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ABSTRACT 

 

Measurement of spatial accessibility is useful for the assessment of the ease of 

access to an infrastructure of interest from the interactions of supply, demand, and 

mobility. Spatial accessibility measures are essential in the investigation of the 

geospatial problem, as they explain the spatial disparity of access between inter- and 

intra-regions and suggest that locations of poor accessibility should be supplemented 

with additional resources. However, the conventional approach used in spatial 

accessibility studies underexamined the temporal dynamics embedded in the three input 

variables, overestimating accessibility and decreasing the accuracy of measurements. To 

address these concerns, the implementation of temporal dynamics in spatial accessibility 

is thoroughly investigated in three aspects as follows: 1) examining the stochastic 

distribution of spatial accessibility from the uncertainty underlying the temporal 

changes, 2) enhancing the accuracy of accessibility measurements by leveraging the 

temporal changes of supply, demand, and mobility, and 3) promoting the reproducibility 

of temporal dynamics by prioritizing the use of time-dependent variables in accessibility 

measurements. 

The analyses performed in this dissertation provided three major findings. First, 

it revealed that the uncertainty embedded in the temporal dynamics dramatically changes 

the degree of accessibility and intensifies the inequality of access in the worst-case 

scenario. This indicates that the temporal changes should be considered in assessing 

accessibility, given their notable impact. Second, incorporating time-dependent variables 
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into measurements would uncover the 24-hour variation of spatial accessibility. The 

enhanced temporal granularity of the measurement provides an improved understanding 

of the time-dependent spatial disparity of access and supports a better allocation of 

supplementary infrastructures at a specific space and time. Third, the implementation of 

time-dependent mobility, rather than time-dependent supply and demand, should be 

prioritized to maximize the temporal variations of the measurements, and the partial use 

of time-dependent variables may fail to predict accessibility during the daytime. These 

findings shed light on the benefits of utilizing time-dependent variables and suggest 

possible strategies to promote policy implications. Therefore, the dissertation would 

provide insights on how to take advantage of the current data-rich environment to 

understand the temporal dynamics of geospatial problems for the discipline of 

Geographic Information Science and Systems. 
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1. INTRODUCTION

Spatial accessibility is defined as the ease of access from a particular region to an 

infrastructure of interest (Hansen 1959, Shen 1998, Radke and Mu 2000). In spatial 

accessibility measurements, three input variables (supply, demand, and mobility) are 

used, and their interactions are considered in the assessment of the level of accessibility 

of geographical regions (Luo and Wang 2003). Spatial accessibility measures allow for 

the identification of different levels of accessibility across locations; typically, urban 

areas have higher accessibility, and rural areas have low accessibility (McGrail and 

Humphreys 2014, Chen and Jia 2019, Gong et al. 2021). Therefore, they improve the 

understanding of geospatial issues by reflecting spatial disparity of access (Dony et al. 

2015) and address the disparity by suggesting locations of poor accessibility should have 

supplementary resources (Kang et al. 2020). Given that measures of spatial accessibility 

provide significant policy implications, much attention has been paid to spatial 

accessibility across various disciplines such as geography or urban planning (Dai 2010, 

Bell et al. 2012, Wang et al. 2020). 

Since its introduction in 2003, the two-step floating catchment area (2SFCA), has 

become the most well-known method of spatial accessibility measurement (Luo and 

Wang 2003). The method addresses the shortcomings of previous approaches (Hansen 

1959, Shen 1998, Radke and Mu 2000) by considering threshold travel time (i.e., the 

will of people to visit facilities) and the nature of demand (i.e., the dynamic distribution 

of people). As implied by its name, the method measures accessibility in two steps as 

1
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follows (Wang 2012): 1) calculation of the supply-to-demand ratio from supply locations 

and 2) calculation of the total ratio for demand locations. With its increasing popularity, 

the method has been constantly complemented to enhance the accuracy of measurements 

in numerous studies, categorized into three groups as follows: The first group includes 

studies about the use of various threshold travel times, as rural residents may travel 

further than urban residents to overcome the low density of infrastructure (Luo and 

Whippo 2012, McGrail and Humphreys 2014). The second category includes studies that 

investigated the impact of various distance decay functions on the measures and 

determined the distribution that best predicted the travel behavior of people to access 

supply facilities based on different contexts (i.e., diverse region or infrastructure) (Luo 

and Qi 2009, Dai 2010, Dai and Wang 2011, Tang et al. 2017). The third category is the 

use of an extra step (Wan et al. 2012) or distance decay (Delamater 2013) to prevent a 

possible exaggeration issue of accessibility. 

Despite the methodological advancements of spatial accessibility measurements, 

previous studies underexamined the temporal dynamics embedded in the three input 

variables (Neutens 2015, Park and Goldberg 2021). This could decrease the accuracy of 

measurements, as the temporal changes over time are not taken into account in the 

measurements (Hu and Downs 2019). Previous studies used the three input variables in 

their static forms, under the assumption that they have no temporal variation; however, 

the variables dynamically change over time, especially within a day (Park et al. 2021). 

Each infrastructure (i.e., supply) has operating hours, allowing people to obtain services 

only when it is open (Järv et al. 2018, Wang et al. 2018). In addition, people access 
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infrastructures not only from their residential locations but also from school, work, or 

even during travel. Given that demand describes the locations of people traveling to 

infrastructures, the time-dependent variation in the number of people should be 

incorporated into the measurement (Lee et al. 2018, Xia et al. 2019). Furthermore, 

mobility is a variable that shows the most dynamic changes over 24 hours because of the 

time-variant traffic condition (Chen et al. 2017, 2020, Lee and Miller 2018). The degree 

of mobility is typically maximized during the nighttime and minimized during rush 

hours, greatly influenced by daily commute. 

The aim of this dissertation was to investigate the impacts of the temporal 

uncertainty and changes on the measures of spatial accessibility by using time-dependent 

supply, demand, and mobility. Given that the degrees of these three variables fluctuate 

over time (Järv et al. 2018, Park et al. 2021), this dissertation elucidates how the degree 

and inequality of accessibility could be changed owing to the uncertainty in its input 

variables. In addition, the enhanced temporal granularity of measurement would uncover 

the 24-hour variation of spatial accessibility, which the conventional approaches could 

not reveal (Neutens 2015). The research questions motivating this dissertation are as 

follows: First, how can we leverage the time-dependent variables in measuring spatial 

accessibility? Second, how can we provide improved policy implications by taking 

advantage of the time-dependent variables? 

This dissertation consists of a literature review (Chapter 2) and three analyses 

(Chapters 3–5). The literature review was conducted to investigate the recent 

advancements of spatial accessibility measurements that benefitted from the current 
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data-rich environment (Park and Goldberg 2021). Previous studies in the last 10 years 

focused on the implementation of time-dependent variables (Järv et al. 2018, Lee et al. 

2018, Hu and Downs 2019, Xia et al. 2019) and multimodal transportation (Langford et 

al. 2016, Lin et al. 2018, Tao et al. 2018, Hu et al. 2020). They considered the dynamic 

aspects of spatial accessibility measurements to reflect the behavior of people accessing 

infrastructure better. From the thorough review, the following gaps were found: 1) the 

underexamined influence of the uncertainty of the input variables attributed to their 

temporal changes, on the measures of spatial accessibility, 2) the weak linkage between 

the enhanced temporal granularity of measurements and policy implications, and 3) the 

limited reproducibility of temporal dynamics in spatial accessibility due to the lack of 

data. 

To address the gaps, three analyses using the 2SFCA method were performed in 

this study, focusing on 1) investigating the impact of the temporal uncertainty underlying 

the input variables on the measures of spatial accessibility, 2) enhancing the policy 

implications of spatial accessibility by leveraging the temporal changes of the inputs, 

and 3) promoting the reproducibility of temporal dynamics in spatial accessibility by 

prioritizing inputs that should implement time-dependent variables. 

In Chapter 3, the influence of the temporal uncertainties of input variables on the 

measure is examined, focusing on the spatial accessibility to intensive care unit (ICU) 

beds in the Greater Houston area. In detail, the Monte-Carlo simulation was used to 

investigate how the stochastic distribution of accessibility varies by locations under the 

temporal uncertainty of the availability of ICU beds (i.e., supply) and the estimated 
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travel time (i.e., mobility) observed during the coronavirus disease (COVID-19) 

pandemic. Furthermore, in the chapter, regions are clustered spatially according to their 

stochastic distributions, and the relationship between the attributes of the accessibility of 

ICU beds and the case-fatality ratio of COVID-19 is compared. 

Chapter 4 proposes a framework leveraging temporal changes of spatial 

accessibility measurements for better policy implications and presents a case study on 

the accessibility to electric vehicle (EV) charging stations in Seoul, South Korea (Park et 

al. 2021). In the analysis, a complete set of time-dependent supply, demand, and 

mobility was used to maximize the temporal dynamics in spatial accessibility. In 

addition, two temporal clustering methods (K-means and hierarchical clustering) were 

utilized to summarize the 24-hour variation of accessibility and provide improved policy 

implications of accessibility. 

Chapter 5 presents an investigation of the importance of the temporal dynamics 

of each input in estimating the temporal changes of spatial accessibility that would be 

obtained from a full implementation of time-dependent variables. A sensitivity analysis 

was conducted with eight scenarios of accessibility measurements, including every 

possible combination of the static and dynamic forms of supply, demand, and mobility. 

With the spatial accessibility of health-care resources in New York City, two correlation 

analyses were performed to determine the priority of the three inputs for maximizing the 

temporal variation and predict the hours that would have low accuracy when time-

dependent variables are partially implemented. 
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Chapter 6 sheds light on the significance of the use of time-dependent variables 

for spatial accessibility measurements and discusses the potential contribution of this 

dissertation to the field of geography and urban planning. In addition, it illustrates the 

limitations of the analyses performed in the study and proposes future research agenda. 
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2. A REVIEW OF RECENT SPATIAL ACCESSIBILITY STUDIES THAT 

BENEFITTED FROM ADVANCED GEOSPATIAL INFORMATION: 

MULTIMODAL TRANSPORTATION AND SPATIOTEMPORAL 

DISAGGREGATION* 

 

2.1. Introduction 

Spatial accessibility explains the ease of access from a geographical unit to an 

infrastructure of interest (Hansen 1959). The measures of spatial accessibility are 

calculated based on the interaction of three input variables (Shen 1998, Luo and Wang 

2003): supply (i.e., locations of infrastructure), demand (e.g., locations of people who 

are expected to utilize the infrastructure), and mobility (i.e., travel costs from demand 

locations to supply locations). Occasionally, supplementary variables, such as distance 

decay functions and threshold travel time, are incorporated into measurements to reflect 

the will of the people to visit infrastructure (Wang 2012, Chen and Jia 2019). The 

measures provide an improved understanding of geographical issues in two aspects. The 

first is to illustrate the spatial disparity of accessibility (Weiss et al. 2018, 2020) and 

examine the relationship between socioeconomic conditions and accessibility. The 

second aspect is to identify areas of poor accessibility, and in it, it is proposed that those 

 

* Reprinted with permission from “A Review of Recent Spatial Accessibility Studies 

That Benefitted from Advanced Geospatial Information: Multimodal Transportation and 

Spatiotemporal Disaggregation” by Jinwoo Park and Daniel W. Goldberg, 2021. ISPRS 

International Journal of Geo-Information, 10(8), 532, Copyright 2021 Jinwoo Park and 

Daniel W. Goldberg. 
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locations should be supplemented with additional resources (Kang, Michels, et al. 2020). 

Therefore, measuring spatial accessibility may address the spatial mismatch between 

supply and demand and promote sufficient and equalized accessibility. Thanks to these 

insightful policy implications, much attention has been paid to spatial accessibility 

studies for various infrastructures, such as health care resources (Luo and Wang 2003, 

Luo and Whippo 2012, McGrail and Humphreys 2014, Tao, Cheng, et al. 2020), job 

opportunities (Shen 1998, Hu and Downs 2019), food outlets (Järv et al. 2018, Chen and 

Jia 2019), other urban infrastructures (Delafontaine et al. 2012, Lee et al. 2018, 

Kelobonye et al. 2020). 

In several reviews, the extensive number of accessibility-related studies were 

summarized focusing on empirical findings (Handy and Niemeier 1997, Shi et al. 2020), 

methodological developments of metrics (Guagliardo 2004, Neutens 2015), and the 

impact of supplementary variables (i.e., distance decay or threshold travel time) 

(McGrail 2012, Wang 2012, Chen and Jia 2019). As most reviews were conducted more 

than a decade ago (Handy and Niemeier 1997, Guagliardo 2004, Wang 2012), it was out 

of their scope to investigate how spatial accessibility measurements took advantage of 

dynamic variables (i.e., multimodal transportation and the enhanced granularity of 

spatiotemporal information). In addition, it was suggested in some reviews that 

incorporating dynamic variables into measurements would increase accuracy and 

predictability (Neutens 2015, Shi et al. 2020). Therefore, it is essential to follow up on 

how recent studies have adopted this suggestion and enhanced the performance of 

measurements. 
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In this decade, the availability of dynamic geospatial data has increased 

significantly through big-data analysis and open-data policy, particularly the 

implementation of multimodal transportation and spatial and temporal disaggregation. 

Specifically, the advent of sophisticated transportation databases, such as general transit 

feed specification (GTFS) and Uber Movement (https://movement.uber.com/), enables 

the estimation of various travel times per different transportation modes (e.g., public 

transit, private car) and dynamic travel times under time-variant traffic conditions. In 

addition, the advent of GPS-equipped devices (e.g., smartphones) facilitates the tracing 

of an anonymized movement of individuals (Yoo et al. 2020) and enhances the space 

and temporal granularity of data (Benenson et al. 2017). With improved granularity, it is 

empowered to further investigate the nonhomogeneous distribution of people within 

conventional coarser geographical units (e.g., neighborhood, census tract) and to 

systematically estimate the time-variant distribution of floating populations. 

Recently, dynamic variables, such as multimodal transportation and spatial and 

temporal disaggregation, have been incorporated into the measurements of spatial 

accessibility studies, which have benefitted from advancements in geospatial data. The 

studies were classified into two groups based on the dynamic variables they 

implemented. The first group is related to multimodal spatial accessibility 

measurements, in which investigations on the impact of various transportation modes on 

the disparity of spatial accessibility are developed. For instance, in a series of studies, 

researchers accounted for more than one alternative transportation modes (e.g., public 

transit, bicycles, or walks) besides private car travel, improving the predictability of the 
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measures (Mao and Nekorchuk 2013, Dony et al. 2015, Lin et al. 2018). The second 

group is related to the examination of temporal changes in spatial accessibility. Given 

that the inputs of the measures are time-variant, studies have measured spatial 

accessibility hourly within a day and examined how the measures change over time. This 

form of advancement is aligned with “high-frequency cities,” which indicates 24-hour 

variations of urban phenomena repeated every day (Batty 2020). The big data analysis 

and real-time data mining facilitated the investigation of temporal changes. For example, 

Järv et al. (2018) considered temporal dynamics of supply and demand from the opening 

hours of grocery stores and time-variant distribution of floating populations, illustrating 

temporal changes in food accessibility over 24 hours. Hu and Downs (2019) 

demonstrated how to employ census data (i.e., census transpiration planning products; 

CTPP) to populate temporal dynamics of the variables (i.e., supply and demand) and 

measured space-time job accessibility within a day.  

In this review, we aim to systematically scrutinize the methodological 

advancements and empirical findings of spatial accessibility measures. We took 

advantage of Web of Science Core Collection (https://webofknowledge.com/WOS) as a 

literature database and searched for accessibility studies with the author keywords 

“accessibility” or “access.” Because the initial result was voluminous (92,579), we 

refined the literature as articles published in geography and urban studies between 2011 

and 2021 to focus on recent advancements in accessibility literature. Consequently, we 

obtained 1,447 studies. By reading their abstracts, we investigated methodological 

improvements regarding accessibility measurements and recent trends in dynamic 
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variable implementation (i.e., multimodal transportation and spatial and temporal 

disaggregation of measures). We assigned the reviewed studies to two sections to 

distinguish between conventional approaches and recent advancements. In the second 

section, we investigate methodological advances in traditional place-based accessibility. 

In the third section, we cover the recent dynamic spatial accessibility, focusing on their 

methodological improvements and the empirical finding. The advancements in dynamic 

spatial accessibility consist of multimodal accessibility and temporal changes of spatial 

accessibility. From the exhaustive reviews, in the fourth section, we propose a future 

research agenda and potential ways to promote the accuracy and predictability of 

measures, furnishing policy implications beyond the implementation of dynamic 

variables. In particular, this paper focuses on place-based accessibility measures, which 

assess accessibility based on geographical units (e.g., census tracts, traffic analysis 

zones), and excludes people-based accessibility measures (i.e., accessibility of individual 

trajectories) (Miller 1991, Kwan 1998). 

