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 ABSTRACT 

 

 The Soil and Water Assessment Tool (SWAT) and the Artificial Neural Network 

(ANN) have been widely used as rainfall-runoff models since the 1990s. The former is a 

more complex, physically-based model that went through decades of continuous 

development, while the latter is a simpler data-driven model that focuses on establishing 

the nonlinear relationship between predictors and targets without considering the 

physical aspects of hydrological systems. Although both SWAT and ANN are broadly 

accepted as capable of making successful streamflow estimations, their performance 

capability had not been adequately compared under various conditions in the past. This 

dissertation seeks to create watershed level rainfall-runoff models using SWAT and 

ANN across a range of settings and evaluate their performance capability.  

 In ANN rainfall-runoff modeling, the three-layered feed-forward neural network 

is regularly used. Routinely, several neural networks are trained before a model selection 

process selects the network with the best predictive capability. In study I, two common 

model selection approaches, including the in-sample approach that is based on Akaike’s 

information criterion (AIC) and Bayesian information criterion (BIC), and the out-of-

sample approach that uses blocked cross-validation (BlockedCV), were compared. The 

results suggested that the BlockedCV is preferable for selecting the rainfall-runoff model 

with the best predictive capability.  

 Study II directly compared the SWAT and ANN models’ streamflow predictive 

performance in two small watersheds in the karstified region of San Antonio, Texas. The 
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paired watershed approach was employed, with one study watershed being highly 

urbanized and the other primarily covered with evergreen forest and shrub. In addition, 

the study used the correction factor approach to adjust the goodness-of-fit indicators to 

incorporate measurement and model uncertainty in the rainfall-runoff modeling process. 

The results showed that ANN slightly outperformed SWAT in the urban watershed and 

performed significantly better in the rural watershed. Therefore, suggesting that ANN is 

a better real-time simulator of streamflow. 

 Additionally, as gridded precipitation datasets are gaining popularity as a 

convenient alternative for hydrological modeling during recent decades, Study III 

evaluated three gridded precipitation datasets, the Tropical Rainfall Measuring Mission 

(TRMM), the Climate Forecast System Reanalysis (CFSR), and the Parameter-elevation 

Relationships on Independent Slopes Model (PRISM), against the conventional gauge 

rainfall observations, and further assessed their capability of driving hydrological 

simulations in SWAT and ANN. The results of Study III showed that SWAT and ANN 

simulation outcomes varied in an identical pattern when different precipitation data were 

applied. Moreover, the PRISM and TRMM driven models were found to have preferable 

streamflow prediction results than the CFSR and gauge driven models, with the PRISM 

data produced the best hydrological simulation outcome. 
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1. INTRODUCTION  

 

1.1. Background 

 Modeling of the rainfall-runoff process is of great importance in surface water 

hydrology. As noted by Beven (2011), its main reason is to extrapolate the available data 

in space and time because hydrological measurements always have a limited range and 

often fail to meet what we would like to know about the hydrological systems. The 

results of rainfall-runoff modeling are often used to support decision-making and serving 

as the foundation of other more advanced research topics in water resources planning 

and management. The ultimate purpose of making a model prediction is to aid decision 

making for a range of hydrological problems, for instance, estimating flood return 

intervals, assisting river hydraulics modeling and engineering project design, setting 

total maximum daily loads (TMDLs) standards, and conducting environmental impact 

analysis (Karunanithi et al., 1994; Wurbs et al., 2002). In the past few decades, different 

hydrological models have been developed to simulate streamflow on various spatial and 

temporal scales.  

 One major issue in rainfall-runoff modeling is to decide the appropriate level of 

model complexity. Beven (2011) summarized two widely accepted views of modeling. 

The first suggests that hydrological models are merely tools for extrapolating available 

data in time and space. Therefore if the model inputs and outputs can be successfully 

related, it is nonessential to elaborate the details of a watershed. The second view 

maintains that models should reflect the involved physical processes to the extent 
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possible to ensure confidence when extrapolating beyond the existing observations. The 

more complex physically-based hydrological models are usually adopted under the 

second perspective. The Soil and Water Assessment Tool (SWAT) is a physically-based, 

semi-distributed, deterministic model developed to assess water quality and quantity in 

large river basins with varying soils, land uses, land cover types, and management 

practices (Arnold et al., 2012b). In the SWAT model, a study watershed is divided into a 

few subbasins. To a finer spatial scale, the model further groups lands with 

homogeneous slopes, soil types, and land cover types into hydrologic response units 

(HRUs). The HRUs may not be spatially continuous and can be found at different 

locations within a subbasin. This strategy effectively simplifies the simulation of 

watershed processes (Gassman et al., 2007; Licciardello et al., 2011; Tuppad et al., 

2011). The development of the SWAT model has spanned over the last three decades, 

with new functions and routines continuously added to the model. The current SWAT 

model has been widely applied to water, sediment, agricultural chemicals, and 

contaminant yields in complex systems (Abbaspour et al., 2015; Gassman et al., 2007). 

Moreover, the SWAT model is closely integrated with the geographic information 

system (GIS) since most SWAT input data have spatial characters (Jayakrishnan et al., 

2005; Olivera et al., 2006; Srinivasan et al., 1994). To date, the ArcGIS and QGIS 

platforms are integrated with the SWAT model. 

 A physically-based hydrological model is often referred to as a white-box since 

its modeling processes are established on known scientific principles of mass and energy 
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fluxes (Moradkhani et al., 2009). Contrary to the complex structure of physically-based 

models, statistical models also gain popularity for rainfall-runoff modeling due to their 

simplicity and low computational resource demand. An Artificial Neural Network 

(ANN) is a computing system that resembles the structure of the human biological 

neural network. It can identify nonlinear relationships from given patterns and fit 

nonparametric models on multivariate input data (Govindaraju et al., 2013). ANN has 

been applied to modeling many components of the hydrological cycle since the 1990s. 

(ASCE, 2000a). For instance, ANN was applied to deriving rainfall estimates from 

satellite imagery (Hsu et al., 1997); simulating groundwater recharge in a small-scale 

watershed (Rogers, 1992). Water quality variables, including various types of nutrients, 

dissolved oxygen, raw watercolor, and salinity, were successfully estimated using ANN 

in a few studies (Gazzaz et al., 2012; Kalin et al., 2010; Maier et al., 1996; Sahoo, Ray, 

et al., 2006; Singh et al., 2009; Zhang et al., 1997); and several studies have reported 

satisfactory ANN modeling results on streamflow (Ahmed et al., 2007; Birikundavyi et 

al., 2002; Hu et al., 2001; Humphrey et al., 2016; Isik et al., 2013; Karunanithi et al., 

1994; Kişi, 2007; Rezaeianzadeh et al., 2013). When used as a rainfall-runoff model, it 

only identifies the relationship between historical inputs (meteorological data) and 

outputs (streamflow) without considering any of the physical processes involved, and 

therefore fall into the category of lumped model and is often referred to as a black-box 

by the modelers (ASCE, 2000a). In addition, the ANNs come under the category of 
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stochastic models, given that the fitted parameter values often vary from one training 

process to another for a fixed training dataset (Jain et al., 2004). 

  The physically-based SWAT model simulates streamflow by incorporating 

descriptive mathematical equations designed to conceptualize the hydrological 

processes. The model requires grid-based geospatial data as input besides the 

meteorological data and incorporates significant amounts of model parameters (Fatichi 

et al., 2016; Noori et al., 2016). Solving the equations for the state variables at the level 

of HRUs for each time step can be time-consuming and computationally demanding 

(Jimeno-Sáez et al., 2018; Noori et al., 2016).  In this regard, statistical models such as 

ANN hold a clear advantage. ANNs do not require a priori knowledge of the watershed 

physical characteristics as model input, which reduces the model setup procedures. 

Meanwhile, the time it takes to train and select the best neural network is significantly 

shorter than calibrating a SWAT model (Jimeno-Sáez et al., 2018; Minns et al., 1996), 

while is capable of achieving “unreasonably effectiveness” in hydrological applications 

when sufficient training data is available (Worland et al., 2019). On the other hand, 

several studies have noted the disadvantages of applying ANN as a rainfall-runoff 

model. In particular, its lack of physical explanations for the underlying hydrological 

processes has generated a lot of concern among the hydrologists (ASCE, 2000a; Ha et 

al., 2003; Jain et al., 2004; Karunanithi et al., 1994; Yaseen et al., 2015). Being 

incapable of capturing physical dynamics at the watershed level means that ANNs are 

not suitable for environmental impact studies such as modeling streamflow under 
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changing climate conditions (Humphrey et al., 2016; Milly et al., 2008). Additionally, 

similar to other statistical models, extrapolating beyond the training data range often 

undermines ANNs’ predictive performance (Minns et al., 1996; Sahoo, Ray, et al., 

2006). 

A few studies have made the comparison between SWAT and ANN regarding 

streamflow prediction. Kim et al. (2015) applied SWAT and ANN to impute missing 

streamflow observations in the Taehwa River Watershed in Korea and found that SWAT 

was better at simulating low flows, while the neural network model generally performed 

better at simulating high flows. Jimeno-Sáez et al. (2018) compared the accuracy of 

streamflow prediction between SWAT and ANN models at the Ladra River Basin and 

the Segura River Basin in Spain. The authors came to the similar conclusion that ANN is 

superior at estimating higher flows. Demirel et al. (2009) applied SWAT and ANN 

models to simulate streamflow in the Pracana River Basin in Portugal and concluded that 

ANN was more successful at forecasting peak streamflow, whereas the SWAT model 

performed better on goodness-of-fit indicators. Srivastava et al. (2006) analyzed the 

performance of streamflow prediction from SWAT and ANN in the agricultural-

dominated Honey Brook Watershed in Pennsylvania. They found that the ANN model 

produced simulation results with the Nash-Sutcliffe coefficient of efficiency (NSE) and 

coefficient of determination (R2) better than the SWAT model. In a more recent study, 

Zakizadeh et al. (2020) used ANN and SWAT to simulate the rainfall-runoff relationship 

in a small watershed near Tehran city, Iran. The authors concluded that ANN produced 
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simulations with minor error and uncertainty, although both models could achieve 

excellent predictive performance.  

 

 

1.2. Research Objectives 

While the literature has demonstrated that ANN models can make streamflow 

successful predictions, and in many cases, even performs better than the more complex 

SWAT model, the issue of how ANN models would behave in watersheds with different 

dominant land use land cover types has not been fully addressed. As the process of 

urbanization continues in Texas and many other parts of the world (Zhang et al., 2018; 

Zhao et al., 2016), it has become increasingly meaningful to explore if a neural network 

based model could make reliable predictions for urbanized areas, as well as evaluating 

how the performance of ANN varies from highly developed urban watersheds to 

undeveloped rural watersheds. Additionally, it would be meaningful to compare ANN 

performance with the physically-based SWAT model under these different settings.   

Since ANN models tackle the rainfall-runoff system entirely through an input-

output manner, deciding the appropriate model structure is essential for accurate 

streamflow simulation. Routinely, several ANN models are trained, and a model 

selection phase is applied to find the model with the best generalization capability 

(Donate et al., 2013). Two main types of model selection approaches are often adopted 

for this purpose, the out-of-sample approach, which is based on cross-validation that 
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divides the available data into training, validation, and testing sets; and the in-sample 

approach, which solely relies on in-sample criterion, most notably the Akaike’s 

Information Criterion (AIC) and Bayesian Information Criterion (BIC), for deciding the 

models’ generalization capability (Qi et al., 2001). While it is generally accepted that the 

performance of statistic models should be assessed using out-of-sample tests rather than 

in-sample errors (Tashman, 2000), benefits and disadvantages exist for both approaches.  

Bergmeir et al. (2012) noted that the distinct nature of different time series could cause a 

model selection method to work well with a specific type of time series but show poor 

performance on the others. Hence, it is yet to be evaluated if the model selection 

outcome for these two approaches converges for a hydrological time series.  

Additionally, the data quality and input combination of meteorological and 

hydrological forces are crucial for building an optimal network structure (Maier et al., 

2000; Noori et al., 2016) as well as influence the outcome of the SWAT model. In recent 

decades, grid-based meteorological products, either produced directly from remote 

sensing platforms or created as a combination of ground and satellite observations, have 

become more widely available for application in hydrological models. Notable examples 

of the grid-based weather product include the Parameter-elevation Regressions on 

Independent Slopes Model (PRISM), the Climate Forecast System Reanalysis (CFSR), 

and the Tropical Rainfall Measuring Mission (TRMM). In comparison with traditional 

ground-based measurements, the gridded meteorological datasets provide more 
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extensive spatial and more consistent temporal coverage (Meresa, 2019). However, their 

use in ANN and SWAT models has not been fully assessed across a range of conditions.  

While previous studies have explored the suitability of SWAT and ANN models 

in various regions, none of these studies were conducted in the state of Texas, where its 

hot climate condition and growing population have made water sustainability a 

contentious issue. Besides, the San Antonio region of central south Texas has extensive 

karst terrain, making hydrological modeling more difficult and rendering model 

performance patterns vastly different from non-karstified watersheds (Jakada et al., 

2020). Furthermore, very few studies on SWAT and ANN considered uncertainty in the 

measurement and modeling process. 

Therefore, the objectives of this dissertation were to (1) compare the efficacy of 

the in-sample and out-of-sample modeling selection approaches in ANN rainfall-runoff 

modeling; (2) compare SWAT and ANN streamflow predictions in a pair of watersheds 

with different dominant land cover type, while to enhance the model evaluation using 

modified goodness-of-fit indicators that incorporate measurement and model 

uncertainty; (3) assess the accuracy of three common gridded weather datasets, and 

evaluate how SWAT and ANN respond to the application of different weather data. 
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2. A COMPARISON OF IN-SAMPLE AND OUT-OF-SAMPLE MODEL SELEC-

TION APPROACHES FOR ARTIFICIAL NEURAL NETWORK (ANN) DAILY 

STREAMFLOW SIMULATION* 

 

Abstract. Artificial Neural Networks (ANN) have been widely applied in hydrologic 

and water quality (H/WQ) modeling in the past three decades. Many studies have 

demonstrated an ANN’s capability to successfully estimate daily streamflow from 

meteorological data on the watershed level. One major challenge of ANN streamflow 

modeling is finding the optimal network structure with good generalization capability 

while ameliorating model overfitting. This study empirically examines two types of 

model selection approaches for simulating streamflow time series: the out-of-sample 

approach using blocked cross-validation (BlockedCV) and an in-sample approach that is 

based on Akaike’s information criterion (AIC) and Bayesian information criterion (BIC). 

A three-layer feed-forward neural network using a back-propagation algorithm is 

utilized to create the stream-flow models in this1 study. The rainfall–streamflow 

relationship of two adjacent, small watersheds in the San Antonio region in south-central 

Texas are modeled on a daily time scale. The model selection results of the two 

approaches are compared, and some commonly used performance measures (PMs) are 

generated on the stand-alone testing datasets to evaluate the models selected by the two 

 

*Mei, X., & Smith, P. K. (2021). A Comparison of In-Sample and Out-of-Sample Model Selection 

Approaches for Artificial Neural Network (ANN) Daily Streamflow Simulation. Water, 13(18), 2525. 



 

 

  10 

 

approaches. This study finds that, in general, the out-of-sample and in-sample 

approaches do not converge to the same model selection results, with AIC and BIC 

selecting simpler models than BlockedCV. The ANNs were found to have good 

performance in both study watersheds, with BlockedCV selected models having a Nash–

Sutcliffe coefficient of efficiency (NSE) of 0.581 and 0.658, and AIC/BIC selected 

models having a poorer NSE of 0.574 and 0.310, for the two study watersheds. Overall, 

out-of-sample BlockedCV selected models with better predictive ability and is 

preferable to model streamflow time series. 

 

2.1. Introduction 

 The estimation of streamflow time series on the watershed scale is of great im-

portance in surface water hydrology. Accurate streamflow is the foundation of water 

resources planning and management, including river hydraulics modeling and 

engineering project design, water demand assessment and allocation, and water quality 

studies (Fernandez et al., 2005; Wurbs et al., 2002). Data-driven methods have gained 

popularity in hydrologic and water quality (H/WQ) modeling in recent years due to their 

effectiveness in mapping connections between hydrologic inputs and outputs (Worland 

et al., 2019). Among these methods, the artificial neural network (ANN) has proven to 

be an effective tool in water resources modeling (Humphrey et al., 2016; Maier et al., 

2000). 
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 An ANN is a “parallel-distributed processor” that resembles the biological neural 

network structure of the human brain. The ANN acquires knowledge or information 

from a learning process and stores that knowledge in interneuron links using a weighted 

matrix. The early concept of ANNs as a computational tool was formalized in the 1940s. 

It went through gradual development in the ensuing decades as computers become more 

accessible and computational efficiency grew (Govindaraju et al., 2013). ANN-based 

models hold some clear advantages over conventional conceptual models in H/WQ 

modeling. ANNs do not require a priori knowledge of the physical characteristics of the 

study watershed as model input, thus significantly reducing the procedures for model 

setup and simulation (Jimeno-Sáez et al., 2018; Minns et al., 1996). When sufficient data 

have been provided, ANN models have produced satisfactory results for streamflow 

forecasting, according to a review provided by Yaseen et al. (2015). However, some 

believe modeling hydrologic systems with ANN without explaining the underlying 

physical processes is a significant drawback. For instance, the lack of capability to 

capture physical dynamics at the watershed level means that ANNs are not suitable for 

modeling streamflow under changing climate or land use conditions. In addition, the 

ANNs predictive capability is often unreliable beyond the training data range due to the 

absence of physical explanation (ASCE, 2000a; Ha et al., 2003; Jain et al., 2004; 

Karunanithi et al., 1994; Yaseen et al., 2015). Worland et al. (2019) further 

recommended that machine-learning models such as ANN only be used for making 

predictions rather than gaining hydrological insights. 
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 The ANN application in hydrology began in the 1990s. Since then, many studies 

have applied ANN in H/WQ modeling. Several studies have reported satisfactory results 

using ANN for streamflow estimation. Karunanithi et al. (1994) demonstrated successful 

streamflow prediction at Huron River in Michigan using neural network models in an 

early study. The predicted flow closely matches the timing and magnitude of the actual 

flow. Ahmed et al. (2007) used three data-driven models to generate synthetic 

streamflow for the Pagladia River in northeast India and concluded that the ANN-based 

model has the best performance. Birikundavyi et al. (2002) compared ANN to an 

autoregressive model to forecast daily streamflow in the Mistassibi River in northeastern 

Quebec. They obtained results showing that the ANN model outperformed the 

autoregressive model. Similarly, Hu et al. (2001) showed an ANN-based model that 

simulated daily streamflow and annual reservoir inflow for two watersheds in northern 

China outperformed an autoregressive model. Humphrey et al. (2016) coupled an ANN 

model and a conceptual rainfall-runoff model to produce a monthly streamflow forecast 

for a drainage network in southeast Australia. They reported that the hybrid model 

outperformed the original conceptual model, especially for high flow periods. Isik et al. 

(2013) reported that accurate daily streamflow prediction was achieved using a hybrid 

model based on ANN and the SCS (Soil Conservation Service, the US Department of 

Agriculture) curve number method. Kişi (2007) compared four different ANN 

algorithms for streamflow forecasting, all of which reached satisfactory statistical results 

with correlation coefficients of all four models close to 1. Rezaeianzadeh et al. (2013) 
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simulated daily watershed outflow at the Khosrow Shirin watershed in Iran using an 

ANN and HEC-HMS and concluded that the ANN model with a multi-layer perceptron 

was more efficient in forecasting daily streamflow. 

 Although the literature has demonstrated that ANN models can make satisfactory 

streamflow predictions, the ANN-based models often suffer from overfitting problems 

due to a relatively large number of parameters to be estimated compared with other 

statistical-based models (Zhang et al., 2005). Model overfitting often refers to ANNs 

fitting the in-sample data (training set) well but the out-of-sample data (testing set) 

poorly. Selecting the appropriate model structure is crucial for accurately simulating 

streamflow while ameliorating overfitting. Routinely, several ANN models are trained, 

and a model selection phase is applied to find the model with the best generalization 

capability (Donate et al., 2013). Two main types of model selection approaches are often 

adopted for this purpose. The out-of-sample approach, based on cross-validation, divides 

the available data into training, validation, and testing sets. The in-sample approach 

relies on in-sample criterion calculated on the training dataset, most notably the Akaike’s 

Information Criterion (AIC) and Bayesian Information Criterion (BIC), for deciding the 

models’ generalization capability (Qi et al., 2001). Although it is generally accepted that 

the performance of statistical models should be assessed using out-of-sample tests rather 

than in-sample errors (Tashman, 2000), the in-sample model selection approach has the 

clear advantage of utilizing all available data for modeling training while avoiding data 

splitting. Previous studies have discussed the benefits and disadvantages of the two 
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approaches. Arlot et al. (2010) argued that out-of-sample cross-validation is more 

applicable in many practical situations. Qi et al. (2001) showed that the results of a few 

in-sample model selection criteria were not consistent with the out-of-sample 

performance for three economic time series. On the other hand, a study conducted by 

Shao (1997) concluded that AIC and leave-one-out cross-validation (LOOCV) converge 

to the same model selection result. It is unclear how the out-of-sample and in-sample 

model selection approaches will perform on hydrological time series without actual 

experimentation. Additionally, as noted by Bergmeir et al. (2012), the distinct nature of 

different time series can cause a model selection method to work well with a particular 

type of time series but show poor performance on others. Hence, it is yet to be evaluated 

if the model selection outcomes of these two approaches converge for a hydrological 

time series.  

