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ABSTRACT

Processing large-scale graphs has increasingly become a critical component in a vari-

ety of fields, from scientific computing to social analytics. The size of graphs of interest

are becoming explosively large, preventing them from fitting into the memory of a single-

processor system and highlighting the need for fast and efficient methods to process such

graphs. Because of this, there exists a clear need for distributed data structures and parallel

algorithms to facilitate the processing of these large graphs.

Graph traversals – wherein a computation proceeds from one vertex to another along

the edges of a graph – are an important type of algorithm, as they form the backbone

of several other important graph algorithms (e.g., shortest paths, centrality metrics and

connected components). Improving the performance of traversals therefore in turn ben-

efits all algorithms dependent on them. Despite receiving a great deal of attention from

many researchers for several decades [1, 2, 3, 4, 5], traversal-based computations remain

notoriously difficult to parallelize effectively.

In this proposal, we will discuss two broad techniques for improving the performance

of graph traversals and general parallel graph algorithms:

1. Asynchrony. Increasing the asynchrony of the algorithm allows one to avoid global

synchronization, while still being mindful of the negatives of unbounded asynchrony

including wasted work.

2. Nested parallelism. Allowing to express graph algorithms in a naturally nested

parallel manner enables us to fully exploit all of the available parallelism inherent

in graph algorithms.
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1. INTRODUCTION

Graphs are data structures that represent relationships, and there are many types of rela-

tionships that appear in the real world. Recently, there has been an explosion in the amount

of data that has been captured through real-world processes. Because of this, analyzing

extremely large graphs has become a critical component in a variety of fields of study, in-

cluding physics, chemistry, biology, social analytics and many others. In bioinformatics,

metagenomic assembly is performed by processing large de Bruijn graphs to reconstruct

genomes from DNA sequencing reads into a metagenome [10]. For robotic motion plan-

ning, large graphs called roadmaps are used to plan the motion of robots [11, 12] through

various kinds of physical environments. Traversals of graphs representing a physical do-

main are used to model neutron transport [13] to solve various nuclear physics problems.

Particle movement problems, modeled as n-body simulations, can be solved using various

large tree methods such as Barnes-Hut [14]. In national security use cases, large scale

graph processing can be used to predict key players in covert networks [15] through vari-

ous centrality metrics, such as betweenness centrality [16] and closeness centrality [17].

As the size of real-world graphs becoming increasingly large, it is often impossible

to fit modern data sets into the memory of a single-processor system. Further, their size

highlights the need for fast and efficient methods to process such graphs. Because of

this, there exists a clear need for distributed data structures and parallel algorithms to

facilitate the processing of these large graphs. However, the irregular access pattern for

graph workloads, coupled with complex graph structures, varying topology, and large data

sizes make efficiently executing parallel graph workloads challenging.

One major challenge that arises for parallel graph processing is workload imbalance

between the processors, which is exacerbated by the straggler effect [18] with typical level-

1



synchronous [19] execution strategies. In this dissertation, we provide several ways to

approach this challenge, from load balancing the problem statically to using an execution

strategy that is more asynchronous in nature.

Many real-world graphs that have scale-free [20] properties present another challenge

for distributed graph processing. Scale-free graphs have a small number of vertices–named

hub vertices–that have a disproportionately large number of incident edges which would

overload any processor that is assigned these vertices. We introduce a technique to process

hub vertices in a nested parallel manner to better distribute the work and communication

associated with the hub, as well as exploit the natural hierarchical nature of modern com-

puter architectures.

Lastly, an empirical study of many distributed graph processing frameworks [21] shows

that an optimized sequential implementation of a graph algorithm can often outperform a

highly parallel execution utilizing hundreds of cores due to the fact that many parallel

frameworks have significantly high serial overhead. This dissertation provides guidance

on how a graph framework can tailor its constituent components to extract the most per-

formance from a given workload by selecting an appropriate graph data structure, runtime

implementation and active vertex set representation.

1.1 Contributions

In this dissertation, we develop several broad techniques for improving the perfor-

mance of parallel graph traversals and general parallel graph algorithms:

• Allowing a traversal to proceed asynchronously in a bounded manner. Increas-

ing asynchrony in a bounded manner avoids costly global synchronization at scale,

while still alleviating the penalty of unbounded asynchrony including redundant

work [6]. In addition, asynchronous processing enables a new family of approxi-

mate algorithms when applications are tolerant to a fixed amount of error [8].
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• Exploiting the machine hierarchy using nested parallelism. Allowing to express

graph algorithms in a naturally nested parallel manner enables us to fully exploit all

of the available parallelism inherent in graph algorithms [9].

• Tailoring the graph framework’s components for a given workload. Graph pro-

cessing workloads are highly input-sensitive and require careful consideration about

the implementation of the various components in a graph framework. We provide

guidance to inform the choice between various execution policies, frontier storage

strategies, data structure representations and runtime implementations.

Using bounded asynchrony, we are able to scale a breadth-first search (BFS) work-

load to 98,304 cores [6], where traditional techniques stop scaling at smaller core counts.

Through the use of nested parallelism, we are able to process scale-free graphs up to 1.6x

faster [9] and are able to fit graphs into memory that would otherwise overload the memory

capacity of a node using traditional methods. By tailoring the graph framework’s compo-

nents to a given workload, we are able to achieve an order of magnitude in performance

improvements compared with a naive and input-agnostic approach.

1.2 Outline

The content of this dissertation is organized into seven chapters as follows. Chapter 2

describes parallel graph processing in general, the challenges that arise in such workloads

and a summary of related work in the field.

In Chapter 3, we describe the design and implementation of the STAPL Graph Library

(SGL) and a summary of its components, design decisions and a few use cases.

In Chapter 4, we introduce a novel approximate algorithm for breadth-first search that

utilizes the concept of bounded asynchrony and provides direction for further approximate

graph algorithms using the same technique.
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In Chapter 5, we demonstrate how nested parallelism can be used to improve the per-

formance of graph algorithms for certain kinds of scale-free graphs.

Chapter 6 unifies the various execution policies of the STAPL Graph Library and pro-

vides a mathematical foundation of the SGL execution model.

Finally, Chapter 7 outlines various considerations that a real-world graph processing

framework must take into account to achieve not just scalability, but high performance

sequentially and on single shared-memory nodes.

Appendix A introduces a framework for reproducible systems software research while

Appendix B provides a case study for a nested hierarchical wavefront algorithm.
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2. PARALLEL GRAPH PROCESSING

Parallel graph processing systems can be broadly placed into two related but distinct

categories: graph-targeted big-data processing systems [22] and high-performance graph

computing. Although these areas are highly related, there are clear distinctions between

them. With big-data processing systems, the architecture that such systems are designed

to work with are typically clusters of commodity hardware, with off-the-shelf networking

equipment. Such setups are often provisioned using a cloud compute service, such as

Amazon Web Services [23] , Google Cloud Platform or Microsoft Azure.

Although the work in this dissertation is mainly targeted for high-performance comput-

ing scenarios, much of the presented techniques can be easily adapted to big-data process-

ing systems. Conversely, work in the area of big-data processing systems has influenced

work in this dissertation as well.

2.1 Challenges

Computational patterns that emerge in graph algorithms offer many challenges for

executing such workloads efficiently. Lumsdaine et. al [24] concisely describe several

fundamental characteristics of graph algorithms which hinder their performance:

• Data-driven computation. The computation of a graph algorithm often follows

the edges of the graph itself, rather than being explicitly expressed in the program.

Thus, the computation and communication of a parallel graph algorithm directly

corresponds to the graph structure and is highly input dependent.

• Unstructured problems. Unlike structured problems, such as those operating on

regular arrays of data, the irregularity of graph data makes it difficult to establish a

partition of the problem where computation and communication is balanced across
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the parallel machine.

• Poor locality. Because graph traversals typically compute through the relationships

in the graph itself, access to the entities exhibit irregular patterns and suffer from

poor spatial locality. Additionally, data is usually accessed once and therefore, there

is little temporal locality.

• Low amount of computation per unit of data. In many graph algorithms, the ac-

tual computation for a single vertex or edge is usually a small number of operations,

resulting in most of the execution time being spent accessing and communicating

data, rather than performing operations on the data.

In the following section, we describe the design decisions we make in this dissertation

to overcome these challenges and how these decisions enable the creation of a scalable

and high-performance graph processing framework.

2.2 Design Decisions

As there exist many frameworks and approaches for processing large graphs in parallel,

the design decisions made for each approach have impacts in many aspects, including

scalability, ease of use and the types of workloads that are amenable with the approach.

2.2.1 Synchronization and Communication

For distributed graph processing frameworks, their synchronization and communica-

tion models are two of the most fundamental aspects that affect the performance of work-

loads using that framework. Firoz el. al [25] categorize features of graph processing

frameworks into various classification, one of which being the orderedness of the compu-

tation. Some graph frameworks provide an ordered model, such as the level-synchronous

model [26, 5] where the computation proceeds iteratively in the graph level by level. An-

other point on this spectrum is an unordered model such as asynchronous where global
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synchronizations are replaced with point-to-point synchronizations, which can increase

the degree of parallelism, but which may also introduce redundant work.

There are many frameworks that utilize a level-synchronous model [27, 3] and many

that use an asynchronous model [28, 29]. Neither model provides superior performance

against a diverse set of graph analytics workloads, and thus the type of model to use is

dependent on the workload itself.

In this dissertation, we utilize a hybrid model named k-level asynchronous (KLA)

where the asynchrony is bounded, which allows parametric control of asynchrony rang-

ing from completely asynchronous execution to partially asynchronous execution to level-

synchronous execution.

2.2.2 Push vs Pull

When a framework processes a single vertex in a graph algorithm, the direction in

which data flows characterizes whether that framework is push-based or pull-based. A

push-based framework sends data from that vertex outward to its neighbors. A pull-based

framework reads data from its neighbors to compute the vertex’s new value. Some hybrid

frameworks, such as Ligra [30] and Grazelle [31] are able to adaptively switch between

push and pull based on the given workload.

Distributed graph frameworks naturally lend themselves to push-based models, as ver-

tices can asynchronously send data to their neighbors and overlap this communication

with processing of other vertices. Pregel[3] popularized the push-based method and many

graph frameworks have followed the same model.

It is typical for pull-based models to be used in shared-memory graph frameworks, due

to the need for reads of arbitrary portions of the graph for each vertex that is processed.

A naive implementation of a pull-based model in distributed memory would incur a large

amount of synchronous reads, resulting in degraded performance. However, there exist
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distributed graph frameworks such as GraphLab [32] and PowerGraph [33] which utilize

a pull-based model. These frameworks are able to use techniques such as caching of local

vertices on remote processors to minimize the number of fine-grained remote reads.

In this dissertation, we utilize a graph algorithm model that follows the push method.

As our focus is on distributed-memory architectures, the push model will allow us to

achieve high asynchrony and thus high scalability.

2.2.3 Partitioning

How a graph’s elements are partitioned across a distributed system has a large impact

on any computation that is performed over that graph. As many graph computations in-

volve a traversal of the graph’s edges, an edge spanning vertices that are stored in different

memory address spaces represents communication across the network to traverse the edge.

Minimizing the number of cut edges–that is, edges that span multiple partitions– is cru-

cial for obtaining scalable performance with low amounts of communication. At the same

time, it is important to balance the amount of work in each partition by maintaining a rel-

atively equal amount of vertices (or in some cases, the work that a vertex represents) for

each partition. The problem of partitioning a graph that both minimizes the number of cut

edges and equalizes the vertex set across the partitions is well known to be NP-complete

[34], and thus many heuristic algorithms have been proposed.

Multilevel graph partitioners, such as METIS [35], have been shown to work well in

practice. Many general and reusable parallel packages [36, 37] that partition a graph have

been proposed and implemented that work well for a broad variety of graphs.

It has been observed that graphs whose degree distributions follow a power-law are

especially difficult to partition effectively [38]. Many techniques have been introduced to

more efficiently work with power-law scale-free graphs in parallel. One heuristic that has

been show to be scalable and produce good quality partitions is using label-propagation
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community detection algorithms to create the partitioning [39].

However the presence of hub vertices presents challenges to keeping a balanced num-

ber of vertices and edges per processor using traditional vertex-centric partitioning, as the

placement of a hub could overload any one processor. More sophisticated types of par-

titioning have been proposed, including checkerboard 2D adjacency matrix partitioning

[40], edge list partitioning [41] and specialized techniques for distributing and processing

hub vertices [28, 33, 42].

In addition to the partitioning of the graph, how the vertices are ordered within a par-

tition can also have a large impact on performance of typical graph workloads. McSherry

et. al. [21] show that using a Hilbert curve ordering for vertices within a partition can

increase locality and improve performance of PageRank. Another work shows that re-

ordering vertices based on frequency (a derivative of degree ordering) improves cache line

reuse in some cases [43].

2.3 Related Work

The vertex-centric programming model, popularized by Pregel [3] and its open-source

equivalent Giraph [44], has become a standard in parallel graph processing. The so-called

think like a vertex [45] paradigm allows algorithm writers to express their computation in

terms of vertex programs, which describe the operations to be executed on a single vertex

and its incident edges.

2.3.1 Big Data

Although the term big data has no formal definition and opinions differ on what ex-

actly constitutes big data, the seminal big-data project Hadoop [46] defined big data as

"datasets which could not be captured, managed, and processed by general computers

within an acceptable scope" [47]. One of the key differences of a big-data framework vs a

high-performance computing framework is the design philosophy of big-data frameworks
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being devised for clusters of commodity hardware, whereas high-performance computing

frameworks are tailored with supercomputer architectures in mind. For example, common

big data frameworks such as Hadoop and Spark [48] often use a distributed file system

to store intermediate results during a computation, whereas a high-performance comput-

ing framework will typically assume that the machine has enough memory to store all

necessary immediate values and avoid using I/O altogether during computation.

When it comes to big data processing of graph data, Pregel and Giraph sparked a trend

in graph-specific frameworks to perform large scale analysis of relational data. GraphX

[27] is a state-of-the-art big data framework for graph processing built on top of Spark

and is widely used in many industries. Many other frameworks [49, 50, 51, 52, 53, 54,

55, 56] have been since introduced to process large graph inputs on clusters of commodity

architectures. Although these frameworks introduce concepts that are in the same spirit of

the work in this dissertation, we focus mainly on supercomputing architectures.

Many big-data graph processing frameworks assume that the input graph is too large

to fit into memory, even when utilizing the combined memory capacity of an entire clus-

ter. For these scenarios, optimized usage of I/O is key and semi-external memory graph

processing frameworks [57, 41] often develop techniques to cache and reuse data as much

as possible to minimize disk access. Similarly, there has been a large amount of work to

process large graph inputs on single commodity machines, which often use out-of-core

memory techniques to process inputs too large to fit into memory. These frameworks

(e.g., GraphChi [58], GridGraph [59] and GraphMP [60]) typically split the graph inputs

into smaller shards and process them one at a time, or process the algorithm in a sliding-

window fashion such as in GraphMP.

In addition to graph processing systems, there are several projects that aim to provide

tools for online transaction processing (OLTP) and online analytical processing (OLAP)

specifically for graph workloads. Many of these projects aim to provide graph databases
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that can easily represent relational data and perform online queries about the graph. Neo4j

[61] is a popular graph database management system that provides a persistent data store

as well as an API to issue graph queries in a custom graph query language. Apache Tin-

kerPop [62] is a project that aims to standardize OLTP and OLAP graph frameworks by

providing an extensive framework with several graph storage backends and querying sys-

tems. Although graph OLTP and OLAP handle querying potentially distributed graphs,

their use cases are typically distinct from standard graph processing and thus are often not

used for the type of large scale, highly parallel workloads that we target in this dissertation.

Also in the realm of big-data processing of large graph datasets are several tools and

frameworks that help bridge commodity big-data processing frameworks to run in high-

performance computing environments. Singularity [63] is a solution to run containers on

standard supercomputing platforms, which allows for developers and analysts to package

their big-data suite of tools into a Docker [64] container and execute their workloads on

a highly-coupled modern supercomputer with only modest loss of performance. Magpie

[65] is another tool whose aim is to allow big-data frameworks based on Spark [48] to

run on standard supercomputers. Although these approaches help users migrate their ex-

isting big-data workloads to supercomputers, the resulting performance of such solutions

is often much lower than using a framework that is specifically designed to be run in a

supercomputing environment.

2.3.2 High Performance Computing

Many general purpose frameworks and runtimes [66, 67, 30, 1] for graph processing

have been proposed and are used in practice. Galois is an amorphous data parallel pro-

cessing framework with support for many vertex-centric paradigms [68]. Grappa [66] is

a distributed shared memory framework designed specifically for data-intensive applica-

tions. Graph-based domain-specific libraries [69] exist and have been shown to perform

11



well in practice. Abstract Graph Machine [70] is a model for parallel graph algorithms

that allows for the expression of various graph algorithms and schedulings. PGX.D [71]

is a graph library that follows a BSP model with a remote reads and provides several opti-

mizations for edge partitions and ghost-noding. Various frameworks have been proposed

that exploit the non-uniform memory access (NUMA) nature of modern multi-core archi-

tectures including Polymer [72] and GraphGrind [73].

There exist many frameworks outside of the vertex-centric model, ranging from subgraph-

centric graph processing [74] to path-centric models [75] to sparse linear algebraic repre-

sentations [76, 77, 78, 79]. Some hybrid models have been proposed as well, including

DRONE [80] which presents a hybrid vertex-centric and subgraph-centric framework. Al-

though these models have been shown to provide better performance for certain types of

graph analytics, we focus on the vertex-centric model because of its ease of use and ex-

pressivity.

