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ABSTRACT

Software Implementation of Quantum Error-Correction

Ahmed Al-Shemmery1, Muhammad Ghasef Paracha2, and Gibin George3

Electrical and Computer Engineering Department1,2,3

Texas A&M University at Qatar

Research Faculty Advisor: Dr. Joseph J. Boutros
Electrical and Computer Engineering Department

Texas A&M University at Qatar

The transmission of information is prone to errors that alter the information to an extent

depending on the channel. To reduce errors, error-correcting protocols have been developed to

increase the reliability of the communication and preserve the information. In quantum commu-

nication, quantum bits (qubits) are used to transmit information, and due to the nature of qubits,

they offer tremendous advantages over their classical counterparts, the bits. However, their nature

also makes them extremely fragile and susceptible to three types of errors: bit-flip, phase-flip, and

bit and phase flip. The field of quantum error-correction (QEC) is concerned with the develop-

ment of protocols to protect qubits and establish reliable communication in quantum channels. An

important class of quantum error-correcting codes (QECCs) is the Calderbank-Shor-Steane (CSS)

family of codes that use classical error-correcting codes to construct quantum codes. This project

is concerned with the evaluation of the performance of CSS codes via conducting Monte Carlo

simulations and calculating the probability of error per word for the code in relations to the proba-

bility of error in a quantum channel using a Python script. Simulations were conducted to evaluate

the performance of the [[7, 1]] and the [[31, 11]] CSS codes. It was found that each code performs

better than the other in a given region of values of channel error probability and perform equally at

channel error probability about 5× 10−3.
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NOMENCLATURE

BCH Code Bose–Chaudhuri–Hocquenghem Code

LDPC Code Low-Density Parity-Check Code

Qubit Quantum Bit

QEC Quantum Error Correction

QECC Quantum Error Correcting Codes

CNOT Controlled-Not

CLU Control Logic Unit

CSS Code Calerbank-Steane-Shor Code
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1. INTRODUCTION

In all communication systems, information is transmitted through a medium (channel) over

a certain distance. The channel alters the information transmitted, adding errors whose severity de-

pends on the channel itself. To reduce the probability of error, many error-correcting schemes have

been developed to increase the reliability of communication between the transmitter and the re-

ceiver. In digital communications, classical error-correcting codes are used to encode information

stored in bits to a larger number of bits to add redundancy and permit correction.

In quantum communications, quantum bits (qubits) are used to transfer information over

quantum channels. Qubits are probabilistic, delicate, and susceptible to three different types of

errors, complicating the process of protecting quantum information. The field of quantum error-

correction (QEC) — emerged in the mid 90s — is concerned with the construction of error-

correcting schemes to establish reliable communication through quantum channels.

This project is concerned with conducting Monte Carlo simulations of a family of quantum

error-correcting codes (QECC), the Calderbank-Shor-Steane (CSS) codes via Python programming

to evaluate the performance of the codes for different channel error probability. This chapter

explains the theory of classical error-correction in Section 1.1 and the theory of QEC in Section

1.2.

1.1 Classical Error Correction

A linear classical error-correcting code C of length n is defined as a subspace of dimension

k of the vector space Fn
2 containing all binary row vectors (the words) of length n, where F2 =

{0, 1} is the smallest possible mathematical field [1]. Hence, C is a set of specified words (the

codewords) such that C is an Abelian additive group that always contains the all-zero array. A

code C of length n with dim(C) = k is denoted as [n, k]2, where the 2 indicates that it is a

binary code, it is dropped since this paper is focused solely on binary codes. k is the number

of information bits — the bits containing the information to be transmitted — and n − k is the
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number of parity bits used to add redundancy which allows error-correction and recovery of the

information bits. The cardinality of C [n, k], i.e. the number of codewords in the code, is 2k. The

coding rate of C, R, is defined as the ratio of the number of information bits to the total number of

transmitted bits:

R =
k

n
. (Eq. 1.1)

Therefore, the increase in the coding rate signifies the increase of the number of information bits

transmitted and the decrease of the correction capacity of the code and vice versa.

In linear classical error-correcting codes, the number of nonzero elements in a codeword

c ∈ C is named the Hamming weight w(c) of the codeword. The minimum Hamming weight,

equivalently the minimum Hamming distance dmin, of the code is:

dmin = wmin = min
∀c∈C,c ̸=0

w(c), (Eq. 1.2)

where dmin defines the error-correcting capabilities of C through the following inequality:

dmin ≥ 2t+ 1, (Eq. 1.3)

where the maximum integer value of t satisfying Eq. 1.3 is the maximum number of errors C is

capable of correcting. Figure 1.1 shows the error-correcting capabilities of codes of different dmin

values between c, c′ ∈ C. The red line indicates the midpoint between c and c′ that divides the line

connecting c to c′ into two decision regions, one for c and the other for c′. If c is transmitted, then

the correction of the erroneous word received depends on locating the closest codeword (finding in

which decision region the erroneous word lies) and acting accordingly.

In addition, for a [n, k] code, t is bound by:

t∑
i=0

(
n

i

)
≤ 2n−k, (Eq. 1.4)
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Figure 1.1: Illustration of minimum distance and error-correcting capabilities of codes.

named the Hamming Bound, a necessary but not sufficient condition for the error-correcting capa-

bilities of a code, i.e. any t that does not satisfy the bound is not correctable, but a t that does is

not necessarily correctable. Codes that achieve equality in the Hamming bound are named Perfect

codes.

