
IMAGE-BASED RELIGHTING USING IMPLICIT NEURAL

REPRESENTATION

An Undergraduate Research Scholars Thesis

by

SHUYU WANG

Submitted to the LAUNCH: Undergraduate Research office at

Texas A&M University

in partial fulfillment of requirements for the designation as an

UNDERGRADUATE RESEARCH SCHOLAR

Approved by

Faculty Research Advisor: Dr. Nima Kalantari

May 2022

Major: Computer Science

Copyright © 2022. Shuyu Wang.

RESEARCH COMPLIANCE CERTIFICATION

Research activities involving the use of human subjects, vertebrate animals, and/or

biohazards must be reviewed and approved by the appropriate Texas A&M University regulatory

research committee (i.e., IRB, IACUC, IBC) before the activity can commence. This requirement

applies to activities conducted at Texas A&M and to activities conducted at non-Texas A&M

facilities or institutions. In both cases, students are responsible for working with the relevant

Texas A&M research compliance program to ensure and document that all Texas A&M

compliance obligations are met before the study begins.

I, Shuyu Wang, certify that all research compliance requirements related to this

Undergraduate Research Scholars thesis have been addressed with my Research Faculty Advisor

prior to the collection of any data used in this final thesis submission.

This project did not require approval from the Texas A&M University Research

Compliance & Biosafety office.

TABLE OF CONTENTS

Page

ABSTRACT .. 1

ACKNOWLEDGEMENTS .. 3

NOMENCLATURE ... 4

SECTIONS

1. INTRODUCTION .. 5

1.1 Research Problem ... 5
1.2 Related Work .. 6

1.3 Proposed Approach... 7

2. METHODS ... 9

2.1 Setting up the SIREN Network .. 12
2.2 Training of the SIREN Network ... 13
2.3 Testing the SIREN Network ... 17

3. IMPLEMENTATION ... 21

3.1 Converting Light Positions and Choosing Input Images .. 21
3.2 SIREN Network .. 24

4. RESULTS ... 33

5. CONCLUSION ... 39

REFERENCES ... 41

1

ABSTRACT

Image-based Relighting Using Implicit Neural Representation

Shuyu Wang

Department of Computer Science & Engineering

Texas A&M University

Research Faculty Advisor: Dr. Nima Kalantari

Department of Computer Science & Engineering

Texas A&M University

Rendering a scene under novel lighting has been a problem in all fields that require

computer graphics knowledge, and Image-based relighting is one of the best ways to reconstruct

the scene correctly.

Current research on Image-based relighting uses discrete convolutional neural networks,

which tend to be less fit-able to different spatial resolutions and take up massive memory spaces.

However, the implicit neural representation solves the problem by mapping the coordinates of

the image directly to the value of the coordinate with a continuous function modeled through the

neural network. In this way, despite the changing of the image resolution, the parameters taken in

by the neural network stay the same, so the complexity stays the same.

Also, the rectified linear activation unit (ReLU) based network used in current research

lacks the representation of information of second and higher derivatives. On the other hand, the

sinusoidal representation networks (SIREN) provide a new way to solve this problem by using

periodic activation functions like the sin curve. Hence, my research intends to leverage implicit

neural representation with periodic activation functions in image-based relighting.

2

To tackle the research question, we proposed to base our image-relighting network on the

SIREN network in the research by Sitzmann. Our method is to modify the SIREN network so

that it takes in not only coordinates but also light positions. Then we train it with a set of input

images depicting the same set of sparse objects in different lighting conditions and their

corresponding light positions, as in previous image-based relighting research. We test our

network by giving the network new lighting positions, and the result we aim for is to acquire a

good representation of optimal sparse samples under novel lighting with high-frequency details.

Eventually, we run the training and test with several different input sets and acquire their

results. We also compare and evaluate the results, in order to find the advantage or limitation of

the method.

3

ACKNOWLEDGEMENTS

Contributors

I would like to thank my faculty advisor, Dr. Nima Kalantari, and my graduate student

mentors, Avinash Paliwal and Libing Zeng, for their guidance and support throughout the course

of this research.

Thanks also go to my friends and colleagues and the department faculty and staff for

making my time at Texas A&M University a great experience.

Finally, thanks to my friends for their encouragement and to my parents for their patience

and love.

The models used for generating input image and light coordinates data in this research

were provided in Zexiang Xu’s research. The code used for training in this research is based on

Vincent Sitzmann’s code for fitting an image to SIREN. The code used for saving and loading

data is from Vortana Say.

All other work conducted for the thesis was completed by the student independently.

Funding Sources

This undergraduate research received no funding.