Many techniques have been proposed specifically to improve breadth-first search. Most

notably, the Graph 500 benchmark [81] has sparked much research into improving breadth-

first search on scale-free networks for distributed-memory architectures [82, 40]. A hybrid

top-down bottom-up breadth-first search was presented in [83] that shows large improve-

ment on scale-free networks. Checconi and Petrini [84] provide insight into the kinds of

optimizations needed to achieve performance surpassing trillions of traversed edges per

second and introduce a hybrid 1D-2D partition where hubs are distributed across proces-

sors, while non-hubs follow a traditional 1D partition.

As accelerators increase in popularity, there has been a large range of work for acceler-

ating graph workloads on these devices. There exist many recent frameworks [85, 86, 87,

88, 89] for graph processing on GPUs. In addition, many specific graph algorithms have

been shown to benefit from accelerators, including breadth-first traversals [90, 91, 92, 93],

connected components [94], graph coloring [95] and PageRank [96]. As accelerators are
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typically coupled with a multi-core processor in modern architectures, there have been at-

tempts to develop unified heterogeneous graph frameworks that utilize both the CPU and

accelerator such as in Gluon [97]. Beyond GPUs, graph specific accelerators have been

proposed [98, 99, 100] and have been shown to work well in practice. In this dissertation,

we focus primarily on graph processing on parallel systems comprised of CPUs. How-

ever, there is potential for future work that adapts the work presented in this dissertation

to heterogeneous systems.
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3. THE STAPL GRAPH LIBRARY1

The work in this dissertation is implemented using the STAPL Graph Library (SGL) [101,

102, 6]. SGL is a generic parallel graph library that provides a high-level framework that

abstracts the details of the underlying distributed environment. It consists of parallel graph

containers (pGraph s), views that allow these containers to be accessed in custom ways,

a collection of parallel graph algorithms, and a graph execution model that allows devel-

opers to easily create their own custom graph algorithms.

3.1 Library Overview

The fundamental component of SGL is the pGraph container. The pGraph container

is a distributed data store built using the pContainer framework (PCF) [103] provided

by the Standard Template Adaptive Parallel Library (STAPL) [104]. It provides a shared-

object view of graph elements across a distributed-memory machine. The STAPL Run-

time System (STAPL-RTS) [105] and its communication library ARMI (Adaptive Remote

Method Invocation) [106] use the remote method invocation (RMI) abstraction to allow

asynchronous communication on shared objects while hiding the underlying communica-

tion layer (e.g MPI, OpenMP).

Containers store actual graph elements (i.e., vertices and edges), but algorithms operate

on pViews [107], which provide an abstraction of the container. The pView construct

operates as an intermediary between the data and how it is accessed, similar to the iterator

concept in the C++ standard library [108].

1Part of this chapter is published in "Harshvardhan, Adam Fidel, Nancy M. Amato, and Lawrence
Rauchwerger. 2014. KLA: a new algorithmic paradigm for parallel graph computations. In Proceedings
of the 23rd international conference on Parallel architectures and compilation (PACT ’14). ACM, New
York, NY, USA, 27-38.". Additionally part of this chapter is reprinted with permission from Adam Fidel,
Sam Ade Jacobs, Shishir Sharma, Nancy M. Amato, Lawrence Rauchwerger, "Using Load Balancing to
Scalably Parallelize Sampling-Based Motion Planning Algorithms," 2014 IEEE 28th International Parallel
and Distributed Processing Symposium, May 2014. Copyright 2014 IEEE.
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Algorithm Description

Breadth-first search Unweighted shortest path tree from a single vertex
Single-source shortest path Weighted shortest path tree from a single vertex
Connected components Determine connectivity of the graph
PageRank Estimate importance of vertices based on random walks
Betweenness centrality Centrality of vertices based on shortest path betweenness
Approximate diameter Estimate diameter of graph d within O(2d)
Triangle count Count the number of closed triangles
Link prediction Predict new edges based on current connectivity
k-core Compute smaller representative version of a large graph
Community detection Community vertex membership based on label propagation

Figure 3.1: Common parallel graph algorithms provided by STAPL Graph Library.

A suite of common parallel graph algorithms is provided for users to immediately use,

including breadth-first search, connected components, PageRank, single-source shortest

path, betweenness centrality, triangle count and many more. Table 3.1 provides a small

sample of the algorithms provided by the library along with a short description of their

computation. In total, there are 30 parallel graph algorithms provided by the STAPL Graph

Library. The following section describes the model in which these algorithms are writ-

ten and provides the background necessary for algorithm developers to create their own

algorithms in the same model.

3.2 Algorithm Model

The algorithm model for SGL is a push-based vertex-centric model consisting of three

fine-grained operators: a vertex operator, a neighbor operator and an initialization operator.

Each operator receives a single vertex as a parameter and returns a boolean. The meaning

of the return differs depending on the operator. The algorithm processes these operators in

an iterative manner, where each iteration is called a superstep.
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s t r u c t my_vertex_operator {
bool opera tor ( ) ( Vertex v , V i s i t o r v i s ) {

/ / I n i t i a t e v i s i t a t i o n to a l l neighbor v i s i t o r s and pass some value
i n t l a b e l = v . p roper ty ( ) ;
v i s . v i s i t _ a l l _ e d g e s ( ne ighbor_operator { l a b e l } ) ;
/ / Vote to cont inue
r e t u r n t rue ;

}
} ;

s t r u c t my_neighbor_operator {
i n t incoming_value ;
bool opera tor ( ) ( Vertex v ) {

/ / Update proper ty i f incoming l a b e l i s smal le r
i f ( incoming_value < v . p roper ty ( ) ) {

v . p roper ty ( ) = incoming_value ;
/ / Continue t r a v e r s a l
r e t u r n t rue ;

}
/ / Do not re −invoke ver tex opera tor
r e t u r n f a l s e ;

}
} ;

s t r u c t m y _ i n i t i a l i z a t i o n _ o p e r a t o r {
bool opera tor ( ) ( Vertex v ) {

/ / Set the i n i t i a l l a b e l to be i t s ID
v . p roper ty ( ) = v . d e s c r i p t o r ( ) ;
r e t u r n t rue ;

}
} ;

Figure 3.2: Example label-propagation algorithm with its vertex, neighbor and initializa-
tion operators

3.2.1 Vertex Operator

A vertex operator defines the computation that occurs on a single vertex and is trig-

gered for all active vertices in the active set, often called the frontier. Typically, the vertex

operator will perform one or both of two actions

1. Mutate the vertex’s properties based on the actions that have been performed either

during initialization or during the execution of visits from the neighbor operator.

2. Send some value derived from the vertex and its properties to other vertices in the

graph.
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For example, in the PageRank [109] algorithm, the vertex operator takes its current

rank value–which has either been initialized from the beginning or has been updated

through neighbor visits in previous iterations–and computes its new rank value. Then

this new rank value, divided by the vertex’s degree, is sent to all of its neighbors.

As a comparison with other graph frameworks and models, the vertex operator is sim-

ilar to the sending portion of Pregel’s Compute method [3], the enqueuing portion of

HavoqGT’s visitor [41] and the CreateMessage method in ASYMP’s programming

model [29].

The return value of the vertex operator is a vote to continue. If all of the vertex opera-

tors return false in a given iteration, then the execution terminates.

3.2.2 Neighbor Operator

The algorithm’s neighbor operator describes the computation that occurs when a vertex

is visited from another vertex through an edge. Typically, the neighbor operator carries

some state in it which will be used to either update the vertex’s property or determine

whether or not the traversal will continue along the path including this vertex.

The return value of the neighbor operator indicates whether or not the vertex should

be active in the next superstep. That is, a return value of true indicates that the vertex will

be added to the frontier of the next superstep and the vertex operator will be invoked on it.

Figure 3.2 gives a vertex operator and a neighbor operator for a simple label-propagation

algorithm. Whenever a vertex is processed by the vertex operator, the vertex’s property

is sent to all if its neighbors. In the neighbor operator, the incoming label is compared

against its current label and updated if it is smaller. The traversal will continue only if the

label was updated. In the end, a vertex v will be labeled with the smallest initial label from

a vertex u provided that u is reachable from v.

Note that in our owner-computes programming model, each vertex is only ever pro-
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cessed by exactly one processing element (e.g., thread). Therefore, there is no need to

guard the operators with any mutual exclusion technique.

The neighbor operator is similar to the individual operations of Pregel’s Compute

method that process messages, [3], the beginning portion of HavoqGT’s visitor [41] and

the ReceiveMessage method in ASYMP’s programming model [29]. Unlike similar

graph models, such as in Pregel and HavoqGT, a graph algorithm in SGL splits its sending

and receiving computations into two separate operators. By having two operators, we are

provided flexibility on when to schedule these operators. This is useful for our different

execution policies (particularly k-level asynchronous) which will be discussed in a later

section.

3.2.3 Initialization Operator

The final operator used to specify a graph algorithm is the initialization operator. It is

a fine-grained vertex centric operator that initializes the state of each vertex and returns

a boolean indicating whether or not a given vertex should be processed in the first super-

step. Specifically, the return value determines if a vertex appears in the frontier, which is

described in detail in Section 7.1.

In Figure 3.2, the initialization operator first sets the label of each vertex to be its ID

and then marks all vertices as active in the first superstep.

3.2.4 Application Interface

A synopsis of the current interface for the user-provided operators and visitation meth-

ods is provided in Table 3.3.

Once the user has written a vertex-operator and neighbor-operator to describe their al-

gorithm, they can start execution of the algorithm by passing it to the function sgl::execute.

This function represents the graph processing engine, described further in Section 3.2.5.

Figure 3.4 provides an example graph algorithm implementation that an algorithm devel-
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Method Description

bool vertex_operator::operator()(Vertex,
Visitor)

Method that is called for every active vertex in the frontier.

bool neighbor_operator::operator()(Vertex) Method that is called upon visitation from a neighbor vertex.
bool init_operator::operator()(Vertex) Method that is called once at the beginning of the algorithm to initialize

the frontier and vertex state.
void Visitor::visit_all_edges(Vertex, op) Visit all of the neighbors of the given vertex and apply the neighbor

operator.
void Visitor::visit_edge(Vertex, op,
target)

Visit a single neighbor and apply the neighbor operator.

void Visitor::visit_edge_if(Vertex, op,
pred)

Visit all neighbors of a vertex that match a given predicate and apply
the neighbor operator.

Figure 3.3: API for user-provided operators and visitation methods.

vo id my_algori thm ( Graph g ) {
sg l : : execute (

execu t ion_po l i cy ,
my_vertex_operator ,
my_neighbor_operator ,
my_ in i t_opera tor ,
superstep_occupancy ,
o rder ing

) ;
}

Figure 3.4: Example usage of sgl::execute to start the graph processing engine.

oper would write. Besides the operators described previously, there are a few additional

parameters to sgl::execute that control the behavior of the execution engine.

The first parameter, the execution policy, is an object describing the method by which

the graph processing engine will execute the operators. The type of policies provided by

SGL are level-synchronous, asynchronous [101], k-level asynchronous [6], hierarchical

out-degree, hierarchical in-degree [102] and out-of-core [110].

The last two parameters (superstep_occupancy and ordering) are parameters

that enable optimizations with the frontier representation. They are described in further

detail in Section 7.1.
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1 Frontiercurrent ← ∅
2 Frontiernext ← ∅
3 foreach v ∈ V in parallel
4 active← InitOp(v)
5 if active then
6 Frontiercurrent ← Frontiercurrent ∪ v
7 end
8 end
9 continue← true

10 while continue do
11 continue← false
12 foreach v ∈ Frontiercurrent in parallel
13 continue← continue∨ VertexOp(v, visitor)
14 end
15 Frontiercurrent ← ∅
16 Swap(Frontiercurrent, F rontiernext)
17 end

Algorithm 1: Logical outer loop of graph processing engine

3.2.5 Graph Processing Engine

The user-provided operators describe the semantics of a graph algorithm in its entirety.

The method by which these operators are used to execute the graph algorithm are explained

in Algorithm 1 and Algorithm 2.

In Algorithm 1, we see that the initial set of active vertices is empty. Next, the ini-

tialization operators are applied on all of the vertices in parallel and the vertices which

the operator returned true are then added to the frontier of the first superstep. Afterwards,

there is an outer loop over all supersteps. For a single superstep, each vertex has a vertex

operator applied on it in parallel. The result of the vertex operator determines whether or

not the algorithm should continue for another superstep or if it should end.

The user-provided vertex operator is free to make calls to the visitor object to spawn

visitations to neighbors. One such visitation method (Visitor::visit_all_edges)
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1 Function Visitor::visit_all_edges(v, NeighborOp)
2 foreach (s,t) in OutNeighbors(v) do
3 async
4 reinvoke← NeighborOp(t)
5 if reinvoke then
6 Frontiernext ← Frontiernext ∪ t
7 end
8 end
9 end
Algorithm 2: Internal visitation algorithm that applies neighbor operators. This is an
example using the level-synchronous execution policy.

is described in Algorithm 2. In this function, a list of all out-going neighbors is retrieved

from the vertex and each neighbor is visited asynchronously. At a lower-level, this visita-

tion is handled using STAPL’s remote-method invocation [105] support through MPI for

distributed-memory or thread-local queues for shared-memory. During this asynchronous

visitation, the user-provided neighbor operator is called on the neighbor vertex. Based on

the return value of the neighbor operator, the vertex is then added to the frontier of the next

superstep.

Note that Algorithm 2 provides an idealized visitation policy that implements a level-

synchronous execution. For a fully asynchronous execution, the vertex operator could

be directly invoked again instead of adding the vertex to the next frontier. In general, a

new execution policy such as k-level asynchronous [6] and hierarchical communication

reduction [102] will replace the neighbor visitation routine with a specialized version.

3.3 Bounded Asynchrony

Parallel graph algorithms are often expressed in level-synchronous or asynchronous

paradigms. Level-synchronous paradigms [26, 5] iteratively process vertices of a graph

level by level. This model guarantees the current level’s computation to have completed
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before starting the next one through the use of global synchronizations at the end of each

level. Level-synchronous algorithms tend to perform well when the number of levels is

small, but suffer from poor scalability when the number of levels is large. Bulk syn-

chronous parallel (BSP) algorithms [19] can naturally be expressed in this paradigm. It-

erative application of the map/reduce pattern [111] is one common way to implement

level-synchronous algorithms. It proceeds by spawning tasks for neighbors of active ver-

tices, and each task may proceed independently. The asynchronous paradigm replaces

global synchronizations with point-to-point synchronizations, which can increase the de-

gree of parallelism, but which may also require the completion of redundant work. The

asynchronous paradigm replaces expensive global synchronizations with less expensive

point-to-point fine-grained synchronizations, which potentially increases the available de-

gree of parallelism and thus may perform better on graphs with many levels. How-

ever, asynchronous algorithms may perform redundant work. For example, an asyn-

chronous breadth-first search may re-visit vertices multiple times as shorter paths are dis-

covered [112]. Furthermore, as a practical limitation with most large-scale systems, too

many messages in flight may choke the communication-layer, which is usually designed

for few large messages as opposed to many small messages. For example, a large-degree

vertex may generate many messages (one for each neighbor), which may lead to flooding

the system. In general, the level-synchronous paradigm is better suited for small-diameter

graphs with high-degree vertices, while the asynchronous paradigm is better for high-

diameter graphs with low-degree vertices. Choosing the right paradigm depends on the

system, input graph, and algorithm. This implies different implementations and optimiza-

tions for algorithms, with no easy way to switch between them.

The STAPL Graph Library provides the k-level asynchronous (KLA) paradigm [6],

which allows parametric control of asynchrony ranging from completely asynchronous ex-

ecution to partially asynchronous execution to level-synchronous execution. Partial asyn-
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chrony is achieved by generalizing the BSP model to allow each superstep to process up

to k levels of the algorithm asynchronously, balancing the cost of global synchronizations

with the cost of redundant work to obtain improved execution time. In this respect, KLA

may be viewed as a generalized BSP model where each superstep runs an asynchronous

algorithm. A related approach is also used in the ∆-stepping single-source shortest path

algorithm [113], which is a special-case of KLA.

This paradigm works in phases, similar to the BSP model. However, each phase is

allowed to proceed asynchronously up to k steps by creating asynchronous tasks on active

vertices. When k = 1, KLA processes the graph one level at a time, i.e., in a level-

synchronous fashion. Assuming the level-synchronous variant of the algorithm performs

d iterations, if k ≥ d, then KLA is equivalent to the asynchronous paradigm. However, for

1 < k < d, the algorithm proceeds in ⌈ d
k
⌉ phases, referred to as KLA supersteps (KLA-

SS). Each superstep processes up to k levels asynchronously. The KLA paradigm requires

that the algorithmic invariant holds at the point of synchronization. However, in between

synchronizations, no guarantee is implied.

This section is reprinted with permission from [6].

3.3.1 Determining k

The performance of KLA algorithms is dependent on the choice of a good value for

k. However, it is non-trivial to determine the optimal value of k given an arbitrary input

graph, machine and algorithm. There exist guidelines regarding choosing a reasonable

value for k that are fairly simple. For example, it is often a good choice to use k = 1 for

any scale-free graph due to the high potential for wasted work when encountering a hub

vertex. Conversely, a large value of k is recommended for acyclic graphs, or any graph

where wasted work would be minimal.

Besides following simple guidelines and manually choosing levels of asynchrony, we
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also present an adaptive strategy that picks an appropriate k based on the current local

topology of the graph as the algorithm progresses. This strategy is applicable in the general

case.

Adaptive Determination of k

As it is often not feasible to run the same workload with different levels of asynchrony

to choose the best value of k, the STAPL Graph Library provides a simple adaptive strategy

(Adaptive KLA) that dynamically varies k to process the graph. The strategy dynamically

chooses the best value for the next iteration based on information from current and previ-

ous iterations.