 

2.2. Methodological Advancements in Measuring Spatial Accessibility 

Methodological advancements in spatial accessibility measurement have 

proceeded in three steps: the gravity model, Shen’s model, and the two-step floating 

catchment area (2SFCA) method. First, in the gravity model, also referred to as the 

cumulative opportunity model, the number of opportunities (i.e., supply facilities) 

accessible from a given location, considering spatial impedance, is measured (Hansen 

1959). The model is defined as follows: 
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𝑂𝑖 = ∑ 𝑆𝑗𝑓(𝑑𝑖𝑗)𝑗  Equation 2.1 

where 𝑂𝑖 is the cumulative opportunity of location i; 𝑆𝑗 is the weight of supply facility 

(e.g., the number of physicians in the case of healthcare resources) at location j; 𝑑𝑖𝑗 is 

the travel cost (i.e., time or distance) between location i and location j; 𝑓() is a distance 

decay function reflecting the spatial impedance of the travel cost (i.e., 𝑑𝑖𝑗). 

Second, Shen (1998) improved the accuracy of spatial accessibility measurement 

by introducing an additional variable (i.e., demand), whereas a homogeneous 

distribution of people is assumed in the gravity model. He adopted the consideration of 

demand from the Huff model (Huff 1963, 1964), in which the geographical units based 

on the probabilities of customers visiting a shopping center are delineated and defined 

Shen’s model as follows: 

A𝑖 = ∑
𝑆𝑗𝑓(𝑑𝑖𝑗)

∑ 𝐷𝑘𝑓(𝑑𝑘𝑗)𝑘
𝑗   Equation 2.2 

where A𝑖 is the accessibility at location i; 𝑆𝑗 is the weight of supply facility at location j; 

𝑑𝑖𝑗 is the travel cost between location i and j; 𝑓() is an impedance function by which the 

travel cost is constrained. D𝑘 is the number of people (i.e., demand) at location k. 

Finally, the limitation of Shen’s model, in which every supply facility is 

considered to provide service to every demand location in the case of an inappropriate 

distance decay function, is addressed in the 2SFCA method (Luo and Wang 2003, Wang 

2020). A threshold travel time is employed in the model to reflect the will of the 

customer and to define the locations accessible within the threshold travel time, such as a 
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catchment area. In this method, spatial accessibility is measured in two steps using the 

following formulas: 

𝑅𝑗 =  
𝑆𝑗

∑ 𝐷𝑘𝑓(𝑑𝑘𝑗)𝑘∈{𝑑𝑘𝑗≤𝑑0}
  Equation 2.3 

A𝑖 =  ∑ 𝑅𝑗𝑓(𝑑𝑖𝑗)𝑗∈{𝑑𝑖𝑗≤𝑑0} =  ∑
𝑆𝑗𝑓(𝑑𝑖𝑗)

∑ 𝐷𝑘𝑓(𝑑𝑘𝑗)𝑘∈{𝑑𝑘𝑗≤𝑑0}
𝑗∈{𝑑𝑖𝑗≤𝑑0}   Equation 2.4 

where 𝑅𝑗 is the supply-to-demand ratio of the supply facility at location j; 𝑆𝑗 is the 

weight of supply facility at location j; 𝐷𝑘 is the demand (e.g., population) in location k; 

𝑑𝑘𝑗  or 𝑑𝑖𝑗 is the travel cost from location k(or i) to location j; 𝑓() is an impedance 

function by which the travel cost is constrained; 𝑑0 is the threshold travel cost, by which 

the catchment area is created; 𝐴𝑖 is the accessibility measure of location i. 

As its name implies, the 2SFCA method consists of two steps (Figure 2.1). In the 

first step of the method (Equation 2.3), the supply-to-demand ratio of each supply 

facility is calculated; the weight of the supply facility is divided by the sum of demand, 

in which locations fall into the catchment area (i.e., accessible within the threshold travel 

time). For instance, assume hospital A in Figure 2.1(a) has five census tracts accessible 

within a predefined threshold travel time. Therefore, the supply-to-demand ratio of 

hospital A (i.e., 𝑅𝐴) is obtained by dividing the weight of supply (i.e., 𝑆𝐴) by the sum of 

every accessible demand location (i.e., 𝐷1 + 𝐷2 + 𝐷5 + 𝐷6 + 𝐷7). In the second step 

(Equation 2.4), the supply-to-demand ratio of supply facilities is summed up where the 

locations are accessible within the threshold travel time from each demand location. For 
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example, assume census tract 7 in Figure 2.1(b) can access both hospitals in the area 

within the threshold travel time; therefore, the accessibility measure of the location (i.e., 

𝐴7) is the sum of the supply-to-demand ratio of both hospitals (i.e., 𝑅𝐴 + 𝑅𝐵). 

 



 

Figure 2.1. Conceptual diagram of the two-step floating catchment area (2SFCA) method: (a) the first step of 2SFCA—

calculating a supply-to-demand ratio of each supply facility accessible within the threshold travel time; (b) the second step of 

the 2SFCA method—summing up the supply-to-demand ratio of all supply facilities accessible from each demand location 

within the threshold travel time. 

 



With the 2SFCA method, significant insight into spatial accessibility studies is 

provided, considering spatial impedance and local competition (i.e., supply-to-demand 

ratio) within catchment areas. Thanks to its straightforward and compelling 

characteristics, not only has the method been predominantly adopted in spatial 

accessibility studies, but it also entailed numerous follow-ups (i.e., the 2SFCA family), 

complementing to improve accuracy. The methodological advancements in the 

descendants can be classified into three categories: various distance decay functions, 

various sizes of catchment areas, and reflection of the preference of the customer. In the 

first category, various types (e.g., discrete, continuous, or hybrid) of distance decay 

functions were examined to address dichotomous measures of the original 2SFCA and 

enhance the prediction of the spatial impedance. As the spatial impedance differs by 

region and facility (Wan et al. 2012), researchers incorporated a diverse range of 

distance decay functions: Gaussian distribution (Luo and Qi 2009, Dai 2010), Kernel 

density (Dai and Wang 2011), Log-logistic distribution (Delamater et al. 2013), 

exponential function (Tang et al. 2017), and hybrid function (Gong et al. 2021). The 

second category involves using different catchment sizes to reflect that rural residents 

travel further than city residents to offset the low density of infrastructures (McGrail and 

Humphreys 2009). Given that an inappropriate catchment size may underestimate spatial 

accessibility measures, either diverse threshold travel time based on a spatial setting 

(McGrail and Humphreys 2014) or predefined supply-to-demand ratio (Luo and Whippo 

2012) were implemented in studies. In studies associated with the third category, either 

an additional step (Wan et al. 2012) or an additional distance decay function (Delamater 



 

17 

 

2013) were introduced to consider the tendency of people to a closer one when multiple 

facilities are available. 

 

2.3. Dynamic Spatial Accessibility: Incorporating Dynamic Variables into the 

Measurements 

With the enhanced availability of dynamic variables, they were incorporated into 

the measurements in studies in two aspects: multimodal spatial accessibility and 

temporal changes of spatial accessibility. They adopted advancements in people-based 

accessibility measurements (e.g., space-time accessibility), taking advantage of the 

different velocities of movements and finer space and time granularities (Miller 1991, 

Kwan 1998). In the meantime, the downside of people-based accessibility was 

addressed, which is challenging to adopt for policymaking (Neutens 2015). The 

measures of people-based accessibility vary by the trajectory of each person, which 

requires a substantial amount of information (e.g., trajectory data for each person) and 

entails a substantial computational intensity (Kwan 1998, O’Sullivan et al. 2000). 

Besides, the enhanced granularity of space and time is subject to be compromised when 

the measures are generalized for geographical units, given that decision-making is 

frequently made based on a place, not people (Neutens 2015). 

2.3.1. Multimodal Spatial Accessibility 

The first group of dynamic spatial accessibility involves multimodal spatial 

accessibility measurements (Mao and Nekorchuk 2013, Langford et al. 2016, Lin et al. 

2018). In previous studies, the use or preference of people of various kinds of 
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transportation modes, such as public transit, bicycles, walks, and private cars, was 

considered (Figure 2.2). They were aimed to reflect the different travel distances or 

speeds of each transportation mode and its impact on the measures. Specifically, 

equations 2.5–2.7 estimate the number of people (i.e., 𝐷𝑘
𝑚) at a geographical location 

(i.e., 𝑘) who are likely to take a type of transportation (i.e., 𝑚) to access an 

infrastructure. In addition, separate threshold travel times and distance decay functions 

were implemented in each transportation mode. Consequently, the supply-to-demand 

ratio (i.e., 𝑅𝑗
𝑚) and accessibility measures (i.e., 𝐴𝑖

𝑚) of a location per mode are obtained. 

Equation 2.7 aggregates each accessibility measure per mode, based on the ratio of the 

riders utilizing each transportation mode to produce a synthesized accessibility measure. 

The equations of multimodal spatial accessibility are defined as follows: 

𝑅𝑗
𝑚 =  

𝑆𝑗

∑ ∑ 𝐷𝑘
𝑚𝑓(𝑑𝑘𝑗

𝑚 )𝑛
𝑚𝑘∈{𝑑𝑘𝑗

𝑚 ≤𝑑0
𝑚}

  Equation 2.5 

𝐴𝑖
𝑚 =  ∑ ∑ 𝑅𝑗

𝑚𝑓(𝑑𝑖𝑗
𝑚)𝑛

𝑚𝑗∈{𝑑𝑖𝑗
𝑚≤𝑑0

𝑚}
 = ∑ ∑

𝑆𝑗𝑓(𝑑𝑖𝑗
𝑚)

∑ ∑ 𝐷𝑘
𝑚𝑓(𝑑𝑘𝑗

𝑚 )𝑛
𝑚𝑘∈{𝑑𝑘𝑗

𝑚 ≤𝑑0
𝑚}

𝑛
𝑣𝑗∈{𝑑𝑖𝑗

𝑚≤𝑑0
𝑚}   

Equation 2.6 

𝐴𝑖 =  
∑ ∑ 𝐷𝑘

𝑚𝐴𝑖
𝑚

𝑚𝑘

∑ ∑ 𝐷𝑘
𝑚

𝑣𝑘
  Equation 2.7 

where 𝑚 refers to transportation mode; 𝑅𝑗
𝑚 represents the supply-to-demand ratio of the 

supply facility 𝑗 of the people who are likely to utilize a transportation mode 𝑚; 𝐴𝑖
𝑚 
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denotes the accessibility measures of location 𝑖 with a transportation mode 𝑚; 𝐴𝑖 is the 

integrated accessibility measures of every transportation mode at location 𝑖. 

Multimodal spatial accessibility enhances the accuracy and predictability of 

measurements, reflecting real-world dynamics. Implementing multimodal mobility was 

proposed to address the limitation of conventional spatial accessibility measurements, 

which assumed only a single mode (i.e., car) for mobility. Alternative transportation 

modes (e.g., public transportation, bicycles, and walks) may be essential for people with 

poor socioeconomic conditions, given that they may not have access to private vehicles 

(Mao and Nekorchuk 2013). Additionally, a significant portion of travelers, particularly 

for big cities or the elderly, is accounted for in public transportation (Kawabata 2009, 

Tao and Cheng 2019, Lee and Miller 2020). 

 



 

Figure 2.2. Conceptual diagram of the multimodal spatial accessibility: (a) the first step of the multimodal 2SFCA, calculating 

the supply-to-demand ratio of each supply facility to each transportation mode; (b) the second step of multimodal 2SFCA 

method, summing up the supply-to-demand ratio of all supply facilities to each transportation mode. 

 



Since the initial proposal of multimodal spatial accessibility by Mao and 

Nekorchuk (2013), the methodological advancements could be summarized into two 

groups: (i) a simple comparison of spatial accessibility between different transportation 

modes, and (ii) synthesized measures of spatial accessibility considering multimodal 

mobility. In the first group of studies, it was demonstrated that the accessibility gap was 

attributed to different transportation modes. The characteristics of each transportation 

mode were incorporated into their measurements by assigning different travel speeds 

(e.g., 10 mph for a bus, 40–70 mph for a private car (Mao and Nekorchuk 2013, Zhang 

and Mao 2019)) and allocating longer threshold travel times for alternative modes (e.g., 

60 min for a bus, 30 min for a private car; (Lin et al. 2018)). Alternative transportation 

modes are frequently slower than private cars because public transit (e.g., bus or 

subway) travels along a designated route (Langford et al. 2016), whereas bicycles or 

walks are nonmotorized modes of transport (Dony et al. 2015). To implement 

multimodal transportations, researchers either configured a separate layer for alternative 

transportations in addition to generic transportation network for private car travel or 

employed a sophisticated database (i.e., general transit feed specification; GTFS) 

(Apparicio et al. 2017) or third-party web APIs (application programming interface) 

(Zhou et al. 2020), such as Google (Dony et al. 2015, Tao et al. 2018, 2020). This 

improved analysis accuracy, as they reflected door-to-door travel with walking from an 

origin, riding along a predefined route, and walking to a destination (Langford et al. 

2016, Lin et al. 2018).  
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The multimodal spatial accessibility studies of the second group had their 

accuracy of measurements improved with synthesized measures of accessibility by 

considering several transportation modes. In these studies, either the ratio of travelers 

per transit mode per location (Langford et al. 2016, Lin et al. 2018, Tao et al. 2018, Hu 

et al. 2020) or the preference for transit mode (Xing et al. 2018, Xiao et al. 2021) were 

employed. In this feature, the competition between people using different transportation 

modes but sharing the same facility is reflected. The advantage of census data (e.g., car 

ownership) was considered, assuming that households without a car would only take 

public transportation only (Mao and Nekorchuk 2013, Hu et al. 2020, Tao et al. 2020). It 

was also assumed in these studies that people would prefer to walk to green spaces over 

bicycling and driving when they could walk to a park within a given threshold travel 

time (Xing et al. 2018). The partitioning of people with transportation modes is critical 

for a synthesized index of accessibility with various transportation modes (Lin et al. 

2018, Hu et al. 2020) and intermodal competition for each transportation mode 

(Langford et al. 2016, Tao et al. 2018). 

Multimodal spatial accessibility studies have resulted in several empirical 

findings, such as significant interregional and intermodal accessibility disparities. 

Whereas sufficient accessibility in downtown areas and insufficient accessibility in 

peripheral areas persisted (Tao and Cheng 2019, Tao et al. 2020), the most critical 

finding is that conventional single-mode (i.e., car) measurements would overestimate 

accessibility in rural or suburban regions (Dony et al. 2015, Apparicio et al. 2017, Hu et 

al. 2020). Due to the disadvantages of alternative transportation modes (i.e., slower 
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speed and predefined routes), only travel with cars allowed access from peripheral to 

downtown areas, where most infrastructures were located (Langford et al. 2016). The 

accessibility by car provided a dispersed pattern of measures due to a larger catchment 

area, whereas the accessibility by the alternative methods produced only a few clustered 

regions with sufficient values (Dony et al. 2015, Tao et al. 2018). Unfortunately, this 

interregional disparity would persist; many cities put efforts into providing additional 

public transportation for downtown areas, whereas they frequently disregard the demand 

in rural/suburban areas (Kawabata 2009). Therefore, the scholars emphasized that the 

inter-region disparity would be correlated to the socioeconomic conditions of regions 

(Chang et al. 2019), and policymakers should pay attention to public transit in peripheral 

regions (Mao and Nekorchuk 2013, Tao et al. 2020). 

2.3.2. Temporal Changes in Spatial Accessibility 

In the second group of dynamic spatial accessibility studies, the dynamics of 

temporal changes in spatial accessibility were centered (Figure 2.3). Whereas in a few 

studies the temporal differences (i.e., over the years) of spatial accessibility measures 

were investigated (Jamtsho et al. 2015, Yang and Mao 2018, Moya-Gómez and Geurs 

2020), in the majority of them, researchers took advantage of the enhanced granularity of 

space and time, examining how spatial accessibility changes over 24 h (Lee et al. 2018, 

Hu and Downs 2019, Xia et al. 2019). As the inputs of spatial accessibility 

measurements (i.e., supply, demand, and mobility) vary over time (Xu et al. 2015), 

temporal dynamics were populated from input attributes, such as operating hours, time-

variant distribution of floating population, in the studies, and time-variant traffic 
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condition. They then measured the spatial accessibility of each hour with the 2SFCA 

method over 24 h with the following equations: 

𝑅𝑗
𝑡 =  

𝑆𝑗
𝑡

∑ 𝐷𝑘
𝑡𝑓(𝑑𝑘𝑗

𝑡 )
𝑘∈{𝑑𝑘𝑗

𝑡 ≤𝑑0}

  Equation 2.8 

𝐴𝑖
𝑡 =  ∑ 𝑅𝑗

𝑡𝑓(𝑑𝑖𝑗
𝑡 )𝑗∈{𝑑𝑖𝑗

𝑡 ≤𝑑0}  =  ∑
𝑆𝑗

𝑡𝑓(𝑑𝑖𝑗
𝑡 )

∑ 𝐷𝑘
𝑡 𝑓(𝑑𝑘𝑗

𝑡 )
𝑘∈{𝑑𝑘𝑗

𝑡 ≤𝑑0}
𝑗∈{𝑑𝑖𝑗

𝑡 ≤𝑑0}   Equation 2.9 

where 𝑡 refers to an hour within a day, 𝑅𝑗
𝑡 represents the supply-to-demand ratio of the 

supply facility 𝑗 at an hour 𝑡, and 𝐴𝑖
𝑡 denotes the accessibility measures of location 𝑖 at 

hour 𝑡. 



