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ABSTRACT

Health care services received after discharge from an acute care are called post-acute

care (PAC). These services improve patient functioning and help patients for better tran-

sition from hospitals to the community. PAC can be delivered in different settings such

as long-term care (LTC). LTC is vital for people with functional limitations. In the U.S.,

most LTC is financed by state Medicaid programs. These are administered by states and

jointly financed with state and federal funding. There are two main types of LTC delivery:

institutionalized care, dominated by the nursing home industry (NHC), and outpatient care,

provided through home and community based organizations (HCBS). HCBS is primarily

funded through Medicaid “waiver” programs that allow states to allocate some LTC fund-

ing to non-institutionalized settings. While HCBS is the less costly option, participation

is limited by capacity shortages, and many state waiver programs have long waiting lists.

As the population ages, the demand for LTC is projected to grow significantly, and thus

HCBS capacity problems constitute a significant policy concern. This work investigates this

by formulating a bi-level stochastic game model in which a Medicaid program (the leader)

specifies the size of its waiver program, and then HBCS organizations (the followers) respond

by specifying their capacity, with LTC service demand being uncertain. We characterize the

problem and design an approximation algorithm that exploits a piecewise linear function

for computing the followers’ response function to the leader’s decision. We use a case study

based on data from the state of Texas.

Another important question in PAC studies is how to select the best providers. In

addition, it is vital to determine the factors that play roles in this decision making procedure.

Acute care managers are always looking for the best PAC providers, while they are willing not

to pay too much. In order to determine a set of best PAC’s, a multi-objective decision making
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approach is developed for Post-Acute Care Provider (PACP) selection. PCAP selection,

similar to other subcontracting problems, depends on multiple criteria. Besides the cost

metrics, considering service coverage requirements, readmission rate, and service quality

make the decision making more complicated.

The proposed approach provides the decision making procedure for acute care providers

subcontracting with PAC providers. This approach includes two phases. In the first phase,

providers are evaluated and assigned a comparable value based on a set of criteria. These

quality metrics are used to calculate closeness coefficients of each candidate PACP for both

short-stay and long-stay patients. These patient categories are determined by the Medicaid.

In the second phase, using the computed coefficients, we develop a multi-objective problem

that considers cost, service quality, and readmission to the hospital as objectives. The novelty

of this procedure is introducing a new view toward the provider selection problem. The

proposed approach is implemented for the PACP selection problem in the city of Houston,

TX.
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1. INTRODUCTION

Long Term Care

One of the important problems which is barely studied in the healthcare literature is ca-

pacity and network planning for post-acute care facilities. Post-acute care can be received in

a wide variety of settings including: Skilled Nursing Facility (SNF), Inpatient Rehabilitation

Facility (IRF), Long-term Care Facility (LTC), and Home Health Care Agencies (HHC).

Long-term care (LTC) is necessary for people with limitations in activities of daily living,

e.g., bathing, toileting, walking, and in instrumental activities of daily living, e.g. house-

keeping and preparing meals [1]. The need for LTC is growing rapidly due to a growing

elderly population and increasing incidence of chronic disease [2, 3]. In the U.S., the number

of LTC recipients is projected to increase from 15 million in 2000 to 27 million in 2050 [4].

Meanwhile, spending on LTC is projected to increase from $194 billion in 2000 to more than

$340 billion by 2030 [5, 6]. Since public programs are the primary funding source for LTC,

federal and state policy makers seek more efficient and affordable LTC delivery methods.

One factor driving increased LTC demand is the aging of people born from 1946 and

1964 (the post-World War II “baby boom” generation). Figure 1 depicts the impact on the

elderly population from 2000 to 2050. Healthcare costs in the U.S. are expected to soar as

this generation reaches senior citizen status.

There are two main types of LTC delivery: nursing home care (NHC) and home- and

community-based services (HCBS). Nursing homes provide around-the-clock skilled nursing

care in an institutionalized setting, while HCBS provides personal assistance in the recipient’s

home and community. NHC is more expensive and often provides more care than necessary,

but its recipients require less hospital services [7, 8]. HCBS delivers less care but is high in

patient satisfaction since patients often prefer to stay in their own homes if at all possible.
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Figure 1.1: Growth in Elderly Population in the U.S.

While NHC is the main type of LTC delivery, decision makers for public programs are

seeking appropriate capacity expansion of the HCBS industry as a way to deal with costs

and improve social benefit.

Medicaid, a joint federal-state program, is the main funder of LTC services. Although ad-

ministered by the states, federal regulations prescribe the services and service providers that

can be reimbursed under Medicaid programs. In 1982, an Omnibus Budget Reconciliation

Act allowed states to re-bundle Medicaid paid LTC services through the 1915 HCBS waivers.

Under this law, some services traditionally provided only by nursing homes were allowed to

be delivered and reimbursed through HCBS (usual standards are “waived”). Some states have

adopted this approach, providing a limited number of waivers for Medicaid beneficiaries who

meet nursing home admission criteria [1]. In other states, this “LTC de-institutionalization

movement” has not yet taken hold and only NHC is supported, especially for the elderly

[9, 10, 11, 12].

Because budgets are limited, Medicaid resources directed to HCBS are diverted from

NHC, and thus state waiver programs are allowed to provide only a limited number of

waiver “slots”. The number of waiver slots funded is a significant decision given that it
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impacts all three of the major U.S. healthcare policy objectives of access, quality, and cost

of care. Further, the number of waivers impacts the capacity expansion decisions of HCBS

industries within a state [10]. These capacity decisions are important to Medicaid policy

makers because a healthy LTC industry is essential in every state.

A stochastic Stackelberg-Nash-Cournot equilibrium model to determine capacities for

HCBS providers is developed. This model consists of a leader, Medicaid who decides on

the number of waivers; and followers, HCBS providers who decide on service capacities.

Uncertain demand impacts both Medicaid and the HCBS decisions. To the best of our

knowledge, these inter-related decisions of Medicaid waivers and LTC capacity have not

been studied in a distributed decision making environment.

Post Acute Care

Post-acute care (PAC) includes rehabilitation services that beneficiaries receive after

staying in an acute care hospital. Depending on the intensity of care the patient requires,

treatment may include a stay in a facility, ongoing outpatient therapy, or care provided at

home. Post-acute care is a growing and essential health and social service, accounting for

more $2.7 trillion spent on personal health care, and, of that, almost 15% of total Medicare

spending. Since 2000 PAC industry has evolved and grown substantially because of two main

reasons. First and foremost, the government is placing so much pressure on hospitals about

readmission. So, they need to make sure that patients receive good care after discharge from

the hospital. Besides, a substantial amount of the total Medicaid budget is allocated to

PAC’s.

In recent years, there has been substantial progress in the relationship between acute care

(AC) and post-acute care (PAC) providers and patients’ transitions between them. This was

precipitated by the recognition that fragmentation of care across settings is not beneficial

to patients and expensive for healthcare systems [13]. There are several potential ways to

reduce the impact of this fragmentation. First, AC and PAC providers may formally integrate
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into a single financial entity with combined legal ownership. Second, they may selectively

strengthen ties with each other while remaining legally separate. Under this model, hospitals

and post-acute care providers conduct a significant number of transactions with each other,

sometimes with agreements or contracts to coordinate care, but they remain legally separate

entities.

We study the problem of selecting a portfolio of PAC providers from hospitals’ or, in

a broader point of view, from an AC perspective. PAC provider portfolio selection is the

process of selecting and contracting with a set of PAC providers by a specific acute care

manager. This process is, indeed, strategic and so long-term decision for AC providers. A

long term relationship with PAC providers is incredibly beneficial to the AC’s. It offers

advantages such as stability in future plans and strategies, and reliability of the quality of

services provided to the patients. The standard approach taken toward the PAC selection is

to select the best available to date, and probably evaluate them in periodic times. However,

considering the fixed cost of contracting with a provider, this approach may not necessarily

be beneficial. The contract’s fixed cost may contain the cost associated with research on

different providers, collecting required data, and consulting with experts. Besides, a contract

needs lawyers for writing and considering the legal perspectives. Deciding on the number

of years, the number of patients from each type and many other details require time and

money. All these together create a fixed cost for contracting with a PAC.

To the best of our knowledge, there is no article in the literature of PAC studies, which

investigates this problem from the optimization point of view. However, there are a few

papers that look into this problem from a medical point of view. [14] determined the fac-

tors that influence post-acute care decisions by surveying stroke discharge planners. They

conclude that nonclinical factors such as prioritization of health service referrals, patient’s

residence, and workforce capacity have major impact on their decisions. [15] did an extensive

review on patient-related factors that guide clinical decision-making regarding to rehabilita-
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tion admission after acute stroke. The majority of PAC literature, including those published

in medical journals, are related to heartstroke. We consider this problem in a broader per-

spective, in that we classify patients in subgroups assuming their need to specific services in

PAC facilities.

There are two main things that managers in AC’s look into it when deciding on selecting

the best PAC’s to contract with. First and foremost is providing the patients with services

they need during their recovery after discharge from the hospital. PAC will agree to engage

in an active and ongoing program to evaluate and modify their practice patterns and create

a high degree of interdependence and cooperation within the network. The other, which

recently turns to be vital, is that new healthcare legislation started using a new payment

method called bundled payment (BP) system. Under BP, the insurer/public insurer (Medi-

care or Medicaid) only pays the pre-specified bundled payment value upfront to cover all

possible services rendered to the patient within a specified time window including eventual

complications in both acute and post-acute care providers. In the last decade, bundle pay-

ment attracted much attention. [16] compares the fee for services (FFS) method of payment

with BP. They discuss the pros and cons of both approaches. The main disadvantage of FFS,

from the patients’ point of views, is that FFS provides incentives for excessive treatment in-

tensity and results in suboptimal system payoff. They also find that assuming that providers

have the option to whether accept a patient or not, BP could lead to suboptimal patient

selection and treatment levels that may be lower or higher than desirable for the system,

with a high level of financial risk for the provider. This risk is associated with complications

of patient treatment.

