

REAL-TIME BIG DATA ANALYTICS WITH COMPUTATIONAL INTELLIGENCE

APPROACHES FOR ENERGY LOAD FORECASTING

A Dissertation

by

DABEERUDDIN SYED

Submitted to the Graduate and Professional School of

Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Haitham Abu-Rub

Co-Chair of Committee, Ali Ghrayeb

Committee Members, Erchin Serpedin

 Le Xie

 Othmane Bouhali

Head of Department, Miroslav Begovic

December 2021

Major Subject: Electrical Engineering

Copyright 2021 Dabeeruddin Syed

ii

ABSTRACT

In a real-time scenario of load forecasting, it is crucial to determine the future

electric energy consumption in power distribution electrical networks. The electric energy

forecasting models need to be updated with real-time trends of energy consumption as the

analyzed energy consumption data exhibits high variability between historical and current

data. This work proposes a multi-stage supercomputing-based big data analytics service

for parallel and real-time load forecasting. Moreover, theoretical and experimental

perspectives are proposed for multi-core parallel short-term load forecasting.

Additionally, the knowledge from existing load forecasting based on deep learning models

is used to innovatively develop highly accurate transfer learning models at different

distribution nodes. Transfer learning models present practical applicability and productive

possibilities in cases when sufficiently large data is not available. A novel approach based

on deep neural network models is employed for load forecasting. Firstly, the electrical

distribution nodes are grouped into different clusters with an aim to decrease the number

of deep learning models to be trained. Secondly, network architecture information,

weights, and biases are transferred from the first developed clustered model to subsequent

models with an aim to reduce the training time of a large number of clustered models. And

incremental learning is employed to incorporate newer data points for real-time processing

and improving the forecasting accuracy of the clustered models on individual distribution

points. Furthermore, parallel pool-based processing is employed to make efficient

utilization of computing cores and to reduce the model development time further. The

proposed big data real-time analytics methodology is evaluated on real-world energy

iii

consumption data collected from 105,148 Spanish electrical distribution transformers. The

proposed methodology aims to reduce the number of trained models, training time, and

execution time while still maintaining high prediction accuracy.

iv

DEDICATION

This work is dedicated to my parents.

v

ACKNOWLEDGEMENTS

I would like to thank my committee chair, Dr. Haitham Abu-Rub, my committee

co-chair, Dr. Ali Ghrayeb, and my committee members, Dr. Othmane Bouhali, Dr. Erchin

Serpedin, Dr. Le Xie, and Dr. Shady S. Refaat for their guidance and support throughout

this research.

Thanks also go to my friends, colleagues, department faculty, and staff for making

my time at Texas A&M University and Texas A&M University at Qatar a great

experience.

Finally, thanks to my mother and father for their encouragement and my wife for

her patience and love. Special thanks to my sister who instills the spark in me serenely

and I wish her all the luck.

vi

CONTRIBUTORS AND FUNDING SOURCES

Contributors

 This work was supported by a dissertation committee consisting of Professor

Haitham Abu-Rub, Professor Ali Ghrayeb, Professor Erchin Serpedin, and Professor Le

Xie of the Department of Electrical and Computer Engineering, and Professor Othmane

Bouhali of the Department of Physics.

 All the work conducted for the dissertation was completed by the student

independently.

Funding Sources

This publication was made possible by NPRP grant [NPRP10-0101-170082] from

the Qatar National Research Fund (a member of Qatar Foundation), and co-funding by

IBERDROLA QSTP LLC. The statements made herein are solely the responsibility of the

authors.

vii

NOMENCLATURE

ANN Artificial Neural Networks

AR Autoregressive Model

AREM Averaging Regression Ensemble Model

ARIMA Autoregressive Integrated Moving Average

Bi-LSTM Bi-directional Long Short-Term Memory

BIRCH Balanced Iterative Reducing and Clustering using Hierarchies

DBSCAN Density-Based Spatial Clustering of Applications with Noise

DNN Deep Neural Networks

DWT Discrete Wavelet Transform

ELM Extreme Learning Machine

EMD Empirical Mode Decomposition

ICA Independent Component Analysis

IoT Internet of Things

ISOMAP Manifold Isometric Mapping

LDA Linear Discriminant Analysis

LR Linear Regression

LSTM Long Short-Term Memory

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MLR Multi-Linear Regression

NMF Non-negative Matrix Factorization

viii

NN Neural Networks

NPSO Nested Particle Swarm Optimization

nRMSE Normalized Root Mean Square Error

PCA Principal Component Analysis

PULSE Penalizing Underestimation Logarithmic Square Error

RBFNN Radial Basis Function Neural Network

ReLU Rectified Linear Unit

RF Random Forests

RMSE Root Mean Square Error

RNN Recurrent Neural Networks

RVFL Random Vector Functional Link

SARIMA Seasonal Autoregressive Integrated Moving Average

SSE Sum of the Squares Error

SVM Support Vector Machines

SVR Support Vector Regression

TL Transfer Learning

t-SNE t-Distributed Stochastic Neighbor Embedding

UMAP Uniform Manifold Approximation and Projection

WCSSE Within-Cluster Sum of Square Errors

ix

TABLE OF CONTENTS

 Page

ABSTRACT ...ii

DEDICATION .. iv

ACKNOWLEDGEMENTS ... v

CONTRIBUTORS AND FUNDING SOURCES ... vi

NOMENCLATURE ...vii

TABLE OF CONTENTS .. ix

LIST OF FIGURES .. xiii

LIST OF TABLES .. xvi

CHAPTER I INTRODUCTION .. 1

1.1 Introduction .. 1

1.2 Problem Definition – Research Objectives .. 5
1.3 Research Contribution .. 6

CHAPTER II LITERATURE REVIEW .. 8

2.1 Smart Grid Data Flow .. 9
2.1.1 Big Data Sources ... 10

2.1.2 Data Structures .. 12
2.2 Big Data Analytics Process .. 15

2.2.1 Data Acquisition .. 17
2.2.2 Data Processing ... 18
2.2.3 Data Analytics Techniques .. 20

2.3 Technologies for Big Data Analytics ... 24

2.3.1 Evolution of Big Data Technologies ... 25

2.3.2 Apache Hadoop and MapReduce .. 27
2.3.3 Apache Storm .. 31
2.3.4 Apache Spark .. 32
2.3.5 Apache Drill .. 35

2.4 Applied Solutions for Big Data Analytics in Smart Grids 37

x

2.4.1 Accenture Solution .. 39
2.4.2 IBERDROLA .. 42

2.4.3 ITRON-TERADATA Solution ... 43
2.4.4 International Business Machines (IBM) Solution ... 45
2.4.5 USA EXELON .. 45
2.4.6 Korea Electrical Power Corporation (KEPC) Solution 46

2.5 Applications of Big Data Analytics in Smart Grid .. 46

2.5.1 Fault Classification and Identification .. 47
2.5.2 Preventive Maintenance .. 47
2.5.3 Transient Stability Analysis .. 49
2.5.4 Health Monitoring ... 50
2.5.5 Power Quality Monitoring ... 52

2.5.6 Topology Identification ... 53
2.5.7 Energy Theft .. 54

2.5.8 Renewable Energy Forecasting ... 55
2.6 State-of-the-art Short Term Load Forecasting ... 56

CHAPTER III APPROACHES AND METHODS OF LEARNING FROM DATA 60

3.1 Unsupervised Machine Learning – Clustering Algorithm 60
3.1.1 Overview ... 60

3.1.2 k-Means Clustering Algorithm .. 66
3.1.3 k-Medoids Clustering Algorithm .. 67

3.2 Transfer Learning ... 68
3.2.1 Overview ... 68

3.2.2 Traditional Learning and Transfer Learning Types .. 70
3.2.3 Theoretical perspective of TL in cross-model load forecasting using NN 72

3.2.4 Related work .. 75
3.3 Incremental Learning ... 77

3.3.1 Overview ... 77

3.3.2 Related work .. 79

CHAPTER IV MACHINE LEARNING AND DEEP LEARNING MODELS 81

4.1 Linear Regression (LR) .. 81

4.2 Deep Neural Networks (DNN) ... 82
4.3 Long Short Term Memory (LSTM) ... 85
4.4 Proposed Averaging Regression Ensembles Model (AREM) 89

4.5 Proposed Bidirectional LSTM Architecture (Bi-LSTM) 90
4.6 Proposed Clockwork RNN (CWRNN) .. 92

CHAPTER V PROPOSED METHODOLOGY .. 95

5.1 Data Acquisition ... 95
5.1.1 Dataset 1 .. 96

xi

5.1.2 Dataset 2 .. 97
5.1.3 Dataset 3 .. 98

5.2 Proposed Methodology .. 99
5.3 Feature Engineering Layer ... 100

5.3.1 Principal Component Analysis (PCA) .. 101
5.3.2 Independent Component Analysis (ICA) .. 101
5.3.3 Non-negative Matrix Factorization (NMF) ... 101

5.3.4 Manifold Isometric Mapping (ISOMAP) .. 102
5.3.5 t-Distributed Stochastic Neighbor Embedding (t-SNE) 102
5.3.6 Uniform Manifold Approximation and Projection (UMAP) 103

5.4 Clustering Layer ... 103
5.5 Transfer Learning Layer... 104

5.6 Machine Learning and Deep Learning models Layer .. 105
5.7 Modeling the Learning Process .. 106

5.7.1 Proposed Model Cost Function PULSE .. 106
5.7.2 Model Optimizer ... 118

5.7.3 Batch Normalization .. 121
5.7.4 Dropout .. 121

5.8 Incremental Learning Layer ... 122

CHAPTER VI PERFORMANCE ANALYSIS ... 125

6.1 Performance Evaluation Metrics .. 125

6.2 Experimental Results.. 126
6.2.1 Clustering .. 127

6.2.2 Transfer Learning .. 134
6.2.3 Incremental Learning .. 148

6.2.4 Dask Parallel Computation .. 150
6.2.5 Multi-core processing in Python ... 152
6.2.6 Results of proposed parallel computing methodology on big data 155

CHAPTER VII CONCLUSION AND FUTURE WORK ... 160

7.1 Conclusion .. 160
7.2 Future Work ... 160

REFERENCES ... 162

APPENDIX A PRIVACY PRESERVATION OF DATA-DRIVEN MODELS IN

SMART GRIDS USING HOMOMORPHIC ENCRYPTION 185

A.1 Overview ... 185
A.2 State-of-the-art works .. 188

A.2.1 Training Data Privacy ... 190
A.2.2 Model Input Privacy and Model Output Privacy ... 191

xii

A.2.3 Model Weights Privacy .. 192
A.2.4 Related Work .. 192

A.3 Proposed Methodology for Privacy-Preservation of Data-driven Models 196
A.3.1 Data description .. 198
A.3.2 Homomorphic encryption ... 200

A.4 Results ... 204
A.4.1 Case Study 1 ... 205

A.4.2 Case Study 2 (a) .. 206
A.4.3 Case Study 2 (b) ... 208

A.5 Insights .. 210

APPENDIX B LIST OF PUBLICATIONS ... 211

B.1 Patent ... 211
B.2 Published/Accepted Journal Papers ... 211
B.3 Accepted Abstract for Journal Special session .. 212

B.4 Published book chapters .. 212
B.5 Published/Accepted conference papers ... 212

B.6 Submitted Journal papers (under review) .. 213
B.7 Papers to be submitted ... 213

xiii

LIST OF FIGURES

 Page

Figure 1 Smart grid as enabling engine - depiction of opportunities 8

Figure 2 Scope of Big Data Analytics in Smart Grid ... 9

Figure 3 High level view of flow of data into the utility .. 15

Figure 4 Big Data Analytics Process .. 15

Figure 5 Different layers in one of the proposed platforms ... 25

Figure 6 Apache Hadoop Ecosystem ... 28

Figure 7 Apache Spark ... 33

Figure 8 Spark Streaming ... 35

Figure 9 Using observability to ensure performance ... 40

Figure 10 Service-oriented architecture of Itron-Teradata solution 44

Figure 11 Traditional Learning .. 70

Figure 12 Transfer Learning .. 71

Figure 13 Neural network perceptron .. 73

Figure 14 Neuron 'j' of layer '𝒍' in a neural network ... 83

Figure 15 Mathematical operations in an LSTM unit at one time step 87

Figure 16 LSTM with Fully Connected NN .. 87

Figure 17 Architecture of Proposed AREM Model © 2019 IEEE 90

Figure 18 The architecture of unfolded bi-directional LSTM model © 2019 IEEE 91

Figure 19 The architecture of clockwork RNN .. 93

Figure 20 The standard deviation of energy consumption for different transformers in

Dataset 1 ... 97

file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086657
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086658
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086659
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086660
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086661
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086662
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086663
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086664
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086665
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086666
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086667
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086668
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086669
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086670
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086671
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086672
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086673
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086674
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086675
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086676
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086676

xiv

Figure 21 The standard deviation of energy consumption for different transformers in

a sample of Dataset 2 .. 98

Figure 22 Different layers in the proposed methodology... 99

Figure 23 Proposed approximation function .. 109

Figure 24 Backward propagation of deep neural networks .. 110

Figure 25 Convergence of widely used cost function (MSE) .. 114

Figure 26 Convergence of proposed PULSE cost function ... 114

Figure 27 Load Demand Forecasting Results using MSE and PULSE cost functions on

Deep Learning Models ... 116

Figure 28 Adam Optimization .. 120

Figure 29 Standard Fully connected Neural Networks and Neural Networks with

Dropout ... 122

Figure 30 Clustering Layer Steps ... 127

Figure 31 Elbow Curve for 10 transformers dataset .. 128

Figure 32 Elbow Curve for 1000 transformers dataset .. 129

Figure 33 Performance Evaluation (in RMSE) of Clustered Models v/s Individual

Models for different Transformers ... 130

Figure 34 Performance Evaluation (in MAPE) of Clustered Models v/s Individual

Models for different Transformers ... 131

Figure 35 Forecast comparison of a trained clustered STLF model using different

machine learning algorithms ... 133

Figure 36 Error bars for forecasts using DNN and LSTM-based clustered STLF models

 .. 134

Figure 37 Homogeneous Transfer Learning through Fine Tuning 135

Figure 38 Clustering-based methodology with TL .. 136

Figure 39 Cluster training times for 1000 distribution nodes with TL applied between

clusters .. 142

file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086677
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086677
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086678
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086679
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086680
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086681
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086682
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086683
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086683
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086684
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086685
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086685
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086686
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086687
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086688
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086689
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086689
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086690
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086690
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086691
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086691
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086692
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086692
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086693
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086694
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086695
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086695

xv

Figure 40 TL between clusters – testing on cluster data .. 144

Figure 41 TL between clusters – testing on individual transformer data 144

Figure 42 TL results when the data availability is low .. 146

Figure 43 Radar plot for MAE for different horizons .. 148

Figure 44 MAE for different horizons Incremental learning based STLF model 148

Figure 45 RMSE for different horizons Incremental learning based STLF model 149

Figure 46 Radar plot for RMSE for different horizons .. 149

Figure 47 Improvement using incremental learning .. 150

Figure 48 Dask cluster setup .. 151

Figure 49 Elbow curve on 10,000 transformers dataset ... 155

Figure 50 Distribution of RMSE values for 10,000 transformer models 156

Figure 51 Distribution of RMSE against MAPE for 10,000 transformer models 156

Figure 52 nRMSE results of the developed models for big data 158

Figure 53 Frequency plots of nRMSE and MAPE for the developed models 158

Figure 54 Four Pillars of Privacy-Preserving Machine Learning 189

Figure 55 Homomorphic encryption-based deep learning modeling for smart grid

applications ... 197

Figure 56 IEEE 68-bus system test simulation model ... 199

Figure 57 Homomorphic Encryption Evaluation ... 201

Figure 58 Accuracy-wise performance of the proposed methodology 206

Figure 59 The mean square error as training progresses .. 207

Figure 60 Predicted and actual values of load demand .. 208

file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086696
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086697
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086698
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086699
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086700
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086701
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086702
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086703
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086704
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086705
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086706
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086707
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086708
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086709
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086710
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086711
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086711
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086712
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086713
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086714
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086715
file:///D:/OneDrive%20-%20Texas%20A&M%20University/1%20TAMU/0%20TAMU%20Research/0%20Thesis%20PhD/Ph.D.%20Thesis%20Dissertation%20SDU.docx%23_Toc86086716

xvi

LIST OF TABLES

 Page

Table 1 Smart Grid Sensors and Devices. .. 11

Table 2 Publicly accessible data sources. ... 12

Table 3 Batch v/s Streams Processing. ... 20

Table 4 Dimensionality Reduction Algorithms. .. 21

Table 5 Supervised Algorithms. ... 22

Table 6 Unsupervised Algorithms. ... 23

Table 7 Summary of Hadoop module. ... 30

Table 8 Summary of Apache Spark Module. ... 35

Table 9 Comparison between different frameworks for big data analytics. 36

Table 10 Descriptive statistics of datasets. ... 98

Table 11 Optimized Hyperparameters. .. 115

Table 12 Evaluation Results. .. 116

Table 13 Performance evaluation against the state-of-the-art models from literature for

arbitrary-ordered data. .. 117

Table 14 Hardware Specification of the experimental setup. .. 126

Table 15 Results on 10 transformers dataset. ... 132

Table 16 Results on 1000 transformers dataset. ... 132

Table 17 Testing of clustered models on cluster data with and without TL framework

applied between clusters. .. 138

Table 18 Testing of clustered models on individual distribution node datasets with and

without TL framework applied between clusters. .. 139

Table 19 Cluster training times after testing of clustered models with TL applied

between clusters. ... 140

xvii

Table 20 Testing of individual models on individual distribution node datasets with TL

applied within clusters. ... 141

Table 21 Performance of TL on thousand distribution nodes dataset (Dataset 2). 145

Table 22 Performance of TL when the data availability is low. 147

Table 23 Online machine learning results. ... 150

Table 24 Configuration of dask cluster. ... 151

Table 25 Results of multi-core processing. .. 153

Table 26 Results on 10,000 transformers. .. 157

Table 27 Results of parallel computing on big data (dataset 3). 157

Table 28 Time performance of parallel computing on multiple datasets. 159

Table 29 Open-source implementations of HE. ... 195

Table 30 Evaluation of homomorphic encryption deep learning model for classification

problem (fault localization). ... 205

Table 31 Evaluation of homomorphic encryption for regression problem (load

forecasting). .. 208

Table 32 HE for load forecasting problem - PJM dataset. ... 209

1

CHAPTER I

INTRODUCTION*1

1.1 Introduction

Electrical power system has recently witnessed massive developments. Technical

developments have been witnessed not only in the power generation side but also in the

transmission and distribution. Furthermore, the new technology is expected to

revolutionize the end user side with adopting various demand management programs and

techniques. For instance, the renewable energy sources such as solar and wind are not just

added to the generation side by the utility companies, but also by the end consumers and

microgrids. Moreover, vehicle to grid technology has provided the opportunities of power

flow management and its flow from vehicles to the grid.

 Once the electricity from renewable sources is increased to a large quantity, it

would bring variability in the electrical system. This variability requires that innovative

flexibility measures are considered to balance the demand and supply all the time. Novel

approaches are required to improve the flexibility of the energy system ranging from

supply to demand side. The concept of a smart grid and the use of big data analytics will

help to manage the power systems better and also to increase resilience.

There has been and will be more massive installation of smart meters at the

customer premises. These meters monitor the near real-time usage of energy and also

collect and communicate the data to the electric utilities. The advent of the power system

1 Reprinted with permission from “Smart Grid Big Data Analytics: Survey of Technologies, Techniques, and Applications.” by
Dabeeruddin Syed, Ameema Zainab, Ali Ghrayeb, Shady S. Refaat, Haitham Abu-Rub, and Othmane Bouhali, 2021. IEEE Access, 9,

59564-59585, Copyright 2021 by Dabeeruddin Syed.

2

deregulation on the delivery side and the moving away of the vertically integrated utility

business model has also contributed to the development of the smart grids. Smart grid

principle solves the power demand problems by providing two-way power and

information flow between the consumers and utility [1]. Smart meters have been installed

across the world in the past years along with the transformation of the traditional power

grid into smart grid. The development of smart grid is fully associated with the big data

flow. There are various potential applications of big data analytics on smart grid data such

as the real time and automatic processing of the electrical consumer’s energy

consumption, automatic billing, intelligent energy planning and pricing, detection of

outages due to faults and anomalies, load and generation forecast under high

unpredictability, load management with demand response, and asset management [2].

High volume of data obtained from various smart grid sources satisfy the characteristics

of big data. This grid data not only displays the Volume, Velocity and Variety

characteristics but also the V’s characteristics of Veracity, Visibility, and Value [3]. These

characteristics are the challenges when dealing with the big data analytics along with other

major concerns such as security, privacy [4].

The smart grid allows for the two-way energy and information flow between the

consumers and utilities [5]. However, managing the real time data for making business

valued decisions is still a persisting challenge [6], [7]. Currently, there are many utilities

installing large number of smart meters and some of them have efforts to use the data. As

an example, IBERDROLA has installed more than 11 million smart meters in Spain,

generating 240 million registers every day [8]. Big data techniques over an estimated

3

volume of 90 billion registers per year is being used to improve revenue collection and to

optimize energy use. In smart grid, the number of smart sensors is much higher, and the

generated data is significantly much larger.

More data utilization helps improving grid reliability and performance and ensures

better decisions by the utility provider and customers which allows for effective demand

side management and demand response [9]. However, the high volume of raw data is not

directly comprehensible or useful without a dependable and consistent ability to process,

analyze, and understand the information contained within such huge amount of data.

Therefore, the data should be transformed into useful information before action can be

taken based on it which is a complicated process because this beneficial information is not

obvious from the data. The factors that contribute to the complications are the visualization

and the use of data itself. Some information needs to be used by the automated systems

while other information needs to be visualized and presented to people. Also, the time

scales for different applications are different, from milliseconds to days. The challenges

involved with the use of smart grid data for analytics can be categorized as 1) decisions

on corresponding the data collection infrastructure to the desired applications, 2)

application of new architecture and tools to manage grid data as streams in real-time, 3)

transforming processes throughout the utilities to support the big data infrastructure, 4)

managing the humongous amounts of data to make decisions that allow the benefits from

the information obtained from smart grids data.

The smart grid contains a large number of sensors for various monitoring,

communication, control, and management functionalities which enable effective, stable,

4

reliable, and efficient operation of the power grid [10], [11]. Load forecasting plays a

crucial role in the effective operation and management of large electrical systems [12],

therefore this topic has been of high research and development focus during the past years

[13]. A particular use of load forecasting is demand-side management (DSM) that plays

an important role in creating the next smart grid energy paradigm and in improving the

current grid efficiency and reliability.

The main challenge with the DSM at the residential and distribution levels is the

need for high precision control and management which requires precise short-term and

long-term load forecasting. Such DSM ensures proper and timely decision making on the

power purchase, generation, and consumption. However, it is very difficult to predict the

operation and consumption of the largely expanding electrical systems. The factors that

affect the electric power demand and makes its forecasting a challenge are the differences

in weather, season changes, weekends and holidays, operation scenarios of the power

plant, faults occurring on the networks, economic growth, population growth, incentives,

and others. The better demand prediction gets, the more effective is the DSM also in

reducing the outages and blackouts.

Load forecasting helps the utilities to plan the amount of generation, load

switching and infrastructure development. The load forecast can be divided into three

main categories: Short-term forecast: ranges from few hours to few weeks [14]; Medium

forecast: ranges from few weeks to few years [15]; Long-term forecast: ranges more than

a year [16].

5

The main features for different categories of the forecast are short-term forecast

includes time factor, weather data, and possible customer classes. Short-term load

consumption depends on the time of the day or day of the week. For hotter regions, the

energy consumption is higher during the noon time. Weather usually refers to temperature,

humidity, cloud cover, wind speed, and Ultraviolet (UV) index.

The major factors that can be used for medium and long-term load forecast include

[17]: historical load data, historical weather data, number of customers in different

categories, age and characteristics of customers, electrical appliances in the area,

appliances sales data, and economic and demographic categories.

The load forecast enables the service providers to control and plan the generation

of electricity ahead of time. This in turn helps providers to manage the peak load [18].

Deep learning techniques could be used for load forecasting. They can be incorporated in

the modern electrical systems easily as the grids are getting smarter with various smart

sensors, devices, and meters. These smart devices generate data at a very high rate and in

high quantities and can benefit the forecasting process. The data are collected from various

sources that include the generation plants, transmission systems, and distribution systems.

1.2 Problem Definition – Research Objectives

Electrical energy must be generated whenever there is a demand for it. It is crucial

for electric utilities to estimate the load demand on their systems. To minimize the

operating cost, electrical utilities use load forecasting to control the number of operating

generator units. The electric energy consumption data are collected by smart meters at

high velocity, variety, and volume; making the data characterized as big data. The smart

6

meter data, representing the energy consumption and customer consumption behavior at

the household level, enable the electrical utilities to perform capacity planning, capacity

building, and efficient operations. The various and different data collection points in a

large electrical grid require parallel and real-time processing of the generated data for

creating an accurate load forecasting. However, providing parallel and real-time load

forecasting is a challenge for the operation and planning of electrical power generation. It

is highly crucial to optimize the tradeoff between the accuracy of forecasting models and

the execution time for economic operation of power system.

1.3 Research Contribution

The goal of this research is to provide a big data analytics methodology for parallel

and real-time load forecasting in smart grid. The key contributions of this research work

are summarized as follows.

1. Machine learning pipeline for predictive models is developed. Insights to set the

strategic direction for the enhancement of energy forecasting accuracy are

generated.

2. A multi-stage deep-learning and clustering-based transfer learning methodology

to forecast short-term energy consumption at distribution nodes in a large electrical

network.

3. The proposed clustering layer aims to identify the distribution nodes that have

similar trends/profiles of energy consumption and cluster these nodes together.

The objective of clustering approach is to reduce the number of deep learning

7

models required to be trained and developed while still achieving accurate load

forecasting.

4. A hybrid cross-model adaptation layer capable of transferring the knowledge from

one deep learning forecasting model to others is proposed. This layer is aimed at

and proven to reduce the training time of load forecasting models.

5. A decoupled weight regularized optimizer is proposed to eliminate the negative

transfer learning between the dissimilar clusters in transfer learning layer.

6. The incremental learning is proposed to avoid the regeneration and retraining of

the forecasting models. This layer allows for real-time and online fine tuning of

the models and for enhancing the forecasting accuracy.

7. A data mining module that integrates the weather and location API is developed

to study the impact of feature selection.

8. Multiprocessing and parallel processing strategy is developed to enhance the

scalability of the proposed methodology.

9. A novel objective function is proposed to penalize the tendency of deep learning

models to underestimate.

8

CHAPTER II

LITERATURE REVIEW*2,3

In this chapter, background and related works on smart grid data flow, big data

analytics process, technologies in the literature for big data analytics and industrial applied

solutions are discussed. Additionally, an introduction to machine learning, supervised

algorithms, unsupervised methods, and dimensionality reduction techniques is provided.

Moreover, the chapter discusses scope of big data analytics in smart grid, different

applications possible and different literature efforts that utilize various data-driven

2 Reprinted with permission from “Smart Grid Big Data Analytics: Survey of Technologies, Techniques, and Applications.” by
Dabeeruddin Syed, Ameema Zainab, Ali Ghrayeb, Shady S. Refaat, Haitham Abu-Rub, and Othmane Bouhali, 2021. IEEE Access, 9,

59564-59585, Copyright 2021 by Dabeeruddin Syed.
3 Reprinted with permission from “Deep Learning-Based Short-Term Load Forecasting Approach in Smart Grid with Clustering

and Consumption Pattern Recognition.” by Dabeeruddin Syed, Haitham Abu-Rub, Ali Ghrayeb, Shady S. Refaat, Mahdi Houchati,

Othmane Bouhali, and Santiago Bañales, 2021. IEEE Access 9, 54992-55008, Copyright 2021 by Dabeeruddin Syed.

Figure 1 Smart grid as enabling engine - depiction of opportunities

9

methodologies for load forecasting, in addition to their methodologies of data acquisition,

analysis, and performance.

2.1 Smart Grid Data Flow

A smart grid is formed by the integration of information and communications

technology, electrical networks, and automation. The smart grid as an enabling engine is

depicted in Figure 1. The electrical networks in the smart grid require the deployment of

smart meters, sensors, devices, and control strategies. These have evolved due to the

integration of renewable energy sources that are normally considered variable and

unreliable sources of energy and are completely clean to the environment [19]. The smart

grid aims to incorporate all the energy sources to match not only the baseline load but also

the intermediate and peak loads.