4

NOMENCLATURE

NeRF Neural Radiance Field

NeLF Neural Light-transport Field

SIREN Sinusoidal Representation Networks

ReLU Rectified Linear Unit

MLP Multilayer Perceptron

5

1. INTRODUCTION

1.1 Research Problem

In many computer graphics related fields, image-based relighting is an important

technique that could be pervasively used in solving the problem of rendering a scene under novel

lightings. Rendering means building models of a scene and generating images from it. The term

“relighting” then refers to re-rendering a scene under new lighting conditions. The scene often

contains multiple objects, so typically, to achieve the goal of relighting, the precise

reconstruction of all objects’ materials, textures, and their physical properties in the model are

required. However, in many situations, reconstructing all objects in a complicated scene from

scratch would be a massive workload for the engineer. As a result, image-based relighting is

developed as an easier and more effective approach to relighting the scene.

The basic process of image relighting is to set up and train a neural network with a series

of input images depicting the same objects under different lighting conditions. Then, the network

is used to model the objects under new lighting conditions. However, the previous image-based

relighting researches often use discrete neural representation, which has distinct limits comparing

to implicit neural representation.

Implicit neural representation is a new way of parameterizing signals as a continuous

function that maps the domain of the signals to the feature at each point on the domain,

according to Sitzmann [1]. The benefit of implicit neural representation is that, using a

differentiable, continuous function, the network model would be independent from the grid

resolutions. It could also model fine detail that is only limited by the capacity of the underlying

network architecture, which is more memory efficient than the traditional discrete grid-based

6

representations [2]. As a result, the research problem we are focusing on is to leverage implicit

neural representation in image-based relighting.

1.2 Related Work

One of the examples of image-based relighting is Xu et al.’s work [3], where five images

of an optimal sparse sample were passed into a deep convolutional neural network that’s

modeling the scene's light transport function. Many improvements on the technique of image-

based relighting were also achieved in recent years. For instance, in Bi et al.’s work on Neural

Reflectance Fields [4], the image-based relighting method was improved by solving the problem

of failing to remodel accurate hard shadows. The neural reflectance fields used reflectance model

and normal to calculate the hard shadows instead of passing in view or lighting information.

Also, in Mildenhall et al.'s work with image-based 5D neural radiance field representation [5], a

continuous volume with a fully connected neural network was used. This approach avoided the

discrete sampling of the convolutional neural network, so that the time and space complexity

were improved and more promising results was generated. What's more, Sun et al.'s research

introduced the concept of a Neural Light-transport Field [6], which could generate volume

density and light transport coefficients at any point. This improved the image-based relighting

method by making it possible to do portrait relighting and view synthesis simultaneously.

In these previous approaches for image relighting, some of them already used implicit

neural representation. For example, the Neural Reflectance Fields Bi et al. developed [4], is an

implicit neural representation to model scene geometry and reflectance. Mildenhall et al. [5] also

used an implicit continuous 5D vector-valued function for their Neural Radiance Field (NeRF).

What’s more, the Neural Light-transport Field (NeLF) developed by Sun et al. [6] is inspired by

convolutional neural network-based radiance fields like NeRF and its extended researches, where

7

the NeLF outputs the volume density and light transport coefficients instead of the view-

dependent radiance in NeRF.

1.3 Proposed Approach

Although we are also using implicit neural representation, our aim differs from these

researches. Our research focuses on abstractly modeling the result pixel color instead of

reflectance or radiance fields using the implicit neural network. In our research, the continuous

function will be mapping the pixel coordinates directly to the color channels on each pixel. The

continuous function of implicit representation can not be written out by hand, so it would have to

be approximated via neural network.

Out of the implicit neural networks, we chose sinusoidal representation networks

(SIREN) specifically over rectified linear activation unit (ReLU) networks, because ReLU has

limitations in representing fine details. For example, natural signals often contain a lot of

information in higher-order derivatives, but ReLU-based networks have zero information

everywhere on their second derivative. SIRENs, on the other hand, address this existing problem

by approaching implicit neural representation with periodic activation functions which have

valid second and higher-order derivatives. Based on Sitzmann et al.’s research [2], SIRENs are

proven to generate better signal representation results with even high-frequency details in

comparison to other networks having non-periodic activation function.

As a result, my research presents a method that renders a scene of optimal sparse samples

in novel lighting using implicit neural representation. The algorithm I used for this project is

based on SIREN presented in Sitzmann et al’s work. I modified SIREN so that it would take in

both the coordinates and the corresponding light coordinates of the input image. SIREN was

trained with an input images dataset depicting the same set of optimal sparse samples under

8

different lighting positions. Finally, the testing of the network used an input of the coordinates

and a new light position. The expected result should be an image of the same optimal sparse

objects under the novel light, generated through the network.

9

2. METHODS

As in the previously mentioned deep image-based relighting researches, our inputs are

multiple images depicting the same set of sparse objects under different lighting conditions and

their lighting coordinates. In the process of generating these images, the only variant is the

position of the light, which means the camera position, camera angle, objects position, etc. are all

kept the same. Our goal is to train the neural network with these images and their light positions,

then use the network to predict the color of each pixel in the result image according to the new

light position.

Before setting up and training the network, we first need to figure out how we are

representing the input information. For the domain of the continuous function, we have both

pixel coordinates and light positions to take in. The pixels of the input images are represented

using 2D Cartesian Coordinates. Each pixel of the image is nominated as (x,y), corresponding to

the rows and columns, respectively.