 The main objectives of this study are: 1) to create ANN rainfall-streamflow 

models on the watershed level, 2) determine the optimal model structure of the ANNs 

using both in-sample and out-of-sample model selection approaches, 3) compare the 

model selection results of these two approaches, and 4) empirically investigate their 

efficacy in selecting the optimal neural network. The task is to be accomplished using 

two small watersheds in the San Antonio Region of south-central Texas, one of which is 

dominated by a well-developed urban landscape. An agricultural landscape primarily 

covers the other. The streamflow simulations are to be conducted on a daily time step for 
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the outflows of both watersheds. The following sections will describe the details of the 

models.  

 

2.2. Materials and Methods 

2.2.1. Study Area and Data Acquisition 

 The city of San Antonio is in the sub-tropic and semi-humid climate zone of 

south-central Texas. It has long hot summers and warm to cool winters. Snowfall has 

been reported historically, although it is rare. The San Antonio region is about 210 m 

above sea level and has an annual precipitation of around 770 mm (Joseph et al., 2013). 

Combining the rapidly growing total population and a decline of population density at its 

urban center, San Antonio is one of the fastest-growing metropolitan areas in the US 

(Kreuter et al., 2001; Zhao et al., 2016).  

 This study selected two adjacent small watersheds in the San Antonio region for 

streamflow modeling (Figure 2.1). The Headwaters of the San Antonio River Basin 

(HSARB, HUC10: 1210030102) is centered at 98.507º west longitude, 29.422º north 

latitude, and mainly covers the extent of central downtown San Antonio. HSARB has a 

drainage area of 395.84 km2, of which 81.66% is classified as developed urban area 

according to the 2011 National Land Cover Database (NLCD2011) land use land cover 

(LULC) classification (Yang et al., 2018). The main waterway in the HSARB is the San 

Antonio River, which originates in the metropolitan area of San Antonio, flows 

southeast across downtown San Antonio and merges with the Medina River in the city’s 
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southern suburbs. Thus, the most downstream point of the drainage basin is located at 

the southern tip of the HSARB. The streamflow close to the watershed outlet is 

measured by a USGS surface streamflow gauge (USGS 08178565). The Lower Medina 

River Basin (LMRB) centered at 98.698º west longitude, 29.319º north latitude, is 

located west of the San Antonio urban area, and shares a short watershed boundary with 

HSARB. LMRB has a drainage area of 929.29 km2 and is much less developed in 

comparison to the HSARB. The dominant land cover types at LMRB are shrub, pasture, 

and cultivated crop, covering 25.97%, 15.72%, and 14.38% of the entire LMRB, 

respectively. The major waterway in LMRB is the Medina River, which flows southeast 

and merges into the San Antonio River at the outlet of LMRB. The streamflow 

measurement station closest to the watershed outlet is USGS gauge 08181500, which 

covers most of the drainage area of the LMRB, located about 7 kilometers from the 

watershed outlet. The proximity in geographic locations of the two study watersheds 

helps to reduce uncertainties that may arise in model comparison, as the neighboring 

watersheds have similar climatology, geology, and hydrology. 
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Figure 2.1 Study Area, the Headwaters San Antonio River Basin (HSARB), and the 

Lower Medina River Basin (LMRB) with NLCD LULC classification and USGS 

Stream Gages displayed.  

 

 Meteorological and hydrological data of the two watersheds were used to train 

the neural network models. The Parameter-elevation Regressions on Independent Slopes 

Model (PRISM) daily spatial climate dataset AN81d, produced by the PRISM Climate 

Group at Oregon State University (Daly et al., 2008), is used for  meteorological inputs 

in this study. PRISM data is accessed using the Google Earth Engine (GEE), a cloud-

based geospatial analysis platform that provides access to freely available geospatial data 
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archives produced by multiple government agencies (Gorelick et al., 2017). Polygon 

masks that cover each watershed are uploaded to the GEE server. The area-averaged 

daily precipitation and mean temperature are calculated and separately obtained for the 

two masked areas. The daily discharge observations for the gauges closest to the 

watershed outlets and their corresponding upstream gauges are obtained from the USGS 

surface water daily measurement (U.S. Geological Survey, 2016). 

2.2.2. ANN Model Description 

 The purpose of applying ANN as a rainfall-streamflow model is to create a 

specific model structure that can capture the nonlinear relationships between the input 

precipitation and target streamflow. A multi-layer feed-forward neural network normally 

has one input layer, one output layer, and at least one hidden layer that connects the 

input and output layers. A three-layer feed-forward neural network using a back-

propagation algorithm is often employed in hydrological modeling and is generally 

sufficient for streamflow and water quality simulations (ASCE, 2000a; Gupta et al., 

2000; Minns et al., 1996). Each layer possesses at least one node (or neuron) for a 

standard three-layer feed-forward neural network, and each node is connected to all 

other nodes in its adjacent layers. The connection links between nodes contain associated 

weights and biases that represent their connection strength. At each node, a nonlinear 

transformation often referred to as a transfer function, is applied to the net input of this 

node to calculate its corresponding output signal. The weights and biases are randomly 

initialized before training begins and updated using the back-propagation step in every 
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training epoch (ASCE, 2000a). The operation at a node can be defined using equation 

(1),  

 𝑦 = 𝑓(∑ 𝑤𝑖𝑥𝑖 + 𝑏

𝑛

𝑖=1

) (1) 

where 𝑦 is the node’s output signal; 𝑓 is the transfer function; 𝑤𝑖 represents the weight 

vectors associated with the interneuron links; 𝑥𝑖 is the input vector, and 𝑏 is the bias 

(ASCE, 2000a). 

 ANN models use the back-propagation algorithm to update the weight and bias 

terms described in equation (1).  The back-propagation algorithm is one of the most 

popular algorithms for ANN training (ASCE, 2000a; Zhang et al., 2000). Back-

propagation minimizes the network loss function, which is usually in the squared error 

form as described in equation (2), using the gradient descent method (ASCE, 2000a),  

 𝐸 =  ∑ ∑(𝑦𝑖 − 𝑡𝑖)
2

𝑝𝑁

 (2) 

where 𝑡𝑖 is the observation,  𝑦𝑖 is the corresponding ANN prediction, 𝑁 is the number of 

observations, and 𝑝 is the number of output nodes.  

 The loss computed from equation (2) is propagated backward through the 

network to each node, and the weights are updated along the steepest descent of the loss 

function in every training epoch. The weight change of an epoch can be described with 

equation (3) (ASCE, 2000a), 
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 ∆𝑤𝑖𝑗(𝑛) = −𝜀 ∙
𝜕𝐸

𝜕𝑤𝑖𝑗
+ 𝛼 ∙ ∆𝑤𝑖𝑗(𝑛 − 1) (3) 

where ∆𝑤𝑖𝑗(𝑛) and ∆𝑤𝑖𝑗(𝑛 − 1) are weight increments between node 𝑖 and 𝑗 during the 

𝑛th and (𝑛 − 1)th epoch, 𝐸 is the loss function computed using equation (2), and 𝜀 and 

𝛼 are learning rate and momentum constant (ASCE, 2000a).  

2.2.3. Model Selection Approaches 

2.2.3.1. Blocked Cross-Validation 

 Traditionally, the out-of-sample model selection approach is more often used on 

ANN models (Tashman, 2000). Cross-validation is the simplest and most widely used 

method for estimating prediction error according to Hastie et al. (2009). It directly uses 

the out-of-sample error for model selection. In H/WQ modeling, the cross-validation-

based approach was applied in several previous studies (Amiri et al., 2012; Gazzaz et al., 

2012; Humphrey et al., 2016; Jimeno-Sáez et al., 2018; Kim et al., 2015; Maier et al., 

1996; Srivastava et al., 2006). The model cross-validation procedure splits the available 

data into three groups: training, validation, and testing. The training set is used for model 

training, during which the free parameters (i.e., interneuron weights and biases) are 

estimated for several ANN models with specific model structures. Following the training 

set, the prediction performance for the models is calculated on the hold-out validation 

set, and the model that has the best validation performance is selected. The testing set is 

an independent dataset used for stand-alone measurement of model generalization 

capability (ASCE, 2000a; Karunanithi et al., 1994). Nevertheless, Bergmeir et al. (2012) 
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stated that time series data are intrinsically ordered. Therefore, its time dependency and 

autocorrelation contradict the basic assumption of traditional cross-validation that the 

data is independent and identically distributed (i.i.d.). The authors have further suggested 

using blocks of data rather than resampling data randomly in each cross-validation 

iteration to avoid breaking the data dependency of the studied time series.  

 To address the issue that the streamflow time series usually has strong 

autocorrelation, this study applies blocked cross-validation (BlockedCV) as the out-of-

sample model selection approach to be evaluated. Unlike the normal k-Fold cross-

validation that randomly samples training and validation data, the training/validation 

data split in BlockedCV maintains the data points’ sequential order by grouping them 

into several data blocks, and all data blocks are fixed throughout the cross-validation 

process (Figure 2.2).  

 
Figure 2.2 Schematic diagram of the blocked cross-validation. 
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 Although the out-of-sample test performance is more often accepted as reliable 

for model selection, some of its limitations are noted in the literature. For example, 

James et al. (2013) summarized from past studies that data splitting might significantly 

increase the variability of the estimates. As the partition of available data is usually done 

subjectively by the modelers, the performance results can be intensely dependent on 

where the data splitting takes place between training and validation sets and hence 

influence the outcome of the selected best model. Moreover, since statistical methods 

tend to perform better when trained with larger datasets, omitting part of the available 

data for model validation may compromise model training, especially when the size of 

the available dataset is small (Bergmeir et al., 2012). 

2.2.3.2. AIC and BIC 

 The in-sample model selection approach is based on the in-sample criterion 

calculated for the training dataset, which avoids data splitting and enables utilizing all 

available data for model training. This approach usually considers the in-sample 

estimation error and model complexity together in its various forms of equations. The 

size of estimated parameters is often added into the equations as a penalty term since a 

more complex model is more likely to cause model overfitting. The Akaike Information 

Criterion (AIC) and Bayesian Information Criterion (BIC) are two of the most widely 

used in-sample model selection criteria (Qi et al., 2001). AIC and BIC are founded on 

information theory and are motivated by the need for balancing goodness-of-fit and 

model complexity (Sheather, 2009). Lower AIC and BIC values indicate a better model 
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fit. Various forms of AIC and BIC can be found in the literature. This study uses the 

form proposed by Qi et al. (2001). One common form of AIC (Akaike, 1974) is given in 

equation (4): 

 

 AIC = 𝑙𝑜𝑔(𝜎̂𝑀𝐿𝐸
2 ) +

2𝑚

𝑁
 (4) 

where 𝑚 is the number of model parameters, and 𝑁 is the number of observations.  𝜎̂𝑀𝐿𝐸
2  

is the maximum likelihood estimate of the variance of the residual term, expressed by 

equation (5): 

 𝜎̂𝑀𝐿𝐸
2 =

𝑆𝑆𝐸

𝑁
=

∑(𝑦𝑖 − 𝑦̂𝑖)
2

𝑁
 (5) 

where 𝑦𝑖 is the observation, and 𝑦̂𝑖 is the model estimate at time 𝑡. 

 BIC has a common format that resembles AIC, although it imposes a greater 

penalty for model complexity, which tends to give preference to simpler models (Hastie 

et al., 2009). BIC can be defined by equation (6) as: 

 BIC = 𝑙𝑜𝑔(𝜎̂𝑀𝐿𝐸
2 ) +

𝑚𝑙𝑜𝑔(𝑁)

𝑁
 (6) 

 For linear models for which AIC and BIC were originally designed, 𝑚 represents 

the number of estimated parameters. For nonlinear and other complex models, 𝑚 is 

usually replaced by some measure of model complexity (Hastie et al., 2009). In a three-

layer neural network model, the two critical uncertainties associated with the model 

structure are the number of the input vectors (𝑝) and the number of hidden layer units 
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(𝑘). Qi et al. (2001) have proposed using 𝑚 = 𝑘(𝑝 + 2) + 1 to measure the model 

complexity of a three-layer feed-forward neural network, which this study adopts. One 

big limitation of the in-sample model selection approach is that the in-sample errors are 

likely to underestimate forecasting errors. Thus, using the best in-sample fit, the model 

selected may not make the best prediction of unseen time series (Tashman, 2000). 

2.2.4. Model Performance Measures 

 The performance of the models on the partitioned datasets is evaluated using 

three goodness-of-fit measures, the Nash–Sutcliffe coefficient of efficiency (NSE), 

percent bias (PBIAS), and root mean square error to observation standard deviation ratio 

(RSR). The NSE is a dimensionless index mainly used in H/WQ modeling; it is a 

normalized statistic determining the magnitude of residual variance compared to 

observed data variance (Nash et al., 1970). The NSE is expressed in equation (7) as: 

 NSE = 1 −
∑ (𝑄𝑠𝑖𝑚 − 𝑄𝑜𝑏𝑠)𝑖

2
𝑖

∑ (𝑄𝑜𝑏𝑠,𝑖 − 𝑄𝑜𝑏𝑠
̅̅ ̅̅ ̅̅ )2

𝑖

 (7) 

Where 𝑄 is the variable, obs and sim stand for observed and simulated, respectively. 

NSE ranges from –∞ to 1.0, with NSE = 1.0 representing the optimal fitting. A negative 

NSE value indicates that the mean observed value is a better fit than the simulated value 

(Moriasi et al., 2007; Zhang et al., 2010; Zhang et al., 2009). 

 The PBIAS measures the average tendency of simulated data to be larger or 

smaller than the observations. The model reaches optimal prediction with a PBIAS of 

0.0, and smaller absolute PBIAS indicates a more accurate model prediction. In the 
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following form, positive PBIAS values indicate that the model output overestimates the 

observation, while negative values indicate underestimation (Moriasi et al., 2007). 

PBIAS is defined in equation (8) as: 

 PBIAS = 100 ∗
∑ (𝑄𝑠𝑖𝑚 − 𝑄𝑜𝑏𝑠)𝑖𝑖

∑ 𝑄𝑜𝑏𝑠,𝑖𝑖
 (8) 

 The RSR standardizes the root mean square error (RMSE) by dividing it by the 

standard observation deviation, which facilitates convenient performance evaluation. 

The RSR is a dimensionless index that ranges from 0 to a substantially large positive 

value, with the optimal value 0 indicating 0 residual variations and, therefore, perfect 

model fit (Moriasi et al., 2007). The RSR is defined as: 

 RSR =
 𝑅𝑀𝑆𝐸

𝑆𝑇𝐷𝐸𝑉𝑜𝑏𝑠
=

√∑ (𝑄𝑠𝑖𝑚 − 𝑄𝑜𝑏𝑠)𝑖
2𝑁

𝑖=1

√∑ (𝑄𝑜𝑏𝑠,𝑖 − 𝑄𝑜𝑏𝑠
̅̅ ̅̅ ̅̅ )2𝑁

𝑖=1

 (9) 

 Moriasi et al. (2007) proposed performance evaluation criteria (PEC) 

corresponding to the above performance measures on a monthly time step. Since H/WQ 

models perform better at coarser time scales, Kalin et al. (2010) developed relaxed 

performance qualitative ratings on NSE and PBIAS for finer time step models. This 

study simulates the streamflow on a daily time scale and adopts the performance 

evaluation criteria from several previous studies (ASABE, 2017; Kalin et al., 2010; 

Moriasi et al., 2007; Moriasi et al., 2015). The PEC used in this study is summarized in 

Table 2.1.  
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Table 2.1 Model performance evaluation criteria 

Performance Rating NSE PBIAS (%) RSR 

Very good NSE ≥ 0.7 |PBIAS| ≤ 25 RSR ≤ 0.5 

Good 0.5 ≤ NSE < 0.7 25 < |PBIAS| ≤ 50 
0.5 < RSR ≤ 0.75 

Satisfactory 0.3 ≤ NSE < 0.5 50 < |PBIAS| ≤ 70 

Unsatisfactory NSE < 0.3 |PBIAS| > 70 RSR > 0.75 

 

2.2.5. ANN Models Setup 

 Determining the best input variable combinations is essential for successfully 

training an ANN model (Noori et al., 2016). Previous research on ANN streamflow 

forecasting has mainly applied meteorological variables and discharge from the 

preceding time steps as model inputs (Demirel et al., 2009; Dorofki et al., 2012; Jimeno-

Sáez et al., 2018; Minns et al., 1996; Rezaeianzadeh et al., 2013; Zhang et al., 2000). 

This study proposes using the discharge measurements from an upstream gauge and 

meteorological variables as inputs for the ANN models. The proposed input 

combinations are summarized in Table 2.2. These five model prediction scenarios were 

applied to both study watersheds. The selected variables include daily precipitation (Pt), 

precipitation of the previous n days (Pt-n), daily mean air temperature (Tt), streamflow 

measurement from the upstream gauge stations (Qu, USGS 08178000, USGS 08180700), 

and total precipitation for the preceding n days (Pn). Precipitation and temperature were 

selected as inputs mainly because they are the most relevant meteorological variables for 

hydrological impact studies (Maraun et al., 2010). In addition, the total precipitation of 
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previous time steps is included to represent the antecedent moisture condition in 

scenarios 4 and 5. The downstream discharge (Q, USGS 08178565, USGS 08181500) 

close to the watershed outlets are the training targets. The input combinations proposed 

here avoid using the streamflow of preceding time steps at the estimated site, which 

allows the application of the modeling approach in regions where streamflow 

observations are incomplete. 

Table 2.2 ANN model input combinations. 

Prediction Scenario Input Combination Output 

1 Pt, Pt-1, Pt-2, Pt-3, Pt-4, Qu Q 

2 Pt, Pt-1, Pt-2, Pt-3, Pt-4, Tt Q 

3 Pt, Pt-1, Pt-2, Pt-3, Pt-4, Tt, Qu Q 

4 Pt, Pt-1, Pt-2, Pt-3, Pt-4, Pn Q 

5 Pt, Pt-1, Pt-2, Pt-3, Pt-4, Pn, Qu Q 

 

 Input and output data for setting up the ANN models were obtained from the 

PRISM database and USGS publicly accessible data. While the PRISM daily spatial 

climate dataset has complete temporal coverage for the years starting from 1981, the 

USGS streamflow observations often have long durations of missing data. This study 

uses a decade-long daily time series for model input and output, the longest available 

consistent data for the two study watersheds. Simulations for the HSARB were run from 
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1 October 1987 to 30 September 1997, and for the LMRB, from 1 October 1997 to 30 

September 2007. The first 70% of data are used for model training (in-sample approach) 

or training/validation (out-of-sample approach), and the remaining 30% of data are used 

as the stand-alone testing set.  

 The Cox and Stuart test (Cox et al., 1955) was applied to detect whether the 

precipitation and observed streamflow time series during the study period had a time-

dependent trend. The decade-long time series of precipitation, upstream discharge, and 

target discharge were divided into thirds. The test compared whether the first third of the 

data was larger or smaller than the last third. As the last third of the time series covered 

the entire testing period, this test can be used to assess if the testing period data trended 

away from the training period.  

 The Cox and Stuart test results showed that in HSARB, the precipitation, up-

stream discharge, and target discharge all had extremely small p-values, approximately 

0, which indicated a detectable trend in the 10-year time series. Hence, differences 

between the training and testing data exist in HSARB. Meanwhile, in LMRB, the 

precipitation data had a p-value close to 0, while the upstream discharge had a p-value of 

0.939 and target discharge had a p-value of 0.028, which showed that if the p-value 

threshold of 1% is applied, the test failed to reject the null hypothesis that no monotonic 

trend exists in the discharge time series. This result suggested no significant difference 

between the training and testing discharge data in LMRB, while the precipitation pattern 

had altered during the study period. The more fluctuating discharge data in HSARB 
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could cause relatively poor predictive outcomes in the testing period, while the stable 

discharge condition in LMRB is likely to induce better predictive performance in the 

testing period. 

