
AN EXPLORATION OF EDUCATIONAL ALGORITHM

VISUALIZATIONS USING WEB TECHNOLOGIES

An Undergraduate Research Scholars Thesis

by

NKEMDI ANYIAM

Submitted to the LAUNCH: Undergraduate Research office at
Texas A&M University

in partial fulfillment of the requirements for the designation as an

UNDERGRADUATE RESEARCH SCHOLAR

Approved by
Faculty Research Advisor: Dr. Dilma Da Silva

May 2022

Major: Computer Science

Copyright © 2022. Nkemdi Anyiam

RESEARCH COMPLIANCE CERTIFICATION

Research activities involving the use of human subjects, vertebrate animals, and/or biohaz-

ards must be reviewed and approved by the appropriate Texas A&M University regulatory research

committee (i.e., IRB, IACUC, IBC) before the activity can commence. This requirement applies

to activities conducted at Texas A&M and to activities conducted at non-Texas A&M facilities

or institutions. In both cases, students are responsible for working with the relevant Texas A&M

research compliance program to ensure and document that all Texas A&M compliance obligations

are met before the study begins.

I, Nkemdi Anyiam, certify that all research compliance requirements related to this Under-

graduate Research Scholars thesis have been addressed with my Research Faculty Advisor prior to

the collection of any data used in this final thesis submission.

This project did not require approval from the Texas A&M University Research Compli-

ance & Biosafety office.

TABLE OF CONTENTS

Page

ABSTRACT . 1

ACKNOWLEDGMENTS . 3

NOMENCLATURE . 4

CHAPTERS OR SECTIONS (YOU CHOOSE)

1. INTRODUCTION. 5

2. BACKGROUND . 7

2.1 What Is Dynamic Programming?. 7
2.2 What Is Weighted Interval Scheduling? . 8

3. RELATED WORK . 11

3.1 SREC . 11
3.2 VizAlgo . 12
3.3 VisuAlgo. 12

4. SYSTEM ARCHITECTURE . 13

4.1 AnimBlock . 13
4.2 AnimBlockLine . 24
4.3 AnimSequence . 32
4.4 AnimTimeline . 35

5. THE WIS VISUALIZATION. 44

5.1 Inputting Jobs . 44
5.2 Playing the Visualization . 47

6. CONCLUSION. 53

REFERENCES . 54

ABSTRACT

An Exploration of Algorithm Visualization for Educational Purposes

Nkemdi Anyiam
Department of Computer Science and Engineering

Texas A&M University

Research Faculty Advisor: Dr. Dilma Da Silva
Department of Computer Science and Engineering

Texas A&M University

Certain algorithms (such as those for dynamic programming (DP)) lack visualizations that

can exhaustively explain each step while delivering intuitive animations, in part due to rigid layouts

in the designs. In this paper, we show that these problems can be addressed using modern web

technologies—namely HTML5/CSS3 and Javascript—by demonstrating an animation framework

that lets developers create a timeline of animations that easily integrates into the flow of front-

end web development. We also put forth and discuss design rationale and recommendations for

algorithm visualizations in general.

The framework supports typical playback features like rewinding, changing playback speed,

skipping, etc., and it allows developers to specify various parameters that let them fine-tune the an-

imation sequences. Outside of that, we are free to incorporate any UI/UX designs that would

aid students’ overall comprehension, allowing a closer relationship between text explanations and

graphics as well as connections between elements that would normally be isolated in panels.

To test the framework, we created a visualization of a DP algorithm for memoized weighted

interval scheduling (WIS). WIS is tedious to solve by hand, so instructors typically skip iterations

and expect students to have internalized the in-between steps. Our approach, however, takes user

input and procedurally generates the visualization, including text explanations at every single step

1

of the way. Repetition can be crucial to understanding concepts in full, so by showing all of the

parts that a professor would never have time to write down and providing an interface that supports

useful playback controls, we have created a way to visualize algorithms that boosts intuitive design

and supports different learning paces.

2

ACKNOWLEDGMENTS

Contributors

I would like to thank my faculty advisor, Dr. Dilma Da Silva, for her guidance and support

throughout the course of this research.

Thanks also go to my friends and colleagues and the department faculty and staff for mak-

ing my time at Texas A&M University a great experience.

All other work conducted for the thesis was completed by the student independently.

Funding Sources

This work was made possible in part by the National Science Foundation under Grant

Number NSF-SPX-1919181. Its contents are solely the responsibility of the authors and do not

necessarily represent the official views of the National Science Foundation.

3

NOMENCLATURE

DP Dynamic Programming

WIS Weighted Interval Scheduling

WAAPI Web Animations API

TAMU Texas A&M University

4

1. INTRODUCTION

The area of visualizing algorithms has been studied since the 90’s [1, 2], but many ad-

vancements have since occurred in tools and languages for web programming. We are revisiting

the challenge of visualizing algorithms for the purposes of education, now using modern web sup-

port (including experimental features) from HTML5, CSS3, and JavaScript. More specifically,

we are exploring a way to create a web animation framework that allows for the development of

procedurally-generated visualizations that can be rewound, fast-forwarded, skipped through, and

more—all without constraints on the normal front-end development and UI/UX design processes.

Not only would tools built for this purpose be useful for clearly visualizing algorithms that would

be difficult to fully demonstrate by hand, but they would also make it easier to explain challenging

concepts that build off of said algorithms. For example, distributed systems went from being an

expert topic to being one that is touched even in undergraduate studies, so it would be beneficial to

have access to visualization learning tools that can help explain concepts in great details. After all,

between the layout and design capabilities of HTML/CSS and the robust DOM-manipulation ca-

pabilities of JavaScript, anyone experienced in front-end web development technologies should be

able to create visualizations that are both visually appealing and highly customizable. In this work,

we will assess the feasibility of our goal by implementing our project, AnimTimline, and using it

to develop a visualization for a dynamic programming algorithm for weighted interval scheduling.

In this way, we are also putting forth and discussing design decisions and recommendations for

animated algorithms in general as we test a way to exhaustively present dynamic programming

algorithms with as close of a tie between the text and graphics as possible. Beyond that, the ani-

mation will represent the algorithm in a way that someone would actually solve by hand, making

it more intuitive at a glance as the algorithm progresses. A professor would never have time to

solve large problems by hand in front of a class without skipping certain steps or essentially fast-

forwarding, but with our visualization, all of the text and every step are automatically generated

5

based on the input, providing a level of repetition that would be excruciating to do by hand but is

crucial to ensuring that students can see every single step in as much detail as they desire.

We will be using insight gained from other academic papers as guidance in determining

what is and is not appropriate in terms of visualization best practices. For example, the proposal

of a "type by task taxonomy (TTT) of information visualizations" [3] to address what actions a

user should be able to perform to accomplish particular tasks within the visualization gives useful

ideas on how to ensure that the user experience aligns with the type of data they are interacting

with. Most pertinent, we propose, would be to "keep a history of actions to support undo, replay,

and progressive refinement" [3]. For an educational tool, figuring out the best way to incorporate

history into these visualizations is vital to ensuring that students can step forward and backwards

through steps in the algorithms as they please.

6

2. BACKGROUND

2.1 What Is Dynamic Programming?

Let us go through a brief overview of what exactly “dynamic programming” is. In order

to understand it, it may be helpful to have a basic understanding of “recursion”. Oftentimes,

large problems can be broken down into smaller subproblems, and when those subproblems are

solved, they are combined into the overall solution. Those subproblems may be broken down

into even smaller subproblems as well. A common way to demonstrate this is using the "Fibonacci

sequence", which is the sequence of numbers a1, a2, a3, ..., an such that a1 = 1, a2 = 1, and an =

an−1+an−2, n > 2. The first eight numbers in the sequence are 1, 1, 2, 3, 5, 8, 13, 21. Except for

the first two, each "Fibonacci number" is simply the sum of the two numbers preceding it. Suppose

we wanted to compute the eighth Fibonacci number, which is 21; one way to solve it would be to

use the following routine FIB(n), where n starts at 8:

1: if n == 1 or n == 2 then

2: return 1

3: else

4: a = FIB(n− 1)

5: b = FIB(n− 2)

6: return a+ b

7: end if

Notice that in lines 4 and 5, we call the routine inside itself to compute previous Fibonacci

numbers. This is recursion—we are computing the eighth number by breaking the problem down

into finding the seventh and sixth numbers, which will break the problem down into finding the

sixth and fifth number and fifth and fourth number respectively, and so on. When the "base case"

is reached, which is when n is 1 or 2, we return 1 and go back up the recursion tree until we finally

determine that FIB(7) is 13 and FIB(6) is 8. Thus, we return a+ b, which is 21, which is our eighth

7

Fibonacci number.