Afterwards, the problem of how to represent the light position arises. The light source

used in our project is a point light source in 3D spaces, which is normally represented in the form

of (x,y,z) in a 3D Cartesian Coordinate system, as shown in Figure 2.1.

Figure 2.1: point light source in cartesian coordinates

10

However, in our algorithm, to describe the light position, we see the position of the light

source as a certain point on the surface of a hemisphere surrounding the object with a fixed

radius r. In this respect, we are expressing the light position in a spherical coordinate system. A

benefit is that, since the r is fixed, we would only need to parameterize the coordinate in terms of

the two angles, 𝜃 and 𝜑, instead of three parameters (x,y,z), as shown in Figure 2.2.

Figure 2.2: point light source in spherical coordinates

Another benefit is that, after the network is trained with a smaller sample of single input

lights, we can simulate the scene under an environment map light. An environment map light is

composed by many point light sources arranged as a mesh grid on the surface of a hemisphere

surrounding the object. The goal of using this light dome is to create the effect that the light

source is infinitely far away from the objects, and shines on the objects from all directions. The

environment map light is as shown in Figure 2.3. Although we are only doing our testing

simulation with point lights, we can ensure that the algorithm we developed is able to be tested

with an environment map light.

11

Figure 2.3: Environment map light

As a result, the light coordinate taken into the network would be represented as a pair 𝜑,

𝜃. To get higher quality results, we picked our input images based on the method described in Xu

et al.’s research [7]. For example, here we sampled five images, where one of the images has the

central light source right above the objects and the other four images have light sources

distributed around the central light source equally, as shown in Figure 2.4.

Figure 2.4: input images and their corresponding light positions

12

2.1 Setting up the SIREN Network

The network we used in our research is the SIREN network presented in Sitzmann et al’s

research [2]. SIREN is developed based on Multilayer Perceptron (MLP) neural networks.

Traditional MLPs are composed by an input layer, an output layer, and many hidden layers in

between. The nodes in each layer are fully connected. At each hidden layer, the output is

generated by taking the dot product of the input and the weights existing between this layer and

the previous layer. After that, the outputs are pushed through an activation function, and then

pushed forward to the next layer as an input. Eventually, we perform the backpropagation at the

output layer [8].

The difference between SIRENs and traditional MLPs is that SIRENs replace the

piecewise linear ReLU activation function with a periodic sinusoidal function, for example, a sin

curve. When derived, linear functions have zero everywhere on second and higher derivatives,

but sinusoidal functions have valid values on its derivatives. In this way, SIREN is able to model

the signal better with higher-ordered derivatives information than original MLPs [2].

In our research, SIREN needs to take in both pixel and light coordinates, and then output

color channels. In this process, each pixel and light position are mapped to the corresponding

RGB color at the pixel. As a result, the SIREN network is set up to have 4 input features in the

input layer, in the format of (x, y, 𝜑, 𝜃), where x, y represents the pixel coordinate, and 𝜑, 𝜃

represents light coordinate. There are 3 output features in the output layer, in the format of (r, g,

b), representing the 3 color channels corresponding to each pixel. Between the input and output

layers are 3 hidden layers, each have 256 nodes fully connected to each other. Thus, we finished

setting up the SIREN network, and the fully-connected diagram for the network is shown in

Figure 2.5.

13

Figure 2.5: fully-connected SIREN network

2.2 Training of the SIREN Network

Our goal for training the SIREN network is to make it reconstruct all input images as well

as possible and then determine when to stop training. The training algorithm we used is based on

the training loop provided in the section of fitting an image in Sitzmann’s research.

We inherited the optimization method from Sitzmann et al’s code. In our training loop,

Adam optimizer is used with a learning rate of 1 ∗ 10−4. We calculate the gradients and do

backpropagation for each individual input images, so our minibatch size is just one input image.

Also, as in Sitzmann et al’s research [2], with pixel coordinates denoted as 𝑥𝑖 = (𝑥𝑖, 𝑦𝑖),

corresponding RGB colors denoted as 𝑓(𝑥𝑖), continuous function denoted as Φ, and output at

each epoch denoted as Φ(𝑥), the loss function we used in the SIRENs is as Equation 2.1.

ℒ = ∑‖𝛷(𝑥𝑖) − 𝑓(𝑥𝑖)‖2

𝑖

(2.1)

First of all, we started the training by fitting all input images into the network with

512*512 pixels resolution and comparing the reconstructed images side by side to the ground

truth images. I trained the network for a total of 30000 epochs here and printed out the result of

14

step 0, 10000, and 20000 as examples, with ground truth on the left and result images on the

right, as shown in Figure 2.6.

Figure 2.6: Step 0, 10000, and 20000.