A code C [n, k] can be represented by two matrices: The k × n generator matrix G and

the (n − k) × n parity-check matrix H . The generator matrix G is constructed using k linearly

independent codewords as its rows such that the vector space spanned by its rows is the code C

itself. G is used to generate all codewords of C as 1× n vectors:

c = b ·G, b ∈ Fk
2, (Eq. 1.5)

such that G maps (encodes) a word b in vector space Fk
2 to a codeword in C ⊂ Fn

2 . Usually, G is

written in systematic form as:

G =

[
Ik | P

]
, (Eq. 1.6)

where Ik is the k × k identity matrix and P is a k × (n− k) matrix.

The parity-check matrix H is derived from G as defined in Eq. 1.6 as:

H =

[
P T | In−k

]
, (Eq. 1.7)

such thatH can be used to verify that a word in Fn
2 is a codeword c ∈ C through the check equation

7



defined as:

cHT = 0, iff c ∈ C. (Eq. 1.8)

In addition. the parity-check equation H can be translated to a set of n − k equations, the

parity-check equations, that show the the constraints between the different bits of the codewords

in C. For c ∈ C, c = (α1, α2, ..., αn), the ith column of H represents the coefficients of the bit

αi in each parity-check equation. The parity-check matrix H can also be translated into a Tanner

graph, a special type of bipartite graphs, that provides a graphical representation of the code. In

the Tanner graph, each information bit is represented by a node, the bit node, and each parity bit is

represented by a different type of node, a check node (also called a subcode node), such that the bit

nodes are connected to the check nodes by edges according to the constraints among them defined

by H . The degree of the bit nodes db is defined as the maximum number of edges connected to a

single bit node. The degree of the check nodes dc is defined similarly.

Every code C has an orthogonal compliment, denoted C⊥, which is a set that contains all

words in Fn
2 that are orthogonal to C. C⊥ is in itself a code named the dual code of C. The

generator matrix of C⊥, G(C⊥), is the parity-check matrix of C, H(C), and vice versa, meaning

that for C [n, k], its dual code is C⊥ [n, n− k].

There are many types of linear classical codes such as repetition codes, Hamming codes,

Bose–Chaudhuri–Hocquenghem (BCH) codes, Reed-Solomon codes, and low-density parity-check

(LDPC) codes that differ in their construction, properties, and capabilities. However, the following

subsection will briefly explain selected codes.

1.1.1 Repetition Codes

Repetition codes are basic classical error-correcting codes that encode by copying the value

of a single bit into multiple bits — F2 7→ Fn
2 — and perform majority decision at the decoder to

perform error-correction [2]. The smallest repetition code capable of correcting an error is the 3-bit

repetition code: [3, 1, 3] code with t = 1, R = 1
3
, and the following G and H:

8



G =

[
1 1 1

]
and H =

 1 1 0

1 0 1

 . (Eq. 1.9)

Hence, using Eq. 1.5, the code’s encoding maps 0 7→ 000 and 1 7→ 111, meaning that the code-

words are {000, 111}.

Assuming that 000 was the codeword transmitted and the decoder receives 010, the decoder

will perform majority decision and since the majority of the bits are 0’s, the code will correct by

flipping 1 to 0, concluding that 000 was the codeword transmitted. However, if the decoder receives

101, the decoder will correct to 111 and, therefore, add to the error. Such a phenomena is caused

by the occurrence of an error beyond the capabilities of the code, which the code misidentifies and

maps to another codeword. Such a scenario, is not unique to repetition codes.

1.1.2 Hamming Codes

Hamming codes are a family of linear classical error-correcting codes created by R. W.

Hamming in 1950 [3]. Hamming codes are characterized by [n = 2m−1, k = 2m−1−m, dmin =

3], i.e. with t = 1 and R = 2m−1−m
2m−1

= 1− m
2m−1

[4].

An example of a Hamming code, for m = 3, is the [7, 4] code with

G =



1 0 0 0 1 1 0

0 1 0 0 1 0 1

0 0 1 0 0 1 1

0 0 0 1 1 1 1


and H =


1 1 0 1 1 0 0

1 0 1 1 0 1 0

0 1 1 1 0 0 1

 . (Eq. 1.10)

Hence, the code’s parity-check equations are:

α1 + α2 + α4 = α5

α1 + α3 + α4 = α6

α2 + α3 + α4 = α7

(Eq. 1.11)

and the Tanner graph of the code is shown in Figure 1.2, where the square blocks represent the bit

9



nodes and the circular blocks represent the check nodes. The degree of the bit nodes and of the

check nodes are both 3.

The [7, 4] Hamming code’s dual is the [7, 3] code. The [7, 4] has 24 = 16 codewords and

its dual has 23 = 8 codewords, the codewords are shown in Table 1.1 and Table 1.2 respectively.

Figure 1.2: Tanner graph of the [7, 4] Hamming code.

Table 1.1: Codewords of the [7, 4] Hamming code.

0 0 0 0 0 0 0 1 0 0 0 0 1 1
0 0 0 1 1 1 1 1 0 0 1 1 0 0
0 0 1 0 1 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 1 1 0 1 0
0 1 0 0 1 0 1 1 1 0 0 1 1 0
0 1 0 1 0 1 0 1 1 0 1 0 0 1
0 1 1 0 0 1 1 1 1 1 0 0 0 0
0 1 1 1 1 0 0 1 1 1 1 1 1 1

Table 1.2: Codewords of the [7, 3] code.

