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ABSTRACT 

Automated Verification Techniques for Solana Smart Contracts 

Tien N. Tavu 
Department of Computer Science & Engineering 

Texas A&M University 

Research Faculty Advisor: Dr. Jeff Huang 
Department of Computer Science & Engineering 

Texas A&M University 

Solana has been a relatively new blockchain platform that has gained popularity due to its 

quick transaction times and low transaction fees. However, the focus is mainly seen in their 

“smart contracts” – an automatically-enforced agreement under an on-chain program between an 

individual with financial implications involved. Due to the nature of the platform being relatively 

new, there has been no foundation related to the security concerns of developing these programs, 

but such programs have been continually deployed daily without any security considerations. 

 During the investigation of real-world smart contracts, we found that there were several 

common vulnerabilities – missing ownership checks, missing signer checks, the signed 

invocation of programs, and the underflow and overflow of arithmetic operations. The mentioned 

vulnerabilities became the baseline for us to develop verification techniques in identifying them 

in real-world smart contracts. Furthermore, it became a goal to develop a static analysis tool in 

Rust that combines all the algorithms into a single static analysis tool, leveraging the MIR 

functionality provided by Rust. The results conveyed that the tool was able to reliably find 

sensitive instructions it deemed to be insecure. Even though there were several insignificant 
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results, the initial verification techniques are valid in this early stage of development. Developers 

who wish to develop Solana smart contracts should use these verification techniques in practice 

before on-chain deployment as an initial benchmark for security concerns.   
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1. INTRODUCTION 

Research in Computer Science has recently focused on the field of blockchain – a 

technology focused as a decentralized, distributed, and public digital ledger of transactions 

recorded and “chained” as a sequence of blocks. Bitcoin is one of the well-known blockchain 

platforms, but new technologies such as Ethereum and Solana have emerged as competitors. 

Ethereum and Solana leverage the blockchain to store code of automated programs based on an 

agreement between a buyer known as “smart contracts,” in addition to the original intentions of 

supporting a decentralized payment network as seen in Bitcoin [1, 2]. 

The term smart contract was coined by Nick Szabo, who outlined his ideas as analogous 

to a vending machine: with the right set of inputs, a desired output is reached [6]. The logic of a 

vending machine is programmed to accept an input of a certain amount of funds, and in addition 

to a selection for a specific product, will dispense any change and the said product as an output. 

A smart contract follows the exact logic of an agreement between a buyer that is automatically 

enforced programmatically, removing the need for an intermediary such as financial institutions. 

If the necessary fees are paid with the transaction from a smart contract, the transaction would be 

executed and stored in the blockchain network. 

 Ethereum, known as the second-most popular platform behind Bitcoin by market 

capitalization, popularized the technology and term of smart contracts to blockchain platforms. 

Developers have deployed many applications built with Solidity – the programming language 

used for Ethereum – in the blockchain for the past few years since its inception. However, 

developers and end-users have raised concerns involving the Ethereum network, as one of the 

notorious disadvantages of Ethereum is the transaction times and fees. The network announced 
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plans for solving the issues in a roadmap called “The Merge,” such as the transition to a  

Proof-of-Stake network, but the overall implications have yet to be seen. 

 Another blockchain platform that has smart contract capabilities is Solana, whose 

popularity has tremendously grown in terms of market cap and usage. One of the few driving 

reasons for its growth is its nature as a competitor to the Ethereum network in achieving higher 

transaction speeds at a lower cost, mitigating the main concerns that Ethereum is currently 

experiencing from its Proof-of-Stake model. Additionally, the platform uses Rust as its primary 

programming language for smart contracts, which is known as a multipurpose language designed 

for performance and safety, in comparison to Ethereum’s Solidity programming language which 

is recognized for only smart contracts. 

 The subfield of smart contracts in blockchain networks is still relatively new, with vast 

potential for impact and growth. Examples of smart contracts can include services provided by 

centralized financial institutions such as banks – borrowing, lending, and trading, to name a few. 

Furthermore, Non-Fungible Tokens (NFTs) have been a controversial topic but have utility for 

areas in real estate and ticketing. However, smart contracts are only a breakthrough – being 

massively adopted and deployed in the field of blockchain without any repercussions, smart 

contracts and their developers have faced adversities in handling scaling and security issues. 

