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ABSTRACT 

Eating and Exercise Detection with Continuous Glucose Monitors 

Tony Yang 

Department of Computer Science & Engineering 

Texas A&M University 

Research Faculty Advisor: Dr. Bobak Mortazavi 

Department of Computer Science & Engineering 

Texas A&M University 

Eating and exercise detection using continuous glucose monitor (CGM) signals is key to 

provide recommendations for a healthy lifestyle. However, this can be challenging given 

imbalanced data and other contexts. Previous works have used accelerometers, gyroscopes, 

glucose monitors, and other sensors but not necessarily all three plus others combined. 

Therefore, I aim to build a model by testing various techniques and testing glucose along with 

different statistical body measurements, such as electrodermal activity, heart rate, blood volume, 

accelerometer, gyroscope, etc. A sliding window is used to extract statistical measures from each 

body measurement, such as standard deviation, mean, and range to look for patterns correlated to 

eating and exercise. I select an extreme gradient boosted decision tree algorithm with Synthetic 

Minority Oversampling Technique. I compare the performance of just solely using glucose and 

then adding more sensory data and discovered that there is not consistent change in performance. 

I also adjusted the window and overlap to compare eating detection performance and found that 

there is not a concrete impact on the performance. Furthermore, I performed exercise detection 

and compare with and without CGM. There appears to be no significant performance difference 
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with or without glucose. In addition to eating detection, I also examine for correlation between 

glucose variation and exercise moments. I finally conclude that it is not feasibly possible to 

detect eating with my current methods. However, for exercise detection, I can produce better 

detection results compared to eating, but my current method for detecting correlations between 

glucose levels and exercise moments can be later improved.   
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1. INTRODUCTION 

Eating and exercising are some of human’s essential activities that have a direct impact 

on glucose levels. In addition, eating and exercising properly (i.e., consuming the right number 

of calories, having sufficient nutrients, eating the correct foods, exercising the right amount of 

time, etc.) is also a key component to healthy glucose levels. Not having proper diet and exercise 

could lead to major health problems, such as improper weight (overweight or underweight), heart 

diseases, diabetes, and/or cancer [6] [21]. Certain levels of glucose may be considered too low or 

too high for exercise as a result of diabetes or hyperglycemia [3]. Therefore, it is essential to be 

able to detect when someone is eating and exercising so that the proper diet and exercise 

recommendations can be made based on the glucose levels.  

Detecting when someone is eating can be difficult because there are other activities (e.g., 

bathing, cooking, getting dressed, smoking, socializing, etc.) that could mimic eating when 

observing one or two features measured from various human body statistics [2] [7] [13]. These 

features include glucose levels, motion (accelerometer and gyroscope) sensors, galvanic skin 

response, body temperature, and among other various statistics. Furthermore, each person’s body 

composition is different and could lead to different readings based on certain health problems. 

For example, smoking will increase blood sugar levels since nicotine causes an increase in blood 

sugar levels just like with eating [18]. Therefore, it might not be sufficient to just look at one 

feature alone.  

Another major issue is the fact that people are not eating or exercising most of the time. 

Consequently, I have an imbalanced dataset with most times being classified as not eating or 

exercise [19]. So, it would be naive to say that a model does a good job purely based on accuracy 
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alone. A 90%+ accuracy score can easily be achieved with a model always predicting “not 

eating/exercising” along with other models that don’t predict the “eating/exercising” output as 

accurately. I, therefore, need to look closely at how well a model can predict the 

“eating/exercising” moments using other metrics (e.g., F1 Score, ROC AUC Score, Balanced 

Accuracy, PR AUC Score, etc.) that examine how well a model performs in detecting true 

positives (e.g., eating/exercise) in addition to accuracy.  

1.1 Literature Review 

When I examine how glucose generally changes with exercise, glucose levels do lower 

with steady state cardio exercises due to the muscles using them as energy but certain intense 

exercises may result in an increase in glucose levels due to stress hormones being released [9] 

[15] [23]. Eating carbohydrates increases in blood glucose levels [3]. However, the amount of 

variation, if any, can vary from person to person even with the same foods consumed [12].  