Comparing the images reconstructed by the network, between step 0 and step 20000, we

can clearly see that the output images are restoring the ground truth better and better. However,

as the step number gets bigger, like from 10000 to 20000, it would be very hard to tell the

difference between the ground truth images and the result images to the naked eye. What’s

15

noticeable is that the print-out of the loss value in the figure does show a valid decrease despite

the similarity of the graphs. As a result, the best way of seeing how many steps it would take to

optimize the training result is to graph the loss and find where it starts to minimize. In our

research, each point on the loss graph would be the logarithm of the average loss for all input

images over every 50 steps. We took the logarithm of the average loss, because the loss data tend

to disparate a lot between the beginning and the end of the training, and logarithm would help us

in seeing the slight differences between the losses when it gets to the end, thus determine when

to stop. We used the average loss instead of the loss every 50 steps, because in this case the

curve can be smoothed out. Figure 2.7 shows the loss graph we get when training the network for

30000 steps.

Figure 2.7: loss graph for 30000 training steps.

From the loss graph we can see that, although the decrease rate is getting lower and

lower, the loss is still decreasing. As a result, we were still not sure if the network is trained well

16

or already overly trained at this point. In order to decide when to stop training, we have to see an

actual result when testing the model with a new lighting coordinate. Hence, we need to save the

current best trained model, so that we can load the model in the testing process.

To achieve the goal of saving and loading models, I used the save and load method code

from an online resource by Say [9]. The saved model contains four kinds of information: the

epoch number it starts on, its current minimum loss, model architecture information, and its

optimizer. Since our total epochs goes to above 30000, we save the model at every 1000 epochs.

If the average loss showed improvement, i.e. decreased comparing to the previous average loss,

we save this model as the best model into the local device. Otherwise, it would be saved simply

as the most recent model.

Eventually, the best model was saved successfully after training the SIREN network with

our input images for a total of 30000 epochs. The saved minimal loss is -7.074147143990179.

Figure 2.8 is the training result we get, comparing the output of each images side by side with its

ground truth.

17

Figure 2.8: Training output after 30000 steps.

2.3 Testing the SIREN Network

The eventual goal for testing the SIREN network is to give the trained SIREN model a

new light position and generate a new image from it. However, before going through with new

lighting positions, we first needed to make sure that our algorithm works with no error.

As a result, after loading all four features of the saved best model into the program, we

passed an input light coordinate along with the pixel coordinates first into the model, trying to

see if the algorithm could reproduce the input image. We used the [0.0,0.0] light position for this

test, which gave us a successful result, as in Figure 2.9.

18

Figure 2.9: Testing the algorithm with existing light position [0.0, 0.0]

Then, to test how good the model works, we need to pass in a new light coordinate. At

first, we chose a new light coordinate that existed in the original dataset with 1053 images,

because in this way, we would have a ground truth image to compare with the image generated

by the testing process. However, the new light position seemed to be giving a faulty result, as in

Figure 2.10.

Figure 2.10: Testing the algorithm with new light position.

19

This is because the network is overfitting the input data. Overfitting means that the

network is trained so well for reconstructing the set of input images, that would not recognize

new light source that’s far away from the input light positions and generate the output image

accordingly. To further understand the logic in this situation, we generated a series of images

with each of their light positions differ slightly from the input light position (0.0, 0.0). We

increased both 𝜑 and 𝜃 by 0.01 each time, from (0.01, 0.01) to (0.05, 0.05). Figure 2.11 shows

the result images and their light positions accordingly.

Figure 2.11: Testing with slightly different light position.

From the series of results, we can see that the network does generate good quality results

at first, but the quality of the image drops generally quickly when slowly changing the light

position. In order to test if the level of training affects the result, we also tried to train the

network for 5000 steps and 1000 steps. These results shows that the more training steps, the

better the training results quality, but the quicker the quality drops when switching to another

lighting position, as in Figure 2.12.

Figure 2.12: Testing with slightly different light position after 5000 and 1000 training epochs

20

However, even though the results show that less training might make the network less

overfitting to the input images, it doesn’t provide a solid solution to our situation, since even

only training for 1000 steps, the results still share a similar quality dropping tendency, and gives

out faulty images at a new light position. As a result, we decided to solve this problem without

sacrificing image quality by compressing the light coordinate. We scaled down the light

positions 𝜑 and 𝜃 by 10 and 100 respectively for both training and testing process, which will

bring the input light coordinates much closer to each other in the space. In this way, it’s easier

for the network to interpolate a new lighting position in between smaller gaps and generate the

result image. After scaling down 𝜑 and 𝜃, we tested the network with the same new light

position as before. The network gave a successful result this time, as in Figure 2.13.

Figure 2.13: Testing the algorithm with new light position after compressing light coordinates.

Thus, we managed to get promising testing results from the network. The stability and

quality of the testing results will be analyzed and discussed in the results section.

21

3. IMPLEMENTATION

In the implementation section, we will further discuss the process of training and testing

with coding details.

3.1 Converting Light Positions and Choosing Input Images

The dataset we used for the research contains 1053 images in total, and the lighting

condition is the only variable during the generation of these images. Each image is generated

under a single light source and the light positions of these images were recorded as 3D Cartesian

coordinates in a text file. These light coordinates composed a full light dome when combined. In

our research, only five input images were needed for training, and their corresponding light

positions should be passed in as 3D Spherical coordinates. As a result, we needed to convert their

light positions so that they fit into our algorithm and to sample these images in a reasonable way.