 This study applied a three-layer feed-forward neural network with input/output 

layers and a single hidden layer. The logistic function is used as the transfer function for 

all hidden nodes, and the popular back-propagation algorithm is used to train the models. 

The maximum amount of training epoch was set as 200,000 to ensure training coverages, 

while the learning rate was set as 0.002. In addition to different configurations of input 

variables, the size of hidden layer units significantly affects the complexity of a neural 

network and its predictive capability. Unfortunately, there is no unified theory in the 

literature to determine the optimum number of hidden units (ASCE, 2000a). In this 

study, the number of hidden units is varied from 1 to 10. Larger hidden layer sizes are 

excluded from the experimentation since models with larger hidden layer sizes tend to 

overfit the training data (Gazzaz et al., 2012).  

 Because hydrologic variables span different magnitudes,  prior to their use in 

neural networks, they should be normalized to a common scale to aid in comparison 

(Sahoo & Ray, 2006; Starrett et al., 2010). In this study, the input and output variables 

are normalized on the range of 0 to 1 using the following equation: 

 𝑧𝑖 =
𝑥𝑖 − min (𝑥)

max(𝑥) − min (𝑥)
 (10) 



 

 

  30 

 

Where 𝑥𝑖, min (𝑥), and max(𝑥) denote the observed, minimum, and maximum values of 

the raw data, respectively, and 𝑧𝑖 denotes the normalized values. R software (R Core 

Team, 2019) was used for data processing and model simulations. The “neuralnet” 

package was used for training all the ANNs in this work. 

 

2.3. Results and Discussion 

 The in and out of sample model selection approaches discussed in section 2.2.3 

were used to determine the best input combination and the optimum number of hidden 

layer units of each model scenario in Table 2. Therefore, two groups of models were 

created for every scenario, one for each approach. The first group of models applies the 

in-sample model selection criteria (AIC and BIC), splitting the data between training and 

testing sets as indicated earlier. The BlockedCV is applied to the second group of model 

scenarios. The first 70% of available data were partitioned into ten fixed blocks. Then, 

ten training iterations were run using a loop structure with 1/10 of the data serving as the 

validation set in each iteration. The NSE calculated on the validation sets from all 

iterations is averaged to obtain the validation statistics used as the selection criterion of 

the BlockedCV. Moreover, all three performance measures discussed in section 2.2.4 are 

calculated for the training, validation, and testing datasets to further evaluate the model 

generalization capability and compare the performance among different ANN models.  

 

 



 

 

  31 

 

2.3.1. Optimum Hidden Layer Size Selection 

 The AIC and BIC of the training dataset for the in-sample modeling group, the 

NSE of the validation dataset for the out-of-sample modeling group, and the NSE 

calculated on the stand-alone testing dataset are displayed in Figure 2.3 for HSARB and 

Figure 2.4 for LMRB. In Figures 2.3 and 2.4, the AIC and BIC are measured using the 

left axis, while the NSE is measured using the right axis. From plots a−e of these two 

figures, no uniform trends are observed for the performance measures as the number of 

hidden nodes increases across the five prediction scenarios for both watersheds. The best 

performance measures of each scenario (i.e., the smallest AIC and BIC, the largest NSE) 

are highlighted in red. Among all ten prediction scenarios for the two watersheds, in 7 

out of 10 scenarios, the best AIC and BIC resulted from the same number of nodes in the 

hidden layer.  In the other three scenarios where the best results for AIC and BIC 

resulted from different nodes in the hidden layer, the BIC criteria resulted in fewer 

hidden nodes.  

 In all ten prediction scenarios, the best NSE in the validation data set did not 

select the same number of nodes in the hidden layer as AIC and BIC criteria, indicating 

that the out-of-sample BlockedCV approach does not converge to the same hidden nodes 

as the in-sample information-criteria based approach.  

 Both approaches’ hidden node structure selection results were also compared 

with the testing NSE for further verification. In only 1 out of 10 prediction scenarios, 

scenario 4 of HSARB, did using AIC to determine hidden layer size results in the best 
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testing NSE value, and none occurred in those using BIC to determine optimum hidden 

layer size. However, 3 out of 10 prediction scenarios, using BlockedCV to determine 

optimum hidden layer size were consistent with the best testing NSE results. Using the 

testing NSE as an indicator of the predictive ability of the neural networks, from plots 

a−e of Figures 2.3 and 2.4, none of the criteria used consistently found the optimum 

hidden layer size. 

 
Figure 2.3 Model statistical performance of prediction scenarios 1 through 5 for the 

HSARB Watershed (a−e). The best performance measures of each scenario (i.e., the 

smallest AIC and BIC, the largest NSE) are highlighted in red. 
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Figure 2.4 Model statistical performance of prediction scenarios 1 through 5 for the 

LMRB Watershed (a−e). The best performance measures of each scenario (i.e., the 

smallest AIC and BIC, the largest NSE) are highlighted in red. 

 

2.3.2. Statistical Summary of Model Performance 

 Table 2.3 presents the AIC selected optimum hidden layer size for each 

prediction scenario and the corresponding performance data of the urban HSARB 

Watershed. Based on the criteria defined in Table 1, the training NSE and RSR for 

scenarios 1, 3, and 5 reached the “very good” level, and scenarios 2 and 4 produced 

“good” results. The training PBIAS for all five scenarios are numerically close and 

reached “very good” performance. The testing NSE for scenarios 1, 3, 4, and 5 indicate 

“good” performance but only “satisfactory” performance for scenario 2. All testing 

PBIAS values indicate “good” performance, and testing RSR has “satisfactory” to 

“good” performance. The testing PBIAS of scenarios 2 and 4 is better than that of 
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scenarios 1, 3, and 5. Table 2.4 presents the BlockedCV selected best models for 

HSARB. Similar to the models selected using AIC, scenarios 1, 3, and 5 achieved better 

performance in training, validation, and testing datasets for NSE and RSR than scenarios 

2 and 4. They are generally in the range of “good” to “very good”. “Unsatisfactory” NSE 

and RSR performances were observed for the validation dataset of scenarios 2 and 4. 

However, the PBIAS of scenarios 2 and 4 have achieved better performance in training 

and testing datasets than scenarios 1, 3, and 5, which contradicts the performance rating 

from NSE and RSR.  

Table 2.3 AIC selected models with the optimum number of hidden nodes, HSARB. 

Scenario 

Hidden 

Nodes 

Training  Testing 

AIC BIC NSE PBIAS RSR  NSE PBIAS RSR 

1 5 10.299 10.397 0.841 10.8 0.399  0.558 -47.8 0.664 

2 3 11.393 11.453 0.519 9.9 0.694  0.474 -36.7 0.725 

3 6 10.258 10.389 0.849 8.6 0.388  0.574 -48.5 0.652 

4 5 11.406 11.504 0.519 11.1 0.694  0.512 -31.8 0.698 

5 4 10.337 10.425 0.834 9.4 0.407  0.577 -45.7 0.650 

 

Table 2.4 BlockedCV selected models with the optimum number of hidden nodes, 

HSARB. 

Scenario 

Hidden 

Nodes 

Training  Validation  Testing 

NSE PBIAS RSR  NSE PBIAS RSR  NSE PBIAS RSR 

1 4 0.774 11.3 0.474  0.707 29.6 0.538  0.566 -48.8 0.659 

2 10 0.537 8.8 0.680  -0.229 65.7 1.105  0.465 -36.8 0.731 

3 7 0.764 11.5 0.486  0.690 33.7 0.555  0.567 -47.6 0.658 

4 10 0.525 10.6 0.689  -0.106 62.3 1.049  0.478 -30.5 0.723 

5 7 0.790 11.4 0.457  0.717 31.3 0.529  0.581 -40.0 0.647 
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 Table 2.5 presents the AIC selected optimum hidden layer size for each 

prediction scenario and their corresponding performance data for the nonurban LMRB 

watershed. All three performance measures for the training dataset have “very good” 

performance. However, “unsatisfactory” testing NSE and RSR is observed for scenario 

1. Meanwhile, most of the testing NSE and RSR of scenarios 2, 3, and 5 only reach a 

“satisfactory” level. The exception occurs with scenario 4, where the testing NSE and 

RSR have “good” performance. Results of the testing PBIAS appears to contradict the 

results from NSE and RSR again, where PBIAS for scenarios 1, 3, and 5 have better 

performance than that of scenario 2 and 4. Table 2.6 shows the BlockedCV selected best 

models for LMRB. Overall, the performance measures for the training dataset reached 

the “very good” level, while the validation performances fall in the range of mostly 

“unsatisfactory”. The testing NSE and RSR show that scenarios 1, 3, and 4 have “good” 

performance, while scenarios 2 and 5 have “satisfactory” and “unsatisfactory” results. 

Performance patterns of PBIAS are identical to that of the AIC selected models, where 

scenarios 1, 3, and 5 have “very good” and scenarios 2 and 4 have worse PBIAS 

performance.  
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Table 2.5 AIC selected models with the optimum number of hidden nodes, LMRB. 

Scenario 

Hidden 

Nodes 

Training  Testing 

AIC BIC NSE PBIAS RSR  NSE PBIAS RSR 

1 2 12.707 12.746 0.920 16.2 0.282  0.269 18.8 0.854 

2 4 13.559 13.634 0.816 -10.8 0.429  0.451 -58.6 0.741 

3 2 12.666 12.710 0.924 15.2 0.276  0.310 20.4 0.830 

4 7 13.488 13.618 0.831 -15.2 0.411  0.603 -47.9 0.630 

5 5 12.779 12.884 0.916 10.4 0.289  0.400 4.6 0.775 

 

Table 2.6 BlockedCV selected models with the optimum number of hidden nodes, 

LMRB. 

Scenario 

Hidden 

Nodes 

Training  Validation  Testing 

NSE PBIAS RSR  NSE PBIAS RSR  NSE PBIAS RSR 

1 8 0.920 14.0 0.283  0.282 -35.0 0.845  0.574 3.5 0.653 

2 8 0.817 -11.9 0.427  0.115 -53.0 0.939  0.444 -61.5 0.745 

3 9 0.916 16.6 0.290  0.290 -32.8 0.841  0.658 -7.3 0.585 

4 9 0.817 -11.7 0.427  0.066 -54.6 0.964  0.582 -48.7 0.647 

5 10 0.916 13.8 0.289  0.283 -35.2 0.845  0.320 11.6 0.824 

 

 Taken together, in HSARB, the testing NSE and RSR performance show that 

scenarios 1, 3, and 5 have better performance than scenario 2 and 4, which indicate that 

the inclusion of upstream discharge as one of the input variables improve the model 

performance, while in LMRB, the testing NSE and RSR performance did not reveal the 

same pattern. More mixed statistical results are observed as scenarios 2 and 4, in some 

cases, have better testing NSE performance than the other three scenarios. The reason for 

this is not apparent, but it may be caused by water allocation at the segment between the 

upstream gauge and the watershed outlet of the Lower Medina River. Moreover, 
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contradictory testing results were found between the PBIAS and the other two 

performance measures in both HSARB and LMRB, as shown in Table 2.3 to 2.6, which 

might indicate that the models capture the high flow periods significantly better than the 

low flows, as NSE and RSR give more weight to high values when compared with low 

values because their error terms are squared (Moriasi et al., 2015).  

 Comparing the model selection results of AIC and BlockedCV of all prediction 

scenarios of the two study watersheds (Tables 2.3 to 2.6), in all ten prediction scenarios, 

the AIC and BlockedCV approaches selected different optimum hidden layer sizes, and 

in nine out of ten prediction scenarios the AIC approach selected a simpler hidden layer 

structure than BlockedCV, with the exception of scenario 1 of HSARB. This result may 

be explained by the addition of a penalty term on the number of model parameters by 

AIC, whereas the NSE merely measures the deviation between paired observed and 

predicted values. Best Model Structure 

 Table 2.7 summarizes the findings from Tables 3 to 6 and presents the best 

model structure across all prediction scenarios selected using different criteria. The 

notations in Table 2.7 are as follows, “Si-j” denotes scenario “i” with “j” hidden nodes. 

In HSARB, the AIC and BIC both selected S3-6 as the best model, the BlockedCV 

selected model S5-7, and the NSE calculated from the testing dataset indicate model S5-

5 has the best predictive performance. The BlockedCV selected the scenario consistent 

with the testing NSE, although it did not choose the same model. In LMRB, the AIC and 

BIC both selected S3-2 as the best model, while BlockedCV selected model S3-9, which 
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agrees with the testing NSE performance. The final model selections at the two study 

watersheds show that BlockedCV achieves better selection results regarding the 

predictive model performance. However, it should be noted that limitations exist when 

using testing NSE as the indicator of the model’s predictive ability, since the model 

testing performance can be strongly affected by the subjective training/testing data 

partition, and very different testing NSE can occur when calculated from a different 

testing dataset.  

Table 2.7 Selected best model structure with different criteria. 
Study 

Watershed 

Selection Criteria 

Best 

Model 

Study 

Watershed 

Selection Criteria 

Best 

Model 

HSARB 

AIC S3-6 

LMRB 

AIC S3-2 

BIC S3-6 BIC S3-2 

BlockedCV S5-7 BlockedCV S3-9 

Predictive Performance S5-5 Predictive Performance S3-9 

 

 To better understand the difference between the models selected from different 

criteria and further assess their predictive performance, Figures 2.5 and 2.6 present the 

testing phase streamflow time series and scatter plots for the best models selected by 

AIC, BIC, and BlockedCV. A closer inspection of the hydrographs (Figure 2.5) shows 

that the selected models can capture the timing of major peaks in both watersheds. 

However, the simulated and observed time series show apparent deviations in discharge 

magnitude for all models. For example, in HSARB, both S3-6 and S5-7 underestimate 

the peak flows, whereas the fit of low flows is barely discernable due to the large vertical 
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scales of the time-series graphs. Conversely, both models S3-2 and S3-9 of LMRB 

overestimated the peak flows. In the meantime, the time-series graphs fail to provide 

valuable insights for the low flows as well.  

 As noted by Moriasi et al. (2015), although a time series plot is an effective 

graphical measure for evaluating event-specific prediction issues and allows the modeler 

to find possible temporal mismatches, it can become cluttered with too many data points. 

Hence, scatter plots should be applied for analyzing longer-duration datasets. Plots a,b of 

Figure 2.6 show the simulated against observed streamflow data of models S3-6 and S5-

7 of HSARB, and both plots suggest the models underestimate the observed streamflow 

with least-square regression lines that have slopes smaller than 1. Meanwhile, the 

significant negative PBIAS values that were observed for both model S3-6 and S5-7, 

strengthen the graphic result that the ANN models in HSARB underestimated 

streamflow. Plots c,d provide the scatter plots of models S3-2 and S3-9 of LMRB. For 

model S3-2, the regression line has a slope greater than 1 and a positive PBIAS value, 

which indicates an apparent overestimation of streamflow. Much better performance is 

observed for model S3-9 of LMRB, with a regression line is the closest to the 1:1 

reference line among the four models, and a slight negative PBIAS value, which 

indicates the streamflow is slightly underestimated overall.  
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Figure 2.5 Daily precipitation, observed, and simulated streamflow of testing phase 

for (a) HSARB, S3-6 ;(b) HSARB, S5-7; (c) LMRB S3-2; (d) LMRB S3-9. 
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Figure 2.6 Scatter plots of testing phase daily streamflow of (a) HSARB, S3-6; (b) 

HSARB, S5-7; (c) LMRB S3-2; (d) LMRB S3-9. 
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 The testing phase performance results of the four selected models are displayed 

in Figure 6 as well. In HSARB, the models selected from the two approaches have close 

performance results. More specifically, the BlockedCV selected model S5-7 obtained 

slightly better NSE and PBIAS and slightly worse RSR results than the AIC and BIC 

selected model S3-6. However, in LMRB, all three performance measures indicate that 

the BlockedCV selected model S3-9 has significantly better performance than the AIC 

and BIC selected model S3-2. In both study watersheds, the best models selected by the 

in-sample AIC and BIC criteria are simpler than the models selected by the out-of-

sample BlockedCV approach. As mentioned in section 2.3.2, the in-sample approach 

tends to select smaller hidden layer sizes than the out-of-sample approach. These results 

corroborate the ideas of Qi et al. (2001), who suggested that the in-sample model 

selection criteria may over-penalize the model complexity and select models that 

underfit the data. 

 An interesting finding on the selected best models is that the model S3-9 of 

LMRB has better performance in statistical and graphical measures than the model S5-7 

of HSARB. This result is contrary to the expectation that ANN would have the better 

predictive ability in an urban watershed, where its dominant impervious surface causes 

more direct rainfall-runoff relation than in a nonurban watershed where the rainfall-

runoff process is more complex. A possible explanation might be that the LMRB has a 

much higher average outflow volume than the HSARB (Figures 5 and 6). Prior studies 
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have noted that the ANN models produce better simulation results estimating high flows 

(Demirel et al., 2009; Humphrey et al., 2016; Jimeno-Sáez et al., 2018). 

 

2.4. Summary 

 In this study, daily streamflow simulation models were developed for two small 

watersheds with distinctive land cover types in south-central Texas using a three-layer 

feed-forward neural network. Five prediction scenarios using different combinations of 

meteorological and hydrological variables were considered, and for each prediction 

scenario, a range of nodes in the hidden layer is evaluated. The results show that the best 

networks could produce “satisfactory” to “good” daily streamflow prediction 

performances for most of the considered input combinations. While plenty of studies 

have reported applying ANN to H/WQ modeling, the model overfitting problem and 

model selection method for a hydrological time series simulation have not been 

adequately addressed.  

 This study empirically investigated two main approaches for selecting the best 

ANN rainfall-streamflow models: the in-sample approach using AIC and BIC as criteria; 

and the out-of-sample approach using BlockedCV. The evidence from this study 

suggests that none of the proposed approaches consistently selects the model that has the 

best testing dataset predictive ability based on the criteria of optimum hidden layer size. 

However, when considering selecting among predictive scenarios where model structure 

difference is more notable, it is found that BlockedCV is more capable of identifying the 
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best predictive model. Furthermore, the AIC and BIC are also found to select a simpler 

model structure than BlockedCV. Overall, this study strengthens the idea that the in-

sample model selection criteria may over-penalize model complexity and select models 

that underfit the data for modeling a streamflow time series. The final best models in 

both study watersheds selected through BlockedCV are found to have “good” 

performance on the testing data. However, a closer inspection of the scatter plots and 

corresponding PBIAS values indicate that the models can perform very differently on 

low and high flow data, especially in the LMRB. This finding is also supported by the 

counter-intuitive result that the largely rural LMRB has better model performance than 

the urban HSARB, which could be explained by the fact that the HSARB has a much 

smaller average outflow discharge than the LMRB. Further studies could assess the 

model selection criteria separately on different quantiles and magnitudes of the flow data 

while choosing watersheds with closer average flow volume for comparison. 
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3. A COMPARISON OF DAILY STREAMFLOW PREDICTED BY AN ARTIFICIAL 

NEURAL NETWORK AND THE SOIL AND WATER ASSESSMENT TOOL 

(SWAT) IN TWO SMALL WATERSHEDS IN CENTRAL SOUTH TEXAS 

 

Abstract. Currently available rainfall-runoff models vary from simple, lumped, data-

driven models that depend on the observed inputs and outputs of a watershed alone, to 

the more complex physically-based models that represent the process using 

mathematical equations that describe important physical laws of conservation of mass, 

energy, and momentum. In this study, the accuracy of streamflow estimated by a data-

driven Artificial Neural Network (ANN) and the physically-based Soil and Water 

Assessment Tool (SWAT) are compared. The models were applied in two small 

watersheds, one highly urbanized and the other primarily covered with evergreen forest 

and shrub, in the San Antonio Region of central south Texas, where karst geologic 

features are prevalent. Both models predicted daily streamflow in the urbanized 

watershed very well with the ANN and SWAT have the Nash–Sutcliffe coefficient of 

efficiency (NSE) values of 0.76 and 0.72 in the validation period, respectively. However, 

both models predicted streamflow poorly in the nonurban watershed. The NSE values of 

the ANNs significantly improved when a time series autoregressive model structure 

using historical streamflow data was implemented in the nonurban watershed. The 

SWAT model achieved minimal improvement through model calibration with the 

current model structure. This result suggests that an ANN model may be more suitable 
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for short-term streamflow forecasting in watersheds heavily affected by karst features 

where surface water flow is strongly influenced by the complex processes of rapid 

groundwater recharge and discharge.  