Exercise detection in previous works have used accelerometers or cameras as a means of 

detecting exercise. In one particular experiment, a camera was used to detect a full body sense of 

motion [11]. This study was extremely successful in that it had managed to differentiate between 

exercise from other activities 84.6 percent of the time with the use of neural networks to train a 

model for exercise detection [11]. However, the major downside to this particular study was that 

this was conducted exclusively at a gym rather than in a day-to-day life setting. As a result, the 

specific detection patterns that are used in this particular study are not necessarily a true 

representation of what could be exercise patterns on the street. Another experiment that presents 

a similar problem is one that all participants performed the same exercises in a controlled setting 

using an accelerometer in order to compare exercise vs. non-exercise. They achieved a very high 

metric of over 95 percent in both recall and precision [13]. This experiment had used a principal 
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component analysis (PCA) as a means of being able to train a model to differentiate exercise 

from non-exercise [13]. A similar experiment had also used an accelerometer sensor in which 

participants engaged in repetitions of the same exercise but with Long Short-Term Memory 

(LSTM) Neural Networks used to train and detect specific exercise drills. Results varied from 

depending on the exercise performed and had F1 scores were in the range of 0.595 through 0.989 

[8]. 

While there are some research projects centered around exercise detection, there are 

many more around eating detection. Many research projects aimed at detecting eating in the past 

have used data from the accelerometer as the most common feature followed by data from the 

gyroscope not including any glucose sensor or energy expenditure sensor [2] [5] [20]. Other 

methods include a microphone (using recurrent neural networks and LSTM to detect chewing 

swallowing, biting, and other eating motions), piezoelectric sensor, radio-frequency transmitter 

and receiver, camera, and among other types of sensors [1] [2] [10]. In one study, they used a 

three-axis accelerometer on a smartwatch along with short questionnaires that examines 

contextual information about individuals. This produced an F1 score of 87.3% for real-time 

eating. They used a python library in sklearn random forest classifier offline to detect eating 

gestures (as well as non-eating motions). Then, they used a threshold-based approach in which if 

20 eating gestures were detected in the span of 15 minutes, a questionnaire would pop up for the 

user to verify if the model predicted correctly [14]. The gyroscope sensor was the second most 

used sensor aside from glucose monitors. In another experiment, both the accelerometer and 

gyroscope were used. The accelerometer has a higher recall, and the gyroscope has higher 

precision. When combined, however, they both produce better recall, precision, and F1 score 

compared to when they are used individually [19]. In another study, they used an air microphone 
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sensor and photoplethysmogram (blood volume) sensor attached to the ear along with an 

accelerometer to detect eating moments. They used support vector machines with radial basis 

function kernel to build the model. This produced a result with a 0.938 accuracy and a recall of 

0.807 thus leading to an F1 score of 0.800. This did include more features and achieve a high F1 

score. However, this sensor would not be truly feasible in the real world since participants 

oftentimes did not wear sensors due to the discomfort many of them expressed [16] [22]. Most 

work has been focusing on using motion sensors. However, there are still some studies that have 

just used only used glucose monitoring. They have used Kalman filter estimation, simulation-

based explanation, backward difference method, and the second derivative of glucose to be able 

to detect meals [4] [17].  

My work attempts to look at glucose data and use a sliding time window to extract 

statistical features, such as standard deviation, and examine patterns that may correlate with 

eating and exercise. I want to compare how CGM relates to exercise and eating since glucose 

fluctuates with those two activities and are directly related to a person’s health. However, using 

CGM monitors alone might not be enough since certain foods and exercises affect glucose levels 

differently in each person. Therefore, I plan to combine several sensors, including the glucose, 

gyroscope, accelerometer, heart rate, body temperature, and others, rather than just a few select 

features in previous works to derive more features. I build different models for each participant 

that will be used to detect eating and exercise activities and distinguish them from non-eating 

and non-exercise moments and will compare the performance. 

