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ABSTRACT

An Efficient External-Memory Sorting Algorithm

Gabriel Stella
Department of Computer Science

Texas A&M University

Research Advisor: Dr. Dmitri Loguinov
Department of Computer Science

Texas A&M University

External-memory sorting is a well-versed subject, with a history going back several decades.

However, current implementations of external-memory sorting algorithms are not able to fully

take advantage of the power of modern hardware. The reason for this is twofold: (1) they use a

computationally-expensive mergesort approach, which can create a bottleneck during processing;

(2) their management of I/O resources prevents them from achieving maximum I/O bandwidth.

In this paper, we outline the construction of an external-memory distribution sort algorithm that

utilizes available resources much more effectively.
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1. INTRODUCTION

The problem of sorting is central to computer science. It is a common subroutine in other

algorithms, helping to better structure data and thereby reduce runtime. The branch of in-memory

sorting in particular has been thoroughly studied, and efficient implementations exist for many

different in-memory sorting algorithms. These are not just asymptotically optimal; they also seek

to reduce program runtime.

In the age of Big Data, external-memory algorithms are a vital part of many applications.

These algorithms are designed to interact with secondary memory devices, such as hard disk drives

(HDDs), when data is too large to fit in main memory. This interaction brings with it many chal-

lenges; HDDs are slow, sequential devices, not at all like RAM. The design of algorithms for

external memory has a long lineage, including many algorithms for external-memory sorting [1],

[2], [4], [5], [6], [7]. However, current implementations are unable to achieve maximum execu-

tion speed. Part of the reason for this is their complicated designs, including additional abstraction

layers and overuse of expensive function calls, which can substantially increase computational

overhead.

Another cause is the inaccuracy of the models that these implementations are based on. One

common model is the parallel disk model used in [5]. This model attempts to account for the

properties of D parallel HDDs in two ways. First, they note that transfers between main memory

and secondary memory occur in blocks: assuming S(x) denotes the speed of a transfer of x records,

S(x) = S(⌈x/B⌉B) where B is the block size for the particular external-memory device. This

implies, for example, that S(1) = S(B). Second, the model allows the transfer of D blocks

concurrently using the parallel disks, so that S(B) = S(DB). This novel feature of the model

is not always applicable nowadays as multi-disk systems are often organized into RAID or some

other system that hides the disks behind a single-disk interface.

As mentioned in [1], a much more realistic feature of HDDs is missing from this model: the

problem of highly-expensive disk seeking operations. The model assumes that after an external-
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memory access to the block beginning at location x, an access at x + B (the next block) is as

expensive as an access anywhere else on the disk. In practice, use of HDDs in a random-access

pattern significantly decreases throughput. The goal of reducing seeking is, in fact, at least as

important as reducing the number of I/O operations.

Our approach to the problem of external-memory sorting is different from other works in that

we explicitly aim to reduce runtime, rather than reducing the I/O complexity as in previous works.

Simply dealing with the above problems is not enough to accomplish this; the specifics of the

underlying hardware must be taken into account. By testing the system, a model can be created to

predict the algorithm’s performance with different parameters and calculate optimal settings.

Our sorting method consists of an automated optimizer, which runs tests and creates the sys-

tem’s performance model, and an external-memory key distribution algorithm. The optimizer uses

system-specific performance curves to calculate an optimal recursive tree of input splitting. At each

level of this tree, our key distribution algorithm aims to reduce seeking by using a highly effective

buffer grouping approach. At the bottom of the tree, all files will be small enough to be sorted in

RAM and appended to the final output file.
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2. CHALLENGES AND OBJECTIVES

Working with external memory comes with many challenges. The work done in [5] solves sev-

eral of these challenges; the work in this paper aims to solve several more. Our work also diverges

in that our implementation attempts to explicitly optimize runtime, as opposed to optimizing the

asymptotic number of I/Os.

2.1 Processing Time

While the main focus of an external-memory algorithm is to optimize along the I/O route, if

one is not careful, processing time may become a substantial portion of the algorithm’s runtime.

This is especially true as external memory systems get faster; in our tests, the speed of a single-

threaded splitter (without doing any I/O) was comparable to the maximum single-file bandwidth of

a 24-disk RAID system.

Previous works attempt to optimally overlap I/O and computation so that this problem is miti-

gated [4]. Our algorithm continues this trend and employs a cheap bitwise splitting calculation that

allows the key distribution thread to process several hundred million keys per second.