The algorithm starts with k = 1 (or some user-defined start value) and doubles the

value of k after each superstep, provided the following conditions hold:

1. A high out-degree vertex has not been encountered

2. The asynchronous penalty (e.g., wasted work) has not exceeded a threshold

3. The per-vertex processing time of the current superstep has not risen sharply com-

pared to previous supersteps

If any of these conditions are not met for the current superstep the k value for the

next superstep is halved. In addition, any high out-degree vertices found in the current

superstep are postponed for processing in the next superstep. This is to reduce the penalty

for processing them prematurely. Lastly, if the asynchrony penalty or processing cost

exceed a maximum threshold (we empirically found 20% to work well for the machines

on which we tested), the value for k is capped, so the algorithm does not suffer from

greater asynchronous penalties attempting higher values.

While this technique may not provide the best performance compared to knowing a

priori the value of kopt, it is inexpensive in practice.
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3.3.2 Experimental Evaluation

In this section we evaluate the performance of KLA algorithms on different categories

of graphs, both real-world and synthetic. We observed that for certain graphs, a value of

k > 1 provides the best performance.

First we consider k-level asynchronous breadth-first search. In order to create a large

graph with amenable characteristics, we generated a synthetic road network by stitching

together multiple copies of the European road network from the SNAP collection [114],

resulting in an input with 9.63 billion vertices and 10.2 billion edges. Figure 3.5 com-

pares the scalability of KLA BFS with level-synchronous BFS on this road network. The

level-synchronous BFS scales to 32,768 cores, while the KLA BFS is able to scale bet-

ter until 98,304 cores and yield faster performance due to better balancing the synchro-

nization costs with wasted work. This experiment demonstrates that the traditional level-

synchronous and asynchronous paradigms are not always the best method for processing

every graph input.

Besides breadth-first search, we evaluated KLA on a well-known pointer-jumping al-

gorithm [115]. We implemented and ran our algorithm on a list graph, and observed that

the pattern of computation for pointer-jumping can gain significant advantage from the

use of the KLA paradigm. We considered two variants of the pointer-jumping algorithm:

a fine-grained approach and a two-level nested KLA approach in which each list element

contains a sublist which is processed sequentially. For the simple fine-grained algorithm,

we observed that varying k gave a 50% benefit compared to the asynchronous algorithm,

and 70% benefit compared to the level-synchronous version (Figure 3.6). The two-level

version of pointer-jumping with the lower-level implementing sequential pointer-jumping

resulted in further benefits due to decreased communication. Figure 3.6 shows the com-

parison of the two versions, varying k for the same input.
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Figure 3.5: Performance of KLA vs. Level-Sync BFS on synthetic road network to 98,304
cores on Hopper. Reprinted with permission from [6].

Recursive Application of KLA and Interoperability.

KLA algorithms may also be called recursively in nested sections. We describe such

computations using a tuple of k values, where each value in the tuple represents the k for

each algorithm being executed in that level of nesting and the arity of the tuple denotes

the number of levels of nesting in the algorithm. If the algorithm in the nested section

is sequential or non-KLA, the k value for it is ignored (k = x). For example, using a

shared-memory library for intra-node computation and KLA for inter-node computation,

the tuple would be ⟨x, k1⟩. Figure 3.7 demonstrates the benefit of using nested-parallel

execution in the multi-level coarse grained paradigm, which can take advantage of an

optimized shared-memory library (Green-Marl [69]) for processing partitions of the graph

on a shared-memory node and use KLA version of the algorithm on the upper-level to
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Figure 3.6: Performance of KLA pointer jumping on a single-root list on 4096 cores on
Hopper.

extend it across the distributed nodes in the machine.

In our experiments, we ran two different algorithms – PageRank and cut-conductance –

on a mesh graph using the Green-Marl implementation within the node and KLA off-node,

and compared them with their single-level KLA implementations in SGL.

3.4 Load Balancing: A Motion Planning Case Study

Many graph applications suffer from issues with load imbalance due to the dynamic

and irregular nature of graph algorithms. The STAPL Graph Library has rich support for

load balancing of graph applications that come in two forms. The first form of load bal-

ancing is through achieving a well-balanced initial partition of the graph on the machine.

This approach is often used when a good estimate of the computational load per graph ele-

ment (i.e., vertex, edge) is known a priori and can be used to effectively induce a partition

that balances the workload. The second form of load balancing is dynamic scheduling of

work, typically through a method such as work stealing. This method is often used for

dynamic applications or cases where it is difficult or costly to estimate the work of a given
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Figure 3.7: Nested KLA interoperability with Green-Marl for (a) PageRank and (b) con-
ductance, up to 24,000 cores. Reprinted with permission from [6].

processor.

In this section, we discuss an example graph application from the field of motion plan-

ning and provide a case study of how load balancing techniques from STAPL Graph Library

were utilized to provide a balanced allocation of work across a large machine. This section

is reprinted with permission from [7].

3.4.1 Parallel Motion Planning

While motion planning has its roots in robotics, it now finds applications in other

areas of scientific computing including protein folding [116], drug design [117] and virtual

prototyping and computer-aided design [118].

Due to the infeasibility of exact motion planning, sampling-based methods are now

the state-of-the-art for solving motion planning problems. Sampling-based motion plan-

ning is essentially a large-scale graph problem that first constructs a graph and subse-

quently solves queries using graph traversals. Sampling-based motion planning algorithms

have been highly successful at solving previously unsolved problems [119], and much re-

search has focused on developing more sophisticated variants of them. Sampling-based

approaches are efficient and can be applied to problems with many degrees of freedom
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(e.g., robotic manipulators with many links or proteins with many amino acids). While

not guaranteed to find a solution, they are known to be probabilistically complete, mean-

ing that the probability of finding a solution, given one exists, increases with the number

of samples generated [120].

Even so, substantial resources in time and hardware are still required to solve com-

plex applications. For example, modeling the motion of a small protein using sequential

sampling-based motion planning techniques can take days on a typical desktop machine

[121]. Thus, it is practically infeasible to study larger proteins or to significantly increase

the detail and accuracy at which their motions are modeled. Hence, there is a need for

more efficient methods and parallel processing is a natural option to explore.

Previous work [12, 122] proposed methods based on uniform workspace subdivision

for parallelizing representatives of the two major classes of sampling-based motion plan-

ning algorithms. By subdividing the space and restricting the locality of graph connec-

tion attempts, inter-processor communication associated with nearest neighbor searches

– a well-known bottleneck in parallelizing sampling-based motion planning algorithms

[123, 124, 125, 126] – can be substantially reduced. This approach achieves better and

more scalable performance on different parallel machines than previous methods. Funda-

mentally, uniform spatial subdivision methods are limited in the types of motion planning

problems they can solve efficiently. In particular, for most non-trivial environments, as the

problem is subdivided, the variance in the amount of work performed by the subdivisions

will increase. Because of the difference in complexity of the subdivided regions, there will

be a corresponding increase in load imbalance.

In this work, we apply and analyze two techniques to address the problem of load

imbalance for parallel sampling-based motion planning algorithms. The first is an adaptive

work stealing approach that permanently migrates both the region and the work related to

it to improve the load balance. The second approach is a bulk-synchronous redistribution
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technique that redistributes regions among processors to have a more balanced distribution

of data. We propose a method based on the complexity of a region to approximate the

amount of work per region and use it to attempt to balance work across processors, while

also preserving the spatial geometry of the subdivision.

Background and Motivation.

The motion planning problem is to find a valid path (e.g., one that is collision-free

and satisfies any joint limit and/or loop closure constraints) for a movable object starting

from a specified start configuration to a goal configuration in an environment [119]. A

single configuration is specified in terms of the movable object’s d independent parameters

or degrees of freedom (DOF). The set of all possible configurations (both feasible and

infeasible) defines a configuration space (Cspace). Cspace is partitioned into two sets: Cfree

(the set of all feasible configurations) and Cobstacle (the set of all infeasible configurations).

Motion planning then becomes the problem of finding a continuous sequence of points in

Cfree connecting the start and goal configuration.

A complete solution of the motion planning problem is considered computationally

intractable and has been shown to be PSPACE-hard with the best known upper bound being

doubly exponential in the movable object’s DOFs [127]. As an alternative, randomized

and approximate solutions have been shown to be efficient and practical. Sampling-based

methods [119] are the state-of-the-art approach to solving motion planning problems in

practice. Sampling-based methods are broadly classified into two main classes: roadmap

or graph-based methods such as the Probabilistic Roadmap Method (PRM) [120] and tree-

based methods such as the Rapidly-exploring Random Tree (RRT) [128]. In the following,

we describe previous approaches to parallelize methods from both classes.

Parallelizing PRM with Uniform Subdivision.

The Probabilistic Roadmap Method (PRM) [120] constructs a graph G = (V,E),

called a roadmap, to capture the connectivity of Cfree. A node in G represents a valid con-
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figuration and an edge represents a valid trajectory (path) between configurations. Nodes

are generated using some sampling strategy and connections are attempted between a node

and its k-nearest neighbors as computed using some distance metric. Once the roadmap

is constructed, query processing is done by connecting the start and goal configurations to

the roadmap and extracting a path through the roadmap that connects them.

A uniform Cspace subdivision method for parallelizing PRM was presented in [12]. In

that work, the Cspace representing the movable object is subdivided into regions. For exam-

ple, in three-dimensional environments, the planning space may be subdivided into regions

using the Cspace positional degrees of freedom, i.e., the x, y and z dimensions. A simple

illustration of a 2D environment subdivided into four regions is shown in Figure 3.8(a).

The subdivision is represented by a region graph, whose vertices represent regions and

whose edges encode the adjacency information between regions. Figure 3.8(b) shows the

region graph corresponding to the subdivision shown in Figure 3.8(a).

obs
tacl
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obstacle

A B

DC

A B
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A

Figure 3.8: A 2D environment subdivided into 4 regions and the corresponding region
graph. Reprinted with permission from [7].
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Roadmaps are constructed in parallel in each region. This is done by invoking the

(sequential) PRM planner [120] in each region. Lastly, the regional roadmaps are con-

nected to form a roadmap of the entire Cfree. The region graph facilitates the process for

connecting regional roadmaps by identifying adjacent regions between which connections

are attempted. Some user-defined overlap is allowed between regions to allow sampling

in the portion of space at the boundaries that may facilitate connections between regional

roadmaps.

Parallelizing RRT with Uniform Radial Subdivision. The Rapidly-exploring Ran-

dom Tree (RRT) method is another sampling-based motion planning approach particularly

well suited for non-holonomic and kinodynamic motion planning problems [128]. The ba-

sic sequential RRT grows a tree rooted at the start configuration that expands outward into

unexplored areas of Cspace. To build a tree, RRT first generates a uniform random sample

qrand, and identifies the closest node qnear in the tree to qrand, and then qnear is “extended”

toward qrand for a step size of at most ∆q. If successful, qnew is added to the tree as a node

and the pair (qnear, qnew) is added as an edge. To solve a particular motion planning query,

RRT repeats this process until the goal configuration can be connected to the tree.

Uniform radial subdivision [122] is particularly suited for parallelizing RRTs. In their

method, Cspace is subdivided into conical regions and subtrees are built in each region us-

ing the sequential RRT planners. Similar to uniform subdivision described earlier, regional

subtrees are later connected to subtrees in neighboring regions. A 2D illustration of radial

subdivision of Cspace is shown in Figure 3.9.

First, a hypersphere is created in d-dimensional Cspace S
d centered at qroot ∈ Rd with

radius r. Next, Nr points qi ∈ Rd are sampled on the surface of Sd. Each point defines a

conical region centered around the ray−−−→qrootqi. A region graph G(V,E) is then constructed.

Each vertex vi ∈ V represents a region defined by qi and an edge (vi, vj) is added if qj is in

the k closest neighbors of qi. After region graph construction, independently (in parallel) a
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Figure 3.9: Example of uniform radial subdivision for a 2D Cspace. Each process concur-
rently builds a branch (using sequential RRT) rooted at qroot and biased toward a target
(e.g., qk for the blue process). Reprinted with permission from [7].

sequential RRT is used in each region. The subtree growth in each region is biased toward

the region candidate defined by the random ray −−−→qrootqi. Some overlap between regions

is allowed so branches can explore part of the space in adjacent regions. Lastly, using

the adjacency information provided by the region graph, connection attempts are made

between each region branch and the branches in adjacent regions. If any edge connection

creates a cycle, the tree is pruned so as to remove the cycle.

3.4.2 Load Balancing For Parallel Motion Planning

Work stealing [129, 130] is an important technique used to balance an imbalanced

computation. In this method the computation is logically divided into a collection of

tasks. When a processing element runs out of its local tasks, it attempts to steal tasks from

potential victims. This strategy is well suited for shared-memory systems. In distributed-

memory systems, there are two variations on the way data can be made available to the

thief: replication and ownership transfer. In the case of replication, some sort of software

coherence mechanism may be required to deal with the multiple copies of data. In the

case of ownership transfer, the overheads associated with transferring ownership to the

thief processor need to be managed. In this work, we have a model in which transfer of

ownership is considered.

33



Repartitioning of the data is another strategy to address load imbalance. It is well

known that data distribution is fundamental to achieving acceptable levels of load balance.

There exists a large body of literature regarding partitioning of distributed data structures

[36, 131]. We focus on computing, and enforcing through data migration, high quality

partitions of the problem across processing elements.

In general, the type of load balancing technique applied to an imbalanced computation

depends on the nature of the computation itself. Repartitioning is well suited for applica-

tions in which a good estimate of the computation associated with the data can be easily

computed and the total amount and structure of the computation is known a priori. In

contrast, work stealing is best suited for dynamic applications in which either the execu-

tion of the algorithm defines more computation as the algorithm progresses, or the work

associated with the task cannot be easily estimated.

Uniform (radial) subdivision is limited in the types of motion planning environments

it can handle. It performs well in uniform and homogeneous environments, but not so

well in non-uniform and heterogeneous environments. For example, a house or factory

floor is typically composed of logically separate parts; open or free space, cluttered space,

doorways, etc. Uniform subdivision in this scenario is prone to load imbalance. As an

illustration, consider the uniform subdivision of the planning space in Figure 3.10(a); if

different processors are assigned to each region, processors assigned to region R0 are

relatively overloaded. This irregularity in planning space leads to workload imbalance,

which will have an overall negative affect on scalability.

One important consideration is the granularity in which the problem is partitioned, as

the size of the biggest quanta of work establishes a lower bound by which the problem

can be balanced using any load balancing strategy. In addition, a more refined problem

provides more opportunity to distribute work amongst processing elements. For parallel

motion planning, regions represent the quanta of work and thus for the presented load
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Figure 3.10: An environment where a regular partition would result in load imbalance.
Reprinted with permission from [7].

balancing strategies, we consider an over-partitioned region graph.

In general, a load balancing strategy using repartitioning requires a reasonable estimate

for the amount of effort that is required to compute a quanta of work. In section 3.4.2, we

will discuss weighting techniques for the two discussed parallel motion planning algo-

rithms and the difficulty of estimating work for uniform radial subdivision RRT.

Repartitioning for Parallel Sampling-Based Planning

The effectiveness of repartitioning is highly dependent on the ability to estimate the

load of an RRT or PRM region.

PRM. For uniform subdivision PRM, since we can easily and cheaply compute a cost

metric of the amount of work to be done, this algorithm is a good candidate to use repar-

titioning. In parallelizing PRM, the two data structures of interest are the graph represen-

tation of the regions and the PRM roadmap. The regions represent a spatial subdivision

of the environment in which configurations will be sampled. Connections are attempted

between configurations through the use of local planning methods. It is well known in

motion planning that the cost of connecting samples in Cspace is highly representative of
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Figure 3.11: Experimental validation of (a) measure of load imbalance and (b) potential
improvement in model environment. Reprinted with permission from [7].

the amount of time the overall algorithm will take in generating a solution [121]. This in

fact is the most time consuming phase of the entire computation. As regions that have a

high number of samples will generally incur a large number of local planning calls, a good

metric for approximating the amount of work that a region will generate is the number of

samples in the roadmap that lie within that region.

Using this information, we can determine that load imbalance in terms of regions cor-

responds to the number of roadmap samples of the region, and this metric can be used to

weight regions. A high quality partition of the region graph will attempt to balance the

regions based on this metric. However, as regions are also spatial entities, the spatial ge-

ometry of regions should also be preserved in an ideal partition. By partitioning the region

graph using these approximations of the amount of work that a region will perform, the

algorithm will see a higher level of load balance for subsequent phases of computation.

RRT. Unfortunately, in uniform radial subdivision RRT, the amount of work a region

will perform is difficult to estimate beforehand. In our experiments, we show an estimate

of work for an RRT branch that uses k random rays originating from the origin of the

region, and computes the minimum distance to an obstacle in the direction of these rays.
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Intuitively, this should give a reasonable approximation of the amount of reachable free

space in that region; however, we show that this metric is a poor indicator of work for a

given region unless a large number of rays is utilized, making this an expensive operation

to calculate.

3.4.3 Experimental Evaluation

We implement and evaluate standard load balancing techniques for parallel motion

planning and show that with an appropriate estimate for the amount of work in a region,

geometric repartitioning outperforms work stealing. In the dynamic case where load is

unknown a priori, repartitioning will be at a disadvantage and can potentially be worse

than performing no load balancing at all.

Experimental studies were conducted on two massively parallel machines: a 153,216

core Cray XE6 (HOPPER) and a 2,400 core Opteron cluster (OPTERON-CLUSTER). Unless

otherwise noted, all experiments show strong scaling in which the total number of regions

is kept constant as the number of processing elements increases.

3.4.4 Implementation in STAPL Graph Library

Load imbalance in parallel computations is dealt with in various ways in STAPL. For

repartitioning, this is realized through redistribution of the two pGraphs [101] (i.e., the

region graph and the roadmap or RRT graph) in the parallel motion planning algorithms.

Alternatively, load balancing can be addressed by using a custom work stealing scheduler

for parallel motion planning algorithms.