0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 1 1 0 0 1 1 0 1 1 1 1 0 0
1 0 1 0 1 0 1 1 0 1 1 0 1 0
1 1 0 0 1 1 0 1 1 0 1 0 0 1

10



1.1.3 Low-Density Parity-Check Codes

LDPC codes are a class of linear classical codes that were first developed in 1963 by Robert

Gallager [5]. LDPC codes are characterized by the sparseness of their parity-check matrices, i.e.

with few ones and many zeros. Due to its applications to large number of bits, LDPC codes are

usually defined, illustrated, and often constructed using Tanner graphs. For a regular [n, k] LDPC,

its coding rate is bounded by:

R =
k

n
≥ (1− db

dc
) (Eq. 1.12)

For example, the Tanner graph of a [1000, 500] LDPC code with coding rate R = 1
2

is

shown in Figure 1.3, where the code is constructed by randomly creating 3000 edges (the con-

straints among the bits) connecting bit nodes to check nodes such that db = 3 and dc = 6. A

parity-check matrix of the [100, 50] LDPC code is shown in Figure 1.4 where a red dot represents a

1 and a white dot represents a 0. The sparseness of the matrix is obvious, however; the sparseness

is lost when the parity-check matrix is written in systematic form.

RANDOM

GRAPH

degree = 3
degree = 6

SPC (6, 5, 2)

1000 bit nodes 500 subcode nodes

Figure 1.3: Tanner graph of [1000, 500] LDPC code with db = 3 and dc = 6.

11



Figure 1.4: Illustration of the parity-check matrix of the [100, 50] LDPC code illustrating sparsity
and systematic form.

The decoding process of LDPC codes uses iterative belief propagation techniques. To

illustrate the decoding process, let us consider an ergodic binary erasure channel, which contains

only erasures (where the bit’s value is completely erased) and no errors. The channel’s input is

binary, and the output is ternary, shown in Figure 1.5.

0 0

?

11

erasure

1− ǫ

ǫ

ǫ

1− ǫ

Figure 1.5: Diagram illustrating the behavior of the Binary Erasure Channel.

A LDPC [n, k] code is required to fill erasures on the binary erasure channel. The iterative

non probabilistic decoding algorithm works as follows.

1. Count the number of erased bits, µ, connected to check node j.

2. If the number of erased bits is 1, µ = 1, then replace the erased bit with summation of the

other bits.

12



3. Increment j. If the current number of check nodes is higher than total number of check

nodes, j > L, then increment the number of iterations and set j = 1.

4. If the number of Iterations, Iter, has exceeded number of max iterations, Iter > MaxIter,

then loop back to step 1.

1.2 Quantum Error Correction

Analogous to the bit, the qubit is the basis of quantum information. Qubits are extremely

prone to error caused by the inability to completely isolate a qubit from its environment leading to

undesired entanglement with its surrounding — what is known as decoherence — and caused by

the processing and control of qubits, gate errors. Due to the fragility of qubits, any technology in

quantum computation or quantum information based on any available physical qubit technology

cannot be realized and will remain purely theoretical without proper error detection and correction

protocols, namely QEC [6].

A QECC Q [[n, k]] is a k-dimensional subset of the Hilbert space, H := C2n , where the

double brackets are used to differentiate between quantum and classical codes. Hence, a QECC is

the set of all states of the system |ψ⟩ (the codewords) that satisfy the construction of the code, i.e.

Q = {|ψ⟩}. The coding rate of the code remains as defined in Eq. 1.1. A QECC’s error-correcting

capabilities are bound by the quantum Hamming bound [7] — analogous to the Hamming bound

defined in Eq. 1.4 — defined as:

t∑
i=0

3i
(
n

i

)
≤ 2n−k, (Eq. 1.13)

where n is the number of qubits, k is the number of information qubits, and t is weight of the

errors. The additional 3i expression is due to the three types of errors qubits are susceptible to.

The quantum Hamming bound is a necessary but not sufficient condition, i.e. any weight t not

satisfying the bound is beyond the capabilities of the code, but a weight t that satisfies it is not

necessarily within its capabilities.

13



1.2.1 Qubits as Abstract Mathematical Objects

A classical bit’s value is a deterministic value in F2 — 0 or 1 — that can be determined

through examination. Qubits also have a state, the basis states:

|0⟩ =
[
1 0

]T
and |1⟩ =

[
0 1

]T
, |0⟩ , |1⟩ ∈ C2, (Eq. 1.14)

written in the Dirac notation. A qubit’s state is represented as a linear combination of its basis

states as:

|ψ⟩ = α0 |0⟩+ α1 |1⟩ , (Eq. 1.15)

where α0 and α1 are complex numbers called the amplitudes of the state. Therefore, the state of a

qubit is represented as a vector in H := C2, where the basis states |0⟩ and |1⟩ are the orthonormal

bases spanning H [8].

A qubit exists in a continuum of states between the basis states, and when an examination is

conducted to determine the value of the state of a qubit, the examination yields |0⟩ with probability

|α0|2 or yields |1⟩ with probability |α1|2, where |α1|2 + |α1|2 = 1, meaning that |ψ⟩ in Eq. 1.15 is

a unit vector [7].

The probabilistic behavior of qubits complicates the process of understanding and manipu-

lating their behavior. Yet, it is not impossible. There exist methods with which their states can be

influenced to yield a desirable output.

Generally, multi-qubit systems are extremely complex. The state of an n-qubit system is

a vector in C2n Hilbert space spanned by 2n basis vectors. This shows that the complexity of the

system increases exponentially as the number of qubits in the system increases. To put this into

perspective, a 100-qubit system has 2100, approximately 1030, basis states and 2100 complex vari-

ables, the amplitudes. Therefore, any Monte Carlo simulation of the system will have exponential

complexity and large execution time. For instance, the general state of a system of 2 qubits is

represented by the vector

14



|ψ⟩ = α00 |00⟩+ α01 |01⟩+ α10 |10⟩+ α11 |11⟩ . (Eq. 1.16)

The basis states shown in Eq. 1.16 are analogous to the 4 possible states of a classical

two-bit system. The basis states in n-qubit systems are obtained through the Kronecker product

"⊗" on the single qubit basis states in Eq. 1.14, for example, the state |01⟩ can be written as:

|01⟩ = |0⟩ ⊗ |1⟩ =
[
1 0

]T
⊗
[
0 1

]T
=

[
0 1 0 0

]T
. (Eq. 1.17)

1.2.2 Errors and Operations on Qubits

Qubits are susceptible to bit-flip errors, phase-flip error, or combination of both represented

by the 2× 2 Pauli matrices I , X , Z, and Y defined as:

I =

1 0

0 1

 , X =

0 1

1 0

 , Z =

1 0

0 −1

 , and Y =

0 −i

i 0

 = iXZ, (Eq. 1.18)

where I is the 2 × 2 identity matrix representing the absence of error, X is the bit-flip error, Z is

the phase-flip error, and Y is the bit-flip and phase-flip error.