 

3.1.  Introduction 

 The prediction of streamflow using rainfall-runoff models is vital in water 

resources management, with an ultimate purpose of improving decision-making for a 

wide range of hydrological problems. Streamflow is the result of complex natural 

processes at the watershed scale. In the past several decades, various computer-based 

hydrological models have been developed to simulate streamflow, most of which focus 

on capturing the rainfall-runoff process since precipitation is usually the primary driving 

force of a hydrological system (Moradkhani et al., 2009). As more and more models 

became available, hydrologists started to classify the models into different categories 

based on their structure. One common classification divides hydrological models into 

lumped or distributed models. A lumped hydrological model considers the study 

watershed as a single unit. The parameters representing spatial characteristics related to 

the rainfall-runoff process are averaged or ignored for the entire watershed (Brirhet et 

al., 2016). In a distributed model, the variation of watershed characteristics and 

hydrological processes in space are explicitly considered, usually through discretizing 

the watershed into a large number of rectangular grid cells or a limited number of 

subbasins based on the drainage and topographic features (Islam, 2011). Another 
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frequently used classification approach considers models as deterministic or stochastic. 

In a deterministic model, only a single model output value is generated with a given set 

of input data and model parameters (Beven, 2011); whereas stochastic hydrological 

models usually provide probability distributions of the target variables (Beaumont, 

1979). Exploring the suitability and analyzing limitations of different models is one of 

the popular topics in modern hydrology.   

 One major issue in hydrological modeling is deciding the appropriate level of 

model complexity. Beven (2011) summarized two widely accepted views of modeling. 

The first suggests that hydrological models are merely tools for extrapolating available 

data in time and space. Therefore, if the model inputs and outputs can be successfully 

related, it is not essential to elaborate the details of a watershed. The second view 

maintains that models should reflect the physical processes involved to the extent 

possible to ensure confidence when extrapolating beyond the existing observations. 

More complex physically-based hydrological models are usually adopted under the 

second perspective.  

 The Soil and Water Assessment Tool (SWAT) is a physically-based, semi-

distributed, deterministic model developed to assess water quality and quantity in large 

river basins with varying soils, land uses, land cover types, and management practices 

(Arnold et al., 2012b). In the SWAT model, a study watershed is divided into a few 

subbasins. At a finer spatial scale, the model further groups lands with homogeneous 

slopes, soil types, and land cover types into hydrologic response units (HRUs). The 
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HRUs may not be spatially continuous and can be found at different locations within a 

subbasin. This strategy effectively simplifies the simulation of watershed processes 

(Gassman et al., 2007; Licciardello et al., 2011; Tuppad et al., 2011). The development 

of the SWAT model spans the last three decades, with new functions and routines 

continuously added to the model. The current SWAT model has been widely applied to 

water, sediment, agricultural chemicals, and contaminant yields in complex systems 

(Abbaspour et al., 2015; Gassman et al., 2007). Moreover, the SWAT model is closely 

integrated with a geographic information system (GIS) since most of the SWAT input 

data have spatial characteristic (Jayakrishnan et al., 2005; Olivera et al., 2006; 

Srinivasan et al., 1994). To date, the ArcGIS and QGIS platforms are integrated with the 

SWAT model. 

 A physically-based hydrological model is often referred to as a white-box since 

its modeling processes are established on known scientific principles of mass and energy 

fluxes (Moradkhani et al., 2009). In contrast to the complex structure of physically-based 

models, statistical models have gained popularity for rainfall-runoff modeling based on 

their simplicity and low computational resource demand. An Artificial Neural Network 

(ANN) is a computing system that resembles the structure of the human biological 

neural network. It can identify nonlinear relationships from given patterns and fit 

nonparametric models on multivariate input data (Govindaraju et al., 2013). ANNs have 

been applied to rainfall-runoff modeling since the 1990s. When used as a rainfall-runoff 

model, an ANN only identifies the relationship between historical inputs (meteorological 
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data) and outputs (streamflow) without considering any of the physical processes 

involved, therefore falling into the category of a lumped model and is often referred to as 

a black-box model (ASCE, 2000a). In addition, the ANNs are stochastic models, given 

that the fitted parameter values often vary from one training process to another for a 

fixed training dataset (Jain et al., 2004), creating a distribution of outputs, rather than 

one value. 

  The physically-based SWAT model simulates streamflow by incorporating 

descriptive mathematical equations designed to conceptualize the hydrological processes 

in a watershed. The model requires grid-based geospatial data as inputs in addition to 

meteorological data and incorporates a significant number of model parameters (Fatichi 

et al., 2016; Noori et al., 2016). Solving the equations for the state variables at the level 

of HRUs for each time step can be time-consuming and computationally demanding 

(Jimeno-Sáez et al., 2018; Noori et al., 2016).  In this regard, statistical models such as 

ANN hold a clear advantage. ANNs do not require a priori knowledge of the watershed 

physical characteristics as model input, which reduces the model setup procedures. 

Meanwhile, the time it takes to train and select the best neural network is significantly 

shorter than calibrating a SWAT model (Jimeno-Sáez et al., 2018; Minns et al., 1996), 

capable of achieving “unreasonable effectiveness” in hydrological applications when 

sufficient training data is available (Worland et al., 2019). On the other hand, several 

studies have noted the disadvantages of applying ANN as a rainfall-runoff model. In 

particular, ANNs’ lack of explanations for the underlying physical hydrological 
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processes has generated a lot of concern among hydrologists (ASCE, 2000a; Ha et al., 

2003; Jain et al., 2004; Karunanithi et al., 1994; Yaseen et al., 2015). The inability to 

capture physical dynamics at the watershed level means that ANNs are not suitable for 

environmental impact studies such as modeling streamflow under changing climate 

conditions (Humphrey et al., 2016; Milly et al., 2008). Additionally, similar to other 

statistical models, extrapolating beyond the training data range often undermines ANNs’ 

predictive performance (Minns et al., 1996; Sahoo, Ray, et al., 2006).  

 A few studies have compared SWAT and ANN regarding streamflow prediction. 

Kim et al. (2015) applied SWAT and ANN to impute missing streamflow observations 

in the Taehwa River Watershed in Korea and found that SWAT was better at simulating 

low flows, while the neural network model generally performed better at simulating high 

flows. Jimeno-Sáez et al. (2018) compared the accuracy of streamflow prediction 

between SWAT and ANN models at the Ladra River Basin and the Segura River Basin 

in Spain. The authors also came to the conclusion that ANN is better at estimating higher 

flows. Demirel et al. (2009) applied SWAT and ANN models to simulate streamflow in 

the Pracana River Basin in Portugal and concluded that ANN was more successful at 

forecasting peak streamflow, whereas the SWAT model performed better in terms of 

overall goodness-of-fit indicators. Srivastava et al. (2006) analyzed the performance of 

streamflow prediction from SWAT and ANN in the agricultural-dominated Honey 

Brook Watershed in Pennsylvania. They found that the ANN model produced simulation 

results with the Nash-Sutcliffe coefficient of efficiency (NSE) and coefficient of 
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determination (R2) better than the SWAT model. In a more recent study, Zakizadeh et al. 

(2020) used ANN and SWAT to simulate the rainfall-runoff relationship in a small 

watershed near Tehran city, Iran. The authors concluded that ANN produced simulations 

with minor error and uncertainty, although both models could achieve excellent 

predictive performance.  

 While previous studies have explored the suitability of SWAT and ANN models 

in various regions, none of these studies were conducted in the state of Texas, where its 

hot climate condition and growing population have made water sustainability a 

contentious issue. Additionally, the San Antonio region of central south Texas has 

extensive karst terrain, making hydrological modeling more difficult and rendering 

model performance patterns vastly different from non-karstified watersheds (Jakada et 

al., 2020). Furthermore, very few studies on SWAT and ANN have considered 

uncertainty in the measurement and modeling process. Hence the objectives of this study 

are (a) to parameterize SWAT and an ANN model to simulate streamflow in two small 

watersheds in the San Antonio Region, one rural and one urban; (b) to compare SWAT 

and ANN model performance in karstic watersheds; (c) to analyze SWAT and ANN 

performance under different dominant land-use type; and (d) to enhance the model 

evaluation using modified goodness-of-fit indicators that incorporate measurement and 

model uncertainty.  

 

 



 

 

  52 

 

3.2.  Materials and Methods 

3.2.1. Study Area 

 Two small watersheds in the San Antonio region of Texas are selected for this 

study, both located within the Medina River Basin (HUC8: 12100302), which covers 

part of the San Antonio urban area and a large rural area to the west of the city (Figure 

3.1a). The study area has a subtropical and semi-humid climate with long hot summers 

and short warm winters. A part of the Edwards Balcones Fault Zone (BFZ) aquifer lies 

under the study area, where karst geologic features are prevalent (Loáiciga et al., 2000). 

Processes including diversion of surface runoff into sinkholes, fast groundwater 

movement through subsurface conduits, and recharge to surface water from springs 

linked directly to the aquifers are often found in such terrain (Jakada et al., 2020).  

 The two study watersheds were delineated in ArcSWAT using the digital 

elevation model (DEM). The outlets of both study watersheds were selected at the USGS 

gages that have long-term consistent streamflow records. The Leon Creek Watershed 

(LCW) covers the western part of the city of San Antonio. It is centered at 98.67º west 

longitude, 29.56º north latitude, and has a drainage area of 535.76 km2. The drainage 

area of the LCW is situated across the contributing, recharge, and artesian zones of the 

Edwards (BFZ) aquifer (Figure 1a). Elevation of the LCW decreases from north to 

south, ranging from 546 m in the northern part to 177 m near the watershed outlet 

(Figure 3.1c). The LCW is heavily urbanized. According to the 2011 National Land 

Cover Database (NLCD, 2011) land use land cover (LULC) classification (Yang et al., 
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2018), 47.2% of the LCW is classified as developed urban area with different levels of 

development intensity. Besides the extensive impervious surface of the city, urban 

afforestation has made about 34.2% of the LCW evergreen or deciduous forest. Leon 

Creek is the main waterway in the LCW. It originates from multiple smaller creeks in 

the northern part of LCW and flows south before merging into the lower part of the 

Medina River.  

 The Upper Medina River Watershed (UMRW) is about 30 kilometers northwest 

of San Antonio. It is centered at 99.32º west longitude, 29.82º north latitude. The 

drainage area of the UMRW is 847.03 km2 and is located entirely within the 

contributing zone of the Edwards BFZ aquifer (Figure 3.1a). The UMRW is primarily 

rural, and its dominant land cover types are forest and shrub. Deciduous and evergreen 

forests combined cover 48.5% of the drainage area, while shrubland alone covers 38.9%, 

according to the NLCD2011 classification. Elevation of the UMRW declines from 727 

m at its highest point in the northwest to 364 m at the lowest point in the southeast 

watershed outlet (Figure 3.1b). The upper Medina River is the main waterway in the 

UMRW. It follows the topographic decline of the UMRW and flows southeastwards. 

The Medina River is a tributary of the San Antonio River, and it eventually merges into 

the San Antonio River further south outside the Medina River Basin.  
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Figure 3.1 (a) Location of the UMRW and LCW in the state of Texas, with zone 

illustration of the Edwards BFZ Aquifer; (b) DEM of the UMRW; (c) DEM of the 

LCW. 
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3.2.2. Data Acquisition 

 All the data used for constructing hydrological models in this study was obtained 

from publicly accessible data sources. SWAT requires four main data files to set up 

model simulations, including the DEM data, LULC data, soil data, and meteorological 

data. The National Elevation Dataset (NED) which has a 30 m resolution was used for 

the DEM data. The 2011 National Land Cover Data Set (NLCD2011) was collected as 

the LULC data. The NED and NLCD2011 datasets for the study area were obtained 

from the USDA Natural Resources Conversation Service (NRCS) geospatial data 

gateway (USDA‐NRCS, 2014).  The state soil geographic (STATSGO) database 

preloaded with the ArcSWAT interface was used as the soil data. Most importantly, the 

Parameter-elevation Regressions on Independent Slopes Model (PRISM) daily spatial 

climate dataset AN81d (Daly et al., 2008) was acquired as meteorological inputs using 

the Google Earth Engine (GEE), a cloud-based geospatial analysis platform that allows 

easy access to many governments supported free geospatial data archives (Gorelick et 

al., 2017). The area-averaged daily precipitation, minimum, maximum, and mean 

temperature of the PRISM dataset were collected by applying shapefile masks of the two 

study watersheds on GEE.  

 The USGS daily streamflow observations at Leon Creek (USGS 08181480) and 

Upper Medina River (USGS 08178880) from the years 2000 to 2010 were used (U.S. 

Geological Survey, 2016) in this study, observations from 2000 to 2006 were used to 

calibrate the SWAT model and provided a training target for the ANN model. 
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Observations from 2007 to 2009 were used as standalone testing data. The statistical 

summary (i.e., mean, median, standard deviation, Std.Dev, coefficient of variation, Cv, 

maximum, Qmax, minimum, Qmin, first-, second-, third-, and fourth-order autocorrelation 

coefficients, r1, r2, r3, r4) of the observed streamflow for both study watersheds are 

displayed in Table 3.1. In LCW, the overall streamflow difference between the 

calibration and validation periods is smaller than the difference in UMRW. This study 

proposes to use streamflow of previous time steps as one of the predictors in the ANN 

models. Hence, autocorrelation coefficients of the streamflow up to the fourth-order 

were calculated and are presented in Table 3.1. The autocorrelation decreases quite 

significantly as lag increases for all modeling periods and watersheds. The 

autocorrelation is more substantial in the LCW during the calibration period. In the 

UMRW, the autocorrelation of the calibration period is much weaker than that of the 

validation period. 

Table 3.1 Statistical Summary of Daily Streamflow Observations. 

Watershed 
Time 

Period 

Streamflow Data (m3/s) 

Mean Median Std.Dev Cv Qmax Qmin r1 r2 r3 r4 

LCW 
Calibration 1.581 0.185 16.419 10.386 580.150 0.025 0.621 0.490 0.296 0.112 

Validation 1.486 0.198 10.474 7.046 277.623 0.018 0.390 0.071 0.076 0.079 

UMRW 
Calibration 6.358 1.837 65.366 10.280 2943.200 0.009 0.552 0.342 0.267 0.094 

Validation 3.992 0.819 10.420 2.610 163.291 0.000 0.707 0.607 0.538 0.499 

 

3.2.3. SWAT Modeling Approach 

 SWAT formulates hydrological processes in a watershed using mathematical 

equations that describe important physical laws of conservation of mass, energy, and 
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momentum. Water balance within the system at each time step is calculated to produce 

simulation results of hydrological and water quality (H/WQ) variables. A detailed 

description of the SWAT model process can be found in the SWAT theoretical 

documentation (Neitsch et al., 2011). In this study, a DEM covering a much larger 

spatial extent than the study area was used to define the two study watersheds. Based on 

the topography provided by the DEM, the subbasin thresholds (minimum area for 

initiating stream networks) were applied to define the number and location of subbasins 

(Her et al., 2015). The subbasins were further discretized into HRUs. A 10% threshold 

was applied to remove minor slope, soil, and land use classes to restrict the total number 

of HRUs for improving computational efficiency. As a result, 25 subbasins and 298 

HRUs were defined for LCW, while 23 subbasins and 169 HRUs were defined for 

UMRW. 

 While SWAT adopts the more traditional approach of utilizing gauge weather 

data as inputs, the PRISM dataset for the contiguous United States is only available in a 

gridded format. In this study, GEE was used to calculate the area-averaged 

meteorological data for the two study watersheds. The watershed centroids were used as 

“virtual rain gauges” (Elhassan et al., 2016). Daily precipitation and maximum and 

minimum temperature from 1998 to 2009 were used in the SWAT model simulation. 

The model simulations were set up on a daily time step for the 12-year simulation 

period. The calendar years of 1998 to 1999 were used for model warm-up, and 2000 to 

2006, was used for model calibration. The purpose of model calibration is to minimize 
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the difference between model simulation and observation through adjusting model 

parameters. The models are then validated using observations from 2007 to 2009 without 

further change to the calibrated parameters. The SWAT model calibration was 

conducted in SWAT Calibration and Uncertainty Programs (SWAT-CUP) using the 

SUFI-2 procedure (Abbaspour, 2011). Table 3.2 summarized 15 parameters selected for 

calibration, all of which are considered sensitive for streamflow simulation according to 

the literature (Arabi et al., 2007; Chen et al., 2020; Koycegiz et al., 2019; Qi et al., 

2017). Snow-melt parameters were left at default values since snow rarely occurs in the 

San Antonio region. Meanwhile, multiple groundwater parameters were adjusted due to 

their significant impact on modeling the recharge and discharge of the Edwards BFZ 

aquifer. More details of the adjusted parameters are discussed in section 3.3.1.  
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Table 3.2 Description of the calibrated SWAT parameters. 
Hydrology Input 

Parameter 

Description File 

Extension 

Type of 

Change 

Initial Value 

Range 

CN2 SCS runoff curve number for antecedent moisture condition II .mgt Relative (-10%, 10%) 

ALPHA_BF Base flow alpha factor (days) .gw Replace (0, 1) 

GW_DELAY Delay time for aquifer recharge (days) .gw Replace (0, 500) 

GWQMN Threshold depth of water in the shallow aquifer required for 

return flow to occur (mm H2O) 

.gw Replace (0, 5000) 

GW_REVAP Groundwater "revap" coefficient .gw Replace (0.02, 0.2) 

REVAPMN Threshold depth of water in the shallow aquifer for "revap" or 

percolation to the deep aquifer to occur (mm H2O) 

.gw Replace (0, 500) 

RCHRG_DP Deep aquifer percolation fraction .gw Replace (0, 1) 

SOL_AWC Available water capacity of the soil layer (mm H2O/mm soil) .sol Relative (-5%, 5%) 

SOL_K Soil saturated hydraulic conductivity (mm/h) .sol Relative (-5%, 5%) 

ESCO Soil Evaporation compensation factor .hru Replace (0.6, 0.95) 

CANMX Maximum canopy storage (mm H2O) .hru Replace (0, 100) 

CH_K1 Effective hydraulic conductivity in tributary channel alluvium 

(mm/hr) 

.sub Replace (5, 130) 

CH_K2 Main channel hydraulic conductivity (mm/h) .rte Replace (5, 130) 

CH_N2 Manning's "n" value for the main channel .rte Replace (0.01, 0.3) 

SURLAG Surface runoff lag coefficient (days) .bsn Replace (1, 24) 

Relative means the existing parameter value is multiplied by 1 plus the given value; Replace means the given value replaces the 

existing parameter value. 

 

3.2.4. ANN Modeling Approach 

 The primary purpose of applying ANN as a rainfall-runoff model is to determine 

a model structure that best captures the nonlinear relationships between the input 

meteorological variables and the target streamflow. A comprehensive review of ANN 

application in hydrology can be found at ASCE (2000a). A three-layered feed-forward 

neural network using a back-propagation algorithm was employed in this study. Several 

neural networks were trained before a model selection phase that selected the model with 

the best generalization capability (Donate et al., 2013). Table 3.3 summarizes six model 

structures examined for both LCW and UMRW, including scenarios 1 through 3, which 

only used meteorological variables as predictors, and scenarios 4 through 6 included 
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precipitation data and streamflow from previous time steps as predictors. The considered 

predictors include daily precipitation (Pt), precipitation of the previous n days (Pt-n), 

daily mean air temperature (Tt), streamflow observation of the previous n days (Qt-n), 

and total precipitation for the preceding n days (Pn). All input variables are normalized to 

the range of 0 to 1 to speed up model training.   

Table 3.3 ANN model input combinations. 

Model Scenario Input Combination Output 

1 Pt, Pt-1, Pt-2, Pt-3, Pt-4, Tt Q 

2 Pt, Pt-1, Pt-2, Pt-3, Pt-4, Pn Q 

3 Pt, Pt-1, Pt-2, Pt-3, Pt-4, Pn, Tt Q 

4 Pt, Qt-1, Qt-2 Q 

5 Pt, Qt-1, Qt-2, Qt-3 Q 

6 Pt, Qt-1, Qt-2, Qt-3, Qt-4 Q 

 

 Cross-validation is considered the simplest and most widely used method for 

estimating prediction error in statistical modeling (Hastie et al., 2009). Since the time 

dependency and autocorrelation of a streamflow time series contradict the basic 

assumption of traditional cross-validation that the data is independent and identically 

distributed (Bergmeir et al., 2012), this study proposes to use the blocked cross-

validation (BlockedCV) for determining the best model structure. Using BlockedCV, the 

data points are grouped into consistent blocks, and their sequential order is preserved in 

the training/validation data split process. To match the SWAT model simulation period 

discussed in section 3.2.3, the data from 2000 to 2006 was used for modeling training 

and validation, while data from 2007 to 2009 was used for testing. Unlike the notations 

commonly used in physically-based hydrological model analysis, the validation dataset 
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in statistical cross-validation often refers to the dataset of which statistical outcome is 

used for model selection. In contrast, the testing dataset is used for standalone model 

verification without further change the model parameters.  