1.2 Problem Formulation 

The main idea is to look at the correlation of exercise and eating with CGM signals. I am 

also examining for patterns in the data that could correspond to when someone is eating, such as 
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an increase in glucose levels, body temperature, heart rate. I am also looking for any motion 

sensor data measured from the accelerometer that could mimic a hand moving from food sitting 

on the table to putting the food in a person’s mouth. For the case of exercise, I am looking for, 

most importantly, a correlation where I see a decrease in glucose levels and then a spike during 

or shortly after exercise. When intense exercise is occurring, I also expect to see an increase in 

skin electrodermal activity and body temperature.  

However, it is entirely possible that other daily activities (e.g., stress causing a spike in 

blood sugar, smoking leading to an increase or decrease in glucose) could mimic certain CGM 

patterns in the features in eating and exercise, resulting in misclassification. Therefore, I look at 

the other measurements besides CGM to help distinguish other daily activities from eating and 

exercise but even then, that still might not work. In addition, each person has a different body 

composition (i.e., weight, height, body fat percentage, etc.) and some might have certain health 

conditions, which may result in the features producing different results when performing daily 

activities. For example, those with diabetes tend to see a higher increase in blood sugar levels or 

those with generalized anxiety disorder might have high heart rates at certain times. So, there 

isn’t one model that can work on the whole population.  

Additionally, the data were collected from participants who are living their day-to-day 

lives. This results in a highly unbalanced label of non-eating and non-exercise being overly 

represented since neither activity are dominant in a normal person’s daily life. Therefore, it is 

just as important to be able to accurately capture the eating and exercise moments just as it is to 

be able to capture the non-eating and non-exercise moments. 
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2. METHODS 

2.1 Glucose Data Description 

I have two sensors (Dexcom and Abbot) that measure glucose, both of which are 

continuous glucose monitors. The Dexcom monitor collects a reading every five minutes while 

the Abbot reads every fifteen minutes. With them both being continuous glucose monitors, I 

cannot use measurements from both monitors to be in the same model since they both read at 

different rates and are both monitoring the same feature, glucose in this case. 

2.2 Algorithm Selection 

Next, I need to determine which machine learning method would be best to model the 

data. I decided against using a neural network since I do not have enough data to train a neural 

network. In addition, neural networks can also take a long time to train and test. Therefore, 

neural networks are not time efficient for my purposes. I then decided on using an extreme 

gradient boosted decision tree classifier (See Figure 2.1) since I had multiple features, limited 

data, and complex patterns in data that could correlate with eating, exercise, and other activities 

(e.g., driving, sedentary work). I choose this because it is simple enough to determine eating vs 

non-eating (or exercise vs. non-exercise) moments using each participant’s features. I decided 

that I will set a maximum depth of ten as to not train the tree to become too specific for certain 

features due to unbalanced data. To ensure I get consistent output for every runtime of the code, 

a random state for each model is set.  
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Figure 2.1 

The process of how extreme gradient boosted trees train a model. 

2.3 Handling Unbalanced Data 

Then, I must decide how to handle unbalanced classifications. I am trying to detect 

exercise and eating. Thus, my binary classifications are eating vs. non-eating and exercise vs. 

non-exercise. I concluded that using the Synthetic Minority Oversampling Technique (SMOTE) 

was my best option since the technique can generate similar data to help train my model. This 

was better than under sampling the majority data since that would discount gathered true data. 

Over sampling my underrepresented classification of eating and exercise would not be as 

effective since it might not account for similar patterns in features. Under sampling my 

overrepresented classification of non-eating and non-exercise would not be effective since it does 

not mimic the similar scenarios like SMOTE seen in Figure 2.2. 
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Figure 2.2 

 

A two-feature example of how an unrepresented class is resampled by generating samples with similar features. The 

red represents the overrepresented data. The blue represents the original unbalanced data and the green represents 

the generated samples. 

 

2.4 Handling Time Differences in Timestamps of Data Logs 

One of the other major challenges that was posed is that the dates and times for the 

sensors were not always on the same time zone. In addition, the data was also collected during 

November 6th, which is also the day that Daylight Savings Time ends. Therefore, the timestamp 

for the sensor in Central Time Zone ended up being overwritten for the time range November 6th, 

2:00 AM through November 6th, 2:59 AM when the clock went back one hour. Therefore, I had 

to discard this portion of the data due to missing data that was overwritten. In addition, there was 

also some delay in the Apple Watch’s accelerometer and gyroscope sensor, and this varied 

between participants.  