Figure 2 Scope of Big Data Analytics in Smart Grid

10

In the smart grid, there is a lot of scope with big data analytics apart from creating

intelligence and obtaining information from the raw data [20], [21]. The scope of big data

analytics has been illustrated in Figure 2. It is required that the big data methodology

provides the potential to perform different types of analytics on the voluminous data to

interpret it and derive business-valued applications. The different application areas for big

data analytics in a smart grid will be discussed.

2.1.1 Big Data Sources

The data from the smart grids is generated at a very high rate and volume and in

real time [22]. Extracting information from smart grid data which is required for specific

applications calls for deep insight into the sources of smart grid data. The data is obtained

from the sensors, smart meters, grid devices, detectors, and SCADA. The collected signals

relate to power utilization habits of consumers, phasor measurement, energy consumption,

energy pricing and bidding, operation or financials for running the utility. Types of sensors

and information obtained from those sensors are described in Table 1. Also, large data sets

not related to grid such as weather data, GIS data should be used for situational awareness

and decision making. Owing to security and privacy concerns, the electric utilities do not

share the smart meter data publicly and this poses a challenge to the research community.

There are several benchmarks and publicly accessible data that have been anonymized or

semi-anonymized and that the researchers can use to validate the performance of their

proposed modeling and data analytics methodologies. The summarization of the list of

public data sources is given in Table 2 [23], [24].

11

Table 1 Smart Grid Sensors and Devices.

Sources Quantity being measured Information extracted and

applications

Advanced Metering

Infrastructure (AMI)

E, Cumulative energy usage, peak

load, load curve, phase, failure counts

& logs, P.F., tamper factor, last

interval demand

Market pricing, real-time on

demand, remote meter

configuration, demand-side

management, electric usage,

power quality monitoring, and

local control

Distributed Generation

Sensors

V, P.F. Load balancing

Digital Fault Recorder

(DFR)

Power swing, load variation, transient

phase angle changes, frequency

fluctuations, also records power

system events such as time of fault,

and power disturbance.

Faults classification

Electrical Measurement

Sensors (EMS)

V, I, E, Vsag, P.F., Qreac, electric &

magnetic fields

Revenue

Fibre Bragg Grating

sensor (FBG)

wavelength shift under changes in

strain & temperature

Prediction of overheating, sag,

vibration, galloping

Geographical

Information System (GIS)

GIS data Asset management & map the

location of outages

Hall Effect sensor V and magnetic field Current sensing, proximity

switching, positioning, speed

detection

High Voltage Line

Temperature and

Weather Condition

Sensors

T, record weather conditions Preventive maintenance

Intelligent electronic

device (IED)

Records status changes in substation

and outgoing feeders

Relay protection

Line Fault detectors V, I, P, harmonics, phase angle Transmission or Distribution

faults

Magnetoresistive sensors Current, power, total energy,

frequency, modulation

Transient Magnetic Field, EMI in

substation

Phasor Measurement

Unit (PMU)

V, I, P, harmonics, phase angle Time synchronized

measurements with phase angles,

electrical waves measurement of

power grid

Remote Terminal Unit

(RTU)

Transmits telemetry data and

controllable by micro-processor

system operation status

Smart Capacitor control V, I, VAR and harmonic monitoring Monitoring & control of

capacitor banks remotely

12

Sagometer T Line Sagging

Smart Sensors for Outage

Detection

T, I Outage detection

SCADA V, I, E, P.F. Automatic control, protection,

system monitoring, event

processing and alarm

Smart Sensors for

Transformer Monitoring

V, I, T, load tap changer values,

partial discharge, dissolve gas data

Preventive maintenance

Smart Voltage Sensors V Voltage Regulation

Wide area monitoring

system (WAMS)

Deals with incoming data from PMUs Dynamic stability of the grid

V = Voltage, I = Current, P = Power, E = Energy, Vsag = Voltage sag, P.F. = Power factor, T = temperature

Table 2 Publicly accessible data sources.

Data Source Name Data Description

Ausgrid network [25] Load profile data at the substation level.

Commission for Energy Regulation (CER) smart

metering project [26]
Smart meter data from Ireland.

Cornell campus smart grid [27] Smart meter data.

The École polytechnique fédérale de Lausanne (EPFL)

smart grid data (Switzerland) [28]
PMU data.

Electric Reliability Council of Texas (ERCOT) data [29] Market data.

North American SynchroPhasor Initiative (NASPI) data

[30]
PMU data.

Pecan Street project [31] Smart meter data.

Pennsylvania-New Jersey-Maryland (PJM) market data

[32]
Market data.

Residential or commercial data [33] Consumption, electric vehicles, power

quality, PV generation, reliability,

weather, wind-based generation, and

general energy data.

University of California (UC) Berkeley campus smart grid

[34]

Smart meter and building consumption

data.

2.1.2 Data Structures

13

Contrary to the traditional data analysis, big data analysis deals with semi-

structured, quasi-structured and unstructured data in addition to the structured data [35],

[36].

• Structured data: Structured data is the data that comprises clearly defined data types,

structure, and format whose patterns make the data easily searchable. Few examples

include data that can be stored in spreadsheets, Comma-separated Values (CSV) file, a

traditional Relational Database Management System (RDBMS), data cubes in Online

Analytical Processing (OLAP), relational tables containing customer information, and

electrical consumption data in numbers or strings. Meters’ data, distribution management

data, equipment parameters, load control data, and marketing system data in relational

format are examples of structured data in smart grids.

• Semi-structured data: Semi-structured data is textual data that contains perceptible data

patterns and enables parsing. For example, the XML and JSON data files are self-

describing and defined by its schema. Web service data, load monitoring, and power

quality data are examples of semi-structured data in smart grids.

• Quasi-structured data: Quasi-structure data is textual data that contains erratic data

formats but can be properly formatted with tools after time and effort. The only difference

between the semi-structured and quasi-structured data is that semi-structured data has

metadata associated with them and the metadata can be easily used to structure or format

the data. Whereas the quasi-structured data requires intelligence-aware approaches to

structure or format them. For example, web clickstream that contains erratic formats and

data values, web scrapping data, and search engine results are quasi-structured data.

14

• Unstructured data: Unstructured data is data that has no pre-defined models or schema.

Examples include publicly collected census and text, social media streams and tweets,

audio, video, and photographs. Meteorological information, customer service data, and

economy data of distribution regions are examples of unstructured data in smart grids.

The high-level view of the data flow into the utility is illustrated in Figure 3 [37].

The first step is the data collection in which the major classes of data are collected from

various sources, e.g., the customer data is collected using smart meters, grid data is

measured on distribution and transmission lines using PMUs and synchrophasors. Other

important data, that are collected, include SCADA data, market data, weather data, and

customer feedback in the form of tweets, text, videos, audio, and pictures. The complex

and heterogeneous data from multiple sources are then transmitted through various

communication networks and stored in the relational database, data warehouse, file

servers, application servers, and Hadoop clusters. This comes under the phase of data

management where the data undergoes extraction, cleaning, aggregation, and encoding.

Finally, the data are loaded into any in-memory distributed databases for further analytics.

The third phase is analytics where the actual information stored in data is extracted to

represent business value. The data analytics is performed using approaches such as time

series analysis, feature selection, feature extraction, machine learning modeling, deep

learning modeling, clustering, incremental learning, adaptive learning, and reinforcement

learning with an aim to enhance applications for enterprise intelligence, grid operations,

and customer insight. The applications may include the following but are not limited to:

load profiling, load forecasting, demand response, program marketing, outage

15

management, and bad data detection [21], [37], [38]. Finally, the information should

enable action in the form of automation, external communication, and monitoring through

visualization and dashboards.

2.2 Big Data Analytics Process

Big Data analytics requires pre-defined strategies because of the high volume of

data. Also, the velocity and variety of data pose challenges in the data analytics process.

It is very crucial that the data from the smart grid are processed in real-time because

significant patterns can be recognized from the data to make better decisions. Data

Figure 3 High level view of flow of data into the utility

Figure 4 Big Data Analytics Process

16

analytics deals with the extraction of actionable knowledge and patterns from the available

data [39]. The big data analytics process is illustrated in Figure 4.

There are four major types of big data analytics [40]. These are described as

follows:

a) Descriptive Analytics: Descriptive analytics illustrates what happened in the past using

the historical data available and shows the data in an easily understandable form or

visualization. In general, the data is illustrated using graphs, bar diagrams, pie

diagrams, maps, and scatter plots. In short, descriptive analytics is performed to

understand or illustrate the patterns in the data.

b) Predictive Analytics: It extrapolates from the data available to predict what can happen

in the future. The tools that are used for predictive analytics are time-series analysis

using statistical methods and other data mining algorithms. Predictive analytics is

usually performed to predict which events can happen in the future.

c) Exploratory Analytics: It finds hidden correlations or relationships between features

in the data. This helps us to estimate values for a dependent feature when information

is available for the independent features. Exploratory analytics is basically performed

to determine the cause behind the events that have happened in the past.

d) Prescriptive Analytics: It is used to discover the best outcome of past events when the

features of the data and operating parameters of a system are given. It helps to develop

strategies for future events under similar conditions. The techniques involve

simulation tools, and these simulate the operating conditions or features to finally

come up with the best outcome. The simulation techniques strategize how to plan for

17

similar events in the future. Prescriptive analytics is basically performed to know how

preferable events can be made to happen in the future. Example: power flow analysis.

Data analytics starts with the acquisition of data following which the data is

processed to reveal information.

2.2.1 Data Acquisition

The first step in any of the data analytics process is the collection of data. The data

in the smart grid are collected from various sources as mentioned in the earlier section.

With the data collection already in place, the other subtasks in data acquisition are data

communication and data pre-processing. The raw data need to be transmitted either to a

real-time stream processing system or to a storage system from where the data can be sent

to the offline batch processing system for further analysis. Since the data have been

collected from diverse and multiple sources, the data aggregation and cleaning are the

foremost and crucial steps. Data aggregation services should be in place to integrate the

data from varied sources and furnish a unified view of the available data. In data pre-

processing, the inconsistent and missing data are to be filled or one among the records,

and the features are to be removed to improve the data quality [41]. It is crucial to refine

the features in the extracted data as there are noise and redundancy in the collected raw

data. Refining the features involve either feature selection or feature extraction. If the data

contain highly correlated features, then the machine learning algorithms, in general,

perform poorly. Regularization techniques are used to overcome the issues of overfitting

whereas underfitting would require the acquisition of more data and that is not an issue in

the case of big data [42].

18

2.2.2 Data Processing

The data collected and transmitted should be stored in storage infrastructure for

further processing. The stage, at which the data is processed, classifies data processing

into the following types:

1) Batch Processing: Batch analytics is fundamentally the analysis of data in batches. It

involves the workflow on offline data where all the data are available, pre-extracted,

and ingested using scripts and a huge group of data is analyzed in a single execution.

Distributed file systems (DFS) provide for the fault-tolerant scalable storage of data

across commodity hardware where the storage nodes do not share memory however

are connected virtually through networking [43]. MapReduce and Hadoop framework

provides such a DFS framework. In MapReduce, a huge amount of data is processed

by dividing the job into a set of sub-jobs and each sub-job handles a small portion of

data and all the sub-jobs operate in parallel to obtain the intermediate outcomes. The

final result is then obtained by the aggregation of the intermediate outcomes. The

advantage of the MapReduce paradigm with respect to batch processing is the data

locality principle. In this principle, the algorithm or the user code is moved close to

data rather than moving the data to the algorithm. This requires the movement of

computational resources to where the data is located and thus, prevents overhead from

the data transmission. The disadvantage of batch processing is that it cannot provide

analytics results in real-time. An example of batch processing in smart grids includes

the training of data-driven models using offline data for applications of topology

identification, predictive maintenance, and energy forecasting. These models would

19

require re-training if new data become available and need to be included in the

modeling performance. There is no specific time interval defined to term processing

as batch analytics. However, it is usually considered that if the processing is scheduled

to happen with an interval equal to or greater than 20 minutes, then it is batch

processing.

2) Stream Processing: Stream processing is primarily the processing of each new data

instance as soon as it is available instead of waiting for batches of offline data. The

idea behind the stream processing is that the potential worth of information from data

relies on the freshness of data [44]. Hence, it is crucial that the stream processing

model processes the data as soon as the data instance is available to obtain

approximation results. If the data are continuously available in huge streams, a portion

of the data can be stored in memory until it is processed.

In the subsequent sections, the technologies that possess the capability of processing

big data in real-time are reviewed. They provide a huge advantage of handling data

with high-velocity requirements. In one of the proposed works, the Hadoop File

system is used as a storage system and spark streaming provides the real-time

processing solution along with tools such as Spark Structured Query Language (SQL),

Spark Machine Learning Library (MLlib), and GraphX. Examples of stream

processing in a smart grid include stateless conversion, stateless filtering, aggregation,

pre-processing, and wavelet transformations of the data. The time interval for data

processing to be termed as stream processing is typically seconds or milliseconds.

20

3) Iterative Processing: There are few big data problems which require processing of

data iteratively and demands for a greater number of read and write operations than

the batch processing and stream processing and so involve more Input Output transfer

and are time consuming.

For big data analytics on smart grid data, the batch and the stream processing are

focused upon and the comparison of these processing types is given in the Table 3.

Table 3 Batch v/s Streams Processing.

Batch Processing Stream Processing

Input Form Chunks of data Streams of data

Size of Data Input known & finite unknown & infinite

Is Data Stored? Stored Data Data is not stored (or)

small streams stored in

memory

Hardware Used multiple CPUs/memory limited amount of memory

Processing multiple rounds single or few passes over

data

Time longer time seconds or milliseconds

Applications widely adopted sensor networks, and web

mining.

2.2.3 Data Analytics Techniques

Multiple machine learning algorithms are used as data analytics techniques in

smart grids. These techniques are used to map the relationship between the features in the

data and the prediction label. If the labels exist, the techniques employed are named as

21

supervised techniques. Whereas the data may not explicitly consist of labels, and it is the

algorithm that recognizes the patterns in the data. The techniques that analyze data without

labels are termed as unsupervised techniques.

The summarization of the different classes of machine learning techniques, that

have been previously applied in smart grids, is presented in Table 4, Table 5, and Table 6.

Table 4 Dimensionality Reduction Algorithms.

Algorithm Description

Principle Component

Analysis (PCA) [45]

Most widely used unsupervised technique; heuristic

approach to extract variance structure from high-

dimensional data; involves 1) feature scaling & mean

normalization, 2) calculation of covariance matrix and 3)

sorting the eigenvectors that represent components.

Linear Discriminant

Analysis (LDA) [46]

Supervised technique; projection of data from higher

dimensional space to lower one so that it maximizes

between-class & minimizes within-class distances.

Kernel Discriminant

Analysis (KDA) [47]

Obtains linear separation by non-linear mapping of input

space to high-dimensional feature space.

t-distributed stochastic

neighbor embedding (t-

SNE) [48]

Converts high-dimensional data into a matrix of pair-wise

similarities using conditional probabilities, and variation of

stochastic neighbor embedding.

22

Table 5 Supervised Algorithms.

Algorithm Description

Linear Regression

(LR) [49]

Curve fitting regression technique for linear functions; the

hypothesis function is linear.

Polynomial Regression

[50]

Curve fitting regression technique for non-linear functions;

the hypothesis is a linear model of basis functions (linear,

polynomial, Gaussian Radial Basis Function (RBF), and

sigmoid)

Logistic Regression

[51]

Classification technique to identify decision boundary; the

hypothesis function is sigmoid.

Neural Networks (NN)

[52], [53]

Performs classification & regression; capable of modeling

highly non-linear relationships with large feature space;

parametric model; can represent complex logic operations

& comprises input, hidden & output layers with activation

functions (threshold, logistic, arctan, gaussian & ReLU);

and types: convolutional, and recurrent.

Support Vector

Machines (SVM) [54]

Large margin classifier; classifies non-linear data by

introducing slack variables; SVM is found by minimization

formulation under constraints that are overcome using a

Lagrangian multiplier. Types: linear, and kernel.

23

Naive Bayes [55]

The parametric approach for likelihood estimation assumes

that the data features are independent.

k-Nearest Neighbor (k-

NN) [56]

Non-parametric approach for likelihood estimation;

classifies a data point to the majority class among k

Neighbors;

Decision Tree (DT) [57]

Recursive, partition-based tree model that predicts a class

based on split points; the algorithm takes leaf size and purity

threshold as inputs; the process stops when leaf size or

purity threshold is reached.

Random Forest (RF)

[58]

Collection of low-bias, high-variance trees; and outputs

mode of the classes or mean prediction.

Table 6 Unsupervised Algorithms.

Algorithm Description

K-Means Clustering

[59]

The representative-based technique includes steps of

initializing cluster centroids, grouping data points to nearest

centroids, updating centroids, and uses Euclidean distances

& variables are to be quantitative.

Expectation-

Maximization

Clustering [60]

The representative-based technique includes steps of

initializing cluster mean, calculating posterior probability,

and re-estimating means, covariance & priors.

24

Gaussian Mixture

Clustering [61]

Fits k-Gaussians to cluster the data. The result is the

weighted average of K-gaussian distributions.

Hierarchical

Clustering [59]

Involves creating a sequence of nested partitions that can be

visualized by a tree or hierarchy of clusters.

Density-based Spatial

Clustering of

Applications with

Noise (DBSCAN) [62]

Density-based clustering that computes neighborhood to

classify data points into core, border & noise points while

also using a threshold called minimum points.

Association Rules [63]

Usually applied in market basket analysis, text mining, web

usage mining, and linguistics mining to determine the co-

occurrence relationships or associations between all items

in the database.

Collaborative Filtering

[64]

Generally employed in recommender systems where

preferences of a target user are predicted based on the user

searches where users are like the target & mining on their

preferences.

2.3 Technologies for Big Data Analytics

In this section, a hierarchical architecture of state-of-the-art core components of

big data analysis for smart grids using Hadoop is shown in Figure 5a, and the architecture

that uses Storm is depicted in Figure 5b. In one of the works, a big data analytics platform

is proposed and the technologies for big data analytics for smart grids using Spark is

25

illustrated in Figure 5c [65], [66]. The major components perform the collection, storage,

processing, visualization, and querying of data. There are a variety of workloads present

in the scenario of massive-scale data analytics. A combination of these workloads will

present a potentially effective solution for the business goals in the scenario of smart grids.

2.3.1 Evolution of Big Data Technologies

When dealing with massive-scaled data, the framework was initially developed for

the processing of offline large datasets. Apache Hadoop and MapReduce models provide

opensource software frameworks for the distributed processing of offline data spread

across data nodes or clusters using simple programming paradigms of the map and reduce

functions. MapReduce abstracts from distributed programming but it still requires

programming to a certain level. Moreover, MapReduce is efficient for batch tasks and not

for adhoc queries or iterative processing. If the offline analysis or background task of

indexing websites is required, then MapReduce is a suitable option. Hence, the

(a) Architecture using Hadoop (b) Architecture using Storm (c) Proposed Architecture

Figure 5 Different layers in one of the proposed platforms

26

combination of a distributed file system and MapReduce is suitable for write once and

read many, or sequential data access, however not for random reading or write access

applications [67]. Yet, random read/access is required for the online analysis of data or

the ad-hoc querying.

As a solution to the ad-hoc querying issue, Not only SQL (NoSQL) databases can

be used. NoSQL Databases are of two types [68]. These are mentioned in the following.

• Column databases: A column-oriented database is a database that stores data in

columns rather than rows. Furthermore, it is very effortless to add columns and

these columns can be added row by row as well. The databases offer great

flexibility, performance, and efficiency. Also, the performance of the column

databases can be significantly enhanced by compression, late materialization, and

batch processing.

Examples of column databases include BigTable, HBase in Amazon Dynamo,

Google Bigtable, and Apache HBase.

• Key-value stores: These are distributed data structures that provide key-based

access to data and are also called Distributed Hash Tables. An example is Apache

Cassandra.

NoSQL Databases are very efficient when dealing with massive-scale data even if

the data type is unstructured or semi-structured. However, the only disadvantage is that

these do not offer SQL-like querying. To make querying SQL-like, many NoSQL

databases have been evolved with the SQL-like interface (Contextual Query Language

27

(CQL) of Cassandra, Hive, and Pig.). There are developments in the form of SQL

interfaces that can directly connect to the NoSQL databases (such as PrestoDB.). The

SQL-like interfaced NoSQL databases are termed as NewSQL and these possess the

inherent capability of organizing massive-scaled data and sorting to enable efficient

offline analyses (H-Store, Google Spanner.) [69].

There has been a massive growth in the availability of digital data and the data are

available in continuous streams. Therefore, NoSQL databases have been evolved to cater

to the stream-processing solution with the fault-tolerant distributed data ingest systems

such as Apache Kafka, and Flume [70]. Examples of stream processing solutions are

Apache Storm and Samsa. Also, there are standalone stream processing frameworks that

are faster. Additionally, there have been solutions developed to employ OLAP-like

processing in the big data landscape. Built on top of data structures, there are currently

libraries available for machine learning and big data analytics for real-time analytics

processing. For example, there is an Apache Spark framework that contains machine

learning libraries and can be used for massive-scale data analytics.

2.3.2 Apache Hadoop and MapReduce

a) Hadoop Framework: Heterogeneity, volume, performance, scaling, cost, and

security concerns of big data hinder the process of data analytics at every stage [71].

Apache Hadoop is an open-source framework that renders the distributed storage and

analytics of big data. It consists of the core (for storage part) called the Hadoop Distributed

File System (HDFS), the processing component that is the MapReduce programming

28

model and resource scheduler called Hadoop YARN (Yet Another Resource Negotiator)

[72].

Following is the list of modules in the Apache Hadoop Ecosystem (as shown in

Figure 6 [73], [74]):

1) Hadoop core: Hadoop core contains a pre-defined collection of utilities and

libraries that can be used by other modules within the Hadoop ecosystem. For

instance, if the data access module such as HBase, and Hive needs to access the

file storage system in Hadoop, then these are required to build Java Archive (JAR)

files stored in the Hadoop core.

2) Hadoop Distributed File System: The default distributed storage system in Apache

Hadoop is the HDFS. The huge datasets are dumped in the HDFS and when

required, access to the data is provided to other Hadoop modules using utilities

[75]. HDFS component provides reliable and quick access to the data by creating

several copies of the data block and these copies are distributed across multiple

Figure 6 Apache Hadoop Ecosystem

29

clusters. HDFS works on the master-slave architecture model and comprises three

components namely NameNode, DataNode, and Secondary NameNode [76].

3) Hadoop YARN: YARN is the dynamic resource management component that lets

the user run multiple Hadoop applications without having to worry about the

aggravating workloads. YARN provides for improved cluster utilization. Key

components of YARN are Resource Manager, Application Master, Node

Manager, and containers.

4) Hadoop MapReduce: This is a framework for parallel processing of large data set.

b) MapReduce Programming model: MapReduce model is employed for the parallel

computation and interpretation of massive-scale data and has three stages: map, shuffle,

and reduce [77]. All the jobs are written in a functional programming style to create

map and reduce tasks. Dynamic systems for the MapReduce model are commonly

clusters that perform tasks such as data partitioning, scheduling of jobs, and

communication between the cluster nodes and hence, are more suitable when dealing

with massive-scale data. In the map phase, the data are read from the DFS and

partitioned into clustered systems where the input is processed to compute the

intermediary results which are then stored on the local node of the cluster where the

map phase has run and waits for all the map functions to generate output in key-value

pairs. The output in key-value pairs is then given as input to the reduce function to

generate the final result. The advantage of the MapReduce model is that it takes

processing to where the data resides and hence, decreases the transmission of data and

improves efficiency. Therefore, the MapReduce model is more apt for the distributed

30

computing of massive-scale data. The summary of the Hadoop module is illustrated in

Table 7 [78].

Table 7 Summary of Hadoop module.

Stage Software Function

Data Acquisition

Flume
Data acquisition from varied sources to

a centralized location

Sqoop
Data Import & Export between centralized

location & Hadoop

Data Storage

HDFS Distributed File System

HBase
Non-relational key-value based columnar data

store

Computation MapReduce A parallel computation programming model

Querying Analysis
Pig Procedural Data Flow platform

Hive SQL-like language for querying

Process Management Mahout Machine Learning Library

Querying

Zookeeper
Centralized service to maintain configuration

information & synchronization.

Chukwa System Monitoring

Hadoop has provided for storing and analyzing data at massive scales. However,

data analytics technology cannot be applied to real-time systems [79]. The advent of the

Internet-of-Things, smart meters, and devices has led to the possibility of real-time

analysis of data for the benefits of business and many other advantages such as smart grid

stability, and management. The real-time handling of data falls under one of the

categories: Stream processing or Iterative processing. The stream processing framework

31

would work efficiently for big data analytics in the smart grid for real-time decisions about

generation, and control.

2.3.3 Apache Storm

It is a scalable and distributed framework for reliable computation and processing

of streams of real-time data with processing latencies in the order of milliseconds. Apache

Storm can ingest the data from multiple sources using Kafka or Kinesis. A storm cluster

is very alike to the data cluster in Apache Hadoop [80]. In Hadoop, MapReduce jobs are

executed while topologies are executed in Apache Storm. Topologies are very similar to

jobs, but topologies process messages or data forever until these are killed.

In a Storm cluster, there are two types of nodes, namely master node and worker

nodes [81]. A background process called Nimbus runs on the master node and this is

analogous to Hadoop’s job-tracker. Nimbus process distributes the code in the cluster i.e.,

assigns tasks to the machines and monitors for any failures. On the machines other than

the master node, the process called Supervisor runs and it listens for the work assigned to

its machine by the Nimbus daemon. It starts and stops the worker node process depending

upon the task assigned to the machine. Every worker process runs a subset of topologies.

That means the execution of topology requires multiple worker processes that are assigned

to different machines across the cluster. It requires coordination between Nimbus daemon

and Supervisor processes, and this is taken care of by Zookeeper which is the coordinating

service in the distributed environment [82]. Zookeeper takes care of naming,

configuration, and synchronization. The important point to note is that all daemons in the

Apache Storm are stateless and fail-fast and these come back up even if these are killed

32

by issuing manual commands. This provides for the stable and reliable real-time analysis

of big data.

2.3.4 Apache Spark

Apache Spark is an open-source cluster computing framework for analyzing

massive-scaled data. It was originally developed by Matei Zaharia at UC Berkeley

AMPLab [83]. Spark has the capability for stream processing of big data and has many

advantages over Hadoop MapReduce and Storm. In Apache Spark, data analytics is more

stream processing than batch processing and hence, it avoids the reprocessing of the data

[84]. This provides the stream processing model of Apache Spark to be dynamic and it

becomes more crucial during the real-time processing of huge volumes of data collected

from different sources. Even for iterative processing, the leading framework currently is

Apache Spark as it possesses the capability of processing and holding the data in the

memory nodes across the cluster.

1) Characteristics of Apache Spark:

▪ Speed: Spark extends the MapReduce model to support computations of stream

processing and interactive querying and is 10 times faster than Hadoop MapReduce

model.

▪ Ease of Use: Applications written in any language Java, python, scala are compatible

with Apache Spark.

▪ Advanced Analytics: Spark supports MapReduce model of Hadoop, SQL-like

Querying, streaming data, Machine Learning algorithms, and Graph algorithms too.

33

▪ Iterative and Interactive Applications: Spark is designed to execute both in-memory

and on-disk. It holds the intermediary results in memory rather than writing on disk to

avoid reprocessing the data if required again. Spark operators perform external

operations on the data if it does not fit memory.

▪ In Memory Computation: The data is stored in memory rather than written on disk.

Hence, Spark reduces the response time to a great extent when the data is queried.

▪ Directed Acyclic Graph (DAG): DAG in Apache spark is a set of vertices and edges

where the vertices are the representations of the RDDs, and edges represent the

operations to be performed on the RDDs. DAGs in spark can contain any number of

stages. Even MapReduce model of Hadoop is a DAG of two stages - Map and Reduce.

This allows for simple jobs to be completed in one stage and more complex jobs to be

completed in one run of many stages unlike multiple jobs in MapReduce model. Thus,

jobs in Spark execute faster than they would in the MapReduce model.

2) Spark Framework: Other than core Spark, there are multiple components in the Spark

ecosystem. These components as shown in Figure 7 [85].