This works perfectly fine, but the main issue with this implementation is that it computes

the same problem multiple times. For example, recall that the subproblems in FIB(8) were to com-

pute FIB(7) and then FIB(6). FIB(7)’s subproblems are FIB(6) and FIB(5). We can immediately

see that we are computing FIB(6) twice, and each subproblem of the subproblems similarly com-

putes numbers that we have already computed. This is incredibly inefficient and has what is called

an "exponential time complexity". To put this in perspective, using this naive approach for FIB(8)

solves a total of 129 problems even though there were only 8 Fibonacci numbers total!

This is where dynamic programming (DP) comes into play. Unlike simple recursion, we

can use DP to break problems into overlapping subproblems, and one technique is to use "memo-

ization" (not "memorization"). Memoization involves saving the results of subproblems into some

sort of data structure so that we do not have to reevaluate said subproblems in case we run into

them again. For example, after FIB(7) is solved, we already know that FIB(6) was also solved in

the process since that was one of FIB(7)’s subproblems; therefore, we can just store FIB(6)’s result

in a table. Then, once we call FIB(6) for the second time since it is FIB(8)’s next subproblem, we

check the table to see if FIB(6) was already computed, see that it is indeed there, and just use that.

The same process is repeated at every step of the way so that we end up solving for every Fibonacci

number exactly once instead of multiple times. At the start of a given call, we check the table to

see if this Fibonacci number has already been found; if so, just use that value; if not, solve for the

number and fill in the table entry with the result. It is clear to see that this is significantly faster on

average than the naive approach; the downside is that we have to use space for the table.

There are more nuances to dynamic programming that deal with the conditions necessary

to be eligible for DP and various types of DP problems that we will not discuss here. For more

details, seek sources like [4] or online learning resources.

2.2 What Is Weighted Interval Scheduling?

We will give a brief explanation of interval scheduling and weighted interval scheduling,

but the interested reader will seek more thorough explanations from sources like [4] or online

8

references. In general, interval scheduling is a class of problems involving tasks—or jobs—whose

intervals may or may not overlap over a given stretch of time. Each job is at least defined by its

starting time and finishing time, and two jobs overlap (or are "incompatible") if their allotted times

intersect. Given a set of jobs, suppose we want to figure out the maximum number of jobs we

can perform without overlapping. Additionally, suppose we do not care about the importance of

each job—in other words, they hold the same weight. Finding the maximum amount of jobs in this

case is simple: First, we sort the jobs by their finish times such that jobs that finish first are placed

before jobs that finish later, regardless of start times, giving us a sorted list of jobs J1, J2, ..., Jn.

Then, starting from J1, we work our way to the right and keep adding jobs to our chosen set. If a

job does not overlap with the jobs we have chosen so far, we add it to our set; otherwise, we leave

it alone. This is a "greedy" approach because we just pick any compatible jobs we see without

question, and it works without fail (see page 120 of [4] for a proof by induction).

Things may not always be this simple, however. Suppose that the jobs are not of equal

weight; now each job has any value above 0 associated with it—its weight. Now suppose that

we want to find the maximum weight we can achieve without overlapping jobs. Currently, there

is no greedy algorithm that is guaranteed to give the correct answer, so the alternative is finding

every possible combination of compatible jobs and choosing the highest found total weight. We

first figure out each job’s most recent compatible job—that is, for each job Jj , we need to find

the job Ji such that i < j, Ji does not overlap Jj (i.e. Ji finishes before Jj starts, so no overlap),

and Ji finishes later than any other jobs preceding Jj in the sorted list. The index of each job’s

compatible job is stored in a separate table. Next, we start at the last-finishing job Jn and consider

two possibilities. The first possibility is that Jn is part of the optimal sequence of jobs that produces

the maximum total weight, in which case we add Jn’s weight and then compute the rest of the chain

behind it from this job’s most recent compatible job (i.e., the most recently finishing job that does

not overlap it). The second possibility is that Jn is NOT part of the optimal sequence of jobs

that produces the maximum total weight, in which case we try to compute the chain using the job

that finished most recently behind us (it does not have to be compatible since it does not need to

9

worry about overlapping Jn). Then, for each possibility’s subproblem, we check the same two

possibilities on whatever job we end up on. Just as with FIB(), the final answer works its way back

up to the top after the base cases are reached. Of course, such a task would have an exponential

time complexity because we would end up resolving subchains of jobs several times in an effort to

solve larger chains—just like with the naive approach for finding Fibonacci numbers. As you have

likely surmised, this is a great use case for dynamic programming—once we find the maximum

weight for a particular chain of jobs, we can store that result in a table so that we can simply use

that value when the same chain of jobs is queried.

10

3. RELATED WORK

Work related to this project consists of research that similarly attempts to facilitate the

creation of educational visualizations for various algorithms.

3.1 SREC

One such work is SRec, which is a system for animating recursive algorithms in Java pro-

grams to assist in algorithm courses [5]. Functionally, it incorporates several animation controls

akin to those present on a VCR set, including pause, play, stepping forward and backward, and

variable speeds. Such features allow the user to fine-tune their viewing experience as they try to

better their understanding of the material being taught, which is important for students who learn

at different paces or need to repeat parts. SRec also allows the user to jump over recursive calls in

the same way that debuggers allow you to "step over", which would certainly be a useful feature

for instructors who feel like the students have a good enough understanding to warrant skipping

additional repetitions. In terms of graphically representing recursion, one of the ways it allows the

user to view a recursive algorithm is a trace, where entering and exiting invocations is indicated

using indentations (this is similar to how tools displaying the file organization in a computer show

folders nested in the graphical interface). This is particularly effective for layouts that focus on

taking up vertical space rather than horizontal space, as will be seen with our project.

In a later paper, the researchers extended the original SRec system by supporting the repre-

sentation of dynamic programming algorithms [6]. We will not discuss the implementation details

here, but an important thing to note is that the graphical representations are similar to that of

the original system: simple blocks connected by lines. It seems that neither of the versions of

SRec provide extensive textual details or similarly detailed graphics that would facilitate teach-

ing/learning; we believe that it would be greatly beneficial if the animation exhaustively presented

dynamic programming algorithms with as close of a tie between the text and graphics as possible,

which was easily achievable with AnimTimeline in our project.

11

3.2 VizAlgo

VizAlgo is a similarly effective learning tool, allowing "students to experiment and explore

the ideas with respect to their individual needs" [7]. As depicted in the paper, the initial version of

VizAlgo includes panels that display the algorithm pseudocode, the algorithm visualization, and

information about the algorithm itself to describe what it is actually doing. The user can choose

from a list of algorithms, and the system features playback controls such as "Next", "Stop", "Play",

and "Delay".

Over time, the platform featured more visualizations according to [8], including some dy-

namic programming algorithms. However, the layout of information appears to be quite limited;

while there is more accompanying text than SRec, the "Information" panel only provides basic

details about the algorithm being displayed, and there is no text truly explaining what is happening

at each step. It also does not display tabular data in an aesthetically pleasing manner; it instead

lists the entries as you would with typing in a standard word document, using spaces to separate

columns rather than colored blocks or lines. Our visualization for weighted interval scheduling

shows that no such limitations need to exist when constructing an effective visualization for a

complicated algorithm.