 Solana is a relatively new blockchain platform with a minimal foundation on scalability 

and security issues, which is particularly vulnerable for developers in deploying smart contracts 

to the network. With the prominence of the blockchain field and the Solana ecosystem in 

general, we explored several different vulnerabilities and ways to identify such vulnerabilities. 

This paper will discuss several vulnerability patterns found from previously deployed smart 

contracts and a set of automated verification techniques to identify such patterns. Additionally, 
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we question its effectiveness with the results that were obtained by combining the verification 

techniques within a single static analysis tool developed in Rust on real-world smart contracts. 

With these techniques, we hope to improve the security of smart contracts in Solana which 

would lead to the mass adoption and usage of the applications in the future. 
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2. OVERVIEW OF VULNERABILITIES 

The list of vulnerabilities found in smart contracts is growing with an ongoing process to 

discover such exploits. A few vulnerabilities can be generally found in all smart contract 

platforms such as Ethereum’s Solidity programming language, while a few other vulnerabilities 

are unique to the Solana ecosystem.  

The vulnerabilities that are unique to the Solana ecosystem require a general 

understanding of how Solana smart contract development works. The platform utilizes 

“accounts” as its main primitive type to store records in its ledger for data or executable 

programs such as a smart contract. The notable fields inside this type can be seen in Figure 2.1. 

 

Figure 2.1. Code snippet extracted from the Solana source code related to accounts. 

The fields that were highlighted in the code snippet are crucial to understanding the 

specific vulnerabilities that are found in the Solana ecosystem. 

pub struct AccountInfo<'a> { 
    /// Public key of the account 
    pub key: &'a Pubkey, 
    /// Was the transaction signed by this account's public key? 
    pub is_signer: bool, 
    /// The lamports in the account.  Modifiable by programs. 
    pub lamports: Rc<RefCell<&'a mut u64>>, 
    /// The data held in this account.  Modifiable by programs. 
    pub data: Rc<RefCell<&'a mut [u8]>>, 
    /// Program that owns this account 
    pub owner: &'a Pubkey, 
    /// This account's data contains a loaded program (and is now read-only) 
    pub executable: bool, 
    . . . 
} 
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2.1 Missing Ownership Checks 

The most vital vulnerabilities are smart contracts that do not include ownership checks. 

Each program that is deployed to a Solana cluster would be available to clients through a 

program ID – an address stored as a Pubkey type that is used to reference the program for 

transactions [5]. An account has an owner field that corresponds to a single program ID that can 

write to the specific account, as the program “owns” the rights to the account in storing data [3]. 

Without any checks to determine whether a supplied account is owned by the program, the 

program is essentially dealing with untrusted data that can be spoofed by a user. 

Take a withdraw function as an example, which is a sensitive instruction that any user 

can execute to withdraw funds from a savings account stored in a personal wallet. The function 

shown in Figure 2.2 is problematic, as the function never implements checks relating to the 

owner of the accounts being passed in.  

 

Figure 2.2. Sample code snippet of a withdraw function. 

In the provided example, any user can spoof any of the accounts the function iterates 

through. The main vulnerability is found in wallet_info, where a user can “fake” the 

fn withdraw(program_id: &Pubkey, accounts: &[AccountInfo], amount: u64)  
  -> ProgramResult { 
    let account_info_iter = &mut accounts.iter(); 
    let wallet_info = next_account_info(account_info_iter)?; 
    let authority_info = next_account_info(account_info_iter)?; 
    let destination_info = next_account_info(account_info_iter)?; 
    let wallet = Wallet::deserialize(&mut &(*wallet_info.data).borrow_mut()[..])?; 
 
    if amount > **wallet_info.lamports.borrow_mut() { 
        return Err(ProgramError::InsufficientFunds); 
    } 
 
    **wallet_info.lamports.borrow_mut() -= amount; 
    **destination_info.lamports.borrow_mut() += amount; 
    . . . 
} 
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account to point to the program’s vault itself, essentially having the program withdraw from its 

funds and depositing the amount to the user. 

The solution to the vulnerability in context would be to implement any sort of checks to 

find whether the wallet_info account is owned by the program itself, and not some outside 

entity. This can be accomplished through an if or an assert statement before withdrawing 

any actual funds, checking the condition of whether wallet_info is owned by the program as 

shown in Figure 2.3. 