In its most basic form, an application can be instrumented to perform repartitioning by

simply providing a view of the container to migrate, and weights of the individual elements

of the container. Additionally, a user-defined function can be provided that will define ac-

tions that need to be taken upon a migration, such as additional migrations of secondary

data structures. Internally, the data structure will be redistributed using various techniques,
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Figure 3.12: Evaluation of (a) execution time and (b) coefficient of variation and (c) load
distribution for PRM on HOPPER using med-cube. Reprinted with permission from [7].

including STAPL algorithms that diffusively move work to neighbors and attempt to min-

imize edge cuts and by extension preserve geometric features of the graph, or those that

globally balance weight in blocks. Alternatively, the STAPL Load Balancing Framework

can also be used interoperably with external partitioning libraries, such as Zoltan [132].

By invoking repartitioning techniques after node generation to help balance computa-

tion for the node connection phase for parallel motion planning, we show experimentally

that we achieve good load balance for the most computationally expensive phase of the

algorithm.

3.4.4.1 Model PRM Environment

Consider a 2D environment with a single square obstacle that lies equidistant from the

bounding box. It is possible to compute the volume of the free space (Vfree) by using

the total volume of the region and the volume of the obstacle within the region. With an

estimate of the free space in the environment, we can say that the total load that the region

will experience is proportional to Vfree.

One measure of imbalance among processors is the coefficient of variation, defined

to be the ratio of the standard deviation σ and mean µ load. A naïve mapping of regions

to processors would perform a 1D partitioning of the region mesh and assign a balanced
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number of region columns to processors. This naïve region mapping will have a high

coefficient of variation for the model environment. We find an estimate of the most bal-

anced partitioning of the region graph statically ignoring edge-cuts using a greedy global

partitioning algorithm, as the exact problem is NP-complete.

Figure 3.11(a) shows the model’s prediction of the imbalance in terms of the coefficient

of variation of samples (lower is better) with the naïve partitioning strategy and the best

load balance possible. In addition, we plot the measure of load imbalance experienced

during a trial run of the algorithm using repartitioning and show that we closely track the

model. As shown, the best possible distribution of regions to processors for higher core

counts shows less benefit, as each processor has an increasingly smaller granularity of

work as the number of processors increases.

Figure 3.11(b) studies various metrics according to the model and an experimental

evaluation. We study the potential improvement according to the model (theoretical),

which measures the total reduction in Vfree for the processor with the highest amount

of Vfree. Next, we plot the reduction in the number of roadmap nodes (experimental)

on the highest loaded processor. Finally, we show the overall improvement in execu-

tion time (runtime) for the load-balanced phase using repartitioning. In general, we track

the model’s theoretical estimate of the best load distribution in terms of roadmap nodes,

which in turn tracks the improvement in execution time. The discrepancies between the

best distribution of Vfree and the roadmap node distribution can be explained by both the

probabilistic nature of the computation and by the geometric restrictions enforced by the

repartitioning. The gap between the improvement in roadmap distribution and total time

reduction is a result of the number of roadmap nodes per region being an imperfect in-

dicator of the total amount of work generated by that region. At 128 cores, there is no

better distribution of load possible, so the experimental result only shows the overhead of

attempting to repartition.
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3.4.4.2 Experimental Results

PRM. The environments considered in this section are variants of a 3D narrow pas-

sage with a rigid-body robot, similar to the theoretical environment that consists of a single

cubic obstacle in which roughly 24% (med-cube), 6% (small-cube) and 0% (free) of the

environment is blocked. In all environments, we subdivide the problem into 250,000 re-

gions total. Figure 3.12(a) shows raw execution time for computing the final roadmap on

the HOPPER platform for this strong scaling PRM experiment in the med-cube environ-

ment. We can see that using repartitioning, we are able to achieve a 2.9x improvement

over the baseline on 96 cores and a 1.68x improvement on 768 cores. Because of the

strong scaling nature of our experiment, there are significantly fewer regions per proces-

sor at 768 cores, which allows for less opportunity for moving load across processors.

From Figure 3.12(b), we can see that although the coefficient of variation is substantially

lower for all processor counts after repartitioning, the difference is not as much for higher

processors counts simply because of a reduced opportunity to rebalance. Figure 3.12(c)

shows the distribution of load across processors on a 192-core run on HOPPER. We see

that without load balancing, there is a wide spread in work and after applying repartition-

ing, a distribution closer to the ideal is achieved. Figure 3.13 shows the trend shown in the

previous analysis holds for higher processor counts on HOPPER.

For the same experiment, we show the breakdown of the various phases of parallel

PRM in Figure 3.14(a). As suspected, the portion of the computation connecting roadmap

nodes in a region dominates most of the computation at 90% of the total execution time.

After load balancing for both methods, the total time decreases, mainly because of the

decrease in node connection time. For repartitioning, there is an increase in region con-

nection time, which can be partially attributed to an increase in remote accesses in the

region connection phase, as shown in Figure 3.14(b). This is due to an increase in edge
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Figure 3.13: Evaluation of computing roadmap in the med-cube environment for a rigid
body robot on Hopper. Reprinted with permission from [7].
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Figure 3.14: Breakdown of (a) the various phases of PRM (b) and the effect of load bal-
ancing on remote accesses. Reprinted with permission from [7].

cuts, which was induced by repartitioning.

Figure 3.15 demonstrates load balancing techniques on multiple environments that dis-

play different levels of imbalance on OPTERON-CLUSTER. In Figure 3.15(a) and (b), we

see up to a 3.4x speedup over the baseline using repartitioning in the med-cube environ-

ment, but only a 1.2x speedup in the small-cube environment. This shows that even on

workloads that are not imbalanced to such a high degree, load balancing can still provide

a large benefit. In addition, we find that in the free environment which exhibits no imbal-

ance, all load balancing techniques do not show any significant overhead over the non-load
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Figure 3.15: Execution time for PRM with various load balancing strategies in (a) med-
cube (b) small-cube (c) and free environment. Reprinted with permission from [7].
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Figure 3.16: Breakdown of the amount of tasks stolen vs. executed locally for PRM on (a)
96 and (b) 768 cores on HOPPER. Reprinted with permission from [7].

balanced variant, as shown in Figure 3.15(c).

RRT. We also evaluated load balancing techniques on the uniform radial RRT parallel

motion planning algorithm. As discussed in Section 3.4.2, it is difficult to estimate the

amount of work that a radial branch will compute due to the probabilistic and dynamic na-

ture of the algorithm. Thus, computing an effective partition for load balancing is difficult

and may prove to be inaccurate.

In Figure 3.17(b), we computed an estimate of work for an RRT branch by using the

k random rays metric discussed in Section 3.4.2. This metric should intuitively estimate
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Figure 3.17: Execution time for RRT with various load balancing strategies in (a) mixed
(b) mixed-30 (c) and free environment. Reprinted with permission from [7].

the number of local planning calls in the RRT construction, yet it acts as a poor estimate

for the amount of work needed to compute the RRT branch and in most cases, we see a

slowdown when using this weight. Indeed, any metric to estimate the amount of work

in this random and dynamic algorithm would likely be imprecise and it is for this reason

work stealing strategies are better suited for uniform subdivision radial RRT.

RRT. We evaluated work stealing on the radial RRT parallel motion planning algo-

rithm. Figure 3.17 shows the total execution time for computing the final RRT for a

rigid body robot in two cluttered environments and one free environment on OPTERON-

CLUSTER. We varied the amount of free space in each environment such that the first

environment (mixed) is 60% blocked, the second environment (mixed-30) is 30% blocked

and the third environment (free) is completely free of obstacles (0% blocked). Using the

DIFFUSIVE work stealing strategy allowed the algorithm to achieve a speedup of 2.0x on

32 cores and 1.55x at 256 cores in the mixed environment. A similar pattern of decreasing

marginal benefit of work stealing from uniform subdivision is exhibited in this experiment.

As with uniform subdivision, the stealable work per processor decreases with the number

of processors, while the number of potential victims from which to steal also increases.

We find that all three work stealing strategies show similar improvements in execution
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time, as the problem is over-decomposed to such a degree that underloaded processors

have a high probability of finding work, regardless of the victim selection. As expected,

work stealing shows a larger improvement in the mixed environment vs. the mixed-30

environment, as the reduction in execution time is a function of the amount of imbalance.

Similar to the PRM experiments in which we measure load balancing overheads, we find

that in the free environment, we do not see significant differences in the load-balanced

execution vs. the baseline.
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4. APPROXIMATE GRAPH COMPUTING1

In this chapter, we introduce a novel approximate parallel breadth-first search algo-

rithm [8] based on the k-level asynchronous [6] (KLA) paradigm. The KLA paradigm

bridges level-synchronous processing [3] (based on the bulk-synchronous parallel model

[19]) and asynchronous processing [112], allowing for parametric control of the amount of

asynchrony from full (asynchronous) to none (level-synchronous). In a level-synchronous

execution of breadth-first search, distances are correct at the end of a level, at the cost of

expensive global synchronizations. On the other hand, a high amount of asynchrony in

breadth-first search may lead to redundant work, as the lack of a global ordering could

cause a vertex to receive many updates with smaller distances until the true breadth-first

distance is discovered. Each update to the vertex’s state will trigger a propagation of its

new distance to its neighbors, potentially leading to all reachable vertices being repro-

cessed many times and negating the benefit of asynchronous processing.

Our novel algorithm controls the amount of redundant work performed by controlling

how updates trigger propagation and allowing for vertices to contain some amount of error.

In short, by only sending the improved values to neighbors if the change is large enough,

we limit the amount of redundant work that occurs during execution. We modify the KLA

breadth-first search algorithm by conditionally propagating improved values received from

a neighbor update.

The contributions of this work include:

• Approximate k-level asynchronous breadth-first search algorithm.

We present a new algorithm for approximate breadth-first search that trades accuracy

1Reprinted with permission from "Fast Approximate Distance Queries in Unweighted Graphs Using
Bounded Asynchrony" by Fidel A., Sabido F.C., Riedel C., Amato N.M., Rauchwerger L., 2017. Lecture
Notes in Computer Science, vol 10136, Copyright 2017 by Springer International Publishing Switzerland.
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for performance in a KLA BFS. We prove an upper bound on the error as a function

of degree of approximation.

• Implementation that achieves scalable performance. Our implementation in the

STAPL Graph Library shows an improvement of up to 2.27x over the exact KLA

algorithm and 3.8x improvement over the level-synchronous version with minimal

error. Results show that our technique is able to scale up to 32,768 cores.

This chapter is reprinted with permission from [8].

4.1 Approximate Breadth-First Search

Our algorithm is implemented in the k-level asynchronous paradigm. In KLA, al-

gorithms are expressed using two operators. The vertex operator is a fine-grained func-

tion executed on a single vertex that updates the vertex’s state and issues visitations to

neighboring vertices. It may spawn visitations through the use of Visit(u, op) or

VisitAllNeighbors(v, op), where u is the ID of a single neighbor and v is the

ID of the vertex being processed. These visitations are encapsulated in the neighbor oper-

ator, which updates a vertex based on values received from a single neighbor.

In the exact KLA breadth-first search, skipping the application of the neighbor operator

could lead to an incorrect result, but reduces the performance overhead of redundant work

that is often seen in highly asynchronous algorithms. We show that the amount of error

can be bounded, while improving the performance of the distance query.

4.1.1 Algorithmic Description

In this section, we show how to express approximate breadth-first search using the

KLA paradigm. The goal is to compute, for each vertex, the distance from the vertex and

the root in the breadth-first search tree. We denote this distance as d(v).

Initially, all vertices except the source have distance dk(v) = ∞, no parent, and color
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1 Function VertexOperator(v)
2 if v.color = GREY then
3 v.color = BLACK
4 VisitAllNeighbors(v, NeighborOp, v.dist+1, v.id)
5 return true
6 else
7 return false
8 end

Algorithm 3: k-level asynchronous BFS vertex operator.

1 Function NeighborOperator(u, dist, parent)
2 if u.dist > dist then
3 u.dist← dist
4 u.parent← parent
5 u.color← GREY
6 return true
7 else
8 return false
9 end

Algorithm 4: Original k-level asynchronous BFS neighbor operator.

set to black. The source vertex sets its distance to 0, itself as its parent and marks itself

active by setting its color to grey. Algorithm 3 shows the vertex operator that is executed

on all vertices in parallel. Each vertex determines if it is active by checking if its color

is set to grey. If so, it issues visitations to all of its neighbors, sending its distance plus

one. The traversal is completed if all invocations of the vertex operator return false in a

superstep (i.e., none of the vertices are active).

Algorithm 4 presents the neighbor operator for the exact breadth-first search algorithm.

The distance and parent are updated if the incoming distance is less than the vertex’s

current distance. In addition, the vertex sets its color to grey, marking it as active, and

returns a flag indicating that it should be revisited. In the k-level async model, if the
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invocation of the neighbor operator returns true, the vertex operator will be reinvoked on

that vertex only if its hop-count is still in bounds of the KLA superstep. That is, if d(v)

mod k = 0, then the visitation is at the edge of the superstep and thus the vertex operator

will not be invoked until the start of the next superstep.

1 Function ApproximateNeighborOperatorTolerance(u, dist, parent)
2 if u.dist > dist then
3 u.dist = dist
4 first_time← u.parent = none
5 better← (u.prop - dist)/u.prop ≥ τ
6 if first_time ∨ better then
7 u.parent← parent
8 u.prop← dist
9 u.color← GREY

10 return true
11 end
12 else
13 return false
14 end
Algorithm 5: Approximate k-level asynchronous BFS with tolerance neighbor opera-
tor.

In this work, we introduce a new neighbor operator in Algorithm 5 that allows for the

correction of an error and repropagation of the corrected distance under certain conditions.

We use tolerance 0 ≤ τ < 1 to denote the amount of error a vertex will allow until

it propagates a smaller distance. For a visit with current distance d and better distance

dnew, we will propagate the new distance if (d− dnew)/d ≥ τ . We now need to store two

distances: one that represents the current smallest distance seen and the distance of the last

propagation. The last propagated distance is required as a vertex may continually improve

its own distance, but it will only repropagate if a neighbor visitation contains a distance

that is τ -better than its last propagated distance. By following a vertex’s parent property,
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the algorithm also provides a path from every reachable vertex to the source, similar to

the traditional version of breadth-first search. However, these vertices may report a larger

distance than the length of the discovered path, due to updates that were not propagated.

The parameter τ controls the amount of tolerated error. Note that if τ < 1/|V |, then

there is no error in the result and the neighbor operator is equivalent to the exact version

in Algorithm 4.

4.1.2 Error Bounds

As the approximate breadth-first search may introduce error, we quantify the error that

may be caused due to asynchronous visitations. We denote the breadth-first distance of

a vertex v at the end of a KLA traversal using dk(v), where k is the level of asynchrony.

Similarly, d0(v) is the true breadth-first distance for vertex v. In this section, we will show

that the error of the breadth-first distance is bounded by dk(v) ≤ d0(v)k.

Lemma 4.1.1. At the end of the first KLA superstep, all reached vertices have distance

dk(v) ≤ k.

Proof. Assume at the end of the first superstep, there exists a vertex v with distance

dk(v) > k. This means that v was reached on a path from the source that has h > k

hops. This is not possible, as the traversal will not allow a visitation that is more than k

hops away. Therefore dk(v) ≤ k.

Theorem 4.1.2. At the end of the algorithm, all reachable vertices will have distance

dk(v) ≤ ksv, where sv is the superstep in which v was discovered.

Proof. Assume that after superstep s all reached vertices will have distance dk(v) ≤ sk.

Lemma 4.1.1 shows this holds for s = 1. All active vertices will issue visitations to

their neighbors, traveling up to at most k hops in superstep s + 1. Consider a previously

unreached vertex u that will be discovered in superstep s+1 from some vertex w that was
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discovered in superstep s. Vertex w was on the boundary of superstep s and has distance

at most sk from the source. Therefore, dk(u) ≤ dk(w) + k because u will be discovered

from a path that is up to k hops from w.

dk(u) ≤ dk(w) + k

≤ sk + k (inductive hypothesis)

≤ (s+ 1)k (simplification)

Through induction, dk(u) ≤ sk for a vertex u discovered in superstep s.

Lemma 4.1.3. If there exists a path π from the source to a vertex v, then v must be discov-

ered no later than superstep |π|.

Proof. We will show the lemma holds by induction. If the length of path π is 1, vertex v

shares an edge with the source. Then in the first superstep, the source will visit all edges

and discover v.

Suppose the lemma holds for any path with length i. Let π be a path with length

|π| = i + 1. Then the ith vertex along the path, vi, will have been discovered in or before

the ith superstep. Now, by Algorithm 3, the vertex vi will traverse all of its outgoing edges

in or before the (i+1)th superstep and discover the (i+1)th vertex along the path π. This

proves the lemma holds for any path π of length i+1. Therefore, the lemma holds for any

path π by induction.

Lemma 4.1.4. If there exists a path from the source to a vertex v, then v will be discovered

at the latest in superstep d0(v).

Proof. If a vertex has distance d0(v), then the shortest path π∗ to v has length |π∗| = d0(v).

By Lemma 4.1.3, this path must be discovered at the latest in superstep d0(v).
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Theorem 4.1.5. At the end of the algorithm, all reachable vertices will have distance

dk(v) ≤ d0(v)k.

Proof. By Theorem 1, dk(v) ≤ svk. We know through Lemma 4.1.4 that v will be visited

by superstep d0(v)k . Combining these, the approximation of the true breadth-first distance

is off by at most a multiplicative factor of k: d0(v)k.

4.1.3 Bounds with Tolerance

When using the tolerance heuristic, a vertex with distance d will only propagate a new

distance dnew if the following is true:

d− dnew
d

≥ τ (4.1)

In the exact k-level asynchronous algorithm, all vertices that are distance d0(v) away

from the source will be visited in superstep d0(v)
k

. However, since we allow some bounded

error, it is possible for a vertex to be visited in the dk(v)
k

superstep, which may be later than

its original visitation. In addition, all edges that are traversed through visitations will be

visited in the same superstep in which the visit was issued. However, not all visitations

trigger a propagation of a better distance to the vertex’s neighbors.