 

Figure 2.3. Conceptual diagram of temporal changes in spatial accessibility: temporal dynamics in the input variables (i.e., 

supply, demand, and mobility) and hourly spatial accessibility measurements over 24 h. 

 



Temporal changes in spatial accessibility were aimed to enhance the accuracy of 

the measurements by taking advantage of the enhanced resolution of space and time in 

geospatial data. Researchers utilized more than one time-dependent input variables (i.e., 

supply, demand, and mobility) and employed finer geographical units (Table 2.1). 

Although the targets are the same, this advanced form is referred to by various names, 

such as space-time accessibility (Hu and Downs 2019), spatiotemporal accessibility (Xia 

et al. 2019), temporal variation of location-based accessibility (Wang et al. 2018), and 

dynamic location-based accessibility (Järv et al. 2018). 

Researchers tackled the limitations of conventional approaches of spatial 

accessibility and enhanced resolutions in both space and time. Regarding temporal 

resolution, the conventional approach may fail to explain the temporal dynamics of 

accessibility, given that the generalized input did not reflect temporal variation within a 

day. However, the input variables change over time (e.g., operating hours, floating 

population, and time-variant traffic conditions), influencing spatial accessibility 

measures. The researchers also tried to address spatial resolution, which is strongly tied 

to the modifiable areal unit problem (MAUP), with the implementation of finer 

geographical units. As the 2SFCA method determines whether the location is accessible 

based on the inclusion of the centroids of geographical units, this may be affected by 

MAUP. In studies where dynamic spatial accessibility was assessed with micro-level 

geographic units, such as census tracts (Boisjoly and El-Geneidy 2016) or grids (Järv et 

al. 2018, Wang et al. 2018, Hu and Downs 2019), this implementation increased 

accuracy of the measurements.



Table 2.1. Studies in which temporal changes in spatial accessibility were investigated. 

 

  

 
Method Target Supply  

(Variable; 

Source) 

Demand  

(Variable; 

Source) 

Mobility  

(Variable; 

Source) 

Geographical  

Unit 

Boisjoly & El-

Geneidy 

(2016) 

Gravity Job Dynamic 

(number of jobs;  

census data) 

N/A Dynamic 

(estimated travel 

time via public 

transportation; 

GTFS) 

Census tracts 

Chen et al. 

(2017) 

Gravity Food  

(restaurants) 

Static N/A Dynamic 

(estimated travel 

time via road 

network; taxi 

trajectory data) 

Not  

specified 

Lee et al. 

(2018) 

2SFCA + 

Huff 

Bus stops Static Dynamic  

(floating 

population; 

mobile phone 

usage data) 

Static Grids 

Järv et al. 

(2018) 

Not 

specified 

Food 

(grocery) 

Dynamic  

(operating hours; 

website of 

supplier) 

Dynamic 

(floating 

population; 

mobile phone 

usage data) 

Dynamic 

(estimated travel 

time via public 

transportation; 

GTFS) 

Grids 



 

28 

 

Table 2.1. Continued. 

 Method Target Supply  

(Variable; 

Source) 

Demand  

(Variable; 

Source) 

Mobility  

(Variable; 

Source) 

Geographical  

Unit 

Wang et al. 

(2018) 

Gravity Food  

(restaurants) 

Dynamic  

(operating hours;  

map API) 

N/A Dynamic 

(estimated travel 

time via road 

network; taxi 

trajectory data) 

Grids 

Hu & Downs 

(2019) 

2SFCA Job Dynamic  

(number of jobs;  

CTPP) 

Dynamic  

(number of job 

seekers; CTPP) 

Static Grids 

Xia et al. 

(2019) 

2SFCA Healthcare 

(emergency 

services) 

Static Dynamic  

(floating 

population; GPS-

enabled mobile 

phone) 

Static Grids 

Chen et al. 

(2020) 

2SFCA Healthcare 

(hospitals) 

Static Static Dynamic 

(estimated travel 

time via road 

network; taxi 

trajectory data) 

Thiessen 

polygon 

(cellular tower 

coverage) 

 

 



Given that the same objectives (i.e., temporal changes in spatial accessibility 

over 24 h) in every study in this category are shared, we investigated how temporal 

dynamics were populated in them, based on which attributes. We categorized the studies 

into three groups according to the three input measurement variables: supply, demand, 

and mobility. First, studies in which researchers populated temporal dynamics in supply 

based on the opening hours of facilities (Järv et al. 2018, Wang et al. 2018) or the work 

hours of job opportunities (Boisjoly and El-Geneidy 2016, Hu and Downs 2019). 

Because people cannot access infrastructures outside their opening hours (e.g., 8 a.m.–5 

p.m. or 24 h), the degree of available supply facilities is time-dependent (Widener and 

Shannon 2014, Järv et al. 2018). Also, jobs have a specified time that requires 

employees to work. Second, floating population was utilized to estimate the time-variant 

distribution of the people (Järv et al. 2018, Lee et al. 2018, Hu and Downs 2019, Xia et 

al. 2019). The floating population is critical to improving the accuracy of measurements, 

as people access infrastructures not only from their residential locations, but also from 

work, school, or even while traveling. In other words, it reflects the nature of the daily 

activities of people who travel and conduct various activities across regions within a day. 

In these studies, researchers took advantage of census data (Kobayashi et al. 2011, Hu 

and Downs 2019) or GPS-enabled mobile phone usage data (Järv et al. 2018, Lee et al. 

2018, Xia et al. 2019) to incorporate floating populations into the measurements. Third, 

studies in which researchers furnished temporal dynamics in mobility from taxi 

trajectory data (Chen et al. 2017, 2020, Wang et al. 2018) or sophisticated transportation 

databases (Boisjoly and El-Geneidy 2016, Järv et al. 2018). The advent of GPS-enabled 
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devices (e.g., taxi trajectories or cell phones) has significantly facilitated the estimation 

of time-dependent mobility. It is empowered to provide anonymized individual 

movements (Yoo et al. 2020) and predict the mobility of a particular space and time 

based on historical travel time data (Gong et al. 2020). Particularly, temporal dynamics 

in mobility are the most important variable for measuring temporal changes in spatial 

accessibility (Chen et al. 2017, Lee and Miller 2020). Although the locations of supply 

and demand are stationary, the longer travel time diminishes the size of catchment areas, 

prevents ease of access to supply facilities, and increases the disparity of measures 

between demand locations. 

 

2.4. Research Agenda 

Although it is acknowledged that implementing dynamic variables enhanced the 

accuracy of measurements, we found in the exhaustive review in the previous section 

that dynamic spatial accessibility has not been applied to its fullest. We propose two 

research agendas worthy of investigating beyond the current accomplishments: (i) 

enhance the predictability and accuracy of accessibility measurements and (ii) examine 

temporal changes in spatial accessibility to furnish policy implications. 

2.4.1. Improving the Predictability and Accuracy of Measurements with Dynamic 

Variables 

This section provides three suggestions that could improve the predictability and 

accuracy of the measurement. First, measurement accuracy is significantly enhanced 

when implementing a complete set of temporal dynamic inputs. Despite the significance 
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of reflecting realistic temporal changes, in none of the previous studies there was the 

complete incorporation of a set of temporal dynamic inputs into the measurements 

(Table 2.1); they were limited to partially implementing time-dependent variables 

(Boisjoly and El-Geneidy 2016, Chen et al. 2017, 2020, Lee et al. 2018, Wang et al. 

2018, Hu and Downs 2019, Xia et al. 2019). Employing a complete set of temporally 

dynamic variables would benefit from continuously enhancing high temporal granularity 

data (Benenson et al. 2017). For instance, dynamics in supply could be populated from 

operating hours, which are easily accessible through the websites of suppliers or third-

party search engines. Time-dependent demand (i.e., floating population) is also 

published through municipal government or third-party companies. Mobility has the 

vastest sources to populate dynamics: open street maps (OSM), GTFS, or map APIs. 

Volunteered geographic information systems, such as OSM, provide precise network 

datasets because many users constantly create road segments and reviews. Because the 

data are available via the Python package (Boeing 2017, 2020), the dataset can easily be 

combined with nonspatial traffic data and populate traffic dynamics (Kang, Michels, et 

al. 2020). Additionally, GTFS is specifically designed for public transportation and 

consists of static GTFS and real-time GTFS (GTFS 2005, Google 2020). Static GTFS 

calculates travel time via public transportation based on the schedule, whereas real-time 

GTFS provides the current position of vehicles and the delay information. Furthermore, 

commercial map services provide estimated travel time via their Maps API, but the 

temporal dynamics employing the source have only been examined in a few studies 

(Rong et al. 2020). As high temporal resolution data are widely available, it is 



 

32 

 

straightforward but powerful to integrate the dynamics of the three inputs and to measure 

temporal changes in spatial accessibility. Besides the rich temporal data sources, the 

advancement of an open-source geocomputational framework would boost the 

implementation. Until now, many studies have relied on a commercial GIS platform 

(e.g., Esri ArcGIS). However, the advent of CyberGIS would be an alternative for 

analysis with computational intensity (Wang 2010, Kang, Aldstadt, et al. 2020). 

Second, the combination of time-dependent mobility and multimodal spatial 

accessibility measurements would advance the predictability of the measures (Stępniak 

et al. 2019). In the current approaches of multimodal studies, researchers have taken 

advantage of predefined timetables of public transportation to estimate travel time and 

have compared accessibility with free-flow private car travel (i.e., no traffic congestion 

considered) (Mao and Nekorchuk 2013, Lin et al. 2018, Tao et al. 2020). This disparity 

may reduce the realistic projection of spatial accessibility, since people use public transit 

due to limited access to private vehicles and avoid traffic congestion in big cities. As 

described above, the estimated travel time under traffic congestion for both car and 

public transit is available through various APIs, such as GTFS or Google (Lee and 

Miller 2018). Therefore, implementing sophisticated mobility data for both modes would 

increase the accuracy of measurements and provide an improved understanding of the 

spatial disparity in accessibility attributed to different transit modes. 

Third, it would be noteworthy to investigate resource availability uncertainties, 

as accessibility is meaningless if no resources are available at facilities. Whereas every 

spatial accessibility variable is uncertain, uncertainty in supply is the most critical. For 
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example, in hospital accessibility, the number of beds is often implemented as the supply 

weight to predict the service capacity. However, every hospital has some beds already 

utilized for hospitalization, so the degree of service they provide is not static and 

fluctuates over time. For these cases, the Monte-Carlo simulation may be a solution, and 

it was implemented in several studies to examine the stochastic distribution of on-time 

arrival considering the traffic congestion and unexpected delay (Ertugay and Duzgun 

2011, Chen et al. 2020, Lee and Miller 2020). Lee and Miller (2020) compared how the 

accessible area changed according to the preference for the risk of the traveler (i.e., risk-

averse or risk-seeking) from the perspective of people-based accessibility. Chen et al. 

(2020) measured place-based accessibility by incorporating the chance of on-time 

arrival. Given that they only focused on uncertainties in mobility, incorporating supply 

uncertainties would quantify accessibility reliability and delineate the region with robust 

accessibility. 

2.4.2. Furnish Policy Implications from Temporal Changes in Spatial Accessibility 

Because the significance of spatial accessibility studies is rooted in their policy 

implications (i.e., identifying spatial inequality of access to urban infrastructure and 

proposing locations that require additional resources), it is crucial to provide 

policymakers with refined and summarized information for their understanding of 

problems (Neutens 2015). In this context, the 24-hour spatial accessibility measurements 

in previous studies (Järv et al. 2018, Lee et al. 2018, Wang et al. 2018, Hu and Downs 

2019, Xia et al. 2019) may be voluminous for stakeholders to examine notable temporal 

changes in the accessibility measures. As soon as the temporal dynamics are fully 
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incorporated into the measurements, this issue can be addressed in two ways: temporal 

clustering and sequence analysis. 

The first suggestion is to group the 24-hour measurements into a few temporal 

clusters with a homogenous distribution of measurements. Although the implementation 

of dynamic variables resulted in dynamic temporal changes in the measurements, the 

measures may have provided relatively similar patterns for some periods. For example, 

the accessibility of 2 p.m. may be more similar to 4 p.m., compared to that of 4 a.m. 

(Järv et al. 2018). Researchers have subjectively picked hours in previous studies that 

tended to show distinctive patterns to demonstrate temporal changes (Lee et al. 2018, 

Xia et al. 2019), possibly resulting in a biased interpretation. However, temporal 

clustering could systematically summarize the temporal variation and provide only 

distinctive changes of the measures (Rogerson and Yamada 2008). Therefore, 

temporally synthesized measures can produce an improved understanding of temporal 

changes by identifying which locations have limited access to infrastructure for a 

particular duration of time. In addition, the clustered measures would furnish 

policymaking on where to provide additional resources if the expected usage time data 

were provided (Widener et al. 2015). 

As a second suggestion, sequence analysis could be implemented to identify how 

the accessibility of each location changes over time and illustrate the trends of temporal 

changes in a study area. Compared to the first suggestion, in which spatiotemporal 

accessibility was temporally summarized, in this suggestion, the regions are spatially 

clustered based on their possible temporal changes (i.e., sequence) in the accessibility 
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(Delmelle 2015, 2016). Therefore, the temporal sequence would facilitate the 

examination of the socioeconomic phenomenon related to accessibility (Gong et al. 

2021, Liu et al. 2021) and propose how the spatial disparity of access can be addressed. 

For example, assume that the temporal changes in accessibility are summarized as 

follows: Region A has sufficient accessibility in the morning and limited accessibility 

during the day, Region B has consistent and sufficient accessibility, and Region C 

consistently has insufficient accessibility. These sequences would indicate that more 

attention is necessary for Regions A and C; furthermore, they enable investigation of 

what causes poor accessibility of Region A during the daytime. Consequently, with this 

approach, it would be possible to propose a way to furnish better policy implications 

stemming from the enhanced temporal granularity of spatial accessibility. 

 

2.5. Conclusion 

We thoroughly examined the methodological advancements and empirical 

findings of dynamic spatial accessibility, incorporating dynamic variables into the 

measurements. Specifically, dynamic spatial accessibility is aimed to improve the 

accuracy of the assessments by taking advantage of the enhanced availability of dynamic 

variables. The topic has been developed in two different ways: multimodal accessibility 

and temporal changes of spatial accessibility. Multimodal accessibility incorporated 

alternative transit into conventional private car travel and examined the disparity in 

accessibility attributed to transit mode. Accessibility with alternative modes illustrated 

was limited compared to that with car travel, and the gap was more significant in 
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peripheral regions due to insufficient public transportation infrastructure. Time-

dependent variables for the measurement inputs (i.e., supply, demand, and mobility) 

were used in the spatial accessibility temporal changes, increasing the temporal 

granularity of measurements into an hour. It was demonstrated that accessibility changes 

both space and time. Despite these advancements from dynamic variable employments, 

two research agendas are worthy of investigating. Considering the enhanced availability 

of high granularity spatiotemporal data, in this study, we highlighted the importance of 

dynamic variables to increase the accuracy and predictability of measures and provide 

practical implications from sophisticated results, which are the critical merits of spatial 

accessibility. 
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3. AN EXAMINATION OF THE STOCHASTIC DISTRIBUTION OF SPATIAL 

ACCESSIBILITY TO INTENSIVE CARE UNIT BEDS DURING THE COVID-19 

PANDEMIC: A CASE STUDY OF THE GREATER HOUSTON AREA OF TEXAS  

 

3.1. Introduction 

In addition to sufficient access to healthcare resources, the provision of reliable 

healthcare is critical to promote the overall health of the public (Chen et al. 2020, Lee 

and Miller 2020). The merit of high accessibility to hospitals would be depreciated if the 

available resources in hospitals are depleted, even if several hospitals exist around 

residential locations. This issue is particularly emphasized during the global pandemic; 

particularly, the state of Texas has been suffering from the limited availability of 

hospitals, which resulted in high fatality from the coronavirus disease (COVID-19) 

(Walters et al. 2020). For example, Texas was hit hard by the second wave of the 

COVID-19 spread, where approximately 10,000 new cases daily and a total of 350,000 

confirmed cases were reported. Owing to the extraordinary outbreak of COVID-19, the 

US Department of Health and Human Services (2020) estimated that 70.1% of inpatient 

beds (95% confidence interval [CI]: 70.2%–71.1%) and 77.9% of intensive care unit 

(ICU) beds (95% CI: 76.9%–78.9%) were occupied in the state of Texas as of July 14, 

2020. Therefore, the limited availability of healthcare resources should be taken into 

account in spatial accessibility measurement to promote policy implications such as 

identification of spatial disparity or effective allocation of infrastructures (Park and 

Goldberg 2021). 
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In spatial accessibility measurements, three variables (supply, demand, and 

mobility) are used, and spatial accessibility is measured on the basis of their interactions 

(Shen 1998, Luo and Wang 2003, Wang 2012). Here, supply refers to the infrastructure 

of interest, such as hospitals or grocery stores; demand represents the spatial distribution 

of people who are expected to use the facility; and mobility is the travel cost (i.e., 

distance or time) to access the supply location from the demand location. Since the 

advent of the two-step floating catchment area (2SFCA) method (Luo and Wang 2003), 

two significant trajectories have emerged to advance the accuracy of spatial accessibility 

measurements. First, studies pursued to enhance the prediction of people traveling to 

infrastructures based on various distance decay functions (Dai 2010, Dai and Wang 

2011, Delamater et al. 2013, Tang et al. 2017, Gong et al. 2021) and threshold travel 

time (Luo and Whippo 2012, McGrail and Humphreys 2014). In addition, they 

introduced either an extra step (Wan et al. 2012) or distance decay (Delamater 2013) to 

improve the prediction. Second, studies investigated the 24-hour variation of spatial 

accessibility, along with the argument of high-frequency cities (Batty 2020, Kandt and 

Batty 2021). Given that the supply, demand, and mobility statuses are subject to change 

over 24 hours (Järv et al. 2018, Park et al. 2021), much attention has been paid to the 

temporal dynamics of spatial accessibility caused by the temporal changes of the three 

input variables (Chen et al. 2017, Lee et al. 2018, Hu and Downs 2019, Xia et al. 2019). 