[17] shows that an optimal strategy for The Centers for Medicare and Medicaid Services

(CMS), under its current approach, may be to either announce a fixed threshold or keep the

selection process uncertain, depending on market characteristics. They also formulate and

solve the proposer selection problem as a constrained mechanism design problem, revealing
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that CMS’ current approach is not optimal. They present policy guidelines for government

agencies pursuing bundled payment innovations.

We introduce a novel two-phase post-acute care portfolio selection procedure. In the

first phase, using TOPSIS methodology, PAC providers are ranked based on a set of pre-

determined criteria. The Technique for Order of Preference by Similarity to Ideal Solution

(TOPSIS) is a multi-criteria decision analysis method, which was originally developed by

[18]. The set of criteria are generally determined by the Medicaid. An extensive survey has

been conducted to calculate the importance of each criterion. A survey is distributed among

experts in the field from both academia and hospitals. In the second phase, we develop a a

multi-objective optimization model to determine the PAC providers with those we sign the

contract. It aims to optimize contracting procedure of AC’s. A portfolio of PAC providers

is determined with regard to minimizing the total cost and readmission to AC, and also

maximizing the quality of services, while we consider several other factors as constraints in

this model such as distance.

To develop this model, we borrow the main idea from the supplier selection literature.

Similar to the supplier selection problem, PAC portfolio selection is a long-term and strategic

decision making problem. There are many papers in the literature that studied the problem

of supplier selection or ranking the suppliers. One of the most popular approaches is rank-

ing suppliers based on the cost associated with providing their supplies from that specific

supplier. Other than that, a large portion of the literature is on multi-objective studies.

A vital aspect of PAC provider selection is defining and determining the evaluation basis’s

selection criteria. A multi-objective decision making approach is efficient for this problem.

Determining the worth of such criteria is essential as well. To determine the importance

of each factor, we did an extensive survey by around 30 experts in this field. Some PAC’s

may have very high credentials and operate in high efficiencies, but prove to be overqualified

by most AC’s, specifically when they need to pay higher for these facilities. Therefore, it
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is crucial to truly validate providers according to the acute care’s current requirements and

future vision. We address this problem by minimizing the total cost, maximizing the service

quality received from these facilities, and minimizing the readmission rate the AC from them.

Accordingly, a good fit is neither unacceptable nor over-qualified.

Using data from the Medicaid on cost and quality of services for PAC providers, we do

analysis on impacts of different parameters of the proposed model in the state of Texas. As

readmission rate from PAC’s is not available, these rates are assumed. The most essential

attributes, revealed by Medicaid, are some quality measures such as prehospitalization, num-

ber of patients who lose weight, number of patients who have severe pain, etc. These are all

summarized in Table 1. Moreover, there are beneficial data on staff rating, which includes

the average cost per patient per hour, associated with staff. We take into account all this

information in preparing our survey.

The problem addressed in this paper aims to provide some guidelines for decision makers

in acute care facilities towards contracting with PAC providers by ranking the providers

concerning the cost of their services and the quality or level of services they provide. Besides,

this would give researchers direction in this area to further investigate the factors that

influence this selection.

Contributions of the work include but not limited to:

• Providing guidelines for Medicaid and HCBSs to optimally decide on the number of

waivers and their capacities, respectively. The following subgoals are defined to achieve

this goal:

• Capture the competing interests and distributed decision making inherent in LTC

capacity planning

• Formulating this problem to optimize adherence to HCBSs quality level, with uncer-

tainty in future demand
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• Determining a set of attributes to quantify the service quality level for each PAC

• Conduct surveys from an expert panel to calculate the importance of each criterion

considered by the Medicaid

• Selecting a set of PACs for a hospital, to make a contract with considering the total

cost, readmission, and quality of services.

• Investigating the impact of each objective on the selected set of providers

The implications of this study can be itemized as follows:

• Medicaid has been provided by a framework to decide on the optimal number of waivers

for each state. We show that Medicaid does not necessarily need to outspend its budget

since part of the demand is fulfilled by LTC providers.

• LTC providers’ decision is highly dependent on Medicaid’s decision. LTC providers

cannot make the best decision unless they are aware of Medicaid waiver provision.

• Acute care managers can easily have access to a table which includes the ranking of

PAC’s based on the criteria given by Medicaid.

• Attributes for determining the quality of a PAC are provided in addition to an expert

derived assessment of their importance. These attributes quantify the quality measures.

• For each PAC, cost, readmission rate, and service quality measures are provided.

The rest of the dissertation is organized as follows. Section 2 reviews the relevant lit-

erature on post-acute care capacity planning. Section 3 presents the game model with its

assumptions and properties and provides the solution algorithm and numerical results based

on data from Texas. Section 4 presents the details of the mathematical formulation for PAC

contracting problem and the methodology to solve this model, describes the case study that
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was the origination of this research, including the real data from the state of Texas. Compu-

tational results are provided, sensitivity analysis on different input parameters is performed,

and some managerial insights are extracted. Finally, the research is concluded in Section 5,

and some future directions are proposed to cover the limitations of this research.
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2. LITERATURE REVIEW

In recent years, there has been rapid growth in the use of operations research (OR)

in the field of healthcare resource planning [19]. Significant effort has focused on short-

term or intermediate-term scheduling ([20] provides a broad overview), including personnel

scheduling (e.g., see [21] and [22] for surveys on nurse scheduling, [23] for emergency physician

scheduling, and [24] for resident scheduling), clinic scheduling (e.g., [25] and [26]), and facility

scheduling (e.g., see [27] for an extensive review of operating room scheduling). In contrast,

only a few researchers deal with strategic health care resource planning (e.g., [28] and [29] for

personnel planning, and [30] for facility planning). These studies typically address strategic

resource planning in acute care settings and do not specifically deal with LTC capacity

planning problems.

While LTC capacity planning research is scarce, there are a few important studies. Hare

et al. [31] develop a deterministic multi-state model for home and community care in British

Columbia, Canada, with the objective of predicting future LTC needs. Their model incor-

porates both publicly-funded and non-publicly-funded LTC options. The model uses both

changing age and changing health status as demographic input and is validated and tuned

with the provincial-level data of British Columbia. Patrick [32] develops a Markov decision

process model to determine the optimal patient flow from a hospital to LTC facilities in order

to reduce hospital congestion. The model is configured using data from a Canadian hospital

and shows that existing LTC capacity is insufficient to achieve satisfactory improvement on

hospital census and community wait times.

Zhang et al. [33] integrate demographic and survival analysis with simulation optimiza-

tion to determine the minimum LTC capacity levels to satisfy client wait time requirements

over a multi-year planning horizon. Case studies based on Canadian LTC settings demon-
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strate improvement over current practice in terms of reduced waiting times. Cardoso et

al. [34] propose a multi-objective and multi-period model for both LTC location selection

and capacity planning. They use geographical and socioeconomic equity of access as their

objectives and provide a case study from the Portuguese health system.

Patrick et al. [35] develop a simulation model to determine the community-based LTC

capacity required to reduce waiting time for patients being discharged from hospitals in On-

tario. They conclude that waiting time objectives cannot be achieved without significant

increases in LTC capacity. Cardoso et al. [36] develop a stochastic MILP that helps decision

makers determine and fairly distribute LTC capacity to assure equity of access across socioe-

conomic and geographical dimensions. They apply their model to a Portuguese jurisdiction

and conclude existing capacity levels to be inadequate. Li et al. [37] study the problem of

capacity planning for LTC networks. Patient flows among care settings are modeled using

an open migration network, and the objective is formulated as a newsvendor type profit

maximization model, with penalties being applied for violations of soft capacity constraints.

The authors use the model to make several observations about capacity allocation in LTC.

For example, investments in capacity resilience (e.g., cross-training or surge beds) reduces

the overall LTC capacity need.

While the above papers present many good results, they all focus on centralized decision

making. In fact, much of the capacity planning in U.S. healthcare systems is inherently

distributed. These problems are best addressed using some form of game theoretic approach.

To the best of our knowledge, there are only a handful of papers that apply game theory to

study healthcare problems. Adida et al. [38] use game theory to study joint stockpiling for

hospital disaster planning, and McFadden et al. [39] investigate using game models in surgical

settings. Ford et al. [40] present a case study on mental care coalitions using network analysis

and game theory interpretations. Finally, Kurt et al. [41] study the problem of paired kidney

exchange and develop necessary and sufficient conditions for stationary equilibria.
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The contributions of this study include model and solution algorithms that capture the

(a) competing interests and distributed decision making inherent in LTC capacity planning,

(b) interplay between a state’s Medicaid waiver program and its LTC provider capacity,

(c) uncertainty arising from LTC demand projections, (d) financial constraints on public

LTC spending, (e) attributes which shape the quality of a PAC, and (f) impact of cost,

readmission rate, and quality measures on selecting PAC’s.
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3. DISTRIBUTED LONG-TERM CARE CAPACITY PLANNING

3.1 Problem Description

We develop a stochastic Stackelberg-Nash-Cournot game model [42] (Table 1 defines

notation). This model consists of two main players. The leader is Medicaid and the followers

are HCBS providers. Stackelberg is a strategic game in which the leader moves first and

then followers move sequentially [43]. Cournot competition is an equilibrium model used to

formulate a game in which players compete with each other on the amount of their output,

which they decide independently and simultaneously [44].