3.3 VisuAlgo

The last relevant work we will briefly discuss is VisuAlgo, which is freely available online

and makes good use of graphics, text, and animations in its visualizations. It features animations

for some dynamic programming algorithms, but they do not provide a visual trace that the user can

use to see the progression of the entire algorithm at any given point, nor do the complementary

text descriptions live very close to the graphics themselves, instead being disconnected in a box

to the side. Additionally, the arrays used for memoization are not displayed for the user, which is

a missed opportunity to visualize an incredibly important part of the computational process to the

user. With AnimTimeline, developers can depict such things with ease by using already-existing

web development layout tools and generating an animation timeline to manipulate them.

12

4. SYSTEM ARCHITECTURE

AnimTimeline consists of several parts. In this section, we will break them down in great

detail and explain how they interact with each other. This description should give other developers

ideas on how to implement similar systems and what important decisions to take into consideration

to achieve bug-free solutions. Proficiency in JavaScript and a fair understanding of HTML and

CSS are desirable in order to understand the implementation details, but high-level explanations

are given when appropriate. We start with the smallest component of a given AnimTimeline—the

AnimBlock.

4.1 AnimBlock

The AnimBlock attaches an animation to one HTMLElement; it is the essential building

block of the AnimTimeline framework. Figure 4.1 shows the constructor for the AnimBlock

class. domElem references the aforementioned HTMLElement object. The animName parameter

is a string that holds the name of the animation that will be performed on domElem when stepping

forward in the timeline. undoAnimName holds the name of the reverse of animName; it is per-

formed when stepping backwards. The options parameter accepts an object that will be used to set

a variety of properties of the animation. The options are all applied in the applyOptions() method

(see Figure 4.2); further explanations will come later.

13

Figure 4.1: The constructor for the AnimBlock class.

Figure 4.2: AnimBlock applyOptions() method

4.1.1 Naming animations effectively

AnimBlock comes with several preset animations, and the first major decision was how

to treat animation names. Take the two preset animations named "fade-in" and "fade-out", for

example. fade-in un-hides an element and increases its opacity from 0 to 100, while fade-out

decreases the opacity from 100 to 0 and then hides the element from the document. Naturally,

14

these two animations can be called reversions of each other. Thus, if stepping forward in a timeline

invokes fade-in, then stepping backward should invoke fade-out; the converse is also true. This

seems straightforward, but we immediately run into a problem when generalizing this relationship.

Humans understand what the reverse of either operation should be, but in code, how do we convey

that going backwards from fade-out should invoke fade-in or that going backwards from enter-

wipe-from-left should invoke exit-wipe-to-left and vice versa? We clearly cannot rely on the names

alone; we need to find a consistent method of mapping animations to their reverse operations,

which we did by creating aliases for every preset animation (demonstrated in Figure 4.3).1 For

example, we can map undo–fade-out to fade-in and map undo–fade-in to fade-out. The prefix

"undo–" (two hyphens at the end) is unique since we do not use it as part of any preset animation

name.

Figure 4.3: The presets for fading animations. Presets are formed by assigning arrays of keyframes to static
properties of AnimBlock.

As a result, every time we step backward, we simply append "undo–" to the beginning of

the initial animation name. This allows us to assume that passing in a valid preset name to the

AnimBlock constructor will generate the valid reverse operation name (see Figure 4.1, line 38).

Thus, when rewinding an animBlock, we just animate with that reverse name (see Figure 4.4, line

57). This approach also provides a level of abstraction by only requiring a developer to specify

the forward animation name when defining an animBlock. For example, if they want to perform

fade-in and then fade-out, they need only define two blocks with those given names. Then, when

1Note that because the aliases are just references to the same memory locations, and because we are using static
properties (of which there is only one on the underlying prototype), the additional memory usage is negligible.

15

stepping backwards, "undo–" will automatically be appended to form undo–fade-in and undo–

fade-out, which are equivalent to fade-out and fade-in respectively, without the developer ever

having to think about it.

Figure 4.4: AnimBlock step methods.

4.1.2 Performing an animation

The next major challenge was deciding how to effectively perform the animations and store

any relevant data. The animations in AnimTimeline utilize the Web Animations API (WAAPI),

whose specifications are detailed on the MDN Web Docs site [9]. The API provides extensive

JavaScript functionality for animating DOM elements, filling the “gap between declarative CSS

animations and transitions, and dynamic JavaScript animations”. With the basic AnimBlock, there

are four main classifications for animations: Entering, Exiting, Translation, or none of those. This

grouping is important for defining what additional actions to perform before, during, and after an

animation is performed. The easiest way to keep track of the animation names’ corresponding

types is with static arrays, as shown in Figure 4.5. With an exception that will be discussed later

in subsection 4.2.2, all animation names that fall under Entering, Exiting, or none are defined by

premade keyframes. We saw an example of the syntax in Figure 4.3, which shows how the fading

animation keyframes are defined. Each array of object literals is, of course, a list of keyframes,

which can be passed into the constructor of a KeyframeEffect object (part of the WAAPI); a re-

sulting KeyframeEffect is then used to animate the transitions. Figure 4.6 shows the AnimBlock

16

method getPresetKeyframes(), which generates a KeyframeEffect object when given a valid preset

animation name. Thanks to how we set up the naming system (as explained in subsection 4.1.1),

we can simply pass in a name and access the corresponding property belonging to the AnimBlock

prototype as shown in line 101. This ease is also partly due to the fact that we used the computed

member access operator (i.e., []) to add static properties to the AnimBlock instead of the member

access operator (i.e., .)—it allows us to use actual strings as property names, which are not limited

by the constraints of JavaScript variable naming rules. Besides the DOM element on which we

want to perform the animation (line 100) and the array of keyframes, the KeyframeEffect con-

structor also accepts an object literal with additional options (lines 102—105). In line 104, we set

the fill property to ’forwards’, which, in traditional CSS animations, makes the new visual state of

the element stick after the animation is completed.

Figure 4.5: AnimBlock main animation classifications.

17

f

Figure 4.6: AnimBlock getPresetKeyframes().

4.1.3 Post-animation operations

As we will later see, the AnimTimeline framework relies heavily on Promises2 because they

facilitate working with asynchronous operations and allow us to "await" results; this is necessary

for effectively coordinating the sequences of animations (whether in serial or in parallel). Fig-

ure 4.7 shows the full AnimBlock animate() method, which is called every time a block is played.

Let us examine lines 88—95, which are executed after an animation is completed. In the WAAPI,

the Animation commitStyles() method forces the resulting style transitions on an element to stick;

this is accomplished by adding inline styles to the HTML code. Thus, since the fill mode is set to

forwards, we guarantee that once an animation is completed, the element will retain its changes.

Line 92’s purpose is far less intuitive. An oddity with the way animations are implemented in

CSS/JavaScript is that keyframes seem to be tied to an element even after commitStyles() is called.

If the playback speed on an animation is increased in the middle of an animation, one would ex-

pect that it be over and done with upon completion, but this is not necessarily the case; if the

playback speed is then reverted, the animation may actually jump backward in its execution and

then continue as if retroactively deciding that the speedup never happened at all. This is obviously

problematic considering the fact that one of the primary features of any playback system is the abil-

ity to fast-forward at any time. This can be entirely circumvented by calling the cancel() method,

which definitively cuts all ties with the active keyframes. Thus, once an animation is completed,

2Promise is an object that represents the eventual completion (or failure) of an asynchronous operation and its
resulting value citeMDNdoc-promise.

18

the styles are committed, and the animation is canceled to stop it from being active in any possible

capacity.

Figure 4.7: AnimBlock animate() method.

Notice that the post-animation actions are performed within a Promise. In the WAAPI,

Animation.finished provides a Promise that resolves when the Animation object in question fin-

ishes animating. It is imperative that we use this Promise and not the onfinish onevent property.

The latter attaches an event listener that listens for the finished event, but the issue is that event

handlers utilize normal callback functions. This is incredibly problematic because callback func-

tions used with event listeners go in what is called the "callback queue", while callbacks related to

Promises—such callbacks being termed "microtasks"—go into the "microtasks queue". Callbacks

have a lower priority than microtasks, which means that even if the animation for an element fin-

ishes, the post-animation operations we need to perform would execute after any other Promise

19

operations are finished. This would cause undesired results when AnimBlocks are performed on

the same element within one sequence of animations—additional modifications are stacked on top

of an element before the previous AnimBlocks finish their jobs.