Figure 7 Apache Spark

34

Spark Core is the base of all the Spark projects, and it allows basic input/output

operations, distributed task dispatching, and scheduling through an Application

Programming Interface (API) centered on RDD abstraction. RDD is a read-only

collection of objects partitioned across a set of machines and it can be rebuilt if any of the

partitions are lost [86]. RDDs are fault-tolerant, can be cached in-memory across

machines, and can be reused in MapReduce for simultaneous computations.

Spark SQL: Spark SQL is the Apache Spark module that is commonly worked with

structured data. It lies on top of Spark core and is used to execute SQL queries. It

introduces the schema RDD which can be manipulated. Users can interact with the SQL

interface using the command line or over Open Database Connectivity (ODBC), and Java

Database Connectivity (JDBC) server.

Spark Streaming: It is the component of the spark that enables the processing of live

streams of data (Figure 8). Spark streaming gives a programming interface for processing

data streams. It resembles the Spark core’s RDD API, pushes data in small chunks, and

does RDD transformations on the batches of data.

MLib: Apache Spark comprises a library with common machine learning functionality

and this library is called MLib. It processes data faster when compared to Hadoop’s disk-

based machine learning library called Mahout.

GraphX: The GraphX API provides for users to view data in graphical format and to view

RDDs without data movement or duplication. It uses the fundamental operators such as

35

subgraphs, joinVertices, and aggregateMessages. The summary of the proposed module

of Spark on top of Hadoop is illustrated in Table 8.

Table 8 Summary of Apache Spark Module.

Stage Software Function

Data Acquisition

Flume
Data Collection from sources to a centralized

location

Sqoop
Data Import and Export between centralized

location and HDFS

Data Storage
HDFS Distributed File System

HBase Column-based datastore

Computation Spark Streaming Computation Framework

Querying Spark SQL SQL-like language for Querying

Analysis Spark MLib Machine Learning Libraries

Visualization Spark GraphX Visualizations

2.3.5 Apache Drill

It is an open-source software framework that provides for data-driven distributed

applications requiring interactive processing of massive-scaled data. Apache Drill is the

first and only distributed SQL engine that does not require schemas. Drill automatically

understands the data when data are provided. This saves a lot of time and effort in defining

Figure 8 Spark Streaming

36

schemas, transforming data, and maintaining those schemas. It is designed to handle

Petabytes (PBs) of data spread across thousands of clusters and it responds to ad-hoc

queries with high performance and low latency.

It is a query layer that functions even when multiple data sources are present. It

primarily scans the full tables instead of maintaining indices. The workers in Apache Drill

are named Drillbits and run on each of the data nodes in the cluster. The coordination

between the drillbits, optimization, scheduling, and execution is performed in a distributed

way.

The architecture of Apache Drill contains the following components:

User interface: It provides an interface for the user or application-driven interaction. For

example, interface through a command line, Representational state transfer (REST),

JDBC, or ODBC.

Processing layer: It comprises SQL Parses, Optimizer, Execution Engine, and Storage

Engine.

Data Sources: The data in the pluggable data sources may be spread across thousands of

nodes (in-cluster) or they can be local.

The comparison of the different frameworks can be summed up as shown

in Table 9.

Table 9 Comparison between different frameworks for big data analytics.

Features Hadoop Storm Spark Drill

Source Code Open Open Open Open

37

Complexity Simple Simple Simple Complex

Type of

Processing

Batch

Processing

Real-time Stream

Processing

Real-time

Stream

Processing

Interactive

Ad-hoc

Querying

Latency High Low Low Low

2.4 Applied Solutions for Big Data Analytics in Smart Grids

As mentioned before, there are few works that have been reported in the literature

for big data analytics specifically in the smart grids. In particular, there are only a few

commercial solutions available in the market. One of the earlier practical works on big

data analytics was based on the Naive Bayes classification method using the MapReduce

paradigm for novel transient power quality assessment [87]. In [88], the authors proposed

a cloud-based architecture using Hadoop, Cassandra, and Hive for big data analytics in a

smart grid using the data on power usage patterns of customers, historical weather data,

supply and demand data.

In [89], Munshi et al. presented an implementation of cloud-based Lambda

architecture for smart grid big data analytics using Hadoop data lake. The Lambda

architecture is aimed to provide a trade-off between latency throughput and fault tolerance

while providing the batch and stream processing capabilities for parallel computation of

arbitrary functions on distributed data. The Lambda architecture is based on three layers

aptly named as a batch layer, speed layer, and serving layer [80]. The batch layer is

required to perform two tasks including the storage of data in a distributed manner and the

computation of batch views for the distributed data for low latency. The speed layer

utilizes an online technique to store and update the real-time views of the recent data which

38

have not been considered by the batch layer. The serving layer is a specialized distributed

database that integrates the data views provided by the batch and speed layers with an aim

for real-time and online big data analytics in smart grids. The authors have integrated the

capabilities of tools such as Hadoop, Spark SQL, Hive, Impala, and depicted generalized,

low latent, scalable, and robust results for smart grid big data analytics.

In [90], several challenges faced at each stage of performing big data analytics are

presented. These challenges can be classified into three categories: data acquisition and

handling, data processing, and system issues [91], [92].

In data acquisition and handling, the challenges are related to the competent

presentation of heterogeneous data to reflect the diversity, hierarchy, and granularity of

data. Also, the raw datasets often contain redundancy that needs to be reduced along with

data compression without deteriorating the information in the data. Data life cycle

management is of utmost importance because of the availability of huge amounts of data

and the current storage systems cannot store the massive data available at an

unprecedented rate. Therefore, there needs to be a practical system where the data is

analyzed on the go and for that, the stream processing framework using HDFS, and

Apache Spark has been proposed in this research work. The system challenges for

analytics are faced with massive storage and high-speed processing. Furthermore, there

are concerns about privacy and security since the data might contain personal information.

In data analytics, the challenges posed are that of huge data and the requirement

of real-time processing. One of the solutions to these challenges could be approximate

39

analytics providing approximate but real-time results. Mining on social media and

customer feedback could present challenges as the data is generally unstructured

Solving these challenges requires the use of large-scale parallel systems that

further brings additional challenges such as energy management, scalability, and real-time

collaboration. The energy usage of the large-scale parallel systems has been alarming due

to massive data volume and analytics demand. Hence, system-wide energy management

techniques should be utilized in big data system solutions.

In the smart grid discipline, a cloud-based platform project has been presented in

[22] where the University of South California microgrid was deployed as a testbed to

transform the electrical utility into a smart grid in the future.

The challenges and solutions to handle big data from smart grid units have been

researched in academics and industrial centers. Solutions have also been implemented at

the commercial level by a few utility companies. These utilities always strive to meet the

goals of moving to a smarter grid to support distributed generation, distribution

automation devices, providing new products and services, improving operational

efficiency, and finally enhancing the system reliability. Some of the prominent industry

efforts are described in the following:

2.4.1 Accenture Solution

Accenture proposed a system that uses grid observability to drive performance

(Figure 9) and to govern five distinct smart grid data classes such as operational data, non-

operational data, event message data, meter usage data, and metadata [93]. All the classes

of data should be treated and managed differently owing to their inherent characteristics

40

and different sources. The architecture was aimed to overcome the challenges of

corresponding the data collection infrastructure to the desired outcome, application of

tools to manage massive-scaled data, and analysis of master data to benefit from smart

grid potential. The commercial solution is proposed to discover the information through

the components as shown in Figure 9.

The provided solution explains the analytical aspects of the proposed architecture;

however, it does not provide detailed information on the data treatment, management, and

storage processes.

The Accenture architecture named Intelligent Network Data Enterprise (INDE)

has the following components:

• The software layer in the architecture acts as a layer between the grid data sources and

the current utility enterprise IT platforms. It aims to integrate the data from various

sources to enhance the utility business operations and customer operations.

• The integration layer is prevalent to provide a unifying platform to the smart grid

ecosystem products such as smart meters, communication lines, sensors, and other

electrical network components.

Figure 9 Using observability to ensure performance

41

• The visualization layer is provided to observe and monitor the different components

in the grid. It also aims to recognize patterns in the raw data to correlate with different

events and metadata

The implemented solutions by Accenture at their clients’ sites indicate their

emphasis on the following five major application areas for smart meter data [94]:

• Enhancing outage management: The main goal of smart meter analytics has always

been to enhance outage management. Outage management can be enhanced if the

disturbances in the electric network are accurately predicted, localized, and restored

by integrating the outage notifications, sectionalizing, and reclosing systems.

• Power quality assessment: The smart meter data can be used to monitor the quality of

power at every point in the electrical distribution network. The fluctuations in the

frequency and voltage can cause damage or failure to the electric equipment. The

remote assessment of power quality can help utilities to investigate legitimate claims

of customers saving field effort and time.

• Protect customers and detect losses: The system should protect the interests of all

customers by detecting different losses including technical and nontechnical losses in

the electrical network. The nontechnical losses occur when the customers tamper with

electrical meter readings to reduce their bills. The integration of data from feeder

meters and smart meters into the work management system will help utilities to

identify electricity theft and investigate claims easily.

42

• Renewable energy forecasting: The generation of renewable energy is increasing in

the grids. This calls for the proper management on part of the grid operator. Renewable

energy is less predictable. However, accurate forecasting should be in place by

integrating the data from smart meters and weather stations. This would help in the

operational and investment decisions of utilities. With accurate forecasting, the grid

operators can stabilize the supply and quality of power throughout the electrical

distribution network.

Future market developments: Long-term planning is required for balancing

generation and load demand, and flexible energy tariff planning.

2.4.2 IBERDROLA

Big Data techniques are used to yield knowledge management solutions to control

high turnover environments and to minimize the impact on call centres. Iberdrola has a

part of its ambitious Digital Transformation Program [95] in the use of big data techniques.

The company group targets to invest 4.8 billion euros in the digital transformation between

2019 and 2022 to boost the performance and conservation of its assets using data analytics

and artificial intelligence. Digital analytics provides for creating an analytical environment

to inspire knowledge that aids to maintain the three lines of business: Networks,

Renewables, and Customers. Some examples of these applications are:

• Detection of non-technical losses and design of optimal time-of-use tariffs with the

use of customer load curves to improve energy utilization [8]. The company has

installed more than 11 million smart meters in Spain, generating 240 million registers

43

every day. Big data techniques over an estimated volume of 90 billion registers per

year are being used to improve revenue collection and to optimize energy use.

• Improvement of the operation and maintenance of the utility’s assets expanding the

availability of its generation plants. For example, in the U.S., Iberdrola is saving $3

million monthly by feeding wind turbine power generation data across multiple wind

farms to develop curtailment optimization plans [96]. Iberdrola is leading a five-year

project called Romeo, 16 million EU Horizon 2020 project, aiming at the reduction of

the preservation cost of wind turbines using predictive machine learning algorithms,

artificial intelligence, and cloud computing. Utility’s relationship with the customers

can be transformed by the development of applications such as managing electricity

consumption from mobile phones or scheduling electric vehicle charging [95]. Big

Data techniques are also used to provide knowledge management solutions to

command high turnover environments and prune the impact on call centers.

2.4.3 ITRON-TERADATA Solution

Itron-Teradata architecture is established on active smart grid analytics (ASA) as

depicted in Figure 10. As per the solution, the data warehouse actively provides strategies

for the parallel ingestion of massive-scale data from varied sources and executes complex

analytics for applications such as energy diversion detection, power quality, demand

response, transformer load management, load forecast, and customer profiling. The data

arrive triggering actions and activating workflows [97]–[99].

44

ASA is based upon the comprehensive Utility Logical Data Model (ULDM) of

smart grids’ data. The ASA solution helps the customers through self-service with insight

on how to convert their usage to green energy, and to make savings in energy and billing.

The solution assists the utilities to develop communication channels for customer-utility

interaction and to invest in assets that boost customer experience. Also, the regulatory

agencies benefit from the ASA solution with insights on the efficiency standards of

operations, the percentage of energy from alternative sources, and the fair pricing of

energy.

Figure 10 Service-oriented architecture of Itron-Teradata solution

45

2.4.4 International Business Machines (IBM) Solution

Since 2013, IBM has worked on the smart metering infrastructure on the private

cloud for E.ON with an aim to enhance the deployment and management of smart meters

and to help incorporate renewable energy sources easily into the current grid [100]. The

platform addresses the challenges of high data storage, low speed of report generation and

analytics. With the platform, customers have better control of the energy usage with

information on their usage profile, on electricity tariff for the time of use, and on changes

in consumption patterns when compared to their historical data. IBM intends the platform

to be scalable with low start-up and operational costs in order to provide for future growth.

The platform has a high emphasis on ensuring the privacy of sensitive customer data,

however, the data would be retained for a longer time to help with the emerging regulatory

requirements in the future.

2.4.5 USA EXELON

Since 2014, Baltimore Gas and Electric (BGE) and Exelon have been working on

a project by employing C3’s cloudbased data processing platform to control the working

of millions of smart meters installed in the regions of Chicago and Philadelphia Electric

Company (PECO) utilities [101]. They have been successfully tapping the data from the

smart meters with an aim to locate and avert energy theft. They employ machine learning

algorithms to encode every rule of meter tampering and unbilled power delivery as these

change over time. The algorithms also integrate various types of data from systems in

place for the management of data from meters, outage prevention, user profiling, billing,

and asset management. These applications led to the program of Business Intelligence

46

Data Analytics (BIDA) and the solution of Data Analytics Platform (DAP). The solution

supports the domains of business support, customer service, smart energy services, grid

management, and AMI with a vision to assist future utilities, energy regulators, and

customers.

2.4.6 Korea Electrical Power Corporation (KEPC) Solution

KEPCO launched two projects to use big data analytics on smart grids’ data to

improve demand management, and load forecasting and has been achieving considerable

success in its goals ever since [102]. The first project helps customers to save electricity

by comparing similar customers energy consumption data and allows KEPCO to prevent

brownouts and manage load demand. The second project involves analyzing the business

risks of blackouts, user complaints, weather changes, climate change statistics with the aid

of social networking data, internet data, and complaints.

The companies do not explicitly describe their commercial solutions and do not

release the information of the components of data management architecture in detail.

However, noticing the potential of big data analytics to manage the demand-side response

and user service, the utilities have now and again been cooperating with IT companies to

tap the potential. This work has additionally presented the proposed architecture aiming

for the streams data processing to provide real-time information and visual analytics.

2.5 Applications of Big Data Analytics in Smart Grid

This section discusses a few of the potential application areas which would avail

from the big data analytics in the smart grid. It also details the previous application-based

works and their proposed methodologies.

47

2.5.1 Fault Classification and Identification

The invention of the smart grid was driven by the need for clean and alternative

forms of energy. The utilization of distributed energy sources in distribution grids brings

the integration of renewable energy sources to reality. The microgrids allow for energy

generation closer to load and hence, assist the improvement of power delivery and

reduction in the power transmission losses. Furthermore, the microgrids can be used in

islanded mode, and consequently, the loads can be protected from the damages resulting

due to fluctuations in voltage and frequency [103].

The fluctuations of the energy produced by renewable energy sources bring

uncertainty in the energy generation from distribution grids. Usually, Inverted Integrated

Distribution Grids (IIDG) are used to improve the power quality in microgrids. However,

these IIDGs have low inertia and hence if the faults caused in microgrids are not detected

and cleared in short times, this is a huge threat to the microgrids. The classical approaches

to fault identification and clearing [104] are based on the measurement of overcurrent and

negative sequences of current. These approaches are not suited to microgrids due to their

low current capacity. The statistical features are extracted using the wavelet transforms on

the current measurements in the branches sampled by protective relays. The deep learning

model is developed with the training data available on the statistical features to detect

faults, classify them, and localize the faults in [105].

2.5.2 Preventive Maintenance

The pieces of equipment of the power grid are vulnerable to failures and a robust

plan for preventive maintenance of equipment, and devices in the power grid can play a

48

crucial part in reducing the probability of occurrence of failures in the power grid.

Preventive maintenance can signal for and provide maintenance for equipment before this

fail and hence, will avert major events and disruption of power supply for long periods.

The integration of renewable energy sources at the distribution level of grids through

microgrids supply clean energy. Nevertheless, the uncertainty of supply and fluctuations

of frequency and voltage increase vulnerability to failure. It is required that the occurrence

of failures is detected before failure and the clearance time is averted using preventive

maintenance. Preventive maintenance is categorized into two types - time-based and

condition-based. In time-based maintenance, the components are subjected to maintenance

at periodic intervals of time irrespective of their condition. This approach does not utilize

the service life of the components efficiently. Condition-based maintenance monitors the

health of the components and draws a correlation between the current status and future

faults of the components so that the future maintenance plans are scheduled [106]. One of

the approaches to prognostic maintenance is the design of a proposed integrated fault

detection system developed after analysis of the data from SCADA and Pole Mounted

Auto Reclosers (PMARs) [107]. PMAR is a breaker that trips for intermittent fault currents

and closes automatically to supply the power after a short duration of time nonetheless, it

stays open for a permanent fault.

A reinforcement learning-based framework is proposed in [108]. The framework

monitors the health of the equipment, models the degradation, and computes the remaining

useful life of the grid components. The framework tested on a case study on the power

grid performs with good approximation capability by using an ANN ensemble model. All

49

of the data or subset of data from grid operations data, weather information, diagnostics

data of the relay protection systems, galloping of power lines, fault tolerance current, and

voltage signals have been used for the design of data-driven models for preventive

maintenance in the power grids. Different machine learning models such as SVM [109],

extreme learning machines [[110], Long Short Term Memory (LSTM) [111], hybrid

ensemble models [112] are used to build data-driven models. The correlation between the

actual faults that have occurred in the past and the features extracted from the data has

been studied. These analyses models and studies are required to have high learning without

iterative computations to converge faster, predict with higher accuracy and earliness. This

would be an ideal solution for big data analysis for predictive maintenance.

2.5.3 Transient Stability Analysis

Transient stability analysis (TSA) is performed to study the safe operation of the

power grid. However, the challenges to the TSA these days are the integration of

intermittent renewable energy sources at the distribution level, fluctuating demand of load,

and deregulated energy market. The efficient approaches that extract information and

patterns in the highly redundant records of big data are required for TSA. The techniques

for TSA can be classified into automatic learning approaches, direct techniques, and time-

domain techniques. Automatic learning approaches have edge over direct and time-

domain techniques for real-world applications. The direct techniques [113] have demerits

in the construction of energy functions for large-scale power systems whereas time-

domain techniques are computationally inefficient for real-time applications [114].

50

Steady-state variables are used as features for TSA in [115] thus avoiding the use

of time-domain simulation. The approach takes into account the size of the electrical

network, the topology, the location of a fault, and operating status.

In [116], Yu et al. used time-series synchrophasor measurement data under

different simulation contingency models to train the deep learning model of LSTM for

online-assessment of transient stability status post-contingencies. Although the training of

the TSA LSTM model was computationally expensive and time-consuming, the time

adaptive nature and self-learning of temporal dependency by the LSTM model achieve

better test accuracy and highly responsive time. Moreover, to reduce the training time,

simpler models such as Extreme Learning Machines (ELMs) that are single-layer neural

networks are used [117]. To address the uneven class distribution of power systems’ data

with a higher number of data points representing stability and a lower number of data

points representing contingency condition, Baltas et al. proposed a response-based

ensemble model of diverse ELM [118].

Rahmatian et al. worked on the implementation of transient stability assessment in

real-time using characteristic features of voltage and current phasors from PMU data,

Classification and Regression Trees (CART), and Multiregression Adaptive Regression

Splines (MARS) models [119]. The models predict if a situation is stable or unstable using

CART and applies MARS along with online TSA to indicate the level of severity of a

contingency and instability of the system with high accuracy.

2.5.4 Health Monitoring

51

Failure in crucial components of the power grid such as transformers will lead to

brownouts or blackouts in the electrical grid network. It is crucial that the health of the

electrical components in the grid is monitored. Classically, the monitoring system is based

on a threshold mechanism that monitors different parameters and readings for different

grid components.

The uncertainty and intermittent nature of renewable energy sources at the

distribution level bring uncertainty in the life estimation of crucial components such as

power transformers. In [120], Aizpurua et al. proposed a probabilistic health monitoring

framework for power transformers by using a probabilistic forecasting approach along

with Monte Carlo-based Kalman-filtering techniques. The lifetime estimation of

transformers in these models is adaptive as the dynamics of smart grids is propagated to

the power transformers to determine the probabilistic thermal model and lifetime model.

There are different artificial intelligence-based approaches used for health

monitoring using big data in smart grids. These include artificial neural networks [121],

deep learning models [122], expert systems [123], fuzzy logic [124], [125], and genetic

algorithm [126].

Mileta et al. analyzed the Mamdani model and Sugenomodel in the fuzzy expert

system to compute the probability of occurrence of faults in the future and to determine

the urgency of intervention or maintenance on the transformers based on their current

condition [123]. The models utilized the online and offline data on historical and current

conditions of transformers’ age, lower oil level, frequency response analysis, oil

temperature, insulation temperature, insulation degradation, and polarization index.

52

Hybrid models are utilized to overcome the shortcomings of single models. For

instance, a health monitoring system was developed by Allen et al. for the health

diagnostics of building automation systems and variable air valve units using a fuzzy logic

model [127]. The fuzzy logic model detected anomalies in the operating conditions and

generated fault signatures. The neural network-based model was used to classify the fault

signatures into different faults. The monitoring of the health of the components at lower

granularity ensures that the energy consumption observed at higher levels is reduced and

finally helps for energy savings, and efficient monitoring.

2.5.5 Power Quality Monitoring

When the frequency, magnitude, and waveforms of current and voltage are steady

and within the prescribed limits, it is defined as power with high quality. Power quality

also defines the performance and health of the smart grid components and the accuracy of

utility metering. With the integration of non-linear sources of energy and power

electronics-based devices, the harmonics appear in the voltage or current waves and it is

essential that the power quality of the supply is maintained for the health of the devices,

sensors, and appliances connected to the electric network. The power quality issues are

currently addressed using dynamic voltage regulator, inverter, power quality monitoring,

static synchronous compensator, and unified power quality conditioner.

Power quality monitoring is performed using conventional approaches through the

integration of SCADA, AMI, or by using artificial intelligence-based approaches. Multiple

machine learning modeling such as Support Vector Machines [128], decision trees [129],

53

Bayesian networks [130], kNearest neighbors [131] have been employed for monitoring

power quality disturbances.

Wang et al. employed deep learning in each of the stages of power quality

classification i.e. signal analysis, feature selection, and classification [38]. They used a

deep convolutional neural network consisting of the 1-D convolutional layer along with

pooling and batch normalization layers for the automatic extraction of features from

disturbance samples. They presented evidence in terms of accuracy and training time cost

that deep Convolutional Neural Networks (CNNs) performs better for applications of

automatic power quality classification when compared to other deep learning models such

as gated recurrent networks, long short-term memory, ResNet50, and stacked auto-

encoders. To overcome the non-distributed computing and feature extraction-based power

quality classification, Chen et al. presented an integrated solution based on deep belief

networks for real-time and distributed power quality disturbance analysis [132]. The

developed models proved to have higher accuracy and more robustness on distributed

platforms, however, the training time is also very high.

2.5.6 Topology Identification

The topology identification problem in the smart grid includes the identification of

the structure of power distribution network, identification of customer phase connectivity,

and associating a customer with a transformer at the distribution level. The identification

of phase connectivity is crucial to the analysis of distribution system including distributed

network estimation, power flow analysis, optimal power flow, distribution network

reconfiguration and restoration, and load balancing. Topology identification could be

54

possible using specialized sensors such as micro-synchrophasors, and phase meters.

However, using a special sensor for each customer is impractical and expensive. There are

many approaches developed to identify topology using the data made available by the

current infrastructure such as AMI, SCADA, GIS, Outage Management System (OMS),

and besides machine learning approaches have been developed using training data on field

validated phase connectivity.

Voltage time series data have been utilized to extract feature vectors after the

application of principal component analysis and the authors have suggested that the

voltage data are predictive of the phase connectivity [133]. Afterward, the k-means

clustering approach has been applied to cluster the different customers into the three

different phases for phase connectivity identification. The innovative model was tested on

a real distribution feeder and the test accuracy was about 90 %.

2.5.7 Energy Theft

Energy theft is defined as the act of changing the electricity consumption reading

in order to reduce the bill through physical approaches such as bypassing the smart meter,

tampering with meters, cyber approaches such as hacking into a smart meter to change the

energy consumption values. Data-driven approaches are currently applied to identify

energy theft and these approaches are classified into different types depending on the type

of available data. When the smart meter data were not available, machine learning models

such as fuzzy clustering [134], and SVM [135] have been applied to the annual energy

consumption, and credit scores were determined to identify theft detection. When the

smart meter data and theft cases data are available, then supervised machine learning

55

models such as neural networks [136], deep learning models [137] can be applied. Usually,

energy theft cases are not available or disclosed for research. In such cases, the energy

theft identification can be performed using smart meter data, and network topology

information can be determined using state-estimation based approaches [138], and other

anomaly detection techniques [139].

2.5.8 Renewable Energy Forecasting

The renewable energy (RE) sources are environment friendly, clean, and unlimited

replenishable sources of energy. Nevertheless, the uncertain and intermittent behavior of

the supply poses many challenges in the generation of power using renewable energy

sources. The reliable and accurate RE forecasting helps in the grid operations, load

management, planning of capacity, scheduling of generation, and regulation of energy.

Multiple approaches including physical models, statistical models, machine learning

approach, and hybrid models have been used to date for renewable energy forecasting.

Physical models include the simulation of geographic characteristics of an area.

These models utilize weather forecasting, geographical information, and meteorological

information. Physical methods require huge computational resources, are less accurate and

also, are not suitable for short-term forecasting. Statistical models apply mathematical

modeling to recognize the patterns in time-series data of renewable energy sources. The

methods such as Auto Regressive Moving Average [140], Kalman Filters [141], and

Markov models [142] have been applied previously. With the widespread popularity of

machine learning models, these have been applied reliably on renewable energy

forecasting. The machine learning algorithms include models such as linear regression

56

[143], decision trees regression [144], multi-layer perceptrons [145], support vector

machines [146]. Owing to the inherent intermittent and non-linear nature of renewable

energy supply, deep learning models have been found to be extremely efficient and

effective [147]–[149]. Deep learning models such as deep belief networks, autoencoders,

convolutional neural networks, long short-term memory, and deep learning ensemble

models. have been applied to predict renewable energy from sources. The patterns of

temporal changes in renewable energy are captured in the parameters of the deep layers.

The high accuracy of renewable energy forecast will help in the planning, and

development of reliable, and resilient integration of the sources in the distribution grids

through microgrids.

It has been observed that there is a need for a distributed computing and big data

analytics platform that utilizes different types of technologies for real-time solutions in

smart grids and also a middle-ware software is required to integrate all of the technologies

with reliability and stability. Enterprises dealing with big data are required to address the

challenges of security, privacy, and data handling. Before any big data techniques are

employed in the smart grid, it is always necessary to consider steps such as data

acquisition, data management, analytics, and visualization along with the requirement of

the real-time processing of data.

2.6 State-of-the-art Short Term Load Forecasting

Short-term load forecasting in smart grid is currently of much research interest

owing to the integration of variable energy resources at the distribution level and the

stochastic nature of energy consumption behavior. The volatile load demand patterns at

57

the consumer level, if predicted with high accuracy, helps in load balancing and renewable

energy efficient utilization. Initial works on short-term load forecasting in smart grid

included time-series analyses and traditional statistical approaches. With the research

interest shifting to artificial intelligence, various machine learning approaches and deep

learning techniques have been utilized to forecast the energy consumption at the household

level. In [150], Wang et al. proposed a two-stage forecasting methodology. In the first

stage, the traditional time forecasting models were utilized to perform a day ahead load

forecasts. To enhance the accuracy of the forecasts, the second stage utilized models such

as support vector machines (SVM), linear regression, and quadratic models to generate

predictions of deviations. These deviations were integrated with the forecasts from the

first stage to yield the overall forecast values with an average Mean Absolute Percentage

Error (MAPE) of 5.21%. However, the SVM model is not suitable for big data as the

training time for the SVM model scales super linearly with the increase in data records.

In [110], the authors proposed wavelet pre-processing, improved wavelet neural

networks, and generalized extreme learning machines (ELMs) on training data. The

predictions of the load were provided as intervals considering the uncertainties of the

forecasting models and data noise. ELMs are neural networks with a single hidden layer.

The usual disadvantages of ELMs are that the forecasting accuracy is heavily dependent

on the activation function, and the generalization is poor. These shortcomings were

effectively tackled by the introduction of wavelets as the activation functions in their

methodology. However, the ELM-based methods do not effectively perform deep

58

extraction of inherent information and features associated with energy consumption data

owing to their single layer-based modeling.

