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ABSTRACT 

 

 

Quality Assessment of Mesenchymal Stem Cells using Deep Learning based Image Analysis  

 

 

Parker Simmons 

Department of Biomedical Engineering 

Texas A&M University 

 

 

Research Advisor: Dr. Kristen Maitland 

Department of Biomedical Engineering 

Texas A&M University 

 

 

Cell-based therapeutics is a current effective strategy for the potential curing of several 

human diseases. Mesenchymal stem cells (MSCs) are a heterogeneous group of cells that have 

been the subject of recent attention because of their clinically relevant therapeutic effects and 

transformative morphology. The success of MSCs to provide new remedies is dependent on their 

quality. Their quality can be assessed by examining their physical nature. Morphological 

evaluation has been a robust method for monitoring culture quality, but standard techniques are 

either subjective, destructive, or time consuming making real-time monitoring difficult. The goal 

is to develop an automated image analysis algorithm using deep learning to assess the viability of 

MSCs.  

An algorithm using Keras and TensorFlow libraries in Python will be our main method for 

phase contrast microscope images of MSCs. The cell images are first preprocessed and then given 

to the U-Net architecture model for the segmentation of cells in the images. Results were validated 

using the manual outlining of cells by MSC culture experts as the ground truth. The segmentation 

algorithm demonstrated a Dice-Sorensen score of 0.89 ± 0.03 across 1755 train images, 0.85 ± 
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0.04 across 325 validation images, and 0.83 ± 0.06 across 15 test images. In summary, the proposed 

technique shows the potential to be incorporated into automated MSC quality control processes.  
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CHAPTER I 

INTRODUCTION 

 

 

Chronic diseases such as heart disease, cancer, diabetes, stroke, chronic lung disease, and 

arthritis are just a few of the leading causes of disability and death in both the United States and in 

the world. According to the National Center for Chronic Disease Prevention and Health Promotion, 

6 in 10 adults in the U.S. have some form of a chronic disease. Since these diseases are incredibly 

common, there is a massive need for a therapeutic responses. Studies show that the approach of 

cell therapies has valuable potential to address this problem. Cell therapy is the transplantation of 

laboratory-expanded cells into patients to replace or repair damaged tissue and/or cells. 

Cytotherapies have the potential to treat heart disease, cancer, diabetes, musculoskeletal 

disease/trauma, and many forms of autoimmune disorders.  

Mesenchymal stem cells, otherwise known as MSCs, are a diverse group of stem cells that 

can be differentiated into a variety of different types of cells. MSCs are multipotent, fast 

proliferating, and self-renewing which makes them an ideal candidate for testing. When these stem 

cells need to be injected into a patient, they need to be in a large quantity of cells. Unfortunately, 

With the growth of demand for these cells, it is impossible for current methods to keep up with 

demand. The main purpose of this work is to address current limitations in large-scale cell growth 

strategies by combining automated technology with cell expertise to monitor and evaluate cells 

during the culture process. A great method for evaluating the stem cell culture has been physical 

morphological evaluation. However, the current methods in today’s research field are time 

inefficient and/or destructive.  The deep learning algorithm in this study will not only be able to 
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quantitatively identity the number of cells in any given culture but will invasively be able to 

qualitatively characterize the MSCs . 

As the number of cells in any given culture continue to rise, the distinct boundaries between 

cells begins to diminish and a gray area of accurate testing begins to develop. Any program given 

the task of determining the exact boundaries in each cell cluster will be an extremely difficult task.  

This can be attributed to multiple different difficulties. Arguably the biggest predicament when 

the cell culture has an unusually high amount of cells is the clarity of the specific image. When the 

pixels are not very clearly differentiated from cell and space, current segmentation algorithms fail 

to work as predicted. Current algorithms base their cell evaluation on the edge boundaries of the 

cell. When the cell boundaries become incredibly thin and the pixels become less distinct, standard 

techniques fail to work. Improper segmentation is the beginning of disastrous sequence of events. 

Failure to properly quantify the cell count and assess the quality of these cells can lead to improper 

use of these cells in the clinical field. Deep learning has the potential and ability to overcome these 

faults and open the door into a new style of cell segmentation. Deep learning contains multiple 

processing layers to learn and use various layers of abstraction [2, 3]. When it comes to the future 

of cell segmentation, it is becoming more and more transparent technology has the ability to 

overcome human error and reduce the time, effort, and energy into accurately assessing both the 

quantity and quality of these MSC cells cultures 

Deep learning has recently been making a large splash in the technology field but has yet 

to be paired with cell segmentation. This represents the novelty of this research.  This allows the 

process to be less dependent on cell experts and create a more objective discernment process. 