 There is, in general, no commonly accepted rule for determining the number of 

hidden units for a three-layered neural network. However, some studies have discussed 

the size of hidden units to explore. Ha et al. (2003) evaluated 1 to 9 hidden units in their 

study of water quality estimation. In another similar study for water quality prediction, 

Kalin et al. (2010) searched from 1 to 10 hidden units. Demirel et al. (2009) supported 

the number of hidden units be two-thirds of the sum of the number of input and output 

nodes, while Gazzaz et al. (2012) suggested that the hidden units size fall between i and 

2i + 1, where i represents the number of input nodes. In this study, the number of hidden 

layer units was investigated from 1 to 10 for each prediction scenarios displayed in 

Table 3.3. The root mean square error (RMSE) of the validation dataset of all trained 

models was calculated to find the best model structure. The RMSE is commonly adopted 

for evaluating statistical models and represents how far the residuals are from 0 on 

average (Kuhn et al., 2013). The R software (R Core Team, 2019) was used for all ANN 

model training and model structure selection in this study. 

3.2.5. Model Performance Measures 

 Previous studies have suggested that no single metric is sufficient to verify a 

hydrological model (Harmel et al., 2014; Yaseen et al., 2018). This study used two 

goodness-of-fit indicators to evaluate model performance, including the Nash–Sutcliffe 
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coefficient of efficiency (NSE) and percent bias (PBIAS). The NSE is a normalized 

statistic that determines the magnitude of residual variance compared to the observed 

data variance. It ranges from –∞ to 1.0, with an NSE = 1.0 representing an optimal fit 

(Nash et al., 1970). The PBIAS measures the average tendency of model overestimation 

or underestimation. A smaller absolute PBIAS indicates better model fit. To evaluate the 

model performance, we adopted the evaluation criteria proposed by Moriasi et al. 

(2007). The rating criteria are slightly relaxed since the simulations in this study are 

conducted on the finer daily time step. A more detailed rating guideline is available at 

ASABE (2017). Table 3.4 displays the form of NSE and PBIAS and their corresponding 

model performance criteria. 

Table 3.4 Goodness-of-fit indicators and model performance evaluation criteria. 

Performance 

Rating 

NSE 

𝑁𝑆𝐸 = 1 −
∑ (𝑆𝑖 − 𝑂𝑖)

2
𝑖

∑ (𝑂𝑖 − 𝑂̅)2
𝑖

 

PBIAS (%) 

𝑃𝐵𝐼𝐴𝑆 = 100 ∗
∑ (𝑆𝑖 − 𝑂𝑖)𝑖

∑ 𝑂𝑖𝑖
 

Very good NSE ≥ 0.7 |PBIAS| ≤ 25 

Good 0.5 ≤ NSE < 0.7 25 < |PBIAS| ≤ 50 

Satisfactory 0.3 ≤ NSE < 0.5 50 < |PBIAS| ≤ 70 

Unsatisfactory NSE < 0.3 |PBIAS| > 70 

𝑆𝑖 is the 𝑖𝑡ℎ simulated data; 𝑂𝑖 is the 𝑖𝑡ℎ observed data; 𝑂̅ is the mean of the observed 

data. 

 

3.2.6. Incorporating Measurement and Model Uncertainty 

 Uncertainty should always be accounted for in a hydrological model application 

since decisions on water resources management are increasingly based on H/WQ 

modeling (Beven, 2011; Harmel et al., 2007). In order to incorporate both measurement 
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and model uncertainty, Harmel et al. (2010) proposed using a correction factor to modify 

the error term (𝑒𝑖 = 𝑆𝑖 − 𝑂𝑖, as shown in Table 3.4) in the traditional statistical 

indicators. The theoretical basis of the correction factor is that the more the uncertainty 

distribution of the simulated and observed data pairs overlap, the closer the simulated 

and observed values are to one another (Harmel et al., 2010). The degree of overlap is 

represented by the joint probability of the two uncertainty distributions and can be 

expressed by (Harmel et al., 2010): 

 𝐷𝑂𝑖 = ∫ 𝑃𝑆(𝑠𝑖)𝑑𝑠
𝑆𝑖𝑚𝑎𝑥

𝑆𝑖𝑚𝑖𝑛

∙ ∫ 𝑃𝑂(𝑜𝑖)𝑑𝑜
𝑂𝑖𝑚𝑎𝑥

𝑂𝑖𝑚𝑖𝑛

 (4) 

where 𝐷𝑂𝑖 is the degree of overlap of distributions for each simulated (𝑆𝑖) and observed 

(𝑂𝑖) pair, 𝑃𝑆(𝑠𝑖)𝑑𝑠 is the probability density function of the simulated value (𝑆𝑖), and 

𝑃𝑂(𝑜𝑖)𝑑𝑜 is the probability density function of the observed value (𝑂𝑖).  

 The degree of overlap ranges from 0 to 1, and it is then used to calculate the 

correction factor and modify the error term, which can be expressed by (Harmel et al., 

2010): 

 𝐶𝐹(𝑠𝑖𝑚 + 𝑜𝑏𝑠)𝑖 = 1 − 𝐷𝑂𝑖 (2) 

 𝑒(𝑠𝑖𝑚 + 𝑜𝑏𝑠)𝑖 = 𝐶𝐹(𝑠𝑖𝑚 + 𝑜𝑏𝑠)𝑖 ∙ (𝑆𝑖 − 𝑂𝑖) (3) 

where 𝐶𝐹(𝑠𝑖𝑚 + 𝑜𝑏𝑠)𝑖 is the correction factor that incorporates measurement and 

model uncertainty for each simulated (𝑆𝑖) and observed (𝑂𝑖) pair. The 𝑒(𝑠𝑖𝑚 + 𝑜𝑏𝑠)𝑖 

term is the modified error term for each simulated (𝑆𝑖) and observed (𝑂𝑖) pair. The 
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modified error term is then used to substitute the simple error term (𝑒𝑖 = 𝑆𝑖 − 𝑂𝑖) in the 

NSE and PBIAS presented in Table 3.4. 

 In addition, we assume the uncertainty distributions of the observed and 

simulated data points to be normally distributed in this study. The normal distribution 

has two parameters, the mean and standard deviation. The means for each simulated (𝑆𝑖) 

and observed (𝑂𝑖) uncertainty distribution were set at each simulated and observed 

value, respectively. The standard deviations (Std.Dev) were obtained from coefficients 

of variation (Cv). Harmel et al. (2010) proposed using four Cv values ranging from low 

to high. This study adopted two Cv values (0.026 and 0.256) recommended by Harmel et 

al. (2010). The standard deviation is derived from equation 4 (Haan, 2002): 

 𝐶𝑣 =
𝑆𝑡𝑑. 𝐷𝑒𝑣

𝑥̅
 (4) 

where std is the sample standard deviation, 𝑥̅ is the sample mean of the uncertainty 

distribution. 

 

3.3. Results and Discussion 

3.3.1. SWAT Model Calibration and Validation 

 The SUFI-2 algorithm is an iterative procedure, which requires updating the 

parameter ranges after each iteration until model performance stabilizes. For both LCW 

and UMRW, five calibration iterations, each with 500 simulations, were run. The 

parameter range from the last calibration iteration was used without further change in the 
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validation iteration, which was composed of 500 simulations as well.  The calibrated 

parameter value range and the best-fitted parameter values for the validation period are 

summarized in Table 3.5. 

Table 3.5 Calibrated SWAT parameter range and the best-fitted validation value 
Hydrology 

Input 

Parameter 

Default Value in 

SWAT 

Calibrated Parameter Range  Best Fitted Validation Value 

LCW UMRW  LCW UMRW 

CN2* 35 to 98 (-15.5%, -8.3%) (12.0%, 16.4%)  -14.7% 12.0% 

ALPHA_BF 0.048 (0.075, 0.224) (0.751, 0.882)  0.086 0.774 

GW_DELAY 31 (228, 420) (334, 411)  363 370 

GWQMN 1000 (3712, 4378) (2521, 3496)  4268 3302 

GW_REVAP 0.02 (0.125, 0.150) (0.037, 0.076)  0.136 0.056 

REVAPMN 750 (331, 412) (85, 225)  348 154.2 

RCHRG_DP 0.05 (0.049, 0.159) (0.152, 0.286)  0.157 0.179 

SOL_AWC* 0.01 to 0.42 (-5.3%, 1.5%) (-3.4%, -1.4%)  -2.6% -2.8% 

SOL_K* 0 to 2000 (-3.2%, -1.6%) (-4.4% -1.9%)  -2.1% -4.4% 

ESCO 0.95 (0.862, 0.921) (0.745, 0.797)  0.872 0.796 

CANMX 0 (65, 82) (79, 100)  79 81 

CH_K1 0 (77, 114) (9, 24)  107 23 

CH_K2 0 (43, 60) (111, 130)  51 114 

CH_N2 0.014 (0.010, 0.031) (0.247, 0.300)  0.014 0.273 

SURLAG 4 (3.81, 9.75) (19.41, 24.00)  7.94 23.42 

* Indicate percent change to existing parameter values. 

 The SCS runoff curve number (CN2) and soil parameters are adjusted through a 

percentage change due to their spatial heterogeneity. Similarly, groundwater (.gw) and 

general HRU parameters (.hru) can have spatial heterogeneity to the level of HRUs, and 

subbasin (.sub) and routing parameters (.rte) can have spatial heterogeneity to the level 

of subbasins. However, all other parameters were adjusted through direct replacement in 

this study since their default values are fixed across the entire watershed in SWAT 2012. 

The groundwater (.gw) parameters were the focus of this study as they control the speed 

of recharge into the Edwards Aquifer. The baseflow alpha factor (ALPHA_BF) is 
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slightly increased from the default in LCW, and significantly increased in UMRW. The 

larger ALPHA_BF indicates that the groundwater flow response to the changes in 

recharge is more rapid in UMRW. The groundwater delay time (GW_DELAY) was 

extended in LCW and UMRW, which indicate that water exits the soil profile and enters 

the shallow aquifer relatively slow in both watersheds. Meanwhile, the threshold depth 

of water in the shallow aquifer required for return flow to occur (GWQMN) is 

significantly increased from its default value, possibly reflecting a large storage capacity 

of the shallow aquifer in both study watersheds, which is very common in karstic 

regions. A larger groundwater “revap” coefficient was found in LCW than UMRW, 

suggesting that water movement from the shallow aquifer to the root zone is faster in 

LCW, the fast water discharge is likely occurring through sinkholes in the region when 

hydraulic head of groundwater is high. In addition, a relatively small deep aquifer 

percolation fraction (RCHRG_DP) was found in both LCW and UMRW, indicating that 

only a tiny proportion of water in the root zone was recharged into the deep aquifer for 

our calibrated models. A possible explanation for this might be that the deep aquifer in 

this karstic region mainly receives fast recharge through the sinkholes. The deep aquifer 

has a relatively high hydraulic head, which reduces the amount of water recharge by 

percolating the soil layers.   

3.3.2. ANN Model Selection 

 The three-layer feed-forward neural network structure contains one input layer, 

one hidden layer, and one output layer. All nodes are fully connected to nodes in their 
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adjacent layers with links that contain weight and bias information. As mentioned in 

section 3.2.4, for all six prediction scenarios presented in Table 3.3, the hidden layer size 

was explored from 1 to 10. The RMSE of the cross-validation dataset is calculated to 

select the best model structure. The models with the smallest RMSE for each prediction 

scenario are displayed in Table 3.6 for LCW and Table 3.7 for UMRW. Among the six 

prediction scenarios, scenario 6 of LCW and scenario 5 of UMRW had the smallest 

cross-validation RMSE and were therefore selected as the best model for each study 

watershed.  

Table 3.6 Best ANN model structure and performance result for the LCW. 

Prediction 

Scenario 

Hidden 

Nodes 

Training  Testing Validation RMSE 

(m3/s) NSE PBIAS (%)  NSE PBIAS (%) 

1 7 0.901 60.7  0.736 -16.9 2.247 

2 5 0.891 59.4  0.671 1.3 2.178 

3 6 0.908 68.3  0.760 -6.3 2.231 

4 6 0.882 73.2  0.759 -2.0 2.183 

5 8 0.901 57.7  0.770 -11.2 2.149 

6 3 0.887 56.2  0.756 -13.4 2.111 

 

Table 3.7 Best ANN model structure and performance result for the UMRW. 

Prediction 

Scenario 

Hidden 

Nodes 

Training  Testing Validation RMSE 

(m3/s) NSE PBIAS (%)  NSE PBIAS (%) 

1 8 0.949 40.5  -0.076 -89.7 4.150 

2 6 0.961 8.8  -0.029 -90.3 4.238 

3 9 0.950 44.7  -0.077 -89.5 3.984 

4 1 0.670 3.2  0.294 -72.8 3.518 

5 7 0.892 3.7  0.316 -79.8 2.360 

6 8 0.863 -11.7  0.355 -79.1 2.658 

 

 The trained ANN models overall had very good performance in LCW (Table 

3.6). In the training period, all six scenarios had NSE values around 0.9, although the 
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PBIAS values were all above 50%, which indicates that streamflow is continuously 

overestimated during the training process. In the testing period, the NSE values ranged 

between 0.67 and 0.77, while all PBIAS values are below 25%, overall indicating very 

good streamflow estimation performance.  

 In UMRW (Table 3.7), the NSE and PBIAS performance for all six prediction 

scenarios in the training period is in the range of “good” to “very good”, with NSE 

ranged from 0.67 to 0.95 and PBIAS ranged from -11.7% to 44.7%. However, the 

predictive performance of the testing period is much worse. The NSE values were below 

0 for scenarios 1 through 3, in which cases the observed mean is a better predictor than 

the model. The NSE values are near 0.3 for scenarios 4 through 6, near the boundary of 

unsatisfactory and satisfactory performance. The PBIAS of all six scenarios were below 

-70%, which suggests severe underestimation of the streamflow. As mentioned in 

section 3.2.4, prediction scenarios 4 through 6 included the streamflow of previous time 

steps as predictors, while scenarios 1 through 3 only used the meteorological data. It is 

apparent from Tables 3.6 and 3.7 that the inclusion of streamflow as one of the 

predictors did not cause a clear difference for the predictive performance in LCW but 

significantly improved the predictive performance in UMRW. 

3.3.3. SWAT and ANN Model Performance Comparison 

 The goodness-of-fit indicators as traditionally calculated and as modified with 

the correction factor for SWAT and ANN models are presented in Table 3.8. Similar to 

the results in Harmel et al. (2010), when the uncertainty level is low (Cv = 0.026), there 
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was almost no noticeable improvement in the indicator values. When the more 

significant uncertainty level was applied (Cv = 0.256), both NSE and PBIAS values 

show different levels of improvement in the two study watersheds.  

 In the urban LCW, both SWAT-LCW and ANN-LCW models produced very 

good simulation results, with the calibration (training) NSE reaching approximately 0.90 

and validation (testing) NSE above 0.70. In addition, both SWAT-LCW and ANN-LCW 

models overestimated streamflow in the calibration (training) period. The SWAT-LCW 

model further overestimated the streamflow in the validation period, while the ANN 

model underestimated the streamflow in the testing period. Overall, the statistical 

indicators suggest that the ANN model slightly outperformed the SWAT in the urban 

LCW.  

 In the rural UMRW, the ANN model performed significantly better than the 

SWAT model. The NSE performance of the training period was classified as very good 

for the ANN-UMRW model, using either the traditional calculation or the modified 

indicators. The testing period NSE of the ANN-UMRW model was classified as 

satisfactory. In contrast, the calibration period SWAT-UMRW model only had good 

performance with NSE ranging from 0.54 to 0.56 from different uncertainty levels, and 

the validation period SWAT-UMRW model had unsatisfactory NSE performance on all 

uncertainty levels. Interestingly, the PBIAS statistics of the calibration (training) period 

for both SWAT-UMRW and ANN-UMRW models were classified as very good. 
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However, the validation(testing) PBIAS was similar to that in LCW, with ANN-UMRW 

underestimated streamflow and SWAT-UMRW made overestimation.  

Table 3.8 Statistical performance of SWAT and ANN models 

Watershed Model Indicator 

Calibration (Training) (2000-2006)  Validation (Testing) (2007-2009) 

Traditional 

Calculation 

Cv = 

0.026 

Cv = 

0.256 
 Traditional 

Calculation 

Cv = 

0.026 

Cv = 

0.256 

LCW 

ANN 

NSE 0.89vg 0.89vg 0.91vg  0.76vg 0.76vg 0.79vg 

PBIAS 

(%) 
56.2s 56.2s 56.4s  -13.4vg -13.3vg -10.7vg 

SWAT 

NSE 0.90vg 0.90vg 0.92vg  0.72vg 0.72vg 0.74vg 

PBIAS 

(%) 
49.6g 49.6g 48.9g  36.8g 36.8g 33.5g 

UMRW 

ANN 

NSE 0.89vg 0.89vg 0.96vg  0.32s 0.32s 0.34s 

PBIAS 

(%) 
3.7vg 3.7vg 5.8vg  -79.8u -79.8u -78.4u 

SWAT 

NSE 0.54g 0.54g 0.56g  -0.02u -0.02u 0.07u 

PBIAS 

(%) 
4.3vg 4.3vg 3.5vg  27.3g 27.3g 25.3g 

Superscripts represent the performance levels, “vg” - “very good”, “g” - “good”, “s” - “satisfactory”, “u” - 

“unsatisfactory”. 

 

 The hydrographs with precipitation records (Figure 3.2) for the 

validation(testing) period (2007 to 2009) were created to further analyze the difference 

between observed daily streamflow and SWAT and ANN simulation results. In Figure 

3.2, the annual validation(testing) period hydrograph for LCW was displayed in plots (a) 

through (c), and for UMRW was displayed in plots (d) through (f). In LCW, both SWAT 

and ANN models captured the timing of most major streamflow peaks except for one 

significant storm event in the late summer of 2008, prior to which a wet period with 

relatively large precipitation volume was recorded.  The SWAT-LCW model performed 

better during 2007 and 2009 and less accurately during 2008, which has extended 

periods of deficient observed flow records. The ANN-LCW model had more consistent 
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predictive performance throughout the entire testing period than the SWAT-LCW 

model. Additionally, the hydrographs in LCW show that the SWAT model 

overestimated the magnitude of almost every major streamflow peak in 2007 and 2009, 

while the magnitude of the ANN model predicted peak flow was much smaller. In the 

rural UMRW, both SWAT and ANN models failed to capture the timing and magnitude 

of the significant storm events. More specifically, the ANN-UMRW model caught the 

timing of the storm events from 2007 to 2009 but often severely underestimated their 

magnitudes. On the other hand, the SWAT-UMRW model failed to capture the timing 

and magnitude of the storm events and falsely simulated a few nonexistent storm flow 

events. Additionally, the recession limbs simulated by SWAT-UMRW were much 

longer than that from the actual flow. 

 Figure 3.3 presented the validation/testing scatter plots from 2007 to 2009 for 

LCW and UMRW. The observed high flow and low flow were divided at the 5% 

probability of exceedance. Statistical indicators using traditional calculation were also 

displayed in the corresponding plots.  In LCW, the SWAT and ANN models performed 

well predicting the top 5% of observed streamflow with a slight underestimation (Figure 

3.3a). However, for the bottom 95% of streamflow, both SWAT and ANN performed 

poorly with very large overestimations of the predicted streamflow (Figure 3.3b). In the 

rural UMRW, both the SWAT-UMRW and ANN-UMRW models performed poorly for 

low and high flow conditions resulting in negative NSE values. In addition, the scatter 

plots (Figure 3.3c and 3.3d) suggest that SWAT-UMRW overestimated streamflow for 
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low and high conditions, while the ANN-UMRW models underestimated predicted 

streamflow.  
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Figure 3.2 Daily precipitation, observed, and simulated streamflow of year (a) 2007, 

(b) 2008, (c) 2009 for the LCW, and year (d) 2007, (e) 2008, (f) 2009 for the UMRW.   
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Figure 3.3 Scatter plots of validation/testing periods of daily streamflow for (a) 

LCW high flow, (b) LCW low flow, (c) UMRW high flow, and  (d) UMRW low 

flow. 
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 The LCW and UMRW are situated above the Edwards BFZ Aquifer, with 

UMRW entirely located within the contribution zone and LCW located through the 

contributing, recharge, and artesian zone (Figure 3.1a). Karst geological features are 

found prevalent in the Edwards BFZ Aquifer region, and a significant amount of surface 

runoff in the contributing zone infiltrates into the water table aquifer (Loáiciga et al., 

2000). In the rural UMRW, the karst terrain makes rainfall-runoff modeling particularly 

difficult. The observed streamflow time series did not correspond well with precipitation 

mostly likely due to the fast infiltration or direct recharge through sinkholes. The water 

recharging into the Edwards BFZ Aquifer generally moves from west to east through 

large subterranean conduits (Loáiciga et al., 2000), and eventually discharges back to the 

surface through a few large springs far east outside of the watershed boundary of 

UMRW. In the meantime, the two hydrological models employed in this study, 

especially the SWAT model, heavily relied on the input precipitation for estimating the 

watershed outflow. The daily streamflow simulation results suggest that the calibrated 

SWAT model failed to quantify the amount of groundwater recharge and discharge in 

UMRW, hence overestimated the watershed outflow. On the contrary, the estimation of 

watershed outflow in the urban LCW was much more successful for SWAT and ANN. 