First of all, we needed to convert the light positions into spherical system. The recorded

light coordinates were in (x,y,z) format in the text file. However, in spherical coordinate, we

denote the position with 𝜃, 𝜑, and r instead. As explained in the method section, 𝜃 is the angle

on xy-plane, and 𝜑 is the angle according to z-axis. r is the radius between the light positions and

the objects, which is deliberately kept as 1 in the original dataset. In this case, we can convert the

coordinates using the mathematical Equations 3.1 and 3.2 below:

𝜃 = 𝑡𝑎𝑛−1 (
𝑦

𝑥
) (3.1)

𝜑 = 𝑐𝑜𝑠−1(𝑧) (3.2)

What’s worth noticing is that, when calculating 𝜃, we have to take the quadrants into

account. For example, when y is -1 and x is -1, the 𝜃 angle they made lands in the third quadrant.

22

When y is 1 and x is 1, the 𝜃 angle they made lands in the first quadrant. However, when we are

calculating them using equation 2.1, we will get the same answer regardless of quadrants since

y/x are both 1. As a result, when implementing the conversion, we used the atan2(y,x) function

in the math packet to calculate 𝜃 instead of atan(y/x). This is because atan2() takes in the

negativity information of both y and x into count when calculating 𝜃.

There exists an edge case in this conversion, where the light position is right above the

objects. This light coordinate is on the z axis, which means 𝜑 would be 0, but 𝜃 would be

undefined since x and y are both 0. In this case, we just assigned 𝜃 as 0 for our implementation.

When implementing this part, it’d be the best if we separate the conversion from the

training and testing of the network, since we only need to convert the light position file once. To

achieve this, we used sys.argv command to make sure it could take in a keyword when running

the program. For this part, we used “conv” as our keyword, as shown in Figure 3.1. When

running the program, if “conv” is added after the filename, the program goes into this if-

statement.

Figure 3.1: taking in “conv” as keyword

Inside the if statement, we built the conversion section algorithm by first opening the

input file in reading mode and output file in writing mode. Then, we read in the cartesian

coordinates text file line by line into a list and looped through them. Inside the loop, we first

striped the spaces around the line, split the line by spaces into a list of strings, then converted

each string into Decimal type variable. The reason we chose Decimal instead of float is that it

preserves more decimal places than float type does. Afterwards, we did the conversion for 𝜃 and

23

𝜑 using the functions above and wrote the spherical coordinates data into the output text file. The

reading and writing are done using readlines() and writelines() functions. The whole process is

shown in Figure 3.2.

Figure 3.2: conversion from cartesian to spherical

After converting the coordinates of the light from the cartesian to the spherical system,

we needed to pick out the input images we needed for training. In order to get higher quality

results from the network, the method we used in choosing images was based on the method used

in Xu et al.’s research [7]. The light coordinate of the image in the middle has a light right above

the depicted objects is [0.0, 0.0]. For the other four, we kept 𝜑 the same so that they are all

equally far away from the middle light source. Then, we calculated the angles between each 𝜃

24

and made sure that they are about 90 degrees, which keeps the four light sources equally

distributed.

3.2 SIREN Network

3.2.1 Setting up

The SIREN network used in Sitzmann et al’s research [2] for demonstrating fitting a

grayscale image in the network was set to have 2 input channels in the input layer, 1 output

channel in the output layer, and 256 nodes in each of the 3 hidden layers. The input is a tensor of

(x,y) coordinates, representing each pixel of the input image. The output, on the other hand, is

the grayscale color value corresponding to each pixel, ranged between 0 and 1. See Figure 3.3.

Figure 3.3: fully connected graph for the original SIREN

However, in our research, multiple colored input images are used instead of one

grayscale image. Due to the fact, we first changed the out features variable from 1 to 3 when

setting the SIREN network, so that the nerwork has 3 output channels representing (r,g,b) values.

As shown in the simplified Figure 3.4.

Figure 3.4: simplified graph for fitting colored image in SIREN.

25

To achieve the goal of image relighting, we also need to make sure that the network can

take in and be trained with multiple images. As a result, instead of using the cameraman sample

image from the skimage data pack, we acquired the path of the folder containing all the input

images. Then, we modified the ImageFitting(Dataset) class, so that it takes in the path, sorts all

images, resizes them, takes them in as normalized tensors, and finally returns them along with

coordinates and shape of the tensor.

Also, we need to modify the SIREN network so that it takes both pixel coordinates and

the light coordinate of each image in the set of input images. In this case, light coordinates of the

images are hard coded in the ImageFitting(Dataset) class as a 2D tensor. This tensor has (number

of images) rows and 2 columns, since each image has a light coordinate (𝜑, 𝜃). After that, the

tensor is returned along with images, coordinates, and shape. Finally, when setting the SIREN

network, we change the in features as 4 in the format of (x, y, 𝜑, 𝜃).