Another deep learning advantage is its ability to be able to asses with cell culture with no damage 

done to the physical cell culture. This new algorithm has the potential to bridge the gap between 
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the growing need for cells to be accurately controlled and the best available technology being used 

in the cell segmentation field  
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CHAPTER II 

METHODS 

 

 

There are multiple steps in the method used to obtain a valid deep learning algorithm. First, 

by visually inspecting the cells, experts in MSCs manually prepare the ground for the training and 

performance validation of the deep learning model. The input images are preprocessed and then 

are amplified to ensure the data received is sufficient. The images are then transferred to the U-

Net architecture based deep learning model to obtain the segmentation output. The output’s 

performance is compared using the ground truth that was manually obtained. Figure 1 shown 

below is a step-by-step flow chart of the proposed image analysis method. These input images are 

acquired using a phase contrast microscope by an outside party. 
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Figure 1: Pipeline of the proposed image analysis method 

 

Dataset 

Beginning with the samples, the human mesenchymal stem cells used in this were seeded 

at 100 cells/cm2 in complete culture medium and cultured for 2 days before imaging. The cells 

were imaged under phase contrast on a Motic AE31 microscope using a Moticam 1SP 1.0 MP 

camera acquiring images with 1.56 pixels/µm, according to my PhD mentor, Sakina. A total of 47 

images were acquired from three different cultures. In total these added up to 236 hMSCs. The 

acquired cell images were visually inspected by myself to manually outline cells within the images 

to generate the ground truth for the algorithm. These ground truth images were originally validated 

using ImageJ, but this process became extremely tedious and much less accurate than intended. 
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The next software used was Adobe Photoshop but these problems persisted. A promising software 

was LabelMe. LabelMe was unique because its primary use is to locate boundaries of objects in 

any industry. In this case, it was used to locate cells in the cell culture. However, after preparing 

over 50 images through LabelMe, it was impossible and an incredible waste of time to transfer the 

.tar files into .pdf or .jpeg files. Finally, Microsoft Paint was the software that was chosen to draw 

the ground truth. This process was extremely tedious and was much of the second half of 2019.  

Image Preprocessing and Augmentation 

All the images in the training, validation, and testing dataset are preprocessed. When only 

a few training samples are available, data augmentation is needed to teach the variability of cell 

properties. 
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Deep Learning Architecture for Cell Segmentation 

 

Figure 2: U-Net Architecture 

 

There has been a lot of growth made in the deep learning field over the past years, 

especially in the field of segmentation. TensorFlow is an open-source software library for high-

performance numerical computation. It has the ability to be paired with Python and create high-

level computations.  Its flexible architecture allows easy deployment of calculations across a 

variety of platforms. It also comes with strong support for both machine learning and deep 

learning. Keras is another high-level neural networks API, written in Python and capable of 

running on top of TensorFlow. Keras libraries were used for the deep learning application as is 

able to run much faster experimentations that most. It also allows easy prototyping, supports 

convolutional networks and runs seamlessly on both central processing units (CPU) and graphic 
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processing units (GPU). Deep learning networks generally require large amounts of processing 

power for training. The emergence of GPUs has made it possible for researchers to utilize powerful 

parallel technologies for training neural networks far more quickly, making it possible to learn on 

large datasets.  

The U-Net architecture shown in Figure 2 was implemented for our deep learning-based 

image segmentation [4]. The architecture consists of three different sections: the contraction, the 

bottleneck, and the expansion section. The contraction section is made of several blocks. Each 

block takes an input and applies two 3×3 convolution layers, followed by a rectified linear unit 

(ReLU) and a 2×2 max pooling. The number of feature maps doubles after each block so that 

architecture can learn the complex structures effectively. The bottleneck layer at the bottom 

mediates between the contraction layer and the expansion layer. It uses two 3×3 convolutional 

layers followed by ReLU and a 2×2 up convolution layer.  

The reason deep-learning has been of such big interest as of late is because of  its expansion 

section. Similar to the contraction layer, it also consists of multiple blocks. Each block passes the 

input to two 3×3 convolutional layers followed by ReLU and a 2×2 up sampling layer[5].. The 

input also gets appended by feature maps of the corresponding contraction layer every time. This 

action would ensure that the features that are learned while contracting the image will be used to 

reconstruct it. The number of expansion blocks is as same as the number of contraction blocks. 