4.1.4 Animation classification considerations

As mentioned in subsection 4.1.2, we categorize the animations into Exiting, Entering,

Translating, or none. In the animate() method (Figure 4.7), it becomes clear why this is necessary.

4.1.4.1 Exiting

Handling an element that is exiting is straightforward—simply hide the element in some

way after the animation styles have been committed. In Figure 4.7 line 90, this is done by adding

the class hidden to the element. In a separate CSS stylesheet, this is defined with the style rule

"display: none!important", which makes the element inaccessible (for certain elements, the hidden

class instead has "visibility: hidden". This will be addressed later in section 5.2).

4.1.4.2 Entering

Examine lines 78—82 of the animate() method in Figure 4.7. Before the actual animation

begins on line 85, these lines are executed if the animation name indicates that the DOM element

will be entering. If an animation name is associated with a DOM element entering (e.g., fade-in),

then we need to ensure that it is not invisible to the document—that is, its CSS display property

is not set to none (or, alternatively, that the visibility property is not set to hidden)—when the

animation starts. For example, if we want to fade an element into view, we need to make sure that

it is not hidden so that we actually see it transition from 0 opacity to 100 opacity. The first, obvious

step is to remove the hidden class that the element presumably currently has. The second step is less

apparent. One potential problem with performing animations and eventually calling commitStyles()

is that this does not just magically change the visual style of the element; it actually just adds the

changes as inline styles in the HTML code. Suppose we performed the exiting animation fade-out

on some element. Upon inspecting the HTML using the browser’s developer tools, we will see

"opacity: 0" added to the style attribute. This is an issue when we want to perform an entering

20

animation that modifies a CSS property other than opacity. For example, our preset animation

enter-wipe-from-left modifies the CSS clip-path property to create a linear wiping effect to reveal

the element. The opacity will still be set to 0, so the element will never actually be visible. Of

course, the same is true if we use an exiting wipe effect followed by an entering fade effect—the

clipping path on the element would render the element invisible even though opacity was increased

to 1. Generally speaking, performing exiting and entering animations that modify different CSS

properties can cause unexpected graphical bugs. This can be solved by manually removing inline

styles as we do Lines 80 and 81. In this way, regardless of an element’s state prior to entering, no

conflicting properties will prevent the element from being visible.

In regards to using the clip-path property to simulate wiping effects for entrances, we were

careful not to overlook the relationship between the bounding box of an element and any nested

elements with absolute positioning. One of our preset wiping entrance animations is enter-wipe-

from-left, which essentially transitions a clipping mask over the element that starts on the left edge

and expands to the right edge. This naturally makes use of the element’s width to form the size

of the clipping path, but absolutely positioned elements are, by definition, outside of the normal

flow of the document—they do not contribute to the width of the parent element. Thus, the final

clipping path encompassing the parent element ends up cutting out any absolutely positioned child

elements that may lie outside of the element (text boxes are a perfect example of such children).

To prevent this from being an issue, any inline styling for clip-path is removed after the animation

is completed if the animation was an Entering type (see Figure 4.7, line 94).

4.1.4.3 Translating

This type of animation is the most complicated. It does not have its own preset anima-

tion; rather, as shown in Figure 4.7, line 73, we generate the necessary KeyframeEffect using the

method createTranslationKeyframes() instead of getPresetKeyframes(). In order to indicate that

a translation should be performed, the developer must pass in "translate" as the animation name

when constructing the AnimBlock instance. The developer can then use the constructor’s options

argument (see Figure 4.1) to specify several aspects of the translation itself. Figure 4.8 shows all

21

of the possible properties we allow one to set (for brevity, the logic for applying the values using

the this keyword is not shown). The comments in the figure explain each option; the important

thing to understand is that this extensive list of options—from the distance an object should move

to even the units that should be used in the calculations—allows developers to generate movement

animations that range in complexity from very simple to quite specific.

Figure 4.8: AnimBlock applyTranslateOptions() method.

The logic for creating keyframes for a translation is executed in lines 144—155 of the cre-

ateTranslationKeyframes() method, which is displayed in Figure 4.9. Ultimately, any translation

is reduced to traveling some distance in the X and Y directions plus some offsets, all of which have

units attached.

22

Figure 4.9: AnimBlock createTranslationKeyframes() method.

Notice that in addition to specifying the fill mode (as we discussed in subsection 4.1.2),

we also specified composite: ’accumulate’ in line 153. The KeyframeEffect composite property

is, at the time of this writing, an experiment technology that "resolves how an element’s animation

impacts its underlying property values", according to the MDN Web Docs site. What this means

does not particularly matter; just know that accumulate means that every change to a given style

property adds on to the previous changes. Here, with handling movements, this makes it far easier

to manage the positional states of elements after several translations—moving using relative direc-

tions (e.g., moving 5 rem in the X direction) is possible without having to worry about positions

23

resetting, and stepping backward through each translation AnimBlock entails merely subtracting

previous movements to zero out the displacements.

When stepping forward with a translation, there are two modes of movement: The element

is either moving relative to its current position (lines 139—142) or moving to another target ele-

ment (lines 123—138). The first case is simple—the local variables translationX and translationY

will be set to the translation values that the developer set up during the animBlock’s creation. In the

second case, we can actually move our element to another target element; this is done by subtract-

ing the distances between the edges of both elements’ bounding rectangles (which are DOMRect

instances). We can control further details of the movement, such as the horizontal and vertical

alignment of the element with respect to the target element (which just uses the top or bottom and

left or right properties of the bounding rectangle objects in the subtractions), the offset of our ele-

ment within the target element (for example, an offset of -0.5 for offsetTargetX will subtract 50%

of the target element’s width from our element’s x translation), and whether we want to preserve

one of the axis positions (perhaps we only want our element to move vertically to line up with the

target element but not travel the horizontal distance). If the element is moving backward, all we

need to do is subtract the distance moved during the forward translation to, as we said before, "zero

out the displacement." This is done by simply storing the negation of translateX and translateY,

negating any offset values, and using these values while creating the keyframes.

Whether the element is moving with respect to itself or another element or rewinding its

translation, the final translation is created in lines 144—155, taking into account units and offsets

specified.3

4.2 AnimBlockLine

A useful feature to have in a visualization is the ability to draw lines between any two ele-

ments on the page; better yet would be the ability to have the endpoints of said line update whenever

the two elements change their positions. This is realized with a special class called AnimBlock-

3If moving to another target element, unitsX and unitsY are strictly set to ’px’ regardless of what the developer tries
to set them to. This is because the positional properties in DOMRect are always in pixel units, so using any other unit
while creating the keyframes would be incorrect.

24

Line, which is a subclass of AnimBlock. The only HTML element to which AnimBlockLine is

applicable is an <svg> element containing a <line>. Optionally, there can be a <marker>, which

adds a triangular endpoint to the line. An example is shown in Figure 4.10; all such structures will

be called "free-line"s because they are free to point to any elements on the page.

Figure 4.10: Example of a free-line in the HTML

The AnimBlockLine constructor and some data members are shown in Figure 4.11. The

domSVGElem parameter is the <svg> element that we want to animate. startElem and endElem

reference two other DOM elements, which will serve as the start and end points of the free-line.

As explained in the comments in Figure 4.11, leftStart, topStart, leftEnd, and topEnd can be used

to offset the position of the free-line’s endpoints relative to the target elements. The call to register-

DomElem() will be explained later in this section; for now, know that it links all AnimBlockLine

instances that share a common <svg> element to a single updater. The process of pointing an SVG

line between two elements on the page and handling updating the endpoints is somewhat complex,

but we will briefly go over how we decided to implement it for the interested reader.

25

Figure 4.11: AnimBlockLine constructor

4.2.1 Setting free-line endpoints

The first step in properly setting the endpoints of a free-line is to set up the CSS for the

<svg> element. Let us examine the CSS code snippet in Figure 4.12; the <svg> element is denoted

by the "free-line" class, while the inner <line> element is denoted by the "free-line__line" class.