Therefore, when I was extracting data, I had to consider the time difference and delay. I 

analyzed this by looking at the three devices’ data and aligning according to the user’s reported 

data of meals and exercise moments. For example, if the user reported that they were sleeping at 

a certain time, I should be able to see a flatline of zero for all axis of the accelerometer reading 

since the sensor would not be moving for a significant amount of time or that glucose levels 

should increase after eating. See Figure 2.3 below. Another indicator would be the increase in 
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glucose levels because of when someone had eaten. Using the user log timestamps in addition to 

the sensor time stamps, this allows me to align the times properly.  

 

 

 

 

 

 

 

Figure 2.3 

The glucose data timestamps were in CST time and the user logs and E4 Accelerometer was in GMT. The graphs in 

the top row and left column represent the glucose levels after the participant reports eating. The bottom left graph 

shows a comparison when the user logs their sleep time and the actual sleep time. 

Additionally, a bigger challenge is that the user logs are only relative. For example, they 

may say they were sleeping for eight hours and fifteen minutes when they were sleeping for eight 

hours and fifty minutes. Thus, makes aligning the timestamps a difficult task and forces me to 

use my best judgment. Consequently, this may not result in accurate predictions or readings. 

Therefore, I decided against analyzing participant two’s data since they had not logged any data 

about their activities, making it essentially impossible to detect their patterns.  

2.5 Sliding Window and Measuring Statistics 

I then decided that I would use a sliding window technique with possible overlap across 

the data all the time. In each window used for detection, I measure the standard deviation, mean, 

and range of each feature (glucose - Dexcom or Abbot, each axis of the accelerometer and 

gyroscope and the force, as well as body temperature, galvanic skin response, electrodermal 
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activity, and photoplethysmographic data). See Figure 2.4. The standard deviation is used to see 

how average much of a change there was on average from timepoint to timepoint as eating will 

result in a change in specific features. The mean is also used to correlate any threshold of values 

to eating since eating normally results in different levels than non-eating. Finally, I also use 

range to measure variation but to also look for potential skewness as large ranges typically imply 

some activity such as eating, or exercise has occurred.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 

The sliding window loops over the data and extracts the features as shown above. 
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I define a window to be an eating/exercise window if the user is eating/exercising for any 

moment during the duration of that window, at least 5 minutes. The threshold is low because I 

need to be able to generate more training data. See Figure 2.5. 

 

 

 

 

 

 

Figure 2.5 

I look at the span of window and see how long an activity occurred and determine if I am going to mark that window 

as if the activity occurred. 

Many other measurements were not taken in five-minute intervals. Thus, they were all 

grouped into the nearest five-minute mark and averaged. See Figure 2.6. For example, all the 

motion data from November 6th 13:27:30 through 13:32:29 averaged and the time stamp at 

13:30:00 for the motion features was marked as the average of all the data closest to that five-

minute mark rather than using the exact motion data point at that timestamp. This is to get a 

better picture of what could be occurring around that time. Other limitations include that the 

window size cannot be less than 15 minutes since the Abbot monitor reads every 15 minutes. 

Thus, any window size less than 15 minutes may result in no data being able to be read. 

 

 

 

 



15 

 

 

 

 

 

 

 

 

Figure 2.6 

Grouping feature values that read continuously in intervals shorter than five minutes. 

For the windows used to detect correlation, I extract the starting value minus ending 

value of the glucose value for that window and correspond it to the time frame I am looking, 

whether that be 2 hours after or 1 hour after. See Figure 2.7. This is to be able to detect if there 

was an increase or decrease in glucose levels. The range would not be reliable since it is always 

positive and thus is unable to detect increase or decrease.  

 

 

 

 

 

 

 

Figure 2.7 

This figure explains how correlation feature and values are preprocessed for correlation between exercise and 

glucose levels. 
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2.6 Data Pruning 

One step I also had to take was that I needed to trim or not use some parts of the data. 