 

Figure 2.3. Statements to add in verifying the integrity of wallet_info. 

2.2 Missing Signer Checks 

Smart contracts contain a different set of instructions that can be executed, similar to how 

different products can be selected from a vending machine. Some instructions may be sensitive 

and should only be called by certain accounts – for example, admin-related instructions should 

only be run by admins, and user-related instructions should only be run by users.  

Within each account, a field is_signer is available as a flag to signify that the current 

account requires a signature for the transaction to execute. The signatures are keys to an account 

referenced to the instruction, notifying that the account has authorized the transaction [3].  

The withdraw function from Figure 2.2 is still a great example of a sensitive 

instruction with no signer checks implemented at all. After patching up the ownership 

vulnerability, the accounts are now known to be data owned by the program. However, a user 

/// Using an assert statement 
assert_eq!(wallet_info.owner, program_id); 
 
/// Using an if statement 
if wallet_info.owner != program_id { 
    /// Return an error 
} 
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can spoof the authority_info account to execute an unauthorized, unsigned transaction to a 

sensitive instruction in withdrawing funds without the consent of another user. 

Similar to the solution for missing ownership checks, a simple if or an assert 

statement checking the condition of whether authority_info has been signed is also a 

solution for missing signer checks, as seen in Figure 2.4. 

 

Figure 2.4. Statements to add in verifying the integrity of authority_info. 

2.3 Signed Invocation of Programs 

The Solana ecosystem supports programs that can call other programs through a 

mechanism called cross-program invocation, which is achieved through one program invoking 

an instruction of another program. One of the most common causes of invoking foreign 

programs is the use of the official Solana Program Library (SPL) for transferring funds to other 

accounts through its Token Program.  

A function called invoke_signed from the Solana library is the instruction to achieve 

the feat – requiring an instruction input that consequently is supplied by an external user that 

automatically signs the provided account. If the original program has no checks validating the 

integrity of the program being invoked, a malicious program could be used unintentionally.  

The correct way in invoking a program would be to validate the key field of the account 

holding the malicious program before invoking itself, verifying whether the program matches the 

program that is wanted to be invoked. An example piece of code can be seen below in Figure 2.5 

/// Using an assert statement 
assert!(authority_info.is_signer); 
 
/// Using an if statement 
if !authority_info.is_signer { 
    /// Return an error 
} 
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for verifying whether SPL Token Program is, in fact, the program we want to run in transferring 

funds from one account to another.

 

Figure 2.5. Sample code snippet of using invoked_signed with verification. 

 This scenario covers the use of the SPL Token Program. Fortunately, the newest versions 

of the SPL Token Program (3.1.1, specifically) include a validation statement relating to the 

program ID in their source code, so a check is not necessarily needed in Figure 2.5 when using 

up-to-date versions of dependencies such as the SPL. However, not all programs that a developer 

would want to invoke would include these checks explicitly, and numerous open-sourced 

projects still utilize older versions of the SPL Token Program. 

2.4 Underflow and Overflow of Arithmetic Operations 

One of the most general vulnerabilities that are found in any software application is the 

underflow and overflow of arithmetic operations, which are also found to be in Solana smart 

contracts. An arithmetic underflow occurs in an operation that results in a higher value, while an 

fn withdraw(program_id: &Pubkey, accounts: &[AccountInfo], amount: u64)  
  -> ProgramResult { 
    let account_info_iter = &mut accounts.iter(); 
    let vault = next_account_info(account_info_iter)?; 
    let vault_authority = next_account_info(account_info_iter)?; 
    let destination = next_account_info(account_info_iter)?; 
    let token_program = next_account_info(account_info_iter)?; 
    . . . 
    /// Using an assertion statement 
    assert_eq!(token_program.key, &spl_token::id()); 
 
    /// Using an if statement 
    if token_program.key != &spl_token::id() { 
        return Err(ProgramError::InvalidTokenProgram); 
    }     
 
    invoke_signed( 
        . . . 
    )?; 
    . . . 
} 
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arithmetic overflow occurs in an operation that results in a lower value – this is mainly due to 

Rust wrapping around a numeric value using two’s complement [4].  