All qubit errors are multiplicative, i.e. are represented by multiplying the matrices in Eq.

1.18 by the state of a qubit. In addition, all Pauli matrices:

1. are involutory matrices — they are their own inverses — for example, X2 = I .

2. either commute or anti-commute amongst themselves, where they commute only with them-

selves and the identity ([X, X] = 0) and anti-commute with the rest ({X, Y } = 0).

The first property allows the correction of an error by multiplying the erroneous state by the same

error. The second property plays a crucial role in the construction and formalization of QECCs [9].

In general, an error operator E can be constructed to represent any error possible to occur

on a qubit as a linear combination of I , X , Y , and Z as:
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E = αII + αXX + αY Y + αZZ = αII + αXX + αXZXZ + αZZ. (Eq. 1.19)

Therefore, to detect and correct errors, one needs only to detect and correct X and Z errors! The 

effect of the Pauli matrices, errors, on the basis states |0⟩ and |1⟩ is illustrated in Table 1.3.

Table 1.3: Effect of errors on individual basis states of a single qubit.

Error Effect on |0⟩ Effect on |1⟩
I |0⟩ |1⟩
X |1⟩ |0⟩
Z |0⟩ − |1⟩
Y i |1⟩ −i |0⟩

In n-qubit systems, error operators are represented by the Kronecker product of I , X , Y ,

and Z n-times. Hence, all operators representing errors on the system are elements of the Pauli

group Pn, a multiplicative group defined as:

Pn := {γ · {I,X, Y, Z}⊗n : γ ∈ {±1,±i}}. (Eq. 1.20)

where elements in Pn are 2n×2n square matrices. For instance, in a 5-qubit system, one arbitrarily

chosen error operator is E = X ⊗ I ⊗ Z ⊗ X ⊗ Y ∈ P5 (in the future the "⊗" is dropped for

convenience). If E is applied on the state vector of the system, X is applied on the first qubit, I

on the second, Z on the third, and so on. Another notation for E which will be used throughout

the paper, is E = X10011Z00101 where the subscripts illustrate which qubits the errors X and Z act

on, where 1 in position m means that the error acts on the m-th qubit and 0 means it does not. For

example, X10011 = X I I X X . Note that a Y error, as defined in Eq. 1.18, is represented by XZ

and hence, is represented by having 1 in both subscripts in the corresponding position. Following

the same notation, an error E = XuZv can be represented as a vector e = [ v | u ] [7].
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Regardless of the number of qubits in the system, Pauli operators either commute or anti-

commute among themselves regardless of dimensions. Two Pauli operators commute (respt. anti-

commute) if and only if there is an even (respt. odd) number of Pauli matrices in corresponding

positions that anti-commute. For example, let us consider two Pauli operators O1 = X Z I Y

and O2 = Z X I Y . In positions 1 and 2, the matrices anti-commute. In positions 3 and 4, the

matrices commute. Hence, since the number of anti-commuting matrices is even, [O1, O2] = 0.

Now, defining O3 = X I X Z and comparing it with O1 and O2, we find that {O3, O1} = 0 and

[O3, O2] = 0.

The weight of a Pauli operator is the number of non-identity elements in the operator. For

O1 = X Z I Y , the weight w(O1) = 3. The weight of a Pauli operator representing an error is an

important parameter when considering the code’s ability to correct an error.

There are many operations performed on qubits — in the form of gates — that are used to

manipulate, protect, and correct qubits to reliably transmit information and perform computations,

including theX , Y , and Z operations, the Pauli gates. However, for the purposes of this paper, only

the Hadamard gate, H, and the controlled-not (CNOT) — controlled-X or CNOT — are discussed.

The Hadamard gate introduces superposition in the a qubit’s state if the qubit’s initial state

was deterministic, i.e. a pure basis state |0⟩ or |1⟩. The Hadamard gate is represented by the matrix

H =
1√
2

1 1

1 −1

 . (Eq. 1.21)

Therefore, H |0⟩ = |0⟩+|1⟩
2

= |+⟩ and H |1⟩ = |0⟩−|1⟩
2

= |−⟩ where |+⟩ and |−⟩ can be used as

new computational bases in lieu of |0⟩ and |1⟩ if it provided easement in correcting errors. H is a

unitary and Hermitian matrix, i.e. H = H† and HH† = H†H = H2 = I . Another useful property

of the Hadamard operation is HZH = X — or equivalently HXH = Z — which allows us to

manipulate and change the behavior of errors occurring on qubits [8].

The CNOT gate introduces entanglement between qubits and, hence, the duplication of the

state of a qubit into another without violating the No-Cloning theorem [10]. The CNOT gate is a
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2-qubit gate — 2 inputs and 2 outputs — where it uses the control qubit’s state |ψ1⟩ to determine

whether to flip the state of the targeted qubit |ψ2⟩ [9]. The diagram of the CNOT gate is seen in

Figure 1.6. For example, if |ψ1⟩ = |0⟩ then |ψ2⟩ remains unchanged. However, if |ψ2⟩ = |1⟩, then

|ψ2⟩ is negated (|0⟩ ⇐⇒ |1⟩), i.e. the output of the targeted qubit is analogous to the classical XOR

"⊕" operation on the targeted qubit.