In our model, Medicaid, the leader, chooses the number of waivers, x, to maximize social

benefits (we assume x to be a continuous variable). Medicaid waivers are necessary to fund

LTC services in the home or community rather than in a nursing home. After the number

of waivers is announced, HCBS providers, the followers, decide on their own service capacity

(in patients served), which requires a portfolio of resources that might include the number

of HCBS personnel, the fleet size, or the number of portable diagnostic devices. We assume

Medicaid is able to make some prediction about how HCBS providers will respond to waiver

announcements, which is reasonable since the federal and state governments are continu-

ally developing and maintaining significant health data infrastructure useful in predictive

modeling [45].

Medicaid’s objective is to improve patient access to care while maintaining care quality

and controlling costs. This is captured by social benefit function, s, which specifies the benefit

of total HCBS capacity in the catchment area. We assume I followers, that is, I private HCBS

organizations (providers) competing for uncertain future LTC demand in the catchment

area. The uncertainty in future LTC demand is captured through J demand scenarios with

associated probabilities, πj, j = 1, . . . , J . We let qij represent provider i’s capacity decision
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under scenario j; ci represent provider i’s capacity cost (assumed independent of scenario);

and rj represent the revenue per patient under scenario j (assumed independent of provider).

Table 3.1: Notation

I Number of HCBS organizations in catchment area
J Number of demand scenarios
πj Probability of demand scenario j
x Number of waivers specified by Medicaid
s Medicaid social benefit function
rj Revenue function for scenario j, in revenue per patient
qij Capacity decision variable for provider i under scenario j
ci Capacity cost function of provider i

With the above specification, the leader obtains the optimal solution x∗ to the Stackelberg

problem:

x∗ = argmax
x≥0

{s

(
x+

J∑
j=1

πj

I∑
i=1

qij(x)

)
}, (3.1)

and each follower i in scenario j obtains the optimal solution q∗ij to the Cournot problem

q∗ij = argmax
qij≥0

{qijrj

(
x∗ + qij +

∑
k 6=i

q∗kj

)
− ci(qij)}, (3.2)

for i = 1, . . . , I and j = 1, . . . , J .

The point (x∗, (q∗ij)i=1...I,j=1...J) is a Stochastic Stackelberg-Nash-Cournot (SSNC) equi-

librium if x∗ solves equation 1 and q∗ij solves equation 2.

In the above formulation, the leader will determine its optimal choice x∗ with consider-

ation of the expected total service supply which is captured as
∑J

j=1 πj
∑I

i=1 qij(x). On the

follower side, the qij(x), i = 1, . . . , I, j = 1, . . . , J are the joint reaction functions to the
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leader’s choice of x in scenario j. In each scenario j, we need to solve a separate Cournot

problem. For the ease of analysis, we define an aggregate reaction function in scenario j as

Qj(x) =
I∑

i=1

qij(x), j = 1, . . . , J. (3.3)

3.1.1 Assumptions

The assumptions made in the model and the associated justifications are presented as

follows.

Assumption 1: The revenue function, rj, is strictly decreasing and twice differentiable.

An intuitive explanation is that as the total HCBS service capacity in a catchment area

increases, the revenue that an individual HCBS organization receives for treating a patient

will not increase and could decrease due to the greater supply. Further, rj is independent

of i since, as in the microeconomic context, the revenue at an equilibrium point is identical

for all firms that provide a given quantity of service. This revenue function is similar to the

inverse demand function used in [46]. Similarly, the social benefit function, s, is concave

and twice differentiable, which implies the marginal social benefit of each additional unit of

capacity is not increasing.

Assumption 2: The cost function, ci, is convex and twice differentiable. This is a normal

assumption in the Stackelberg-Nash-Cournot literature as can be seen in [47, 42, 48]. More-

over, as with the total cost function in the queuing literature, we may consider total cost

as the sum of cost of service (which is strictly increasing as more customers are served) and

cost of the waiting (which is strictly decreasing as more capacity is added).

Assumption 3: The number of patients treated is approximately equal to total HCBS

capacity. This assumption is justified since demand for HCBS is intense and the current

service supply cannot satisfy the growing demand due to population aging [49].

Assumption 4: Every organization has budgetary constraints, thus HCBS organizations
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cannot expand their capacities indefinitely. Let Ui be the largest possible capacity for HCBS

i, so we have qij ≤ Ui for i = 1, . . . , I and j = 1, . . . , J . This assumption is reasonable as

the cost for expanding capacity is always significant. Similarly, there is an upper bound for

Medicaid, U0, on the number of waiver slots that can be provided, and thus, x ≤ U0.

3.1.2 Model Characterization

In this section, we explore properties of our model. These properties provide information

on solution existence and uniqueness to the SSNC problem and on the continuity of Qj(x)

as a function of x. Proofs are based on the aforementioned assumptions and closely follow

the presentation of Sherali et al. [42]. We forego the proofs of properties 1 and 2, instead

focusing on discussion, and provide a brief proof outline for property 3. Readers interested

in details may refer to [42]. Property 1 ensures the existence of solutions for each of the

leader’s decision. This property is established by Sherali’s Theorem 1 and corollary. Property

2 establishes continuity and first derivative boundaries for the aggregate reaction curve.

This property is established by Sherali’s Theorem 2. To prove property 1, Sherali’s used

assumption 1. Both assumptions 1 and 2 are used as a part of the proof for property 2.

Property 1. For each leader’s choice x ≥ 0, there exists a unique set of quantities [q1j(x), . . . , qIj(x)]

satisfying the conditions in equation (2). Also, qij(x) is a continuous function of x for

i = 1, . . . , I and j = 1, . . . , J .

It is worth noting that at any equilibrium solution to a SSNC game, the leader has

maximized its profit with clear anticipation of the reaction of the followers, while each

follower has maximized its own profit given the decisions of the other followers. No follower

will wish to unilaterally change its decision.

Next, we study properties of the aggregate reaction function Qj(x). The purpose is to

better understand how followers react to the leader’s decision.

Property 2. For each scenario j, j = 1, . . . , J , Qj(x) is a continuous function of x for
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x ≥ 0 and satisfies

− 1 < Q+
j (x) < 0 if Qj(x) > 0, (3.4)

and

Q+
j (x) = 0 if Qj(x) = 0, (3.5)

where Q+
j (x) is the right hand derivative of Qj(x) with respect to x.

Note that the existence of first order derivative for Qj is presumed. The interpretation

of this property in our context is that if the Medicaid increases the number of waivers by

one, then the total number of patients whose LTC is paid by alternative sources will be

decreasing, but not by more than one. It is an intuitive interpretation since increasing the

number of HCBS waivers will for sure decrease the total number of patients paying for care

in alternative ways.

Finally, we present the existence and uniqueness results for the stochastic Stackelberg-

Nash-Cournot equilibrium. This is the most vital property of the game model. This property

guarantees a unique solution to SSNC problem. Thus, we explain the important parts of its

proof.

Property 3. (i) There exists an equilibrium point (x∗, (q∗ij)i=1,...,Ij=1,...,J) to the stochastic

Stackelberg-Nash-Cournot problem. (ii) The equilibrium point is unique.

Proof. (i) By property 1, qij(x) is a continuous function on x, thus s(x+
∑J

j=1 πj
∑I

i=1 qij(x))

is also a continuous function on x (by assumption 1). By assumption 4, qij ≤ Ui for i =

1, . . . , I, j = 1, . . . , J , the feasible set S = {x+
∑J

j=1 πj
∑I

i=1 qij(x) | 0 ≤ x ≤ U0} is nonempty

and compact over [0,
∑I

i=0 Ui]. Since the leader is maximizing a continuous function over a

compact set, there must exist an optimal solution x∗. Further by property 1, a unique set of

quantities [q1j(x
∗), . . . , qIj(x

∗)] can be obtained for a leader’s choice x∗ in scenario j, which

proves the existence of the equilibrium point.
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(ii) Uniqueness is due to the concavity of function s from assumption 1. This completes

the proof of uniqueness of the equilibrium point.

3.2 Methodology and Results

In this section, we will discuss the solution algorithm proposed to solve this problem to

optimality, required data to develop a case problem, and numerical results of a case study

in Texas, US.

3.2.1 Solution Algorithm

In order to solve this SSNC problem, we adapt an approximation algorithm from [50].

They proposed an efficient and easy-to-implement approximation algorithm to solve a similar

stochastic Stackelberg-Nash-Cournot equilibrium problem. As this is a bi-level problem, the

proposed solution algorithm contains two parts which we explain in the following.

The basic idea is to approximate Qj(x) by a piecewise linear curve that coincides with

Qj(x) at each breakpoint. The leader’s problem is then solved on each of these intervals with

Qj(x) replaced in (1). In order to solve the leader’s problem, we divide the closed interval

of [0, U0] using T grid points xt, t = 1, . . . , T with 0 ≤ x1 < x2 < · · · < xT ≤ U0. We use the

linear function Qtj(x) defined in (6) to approximate Qj(x) on [xt, xt+1].

Qtj(x) = Qj(xt) + γtj(x− xt) for xt ≤ x ≤ xt+1 (3.6)

where

γtj =
Qj(xt+1)−Qj(xt)

xt+1 − xt
. (3.7)

Thus, in each interval [xt, xt+1], the aggregate reaction curve is replaced by its linear
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approximation Qtj(x). We then can solve the following leader’s problem.

max
xt≤x≤xt+1

s

(
x+

J∑
j=1

πjQtj(x)

)
. (3.8)

Let x∗t , t = 1, . . . , T , be the solution to (8). The x∗t is the approximation of the leader’s

optimal output over [xt, xt+1]. We evaluate the x∗t for all T grid points and find the best

solution to be the leader’s choice. It is easy to see that the larger the T is, the closer our

approximation solution is to the real optimal solution.