We will denote the discovered distance of a vertex using the tolerance heuristic as

dτ (v). In this section, we will prove that by using this heuristic, if a vertex v is reached at

the end of the first superstep, then dτ (v) ≤
∑d0(v)−1

j=0 (1−τ)j

(1−τ)d0(v)
.

Lemma 4.1.6. All vertices with a true distance of 1 will propagate a distance that is at

most 1
1−τ

.

Proof. Because the distance from the source to v is 1, the shortest path π∗ =< (src, v) >

will be processed eventually in the traversal. Consider that vertex v is discovered along a

path π from the source and marks itself as distance |π|. Once the path π∗ is processed, v
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. . .|W(i)|

Figure 4.1: Example graph showing two different paths from the source to a vertex v.
Reprinted with permission from [8].

will not propagate its distance if |π|−1
|π| < τ . Simplifying, the length of the path is |π| < 1

1−τ
.

Therefore, v will propagate a distance that is at most 1
1−τ

, otherwise a repropagation will

be triggered.

Theorem 4.1.7. At the end of the first superstep, all reachable vertices will propagate a

distance at most
∑d0(v)−1

j=0 (1−τ)j

(1−τ)d0(v)
.

Proof. Let W (i) =
∑i−1

j=0(1−τ)

(1−τ)i

j

denote the length of the longest path that will be tolerated

by a vertex of true distance i without triggering a propagation. Lemma 4.1.6 shows that

this holds for vertices with true distance 1. Assume that this property holds for vertices of

distance i.

Let v be a vertex with true distance i+1 discovered along some path π. By definition,

v will not repropagate upon seeing a path πnew if the following holds:

|π| − |πnew|
|π|

< τ (4.2)

The shortest path πnew that could be discovered without repropagating could have

length |πnew| = W (i) + 1. Any path longer than πnew would have triggered a reprop-

agation along the path, by definition of W (i). See Figure 4.1 for an example.

The vertex will not propagate the better distance if the threshold is not met:
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|π| − (
∑i−1

j=0(1−τ)j

(1−τ)i
+ 1)

|π|
< τ (4.3)

Written in terms of |π|, this can be simplified:

|π| <

∑i−1
j=0(1−τ)j

(1−τ)i
+ 1

1− τ

=

∑i−1
j=0(1− τ)j

(1− τ)i+1
+

(1− τ)i

(1− τ)i+1

=

∑i
j=0(1− τ)j

(1− τ)i+1

= W (i+ 1) (definition of W (i))

The bound therefore holds for vertices with true distance i+ 1 and thus all vertices by

induction.

As shown in Algorithm 5, a vertex always updates its distance upon seeing a better

distance, without necessarily propagating it. This means that a vertex’s discovered distance

is at most its propagated distance. That is, all vertices discovered in the first superstep will

have distance at most dτ (v) ≤
∑d0(v)−1

j=0 (1−τ)j

(1−τ)d0(v)
.

Note that in the case of τ = 0, dτ (v) =
∑d0(v)−1

j=0 1/1 = d0(v). Therefore, τ = 0 is

equivalent to the exact algorithm.

4.1.4 Combined Bounds

By the definition of KLA, the maximum distance that any vertex can be assigned in

the first superstep is k. Therefore, for a vertex of true distance i, its discovered distance

can be at most k. W (i) is the length of the longest path that can be tolerated by a vertex of
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true distance i without propagation. However, if this path is longer than k, then it will not

be visited and thus the worst case distance will be less than W (i). Now, solving W (i) = k

for i only considering τ > 0 because, as shown above, there is no error for τ = 0, we find:

k = W (i) =

∑i−1
j=0(1− τ)

(1− τ)i

j

=

1−(1−τ)i

1−(1−τ)

(1− τ)i
(Partial geometric sum, where 1− τ > 0)

kτ =
1− (1− τ)i

(1− τ)i

kτ + 1 =
1

(1− τ)i

i = log(
1

kτ + 1
)/ log (1− τ)

If a vertex v has at most true distance i, then its discovered distance is bounded by

W (i). However, if the true distance is greater than log( 1
kτ+1

)/ log (1− τ), then the vertex’s

discovered distance can be no more than k, because the path that causes the bound of W (i)

is no longer reachable in k hops.

Therefore, if a vertex v is reached in the first superstep, the maximum distance dτk(v)

that v can have is:

dτk(v) ≤


d0(v) τ = 0

∑d0(v)−1
j=0 (1−τ)j

(1−τ)d0(v)
d0(v) ≤ log( 1

kτ+1
)/ log (1− τ)

k otherwise

Figure 4.2 presents the trend of this function for various values of τ and a fixed value

k = 16. We see that W (i) can grow very rapidly, but is bounded by at most k. For τ = 0,
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Figure 4.2: Computed distance dτk(v) vs actual distance d0(v) for multiple τ and fixed k.
Reprinted with permission from [8].

the approximated distance is the same as the exact distance.

Using the same technique as Theorem 4.1.5, we can show that error will accumulate

across supersteps in an additive way. Therefore, the total distance that a vertex at the end

of the algorithm will have is dτk(v) ≤ d0(v)k.

4.2 Implementation

We implemented the approximate breadth-first traversal in the STAPL Graph Library

(SGL) [101, 102, 6]. We use the k-level-asynchronous paradigm in the STAPL Graph Li-

brary to implement the approximate breadth-first search algorithm. Algorithms 1-3 are

implemented as function objects in C++ whose function operators return a boolean value

indicating if the traversal should continue.

4.3 Experimental Evaluation

We evaluated our technique on two different systems.
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Figure 4.3: Approximate BFS with tolerance heuristic on TX road network with 512 cores
on Cray evaluating (a) runtime and (b) error. Reprinted with permission from [8].

CRAY-XK7. This is a Cray XK7m-200 system which consists of twenty-four compute

nodes with AMD Opteron 6272 Interlagos 16-core processors at 2.1GHz. Twelve of the

nodes are single socket with 32GB of memory, and the remaining twelve are dual socket

nodes with 64GB of memory.

IBM-BG/Q. This is an IBM BG/Q system available at Lawrence Livermore National

Laboratory. IBM-BG/Q has 24, 576 nodes, each node with a 16-core IBM PowerPC A2

processor clocked at 1.6GHz and 16GB of memory. The compiler used was gcc 4.8.4.

The code was compiled with maximum optimization levels (-DNDEBUG -O3). Each

experiment has been repeated 32 times and we present the mean execution time along with

a 95% confidence interval using the t-distribution. We also measure the relative error of

a vertex’s distance, where error is defined as (dτk(v) − d0(v))/d0(v). We show the mean

relative error across all vertices.

4.3.1 Breadth-First Search

In this section, we evaluate our algorithm on various graphs in terms of execution time

and relative error.

In Figure 4.3, we evaluate both the execution time and error on the Texas road network
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Figure 4.4: Approximate BFS with tolerance heuristic on TX road network with 512 cores
on CRAY-XK7 evaluating (a) number of repropagations that occur during traversal and (b)
speedup over the fastest k. Reprinted with permission from [8].

from the SNAP [114] collection on 512 cores on the CRAY-XK7 platform. This graph has

1.3 million vertices and 1.9 million edges. As expected, a lower value of τ results in slower

execution time as more repropagations occur with lower tolerance. In the extreme case of

τ = 0, every message that contains a better distance is propagated and thus it is the same

as the exact version of the algorithm. Figure 4.4(a) shows the number of repropagations

that occur as we vary the level of asynchrony and τ . As expected, higher values of k result

in many more visitations, while higher τ triggers relatively less visitations. This behavior

results in the corresponding time and error tradeoffs we observe in Figure 4.3.

Figure 4.4(b) shows speedup vs error on the Texas road network. Speedup is defined

as the ratio of the exact algorithm’s execution time with the fastest k and the approximate

algorithm’s execution time. If an application is willing to tolerate error in the result, we

see that we are able to achieve 2.6x speedup for an execution with 42% error.

Figure 4.5 shows that we see similar benefit using the road network graph on the IBM-

BG/Q platform for a fixed value of k. We see that the exact version of the KLA breadth-

first search (τ = 0) is slower than the level synchronous version, and the approximate

version is faster than both. At 32,768 cores, the approximate version is 2.27x faster with
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Figure 4.5: Strong scaling of approximate BFS on IBM-BG/Q platform evaluating sensi-
tivity of (a) runtime and (b) error. Reprinted with permission from [8].
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Figure 4.6: Approximate BFS with tolerance heuristic on random neighborhood network
(n = 1, 000, 000 and m = 16) with 512 cores on CRAY-XK7. Reprinted with permission
from [8].

around 17% mean error.

Random Neighborhood. We next evaluate the algorithm on a deformable graph that

allows us to vary the diameter from very large (circular chain) to very small (random

graph). This results in graphs with different diameters by allowing any given vertex to

randomly select and connect only to its ±m-closest neighboring vertices. This is similar

to the approach described by Watts and Strogatz [20] where the rewiring mechanism is

limited in terms of distance.
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Figure 4.6 shows the performance and error of an execution of this algorithm on a

random neighborhood graph on 512 cores on the CRAY-XK7 platform. As shown, we

see a benefit for using the approximate version for higher values of k. At a k of 512, the

approximate algorithm has a 1.12x speedup over the fastest exact version but only has an

error of 0.3%. Because this graph does not have as much opportunity for wasted work as

the road network, the benefits of approximation are not as pronounced, but we still see an

improvement in performance with negligible error.
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5. NESTED PARALLEL GRAPH PROCESSING1

Processing real-world graphs on distributed-memory systems is a challenging endeavor

due to the scale-free nature of many important graphs of interest. These graphs are known

for their presence of hub vertices that have extremely high degrees and present challenges

for parallel computations for distributed memory. In this chapter, we present a novel

mechanism to decouple the distribution of the edges on a per-vertex basis for the stan-

dard adjacency-list graph representation. We show several strategies for adjacency-list

partitioning and analyze the types of strategies that are most beneficial to specific graph

algorithms and machine architectures. Our adjacency-list partitioning transformation is

completely agnostic to the algorithm itself, preserving the traditional vertex-centric algo-

rithmic expression for parallel graph computations. Finally, we evaluate our technique on

several real-world graphs and show up to 2.25x speedup against the on 4,096 cores.

Processing large-scale graphs has increasingly become a critical component in a vari-

ety of fields, from scientific computing to social analytics. An important class of graphs

are scale-free networks, where the vertex degree distribution follows a power-law. These

graphs are known for their presence of hub vertices that have extremely high degrees and

present challenges for parallel computations on these types of graphs.

In the presence of hub vertices, simple 1D partitioning (i.e., vertices distributed, edges

stored sequentially with corresponding vertex) of scale-free networks presents challenges

to keeping a balanced number of vertices and edges per processor, as the placement of a

hub could overload any one processor. More sophisticated types of partitioning have been

proposed, including checkerboard 2D adjacency matrix partitioning [40], edge list parti-

1Part of this chapter is reprinted with permission from "Asynchronous Nested Parallelism for Dynamic
Applications in Distributed Memory" by Ioannis Papadopoulos, Nathan Thomas, Adam Fidel, Dielli Hoxha,
Nancy M. Amato, Lawrence Rauchwerger, 2015. Lecture Notes in Computer Science, 9519, 106-121,
Copyright 2015 by Springer International Publishing Switzerland.
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tioning [41] and specialized techniques for distributing hub vertices [28, 33]. However,

these strategies often change both the data representation as well as the algorithm, making

it difficult to unify them in a common framework.

In this work, we propose a framework to independently control the distribution of

edges on a per-vertex basis, allowing the possibility to express orthogonal strategies for the

various kinds of vertices in the graph. First, we represent the graph as a distributed array

of vertices, with each vertex having a (possibly) distributed array of edges, partitioned in

a fine-tuned manner. Using nested parallel constructs, we can define several strategies for

distributing the edges of hub vertices, that can be interchanged without changing the graph

algorithm itself.

We introduce several adjacency-list partitioning strategies built on top of this frame-

work, each with its own set of performance characteristics. The first distribution strategy,

EVERYWHERE places a hub’s adjacency list on all processing elements where the vertices

themselves are stored. Another strategy, NEIGHBORS, places the edges only on the lo-

cations on which the vertex has a neighbor. This strategy is especially dynamic as the

distribution of each hub edge list is dependent on the input data and this kind of irregular

behavior is difficult to account for in static partitioning work. The last strategy, STRIPED,

distributes the adjacency list on only one processor per shared-memory node in a strided

fashion such that each hub is on a potentially different processor on the node than the other

hubs.

Even though the distribution strategy of the edges changes dynamically, the expres-

sion of the graph algorithm itself remains unchanged. The nested parallel algorithm that

executes over the edges is specified at the algorithmic level. We augment the existing

k-level-asynchronous vertex-centric programming model to support execution on a graph

whose edges may not be colocated with either its source or target vertex. Execution of this

model of parallel graph algorithms facilitates one-sided, locality driven nested parallelism.
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In addition, it allows one to easily experiment with novel and arbitrary mappings of the

edges to locations, without the overhead of rewriting and hand-tuning the nested parallel

algorithm to support a change in edge distribution.

Our contributions include:

• A novel mechanism to partition the edges of high-degree vertices in scale-free graphs

in a user-controlled manner, while still retaining the traditional vertex-centric pro-

gramming model to express parallel graph algorithms.

• A suite of pre-defined adjacency list partitioning strategies that show algorithmic-

sensitive benefit for various graph algorithms, further reinforcing the need for a more

modular approach in edge partitioning specification.

• Scalable performance up to 4,096 cores, showing 2.25x speedup for selected algo-

rithms.

5.1 Adjacency List Partitioning

Our adjacency-list partitioning framework consists of two aspects: gang specification,

which outlines the set of processing elements to place the edges of a vertex, and partition-

ing, which specifies how to partition the set of edges on those processing elements. These

are separate but related concepts.

5.1.1 Gang Specification

In our model, gangs [133] represent subgroup support. Each gang is a set of N lo-

cations (a processing element and associated address space) with identifiers in the range

[0, . . . , N − 1] in which an SPMD task executes. For partitioning a vertex’s edge list, a

clear interface to easily specify the gang on which the nested container will be placed

should exist. Ideally, this should be decided on a per-vertex basis during the specification

of the graph itself.
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The edges gang specifier concept defines a type of object that given a vertex descriptor

and degree, should return a gang specifier defining on which locations the edge container

should be created. It should perform this action through the standard function operator.

As an example, the specifier for all locations is shown in Figure 5.1. A more sophisticated

specifier to create the nested container across a single location on each shared memory

node is illustrated in Figure 5.2.

s t r u c t a l l _ l o c a t i o n s _ e d g e s
{

void operator ( ) ( C c t o r , s i z e _ t id , s i z e _ t d e g r e e )
{

c t o r ( a l l _ l o c a t i o n s ) ;
}

} ;

Figure 5.1: All locations gang specifier

s t r u c t s t r i p e _ a c r o s s _ n o d e s
{

void operator ( ) ( C c t o r , s i z e _ t id , s i z e _ t d e g r e e )
{

c t o r (
l o c a t i o n _ r a n g e ,
s t d : : view : : i n t s ( 0 , nodes −1) | s t d : : view : : t r a n s f o r m ( [ ] ( auto i ) {

re turn ( i * num_locs_per_node + my_loc ) % num_locs ;
} )

) ;
}

}

Figure 5.2: Striped gang specifier

5.1.2 Edge Container Partitioning

Once the gang is created for the nested edge container, how the edges will be parti-

tioned over the given set of locations needs to be defined next. There exist two general
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ways to define the partition: either by using indexed-based partitioning or value-based

partitioning.

Indexed-Based Partitioning. This method of partitioning the edges allows one to

specify on which location of the edge container’s gang an edge should be placed based

solely on the index of the edge itself. That is, a function π(i) is defined to give the location

of edge i in a given vertex’s adjacency list. A suite of general partitions are provided

including balanced, blocked, cyclic and more.

Value-Based Partitioning. In contrast to the index-based strategy where the only

information given to the partitioner is the edge’s index in its adjacency list, the value-

based partitioning mechanism provides information about the source and target vertices

and the data on the graph.

To implement the NEIGHBORS strategy where an edge is place on the same location of

the target vertex, the user would define the following value-based partitioning function:

π(v, u, x) = location_of(u) (5.1)

This function places any given edge (u, v) on the same location of the target vertex v.

For static graphs where the number of vertices are known a priori, a lookup for the location

of any given vertex is an O(1) operation with zero communication.

More complex partitioning functions can be defined wherein the value on the edge is

also taken into account. For example, we can place any edge whose edge property is less

than some user-defined threshold δ on the location of the target and place all other edges

on a random location.

π(v, u, x) =


x < δ location_of(u)

x ≥ δ hash(u) mod N

(5.2)
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This kind of strategy effectively gives priority to edges whose properties meet some

predicate. It may prove to be useful for certain classes of algorithms, such as single-source

shortest path, where not every edge needs to be visited and thus those edges with higher

distances could receive lower priority for being processed.
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Figure 5.3: Adjacency list partitioning strategies for an (a) input graph.

5.1.3 Distribution Strategies

Combining the gang specification and edge container partitioning results in a unified

adjacency list distribution. This work introduces various adjacency list distribution strate-

gies for distributing the edges of hub vertices, that can be interchanged without changing

the graph algorithm itself.

The first distribution strategy, EVERYWHERE places a hub’s adjacency list on all loca-

tions of the graph’s gang and balances the edges across the locations. This is an index-

based partition and ignores the locality of the source and target vertices of the edges them-

selves. Using this strategy, all locations have a balanced number of edges on a per-hub

basis, increasing the amount of parallelism available when visiting all edges of a hub ver-

tex. Figure 5.3(b) provides an example of the EVERYWHERE strategy for the hub vertex h

in Figure 5.3(a). In the example, all three locations have an equal number of edges.