2.2 Large Files

Given an input file with N keys, and main memory that can store R keys, an external-memory

sorting algorithm may deal with files such that N ≫ R. To solve this problem, one must break

apart the original file F into many smaller pieces. In our algorithm and in [5], a distribution sort

is implemented to deal with this challenge. The distributor recursively splits files until they fit in

RAM and can be sorted using an in-memory algorithm.

It is important to consider how each piece of the original file will be dealt with once the file

is broken up. If the file is broken with no pattern, expensive merge operations must be used to

create the sorted file. However, when using a distribution approach that ensures the relative order

of keys in different files, the sorted file can be created via simpler means. Our distributor provides

the following guarantee: i < j → max(fi) < min(fj) for intermediate files fi, fj of same depth,

where i and j are the indices of the files corresponding to a split-tree traversal. Thanks to this
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guarantee, we can reconstruct the sorted file by simply appending each intermediate file in this

order. This is discussed more in Section 4.2.

2.3 Amount of File I/O

An obvious constraint, given that external-memory I/O is so much slower than main memory,

is that any external-memory algorithm should aim to reduce the amount of I/O done. As discussed

in Section 3.1, a recursive algorithm that deals with a tree of files will have O(N logN) I/O oper-

ations. Producing an algorithm with this bound is the main focus of [5]; however, simply reducing

this bound is not enough to produce an optimized algorithm. Our algorithm is able to minimize

the number of I/Os in that at each level, it requires only a single pass over the N keys. We can

do this because we assume that keys are uniformly distributed, and so we do not need to calculate

partitioning elements from the data.

2.4 Disks are Sequential

The reality of working with external memory is much more complicated than simply reducing

the number of I/O operations. The sequential nature of HDDs implies that the order of operations

can drastically impact the speed with which they are completed; in other words, we have to deal

with the problem of highly-expensive seeking operations. This is the main issue that will be dealt

with by our key distribution algorithm.

This important problem is not given proper treatment in prior works. The parallel disk model

assumes that disks are essentially random-access devices; the method employed to reduce seeking

in [5] is simply to make B, the block size when interacting with the disk, large. However, this is

not enough to reduce seeking; in modern systems, optimal block sizes for single-file access may

be several Megabytes, while using this block size for multiple-file access (and naively switching

between each file) would result in incredible seek delays.

2.5 Limited RAM

The problem of limited RAM is related to the previous problem. When deciding the order of

I/O operations, we are also constrained by a small amount of main memory with which to buffer

disk accesses. With more RAM, we can store more buffers, which (using the algorithm described in
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Subsection 4.1.3) allows us to significantly reduce seeking. We therefore have to choose parameters

based on our available resources, which involves a tradeoff between k, B, and the number of buffers

C. The method we use is discussed in Subsection 4.2.1.

2.6 Objectives

With these considerations in mind, we more explicitly describe the goal of our algorithm. In

order to sort, we construct a list of distribution factors {k1, k2, ..., kd} such that
∏d

i=1 ki = N/R.

This is equivalent to calculating a list {b1, b2, ..., bd} of bit counts used to split, where ki = 2bi ,

such that
∑d

i=1 bi = log2N − log2R. The constraints based on N and R result in bottom-level

buckets small enough to be sorted in RAM1.

To sort optimally, we must choose the split factors {k1, k2, ..., kd} such that cost =
∑d

i=1 t(N,R, ki)

is minimized, where t(n,R, k) is the time taken to distribute a file of size n into k buckets with

main memory size R. The optimizer we implement runs tests on the system to estimate the func-

tion t then uses a simple dynamic programming algorithm to automatically calculate the optimal

split sequence for any sort, given parameters N and R. This effectively tailors the method to the

specifics of any system it runs on, which is vital in ensuring good performance. The next goal is to

design an efficient distribution algorithm to decrease the value of t on arbitrary inputs.

1We omit the factor δ, assuming that internal-memory sorting will use an in-place algorithm.
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3. BACKGROUND

There are two main approaches to external-memory sorting: file merging and file distribution.

These methods work better than other approaches from in-memory sorting because they can be

designed to access the disk in a sequential manner.

After creating all of the bottom-level files, either after distribution or before merging, an

internal-memory sorting algorithm must be used. In general, this has to be a comparative sort-

ing algorithm such as quicksort. If uniformly-distributed integer keys are assumed, as in our case,

one can use a faster non-comparative algorithm such as radix sort. See Figure 3.1 for an illustration

of the four different combinations. Our algorithm falls under the distribution sort category, and we

can integrate a non-comparative sort for in-memory sorting of buckets. This is the fastest of the

four combinations shown. The algorithm in [5] is also a distribution sort, while the algorithm in

[4] is a merge sort; both use comparative algorithms for in-memory sorting.