Compared with the notable trajectories for accuracy improvements, the impact of 

uncertainty on the spatial accessibility measurement is underexamined. To our 

knowledge, only a few research studies have examined uncertainty in the context of 
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spatial accessibility. However, these studies still focused on the influence of uncertain 

mobility on accessibility measures. Ertugay and Duzgun (2011) were among the first to 

develop an approach for investigating how the service area was mutated on the basis of 

the probability distribution of the observed travel speed. They drew the shape and size of 

catchment areas randomly through Monte-Carlo simulation and concluded that the 

locations consistently included in the catchment areas had sufficient and reliable 

accessibility. In addition, Lee and Miller (2020) incorporated the notions of risk-seeking 

and risk-averse on the arrival probability into the measurement and defined robust 

accessibility as the accessibility of a location regardless of uncertain mobility. Whereas 

Ertugay and Duzgun (2011) and Lee and Miller (2020) only examined the characteristics 

of catchment areas, Chen et al. (2020) proposed a reliability-based 2SFCA method and 

assessed the impact of uncertain mobility with their interaction with supply and mobility. 

They underscored that uncertain mobility had a notable impact on the accessibility 

measures, as it could provide mixed consequences depending on the location. A 

reduction in catchment area could prevent facilitated access to infrastructures from a 

location but could be beneficial to other locations, as it could lower the local competition 

for the same facility. 

Given that spatial accessibility is measured on the basis of the interactions 

between supply, demand, and mobility, the uncertainty of both supply and mobility 

should be incorporated to spatial accessibility measurements. The dynamic changes of 

supply and mobility would possess uncertainty so that they could impact the measures of 

spatial accessibility (Park and Goldberg 2021). To be specific, the uncertainty of supply 
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would change the amount of available resources, while static supply would assume that 

the total capacity is readily available (Kang et al. 2020). For instance, the percentage of 

available ICU beds in Harris County was maximized (21.3%, 344 of 1614 operational 

ICU beds) on May 25, 2020, and minimized (1.4%, 24 available beds) on July 15, during 

the second COVID-19 outbreak in Texas (from May 1 to September 30, 2020). An 

increase in availability would alleviate local competition (i.e., more resources and high 

supply-to-demand ratio), whereas a decrease in availability would worsen it (i.e., fewer 

resources; low supply-to-demand ratio). In addition, the uncertainty of mobility would 

change the size and shape of the service area that a facility provides (Sahebgharani and 

Haghshenas 2021). By contrast, static mobility would maximize the service area, as it 

assumes no traffic congestion on roads (Luo and Qi 2009). Travel speed tends to be 

fastest during the nighttime and slowest during the daytime because of time-dependent 

traffic congestion (Houston Transtar 2020). High mobility would expand the service area 

of supply, whereas low mobility would shrink it. 

In this study, we aimed to examine the stochastic distribution of spatial 

accessibility to ICU beds during the COVID-19 pandemic in the Greater Houston area. 

In addition, we aimed to address the uncertainties of two variables (availability of supply 

and degree of mobility) in the measurement of spatial accessibility with the 2SFCA 

method. As availability is one of the essential criteria of access (Penchansky and 

Thomas 1981), the significance of our study would be acknowledged. To be specific, our 

analysis proceeded with the following three steps: First, we calculated the probability 

distribution of supply and mobility based on their historical changes in the Greater 
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Houston area. Second, we used the Monte-Carlo simulation to randomize the levels of 

supply and mobility for the 2SFCA method and measure spatial accessibility to ICU 

beds more than 999 times. Given that the stochastic distribution of accessibility provided 

by the simulation varied by location, we conducted hierarchical clustering to delineate 

areas of adequate (i.e., sufficient and reliable) accessibility and inadequate (i.e., 

insufficient and unreliable) accessibility. Our study focuses on the following three 

research questions: 1) How does spatial accessibility stochastically vary under the 

temporal uncertainty of supply and mobility? 2) Where are locations of adequate 

accessibility and inadequate accessibility indicated by the stochastic distribution? 3) Are 

the characteristics of accessibility related to the case fatality ratio of COVID-19? 

 

3.2. Research workflow 

We used the following three steps to measure spatial accessibility to ICU beds 

under the temporal uncertainty of supply and mobility (Figure 3.1): calculation of 

probability distribution, accessibility measurement with Monte-Carlo simulation, and 

spatial clustering. The first step to calculate the probability distribution of supply and 

mobility, which would be used as the randomized input variables in the Monte-Carlo 

simulation in the next step. The second step was to assess spatial accessibility to ICU 

beds 999 times (i.e., Monte-Carlo simulation) to investigate the impacts of the two 

randomized variables on the measures. The simulation provided the stochastic 

distribution of the measures for each location. Spatial clustering was implemented in the 
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last step to group locations based on the measures and to demonstrate which locations 

had sufficient and reliable accessibility. 



 
Figure 3.1. Research workflow 

 



3.2.1. Study area and data 

Our study area is the Greater Houston area (Figure 3.2), which consists of nine 

counties (Harris, Fort Bend, Brazoria, Galveston, Chambers, Liberty, Montgomery, 

Waller, and Austin) in the state of Texas. The study area is the fifth largest metropolitan 

area in the United States, with more than 7 million residents (U.S. Census Bureau 2021). 

When the second wave of the COVID-19 spread hit the state of Texas in July 2020, the 

study area was suffering from a limited availability of ICU beds. In addition, the case 

fatality ratio of COVID-19 was significantly high during the period even though the 

number of cases during the second peak was lower than those during the third 

(December 2020) and fourth waves (August 2021). This may be attributed to the limited 

availability of beds. Moreover, the city of Houston has notorious traffic congestions, 

which may prevent on-time arrival to healthcare resources. Therefore, the study area 

would be an excellent example for investigating the impacts of the uncertainties of 

supply and mobility on the measures of spatial accessibility. 
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Figure 3.2 The study area 

 

We utilized three spatial data sources to obtain the necessitated inputs (supply, 

demand, and mobility) for spatial accessibility measurements. For the supply facilities, 

we first used healthcare resources data provided by Definitive Healthcare (Definitive 

Healthcare 2020); it included the locations of hospitals and number of staffed ICU beds. 

The study area has 83 hospitals equipped with ICU beds among 115 hospitals and a total 

of 2,039 staffed ICU beds. Second, to represent demand, we used LandScan, a database 

of estimated global population distribution data (Rose et al. 2020). The dataset would 

enhance the accuracy of measurements given its finer spatial resolution (1 × 1 km) (Luo 
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and Qi 2009, Kobayashi et al. 2011). As LandScan data were provided as points, we 

aggregated the population with 2000-acre hexagons (i.e., the average size of the census 

block group in the study area) to incorporate them into the accessibility measurement. 

Lastly, the mobility data were obtained from OpenStreetMap with a Python package 

(OSMnx) (Boeing 2017). The road networks provided by the dataset were used to 

calculate the travel time from a demand location to hospitals (i.e., ICU beds). 

3.2.2. Calculating the probability distributions of supply and mobility 

To prepare the randomized input for the Monte Carlo simulation, we first 

computed the probability distributions of supply and mobility on the basis of the 

historical temporal changes of the number of ICU beds in use and the travel speed of 

freeways, respectively (Figure 3.1). Given that the amount of service and ease of 

mobility are temporally dynamic, the levels of supply and mobility at a certain time 

would be ambiguous. Therefore, we used the historical variations of supply and mobility 

to determine the probability that each variable has a particular value. 

We generated the probability distribution of supply in three steps as follows: 

Data on the temporal variation of ICU beds in use (i.e., supply) was collected from the 

South East Texas Regional Advisory Council within the period from May 1, 2020, and 

September 30, 2020 (SETRAC 2020). Given that the second wave of the COVID-19 

spread peaked in July 2020 in Texas, the duration was chosen to cover the surge and 

decline of the number of ICU beds in use. First, we summed the numbers of empty beds 

and those occupied by patients with COVID-19 (i.e., confirmed and suspected), as our 

focus was on the available resources for patients with COVID-19. We then divided these 
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by the total number of staffed ICU beds. Second, the percentages of ICU beds available 

for patients with COVID-19 were divided into 10 classes (0–10%, 10–20%, … 90%–

100%). Third, we calculated the frequency of a certain availability rate from the entire 

period (from May 1 to September 30, 2020). For example, in Harris County, 312 ICU 

beds were empty and 221 ICU beds were occupied with COVID-19-related patients as of 

May 1, 2020, and the total number of staffed ICU beds was 1,614. Hence, the 

availability rate of ICU beds was 33% (i.e., [312 + 221]/1,614) at that moment. The rate 

(33%) was classified as an availability group of 30–40%. We repeated the calculation of 

availability over 153 days (from May 1 to September 30, 2020) and computed the 

frequency of the groups. We also applied this process for six (Harris, Fort Bend, 

Brazoria, Galveston, Chambers, and Montgomery) of the nine counties in the study area. 

The historical usage data for Austin and Liberty counties were missing, so we assumed 

that the probability distributions in the counties follow the overall variation in the other 

six counties. In addition, Waller County did not have any staffed ICU beds. 

The probability distribution of mobility was calculated in four steps as follows: 

Its temporal variation was retrieved from the historical travel speed of freeways in 2019 

(Houston Transtar 2020). The temporal granularity of the data was 15 minutes, from 

5:00 a.m. to 7:00 p.m. We first matched the historical travel speed of a chunk of a 

freeway to the corresponding edges on the road network obtained from OpenStreetMap. 

Second, we divided the travel speed measured every 15 minutes into the fastest travel 

speed within a day, given the ratio to the free flow. We then divided the ratios into four 

classes (1–0.75: free flow, 0.75–0.5: light congestion, 0.5–0.25: moderate congestion, 
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and 0.25–0.0: severe congestion) and estimated the delay in travel time compared with 

the free flow. Lastly, we determined the frequency of having a certain degree of mobility 

for each road. For example, the fastest travel speed on Interstate Highway 10 from 

Beltway 8 to downtown Houston was 66 mph at 5:00 a.m. The travel speed at 8:00 a.m. 

was 28 mph. Therefore, the ratio to the free flow is 0.42, indicating moderate congestion. 

As a result, the interstate highway has a 50% chance of free flow, a 21% chance of light 

congestion, and a 29% chance of moderate congestion. In addition, we assumed that 

non-freeway roads would have a 25% chance of having light congestion to maximize the 

impact of the uncertainty in mobility (Wang et al. 2018). 

3.2.3. Monte Carlo simulation: measurement of spatial accessibility under 

uncertainty 

Monte Carlo simulation was used to incorporate the temporal uncertainties of 

supply and mobility into the spatial accessibility measurements. The simulation is useful 

for investigating the impact of the ambiguity of inputs on the output, as it takes 

randomized variables for each measurement and processes with 999 iterations (Ertugay 

and Duzgun 2011). As the spatial accessibility requires three input variables (supply, 

demand, and mobility), we produced randomized supply and mobility from their 

probability distribution, computed on the basis of their historical changes. To be specific, 

in each iteration, the number of available ICU beds for each hospital (i.e., supply) 

fluctuated, and the estimated travel time via the road network (i.e., mobility) varied. 

With the randomized inputs, we assessed the spatial accessibility to ICU beds, 

implementing the E2SFCA method (Luo and Qi 2009, Kang et al. 2020) to evaluate 
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spatial accessibility in two steps as follows: 1) calculate the supply-to-demand ratio for 

each facility and 2) aggregate the ratio of reachable facilities. Distance decay was 

considered in the method by assigning different weights for subzones. Whereas the 

original E2SFCA method determined spatial impedance on the basis of the Gaussian 

distribution, we used log-logistic distribution given that it provided a good prediction of 

the travel behavior of people visiting healthcare resources both in urban and rural areas 

(Luo and Qi 2009, Delamater et al. 2013, Jia et al. 2017). In detail, in the first step of the 

E2SFCA method, the supply-to-demand ratio of a hospital (𝑅𝑗) was computed. Then, the 

product between the number of staffed ICU beds in each hospital (𝑆𝑗) and their 

availability rate (𝐸𝑗) was divided by the number of residential populations within its 

service area (𝐷𝑘), where the facility is accessible within a threshold travel time. The first 

step is defined in the following equation: 

R𝑗 =  
𝑆𝑗𝐸𝑗

∑ 𝐷𝑘𝑓(𝑡𝑘𝑗,𝑡0)𝑘∈{𝑡𝑘𝑗≤𝑡0}
  Equation 3.1 

where supply and demand locations are represented by 𝑗 and 𝑘, and the log-logistic 

distance decay function is denoted by 𝑓(𝑡𝑘𝑗 , 𝑡0).  

The second step of the E2SFCA method summed the supply-to-demand ratio of 

hospitals (𝑅𝑗) that were accessible from a demand location, providing the accessibility 

measure (𝐴𝑖), computed using the following equation: 

A𝑖 =  ∑ 𝑅𝑗𝑓(𝑡𝑖𝑗, 𝑡0)𝑗∈{𝑡𝑖𝑗≤𝑡0} =  ∑
𝑆𝑗𝐸𝑗𝑓(𝑡𝑖𝑗,𝑡0)

∑ 𝐷𝑘𝑓(𝑡𝑘𝑗,𝑡0)𝑘∈{𝑡𝑘𝑗≤𝑡0}
𝑗∈{𝑡𝑖𝑗≤𝑡0}   Equation 3.2 
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where a demand location is presented by 𝑖. 

The log-logistic distance decay function was implemented in both steps to 

depreciate the influence from either demand (Equation 3.1) or supply (Equation 3.2). 

The distance decay function is based on the cumulative distribution function of log-

logistic distribution and is defined as follows: 

𝑓(t𝑖𝑗, 𝑡0) =  {

1

1+(
𝑡𝑖𝑗

𝜃
)

𝛽    𝑖𝑓 𝑡𝑖𝑗 ≤ 𝑡0

0          𝑖𝑓 𝑡𝑖𝑗 > 𝑡0

   Equation 3.3 

where 𝑡𝑖𝑗 and 𝑡0 represent the travel time from demand location 𝑖 to supply location 𝑗 

and the threshold travel time, respectively; and 𝜃 and 𝛽 indicate the scale and shape 

parameters, respectively. In our implementation, we defined threshold travel time, 𝜃, and 

𝛽, as 60 minutes, 13.89, and 1.82, respectively, on the basis of the actual travel pattern of 

patients (Delamater et al. 2013). Consequently, the following weights for 10 subzones 

were incorporated into the E2SFCA method to represent spatial impedance: 0.9459 for 

the 0- to 5-minute subzone; 0.7544 for the 5- to 10-minute subzone; 0.5511 for the 10- to 

15-minute subzone; 0.3993 for the 15- to 20-minute subzone; 0.2957 for the 20- to 25-

minute subzone; 0.2253 for the 25- to 30-minute subzone; 0.1765 for the 30- to 35-

minute subzone; 0.1417 for the 35- to 40-minute subzone; 0.1161 for the 40- to 45-

minute subzone; and 0.0832 for the 45- to 60-minute subzone. 