Within Rust and Solana, the underflow and overflow of arithmetic operations would 

mainly be found in programs compiled under release mode without the use of checked arithmetic 

operations [4]. When compiling programs under debug mode, the Rust compiler automatically 

inserts underflow and overflow checks for unchecked arithmetic operations, which do not 

accurately portray a program’s source code.  

 Different examples can portray this vulnerability. MeanFi, an organization that strives to 

build decentralized applications as the financial equalizer for everyone, has a Decentralized 

Dollar Cost Averaging (DDCA) application. In short, the application allows individuals to 

automate investments without a centralized entity. It is open-sourced, and upon further 

examination, there is a function called add_funds that has an unchecked addition operation as 

shown below in Figure 2.6. 

 

Figure 2.6. Code snippet extracted from the mean-core/ddca program. 

 add_funds is an instruction that users can call when using the application. 

deposit_amount is a positive, numeric argument that users can provide to deposit an 

additional amount of funds to invest in the automated investment strategy. With an unchecked 

pub fn add_funds( 
    ctx: Context<AddFundsInputAccounts>, 
    deposit_amount: u64, 
) -> ProgramResult { 
    . . . 
    /// Potential for an overflow (real code) 
    ctx.accounts.ddca_account.total_deposits_amount += deposit_amount; 
    /// A potential solution for overflow 
    ctx.accounts.ddca_account.total_deposits_amount.checked_add(deposit_amount); 
    . . . 
} 
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addition operation, the total_deposits_amount field has the potential to overflow, 

inaccurately portraying the funding of total deposits for a specific account. A solution to the 

vulnerability mainly involved the use of checked arithmetic functions, which is shown in  

Figure 2.6. 
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3. VERIFICATION TECHNIQUES 

3.1 Static Analysis in Rust 

The vulnerabilities aforementioned are generally known to developers in the Solana 

ecosystem, but much of the interest stems from having an automation tool that performs static 

analysis on different Solana programs to identify such vulnerabilities. In this section, we discuss 

several verification techniques that we were able to employ in a single tool to analyze programs 

for such vulnerabilities that have been deployed to the Solana blockchain. 

Before discussing the various algorithms used to identify such vulnerabilities, some 

context of the static analysis tool we made should be considered to fully understand the design, 

as well as the methodologies and results that were obtained throughout this process. A brief 

outline of the architecture can be seen in Figure 3.1.  

 

Figure 3.1. Outline of the process in running the static analysis tool. 

A static analysis tool was implemented that integrates all the verification techniques in 

identifying the vulnerabilities mentioned using Rust. It utilizes data-flow analysis: an analysis 

that is concerned with the flow of data through a program. This includes the use of taint analysis, 
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where the flow of external data is traced in the program to discover security vulnerabilities. A 

control-flow graph is used during the analysis of the program as a graphical representation of all 

paths in a program that are traversed through its execution, starting with the entrypoint 

function. To store states of the program such as tracking external data for taint analysis, we 

utilized a state machine during traversal.  

In Rust, the tool encapsulates the use of rustc and its internal crates to generate a 

program’s MIR (Mid-level Intermediate Representation). The MIR would then be analyzed by 

the static analysis tool with its verification techniques after traversing through the program as a 

control flow graph, simplifying the syntax of Rust programs and preserving type and debugging 

information. With the context of how the static analysis tool works, we now present the 

verification techniques for identifying the vulnerabilities that were introduced in  

Section 2. 

3.2 Techniques to Identify Vulnerabilities 

3.2.1 Ownership Checks 

Ownership checks were made to traverse through the assertion and conditional statements 

of a smart contract’s executable instructions. The technique is to validate whether a developer 

has inserted such statements that compare a variable with an AccountInfo type that accesses 

the owner field. Additionally, we check whether the field is comparing to a constant such as 

spl_token::ID or a parameter from the instruction such as program_id with Pubkey.  

Each function is verified through a system similar to taint analysis, where the flow of instructions 

can be regarded as safe, provided that they contain ownership checks. 
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Figure 3.2. MIR representation of an assertion in ownership. 

 The assertion statement from Figure 2.3 can be represented in the MIR as shown in 

Figure 3.2. Assertion or conditional statements are represented through functions in 

std::cmp::PartialEq::ne and std::cmp::PartialEq::eq.  