3.1 File Merging

A common approach taken to external-memory sorting is similar to mergesort. In this approach,

F is broken apart into m files of at most δR records each, where R is the number of records that

can be stored in RAM and δ is some constant that accounts for extra space used by the in-memory

sorter. These files, typically called runs, are all sorted individually and then progressively merged,

k at a time. This results in a merge tree of depth d = logk m. Since O(N) records are read and

Figure 3.1: Comparison of EM Sorting Methods.
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written at each level of the tree, O(N logk m) = O(N logk(N/R)) records are read and written in

total.

The merging approach has the distinct benefit that it is resilient against skew in the input data.

In other words, no matter what the contents of F are, I/O cost depends only on N . However, in-

memory merging is an expensive process: merging k inputs each of size n requires O(nk log k)

CPU steps. This also demonstrates that the parameter k must be optimized based on both CPU and

I/O considerations: increasing k will reduce d, but will increase computation time. The following

approach, based on a distribution sort, holds slightly different properties.

3.2 File Distribution

Another approach is to traverse down this tree by splitting rather than merging. At each level,

the keys to be sorted are distributed into k buckets (each bucket corresponding to a file). This

results in the same amount of file I/O as the merge-based approach; however, when the records

have integer keys, the computational complexity of splitting a single file of size n into k files each

of approximately size n/k is O(n), as opposed to O(n log k) for an equivalent merge operation.

Along with the decrease in CPU usage, this allows us to choose parameters based solely on I/O

optimization.

This distribution sort is the approach described in [5]. Their definition of the sorting problem

differs from ours in an important manner: they generalize to any comparable data type, whereas we

sort numerical keys. This changes the method used for splitting keys. In [5], a preprocessing step is

required at each level to determine a set of "partitioning elements", which are then used to split the

entire file. Then, for each element to be distributed, a binary search over the partitioning elements

is required to determine which bucket to place it in. Our algorithm instead splits directly on the

bits of each numerical key. This is a fast process, as it requires only simple bitwise operations to

generate the index for each key, and it reduces the amount of required I/O. As long as keys are

uniformly distributed, which is a realistic assumption for our use cases, the produced buckets will

also be uniform.
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3.3 Choosing k

The choice of k is important whether distributing or merging. Previous works derived formulas

to determine k based on N , R, and B (the block size when interacting with external memory)

without taking into consideration the specifics of the underlying hardware. In STXXL, a C++

library for external-memory data structures and algorithms, the merge factor is chosen using the

following formula2:

x = ⌈lnm/ ln(R/B)⌉ = ⌈log(R/B)m⌉ (3.1)

k = ⌈m1/x⌉ (3.2)

In [5], the formulas for k were derived with the motivation of reducing the asymptotic I/O

complexity of the problem and ensuring equal use of D parallel disks. Their distribution factor is

chosen using one of two approaches, based on N . In the case when N is large, k is calculated from

x:

x =

√
R/B

ln2(R/B)
(3.3)

So that k is the maximum of 1 and the largest power of 2 that is ≤ x, i.e. k = max(1, 2⌊log2 x⌋).

When N is small, the formula is simpler: k = 2N/R+ 1.

The approach we use to calculate k is based on a dynamic programming algorithm meant to

optimize runtime. Our method uses information gathered about the system, as is described in

Subsection 4.2.1.

2This formula was extracted from STXXL version 1.4.1 code.
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4. ALGORITHM

In this chapter, we outline the development of our external memory sorting algorithm. This

algorithm has several subcomponents; the most central one is the key distributor. To construct a

sorting algorithm using this, we organize a multi-level distribution sort. At each level, it splits files

into buckets (intermediate files) based on a small number of bits, then recursively applies itself

to each bucket. Eventually, these buckets will be either completely sorted3 or small enough to be

sorted in memory. Then, they are all recombined in proper order.

4.1 File Splitting

The process of key distribution can be described as follows. Let f be a parent file in the tree at

level i ∈ [0, d − 1]. We apply the key distribution function to f using split factor ki+1 to generate

that many buckets (child files). We then apply the function recursively to each of those buckets.

Beginning with F at level i = 0, this results in DFS-order creation of the splitting tree, allowing us

to (1) reuse intermediate files, thereby decreasing storage requirements, and (2) create the sorted

file F ′ by simply appending all level d buckets in order of creation.

