim (Larson, 1998; Christoph F 

Reinhart & Breton, 2009) were used for this research 

study the -ab (ambient bounce value was set to 5).  

 

Table 1Variables embedded in the geometrical model  

Variable  Configuration  Num 

Room Hight 3m, 4m  2 

Glazing Ratio 50%, 60% 2 

Lightshelf Depth 0.5m, 1m  2 

Lightshelf Location Top of the window, shifted 2 

Walls Reflectance 50%, 60%, 70%,80%, 90% 5 

Lightshelf reflectance 80%, 90% 2 

Ceiling Reflectance  80%, 90% 2 

Floor reflectance  50%, 70% 2 

Glazing transmittance  30%, 50% 2 

Window orientation  North, South, East, West 4 

Total number of room configurations  5,120 

 

Figure 1 Three examples of the different configurations 

of the office room. 

 

 

First Case Study; Single-output NN  

For this case study, the author carried out point-in-time 

daylighting simulations to examine the use of the NN 

model to predict one output, which in this case is the value 

of the average illuminance in lux. The average 

illuminance value is calculated using illuminance values 

of 144 sensor points in the office room. The point-in-time 

simulations are executed for the winter solstice at 12:00. 

Second Case Study; Multiple-output NN (an output 

that contains 144 values for each grid point) 

For this case study, annual daylighting simulations were 

used to calculated daylight autonomy (DA) values over a 

grid of 144 sensor points (multiple outputs, 144).  

High Performance Computing (HPC) 

To calculate the time required for producing a test dataset,  

an initial DA simulation took two minutes to complete, in 

contrast to the illuminance level simulation which took 

0.25 minutes to complete. This is mainly because the 

calculation procedure of DA determines the hourly 

illuminance level in all 144 analysis grid points in the test 

room for the entire year (Christoph F. Reinhart et al., 

2006).  The preliminary simulations were performed on a 

fairly fast Intel i7- 2.2 GHz laptop. 

It was evident that running 5,120 configurations could be 

a complex and time-consuming task; therefore, the NN 

algorithm is crucial for speeding up such a process since 

the NN model uses only a subset of the simulations to 

predict the outcome. The author used two small subsets of 

506 (illuminance, and DA) simulations of random room 

configurations to predict the performance of all 5,120 

configurations. Although NN allowed the use of a small 

subset, executing 506 illuminance and DA simulations 

would still be a time-consuming process, taking about two 

hours and 16 hours, respectively. Therefore, a HPC 

environment was used to execute simulations. HPC 

facilitates the execution of various commands and 

processes in parallel on individual computing nodes that 

are part of a computing cluster. Various researchers 

confirmed that HPC provides an economical solution for 

executing large-scale computing processes. (Pérez-

Lombard et al., 2008; Thain et al., 2005; Zhai et al., 2011). 

Both subsets were executed on the HPC environment 

using a method similar to the one introduced in 2019 by 

Labib and Baltazar (Labib & Baltazar, 2019). A 120 HPC 

computing nodes were utilized in parallel. The 

illuminance simulations of the subset were completed in 

roughly one minute (1.1 minutes), and the DA simulations 

took about 8.5 minutes.  

The NN Model  

The NN framework was applied to the datasets that 

resulted from the daylighting simulations of both case 

studies. The following steps were applied to prepare the  

data and establish the NN model: 

1. Data Normalization: Both data samples 

contained only 506 simulations, split between 

404 training samples and 102 test samples. Each 

feature (e.g., the glazing ratio) in the dataset had 
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a different scale. For instance, some values were 

proportions, which take values between 0 and 1; 

others take values between 50 and 80, others 

between 3 and 4, and so on. Therefore, a data 

normalization technique was used to unify the 

scale of all the features in the dataset. This 

process was completed by subtracting the mean 

of the feature and dividing by the standard 

deviation so that the feature was centred around 

zero. 