We introduce another distribution strategy, NEIGHBORS, which places the edges only
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on the locations on which the hub has a neighbor. In addition to limiting the locations to

those of neighbors, we also place each edge (v, u) on the location of the target vertex u.

This strategy is especially dynamic as the distribution of each hub edge list is dependent on

the input data and thus heavily relies on the arbitrary subgroup support of the STAPL-RTS.

Given N processors that contain the neighbors of a vertex v, the neighbor strategy limits

the total number of messages generated by v in a single superstep to min{N, d(v)}, where

d(v) is the out-degree of vertex v. This strategy is very similar to the mirroring technique

in Pregel+ [134] and the large adjacency list partitioning technique in [135]. Figure 5.3(c)

provides an illustration of the NEIGHBORS strategy for vertex h. All of the edges are stored

in the same location color as the target vertex.

Finally, we introduce the STRIPED strategy, wherein a hub’s adjacency list is dis-

tributed on only one location per shared-memory node in a strided fashion such that each

hub is on a potentially different location on the node than the other hubs. Amongst those

locations, the adjacency list itself is balanced.

5.2 Algorithmic Expression

The k-level-asynchronous paradigm provides vertex-centric specification for parallel

graph algorithms with several operators. The first operator, the vertex operator, is applied

on all active vertices of the graph and spawns visits to neighbor vertices, wherein the

neighbor operator will be executed. The neighbor operator returns a status indicating

whether or not the vertex operator should be reapplied on the neighbor. Execution is

finished when all vertex operators vote to halt by returning false.

Neighbor visitation is exposed through two interfaces: visit and visit_all_neighbors.

In both cases, a neighbor operator for an edge (v, u) is spawned directly from from the

source vertex v and an asynchronous visit occurs. There exist various algorithms wherein

properties on the edge itself are necessary when visiting a neighbor, such as distances
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bool sssp_vertex_op ( ve r tex v , v i s i t o r v i s )
i f ( v . co l o r == GREY) / / Ac t i ve i f GREY

v . co l o r = BLACK;
v i s . VisitAllEdges ( sssp_scatter_op ( _1 , v . d i s t ) , ss sp_ne ighbor_op ( ) , v ) ;
r e t u r n t rue ; / / ve r tex was Ac t i ve

e lse r e t u r n f a l s e ; / / ve r tex was I n a c t i v e

(a) vertex-operator

i n t s s s p _ s c a t t e r _ o p ( edge e , i n t d i s t )
r e t u r n d i s t + e . weight

(b) scatter-operator

bool ss sp_ne ighbor_op ( ve r tex u , i n t new_distance )
i f ( u . d i s t > new_distance )

u . d i s t = new_distance ; / / update d is tance
u . co l o r = GREY; / / mark to be processed
r e t u r n t rue ; / / ve r tex was updated

else r e t u r n f a l s e ;

(c) neighbor-operator

Figure 5.4: The vertex, neighbor and scatter operators for single-source shortest path.

in single-source shortest path and capacities in max flow. In this model, there is the as-

sumption that the edge property is accessible from the source vertex v itself, which is not

always the case. For example, in the NEIGHBORS strategy, the edge and its property are

stored with the target vertex u and thus creation of the neighbor operator would require a

synchronous read for the edge property on the location of vertex u.

We introduce an augmented model that supports a third additional scatter-operator

which is applied on the edge (v, u) itself and computes what information should be avail-

able for the neighbor operator to be applied on vertex u. Figure 5.4 shows how to write

single-source shortest path (SSSP) in this three-operator model. The vertex-operator and

neighbor-operator are similar to the standard KLA expression of the algorithm. The main

difference is the vertex operator invokes visit_all_edges instead of

visit_all_neighbors and the edge visitation occurs through the scatter-operator.

The scatter-operator computes the sum of the weight of the edge and the source vertex’s

current distance, passing this value along to the neighbor operator. In this manner, the
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computation that occurs on the edge itself is completely decoupled and a lightweight task

can be computed to asynchronously visit the edge and subsequently the neighbor vertex.

5.3 Implementation

We implemented our approach in the STAPL Graph Library (SGL) [101] to evaluate per-

formance, due to SGL’s ease of use and modification, and scalable performance [101, 6].

In this section, which is partially reprinted from [9], we give an overview of SGL and de-

scribe the relevant features and extensions needed to support the hierarchical approach,

as well as provide an experimental evaluation. We also show how users can express im-

portant graph mining and graph analytics algorithms using our hierarchical paradigm, and

thus benefit from our approach.

5.3.1 The STAPL Graph Library

SGL is a generic parallel graph library that provides a high-level framework which al-

lows the user to concentrate on parallel graph algorithm development and decouples them

from details of the underlying distributed environment. It consists of a parallel graph con-

tainer (pGraph), a collection of parallel graph algorithms to allow users to easily process

graphs at scale, and a graph engine that supports level-synchronous and asynchronous

execution of algorithms.

The pGraph container is a distributed data storage built using the pContainer

framework (PCF) [103] provided by the Standard Template Adaptive Parallel Library

(STAPL) [104]. It provides a shared-object view of graph elements across a distributed-

memory machine. The STAPL Runtime System (STAPL-RTS) and its communication li-

brary ARMI(Adaptive Remote Method Invocation) is decoupled from the underlying plat-

form, providing portable performance, thus eliminating the need to modify STAPL appli-

cations. The STAPL-RTS abstracts the physical parallel processing elements into locations,

components of a parallel machine where each one has a contiguous memory address space
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and associated execution capabilities (e.g threads). ARMI uses the remote method invo-

cation (RMI) abstraction to allow asynchronous communication on shared objects while

hiding the underlying communication layer (e.g MPI, OpenMP).

5.4 Experimental Evaluation
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Figure 5.5: Graph 500 breadth-first search on Cray varying (a) the number of hubs on 512
processors and (b) the number of processors for a weak scaling experiment. Reprinted
with permission from [9].

We performed our experiments on two different systems. The code was compiled with

maximum optimization levels (-DNDEBUG -O3).

The first system is a Cray XK7m-200 system which consists of twenty-four compute

nodes with AMD Opteron 6272 Interlagos 16-core processors at 2.1GHz. Twelve of the

nodes are single socket with 32GB of memory, and the remaining twelve are dual socket

nodes with 64GB. Our benchmark code has been compiled with gcc 4.9.2 and we con-

figured the STAPL-RTS with the OpenMP-based concurrency back-end with each location

mapped to one OpenMP thread, pinned to one core.
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This second machine is an IBM BG/Q system available at Lawrence Livermore Na-

tional Laboratory. BG/Q has 24, 576 nodes, with each node populated by a 16-core IBM

PowerPC A2 processor clocked at 1.6GHz and 16GB of memory. The compiler used was

gcc 4.7.2, and we used the C++11-thread based multithreaded backend.

5.4.1 Graph Algorithms

To validate our technique, we implemented the Graph 500 benchmark [81], which

performs a parallel breadth-first search on a scale-free network. Figure 5.5(a) shows the

breadth-first search algorithm over the Graph 500 input graph. As shown, all three edge

distribution strategies fare well over the baseline of non distributed adjacency lists for

modest number of hubs, and then degrade in performance as more and more vertices are

distributed. The EVERYWHERE and NEIGHBORS strategies behave similarly, as the set

of locations that contain any neighbor is likely to be all locations for high-degree hub

vertices. The EVERYWHERE and NEIGHBORS strategies are 49% and 51% faster than the

baseline, respectively. The STRIPED strategy performs up to 75% faster than the baseline,

which is a further improvement over the other two strategies. In our Cray machine, the

cores exhibit high performance relative to the interconnect, and thus even modest amounts

of communication can often bring about large performance degradation. The STRIPED

strategy reduces the amount of off-node communication to create the parallel section from

the source vertex location, bringing the performance of the algorithm above the other two

strategies. We are currently investigating this phenomenon to derive a more rigorous model

for distribution of edge lists.

Figure 5.5(b) shows a weak scaling study of the neighbor distribution strategy on Cray.

As shown, the flat breadth-first search scales poorly from 1 to 2 processors due to an

increase in the amount of communication which can stress the system. By distributing

the edges for hubs, we are able to reduce this pressure on the communication and provide
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better performance than the flat algorithm. The number of hubs to distribute needs to be

carefully chosen, as too few hubs will not provide sufficient benefit in disseminating edge

traversals, whereas too many hubs could overload the communication subsystem.
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Figure 5.6: Graph 500 (a) breadth-first search with various adjacency distributions on
BG/Q and (b) various graph analytics algorithms on Cray. Reprinted with permission
from [9].

In order to evaluate our technique at a larger scale, we also evaluated breadth-first

search on the Graph 500 graph on BG/Q in Figure 5.6(a). In our evaluation, we found that

although faster than the flat version, all three distribution strategies performed comparably

with each other. At 4,096 processors, the distributed adjacency list breadth-first search

using nested parallelism is 2.25x faster than the flat baseline, regardless of the distribution

strategy. The kind of distribution strategy for nesting is machine-dependent and further

reinforces the need for a modular and algorithm-agnostic mechanism to easily explore the

possible space for nested parallelism for parallel graph algorithms.

Finally, to show the generality of the nested algorithm support in the context of dy-

namic computations, we implement two other popular graph analytics algorithms: Hash-
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Min connected components (CC) [136] and PageRank [109] (PR). In Figure 5.6(b) we

present the oracle speedup of the nested parallel versions over the flat version, where

speedup is measured by computing the ratio between the best configuration and hub count

for the nested parallel version and the flat version. All three algorithms show substantial

improvement for all processor counts except for 1, where the overhead of creating a nested

parallel section is measured. In some cases, the nested parallel version is able to achieve

upwards of 3x speedup, such as on connected components at 32 cores.
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6. GRAPH PROCESSING PARADIGMS

The STAPL Graph Library provides various strategies to execute parallel graph al-

gorithms that are specified using a single model (the SGL model). These strategies in-

clude the KLA Paradigm, the Out-of-Core Paradigm and the Hierarchical Paradigm and

its derivatives (hubs/h2). Although it is possible to use the same algorithm specification

(i.e., the vertex and neighbor operator) with a different paradigm by passing them into

the desired paradigm function, a unified approach would provide for a cleaner external

interface.

We present a unification of the various execution strategies into a single interface

named the SGL Execution Policy. This policy can be used with a single function as the

SGL Execution Engine (sgl::execute). That is, we can specify a graph algorithm using

only its two operators and encapsulate all other information related to how that algorithm

should be executed into a separate policy object. This will lead to an interface as such the

one shown in Figure 6.1.

In this chapter, we focus on a formalization of the semantics for a specific execution-

policy: the k-level asynchronous.

6.1 KLA Machine

In this section, we create a formulation of an abstract machine capable of processing a

KLA algorithm.

As inputs, we are given a graph G = (V,E) and a partition of that graph across p

processors P : V → N. The level of asynchrony k ∈ N defines how many hops a traversal

can proceed in a single KLA superstep.

The global state of the machine can be defined as a tuple (D,C,Qc, Qn) where D is the

vertex data associated with each vertex v, C is the state of the communication channels
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sg l : : execute ( sg l : : k l a _ p o l i c y { k } , g , vertex_op { } , neighbor_op { } )
sg l : : execute ( sg l : : async_pol icy { } , g , vertex_op { } , neighbor_op { } )
sg l : : execute ( sg l : : s to rage_po l i cy { b lock_s ize } , g , vertex_op { } , neighbor_op { } )

Figure 6.1: The vertex- and neighbor-operators for breadth-first search.

between processors, Qc and Qn are the processor-local queues of tasks for the current

and next KLA superstep, respectively. The data associated with each vertex is algorithm-

specific; for breadth-first search, each vertex has a tuple (distance, active). A task is a

tuple (p, v, k′, op_type, op_args...) representing an operation with certain arguments that

will be applied to vertex v on processor p.

1 t← 0
2 while ¬empty(Qc

t) ∨ ¬empty(Qn
t ) ∨ ¬empty(Ct) do

3 Ct+1 ← f(Ct)
4 if ¬empty(Qc

t) then
5 (q,Qc

t+1)← pop(Qc
t , π)

6 S ← S⌢q
7 (Dt+1, qnew)← apply(q,G,Dt)
8 foreach x ∈ qnew do
9 Ct+1[P (q.v)][P (x.v)]← Ct+1[P (q.v)][P (x.v)] ∪ {x}

10 end
11 else
12 S ← S⌢sync
13 Qc

t+1 ← Qn
t

14 Qn
t+1 ← {}

15 end
16 t← t+ 1

17 end
Algorithm 6: Main loop of KLA machine

The machine operates by executing one task at a time and recording the new state

of the vertex data and queues. There is a task selection policy π that determines what

74



1 tasksnew ← op(Ct)
2 foreach x ∈ tasksnew do
3 if xop = vertex_operator then
4 xk′ ← xk′ + 1
5 end
6 if xk′ > k then
7 xk′ ← 0
8 Qn

t+1[P (xv)]← Qn
t+1[P (xv)] ∪ {x}

9 else
10 Qc

t+1[P (xv)]← Qc
t+1[P (xv)] ∪ {x}

11 end
12 end

Algorithm 7: Function to process communication channels

the next task to select from the queue is at each timestep. For example, a naive task

selection policy could choose an arbitrary task from an arbitrary processor’s queues. A

more advanced policy may select from an arbitrary processor the task with the highest

priority. An optimal policy will choose the globally best task to minimize some penalty

function Ψ.

Each task may in turn add new tasks to be executed. These tasks are not put in queues

directly, but are instead added to communication channels between the processor that exe-

cuted the task and the processor in which the destination vertex is stored. At the beginning

of each timestep, a channel processing function f is invoked to move tasks from channels

to queues. This function returns the set of tasks that will be added to the queues from

the communication channel. To represent an instantaneous network, f can simply return

all of the tasks in the channel every time. However, latency can be simulated by delay-

ing the movement through the channel between certain processors. This policy can be

experimented with to simulate different network topologies.

In the end, we will produce a schedule S which is a sequence of tasks and a sequence

of states T . There will be a task executed at each timestep that produces a state and
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|S| = |T | = t.

6.1.1 Processing Loop

In Algorithm 6, we present the main processing loop of the KLA machine model. Ini-

tially, the current timestep t is initialized to 0 in line 1. Next, the loop starts and continues

until both the current and next queue are empty.

First, we deal with the case where the current queue has tasks in lines 3-10. On line 4,

a task q is chosen from the queue based on the selection policy π, and the task will be re-

moved from the queue in the next timestep. On line 5, we append this task to the schedule.

Next, we apply this task and record the change to the vertex data. The application of this

task may result in a set of new tasks qnew that need to be queued. In lines 8-10, we add the

new tasks to the appropriate communication channel. That is, if processor i is executing

the current task and it generates a task for a vertex on processor j, we place the task in

channel P [i][j].

If the current superstep’s queue is empty (lines 12-14), we instead add an explicit

synchronization marker to the schedule and swap the current and next queues. Finally, we

increase the timestep and recheck the queues.

Algorithm 7 illustrates the process for moving tasks from communication channels to

queues. On line 1, we execute the user-defined function op which provides a list of mes-

sages to be delivered. In lines 2-11, we add the new tasks generated to the appropriate

queues. First, we increase the task’s effective k value k′ if the task represents a vertex op-

erator. If the task’s k′ value exceeds k, we will add this task to the appropriate processor’s

queue for the next superstep and reset its k′. This is because the task is at the edge of the

superstep and should only be executed after all of the tasks in the current superstep have

been executed. Otherwise, in line 10, this task should be executed in the current superstep,

so it is added to the correct processor’s queue.
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6.1.2 Breadth-First Search

For breadth-first search, the data associated with vertex is a tuple representing whether

or not a vertex is active and what its current distance from the source is. The initial state

of the machine I = (D,Qc, Qn) will be as follows:

• Dv = (∞, 0) for v ̸= src and Dsrc = (0, 1)

• Qc = (Qc
0, . . . , Q

c
p−1) where Qc

i = {(i, v, 0, vop)|P (v) = i}

• Qn = ({}, . . . , {})

6.1.2.1 Example

Consider the following input graph:

0

1

2

This graph has the following partition: P = {(0, 0), (1, 0), (2, 1)}. We will be using a

value of k = 1.

If we set our source to be vertex 0, our initial state I = (D,Qc, Qn) will be as follows:

• Dv = ((0, 1), (∞, 0), (∞, 0))

• Qc = ({(0, 0, 0, vop), (0, 1, 0, vop)}, {(1, 2, 0, vop)})

• Qn = ({}, . . . , {})
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Say we choose an arbitrary task to execute first: S0 = ({(0, 1, 0, vop)}. This will

induce the following state:

• Dv = ((0, T ), (∞, F ), (∞, F ))

• Qc = ({(0, 0, 0, vop)}, {(1, 2, 0, vop)})

• Qn = ({}, . . . , {})

Notice the only change is the that the task was removed from processor 0’s queue.

Since vertex 1 was not active, there was no change to the data or queues. Next, suppose

we pick the task for vertex 0, which happens to be active: S1 = ({(0, 0, 0, vop)}. This will

induce the state:

• Dv = ((0, F ), (∞, F ), (∞, F ))

• Qc = ({(0, 1, 1, nop, 1, 0)}, {(1, 2, 0, vop)})

• Qn = ({}, . . . , {})

This new state changed the active flag for vertex 0 and introduced a neighbor operator

task for vertex 1 in processor 0’s queues. Looking at one more step, we can choose the

task S3 = (0, 1, 1, nop, 1, 0). The state that will be induced is:

• Dv = ((0, F ), (1, T ), (∞, F ))

• Qc = ({(0, 1, 1, vop)}, {(1, 2, 0, vop)})

• Qn = ({}, . . . , {})

As shown, the data for vertex 1 has changed to set its distance to 1 and mark it as

active. In addition, the neighbor operator added a task to processor 0’s queue to invoke

the vertex operator on vertex 1. Notice that the k′ value increased by one; when this value
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reaches k, the task is instead added to the appropriate queue in the next superstep Qn with

the k′ field reset to 0.