We begin by discussing the operation in terms of a single level, i.e. the functionality of the file

splitter. The goal of the file splitter is to read a single file and split the data into 2b output files.

Let us first focus on the operation of the input splitter and file writer system, for now ignoring the

specifics of file reading. For this setup, we assume the existence of some large input buffer, without

any knowledge of how it was created. We show how to incorporate file reading in Subsection 4.1.5.

For subsections 4.1.1 to 4.1.3, we use the following definitions: let R be the size of RAM

(specifically, the maximum number of keys the splitter may store in memory), N the number of

keys in the input buffer, b the number of bits to split on, k = 2b the number of files to split into,

B the size of memory buffers, and C the number of memory buffers (such that R = BC). In

Subsection 4.2.1 we show how to optimally calculate these parameters.

The basic operation of a key splitter is shown in Algorithm 1. The specific details of the
3This implies the bucket contains copies of a single unique element.
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write(buffer) function are described later; this is the focus of the following stages of devel-

opment. In general, the splitter loops through the input buffer, places each key into the correct

output buffer based on some function (a simple operation to extract b bits, which correspond to

the index), and writes buffers when they are full. In the following sections, we develop this ba-

sic algorithm into a high-performance multi-file splitter, then show how to incorporate it into an

external-memory sorting algorithm.

4.1.1 Naive Splitter

The most naive implementation of a splitting algorithm is a single-threaded splitter that writes

one block at a time, as soon as any buffer fills up. It then waits for the I/O request to complete,

continues splitting, and so on. This is very obviously not optimal, as it forces both splitting and I/O

to constantly wait on each other. A better algorithm would parallelize these two operations.

4.1.2 Splitter-I/O Parallelism

The parallel system runs two threads, one for splitting keys and one for writing to the output

files. The general idea is that the threads share a set of output buffers; the splitter writes to the

buffers, and the I/O thread writes the buffers to the disk. We generally allocate C = 2k memory

buffers4, so B = R/2.

When the splitter thread fills a buffer, it puts the buffer and its file index into a queue (qFull) to

go to the I/O thread, then requests an empty buffer from another queue (qFree) which is populated

by the I/O thread. The I/O thread waits for buffers to be put into qFull, issues a single write

request per buffer, and enqueues the newly-freed buffer into qFree. This is an archetypal bounded

producer-consumer problem, so the basic solution is trivial. To encapsulate this behavior, let us

define a simple API as seen in Algorithm 2. In this scheme, the write(buffer) function from

earlier is replaced by calls to push_full and pop_free.

As stated, a basic implementation of these functions is trivial. However, in anticipation of the

next algorithm, we will define them in a non-obvious way by implementing a shared list of buffers

for each file, called buffers. To be explicit, let lockFree and lockFull be two mutex
4This helps ensure double-buffering, which allows both threads to work concurrently.
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Algorithm 1: Basic Key Splitting Algorithm

1 Func split (Key[] input) returns None
2 for (i = 0; i < N; i++) do
3 index = index_of(input[i]) ◃ Decide which file this key goes to
4 offset = offsets[index]; ◃ The position at which to insert this element in its buffer
5

6 outputBuffers[index][offset] = input[i]; ◃ Insert at current end of buffer
7

8 offset++; ◃ Assume this updates the value of offsets[index]
9 if (offset == C) then ◃ Check if buffer is full

10 write(outputBuffers[index]);
11 offsets[index] = 0; ◃ Reset the buffer position

Algorithm 2: Simple Parallel Buffer Exchanging API

// Pass a full buffer from the splitter to the writer
1 Func push_full (Key[] buffer, integer fileIndex) returns None

2

// Retrieve a full buffer from the splitter
3 Func pop_full () returns (Key[], integer)

4

// Pass a free buffer from the writer to the splitter
5 Func push_free (Key[] buffer) returns None

6

// Retrieve a free buffer from the writer
7 Func pop_free () returns Key[]

locks and semaFree and semaFull be two semaphores (each of maximum value C). In this

implementation, qFull only keeps track of file indices. See Algorithm 3. The implementations of

push_free and pop_free are the same as in a basic implementation, i.e. they do not interact

with the shared buffer list, so they are omitted here.

By parallelizing the splitting and I/O, the total time taken becomes max(splitter, I/O), while

the naive implementation requires splitter + I/O. Next, we will see how to make I/O faster.