2. Developing the NN Model: Because the dataset 

was small, the NN model might have suffered 

from overfitting, which leads to performing 

poorly on new data. To mitigate this problem, a 

small NN model was constructed with two 

intermediate layers, each with 64 units, and one 

layer that contained only one output unit. The 

model was complied with the loss function mean 

squared error (MSE) (Equation 1), which is the 

square of the difference between the predictions 

and the targets. At the same time, the mean 

absolute error (MAE) was calculated to monitor 

the absolute value of the difference between the 

predictions and the targets. 

 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖

𝑛

𝑗=1

− 𝑦̃𝑖)
2 
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1

𝑛
∑|𝑦𝑖

𝑛

𝑗=1

− 𝑦̃𝑖| 

 

where n = The number of data points, y = The 

actual value of the output, y ̃ = The Predicted 

value, and, i = the index of the data point. 

 

3. Validating the ANN Approach with K-fold 

Cross- validation: To evaluate the ANN model 

while adjusting parameters, such as the number 

of layers, the number of units in each layer, and 

the number of epochs, some of the training data 

could be used for validation. However, the 

validation set would end up being very small 

considering that we had a small dataset. 

Therefore, the validation scores might change 

every time we changed the model’s parameter 

due to our choice of data points used for 

validation and training. This leads to high 

variance in the validation scores, making the 

evaluation process of the model unreliable. To 

mitigate this problem, the PI used K-fold cross-

validation, which consists of splitting the 

available data into K-partitions and training the 

model on all partitions except one used for 

validation. The process was then repeated by 

cycling through all the partitions. The validation 

score for the model used then was the average of 

the K validation scores obtained from all the 

cycles (see Figure 2 and Figure 3). This method 

reduces variance in performance metrics (MSE, 

MAE). For the purpose of this work, K = 4 was 

used to apply the K-fold cross-validation 

method.  

It is worth mentioning that upon executing the K-fold 

method explained in the previous section, better results 

could be obtained by creating a new NN model to be 

trained using the epoch that produces the lowest MSE 

value. Other parameters in the new model could also 

investigated, such as the number of layers in the NN 

model and the number of neurons in each layer. This 

process is usually completed manually to choose the best 

parameter of the NN model that results in the lowest MSE 

value in order to improve the accuracy of the predictions.  

 

 

             Figure 2 The K-fold cross-validation method, 

where the average of the three resulted scores are 

considered to evaluate the NN model 

 

  

 

Figure 3 Illustration of the workflow of training the NN 

model over different epochs 

 

Results 

Single Output Case Study 

The calculated MSE and MAE over 400 epochs resulting 

from applying the proposed NN model to the point-on-

time illuminance simulations data are shown in Figure 4. 

It is evident that running the NN model with 130 epochs 

produced the best results before the model started to 

overfit. The MSE and MAE values were equal to 0.015 

and 0.094, respectively. This means that the predicted 

average illuminance values are 94 points (Lux) off the 

actual value (considering that the MAE was multiplied by 

1,000 because the initial average illuminance values were 

divided by 1,000). This is considered a highly accurate 

model where the actual average illuminance levels in the 

(2) 

(1) 
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data set ranged from 6,000 to 15,000 lux. The results of 

this research study confirmed that  NN algorithm can be a 

great alternative to existing traditional BPS tools. The NN 

reduced the time required to examine more than 5,000 

room configurations from about a couple of hours to a few 

minutes with an error margin of 0.94%. 

 

 

Figure 4 MAE (top) and MSE (bottom)  values over 

different numbers of epochs when running the NN model 

for a single output (illuminance average)  

 

Single-output Case Study Validation 

The NN model was applied to nine different room 

configurations to examine the accuracy of the resulted 

predictions. Table 2 shows the predicted average 

illuminance values compared to the simulated values that 

were produced by implementing the NN model. The 

difference between the simulated values and the predicted 

values ranges from 20 to 79 lux.  

Table 2 The simulated average illuminance values of 

different room configurations( i.e., window size, 

orientation, lightshelf specifications) compared to the 

values predicted by the proposed NN model. The 

simulations are carried out using Dec 21 at 12:00 sky 

file. 