We will not discuss the various problematic iterations of the code, but setting the height and width

properties to auto and absolutely positioning the element to the top and left ensures that the <line>’s

endpoints can be properly positioned without A) letting the <svg> elements take up the entire

screen size or B) necessitating placing all free-line elements within one designated area in the

HTML code. Setting pointer-events to none prevents the <svg> elements from being selectable

with right-click (this is because the elements get in the way when trying to utilize the browser

developer tools). As for the CSS pertaining to <line>, the only important thing to note is that,

because two HTML elements cannot have the same ID, the IDs and URLs for every <marker> and

<line> are generated later using JavaScript (the code will not be shown here).

26

Figure 4.12: Partial CSS code snippet for a free-line

With the CSS set up, we can examine the AnimBlockLine method updateEndpoints() as

shown in Figure 4.13. Explanations are given in the comments of the code shown in the figure.

Essentially, we use the differences between the bounding boxes of the <svg> element and the two

target elements, the overall position on the document, and other influential values such as border

widths and offsets to compute the appropriate pixel positions of the <line>’s endpoints’ coordi-

nates. This leaves the question of when the endpoints should be set, and that is partly answered

by the AnimBlockLine’s member variable updateEndpointsOnEntry. If set to true (which it is by

default), then updateEndpoints() will be called whenever the AnimBlockLine performs an entering

animation (recall the discussion about entering animations in subsubsection 4.1.4.2); we will see

this when we describe the method handleUpdateSettings().

27

Figure 4.13: AnimBlockLine updateEndpoints()

4.2.2 Stepping with AnimBlockLine

Stepping with AnimBlockLine is not too complicated; stepForward() and stepBackward()

are shown in Figure 4.14. One special animation name that is exclusive to AnimBlockLine is

updateEndpoints, which causes the endpoints of the free-line to update. We mentioned in subsec-

tion 4.1.2 that there was an exception to the rule that non-translation animation names are defined

by premade keyframes, and this is it. Presumably, the updateEndpoints name is used when either

of the target elements has moved and we want the endpoints to follow them. Besides that, Anim-

BlockLine has access to the same animation options as AnimBlock because it is a subclass; it can

simply use super to call the standard methods if anything besides updateEndpoints is used (e.g.,

enter-wipe-from-left, highlight, fade-out, etc.). Regardless of the animation name, stepping with

AnimBlockLine will call handleUpdateSettings(), whose job will be explained next.

28

Figure 4.14: AnimBlockLine stepping methods

4.2.3 Continuously updating endpoints

While it is useful to be able to update the endpoints of a free-line while stepping through

the timeline, this does not account for the case where the target elements’ positions depend on

factors outside of the AnimTimeline, e.g., scrolling. As we will see when we go over the WIS

visualization in section 5.2, the left side of the screen displaying the time graph is fixed, while the

right side of the screen displaying the job cards can be vertically scrolled when the tree becomes

tall enough. If there are lines pointing between both halves of the screen (which there are), we

need to make sure they maintain their endpoints’ targets even as positions of the targets change

with respect to each other.

One of AnimBlocks’ data members, shown in Figure 4.11, is trackEndpoints, which is

false by default. If it is set to true, then the free-line will update its endpoints constantly. This is

29

handled in handleUpdateSettings(), shown in Figure 4.15.

Figure 4.15: AnimBlockLine handleUpdateSettings()

In this method, the first task is to check whether or not the free-line is performing an en-

tering animation (discussed in subsubsection 4.1.4.2). If so, then—as we hinted at the end of

subsection 4.2.1—if the member variable updateEndPointsOnEntry is true, updateEndpoints()

will be called in line 60. After this we check if trackEndpoints is true in line 63. If so, then we set

an interval that continuously calls updateEndpoints() using a class called AnimBlockLineUpdater.

What AnimBlockLineUpdater is will be explained shortly, but first, we will consider a

scenario that highlights its necessity. One free-line will most likely be the subject of multiple

different AnimBlockLine instances; at the very least, it will likely enter and later exit (which

constitutes two animBlockLines). Every instance is independent, which means that they cannot

coordinate their usage of updateEndpoints(). This means that it will not suffice to simply use

standard JavaScript functions setInterval() and clearInterval() to respectively continuously call

updateEndpoints() and stop continuously calling it. This is because each animBlockLine only

has access to its own updateEndPoints() method. If we, later in a timeline, want to stop a line

from continuously updating, we need to find a way to access that other animBlockLine’s interval

data in order to clear the interval. In general, every AnimBlockLine that shares the same <svg>

element needs to be linked such that they can stop each other’s continuous updates if necessary.

This is where AnimBlockLineUpdater comes into play. The entirety of AnimBlockLineUpdater.js

is shown in Figure 4.16

30

Figure 4.16: AnimBlockLineUpdater

The comments in the code explain the implementation, but we will briefly go over it here.

First, let us look at IntervalController, whose definition begins on line 27. Its only job is is to set

and clear an interval, but one IntervalController instance will be mapped exclusively to one free-

line <svg>, effectively mapping it to every AnimBlockLine using that <svg>. This effect starts

with creating domElemMap as a Map instance in line 2; it is used to map one IntervalController to

one free-line in the method registerDomElem() (which is called in line 14 of the AnimBlockLine

constructor shown in Figure 4.11). The AnimBlockLineUpdater method setInterval(), which is

the method we saw in line 63 of handleUpdateSettings() in Figure 4.15, sets an interval using

the IntervalController associated with the <svg> element. The func parameter is always the up-

dateEndpoints() method of the animBlockLine being active at the time. Because of this, another

animBlockLine sharing the same <svg> element can clear the same interval using the last method

31

clearInterval() because they will ultimately utilize the same IntervalController. Thus, in line 67 of

handleUpdateSettings() (Figure 4.15), if the free-line is exiting, we can clear any potential interval

associated with the <svg> to prevent unnecessary updates to an invisible element.

4.3 AnimSequence

At a high-level view, an AnimSequence instance is essentially just a list of AnimBlock

instances. It is necessary to have this separate class, however, because it provides several useful

functionalities, such as rewinding a whole sequence of animations, printing descriptions for de-

bugging purposes, and being able to "skip" currently-running animations by forcing them to finish

instantly (this last feature will be explored later). The constructor for AnimSequence is shown in

Figure 4.17; its properties and inner workings will be explained as we continue forward.

Figure 4.17: AnimSequence constructor

One way to add animBlocks to an animSequence is using either of the AnimSequence

methods addOneBlock() or addManyBlocks(), shown in Figure 4.18. When adding an animBlock,

we can either instantiate it using the AnimBlock constructor and the new keyword (in which case,

the animBlock is just pushed to the list in line 46) or provide an array of parameters headed by the

block type (an example of this is shown in section 5.2), which will be used to create an AnimBlock

(or AnimBlockLine) instance. This is purely a preferential decision.

32

Figure 4.18: AnimSequence methods for adding animBlocks

Like an animBlock, an animSequence can be played forward or backward. This is done

with the AnimSequence async methods play() and rewind() respectively; both methods are dis-

played in Figure 4.19. The general idea is that play() steps forward through each of the anim-

Sequence’s animBlocks in sequential order (lines 61—67), while rewind() starts from the anim-

Sequence’s last animBlock and steps backward through each of them in reverse sequential order.

This satisfies the need to play a visualization in discrete chunks, which we will later see when we

look at the AnimTimeline class.