4.1.3 Grouping

One small improvement to the previous method produces a significant I/O speedup. This is to

group full buffers by their file index. Once buffers are grouped, the I/O thread can pop a file index

i from qFull and issue write requests for all buffers corresponding to i. The modifications to

13



Algorithm 3: Parallel Buffer Exchanging Implementation

// Pass a full buffer from the splitter to the writer
1 Func push_full (Key[] buffer, integer fileIndex) returns None
2 Lock(lockFull);
3

4 qFull.push(fileIndex);
5 buffers[fileIndex].add(buffer);
6

7 Unlock(lockFull);
8

9 Release(semaFull);
10

// Retrieve a full buffer from the splitter
11 Func pop_full () returns (Key[], integer)
12 Wait(semaFull);
13

14 Lock(lockFull);
15

16 integer fileIndex = qFull.pop();
17 Key[] buffer = buffers[fileIndex].remove(); ◃ Remove a single buffer from the list
18

19 Unlock(lockFull);
20 return (buffer, fileIndex);

the buffer-passing process are detailed in Algorithm 4. Note the size test on line 4. The modified

behavior is that each element in qFull does not refer to a new full buffer; it refers to a file that

has one or more buffers ready to be written. Therefore, when a buffer is filled, i only gets added

to the queue if the buffer is the first for its file since buffers[i] was emptied by the I/O thread.

Consequently, semaFull counts the number of files that have buffers ready.

This modification produces many benefits. It drastically decreases the amount of seeking; as is

shown in Section 5.7, the grouping algorithm is able to reach a stable rate of writing 2
k+1C buffers

between every seek. Due to this fact, the I/O thread must quickly release freed buffers back to

the splitter thread once any write request has completed. This helps retain the double-buffering

property of the previous algorithm; without this feature, the grouping algorithm may even become

slower than the non-grouping one.

4.1.4 Notes on File Writing

There are several important things to note about the methods we use to write to files. The main

goal of the splitter’s design is to reduce seeking; for that reason, we try to write as much as possible

14



Algorithm 4: Parallel Buffer Exchanging Implementation With Grouping

// Pass a full buffer from the splitter to the writer
1 Func push_full (Key[] buffer, integer fileIndex) returns None
2 Lock(lockFull);
3

4 bool pushValue = buffers[fileIndex].isEmpty(); ◃ Buffer list size test
5

6 buffers[fileIndex].add(buffer);
7 if(pushValue) qFull.push(fileIndex);
8

9 Unlock(lockFull);
10

11 if(pushValue) Release(semaFull);
12

// Retrieve a full buffer from the splitter
13 Func pop_full () returns (List<Key[]>, integer)
14 Wait(semaFull);
15

16 Lock(lockFull);
17 integer fileIndex = qFull.pop();
18

19 List<Key[]> allBuffers = buffers[fileIndex]; ◃ Take all buffers from the list
20 buffers[fileIndex] = List(); ◃ Put back an empty list
21

22 Unlock(lockFull);
23

24 return (allBuffers, fileIndex);

to a single file at once. It is also important to never issue write requests to two files at once; before

making requests to a different file, all open requests must be completed.

We use asynchronous (overlapped) I/O requests because in some cases they can improve I/O

speed. The principle behind using asynchronous calls is to create a "sliding window" of some

small, fixed number (4-8) of pending requests that travels along the list of requests to be made.

When the oldest request finishes, a new request can be made at the "front" of the window. The

overhead of this method is negligible, and it should always be at least as fast as non-overlapped

I/O. When the delay associated with making a write request is not negligible compared to the delay

of the request’s completion, having multiple requests issued concurrently can increase throughput.

4.1.5 File Reading

As covered in the previous section, one major goal of our algorithm is to reduce seeking.

In order to do this, when incorporating file reading into the splitter, we must prevent the reader
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and writer from working concurrently. In our design, the I/O system runs two threads, one for

reading and one for writing. Both threads share a mutex, lockIO. The writer thread will wait for

semaFull, lock lockIO, write the buffers for a single file, release lockIO, and repeat. The

reader thread simply runs a loop in which it locks lockIO, reads all currently-free reader buffers,

and releases lockIO.

4.1.6 EM-Flux

Splitting one file into k files for sorting is a specific formulation of a general pattern in which

l input files are streamed into memory and used for computation, resulting in data being streamed

into k output files. One of the goals of our project, beyond writing a high-performance sorting

algorithm, is to work towards creating a system to provide this functionality. Once this is complete,

splitting can be redefined as a simple application of this pattern, with the details of external memory

management handled transparently. The platform we are building to support this functionality is

called EM-Flux. Our framework will allow the user to specify a list of input and output files and

supply a simple stream interface to interact with each file. This will greatly simplify sorting-related

tasks, most obviously merging and distributing, and has many more possible applications.