The only thing remains to completely solve the SSNC problem is computation of the

aggregate reaction function Qj(x) for a given x. This is done by defining a new equilibrium

problem. For each scenario j, we solve the following optimization problem.

EP (x,Qj) : max rj(Qj + x)
I∑

i=1

qij +
1

2
r′j(Qj + x)

I∑
i=1

q2
ij −

I∑
i=1

ci(qij) (3.9)

s.t.
I∑

i=1

qij = Qj (3.10)

qij ≥ 0, i = 1, . . . , I. (3.11)

For a fixed x ≥ 0 and Qj ≥ 0, each problem EP (x,Qj) involves the maximization of a

strictly concave function over a nonempty, convex, and compact feasible region. Hence, there

is a unique global optimum for each problem EP (x,Qj). The Qj depends on a predetermined

x, so Qj = Qj(x). Note that the optimal Lagrange multiplier associated with the constraint

(10), λ∗[Qj(x)], is zero [50]. Then, it can be verified that the KKT conditions for EP (x,Qj)

replicate those of problem (2). The above problem (9-11) is an optimization problem with a

nonlinear objective function and a linear constraint.
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3.2.2 Numerical Study

In this section, we elaborate how to estimate all model parameters based on the data

from publicly available databases and published studies. To estimate the total cost, we first

assume that the nurses’ wages are the major source of a facility cost. We consider three

types of LTC workers including Registered Nurses (RN), Licensed Practical Nurses (LPN),

and Aides. Aides help LTC recipients perform most basic daily tasks (e.g. dressing, feeding,

and bathing). They have extensive daily contact with patients. According to the 2010-

2011 Occupational Outlook Handbook published by the Department of Labor’s Bureau of

Labor Statistics, “LPN is a nurse who cares for people who are sick, injured, convalescent,

or disabled. LPNs work under the direction of registered nurses or physicians. Experienced

LPNs may supervise nursing assistants and aides, and other LPNs."

With regard to their types and the state in which they work, nurses are paid at different

rates. The average pay rate for each type (according to The Prudential Insurance Company

of America, 2010) is summarized in Table 2.

Table 3.2: Average Pay Rate for Nurses Per Hour ($)

RN 54
LPN 54
Aides 21

In addition, we specify the required daily nursing hours for each type of nurse from

Medicaid. Then we calculate the total cost of a facility using equation (12), where Wrn,

Wlpn, and Wa are the average pay rates for RN, LPN, and Aides, respectively.

C = RN ∗Wrn + LPN ∗Wlpn + A ∗Wa (3.12)
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In order to find the total cost as a function of a facility capacity, we do regression analysis

which satisfies assumption 2. According to this assumption, the cost function is convex and

twice differentiable. This makes sense as the smaller facilities are not necessarily cheaper;

that is, they often have higher occupancy rate. Smaller facilities are usually located in rural

locations. On the other hand, large facilities are also among the most expensive ones. From

this, we can verify that cost function is convex and twice differentiable in shape.

In order to nullify the impact of the quality (service level) of a facility for computing the

cost function, we confine our study to the facilities with the same and the highest quality

measure. Medicaid has different quality criteria to rank the facilities. It also provides an

overall ranking of all LTC agencies based on an integer number ranging from 1 to 5. This

study is confined by LTC agencies, in the state of Texas, which have the highest overall

quality measure of 5. We investigate this problem on 40 HCBS in the state of Texas.

We extract the number of hours required for each nurse type at each specific facility from

Medicaid data sources. We also find the capacity of all aforementioned 40 HCBSs from the

Medicaid website (medicaid.gov). Finally, a quadratic regression is done to find the cost as

a function of the capacity as follows.

According to the national long-term care profit margin, which was released by the U.S.

Government Accountability Office in 2012, on average, there is 6.9 percent profit for a LTC

facility. Thus, we develop revenue functions which satisfy both assumption 1 and the average

profitability. We use the same data for cost, but this time we do a linear regression. We

come up with a decreasing function which satisfies assumption 1. We multiply it by a random

number between 1.062 and 1.076 to generate revenue functions for different scenarios.

The current total capacity of the 40 HCBSs is roughly 3000 patients. We assume the

upper bound of x, number of waivers provided by Medicaid, as 600 which is equal to 20

percent of the current system capacity. No penalty cost is incurred for shortage in the whole

system. Further, we assume that there will be an increase in the demand for LTC, and it
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is normally distributed from 5 to 55 percent of the current system capacity (3000 patients).

Each scenario and the associated probabilities are summarized in Table 3. The third column

in Table 3 indicates the amount of increase in demand for LTC in the future. For instance,

under to scenario 1, the demand is expected to increase by 150 in the next year.

Table 3.3: Scenarios and Probabilities

Scenario Probability Increase Demand
1 0.02 150
2 0.05 300
3 0.08 450
4 0.1 600
5 0.15 750
6 0.2 900
7 0.15 1050
8 0.1 1200
9 0.08 1350
10 0.05 1500
11 0.02 1650

We assume number of intervals for calculating x with regard to the maximum number

of waivers is 6. As mentioned, there are 40 service facilities with the best quality measure

in Texas according to Medicaid data source. Note that, our objective is to find the optimal

number of waivers for this case. As discussed, there is no source of uncertainty for players in

the second stage of the model. Followers (HCBSs), therefore, decide on their capacity after

realization of the scenario as well as the leader’s decision.

In order to clarify the concept, we discuss an illustrative example. We present the total

system response to the choice of leader on number of waivers in Table 4. Note that each

facility decides on its own capacity based on its specific cost and revenue functions. In

the following table, we present the value of Qj(x) for each scenario. T(i) presents what
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percentage of demand will be covered by waivers. As mentioned earlier, we assume that the

Medicaid does not grant more than 600 waivers.

Table 3.4: System Response (Qj(x)) to Medicaid Choice of x

Scenario T1(0) T2(20%) T3(40%) T4(60%) T5(80%) T6(100%)
1 150 120 90 60 30 0
2 300 240 180 120 60 0
3 450 360 270 180 90 0
4 600 480 360 240 120 0
5 715 600 450 300 150 150
6 715 600 450 300 150 150
7 715 613 511 422 422 422
8 715 599 481 422 422 422
9 715 538 453 422 422 422
10 715 569 422 422 422 422
11 715 544 422 422 422 422

The following discussion clarifies the results presented in Table 4. As a case in point,

the second column of Table 4 (T1) presents the case of x = 0. That is, Medicaid does not

provide any waivers to the State (in this case for high quality LTC agencies in the State).

As expected, the followers increase their capacity to meet the demand until some point.

But, afterwards (in scenario 5, where demand is equal to 750), followers satisfy the demand

partially. The reason is the specific revenue and cost functions assumed for this problem.

Table 5 presents the total system capacity including waivers (x) and aggregate reaction

function (Qj(x)) from the HCBS facilities for each scenario. For each scenario, the optimal

solution for Medicaid is highlighted. As shown, for the first four scenarios, Medicaid does

not provide any waivers and the demand is satisfied through HCBSs. Under scenario 1,

followers increase their capacity to meet total demand, 150. Similarly, under scenario 2,

followers increase their capacity to meet total demand, 300. Note that, in all cases the
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optimal solution for Medicaid is to provide the least number of waivers while it does not

impact the total system capacity. As a case in point, for scenario 6, Medicaid prefers the

solution in T3. The reason is that total system capacity is the max value for this scenario

and also Medicaid provides less waivers comparing to other intervals with the same total

system capacity.

Table 3.5: Total System Capacity

Scenario T1(0) T2(20%) T3(40%) T4(60%) T5(80%) T6(100%)
1 150 150 150 150 150 150
2 300 300 300 300 300 300
3 450 450 450 450 450 450
4 600 600 600 600 600 600
5 715 750 750 750 750 750
6 715 808 900 900 900 900
7 715 823 931 1022 1022 1022
8 715 839 961 1022 1022 1022
9 715 808 993 1022 1022 1022
10 715 869 1022 1022 1022 1022
11 715 864 1022 1022 1022 1022

Here we discuss on how to verify the results from the illustrative example. Results seem

promising in the sense that as x increases, the extra capacity provided by the followers will

decrease. This exactly verifies the second property of the model. In addition, as mentioned

earlier in the paper, there is no uncertainty in the second stage of the model where followers

(HCBSs) make a decision. We assume that they exactly know what the leader did. So,

in case that the leader provides sufficient number of waivers, the followers will not increase

their capacity.

This example illustrates how Medicaid and facilities decide on number of waivers and

their incremental capacities respectively. This example is solved for each scenario and each
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grid point separately. It shows the interaction between these two parties as well.

The near optimal solution for leader’s problem is 510, which determines the extra number

of waivers. Table 6 presents the near optimal number of waivers for each interval of x. Since

the only constraint we consider for Medicaid is budgetary constraint, and there is no penalty

for extra number of waivers in the system, the solution is 510. Note that, for some scenarios

we have more waivers than the total demand.