3.2.4. Spatial clustering 

In the final step, hierarchical clustering was implemented to spatially cluster 

hexagons according to their stochastic distributions of accessibility as determined from 
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the Monte Carlo simulation. We used agglomerative hierarchical clustering, which is 

initiated with the accessibility distribution of each hexagon and aggregates the hexagons 

into a higher cluster on the basis of the similarities of distribution. The representative 

value of the distributions per hexagon was computed with Ward’s method, given that it 

minimizes within-cluster variance (Ward 1963). In addition, the silhouette method was 

used to indicate the optimal number of spatial clusters (Rousseeuw 1987), which is 

expected to delineate spatial segregation the most. 

 

3.3. Results 

3.3.1. Stochastic distribution of accessibility to ICU beds 

The implementation of the Monte Carlo simulation provided a stochastic 

distribution of accessibility that varies depending on the temporal uncertainties in supply 

and mobility (Figure 3.3). Given that the levels of supply and mobility dynamically 

change among the 999 iterations, the hexagons of the different locations showed 

distinctive distributions of accessibility (Figure 3.3a). Overall, the accessibility to ICU 

beds tended to be high in the center of the study area and was gradually decreased to the 

peripheral regions. For example, a site in Waller County (blue point) had a sharp 

distribution of poor accessibility (mean: 3.55; standard deviation [SD]: 0.27). By 

contrast, a location in Harris County (red point) had a smooth distribution of sufficient 

accessibility (mean: 21.51; SD: 1.67). 

The pattern of spatial accessibility was greatly affected by the different levels of 

reliability (i.e., the probability that a location has a certain degree of accessibility). The 
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three maps in Figure 3.3 illustrate the spatial accessibility that can be obtained at 

probability rates of 50% (Figure 3.3b), 5% (Figure 3.3c), and 95% (Figure 3.3d). The 

gradation of the maps indicates the available ICU bed count per 100,000 people that 

residents in the hexagon have access to. An inverse correlation was observed between 

the reliability level and the number of available ICU beds. For instance, 10 ICU beds per 

100,000 people are assumed to be sufficient, given the median number of available ICU 

beds for patients with COVID-19. The ratio of all staffed ICU beds to the population in 

the study area was 28.94 per 100,000 people, and the median availability rate of ICU 

beds for patients with COVID-19 in the study period was 35%. For 5% reliability, 474 

hexagons with 5.1 million people had sufficient access to ICU beds. However, the 

numbers were limited to 368 hexagons of 4.4 million people and 262 hexagons of 3.6 

million people in the case of 50% and 95% reliability rates, respectively. 



 
Figure 3.3. Stochastic distributions of accessibility to ICU beds: (a) distinctive distribution of each hexagon and the 

accessibility for probability rate of (b) 50%, (c) 5%, and (d) 95%. 

 



3.3.2. Spatial clustering 

The agglomerative hierarchical clustering produced two major spatial clusters 

(Figure 3.4b), one with adequate (i.e., sufficient and reliable) access to ICU beds and the 

other with inadequate (i.e., insufficient and unstable) accessibility. Although the optimal 

number of clusters as determined by the silhouette method was two clusters (silhouette 

coefficient: 0.619; Figure 3.4c), we further divided the two major clusters into a couple 

of subgroups, given that the five clusters provided the second highest silhouette 

coefficient (0.523). The cluster of inadequate accessibility was broken down into two 

subclusters (clusters L1 and L2), and the other cluster consisted of three partitions 

(clusters H1, H2, and H3). 

The five spatial clusters were delineated in Figure 3.4a. They had different 

characteristics for the sufficiency (mean) and reliability (coefficient of variation [CV]) of 

accessibility (Figure 3.4d). Given that the scatterplot has sufficiency of accessibility as 

x-axis and unreliability of accessibility as y-axis, the upper-left corner indicates 

inadequate accessibility, and the lower-right corner presents adequate accessibility. The 

first cluster (L1) was at the outermost region in the study area, covering 720 hexagons 

with 0.1 million residents. It had very poor (𝐴𝑖̅ ≤ 2.0) and unreliable (𝐶𝑉̅̅ ̅̅ ≈ 0.58) 

accessibility. The second cluster, L2, was mainly in the rural area (1030 hexagons with 

0.5 million residents), having low accessibility (2.0 < 𝐴𝑖̅ ≤ 5.7) and reliability (𝐶𝑉̅̅ ̅̅ ≈

0.10). The third cluster (H3) overlaid the suburban areas of Greater Houston, such as the 

city of Galveston, Galveston County, the Woodlands, Montgomery County, and the city 

of Sugar Land, Fort Bend County. It included 485 hexagons of 1.4 million people and 
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presented moderate (5.7 < 𝐴𝑖̅ ≤ 9.3) and stable (𝐶𝑉̅̅ ̅̅ ≈ 0.08) accessibility. Cluster H3 

was extruded to the southwest of the study area because of the freeway (Interstate 45) 

toward Galveston County, while the other directions of the cluster were constrained in a 

circular shape. The fourth cluster was an urbanized area and a group of peripheral 

neighborhoods in Houston (369 hexagons with 3.3 million residents), with sufficient 

(9.3 < 𝐴𝑖̅ ≤ 15.0) and reliable (𝐶𝑉̅̅ ̅̅ ≈ 0.07) accessibility. The last cluster was the urban 

core of Houston. It produced outstanding (15.0 < 𝐴𝑖̅) and solid (𝐶𝑉̅̅ ̅̅ ≈ 0.07) 

accessibility, although it was the most populous area (1.8 million residents in 85 

hexagons). The cluster was slightly extended southwest, as a colossal hospital cluster 

(Texas medical center) was located in the direction. 



 
Figure 3.4. Hierarchical clustering results based on the stochastic distribution of accessibility: (a) spatial distribution of 

clusters, (b) dendrogram of hierarchical clustering, (c) silhouette method for determining the optimal number of clusters, and 

(d) the attributes of the hexagon classified in each cluster. 

**Note: Hexagons with excessive coefficient of variation (CV > 1) were omitted at (d). 

 



3.3.3. Impact of accessibility to ICU beds on COVID-19 and its spatial inequality 

We observed a trend where the case fatality ratio of COVID-19 can be attributed 

to unsatisfactory accessibility even though it may not be statistically significant because 

of the limited number of samples (n = 9 counties; Figure 3.5a). Three of nine counties 

showed a higher case fatality rate than the average in the study area. While 18‰ (18 

fatalities per 1,000 people) of the case fatality rate was observed as of September 30, 

2020, Liberty, Austin, and Harris counties had case fatality rates of 23‰, 20‰, and 

19‰, respectively. Liberty and Austin counties had insufficient (mean accessibility: 2.09 

and 1.64) and unreliable (mean CV of accessibility: 0.13 and 0.27) accessibility. 

Therefore, their high rates can be related to the attributes of their accessibility. However, 

Harris County had a robust accessibility (mean accessibility: 10.39, and mean CV: 0.07). 

Its casualty could be caused by the intensive transmission of the virus within a short 

period, which was often reported in a high-density city such as New York. 

The spatial disparity of accessibility would deteriorate as the reliability level 

increases (i.e., the probability that a location has a certain degree of accessibility), which 

possibly impacts the inequity of the case fatality rate of COVID-19. Stochastic 

distributions obtained from the Monte Carlo simulation provided that the degree of 

accessibility would be changed according to the reliability level. The Gini index values 

of accessibility for the reliability levels of .05%, .50%, and .95% were 0.43, 0.45, and 

0.47, respectively (Figure 3.5b). Despite the fact that the difference was marginal, the 

spatial inequality of access was intensified as the reliability level increased. This alluded 
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that the inequality of fatality may deteriorate in the future if the spatial disparity 

continues. 

 
Figure 3.5. Attributes of accessibility to ICU beds: (a) relationship to the case fatality 

ratio of COVID-19 and (b) Gini index per various reliability level 

 

3.4. Discussion 

A direct relationship was observed between sufficient and reliable accessibility. 

That is, the center of the study area (cluster H1; downtown Houston) had adequate 

accessibility with sufficiency and reliability. However, the peripheral locations had 

inadequate accessibility (cluster L1), showing insufficient and unreliable characteristics. 

Our result was consistent with that of previous studies that showed spatial disparity of 

access between urbanized and rural areas (Luo and Whippo 2012, McGrail and 

Humphreys 2014, Kim et al. 2021). In addition, we uncovered that the spatial inequality 

of access would persist or intensify under the uncertainties of supply (availability of 

resources) and mobility (travel time for accessing hospitals). If a policymaker focuses on 

a spatial accessibility distribution that would be consistently obtained [i.e., 𝐴𝑖(0.95)], 
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compared with the distribution obtained for the probability rate of 50% [i.e., 𝐴𝑖(0.5)], 

not only does measurement have a low overall accessibility but also the disparity 

between locations would also be severe. 

As claimed by previous studies, sufficient access to healthcare resources, 

particularly ICU beds, is critical to patients with COVID-19, and insufficient 

accessibility may result in a higher case fatality rate (Kang et al. 2020, Ghorbanzadeh et 

al. 2021, Kim et al. 2021). Our comparison for nine counties presented direct 

relationships between the characteristics of accessibility and the case fatality rate of 

COVID-19. Our results are considered significant because they show that the higher 

fatality rate of COVID-19 could be expected to the locations of inadequate (i.e., 

insufficient and unreliable) accessibility. Whereas previous studies investigated a direct 

relationship between a snapshot of spatial accessibility to healthcare and COVID-19 

fatality, our study concluded that the higher fatality could be attributed to the unreliable 

availability and insufficient accessibility. 

The disparity in accessibility may be attributed to the different densities of 

hospitals across the study area. For example, if a hospital is running out of vacant ICU 

beds, a downtown resident could access other hospitals close to their locations, but this 

may not be the case for rural residents because of the sparse density of hospitals. As 

shown in our results, rural areas are more susceptible to the effects of unreliable 

availability of ICU beds; thus, more attention should be paid to the location. The 

measure of spatial accessibility typically indicates that locations need additional 

infrastructure; however, the cost of a new hospital installation is significant. Therefore, 



 

60 

 

policymakers could enhance the number of operational beds in the rural area to prevent 

rural residents from unstable reliability of the availability of ICU beds. 

 

3.5. Conclusion 

Our study examined the stochastic distributions of the spatial accessibility to ICU 

beds and investigated the impact of accessibility on the case fatality rate of COVID-19. 

To be specific, we aimed to address uncertainties in the availability of ICU beds and 

travel time to healthcare resources in the Greater Houston area. As far as we know, our 

study is the first to discover the uncertainties of supply and mobility for spatial 

accessibility measurements. We used the Monte Carlo simulation to examine the 

stochastic distribution of accessibility granted from the randomized supply and mobility. 

Hierarchical clustering grouped locations according to stochastic distribution and 

discovered the locations of adequate (i.e., sufficient and reliable) and inadequate (i.e., 

insufficient and unreliable) accessibility. Our results demonstrate that the reliability of 

accessibility is proportional to the sufficiency of accessibility, indicating that spatial 

disparity of access would persist regardless of uncertainty. In addition, our results show 

that the high case fatality rate of COVID-19 in the peripheral counties may be attributed 

to the inadequate accessibility of the locations. 

Our study has the following limitations: First, it would be challenging to 

reproduce and replicate because of the issue of computational intensity. Given that we 

used the Monte Carlo simulation with 999 iterations, the analysis took 3 months even 

though we conducted parallel computing of four computers with 16 cores. Second, we 
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addressed the uncertainties of supply and mobility, neglecting the nature of demand. As 

the confirmed cases of COVID-19 were both spatial and temporally dynamic, the 

dynamic distribution of patients would have a significant impact on the availability of 

supply resources. Third, our comparison was not statistically significant because of the 

limited number of counties included. Our next step is to implement the CyberGIS 

approach to address computational intensity, incorporate uncertainty of demand, and 

expand the study area. High-performance computing capability would enable us to 

produce a meaningful relationship between accessibility and the disease. As the 

pandemic continues, it would help policymakers effectively allocate additional 

infrastructures and possibly reduce the fatality of COVID-19. 
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4.  LEVERAGING TEMPORAL CHANGES OF SPATIAL ACCESSIBILITY 

MEASUREMENTS FOR BETTER POLICY IMPLICATIONS: A CASE STUDY OF 

ELECTRIC VEHICLE (EV) CHARGING STATIONS IN SEOUL, SOUTH KOREA* 

 

4.1. Introduction 

Spatial accessibility explains the ease for people in a particular region (i.e., 

demand) to access infrastructures of interest (i.e., supply) based on the interaction of 

supply, demand, and mobility (Hansen 1959, Shen 1998, Luo and Wang 2003). The 

measures of spatial accessibility identify the spatial mismatch between supply and 

demand, which in turn provides an improved understanding of spatial impedance and 

inequality issues (McLafferty 2015). Particularly, the measures play an important role in 

decision-making processes (Langford et al. 2012, Wan et al. 2012, Hu and Downs 2019, 

Chen et al. 2020) because they help policymakers to investigate where additional supply 

should be provided. Due to these useful policy implications, the approach has been 

applied to various urban infrastructures, such as healthcare resources (McLafferty et al. 

2012, Kang et al. 2020), food outlets (Widener et al. 2013, Chen and Jia 2019), and 

green space (Dony et al. 2015, Xing et al. 2018, Liu et al. 2021). 

 

* Reprinted with permission from “Leveraging temporal changes of spatial accessibility 

measurements for better policy implications: a case study of electric vehicle (EV) 

charging stations in Seoul, South Korea” by Jinwoo Park, Jeon-Young Kang, Daniel W. 

Goldberg, and Tracy A. Hammond, 2021. International Journal of Geographical 

Information Science, 1-20, Copyright 2021 Informa UK Limited 
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Although the significance of temporal dynamics for enhancing the accuracy of 

the spatial accessibility measurements (Boisjoly and El-Geneidy 2016, Hu and Downs 

2019), it is often neglected to leverage such temporal dynamics for better decision-

making. Here, temporal dynamics refer to the use of time-variant data, such as operating 

hours (Järv et al. 2018, Wang et al. 2018), floating population (Lee et al. 2018, Xia et al. 

2019), and estimated travel time with traffic congestion (Chen et al. 2017, 2020, Wang 

et al. 2018). In specific, Hu and Downs (2019) emphasized that measuring space-time 

accessibility over 24 hours would provide insightful suggestions for policymaking; 

however, it is still challenging to identify which particular regions need additional 

supply at a particular time. It would cause policymakers to provide supplements only for 

regions with persistent low accessibility and not benefit from the enhanced temporal 

granularity. Given the importance of allocating limited resources to alleviate the 

inequality issues of spatial accessibility (Dony et al. 2015, Kang et al. 2020), it would be 

a timely matter to examine specific space and time to place supplemental resources. 

In this sense, temporal clustering of spatial accessibility over 24 hours would 

help to address such issues. Clustering methods examine the similarity between/within 

distributions, assign several units into a small number of clusters, and result in a few 

distinctive patterns (Rogerson and Yamada 2008, Hohl et al. 2016, Yang and Mao 2018, 

Wu et al. 2020). Therefore, temporal clustering would also improve the understanding of 

remarkable temporal fluctuation of the measures and support policymakers to focus on a 

particular period of time. Assume that, for example, a temporal clustering of 24-hour 

spatial accessibility measurement for grocery stores presents three notable patterns (i.e., 
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morning, afternoon, and midnight). This may suggest that policymakers should pay 

attention to the afternoon cluster and place extra services to regions with limited 

accessibility at the period, considering people tend to visit grocery stores when returning 

home from work (Widener et al. 2015). 

Our study proposes a conceptual framework that takes advantage of temporal 

changes of spatial accessibility for better policy implications. We first measure 24-hour 

spatial accessibility (i.e., each hour's spatial accessibility over 24 hours) with Gaussian 

two-step floating catchment area (G2SFCA) method. We then temporally cluster the 

measures through K-means clustering method. Finally, we validate the temporal 

clustering results with Pearson's correlation coefficient. The outcomes of the framework 

would describe significant temporal transitions of the measures and provide 

policymakers with a new insight that allocates resources based on space and time. As a 

case study, we assess spatial accessibility to electric vehicle (EV) charging stations 

located in Seoul, South Korea, to demonstrate our framework. Sufficient accessibility to 

public EV charging stations is essential in the city because it is limited to equip private 

chargers at residential locations due to a high percentage of multi-unit residents. 