Figure 4.19: AnimSequence play() and rewind() methods

33

Notice that the loops in both play() and rewind() make a decision about how exactly to call

an animBlock’s stepping method; for the sake of brevity and without loss of generality, let us look

only at play(). In line 64, the call to stepForward() is preceded by the keyword await. In an async

function, await causes the function execution to pause until the awaited Promise is settled. This

makes sense because it forces each upcoming animBlock to wait for the previous one to finish

before beginning its own animation. However, we often want to play animations in parallel, so

we need a way to specify whether a given animBlock should not block the next one. Recall the

AnimBlock applyOptions() method shown in Figure 4.2; two of the options were blocksNext and

blocksPrev, which are both set to true by default. For a given animBlock A, if blocksNext is set

to false, then the next animBlock B in the sequence will not wait for A to finish before beginning

its own animation, effectively letting A and B play in parallel.4 blocksPrev does the same thing,

but when we are stepping backward. Thus, in line 64 in play() (Figure 4.19), we only wait for an

animBlock A to finish before playing the next animBlock B if A.blocksNext is true. This setup is

important for 2 reasons: 1) It allows us to play several animations in parallel by having multiple

animBlocks in a row with false blocking settings, and 2) Having separate options for blocking

forward (blocksNext) and blocking backward (blocksPrev) means that we can customize the flow

of animations in both directions. Point 2 is significant because it addresses the issue that some

sequences are not useful to play exactly the same way both forward and in reverse. For example,

in the context of an algorithm visualization, one sequence may, say, reveal several components

in serial, but it may not be useful to undo those reveals in series when rewinding the sequence.

Rather, undoing the entire sequence (or parts of it) in parallel would save time and lead to a better

experience for users, who may often want to play and rewind parts of a visualization repeatedly.

Of course, how to take advantage of this feature to make the best animation sequences is up to the

discretion of the developer.

Once an animSequence has finished playing all of its animBlocks, it returns a Promise con-

4If an animBlock is the last one in the sequence, then its animation will be awaited regardless of its blocksNext
value. The same holds for the first animBlock in a sequence regarding its blocksPrev value. This is to prevent the
animSequence from returning its own Promise before its first or last animBlock has actually finished.

34

taining the value of continueNext (in the case of play()) or continuePrev (in the case of rewind()).

Respectively, these member variables tell the parent AnimTimeline instance whether to autoplay

the next or previous animSequence; we will see this when we examine the AnimTimeline class.

4.4 AnimTimeline

One or more AnimSequence instances can be grouped into an AnimTimeline instance,

whose job is to control the playback of the entire timeline. The constructor for the class and

the member variables are shown in Figure 4.20. One of the ways to add animSequences to an

animTimeline is using either of the AnimTimeline methods addOneSequence() or addManySe-

quences(), shown in Figure 4.21. The various conditionals just account for some of the different

ways in which developers may add data for animSequences.

Figure 4.20: AnimTimeline constructor

35

Figure 4.21: AnimTimeline methods for adding animSequences

Though the most crucial feature of AnimTimeline is the ability to step forward and back-

ward through its animSequences, it will be easier to understand the relationships between the

various playback functionalities if we examine some of the other features first. Let us start with

figuring out which running animations belong to a particular animTimeline.

4.4.1 Animation identification

There are multiple scenarios within the AnimTimeline class where we need to perform

some operation on every running animation, so the desired operation is passed to a separate method

doForCurrentAnimations(), shown in Figure 4.22. With the WAAPI, we can obtain a list of all An-

imation instances that are currently in effect by calling document.getAnimations() as shown in line

182. However, we cannot just perform the operation on every animation in that array because there

could be other animations running in the entire document that do not belong to the animTimeline.

To solve this, all we need to do is assign some form of identification to each Animation instance

upon being created. Upon every instantiation of AnimBlock (as well as AnimSequence), the new

AnimBlock instance receives a reference to the parent AnimTimeline as well as a matching ID

(the code has been excluded from this paper because it is not necessary to display). In line 69 of

AnimBlock’s animate() method (Figure 4.7), after the Animation instance has been created, we

36

give it a timelineID property and match its value to the parent animTimeline’s ID. Then, in lines

184—186 of doForCurrentAnimations() (Figure 4.22), we only perform operation() on Animation

instances that we know belong to the animTimeline in question.

Figure 4.22: AnimTimeline doForCurrentAnimations()

4.4.2 Pausing playback

Oftentimes, a user may want to pause in the middle of an animation sequence to examine

intermediate steps; thus, pausing is an essential feature for any algorithm visualization. With

AnimTimeline, pausing is done with the togglePause() method (shown in Figure 4.23), which

will toggle the current pause setting unless a Boolean value (true or false) is specifically passed

in. If this.isPaused becomes true in line 168, then we need to call the Animation method pause()

on every currently-running animation that belongs to the animTimeline. Of course, we can just

use doForCurrentAnimations() as shown in line 170. If this.isPaused is set to false, we simply

call play() on every active animation in line 173. In addition to resuming the animations, we also

need to consider whether skipping is enabled (which will be discussed in the next subsection). We

defined the behavior such that if playback is paused in the middle of a sequence and then skipping

is enabled, the animations remain paused. If skipping is still enabled when playback is eventually

resumed, it would be counterintuitive to have the rest of the current animSequence play at normal

speed; thus, in this situation, the remaining animations to be played in the sequence are skipped in

line 174.

37

Figure 4.23: AnimTimeline togglePause()

4.4.3 Enabling skipping

AnimSequences can be "skipped", which means instantly finishing the sequence of ani-

mations. This is possible by using the Animation method finish()—which, as the name suggests,

instantly brings an animation to its ending—on every animation belonging to the animSequence.

In AnimTimeline, skipping can be enabled with the toggleSkipping() method (Figure 4.24), which

sets the member variable isSkipping.

Figure 4.24: AnimTimeline toggleSkipping()

With skipping enabled, stepping forward (or backward) will play the next (or previous) an-

imSequence instantly. We see that this is true by examining line 85 in the AnimBlock animate()

method (Figure 4.7)—if the parent animTimeline’s isSkipping is true, then the animation will call

finish() rather than play(). Now consider the scenario where we enable skipping while an anim-

Sequence is in the middle of playing; we would expect the rest of the sequence to instantly finish

38

rather than continue to play normally. However, by this time, line 85 for the currently-playing

animBlock(s) has already been executed, so finish() will not be called for their animations. This

means that those animations that are currently active would play at normal speed, and then the

upcoming animBlocks would skip their animations. To account for this, in line 154 of toggleSkip-

ping() (Figure 4.24), we call the method skipCurrentAnimations() if skipping was enabled while

animations were running. This in turn calls the current animSequence’s own skipCurrentAnima-

tions() method, which is shown in Figure 4.25. Here, as in doForCurrentAnimations(), we obtain

a list of all of the active animations and filter them by their ID. In this case, we find all of the active

animations belonging to the animSequence and call finish().5 With this, we achieve the expected

behavior that enabling skipping in the middle of animating skips the current animations as well as

the upcoming ones in the sequence.

Figure 4.25: AnimSequence skipCurrentAnimations()

4.4.4 Stepping with AnimTimeline

The most crucial feature is the ability to step forwards or backward through an animTime-

line’s child animSequences. This can be done with the appropriately-named AnimTimeline meth-

ods stepForward() and stepBackward(), which are shown in Figure 4.26 (we will soon see that we

do not directly call these methods when using the framework though). The basics of the imple-

mentations are fairly simple. In stepForward() in lines 98—104, we return a Promise; within that

Promise, we play the next animSequence, after which we increment the index into the animTime-

5It would also be possible to do this using doForCurrentAnimations() within the animTimeline. There was no
particular reason for having the functionality within AnimSequence, but it shows that it may be feasible to run multiple
animSequences within the same animTimeline in parallel and retain control over both. That is not explored in this
paper, however.

39

line’s list of AnimSequence instances. In stepBackward(), we reverse this by decrementing the

index and then returning a Promise in which we rewind the most-recently-played animSequence.

Figure 4.26: AnimTimeline step methods

That much is straightforward, but notice that the calls to then() (which is a Promise method

that executes after the Promise is settled) receive values for continueNext and continuePrev. We

briefly saw these variable names at the end of section 4.3; they are the fulfillment values of

the Promises returned in the AnimSequence methods play() and rewind() respectively (see Fig-

ure 4.19). As we mentioned back then, continueNext and continuePrev, which are false by default,

determine whether the animSequence following the current one should be played automatically.

Thus, the Promises returned by stepForward() and stepBackward() in AnimTimeline resolve to the

values of continueNext and continuePrev respectively (unless there is no upcoming animSequence,

in which case false is used since there is nothing to continue to).