In [151], the authors established mathematical models of backpropagation neural

networks and Elman neural network. These models were used with small learning rates,

and layers to store internal states, and to deal with time-varying characteristics of energy

consumption data. Their results concluded that Elman neural networks perform better in

dynamic load forecasting than backpropagation neural networks. However, these neural

network-based models are bound to converge to local minima rather than global minima.

This leads to poor generalization and further, causes overfitting.

Recently, a lot of research attention has been focused on the development of deep

learning models to recognize patterns in the energy consumption data and to perform the

forecasts with high accuracy and efficiency. Typically, deep learning models suffer from

the problem of exploding gradients (i.e., learning diverges) or vanishing gradients (i.e.,

the learning stops). This problem is taken care of by LSTM networks that introduce

memory cells and computing gates. LSTMs are types of Recurrent Neural Networks

(RNNs) that have been utilized in the past for time-series analyses and load forecasting

problems. In our recent works, multiple efficient and accurate energy consumption

forecasting models were developed based on ensemble models, extreme learning

machines, LSTMs, deep neural networks, and dimensionality reduction techniques [152]–

[154].

In [155], the authors developed hybrid sequential learning based on the deep

learning model. Their solution utilizes Convolution Neural Network (CNN) in the first

59

phase to extract the features from the energy consumption dataset and uses Gated

Recurrent Unit (GRU) in the second phase to utilize its effective gated structure to make

predictions. However, GRU-based models do not have as great volatility as LSTM-based

models owing to their simplicity and a smaller number of gates for the gradient flow.

In [156], the authors proposed an advanced domain fusion methodology based on CNN,

which derived the time-domain and frequency-domain features representing the changing

energy consumption trends, LSTM layers, and Discrete Wavelet Transforms (DWT). The

authors reported a MAPE of around 1% on two datasets, which comprise energy

consumption (MW) information at aggregated levels.

In [157], Kong et al. proposed an LSTM memory-based framework for short-term

energy forecasting at the residential level. They incorporated the appliances energy data

from a Canadian household to illustrate the efficacy of their deep learning framework.

Although minutely data were available, an aggregation of thirty minutes has been utilized

in their work. However, only six appliances' energy data were utilized in the study. Their

results were compared against the benchmarking models of Feed Forward Neural

Networks (FFNN) and k-Nearest Neighbors (k-NN). The superior performance of the

LSTM-based model, with a MAPE of 21.99% was displayed.

The gist is that although numerous methodologies have been researched and

incorporated, there are significant limitations such as lack of scalability to big data, as well

as limitations to offline analyses rather than real-time analysis. Hence, it is essential to

propose a framework with an aim to overcome the existing limitations.

60

CHAPTER III

APPROACHES AND METHODS OF LEARNING FROM DATA*4

In this chapter, different clustering and aggregation solutions are discussed for load

forecasting. That is, the clustering algorithms including the k-Means algorithm and the k-

Medoids algorithm are proposed. Furthermore, works on transfer learning and incremental

learning are presented. The transfer layer enables the faster convergence during training

of deep learning models, and the incremental layer enables to update the trained deep

learning models with arriving data points, thereby enhancing the forecasting accuracy of

load forecasting models. These algorithms will be used in Chapter V in the proposed

research in the clustering layer, transfer layer and the incremental layer of the hybrid multi-

stage framework.

3.1 Unsupervised Machine Learning – Clustering Algorithm

3.1.1 Overview

The rising number of installed smart meters allows for the collection of data

corresponding to consumers’ end devices. The smart meter data, representing the customer

energy consumption behavior at the granularity of the household level, enable the

electrical utilities to perform capacity planning, capacity building, and operations. The

integration of the smart meters’ capability with the communication infrastructure in smart

grids enhances the protection, reliability, efficiency, and safety of the energy supply to the

consumers. The collected data have been aggregated to different levels to perform load

4 Reprinted with permission from “Deep Learning-Based Short-Term Load Forecasting Approach in Smart Grid with Clustering
and Consumption Pattern Recognition.” by Dabeeruddin Syed, Haitham Abu-Rub, Ali Ghrayeb, Shady S. Refaat, Mahdi Houchati,

Othmane Bouhali, and Santiago Bañales, 2021. IEEE Access 9, 54992-55008, Copyright 2021 by Dabeeruddin Syed.

61

forecasting. For aggregated feeder level forecasting, the bottom-up approach is usually

implemented. That is, the household level consumption data are aggregated to the feeder

level and then the training is performed with the aggregated data. Similarly, the data at the

feeder level can be aggregated to the level of the distribution transformers, while several

distribution transformers could be aggregated to the level of substation and so on which

helps in performing load forecasting at the needed level. The electric utilities rely on short-

term forecasts at the distribution feeder and transformer level to support peak planning

and grid operation. Load forecasting enables the electric energy utilities to plan, identify

the regions with high load demand, match the volatile energy demand by changing the

generation capacity, reduce generation cost, regulate energy prices, and manage

scheduling.

The energy consumption varies from one location to another owing to different

weather and climate conditions. And for the same reason, the energy demand varies on

different days of the week and at different times of the day. Many researchers have been

interested in grouping the different conditions or different locations based on the

similarities between the available features of the data with an objective to reduce the

number of forecasting models required for predictions [158], [159]. The clustering

techniques intrigue researchers to improve the load forecasting methodology and to

enhance accuracy.

Reference [159] proposed a day-ahead forecasting algorithm that uses load

fluctuations and feature importance to cluster different customers at the distribution level.

Crow search algorithm was utilized to determine the initialization conditions to avoid local

62

minima convergence in the K-means clustering method and finally, an ensemble random

forest model was generated to realize the day-ahead forecasting. The authors reported the

lowest Mean Absolute Percentage Error (MAPE) of 1.633% for the random forest model

and showed that the model performs better compared to Extreme Learning Machine

(ELM), Neural Networks (NN), and Support Vector Machines (SVM). Their methodology

benefited from the clustering of the 24 hours of a day into different clusters based on the

fluctuation of energy consumption. Although the employed clustering method solves the

issues of criteria for selection and initialization in the k-means algorithm, there is a scope

of improvement in the crow search based k-means clustering algorithm when faced with

high multi-modal peaks in the data formulations.

In [160], the authors proposed a long-term energy forecasting methodology that

utilizes the spatial clustering algorithm of Density-Based Spatial Clustering of

Applications with Noise (DBSCAN) to predict year-ahead load values for power system

planning. The density-based clustering technique benefits from its inherent ability to

effectively dealing with the noise in the data by eliminating the outliers. Similar sub-zones

are clustered using DBSCAN based on the features of historical yearly energy

consumption profiles, land use types, and geographic information. Eventually, Non-Linear

Auto Regressive (NAR) neural network models yield the values of the predicted load.

They reported that their proposed model works better when compared to existing models

such as exponential smoothing, grey theory, and Linear Regression (LR). However, the

short-term load forecasting is not addressed using this methodology. In [161], the author

proposed a hybrid model based on a Kalman filter, an artificial neural network, and

63

wavelet transforms. The hybrid model also used clustering techniques for short-term load

and renewable energy forecasting. The work provided evidence that the hybrid models

involving clustering-based wavelet and artificial neural networks perform better than

conventional models and other hybrid model combinations. However, in this work, the

clustering was based on geographical zones, rather than the actual patterns of energy

consumption.

Empirical Wavelet transformations (EWT) have been used to decompose the load

data into Intrinsic Mode Functions (IMF) [162]. Along with LSTM modeling, the IMF

functions are used to predict the low and medium frequency components for load

predictions. Furthermore, the high-frequency components are highly varying components

with uncertain characteristics, and these are clustered using Improved-DBSCAN

(IDBSCAN) algorithm. The prediction results of the high, medium and low-frequency

components are aggregated to determine the total load predictions for short-term load

forecasting. Their methodology has the advantage of employing different prediction

methods according to the characteristics and the variance of data. However, the

methodology based on IDBSCAN is not effective if the data is scaled to higher

dimensions. Also, it is efficient only when the different clusters have varying densities.

Autoregressive Integrated Moving Average (ARIMA) model has been utilized as a

baseline method for predicting energy consumption as it is easy to implement and

generalize to a wide variety of specifications [163]. Nepal et al. used k-means clustering

along with ARIMA modeling for predictions of energy consumption in buildings [163].

The clustering technique is used to cluster the days with similar load characteristics during

64

the hours of a day. In their work, the days of a year were clustered into 6 clusters. During

the prediction phase, their methodology determines the cluster number of the days

preceding the testing day and finally predicts the energy consumption of the testing day.

The results indicate that the standalone ARIMA model can be improved with the addition

of clustering-stage. However, the k-means clustering utilized is sensitive to outliers if

present in the data.

Fuzzy c-Shape clustering has been investigated by Fateme et al. to cluster the load

data depending on the shape of energy consumption [164]. A horizontal ensemble model

consisting of LSTM and XGBoost has been used to perform a day-ahead forecast of 30-

minute granular load prediction. A novel feature of apparent temperature is used in their

analysis. The apparent temperature is the equivalent weather variable as experienced by

humans due to the collective influence of humidity, temperature, water vapor pressure,

and wind speed values. They have suggested that the addition of novel features, such as

the representative feature of weather, will improve the accuracy of predictions from

cluster-based ensemble models. However, their methodology is dependent on the

empirically assumed function and formulation of equivalent apparent temperature.

LSTM models have been of interest to many researchers to perform energy

forecasting. In another work, an ensemble of LSTM was used to perform short-term

energy forecasting [165]. The different branches of the ensemble utilize different

clustering algorithms in their initial phases. The employed clustering algorithms include

Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH), DBSCAN, and

KMeans++. In the final phase, a fully connected neural network is employed to aggregate

65

the results from the different branches of the ensemble. The ensemble and deep learning

models have been tested to yield better results when compared to nonensemble and

classical models. In [154], Syed et al. proposed an averaging ensemble model of the

classical algorithm including LR and deep learning algorithms including LSTM and

DNNs. The results indicate that the averaging ensemble model overcomes the

shortcomings of the individual models and provides synergy to enhance the overall

accuracy. However, the ensemble models and the LSTMs are computationally expensive.

In [166], a novel fuzzy-based clustering method is employed to cluster data into different

clusters using the order of feature importance. The clustered data goes through two

different phases of regression. In the first phase, a Radial Basis Function Neural Network

(RBFNN) is employed. In the second phase, the output of the first phase is passed to a

pooling layer followed by a convolutional layer and finally, through two fully connected

neural networks. They tested their proposed method with two case studies to predict the

hourly energy consumption for the next seven days with better results as compared to the

classical energy forecasting methodologies. However, the clustering method utilizes

common space where data are shared between neighboring clusters and this introduces

redundancy and requires additional computations.

Clustering has also been applied at the household level. In [167], Bayesian non-

parametric clustering model has been applied to cluster the households with similar energy

consumption profiles across seasons and neighborhoods. The load profile curves are

obtained after the removal of phase variability with the application of elastic shape

analysis. The household-level energy consumption has high variability and with the

66

predictions on household-level load, it is difficult to aggregate the prediction results to

high levels for the use of optimized utility operations.

In summary, there has been a significant research effort in the application of

clustering techniques at different levels of energy distribution networks. The metric for

clustering has been a similarity in weather conditions, seasons, days of the week, and

hours of the day. However, it is required that the metric for clustering should emphasize

the patterns of energy consumption.

3.1.2 k-Means Clustering Algorithm

The objective of the K-means clustering algorithm [168] is to reduce the Error Sum

of the Squares (SSE) scoring function that is given by

𝑆𝑆𝐸 = ∑ ∑ ||𝑥𝑝 − μ𝑖||
2

𝑥𝑝∈𝐶𝑖
𝑘
𝑖=1 , (1)

where 𝑘 represents total number of clusters, 𝐶𝑖 represents each cluster, 𝑥𝑝 represents each

point in a cluster, and μ𝑖 is mean of all points in a cluster.

K-means applies an iterative greedy approach to reduce the sum of squares error

until it reaches a local optimum. K-means starts with the selection of the number of

clusters k and the initial k number of centroids assigned to each cluster. This step is

followed by the centroid update. At this stage, all the points are assigned to the clusters

with the nearest centroids. Once all the points are assigned, the centroids are updated for

each cluster as the mean values of all the points in the clusters. The cluster assignment and

the centroid update are repeated until there is no change in the centroids in two subsequent

loops. This indicates the point of local minima.

67

The algorithm for the k-means model is given in Algorithm 1. The value of k is

selected in such a way that the average distance from points to centroid decreases rapidly

till it converges or changes slowly thereafter.

3.1.3 k-Medoids Clustering Algorithm

It is known that means, as a statistic, is highly sensitive to the outliers. The k-

Means algorithm, that determines and utilizes the means of the data points in calculations,

is particularly sensitive to the outliers in the data. To overcome this, a technique of using

medoids instead of average values in a cluster is devised. Medoids are centrally located

points in a cluster and the technique is called k-Medoids clustering algorithm. Although

k-Medoids are computationally more demanding, k-Medoids clusters are not particularly

sensitive to the presence of outlier points and are applicable to both continuous and

discrete domains of data [169]. This algorithm minimizes the sum of dissimilarities

Algorithm 1. K-Means Algorithm

Input: ϵ, k, Data S

Initialize k centroids randomly, μ1
𝑡 , μ2

𝑡 ,……, μ𝑘
𝑡 ∈ 𝑅𝑑

Output:

 1: while ∑ ||μ𝑖
𝑡 − μ𝑖

𝑡−1||
2

𝑘
𝑖=1 ≤ 𝜖 do

 2: 𝑡 ← 𝑡 + 1

 3: 𝐶𝑗 ← Φ for all j = 1, 2, 3,, k

 4: for all 𝑥𝑝 ∈ 𝑆 do

 5: 𝑝∗ ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑝{||𝑥𝑝 − μ𝑖||
2

}

 6: 𝐶𝑝∗ ← 𝐶𝑝∗ ∪ {𝑥𝑝}

 7: end for

 8: for all 𝑖 = 1 𝑡𝑜 𝑘 do

 9: μ𝑖
𝑡 ←

1

𝐶𝑖
 ∑ 𝑥𝑝𝑥𝑝∈𝐶𝑖

10: end for

11: end while

68

between the objects in a cluster with the reference object selected for that cluster.

Basically, the input given is the value of k that represents the number of clusters defined

for the data. For each of the k-clusters, k-reference points are selected. The remaining

points are clustered into the cluster of a reference point such that the sum of the

dissimilarities between the reference object and the points in the cluster is minimized.

With different initial medoids selected, the clusters obtained are different. The difference

between the k-Means algorithm and the k-Medoids algorithm is that k-Means consider the

average value in a cluster to be a reference point and k-Medoids consider the points to be

a reference object for the clusters. Algorithm 2 presents the sequence of steps performed

in the K-Medoids algorithm.

3.2 Transfer Learning

3.2.1 Overview

Algorithm 2. K-Medoids Algorithm

Input: ϵ, 𝑘, Data 𝑆

Initialize 𝑘 medoids randomly, Θ1
𝑡 , Θ2

𝑡 ,……, Θ𝑘
𝑡 ∈ 𝑅𝑑

Output:

 1: while ∑ ||Θ𝑖
𝑡 − Θ𝑖

𝑡−1||
2

𝑘
𝑖=1 ≤ ϵ do

 2: 𝑡 ← 𝑡 + 1

 3: 𝐶𝑗 ← Φ for all j = 1, 2, 3,, k

 4: for all 𝑥𝑝 ∈ 𝑆 do

 5: 𝑝∗ ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑝{||𝑥𝑝 − Θ𝑖||
2

}

 6: 𝐶𝑝∗ ← 𝐶𝑝∗ ∪ {𝑥𝑝}

 7: end for

 8: for all 𝑖 = 1 𝑡𝑜 𝑘 do

 9: Θ𝑖
𝑡 ←

1

𝐶𝑖
 ∑ 𝑥𝑝𝑥𝑝 ∈ 𝐶𝑖

10: end for

11: end while

69

Data-driven methodologies have been used in different works to forecast energy

with different time horizons leading to three branches: long, medium, and short term

forecasting [170]. The training of the machine learning models and achieving high

accuracy of predictions require a huge amount of historical energy consumption data.

Machine learning (ML) algorithms are mainly categorized into three types: supervised,

unsupervised, and reinforcement learning models.

Power forecasting in smart grids has employed models such as Autoregressive

Integrated Moving Average (ARIMA) [171], Linear Regression (LR) [172], Neural

Networks (NN) [148], [173], [174], Support Vector Machines (SVM) [175], and Random

Forests [176] in supervised learning. In unsupervised learning, dimensionality reduction

models [152], [177] such as PCA, and LDA, and clustering models [174], [178] such as

k-Means, and k-Medoids have been used.

With the advent of the Internet of Things (IoT) and smart sensors, the data are

generated at a very high frame rate [179]. However, sometimes adequate amount of

historical data is not available at different distribution nodes in the electric network. In

cases of unavailability of large amounts of historical energy consumption data, it is

required that the prediction models are trained with limited amounts of data to achieve

sufficiently high accuracy. Furthermore, it is important to note that the supervised machine

learning algorithms commonly presume that the training points and testing points belong

to the same statistical data distribution and that large amounts of historical data are

available [180] [181]. However, the statistical data distribution and patterns of energy

consumption have high variability between historical and future data points. Hence, it is

70

crucial to transfer the knowledge obtained from models that are trained on historical data

to develop and train machine learning models on current energy consumption data points.

The transfer of knowledge is obtained through transfer learning which is detailed in the

next section.

3.2.2 Traditional Learning and Transfer Learning Types

Transfer learning is a technique of machine learning in which the knowledge

gained during training of a model on a domain of features is leveraged to improve the

performance of training another model or task on the same or different domain of features

[182]. TL eliminates the assumption that the training data and testing data observe the

same data distribution. The merits of TL are the following: training is done with less or

little data, training gets faster, and model accuracy increases.

Consider Feature Domain Fs, Label Vs, and Task Ts corresponding to the source

application, and Feature Domain Ft, Label Vt, and Task Tt corresponding to the target

application. The TL aims to improve the performance of Task Tt using the knowledge

obtained in Task Ts where Ts ≠ Tt.

Figure 11 Traditional Learning

71

Figure 11 illustrates the process of traditional machine learning where the

knowledge gained after training one model is not retained or reused in further models. The

retraining of a newer model or task is executed from scratch. Figure 12 illustrates the

process of transfer machine learning where the knowledge gained after training one model

(trained model 1 in Figure 12) is transferred to further models (model 2). The weights,

knowledge of features, and the network structure are transferred to the training stage for

the new task.

The TL process has the benefits of improving the baseline performance of

predictions and improving the time to train a machine learning model [181]. There are

multiple types of TL algorithms.

1. The Transductive transfer learning (the data features are not the same between the

different tasks) [183]: If the tasks Ts and Tt being different infer that the source

domain Fs and target domain Ft are also different, then it is called transductive TL.

2. The inductive transfer learning (the data features are the same between different

tasks) [184]: If the tasks Ts and Tt being different infer that the source domain Fs and

target domain Ft are the same, then it is called inductive transfer learning. If the

source label Vs exists, then this learning is called multitask learning. The learning is

Figure 12 Transfer Learning

72

unsupervised in the absence of labels in the tasks and in such cases, the algorithm is

called self-taught TL.

3. The unsupervised transfer learning [185]: In this type of learning, the source tasks Ts

& Tt are different, the domains Fs & Ft are similar, and the labels are not available in

both tasks.

3.2.3 Theoretical perspective of TL in cross-model load forecasting using NN

Consider a trained neural network structure with three layers as shown in Figure

13. The input layer with 𝐼 + 1 inputs with (𝐼 + 1)th node as bias node, 𝐻 + 1 hidden units

with (𝐻 + 1)th node as bias node, and 𝑃 outputs. Consider that the neural network model

is already trained on training data with 𝑁 records, i.e. {(𝑥1,𝑦1),(𝑥2,𝑦2),....,(𝑥𝑁,𝑦𝑁)}. Since

the training is complete, it is safe to assume that the optimal weights have been determined

with objective function on minimum training error. Consider that the weights between the

input-hidden connections and hidden-output connections are 𝑤𝑖ℎ and 𝑣ℎ𝑝, where 1 ≤ 𝑖 ≤

𝐼 + 1,1 ≤ ℎ ≤ 𝐻 + 1, and 1 ≤ 𝑝 ≤ 𝑃. With transfer learning, it is expected to train the

model with training record 𝑁 + 1 (refers to training record from new dataset), input 𝑥𝑁+1

such that the predicted value from the model is equal to the true value of output, i.e.,

𝑦𝑁+1 = ŷ𝑁+1. The transfer training with data from a new dataset should minimize the

effect on training errors (𝐸𝑛 (1  ≤ 𝑛  ≤ 𝑁) of previous historical data i.e. minimize the

weight sensitivity. The cost objective for weight sensitivity can be given by 𝑇 ≜

1

8
∑ ∑ △ 𝐸𝑛𝑝

2𝑃
𝑝=1

𝑁
𝑛=1 . The goal of transfer learning is to determine the weights 4𝑤𝑖ℎ(𝑁 + 1)

and 𝑣ℎ𝑝(𝑁 + 1) such that these do not have any effect on weight sensitivity represented

by the objective function (𝑆) that balances the trade-off between weight sensitivity

73

objective function 𝑇 and error of prediction, for instance, 𝑁 + 1. The objective function

𝑆 is given by the following:

𝑆 ≜ 𝑇 +
λ

2
∑(𝑦(𝑁+1)(𝑝) − ŷ(𝑁+1)(𝑝))

𝑃

𝑝=1

 (2)

where 𝜆 is the trade-off coefficient to balance the evolutionary training error and

pre-evolutionary training error.

T ≜
1

8
∑∑△Enp

2

P

p=1

N

n=1

 (3)

𝑇 ≜
1

8
∑∑(∑

δ𝐸𝑛𝑝

δ𝑤𝑖ℎ

(𝐼+1)𝐻

𝑖ℎ

△𝑤𝑖ℎ(𝑁 + 1) + ∑
δ𝐸𝑛𝑝

δ𝑣ℎ𝑝

(𝐻+1)

ℎ

△ 𝑣ℎ𝑝(𝑁 + 1))

2
𝑃

𝑝=1

𝑁

𝑛=1

 (4)

The weight sensitivities of change in error can be given by (5) and (6).

δ𝐸𝑛𝑝
δ𝑤𝑖ℎ

=
δ

δ𝑤𝑖ℎ
(𝑦
𝑝
(𝑛)− 𝑦

�̂�
(𝑛))

2

 (5)

Figure 13 Neural network perceptron

74

𝛿𝐸𝑛𝑝
𝛿𝑤𝑖ℎ

= 2 ∗ (yp(n)− yp̂(n)) (0 −
δyp̂(n)

δwih
)

𝛿𝐸𝑛𝑝
𝛿𝑤𝑖ℎ

= −2 ∗ (yp(n)− yp̂(n))
δyp̂(n)

δwih

δ𝐸𝑛𝑝
δ𝑣ℎ𝑝

=
δ

δ𝑣ℎ𝑝
(𝑦
𝑝
(𝑛)− 𝑦

�̂�
(𝑛))

2

(6)

𝛿𝐸𝑛𝑝
𝛿𝑣ℎ𝑝

= 2 ∗ (yp(n)− yp̂(n)) (0 −
δyp̂(n)

δvhp
)

𝛿𝐸𝑛𝑝
𝛿𝑣ℎ𝑝

= −2 ∗ (yp(n)− yp̂(n))
δyp̂(n)

δvhp

From (5) and (6), the equation (4) is modified as the following

𝑇 ≜ ∑∑[∑[−(𝑦𝑝(𝑛) − 𝑦�̂�(𝑛))
δ𝑦�̂�(𝑛)

δ𝑤𝑖ℎ
△𝑤𝑖ℎ(𝑁 + 1)]

𝑖ℎ

]

𝑃

𝑝=1

𝑁

𝑛=1

(7)

+∑[−(𝑦𝑝(𝑛) − 𝑦�̂�(𝑛))
δ𝑦�̂�(𝑛)

δ𝑣ℎ𝑝
△ 𝑣ℎ𝑝(𝑁 + 1)]

2

ℎ

 Let 𝑦𝑝(𝑛) ≜ ∑ 𝑢ℎ(𝑛)𝑣ℎ𝑝
𝐻+1
ℎ and 𝑢ℎ(𝑛) ≜ 𝑓(𝑢ℎ

∗ (𝑛)), where 𝑓(.) is the activation

function of the hidden layer neuron, and 𝑢ℎ
∗ (𝑛) ≜ ∑ 𝑥𝑖(𝑛)𝑤𝑖ℎ

𝐼+1
𝑖 . It is important to note

that 𝑥𝐼+1(𝑛) = 1 and 𝑢𝐻+1(𝑛) = 1 since the input node 𝐼 + 1 and hidden node 𝐻 + 1 are

bias neurons in the artificial neural network considered. Therefore, the change of

prediction with respect to the weights in the hidden-to-output layer connections is given

by the following:

δ𝑦
�̂�
(𝑛)

δ𝑣ℎ𝑝
= 𝑢ℎ(𝑛) (8)

where 1 ≤ ℎ ≤ 𝐻 + 1, 1 ≤ 𝑝 ≤ 𝑃.

75

 The change of prediction with respect to the weights in the input-to-hidden layer

connections is given by the following:

δ𝑦
�̂�
(𝑛)

δ𝑤𝑖ℎ
= [
δyp̂(n)

δuh(n)
] [
δuh(n)

δwih
]

(9)

𝛿𝑦�̂�(𝑛)

𝛿𝑤𝑖ℎ
= [

δ𝑦�̂�(𝑛)

δ𝑢ℎ(𝑛)
] [
δ𝑢ℎ(𝑛)

δ𝑢ℎ
∗(𝑛)
] [
δ𝑢ℎ
∗(𝑛)

δ𝑤𝑖ℎ
]

𝛿𝑦�̂�(𝑛)

𝛿𝑤𝑖ℎ
= 𝑣ℎ𝑝(𝑛)

δ𝑓(𝑥)

δ𝑥
𝑥𝑖(𝑛)|{𝑥 = 𝑢ℎ}

𝛿𝑦
�̂�
(𝑛)

𝛿𝑤𝑖ℎ
= 𝑣ℎ𝑝(𝑛)𝑢ℎ(𝑛)(1 − 𝑢ℎ(𝑛))𝑥𝑖(𝑛)

where 1 ≤ 𝑖 ≤ 𝐼 + 1, 1 ≤ ℎ < 𝐻, 1 ≤ 𝑝 ≤ 𝑃.

It implies that,

𝑇 =
1

8
 ∑∑[−(𝑦𝑝(𝑛) − 𝑦�̂�(𝑛)) ∗

𝑃

𝑝=1

𝑁

𝑛=1

 ∑ [𝑣ℎ𝑝(𝑛)𝑢ℎ(𝑛)(1 − 𝑢ℎ(𝑛))𝑥𝑖(𝑛) △ 𝑤𝑖ℎ(𝑁 + 1)]

(𝐼+1)𝐻

𝑖ℎ

− (𝑦𝑝(𝑛) − 𝑦�̂�(𝑛) ∑ [𝑢ℎ(𝑛) △ 𝑣ℎ𝑝(𝑁 + 1)]

(𝐼+1)𝐻

𝑖ℎ

2

(10)

 In transfer learning, the aim is to minimize the objective function 𝑆 that balances

the trade-off between minimizing weight sensitivity 𝑇 on a historical trained model and

the error of predictions on data from a new dataset. i.e., 𝑆  ≜  𝑇 +  
𝜆

2
 (∑ [(𝑦𝑝(𝑛 +

𝑃
𝑝=1

1)  −  𝑦�̂�(𝑛 + 1) ) }.

3.2.4 Related work

In the past decade, transfer learning has gained widespread research interest from

researchers in different fields of study owing to its inherent capability of transferring the

knowledge gained while training from one application to another. In [186], the authors

used TL used with seasonal and trend adjustment to enhance forecasts on energy used in

76

a building with the aid of models trained on data from similar buildings. An improvement

of 11.2% in Mean Absolute Percentage Error (MAPE) of predictions was reported after

the use of TL. Their work assumes the similarity of buildings in terms of energy

consumption to apply TL and did not employ clustering-based techniques to group

different buildings. Their case study also limits the application of TL to similar buildings.

In this work, the clustering-based techniques are employed and also, TL is applied to

similar distribution nodes with an improvement of training time and testing accuracy and

between dissimilar clusters with an improvement of training time.