Specifically, our study focuses on the following three research questions: 1) How does 

spatial accessibility change over 24 hours from the interaction of all time-dependent 

input variables (i.e., supply, demand, and mobility)? 2) What are the distinctive temporal 

fluctuations in the 24-hour spatial accessibility measurements that temporal clustering 

indicates? 3) Which aspect does policy implication benefit from the temporally clustered 

measures? 
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4.2. Research framework 

Our conceptual framework consists of the following four steps: data preparation, 

accessibility measurement, temporal clustering, and validation (Figure 4.1). Inspired by 

the framework of dynamic accessibility modeling (Järv et al. 2018), we first populate the 

temporal dynamics of supply, demand, and mobility based on their corresponding 

attributes (i.e., operating hours, time-variant distribution of floating population, and 

estimated travel time with traffic congestion, respectively). 
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Figure 4.1. A conceptual framework for leveraging temporal fluctuation of spatial 

accessibility. 

 

Second, we measure 24-hour spatial accessibility using the Gaussian two-step 

floating catchment area (G2SFCA) method. The method considers the interaction 

between supply and demand and employs the Gaussian function for continuous distance 

decay of the mobility (Dai 2010). In detail, the method assesses spatial accessibility in 

two steps. The first step of G2SFCA calculates the supply-to-demand ratio at each 

supply location at each hour using the following equation: 
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𝑅𝑗
ℎ =  

𝑆𝑗
ℎ

∑ 𝐷𝑘
ℎ𝐺(𝑡𝑘𝑗

ℎ ,𝑡0)
𝑘∈{𝑡𝑘𝑗

ℎ  ≤ 𝑡0}

  Equation 4.1 

where j and k refer to supply location and demand location, respectively; h represents an 

hour out of 24 hours; Rj
h denotes the supply-to-demand ratio at a supply location j at 

hour h; Sj
h indicates the supply provided at location j at hour h; and Dk

h represents the 

degree of demand at location k at hour h. G(tkj
h, t0) illustrates the distance decay function 

shown in Equation 4.3 and takes the following two variables as input: threshold travel 

time (t0) and estimated travel time (tkj
h) from a demand location k to a supply location j 

at hour h.  

The second step of G2SFCA aggregates the accessibility measures at a demand 

location with the following equation: 

𝐴𝑖
ℎ = ∑ 𝑅𝑗

ℎ𝐺(𝑡𝑖𝑗
ℎ , 𝑡0)𝑗∈{𝑡𝑖𝑗 

ℎ ≤ 𝑡0} = ∑
𝑆𝑗

ℎ𝐺(𝑡𝑖𝑗
ℎ ,𝑡0)

∑ 𝐷𝑘
ℎ𝐺(𝑡𝑘𝑗

ℎ ,𝑡0)
𝑘∈{𝑡𝑘𝑗

ℎ  ≤ 𝑡0}
𝑗∈{𝑡𝑖𝑗 

ℎ ≤ 𝑡0}   Equation 4.2 

where i indicates a demand location; Ai
h represents the accessibility measures at location 

i at hour h. Rj
h (Equation 4.1) explains the supply-to-demand ratio at supply location j at 

hour h, and G(tij
h, t0) denotes the distance decay function (Equation 4.3). This step 

measures the accessibility at location i at hour h by aggregating the supply-to-demand 

ratio of each supply location j that is accessible from demand location i within the 

threshold travel time (t0). 
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Both steps depreciate the influence of supply and demand as the distance 

increases with distance decay function G. The function G calculates the friction-of-

distance based on the Gaussian distribution, which is defined as follows: 

𝐺(𝑡𝑖𝑗,𝑡0) =  {
𝑒

−
1
2

∗(
𝑡𝑖𝑗
𝑡0

)

2

−𝑒
− 

1
2

1−𝑒
− 

1
2

           𝑖𝑓 𝑡𝑖𝑗 ≤ 𝑡0 

             0                           𝑖𝑓 𝑡𝑖𝑗 > 𝑡0 

  Equation 4.3 

where tij indicates estimated travel time from demand location i to supply location j, and 

t0 refers to the threshold travel time. If the estimated travel time (tij) is smaller than the 

threshold travel time (t0), the distance decay function G calculates the distance decay 

based on the upper equation, otherwise, the function returns in 0. For example, when t0 is 

set to 15 minutes, the tij set to 5 minutes, 10 minutes, and 15 minutes returns 0.8626…, 

0.4935…, and 0, respectively. 

Third, we take advantage of K-means clustering method to temporally cluster the 

24-hour spatial accessibility measurement. This step examines the significant temporal 

changes in the pattern of spatial accessibility. Among clustering methods (e.g., K-means, 

Dendrogram, DBSCAN), K-means clustering is one of the uncomplicated but 

compelling approaches (Jain 2010). The method allocates observations into a predefined 

K number of clusters based on the distances between the observations (MacQueen 

1967). As Wang (2020) exclaimed, spatial accessibility put efforts into the 

straightforwardness of its method (e.g., the family of two-step floating catchment area). 
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Given K-means clustering is also straightforward, it would maintain the simplicity of 

2SFCA and be suitable for application in accessibility studies. 

The quality of K-means clustering is tied to the number of clusters (i.e., K); 

therefore, we first determine the optimal number of clusters with the elbow method and 

the silhouette method. The elbow method plots a line graph with the number of clusters 

as an x-axis and the sum of squared distances as a y-axis and indicates the optimal 

number of clusters when the slope of the line graph changes the most. Given that the 

elbow method is a heuristic approach and sometimes provides ambiguous results, it is 

often supplemented with the silhouette method (Rousseeuw 1987). The silhouette 

method evaluates the partitioning of distribution using the following formula: 

𝑆 =  
1

𝑁
∑

𝑏(𝑖)−𝑎(𝑖)

max{𝑎(𝑖),𝑏(𝑖)}
𝑁
𝑖   Equation 4.4 

where S represents the average silhouette coefficients of current partitioning, N 

demonstrates the number of points, a(i) is a cohesion indicator of a point i (i.e., distances 

from point i to all other points in the same cluster), and b(i) is a separation indicator of a 

point i (i.e., distances from point i to all points in the other clusters). As described, the 

silhouette method considers both within-cluster variation and between-cluster variation, 

and a higher average silhouette coefficient (i.e., S) means that the current clustering is 

well classified. 

We then utilize K-means clustering method to classify the each hour's measures, 

out of 24-hour spatial accessibility measurement, into a predefined number (i.e., K) of 

temporal clusters (MacQueen 1967; Jain 2010). We locate the 24-hour measures into a 
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two-dimensional plane using the mean and standard deviation of each hour's measures, 

because the mean and standard deviation represents distributions the most. The objective 

of K-means clustering method is to minimize the sum of the squared distances between 

the observations and the centroids of clusters: 

∑ ∑ ‖𝑥𝑖 − 𝜇𝑘‖2
𝑥𝑖∈𝐶𝑘

𝐾
𝑘=1   Equation 4.5 

where 𝑥𝑖 and µk indicate the locations of observations (i.e., x-coordinate: the mean of 

each hour's measures; y-coordinate: the standard deviation of each hour's measures) and 

centroid of a cluster Ck, respectively, and K denotes the number of predefined clusters. 

The outcome of K-means clustering would summarize the temporal fluctuation in the 

measures of 24-hour spatial accessibility and demonstrate the notable temporal variation. 

Last, we employ Pearson's correlation to examine whether each hour's 

measurement is properly assigned to its corresponding temporal cluster. For example, 

assume that temporal clustering allocates 2 p.m. to temporal cluster B. If the correlation 

coefficient between the measures at 2 p.m. and temporal cluster B shows the highest 

value, compared to other temporal clusters, it indicates that the hour's measures are 

properly assigned to a temporal cluster. 

 

4.3. Case study: Accessibility to EV charging stations 

To demonstrate the framework, we take EV charging stations in Seoul, South 

Korea, as a case study. EVs are eco-friendly transportation, so many countries put efforts 

into promoting their usage (Mahmoudi et al. 2019). The usage of EVs is highly 
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correlated with sufficient and easy access to charging stations, and it makes EV owners 

equip personal chargers in their homes (Lee et al. 2019, 2020). However, given the high 

percentage of multi-unit residents in Seoul, it is not the case. Moreover, insufficient 

access to EV charging stations is the major barrier to prospective owners (Park, Kim, et 

al. 2017). Therefore, it is highlighted that the accessibility of public EV charging 

stations is particularly important for Seoul to enhance its sustainability. 

4.3.1. Study area and period 

Our study area is a section of Seoul (i.e., Seocho-gu, Gangnam-gu, and Songpa-

gu) in South Korea (Figure 4.2). It largely consists of both residential and commercial 

areas. The study period was isolated to January 15, 2020, which is a Wednesday. A 

weekday was chosen since it was thought to have an increased temporal variation in the 

floating population (i.e., demand) and mobility. The population density in the study area 

becomes substantially greater during the daytime due to the influx of commuters. Also, 

the study area may have increased traffic congestion during rush hour, given its location 

between the Central Business District (CBD) of Seoul and a large residential area in the 

suburbs. 
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Figure 4.2. Study area. 

 

4.3.2. Data 

We employed three major data sources to furnish temporal dynamics in supply, 

demand, and mobility. First, the information of EV charging stations (i.e., supply) were 

obtained from Korea Environment Corporation (2020). It provides the locations, 

operating hours, the number of equipped chargers of EV charging stations. We utilized 

operating hours to furnish the temporal fluctuation of the supply, provided by operating 

EV charging stations. Weights of charging stations were applied based on the number 

and types of chargers that each station has. Considering a fast charger charges ten times 

faster than a slow charger (Korea Environment Corporation 2020), weights of ten and 

one were assigned to the faster chargers and slower chargers, respectively. Second, 

floating population data (i.e., demand) was collected from Seoul Open Data Plaza (Seoul 
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Metropolitan Government 2020). The data were estimated from the interactions among 

cell phone transaction data, public transportation usage data, and census data. The 

floating population is expected to be a more accurate distribution of the population 

during the daytime (Järv et al. 2018) as it includes the non-residential population 

commuting to Seoul, which is disregarded in the census data. Third, the estimated travel 

time with traffic congestion (i.e., mobility) was called from iNavi Maps API 

(https://docs.toast.com/en/Application%20Service/Maps/en/Overview/), which was 

approximated based on users' empirical wayfinding usage data. To reflect the flow of 

traveling to supply, the origin and the destination were set to demand locations and 

supply locations, respectively. 

4.3.3. Geographical unit of reference and threshold travel time 

We determined 250m hexagons as the geographical unit of reference in the case 

study. Given that the G2SFCA method assesses spatial accessibility based on the 

inclusion of the centroid of the geographical unit (Luo and Wang 2003, Dai 2010), the 

method may be susceptible to have the modifiable areal unit problem (MAUP) (Neutens 

2015, Rong et al. 2020). Hexagons would alleviate the issue because they have constant 

distances between the edge and the centroids. We set the size of the hexagons based on 

the speed limit of non-primary roads within Seoul (i.e., 30km/h); the size of hexagons 

(i.e., 250m) corresponds to the distance traveled in a minute.  

Implementing proper threshold travel time is tied to the accuracy of the spatial 

accessibility measurements because it reflects people's willingness to travel for service 

(Chen and Jia 2019). However, the threshold travel time for EV charging stations is 
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under-investigated given the early stage of EVs. Hence, we determined threshold travel 

time for the 24-hour spatial accessibility measurements with  preliminary analysis and 

utilized it as a sensitivity analysis of our framework. The analysis took various threshold 

travel times (i.e., 5 minutes, 10 minutes, 15 minutes, 20 minutes, 25 minutes, and 30 

minutes) into static G2FCA method (i.e., static variables for supply, demand, and 

mobility). The result showed that some of the threshold travel times may not be eligible 

for the 24-hour measurement (Figure 4.3), since they either underestimated (i.e., 5 

minutes) or overestimated (i.e., 25 minutes and 30 minutes) the size of the catchment 

area. 5-minute threshold travel time produced an excessive number of hexagons with 

low accessibility, indicating the threshold travel time should be enlarged. In contrast, 25-

minute and 30-minute threshold travel times produced monotonous distribution, 

indicating the threshold travel time should be reduced. 

 

 
Figure 4.3. A preliminary analysis to determine the proper threshold travel times. 
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4.4. Results 

4.4.1. Measuring 24-hour spatial accessibility  

The spatial accessibility to EV charging stations dynamically varied both 

spatially and temporally over 24 hours, regardless of different threshold travel times 

(i.e., 10 minutes, 15 minutes, and 20 minutes). Hexagons with high value were spatially 

clustered at specific hours, as shown in Figure 4.4. In other words, the accessibility 

measures were not significantly different in nighttime, whereas the inequality in 

accessibility increased in daytime.  

With shorter threshold travel time, the measures tend to be more spatially 

clustered. Specifically, spatial clusters of 10-minute threshold travel time measurement 

were noticeably presented from 7 to 23 time period. In 15-minute threshold travel time 

measurement, the spatial clusters were shown at the following hours: 8, 9, 16, 17, 18, 

and 19. Spatial clusters of 20-minute threshold travel time measurement were presented 

at only 18 and 19. 
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* Note: The numbers in the panel represent the hours when the measurements were 

taken.  

Figure 4.4. Spatial distribution of 24-hour spatial accessibility measures. 

 

 

  



 

77 

 

4.4.2. Temporal clustering 

The results from both elbow and silhouette methods indicated that three clusters 

are optimal for temporal clustering for every measurement (Figure 4.5). The elbow 

method produced a decreasing trend; the sum of the squared distances (i.e., y-axis) 

decreased as the number of clusters (i.e., x-axis) increased. The obvious slope change 

points of the elbow method were at three clusters (i.e., 10 minutes: -12.84 to -1.83, 15 

minutes: -3.83 to -0.58, 20 minutes: -1.77 to -0.26). The silhouette method also resulted 

in the highest average silhouette coefficients at three clusters: 0.65, 0.65, and 0.64 for 

10-minute, 15-minute, and 20-minute threshold travel times, respectively. 

 

 
Figure 4.5. Determining the optimal number of temporal clusters. 
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K-means clustering allocated the hours of 24-hour spatial accessibility 

measurements into three temporal clusters as shown in Figure 4.6: temporal cluster A 

(named nighttime cluster), temporal cluster B (named daytime cluster), and temporal 

cluster C (named afternoon rush hour cluster). Since the accessibility measures were 

distributed on a microscopic scale, we defined the scales of the x-axis (i.e., mean of each 

hour's measurement) and the y-axis (i.e., standard deviation of each hour's measurement) 

as 10-4 for better representation. Despite the disparity in distributions, the clustering 

results for three threshold travel time measurements were largely similar. Temporal 

cluster A had high mean and low standard deviation. Low mean and moderate standard 

deviation were showed in temporal cluster B. Temporal cluster C presented high mean 

and high standard deviation.  

Histograms demonstrated distinctive distribution for each temporal cluster 

(Figure 4.6). The histogram was drawn from the mean of accessibility of the hours 

associated with a temporal cluster. For example, in histogram, the temporal cluster A of 

10-minute threshold travel time measurement were calculated from the mean of 

accessibility from 11 p.m. to 6 a.m. Histograms of each temporal cluster A (i.e., 

nighttime cluster) were close to the normal distribution, presenting equalized 

accessibility across the study area. In contrast, histograms of each temporal cluster B 

(i.e., daytime cluster) and cluster C (i.e., afternoon rush hour cluster) were right-skewed. 

This illustrated notable inequality of accessibility during daytime and afternoon rush 

hour, that many hexagons had limited accessibility whereas only some hexagons had 

sufficient accessibility. 
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* Note: (Clustering) the numbers in each plot indicate the hour the measurement is taken. 

(Histogram) Extreme accessibility measures beyond 20*10-4 are omitted. 

Figure 4.6. Results of temporal clustering and corresponding histograms. 

 

  



 

80 

 

Each temporal cluster presented different spatial distributions, regardless of 

threshold travel times (Figure 4.7). X, Y, and Z in Figure 4.7 denoted the Central 

Business District (CBD), greenbelt, and a park, respectively. Temporal cluster A showed 

the spatial distribution of accessibility gradually decreased from the center of study area 

to the peripheral regions. Especially, CBD (X) had moderate accessibility. Temporal 

clusters B and C indicated a significant inequality in accessibility. Only a few locations 

presented sufficient accessibility (e.g., greenbelt (Y) and park (Z)), whereas people in 

most regions had the limited accessibility to EV charging stations. 

 
Figure 4.7. Spatial distribution of the measures of each temporal cluster. 
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4.4.3. Validation 

The correlation analysis between the measures of temporal clusters and the 

measures of 24-hour spatial accessibility validated the clustering results (Figure 4.8). 

The measures of each cluster were highly correlated with the measures at its associated 

hours (i.e., r > 0.9), whereas they had relatively low correlation coefficient with the 

measures of other hours (i.e., r < 0.5). For instance, the correlation coefficients at the 

hours (from 8 a.m. to 5 p.m.; temporal cluster B of 15-minute threshold travel time 

measurement) with temporal cluster A, B, and C were ranged from 0.677 to 0.831, from 

0.942 to 0.984, and from 0.699 to 0.904, respectively. As the hours showed the highest 

correlation coefficient with their assigned temporal cluster, it proved that temporal 

clustering properly allocated the measures of 24-hour spatial accessibility. 