3.2.2 Signer Checks 

Signer checks follow a similar algorithm to how we were able to detect any 

vulnerabilities relating to missing ownership checks. We would identify any assertion or 

conditional statements within the available instructions of a smart contract and determine 

whether the instruction contains any validations regarding signer checks. This involves checking 

variables that are of the AccountInfo type, along with the use of an is_signer field. To 

determine whether an instruction was sensitive to where it required a signed account, we utilized 

a standardized set of strings as a whitelist of variable names for AccountInfo to trigger a 

potential vulnerability, such as authority_info. 

fn processor::withdraw(_1: &Pubkey, _2: &[AccountInfo], _3: u64) -> Result<(), 
  ProgramError> { 
 
    . . . 
    let _7: &solana_program::account_info::AccountInfo; 
    bb44: { 
        _93 = &((*_7).5: &solana_program::pubkey::Pubkey); 
        _94 = &_1; 
        (_92.0: &&solana_program::pubkey::Pubkey) = move _93;  
        (_92.1: &&solana_program::pubkey::Pubkey) = move _94; 
        _95 = (_92.0: &&solana_program::pubkey::Pubkey); 
        _96 = (_92.1: &&solana_program::pubkey::Pubkey); 
        _99 = _95; 
        _100 = _96; 
        _98 = <&Pubkey as PartialEq>::eq(move _99, move _100) -> bb45; 
    } 
    . . . 
 
} 
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Figure 3.3. MIR representation of signer checks using assertions. 

The MIR representation for an assertion statement in signer checks is slightly different 

from the ownership checks in Figure 3.2 when using the assert!() function. In Figure 3.3, 

switchInt is one of the instructions we identify for signer checks, in addition to the functions 

in std::cmp::PartialEq from how we handled ownership checks. 

3.2.3 Signed Invocation of Programs 

For vulnerabilities relating to the signed invocation of programs, we reported an issue 

when the smart contract signs an instruction to an outdated SPL Token Program in transferring 

funds to another account. This required validation of the smart contract’s Cargo.lock file in 

verifying whether it utilized a version of the SPL Token Program older than 3.1.1 – if it was 

newer, we do not continue to check for specific instructions relating to a signed invocation in 

transferring funds.  

However, once we identify that the smart contract could be vulnerable with an older 

version of the SPL Token Program, the smart contract is traversed to identify any instructions 

that call any function from spl_token::instruction. Functions that did contain the 

fn processor::withdraw(_1: &Pubkey, _2: &[AccountInfo], _3: u64) -> Result<(), 
  ProgramError> { 
 
    . . . 
    let _23: &solana_program::account_info::AccountInfo; 
    debug authority_info => _23;  
    bb36: { 
        _59 = ((*_23).1: bool); 
        _58 = Not(move _59);          
        switchInt(move _58) -> [false: bb38, otherwise: bb37]; 
    } 
    bb37: { 
        panic(const "assertion failed: authority_info.is_signer"); 
    } 
    . . . 
 
} 
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instructions would use a procedure similar to taint analysis in tracing through the flow of 

instructions that validates whether the inputted program ID and its instructions are 

checked – when there are no checks, we flagged such functions as potential vulnerabilities. 

 

Figure 3.4. MIR representation of cross-invocation in SPL Token Program. 

The validation of the inputted program ID and its instructions are done in a similar 

algorithm to the ownership checks in Section 3.2.1, where we verify that the official 

spl_token::ID matches the inputted program ID through conditional statements. However, 

we first identify any cross-invocation of SPL Token Programs through the MIR similar to  

Figure 3.4. Extra debug information shows that a function 

spl_token::instruction::transfer_checked would be invoked. 

3.2.4 Underflow and Overflow of Arithmetic Operations 

Lastly, we identified arithmetic underflow and overflow through the flow of external 

data. When an external argument was utilized in any arithmetic operations throughout the smart 

contract, and if the operation was an unchecked arithmetic operation that could underflow or 

overflow, we would report the issue. 

fn processor::withdraw(_1: &Pubkey, _2: &[AccountInfo], _3: u64) -> Result<(), 
  ProgramError> { 
 
    . . . 
    bb58: { 
        . . . 
        _135 = transfer_checked(move _136, move _138, move _140, move _141, move  
               _142, move _143, move _146, move _147) -> bb59;  
    } 
    bb64: { 
        . . . 
        _131 = invoke_signed(move _132, move _148, move _160) -> bb65; 
    } 
    . . . 
 