3.2.2 Training and Plotting Loss Graph

First of all, we used the ImageFitting() class and DataLoader() function to load in

multiple images. Then, we looped through all five images at each step of the training with a

nested for loop. Also, since most of the training loop from the original code by Sitzmann et al.

can be kept for our training, we just moved this part into our inner loop. We also removed and

changed some of the print out and showing of training results for efficiency.

The major issue during training is the plotting of loss graph, since it’s the most intuitive

way to see the training progress. At first, we used matplotlib.pyplot package to graph the loss.

We first created an empty list named “losses” before the loop. Then, we created a variable named

“total_loss”, in order to sum up all the loss of all images between every 50 steps. Afterwards, at

every 50th steps, we calculated and pushed the logarithm of the average loss into the list, and

26

restored total_loss to zero for the next 50 steps. Eventually, after gaining all loss values from the

training, we plotted out the loss graph.

However, this graphing method only shows the graph after the training loop ended. Not

being able to see the data during the training is very inconvenient, especially for long training

processes like this, because we have to wait for a long time and consume a lot of GPU resources

before we are able to see if the results are ideal or there are actually errors within our algorithm

and the graphing was wrong from the beginning.

Looking for a solution to graph the loss while training, we eventually switched our

graphing tool to TensorBoard. TensorBoard is a visualization toolkit under TensorFlow package,

and it can be used to display data in many forms such as graphs, images, audios, etc.

TensorBoard package can be used to train the model and graph the loss all together, but in our

case, we only need to graph loss as custom scalars, since we are already calculating the loss data

in our training.

To graph the data, we first need to create a local directory for the data log. Once the

training starts, all the data would be written in a file in this directory. In order to distinguish

different training processes, I added the local time into the directory. In this case, each training

process data log would be stored in a different folder, named in the format of “directory +

localtime”. I printed out this directory for future references.

Then, we needed a file writer variable to write the data in the directory we set. Here we

use the SummaryWriter() function in tensorboardX package, where the directory is passed in as a

string parameter, to create a new file writer. Then, inside our training loop, at each 50 steps, once

we get the logarithm of the average loss, instead of putting the data into a list and graph it at the

end, we use the file writer we created to write the loss into the file. In this case, we used

27

add_scalar() function from tensorboardX package, and passed in the graph name as “loss”, data

as current loss, and step as the current epoch.

Now, after setting up the file writer, we started running this program. Once we started

running, the data log directory will be printed out. However, to see the actual graph while

running, we need to activate the TensorBoard web interface. This required us to open up a new

command prompt, and copy the printed-out directory from the original command prompt into the

new one. Then, after the directory, we typed in “ --host localhost --port 8088” to direct the

interface to a specific port, and ran this command in the new command prompt. This way, the

running program will give out a website link “http://localhost:8088”, and that is where the

TensorBoard web interface will show up. We can see the interface by copying this link into the

browser, like shown in Figure 3.5.

28

Figure 3.5: TensorBoard interface for loss graph.

On this web interface, we can see that our graph appears under the tab “Scalar”, because

we are graphing the scalar loss data point after point. The Horizontal Axis should be set to

“step”, which is the epoch number we passed into the file writer. We can adjust how smooth our

graph looks by dragging or input a number at the “Smoothing” section. Also, to see the new data

being written in while running, we need to use the refresh button on the upper-right corner,

which looks like a circling arrow. Every time we click the refresh button, it will show new data

on the graph, but in order to see the whole graph, we would need to manually adjust the domain

by clicking the “Fit domain to data” button under the graph, which looks like a box with four

arrows inside at each direction.

29

What’s more, if we hover the mouse on the graph, we can see the value of the original

data, the smoothed data, the current step, the time that the data was written in, and the relative

written-in time to the whole graph. Also, to see the graph more clearly, we can expand the graph

to fit out browser window by clicking the “full screen” button, which is the left first button under

the graph.

3.2.3 Saving, Loading, and Testing Model

Implementing the saving and loading would give us the benefit of separating the training

and testing process, as a result, we separated the training and testing procedures using the same

sys.argv command to take in keywords when running as in the conversion section. For training,

we take in the keyword “train”, and for testing, we take in the keyword “test”. The code for

saving model goes in training section and loading model goes in testing section.

First of all, I used the save_ckp() and load_ckp() functions provided by Vortana Say [9],

as in Figure 3.6. In this part, we used a variable called checkpoint. Each checkpoint contains four

parameters: “epoch”, “valid_loss_min” - minimum loss, “state_dict” - model architecture

information, and “optimizer”. Basically, a checkpoint contains all the information we needed for

successfully saving a model.

30

Figure 3.6: save_ckp and load_ckp functions.

The save_ckp function is used to save checkpoints. Each time this function is called, the

old checkpoint file in “checkpoint_path” is overwritten by the current checkpoint “state” using

torch.save() function. Then, if “is_best” variable is true, that means the current checkpoint is the

best checkpoint with lowest loss value. In this case, we copy the current checkpoint file to the

“best_model_path” using shutil.copyfile() function, which will also overwrite the original

content in the path.