Figure 1.6: Circuit diagram of the CNOT gate.

1.2.3 General Challenges of Quantum Error Correction

In general, an error-correcting code cannot correct every possible error on the system. In-

stead, it offers the ability to correct a certain set of errors that are more likely to occur in the

channel considered [11]. Hence, the inherent capability restrictions of a QECC must be overcome

and effectiveness must be increased through the design and construction of the code.

Aside from that, there are three main challenges in the construction of QECCs [6]. First,

wavefunction collapse: any measurements or observation conducted to determine the state of a

qubit alters the qubit’s state. Therefore, quantum codes must carefully conduct measurements on

qubits as to not disturb the encoded states or use ancilla qubits to conduct measurements. Second,

qubits are susceptible to bit-flip (X) and phase-flip (Z) errors, both of whom must be detectable

and correctable by the code. Third and final, the No-Cloning theorem: the theorem forbids the

creation of an operator that clones the state of qubit onto another qubit, thus forbidding repetition

and greatly complicating the manipulation of qubits and the construction of quantum codes [10].

1.2.4 3-Qubit Bit-Flip and Phase-Flip Codes

The simplest QECCs are the 3-qubit codes capable of correcting a single bit-flip error (3-

qubit bit-flip code) or a single phase-flip error (3-qubit phase-flip code) [7]. The 3-qubit codes are

the quantum equivalent of the 3-bit repetition code discussed in section 1.1.1.
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The 3-qubit bit-flip code, whose quantum circuit is shown in Figure 1.7, assumes a bit-flip

quantum channel on each individual qubit independently, where the probability of an error is pX

and the probability of no error is pI = 1−pX . The diagram showing the behaviour of the quantum

channel is shown in Figure 1.8.

Figure 1.7: Quantum circuit of the 3-qubit bit-flip quantum code.

Figure 1.8: Diagram of the action of the bit-flip quantum channel.

The code encodes a single qubit to three qubits by introducing entanglement among the in-

formation qubit and the two parity qubits via two CNOT gates such that the state of the information

qubit is repeated. Assuming that the information qubit’s state is α |0⟩+ β |1⟩, the encoding works

as such:

α |0⟩+ β |1⟩ 7−→ α |000⟩+ β |111⟩ (Eq. 1.22)
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After encoding and passing through the channel, the qubits’ states are copied into two

ancilla qubits to conduct measurement to determine the error. This stage is named syndrome mea-

surement. The results of syndrome measurement are passed onto a control logic unit (CLU) that

determines the necessary action to correct the error present according to the truth table shown in

Table 1.4. Regardless of whether the action taken corrects or adds to the error, the resultant state

of the system will always be in the set of codewords of the code defined earlier.

Table 1.4: Truth table of CLU for the 3-qubit bit-flip code.

ancilla0 ancilla1 Identified Error
0 0 X000

0 1 X001

1 0 X100

1 1 X010

After the appropriate action is taken, the qubits are passed through two CNOT gates in the

reverse order of those in the encoding stage to disentangle the states of the qubits.

An example of the behavior of the code is if α |0⟩+β |1⟩ is transmitted and the channel adds

the error X001 such that the received state of the system is α |001⟩ + β |110⟩. After the syndrome

measurement, 01, the CLU will correctly identify the error as X001 and correct it. Hence, the state

of the system after correction is the originally transmitted state. However, if the channel adds the

error X101, the state received after the channel is α |101⟩ + β |010⟩. The syndrome measurement

will yield 11, mistakenly identifying the error as X010 and "correcting" to α |111⟩+ β |000⟩.

On the other hand, the 3-qubit phase-flip code assumes that the quantum channel is the

phase-flip channel that adds phase-flip errors, Z, to each individual qubit independently such that

the probability of error on a qubit is pZ and the probability of no error is pI = 1−pZ . The diagram

illustrating the behavior of the channel is shown in Figure 1.9.

The 3-qubit phase-flip code works identically as the bit-flip code except for its utilization of

the HZH = X relationship to change the behavior of the channel from adding Z errors to adding
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X errors [7]. This is done physically by adding a Hadamard gate before the channel and another 

after the channel. The diagram of the quantum circuit of the code is shown in Figure 1.10.

Figure 1.9: Diagram of the action of the phase-flip quantum channel.

Figure 1.10: Quantum circuit of the 3-qubit bit-flip quantum code.

Peter Shor developed the first QECC, the 9-qubit code, that uses a total of 9-qubits to correct

errors of weight 1. The code is a concatenation of both 3-qubit codes [12]. To read more about the

Shor’s 9-qubit code refer to [7]-[9].
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1.2.5 Stabilizer Codes

A [[n, k]] quantum code Q constructed using the Stabilizer formalism [13] [14] is defined

as:

Q = {|ψ⟩ : Sj |ψ⟩ = |ψ⟩ ,∀Sj ∈ S}, S = {Sj} ⊂ Pn, (Eq. 1.23)

where −I⊗n ̸∈ S, |S| = n − k, and S is an Abelian multiplicative subgroup of Pn referred to as

the Stabilizer Group. All members of S, the stabilizers, are Pauli operators that act as an identity

when multiplied by the codewords |ψ⟩ ∈ Q, i.e. |ψ⟩ are +1 eigenkets of the stabilizers. Thus,

defining S defines all |ψ⟩ and, consequently, Q.