 
* Note: Every Pearson's correlation analysis is significant at level of 0.01, and the 

brightness of each cell indicates the correlation coefficient (Pearson's r). 

Figure 4.8. Correlation analysis between the measures of temporal clusters and the 

measures of 24-hour spatial accessibility. 
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4.5. Discussion 

Our conceptual framework could facilitate better decision-making on 

infrastructure allocation. As our result shows, 24-hour spatial accessibility measurements 

can be summarized into a few temporal clusters. Namely, the temporally clustered 

measures can point out a particular space and time requiring additional supply. For 

example, the spatial accessibility in the case study fluctuated as of the three temporal 

phases (i.e., nighttime, daytime, and afternoon rush hour). Considering people tend to 

use public EV charging stations from 12 p.m. to 5 p.m.(Park, Jeon, et al. 2017), the 

measures of temporal cluster B would be more prioritized than others in the context of 

decision-making. This would address a potential vagueness granted from the 24-hour 

measurements and may recommend the regions near the CBD for placing supplementary 

EV charging stations. 

In addition, the framework could be beneficial in examining the attributes (i.e., 

inequality and spatial mismatch) of spatial accessibility focusing on a particular time 

period. As the temporally clustered measures represent the accessibility of a series of 

hours, it would support further investigation of how the interaction of inputs (i.e., 

supply, demand, and mobility) impacts the temporal fluctuations of the measures. In our 

case study, the sufficient and equalized accessibility of the nighttime cluster (i.e., 

temporal cluster A) may be attributed to low supply, low demand, and high mobility. 

High mobility facilitated people to travel further to access EV charging stations and 

alleviated the negative impact of most non-24-hour charging stations operated from 9 

a.m. to 5 p.m. However, daytime cluster (i.e., temporal cluster B) illustrated insufficient 
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and imbalanced accessibility, due to the interaction among high supply, high demand, 

and low mobility. Whereas most EV charging stations were operating, high demand (i.e., 

the influx of commuters) caused high competition of supply, and low mobility 

deteriorated access to peripheral charging stations, especially near the CBD (marked X 

in Figure 4.7). Low supply, high demand, and low mobility may be responsible for the 

inequality of accessibility intensified in the afternoon rush hour cluster (i.e., temporal 

cluster C). While high demand and low mobility persisted, most non-24-hour EV 

charging stations were closed after 5 p.m. 

The proposed framework can be applied to any type of infrastructure and region. 

With the improved availability of time-sensitive data, previous studies have expanded 

the temporal granularity of spatial accessibility to diverse domains, such as healthcare 

resources (Chen et al. 2020, Wang et al. 2020) and food outlets (Chen et al. 2017, Wang 

et al. 2018). In this context, our study would contribute by extracting meaningful 

information from spatial/spatiotemporal/space-time accessibility measurements. For 

instance, our framework is applicable to synthesize the 24-hour variation of emergency 

medical service accessibility (Xia et al. 2019). On top of the enhanced accuracy with the 

24-hour spatial accessibility measurements, our framework would provide a better 

understanding of accessibility issues persisting for a particular time period. To be 

specific, the framework would tackle potential issues by demonstrating the notable 

changes of spatial accessibility, identifying a particular space and time with limited 

access, and proposing locations to place additional infrastructures. 
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4.6. Conclusion 

Our study proposes a conceptual framework for leveraging temporal changes of 

spatial accessibility to furnish better policy implications. With temporal clustering, our 

framework helps in extracting valuable implications from spatial accessibility 

measurements, which is potentially voluminous to examine temporal variation of the 

measures. As demonstrated in the case study, our framework synthesizes the 24-hour 

spatial accessibility measurements into a few distinctive temporal clusters, which in turn 

improve the understanding of temporal fluctuations of accessibility and facilitate 

policymaking of infrastructure allocation. Therefore, our finding shows that temporal 

clustering would provide an insight for policy implications, whereas 24-hour 

measurements may be redundant and superfluous. Our study extensively contributes to 

forthcoming accessibility studies by proposing a new framework to comprehend 

temporal changes embedded in their measures.  

Our study has limitations. First, the empirical usage data of EV charging station 

was not utilized in our analysis. Unlike other facilities (e.g., hospital; Wang 2020), it is 

challenging to keep track of a user's origin (i.e., demand location) traveling to a supply 

facility, in the case of EV charging stations. Second, we only considered a single 

temporal clustering method. Given that different clustering methods may not provide 

identical results (Jain 2010), our result may vary according to clustering method. Our 

next step is to measure spatial accessibility to EV charging stations using empirical data, 

once the data is available. With the empirical data, it would also be worthwhile to 

investigate which clustering method would be more suitable for our framework. 
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5. AN APPROACH TO ENHANCE THE REPRODUCIBILITY OF TEMPORAL 

CHANGES IN SPATIAL ACCESSIBILITY: PRIORITIZING THE TEMPORAL 

DYNAMICS OF SUPPLY, DEMAND, AND MOBILITY 

 

5.1. Introduction 

Measurement of 24-hour changes in spatial accessibility is critical to enhancing 

the accuracy of measurements (Hu & Downs, 2019; Järv et al., 2018). It not only 

improves the temporal granularity of spatial accessibility measurements but also 

uncovers the temporal dynamics of accessibility within a day, which may not be taken 

into account in the conventional measurement based on deterministic variables (Park et 

al., 2021). In addition, it promotes the policy implications of spatial accessibility 

measurement. In general, spatial accessibility improves the understanding of spatial 

inequality of access and proposes locations that require additional infrastructures (Kang 

et al., 2020; Neutens, 2015). Owing to enhanced temporal granularity, 24-hour 

measurements of spatial accessibility are useful in examining how spatial disparity of 

access changes over time and identifying a specific space and time for placing additional 

resources (Järv et al., 2018; Park et al., 2021). 

With the recent advancements in computational platforms and big data analysis 

methods (Griffith, 2021), the enhanced granularity of time-dependent variables 

facilitates the examination of temporal changes in spatial accessibility (Boisjoly & El-

Geneidy, 2016; Hu & Downs, 2019). In spatial accessibility measurements, supply, 

demand, and mobility are treated as input variables, and their interactions are considered 
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in the assessment of the ease of access to an infrastructure of interest. The current 

approaches used time-variant attributes such as operating hours (Järv et al., 2018; Y. 

Wang et al., 2018), floating population (Järv et al., 2018; Lee et al., 2018; Xia et al., 

2019), and estimated travel time (Chen et al., 2017, 2020; Y. Wang et al., 2018) to 

represent temporal changes of supply, demand, and mobility, respectively. The operating 

hours of supply facilities depict that people only can access and obtain service when 

facilities are open (Park & Goldberg, 2021). The demands represented with the floating 

population illustrates that people want to obtain services not only from their residential 

locations but also from their schools or jobs (Lee et al., 2018). The estimated travel time 

indicates that the travel costs between two locations could significantly differ within a 

day according to the time-dependent congestion (Chen et al., 2020; Sahebgharani & 

Haghshenas, 2021). 

Despite the substantial benefit of improved temporal granularity, the limited 

availability of time-dependent variables restricts broader applications (Neutens, 2015). 

Time-dependent data are only available in a few locations. For example, Uber movement 

data (https://movement.uber.com/), which provide time-dependent mobility and have 

been utilized for numerous studies on geographic information systems, are only 

available for 13 cities in the United States. In addition, the floating population are 

difficult to identify because of privacy concerns, as their data are frequently obtained by 

tracing GPS (global positioning system)-enabled devices (Park et al., 2021). Therefore, 

full implementation of time-dependent variables could be practically challenging; thus, it 

has been a constraint in the incorporation of temporal dynamics in previous studies and 
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reduced the accuracy of measurements. To our knowledge, only two previous studies 

considered all the temporal dynamics of spatial accessibility measures (Järv et al., 2018; 

Park et al., 2021). Most studies were limited to incorporating several temporal dynamic 

variables into the measurements of demand (Lee et al., 2018; Xia et al., 2019), mobility 

(Chen et al., 2020), supply and demand (Hu & Downs, 2019), or supply and mobility (Y. 

Wang et al., 2018). 

To enhance the reproducibility and expand the applications of spatial 

accessibility studies, the limited availability of time-dependent variables should be 

overcome. While the commercial data on temporal dynamics have been claimed to have 

high accuracy, the temporal changes in supply, demand, and mobility could be estimated 

with public data such as census data. For example, Census Transportation Planning 

Products (CTPP) provides commute information with the residential and work locations 

of people; thus, this data set could be used to estimate the commuter-adjusted population 

(Hu & Downs, 2019; Kobayashi et al., 2011). In addition, taxi or for-hire vehicles in big 

cities share their historical travel time information, which is an excellent sample data set 

for predicting the entire mobility pattern throughout a day (Chen et al., 2020). Not only 

the time-dependent information obtained from public data sets but also three inputs (i.e., 

supply, demand, and mobility) prioritized according to their contributions to temporal 

changes could be useful for facilitating the examination of temporal dynamics of 

measures. Given that the input variables may show different patterns over 24 hours, they 

may have various weights on the prediction of the temporal changes of spatial 

accessibility granted from the full implementation. 
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To address the issue, our study used publicly available data sets and examined 

the importance of temporal dynamics for each input (i.e., supply, demand, and mobility) 

in the case of accessibility to healthcare resources in New York City. Specifically, we 

conducted a sensitivity analysis with eight scenarios of inputs (i.e., every possible 

combination of the dynamic or static forms of three input variables) that are required by 

the two-step floating catchment area (2SFCA) method (Luo & Wang, 2003; F. Wang, 

2012). For example, in the first scenario, all variables were taken in their static forms, 

and in the eighth scenario, all the variables were taken in their dynamic (time-dependent) 

forms. We then compared the measures of spatial accessibility produced by the eight 

scenarios to determine the priority of temporal dynamics that each variable possesses. 

When the correlation coefficient between a scenario and the complete set of time-

dependent variables (i.e., scenario 8) is high, the variables implemented in the scenarios 

would be critical for estimating temporal changes. Furthermore, we investigated the 

period that was likely to have a spatial accessibility that could not be predicted if the 

time-dependent variables are partially incorporated. Our study was conducted to address 

the following research questions: 1) How can the temporal dynamics of spatial 

accessibility be estimated with a broadly available data set (e.g., census data)? 2) Which 

input should be prioritized to maximize the accuracy of measurement from the limited 

availability of time-dependent data? 3) Which hour is the most susceptible, resulting in 

low accuracy, if the time-dependent variables are partially implemented? 
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5.2. Analytical framework 

Our analytical framework consisted of the following three steps (Figure 5.1): 

data preparation, sensitivity analysis, and correlation analysis. The first step was to 

populate the temporal dynamics of the input variables (i.e., supply, demand, and 

mobility) and determine their static forms from publicly available data sets. We 

estimated the 24-hour variations of supply, demand, and mobility on the basis of their 

operating hours (Y. Wang et al., 2018), commuter-adjusted population (Kobayashi et al., 

2011), and historical travel time of taxi trip records (Gong et al., 2020), respectively. In 

detail, the time-dependent supply was determined on the basis of the operating hours of 

each healthcare resource, as people may not obtain services when facilities are closed. 

We also considered commute to estimate the floating population, given that commute 

takes a significant portion of the daily movement of people. The temporal dynamics of 

mobility were granted from the taxi trip data, as these are a good sample to represent 

time-dependent traffic congestion. In the meantime, we defined the static forms of the 

three inputs as follows: The static form of supply was defined as all healthcare resources 

open for 24 hours, regardless of individualized operating hours. The static demand was 

defined as the residential population, assuming that people travel to the facility only 

from their homes. Static mobility was computed with a network data set obtained from 

OpenStreetMap (OSM), presuming no traffic congestion throughout a day. 



 
Figure 5.1. Analytical framework 



The second step is the sensitivity analysis of spatial accessibility measurements 

based on eight scenarios that take either the static or dynamic inputs. To determine the 

impacts of the dynamic variables on the measures of spatial accessibility (i.e., 2SFCA 

method), we defined eight scenarios, representing every possible combination of static or 

dynamic use of the three inputs (i.e., supply, demand, and mobility) (Figure 5.1). In 

detail, scenario 1 used only the static variables, scenarios 2–4 used one dynamic variable 

and two static variables, scenarios 5–7 used two dynamic variables and one static 

variable, and scenario 8 represented the use of all dynamic variables. 

With these combinations of inputs, we measured the spatial accessibility to 

healthcare resources in New York City with the enhanced 2SFCA method (Delamater et 

al., 2013; Luo & Qi, 2009). The method is the best-known approach for spatial 

accessibility measurement (Luo & Wang, 2003; F. Wang, 2012) and has been applied 

for various urban infrastructures such as healthcare resources (Kang et al., 2020), job 

opportunities (Hu & Downs, 2019), and service utilities (Fu et al., 2017). As its name 

implies, the 2SFCA method consists of two steps. In the first step (Equation 5.1), the 

local supply-to-demand ratio of each supply facility is calculated. In the second step 

(Equation 5.2), the supply-to-demand ratios of the facilities that are accessible from each 

demand location are summed. Given that our study focused on the temporal changes of 

spatial accessibility, we appended the time variable (t) at each input, defining each step 

as follows: 

R𝑗
𝑡 =  

𝑆𝑗
𝑡

∑ 𝐷𝑘
𝑡 𝑓(𝑑𝑘𝑗

𝑡 )
𝑘∈{𝑑𝑘𝑗

𝑡 ≤𝑑0}

  Equation 5.1 
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𝐴𝑖
𝑡 =  ∑ 𝑅𝑗

𝑡𝑓(𝑑𝑖𝑗
𝑡 )𝑗∈{𝑑𝑖𝑗

𝑡 ≤𝑑0}  =  ∑
𝑆𝑗

𝑡𝑓(𝑑𝑖𝑗
𝑡 )

∑ 𝐷𝑘
𝑡 𝑓(𝑑𝑘𝑗

𝑡 )
𝑘∈{𝑑𝑘𝑗

𝑡 ≤𝑑0}
𝑗∈{𝑑𝑖𝑗

𝑡 ≤𝑑0}   Equation 5.2 

where 𝐴𝑖
𝑡 and 𝑅𝑗

𝑡 represent the accessibility and local supply-to-demand ratio of locations 

i and j at hour t, respectively. 𝑆𝑗
𝑡 denotes the degree of supply facility (e.g., the number 

of physicians) at location j at hour t, 𝐷𝑘
𝑡  refers to the degree of demand (e.g., the number 

of people) at location k at hour t, 𝑑𝑘𝑗
𝑡  is the travel cost from location k to location j at 

hour t, and 𝑓() is the distance-decay function to depreciate the value of supply and 

demand based on travel cost. 

In our implementation, we specified the threshold travel time and distance-decay 

function as 60 minutes and log-logistic function, respectively. While the E2SFCA 

method uses the Gaussian function with a 30-minute threshold travel time to estimate the 

travel behavior of people accessing healthcare resources (Ghorbanzadeh et al., 2021; 

Luo & Qi, 2009), the log-logistic function with a 60-minute threshold travel time 

provided a more accurate prediction (Delamater et al., 2013; Jia et al., 2017). In detail, 

we divided the 60-minute catchment area into 10 subzones based on travel times (5, 10, 

15, 20, 25, 30, 35, 40, 45, and 60 minutes) and assigned corresponding weights (0.946, 

0.754, 0.551, 0.340, 0.296, 0.226, 0.177, 0.142, 0.116, and 0.083, respectively). 

In the third step of the analytical framework, the Pearson correlation analysis was 

used to determine the priority of temporal dynamics in inputs and investigate which 

hours are likely to provide low accuracy in partially implementing time-dependent 

variables. To be specific, the first correlation analysis investigated the relationship 



 

93 

 

between each scenario (i.e., scenarios 1–7; partial implementation of dynamic variables) 

and scenario 8 (i.e., the full implementation of dynamic variables). The correlation 

coefficient indicated if or how each scenario was impacted by missing dynamic 

variables. For example, if scenario 4 provided a higher correlation coefficient than did 

scenarios 2 and 3, the dynamic variable implemented in scenario 4 (i.e., mobility) would 

be essential to investigate the temporal changes in spatial accessibility. Thus, the 

temporal dynamics in mobility would be prioritized over the inputs used in the other 

scenarios (i.e., scenario 2: supply and scenario 3: demand). The second correlation 

analysis further examined the correlations of each hour between each scenario and 

scenario 8. If scenario 5 results in a low correlation coefficient during the daytime, this 

indicates that the dynamic variables implemented in the scenario (i.e., supply and 

demand) were not effective enough to predict the temporal changes during the daytime, 

and the dynamic variable omitted in the scenario (i.e., mobility) would be critical to 

complement the gap. 