The load_ckp function is for loading checkpoints. When this function is called, we first

load in the checkpoint with torch.load() function from the “checkpoint_fpath”. Then, we use

load_state_dict() function to load the “state_dict” and “optimizer” parameters of current

31

checkpoint into the passed in “model” and “optimizer” variables accordingly. Next, we create a

variable called “valid_loss_min” to store the minimum loss from the checkpoint. Finally, we

return all four variables as results.

After setting up these functions, we first set the directories for “checkpoint_path” and

“best_model_path” in the local folder for storing checkpoints. Then, we use the save_ckp()

function in our training loops to save both the current and the best model.

Figure 3.7: Saving model.

As in Figure 3.7, we also used the code by Vortnana Say for this implementation [9].

First, we created a “loss_min” variable outside the training loop, with the original value as

positive infinity, to keep track of the minimum loss. Then, we decided that we would update the

checkpoint every 1000 steps. Hence, at every 1000th step, we create and parameterize a

checkpoint variable and save it into the checkpoint_path. Here we set the second parameter of

save_ckp() function, “is_best”, as “False”, meaning that current checkpoint is not the best model.

Afterwards, we check if the loss is decreased by comparing current loss to the “loss_min”. If

there is a decrease, we save this model as the best model with the second parameter “is_best” as

“True”.

32

After saving the model, the loading and testing began. To distinguish the testing process

from the training process, I created a new set of variables. First, since the load_ckp() function

takes in model and optimizer parameters, I created a “test_optim” variable and a new siren

network model called “test_siren” as I did for the training process, and activated cuda using

.cuda() function for the “test_siren” model. Then, I loaded model using load_ckp(), as in Figure

3.8. At this point, test_siren has become the best saved network model.

Figure 3.8: Loading the model.

Then, to test the model, we need pixel coordinates and a new light coordinate. Also, we

need an input shape to show the result image. For the pixel coordinates and the input shape, we

created a new set of variables named “test_model_input” and “test_shape”, and got the

information from dataloader directly. For the new light coordinate, on the other hand, we hard

coded the light position as a new tensor named “test_lightcoord”. Finally, we activated cuda,

tested the model with the pixel and light coordinate, and displayed the results, as in Figure 3.9.

Figure 3.9: Testing the model and showing results.

33

4. RESULTS

When training, we used three set of images, named “close to z,” “in the middle,” and “far

from z,” according to how big their 𝜑 angle is. Each set of images shares a same 𝜑 angle in order

to keep them on a circle surrounding the object. The five lighting coordinates covers an area on

the hemisphere above the object. The smaller the 𝜑 angle is, the smaller the area is covered by

the input lighting coordinates on the hemisphere, and vice versa, as shown in Figure 4.1.

Figure 4.1: The area covered by input lighting coordinates

The sets of images we used and their corresponding uncompressed light coordinates are

shown in Table 4.1.

34

Table 4.1: Training input image sets.

Close to z

Image

𝜑
0.1935131925145

134

0.193513192514

5134

0.193513192514

5134

0.193513192514

5134
0.0

𝜃
-2.99969559898

5629

1.712693381399

0606

-1.42889927219

07332

0.141897054604

1634
0.0

In the middle

Image

𝜑
0.7661626497120

905

0.766162649712

0905

0.766162649712

0905

0.766162649712

0905
0.0

𝜃
-2.41169299543

80617

2.300695984946

628

-0.84089666864

31651

0.729899658151

7314
0.0

Far from z

Image

𝜑
1.2925495041266

992

1.292549504126

6992

1.292549504126

6992
1.292549504126

6992
0.0

𝜃
-2.356194490192

345

2.356194490192

345

-0.78539816339

74483
0.785398163397

4483
0.0

Note: Image with light position (0,0) exists in all three sets because it has the lighting position in the middle.

35

The first aspect we want to test with our network is if the image quality is still good while

moving the light position away from the input light position. Using the “close to z” image batch,

we decided to test with 10 lighting positions, equally distanced from each other, transferring

from input light position [0,0] to another input light position [0.1935131925145134,

1.7126933813990606], as in Figure 4.2.

Figure 4.2: Transition between two input images.

 The transition test results are very promising, since we can see that the image quality did

not drop while moving the testing light position away from the input light positions. As a result,

now we can try testing with new lighting positions in the area covered by the input lighting

positions. In this part, we chose light coordinates that already exist in the original dataset of 1053

images, so that the result can be compared to a ground truth image. Figure 4.3 shows the five

testing images comparing to their ground truth images, with their compressed light position and

their loss corresponding to the ground truth.

36

Figure 4.3: Testing results for “close to z” images.

From the results, we can see that despite the good quality of result images, some of the

light conditions are not precisely restored. For example, at the fourth image in Figure 4.3, with

light coordinate (0.008610898795832475, 0.028198420991931523), the difference can be seen

with the naked eye and the loss is higher than the other testing images. However, this could just

be an outlier in the testing, since the other four images showed reasonable output images and loss

values. Therefore, our testing results can still be considered promising.