This is mainly because some parts of the data are missing in one dataset. For example, 

participant 3 had no reading from the Abbot sensor until November 5th and had major gaps until 

around 8:55 AM November 6th, in which I simply indexed off any readings before that, thus 

truncating the reading of that data. For the motion data, I manually edited the .csv file and 

removed any dates that went past the glucose monitor’s reading. Participant 1 also had lapses in 

data. One occurred at the end in which I manually edited the .csv file and deleted rows with 

missing Abbot readings. The other occurred in the middle of the data and not wanting to delete a 

large amount of data, I wrote in the code to not consider any windows where data is missing.   

As with the motion data, I also removed any data that went past the glucose reading 

monitors to ensure that the data matches up. When I begin to add other features (i.e., body 

temperature, heart rate, galvanic skin response, and photoplethysmographic data), I will have to 

remove even more data since the monitor is not always reading. Instead, it only reads for part of 

the day and not continuously like the glucose and motion monitors. In this case, removing data 

will be the only option as to not disturb the data for use in training models without these features. 

I also remove any data in which the window size may not have read a full window size of data, 

which typically happens at the end of the file. In other words, the window size may not divide 

evenly with the number of time points thus resulting in the last window missing a few time 

points and thus not necessarily creating an equal and balanced reading for standard deviation, 

mean, and range. 
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2.7 Training and Testing 

To evaluate each model, I do a fivefold cross validation. To create each of the splits for 

cross validation, I first separate the eating labels and their corresponding features apart from the 

non-eating labels and their corresponding features. I then evenly split the eating and their 

corresponding features into the five folds. See Figure 2.8. The same is done again for the non-

eating labels and their corresponding features. This is to ensure that when training that the model 

also has some underrepresented labels of non-eating.  

 

 

 

 

 

 

 

 

Figure 2.8 

This figure illustrates how I evenly separate the labels first and the corresponding features so that each split 

contains the unrepresented label. 

I then check by using the test set and use metrics such as the overall accuracy, balanced 

accuracy, F1 Score, ROC AUC score, and PR AUC Score. See Figure 2.9. The same procedure 

is repeated for exercise experiment, except I use the E4 accelerometer instead of any Apple 

Watch data as well as I only used Dexcom glucose readings. 
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Figure 2.9 

This figure depicts how a decision tree is used. If the evaluation is true, it will go down one branch. Otherwise, it 

goes down the other. 

2.8 Data Description 

2.8.1 Data Collection 

The data being used here is collected by participants recruited by the Systems and 

Technology for Medicine and IoT (STMI) Lab. For privacy reasons, I do not know which 

individual the data belongs to. Instead, they are labeled with just a number (i.e., participant 1). I 

used multiple participants in this dataset to train on, namely participant 1, participant 3, and 

participant 4. All of the data collected is then represented as a .csv file with the header 

representing the features. Additionally, all timestamps are indicated on the 24-hour clock. 

2.8.2 Glucose Data 

Glucose monitor data was collected over the course of a few days, from November 03rd 

through November 11th for participant 3 and participant 4 and from November 5th through 

November 9th for participant 1. All times indicated in this dataset are in Central Time. The Abbot 

only reads every fifteen minutes while Dexcom reads every five minutes. Both monitors were 
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stuck in the arms of participants. Dexcom data typically ranged from 50-150 while Abbot data 

ranged typically from 80-250.  

2.8.3 User Logged Eating and Exercise Moments 

There is a self-reported data log that users input the time they started eating as well as the 

time they ended eating. I always rounded to the nearest 5-minute mark in the combined glucose 

data mark to determine if a subject was eating or not at that time. A big challenge was that many 

of the user’s inputs didn’t make sense. For example, participant one indicated that he or she was 

eating from November 7th, 2021 02:20 to November 8th, 2021 03:57, which is over 24 hours. I 

find this impossible and assumed it was a typo and that the user meant the end time was 

November 7th, 2021 03:57. Another example was in participant 3’s activity logs in that the start 

time occurred ten hours after the finish time. The user logged the start time as November 7th, 

2021 03:00 and the finish time as November 6th, 2021 17:00. I adjusted the finish time to one 

hour after the start time since that would make sense as to when someone would finish dancing 

and could be the result of a user inputting their logs incorrectly. In addition, I also determined 

that moments of actively walking during work or dancing is still counted as exercise. After all, 

actively walking or dancing during a workout vs. at work is going to be no different as the 

sensors are unable to distinguish the two moments. Eating/exercise is classified as 1 and non-

eating/non-exercise is classified as 0. All timestamps in this dataset are in Greenwich Mean Time 

and was recorded in an apple watch application.  