In the end, we will have a schedule S and a final state Tt−1 where the queues are empty

and the vertex data is at its final value.

6.2 Using the KLA Model

The KLA machine model can be used as a general framework to prove properties of

KLA algorithms.

6.2.1 Proof Through Witness

One method of proof that is enabled by the KLA machine is the ability to prove that a

predicate regarding an algorithm’s behavior could happen through the ability to present a

valid scheduling in which the predicate is true.

For example, if we consider the approximate breadth-first search algorithm from Chap-

ter 4, we can prove that the error bounds of the distance is at least as large as a certain func-

tion. Concretely, if we want to prove that the error bound has to be at least d∗v+k, where d∗v

is the exact distance of vertex v from the source, our predicate would be ∃v | dv = d∗v + k.

In order to prove this statement, it is sufficient to present a valid scheduling of an execution

where the predicate is true on the vertex data of the final state. This schedule is therefore

a witness that the predicate is true.

As we know that the error bounds for the approximate breadth-first search algorithm

with the naive scheduling policy is dv ≤ d∗v × k, we can use this same technique to prove

that the same algorithm with a different scheduling policy would have the same bounds by

attempting to find a witness to prove the predicate dv = d∗v × k is true for some input.
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6.2.2 Proof Through Impossible Schedule

Another technique that can be used to prove properties of a given KLA algorithm is

through contradiction. The intuition is as follows. Say we wish to prove that certain

predicate pr is true. We will first assume that it is not true. Then we will argue that the

only way in which the predicate could be false is through a schedule that is impossible due

to the either the selection policy π or because it would violate some aspect of the KLA

machine model. Therefore, the original predicate pr must be true.

6.3 Results

Using the KLA machine model, we were able to use the proof through witness tech-

nique to discover an important property with the KLA model in general, which is the KLA

guarantees are only enforced if tasks are processed in a processor-local FIFO order. That

is, if we execute a KLA machine with a selection policy π wherein tasks from the same

processor are not executed in FIFO order, it is possible for a traversal to extend outside of

the bounds of the KLA superstep.

6.3.1 Priority Scheduler Bounds

In this section, we will prove that using a scheduling policy πmin that uses the priority

of tasks in local queues to choose the next task does not improve the worst-case bounds

for the approximate breadth-first search algorithm.

Specifically, we will show a special graph for which a worst-case scheduling can result

in the following bounds for the distance:

dk(v) =
d0(v)

2
k (6.1)

This bound is within the same class as the previously shown bounds with no restrictions

on scheduling, which is O(d0(v)× k).
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6.3.1.1 Problem Description.

We will be using the KLA machine with a priority scheduler to execute the KLA

approximate breadth-first algorithm. Each task will receive a priority in the following

way:

• Neighbor operator: the priority is the distance that the operator is storing

• Vertex operator: lowest priority (maximum integer)

When πmin chooses a task, it chooses the task with the smallest priority. That is, it

chooses the neighbor operator with the lowest distance, or a vertex operator if there are no

neighbor operators available. As we will see, no queue will have more than one task in it,

so any processing function will have the same result.

For our channel processing function f , we will choose the standard FIFO processing

function. That is, messages sent between the same pair of processors p0 and p1 are ordered

and there is no ordering guarantee amongst messages destined to some other processor

q ̸= p0 ̸= p1. This is the same behavior guaranteed through the RMI causal consistency

model of the STAPL runtime system.

Finally, we will assume that τ = 1, meaning no revisitation will trigger a repropaga-

tion. This is consistent with the original bounds proof, as the τ factor grows significantly

faster than the k factor, and thus the total bounds is limited by k.

6.3.1.2 Worst-case Schedule

Figures 6.2 illustrate a worst case schedule that exhibits distances that are equal to

those shown in Equation 6.1 for k = 5. Consider why this schedule is valid. The traversal

starting at vertex 0 will spawn two neighbor operators to its two neighbors on processor

P1. The operator for the lower vertex could be delayed and the longer upper path could be

taken, as illustrated. When the lower neighbor finally receives a visitation, it will update
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Figure 6.2: Example graph that shows the worst-case bounds even in the presence of
priority scheduling. The vertices in the graph contain the computed distances and the
associated diamonds are the true distances for vertices of interest.

its true distance but it already propagated the longer incorrect path. The vertex that is

labeled distance 5 will then propagate that distance to its neighbors on processor P2. In

the end, the vertex that is labeled 15 distance has a true distance of 6, which matches

with Equation 6.1. Note that at no point in this schedule was a lower priority operator

processed before a higher priority one, which satisfies the constraint of the πmin policy.

Due to arbitrary network delays, the presented schedule follows the error function defined

in Equation 6.1. Thus, even with this priority scheduler, the worst-case bounds of the error

does not improve from the normal scheduler presented in Chapter 4.

6.4 Conclusion

This chapter introduced a synthesis of the various execution strategies presented in

STAPL Graph Libraryas well as a formalization of the computational engine for the k-level-

asynchronous model. Using this formalization, we are able to prove various properties of

graph algorithms in that model, such as the lower bounds of the approximate breadth-first

search algorithm with a different priority scheduling.
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7. IMPLEMENTATION FOR PRACTICAL PERFORMANCE

Creating a high-performance graph framework is challenging, particularly due to the

irregular access of graph elements (edges and vertices) where the access pattern is un-

known a priori and is difficult to predict. In this chapter, we discuss practical issues that

arise when implementing a graph framework and the tradeoffs that are made when balanc-

ing generic capability with high performance.

Our contribution in this chapter is the exploration of algorithm-driven implementations

of crucial data structures, such as the graph storage type and active vertex set. We introduce

a technique for algorithm-driven redundancy elimination through the choice of the active

vertex set representation. Finally, we discuss utilizing appropriate implementations for

the core graph processing engine and opting out of expensive features such as data-flow

graphs and instead using point-to-point communication.

7.1 Frontier Representation

When implementing a parallel graph algorithm, the access to graph elements is often

expressed explicitly in a data structure that stores the graph vertices that will be accessed

next. For example, in level-synchronous breadth-first search [5], this data structure stores

the source vertex of the traversal for the first superstep, after which it is populated with

that vertex’s neighbors which represent the vertices to process in the next superstep. This

active set of vertices F ⊂ V is often referred to as the frontier of the traversal.

This frontier can be represented in many different kinds of data structures, each of

which possess their own performance characteristics and conditions for which the structure

is valid. For example, if the frontier contains a large percentage of all vertices in the

graph, it may be beneficial to represent this set as a condensed bitmap, where there is a

single bit associated with every vertex in the graph that is set to 1 if the vertex resides
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in the frontier. On the other hand, if there are only a few active vertices during a given

superstep–e.g., the first superstep of breadth-first search–then an enumerated list of vertex

IDs stored as an array would result in better storage and time complexity. Further, there

are some algorithms, such as PageRank [109], for which all vertices are in the frontier for

every superstep. In this scenario, it would be ideal to forgo an explicit frontier and instead

simply use the graph data structure itself as the set of active vertices.

Often in graph processing libraries, it is common that there is only a single type of

frontier provided by the framework and the user has no choice but to use a potentially

inefficient representation for their workload. In other libraries, it is left as a choice for

the user to explicitly select the frontier representation. In this case, it is often difficult for

an end-user to accurately pick a frontier representation, as they may be unaware of the

potential ramifications of any given data structure.

In this work, we introduce a methodology that abstracts the choice of frontier represen-

tation and provides tools that algorithm writers can use to drive the frontier data structure

selection process. Our goal is to eliminate the end user’s need to manually select a fron-

tier representation and to provide an interface for the algorithm developer to describe their

algorithm’s behavior which will in turn influence the choice of frontier representation.

Our contribution in this work is as follows:

• Identify and define characteristics of graph algorithms that developers can provide

that describe their algorithm’s behavior without explicitly dictating a frontier repre-

sentation.

• Introduce a frontier selection framework that automatically chooses an efficient

frontier data structure based on the aforementioned characteristics and graph work-

load features.

• Implement efficient graph algorithms using appropriate frontier data structures with-
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out direct user intervention.

7.1.1 Algorithm Characterization

The choice of frontier representation is driven by many factors, including the precise

ratio of active vertices during an instantiation of an algorithm, an algorithmically specified

estimate of superstep occupancy, and whether or not it is algorithmically valid for there to

exist duplicate entries in the frontier.

7.1.1.1 Active Vertex Ratio

The active vertex ratio is a rough estimate of how many vertices will be active in a

given superstep during the traversal. For example, if it is expected that roughly 90% of the

vertices will be active in a superstep, then the user can pass a value of 0.9.

Internally, this number is used to select different implementations of the frontier data

structure used to track which vertices are active. If a high number of vertices are antici-

pated to be active (more than 75%), we will use a bitmap structure to efficient keep track

of which vertices are in the frontier.

7.1.1.2 Superstep Occupancy

The superstep occupancy options allows the algorithm writer to describe the number

of vertices for specific supersteps – the first superstep, a middle superstep and the last

superstep. For example, in breadth-first search, the first superstep has a single vertex,

a middle superstep has a subset of vertices the last superstep has a subset of vertices.

Table 7.1 provides a list of other example algorithms, along with their superstep occupancy

values.

7.1.1.3 Ordering

For some algorithms, the ordering of the vertex operator and neighbor operator are

important and invoking a vertex operator on the same vertex twice in a row would result in
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Algorithm First superstep Intermediate superstep Last superstep

BFS single subset subset
CC all subset subset

PageRank all all all

Table 7.1: Example algorithm superstep occupancy

1 Function LabelPropVertexOperator(v, level)
2 if level is odd then
3 VisitAllNeighbors(v, LabelPropNeighborOp, v.label)
4 else
5 frequent = MostFrequentLabels(v.labels)
6 v.labels = ∅
7 if v.label = frequent then
8 return false
9 else

10 v.label = frequent
11 return true
12 end
13 end

Algorithm 8: Label propagation community detection vertex operator.

incorrect behavior. For example, consider the label-propagation community detection al-

gorithm [137] depicted in Algorithms 8 and 9. This algorithm labels each vertex based on

the most commonly occurring label amongst its neighbors by storing each label received

by the neighbor operator into temporary storage and allowing the vertex operator to com-

pute the most frequent label in its storage and clearing the storage. During the execution

of the algorithm, it would be incorrect for a vertex operator to be applied to some vertex

v twice in a row without an invocation of some intermediate neighbor operator along an

edge (u, v). If such a scenario were to arise, then the vertex operator would send its label

multiple times to its neighbors, thus diluting the quality of the communities discovered.

To this end, our framework asks the algorithm writer to provide a list of operator
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1 Function LabelPropNeighborOperator(u, label)
2 u.labels = u.labels ∪{ label }
3 return true

Algorithm 9: Label propagation community detection neighbor operator.

orderings that result in a valid execution:

1. (VertexOperator(v), NeighborOperator(v, u), VertexOperator(v))

2. (VertexOperator(v), VertexOperator(v))

Ordering 1, which we denote as an interleaved ordering is the most natural ordering

restriction, wherein a neighbor operator is called on some vertex v before a vertex operator

can be invoked on that same vertex again. Ordering 2, which we denote as a successive

ordering allows for a vertex operator to be invoked twice in succession for the same vertex

v.

Based on these two ordering restrictions, there are four cases that can arise:

• Only the interleaved ordering is allowed. This is the case for the label-propagation

community detection algorithm.

• Both the interleaved and successive ordering are allowed. This case is found in the

majority of studied graph algorithms in this dissertation.

• Only the successive ordering is allowed. It is unknown if any useful graph algorithm

has this restriction.

• Neither ordering is allowed. It is unknown if any useful graph algorithm has this

restriction.
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The ordering restrictions on the algorithm operators guide the implementation of the

frontier traversal both in terms of correctness and potential performance optimizations.

An algorithm which only allows for interleaved ordering of operators must maintain a

frontier that does not allow duplicates, as the presence of duplicate vertices in the frontier

creates the potential for the vertex operator to be invoked on the same duplicate vertex

successively.

Maintaining a frontier data structure that does not allow duplicates comes at a cost. For

a frontier with relatively few entries, the most natural implementation for a non-unique set

would be a dynamic array, which allows for amortized O(1) insertion and cache-friendly

traversal. However, if the algorithm requires the use of a unique frontier due to its inter-

leaved ordering requirement, then a data structure such as an ordered-tree or hash-table

must be used, resulting in either worse time complexity, higher constants or worse cache

behavior.

7.1.2 Frontier Selection Framework

Algorithmic information about the behavior of the frontier for key supersteps is can

be effectively utilized to select among several candidate frontier data structures on a per-

superstep basis, as well as provide for some other optimizations dealing with populating

and enumerating vertices in the frontier. Figure 7.1 illustrates the design of the frontier

selection framework and Table 7.2 provides a small set of examples for selecting frontier

implementations based on the properties discussed in previous sections.

Internally, the occupancy information is used to select appropriate implementations of

our frontier data structure. For example, if an algorithm states that the occupancy is "all"

for every superstep, then we do not need to have an explicit frontier. Figure 7.3 provides an

experiment where an explicit bitmap frontier is used for PageRank on a Kronecker graph

instead of an implicit frontier that simply traverses the graph’s vertices for the active set.

88



Frontier Selection 
Framework
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Set

Operator
Ordering

Feature 
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Algorithm 
Developer

Figure 7.1: Architecture of frontier selection framework

The experiment shows that the implicit frontier implementation has a modest but measur-

able improvement of the explicit bitmap. Note that the version of the explicit frontier that

used an array-backed storage instead of a bitmap storage ran out of memory for the same

experiment.

Another small optimization that can be employed is to not use an explicit frontier for

the first superstep when the algorithm is known to include the entire set of vertices for

the first superstep. A small experiment with the label-propagation connected components

algorithm shows a modest 2% improvement in sequential performance with this optimiza-

tion on the CRAY-XK7 platform for a scale 22 Kronecker graph.
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Example Superstep Occupancy Ordering Active
Ver-
tex
Ratio

Frontier
Data Struc-
ture

Breadth-first search on
scale-free graph

(single, subset, subset) No restrictions 90% Bitmap

Breadth-first search on
road network

(single, subset, subset) No restrictions 10% Dynamic
Array

PageRank (all, all, all) No restrictions - Implicit
LP community detec-
tion on road-network

(all, subset, subset) Interleaved only 10% Hash Set

LP community detec-
tion on scale-free graph

(all, subset, subset) Interleaved only 90% Bitmap

Figure 7.2: Preferable frontier data structure based on workload features.

7.1.3 Experimental Evaluation

In Figure 7.4, we demonstrate the effect of an interleaved ordering restriction for

breadth-first search with respect to the same algorithm with no restriction. Note that the

breadth-first search algorithm does not have an ordering restriction, and thus providing

that information to the SGL interface allows for the selection of an optimized data struc-

ture for the frontier. For the sparse case of a low active vertex ratio, the data structure that

is used for the frontier is a dynamic array for the unrestricted version and a hash-table for

the interleaved ordering version. For the dense case of a high active vertex ratio, a bitmap

is used for both versions, as a bitmap by its nature does not allow duplicates. In Figure 7.4,

the sparse cases see a 2.2x speedup for the Texas road network and a 1.5x speedup for the

scale 20 Kronecker graph. These speedups stem exclusively from the choice of a dynamic

array for the frontier data structure instead of the hash-table. Thus, by allowing for the

user to provide ordering information about their algorithm, we enable the choice of an

optimized frontier data structure which ultimately leads to improved performance.
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Figure 7.3: Implicit frontier optimization vs using an explicit frontier with bitmap storage
with the PageRank algorithm

7.2 Graph Runtime Implementation

When implementing a general graph processing framework, it is important to consider

the underlying graph processing engine as well as the data structure implementation.

7.2.1 Graph Processing Engine

In the STAPL Library, all computation is expressed as a composition of task-dependency

graphs using the PARAGRAPH component. PARAGRAPHs allow the user to create com-

plex data flow graphs that can be executed in a correct, scalable and efficient manner for all

general kinds of data flow graphs. However, the generic capability of the task-dependency

graph execution engine could lead to a less efficient implementation than a hand-crafted

solution tailored for the specific problem.

Our work shows that using underlying simple communication primitives instead of

high-level dependency patterns (such as map and reduce) can lead to large performance

improvements. For example, we utilize STAPL Runtime System’s low-level communica-
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first search on a single core of CRAY-XK7.

tion methods async_rmi and rmi_fence as the main methods of sending messages

and synchronizing between processes.

Figure 7.5 illustrates the performance benefit of using raw RMI messages to commu-

nicate instead of using the high-level and often heavyweight PARAGRAPH component.

With 32,768 cores on BG/Q, the RMI-based method is almost 2x as fast as the task-based

method for various levels of asynchrony. At 65,536 cores, the performance improvements

still exist, but are less pronounced.

7.2.2 Graph Data Structure

Equally important for a high-performance graph framework is the graph data structure

implementation. Many general purpose graph frameworks employ an adjacency-list data

structure to represent graphs. Although adjacency-lists are flexible in terms of insertion

and deletion of vertices and edges, they suffer from numerous performance implications.

Poor cache locality is often a symptom of adjacency-list implementations. Although this

can be partially alleviated with carefully tuned memory allocators for the individual lists,
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Figure 7.5: Runtime of a breadth-first search using task-based vs raw message based in-
terface on BG/Q.

such a data structure will not be as performant as one with more contiguity in its edge

allocations. Additionally, adjacency list structures are often heavyweight, as they need to

store multiple pointers per vertex which represent the beginning and end of its adjacency

list.