} 
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Figure 3.5. MIR representation of an unchecked addition operation. 

Within the Rust MIR, an unchecked arithmetic operation would be any operations that do 

not use any of the checked functions, such as a checked_add().  These operations fall under 

an Rvalue::BinaryOp if they are unchecked. The MIR representation of Figure 2.6 from the 

DDCA program is seen in Figure 3.5, with the Add() function being an unchecked arithmetic 

operation with an external parameter in deposit_amount. 

  

fn ddca::add_funds(_1: anchor_lang::Context<AddFundsInputAccounts>, _2: u64) ->  
  std::result::Result<(), anchor_lang::prelude::ProgramError> { 
 
    . . . 
    debug ctx => _1; 
    debug deposit_amount => _2; 
    _118 = _2; 
    _119 = <anchor_lang::Account<DdcaAccount> as DerefMut>::deref_mut(move _120)  
           -> bb50; 
    bb50: { 
        ((*_119).9: u64) = Add(((*_119).9: u64), move _118);  
    } 
    . . . 
 
} 
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4. METHODS 

An automated static analysis tool was utilized to combine all the aforementioned 

techniques to identify vulnerabilities in real-world applications built with Solana. To apply the 

tool to the applications, two methods were conducted to find the results. One, we developed 

scripts that were run daily to use the tool in a fixed state on all the programs provided on the 

GitHub repo from the Solana Program Library as it progressed through commits. Two, we used 

similar scripts that were also run daily to use the tool as we improved its reliability on a fixed 

state of programs.  

 

Figure 4.1. Outline of the structure in conducting the experiments for Sections 4.1 and 4.2. 

As shown in Figure 4.1, the scripts were a combination of Bash and Python scripts that 

automated the process of pulling GitHub commits, building and compiling the tool and the tested 

programs, and generating a report of vulnerabilities. A cloud server was utilized with a version 

of Ubuntu 20.04.3 LTS provided by Amazon Web Services and a CronJob scheduled every 

midnight to run such scripts. More details of the experiments are explained in the subsequent 

sections. 
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4.1 Fixed Tool on Updated Programs 

An experiment on the static analysis tool was conducted where the tool and verification 

techniques were fixed in a state where no updates were given to improve. In this state, we ran the 

tool on 30+ programs that the tool identified from the Solana Program Library, which was open-

sourced and published on GitHub with changes constantly committed every day. 

 A Python script was developed to automate the process of building the static analysis 

tool, discovering a set of programs from a specific source directory, and running the static 

analysis tool on all the programs with generated reports of specific vulnerabilities that were 

found. Additionally, another Python script was created to discover any changes in the 

vulnerabilities between two specific days, mainly concerned with the reports that were generated 

from the previous and current day. 

To help run the scripts automatically and consistently at midnight, commands to run the 

Python scripts were encapsulated into a single Bash script that was called by the cloud server 

from a CronJob. This method was running for two weeks, starting in March, with the results 

manually inspected thereafter. 

4.2 Updated Tool on Fixed Programs 

In addition to having a constant, fixed static analysis tool running on a constantly 

changing set of Solana programs, we were able to conduct an experiment with the tool and 

verification techniques that was constantly updated to improve the rate of false positives and the 

identification of vulnerabilities that were not previously detected. The tool would go through 

changes mostly every day and would be used to run a set of fixed programs that we found 

through open-sourced means. 
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Bash and Python scripts were used similarly to the experiment above, with minor 

differences to match the constraints of the experiments. A CronJob was made to call the scripts 

by the cloud server every midnight, and the experiment was running since having a stable 

version of the tool in February.  

The programs we compiled were from GitHub that were successful and stable builds. 

There was a total of over 30 programs that the tool was able to identify, with some of them being 

dependencies. Additionally, we selected the latest versions of these programs, with several 

deployed to the Solana blockchain.  

4.3 Initial Testing on Fixed Programs 

Lastly, we used several noteworthy applications with an active userbase, entirely 

unrelated to the programs and procedures from the former experiments when we initially built 

the static analysis tool. These applications are open-sourced and were obtained from the  

mean-dao/mean-core, blockworks-foundation/mango, and  

metaplex-foundation/metaplex-program-library repos on GitHub. 