These results are likely due to the extensive impervious surface in LCW, causing more 

direct surface runoff into the stream instead of recharging into the water table aquifer. A 

few previous studies pointed out that the traditional SWAT models have generally not 

yielded satisfactory runoff estimates in karst watersheds, and some suggested applying 
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additional modules or using trace test method to more accurately quantify streamflow 

and infiltration  (Jakada et al., 2020; Shao et al., 2019; Spruill et al., 2000; Wang et al., 

2019), which are beyond the scope of this study.  

 

3.4. Summary 

 This study investigated watershed level daily streamflow simulation using 

SWAT and ANN in two small watersheds in the San Antonio Region, where karst 

terrain is prevalent. This study set out to compare the efficacy of the SWAT and ANN 

models in estimating streamflow in the karstic watershed in central south Texas. The 

paired watershed approach is employed to assess SWAT and ANN performance under 

different dominant land cover types. Additionally, we applied the correction factor 

approach to enhance model evaluation using modified goodness-of-fit indicators 

incorporating measurement and model uncertainty. The conclusions of this study are 

summarized as follows: 

(1) Six ANN prediction scenarios were set up for the two study watersheds, and 

blocked cross-validation was applied to select the best neural network structure 

for each watershed. The model selection results (Table 3.6 and 3.7) show that in 

urban LCW, the inclusion of previous time step streamflow as one of the 

predictors did not noticeably improve model performance; whereas in the rural 

UMRW, the model performance significantly improved when a time series 
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autoregressive model structure using historical streamflow data was 

implemented. 

(2) Considering both the statistical performance and graphical comparison between 

the observed and simulated time series, both SWAT and ANN models made very 

good daily streamflow estimations in the urban LCW, while their performance in 

the rural UMRW was much less satisfactory. This discrepancy could be 

attributed to the extensive impervious surface in the urban watershed, causing 

more direct surface runoff into stream networks than the rural watershed. 

(3) The calibrated SWAT model has inferior performance in the rural UMRW, 

which is located within the contributing zone of Edwards BFZ Aquifer, where 

karst geological features are found prevalent. This finding is consistent with a 

few previous studies, which suggested that the conventional SWAT model is less 

capable in a karst environment. 

(4) The statistical indicators performance results for the standalone validation 

(testing) period suggest that the ANN model performed slightly better than the 

SWAT model in LCW and significantly better in UMRW. These findings, taken 

together with the fact that the data-driven ANN model has a short response time 

compared with SWAT, suggest that ANN is a better real-time simulator of 

streamflow although not addressing the physical aspect of a hydrological system. 

(5) Applying the correction factor approach to modify goodness-of-fit indicators to 

incorporate measurement and model uncertainty yielded similar results in the two 
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study watersheds. When the uncertainty level is low (Cv = 0.026), there was 

almost no visible improvement in the indicator values. When the more significant 

uncertainty level was applied (Cv = 0.256), both NSE and PBIAS values show 

different levels of improvement for the ANN and SWAT models in both study 

watersheds. 
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4. HYDROLOGICAL EVALUATION OF GRIDDED CLIMATE DATASETS IN A 

TEXAS URBAN WATERSHED USING SWAT AND ANN 

 

Abstract. Precipitation is a vital component of the hydrologic cycle, and successful 

hydrological modeling largely depends on the quality of precipitation input. Gridded 

precipitation datasets are gaining popularity as a convenient alternative for hydrological 

modeling. However, many of the gridded precipitation data have not been adequately 

assessed across a range of conditions. This study compared three gridded precipitation 

datasets, Tropical Rainfall Measuring Mission (TRMM), Climate Forecast System 

Reanalysis (CFSR), and Parameter-elevation Relationships on Independent Slopes 

Model (PRISM). This study used the conventional gauge observation as reference data 

and evaluated the suitability of the three sources of gridded rainfall data to drive rainfall-

runoff simulations. The Soil and Water Assessment Tool (SWAT) and Artificial Neural 

Network (ANN) were used to create daily streamflow simulations in the Leon Creek 

Watershed (LCW) in San Antonio, Texas, with the TRMM, CFSR, PRISM, and gauge 

rainfall data used as inputs. A direct comparison of the gridded data sources showed that 

the TRMM data underestimates the volume of rainfall, while PRISM data most closely 

matches the volume of rainfall when compared to the gauge rainfall observations. The 

hydrological simulation results showed that the PRISM and TRMM rainfall data driven 

models had preferable results to the CFSR and gauge driven models, in terms of both 

graphical comparison and goodness-of-fit indicator values. Additionally, no significant 
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discrepancy was found between SWAT and ANN simulation results when the same 

precipitation data source was used, while SWAT and ANN simulation results varied in 

an identical pattern when different precipitation data sources were applied. 

 

4.1. Introduction 

 Precipitation is a critical input variable in hydrological modeling. In the past, 

records from rain gauges have been the primary data sources used to drive watershed 

level rainfall-runoff models (Beven, 2011) and are often recognized as the most accurate 

surface precipitation measurement (Stampoulis et al., 2012). However, some apparent 

limitations exist when gauge rainfall data is applied. Most notably, the rain gauge data 

are point measurements that may have a poor representation of precipitation across a 

watershed. Worqlul et al. (2014) pointed out that capturing the spatial variation of 

precipitation in a moderate-sized watershed can be difficult unless a large number of rain 

gauges is available. In addition, precipitation records from rain gauges are often 

incomplete both spatially and temporarily (Fuka et al., 2014), especially in remote 

regions where maintaining a rain gauge network can be challenging and expensive.  

 In recent decades, alternative precipitation datasets using different measurement 

approaches have become available. In particular, the availability of satellite rainfall 

products (SRPs) has vastly improved in the past few years, providing new opportunities 

for hydrologists to obtain efficient precipitation data in remote regions where ground-

based rain gauges are sparse (Worqlul et al., 2014). The Tropical Rainfall Measuring 
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Mission (TRMM) is one of the freely available SRPs. It was designed by NASA and the 

Japan Aerospace Exploration Agency (JAXA) to monitor and study tropical rainfall 

(Adler et al., 2003). The TRMM 3B42 product contains a merged microwave/infrared 

(IR) precipitation estimate band with a 3-hour temporal resolution and a 0.25-degree 

spatial resolution. The TRMM 3B43 dataset is gauge-adjusted and covers the global 

latitude belt from 50ºS to 50ºN (Li et al., 2018). Recent studies have evaluated the 

performance of TRMM products in different regions of the world. Ochoa et al. (2014) 

compared TRMM data with an interpolated gauge dataset in the Pacific–Andean region 

in western South America. They concluded that TRMM could capture the seasonal 

features of precipitation but suggested that TRMM systematically overestimated 

precipitation in some parts of the study area. Stampoulis et al. (2012) compared TRMM 

3B42 version 6 data against a network of rain gauges over continental Europe, and the 

authors came to a similar conclusion that TRMM generally overestimated rainfall. 

Worqlul et al. (2014) compared TRMM 3B42 dataset with two other gridded rainfall 

products, Multi-Sensor Precipitation Estimate–Geostationary (MPEG) and Climate 

Forecast System Reanalysis (CFSR), in the Lake Tana Basin in Ethiopia. Their analysis 

found that MPEG and CFSR have a lower root mean square error (RMSE) with ground 

observations than TRMM, whereas TRMM had an overall lower logarithm bias over the 

ground observations than the other two. Li et al. (2018) conducted a study in a large 

watershed in southern China using TRMM and gauge data to drive the SWAT model. 

They found that TRMM rainfall data showed superior performance at monthly and 
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annual time steps in terms of the Nash-Sutcliffe Coefficient of Efficiency (NSE) and 

relative bias ratio (BIAS). Furthermore, Himanshu et al. (2018) investigated the TRMM 

3B42 dataset over an agricultural watershed in Krishna River Basin of India using the 

SWAT model and found that the TRMM driven model always performed worse than 

that gauge driven model on daily and monthly simulation time steps. To date, the 

accuracy of TRMM rainfall estimates when used for hydrological modeling is 

questionable. As pointed out by Li et al. (2018), the satellite may fail to detect the 

ground-based precipitation event. Therefore, it should be verified in more regions with 

different geological and climatological conditions before its extensive application in 

hydrological problems.  

 Climate Forecast System Reanalysis (CFSR) also provides freely available 

spatially distributed rainfall estimates widely used in hydrological modeling. CFSR was 

developed based on surface and satellite observations with a 38-km resolution. It covers 

a 32-year period from January 1979 to March 2011 and has complete global coverage at 

6-hourly and monthly time steps. (Saha et al., 2014). Several studies have used the 

CFSR dataset for driving hydrological model. Radcliffe et al. (2017) compared the 

effects of CFSR and the Parameter-elevation Relationships on Independent Slopes 

Model (PRISM) data on SWAT model streamflow prediction in two small watersheds in 

the southern U.S., and concluded that the PRISM data produced better streamflow 

prediction. Roth et al. (2016) applied the CFSR and rain gauge data to streamflow and 

soil loss modeling using SWAT in Ethiopia and concluded that conventional rain gauges 
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produce much better simulation results than the CFSR data. The authors also pointed out 

that the CFSR data could not sufficiently represent the spatial variability of regional 

climate in some of their study watersheds. However, in another study conducted by Fuka 

et al. (2014), which applied the CFSR data to a few small to moderate-sized watersheds 

in the US and Ethiopia using the SWAT model, the authors found that the CFSR data 

produced streamflow simulations that are as good or better than models using rain gauge 

data. In a more recent study, Mararakanye et al. (2020) compared CFSR data with rain 

gauge measurement and used both for streamflow simulation in an agricultural 

watershed in South Africa. Their results suggested that the statistical agreement between 

CFSR and gauge rainfall data is low, and the model using gauge data slightly 

outperformed the model using CFSR data.  

 Two ground-based precipitation measurement sources are compared with the 

TRMM and CFSR datasets in this study, including conventional gauge data and the 

Parameter-elevation Regressions on Independent Slopes Model (PRISM) data. The 

PRISM datasets are gridded climate datasets that cover the conterminous US. In 

particular, the PRISM AN81d daily spatial climate dataset covers the period from 1981 

to the current date. It has 2.5 arc minutes spatial resolution and multiple bands, including 

precipitation, temperature, and vapor pressure deficit. The PRISM datasets were 

developed by interpolating available ground-based weather observations using routines 

that simulate how weather changes with elevation (Daly et al., 2008). Given their 

comprehensive coverage over the continental US, the PRISM datasets have been widely 
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applied in previous hydrological modeling studies and were proven to be a reliable 

source of weather input. Chen et al. (2020) used PRISM climate data to drive the SWAT 

model for predicting monthly streamflow for the Upper Mississippi River Basin in the 

U.S.; they reported satisfactory results of NSE values ranging between 0.50 and 0.79 of 

ten sites in their study area. Muche et al. (2019) compared four gridded datasets using 

the SWAT model. The authors set up streamflow simulations in a Kansas Agricultural 

Watershed and found that the PRISM-driven model performed better during dry years 

than wet years. Yen et al. (2016) used Hydrologic and Water Quality System (HAWQS) 

for watershed modeling at the Illinois River Basin in the U.S., the PRISM data was used 

as the climate input, and the monthly streamflow prediction result was at a very good 

level with an NSE value of 0.70. Gao et al. (2017) compared SWAT streamflow 

prediction driven by PRISM, Next Generation Weather Radar (NEXRAD), and a 

network land-based National Climatic Data Center (NCDC) weather stations. They 

concluded that the PRISM-based model generated a smaller bias than the models 

utilizing NEXRAD and land-based weather stations.  

 In addition to direct comparison, hydrological models are often used to evaluate 

the accuracy of different weather products (Guo et al., 2004). The Soil and Water 

Assessment Tool (SWAT) is one of the most widely used rainfall-runoff models. It is a 

physically-based, semi-distributed, deterministic model developed to assess water 

quality and quantity at the watershed level (Arnold et al., 2012a). The climatic inputs of 

the SWAT model can be measured records or generated by the model itself (Gassman et 
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al., 2007). The measured weather data can be input into the SWAT model in a point 

source data format, thus giving modelers significant flexibility in manipulating the 

weather data.  

 Artificial Neural Networks have become a popular rainfall-runoff modeling tool 

in the past three decades (ASCE, 2000a). An ANN model identifies nonlinear 

relationships from given patterns and fits nonparametric models on multivariate input 

data without considering any of the physical processes involved, typically referred to as 

a data-driven model (Govindaraju et al., 2013). Compared to the SWAT model, ANN 

models have straightforward setup and execution procedures, while the modelers have 

ample flexibility to determine the model inputs (Minns et al., 1996).  Both SWAT and 

ANN models are found to have excellent performance producing streamflow estimation 

when accurate meteorological data were provided in many previous studies (Ahmed et 

al., 2007; Demirel et al., 2009; Jimeno-Sáez et al., 2018; Kim et al., 2015; Srivastava et 

al., 2006; Tuppad et al., 2011; Yaseen et al., 2015; Zakizadeh et al., 2020).  

 While plenty of previous studies have explored the hydrologic application of the 

weather products mentioned above, the applicability of the CFSR, TRMM, and PRISM 

datasets have not been adequately investigated in central Texas. In addition, there has 

been no detailed investigation of the effect that the alternative weather products have on 

streamflow simulation outcomes in SWAT and ANN. Therefore, this study seeks to use 

these two hydrological models to evaluate the suitability of the aforementioned gridded 

weather products. Specifically, the objectives of this study are to: (1) directly compare 
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the TRMM, CFSR, PRISM, and conventional gauge rainfall datasets, (2) use the four 

rainfall data sources to separately calibrate/train the SWAT and ANN models for the 

same evaluation period, (3) compare the hydrological model performance when using 

each rainfall data source.   

 

4.2. Methods and Materials 

4.2.1. Study Area 

 The Leon Creek Watershed (LCW) in the San Antonio region of central south 

Texas was chosen as the study watershed due to the authors’ familiarity with the area. 

The San Antonio region in central south Texas has a subtropical, semi-humid climate, 

with an average annual precipitation of near 750 mm (Cepeda, 2017). The study 

watershed was delineated using ArcSWAT by selecting the watershed outlet at USGS 

surface water gage 08181480 (U.S. Geological Survey, 2016).  The delineated watershed 

has a drainage area of 535.76 km2. It covers the western part of downtown San Antonio 

and centers at 98.67º west longitude, 29.56º north latitude. The LCW is heavily 

urbanized with extensive impervious covers. 47.2% of the LCW is classified as 

developed urban land according to the 2011 National Land Cover Database 

(NLCD2011). The elevation of LCW declines from its highest point of 548 m in the 

northern part of the watershed to the lowest point of 176 m in the south near the 

watershed outlet (Figure 4.1). Leon Creek is the main waterway in LCW, which 

originates from multiple smaller creeks in the northern part of the study area and flows 
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southward. Leon Creek is a tributary of the Medina River, and it merges into the Medina 

River further south outside of the delineated study watershed.  

 

Figure 4.1 Location and digital elevation model of the Leon Creek Watershed 

(LCW) in Texas. 
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4.2.2. Data Acquisition 

 Weather records from 1998 to 2009 of TRMM, CFSR, PRISM, and conventional 

rain gauges were collected to drive the hydrological models. The conventional weather 

gauge station data was obtained from the National Oceanic and Atmospheric 

Administration’s (NOAA) National Centers for Environmental Information (NCEI) 

climate data archive (https://www.ncdc.noaa.gov/cdo-web/search). A large number of 

weather stations have operated in the San Antonio region in the past. Nevertheless, only 

five stations proximate to LCW were found to have long-term precipitation records on a 

daily basis, none of which is physically located within the study watershed. The 

locations and station IDs of these five NOAA stations are shown in Figure 4.1. The 

precipitation, maximum, and minimum temperatures of the five stations were collected. 

The conventional gauge data was found to have multiple missing values during the study 

period, therefore, days with missing data were removed. 

 The CFSR weather data was downloaded from the Texas A&M University 

Global Weather Data for SWAT website (https://globalweather.tamu.edu/). The website 

provides CFSR data aggregated to a daily time step and interpolated to a SWAT input 

file format. The rectangular extent of the study watershed was used to extract the CFSR 

data. Within the study watershed, one CFSR gauge was available (Figure 4.1).    

 The TRMM and PRISM datasets were accessed using Google Earth Engine 

(GEE), a cloud-based geospatial analysis platform that provides easy access to many free 

geospatial data archives (Gorelick et al., 2017). The shapefile of the LCW was uploaded 

https://globalweather.tamu.edu/
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to the GEE platform to retrieve the pixels within the study watershed. The merged 

microwave/IR precipitation band of the TRMM 3B42 product at a 3-hour temporal 

resolution was downloaded. The TRMM data was further aggregated into daily time 

steps for comparison with the other precipitation datasets at the same temporal 

resolution. In this study, the daily precipitation, mean, minimum, and maximum 

temperature are collected for the PRISM data. The GEE platform was used to conduct 

map algebra that calculates the areal-averaged weather data from TRMM and PRISM of 

the study watershed. 

 Other data required for this study was obtained from multiple sources. ANNs 

require only metrological data and streamflow observation for model training, whereas 

SWAT requires additional spatial characteristics data, including the digital elevation 

model (DEM), land use land cover (LULC) map, and soil map. In this work, the state 

soil geographic (STATSGO) database preloaded with the ArcSWAT interface was used 

as the soil map (Schwarz et al., 1995). The National Elevation Dataset (NED) with 30 m 

resolution was used as the input DEM, and the 2011 National Land Cover Data Set 

(NLCD2011) was used as the LULC map. The NED and NLCD2011 datasets were 

accessed from the USDA Natural Resources Conversation Service (NRCS) geospatial 

data gateway (USDA‐NRCS, 2014). In addition, the daily streamflow used for model 

calibration/training  was obtained from USGS surface water gage 08181480 (U.S. 

Geological Survey, 2016) in Leon Creek from 2000 to 2009. 
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4.2.3. Hydrological Simulations 

4.2.3.1. SWAT Modeling Approach 

 This study used the ArcSWAT 2012 built for ArcGIS 10.5 to construct the 

rainfall-runoff model for LCW. First, a threshold of 1500 ha was applied for stream 

definition. The threshold determines the minimum area for initiating stream networks. 

As a result, 25 subbasins were created. The study area was further discretized into 298 

hydrological response units (HRUs) by applying a 10% threshold to remove minor slope, 

soil, and land cover classes. This procedure reduced the total number of HRUs, which 

improves computational efficiency. A detailed description of the SWAT modeling 

process can be found in the SWAT theoretical documentation (Neitsch et al., 2011). 

 The weather data sources discussed in section 4.2.2 were used as the SWAT 

weather input. The CFSR and conventional gauge data were in point source format, the 

format of SWAT weather input files (Arnold et al., 2012a). The longitude/latitude 

coordinates and elevation of the CFSR gauge and conventional gauges were directly 

used to create the precipitation and temperature files. The TRMM and PRISM data were 

original in gridded format and converted into areal-averaged point source files using 

GEE. The location and elevation of the watershed centroid were obtained using ArcGIS 

and set as the “virtual rain gauge” (Elhassan et al., 2016), as displayed in Figure 4.1. In 

total, four SWAT modeling scenarios were created, SWAT-CFSR, SWAT-GAUGE, 

SWAT-TRMM, and SWAT-PRISM. The TRMM dataset only provides rainfall 

estimates; hence the temperature data from PRISM was used to drive the SWAT-TRMM 
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model. Meanwhile, the temperature data from the other three sources were used to drive 

their corresponding modeling scenarios.  