Table 3.6: Number of Waivers

Int1 (0-20%) Int2(20-40%) Int3(40-60%) Int4(60-80%) Int5(80-100%)
x 120 215 328 417 510

We did the same analysis for providers whose ranking is not 5 out of 5. We consider

the budgetary limit as 20% of the current total capacity. We assume the same scenarios for

these cases. Table 7 presents the total capacity of providers at each level, maximum number

of waivers, and near optimal solution:

Table 3.7: Number of Waivers

Service Quality Capacity Maximum # of Waivers Solution
5 3000 600 510
4 4000 800 672
3 2500 500 427
2 1500 300 259
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3.2.3 Sensitivity Analysis

In this section, we do sensitivity analysis on different parameters in the model. According

to the table 7, as total capacity and maximum number of waivers increase, the near optimal

solution increases. Now, we investigate the impact of revenue function on optimal number

of waivers. We already assume the profit of a provider is about 7%. In order to analyze

this impact, we consider different scenarios and compare the results. Results are provided

in Table 8.

Table 3.8: Impact of Profit of a Provider on Number of Waivers

% Profit Optimal Solution
5% 547
7% 510
10% 491
12% 476
15% 451

Figure 2 depicts this impact on number of waivers for different service quality levels.

As shown, for all levels of service quality, number of waivers decreases as net profit

increased. It can be interpreted as follows. Since having more capacity in the system is

more profitable for providers, Medicaid then grants less waivers. The total system capacity

remains at the same optimal level.

This solution approach provides a guideline for the Medicaid on how to optimally assign

its budget for waivers in each state. Medicaid has more detailed information about cost and

revenue of the facilities. In addition, the solution approach gives some hints to HCBSs on

how to react to the Medicaid decision on number of waivers. Note that, there might be other

constraints that Medicaid encountered. These constraints may impact its decision. They
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Figure 3.1: Number of Waivers for Different Percentage of Profit

only constraint that we consider in this problem for Medicaid is the budgetary constraint.

This model is easily implementable in a decision support package. The user would enter

the number of facilities and their capacities, the cost and revenue functions, and the uncertain

demand scenarios. Using the historical data from Medicaid, scenarios and values of the model

parameters can be predicted. Medicaid would use the model on a yearly basis to decide on

the number of waivers assigned to each state. HCBSs decide later based on the determined

number of waivers and other facilities costs and capacities.
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4. POST-ACUTE CARE PORTFOLIO SELECTION

4.1 Problem Description

In this section, we present the post-acute care provider selection problem. We consider

two cases with and without uncertainty in predicting the demand. We define this problem as

follows. There are two different types of patients that require post-acute services, Short-Stay

Patients (SSP) and Long-Stay Patients (LSP). Patients are from different regions across the

network. There is a list of pre-qualified PACP’s which is denoted by P. PACP’s are evaluated

in terms of a set of attributes (A), and each attribute has an importance weight determined

by the system planners. We denote the capacity of PACP i by Capi. There is a fixed cost

of contracting with each PACP for each type of service. In case of uncertain demand, the

variable cost, which is the cost of services per patient, varies across PACP’s. The problem is

to decide which PACP’s should be considered as a part of the network and how to allocate

each type of patients to PACP’s to minimize the total cost while ensuring the Quality of

Service (QoS) and rate of readmission.

4.1.1 Methodology

Our proposed method includes two phases for designing a post-acute care network. In the

first phase of the proposed approach, we employ the TOPSIS method to take quality-related

metrics into account and compute the score of each PACP for SSP and LSP services. The

Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is a multi-criteria

decision analysis method originally developed by [51].

The second phase is the optimization part. We use a set of quantitative metrics that

are independent of SSP and LSP services in the second phase of our proposed approach.

In this phase, we develop a two-stage stochastic optimization model to take the demand

uncertainty into account for PAC selection procedure and patient assignment. After that,
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Table 4.1: Notation

P Set of pre-qualified PACP’s, i ∈ P = {1, · · · , P}.
A Set of attributes, j ∈ A = {A1, · · · , AQ}.
ωj Importance weight for criterion j
λij Rating of PACP i for criterion j
λ̂ij Weighted rating of PACP i for criterion j
xi 1 if PACP i is selected to provide care services to patients; 0 otherwise.
fi Fixed cost for contracting with a PACP.

we develop a multi-objective optimization model in which maximizing the quality of services

and minimizing the readmission rate are considered objectives other than minimizing the

total cost. We use the following notation thorough the paper.

In the first phase of the proposed approach, we employ the TOPSIS decision making

method to evaluate each PACP concerning providing quality services. The TOPSIS steps

to calculate the closeness coefficient (CC) of each PACP-SSP and PACP-LSP are as follows.

These closeness coefficients can be interpreted as indicators to show the desirability of each

PACP for SSP and LSP.

4.1.1.1 Phase I. closeness coefficients

In this phase of the proposed method, we evaluate the pre-qualified PACP’s based on a

set of attributes. Table 4.2 presents the list of PACP evaluation attributes. There are four

categories of attributes: staffing, deficiencies, quality measures for SSP, and quality metrics

for LSP. The staffing and deficiencies attributes are the same for SSP and LSP. This table

also shows the format of values of each attribute and the type of the attribute that is either

cost (C) or benefit (B). Apparently, for the attributes of type C, lower values are more

desirable, while for the attributes of type B, higher values are more desirable. We employ

the TOPSIS method to compute a global score for each PACP. In the following, we describe

the TOPSIS method.
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Table 4.2: Post-Acute Care Provider Evaluation Attributes

Category Code Criterion Values Cost(C)/
Benefit(B)

St
affi

ng CST-01 Reported CNA Staffing Hours per Resident per Day real number B
CST-02 Reported LPN Staffing Hours per Resident per Day real number B
CST-03 Reported RN Staffing Hours per Resident per Day real number B

D
efi
ci
en
ci
es

CDF-01 Count of Immediate Jeopardy Deficiencies on Health Survey integer (0-nn) C
CDF-02 Count of Severe Deficiencies on Health Survey integer (0-nn) C
CDF-03 Count of Substandard QOC Deficiencies on Health Survey integer (0-nn) C
CDF-04 Count of Administration Deficiencies integer (0-nn) C
CDF-05 Count of Environmental Deficiencies integer (0-nn) C
CDF-06 Count of Mistreatment Deficiencies integer (0-nn) C
CDF-07 Count of Nutrition and Dietary Deficiencies integer (0-nn) C
CDF-08 Count of Pharmacy Service Deficiencies integer (0-nn) C
CDF-09 Count of Quality of Care Deficiencies integer (0-nn) C
CDF-10 Count of Resident Assessment Deficiencies integer (0-nn) C
CDF-11 Count of Resident Rights Deficiencies integer (0-nn) C

Q
ua

lit
y
m
ea
su
re
s
fo
r
SS

P

CQS-01 Percentage of short-stay residents assessed and real number B
appropriately given the pneumococcal vaccine

CQS-02 Percentage of short-stay residents who made improvements real number B
in function

CQS-03 Percentage of short-stay residents who newly received real number C
an antipsychotic medication

CQS-04 Percentage of short-stay residents who self-report real number C
moderate to severe pain

CQS-05 Percentage of short-stay residents who were assessed and real number B
appropriately given the seasonal influenza vaccine

CQS-06 Percentage of short-stay residents with pressure ulcers real number C
that are new or worsened

Q
ua

lit
y
m
ea
su
re
s
fo
r
L
SP

CQL-01 Percentage of low risk long-stay residents who lose control real number C
of their bowels or bladder

CQL-02 Percentage of long-stay residents assessed and appropriately real number B
given the pneumococcal vaccine

CQL-03 Percentage of long-stay residents assessed and appropriately real number B
given the seasonal influenza vaccine

CQL-04 Percentage of long-stay residents experiencing one or more real number C
falls with major injury

CQL-05 Percentage of long-stay residents who have depressive symptoms real number C
CQL-06 Percentage of long-stay residents who lose too much weight real number C
CQL-07 Percentage of long-stay residents who self-report moderate real number C

to severe pain
CQL-08 Percentage of long-stay residents who were physically restrained real number C
CQL-09 Percentage of long-stay residents whose ability to move real number C

independently worsened
CQL-10 Percentage of long-stay residents whose need for help with daily real number C

activities has increased
CQL-11 Percentage of long-stay residents with a urinary tract infection real number C
CQL-12 Percentage of low risk long-stay residents who lose control of real number C

their bowels or bladder

• Weigh the attributes: The first step is to assess the importance weight of each attribute.

Readers can refer to a detailed survey of different methods for assessing the importance

weight of attributes.We should note that the weight for the staffing and deficiencies

attributes could be different for SSPs and LSPs.
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• Construct the decision matrix: The decision matrix is constructed using the list of

pre-qualified PACP’s, attributes, the weight of each attribute, and the assessed score

of each PACP in each attribute. We denote the decision matrix by [λij]M×Q. Note

that two different decision matrix must be created for SSP and LSP. The format of the

decision matrix is shown below.

A1 A2 . . . Aj . . . AQ

ω1 ω2 . . . ωj . . . ωQ

PACP1 λ11 λ12 . . . λ1j . . . λ1Q

PACP2 λ21 λ22 . . . λ2j . . . λ2Q

...
...

...
...

...
...

...

PACPi λi1 λi2 . . . λij . . . λiQ
...

...
...

...
...

...
...

PACPM λM1 λM2 . . . λMj . . . λMQ

• Normalizing the decision matrix: Since the values of attributes are in different ranges,

we need to normalize the decision matrix. The are different methods to normalize the

decision matrix. We use Formula (4.1) to normalize the decision matrix.

λ̂ij =
λij√∑
i∈P λ

2
ij

(4.1)

• Construct the weighted normalized decision matrix: The weighted normalized deci-

sion matrix is computed by multiplying each score in the decision matrix using the

associated attribute weight. We denote this matrix by [υ̂ij]M×Q, where,

υ̂ij = Wj(·)λ̂ij (4.2)

• Determine positive-ideal solution (PIS): The positive ideal solution is an alternative
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that has the best score in all attributes among the list of pre-qualified PACP’s. In most

cases, this alternative is a dummy and does not exist in the list of candidate PACP’s.