All of this becomes relevant in the AnimTimeline method step(), shown in Figure 4.27

which performs either stepForward() or stepBackward() depending on the value passed to the di-

rection parameter; step() is the method that we intend for developers to call within their code. The

first thing to notice is that step() returns a rejected Promise if playback is paused or animations

40

are already currently in progress in lines 66 and 67, which is intuitive. Next, the member variable

isStepping, which keeps track of whether or not a sequence is currently playing, is set to true in

line 68 (hence the check for isStepping in line 67). Now take a look at lines 74 and 79—this is

where the continuation values for automatically playing upcoming sequences are used. While the

resolved value from the helper stepping method is true, we keep stepping—simple enough.

Figure 4.27: AnimTimeline step()

4.4.5 Jumping around in a timeline

A useful feature for any visualization of a sequence of events would be the ability to jump

to any point in the timeline. In AnimTimeline, this is done using the skipTo() method, shown in

Figure 4.28. Not only can the method be used to allow users to revisit different points without

having to go through every sequence in-between, but it is also useful for debugging purposes

(skipTo() made it substantially easier for us to jump to different parts within the WIS visualization

during the development phase).

4.4.5.1 Basics of skipTo()

If we look back to AnimSequence’s data members in Figure 4.17, we will notice that one

of them is tag. These tag values can be used to skip to various animSequences in the animTime-

line. As shown in line 130 of skipTo(), we first find the index of the first animSequence in the

animTimeline that matches the desired tag. If a matching animSequence is found, then we set

41

the animTimeline’s member variable usingSkipTo to true; in addition to isSkipping, usingSkipTo

was one of the values that can force animations to finish immediately in the AnimBlock animate()

method (Figure 4.7, line 85). Then, depending on whether the target animSequence is ahead

of or behind the current place in the animTimeline, the method directly calls stepForward() or

stepBackward() until we reach the target animSequence, effectively skipping through potentially

several animation sequences instantly. skipTo() also allows an offset to be specified, which adds or

subtracts from the index of the animSequence denoted by tag.

Figure 4.28: AnimTimeline skipTo()

4.4.5.2 Considerations

To prevent skipTo() from breaking the code, there are some combinations of actions that

must be taken into consideration. The most obvious two are that we should not be allowed to use

the method if animations are currently in progress (line 124) or if skipTo() is already in use (line

126); both restrictions prevent simultaneous execution of code. The third, less obvious considera-

tion is what should happen when skipTo() is called while playback is paused (but not in the middle

of a sequence of animations). We believe that it is intuitive to still jump to the target animSequence

(if there is one) but keep the playback paused. Thus, in lines 136, 138, and 143, if playback was

paused, we temporarily resume it so that the actual skipping can occur; then, it is paused again.

42

4.4.6 Printing sequence descriptions

Besides skipTo(), another debugging feature that should be available to developers is the

ability to set and print descriptions for every animation sequence. With AnimTimeline, this can

be done easily. In the AnimTimeline constructor (see Figure 4.20), we set debugMode to true

(line 30) using the options parameter. If debugging mode is enabled, then stepForward() and

stepBackward() print the current animSequence’s description to the console along with the step

number (lines 96 and 112). As for how to set an animSequence’s description, one of the data

members in the AnimSequence class is description (see Figure 4.17). We can set each description

to whatever helps us keep track of our place in the timeline, which expedites the debugging process.

4.4.7 Adjusting playback rate

Any animated visualization should allow the user to adjust the playback rate at any time. In

AnimTimeline, the structure of the code makes this simple—as with enabling skipping (Figure 4.24),

any newly created Animation instances will receive the correct playback rate (see Figure 4.7, line

76), while doForCurrentAnimations() is used to update any animations that are already active (see

the AnimTimeline method setPlaybackRate() in Figure 4.29).

Figure 4.29: AnimTimeline setPlaybackRate()

43

5. THE WIS VISUALIZATION

To test the utility of AnimTimeline, we created a visually-rich, animated visualization for

weighted interval scheduling (WIS) using dynamic programming (DP) and memoization (see sec-

tion 2.2 for a brief overview of what that is). While the primary objective is to show off the effec-

tiveness of the tools offered by our framework, we should also examine the design and experience

of the whole visualization. Thus, we will start our demonstration from the beginning—inputting

jobs. Next, we will demonstrate the visualization itself, which was, of course, created using the

AnimTimeline framework, and we will take note of the design decisions employed in the process.

It is possible that the interface of the web page will have changed after this paper is finished, but

the basic structure will remain the same.

5.1 Inputting Jobs

The first thing we see when loading the web page is a screen that allows us to input the job

parameters (see Figure 5.1). At the top of the page, we can see the constraints for the job inputs

(they cannot be modified by the user); these could be considered arbitrary limitations because our

system can technically function with any number of jobs and with no limitation on the time and

weight, but most traditional hand-written demonstrations of WIS use a maximum of 8 jobs and

11 units of time. We applied the same limitations for the sake of familiarity and to ensure that

the visualization looks clean (it would be hard to justify allowing a user to input 500 jobs, for

example). The input form shown in Figure 5.1 is one of two forms that can be used to fill out the

job parameters; we will call it the "multi-input" job form.

44

Figure 5.1: Main menu

5.1.1 Multi-input job form

The Add New Job button can be used to add new rows, and we can modify each job’s

start time, finish time, and weight. The Randomize button will generate a random number of jobs

with random inputs, which is useful when we just want any job inputs without having to add them

manually. Job input rows can be deleted using the Remove button, but the button will be disabled

if there is only one job row currently. To maximize the intuitiveness of the form, extensive form

validation is performed every time the user modifies a field, and errors are displayed under each

corresponding problematic field as shown in Figure 5.2. As long as errors are present, the Generate

Visualization button will be disabled; the user can fix this by correcting the inputs or by simply

deleting the problematic rows.

45

Figure 5.2: Form validation for the multi-input form

5.1.2 Text input form

Though the multi-input form is intuitive, it is not practical in the scenario where a professor

(or student) wants to run the same set of jobs upon each visit. This is where the second job form,

the text input form, comes into play; it is shown in Figure 5.3. It can be switched to by pressing

the Text Input Form button.

Figure 5.3: Text input job form

It is worth noting that toggling the job form mode plays a wiping animation to hide the current

46

form and another to reveal the other form; this was done using a standalone animSequence with

two animBlocks (shown in Figure 5.4). It was not necessarily our intention to let AnimSequence

function independently of AnimTimeline, but it (as well as AnimBlock) is actually quite useful on

its own.

Figure 5.4: An animSequence for animating the switch between job form modes

In any case, with this job form, we can type or paste in several tuples, which will be used

to set up the job data. Figure 5.3 explains the format in the Example Input box. As with the

multi-input form, the best user experience entails giving a detailed description for invalid inputs,

so we utilized regex to display a list of errors related to the input, separated by tuple (exemplified

in Figure 5.5).

Figure 5.5: Form validation for text area form

5.2 Playing the Visualization

Once we finish inputting our jobs, we can start the visualization by clicking the Gen-

erate Visualization button. At this point, it would be more useful to demonstrate the fi-

47

nal product on the web page instead of walking through every single step using static im-

ages, so the walk-through here will be brief and will not cover the entire visualization.

Instead, a video demonstration can be viewed at https://www.youtube.com/playlist?list=

PLQ9MSztsBAbDZUZQhdBzz4mGxKW5m1fsL. Because the links for the website itself and

the GitHub repository may change, those will not be provided in this paper; instead, they can be

found in the description of the aforementioned YouTube video, where they can be updated.

When we begin the visualization, we are met with an empty time graph—whose number

of rows depends on the number of jobs—and a stack of blue job bars. We immediately see Anim-

BlockLine come into play when we see a line extend upward from the topmost bar and then end

where a text box appears shortly afterward (see Figure 5.6).