2.8.4 Accelerometer, Gyroscope, Roll, Pitch, and Yaw Data 

Other data included accelerometer and gyroscope data in the Apple Watch. This data was 

collected about every millisecond and was continuous with no breaks except for those where the 

reading failed due to failure in the sensor. Data here was collected from the apple watch sensors, 
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which have an accelerometer and gyroscope and are typically in the single digits with an 

absolute value of no more than five. Accelerometer data was also collected in E4 watch during 

the same time that watch collected other data. Furthermore, timestamps collected in this dataset 

were complicated as there was sometimes where there were delays in readings.  

2.8.5 Body Temperature, Heart Rate, Galvanic Skin Response, and Photoplethysmographic 

Data 

In addition to apple watch sensor data, I also collected data about the subject’s Body 

Temperature, Heart Rate, Galvanic Skin Response, and Photoplethysmographic Data from an E4 

Watch. Each day that data was collected is represented in a separate file. Heart rate was collected 

once every second while temperature and electrodermal (Galvanic Skin Response) data were 

collected four times every second. Photoplethysmographic Data was collected 64 times per 

second. All timestamps for each of the features from the E4 watch are labeled in Greenwich 

Mean Time.  

Given the number of timestamps these features produced, the Photoplethysmographic 

was too large to be viewed in the Excel application and even Google Spreadsheets. Furthermore, 

these sensors never ran the entire day. In other words, it did not run 24/7 while this experiment 

was going. It would usually start sometime in the morning hours and end in the evening or early 

morning hours of the next day. Photoplethysmographic data typically ranges from a few hundred 

in the negative values to a few hundred in the positive range. The galvanic skin response data 

ranges from 0 through about 5 but stays in the single digits usually. The heart rate is typically 

from the 50s to a couple hundred and the temperature ranges from teens to the 30s. 
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3. RESULTS 

3.1 Eating Detection  

My attempt to detect eating produced inconsistent results. In addition, statistical metrics 

were not above 0.5. For example, my F1 scores were typically never above 0.5. However, I did 

experiment with combining more features, adjusting the window size, and changing the overlap 

to look for any significant changes. 

With combining more features, one major thing I noticed is that I noticed similar trends 

when comparing Abbot vs. Dexcom monitors in participant one and participant four of my 

statistical measurements aimed at detecting eating moments (i.e., F1 Score, Balanced Accuracy, 

ROC AUC Score, and PR AUC Score) when I add more features. See Figure 3.1 below depicting 

changes in the F1 Score.  

 

 

 

 

 

 

 

 

 

Figure 3.1 

This graph depicts the performance as I add more features. 
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The key reason this might occur is because certain features such as accelerometer and 

gyroscope, might play a bigger role as a feature in detecting eating in certain participants 

depending on how accurately the participant records their timestamps. Certain foods might have 

less of an effect on glucose depending on the participant. Participant one’s log timestamps were 

not very aligned with the Apple watch’s accelerometer and gyroscope and thus has lowered 

predictive probability but went up due to E4 data potentially having a stronger correlation. 

Participant four’s log timestamps for were more aligned with the watch’s data and thus allowed 

me to have higher predictability. I also noticed that there is a decrease in the metric when using 

the E4’s data on participant four. This is likely because there is less correlation between E4’s 

data and eating and thus has less predictive power. Participant three’s trend was not entirely 

consistent. This could be attributed to many reasons such as missing data or misaligned data.  

Another major factor that I examined was the window size, which varied in performance 

depending on the participant and whether Dexcom or Abbot was used. See Figure 3.2. Unlike 

with adding more features, the results here proved to be much more inconsistent. My intent was 

to try to generate more eating moments and examine a wider range of feature measurements that 

correlate to just even short moments of eating. For some, this may slightly increase the 

predictability power and then decrease.  
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Figure 3.2 

This graph depicts the performance of varying window size. 