After expansion, the resultant mapping passes through another 1×1 convolutional layer to map 

feature vectors with the desired number of classes [6]. 

The architecture uses a rather novel loss weighting scheme for each pixel such that there is 

a higher weight at the border of segmented objects. This loss weighting scheme helps the model 

to segment cells in a discontinuous fashion such that individual cells may be easily identified 



 13 

within the binary segmentation map. Firstly, a pixel-wise softmax is applied to the resultant image 

which is followed by a cross-entropy loss function [7]. The idea is that even in segmentation every 

pixel has to lie in one of the classes. Hence, this method converts the segmentation problem into a 

multiclass classification one and it performs very well compared to the traditional loss functions. 

Performance Validation 

After each test, the results were scored using a similarity coefficient known as Sorensen-

Dice (DICE). It measures the agreement between the algorithm’s output (A) and the interpretation 

of experts (B). The DICE score outputs a value between 0 and 1. A DICE score of 0 correlates to 

no overlap in the scores while a score of 1 represents complete overlap and in complete agreement. 

𝐷𝐼𝐶𝐸 =
2 × |𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
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CHAPTER III 

RESULTS 

 

 

  Table 1 below shows the performance of the developed image analysis method for MSC 

segmentation. DICE scores are reported by each algorithm. The DICE score in the table gives the 

mean and standard deviation of the DICE score of all the images in the training, validation, and 

the testing dataset. The 95% confidence interval of the mean DICE score is achieved by allowing 

the deep learning algorithm 5 times over. 

Table 1: Performance of the proposed segmentation algorithm 

 Number of Images DICE Score 95% Confidence Interval 

Training 

(Culture 1 and 2) 
1755 0.893 ± 0.024 (0.888, 0.898) 

Validation 

(Culture 1 and 2) 
325 0.851 ± 0.038 (0.850, 0.852) 

Independent Testing 

(Culture 3) 
15 0.819 ± 0.054 (0.812, 0.826) 
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Figure 3: Segmentation Map 

 Figure 3 shows the segmentation map of one of the images from the independent test 

dataset. Each color signifies a different type of result with the independent testing and the ground 

truth. If a pixel is green, this correlates to true positive, which means the algorithm correctly 

identified cells that were indeed present. If a pixel is red, a cell is present there but the algorithm 

fails to properly annotate it, otherwise known as a false negative. A blue pixel represents the 

opposite, a background pixel that is segmented from the algorithm but no cells are present, known 

as a false positive). The majority of the pixels, which are black, represent the algorithm claiming 

these pixels are not cells and it is background, known as true negatives. 

 Every cell culture was analyzed using the method above. The DICE metric paired with the 

physical validation of the segmentation map show the true potential and results of the deep learning 

algorithm inspired by U-Net Architecture. Hence, it can be concluded that the deep learning-based 

image analysis method can segment MSCs non-invasively, rapidly, and with an accuracy of more 

than 80%. 
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CHAPTER IV 

CONCLUSION 

 

 

These results were obtained in March of 2020. However, with the emergence of COVID-

19, the work going forward was slowed considerably. This work will be continued in Sakina’s 

PhD proposal. As described above, the deep learning algorithm proved to be a useful tool and 

showed great promise to be a future direction to pursue in the cell image segmentation field. 

Currently, the developed method is able to accurately detect cell regions properly with an accuracy 

of more than 80%. Importantly, it does not damage the cells during the segmentation process. 

Image analysis is now going to replace a process that was once tedious and allow the process to 

be much more objective, rather than subjective to expert’s approval. In conclusion, the proposed 

deep learning algorithm was a success, as it was able to detect cells in a cluster within a 80% 

accuracy. The system is able to be fully automated, quantitative, and non-invasive.  

As stated above, the performance of this system is dependent on having high quality cell 

images, as the system will not work properly without this. As the system develops and becomes 

more complex, having the ability to also quantify images without the best clarity would be a robust 

improvement. The next step in this project is to work on the segmentation output to identify 

individual cells within a clump of cells. Once a cell is detected, the algorithm will be able to 

accurately distinguish between morphological features of different cells. Once an algorithm is able 

to detect these physical features, it can be used for a different algorithm to classify the cells based 

on viability. This will allow researchers to not only be able to accurately count the number of cells 

on any given culture, but it will also allow them to distinguish between which cells are usable and 

which are not able to be injected for clinical use.   
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