Configuration Simulated  Predicted 

1 2646 2731 

2 2707 2726 

3 2583 2490 

4 2457 2392 

5 2892 2840 

6 3105 3059 

7 2873 2901 

8 2570 2595 

9 3067 3089 

Multi-output Case Study 

The MAE and MSE resulting from applying the proposed 

NN model over 500 epochs are illustrated in Figure 5. It 

was determined that the best results before the model 

overfit is obtained when the NN model is applied with 175 

epochs, where the MSE and MAE values were equal to 

7.6 and 14.8, respectively. 

 

Figure 5 MAE (top) and MSE (bottom) values over 

different numbers of epochs when running the NN model 

for the multi-output (144 DA values) case study 

 

Multi-output Case Study Validation 

Similar to the validation method used to examine the 

accuracy of the single-output model, the author applied 

the NN model to compare the predicted DA values to their 

respective simulated values using three different room 

configurations (See Table 1 and Figure 6). 

 

Table 3 Configurations used to validate the results of the 

proposed NN model 

Variable Config1 Config2 Config3 

Room Hight 3m 4m 3m 

Glazing Ratio 50% 50% 60% 

Lightshelf Depth 1m 1m 0.5m 

Lightshelf Location Shifted Top Shifted 

Walls Reflectance 90% 90% 90% 

Lightshelf reflectance 90% 80% 90% 

Ceiling Reflectance 90% 90% 80% 

Floor reflectance 50% 50% 50% 

Glazing Trans. 50% 60% 60% 

Window orientation East North South 
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Figure 6 Daylight Autonomy maps of three room configurations. Right, the NN-predicted DA maps, Left, the simulated 

DA maps
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Discussion   

Current simulation processes are frequently run from 

popular parametric modeling environments. Often, 

sending data from these parametric modeling 

environments to HPC and executing ML requires 

combined knowledge of programming and Linux 

operating systems, two skills that many designers do not 

possess. Therefore, there is an urgent need to develop a 

set of graphically interfaced tools that integrate with 

parametric modeling environments allowing the non-

programming user to send and receive simulation data to 

and from the proposed cloud environment without any 

programming, Linux OS, and machine learning 

knowledge.  

 

Conclusion  

This paper examined the use of NN, a machine learning 

application, to predict the daylighting performance of 

5,120 different room configurations. The proposed NN 

model was used to predict one output, the average 

illuminance value inside the room, and multiple outputs, 

or 144 DA values. To be able to use a machine learning 

framework, training data was populated by executing 506 

simulations of random room configurations. Running 

daylighting simulations is time-consuming, and it was 

evident that running 506 simulations was not practical. 

Therefore, this author automated the execution of all 506 

simulations on an HPC cluster that contains 120 

computing nodes that facilitated the execution of 

simulations in parallel. The utilization of the HPC 

environment facilitated executing the simulations needed 

to obtain the training data in a time-efficient manner. The 

illuminance simulations were completed in roughly one 

minute (1.1 minutes) and the DA simulations took about 

8.5 minutes. The execution of these simulations on a 

desktop computer would have normally taken two hours 

and 16 hours, respectively.  

When applying the proposed NN model to the point-on-

time average illuminance value,the calculated loss 

function, MSE was equal to 0.015 and MAE was equal to 

0.094. The NN model showed highly accurate results, 

where the average illuminance values of the validated 

configurations were within 95 points of the actual value. 

Considering that the average illuminance values of the 

validated configurations ranged from around 2000 to 

3000 lux, a 95-point range of error is negligible. 

Similarly, the NN model was examined to predict 

multiple outputs: 144 DA values of the analysis grid 

points. The MSE and MAE values were equal to 7.6 and 

14.8, respectively. The predicted DA values were plotted 

against the actual values that are resulted from 

simulations (see Figure 6). The  

In conclusion, the proposed NN model showed fairly 

accurate results in predicting single and multiple outputs, 

although it was observed that the NN model showed 

higher accuracy in predicting single outputs. In addition 

to accuracy, coupling the HPC with NN increased time 

efficiency. 
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