 

5.3. Study area and data 

We measured spatial accessibility to healthcare resources in New York City 

(Figure 5.2). Given that the location had a high fatality rate from the COVID-19 

pandemic, the importance of sufficient hospital access should be acknowledged. The 

study area consists of five counties (New York, Bronx, Queens, Kings, and Richmond), 

29,678 physicians (i.e., 11,749 healthcare facilities), and 8,457,737 residents. Both 

hospitals and residents were concentrated in New York County (i.e., Manhattan 
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borough) but had the lowest densities in Richmond County (i.e., Staten Island borough). 

In addition, we selected the neighborhood tabulation area (NTAs) as the geographic unit 

of analysis because it was the finest geographical unit where all variables were available 

time-dependently. 

 

Figure 5.2. Study area 

 

We used the following three databases to obtain the geospatial information of 

supply, demand, and mobility. First, we used Data Axle Reference Solutions 

(https://referenceusa.com/) to get the addresses and numbers of hospital physicians and 

summed their numbers for each neighborhood tabulation area (NTA). Second, we used 

data from the American Community Survey (ACS) to obtain the number of residents in 
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each census tract and aggregate it for NTAs. Third, we took advantage of OSM to 

calculate the travel time from the centroid of demand NTA to the centroid of supply 

NTA. 

While the three data sets represent static supply, demand, and mobility, we also 

used three additional databases to populate their temporal dynamics (Table 5.1). First, 

the operating hour information of each hospital (i.e., dynamic supply) was retrieved from 

Google Maps API, with Wednesday as the day of reference, given that operating hours 

may differ within a week. If the operating hour information was missing, we assumed 

the healthcare facility was open from 9:00 am to 5:00 pm, as these were the most 

common operating hours within the study area. Second, the time-dependent demand was 

calculated on the basis of the commuter information obtained from CTPP. It provides 

information on the time and number of workers leaving their residential locations and 

arriving at work, thereby enabling the computation of the commuter-adjusted population 

(Kobayashi et al., 2011). Third, dynamic mobility was estimated on the basis of taxi and 

for-hire vehicle (e.g., Uber) trip records. The trip data stored information on travel time 

and the distance between the NTAs of each transaction. We collected the travel records 

for May 2019, and missing information was filled with travel time calculated with OSM. 
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Table 5.1. Static and dynamic forms of inputs 

 Supply Demand Mobility 
Geographic 

unit 

Static 
Every health 

care 

Residential 

population 

Travel time via 

OSM network 
Neighborhood 

tabulation areas 

(NTAs) 
Dynamic 

Time-variant 

operating 

health care 

Commuter-

adjusted 

population 

Taxi trip records 

between NTAs 

 

5.4. Results 

The temporal changes of accessibility measurements in the eight scenarios were 

divided into two groups (Figure 5.3). The first group included scenarios 2, 3, and 5, and 

their temporal changes were close to scenario 1 (i.e., static measurement). They showed 

high accessibility in New York County (Manhattan borough) and poor accessibility in 

Richmond County (Staten Island borough), which is the pattern often explained with the 

conventional accessibility measurements. Negligible temporal changes were observed; 

accessibility measures only differed for a couple of NTAs in New York and Queens 

counties. On the other hand, the second group consisted of scenarios 4, 6, and 7 and 

provided significant temporal changes in the accessibility measures close to scenario 8 

(i.e., full dynamic measurement). While their accessibility measures at 3:00 a.m. showed 

a similar pattern with the conventional measurement (i.e., high value in the center and 

low value in the peripheral locations), the spatial distribution of measures at 9:00 a.m., 

2:00 p.m., and 8:00 p.m. varied substantially. In detail, the accessibility at 9:00 a.m. and 

2:00 p.m. were spatially dispersed, illustrating high accessibility not only in New York 
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County but also in Queens and Kings counties. The accessibility at 8:00 p.m. indicated 

that high values were more clustered in New York County. 

 

 
Figure 5.3. Temporal changes in the accessibility measures for the eight scenarios. 
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Figure 5.3. Continued. 

 

The correlation analysis between scenarios 1–7 and scenario 8 (Table 5.2) 

resulted in high correlation coefficients with scenarios 4, 6, and 7 (𝑟 > 0.9;  𝑝 ≤ 0.05) 

and low correlation coefficients with scenarios 2, 3, and 5 (𝑟 < 0.7;  𝑝 ≤ 0.05). The 

analysis provided high correlation coefficients in the following order: scenarios 7 

(0.991), 6 (0.99), 4 (0.979), 2 (0.679), 5 (0.676), and 3 (0.669). To be specific, the 

scenarios with time-dependent mobilities (i.e., scenarios 4, 6, and 7) produced 

substantially higher correlation coefficients, whereas the scenarios with static mobilities 

(i.e., scenarios 2, 3, and 5) presented lower correlation coefficients. Scenario 3 (i.e., 

static supply, dynamic demand, and static mobility) had a lower correlation coefficient 
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than the scenario with static measurement (i.e., scenario 1 [0.672]). In addition, the 

correlation analysis result proved the spatial pattern of accessibility provided by each 

scenario. Scenarios 2, 3, and 5 presented a pattern similar to that of scenario 1 (i.e., static 

measurement); however, the temporal changes of accessibility of scenarios 4, 6, and 7 

aligned with those of scenario 8 (i.e., full dynamic measurement). 

 

Table 5.2. Correlation analysis between scenarios 1–7 and scenario 8 

Scenario Correlation coefficient Rank 

1 0.672 6 

2 0.679 4 

3 0.669 7 

4 0.979 3 

5 0.676 5 

6 0.99 2 

7 0.991 1 

 

Further correlation analysis of each hour accessibility measurement between 

scenarios 1–7 and scenario 8 (Figure 5.4) revealed that scenarios 2, 3, and 5 had 

significantly low correlation coefficients (𝑟 < 0.7;  𝑝 ≤ 0.05) during the daytime. They 

provided similar patterns of correlation coefficient; the correlation coefficients started to 

decrease from 5:00 a.m., were minimized at 8:00 a.m., and increased from 5:00 p.m. 

Although they produced relatively higher correlation coefficients during the night (𝑟 >

0.8;  𝑝 ≤ 0.05), these scenarios do not reflect the temporal changes of spatial 

accessibility over 24 hours. On the other hand, scenarios 4, 6, and 7 showed high 
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correlation coefficients throughout a day, with marginal variation, although they 

partially implemented time-dependent variables. Scenarios 4 and 6 presented slightly 

low correlation coefficients between 9:00 a.m. and 5:00 p.m., whereas scenario 7 

showed a lower value in the early morning (6:00 a.m.–9:00 a.m.). 

 
Figure 5.4. Hourly correlation between scenarios 1–7 and scenario 8. 

 

5.5. Discussion 

Our results indicate that the implementation of time-dependent mobility should 

be prioritized over the use of time-dependent supply and demand to examine temporal 

changes of spatial accessibility over 24 hours. The higher correlation coefficient 

indicates that the measures of spatial accessibility and their temporal changes obtained in 

two different scenarios were similar (Park et al., 2021). In both spatial accessibility 

measurements and correlation analysis, the scenarios with time-dependent mobility (i.e., 

scenarios 4, 6, and 7) provided high correlation coefficients to the full dynamic 

implementation than the other scenarios; the top three correlation coefficients were 

observed from scenario 7 (dynamic demand and mobility), scenario 6 (dynamic supply 

and mobility), and scenario 4 (dynamic mobility). Scenario 4 produced a higher 
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coefficient than scenario 5, in which two dynamic variables were used (supply and 

demand). This result indicates that time-dependent mobility should be incorporated into 

measurements to examine the temporal changes of spatial accessibility, particularly in 

24-hour investigations. 

The roles of input variables (i.e., supply, demand, and mobility) in spatial 

accessibility measurements may explain their different influences on temporal changes. 

As shown in our results, time-dependent mobility is considered the most critical element 

for estimating temporal changes of spatial accessibility. In general, the degree of 

mobility determines the size and shape of catchment areas. Therefore, the temporal 

fluctuation of mobility dynamically changes the number of people who have access to 

infrastructures and the number of facilities that are accessible from a particular location. 

However, supply and demand regulate the supply-to-demand ratio in catchment areas 

defined by mobility; thus, they may have a relatively more minor impact than mobility 

on temporal changes of spatial accessibility. In addition, their marginal effect on the 

measures may be attributed to the fact that our study used the operating hours of 

hospitals and a commuter-adjusted population to populate their temporal dynamics. 

Their temporal changes in the study area were simple; most hospitals operate either 

during the daytime or for 24 hours, and most commuters move in the morning and 

evening rush hours. 
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5.6. Conclusion 

To promote the reproducibility of temporal changes in spatial accessibility 

measurement, in this study, we assessed the priority of three inputs (mobility, demand, 

and supply) when applying temporal dynamics. We used publicly available data sets to 

populate the temporal dynamics of the inputs and conducted a sensitivity analysis of 

eight scenarios to determine whether the inputs were used in their static and dynamic 

forms for the 2SFCA method. Our results show that the temporal dynamics of mobility 

were critical for estimating the temporal changes in spatial accessibility that resulted 

from the full implementation of time-dependent variables. Therefore, the use of time-

dependent mobility would enhance the reproducibility of temporal changes in spatial 

accessibility measurements. In other words, the lack of time-dependent mobility would 

decrease the accuracy of measurements during the daytime. Consequently, our study 

provided insight into the input that should be prioritized as a dynamic form, and this will 

help overcome the current lack of data in forthcoming spatial accessibility studies. 

Despite our results, this study has the following limitations. First, the results may 

not be generalizable, considering that the temporal changes of the input variables would 

be different depending on the location. For example, the typical working hours vary 

across the world, which may affect the temporal changes of the floating population. In 

the United States, most people work from 8:00 a.m. to 5:00 p.m., whereas Koreans work 

from 9:00 a.m. to 6:00 p.m. Second, the spatial granularity of the mobility data set was 

coarse. Owing to privacy concerns, the origin and destination of the taxi trip data were 

available as units of NTAs, whereas the estimated travel time was subject to vary within 
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an NTA. Third, the temporal granularities of supply and demand should be increased. 

For the time-dependent supply, we used the operating hours of hospitals weighted with 

the number of physicians. However, physicians would have different working hours and 

may not be available during operating hours; therefore, this warns of the weight of 

hospitals being exaggerated. The time-dependent demand only reflects the variation 

caused by the commute; however, a megacity would have a more dynamic fluctuation of 

people due to the influences of schools or tourists. 
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6. CONCLUSIONS 

 

This dissertation sheds light on the significance of the use of time-dependent 

variables for spatial accessibility measurements to provide better policy implications. By 

focusing on the 2SFCA method, the aim was to 1) examine the impact of the uncertainty 

attributed to the temporal dynamics on the measures; 2) increase the accuracy of 

measurement with the observed temporal changes of supply, demand, and mobility; and 

3) improve the reproducibility of the temporal dynamics from limited time-dependent 

variables. In summary, the outcomes presented in Chapter 3 reveal that the temporal 

uncertainty of the inputs would dynamically change the degree of accessibility and 

intensify the inequality of access in the worst-case scenario. In Chapter 4, the present 

author indicated that the enhanced temporal granularity of the measurements would 

provide an improved understanding of the time-dependent spatial disparity of access and 

support a better allocation of supplementary infrastructure at a specific space and time 

(Park et al. 2021). To take advantage of the benefits from the time-dependent variables, 

the sensitivity analysis discussed in Chapter 5 revealed that implementing time-

dependent mobility, rather than time-dependent supply and demand, should be 

prioritized. Consequently, this dissertation would help address geographical problems by 

presenting advanced spatial accessibility measurements. It would provide better insights 

into the disciplines of geography and urban planning along with the current data-rich 

environment, considering that the significance of the geographic information science and 

system is rooted in decision support systems. 
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This dissertation proceeded to address the following two main research 

questions: 1) How can we leverage the time-dependent variables in the measurement of 

spatial accessibility? 2) How can we provide improved policy implications by taking 

advantage of the time-dependent variables? 

The temporal changes of supply (i.e., availability of ICU beds) and mobility (i.e., 

time-dependent travel time) were taken into account in Chapter 3 to address the temporal 

uncertainties of the spatial accessibility of ICU beds in the Greater Houston area, Texas, 

during the COVID-19 pandemic. The stochastic distributions of accessibility confirmed 

the persistence of the spatial disparity of adequate (i.e., sufficient and reliable) and 

inadequate (i.e., insufficient and unreliable) accessibility between the urban (i.e., 

downtown Houston) and rural areas (i.e., surrounding counties) under the uncertainty of 

the inputs. It also provides awareness that the inequality may become severe under the 

worst-case scenario. In addition, the comparison between the accessibility of ICU beds 

and the case-fatality ratio of COVID-19 indicated that the high fatality in the rural 

regions might be attributed to the inadequate accessibility to ICU beds. 

In Chapter 4, a complete set of time-dependent variables (supply, demand, and 

mobility) is used, and the 24-hour changes in spatial accessibility to EV charging 

stations in Seoul, South Korea, are investigated (Park et al. 2021). The chapter presents 

the importance of using time-dependent variables, as it could uncover the temporal 

dynamics of accessibility within a day, which may remain concealed when the 

conventional measurements are used. In addition, the chapter takes advantage of 

temporal clustering, presenting two aspects thereby 24-hour changes of accessibility 
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could help decision makers. Given that temporal clustering produced a few distinctive 

patterns of accessibility over time, it would, first, support the examination of temporal 

changes of access inequality (e.g., evening cluster in this research work). Second, it 

would have a strength in proposing a specific space and time for placing additional EV 

charging stations (e.g., afternoon cluster in this research work). 

The aim of the investigation presented in Chapter 5 was to increase the 

reproducibility of temporal changes in spatial accessibility measurements by using 

publicly available datasets. To pursue the benefits of the time-dependent variables 

presented in Chapter 4, the priority of the inputs (supply, demand, and mobility) was 

examined to maximize the temporal changes of spatial accessibility when partially 

implementing temporally dynamic variables. From the measurements of the spatial 

accessibility of health-care resources in New York City, time-dependent mobility was 

found to be critical in estimating the temporal dynamics of accessibility, while time-

dependent supply and mobility had negligible impacts. In addition, the hourly correlation 

analysis indicated that the underestimation of time-dependent mobility would show a 

lower accuracy of measurement in the daytime. Therefore, the chapter highlights that the 

use of time-dependent mobility would possibly result in significant policy implications 

even if not all inputs are available as temporally dynamic.  

Two barriers must be overcome to pursue the benefits from the implementations 

of the time-dependent variables and further promote the policy implications of spatial 

accessibility measurements. The first issue is the limited availability of the time-

dependent variables. Although time-dependent data from public databases were used to 



 

107 

 

estimate the temporal dynamics presented in Chapter 5, commercial databases, such as 

Google Maps API, provide more accurate and higher granularity information of time-

dependent variables. However, taking advantage of commercial databases is challenging 

owing to the substantial cost. This prevents easy access of researchers to produce the 

significant policy implications presented in chapters 3 and 4 and reduces the extent of 

application of the temporal changes in spatial accessibility. With the trend of 

reproducibility and replicability of geospatial studies (Wilson et al. 2020), investigating 

the temporal dynamics in high-frequency cities would be helpful once more data are 

made available to the public. The second issue is computational intensity, which 

frequently entails a spatiotemporal analysis. For example, as mentioned in Chapter 3, the 

assessment of the stochastic distribution of spatial accessibility took 3 months owing to 

the Monte-Carlo simulation, despite the multiprocessing with a Python package. Chapter 

4 reveals that the travel time matrix of each origin and destination over 24 hours required 

2 months to obtain. In addition to the data availability issue, this also possibly limits the 

broader applications owing to the significant processing time. The availability of high-

performance computing to the geospatial analysis platform (Wang 2010) would greatly 

advance the applications of spatial accessibility measurements. 

The following are the proposed subsequent research agenda: 1) spatial 

accessibility measurement at scale and 2) the use of multimodal transport along with the 

time-dependent variables. Given that the spatial accessibility of health-care resources 

may have a direct relationship to the fatality of COVID-19, expanding Chapter 3 to a 

larger scale such as to the state or national level would be essential to prove the 
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correlation statistically. The spread of COVID-19 showed various patterns of space and 

time; that is, different locations suffered from the virus at different periods. Therefore, 

the sequence of the temporal changes of spatial accessibility of ICU beds would enhance 

the understanding of the impact of the current pandemic and possibly prevent fatality 

from the next pandemic. In addition, the other future plan is to reproduce the temporal 

dynamics in a high-frequency city by using both time-dependent variables and 

multimodal transports. As demonstrated in the literature review (Chapter 2), previous 

studies were limited to partially incorporating the dynamic variables, either time-

dependent variables or multimodal transportation, into measurements. Given the 

dynamic interaction of time-dependent and multimodal transportation, this would reflect 

how people travel within a city and how the accessibility changes accordingly by 

uncovering their full dynamics. Therefore, this agenda will also be helpful in 

constructing digital twin cities. 
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