In SGL, we balance the performance and flexibility constraints of graph representa-

tions by providing both adjacency lists and compressed sparse row data structures. Addi-

tionally, we allow the user to specify the width of vertex IDs (32-bit and 64-bit).
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8. CONCLUSION

Throughout this dissertation, we introduced several techniques for speeding up par-

allel graph data structures, parallel graph algorithms and general graph traversals. Our

novel bounded asynchrony technique avoids many of the pitfalls of expensive global syn-

chronizations while also balancing performance penalties of unbounded asynchronous ex-

ecution. Using this methodology, we introduce a family of approximate parallel graph

algorithms which balance the tradeoffs of performance and accuracy.

We also introduce a mechanism to express graph algorithms in a nested parallel man-

ner which improves parallel performance by matching the algorithmic specification to the

underlying machine architecture.

Finally, we provide broad guidelines for implementing a generic and performant graph

framework for modern parallel systems by exploring various frontier storage and process-

ing techniques, data structure representations and graph processing engine runtimes.
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APPENDIX A

A FRAMEWORK FOR PARALLEL SOFTWARE EXPERIMENTS

One of the cornerstones of experimental science is the ability to replicate and repro-

duce an experiment. In computational sciences, full replication of an experiment is often

prohibitively expensive and reproducibility is regarded as an "attainable minimal standard"

for verification of scientific claims [138]. Reproducibility entails capturing the details of

an experiment in order to allow scientists to interpret the resulting experimental artifacts,

as well as for others to verify the conditions from which experimental results are produced.

The Association for Computing Machinery ha proposed processes for artifact review [139]

for many of its conferences and journals. Sandve et. al [140] introduce a set of common

sense guidelines toward reproducible general computational research, including tracking

provenance of individual results, archiving external programs used and version control-

ling custom scripts. Although useful as a general set of principles, there are many specific

points to address when evaluating parallel software. For example, it is important to capture

various aspects of the experimental evaluation such as batch submission job files, version

control information for the code used to produce the executable and the resulting program

output which are tracked exactly from the job output.

In this section, we introduce a framework for generating, maintaining and describing

parallel software experimental artifacts, such as batch job files, raw and structured program

output and provenance information.

A.1 Motivation and Related Work

Much work has been devoted to recreating the environment in which a particular work-

load is run. Recently, containerized solutions such as Docker [64] have become the de
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factor standard for solving issues with reproducing an exact environment for cloud com-

puting scenarios. Singularity [63] attempts to bring a similar containerized solution to

the high-performance computing area, where there is inherently more coupling between

the container environment and the host environment, typically a supercomputer. Also in

the realm of environment recreation are modern package managers such as Nix [141] and

Spack [142], which provide a functional approach to describing a package’s dependencies

in order to precisely recreate artifacts related to binaries that are ultimately to be run. Var-

ious tools [143] exist to trace an experiment at runtime and capture its dependencies to

pack and share with others. Recently, the Popper [144] effort provides a systematic and

DevOps approach to recreating the environment and experiments for research papers on

systems software.

Although these projects are useful for recreating the binaries that are executed for

a particular experiment, they do not provide facilities to describe the parallel software

workload itself, such as the set of batch job files. For example, if one wished to create a

weak scaling experiment of a particular benchmark such as the Graph 500 that evaluated

its performance for processor counts up to 32,768 processors in powers of two and varied

input parameters in a particular pattern, it is up to the researcher themselves to create the

dozens of job files that represent this experiment. Often, this workflow is achieved through

the use of ad-hoc scripts, which are rarely reusable and often not included when presenting

the experiment’s result. Worse, version control information is often not captured at job

creation time, making it difficult to associate artifacts with code. In addition, associating

the output results with the job that produced the result, along with its runtime parameters,

becomes error-prone with this approach.

To this end, we introduce Dimebox, a framework for the creation and submission of

batch processing jobs with the following goals:
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Experiment

name: bfs
desc: “G500 scale 26-28”
p: [64,128,512]

optargs:
  k: [0,1,2]

weakargs:
  scale: 20+log2(p)

cmds:
  ./bfs $scale $k

YAML description Version control
protocol: git
remote: foo.com/bar.git
revision: 2d7abbc9
diff: “…”
md5:
  bfs: 9ads29ads…

Environment
PATH=/bin:/usr/bin
FOO=BAR
…

Result 0

Result 1

Result n
…

Epoch
YYYYMMDD-HHMMSS

Workspace
$ tree

  bfs
  output
  experiments
   jobs
   results

(a)

Result

#PBS -l mppwidth=128
#PBS -l walltime=00:30:00
#PBS -N bfs-128-1-27
#PBS -e experiments/...err
#PBS -o experiments/...out

MPIRUN="aprun -n 128 -d 1"
scale=24
k=1

$MPIRUN ./bfs $scale $k

Batch Job Output
Graph Loaded Ready.
BFS data allocated. 
BFS from vertex 11806537
Starting vertex = 11806537
local_id = 92238
degree = 6
Level 0: 1
Level 1: 6
Level 2: 212863
Level 3: 8405095
Level 4: 1474791
…

obs0
obs1
…
obsn

key0
val00
val01
…
val0n

key1
val10
val11
…
val1n

…
…
…
…
…

keyk
valk0
valk1
…
valkn

Observations

(b)

Figure A.1: Organization of an (a) experiment and (b) result in Dimebox.

1. Provide a structured mechanism that improves the reproducibility of experiments

conducted for parallel software research.

2. Make provenance of the results for an experiment clear by capturing crucial informa-

tion about how an experiment was conducted, including version control metadata,

environment variables, runtime parameters and job scripts.

3. Provide tools that facilitate common workflows for parallel software experiments

(e.g., creating and running batch jobs) on supercomputers, while capturing informa-

tion to help reproduce the experiment.

A.2 Experiment Organization

Parallel software experiments are organized in a structured way using Dimebox. Fig-

ure A.1 illustrates the main components that make up experiments in our framework.
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name: bfs
desc: Breadth − f i r s t search w/ d i f f e r e n t s izes , values o f k
p: [ 8 , 16]
env:

OMP_PROC_BIND=TRUE
optargs:

s ize : [10 , 20]
k: [ 0 , 1 ]

cmds:
va r i an t1 : . / bfs1 $s ize $k
va r i an t2 : . / bfs2 $s ize $k

Figure A.2: Example Dimebox experiment file describing a graph workload.

A.2.1 Experiment

The heart of Dimebox is the concept of an experiment. An experiment represents a

single cohesive set of jobs to run and is described using a YAML file.

As an example, Listing A.2 shows an example experiment file in YAML format for

a parallel graph workload that runs breadth-first search for 8 and 16 processors, while

varying the size of the graph and tunable parameter k. Experiment files are only a descrip-

tion of what to run and not necessarily how to provision the resources to run it. When

combined with the information of how to generate and submit jobs for a given machine

(through Dimebox machine files), an experiment can generate multiple batch job files that

will be submitted to be executed to the machine’s batch job scheduler. Typically, there is

one job created for every permutation of parameters. For Listing A.2, there will be a total

of 16 jobs created, one for every processor count, executable, input size and value of k.

In addition, an experiment captures information about the environment and the code

used to compile the executables. Figure A.1(a) provides an example of the information

stored about an experiment. Each experiment is uniquely identified by an epoch, which
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is a datetime formatted in YYMMDD-HHMMSS. Version control information is recorded,

such as Git revision, branch, remote, status and changes to the working copy that are

not committed. Cryptographic hashes of the executables are also included to determine

if multiple experiments use the same executable. Environment variables at the time of

job creation are recorded and jobs have the ability to be executed in an isolated directory

(named a workspace).

A.2.2 Result

An experiment is associated with one or more results, which represent a single piece

of work that is to be run, such as an executable with fixed parameters on a single processor

count. In the example from Listing A.2, a job to run the bfs1 executable on 8 cores with

size 20 and k = 1 would be a single result.

For each result file, there is the output of the execution of the command with that

particular configuration, as well as the job file that was created and submitted to obtain the

output. Figure A.1(b) provides an example of a single result, which contains the original

batch job and the job’s output.

A.2.3 Observation

A result will contain one or more observations. An observation is used in the same

sense as in the Tidy Data [145] model.

During execution, the program can emit information about observations by printing

dbx.kv key: value in its output. In this example, key will form a column in the parsed

output and value will be one cell of a row.

Consider the same experiment as above. Imagine that the contents of one of the results

is as follows:

dbx.kv size: 1024
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dbx.kv time: 0.214469

dbx.kv error: 0.00979

The entire contents of this file therefore represents a single observation. If we were to

parse this experiment, we would see the following in the output:

cmd p k j size time error

foo 16 0 10 1024 0.214496 0.00979

...

A program may want to record multiple observations per run. In this case, the dbx.obs

keyword can be used to distinguish between multiple observations. For example, consider

that the updated result file contains the following content:

dbx.kv size: 1024

dbx.obs {"algo": "exact", "time": 0.65, "error": 0}

dbx.obs {"algo": "approx", "time": 0.21, "error": 0.00979}

This program ran two versions of an algorithm: an approximate version and an exact

version. The exact version executed in more time with no error while the approximate

version finished in less time with some error. If we parse this experiment now, we may

expect to see the observations collected as follows:

cmd p k j size algo time error

foo 16 0 10 1024 approx 0.214496 0.00979

foo 16 0 10 1024 exact 0.650415 0

...

Note that any freestanding key-value pair is simply appended to all observations in the

result.
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Experiment Set

…

Experiment 0 Experiment 1 Experiment n
20180221-180429 20180223-012400 YYYYMMDD-HHMMSS

name: bfs
p: [1,2,4]

optargs:
  n: [8,9]

cmds:
  ./bfs-a $n
  ./bfs-b $n

name: cc
p: [1,2,4]

optargs:
  n: [8,9]
  k: [0,1,2]

cmds:
  ./cc $n $k

name: exp
p: [1,2,4]

weakargs:
  n: log2(p)

cmds:
  ./exe $n

Figure A.3: Organization of a set of experiments in Dimebox.

In addition to the provided mechanisms to parse observations from results, Dimebox

also includes a plugin system for parsing that can be used to scrape observations from

files in any custom format. This feature is useful for running benchmarks that are already

written and whose output format is fixed.

A.2.4 Experiment Set

The collection of all experiments for a project is called an experiment set. In Dimebox,

an experiments directory directly corresponds with an experiment set. Figure A.3 pro-

vides an illustrative example of a set of n experiments. Each experiment has associated

provenance metadata, including version control information, binary hashes and experi-

mental setup configurations. In this manner, one can easily identify the exact configuration

for every experiment in in Dimebox.

A.3 Job Submission Workflow

A researcher tasked with running experimental results on a supercomputer will often

create job files specific to that supercomputer’s batch processing system. Without Dime-

box, these job files will be created either by hand or the researcher will create an ad-hoc

script that generates a single job file for a configuration of the experiment. For example,
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$ vim my_experiment . yml
$ dimebox generate −m vulcan my_experiment . yml
20190212−182122
$ dimebox submit 20190212−182122
$ dimebox parse 20190212−182122

Figure A.4: An example Dimebox workflow to run an experiment.

there will be one job for each processor count.

This process is prone to many types of errors. The researcher could forget to include

jobs for particular processor counts. Output for the program can be directed to files with

misleading names, obscuring the provenance of results. The researcher could forget to

update where results are stored when a new version of the program is to be tested. With

Dimebox, many of these types of errors can be mitigated.

Instead, users of Dimebox will first create a single YAML file that describes what the

experiment is in a declarative manner, rather then describing how to run the experiment in

the common procedural way. This YAML file will then be used to generate job files for

the particular supercomputer that the researcher is using. This process is less error-prone

than the manual method, as there is a clear transformation from the user’s YAML file to a

set of job files that is based on machine-specific specifications of job files.

Once these job files are created, jobs can be submitted to the batch system. Figure A.4

provides a typical workflow for the tool. The generation and submission procedure is

illustrated in lines 1-4 of the figure through the generate and submit subcommands

of Dimebox. Once the jobs have completed, their results can be parsed using the parse

subcommand that applies either a generic regular-expression based parser to the job output

or a custom parsing script. Once parsed, the results can be analyzed or visualized in any

typical data processing pipeline (e.g., R, Python, Excel, etc.).
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A.4 Conclusion

The framework for parallel software experiments described in this appendix, as well

as the accompanying software tool Dimebox that realizes this framework, helps with ex-

periment reproduction and organization, provides provenance of raw data and allows users

to easily perform common tasks related to running experiments. Dimebox as a software

tool has been used by over a dozen developers and researchers in the Parasol Lab at Texas

A&M University. We provide Dimebox as an open source tool hosted on GitHub1 under

an MIT License.

1Dimebox codebase: https://github.com/ledif/dimebox
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APPENDIX B

NESTED PARALLELISM FOR HIERARCHICAL GRAPH ALGORITHMS

Many modern architectures for parallel machines are designed in a hierarchical man-

ner. For example, the most powerful supercomputer at the time of this writing is Fugaku

according to the Top 500 [146]. This system is composed of racks, where each rack con-

tains shelves, each shelf contains a Bunch of Blades (BoB) and each BoB consists of 16

CPUs. This deep hierarchy introduces strongly non-uniform latency between CPUs and

any application running on this machine would be losing out on performance if work and

communication is scheduled in a manner that is agnostic to the machine’s hierarchy.

In this appendix, we introduce a technique for expressing graph algorithms that are

naturally hierarchical in such a way that nested parallelism can be applied to the hierarchy

to achieve performance that is in line with the machine’s natural hierarchical composition.

By expressing a graph algorithm in this manner, we would achieve the following benefits.

Spatial locality would increase due to subgraphs representing elements in the same level

of the machine. Additionally, every level of the hierarchy can employ a different algorithm

that is tailored specifically for the type of parallelism at that the level. For example, if a

subgraph contains vertices that are all on the same shared-memory node, we could seam-

lessly employ an efficient thread-parallel algorithm. This is possible if the hierarchical

algorithm is expressed in a recursive manner. One additional benefit of this technique is

that it allows for algorithm-driven aggregation of messages across node. Instead of send-

ing point-to-point messages through edges that cross different levels of the hierarchy, we

can instead aggregate messages in algorithm-specific ways and send the aggregated mes-

sage across. Note that this optimization not only saves on point-to-point latency but also

reduces the total amount of traffic that crosses the interconnect. Finally, there is a class
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of hierarchical graph algorithms designed around pruning entire computations by ignoring

certain subgraphs (e.g., branch-and-bound [147] style algorithms).

We will be exploring this proposed technique using a case study of a parallel wavefront

computation outlined in the Kripke benchmark [148].

B.1 Parallel Wavefront Computation

Kripke is 3D deterministic particle transport code that solves the linear Boltzmann

equation specifically for 3D radiation transport. The goal of the Kripke benchmark is to

study how different parallelization schemes and data layouts affect the performance of a

large-scale parallel wavefront computation called sweep. The benchmark uses a structured

decomposition of the domain into cells and the computation can be seen as simultaneous

traversals from the corners of the spatial domain. For non-regular decompositions of the

domain, it is necessary to express the core algorithm in graph-theoretic terms where the

decomposed cells are vertices and spatially adjacent cells are connected through edges in

a graph.

First, the original spatial domain is decomposed into an arbitrary graph representation.

Each vertex of this graph is associated with the following properties: its 3D coordinate in

space, a collection indexed by sweep direction of floats used to store physical properties

of the sweep, and another indexed collection of floats representing incoming values from

neighbors. Each edge in the graph has the 3D coordinate of that edge in space.

Initially, each vertex stores the initial physical properties of the domain. Then, simul-

taneous graph traversals in different directions are started from the source vertices that rep-

resent "corners" of the spatial domain. These source vertices are direction-specific and are

defined as a vertex that has no incident edges along a given direction. The graph traversals

behave similarly to a traditional parallel breadth-first search algorithm; vertices are visited

in breadth-first order and each vertex receives values from its incoming neighbors. These
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Figure B.1: Example decomposition of original spatial domain into a multi-level hierar-
chical graph

values are then aggregated in a physically meaningful way and then propagated further to

the vertex’s out edges.

Because this sweep algorithm is very similar to breadth-first search, many of the tech-

niques outlined in the previous chapters of this dissertation can apply here as well, includ-

ing k-level-asynchronous processing and nested parallel visitation.

B.1.1 Technique

The arbitrary sweep algorithm described above can benefit from a nested hierarchical

representation. The main idea is to subdivide the original graph, which represents a mesh

of the spatial domain, into recursive and hierarchical subgraphs. Each subgraph represents

a disjoint partition of the original graph. Vertices in the same subgraph share the same

locality (e.g., on the same shared-memory node). Edges within a subgraph represent intra-

locality communication whereas edges that connect subgraphs will induce inter-locality

communication. The original graph can be partitioned into subgraphs recursively up to n

levels.

For example, in Figure B.1, the original graph is represented in the bottom-most level.
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The second level contains subgraphs which group together vertices in the bottom level

that are on the same processor. Finally, the vertices on the top level represent subgraphs

of vertices on the second level. For instance, this particular partitioning of the graph may

represent subgraphs that are not on the same processor, but on the same shared-memory

node.

The nested hierarchical sweep algorithm starts from the top-most graph, which is the

most coarse graph. It performs a sweep on this graph from each source. When encoun-

tering a vertex, it behaves differently based on whether the vertex represents a subgraph

or if it is scalar. If it is scalar, it computes the fine-grained diamond-difference function

representing the main mathematical computation of the benchmark. If instead the vertex

represents a subgraph, the algorithm will perform a nested sweep on that subgraph and

aggregate the resulting values.

B.2 Preliminary Implementation

We provide a sample implementation of the nested sweep algorithm in the STAPL

Graph Library. This implementation uses the k-level-asynchronous paradigm to imple-

ment the traversal of the subgraphs in a parametrically asynchronous manner.

The current implementation has a limitation that the partitioned subgraphs are all con-

tained on the same processor. In this manner, it is possible to swap the nested parallel

algorithm for an efficient serial algorithm to compute the inner sweep.
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