In [187], energy predictive models based on convolutional neural networks (CNN)

and TL are proposed. In their work, energy predictive models were tested on a case study

of 23 customers against the Seasonal Autoregressive Integrated Moving Average

(SARIMA) model and fresh CNN model. The results proved that the performance in terms

of accuracy is improved when the models are pre-trained using TL.

In [188], Ye et al. proposed an ensemble model of online TL kernel-based extreme

learning machines. The results presented in their work depict that the use of TL improves

the performance in terms of accuracy compared to standard machine learning models.

Their work utilizes extreme learning machines that are basically neural networks with one

hidden layer. The developed approach provided many benefits such as eliminating the

need for optimizing the number of hidden layers and a smaller number of parameters to

be optimized while using extreme learning machines [154]. However, the deep learning

models have displayed high accuracy while dealing with the time-dependent energy

77

forecasting problems if the tendency to over-fitting is controlled [189]. Hence, in this

work, the use of TL is extended to deep learning models.

In [190], the authors proposed a two-stage prediction model for wind power based

on an ensemble of nine deep auto-encoders in the first phase and deep belief networks in

the second phase. The work was based on five datasets from wind farms. The TL was

utilized in the training of deep auto-encoders from two to nine using the knowledge

obtained during the training of the first deep autoencoder. Their results indicate that the

use of TL overperforms the baseline regression models based on ARIMA and Support

Vector Regression (SVR). However, the performance comparison of the ensemble model

without TL and with TL has not been discussed. It is unclear if the improvement in

performance is due to the ensemble of the optimized deep auto-encoders or due to TL.

3.3 Incremental Learning

3.3.1 Overview

In the case of online streams of data available and the predictions to be made after

these data are available, it becomes necessary to update the models with the new data

points. With a new set of information available, the global minimum of the model cost

function varies from the existing one. That is the global minimum is reset every time a

new data record is available. This calls for the updating of the network weights using the

new batch of data records available.

Owing to the characteristics of the electrical data available, the error function

typically has a highly nonlinear relationship with the network parameters such as weights.

This makes it possible for the multiple local minima to exist i.e. several weight

78

combinations will give a small error. For the successful application of the forecasting

model using deep neural networks, it is required that the global minimum or the lowest

local minima are determined. However, with streams of new data available, these minima

are changed. To find a solution that updates with time and data available, it is necessary

to compare the minima and update the weights periodically by running batch online

learning continually at regular intervals.

In incremental machine learning, the models learn 1 observation at a time or 'n'

observations at a time. The value 'n' depends on the number of hours after which the

incremental machine learning algorithm is invoked.

The incremental machine learning provides the benefits of a smooth transition

between successive models and consistency of data [191]. The new models are developed

incrementally using the models developed on historical old data and new data points.

There is no requirement to develop the models from scratch when new batches of data are

available. Also, the consistency is maintained i.e. the performance of the incrementally

trained model is unchanged for records comprised in the initial data instances.

Usually, the incremental machine learning based on transfer learning suffers which

phenomenon called catastrophic forgetting. This calls for the tradeoff between two

characteristics called rigidity (rigid with old tasks and so perform better with old data

instances) and plasticity (flexible with new tasks and so perform better with new data

instances). However, in this methodology, the incremental machine learning is performed

on the clustered models which are then incrementally trained on new datasets from

79

individual transformers. This avoids catastrophic forgetting for a significant duration of

time initially, however in long run would lead to low accuracies.

3.3.2 Related work

There have been few works that have capitalized on the incremental learning

approach to develop short-term energy forecasting models.

Polikar et al. introduced incremental learning initially in the neural networks for

classification tasks [192]. For every mini-batch of data, they generated a different

hypothesis, and the result of classification is obtained by the aggregation of all the classes

obtained by the ensemble of classifiers on the different mini-batches of data. This

algorithm is termed Learn++. Learn++ proved to present new classes from new batches of

data.

To tackle the issues of changing patterns in a predicted variable, Sanchez et al., in

their work [193], introduced a forgetting function to enable the adaptability of the models

to the changing patterns. For applications where the patterns of predicted variables change

over time, the results of predictions are based on incremental learning with higher weights

given to the knowledge from new data and low weights to the knowledge from an old

hypothesis. The proposed forgetting function methodology was applied to a two-layer

feedforward neural network.

Zribi et al. proposed an incremental learning methodology for neural networks

wherein they start the development of a network from a simple structure to adding a neuron

to the hidden layers until the error of the predictions reaches a threshold while

incrementing the data [194].

80

In [195], Qiu et al. proposed an incremental approach while using an ensemble

model of Discrete Wavelet Transform (DWT)- Empirical Mode Decomposition (EMD)

based Random Vector Functional Link network (RVFL) network for short-term load

forecasting. However, the RVFL network is based on randomly generated weights

between input and hidden layers, rather than a systematic approach to parameter

optimization leaving scope for accuracy improvement. Reference [196] proposed an

online support vector regression (SVR) based on nested particle swarm optimization

(NPSO) for parameter optimization.

In [197], Gabriela et al. proposed an incremental ensemble model utilizing the

time-series characteristics such as seasonality, and concept drift of energy consumption

data. The ensemble model was based on Multi-Linear Regression (MLR), Support Vector

Machine (SVR), Seasonal decomposition of time series by loess (STL), Holt-Winters

exponential smoothing (HW), Feed-forward neural networks (NNE), and autoregressive

model (AR).

81

CHAPTER IV

MACHINE LEARNING AND DEEP LEARNING MODELS*5,6,7

In this chapter, the utilized and proposed machine learning and deep learning

models are detailed. The research utilizes the existing machine learning and deep learning

models for purposes of benchmarking the performance. Additionally, the research has

proposed several deep learning and ensemble architectures.

4.1 Linear Regression (LR)

The hypothesis of LR is given by:

ℎ𝑤(𝑥) = 𝑤0 + 𝑤1𝑥1 +𝑤2𝑥2 +⋯ .+𝑤𝑛𝑥𝑛 , (11)

where 𝑥1, 𝑥2, …… . . , 𝑥𝑛 represent features, and 𝑤0, 𝑤1, 𝑤2, … . . , 𝑤𝑛 represent model

parameters.

The objective of the LR is to choose 𝑤0, 𝑤1, 𝑤2, … . . , 𝑤𝑛 so that the values of

ℎ𝑤(𝑥) is as close to the actual values of the labels (y). This is achieved by the introduction

of a constraint while determining 𝑤0, 𝑤1, 𝑤2, … . . , 𝑤𝑛.

Conventionally, the objective constraint in LR is given by Equation 3 [198].

𝐽(𝑤0, 𝑤1, … . , 𝑤𝑛) =
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑤0𝑤1…𝑤𝑛

1

2𝑛
 ∑ (ℎ𝑤(𝑥

(𝑘)) − 𝑦(𝑘))
2𝑛

𝑘=1 , (12)

Here, 𝐽(𝑤0, 𝑤1, … . , 𝑤𝑛) is the cost function in terms of model parameters.

5 Reprinted with permission from “Deep Learning-Based Short-Term Load Forecasting Approach in Smart Grid with Clustering
and Consumption Pattern Recognition.” by Dabeeruddin Syed, Haitham Abu-Rub, Ali Ghrayeb, Shady S. Refaat, Mahdi Houchati,

Othmane Bouhali, and Santiago Bañales, 2021. IEEE Access 9, 54992-55008, Copyright 2021 by Dabeeruddin Syed.
6 Reprinted with permission from “Averaging Ensembles Model for Forecasting of Short-term Load in Smart Grids.” by

Dabeeruddin Syed, Shady S. Refaat, Haitham Abu-Rub, Othmane Bouhali, Ameema Zainab, and Le Xie, 2019. IEEE International

Conference on Big Data, pp. 2931-2938, Copyright 2019 by IEEE.
7 Reprinted with permission from “Household-Level Energy Forecasting in Smart Buildings Using a Novel Hybrid Deep Learning

Model.” by Dabeeruddin Syed, Haitham Abu-Rub, Ali Ghrayeb, and Shady S. Refaat, 2021. IEEE Access 9, 33498–33511, Copyright

2021 by Dabeeruddin Syed.

82

This constraint is basically the sum of squared error and the aim is to minimize

this error while determining the weights.

The LR has been used as one of the prediction models to act as a benchmark for

training time as this model would have the lowest training time owing to the simplicity of

the model but coarser accuracy.

4.2 Deep Neural Networks (DNN)

If the artificial neural networks have multiple hidden layers between the input layer

and the output layer, then these are termed as DNNs [199]. DNNs have the capabilities of

modeling linear or non-linear relationships between the data features. Also, the tendency

to overfit can be reduced with the application of dropout where the neurons in random or

systematic order are dropped.

The non-linear function representing the data is effectively determined in the

neural networks using summation and product operations. If a neuron 'j' of layer '𝑙'

(depicted in Figure 14 from a neural network is considered, then the input to the neuron is

𝑆𝑗
𝑙, the weight at the neuron is 𝑤𝑖𝑗

𝑙 . Let σ be the activation function, then 𝑥𝑗
𝑙 is the output

from the neuron and this output acts as input to the neurons in the next layer. Here, i

represents the neuron number in the previous layer and 𝑑𝑙 represents the number of

neurons in the layer '𝑙'.

The input to the neuron 𝑆𝑗
𝑙 is given as

𝑆𝑗
𝑙 = ∑ 𝑤𝑖𝑗

(𝑙)𝑥𝑖
(𝑙−1)𝑑(𝑙−1)

𝑖=1 + 𝑏𝑗
(𝑙) = ∑ 𝑤𝑖𝑗

(𝑙)𝑥𝑖
(𝑙−1)𝑑( 𝑙−1)

𝑖=0 , (13)

And, the output from the neuron j in layer 𝑙 is given as follows.

83

𝑥𝑗
𝑙 = σ(𝑆𝑗

𝑙) , (14)

In the matrix form, the equation for the input to neuron in layer 𝑙 is given as:

𝑆𝑙 = (𝑊𝑙)𝑇𝑥𝑙−1 , (15)

This equation is used in the forward propagation calculations. The value 𝑥, which

is input, is available initially. It is used with pre-initialized weights 𝑊(1) to calculate the

input 𝑆(1) to the neurons in the hidden layer 1. This input when applied with activation

function yields the output 𝑥(1) from the neuron in hidden layer 1.

Graphically, the forward propagation can be represented as the calculations involving the

following:

𝑥 ≡ 𝑥(0)
𝑊(1)

→ 𝑆(1)
𝜎
→𝑥(1)

𝑊(2)

→ 𝑆(2)
𝜎
→𝑥(2)

𝑊(𝐿)

→ 𝑆(𝐿)
𝜎
→𝑥(𝐿) ≡ h(x) , (16)

Figure 14 Neuron 'j' of layer '𝒍' in a neural network

84

The algorithm for the forward propagation of the neural network is given in

Algorithm 3. The aim of the forward propagation is to calculate the inputs and outputs in

different layers of the network using the weights, bias, and activation functions.

The backpropagation is utilized to determine the gradient of error in the direction

of the last hidden layer to the first hidden layer while minimizing the gradient of the error

with respect to the weights of neurons.

The error associated with the predictions is given by Equation 8 [200]. The

subsequent Equations 9, 10, and 11 are the calculation of error gradient with respect to the

weight of the corresponding layer.

𝐸 =
1

N
∑

𝛿𝑒𝑛

𝛿𝑊
𝑁
𝑛=1 (ℎ(𝑥𝑛 − 𝑦𝑛)

2
), (17)

𝛿𝐸

𝛿𝑊𝑙 =
1

N
∑

𝛿𝑒𝑛

𝛿𝑊𝑙
𝑁
𝑛=1 , (18)

where
∂𝑒𝑛

∂𝑊𝑙 is given by
∂𝑒𝑛

∂𝑤𝑖𝑗
𝑙 that is equal to

∂𝑒𝑛

∂𝑤𝑖𝑗
𝑙 =

∂𝑒𝑛

∂𝑠𝑗
𝑙

∂𝑠𝑗
𝑙

∂𝑤𝑖𝑗
𝑙

 , (19)

Algorithm 3. Forward Propagation

Input: x(0) = 𝑥. Initialization of augmented vector

Output:

1: for 𝑙 = 1, 2, 3, . . . , 𝐿 do

2: compute 𝑆𝑙 = (𝑊𝑙)𝑇𝑥𝑙−1

3: compute x(𝑙) = [
1

σ(𝑆𝑙)]

4: end for

5: compute ℎ(𝑥) = 𝑥(𝐿)

85

∂𝑒𝑛

∂𝑤𝑖𝑗
𝑙 =

∂𝑒𝑛

∂𝑠𝑗
𝑙 𝑥𝑖
𝑙−1 , (20)

This brings the partial derivative of the error with respect to neuron weights to the

following equation:

∂𝑒𝑛

∂𝑤𝑖𝑗
𝑙 ≡

∂𝑒

∂𝑊𝑙 = δ𝑖
𝑙𝑥𝑖
𝑙−1 , (21)

In the backpropagation, the error gradient δ𝑖
(𝐿)

 is determined first (L represents the

last layer in the neural network) and by way of backpropagation, the error in the previous

layers is calculated as the following:

δ𝑖
𝑙−1 =

∂𝑒(𝑤)

∂𝑠𝑖
𝑙−1

=∑
∂𝑒(𝑤)

∂𝑠𝑗
𝑙

𝑑𝑙

𝑗=1

∂𝑠𝑗
𝑙

∂𝑥𝑖
𝑙−1

∂𝑥𝑖
𝑙−1

∂𝑠𝑖
𝑙−1

 = ∑ δ𝑗
(l)𝑤𝑖𝑗

𝑙 ∂𝑥𝑖
𝑙−1

∂𝑠𝑖
𝑙−1

𝑑𝑙

𝑗=1 ,
(22)

The above equation is the representation of the error gradient of a layer in terms of

the error gradient of the next layer.

All the steps of forming a DNN are provided in Algorithm 4.

4.3 Long Short Term Memory (LSTM)

LSTM is a type of Recurrent Neural Network (RNN) that predicts the output based

on not only the current state of the hidden units but also on the previous states witnessed

so far, with the help of storing information in memory blocks. LSTMs are sequential

86

models and hence, capture the temporal dependencies. These models are suitable for

processing time-series data such as load forecasting data. In a standard RNN, there are

two inputs at a time step t to a neuron: input of time step t (𝑥𝑡) and output obtained at time

step t-1 (ℎ𝑡−1). Output at a time step is obtained by the weighted sum of 𝑥𝑡 and ℎ𝑡−1 which

is then followed by using activation functions such as Rectified Linear Unit (ReLU), and

hyperbolic tangent (tanh) on the weighted sum.

LSTM places a mini neural network inside each neuron and therefore complicates

the process of training. However, it helps to improve reliance and handles the long-term

dependencies well by eliminating the issues of gradient vanishing and gradient explosion

that usually exist with the use of standard RNN. The main idea of LSTM is to have two

outputs and gates. One of the outputs goes to the output layer and the next time step.

Besides, the other output goes to the next time step only. Gates are the multiply operations

performed and there are several gates in the LSTM. The LSTM network determines the

weights, and these weights are used to dot-product the inputs.

Algorithm 4. Neural Network

Input: Initialize all weights 𝑤𝑖𝑗
(𝑙)

Output:

1: for 𝑡 = 0, 1, 2, 3, … ., do

2: pick 𝑛 ∈ 1, 2, 3, … . , 𝑁

3: Forward propagation: compute all 𝑥𝑗
𝑙

4: Backward propagation: compute all 𝛿𝑗
𝑙

5: update the weight: 𝑤𝑗
(𝑙)

𝑤
← 𝑤𝑗

(𝑙) – η 𝑥𝑖
𝑙−1 𝛿𝑗

𝑙

6: iterate to the next step until it is time to stop

7: end for

8: return the final weights 𝑤𝑖𝑗
(𝑙)

87

An LSTM layer followed by a fully connected neural network is depicted in Figure

16.

To understand the working of LSTM to handle long-term dependency, consider an

LSTM unit at a particular time step as shown in Figure 16. Unlike standard RNNs, LSTMs

have complex mathematical operations, additional three gates termed as forget (𝑓𝑡), input

(𝑖𝑡) and output (𝑜𝑡) gates, and additional layer called candidate layer [173], [201]. The

gates utilize the sigmoid activation function and candidate layer operates using tanh

Figure 16 LSTM with Fully Connected NN

Figure 15 Mathematical operations in an LSTM unit at one time step

88

activation. Tanh activation is additionally adopted to calculate hidden cell state at next

time step from prior memory cell state.

From Figure 15, it can be observed that the inputs to an LSTM neuron at time step

𝑡 are the current input 𝑋𝑡, hidden state from prior time step ℎ𝑡−1, and memory cell state

from prior time step 𝑚𝑡−1. The outputs from the LSTM cell are hidden state at current

time step ℎ𝑡, and memory state at current time step 𝑚𝑡. There are multiple operations

taking place inside LSTM cell than those that occur in RNN cell. The merits of these

operations are that the gradients are preserved through the network and these allow for

long-term dependency information to pass.

The forget gate looks similar to the input gate, however, its function is different,

and it is to determine the usefulness of the previous hidden state memory cell whilst

computing on current input.

𝑓𝑡 = 𝜎(ℎ𝑡−1 · 𝑊𝑓 + 𝑥𝑡 · 𝑈𝑓 + 𝑏𝑓) (23)

The input gate performs a significant function. It determines if the current input

requires to be preserved based on the prior hidden state value.

𝑖𝑡 = 𝜎(ℎ𝑡−1 · 𝑊𝑖 + 𝑥𝑡 · 𝑈𝑖 + 𝑏𝑖) (24)

The candidate layer takes the current input 𝑥𝑡 and prior hidden state value ℎ𝑡−1 and

creates a new memory ct.

ct = tanh(ℎ𝑡−1 · 𝑊𝑐 + 𝑥𝑡 · 𝑈𝑐 + 𝑏𝑐) (25)

The output gate differentiates the hidden state memory and determines how much

of the information in the memory should be present in the hidden state at time 𝑡 as ℎ𝑡 is

dependent on 𝑜𝑡.

89

ot = σ(ℎ𝑡−1 · 𝑊𝑜 + 𝑥𝑡 · 𝑈𝑜 + 𝑏𝑜) (26)

As shown in (27), the final memory state 𝑚𝑡 is generated by two product sums: i)

taking forget gate output 𝑓𝑡 and prior memory state value 𝑚𝑡−1, and ii) input gate output

𝑖𝑡 and new memory 𝑐𝑡.

𝑚𝑡 = 𝑓𝑡 · 𝑚𝑡−1 + 𝑖𝑡 · 𝑐𝑡 (27)

The final hidden state value is dependent on the output gate as formulated in the

following:

ht = ot ∗ tanh(mt) (28)

where 𝑏𝑓, 𝑏𝑖, 𝑏𝑐 are time step independent biases of forget gate, input gate, and candidate

layer respectively. 𝑊𝑓, 𝑈𝑓, 𝑊𝑖, 𝑈𝑖, and 𝑊𝑐, 𝑈𝑐 are time step independent weights of forget

gate, input gate, and candidate layer respectively.

4.4 Proposed Averaging Regression Ensembles Model (AREM)

Also, an ensemble model that provides better performance in terms of accuracy is

proposed. The proposed Averaging Regression Ensembles Model is based on three

ensembles model consisting of ensemble extreme learning machines model, linear

regression, and long short-term memory recurrent neural network model. For the ensemble

of extreme learning ensembles model, the weights are randomly initialized, and the

number of neurons used in every model is different. Different learning algorithms were

used, however, the better performing learning algorithms such as LBFGS and Adam have

been finalized for the ensemble of extreme learning machines model, and learning

algorithms LBFGS and Adam have been finalized for LSTM recurrent neural network

90

model. The ensemble model, called as Averaging Regression Ensembles Model (AREM)

model, is depicted in Figure 17 [154].

4.5 Proposed Bidirectional LSTM Architecture (Bi-LSTM)

 Bi-directional LSTM is a development over uni-directional LSTM models. The bi-

directional LSTMs process the inputs in two directions - in the forward pass, from past

inputs to future inputs, and in the backward pass, from future inputs to past inputs. The

combination of hidden states from the forwarding pass and backward pass preserves the

information from both past inputs and future inputs through two different hidden layers.

The output from these hidden layers is passed to the single identical output layer. This

allows the bidirectional LSTMs to preserve the context and data patterns better from both

past and future inputs without delay. It has been proven that bi-directional LSTMs perform

better predictions and classifications than uni-directional LSTMs in diverse fields such as

Figure 17 Architecture of Proposed AREM Model © 2019 IEEE

Linear RegressionInput z2

Output

✕

Output z1

Ensemble output

Extreme Learning Machines Ensemble LSTM RNN

91

speech recognition [202]. However, the advantages of bi-directional LSTMs have not been

much explored in the field of energy consumption forecasting in smart grids.

 The architecture of the unfolded bi-directional LSTM model, comprising of

forwarding LSTM units and backward LSTM units, is depicted in Figure 18 [173]. The

forward pass output (ℎ⃗) is successfully determined using inputs in the positive sequence

of time from 𝑇 − 𝑘 to 𝑇 − 1. Whereas the backward pass output (ℎ⃗⃖) is successfully

determined using inputs in the negative sequence of time from 𝑇 + 𝑘 to 𝑇 + 1. There are

no hidden-to-hidden layer connections between the forward LSTM units and the backward

LSTM units. The calculations of outputs of the forward pass and backward pass utilize the

traditional LSTM functions. The final output vector of the bi-directional LSTM layer is

represented as 𝑍𝑇 = [𝑧𝑇−𝑘, 𝑧𝑇−𝑘+1, … . , 𝑧𝑇−1]. Each element in the final output vector is

given by the following:

 𝑧𝑡 = 𝜎(ℎ⃗ 𝑡 , ℎ⃗⃖𝑡) (29)

Figure 18 The architecture of unfolded bi-directional LSTM model © 2019 IEEE

92

where 𝜎 represents a function used to integrate the outputs from forwarding pass and

backward pass. The 𝜎 function can be a summation, averaging, concatenating, or

multiplication function. And the forward pass output (ℎ⃗) and backward pass output (ℎ⃗⃖) are

given as follows.

 ℎ⃗ = Ħ(𝑊𝑦ℎ⃗⃗ y𝑡 +𝑊ℎ⃗⃗ ℎ⃗⃗ ℎ⃗

𝑡+1 + 𝑏ℎ⃗⃗) (30)

ℎ⃗⃖ = Ħ(𝑊𝑦ℎ⃗⃗⃖y𝑡 +𝑊ℎ⃗⃗⃖ℎ⃗⃗⃖ ℎ⃗⃖𝑡+1 + 𝑏ℎ⃗⃗⃖) (31)

where Ħ represents the hidden layer function, 𝑦𝑡 represents the input sequence.

4.6 Proposed Clockwork RNN (CWRNN)

Clockwork RNNs are modifications to the vanilla RNNs such that the hidden

layers in clockwork RNNs are partitioned into different modules. Each of the modules

then processes the inputs to them at different temporal granularities and different preset

clock rates. The advantages of such architecture are the reduction in the number of

trainable parameters and an increase in accuracy when compared to the regular RNN and

LSTM structures.

Similar to RNNs, clockwork RNNs also have the input to hidden layers, hidden to

hidden layers, and hidden to output layer connections. The only difference is that the

hidden layer in clockwork RNNs is partitioned into k partitions of size m, each of it will

have the clock period 𝑇𝑛 = {𝑇1, 𝑇2, . . . , 𝑇𝑘}.

The different partitions have internal connections together, but there are no

recurrent connections from i to j if the time period 𝑇𝑖 < 𝑇𝑗. That is, when the neural network

93

is built, the partitions are arranged in ascending order and the recurrent connections exist

from the partitions with higher clock periods to partitions with lower clock periods only.

The architecture of the clockwork RNN (CWRNN) is illustrated in Figure 19. The

clock period of a partition 𝑖 can be determined as the following:

𝑇𝑖 = 2
𝑖−1 , (32)

where 𝑖 is the number of partition of a hidden layer.

The input and hidden weight matrices are partitioned into 𝑘 block rows, as follows:

𝑊 =

[

𝑊1
.
.
.
𝑊𝑘]

 𝑎𝑛𝑑 𝑈 =

[

𝑈1
.
.
.
𝑈𝑘]

 , (33)

Here, 𝑊 is an upper triangular matrix, and each 𝑊𝑖 value is partitioned into block

columns:

Figure 19 The architecture of clockwork RNN

94

{01, … , 0𝑖−1,𝑊𝑖,𝑖, … ,𝑊𝑖,𝑘} (34)

During the forward pass, only the block rows of the hidden weight matrix and the

input weight matrix correspond to the executed modules. That is,

𝑊𝑖 = {
𝑊𝑖, 𝑓𝑜𝑟 (𝑡 𝑚𝑜𝑑 𝑇𝑖) = 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (35)

where 𝑖 represents the missing record number.

The modules with lower clock rates learn and maintain long-term information from

the input and the modules with the higher clock rates learn local information. Each hidden

layer is partitioned into 𝑘 modules of size 𝑚, which means there are a total of 𝑛 = 𝑚𝑘

neurons. Since neurons are only connected to those that have a similar or larger period,

the number of parameters within the hidden-to-hidden matrix is as follows:

𝑁𝐻 =∑∑𝑚(𝑘 − 𝑖 + 1)

𝑚

𝑘=1

𝑘

𝑖=1

=
𝑛2

2
+
𝑛𝑚

2
 (36)

In vanilla RNNs, there are 𝑛2 parameters. If the ratio of 𝑁𝐻 to 𝑛2 is considered, it

is around 1/2. Therefore, Clockwork RNN requires approximately 50% of the

parameters.

95

CHAPTER V

PROPOSED METHODOLOGY*8,9

This chapter presents the multi-stage hybrid methodology proposed in this thesis

for short-term load forecasting in large electrical networks. The main aim of the work is

to train and build a deep learning hybrid model that provides high accuracy for electrical

energy forecasts. The hourly energy forecasts one-day ahead are the goal of the work.

A detailed description of the various steps involved in the proposed methodology

is described in subsequent sections starting with the description of acquisition data sets

used for the case studies.

5.1 Data Acquisition

The load forecasting data available for analysis is the energy consumption data at

the distribution transformers’ level in Spanish Electrical Network. The data contain the

hourly energy consumption data for 100,000 distribution transformers. The features in this

dataset are timestamp, and energy consumption values. Feature engineering is performed

to use the 24 energy lag values as features in the dataset to incorporate time dependency

in the machine learning models to be developed.

The energy consumption data for 100,000 transformers would be around 4.8

billion rows for a five-year historical time. This corresponds to about 5.7 Terabytes of

memory for data processing. The methodologies to be developed are required to use the

8 Reprinted with permission from “Deep Learning-Based Short-Term Load Forecasting Approach in Smart Grid with Clustering
and Consumption Pattern Recognition.” by Dabeeruddin Syed, Haitham Abu-Rub, Ali Ghrayeb, Shady S. Refaat, Mahdi Houchati,

Othmane Bouhali, and Santiago Bañales, 2021. IEEE Access 9, 54992-55008, Copyright 2021 by Dabeeruddin Syed.
9 Reprinted with permission from “Short-term Power Forecasting Model Based on Dimensionality Reduction and Deep Learning

Techniques for Smart Grid.” by Dabeeruddin Syed, Shady S. Refaat, Haitham Abu-Rub, and Othmane Bouhali, 2020. IEEE Kansas

Power and Energy Conference (KPEC), pp. 1-6, Copyright 2020 by IEEE.

96

concepts of big data, parallel computing, and clustering techniques to reduce the

computation time for initial training of models and incremental online update of trained

models dynamically. This additionally calls for the concepts of transfer learning and

incremental machine learning to be incorporated in the proposed methodology.

The methodologies have been proposed and these methodologies are scaled to be

accurate, efficient, and with low latency as the size and rate of data increases. The data is

used in the multiples of 10, 1000, and 100000 transformers to develop different strategies

and algorithms.