There were no automation procedures when conducting this experiment; rather, we used 

the mentioned applications, in addition to the minimal applications we made explicitly 

containing vulnerabilities, as a baseline for identifying vulnerabilities when creating the static 

analysis tool during the early stages and verifying the correctness of the tool itself.   
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5. RESULTS 

5.1 Results from Initial Testing on Fixed Programs 

As mentioned in Section 4.3, we ran the static analysis tool on a set of programs after 

integrating the verification techniques into a program that was stable enough to run with the 

results shown in Table 5.1. These programs were obtained with the latest commits from GitHub 

in late January 2022.    

Table 5.1. Initial results from the static analysis tool on fixed programs. 

 Ownership 
Checks 

Signer 
Checks 

Signed 
Invocation 

Arithmetic 
Operations Total 

mean-dao/mean-
core/ddca 0 0 0 2 2 

metaplex-
foundation/ 
metaplex-program-
library/metaplex 

10 0 0 10 20 

blockworks-
foundation/mango 0 0 0 2 2 

 

For the DDCA program, there were a total of 2 vulnerabilities found from the static 

analysis tool. One of the issues was considered a false positive from utilizing the Anchor 

framework in building the program, as it was a private helper function that could not be accessed 

by an attacker. However, there was another integer overflow issue that was problematic from 

what the tool reported, which was shown in Figure 2.6 under the discussion of identifying and 

solving such issues.     
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Moreover, the main Metaplex program contained 20 total vulnerabilities. There were 10 

cases where there were missing ownership checks; however, upon further inspection, all of them 

were found to be false positives, with the functions calling a separate assert_owned_by 

utility function with ownership assertions before handling sensitive instructions. Additionally, 

there were 10 issues for unchecked arithmetic operations, which were found to be true, but were 

concerns that could not be manipulated as they were either private helper functions or functions 

that checked the validity of the inputs before performing any unchecked arithmetic operations. 

Overall, nothing significant was found from the vulnerabilities that were detected through static 

analysis. 

 Lastly, the Mango Markets program was found to have 2 total vulnerabilities. Both were 

found to be unchecked arithmetic operations pointing to the same line of code but approached 

through a different set of call stacks. Unfortunately, nothing of significance was found from this 

line of code, as it was a function handling the state of the program in invoking arithmetic 

operations related to time, with heavy validation on the inputs. 

 Two of the three programs that were initially run to test the static analysis tool are known 

to use the Anchor framework. The main Metaplex program was the lone project to not use the 

framework. This framework allows developers to conveniently write smart contracts, with 

several provisions in the framework that implements checks in ownership and signatures 

automatically, unlike developing a smart contract from scratch. Additionally, all three programs 

utilized the latest versions of dependencies, such as the SPL Token program, to where signed 

invocation vulnerabilities could not exist. Thus, the results shown in Table 3.1 are somewhat 

reliable in this initial prototype of the static analysis tool after further investigation. 

 



26 
 

5.2 Fixed Tool on Updated Programs 

A total of 38 programs from the Solana Program Library were identified from the GitHub 

repo by the static analysis tool, and an analysis of the two significant programs in the Token and 

Token 2022 programs was conducted for two weeks between March 2nd and March 17th from 

changes committed by the community. The results are shown in Figure 5.1. 

 

Figure 5.1. Graph of total vulnerabilities over time from the SPL Token programs. 

 A total of 22 commits were made throughout the period, with most of the commits having 

some involvement with the Token programs that were being investigated. No significant results 

were found, as the vulnerabilities that were discovered with the programs were relatively 

constant except for a commit that reduced a vulnerability in the Token program on March 8th.  

 The regular Token program had an initial total of 29 potential vulnerabilities. One of the 

vulnerabilities was an integer overflow issue with an unchecked addition operation, but the issue 

could not be used for malicious intent as the underlying functionality was for formatting numbers 

as strings. All the other vulnerabilities were mainly involved with the missing owner and signer 
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checks, which were also found to be insignificant as they call the program’s 

check_account_owner or cmp_pubkeys functions, which subsequently calls a 

sol_memcmp system function in comparing Pubkeys. The one reduced vulnerability after 

March 8th came from altering code relating to ownership checks, with more assertions added in 

verifying the input accounts from the flagged function.  