37

When evaluating our results, we not only want to see how good the result is under new

light positions, but we also want to know if the change of 𝜑 would affect the quality of outputs.

Since the input sets with larger 𝜑 has a larger area covered by the input light positions, we spread

out the testing light positions into the covered area correspondingly. Figure 4.4 shows the testing

results for “in the middle” and “far from z” input sets, comparing to their ground truth images,

with their compressed light position and their loss corresponding to the ground truth.

Figure 4.4: Testing results for “in the middle” and “far from z” images.

38

We can easily see from the comparison that the image quality drops as 𝜑 gets larger. The

loss between the generated output and their ground truth also shows a similar trend. To look into

the differences more clearly, we compared the results of the testing light position

(0.01592532857681529, 0.010303768265243127), which was tested in all three sets, as shown in

Figure 4.5.

Figure 4.5: Comparing results of the three sets with the same ground truth.

What we noticed here is that the quality decreasing shows a similar tendency as we were

moving the new light position slightly away from the input light position before we compressed

the light coordinates. As a result, we deducted that the reason behind this situation is the same,

where the network is overfitted to the input images. As 𝜑 becomes larger, the covered area is

larger and the test cases are further away from the input images, which is harder for the network

to interpolate. A possible solution for this problem could be dividing 𝜑 and 𝜃 by a larger

number, which would bring the light coordinates even closer in space, as we have done in our

method. Another possible solution is to increase the number of input images. In this way, the

network will have more light coordinate references in the area covered by training and the gaps

between each input images will be shortened.

39

5. CONCLUSION

Generally, our research provides a method that leverages implicit neural representation in

image-based relighting by abstractly modeling the image coordinates and light coordinates to the

color channels of the images. To achieve this, we first set up SIREN so that it would take in both

image pixel coordinates and light coordinates, and map the coordinates to RGB channels at each

pixel as the output. Then, we trained the network with a set of input images and saved the best

training model, which has the minimal loss out of all the training epochs. Finally, we loaded the

saved best model and tested the algorithm with a new light position. At first, the result looked

faulty because the network is overfitted to the input images, so we tried to optimize the testing

results by dividing the light coordinates by a constant, in order to bring these positions closer so

that it’s easier for the network to simulate. After compressing the light coordinates, the general

results are promising.

We did a series of testing in three aspects: how smooth the transition is between different

light coordinates, how well the output quality is comparing to the ground truth, and how would

the distance between the input images affect the results. From the first two aspects, our testing

results seem to be generally positive, since the image quality stays good in the transition and the

comparison to the ground truth is reasonable. However, the third aspect shows some limit. The

network tends to overfit to the input images when the distance between the input light

coordinates becomes larger in space, so the output quality drops.

Overall, our method gives a promising result. In future related researches, we could

address the limits by either dividing the light coordinates by a larger number, or expanding the

40

input dataset and include more images. Either way, each method will bring the light coordinates

closer to each other in space and refine the results.

41

REFERENCES

[1] V. Sitzmann, “Awesome Implicit Representations - A curated list of resources on implicit

neural representations,” GitHub, 28-Dec-2020. [Online]. Available:

https://github.com/vsitzmann/awesome-implicit-representations. [Accessed: 27-Feb-

2022].

[2] V. Sitzmann, J. N. P. Martel, A. W. Bergman, D. B. Lindell, en G. Wetzstein, “Implicit

Neural Representations with Periodic Activation Functions”, CoRR, vol abs/2006.09661,

2020.

[3] Z. Xu, K. Sunkavalli, S. Hadap, en R. Ramamoorthi, “Deep image-based relighting from

optimal sparse samples”, ACM Transactions on Graphics, vol 37, bll 1–13, 07 2018.

[4] S. Bi et al., “Neural Reflectance Fields for Appearance Acquisition”, CoRR, vol

abs/2008.03824, 2020.

[5] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, en R. Ng,

“NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis”, CoRR, vol

abs/2003.08934, 2020.

[6] T. Sun, K.-E. Lin, S. Bi, Z. Xu, en R. Ramamoorthi, “NeLF: Neural Light-transport

Field for Portrait View Synthesis and Relighting”, CoRR, vol abs/2107.12351, 2021.

[7] Z. Xu, S. Bi, K. Sunkavalli, S. Hadap, H. Su, en R. Ramamoorthi, “Deep View Synthesis

from Sparse Photometric Images”, ACM Trans. Graph., vol 38, no 4, Jul 2019.

[8] DeepAI, “Multilayer Perceptron,” DeepAI, 17-May-2019. [Online]. Available:

https://deepai.org/machine-learning-glossary-and-terms/multilayer-perceptron. [Accessed:

22-Feb-2022].

[9] V. Say, “How to save and load a model in pytorch with a complete example,” Medium,

28-May-2021. [Online]. Available: https://towardsdatascience.com/how-to-save-and-

load-a-model-in-pytorch-with-a-complete-example-c2920e617dee. [Accessed: 27-Feb-

2022].