5.1.1 Dataset 1

The load forecasting data available for analysis is the energy consumption data at

the distribution transformers’ level for Spain. The data contain the hourly energy

consumption data for 10 distribution transformers. The weather data for the location of

these 10 distribution transformers is scraped online using an Application Programming

Interface (API) named Darksky [203]. The data is available for 33 months from 01 January

2017 to 28 September 2019. The weather data is merged with the energy consumption

data. The data contain missing values for the weather features. The missing values should

be either filled, extrapolated, or deleted [204]. The missing values for numerical features

are filled with mean or median values. Otherwise, backward or forward filling methods

are utilized to fill the missing values. Mode imputation is applied for categorical or ordinal

features. In this work, the forward fill method has been used to fill missing values for

numerical weather features. The dataset 1 consists of features such as datetime, wind

speed, maximum temperature, minimum temperature, humidity, summertime, and other

97

weather features in addition to energy consumption values and lag hour values. Figure 20

presents the standard deviation and mean of the energy consumption values for different

transformers in dataset 1. The boxes represent the deviation of the energy consumption

values, the horizontal blue line inside the blue box represents the median of the

consumption, and the black circles represent the outliers. The higher width of the blue

boxes represents that the energy consumption values for those transformers are highly

varying.

5.1.2 Dataset 2

The load forecasting data available for analysis is the energy consumption data at

the distribution transformers level for Spain. The data contains the hourly energy

consumption data for 1000 distribution transformers. However, the location of these 1000

transformers is not available currently. The data is available for the same 33 months as

dataset 1. The difference for dataset 2 is the weather information for all 1000 different

locations for every hour is not available. Hence, the dataset 2 consists of features including

energy consumption values, lag hour values, and season. Figure 21 presents the standard

Figure 20 The standard deviation of energy consumption for different

transformers in Dataset 1

98

deviation and mean of the energy consumption values for a subset of transformers in

Dataset 2. The high width of the boxes in Figure 21 depicts that the energy consumption

values for transformers 21, 127, and 562 are highly varying. Also, it indicates that many

records have zero values for consumption. The range and mean of energy consumption

values in dataset 1 and dataset 2 are mentioned in Table 10.

Table 10 Descriptive statistics of datasets.

 Mean (KWh) Std (KWh) Min (KWh) Max (KWh)

Dataset 1 75.25 111.87 0 754.60

Dataset 2 45.41 1346.71 0 2147483.64

5.1.3 Dataset 3

The dataset 3 is energy consumption data from 105,148 transformers in the

distribution network spread across the country of Spain. The size of the dataset is around

250 GB and it contains 2.16 billion records of energy consumption.

Figure 21 The standard deviation of energy consumption for different

transformers in a sample of Dataset 2

99

5.2 Proposed Methodology

There are multiple implementation layers to the load forecasting application in

smart grids. These layers are depicted in Figure 22 and are listed below:

• Feature Engineering Layer

• Clustering Layer

• Transfer Learning Layer

• Machine Learning Models

• Incremental Training Layer or Real-time Machine Learning

Figure 22 Different layers in the proposed methodology

100

The core layer is the machine learning models layer where the training and testing

of the machine learning models happen on the load forecasting historical data. All the

other layers are added on top of the machine learning models layer to enhance the

performance of the forecasting. The enhancement may be in terms of accuracy of

predictions or to reduce the number of prediction models to be developed for 100,000

distribution nodes or to reduce the training time of the models.

5.3 Feature Engineering Layer

This layer employs different feature extraction or dimensionality reduction

techniques for the applications of short-term power forecasting using smart meters data.

The number and data type of input features are crucial to the performance of power

forecasting models. The input features in the dataset are weather parameters and lag hour

values of energy. The performance of the machine learning models decreases with the

increase in the number of input features. That is, the machine learning models tend to

overfit, and the forecasting accuracy is reduced. The performance of the feature extraction

or dimensionality reduction techniques has been evaluated in the context of the forecasting

applications with models involving Artificial Neural Networks (ANN), Long Short Term

Memory (LSTM), and Linear Regression (LR). While linear Principal Component

Analysis (PCA) is a preferred dimensionality reduction technique for faster training times,

kernel PCA, Non-negative Matrix Factorization (NMF), Independent Component

Analysis (ICA), and Uniform Manifold Approximation and Projection (UMAP) yield

better accuracies [152].

101

The feature extraction techniques evaluated in this work are described in the

following:

5.3.1 Principal Component Analysis (PCA)

PCA transforms the features in a dataset into new features which are termed as

Principal Components. The principal component is a linear combination of the original

variables of the dataset. Principal components are ranked so that the first principal

component is the one that represents the maximum variance in the data. The subsequent

principal components represent the remaining variance in the dataset. However, these are

not correlated to the first principal component of the data. Singular Value Decomposition

(SVD) decomposes the original matrix into its components based on the concept of

eigenvalues and eigenvectors, and this is used to remove the redundant features.

5.3.2 Independent Component Analysis (ICA)

ICA is set up on information theory and it differs from PCA in the sense that PCA

finds the uncorrelated factors whereas ICA finds the independent factors. The uncorrelated

factors are those which do not have any linear relationship between them. However,

independence is an absolute characteristic.

5.3.3 Non-negative Matrix Factorization (NMF)

NMF is a multivariate analytic technique used for dimensionality reduction (DR).

The NMF breaks down a non-negative data matrix into two non-negative matrices. One

of the component matrices is termed as the basis vectors. These basis vectors are projected

onto a lower-dimensional space to perform DR. The peculiarity of NMF over PCA and

102

SVD is that it has non-negativity constraints. NMF is an iterative method and has merits

in algorithms using large matrices.

5.3.4 Manifold Isometric Mapping (ISOMAP)

It is a manifold projection-based DR technique. For any data, a manifold close to

the data is located, and the projection of data on that manifold is calculated. Finally, for

the representation, the manifold is unfolded to determine the representation of the original

data onto a lower-dimensional space. ISOMAP is a method that focuses to retrieve full

low-dimensional projection of a non-linear manifold which is presumed to be smooth.

5.3.5 t-Distributed Stochastic Neighbor Embedding (t-SNE)

t-SNE recognizes the patterns in non-linear ways. It uses local approaches

(mapping neighboring points on the manifold to neighboring points in the low dimensional

data setting) and global approaches (preserving geometry at all scales, i.e. mapping

neighboring points on a manifold to neighboring points and mapping far away points to

faraway points in low-dimensional data setting) to map the data points into lower-

dimensional data representation. It computes the probability similarity of points in high

dimensional representation and low dimensional representation. Basically, it computes the

Euclidean distances between points in high or low dimensional expanse and converts these

distances to conditional probabilities to represent similarities. However, there are a few

drawbacks such as loss of large-scale information, slower execution times, and inability

to represent larger datasets for the t-SNE method. t-SNE performs efficiently when the

dataset is not huge and there is non-linear dependency among the data features. Usually,

GPU-accelerated implementations of t-SNE (such as Barnes-Hut approach, and RAPIDs)

103

are employed to reduce the high processing times. However, the set of experiments in this

work has been conducted only on the CPU implementations of the DR techniques.

5.3.6 Uniform Manifold Approximation and Projection (UMAP)

UMAP is a state-of-the-art DR technique that preserves much of local and global

structure as compared to t-SNE. It uses the k-Nearest neighbor concept. It determines the

span between the points in high-dimensional data representation and projects onto lower-

dimensional data representation and employs Stochastic Gradient Descent (SGD) to

reduce the distance in the lower dimensional setting. It has the following advantages such

as the ability to handle large datasets, faster computation time when compared to t-SNE,

and preservation of local and global structures of data.

5.4 Clustering Layer

This layer provides the gain in training time and performance in terms of accuracy

when the clustering-based deep learning modeling is employed for load forecasting. For

100,000 distribution transformers, it is initially presumed that 100,000 machine learning

models are required to make predictions at each transformer. However, by employing

clustering methodology, the number of models to be developed can be reduced from

100,000 models to a lesser number 'k'.

The different forecasting models are generated for different clusters of load

profiles. For clustering, k-Medoid based algorithm is employed. The clustering of the

distribution transformers, based on the similarity in the energy consumption, improves the

accuracy of the proposed methodology and reduces the number of models required for a

large number of distribution transformers, consequently reducing the training time.

104

In current works, a deep neural network consisting of six layers and utilizing Adam

optimization learning model using the TensorFlow framework has been employed. The

case study has been successfully performed on real data of energy consumption at the

distribution level for 1000 transformers in Spain Electricity Network. The results reveal

that the proposed model has superior performance when compared to the state-of-the-art,

and other classical load forecasting methodologies. The clustering-based approach

improves accuracy by 0.005 to 2.9% and saves around 44% of training time using single-

core processing compared to non-clustering models.

On 1000 transformers, the number of models to be developed has been reduced

from 1000 to 93 models only. The number 'k' i.e. the number of clusters has been

determined by utilization of the elbow curve which analyzes the within-cluster error to the

number of clusters.

The clustering approach currently successfully tested on 1000 transformers, is to

be tested on 100,000 transformers to prove the scalability of the proposed approach.

5.5 Transfer Learning Layer

This layer is applied on the clustered models with an aim to reduce the training

time. The method of knowledge transfer from model 1 to other models enables the

subsequent models to reach the convergence faster.

Also, if transfer learning is used between the transformers with similar energy

consumption patterns, not only the training time but also the accuracy of the later models

is improved.

105

Desired results have been obtained when transfer learning is utilized between

transformers within the same clusters. However, there is an issue of local minima

convergence when transfer learning is applied between different clusters of transformers.

The aim of this layer is to employ a reliable transfer learning algorithm to use the

knowledge from existing load forecasting machine learning models to innovatively

develop highly accurate transfer learning models for cases of newly installed distribution

nodes where the availability of load data is not sufficiently large. The work investigates

how negative learning is avoided by transferring knowledge between similar and different

distribution units. The overall results indicate that the knowledge transfer from developed

models improves the accuracy of newer models, reduces the time of convergence to local

minima, and reduces training time for deep learning models compared to that of models

without transfer learning.

5.6 Machine Learning and Deep Learning models Layer

The modeling layer is the layer in which the offline training of the machine

learning and deep learning models takes place. The modeling can be performed on

encrypted data (if there is a security layer) or non-encrypted data (if there is no security

layer). The primary work of this thesis focuses on the big data analytics and modeling on

data without a security layer. However, our work that focused on the addition of security

layer, where the homomorphic encryption of the data takes place before model training

and the decryption of the predictions takes place after testing, is presented in Appendix A.

In this layer, the classical machine learning models such as Linear Regression, and

Decision Trees, or the deep learning models such as Long Short-Term Memory (LSTM),

106

and Deep Neural Networks (DNN) can be employed. The LR has been used as one of the

prediction models to act as a benchmark for training time as this model would have the

lowest training time owing to the simplicity of the model but coarser accuracy.

5.7 Modeling the Learning Process

5.7.1 Proposed Model Cost Function PULSE

5.7.1.1 Overview

Quadratic cost function such as Mean Squared Error (MSE) has been a widely used

objective function whilst training deep neural networks for energy forecasting in Smart

Grids. In this work, Penalizing Underestimation Logarithmic Square Error (PULSE), a

novel objective function is proposed with an aim to reduce the tendency of deep learning

models to underestimate the target variable.

Load forecasting is the foremost and crucial step in power system planning [205].

The system operators utilize the information of load forecasts to make decisions on

generation resource management, economic dispatch, and scheduled maintenance.

Inevitably, perfectly accurate demand forecasting directly influences the costing and

reliability of the power systems. However, peak demand forecasting is crucial to prevent

blackouts or loss of energy. Although the accuracy of demand forecasting is highly

important, the underestimation of demand is more harmful than the overestimation of

demand. This is the motivation of the proposed PULSE cost function. Excess load demand

and shortage of supply can lead to unintentional brownouts and blackouts that have severe

negative effect on the life of energy consumers [149].

107

The application of neural networks for forecasting load demand is to provide a

black box of product-sum operations followed by activations to generate the non-linear

mapping instead of formulating numerous mathematical derivations to explore the

correlation and rules between input features and the output target variable.

The weight contributions of previous layer outputs onto the next layer inputs are

determined during the learning process that involves the forward propagation and error

backpropagation method. Conventionally, the error backpropagation is based on the error

cost function that needs to be minimized using optimization algorithms. The cost function

can be customized to penalize the underestimation of the target variable during the training

process so that the networks are more prone to overestimate than to underestimate.

Currently, there are primarily five types of loss functions that evaluate the error in

regression problems during the backpropagation method in neural networks: i) quadratic

(L2) loss function such as mean squared error [206], ii) linear (L1) loss function such as

mean absolute error [207], iii) Huber loss function [208], [209], iv) logarithmic cost

function (logcosh) [209], and v) quantile loss function [210].

In [210], Ben et al. proposed a scheme to add a quantile constraint to any loss

function of regression neural networks. Although quantile constraints do not yield any

gradients, the authors formulated a method and an algorithm to minimize a generalized

loss function. Their results presented that the cost function converges proving the

feasibility of their proposed solution. The quadratic cost function has been adopted

extensively in the deep learning methodologies for load demand forecasting owing to the

least sum of squares postulate [174], [211]. In [174], Syed et al. utilized MSE as a loss

108

function to develop clustering-based deep learning models on big data for load forecasting.

The demerit of the quadratic cost function is the low rate of gradient descent and this

increases training time especially in the case of big data processing. The problem is evident

in artificial neural networks and is more pronounced in deep neural networks (DNNs) such

as dense networks, convolutional neural networks, and recurrent neural networks.

In [212], Khosravi et al. proposed a weight decay cost function for decreasing the

length of load forecasting intervals without affecting the coverage probability. Their

results suggested that their proposed cost function overperformed the delta technique that

is fundamentally utilized for constructing the load forecasting intervals instead of point-

based forecasts.

To the best of my knowledge, there was no research work with a discussion on the

elimination of underestimation of demand forecasting, and with proposed methodologies

to reduce or eliminate the underestimation tendency of deep neural networks optimizing

the quadratic, linear or quantile cost functions. The comprehensive results provide insights

and investigate the models that are optimal keeping accuracy in consideration and compare

these models with the proposed methodology that eliminates the tendency of

underestimation. In this research, A custom cost function called Penalizing

Underestimation Logarithmic Square Error (PULSE) is proposed with an aim of providing

a tradeoff between high accuracy and removal of the underestimation tendency of deep

learning models. A real case study based on a Portuguese load demand dataset of

consecutive three years is used to investigate the efficiency of the proposed methodology

that eliminates the tendency of underprediction of load demand.

109

5.7.1.2 PULSE Cost Function

Conventionally, the loss function (ℓ) utilized to minimize the error of predictions

from machine learning models is mean absolute error, mean percentage error or mean

squared error. The proposed PULSE cost function is based on the custom proposed loss

function which is formulated as (37).

 where 𝑦 is the true value of the independent variable, 𝑦𝑝𝑟𝑒𝑑 is the predicted value

of the independent variable, 𝛽 is the hyperparameter (called penalty coefficient) in this

loss function, and ψ(.) is the proposed modified approximation function. 𝛽 lies between

0 and 1 for normalized data. ψ(.), the approximation function is given by the following

equation:

 The proposed approximation function ψ(.) can be reformulated as given in (39). It

can aptly be called a negative ReLU function due to its analogous similarity to the ReLU

ℓ = [𝑙𝑜𝑔(𝑦 + 1) − 𝑙𝑜𝑔(y𝑝𝑟𝑒𝑑 + 1)]
2
+ (𝛽) ∗ 𝑙𝑜𝑔(ψ(y𝑝𝑟𝑒𝑑 − 𝑦) + 1) (37)

ψ(𝑥)= {
−𝑥, 𝑥 < 0
0, 𝑥 ≥ 0

 (38)

Figure 23 Proposed approximation function

110

activation function and is illustrated in Figure 23.

 The PULSE cost function (𝐽) is therefore modified as given in (40).

 This can be rewritten as the following:

 Figure 24 illustrates the backward propagation of deep neural networks. The

backward propagation relies on the cost function to optimize the accuracy of prediction

models updating weights in each epoch of an iteration.

5.7.1.3 Case study for performance evaluation of PULSE

5.7.1.3.1 Data description

In this case study, an open-source real-world electricity load diagrams dataset is

utilized for performance validation of the proposed cost function and methodology. The

ψ(𝑥)=− 𝑚𝑖𝑛(0,𝑥) ∀ 𝑥 (39)

J =
1

2𝑚
∑[𝑙𝑜𝑔(yi + 1) − 𝑙𝑜𝑔 (yipred + 1)]

2
𝑚

𝑖=1

+ (𝛽) ∗
1

2𝑚
∑[𝑙𝑜𝑔 (ψ(yipred − yi) + 1)]

2
𝑚

𝑖=1

 (40)

J =
1

2𝑚
∑[𝑙𝑜𝑔 (

yi + 1

yipred + 1
)]

2𝑚

𝑖=1

+ (𝛽) ∗
1

2𝑚
∑[𝑙𝑜𝑔 (ψ(yipred − yi) + 1)]

2
𝑚

𝑖=1

 (41)

Figure 24 Backward propagation of deep neural networks

111

data contain electricity consumption information of 370 customers and cover 140256

electricity consumption records for each customer [213]. In total, the records amount to

around 51.89 million records for all customers and before processing, the dataset occupies

around 694.33 MB memory on the compute node.

5.7.1.3.2 Data processing

The dataset does not contain any missing values. Therefore, imputation methods

were not adopted in preprocessing step [41]. The energy consumption values were

recorded in kW every 15 mins. The values have been aggregated to hourly consumption

values expressed in kWh.

Especially with neural network models, it is crucial to scale and normalize the

features to a similar range [214]. Without feature scaling, convex optimization methods

such as gradient descent take a long time to converge. Besides, normalization is performed

so that each feature has approximately zero mean. The application of both feature scaling

and mean normalization is formulated as (42).

𝑥𝑗
(𝑖)′
=

𝑥𝑗
(𝑖)
− 𝑎𝑣𝑔(𝑥𝑗)

𝑚𝑎𝑥(𝑥𝑗) − 𝑚𝑖𝑛(𝑥𝑗)
 (42)

where 𝑥𝑗
(𝑖)′

 is the scaled and normalized value of a feature in row 𝑖, 𝑥𝑗
(𝑖)

 is the original

value of a feature in row 𝑖, 𝑗 represents a feature number, 𝑎𝑣𝑔(𝑥𝑗) refers to the average

value of the feature 𝑥𝑗. Similarly, 𝑚𝑎𝑥(𝑥𝑗) 𝑎𝑛𝑑 𝑚𝑖𝑛(𝑥𝑗) refer to the maximum and

minimum of the feature respectively.

5.7.1.3.3 Sliding Window Method

112

The data are fundamentally time series data of load demand. Additionally, the

datetime extracted features referring to the day, month, year, and day of the month are

considered. Furthermore, the sliding time window approach is deployed to integrate the

lag values of load demand as feedback to the input layer of network models. This is based

on the fact that the load demand in the prior time may have a crucial influence on load

demand at the current time. The fixed-length sliding time window enables the model

networks to analyze the demand history to extract time-varying features. Suppose

𝑦(𝑡); 𝑡 = 1, 2, 3, 4, . . . , 𝑛 be the load demand time series where 𝑡 is the index of time and

𝑛 denotes the total number of time instances. The sliding window method assigns 𝛕 lagged

load demand values to each instance of time series at entry 𝑡. A 𝛕x1 feature vector denoted

by [𝑦(𝑡 − τ), . . . 𝑦(𝑡 − 4), 𝑦(𝑡 − 3), 𝑦(𝑡 − 2), 𝑦(𝑡 − 1)] is assigned to a typical instance

of time series 𝑦(𝑡). The addition of extracted datetime features and the deployment of the

sliding window method transforms the load demand time series data into a supervised

machine learning problem.

5.7.1.3.4 Model development – LSTMs

For forecasting time-dependent target variables, recurrent neural networks (RNN)

have been developed. These networks have memory cells that can retain information of

the prior captured states of the input to make a forecast for a future time step. Long Short-

Term Memory (LSTM) is a special type of RNNs that can handle long-term dependencies

and additionally address the problem of exploding and vanishing gradients using the forget

and memory cells that decide on which information to forgo and which information to

carry forward or retain respectively. The explicit handling of temporal dependence

113

between records while learning a mapping function from input variables to target variables

is offered by RNNs such as LSTMs, unlike DNNs and Convolutional Neural Networks

(CNNs). The theoretical perspective of LSTMs is illustrated in Chapter IV.

5.7.1.3.5 Simulation Setup

The simulations were performed for short-term hourly load demand forecasting.

To ensure a fair assessment of the impact of formulating cost function i.e., the use of

proposed PULSE cost function, the same built stacked LSTM network is employed along

with sliding window method, regularization components, and batch normalization. The

comparative investigation is performed for a problem of point-based forecasting.

Additionally, the results of simulations are compared against the models developed in the

literature. It is significant to note that the aim of this methodology is not just the supremacy

of accuracy but to balance the tradeoff between accuracy and the avoidance of

underestimation tendency. The configuration and specifications of the machine utilized

for simulations are Intel® Xeon® CPU E5-2670 @ 2.60 Hz, 16 cores, 32 virtual

processors, and 88.0 GB RAM. Python programming was employed, Keras API was

utilized to build the deep learning models, and TensorFlow served as a backend for Keras.

5.7.1.3.6 Convergence performance of PULSE

The neural network model learning occurs by minimizing a cost function. Various

optimization algorithms such as Gradient Descent, Normal Equations, and Adam can be

utilized to determine a local or global minimum of a function [149]. The optimization

algorithm enables the model to learn the gradients in the direction of minimization of error

i.e., ultimately minimizing the defined cost function. A deterministic method of proper

114

learning using cost function is to plot a graph between the cost function value or error

against the number of epochs of training. As the number of epochs iterates, it is ideal that

the model converges after a particular epoch number yielding little or zero changes to the

loss value going further. The variation of the cost function for a widely utilized MSE and

the proposed cost function are illustrated in Figure 25 and Figure 26 respectively. The

horizontal axes refer to the number of epochs during the learning process, and the vertical

axes refer to the value of the cost function. As shown in Figure 26, the cost function value

decreases logarithmically during the initial epochs and after 30 epochs, the cost function

has converged to a minimum. From Figure 25 and Figure 26, it is evident that the models

converged reasonably quickly, and both train and test performance remained similar in

Figure 25 Convergence of widely used cost function (MSE)

Figure 26 Convergence of proposed PULSE cost function

115

either of the cases. The performance and convergence behavior suggest that the proposed

cost function is a good match for the learning process.

5.7.1.3.7 Simulation Results

The internal architecture and the optimized hyperparameters of the adopted deep

learning model are presented in Table 11. Random search method is utilized for the

optimization of hyperparameters. It has been empirically proven to work faster than the

grid search method to discover precise values for the significant hyperparameters [215].

Table 11 Optimized Hyperparameters.

Parameter Utilized Model

Number of layers 5 Stacked LSTM layers +

5 Dropout Layers +

5 Batch Normalization layers +

1 Dense layer

Number of neurons {260, 210, 160, 50, 5, 1}

Dropout Rate {0.10, 0.20, 0.30, 0.30, 0.30}

Number of Epochs 200

Batch size 128

Figure 27 illustrates the multiple plots of load demand predictions against the

actual load demand for a subset of energy customers. The independent axes represent the

time indices in hours and the dependent axes represent the inverse scaled hourly load

demand in kWh. The results illustrate that the predicted load demand is never

underestimated using the proposed PULSE loss function. The accuracy of the MSE loss

function may or may not be greater than the PULSE loss function but it is evident that the

model with MSE loss function is prone to the tendency of underestimation which can be

116

clearly prevented using the proposed PULSE function. The results cannot be quantified

using the performance graphs of a subset of consumers. Hence, the evaluation metrics are

utilized, and the results are tabulated as shown in Table 12. The PULSE function based

deep learning model yields an nRMSE = 7.106x10-2, RMSE = 4.610x10-2 kWh, MAE=

3.267x10-2 kWh on the normalized and scaled load demand data, whilst the MAPE value

is 10.857 % which indicates a superior accuracy of the model. The MSE function based

deep learning model yields an nRMSE = 6.671x10-2, RMSE = 4.555x10-2 kWh, MAE =

3.271x10-2 kWh, whilst the MAPE value is 35.066% which indicates a high accuracy of

the model. The aim of the PULSE function is achieved as the model based on it does not

underestimate over the testing dataset, and it definitely reduces the tendency of the deep

learning models to underestimate the target variable.

Table 12 Evaluation Results.

Results on scaled load

demand data
MSE cost function

Proposed PULSE cost

function

Figure 27 Load Demand Forecasting Results using MSE and PULSE cost functions

on Deep Learning Models

117

nRMSE (10-2) 6.671 7.106

RMSE (10-2 kWh) 4.378 4.490

MAE (10-2 kWh) 3.231 3.267

MAPE (%) 35.066 10.857

Train time per model (s) 1326.209 1470.010

The performance of the deep learning models based on PULSE cost function is

compared against the state-of-the-art models developed on the same dataset from literature

and is presented in Table 13. As the results suggest, the proposed methodology performs

better than ELM, RNN, LR, kSR, kNNR, GPR, and GRNN in terms of average RMSE

error. There is RELM that has lower average RMSE when compared to the proposed

methodology. It is crucial to note that the proposed methodology has an added advantage

of avoiding underestimation tendency of deep learning models whilst predicting load

demand.

Table 13 Performance evaluation against the state-of-the-art models from literature

for arbitrary-ordered data.

Model RMSE (10-2 kWh)

Extreme Learning Machine (ELM) [216] 6.47

Recurrent Neural Network (RNN) [216] 4.68

Linear Regressor (LR) [216] 6.46

k-smooth regressor (kSR) [216] 6.49

k-nearest neighborhood regressor (kNNR) [216] 7.32

118

Gaussian process regressor (GPR) [216] 6.45

Generalized regression neural network (GRNN) [216] 6.45

Recurrent extreme learning machine (RELM) [216] 3.94

DL Model built in this work 4.378

Proposed PULSE cost function-based model 4.490

5.7.1.3.8 Insights

With the proposed novel cost function PULSE, the deep learning models can

optimize the convergence of error to a minimum whilst penalizing the tendency to

underestimate the target variable. The investigated model consists of stacked long short-

term memory networks that employ sliding window method for better handling of long-

term dependencies, batch normalization, and dropout techniques to eliminate overfitting

of the investigated model based on the proposed cost function. The simulated results

indicate that the proposed PULSE cost function provides competitive accuracy and avoids

underestimation of load demand with a superior training speed. This cost function can be

applied to short-term, medium-term, and long-term load forecasting and its characteristic

estimation behavior can enable the utilities to manage the generation resources properly

to avoid any supply shortage.

5.7.2 Model Optimizer

Model optimizer is an algorithm that minimizes the cost function in the process of

learning optimum values of weights and biases. Among the widely used model optimizers,

the optimizers such as LBFGS and Adam has been utilized during model development.

119

Additionally, the decoupled weight regularized invariant of Adam has been proposed to

break off from the local optima during transfer learning and the detailed explanation is

provided in Section 6.2.2.3.

5.7.2.1 Limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm (LBFGS)

LBFGS is a limited memory quasi-Newton optimization solver [217]. For an

optimization problem with 𝑛 variables, BFGS needs 𝑛 𝑥 𝑛 matrix to approximate the

hessian while LBFGS only needs a small number of vectors of length 𝑛 to approximate

the hessian. It does so by maintaining the knowledge of the historical states of previous 𝑚

updates of current position and its gradient 𝑔 = ∇𝑓(𝑥). The historical states are

maintained as last 𝑚 updates of the position difference and gradient difference. Each of

these variables is a vector of length 𝑛. These 2𝑚 variables and the original gradient will

be used in finding a new direction. The original description of LBFGS is given in [218].

5.7.2.2 Adaptive Moment Estimation (Adam) Optimizer

Adam algorithm puts together gradient descent of RMSProp and gradient descent

with Momentum for optimization. Adam algorithm has been proven to be very effective

for different neural networks of a very wide variety of architecture. The Adam

Optimization steps are illustrated in Figure 28 and are detailed as follows.

1) Hyperparameters in this algorithm are learning rate, decay rates ρ1 and ρ2, and δ.

Usually, the learning rate ϵ is the only term that is to be tuned. Whereas the rates 𝜌1,

𝜌2, and 𝛿 are not required to be tuned and their default values are used. Usually, δ =

10−8, ρ1 = 0.9 and ρ2 = 0.999. ρ1 is the weighted average, and ρ2 is the weighted

average of the squares.

120

2) First step is to initiate the moment variables s and r to 0. At this point, time step is 0.

3) Until the stopping criteria is met, the following steps are performed.

4) A sample data point is selected from the training data.

5) Initially, the weights θ are calculated using current mini-batch gradient descent.

6) Momentum exponential weighted average is updated as 𝑠 ← ρ1𝑠 + (1 − ρ1)�̂�. This is

momentum like update with hyperparameter ρ1.