 The newer Token 2022 program had a constant number of vulnerabilities detected, even 

with commits being made throughout the source code. 45 total issues were found, with 20 

relating to arithmetic operations and 25 relating to missing ownership and signer checks. The 

arithmetic operations noted also were unchecked for potential underflow or overflow issues, but 

the concerns were not significant for similar reasons in the regular program – there was no 

purpose in utilizing these operations for malicious intent, with most of the operations occurring 

within private helper functions. Additionally, the Token 2022 program has utility functions in 

check_account_owner or cmp_pubkeys that are called before sensitive operations to 

validate ownership and signed instructions, which covered all the missing check vulnerabilities.  

 To summarize, the vulnerabilities that were detected in two weeks were mainly 

insignificant, but the static analysis tool was able to identify sensitive instructions and arithmetic 

operations that needed various checks on programs. Even though the programs we investigated 

were mature, actively maintained, and heavily audited, the verification techniques employed in 

these programs convey that it could serve as a baseline to identify basic security issues.  

5.3 Updated Tool on Fixed Programs 

There was a total of 31 programs we compiled into a dataset that the static analysis tool 

found. The total number of vulnerabilities found between February 4th and March 21st for the 

notable programs from the dataset is shown in Figure 5.2. 
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Figure 5.2. Graph of total vulnerabilities over time from the fixed programs. 

 Several trends relating to the total number of vulnerabilities occurred as we modified the 

verification techniques. On February 19th, we deployed several changes to the algorithms relating 

to arithmetic operations to fit in a generic taint analysis interface like the other techniques, 

increasing the rate of false positives on the issue. An additional filtering mechanism was added 

afterward on February 25th, removing any duplicate reports and blacklisting a number of 

functions that created false positives. Throughout the process, heuristics were tweaked for the 

other vulnerabilities but there were no significant impacts that were seen similar to the issues 

related to arithmetic operations.  

 The initial results contained around 10 false positives per program, where they were 

mainly issues of arithmetic operations and signer checks. Over time, we improved the overall 

reliability of the verification techniques to where there are few false positives in the end. The 

current issues now are mainly related to false positives in arithmetic operations. 
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5.4 General Performance 

Throughout the experiments, performance remained constant in terms of the time it took 

to run the analysis and the reliability of the reports produced by the tool. Each smart contract 

took an average of 4 minutes for the static analysis tool to generate a report on any 

vulnerabilities it discovered. This was consistent with all the programs that we used in our testing 

environment outlined in Section 4. Most of the time comes from the compilation process that is 

conducted by the Rust compiler, as it loads crates and dependencies from programs before 

allowing our tool to run static analysis.  

Additionally, the static analysis tool was reliable enough in finding clear vulnerabilities 

with the techniques we mentioned earlier. The identification of sensitive instructions and the 

reporting of potential vulnerabilities were sufficient in this early stage of development to where 

the tool should be used in practice for Solana developers in securing their applications.  
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6. CONCLUSION 

In this paper, we have presented several different verification techniques to identify 

vulnerabilities in Solana smart contracts. The vulnerabilities were missing ownership checks, 

missing signer checks, the signed invocation of programs, and the underflow and overflow of 

arithmetic operations. In conjunction with a static analysis tool that combined these techniques, 

we were able to showcase the results we found from the development of this tool on real-world 

applications.  

There is future work to be accomplished. We wish to improve the reliability in 

identifying more true positives and reduce the number of false positives in vulnerabilities. 

Improving the reliability of the tool will allow us to implement more techniques in identifying 

new vulnerabilities. Additionally, to verify and reproduce true positive vulnerabilities, we would 

create an automated tool in generating a proof-of-concept program that exploits the smart 

contracts that were tested on.  

We believe that the techniques discussed within the paper have the potential to be 

incorporated into a single static analysis tool for improving the security of Solana programs. In 

various experiments, we found that the verification techniques were able to identify sensitive 

instructions and properly raise concerns about potential vulnerabilities that needed attention. 

Early versions of the tool have shown promise in identifying major security concerns of a 

program before deployment to where we can safely encourage Solana developers to secure their 

applications with the techniques shown in practice.   
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