Stabilizer codes detect errors through syndrome measurement. The syndrome s is a binary

vector (s ∈ Fn−k
2 ) obtained by multiplying the stabilizers by the erroneous codeword and checking

whether the each stabilizer commutes or anti-commutes with the error. If the codeword |ψ⟩ is

transmitted and the channel adds the error E such that the received erroneous codeword is |ϕ⟩ =

E |ψ⟩, then the syndrome will be:

s =

[
λ1 λ2 . . . λn−k

]
, (Eq. 1.24)

where

λi =


0, [Si, E] = 0

1, {Si, E} = 0

, for Si ∈ S, i = 1, . . . , n− k. (Eq. 1.25)

or, in another form

λi =


0, [Si, |ϕ⟩] = 0

1, {Si, |ϕ⟩} = 0

, for Si ∈ S, i = 1, . . . , n− k. (Eq. 1.26)

Each correctable error — of weight less than or equal to the maximum weight the code is

capable of correcting — has a unique corresponding syndrome such that the code is capable of

identifying the error and correcting it. However, syndrome measurement will yield a syndrome
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associated with a correctable error if the actual error that occurred is beyond the capabilities of the

code.

Writing the stabilizer as Si = Xui
Zvi , allows us to define the quantum-check matrix A as:

A =


u1

∣∣ v1
...

∣∣ ...

un−k

∣∣ vn−k

 , (Eq. 1.27)

such that the syndrome of an error represented as e = XaZb =

[
b

∣∣ a

]
can be calculated by:

s = eAT . (Eq. 1.28)

An example of stabilizer codes is the [[5, 1]] code developed by Peter Shor and David

DiVincenzo [14][15], which is the smallest QECC capable of correcting any error on a single

qubit. The stabilizer group of the code with cardinality 5− 1 = 4 is:

S = {X Z Z X I, I X Z Z X, X I X Z Z, Z X I X Z },

therefore, its quantum-check matrix is:

A =



1 0 0 1 0
∣∣ 0 1 1 0 0

0 1 0 0 1
∣∣ 0 0 1 1 0

1 0 1 0 0
∣∣ 0 0 0 1 1

0 1 0 1 0
∣∣ 1 0 0 0 1


.

To illustrate syndrome measurement using Eq. 1.28, let E = X I I I I , then the syndrome

is:
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s =

[
0 0 0 0 0

∣∣ 1 0 0 0 0

]


1 0 0 1 0
∣∣ 0 1 1 0 0

0 1 0 0 1
∣∣ 0 0 1 1 0

1 0 1 0 0
∣∣ 0 0 0 1 1

0 1 0 1 0
∣∣ 1 0 0 0 1



T

=

[
0 0 0 1

]
,

however, the error E = X Z I X X returns an identical syndrome.

1.2.6 Calderbank-Shor-Steane Codes

Calderbank-Shor-Steane (CSS) codes are a special case, a subclass, of stabilizer codes that

use classical linear codes to construct a QECC, acting as a link between classical and quantum

coding [16][17][18]. A CSS code QCSS is constructed using two classical linear codes C1 with

[n, k1] and parity-check matrix H1 and C2 with [n, k2] and generator matrix H2. C1 and C2 must

satisfy the conditions [7]: C2 ⊂ C1, both C1 and C⊥
2 are capable of correcting errors of weight t

or less, and

H1G
T
2 = 0, (Eq. 1.29)

such that QCSS is capable of correcting errors of weight t and less.

The quantum-check matrix of the code is:

A =

H1

∣∣ 0

0
∣∣ G2

 , (Eq. 1.30)

where the 0 are the zero matrices. The dimensions ofA are (n−k1+k2)×2nwhere the total number

of the qubits in the code is n, the number of information qubits is k2 − k1, and R = (k2 − k1)/n

[8]. Hence, the CSS code is a QCSS [[n, k2 − k1]] code capable of correcting weight t errors with

dim(QCSS) = dim(C2/C1) = dim(C2) − dim(C1). The code QCSS has 2k2−k1 codewords |ψi⟩
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that are linear combinations of 2k2 states:

|ψi⟩ = |x+ C2⟩ =
1√
|C2|

∑
y∈C2

|x+ y⟩ for x ∈ C1 and i = 1, ..., 2k2−k1 . (Eq. 1.31)

where |C2| = 2k2 and x is a coset leader such that each x + C2 is a distinct coset in the quotient

group C1/C2.

If H1 and G2 are represented as:

H1 =


h1
...

hn−k1

 and G2 =


g1
...

gk2

 ,

where hi, gj ∈ Fn
2 are 1× n binary vectors, then through A, the generators of the CSS code are:

Si =


Xhi

, 1 ≤ i ≤ n− k1

Zgi−n−k1
, n− k1 < i ≤ n− k1 + k2,

, Si ∈ S, (Eq. 1.32)

hence, all the stabilizer are composed of X only or Z only, which is one of the main characteristics

of the CSS construction. Therefore, C1 is used to detectX errors and C2 is used to detects Z errors

[9].