4.2 The Sorting Algorithm

With the multi-file key distribution system fully functional, constructing a sorting algorithm is

relatively simple. The sorting algorithm simply applies the key distribution algorithm recursively

to each bucket until one of two criteria is met: (1) the bucket is entirely sorted, (2) the bucket is

small enough to be sorted in RAM. If a bucket is created that meets one of these criteria, it is sorted

in memory (if necessary) then appended to F ′, which is initially empty. The construction of our

algorithm guarantees that F ′ is generated with keys in ascending order. This allows it to skip any

expensive merging operations that may be necessary in other systems.

This guarantee comes from the order in which the splitter looks at bits: most significant first.

The splitter at level i will skip the most significant q bits (which have already been looked at by

previous levels), where q =
∑i−1

x=1 bx. It will then split using the next most significant bi bits,

guaranteeing the property discussed in Section 2.2 that i < j → max(fi) < min(fj). The choice
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of ordering (files are split in DFS order, i.e. the system recurses on fi before moving to fi+1) makes

this property simpler to implement.

The question now is the choice of b, C and B; specifically, at each level i, we must decide bi,

Ci,out and Bi,out for output buffers, and Ci,in and Bi,in for input buffers. These values are chosen

by an automated optimizer.

4.2.1 Automated Optimizer

The performance of the splitter depends upon the specifics of the system it is running on.

Therefore, to generate models and decide the values of b, C and B, we must run tests on the

system to determine its behavior. We can then use these tests to extrapolate optimal settings for the

splitter. At the core of this decision is a simple dynamic algorithm that determines the set of split

factors {b1, b2, ..., bd} based on the rate that the system can support for any given split factor. Then,

once bi has been chosen, we ensure that Ci,out ≥ 2ki with the added constraint that Bi should be

no larger than necessary for good performance. To determine these values more specifically, we

run two sets of tests.

The first test determines the speed of the file system when writing to a single file using different

buffer sizes. This lets us discover the maximum necessary buffer size, Bmax. This test begins with

buffers of 210 B = 1 KiB and progresses through each power of 2 until a maximum rate is reached;

this final buffer size will be Bmax. Once this value is known, we can choose general B and C

according to Algorithm 5. The choice of r, the amount of RAM dedicated to input buffers, is

explained in Section 5.5.

The motivation for setting C > 2k when 2kBmax < R is that dealing with larger C helps

ensure that there is a constant flow of data through the program (e.g. so neither thread, splitter or

I/O, has to wait as often). As long as the cost of passing buffers between threads is negligible, and

the buffers are large enough to achieve maximum I/O bandwidth, using more buffers is better.

This becomes important when the splitting thread begins to wait on the I/O thread. For a simple

example, take b = 1, k = 2, and examine the cases where C = 4 = 2k and C = 100 > 2k. Given

that B = R/C, in the first case B = R/4 and in the second B′ = R/100; that is, B = 25B′.

Now, imagine that there are no buffers in qFree, and the I/O thread is about to write C/2 of the
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buffers to one of the files. Remember that the grouping algorithm will release each buffer as soon

as its request has finished. In the first case, the splitter thread must wait 25 times as long as in the

second case before it can start writing again. In practice, this can significantly increase the amount

of time that the splitter thread spends waiting in pop_free, noticeably reducing overall speed.

We now have to choose bi. The next test determines the speed of the splitter system, running

a single-level split with different values of b in a small range (beginning at b = 1). This test uses

Algorithm 5 to choose C and B based on the value of b being tested. The results of this test are

used to compute the fastest multi-level split sequence for any number of bits using the dynamic

programming algorithm shown in Algorithm 6. We can recompute this dynamic algorithm at each

b while running the test, then stop testing once the single-level split rate drops below the multi-level

split rate prediction.

The limiting factor when determining splitting speed is the size of RAM, R. A larger R allows

us to increase C, reducing seeking. Consider that, holding C constant, every unit increase in b

doubles the number of files k. This effectively halves the number of buffers available to each file.