Figure 5.6: Beginning of the WIS visualization

The code snippet for that animation sequence is shown in Figure 5.7. First, an AnimSe-

quence instance is created in line 85. Its description (which is printed to the console if debugging

on the animTimeline is enabled) is set in line 86. The animations for the line and textbox are

added to the sequence in lines 87—90. As we can see, when the animSequence is played forward,

the line is set to wipe up from the bottom upon entering and point between the middle-bottom

48

https://www.youtube.com/playlist?list=PLQ9MSztsBAbDZUZQhdBzz4mGxKW5m1fsL
https://www.youtube.com/playlist?list=PLQ9MSztsBAbDZUZQhdBzz4mGxKW5m1fsL

([0.5, 1]) of the textbox and the middle-top ([0.5, 0]) of the topmost job bar. The text box simply

fades in. Notice that the text box animation has blocksPrev set to true; this means that stepping

backward through the sequence will cause both the line and the text box to exit at the same time.

After adding the animBlock and animBlockLine to the animSequence, we add the animSequence

to the animTimeline. It is worth noting that the free-line was able to point to the textbox location

before it was visible; this is because we set up the CSS so that adding the "hidden" class to the text

boxes just sets visibility to hidden instead of setting display to none. Along with being absolutely

positioned, the text box is then able to have its bounding box values available even while invisible.

Figure 5.7: Code snippet for first visualization animation

See Figure 5.8 for the next animation sequence. Here, we utilize translations to move the

job bars onto the time graph in the order that the user defined them. On the bottom left, we see

several buttons for controlling playback. Hovering over them describes what they do and what their

keyboard shortcuts are. As shown, the colors (as well as the cursor) change depending on what

buttons are activated and when. In Figure 5.8, we can tell that playback was paused in the middle

of playing the sequence forward. Thus, the rewind button is grayed out, while the pause and play

buttons are depressed and red; additionally, the rewind and play buttons are both disabled, which

is indicated by changing the cursor to a red cross when hovering over them (this is not shown in

the figure). The fast-forward button is also currently held down, indicated by the green coloring

(the separate coloring was used because that button is only active as long as it is held down).

49

Figure 5.8: Moving the job bars onto the graph in unsorted order

The code snippet for that animation sequence is shown in Figure 5.7. This time, we make

use of translations. Each job bar element is moved to its designated spot on the graph because

of lines 106 and 107. Recall how much work is done behind the scenes in AnimBlock, AnimSe-

quence, and AnimTimeline to make this small snippet of code work.

Figure 5.9: Code snippet for moving the job bars onto the graph

Skipping ahead in the visualization, we begin forming the tree that represents the recursive

process of computing the optimal weight. Figure 5.10 displays the tree near the beginning of its

formation. This demonstrates the utility of continuously tracking endpoints—we can see that the

endpoints of the green arrow pointing across the screen are at their targets; this is in despite the

50

fact that the right side of the screen has evidently been scrolled downward as the left side remains

fixed. When paired with our animation presets that can be used to draw the arrow extending (such

as enter-wipe-from-right), we have a straightforward way of drawing the user’s eyes to important

details and ensuring that the visuals are responsive.

Figure 5.10: Partway into the tree for finding the optimal weight

The code snippet for that animation sequence is shown in Figure 5.11. trackEndpoints is

indeed set to true using the options object in line 721, which explains why the free-line is updating

itself accordingly.

Figure 5.11: Code snippet for pointing to the c array

51

We have also seen throughout the past examples that the AnimSequence method setDe-

scription() was being used. Recall that if debugging for an animTimeline is enabled, all animSe-

quences print their descriptions to the console (see subsection 4.4.6). Figure 5.12 displays the

same view of Figure 5.10 but with the console visible. Apparently, this is step 78 of the whole

visualization because the last printout indicates that we stepped backwards from step 79, so if we

experience a bug in development and see "–» 78: Point to c array entry" in the console, we know

where to search for the problem first.

Figure 5.12: Descriptions printed to the console

This concludes the demonstration for the purposes of the paper; we highly

advise watching the video demonstration at https://www.youtube.com/playlist?list=

PLQ9MSztsBAbDZUZQhdBzz4mGxKW5m1fsL, which covers the visualization in more

detail and serves as an extension of this paper.

52

https://www.youtube.com/playlist?list=PLQ9MSztsBAbDZUZQhdBzz4mGxKW5m1fsL
https://www.youtube.com/playlist?list=PLQ9MSztsBAbDZUZQhdBzz4mGxKW5m1fsL

6. CONCLUSION

This research addresses the challenge of generating new tools for helping students to ad-

vance their computational thinking and understand complex algorithms. Computer science edu-

cation is an active field of research where significant progress has been made in topics such as

introductory programming, auto-grading, and plagiarism detection. There has been some progress

in leveraging the huge advances in computing power to build educational tools, but in complex

topics covered in 400-level courses (such as analysis of algorithms), instruction remains the same

as it was decades ago.

This thesis proposes a web animation framework for visualizing algorithms across timelines

so that students can observe how data structures change as the algorithm execution progresses. The

framework supports several playback features; namely, it allows users to step backward and for-

ward through program timeline, effectively playing animations normally and in reverse. This alone

gives students an opportunity to analyze the data changes and think about the process at their own

pace, but several other features such as changing the playback rate, pausing in the middle of ani-

mations, skipping animation sequences, animated lines, and debugging tools make the framework

a robust tool. Our approach allows for seamless integration into normal front-end development and

UI/UX design, which lets developers integrate text (including mathematical formulas) and other

graphics into the visualization. This aids students learning about sophisticated problem-solving

techniques that may apply to several problems. The prototype implemented in this work achieved

a level of responsiveness and efficiency well beyond the planned progress for this thesis.

Two important next steps in this research area are (1) to demonstrate the generality of

the proposed framework by deploying it to build animated visualizations for additional classes of

algorithms and (2) to assess the impact of the tool on student learning by carrying out user studies.

53

REFERENCES

[1] C. D. Hundhausen, S. A. Douglas, and J. T. Stasko, “A meta-study of algorithm visualization
effectiveness,” Journal of Visual Languages & Computing, vol. 13, no. 3, pp. 259–290, 2002.

[2] C. A. Shaffer, M. L. Cooper, A. J. D. Alon, M. Akbar, M. Stewart, S. Ponce, and S. H. Edwards,
“Algorithm visualization: The state of the field,” ACM Transactions on Computing Education
(TOCE), vol. 10, no. 3, pp. 1–22, 2010.

[3] B. Shneiderman, “The eyes have it: a task by data type taxonomy for information visualiza-
tions,” in Proceedings 1996 IEEE Symposium on Visual Languages, pp. 336–343, 1996.

[4] J. Kleinberg and E. Tardos, Algorithm Design. USA: Addison-Wesley Longman Publishing
Co., Inc., 2005.

[5] J. A. Velázquez-Iturbide, A. Pérez-Carrasco, and J. Urquiza-Fuentes, “Srec: An animation
system of recursion for algorithm courses,” SIGCSE Bull., vol. 40, pp. 268–277, June 2008.

[6] J. A. Velázquez-Iturbide and A. Pérez-Carrasco, “Systematic development of dynamic pro-
gramming algorithms assisted by interactive visualization,” in Proceedings of the 2016 ACM
Conference on Innovation and Technology in Computer Science Education, pp. 71–76, Asso-
ciation for Computing Machinery, 2016.

[7] S. Simonák, “Using algorithm visualizations in computer science education,” Central Euro-
pean Journal of Computer Science, vol. 4, pp. 183–190, 2014.

[8] S. Ssimonak, “Algorithm visualizations as a way of increasing the quality in computer science
education,” 2016 IEEE 14th International Symposium on Applied Machine Intelligence and
Informatics (SAMI), pp. 153–157, 2016.

[9] Mozilla, “Resources for developers by developers.” https://developer.mozilla.org/en-US/.
Last visited 4/3/22.

54

https://developer.mozilla.org/en-US/

	ABSTRACT
	ACKNOWLEDGMENTS
	NOMENCLATURE
	INTRODUCTION
	BACKGROUND
	What Is Dynamic Programming?
	What Is Weighted Interval Scheduling?

	RELATED WORK
	SREC
	VizAlgo
	VisuAlgo

	SYSTEM ARCHITECTURE
	AnimBlock
	AnimBlockLine
	AnimSequence
	AnimTimeline

	THE WIS VISUALIZATION
	Inputting Jobs
	Playing the Visualization

	CONCLUSION
	REFERENCES