An example of a CSS code is the [[7, 1]] Steane Code [19] constructed using the [7, 4]

Hamming code (C1) and its dual the [7, 3] code (C2 = C⊥
1 ) withH1 = G2 = H andH2 = G1 = G

as defined in Eq. 1.10 in Section 1.1.2. The [[7, 1]] code has 1 information qubit, is capable

of correcting any error on any single qubit (t = 1), has coding rate 1/7, and has 2 codewords

where each codeword is a superposition of 23 = 8 states. The quantum-check matrix of the code,
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according to Eq. 1.30, is:

A =



1 1 0 1 1 0 0 | 0 0 0 0 0 0 0

1 0 1 1 0 1 0 | 0 0 0 0 0 0 0

0 1 1 1 0 0 1 | 0 0 0 0 0 0 0

0 0 0 0 0 0 0 | 1 1 0 1 1 0 0

0 0 0 0 0 0 0 | 1 0 1 1 0 1 0

0 0 0 0 0 0 0 | 0 1 1 1 0 0 1


,

such that

S = {X1101100, X1011010, X0111001, Z1101100, Z1011010, Z0111001},

is the stabilizer group of the code. The Steane code, per Eq. 1.31, has the codewords:

|ψ1⟩ = |0000000 + C2⟩ = |0000000⟩+ |0110011⟩+ |1010101⟩+ |1100110⟩

+ |0111100⟩+ |1011010⟩+ |1101001⟩

|ψ2⟩ = |1111111 + C2⟩ = |1111111⟩+ |1001100⟩+ |0101010⟩+ |0011001⟩

+ |1000011⟩+ |0100101⟩+ |0010110⟩

where the codewords of C1 and C2 are as obtained in Table 1.1 and Table 1.2 respectively.
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2. METHODOLOGY

The objective of this research project is to evaluate the performance of CSS codes by con-

ducting Monte Carlo simulations via Python programming and obtaining the probability of error

per word Pew of the code for different channel error probability p. The script written is divided

into multiple modules: code construction, CLU initialization, codeword transmission, quantum

channel, syndrome measurement, CLU, and error-correction. In addition, the script operates in

two modes of operation: the demo mode and the general mode. The block diagram of the script is

shown in Figure 2.1.

For the script, the main user inputs are the parity-check matrix H1 of the first classical

code C1 [n, k1] and the generator matrix G2 of the second classical code C2 [n, k2], both used to

construct the CSS code [[n, k1 − k2]] according to the theory explained in Section 1.2.6. Given

that H1 and G2 satisfy the conditions of CSS code construction, the code is constructed, the CLU

is initialized, a codeword is chosen for transmission, the quantum channel adds an error to the

transmitted codeword, syndrome measurement is conducted, syndrome is passed to the CLU which

returns the appropriate action, and, finally, the action is carried out to correct the error if possible.

Figure 2.1: Block diagram of the python script.
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The script — as explained in the following sections — was used to simulate and evaluate

the performance of the [[7, 1]] Steane Code and the [[31, 11] CSS code constructed using the

[31, 21] BCH classical code and its dual, the [31, 10] code. The code performance evaluation is

done via obtaining Pew for each value of p, where p is varied from 0 (good channel) to 1 (bad

channel).

2.1 Code Construction

The Code Construction module is responsible for obtaining the quantum-check matrix A

as defined in Eq. 1.30, the stabilizers of the code as defined in Eq. 1.32, and the codewords of the

quantum code using Eq. 1.31. The module depends on the user inputted H1 and G2. However, the

construction is conducted if and only if H1 and G2 satisfy the following requirements:

1. The codes C1 and C2 are of length n.

2. The codes C1 and C2 have a different number of information bits (k1 ̸= k2).

3. The parity-check matrix H1 of C1 and the generator matrix G2 of C2 satisfy Eq. 1.29:

H1G
T
2 = 0.

2.2 CLU Initialization

The CLU module is responsible for identifying the error the channel introduced by compar-

ing the measured syndrome with the list of syndromes of correctable errors. The CLU Initialization

module is responsible for obtaining the complete list of correctable errors and their corresponding

syndromes. The module uses the quantum Hamming bound defined in Eq. 1.13 to determine the

maximum possible weight the code is capable of correcting, and then calculates syndromes and

obtains the list of correctable errors via comparing syndromes and keeping the errors of lowest

weight that have unique syndromes. The input to the module is the quantum-check matrix, and the

outputs are the list of the correctable errors and their corresponding syndromes.
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2.3 Codeword Transmission

The Codeword Transmission module selects one of the quantum code’s codewords to trans-

mit either at random or per user input depending on the mode of operation. The module’s input is

the list of the CSS code’s codewords, and outputs the transmitted codeword.

2.4 Quantum Channel

The Quantum Channel module simulates a quantum channel that acts independently on

each qubit. In addition, X , Y , and Z have an equal probability distribution (p/3) such that the

probability of error on a single qubit is p. The diagram representing the behavior of the quantum

channel is shown in Figure 2.2. However, in demo mode, the user has the option of inputting the

error added by the channel. The inputs to the module are the transmitted codeword and p, and the

outputs are the erroneous transmitted codeword and the channel error that is used only for display

in the demo mode.

Figure 2.2: Diagram illustrating the action of the quantum channel on a single qubit.

2.5 Syndrome Measurement

The Syndrome Measurement module calculates the syndrome of the erroneous codeword

using Eq. 1.24 and Eq. 1.26. The inputs of the module are the erroneous codeword and the

stabilizers, and the output is the syndrome measured.

2.6 Control Logic Unit

The CLU module compares the measured syndrome to the list of the syndromes of the

correctable errors of the CSS code to identify the error added by the quantum channel. The mod-
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ule’s inputs are the measured syndrome, the stabilizers, the list of correctable errors, and their

corresponding syndromes. The module outputs the control signal to activate the error-correction

module, the action message containing what the module found, and the action error that the error-

correction module should apply. There are two possible findings of the module:

1. Measured syndrome is in the syndrome list: The error-correction module is activated, the

action error is equal to the identified error, and the message indicates the error identified.

2. Measured syndrome is not in the syndrome list: The error-correction module is not activated,

the action error is equal to the identity, and the message indicates that an error was detected

but it is beyond the capabilities of the code.

The error-correction module operations depends solely on the possible findings of this module.

2.7 Error-Correction

The Error-Correction module’s operation depends on the findings of the CLU. If activated,

the module applies the error identified on the erroneous codeword to correct and retrieve the origi-

nally transmitted codeword.