Once seeking becomes noticeable, this will increase its effect. However, doubling R would offset

this effect, restoring the number of buffers per file. Thus, assuming S is the splitting speed, it

should be that S(b,R) ≈ S(b + 1, 2R). In Section 5.4, we show that this is the case. This result

allows us to sample the splitting curve using a single value of R and calculate rates for any other

value. We can then run the dynamic algorithm on these new rates.
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Algorithm 5: Determining C and B given b and R

1 Func Dynamic_Buffers(b, R) returns (Cout, Bout, Cin, Bin)
2 r = 1

4
◃ Input buffer allotment

3 Cmax = R/Bmax

4

5 Rout = (1− r)R
6 Cout = (1− r)Cmax

7 Bout = Bmax ◃ Equivalent to Rout/Cout

8

9 if (Cout < 2b+1) then ◃ Ensure Cout ≥ 2k

10 Cout = 2b+1

11 Bout = Rout/Cout

12

13 Rin = rR
14 Bin = Bmax

15 Cin = Rin/Bin

16

17 return (Cout, Bout, Cin, Bin);
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Algorithm 6: Determining b for a number of bits

// Calculate the dynamic table up to the given number of bits
1 Func Dynamic_table(rates, bits) returns (b[])
2 len = length(rates) - 1
3

4 times = double[len + 1]
5 for (i = 1; i <= len; i++) do
6 times[i] = 1/rates[i]
7

8 table = int[bits + 1] ◃ The dynamic table of split factors
9 table[0] = 0

10 timeTable = double[bits + 1] ◃ Holds runtime predictions for splitting any number of bits
11 timeTable[0] = 0
12

13 for (i = 1; i <= bits; i++) do
14 minb = -1
15 minTime = ∞
16

17 for (b = 1; b <= len; b++) do ◃ Traverse the table backwards
18 j = i - b
19 if (j >= 0) then
20 time = timeTable[j] + times[b]
21 if (time < minTime) then
22 minb = b
23 minTime = time
24 else
25 break
26

27 table[i] = minb
28 timeTable[i] = minTime
29 return table;
30

// Calculate a specific split sequence using a dynamic table
31 Func Dynamic_bs(table, bits) returns ({b1, b2, ..., bd})
32 bs = List()
33

34 for (bitsRemaining = bits; bitsRemaining > 0;) do
35 b = table[bitsRemaining]
36 bitsRemaining -= b
37

38 bs.add(b)
39

40 return bs;
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5. RESULTS

In this chapter, we present the results that motivate the structure of our sorting algorithm. They

are presented in an order that roughly reflects the process of testing the optimizer goes through,

and also demonstrates the development process of our algorithm.

All of these tests were run on a machine with 32 GB of RAM and a 4 GB/s RAID.

5.1 Single-File Output

For completeness, we present results demonstrating different methods of writing to a single file.

The three methods we present are: non-overlapped I/O (called "Simple" in the plot), concurrent

overlapped requests ("Overlapped"), and a high-performance I/O library developed by the Internet

Research Laboratory here at TAMU ("Stream"). The results for single-file writing speed using

blocks of size Bmax are shown in Figure 5.1. On this particular system, all three methods result in

about the same transfer speed; on other systems, non-overlapped I/O may be significantly slower.

The "Overlapped" method was used to get results for later sections, as the streaming framework

does not yet support our multi-file output algorithm.
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Figure 5.1: Comparison of File-Writing Strategies.
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5.2 Finding Bmax

To find the value of Bmax, we run a simple single-file write test on the machine. Figure 5.2

shows an example of the resulting data. There is a clear plateau after log2B = 20; thus, in this

example, Bmax = 220.

5.3 Multi-File Output

To make the splitter as fast as possible, we had to investigate different ways of writing to

multiple files concurrently. As was covered in Section 4.1, the best method we found was to group

writes together. This method allows us to significantly reduce the amount of switching between

files, which consequently reduces seeking. We compare this method to three others here: a similar

non-concurrent method that doesn’t group (the algorithm detailed in Subsection 4.1.2), a naive

algorithm that does not parallelize I/O (detailed in Subsection 4.1.1), and an algorithm that writes

concurrently to all files. Respectively, these methods are referred to as "Sync Grouping", "Sync

Non-Grouping", "Simple", and "Concurrent". The results can be seen in Figure 5.3. The grouping

method is clearly much more effective than the others. These results were obtained with R = 8

GiB, and C and B were chosen using Algorithm 5 from Subsection 4.2.1. Note that for these tests,

file input was not enabled, so r = 0. The splitter simply read repeatedly from a large memory

buffer filled with uniformly-distributed random numbers.
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Figure 5.2: Determining Bmax.
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Figure 5.3: Multi-File Output Algorithms.