 The four SWAT modeling scenarios were run for a 12-year simulation period on 

a daily time step. The year 1998 to 1999 was used for model warm-up, 2000 to 2006 was 

used for calibration, and 2007 to 2009 for model validation. The model calibration and 

validation processes were carried out in the SWAT Calibration and Uncertainty 

Programs (SWAT-CUP) using the SUFI-2 procedure. This study selected 15 parameters 

that are considered sensitive for streamflow simulation according to the literature (Arabi 

et al., 2007; Chen et al., 2020; Jimeno-Sáez et al., 2018; Kim et al., 2015; Koycegiz et 

al., 2019; Qi et al., 2017). Their description and corresponding error range are 

summarized in Table 4.1.  
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Table 4.1 Description of the calibrated SWAT parameters. 
Hydrology 

Parameter 

Description 

File 

Extension 

Value Range 

CN2* 

SCS runoff curve number for antecedent moisture 

condition II 

.mgt (-10%, 10%) 

ALPHA_BF Base flow alpha factor (days) .gw (0, 1) 

GW_DELAY Delay time for aquifer recharge (days) .gw (0, 500) 

GWQMN 

Threshold depth of water in the shallow aquifer required 

for return flow to occur (mm H2O) 

.gw (0, 5000) 

GW_REVAP Groundwater "revap" coefficient .gw (0.02, 0.2) 

REVAPMN 

Threshold depth of water in the shallow aquifer for 

"revap" or percolation to the deep aquifer to occur (mm 

H2O) 

.gw (0, 500) 

RCHRG_DP Deep aquifer percolation fraction .gw (0, 1) 

SOL_AWC* 

Available water capacity of the soil layer (mm H2O/mm 

soil) 

.sol (-5%, 5%) 

SOL_K* Soil saturated hydraulic conductivity (mm/h) .sol (-5%, 5%) 

ESCO Soil Evaporation compensation factor .hru (0.6, 0.95) 

CANMX Maximum canopy storage (mm H2O) .hru (0, 100) 

CH_K1 

Effective hydraulic conductivity in tributary channel 

alluvium (mm/hr) 

.sub (5, 130) 

CH_K2 Main channel hydraulic conductivity (mm/h) .rte (5, 130) 

CH_N2 Manning's "n" value for the main channel .rte (0.01, 0.3) 

SURLAG Surface runoff lag coefficient (days) .bsn (1, 24) 

Parameters using relative Change are marked by *, indicating parameter value is multiplied by 1 plus the 

given value.  
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4.2.3.2. ANN Modeling Approach 

 A comprehensive review of the conception and application of ANNs as rainfall-

runoff models can be found in ASCE (2000a) and ASCE (2000b). Three-layered feed-

forward neural networks are widely applied in hydrological modeling and were used in 

this study. The ANNs use a training process to estimate free model parameters. 

Routinely, a range of neural networks with different structures is trained, after which a 

model selection process is implemented to determine the model that makes the best 

prediction outcome. In this study, three model structures that only utilize meteorological 

data as input were explored (Table 4.2). The ANN-TRMM, ANN-CFSR, ANN-PRISM, 

and ANN-GAUGE models were trained using weather inputs corresponding to each of 

the rainfall datasets. The Thiessen polygon method was applied to interpolate the 

weather observations from the five gauging stations to the areal-averaged data of LCW, 

which was used as input to the ANN models. Multiple missing dates were removed from 

model training for the ANN-GUAGE model. As for SWAT, the temperature data from 

the PRISM dataset was used in the ANN-TRMM model. The predictors included daily 

precipitation (Pt), precipitation of the previous n days (Pt-n), daily mean air temperature 

(Tt), and total precipitation for the preceding n days (Pn). The training target was 

observed streamflow (Q) at the watershed outlet. The back-propagation algorithm was 

used for model training, and the logistic function was set as the transfer function at the 

hidden layer units.  All input variables and the training target are normalized to the range 

of 0 to 1 to speed up model training. 
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Table 4.2 ANN model input combinations. 

Prediction 

Scenario 
Input Combination Output 

1 Pt, Pt-1, Pt-2, Pt-3, Pt-4, Tt Q 

2 Pt, Pt-1, Pt-2, Pt-3, Pt-4, Pn Q 

3 Pt, Pt-1, Pt-2, Pt-3, Pt-4, Pn, Tt Q 

 

 In ANN rainfall-runoff modeling, too few hidden neurons may cause the model 

to fail to capture the complex nonlinear relationship between the predictors and targets, 

while too many hidden neurons can cause model overfitting (Demirel et al., 2009). In 

this work, the number of hidden layer units of all three input combinations was explored 

from 1 to 10, close to the experimental procedure of previous studies (Ha et al., 2003; 

Kalin et al., 2010; Noori et al., 2016). To select the best model among the trained models 

with different input combinations and hidden layer size, the Blocked Cross-Validation 

(BlockedCV) approach was applied. Cross-validation is the most widely used method 

for estimating prediction error in statistical modeling (Hastie et al., 2009). In rainfall-

runoff modeling, the meteorological and hydrological data usually have strong 

autocorrelation and time dependency. BlockedCV groups the data points into 

sequentially consistent blocks and maintains sequential order within the blocks in the 

data splitting and cross-validation process (Bergmeir et al., 2012). Data from 2000 to 

2006 was used to train the model, and data from 2007 to 2009 was used for standalone 
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model testing. The R software (R Core Team, 2019) was used for all ANN simulations 

in this study. 

4.2.4. Precipitation and Hydrological Models Evaluation 

4.2.4.1. Rainfall Products Evaluation 

 The rainfall products comparison was conducted on the areal-averaged value of 

the study watershed, with calibration and validation phases evaluated independently. The 

Thiessen Polygon method areal-averaged precipitation from the conventional gauges, 

was  compared with the other three gridded precipitation products. The relationship 

between the daily time series was evaluated using the Pearson correlation coefficient 

(CC) and percent bias (PBIAS), which mathematical formulation can be expressed in 

equation 1 and 2: 

 𝐶𝐶 =
𝐶𝑂𝑉(𝑃𝑔𝑟𝑖𝑑, 𝑃𝑔𝑎𝑢𝑔𝑒)

𝜎(𝑃𝑔𝑟𝑖𝑑)𝜎(𝑃𝑔𝑎𝑢𝑔𝑒)
 (1) 

 𝑃𝐵𝐼𝐴𝑆 = 100 ∙
∑ (𝑃𝑔𝑟𝑖𝑑 − 𝑃𝑔𝑎𝑢𝑔𝑒)𝑖𝑖

∑ 𝑃𝑔𝑎𝑢𝑔𝑒,𝑖𝑖
 (2) 

where 𝑃𝑔𝑟𝑖𝑑 and 𝑃𝑔𝑎𝑢𝑔𝑒 denote the daily precipitation from the gridded weather products 

and conventional gauge data, respectively. The precipitation data were also aggregated 

to monthly resolution and evaluated graphically using box plots and scatter plots.  

4.2.4.2. Hydrological Models Evaluation 

 The hydrological modeling results were evaluated using the Nash–Sutcliffe 

coefficient of efficiency (NSE) and percent bias (PBIAS). The NSE is a normalized 

statistic that determines the magnitude of residual variance compared to observed data 
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variance. NSE ranges from –∞ to 1.0, with NSE = 1.0 representing the optimal fitting 

(Nash et al., 1970). The PBIAS measures the average tendency of model overestimation 

or underestimation. A smaller absolute PBIAS indicates better model fit to observed 

data. NSE and PBIAS were adopted in this study because they are commonly used in the 

literature, and extensive information regarding these two indicators is available from 

previous studies (Moriasi et al., 2015). The model performance evaluation criteria were 

adopted from (Moriasi et al., 2007), which recommended performance ratings for 

monthly time step hydrological simulations. Hydrological models are known to typically 

perform better at coarser temporal resolutions; hence, the performance ratings were 

slightly relaxed in this study (Kalin et al., 2010). The mathematical formulations of NSE 

and PBIAS and their corresponding performance criteria for daily streamflow simulation 

are presented in Table 4.3. 

Table 4.3 Goodness-of-fit indicators and model performance evaluation criteria for 

the hydrological models. 

Performance 

Rating 

NSE 

𝑁𝑆𝐸 = 1 −
∑ (𝑆𝑖 − 𝑂𝑖)

2
𝑖

∑ (𝑂𝑖 − 𝑂̅)2
𝑖

 

PBIAS (%) 

𝑃𝐵𝐼𝐴𝑆 = 100 ∗
∑ (𝑆𝑖 − 𝑂𝑖)𝑖

∑ 𝑂𝑖𝑖
 

Very good NSE ≥ 0.7 |PBIAS| ≤ 25 

Good 0.5 ≤ NSE < 0.7 25 < |PBIAS| ≤ 50 

Satisfactory 0.3 ≤ NSE < 0.5 50 < |PBIAS| ≤ 70 

Unsatisfactory NSE < 0.3 |PBIAS| > 70 

𝑆𝑖 is the 𝑖𝑡ℎ simulated data; 𝑂𝑖 is the 𝑖𝑡ℎ observed data; 𝑂̅ is the mean of the observed 

data. 
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4.3. Results and Discussion 

4.3.1. Precipitation Data Analysis 

 The areal-averaged gauge rainfall data from NOAA was used as the reference to 

analyze the precipitation of the three gridded weather datasets (TRMM, CFSR, and 

PRISM). Table 4.4 summarized the daily average precipitation depth (Mean), the 

standard deviation (Std), and the maximum daily precipitation (Max) of the four data 

sources. The correlation coefficient (CC) and percent bias (PBIAS) between the gridded 

rainfall data and the reference data are also presented. Since the conventional gauge 

precipitation records were incomplete during the study period, the missing dates were 

removed from all datasets for the calculation of CC and PBIAS. 

 The statistical summary shows that the daily rainfall during the calibration and 

validation periods are close in magnitude. The TRMM data had the lowest mean, 

maximum, and standard deviation of the rainfall, significantly lower than the estimates 

from the CFSR, PRISM, and conventional gauge data. However, the mean daily rainfall 

values from the CFSR, PRISM, and conventional gauge datasets were relatively close. 

The CFSR data had the highest average daily rainfall estimation (2.56 mm/d) for the 

calibration period, while in the validation period, the gauge data has the highest average 

daily value (2.44 mm/d). The PRISM data had the highest estimates of the maximum 

daily rainfall for both the calibration (180.92 mm/d) and validation periods (173.79 

mm/d), and the largest standard deviations (8.75 mm for calibration and 9.52 mm for 

validation period). The CC values indicated that the PRISM data has the strongest 
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correlation with the conventional gauge data among the three gridded rainfall datasets, 

and the CFSR data has the weakest correlation. The PBIAS values agree with the daily 

mean estimates that the TRMM estimation of daily precipitation was significantly lower 

than that from gauge observation. Meanwhile, the CFSR and PRISM estimation of daily 

rainfall was slightly higher than the gauge observation. 

Table 4.4 Statistical summary of all precipitation data and comparison between the 

areal-averaged gridded rainfall with conventional gauges data. 

Weather 

Data 

Calibration Period Precipitation  Validation Period Precipitation 

Mean 

(mm/d) 

Std 

(mm) 

Max 

(mm/d) 

CC PBIAS  

Mean 

(mm/d) 

Std 

(mm) 

Max 

(mm/d) 

CC PBIAS 

TRMM 0.84 3.15 39.92 0.65 -65.4  0.79 3.01 44.28 0.65 -63.7 

CFSR 2.56 8.37 130.42 0.55 5.5  2.32 6.28 104.71 0.55 5.6 

PRISM 2.46 8.75 180.92 0.71 2.4  2.36 9.52 173.79 0.65 16.6 

GAUGE 2.35 7.50 80.50    2.44 8.49 96.22   

 

 Furthermore, the precipitation data were aggregated to the monthly time step to 

make graphical comparisons. The box plots of the aggregated monthly precipitation 

value of the four precipitation data sources are displayed in Figure 4.2. Some of the 

extremely high values were removed when creating the box plots to make the figure 

more readable. In both the calibration and validation periods, the TRMM 3B42 product 

had the lowest estimate of the median, lower and upper quartiles, and maximum values. 

In the calibration period, the monthly median rainfall estimation from CFSR (45.15 

mm), PRISM (52.64 mm), and conventional gauge (52.51 mm) were relatively close 

compared with that from TRMM (16.98 mm). In the validation period, the PRISM data 
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provided the highest estimates of median monthly precipitation of 46.68 mm, while the 

CFSR (31.14 mm) and conventional gauge (33.63 mm) had similar but smaller 

estimates. 

 

Figure 4.2 Monthly precipitation of TRMM, CFSR, PRISM, and conventional 

gauge for the (a) calibration and (b) validation period. 

 

 The scatter plots that compare aggregated monthly TRMM, CFSR, and PRISM 

precipitation data with the conventional gauge reference data are presented in Figure 4.3. 

In agreement with the results suggested by Table 4.4 and Figure 4.2, the least square 

regression lines for the TRMM data (Figure 3a and 3d) have slopes that are significantly 

lower than that for the CFSR and PRISM data (Figure 4.3b, 4.3c, 4.3e, and 4.3f), which 

indicates substantial underestimation of precipitation. Meanwhile, the least square 

regression lines for the CFSR and PRISM data were closer to the 1:1 reference line, 
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indicating a closer approximation between these two datasets with the reference data. In 

particular, the PRISM data points (Figure 4.3c and 4.3f) were distributed nearer to the 

1:1 reference line, while the CFSR data points (Figure 4.3b and 4.3e) were spread further 

apart, suggesting the PRISM data better approximates the gauge observations.     

 

Figure 4.3 Comparison of the gridded monthly precipitation estimates with the 

conventional gauge data of the calibration period (a) TRMM, (b) CFSR, and (c) 

PRISM data; and the validation period (d) TRMM, (e) CFSR, and (f) PRISM data. 
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4.3.2. Hydrological Simulations 

4.3.2.1. SWAT Calibration and Validation 

 SWAT calibration results are conditioned on the selected procedure, objective 

function, and availability of data over the time period (Abbaspour, 2011). The iterative 

SUFI-2 procedure was used in this study, and 500 simulations were run in each 

calibration iteration. The parameter values were updated after each iteration, and the 

iterations ended after the objective function ceased to improve. The Nash-Sutcliffe 

Coefficient of Efficiency (NSE) was used as the objective function. The four modeling 

scenarios were calibrated against the observed daily streamflow at the watershed outlet, 

and separate calibrations were made for each scenario. The calibration process 

minimized the difference between simulated and observed streamflow (Abbaspour et al., 

2018). The last iteration of the calibration was used to define the parameter output 

ranges, which were used in the corresponding validation iterations without further 

modification. The calibration outcome and the best-fitted value in the validation iteration 

were presented in Table 4.5.     
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Table 4.5 Calibrated SWAT parameter ranges and the best-fitted validation values. 

Hydrology 

Parameter 

Default 

Value in 

SWAT 

Calibrated Parameter Range  Best Fitted Validation Value 

TRMM CFSR PRISM GAUGE  TRMM CFSR PRISM GAUGE 

CN2.mgt* 35 to 98 (20.7%, 30.5%) (-18.3%, -12.3%) (-15.5%, -8.3%) (-8.2%, -5.6%)  27.5% -13.2% -14.7% -7.5% 

ALPHA_BF.gw 0.048 (0.958, 1.000) (0.377, 0.550) (0.075, 0.224) (0.649, 0.820)  0.968 0.537 0.086 0.671 

GW_DELAY.gw 31 (123, 166) (422, 461) (228, 420) (144, 235)  137 426 363 163 

GWQMN.gw 1000 (2964, 3536) (2239, 3753) (3712, 4378) (2463, 3442)  3227 3348 4268 2660 

GW_REVAP.gw 0.02 (0.170, 0.190) (0.129, 0.162) (0.125, 0.150) (0.158, 0.187)  0.185 0.155 0.136 0.168 

REVAPMN.gw 750 (175, 249) (236, 324) (331, 412) (124, 206)  225 259 348 171 

RCHRG_DP.gw 0.05 (0.003, 0.085) (0.055, 0.159) (0.049, 0.159) (0.000, 0.169)  0.016 0.150 0.157 0.032 

SOL_AWC.sol* 0.01 to 0.42 (-1.2%, 0.7%) (-1.3%, 0.4%) (-5.3%, 1.5%) (-5.2%, -1.1%)  0.4% -1.2% -2.6% -1.1% 

SOL_K.sol* 0 to 2000 (-2.6%, -1.4%) (-0.9%, 0.4%) (-3.2%, -1.6%) (-1.6%, 1.8%)  -1.5% -0.7% -2.1% -1.3% 

ESCO.hru 0.95 (0.911, 0.950) (0.713, 0.764) (0.862, 0.921) (0.600, 0.653)  0.938 0.740 0.872 0.614 

CANMX.hru 0 (0, 4) (51, 65) (65, 82) (40, 57)  0 62 79 50 

CH_K1.sub 0 (11, 24) (85, 113) (77, 114) (116, 130)  17 86 107 129 

CH_K2.rte 0 (16, 29) (116, 130) (43, 60) (8, 26)  28 120 51 21 

CH_N2.rte 0.014 (0.114, 0.190) (0.013, 0.032) (0.010, 0.031) (0.112, 0.180)  0.126 0.015 0.014 0.156 

SURLAG.bsn 4 (6.09, 12.67) (19.93, 23.16) (3.81, 9.75) (8.25, 12.73)  7.30 20.91 7.94 12.62 

Parameters using percent change to existing values are marked by *. 
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 The SCS runoff curve number (CN2.mgt) was reduced in the SWAT-CFSR, 

SWAT-PRISM, and SWAT-GAUGE models but significantly increased in the SWAT-

TRMM model, compensating its lower precipitation i. Similarly, the maximum canopy 

storage (CANMX.hru) of SWAT-TRMM was kept at 0, while in other models, the 

CANMX.hru value was increased by different extents from the default. The hydraulic 

conductivity of the tributary channel (CH_K1.sub) and main channel (CH_K2.rte) for 

the SWAT-TRMM model was notably lower than the other models, while the Manning's 

n, thecoefficient for the main channel (CH_N2.rte), which represents the roughness of 

the channel, was higher in the SWAT-TRMM model. The adjustments conducted on the 

channel-related parameters reduce streamflow velocity in the SWAT-TRMM model 

compared to the other models. The soil parameters were adjusted through a percent 

change due to their spatial heterogeneity. In this study, the available water capacity of 

the soil layer (SOL_AWC.sol) and the soil saturated hydraulic conductivity (SOL_K.sol) 

were only slightly adjusted for all four SWAT modeling scenarios, which indicated that 

the streamflow was not sensitive to soil parameters in the study watershed. 

 The groundwater parameters (.gw) govern the speed and volume of groundwater 

recharge and discharge in the study watershed, which can be vital to the simulation 

performance since the San Antonio region is situated above Edwards Aquifer, which 

stores an enormous amount of groundwater and supplies much of the municipal 

consumption for San Antonio (Elhassan et al., 2016; Loáiciga et al., 2000). The 

relatively large base flow alpha factor (ALPHA_BF.gw) for the SWAT-TRMM, SWAT-

CFSR, and SWAT-GAUGE models suggests the study area’s groundwater has a rapid 
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response to recharge. Furthermore, the higher than default groundwater "revap" 

coefficient (GW_REVAP.gw) indicates the water transfer from the shallow aquifer to 

the root zone occurs at a relatively high rate. Meanwhile, the threshold depth of water in 

the shallow aquifer required for return flow to occur (GWQMN.gw) was markedly 

increased from the default value for all SWAT model scenarios, which likely suggested 

the study area has a large water storage capacity in its shallow aquifer, typically of 

karstic geology. In addition, the delay time for aquifer recharge (GW_DELAY.gw) was 

increased from the default value for all modeling scenarios, suggesting a longer time for 

water to exit the soil profile and enters the shallow aquifer in the study area. 

4.3.2.2. ANN Training and Model Selection 

 All nodes in the neural networks were fully connected to nodes in their adjacent 

layers in this study. The links connecting the nodes contain weight and bias information 

which were optimized in the training process (ASCE, 2000a). The three-layer feed-

forward neural network structure only contains one hidden layer besides the input and 

output layers. Thus, the primary purpose of the model selection process was to decide 

the number of hidden layer units that produces the best simulation outcome. As 

mentioned in section 4.2.3.2, the available data was split 70/30 ratio into the training and 

testing groups, respectively. The training data was further divided into ten blocks. In 

each BlockedCV iteration, nine blocks were used for model training, while the other 

block was used to calculate cross-validation statistics. The root mean square error 

(RMSE) of the standalone block was calculated in each training cross-validation 

iteration. The RMSE values were averaged after the training iterations finished. The 
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model with the smallest averaged RMSE was selected as the best model. The models 

that produce the smallest cross-validation RMSE for each prediction scenario are 

displayed in Table 4.6. 