7) Similarly, the RMS prop update is calculated as 𝑟 ← ρ2𝑟 + (1 − ρ2)�̂� ⨀�̂�. �̂�⨀�̂� is

the element wise squaring of the gradients �̂�. This is RMSprop like update with

hyperparameter ρ2.

8) In the typical implementation of Adam, the bias correction is performed as �̂� ←

𝑠

1−ρ1
𝑡 , �̂� ←

𝑟

1−ρ2
𝑡 . 𝑡 is the iteration number.

Figure 28 Adam Optimization

121

9) Finally, the θ is updated as the formula θ ← θ + −ϵ
�̂�

√�̂�+δ
. Here the numerator in ∇θ

is due to the moment operation and the denominator is due to the gradient descent of

the RMSprop or bias correction. This brings the end to iteration.

10) Make note of the points that the values of ρ1, ρ2, δ can be default values and only the

learning rate ϵ is to be tuned for better performance.

5.7.3 Batch Normalization

Traditionally, the inputs to the neural networks are scaled and normalized to a

range between 0 and 1. This type of normalization is generally efficient for the machine

learning model performance. In the current research, batch normalization is additionally

adopted to support dropout layer in removing overfitting of the neural network and deep

learning models. In batch normalization, not just the inputs to the input layer but also the

inputs to all the hidden layers are normalized. Batch normalization utilizes the mean and

the standard deviation of the batch of data and not of entire data unlike the normalization

of the input layer. The merits of batch normalization include the improvement of the

accuracy performance of deep learning models and the reduction of overfitting. It is

recommended to utilize batch normalization in every layer and alongside dropout.

5.7.4 Dropout

Artificial Neural Networks and Deep Learning Networks are prone to overfitting

which corresponds to having high variance. Overfitting causes the models to have high

training accuracy but perform with poor accuracy on testing data. The most common

technique to eliminate overfitting in neural networks is called Dropout. In each iteration,

dropout removes some neurons randomly on the defined layers as shown in Figure 29.

122

Dropout essentially trains different neural networks. That is, in each iteration different

network is trained. At testing time, the combination of the different networks is generated

by averaging the results. It is well known as a generalization that averaging multiple

machine learning models reduces overfitting.

5.8 Incremental Learning Layer

This layer enables the proposed framework to perform online machine learning.

This allows the deep learning models to use the data points that arrive at the current time

and in the future to incrementally retrain the already trained machine learning models. The

online training of trained models using new data points is termed incremental learning.

Incremental learning is analogous to transfer learning. The historical data in incremental

learning is similar to the dataset of application 1 in transfer learning and the newer data

points in incremental learning are similar to the dataset of application 2 in transfer

learning.

Figure 29 Standard Fully connected Neural Networks and Neural Networks

with Dropout

123

Let 𝐿𝑘,𝑡 be the load of transformer k at time duration t. The load matrix for the

transformers is represented by 𝐿𝐾×𝑇 (Equation (43)). The size of the matrix increases with

the increase in the number of transformers or with the reduction in the aggregation level

of energy consumption values. For the 1000 transformers dataset that is used in this work,

the size of the load matrix is 1000x1001 where 1001 is the number of days between 01

January 2017 to 28 September 2019.

𝐿𝐾×𝑇 =

[

𝐿1,1 𝐿1,2 𝐿1,𝑡−1 𝐿1,𝑡
𝐿2,1 𝐿2,2 𝐿2,𝑡−1 𝐿2,𝑡−1
: : : :
: : : :

𝐿𝑘−1,1 𝐿𝑘−1,2 𝐿𝑘−1,𝑡−1 𝐿𝑘−1,𝑡
𝐿𝑘,1 𝐿𝑘,2 𝐿𝑘,𝑡−1 𝐿𝑘,𝑡]

, (43)

The similarity between any two transformers 𝑘,𝑚 at any given time 𝑝 is

determined based on pairwise Minkowski similarity as given by Equation (44).

𝐷𝑘,𝑚,𝑝 = (∑ |𝐿𝑘,𝑡 − 𝐿𝑚,𝑡|
𝑞

24
𝑡=1)

1

𝑞, (44)

where 𝐿𝑘, 𝐿𝑚 represent the row vectors of load values for transformers k, m respectively.

The optimized value of q in Equation (44) was determined to be equal to unity.

Finally, the obtained distance matrix is passed as an argument to the clustering

function to obtain the clusters of transformers with similar energy consumption patterns.

The adoption of Minkowski similarity enhanced the performance of clustering.

124

Algorithm 5 presents the sequence of steps performed for incremental learning.

Algorithm 5 Incremental Learning Framework

Input Data 𝑆𝑡−1 with n rows: {𝑥𝑖,𝑦𝑖} where i represents the row number (i=1, 2,

3, ..., n).

Initialize k-medoid clustering algorithm to generate k number of clustered

models which provides distribution function 𝑊𝑡−1.

A hypothesis function ℎ𝑡−1 is generated at time t-1 along with the distribution

fuction 𝑊𝑡−1. And, 𝑊𝑡−1 = [𝑤1, 𝑤2,, 𝑤𝑚]; m represents the number of

layers in the neural networks.

while new data 𝑆𝑡+𝑘
′ is available with n' instances. do

 Hypothesis h' is updated using new data 𝑆𝑡+𝑘
′

 𝑊𝑡+𝑘 = [𝑤1, 𝑤2,, 𝑤𝑚] is updated using new data 𝑆𝑡+𝑘
′ as the

following:

 for t = t, t+1, t+2, , t+k do

 Forward propagation: compute all 𝑥𝑗
𝑙

Backward propagation: compute all 𝛿𝑗
𝑙

update the weight: 𝑤𝑗
(𝑙)

⬚
← 𝑤𝑗

(𝑙) – η 𝑥𝑖
𝑙−1 𝛿𝑗

𝑙

iterate to the next step until it is time to stop

 end for

 return the final weights 𝑤𝑖𝑗
(𝑙)

 as 𝑊𝑡+𝑘

end while

125

CHAPTER VI

PERFORMANCE ANALYSIS*10

6.1 Performance Evaluation Metrics

The metrics of evaluation used for accuracy are Root Mean Square Error (RMSE)

and Mean Absolute Percentage Error (MAPE). Training time and testing time are used to

evaluate the performance in terms of execution time.

1) Root Mean Square Error (RMSE): RMSE is the square root of the sum of squares

of the difference between actual and predicted energy consumption. RMSE is an

effective performance metric for comparing forecasting errors of different models

for a single attribute which is the case in this research work. However, it is not a

recommended measure to compare performance between attributes as RMSE is

scale dependent. RMSE is given by (45) [219].

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝐸𝑟′ − 𝐸𝑟)2
𝑁
𝑟=1 , (45)

2) Mean Absolute Percentage Error (MAPE): MAPE represents the ratio of the

absolute difference between the actual and predicted value to the actual value at

every record of energy consumption. It is necessary to make sure that the actual

value is not zero while calculating MAPE. MAPE is given by (46) [219].

𝑀𝐴𝑃𝐸(%) =
100

𝑁
 ∑ |

𝐸𝑟
′ − 𝐸𝑟

 𝐸𝑟
|𝑁

𝑟=1 , (46)

10 Reprinted with permission from “Deep Learning-Based Short-Term Load Forecasting Approach in Smart Grid with Clustering
and Consumption Pattern Recognition.” by Dabeeruddin Syed, Haitham Abu-Rub, Ali Ghrayeb, Shady S. Refaat, Mahdi Houchati,

Othmane Bouhali, and Santiago Bañales, 2021. IEEE Access 9, 54992-55008, Copyright 2021 by Dabeeruddin Syed.

126

For low prediction values, the MAPE value cannot exceed 100%. However, for

high prediction values, there is no maximum control limit to the value of MAPE.

3) nRMSE:

𝑛𝑅𝑀𝑆𝐸 =
√1
𝑁
∑ (𝐸𝑟′ − 𝐸𝑟)2
𝑁
𝑟=1

𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛

(47)

4) MAE:

MAE =
∑ |𝐸𝑟

′ − 𝐸𝑟|
N
r=1

N
 (48)

where 𝐸𝑟 is the actual energy consumption at instant 𝑡 = 𝑟, 𝐸𝑟
′ is the predicted value of

energy consumption at instant 𝑡 = 𝑟, and 𝑁 denotes the total number of testing samples.

6.2 Experimental Results

The hardware specifications of the supercomputers utilized in the case study are

described in Table 14.

Table 14 Hardware Specification of the experimental setup.

Hardware Specification Value

Nodes 1-16

Interconnect Onmi-Path

CPU Architecture Intel Broadwell x86_64 CPU operating at 2.4 GHz

CPU cores 8 per node

Memory 16 GB RAM per node

Job scheduler Slurm

127

6.2.1 Clustering

Figure 30 represents the sequence of steps performed for developing the

clustering-based short-term load forecasting model. As shown in the figure, the proposed

methodology is carried out in four main stages:

A. Data acquisition and pre-processing stage

B. Clustering stage

C. Training stage

D. Testing stage

6.2.1.1 Elbow Curve

Figure 30 Clustering Layer Steps

128

In this work, the direct method of the elbow curve is utilized. The elbow curve

calculates the within-cluster sum of square errors (WCSSE) and determines the k-value

such that WCSSE is minimized. The aim of the selection of k is to determine a low value

of k such that the sum of square error for that value of k is the minimum and if any more

clusters are added, the clustering is not improved much. This is to provide a trade-off

between the number of clusters and the accuracy. The elbow method is selected over other

methods of determining the k-value for clustering because of its simple complexity. As

per existing research [220], the execution time is the lowest for the elbow method when

compared to other methods owing to its low complexity of utilizing the sum of the square

distance between cluster points and representative centers.

To determine the optimal number of clusters, the elbow curves are obtained for

dataset 1 and dataset 2 as illustrated in Figure 31 and Figure 32. The independent axes in

the figures indicate the number of clusters and the dependent axes in the figures represent

the WCSSE for the corresponding number of clusters (k) value. As per Figure 31, the

sharp decline in the WCSSE is observed for 𝑘 = 3. Hence, the optimum number of

Figure 31 Elbow Curve for 10 transformers dataset

129

clusters is selected as 3 for 10 transformers dataset. The elbow in Figure 32 suggests that

the optimal number of clusters is k=93 for the 1000 transformers dataset. Hence, the

clusters are determined, and the deep learning models are developed with the number of

clusters k=93.

In this layer, the K-Medoid clustering is utilized to cluster similar transformers

together. The similarity indicates that transformers have similar patterns of aggregated

daily consumption and hourly consumption. The aim of the work is to evaluate the

performance of individual models for 1000 transformers against the clustered models.

Individual models mean that 1000 transformers have separately trained models using their

individual data i.e. each transformer has a separate trained model built on its data. The

clustered models indicate that the 1000 transformers are clustered into ’k’ different groups

and each of these ’k’ clusters have one separate model trained on the data of the

transformers within the clusters. The employment of a clustering technique reduces the

required number of forecasting models from 1000 to k for 1000 transformers. As described

in the previous subsection, the value of ’k’ (number of clusters) is optimized to minimize

the within-cluster sum of square errors.

Figure 32 Elbow Curve for 1000 transformers dataset

130

The performance of clustered and individual forecasting models for distribution

transformers is evaluated in terms of RMSE, MAPE, training time, and testing time.

The RMSE and MAPE values for individual models and clustered models using

Deep Neural Networks (DNNs) are determined and these are depicted in Figure 33 and

Figure 34.

Figure 33 indicates the results of the DNN models for load forecasting. Each of

the subfigures indicates a representative subset of 1000 transformers. As observed from

the RMSE lines, mostly the individual models represent the lower boundary of the two

lines. The RMSE values range between 0 and 30 kWh. These values are very low

considering the range (0 to 2,147,484 kWh) of energy consumption in the dataset. At a

few points, the clustered models over perform the individual models for the respective

transformers. The MAPE values for the individual models range between 4 to 16 percent

and the MAPE for clustered models range between 5 to 19 percent. These MAPE values

Figure 33 Performance Evaluation (in RMSE) of Clustered Models v/s Individual

Models for different Transformers

131

indicate that the clustered models are very comparable to the individual models. A few

transformers exhibit high statistical variance in the energy consumption, i.e., they have

either zero consumption values, or very high energy consumption values, or actual energy

values range between 0 and 1. The MAPE values for such transformers are around 20-

32%. These transformers have been found to be alternate backup transformers that are

used only during the periods of faults, preventive, or predictive maintenance of main

transformers.

Table 15 presents the results of clustering and individual models on 10

transformers dataset when the machine learning models used are LR, LSTM, and DNNs.

When accuracy is considered, the best performing model is the DNN model. In the

clustering-based algorithm, the models are trained on a cluster whilst the testing is

performed on each transformer within the cluster. If the clustering and individual models

are compared, the individual models have slightly better accuracy when compared to

clustered models. However, the accuracy of clustered models is highly competitive. If the

Figure 34 Performance Evaluation (in MAPE) of Clustered Models v/s

Individual Models for different Transformers

FIGURE 10. Performance Evaluation (in RMSE) of Clustered Models v/s Individual Models for different Transformers

132

gain on training time is considered, then the clustered models are highly preferable to

individual models. When the training times for different machine learning models are

considered, LR is the best owing to its simplicity. The DNN models have 10 folds of lesser

training times compared to LSTM models. As a trade-off between accuracy and training

time, it can be concluded that the clustering based DNN models perform better. A similar

pattern is also recognized in Table 16. It depicts the results of clustering and individual

models on a 1000 transformers dataset when LR, LSTM, and DNNs are used for training

and testing.

Table 15 Results on 10 transformers dataset.

Model Mean RMSE

(kWh)

Mean

MAPE (%)

Training

Time (s)

Testing Time

(s)

LR non-clustered 12.27 28.82 0.0656 0.0076

LR + clustering 13.25 32.23 0.0525 0.0076

ARIMA non-clustered 12.6305 30.2368 1.7182 1.8768

ARIMA + Clustering 14.2755 31.6923 1.0611 1.0047

LSTM non-clustered 2.2087 19.0902 421.00 3.7731

LSTM + clustering 3.1301 21.6020 118.83 0.2520

DNN non-clustered 2.3769 14.6451 14.63 0.0710

DNN + clustering 2.6874 15.9380 10.76 0.1070

Table 16 Results on 1000 transformers dataset.

Model Mean RMSE

(kWh)

Mean

MAPE (%)

Training

Time (s)

Testing Time

(s)

133

LR non-clustered 54.0449 20.3235 14.06 0.89

LR + clustering 62.3503 20.8479 17.35 1.07

ARIMA non-clustered 59.4144 37.7886 513.5092 14.7560

ARIMA + Clustering 67.8725 39.4502 317.1253 8.6468

LSTM non-clustered 22.52 7.27 113432 =

31 hr

378.86 = 6 min

LSTM + clustering 37.06 11.10 29106 = 8

hr

110.41

= 1.8 min

DNN non-clustered 19.82 7.18 8409 =

2.33 hr

6.08

DNN + clustering 21.25 7.22 4644 =

1.29 hr

4.57

The comparison of a trained clustered STLF model using different machine

learning algorithms is illustrated in Figure 35. The independent axis represents the time

points, and the dependent axis represents the energy consumption in kWh. The results in

the figure denote that the proposed k-Medoids methodology has generated accurate

clusters, and the clustered model predicts energy consumption values close to the actual

values of consumption for all machine learning algorithms in general. Figure 35 also

Figure 35 Forecast comparison of a trained clustered STLF model using different

machine learning algorithms

134

indicates that the DNN forecasts follow the consumption peaks better than LSTM and LR

models. LSTM and LR at many time points forecast peaks after the peaks have occurred.

Figure 36 illustrates the error bars that depict the standard deviation of predictions

using DNN and LSTM-based clustering models for STLF. The shaded region around the

blue line depicting predicted energy values using clustered DNN model represents the

error region or the deviation of model predictions. The experiments were repeated a

reasonable number of times i.e., 20 times to obtain the mean prediction and standard

deviation of the predictions. LR-based clustering models had zero variance for predictions

and hence, are not plotted. LSTM-based clustering models have variance tending to zero

and additionally, DNN-based models have very low variance as shown in Figure 36. The

sources of randomness are kept at the minimum whilst training the proposed models and

the trained models can be saved using deep learning serialization for future testing in

industrial applications. The standard deviation of the error metrics for retraining of

forecasting models under similar initialization conditions will be negligible.

6.2.2 Transfer Learning

Figure 36 Error bars for forecasts using DNN and LSTM-based clustered STLF

models

135

6.2.2.1 Transfer Learning Results

The proposed solution uses homogeneous inductive transfer learning by fine-

tuning through all layers for target tasks. The homogeneous transfer learning is illustrated

in Figure 37. As shown in Figure 37, dataset 1 is employed to train model 1 from scratch

i.e., the weights of hidden layers in the base model are optimized. During the development

of model 𝑥, the base layers from model 1 are utilized without freezing and the fine-tuning

is performed through all layers.

The integrated methodology of the construction of power forecasting models is

depicted in Figure 38. The data of thousand distribution nodes are passed through the

clustering stage to form the group of similar distribution nodes into clusters. The optimal

number of clusters is determined to be 93 clusters [174]. Similar distribution nodes are

formed into clusters.

The hyperparameter k in the k-Medoids algorithm cannot be learned directly and

hence, the elbow curve method is employed to select the optimal value of k which yields

the least within-cluster error.

Figure 37 Homogeneous Transfer Learning through Fine Tuning

136

In the next stage of methodology, a forecasting model one each for a cluster is

developed using transfer learning. That is, a forecasting model (model 0) is firstly trained

from scratch on the source dataset (cluster 0). Secondly, the model is re-trained on target

datasets (cluster 1, cluster 2, . . ., cluster 𝑛) through fine-tuning all the layers in the neural

network. For convenience, the clustered models formed using TL are denoted as Clus-Tr-

DNN and the clustered models formed without TL framework are denoted as Clus-DNN

where DNN indicates the inherent deep learning neural network model. The accuracies of

Clus-Tr-DNN are compared with the accuracies of the Clus-DNN.

The next stage of the proposed methodology involves the creation of models within

clusters. These are individual models developed for each dataset. Already, the datasets

which are similar in energy consumption patterns have been clustered together in the

previous stage. Now, the knowledge transfer is performed only between the distribution

datasets within the same clusters to eliminate any negative transfer of knowledge. In the

first subset of experiments, TL is used to construct the subsequent models within a cluster

Figure 38 Clustering-based methodology with TL

137

using knowledge transfer from the source domain within the same cluster. For

convenience, these models are denoted as Ind-Tr-DNN. To develop source domains from

cluster 1 onwards, we utilize weight regularization optimizer to transfer knowledge from

source domain within cluster 0. The use of weight regularization eliminates negative

learning when knowledge transfer occurs between clusters. In another subset of

experiments, the individual models are developed without the use of any TL. For

convenience, these models are denoted as Ind-DNN.

Extensive experiments were performed to evaluate the performance of transfer

learning-based methodology. The utilized datasets are the energy consumption data at ten

and thousand distribution nodes in the Spanish electrical network.

In one set of experiments, individual models are developed using the individual

datasets and in another set of experiments, the clustering approach is applied to group the

similar distribution nodes into clusters based on the similarity metric of daily energy

consumption.

The clustering technique employed is the k-Medoid clustering technique to

eliminate the sensitivity to outliers in data analytics. According to the within-cluster error

elbow curve, the optimal number of clusters is determined as 3 for 10 distribution nodes

data and as 93 for 1000 distribution nodes dataset [174].

The initial cluster (cluster 0) is trained using the conventional way without any TL.

The other clusters are trained with the help of TL from cluster 0 and the fine-tuning is

performed using the corresponding dataset of the cluster. The knowledge from the training

of cluster 0 is used for training cluster 1, cluster 2, and so on.

138

6.2.2.1.1 Results on Dataset 1 – ten distribution nodes dataset

The performance of traditional learning and TL between dissimilar clusters on

clustered models for ten distribution nodes dataset is depicted in Table 17.

Table 17 Testing of clustered models on cluster data with and without TL

framework applied between clusters.

 RMSE (kWh) Improvement

(%)
Clus-DNN Clus-TR-DNN

Cluster 0 4.35 - -

Cluster 1 12.86 9.92 +22.86 %

Cluster 2 17.10 23.68 - 34.47 %

The RMSE of cluster 1 shows significant improvement after the transfer of

knowledge. However, the performance of the model for cluster 2 shows a negative transfer

of learning indicating that the model converged to a local minimum rather than a global

optimization point. The negative learning can be explained because the TL is performed

between the dissimilar distribution nodes belonging to different clusters. A few potential

solutions that can be considered to avoid convergence to local minima are the following

[221], [222]: i) considering cyclic learning rate, ii) using Stochastic Gradient Descent

(SGD) with warm restarts, iii) considering high values for learning rate, iv) using meta-

heuristic algorithms such as Grey-Wolf Algorithm, Ant Colony Optimization, and

Harmony Search, and v) variants of optimizers such as Vanilla Gradient Descent,

AdamW, QHAdam, YellowFin, AggMo, QHM, and Demon. The negative TL can be

removed when the transfer of knowledge happens between the distribution nodes that are

139

similar. This is observed in subsequent tables. Moreover, the improvement with TL is

more pronounced when the data for target tasks are not sufficiently large.

The ten distribution nodes are clustered into 3 clusters. With the k-Medoid

clustering algorithm, it was determined that the three clusters of distribution nodes are:

{0, 1, 2, 6}, {5} and {3, 4, 7, 8, 9}. One clustered model based on deep neural networks

was developed for each cluster. So, the three clustered models have been developed and

these have been tested on the individual datasets of the distribution nodes and the results

of the performance with and without the use of TL are depicted in Table 18.

Table 18 Testing of clustered models on individual distribution node datasets with

and without TL framework applied between clusters.

 RMSE (kWh) Improvement

(%)
Clus-DNN Clus-Tr-DNN

t/f 0 27.95 - -

t/f 1 31.39 - -

t/f 2 29.91 - -

t/f 6 27.50 - -

t/f 5 21.15 22.29 5.39

t/f 3 18.49 12.97 29.85

t/f 4 21.75 20.92 3.81

t/f 7 16.52 20.42 -23.62

t/f 8 16.19 19.32 -19.33

t/f 9 17.47 20.52 -17.45

140

The first column in the table represents the distribution node number or

transformer number (t/f). The similar distribution nodes are grouped into the same clusters

however, any two clusters are assumed to be dissimilar. With the transfer of knowledge

between dissimilar clusters, it is possible that the transfer is either positive or a little on

the negative side. However, the gain in the execution or training time is always positive.

The gain in time is displayed in Table 19. From Table 19, it is clear that the time to train

the models with TL is much less than the time to train the models without TL.

Table 19 Cluster training times after testing of clustered models with TL applied

between clusters.

 Training time (s) Improvement

(%) Clus-DNN Clus-Tr-DNN

Cluster 0 92 - -

Cluster 1 49 40 9

Cluster 2 79 50 36.7

The negative transfer of knowledge is inherently eliminated when the TL is

employed between similar distribution nodes. The k-medoid clustering algorithm based

on similarity metric of energy consumption clustered the 10 distribution nodes into the

clusters {0, 1, 2, 6}, {5} and {3, 4, 7, 8, 9}. The negative TL is eliminated when the

knowledge from the model of dataset 0 is transferred to develop models on dataset 1, 2,

and 6. The knowledge from the model of dataset 3 is transferred to develop models on

datasets 4, 7, 8, and 9. The use of the clustering-based methodology eliminated any

141

negative TL within a cluster and the results are described in Table 20. The negative transfer

learning between dissimilar clusters is eliminated by the weight regularization technique

proposed in Section 6.2.2.3.

Table 20 Testing of individual models on individual distribution node datasets with

TL applied within clusters.

 RMSE of individual models

without TL (kWh)

RMSE of individual models after

transfer of knowledge (kWh)

improvement

(%)

t/f 0 13.60 - -

t/f 1 10.32 7.90 23.44

t/f 2 7.35 5.03 31.56

t/f 6 6.42 1.09 83.02

t/f 5 18.68 - -

t/f 3 2.18 - -

t/f 4 2.30 1.26 45.21

t/f 7 14.91 10.34 30.65

t/f 8 3.81 2.22 41.73

t/f 9 3.70 2.52 31.89

6.2.2.1.2 Results on Dataset 2 – thousand distribution nodes dataset

The performance of TL with respect to training time has also been verified with a

second case study on 1000 distribution nodes which according to elbow curve and k-

Medoid clustering were grouped into 93 clusters and the models were developed using

deep neural networks. As shown in Figure 39, the time to train the clustered models using

142

TL is always less when compared to the time taken to train the clustered models without

TL. This confirms that the TL allows for faster convergence of models. The performance

of TL in coalition with the clustering layer on the thousand distribution nodes dataset is

depicted in Table 21. It takes 3.23 mins to develop 93 clustered models using TL when

compared to 2.20 hours of training time without TL. However, the MAPE varies from

7.22% to 14.37% when TL is employed between dissimilar clusters.

6.2.2.1.3 Weight Regularization to eliminate negative learning between dissimilar

datasets

For transfer learning between dissimilar clusters, an improved Adam optimizer

was proposed to eliminate any negative learning and to breakout from local convergence.

The first optimization step involves the use of cyclical learning rate in which learning rate

is initialized to a larger value and is scheduled to decrease subsequently to prevent the

avoidance of global minima. The proposed optimizer invariant is utilized with decoupled

weight regularization and cyclical learning rate (Adamw) to eliminate negative learning.

The weight update rule in the general Adam optimizer is given by the following:

Figure 39 Cluster training times for 1000 distribution nodes with TL applied

between clusters

143

𝑤(𝑡) = 𝑤(𝑡 − 1) − 𝛼 ▽ 𝑓, (49)

Here ▽ 𝑓 is the gradient, and 𝛼 is the learning rate.

The general Adam optimizer is characterized by large step size when gradient

change is less, smaller step size when gradient change is rapid and the adaptability in step

size is performed by maintaining moving averages (called moments) of gradient over the

steps.

The implemented optimizer invariant employs decoupled weight regularization.

This allows for weight regularization without the coupling of hyperparameters such as

learning rate and weight decay factor.

The weight update rule in the proposed optimizer invariant is given by the

following:

𝑤(𝑡) = (𝑤𝑒𝑖𝑔ℎ𝑡𝑑𝑒𝑐𝑎𝑦𝑓𝑎𝑐𝑡𝑜𝑟)𝑤(𝑡 − 1) − 𝛼 ▽ 𝑓, (50)

Here ▽ 𝑓 is the gradient, and 𝛼 is the learning rate.

The weight decay factor is introduced as a coefficient to the weight at past instant

and lies between 0 and 1. This forces the weights learnt to be small and so, the model

generalizes better. For convenience, the models using weight regularization are denoted

by Clus-Tr-WR-DNN.

6.2.2.2 Results of TL after weight regularization

6.2.2.2.1 Results on Dataset 1 – ten distribution nodes dataset

Figure 40 and Figure 41 indicate the performance of TL after weight regularization

on 10 distribution nodes dataset. The results, obtained after the testing of clustered models

144

is performed on cluster data, are illustrated in Figure 40. The graph of TL with weight

decay regularization is at the lower bound of error when compared to the model

development without TL for both cluster 1 and cluster 2. At no point, the error is high in

case of model development after TL. This indicates that the negative learning has been

eliminated by the use of weight regularization in the optimizer.

The results, obtained after the testing of clustered models on individual

transformers’ data, are illustrated in Figure 41. The graph of TL with weight decay

regularization is at the lower bound of error when compared to the model development

without TL for all the transformers including t/f 1, t/f 8, t/f 3, t/f 6, t/f 7, t/f 9. At no point,

Figure 40 TL between clusters – testing on cluster data

Figure 41 TL between clusters – testing on individual transformer data

145

the error is high in case of model development after TL. This corroborates that the negative

learning has been eliminated by the use of weight regularization in the optimizer.

6.2.2.2.2 Results on Dataset 2 – thousand distribution nodes dataset

The performance of TL after weight regularization on 1000 distribution nodes

dataset is presented in Table 21. To analyze the performance of the proposed weight

regularization TL modeling (Clus-Tr-WR-DNN), several state-of-the-art benchmark

models, including Linear Regression (LR), Autoregressive Integrated Moving Averages

(ARIMA), and deep long-short term memory (LSTM) are selected as comparative

methods as shown in Table 21. Weight regularization utilized during objective function

optimization in the proposed model eliminates negative knowledge transfer. The proposed

Clus-Tr-WR-DNN has a higher overall development time of 20.17 mins whilst

maintaining average MAPE error to a minimum of 7.20% when compared to Clustering-

based TL modeling that has 3.23 mins as development time and average MAPE of

31.96%.