We denote the positive-ideal solution by Φ+ = (υ̂+
j , · · · , υ̂+

Q), where,

υ̂+
j =


max

i
υ̂ij, j ∈ B

min
i
υ̂ij, j ∈ C

(4.3)

• Determine negative-ideal solution (NIS): In contrast to PIS, the negative ideal solu-

tion has the worst score in all attributes among the candidate PACP’s. We denote the

negative ideal solution by Φ− = (υ̂−j , · · · , υ̂−Q), where,

υ̂−j =


min

i
υ̂ij, j ∈ B

max
i
υ̂ij, j ∈ C

(4.4)

• Determine the distance of each PACP and from PIS and NIS: We use Formula (4.5)

and Formula (4.6) to calculate the distance of PACP’s from PIS and NIS, respectively.

One can use other distance metrics. In this paper, we set p = 2, but one can apply

any values for p that satisfies p ≥ 1.

d+
i = (

∑
Θ

(υ̂ij − υ̂+
j )p)1/p ∀i ∈ P, p ≥ 1 (4.5)

d−i = (
∑

Θ

(υ̂ij − υ̂−j )p)1/p ∀i ∈ P, p ≥ 1 (4.6)

• Compute Closeness Coefficients (CC): We use the distance of each PACP from PIS

and NIS to compute CC using Formula (4.7). Apparently, PACP’s with higher values

of CC are more desirable, that is, they have a long distance from NIS and a small
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Table 4.3: Notation

N set of PACP’s, i ∈ N = {1, · · · , n}
M set of type of patients, j ∈M = {1, · · · ,m}
R set of regions, k ∈ R = {1, · · · , r}
dik The average distance of patients in region k to provider i.
As

jk number of all patients from type j from region k under scenario s
xij 1 if the hospital contracts the PACP i for patients of type j; 0 otherwise
ysijk number of patients of type j who are assigned to PACP i from region k

with a contract under scenario s
yijk number of patients of type j who are assigned to PACP i from region k

without a contract
fj fixed cost of contracting for patients of type j
Capi Capacity of provider i
vi variable cost of service provided by PACP i under a contract
v′i variable cost of service provided by PACP i without a contract

distance from PIS.

CCi =
d−i

d−i + d+
i

(4.7)

The case that both d+
i and d−i are zero can only happen when all attributes have the

same value. In that case, there is no need for extra analysis.

In the second phase of our proposed approach, CC’s are used in an optimization problem

to select the most desirable PACP’s for SSP and LSP for some quantitative metrics, which

are reflected in the constraints.

4.1.1.2 Phase II. assignment programming model

In this section, we propose two different approaches for assigning the patients to the

providers. First, we present a two stage stochastic optimization method.

The objective is to minimize the total cost, which includes the fixed cost of contracting

and the variable cost of services for SSP and LSP. Equation (4.8) presents the objective

function of the PAC provider selection problem.
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c(X, Y, S) :=
∑
i∈N

∑
j∈M

fixij + ES

[∑
i∈N

∑
j∈M

∑
k∈R

(
vijy

s
ijk + v′ijy

′s
ijk

)]
(4.8)

Constraint (4.9) is to ensure that the post-acute providers are selected in a way that the

average QoS is higher than the acceptance threshold of λ. Here, QoS is defined based on the

CC scores obtained from the TOPSIS method.

∑
i∈N

∑
j∈M

∑
k∈R

CCijy
s
ijk ≥ λ

∑
j∈M

∑
k∈R

As
jk ∀s ∈ S (4.9)

Another important metric is the coverage of the PAC network which is defined based on the

average distance of patients between their living regions and the allocated PACP. Through

Constraint (4.10), we ensure that the average distance in the network is within the threshold

of α.

∑
i∈N

∑
j∈M

∑
R

diky
s
ijk ≤ α

∑
j∈M

∑
k∈R

As
jk ∀s ∈ S (4.10)

PACP’s are capacitated, and Constraint (4.11) prevents allocating patients to a provider

beyond its capacity. Apparently, this constraint incorporates both types of collaborations,

i.e., with a contract or without any contracts.

∑
j∈M

∑
k∈R

ysijk + y
′s
ijk ≤ Capi ∀i ∈ N,∀s ∈ S (4.11)
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Constraint (4.12) ensures that all the patients are allocated to a PACP.

∑
i∈N

∑
j∈M

∑
k∈R

(
ysijk + y

′s
ijk

)
=
∑
j∈M

∑
k∈R

As
jk ∀s ∈ S (4.12)

Based on Constraint (4.13), we can allocate patients with the contracting mode to a PACP

only if that PACP is chosen for a collaboration under a contract.

ysijk ≤M.xij ∀i ∈ N,∀j ∈M, ∀k ∈ R, ∀s ∈ S (4.13)

Finally, Constraint (4.14) defines the decision variables.

xij ∈ {0, 1}, ysijk ∈ Z+, y
′s
ijk ∈ Z+ ∀i ∈ N, ∀j ∈M,∀k ∈ R (4.14)

In the two-stage stochastic programming approach for optimization under uncertainty,

the decision variables are partitioned into two sets. The first stage variables are those

that have to be decided before the actual realization of the certain parameters becomes

available. Subsequently, once the random events have presented themselves, further design

or operational policy improvements can be made by selecting, at a certain cost, the values

of the second stage or recourse variables. The objective is to choose the first stage variables

in a way that the sum of first stage costs and the expected value of the random second stage

or recourse costs is minimized. The reason we chose SAA is the huge number of scenarios

we encounter with in this problem.

The main idea of Sample Average Approximation (SAA) approach to solving stochastic

programs is as follows [52]. A sample (ξ1, ..., ξN) of N realizations of the random vector

ξ(ω) is generated, and consequently the expected value function E[Q(x, ξ(ω))] is approxi-

mated (estimated) by the sample average function N−1
∑N

n=1Q(x, ξN). The obtained sample

average approximation
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Min ĝN(x) := cTx+N−1

N∑
n=1

Q(x, ξn) (4.15)

of the stochastic program is then solved by a deterministic optimization algorithm. This

approach (and its variants) is also known under various names, such as the stochastic coun-

terpart method and sample path optimization method.

4.2 Case Study

In this section, we elaborate the real case studied in the city of Houston, TX. We did

an extensive survey analysis for criteria weighting. The case is presented in detail here. We

assume SSP’s are staying 20 days and LSP’s are staying 50 days in average at PAC’s. Total

cost is calculated based on the equation (3.12) times the number of stay for each type of

patient.

4.2.1 Criteria weighting

We used the expert panel methodology to evaluate the weights of the criteria. Our panel

was constituted with 22 experts with related professional experience regarding the post acute

care services. Twenty seven percent of the panel had a Master’s degree (e.g. MA, MS, MEd),

55% with a professional degree (e.g. MD, DDS, DVM), and 18% had a Doctorate degree

(e.g. PhD, EdD). Also, 27% of the experts had 1-3 years related professional experience,

and 73% had more than three years related professional experience. Result from the survey

is summarized in Table 4.

4.2.2 Distance

We use the equation 18 to calculate the distance between two points on the earth, where

we have the latitude and longitude of the points:
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u = sin(
lat2− lat1

2
) (4.16)

v = sin(
lon2− lon1

2
) (4.17)

d = u2 + cos(lat1) ∗ cost(lat2) ∗ v2 (4.18)

The reason for proposing this approach to calculate the distance is that on data set

provided by the Medicaid, location of the PAC’s are given by the latitude and longitude,

and it is more convenient.

4.2.3 Candidates

Initially, there was a list of 66 PACPs in the city of Houston, TX, out of which eight

providers had some missing values in the data set. Therefore, 59 providers are final candidates

for subcontracting.
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Table 4.4: Weights of Criteria for PAC Provider Selection

Category Code Weight

Staffing
CST-01 0.1059906
CST-02 0.1023
CST-03 0.1659

Deficiencies

CDF-01 0.0273504
CDF-02 0.0256
CDF-03 0.0196
CDF-04 0.0230
CDF-05 0.0239
CDF-06 0.0341
CDF-07 0.0188
CDF-08 0.0299
CDF-09 0.0282
CDF-10 0.0230
CDF-11 0.0230

Quality measures for short-stay patients

CQS-01 0.0489429
CQS-02 0.0611
CQS-03 0.0509
CQS-04 0.0550
CQS-05 0.0530
CQS-06 0.0795

Quality measures for long-stay patients

CQL-01 0.0266052
CQL-02 0.0256
CQL-03 0.0247
CQL-04 0.0332
CQL-05 0.0237
CQL-06 0.0313
CQL-07 0.0285
CQL-08 0.0237
CQL-09 0.0380
CQL-10 0.0351
CQL-11 0.0304
CQL-12 0.0275
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Figure 4.1: Location of Providers

4.2.4 Patients

In this study, we consider two sets of patients: LSP and SSP. It can be easily extended

to further groups. The reason that we consider these types is that they are defined by the

Medicaid. We generate random numbers for the number of patients in each region. Number

of regions is assumed 16. Locations of patients are considered to be the center of each region.

But, the exact location for each patient can be considered. Number of patients in each region

is a random number.
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Table 4.5: Post Acute Care Provider Selection Data Summary

Category Code Min. Ave. Max.