5.4 Impact of R on Splitting Speed

An important part of the model is to optimize given any system constraints, including RAM

size R. Figure 5.4 shows the speed of our file splitter for four different values of R, each double

the previous. It can be seen that the effect of doubling R is essentially to slide the curve to the right

by one unit of b. Input keys for this test, as well as the choices of C and B, were made in the same

way as in the previous test. If file input is enabled, the relationship between the curves deviates

from this behavior when b is low; we will investigate this relationship more in future work.
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Figure 5.4: Splitter Speed with Varying R.
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5.5 Impact on r on Splitting Speed

The splitter’s parameter r determines the proportion of main memory that is reserved for file

input buffers. Given that the grouping algorithm writes 2Cout/(k+1) buffers per seek, it may seem

that the reader should read that many buffers per loop. However, this seems not to be the case; in

our tests, a static reservation of r = 1
4 performed the best. See figures 5.5 and 5.6. For these tests,

the splitter was run on data read from a large (≥ 64 GiB) file of random numbers. In some of our

earliest tests, we found that RAM spent on input buffers generally produced a larger performance

increase than RAM spent on output buffers; these results may be related to that observation. We

leave possible further investigation of r to future work.

5.6 Splitting

When b is large, the performance of the splitter drastically reduces. The reason for this effect is

twofold. First, beginning at mid-range b, the splitter has to seek more. Then, at larger b, in order to

satisfy C ≥ 2k, it must be that B < Bmax. These both contribute to a drastic reduction in perfor-

mance. To remedy this, our algorithm includes an optimizer that can determine optimal multi-level

split sequences for any b. Figure 5.7 demonstrates the quick descent of a single-level splitter, while

the predicted performance of a multi-level splitter remains relatively high and is much more stable

as b changes. The marked point on the figure after which Single-Level performance drops below
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Figure 5.5: Splitter Speed with Varying r, R = 8 GiB.
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Figure 5.6: Splitter Speed with Varying r, R = 4 GiB.

Multi-Level performance denotes the last optimal single-level split value5. After testing the next

value of b and seeing that the single-level split speed is less than the optimal multi-level split speed,

the optimizer will halt its tests, knowing that no further single-level split could be optimal. Fur-

ther points are shown here simply for completeness. The shown single-level points were collected

using the same settings as the previous test, set at r ≈ 1
8 , and were directly used to generate the

multi-level prediction curve shown.
5Before and at this point, all optimal splits are single-level.
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Figure 5.7: Comparison of Single-Level and Multi-Level Splitting Speeds.
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5.7 Effectiveness of I/O Grouping

In order to demonstrate the effectiveness of the buffer grouping algorithm, we gathered data

about the fraction of buffers written by the I/O thread during every loop. Because our single-file

writing is sequential, this is approximately the fraction of the total number of buffers Cout that is

written between every seek. In Figure 5.8, we compare the observed ("Actual") fraction of buffers

written to two functions of k. the first is 1/k, which would mean that each file has an equal share of

the buffer pool. The second is 2/(k+1), which is approximately twice the former (k is exponential

in b). It can be clearly seen that the actual fraction α(k) ≈ 2/(k + 1). The plot is log-scaled in

the y axis to accentuate the small error, which is likely due to the discreteness of buffer allocation

(αCout must be an integer).
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Figure 5.8: Fraction of C Written Between Seeks.
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6. CONCLUSIONS

This paper presented an efficient algorithm for sorting uniformly-distributed integer keys in

external memory. The overarching goal of the algorithm is to reduce runtime for any sorting job; in

doing so, it attempts to solve several problems, most importantly increasing CPU processing rate

and I/O throughput.

To increase CPU processing rate, we use a simple bitwise key splitter that is able to process

several hundred million keys per second with a single thread. In order to maximize I/O throughput,

we group output buffers by file index, which significantly reduces the amount of seeking that is

required. To ensure minimal runtime in all cases, we run an automated optimizer that chooses the

parameters for each sort.

However, there are still improvements to be made. Our algorithm assumes that its input is

uniformly-distributed numerical keys; in future work, we will examine the problem of sorting more

general records. There are also several aspects of the performance that we aim to improve. The first

is the key distribution process; preliminary tests in parallelization have been able to reach speeds of

almost two billion keys per second during in-memory splitting. This will help our algorithm make

use of faster external memory devices.

Even with a faster in-memory splitter, we face the problem of slow external-memory splitting

when b is large. This is a natural consequence of the limited amount of available RAM. We over-

come this problem by applying a multi-level distribution algorithm; however, it is still worthwhile

to design algorithms that can scale better to larger b. This is left to future work.
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