All models above used glucose with an extreme gradient boost classification tree with 

SMOTE to increase the underrepresented classes. This SMOTE technique attempts to allow the 

classifier to better fit the model since it now has an equal pool of classes with the 

underrepresented class being able to be represented more and have its distinct features, that 

would be different from non-eating and non-exercising moments, more synthetically represented. 

However, because of features that lack correlation with eating, their performance was still not as 

good.  

Another change that did not make much of a difference is the overlap in comparing CGM 

with eating detection. There does not appear to be any significant variation resulting from 

changes in the window size. This is because overlap simply allows data points (except points at 

the beginning and end) to be represented multiple times, thus, resulting in more similar statistics 

being produced. 

3.2 Exercise Detection 

With exercise detection being compared to glucose, I was able to produce better results 

compared to eating detection. I used the same method of using an Extreme Gradient Boosted 
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Decision Tree, applying the SMOTE on the training set, and evaluating on the fivefold test split 

as I had previously utilized in my eating detection experiment. I used a fixed window size of 30 

minutes and overlap of 25 minutes. I tend to see higher scores in F1, Area Under the Precision-

Recall Curve, and Area Under the Receiver Operating Characteristics (AUC ROC) compared to 

that of eating detection. The key reason is that there are likely certain features (such as higher 

heart rate, electrodermal activity, lowered glucose levels, etc.) tend to be more correlated with 

the exercise allowing the model to look for these patterns and then using them as predictors in 

determining if exercise occurred.  

Below are the graphs of the five trials for each of the participants I used. I compared 

using E4 sensor data with Dexcom data and without and found that they both produce similar 

results. This is likely since there are similar variations in a participant’s glucose levels 

throughout the day. See Figure 3.3 A-C below.  

 

Figure 3.3 A 

The above depicts the curve of AUC ROC for participant 1 with vs. without Dexcom, which is the false  

positive rate vs. the true positive rate. 
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Figure 3.3 B 

The above depicts the curve of AUC ROC for participant 3 with vs. without Dexcom, which is the false  

positive rate vs. the true positive rate. 

 

 

Figure 3.3 C 

The above depicts the curve of AUC ROC for participant 4 with vs. without Dexcom, which is the false  

positive rate vs. the true positive rate. 

 Ideally, the higher the value curve is leaning towards the top left corner, the more robust 

the model performs. This means that as the true positive rate increases, the false positive rate 
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should not increase as much. As you can see, the model does have some capability to detect 

exercise, but it still misclassifies many non-exercise moments as exercise. This is likely since, 

just like with eating detection, there are features that further distinguish exercise from non-

exercise but there are still some that are similar in both exercise and non-exercise moments. For 

example, heart rate might increase when someone is stressed or anxious.  

 In terms of feature importance in comparing with glucose, this varies from participant to 

participant. I observe that glucose is only a minor factor and that only a couple of features will 

significantly make an impact on detecting exercise and that there is often an outlier in which the 

feature with the highest impact will often have a much bigger impact than others. This is likely 

because certain activities that a participant does will result in certain features being more 

applicable to detecting exercise. However, as a major challenge, I am simply detecting exercise 

in general rather than what specific type of exercise they were doing (e.g., running, walking, 

weightlifting, etc.). I use the SHapley Additive exPlanations (SHAP) values to examine any 

impact on exercise detection. Higher SHAP values means higher impact on the prediction.  

See Figure 3.4 A-C below. 
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SHAP Values for Participant 1 

With Dexcom      Without Dexcom   

  

 

        

 

 

 

Figure 3.4 A 

The above two graphs compare the SHAP values for participant 1 with vs without Dexcom monitor. 

SHAP Values for Participant 3 

With Dexcom      Without Dexcom   

 

 

        

 

 

 

  

Figure 3.4 B 

The above two graphs compare the SHAP values for participant 3 with vs without Dexcom monitor. 
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SHAP Values for Participant 4 

With Dexcom      Without Dexcom   

 

 

        

 

 

 

Figure 3.4 C 

The above two graphs compare the SHAP values for participant 4 with vs without Dexcom monitor. 