2.8 Modes of Operation

As mentioned earlier, the script has two modes of operations: the demo mode and the

general mode. The demo mode allows the user to control most modules of the script, while in

general mode, the modules are fully automated. the full automation of the modules to acquire plots

of probability of error (code failure) of the code over a range of p. Thus, providing an evaluation

of the performance of the code with the given quantum channel behavior.

2.8.1 Demo Mode

In the demo mode, after the user inputs H1 and G2 to construct the CSS code — which

prints the parameters of the code and the codewords and initialize the CLU — and after the user

selects the demo mode, the user manually selects the codeword to be transmitted or choose for it

to be selected at random. After that, the user manually inputs the error to be added by the quantum
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channel or select for the channel to apply a random error where the user must select the value of p.

Finally, the script measures and displays the syndrome, the identified error, and the action taken.

By allowing the user to select the parameters of the modules, the demo mode provides the

capability to experiment with the code and test its performance on a case-by-case basis that is more

interactive and educational.

2.8.2 General Mode

After the user inputs H1 and G2 and selects the general mode, the fully automated process

begins, where the codeword to be transmitted and the channel error are random. The script runs

through the modules transmitting different codewords iteratively for a constant number of iterations

for each p in the range between 0 and 1.

The general mode evaluates the performance of the code by obtaining the probability of

error per word Pew(p) for each value of probability of error in the quantum channel p. Theoreti-

cally, Pew(p) For any [[n, k]] quantum code capable of correcting weight t errors, operating with

the quantum channel assumed, the probability of error per word is given by:

Pew(p) = 1− P(w(error) ≤ t) = 1−
t∑

i=0

(
n

i

)
pi(1− p)n−i. (Eq. 2.1)

In the simulation, the script compares the correct codeword with the originally transmitted

and takes note of the number of times the code fails to correct the erroneous codeword to the

originally transmitted codeword. For each value of p, the script obtains Pew by finding the ratio of

code failure to total number of transmitted words. Finally, after the script is done with all values

of p.
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3. RESULTS

The general mode of the Python script explained in Chapter 2 was used conduct Monte

Carlo simulations to evaluate the performance of the [[7, 1]] Steane code and the [[31, 11]] CSS

code. Their performance were evaluated via obtaining the probability of error per word Pew for

different probabilities of quantum channel error p for the Monte Carlo simulations and theoretically

using Eq. 2.1. The following subsections present the plots of Pew for different values of p for the

two quantum codes.

3.1 [[7,1]] Steane Code

Figure 3.1 shows the plot of Pew for the code versus p in logarithmic scale for the Monte

Carlo simulation of the [[7, 1]] code and the theoretical values derived from Eq. 2.1 as:

Pew(p) = 1−
1∑

i=0

(
7

i

)
pi(1− p)7−i = 1− (1− p)7 − 7p(1− p)6, (Eq. 3.1)

which can be approximated as

Pew(p) = 21p2 + o(p2) ≈ 21p2. (Eq. 3.2)

3.2 [[31,11]] CSS Code

Figure 3.2 shows the plot of Pew for the code versus p in logarithmic scale for the Monte

Carlo simulation of the [[31, 11]] code and the theoretical values obtained derived from Eq. 2.1 as:

Pew(p) = 1−∑2
i=0

(
31
i

)
pi(1− p)31−i

= 1− (1− p)31 − 31p(1− p)30 − 465p2(1− p)29,
(Eq. 3.3)

which can be approximated as

Pew(p) = 4495p3 + o(p3) ≈ 4495p3. (Eq. 3.4)
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Figure 3.1: Plot of the probability of error per word Pew versus the quantum channel probability
of error p of the [[7, 1]] code for Monte Carlo simulation and theoretical values in logarithmic

scales.
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Figure 3.2: Plot of the probability of error per word Pew versus the quantum channel probability
of error p of the [[31, 11]] code for Monte Carlo simulation and theoretical values in logarithmic

scales.
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4. CONCLUSIONS

4.1 Evaluation of Performance

From the results displayed in Figure 3.1 and Figure 3.2 presented in Chapter 3, it is evident

that the Monte Carlo simulations were verified by the theoretical values of the [[7, 1]] and [[31, 11]]

codes obtained via Eq. 3.1 and Eq. 3.3 respectively.

In addition, the [[7, 1]] code performs better (has less probability of error per word Pew)

for higher values of channel error probability p than the [[31, 11]] code, and [[31, 11]] performs

better for lower values of p. This is a result of the large coefficient of p3 in Eq. 3.4 relative to

the coefficient of p2 in Eq. 3.2. This behaviour can also be observed in Figure 4.1 where the

performance of both codes are displayed simultaneously.
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Figure 4.1: Plot of the probability of error per word Pew versus quantum channel’s probability of
error p of the [[7, 1]] and [[31, 11]] codes in logarithmic scales.
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This region of p in which the [[7, 1]] code outperforms [[31, 11]] code can be derived

mathematically using Eq. 3.2 and Eq. 3.4 as:

21p2 < 4495p3,

21
4495

= 4.671× 10−3 < p.

The [[31, 11]] code is better when 4.671× 10−3 > p. The point of intersection at p ≈ 5× 10−3 in

Figure 4.1 illustrates and verifies this comparison between the performance of the two codes.

4.2 Python Script

As evident by the results obtained, the Python script proved to be an accurate and reliable

tool in simulating and evaluating the performance of CSS codes. However, due to the exponential

complexity of conducting Monte Carlo simulations of QECCs, the Python script’s execution time

is considerably long, imposing limits on the possible simulations to be conducted. It is possible,

that translating the script to another programming language such as C may reduce the execution

time considerably and increase the capabilities of the script.
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