Table 4.6 Best model structure and performance results of all prediction scenarios. 

Model 
Prediction 

Scenario 

Hidden 

Nodes 

Training Period  Testing Period Cross-Validation 

RMSE (m3/s) NSE PBIAS  NSE PBIAS 

ANN-

TRMM 

1 9 0.835 31.9  0.188 -58.2 1.908 

2 6 0.825 40.0  0.491 -20.4 1.888 

3 9 0.829 46.6  0.371 -37.0 1.923 

ANN-

CFSR 

1 7 0.835 -45.3  -0.010 -93.4 1.855 

2 8 0.819 -36.8  -0.003 -80.3 1.853 

3 6 0.796 -23.7  -0.005 -76.1 1.852 

ANN-

PRISM 

1 7 0.901 60.7  0.736 -16.9 2.247 

2 5 0.891 59.4  0.671 1.3 2.178 

3 6 0.908 68.3  0.760 -6.3 2.231 

ANN-

GAUGE 

1 8 0.699 -40.5  0.030 -75.7 2.094 

2 9 0.787 -44.2  0.091 -87.5 2.059 

3 8 0.748 -47.3  -0.016 -75.1 2.199 

 

 The best models selected using the cross-validation RMSE as criteria had their 

hidden unit sizes that fell between 5 and 9. This finding is consistent with that of Wu et 

al. (2005), which found the size of the hidden units to be near two-thirds of the sum of 

the number of input and output neurons. The smallest cross-validation RMSE values for 

each model were highlighted with an underscore in Table 4.6.  The ANN-TRMM, ANN-

PRISM, and ANN-GAUGE models selected scenario 2 as having the best model input 

combination, which only used precipitation data as predictors. The ANN-CFSR model 

selected scenario 3 as the best input combination. The inclusion of temperature as one of 

the predictors had slightly improved the cross-validation performance of the ANN-CFSR 
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model. Overall, the NSE and PBIAS values were close among the different prediction 

scenarios of a particular ANN model.  

4.3.2.3. Comparison of Model Performance 

 The ANN models summarized in Table 4.6 were further screened based on the 

cross-validation RMSE, in which only one prediction scenario for each model was 

chosen as the best model. The best ANN models were compared with the calibrated 

SWAT models, and their goodness-of-fit indicators were summarized in Table 4.7. In 

the calibration period, the SWAT models’ NSE performance ranged from satisfactory to 

very good (0.48 to 0.90), and the ANN models’ NSE performance was all on the very 

good level (NSE ≥ 0.7). However, the PBIAS values of the calibration period suggested 

that the SWAT models, with the exception of the SWAT-TRMM model, overestimated 

streamflow., SWAT-TRMM, however, was the model which had the much smaller 

rainfall input. Similarly, the ANN models also showed notable forecasting bias. The 

ANN-TRMM and ANN-PRISM model overestimated the streamflow by over 40%, 

while the ANN-GAUGE model underestimated the streamflow by 44.2%. 
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Table 4.7 Statistical performance of SWAT and ANN models driven by different 

weather data. 

Model 
Weather 

Data 

Calibration/Training 

(2000-2006) 
 Validation/Testing 

(2007-2009) 

NSE PBIAS  NSE PBIAS 

SWAT 

TRMM 0.48s 10.3vg  0.37s 1.1vg 

CFSR 0.56g 52.4s  0.22u 0.9vg 

PRISM 0.90vg 49.6g  0.72vg 36.8g 

GAUGE 0.61g 29.2g  0.07u 35.5g 

ANN 

TRMM 0.83vg 40.0g  0.49s -20.4vg 

CFSR 0.80vg -23.7vg  -0.01u -76.1u 

PRISM 0.89vg 56.2s  0.76vg -13.4vg 

GAUGE 0.79vg -44.2g  0.09u -87.5u 

Superscripts represent the performance levels, “vg” - “very good”, “g” - “good”, “s” - 

“satisfactory”, “u” - “unsatisfactory”. 

 

 The hydrological models’ performance were worse in the validation period, 

during which only the TRMM and PRISM driven models reached at least a satisfactory 

level NSE performance. The SWAT-TRMM had a satisfactory validation NSE 

performance of 0.37, and the SWAT-PRISM model had a validation NSE value of 0.72, 

which was considered very good for daily streamflow simulation. Meanwhile, the 

validation NSE performance of SWAT-CFSR and SWAT-GAUGE models was below 

satisfactory level. Surprisingly, the SWAT-TRMM and SWAT-CFSR models had very 

minimal PBIAS values in the validation period, although not performing well based on 

the NSE criterion. Comparably, the ANN-TRMM model had a satisfactory performance 

of 0.49 NSE value, and the ANN-PRISM model had a very good performance of 0.76 

NSE value, while the ANN-CFSR and ANN-GAUGE models performed poorly. 

Additionally, all ANN based models underestimated the streamflow according to the 

PBIAS values in the validation period, with ANN-CFSR and ANN-GAUGE severely 
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underestimating streamflow, and ANN-TRMM and ANN-PRISM having a relatively a 

lower magnitude of underestimation. 

 The hydrographs of the validation period with precipitation records are displayed 

in Figure 4.4. Since gauge observations for much of the validation period were missing, 

there were several discontinuities in the ANN-GAUGE time series (Figure 4.4d) as no 

streamflow predictions were made on the missing dates. The observed streamflow time 

series suggests that the Leon Creek had close to 0 discharge volume for most of the 

validation period with only occasional moderate to high flows caused by intense storm 

events. In general, the TRMM and PRISM driven models captured the timing of major 

storm events rather well but had different levels of bias in flow magnitude (Figure 4.4a 

and 4.4c). The CFSR and conventional gauge driven models predicted the streamflow 

peaks poorly. The simulated streamflow time series also showed that the SWAT models 

generally made higher peak discharge estimations than the ANN models. 

 A scatter plot comparison of the simulated versus observed streamflow for the 

models driven by the different weather data sources is shown in Figure 4.5. The 

deviation of streamflow prediction increased with increasing discharge magnitude for all 

ANN and SWAT models. The SWAT-PRISM and ANN-PRISM models had least 

square regression lines comparably close to the 1:1 reference line, suggesting a smaller 

deviation between the simulated and observed data than other models. Meanwhile, the 

ANN-CFSR and ANN-GAUGE models were found to severely underpredict the 

streamflow with an extremely small regression line slope, which is in agreement with the 

PBIAS findings presented in Table 4.7. The regression line slope for all SWAT models 
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was below that of the 1:1 reference line, which contradicts the PBIAS results that SWAT 

models overpredicted the streamflow. A very few underpredicted high flow values could 

be the cause of the small regression slope of the SWAT models, indicating the SWAT 

models overestimated low flows but underestimated high flows. 
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Figure 4.4 Hydrograph of the validation period for (a) TRMM, (b) CFSR, (c) 

PRISM, and (d) conventional gauge-driven SWAT and ANN models. 
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Figure 4.5 Comparison of validation period simulated and observed streamflow of 

the (a) TRMM, (b) CFSR, (c) PRISM, and (d) conventional gauge-driven models. 

 

 Overall, the performance of hydrological models in the standalone 

validation/testing period showed that the SWAT model overpredicted the streamflow 

and the ANN models underpredicted the streamflow for all evaluated weather data 
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sources. The PRISM data was found to provide the most accurate hydrological 

simulations for both SWAT and ANN. The TRMM data also had satisfactory 

hydrological simulation performance, although NSE values were not as good as the 

PRISM-driven models.  

 The CFSR and conventional gauge driven models performed poorly according to 

the goodness-of-fit indicators and graphical comparison. This finding is unexpected 

given the common knowledge that rain gauges provide the most accurate precipitation 

measurement.  These results are likely due to the lack of spatial representation of rain 

gauges and CFSR data in the study watershed. The five conventional rain gauges that 

had usable data in the region were spread outside the LCW boundary. Interpolating the 

rainfall data to the study area may fail to produce precise spatial representation. Another 

possible factor for the rain gauge-driven models’ failure is that temporal inconsistencies 

of gauge rainfall observations restrict the hydrological models’ prediction capability. 

This is particularly true for the ANN-GAUGE model, in which the temporal 

inconsistencies in input data undermine the time-dependent nature of streamflow series 

forecasting simulations. The CFSR data was initially in gridded format but automatically 

interpolated to the centroid point of the grid cell (Dile et al., 2014), which also lacks an 

accurate representation of the study watershed. On the other hand, the TRMM and 

PRISM data were precisely extracted and averaged for the study watershed. By 

comparing the models driven by different weather data sources, it can therefore be 

assumed that the areal-averaged rainfall data input at the “virtual rain gauge” (watershed 

centroid) is a viable option for making good streamflow simulations in SWAT and 
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ANN. Moreover, no significant discrepancy was found between SWAT and ANN 

simulation results when the same weather data source was used in the two models. At 

the same time, both models were greatly affected by the quality of precipitation inputs, 

and the results from the two models varied in the same way when different precipitation 

data sources were used.   

 

4.4. Summary 

 SWAT and ANN are two widely used tools for streamflow prediction in the 

hydrological science community. This study evaluated the ability of four weather data 

sources to represent precipitation and drive hydrological simulations in a small urban 

watershed in central south Texas. The four different weather sources were directly 

compared on daily and monthly time steps. Furthermore, four SWAT models were 

calibrated and validated, and a number of ANN models were trained and selected to 

assess the relative performance of these different weather sources. Finally, goodness-of-

fit indicators and graphical comparisons were employed to evaluate the results of 

hydrological simulations and further evaluate the different weather data source 

performance. The conclusions of this study can be summarized as follows: 

(1) The Thiessen polygon method was adopted to interpolate areal-averaged gauge 

rainfall for the study watershed. Using the interpolated gauge rainfall as 

reference data, the TRMM data was found to severely underestimate rainfall, 

while the PRISM data most closely approximated the gauge observations. 
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(2) Only meteorological data was applied as the ANN model inputs. The ANN 

model selection results suggest that the precipitation data is adequate to make 

satisfactory streamflow prediction, except for the ANN-CFSR model, in which 

the addition of temperature as a predictor slightly improved the cross-validation 

RMSE performance.  

(3) The calibrated SWAT models and the selected best ANN models had satisfactory 

to very good model performance during the calibration/training period, while the 

model performance significantly reduced in the validation/testing period, with 

the exception of both PRISM driven models.  

(4) In the stand-alone validation/testing period, the PRISM data was found to 

provide the most accurate hydrological simulations for both SWAT and ANN. 

The TRMM data also had satisfactory level hydrological simulation 

performance. However, the CFSR and conventional gauge driven models 

performed poorly. The most likely explanation is that the interpolated CFSR and 

gauge rainfall data lacks spatial representation in the study watershed. Hence, the 

areal-averaged PRISM and TRMM data can offer a viable alternative for rainfall-

runoff modeling when ground-based rainfall observation is limited.  

(5) The input of precipitation is vital for hydrological simulations, and both the 

SWAT and ANN models were strongly affected by the quality of precipitation 

inputs. Specifically, the SWAT and ANN models varied in an identical pattern 

when different precipitation data sources were used as inputs, and there was no 
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significant discrepancy found between SWAT and ANN simulation results when 

the same weather data source was applied. 
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5. CONCLUSIONS 

 The motivation of this dissertation was to explore the capability of SWAT and 

ANN as rainfall-runoff models across a range of conditions. All studies were conducted 

in the Edwards Aquifer region of Texas, using publicly accessible geological, 

meteorological, and hydrological data. The study in chapter 2 evaluated two major 

approaches to model selection for the ANN based rainfall-runoff model. This study also 

acted as a precursor to examine if the ANN model could produce successful streamflow 

prediction in the San Antonio region. The study in chapter 3 directly compared SWAT 

and ANN by using each as rainfall-runoff models in a pair of small watersheds, one 

primarily urban and the other primarily rural. A correction factor approach was used to 

adjust the goodness-of-fit indicators to incorporate measurement and model uncertainty 

in the rainfall-runoff modeling evaluation process. The urban watershed in this study 

was found to have better streamflow prediction for both the SWAT and ANN 

approaches; hence it was used as the study watershed in chapter 4, which focused on 

assessing three common gridded precipitation datasets and their impacts on hydrological 

modeling using both SWAT and ANN.  

  The study in chapter 2 was conducted using ANN in two 10-digit watersheds, 

the Headwaters San Antonio River Basin (HSARB), which is heavily urban, and the 

Lower Medina River Basin (LMRB), which is largely rural. In three of the five model 

prediction scenarios, the discharge from the upstream gauge station was used as a 

predictor. The modeling results show that the AIC and BlockedCV selected networks 

with the optimum number of hidden nodes could produce good daily streamflow 
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prediction for most of the input scenarios. While several studies in the past showed that 

the cross-validation-based approach could be successfully applied to ANN hydrological 

modeling (Humphrey et al., 2016; Jimeno-Sáez et al., 2018; Kim et al., 2015; Maier et 

al., 1996; Srivastava et al., 2006), none of these studies specifically used the BlockedCV. 

Through empirical investigation, the study in chapter 2 found that the out-of-sample 

approach (BlockedCV) was more desirable for identifying the neural network that best 

predicted streamflow. The in-sample approaches (AIC and BIC) tended to select simpler 

models that underfit the training data due to their penalty on the number of free 

parameters. These results corroborate the findings of a great deal of the previous work in 

Qi et al. (2001), which reached similar conclusions on a few economic time series. 

 Contrary to expectations, the selected best model of the rural LMRB performed 

better statistically than that of the urban HSARB. This result may be explained by the 

much larger average outflow from LMRB than HSARB, as ANN models usually 

perform better when predictors and targets have larger values. Additionally, a Cox and 

Stuart test showed no significant difference between the training and testing discharge 

datasets in LMRB, while the testing period discharge trended away from the training 

period in the HSARB. This significant difference in the training and testing datasets in 

HSARB may be another reason for the relatively poorer predictive performance of the 

urban watershed.  

 The study in chapter 3 employed a paired watershed experimental design similar 

to that of the chapter 2 study. In the chapter 3 study, two different 10-digit watersheds 

were selected, the urban Leon Creek Watershed (LCW) and the rural Upper Medina 
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River Watershed (UMRW). This study briefly discussed the conceptual distinction 

between SWAT and ANN and empirically assessed the two models’ performance in the 

karstic San Antonio region. The ANN input scenarios in this study are slightly different 

from the study in chapter 2, as the upstream discharge observation were not available for 

LCW and UMRW. In contrast to the findings in the previous study, both SWAT and 

ANN models successfully predicted streamflow in the urban watershed but did not 

perform well in the rural watershed. In particular, the SWAT model had an 

unsatisfactory performance with a negative NSE value in the rural UMRW. For the 

ANN models, the inclusion of previous time step streamflow as a predictor did not 

noticeably improve model performance in the urban LCW, whereas the model 

performance significantly improved when a time series autoregressive model structure 

using historical streamflow data was implemented in the rural UMRW. It is difficult to 

explain these contradictory results between these two studies, but it could be related to 

the level of similarity between training and testing data. While the two studies were 

conducted in the same geological region, their study periods were completely different. 

This finding suggests that training/testing data split can strongly affect the performance 

results of ANNs.  

 Overall, the ANN models outperformed the SWAT models for both high and low 

flow conditions by different margins in the chapter 3 study. This finding is different 

from that of Kim et al. (2015) and Jimeno-Sáez et al. (2018), which both suggest that 

ANN models generally performed better at simulating high flows while SWAT had 

better performance simulating low flows. However, it is in accordance with the results of 
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Srivastava et al. (2006), who reported that the ANN model produced simulation results 

with NSE values better than the SWAT model. Additionally, applying probability based 

correction factors to the goodness-of-fit indicators did not result in a visible 

improvement when a lower uncertainty level was assumed (Cv = 0.026), and only a 

slight improvement when a higher uncertainty level was assumed (Cv = 0.256). These 

results reflect those of Harmel et al. (2010), who also observed a noticeable 

improvement in the goodness-of-fit indicators. In addition, the chapter 3 study also 

validated that the results and opinions of a few previous studies (Malagò et al., 2016; 

Shao et al., 2019; Spruill et al., 2000; Wang et al., 2019), which pointed out that the 

conventional SWAT model is not capable of accurately modeling hydrological variables 

in karst watershed. 

 Both of the studies in chapters one and two used weather data from the 

Parameter-elevation Relationships on Independent Slopes Model (PRISM). The study in 

chapter 4 expanded on the work done in the chapter 3 study to evaluate alternatives to 

conventional ground-based weather data. The gridded-based PRISM data, the ground-

based NOAA data, and two additionally gridded precipitation datasets, Tropical Rainfall 

Measuring Mission (TRMM) and Climate Forecast System Reanalysis (CFSR), were 

compared and used to drive hydrological simulations in the Leon Creek Watershed. 

Surprisingly, the conventional gauge driven hydrological models were found to perform 

poorly in the chapter 4 study. This finding was unexpected but supported the idea that 

the hydrological modeling performance can be undermined when the ground-based 
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rainfall observation network is unable to capture the spatial variation of precipitation (Li 

et al., 2018; Worqlul et al., 2014).  

 Additionally, while the PRISM datasets have been widely applied in previous 

hydrological modeling studies and were proven to be a reliable source of weather input 

(Chen et al., 2020; Muche et al., 2019; Radcliffe et al., 2017; Tobin et al., 2013; Yen et 

al., 2016), the accuracy of TRMM and CFSR and the performance of using them in 

hydrological modeling were more mixed (Fuka et al., 2014; Himanshu et al., 2018; Li et 

al., 2018; Mararakanye et al., 2020; Ochoa et al., 2014; Radcliffe et al., 2017; Roth et al., 

2016; Stampoulis et al., 2012; Worqlul et al., 2014). This study showed that using areal-

average rainfall from multiple sources as input to SWAT and ANN can make 

satisfactory streamflow predictions. Among the evaluated rainfall products, the PRISM 

data produced the best hydrological simulation outcome. The TRMM precipitation data 

was found to significantly underestimate the volume of rainfall compared with the other 

three rainfall data sources. However, the TRMM driven hydrological models still 

achieved satisfactory performance results. In contrast, the CFSR and conventional gauge 

data performed poorly, most likely caused by their poor spatial representation in the 

study watershed. Hence, the areal-averaged PRISM and TRMM data can offer a viable 

alternative for rainfall-runoff modeling when ground-based rainfall observation is 

limited. More importantly, the SWAT and ANN models varied in an identical pattern 

when different precipitation data sources were used as inputs.  

 In general, this research shows that ANN models can be a reliable real-time 

simulator of streamflow, outperforming the physically-based SWAT model in several 
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cases. However, this work was limited to hydrological simulations in small-sized 

watersheds in the San Antonio region. The study area was unique with its vast karstic 

groundwater aquifer that has rapid recharge and discharge capabilities. An issue that was 

not addressed was whether the paired watershed study between urban and rural 

watersheds would yield closer model performance in an area without similar karst 

geological features. Furthermore, the scope of this research was limited in terms of the 

temporal resolution of the hydrological simulations. Only daily time step simulations 

were conducted in all sections of this dissertation to enable sufficient training data for 

the ANNs.  

 A natural progression of this work is to apply similar experiments to larger 

watersheds and regions with different geological and climatological conditions to further 

verify the conclusions. More broadly, further investigations into different temporal 

resolutions of ANN simulations are also recommended. A future study could investigate 

coarser temporal resolutions if sufficient long climate and streamflow records are 

available, with the aim of providing long-term streamflow trend prediction and water 

availability analysis using an ANN model. Shorter time steps could also be considered 

for the purpose of flood warning, for example, if accurate weather data at finer temporal 

resolution becomes available. In the meantime, the ANN models in this research were 

created as lumped models with a single point format weather input. Another interesting 

topic regarding hydrological modeling using ANN is to explore the application of a 

distributed format of weather input. Such work can be done by discretizing the study 

watershed into smaller subbasins. 
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 This research also tested and verified the method of converting gridded format 

weather data into a point format by calculating their areal-averaged value. Converted 

meteorological data provided reliable inputs with the suitable format for the SWAT and 

ANN models and produced satisfactory streamflow simulation results. This method can 

be expanded into hydrological simulations using other lumped or semi-distributed 

models in the future, as more gridded weather products, either produced from satellite 

remote sensing techniques alone or created as hybrid ground-based measurement and 

remotely sensed estimates, are becoming publicly accessible. Moreover, due to the 

limitation of time and scope, this research only evaluated three common gridded-based 

precipitation datasets. Further research could also be conducted using radar estimated 

precipitation data that are gradually becoming available on a more refined spatial scale. 
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