3.3 Exercise Correlation with Glucose Levels 

Another thing I am trying to examine is for any correlation between the exercise and 

glucose level after a certain timeframe. I namely looked at glucose variation one hour after 

exercise and glucose variation two hours after exercise. I found that there is a stronger 

correlation with glucose variation one hour after exercise as opposed to two hours after exercise. 

See Figure 3.5. 

Glucose Level Correlation with Exercise After a Certain Time 

One Hour After Exercise         Two Hours After Exercise 

 

 

Figure 3.5 

Here is a depiction of correlation numbers for my three participants for one hour after exercise and two hours after 

exercise. 

Participant 1 Participant 3 Participant 4 

-0.12 -0.028 0.087 

Participant 1 Participant 3 Participant 4 

-0.09 12 0.03 
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 It is possible that the decrease in correlation is probably because humans’ glucose 

variations tend to be more similar to that when exercise occurs and when it does not occur two 

hours after exercise. Another interesting result is that some participant one had positive 

correlation rather than negative correlation. It is likely that participant one just has a body that 

functions differently and therefore continues to have a decrease in glucose levels rather than an 

increase. The same can be said for participant three for one hour after exercise although 

participant three had a positive correlation two hours. Therefore, it is likely that participant three 

experienced an increase in the blood glucose levels sometime between one to two hours after 

exercise.  
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4. CONCLUSION 

These models purely examine eating versus non-eating moments and exercise vs. non-

exercise moments to compare if glucose is correlated with those activities and if other body 

statistics have a bigger impact. These models further assumes that every feature like that of 

eating or exercise activity is truly eating or exercise. It is difficult to tell that it could possibly be 

another activity that creates similar results to eating or exercise thus resulting in 

misclassification. It could be possible that having a model train on more features, such as sound 

from a microphone sensor, better distinguish eating from smoking and classify the two 

accordingly. Additionally, future improvements could involve collecting more participants and 

gathering their health data (i.e., body weight, if they have diabetes, do they smoke, are there any 

anxiety disorders, etc.). Furthermore, this is also assuming all foods and exercise moments have 

the same effect on the body though it is possible certain foods can affect glucose levels 

differently on each different person and each person might perform different workout motions of 

different intensity.  

After adding features and experimenting with various models and techniques, I have 

observed that more incorrect results are produced in detecting eating motions with CGMs or with 

any of the other body metrics. I likely believe that this is because eating only has a minor effect 

on the glucose levels of these participants and minimal effect on the other body metrics that I 

used. In addition, the effects of eating vs. non-eating on the body might not be correlated as 

much with the other body metrics, such as heart rate, electrodermal activity thus making those 

features less reliable.  
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Like with eating detection, glucose was not the most significant factor in exercise 

detector. Instead, E4 data typically played a more significant role. Unlike eating detection, I was 

able to fare better than exercise detection as I typically saw better performance compared to 

eating detection. This is likely because there are higher variations electrodermal activity, 

accelerometer, and heart rate and thus is subject to noise when detecting attempting to detect 

exercise but can be improved upon. It normally misclassifies at least 30% of exercise moments 

as non-exercise but still means that it is more correct than not. Exercise can come in many 

different forms and intensity thus resulting in different effects on the body, which in turn affects 

the sensor readings. Thus, in order to improve upon exercise detection, I would need to be able to 

classify exercise activities into what kind of exercise it is. For example, detecting walking is 

much different than detecting weightlifting but both can be classified as exercise.  

In addition to trying to detect exercise, I also examined for any correlations for glucose 

levels and exercise. I found that there was little correlation between glucose and exercise. This is 

likely due to the fluctuations in glucose levels and my small window size unable to detect if the 

fluctuation is significantly caused by exercise.  

These models do perform better than average but more sensors may need to be combined 

to better separate eating from non-eating and exercise from non-exercise. In addition, this was 

just purely based on a small number of subjects rather than the population as well as the fact that 

the timestamps were misrepresented by the users and that they combined certain activities (e.g., 

one participant logged that he or she was exercising and driving during a specific period), which 

made the model harder to distinguish between the two classifications.  
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