Staffing

CST-01 0.19023 2.389277627 3.90595

CST-02 0.00 1.009999661 2.0125

CST-03 0.27526 0.730885424 1.64405

Deficiencies

CDF-01 0.00 0.762711864 8

CDF-02 0.00 1.237288136 8

CDF-03 0.00 0.627118644 4

CDF-04 0.00 3.355932203 9

CDF-05 0.00 3.576271186 10

CDF-06 0.00 0.86440678 3

CDF-07 0.00 1.661016949 4

CDF-08 0.00 3.847457627 9

CDF-09 0.00 5.593220339 22

CDF-10 0.00 2.915254237 9

CDF-11 0.00 1.847457627 8

Quality measures for short-stay patients

CQS-01 0.712589 68.21334097 100

CQS-02 10.795409 54.76515236 83.746721

CQS-03 0.00 3.534053474 17.741935

CQS-04 0.268096 11.07295705 28.070176

CQS-05 1.408452 66.11156241 100

CQS-06 0.00 0.923108898 3.954674

Quality measures for long-stay patients

CQL-01 0.00 8.718924898 22.222223

CQL-02 5.853659 78.85360286 100

CQL-03 16.580312 83.42543141 100

CQL-04 0.00 2.305682746 6.535949

CQL-05 0.00 2.329264169 25.874128

CQL-06 0.00 6.564933661 22.321428

CQL-07 0.00 4.594750831 29.358075

CQL-08 0.00 0.15554939 1.804123

CQL-09 7.870532 22.94619847 41.102381

CQL-10 3.846155 19.93807131 36.90476

CQL-11 0.00 5.109087627 30.357144

CQL-12 27.659575 61.07706907 92.857143
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Table 4.6: Closeness Coefficients for SSP and LSP at Each PACP

Candidate SSP LSP Candidate SSP LSP

PCAP-01 0.631772 0.749836 PCAP-31 0.554932 0.579089

PCAP-02 0.509607 0.543321 PCAP-32 0.539559 0.592645

PCAP-03 0.463016 0.532286 PCAP-33 0.487743 0.541983

PCAP-04 0.518957 0.550061 PCAP-34 0.445685 0.501755

PCAP-05 0.621651 0.735444 PCAP-35 0.548174 0.662319

PCAP-06 0.638667 0.784951 PCAP-36 0.459497 0.561767

PCAP-07 0.412889 0.488310 PCAP-37 0.649621 0.638495

PCAP-08 0.415901 0.478475 PCAP-38 0.463372 0.553105

PCAP-09 0.604897 0.621237 PCAP-39 0.579272 0.648916

PCAP-10 0.528526 0.569130 PCAP-40 0.548214 0.543270

PCAP-11 0.624184 0.707356 PCAP-41 0.557513 0.558785

PCAP-12 0.376276 0.491735 PCAP-42 0.520102 0.546624

PCAP-13 0.432560 0.486563 PCAP-43 0.576658 0.688986

PCAP-14 0.464206 0.511630 PCAP-44 0.637076 0.795583

PCAP-15 0.444365 0.552967 PCAP-45 0.523321 0.618600

PCAP-16 0.493942 0.570285 PCAP-46 0.485506 0.541934

PCAP-17 0.403669 0.518138 PCAP-47 0.433962 0.531268

PCAP-18 0.385620 0.489411 PCAP-48 0.475228 0.509586

PCAP-19 0.505476 0.584608 PCAP-49 0.579811 0.677991

PCAP-20 0.493839 0.554356 PCAP-50 0.462514 0.551948

PCAP-21 0.570863 0.698925 PCAP-51 0.523697 0.622275

PCAP-22 0.495677 0.591808 PCAP-52 0.438151 0.511048

PCAP-23 0.525434 0.512843 PCAP-53 0.578885 0.682339

PCAP-24 0.341764 0.472529 PCAP-54 0.529568 0.571210

PCAP-25 0.553146 0.599692 PCAP-55 0.596579 0.687780

PCAP-26 0.514935 0.519396 PCAP-56 0.501737 0.561529

PCAP-27 0.491137 0.454563 PCAP-57 0.481565 0.549124

PCAP-28 0.455973 0.549153 PCAP-58 0.476598 0.614772

PCAP-29 0.463227 0.522300 PCAP-59 0.494029 0.578024

PCAP-30 0.587532 0.712524
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4.3 Analysis

4.3.1 Preliminary Results

We start with presenting some preliminary results of the proposed model. Figures 4.2

through 4.5 presented cost, cost per patients, and coverage based on different values of λ. In

each figure, the problem is studied for three different scenarios in terms of number of SSP

and LSP.

0.4 0.45 0.50 0.55 0.60 0.65 0.70
λ

0

50000

100000

150000

200000

Co
st

 (U
SD

)

Deterministic solution
Stochastic solution

(a) QOS-Cost(200,400)

0.4 0.45 0.50 0.55 0.60 0.65 0.70
λ

0

50000

100000

150000

200000

250000

300000
Co

st
 (U

SD
)

Deterministic solution
Stochastic solution

(b) QOS-Cost(300,500)

0.4 0.45 0.50 0.55 0.60 0.65 0.70
λ

0

100000

200000

300000

400000

Co
st

 (U
SD

)

Deterministic solution
Stochastic solution

(c) QOS-Cost(400,600)

Figure 4.2: QOS-Cost
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(b) Cost Per Patient(300,500)
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(c) Cost Per Patient(400,600)

Figure 4.3: Cost Per Patient

As expected, once λ increases the total cost or cost per patients increases as well. The

reason is that, hospitals need to send their patients to the facility which in general charge

more for providing better services. This has been checked for different combination of number

of SSP and LSP. For all cases, the total cost increases by increasing the λ

Now, the impact of λ on the average distance from patients’ location the PAC’s is inves-

tigated.

Generally, as λ increases, the average distance increases, but it is not always true. The

reason is that in most cases we expect patients to drive more to get to facilities with better
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Figure 4.4: Impact of λ on Distance for SSP

service quality, but, as the total cost is the main goal, this may not be true for all cases.

4.3.2 Readmission to Acute Care

PAC is assigned after a patient is discharged from a prior hospitalization. It is expected

that a patient would recover sufficiently to go back to the hospital within a reasonably short

time would not happen. Nonetheless, it typically happens that some patients get readmitted

to the hospital in a short period after discharge from hospitals. In the PAC sector, hospital

readmission has been deployed as an indicator to represent the clinical effectiveness of the

PAC services. Accordingly, it is reasonable to measure the readmission rate for a PAC facility.
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Figure 4.5: Impact of λ on Distance for LSP

Readmission rate is defined as the number of patients readmitted to the hospital within a

specific period after discharge from a PAC facility. The readmission rate is interpreted as an

indicator of the PAC’s clinical effectiveness.

Hospital readmission is also associated with a current policy enacted with the Account-

able Care Act (ACA). Based on this policy, hospitals would be penalized by the Center

for Medicare and Medicaid Services (CMS) if a "high-thanaverage” number of patients is

readmitted to the hospital within 30 days. The 30-day window has thus given readmission a

specific numerical value as a reference point. We assume a range of 0.01-0.1 for readmission
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Figure 4.6: Impact of Readmission Rate

rate in facilities.

In this section, we add a new constraint (4.19) to the problem which consider the read-

mission rate of PAC as a criterion for decision making:

∑
i∈N

∑
j∈M

∑
R

Biy
s
ijk ≤ β

∑
j∈M

∑
k∈R

As
jk ∀s ∈ S (4.19)

Figure 4.6 presents the impact of this new constraint on results.

As expected, by increasing the threshold for readmission rate, total cost decreases. The

reason is that potentially PAC’s with higher readmission rate charge their patients less.

4.4 Multi-Objective Modeling

Here we present a multi-objective optimization model for the PAC provider selection

problem. The proposed model aims to incorporate the global score obtained from the TOP-
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SIS method and design the PAC network that delivers quality services with minimum cost

and minimum readmission rate. For this model, we are given a list of pre-qualified PACP’s,

and their CC’s and cost for SSP and LSP. We use the notation presented in Table 3 in the

formulation and description of the model.

Generally, minimizing the cost is the main objective of an AC to contract with PAC’s.

Recent works in the literature have shown that the length of stay and service quality of

a PAC impacts the total cost of an AC. Recently, the government imposed a penalty for

readmission to hospitals if it occurs less than 30 days after discharge.

Regarding the above-mentioned parameters and decision variables, we consider a new

framework for patients’ assignment to PAC’s. This new approach proposes a multi-objective

model that includes cost, service quality, and readmission rate as objectives. The mathe-

matical model is as follows:

Min
∑
i∈N

∑
j∈M

fixij +
∑
i∈N

∑
j∈M

∑
k∈R

vijyijk (4.20)

Max
∑
i∈N

∑
j∈M

∑
k∈R

CCijyijk (4.21)

Max
∑
i∈N

∑
j∈M

∑
k∈R

Biyijk (4.22)

s.t.
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∑
j∈M

∑
k∈R

yijk ≤ Capi ∀i ∈ N (4.23)

∑
i∈N

∑
j∈M

∑
k∈R

yijk =
∑
j∈M

∑
k∈R

Ajk (4.24)

yijk ≤M.xij ∀i ∈ N,∀j ∈M, ∀k ∈ R (4.25)

xij ∈ {0, 1}, yijk ∈ Z+ ∀i ∈ N,∀j ∈M, ∀k ∈ R (4.26)

The proposed portfolio model is a multi-objective MIP formulation. The solution ap-

proaches to multi-objective optimization are reviewed in [53]. Considering the similar na-

ture of the last two objective functions, the weighting method is applicable to this problem.

However, the first objective function is not as the same nature as the the other two objec-

tive functions. It, therefore, should not be simply added to the other objectives using the

weighting method. The model is linearized through a mixture of the weighting method and

a modified lexicographic method. Using the weighting method and lexicographic method in

this setting is proven efficient in supplier selection[54]. For a fair comparison of all objectives,

we normalize the second and third objectives by the traditional method of:

So we define the followings:

B̄ij = Bij/
∑
j∈M

Bij ∀i (4.27)

C̄Cij = CCij/
∑
j∈M

CCij ∀i (4.28)

The first optimization problem will be as follows:
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[P1] Min
∑
i∈N

∑
j∈M

fixij +
∑
i∈N

∑
j∈M

∑
k∈R

vijyijk (4.29)

s.t. Constraints(4.23)− (4.26) (4.30)

Another important aspect in this approach is to determine the weight or importance of

each criterion. Defining I1 and I1 (I1+I2 = 1)as the weight of the second and third objectives

respectively, we have the transformed model as:

[P2] Min
∑
i∈N

∑
j∈M

∑
k∈R

(I1B̄ij − I2C̄Cij)yijk (4.31)

Finally, providers are selected by a modified lexicographic method [54]. In the traditional

lexicographic method, the third objective would be considered as a secondary aim only, and

can be improved, only if it does not lower the first two objectives. To provide a trade-off

between risk and value, we introduce coefficient Γ into the lexicographic method. This value

enables a buffer interval to reduce risk, while maintaining a Γ fraction of the initial objective

value (28).

[P2] Min
∑
i∈N

∑
j∈M

∑
k∈R

(I1B̄ij − I2C̄Cij)(yijk) (4.32)

s.t. Constraints(23)− (26)
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∑
i∈N

∑
j∈M

fjxij +
∑
i∈N

∑
j∈M

∑
k∈R

vijyijk ≤ Γv∗(P1) (4.33)

where v∗(P1) denotes the objective value of problem(P1). [P1] and [P2] are MIP models.

Considering the structure of the second problem, we cannot use decomposition algorithms.

In this case, if we assume a limited number of scenarios, both models are easily solved using

commercial MIP solvers. This concludes the provider election procedure introduced by this

paper.

4.4.1 Results and Discussion

In this section, we present the results for the multi-objective problem. We study the

impact of Γ and weights of second and third objectives (I1 and I2). Table 4.7 presents the

results for P1 and P2 assuming different combinations of I1 and I2.

Readmission rate in the tables is the weighted average of the readmission rate for the

selected facilities. This is the same for quality of services.
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Table 4.7: Results for x = 8

Cost Readmission Service Quality

x=8

P1 $1,478,235

I1 I2

0 1 $1,536,182 0.046 0.6

0.1 0.9 $1,556,729 0.043 0.58

0.2 0.8 $1,565,836 0.041 0.55

0.5 0.5 $1,570,033 0.037 0.53

0.8 0.2 $1,562,449 0.033 0.5

0.9 0.1 $1,558,355 0.03 0.48

1 0 $1,552,903 0.028 0.46

From table 4.8 through 4.10, we assume a fixed number of providers. This is done by

adding a constraint to the model. As x increases, the total cost, service quality will be

increased. But, readmission index decreases. Moving from x = 8 to x = 10, total cost

increases by around 15%, but service quality index increased by approximately 13%. It is

important to note that they are not changed linearly.
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Table 4.8: Results for x = 10

Cost Readmission Service Quality

x=10

P1 $1,546,739

I1 I2

0.1 0.9 $1,611,857 0.04 0.59

0.5 0.5 $1,636,914 0.035 0.55

0.9 0.1 $1,607,371 0.028 0.49

Table 4.9: Results for x = 12

Cost Readmission Service Quality

x=12

P1 $1,689,316

I1 I2

0.1 0.9 $1,758,747 0.037 0.61

0.5 0.5 $1,803,683 0.031 0.57

0.9 0.1 $1,762,497 0.025 0.52
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Table 4.10: Results for x = 14

Cost Readmission Service Quality

x=14

P1 $1,815,291

I1 I2

0.1 0.9 $1,910,049 0.032 0.63

0.5 0.5 $1,944,721 0.027 0.6

0.9 0.1 $1,905,692 0.02 0.55

The impact of number of providers on total cost, average service quality, and average

readmission rate is summarized in Figure 4.7. Total cost and average service quality increase

as number of providers increases, while average readmission rate decreases.
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Figure 4.7: Impact of Number of Providers
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To analyze the trade-off between readmission, quality of services, and cost, we increase

Γ from 1.07 to 1.22. Table 11 gives the results. When Γ=1, the traditional lexicographic

method is carried out which results in the same providers chosen by [P1]. As increases, [P2]

results in lower reamission rate and improvement in quality of services. Comparing Γ=1.07

to Γ=1.22 average readmission rate is decreased by roughly 10 percent, and service quality is

increased by 8 percent. In other words, cost is increased by selecting higher value providers

with higher service qualities, and consequently lower chance of readmission. The results are

presented in table 4.11 and depicted in Figure 4.8. Total cost and average service quality

increase as Gamma increases, while average readmission rate decreases.
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Table 4.11: Effect of Γ on P2

I1 I2 Cost Readmission Service Quality

Γ = 1.07

0.1 0.9 $1,556,729 0.043 0.58

0.5 0.5 $1,570,033 0.037 0.53

0.9 0.1 $1,558,355 0.03 0.48

Γ = 1.1

0.1 0.9 $1,598,362 0.042 0.6

0.5 0.5 $1,617,284 0.035 0.54

0.9 0.1 $1,599,591 0.028 0.49

Γ = 1.15

0.1 0.9 $1,636,229 0.04 0.61

0.5 0.5 $1,642,816 0.034 0.56

0.9 0.1 $1,635,972 0.026 0.5

Γ = 1.22

0.1 0.9 $1,696,763 0.039 0.63

0.5 0.5 $1,708,584 0.033 0.57

0.9 0.1 $1,697,360 0.025 0.52
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Figure 4.8: Impact of Gamma
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We also investigate the impact of fixed cost on the optimal number of providers to contract

with. Table 4.12 presents the results for the effect of fixed cost. We increase f from $20000

to to $90000 in increments of 10K. Comparing the case f = 20000 to f = 90000 the total

cost is increased by around $582000 while the number of providers decreased by 4. There is

roughly 50% increase in total cost.

Table 4.12: Impact of Fixed Cost

Fixed Cost Total Cost x

20000 $1,304,616 10

30000 $1,400,378 9

40000 $1,483,551 9

50000 $1,570,033 8

60000 $1,663,408 8

70000 $1,742,729 7

80000 $1,820,804 7

90000 $1,886,145 6
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5. CONCLUSIONS AND FUTURE RESEARCH

A stochastic Stackelburg-Nash-Cournot equilibrium model is proposed to study the long-

term care capacity planning problem for both the public insurer and individual service

providers. Game theory models have been widely used in solving strategic problems in

energy and transportation fields. However, limited research has been done on the appli-

cation of game theory models in health care. As healthcare system usually involves more

uncertainties in the system dynamic and decision-making process; development of a con-

ceptually valid and computationally tractable game model for solving healthcare problems

poses great challenges to researchers. To the best of our knowledge, this model is the first

attempt to use a game model to capture the interaction between health policy maker and

individual providers as well as the competition among providers with uncertainty. We pro-

pose a framework for Medicaid to decide the optimal number of waivers for each state. It is

shown in a real-case problem that Medicaid does not necessarily outspend its budget.

The model is still in its preliminary stage, and thus inevitably suffers from some limita-

tions. To name a few, first, using an inverse demand function to capture the relationship

between revenue per person and the total supply capacity still requires further justifications.

Then, the competition mechanism among individual providers is not clear. In this paper, it

is assumed that they decide simultaneously and independently, while there might be some

cases in which some of facilities are assumed as leader for the others. Moreover, we assume

capacity as the exact number of patients treated. To relax this assumption in the future

research, more studies need to be done regarding the relationship between facility capacity

and patient flow.

Besides, we look for a one-shot solution to this problem. In the future, researchers may

extend this work to a multi-stage stochastic game and try to find the optimal solution in
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this new framework. This could be a very interesting problem, as in the one hand increasing

capacity is a strategic decision and cannot be modified frequently. On the other, they

encounter year to year increase in demand for LTC.

In addition, other researchers may extend this work by considering more accurate cost

and revenue functions for the service facilities. In order to nullify the impact of quality

(service level) in this problem, we restricted our case study to the facilities with highest

quality measure. In the future, authors may take quality into account.

Chapter 4 introduces a novel two-phase approach to post acute care provider selection.

The first phase includes evaluating the providers and assigning a comparable value based

on a set of predefined criteria. We consider two types of patients which are defined by the

Medicaid, short stay and long stay patients. In the second phase, we develop two different

optimization method assuming whether the demand is uncertain. In order to compute the

importance weight of attributes, we did an extensive survey analysis. All participants have

relevant background and expertise. We consider a real-case problem in city of Houston, TX.

Results are presented in detail. We investigate the impact of fixed cost on total cost and

optimal number of providers.

Following this study, we can rank the PAC’s in each state based on the Medicaid criteria.

This can be used widely by acute care managers. Attributes and their importance weight

for determining the quality of a PAC will be provided.

Future research may be carried out by introducing more constraints and decision criteria

into the model. For example, readmission rate can be adjusted by the number of days a

patient stays at a PAC. Any other real life constraints considered may be added to the

current model to assess the effects of phase II. An interesting research direction is provider

nurture versus better provider selection. A comparison may be carried out to investigate

pre and post selection efforts on reaching an optimal provider portfolio, in addition to their

collaboration and its results.
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