Table 21 Performance of TL on thousand distribution nodes dataset (Dataset 2).

Model Train time (min) Average MAPE

(%)

Average RMSE

(kWh)

Ind-LR [174] 0.23 20.32 54.04

Clus-LR [174] 0.28 20.84 62.35

Ind-ARIMA [174] 8.55 37.78 59.41

Clus-ARIMA

[174]

5.28 39.45 67.87

146

Ind-LSTM [174] 1890 7.27 22.52

Clus-LSTM [174] 485 11.11 37.06

Ind-DNN 140.15 7.18 19.82

Clus-DNN 77 7.22 21.25

Clus-Tr-DNN 3.23 14.37 31.96

Clus-Tr-WR-DNN

(Proposed)

20.17 7.20 22.10

6.2.2.3 Results of TL on targets with smaller datasets

Besides, the effect of TL has been analyzed with smaller datasets. As observed in

Figure 42, for smaller datasets, the model developed from scratch has low accuracy when

compared to the model with knowledge transferred from a similar distribution point. As

the size of the dataset increases, the accuracy of both the models, with and without TL,

increases, and when a threshold size is reached, these models will have very close accuracy

values. The results of the performance of TL, when the data availability is low, is verified

Figure 42 TL results when the data availability is low

147

on the available dataset (Table 22). It has been found that the model with TL performs

58% better than the model without TL when the data size for the second model is 5% of

the original dataset. In all the cases of data availability, the TL model outperforms the

conventional model by 13-43%.

Table 22 Performance of TL when the data availability is low.

Data size RMSE without TL RMSE with TL Improvement (%)

5% 33.9412 20.9255 38.34

20% 33.8498 20.3398 39.91

30% 33.6460 19.9956 40.57

40% 33.0107 18.5012 43.95

50% 30.1865 17.7643 41.15

60% 17.5656 13.4901 23.20

70% 14.3533 12.4246 13.43

80% 14.0287 11.8557 15.48

95% 11.5013 8.8494 23.05

148

6.2.3 Incremental Learning

With the incremental learning layer, the load forecasting can be performed in real-

time with streams of data collected at an interval of 1 hour. From Figure 43 and Figure 44,

it is evident that the mean absolute error of the predictions using incremental machine

learning is at the minimum for the horizon value of 24 hours.

Figure 45 and Figure 46 depict the RMSE illustration for different horizons of short-term

load forecasting on the dataset of 1000 transformers. Table 23 depicts the results of online

machine learning for energy forecasting. It depicts the enhancement in the accuracy of the

Figure 44 MAE for different horizons Incremental learning based STLF model

Figure 43 Radar plot for MAE for different horizons

149

incrementally trained models over the clustered models and also indicates that 7 minutes

is required for every 6 hours to generate the incrementally trained models for 1000

distribution transformers. To capture the daily trends of energy consumption, the

incremental algorithm has been invoked every 24 hours. The results of incremental

learning with a 24-hour horizon indicate improvement in accuracy while also maintaining

very low execution time for incremental stage.

 The experiment is performed to illustrate the performance of incremental learning.

There are three models developed here for every 24 hours. At time t=0, there is only one

model developed which is from scratch using the historical data which is available. Now,

this model is kept constant to predict the energy consumption values of all future days in

Figure 45 RMSE for different horizons Incremental learning based STLF model

Figure 46 Radar plot for RMSE for different horizons

150

case I which is represented by red dots in Figure 47. The second model is updated every

24 hours with the help of incremental learning over the model at the last time point. It is

represented by blue dots in the figure. The third model is an updated model till the current

time point; however, it is developed from scratch at every time point. From the graph, it

is evident that incremental learning provides efficient performance in terms of accuracy

and it is developed in a fraction of the time it takes for model development from scratch.

Table 23 Online machine learning results.

 DNN (train

stage)

DNN (incremental stage

6h horizon)

DNN (incremental stage

24h horizon)

Avg. RMSE

(kWh)

21.2596 20.1149 19.43

Train time (s) 1210.56 sec for

training stage

Extra 400 secs every 6

hours.

Extra 403 secs every 24

hrs.

Avg. MAPE

(%)

7.20 6.92 6.37

6.2.4 Dask Parallel Computation

Figure 47 Improvement using incremental learning

151

Dask framework is a flexible parallel computation library for data analysis. It

works on datasets in an out-of-memory fashion, uses multiple cores inherently unlike

python. It is efficient in high-performance computations with high flexibility, scalability,

high throughput features, maximizes the utilization of cores, and memory. On a single

node, Dask performs automatic scaling to a cluster of cores and utilizes its ability to scale

over a cluster of nodes, when available. The characteristic features favoring dask in

multiprocessing are 1) possibility of data sharing between workers, 2) low latency

performance, 3) support for complex scheduling, and 4) easy to setup.

In complex use cases where big data platforms such as spark do not provide a

solution, for instance in transfer learning and incremental learning, dask is of much

relevance. The big data processing engines are written in Scala, Java, and Python.

However, dask is written purely in python. It can additionally interoperate with other

python libraries such as scikit-learn, NumPy, pandas, and Keras.

Dask provides flexibility to choose threads or processes. Initially, a dask setup was

used for multiprocessing and a cluster was set up as illustrated in Figure 48 and Table 24.

Table 24 Configuration of dask cluster.

Parameter Value

Workers 8

Figure 48 Dask cluster setup

152

Threads 2 per worker

Memory limit 32 GB per worker

Dask provides the following user interfaces:

• High-level: Arrays, Bags, Dataframes.

• Low-level: Task schedulers for computation graphs. (Directed Acyclic Graphs).

6.2.5 Multi-core processing in Python

Fundamentally, Python has a bottleneck in the form of Global Interpreter Locker

(GIL) that limits the capacity of multiple threads or programming processes. GIL exists

on the compiler of python denoted by CPython and it causes a considerable penalty to the

speed of multi-threaded python programs. Generally, multi-threaded python programs are

50% slower than single-threaded operations owing to the significant CPU wait time. The

problem of GIL in python can be overcome by the use of multiple processes instead of

using multiple threads. The multiprocessing python library can be employed to imitate the

multiple threads library interface and to solve the GIL problem.

In this research, the method of pool mapping is employed for multicore processing.

To map to the execution pool, a user-defined function is created which performs the

analysis of the data. The analyses include clustering into groups, performing transfer

learning, and incremental learning. So, the program is executed in two steps:

Firstly, there is the main program that reads the data and stores the data in memory.

There is a user-defined function that has the definition to predict and generate RMSE.

Secondly, the main program calls this user-defined pool function multiple times, and each

153

of these calls is handled by a separate core. Hence, the multiple cores handle jobs

simultaneously. Each core is mapped to the same subprogram but with a different cluster

number. The application is built to support the functionality of multicore processing using

the pool mapping method.

The results of multi-core processing in the 1000 transformers dataset are depicted

in Table 25. The scalability of the results is verified up to the size of 10,000 transformers.

Table 25 Results of multi-core processing.

Metric

Clustering + Training

1 core 8 cores

Single-core processing map method map async

Avg RMSE (KWh) 21.2596 21.2596 21.2596

MAPE 7.57 7.57 7.57

Train Time 4688.82 1054.188 903.589

Testing Time 4.57 2.690 2.286

6.2.5.1 Metrics of multi-core processing

The performance of multi-core processing is evaluated in the following measures:

• CPU Efficiency: CPU Efficiency is calculated as the ratio of the actual core time from

all cores divided by the number of cores requested divided by the run time.

• Memory Efficiency: Memory Efficiency is calculated as the ratio of the high-water

mark of memory used by all tasks divided by the memory requested for the job.

• Parallel Efficiency: Parallel efficiency, which compares the performance of the full

system or a specific subset of the processors to the performance of one processor

Two of the reasons for low CPU Efficiency are I/O bottleneck and CPU-bound

bottlenecks. I/O bottlenecks are bottlenecks where a computer processor spends more time

154

waiting on various inputs and outputs than it does on processing the information. CPU-

bound bottlenecks exist in applications with a large amount of data to process. The CPU-

bound bottlenecks are limited by the computational speed of CPUs. If the CPUs are of

high computational power, then the speed of processing is fast.

6.2.5.2 Ways to improve CPU Efficiency

The different ways to improve CPU efficiency while performing multi-core

processing for load forecasting include the following:

• Efficient Inter-process communication

• Different methods involving the utilization of following parallel computing procedures:

1) Pipes (package: os)

2) Files (package:py-filelock; filelocks)

3) Message Queue (package:activeMQ, redis.)

4) Shared Memory (package:mmap; shared memory registers)

5) Sockets

6) Signals

7) Remote procedure call (RPC)

It is important to analyze how multi-cores perform actions. A core is an individual

CPU unit that has all independent components and architecture to execute information.

The following are the steps in a cycle through which each core goes through:

• Fetch: It involves fetching instructions from the program memory. It is dictated by a

program counter (PC), that identifies the location of the next step to the process.

• Decode: The core converts the fetched instruction into a series of signals that will

trigger other components of the CPU.

• Execute: Finally, the execute step is performed. This is where the fetched and decoded

instruction, is executed and the results are stored in a CPU register.

155

The results of eight-core processing depict that the parallel load forecasting can be

performed using multiple cores with a parallel efficiency of 4 to 5. That is, when the

number of cores used to perform parallel load forecasting is 8, the training time is reduced

to
1

4
 th to

1

5
 th of the training time it takes when one core is utilized for processing.

6.2.6 Results of proposed parallel computing methodology on big data

To prove the scalability of the approach of parallel computing and multiprocessing

using python framework, the modeling has been performed on datasets with increasing

size in stages. The results of the proposed methodology on datasets collected from 10

diverse sources and 1000 diverse sources have been illustrated in the previous subsections.

In this subsection, the performance of proposed methodology on datasets that can be

considered big data is illustrated.

The optimization of number of clusters developed on dataset of 10,000 diverse

sources is shown in Figure 49. The figure represents the elbow curve that depicts the

within cluster sum of square errors on the dependent axis and the number of clusters is

shown on the independent axis. The dip in the error is observed at x=890 indicating that

890 clusters would be optimal to develop non-overlapping clusters on the dataset. This is

in resonance to the results of elbow curve on 10 and 1000 transformers dataset that imply

Figure 49 Elbow curve on 10,000 transformers dataset

156

that the factor of decrease in the number of models is 10 when applying clustering to the

distribution transformers dataset.

Hence, the forecasting models were developed for 10,000 distribution transformers

and the statistical distribution of RMSE of the models is depicted in Figure 50. As per

Figure 50, nearly 8000 transformer forecasting models have RMSE value less than 5 kWh

indicating high success of the forecasting models. The statistical distribution of RMSE

against MAPE is represented in Figure 51.

Figure 50 Distribution of RMSE values for 10,000 transformer models

Figure 51 Distribution of RMSE against MAPE for 10,000 transformer

models

157

The results of development of models for 10,000 transformers is depicted in Table

26. Additionally, it takes 48 minutes to cluster the 10,000 transformers into similar clusters

and then takes around 3.09 hours to develop the forecasting models for the clusters. With

the usage of dask dataframe to read or filter and pandas dataframe to process or sort data,

the peak memory usage was reduced from 97.05 GB to 42.75 GB during the development

of individual models on the dataset of size 64 GB.

Dataset 3 described in Table 27 is an example of big data as it contains around 2.2

billion records, and the processing of the dataset requires out of memory and parallel

computing. The results of parallel multi-core processing on a non-Spark platform is

mentioned in Table 27.

Table 26 Results on 10,000 transformers.

Data Field Cores Reading k-

optimization

Clustered

models

Individual

models

1
0
,0

0
0

tr
an

sf
o
rm

er
s

Avg. RMSE

(kWh)

8 - - 8.94 7.65

Training

time (s)

8 5.88

(dask)

6480 = 1.8 hr 3.09 hr 50664.5 =

14 h

Test time (s) 8 - - 45.68 2802.5 =

46.7 min

Table 27 Results of parallel computing on big data (dataset 3).

Parameter Parameter value

No. of transformer models trained 105,148

Resources 8 nodes. 48 cores each node.

Execution time 144 hours (5.9 days)

Mean RMSE 5.13 kWh

Mean nRMSE 0.0619

Mean MAPE 11.634

158

Mean MAE 3.282

 The accuracy performance can be observed in Figure 52. The independent axis

denotes the transformer number/model number, and the dependent axis represents the

nRMSE value for a particular transformer. As shown in Figure 52, the nRMSE value for

Figure 52 nRMSE results of the developed models for big data

Figure 53 Frequency plots of nRMSE and MAPE for the developed models

159

the transformers do not exceed the value of 0.12 and this low value indicates the highly

accurate prediction performance of the developed models.

 The frequency plots of the performance of the developed and trained models are

illustrated in Figure 53.

 The performance of parallel computing in terms of execution time is tabulated in

Table 28.

Table 28 Time performance of parallel computing on multiple datasets.

No. of transformers Model training

time (hr)

Datasize

(GB)

No. of nodes

used

Cores

used

RAM

1,000 2.33 2.85 1 1 8 GB

10,000 14 23.78 1 8 64 GB

105,148 144 242.78 8 48 128

GB/node

 As observed in Table 28, the dataset size is increased linearly by 10 and 100 times.

And, with the help of parallel computing and multicore processing, the development of

models occurs under similar scaled time.

160

CHAPTER VII

CONCLUSION AND FUTURE WORK

7.1 Conclusion

The use of the proposed hybrid framework with deep learning can be utilized to

develop parallel and real-time forecasting system for the smart grids and to change

positively the way the electrical grids save energy. In this work, various feature selection

methods, clustering techniques, transfer learning, incremental learning, and multi-core

processing have been employed and the integration of diverse data from multiple sources

has been performed. The outstanding results of the proposed methodology demonstrate

the reduction in the number of trained models by a factor of 10, the reduction in training

time by a factor of 2, and the improvement in accuracy owing to real-time analytics

approach and incremental learning of trained networks. Additionally, when the multi-core

analysis is performed, the execution time is reduced by a factor of at least
𝑘

2
, where k is

the number of cores employed. According to the results, it is evident that the parallel

computing of load forecasting provides satisfactory performance in terms of accuracy and

computation times. The proposed PULSE cost function-based DL models eliminate the

tendency to underestimate. The performance of the proposed multi-stage hybrid

framework is evaluated on data collected from 100,000 diverse data sources indicating

that the framework is highly scalable.

7.2 Future Work

In the future, the work can be further extended towards the optimization of the

number of nodes, number of cores, and provided memory. This optimization will help in

161

the computation resource management for parallel computing. Current steps in progress

are the partitioning of the recurrent network connections in neural networks to reduce the

number of trainable parameters and to reduce the computational time for training and

building networks. Additionally, the impact of forecasting horizon on the proposed

PULSE function will be studied.

162

REFERENCES

[1] Y. Zhang, R. Yu, M. Nekovee, Y. Liu, S. Xie, and S. Gjessing, “Cognitive machine-

to-machine communications: Visions and potentials for the smart grid,” IEEE

Netw., vol. 26, no. 3, pp. 6–13, May 2012, doi: 10.1109/MNET.2012.6201210.

[2] T. H. Dang-Ha, R. Olsson, and H. Wang, “The role of big data on smart grid

transition,” in Proceedings - 2015 IEEE International Conference on Smart City,

SmartCity 2015, Held Jointly with 8th IEEE International Conference on Social

Computing and Networking, SocialCom 2015, 5th IEEE International Conference

on Sustainable Computing and Communic, Dec. 2015, pp. 33–39, doi:

10.1109/SmartCity.2015.43.

[3] M. K. Saggi and S. Jain, “A survey towards an integration of big data analytics to

big insights for value-creation,” Inf. Process. Manag., vol. 54, no. 5, pp. 758–790,

Sep. 2018, doi: 10.1016/j.ipm.2018.01.010.

[4] D. B. Rawat and C. Bajracharya, “Cyber security for smart grid systems: Status,

challenges and perspectives,” in Conference Proceedings - IEEE

SOUTHEASTCON, Apr. 2015, vol. 2015-June, no. June, pp. 1–6, doi:

10.1109/SECON.2015.7132891.

[5] J. N. Bharothu, M. Sridhar, and R. S. Rao, “A literature survey report on Smart Grid

technologies,” in 2014 International Conference on Smart Electric Grid, ISEG

2014, Sep. 2015, pp. 1–8, doi: 10.1109/ISEG.2014.7005601.

[6] J. Joy, E. A. Jasmin, and V. John, “Challenges of Smart Grid,” ISSN Int. J. Adv.

Res. Electr. Electron. Instrum. Eng., vol. 2, no. 3, pp. 2320–3765, 2013, [Online].

Available: www.ijareeie.com.

[7] Y. Yan, Y. Qian, H. Sharif, and D. Tipper, “A survey on smart grid communication

infrastructures: Motivations, requirements and challenges,” IEEE Communications

Surveys and Tutorials, vol. 15, no. 1. pp. 5–20, 2013, doi:

10.1109/SURV.2012.021312.00034.

[8] Expansión, “Iberdrola bets on ‘Big Data’ to manage its electricity networks.”

Accessed on: Oct. 2, 2021., [Online]. Available:

http://www.expansion.com/empresas/energia/2015/04/23/.

[9] P. Siano, “Demand response and smart grids - A survey,” Renew. Sustain. Energy

Rev., vol. 30, pp. 461–478, Feb. 2014, doi: 10.1016/j.rser.2013.10.022.

[10] P. Kundur, N. J. Balu, and M. G. Lauby, Power system stability and control, vol.

7. McGraw-hill New York, 1994.

[11] M. L. Tuballa and M. L. Abundo, “A review of the development of Smart Grid

technologies,” Renewable and Sustainable Energy Reviews, vol. 59. Elsevier Ltd,

163

pp. 710–725, Jun. 2016, doi: 10.1016/j.rser.2016.01.011.

[12] S. Li, L. Goel, and P. Wang, “An ensemble approach for short-term load forecasting

by extreme learning machine,” Appl. Energy, vol. 170, pp. 22–29, May 2016, doi:

10.1016/j.apenergy.2016.02.114.

[13] M. N. Q. Macedo, J. J. M. Galo, L. A. L. De Almeida, and A. C. De, “Demand side

management using artificial neural networks in a smart grid environment,”

Renewable and Sustainable Energy Reviews, vol. 41. Elsevier Ltd, pp. 128–133,

Jan. 2015, doi: 10.1016/j.rser.2014.08.035.

[14] G. M. U. Din and A. K. Marnerides, “Short term power load forecasting using deep

neural networks,” in 2017 International Conference on Computing, Networking

and Communications (ICNC), 2017, pp. 594–598.

[15] K. G. Boroojeni, M. H. Amini, S. Bahrami, S. S. Iyengar, A. I. Sarwat, and O.

Karabasoglu, “A novel multi-time-scale modeling for electric power demand

forecasting: From short-term to medium-term horizon,” Electr. Power Syst. Res.,

vol. 142, pp. 58–73, Jan. 2017, doi: 10.1016/j.epsr.2016.08.031.

[16] S. R. Khuntia, J. L. Rueda, and M. A. M. M. van der Meijden, “Forecasting the load

of electrical power systems in mid- and long-term horizons: A review,” IET Gener.

Transm. Distrib., vol. 10, no. 16, pp. 3971–3977, Dec. 2016, doi: 10.1049/iet-

gtd.2016.0340.

[17] C. Xia, J. Wang, and K. McMenemy, “Short, medium and long term load

forecasting model and virtual load forecaster based on radial basis function neural

networks,” Int. J. Electr. Power Energy Syst., vol. 32, no. 7, pp. 743–750, Sep.

2010, doi: 10.1016/j.ijepes.2010.01.009.

[18] L. Hernández et al., “Artificial Neural Network for Short-Term Load Forecasting

in Distribution Systems,” Energies, vol. 7, no. 3, pp. 1576–1598, Mar. 2014, doi:

10.3390/en7031576.

[19] F. Mwasilu, J. J. Justo, E. K. Kim, T. D. Do, and J. W. Jung, “Electric vehicles and

smart grid interaction: A review on vehicle to grid and renewable energy sources

integration,” Renew. Sustain. Energy Rev., vol. 34, pp. 501–516, 2014, doi:

10.1016/j.rser.2014.03.031.

[20] Accenture, “Unlocking the Value of Analytics.” Accessed on: Jul. 20, 2020., pp. 1–

20, 2014, [Online]. Available: https://www.accenture.com/.

[21] D. Syed, A. Zainab, S. S. Refaat, H. Abu-Rub, and O. Bouhali, “Smart Grid Big

Data Analytics: Survey of Technologies, Techniques, and Applications,” IEEE

Access, vol. 9, pp. 59564--59585, Nov. 2020, doi: 10.1109/access.2020.3041178.

[22] Y. Simmhan et al., “Cloud-based software platform for big data analytics in smart

grids,” Comput. Sci. Eng., vol. 15, no. 4, pp. 38–47, 2013, doi:

164

10.1109/MCSE.2013.39.

[23] R. Mahmud, R. Vallakati, A. Mukherjee, P. Ranganathan, and A. Nejadpak, “A

survey on smart grid metering infrastructures: Threats and solutions,” in IEEE

International Conference on Electro Information Technology, May 2015, vol.

2015-June, pp. 386–391, doi: 10.1109/EIT.2015.7293374.

[24] Y. J. Kim, M. Thottan, V. Kolesnikov, and W. Lee, “A secure decentralized data-

centric information infrastructure for smart grid,” IEEE Commun. Mag., vol. 48,

no. 11, pp. 58–65, 2010, doi: 10.1109/MCOM.2010.5621968.

[25] Ausgrid, “Ausgrid Average Electricity Use.” Accessed: Sep. 26, 2020., [Online].

Available: https://data.gov.au/data/organization/ausgrid.

[26] Irish Social Science Data Archive, “Electricity Smart Meter Data.” Accessed: Sep.

26, 2020, [Online]. Available: http://www.ucd.ie/issda.

[27] Cornell University, “Smart meter data.” Accessed: Jul. 26, 2019, [Online].

Available: http://buildingdashboard.net/cornell/#/cornell.

[28] École Polytechnique Fédérale de Lausanne (Switzerland), “Smart Grid Data.”

Accessed: Sep. 26, 2020, [Online]. Available: http://nanotera-stg2.epfl.ch/data/.

[29] Electric Reliability Council of Texas, “Grid Information Load Data.” Accessed:

Sep. 26, 2020, [Online]. Available: http://www.ercot.com/%0Agridinfo/load.

[30] North American SynchroPhasor Initiative, “PMU Data.” Accessed: Mar. 1, 2020,

[Online]. Available: https://www.naspi.net/PmuRegistry/#.

[31] Pecan Street Inc., “Pecan Street Dataport.” Accessed: Mar. 1, 2020, [Online].

Available: https://dataport.pecanstreet.org/.

[32] Pennsylvania-New Jersey-Maryland Interconnection, “PJM data.” Accessed: Sep.

26, 2020, [Online]. Available: http://www.pjm.com/.

[33] IEEE, “Data Sets IEEE Intelligent Data Mining and Analysis (IDMA).” Accessed:

Jul. 26, 2019, [Online]. Available: https://site.ieee.org/psaceidma/%0Adata-sets/.

[34] UC Berkeley Campus, “Smart grid and building consumption data.” Accessed:

Mar. 1, 2020, [Online]. Available: https://us.pulseenergy.com/UniCalBerkeley/.

[35] I. Lee, “Big data: Dimensions, evolution, impacts, and challenges,” Bus. Horiz.,

vol. 60, no. 3, pp. 293–303, May 2017, doi: 10.1016/j.bushor.2017.01.004.

[36] X. W. Chen and X. Lin, “Big data deep learning: Challenges and perspectives,”

IEEE Access, vol. 2, pp. 514–525, 2014, doi: 10.1109/ACCESS.2014.2325029.

[37] A. Mohamed, S. S. Refaat, and H. Abu-Rub, “A Review on Big Data Management

and Decision-Making in Smart Grid,” Power Electron. Drives, vol. 4, no. 1, pp. 1–

165

13, 2019, doi: 10.2478/pead-2019-0011.

[38] Y. Wang, Q. Chen, T. Hong, and C. Kang, “Review of Smart Meter Data Analytics:

Applications, Methodologies, and Challenges,” IEEE Trans. Smart Grid, vol. 10,

no. 3, pp. 3125–3148, May 2019, doi: 10.1109/TSG.2018.2818167.

[39] V. Rajaraman, “Big data analytics,” Resonance, vol. 21, no. 8, pp. 695–716, Aug.

2016, doi: 10.1007/s12045-016-0376-7.

[40] Y. Zhang, T. Huang, and E. F. Bompard, “Big data analytics in smart grids: a

review,” Energy Informatics, vol. 1, no. 1, p. 8, Aug. 2018, doi: 10.1186/s42162-

018-0007-5.

[41] J. Sessa and D. Syed, “Techniques to deal with missing data,” in International

Conference on Electronic Devices, Systems, and Applications, Sarawak, Malaysia,

2017, pp. 1–4, doi: 10.1109/ICEDSA.2016.7818486.

[42] I. Nusrat and S. B. Jang, “A comparison of regularization techniques in deep neural

networks,” Symmetry (Basel)., vol. 10, no. 11, p. 648, Nov. 2018, doi:

10.3390/sym10110648.

[43] K. Wadhwa et al., “BYTE - Big data roadmap and cross disciplinarY community

for addressing socieTal Externalities,” in 11th European Semantic Web Conference

- EU projects networking session, 2014, pp. 6–7, [Online]. Available:

http://2014.eswc-

conferences.org/sites/default/files/eswc2014euprojects_submission_18.pdf.

[44] N. Tatbul, “Streaming data integration: Challenges and opportunities,” in

Proceedings - International Conference on Data Engineering, 2010, pp. 155–158,

doi: 10.1109/ICDEW.2010.5452751.

[45] R. M. A. Velásquez and J. V. M. Lara, “Principal Components Analysis and

Adaptive Decision System Based on Fuzzy Logic for Power Transformer,” Fuzzy

Inf. Eng., vol. 9, no. 4, pp. 493–514, 2017, doi: 10.1016/j.fiae.2017.12.005.

[46] J. C. Palomares-Salas, J. J. G. De La Rosa, A. Agüera-Pérez, and J. M. Sierra-

Fernandez, “Smart grids power quality analysis based in classification techniques

and higher-order statistics: Proposal for photovoltaic systems,” Proc. IEEE Int.

Conf. Ind. Technol., vol. 2015-June, no. June, pp. 2955–2959, 2015, doi:

10.1109/ICIT.2015.7125534.

[47] E. De Santis, L. Livi, A. Sadeghian, and A. Rizzi, “Modeling and recognition of

smart grid faults by a combined approach of dissimilarity learning and one-class

classification,” Neurocomputing, vol. 170, pp. 368–383, Dec. 2015, doi:

10.1016/j.neucom.2015.05.112.

[48] A. E. Lazzaretti, D. M. J. Tax, H. Vieira Neto, and V. H. Ferreira, “Novelty

detection and multi-class classification in power distribution voltage waveforms,”

166

Expert Syst. Appl., vol. 45, pp. 322–330, Mar. 2016, doi:

10.1016/j.eswa.2015.09.048.

[49] A. R. Khan, A. Mahmood, A. Safdar, Z. A. Khan, and N. A. Khan, “Load

forecasting, dynamic pricing and DSM in smart grid: A review,” Renew. Sustain.

Energy Rev., vol. 54, pp. 1311–1322, 2016, doi: 10.1016/j.rser.2015.10.117.

[50] Y. Weng, R. Negi, C. Faloutsos, and M. D. Ilić, “Robust data-driven state

estimation for smart grid,” IEEE Trans. Smart Grid, vol. 8, no. 4, pp. 1956–1967,

Jul. 2016, doi: 10.1109/tsg.2015.2512925.

[51] Y. Cai and M. Y. Chow, “Exploratory analysis of massive data for distribution fault

diagnosis in smart grids,” 2009. doi: 10.1109/PES.2009.5275689.

[52] Z. Zheng, Y. Yang, X. Niu, H. N. Dai, and Y. Zhou, “Wide and Deep Convolutional

Neural Networks for Electricity-Theft Detection to Secure Smart Grids,” IEEE

Trans. Ind. Informatics, vol. 14, no. 4, pp. 1606–1615, 2018, doi:

10.1109/TII.2017.2785963.

[53] W. Kong, Z. Y. Dong, Y. Jia, D. J. Hill, Y. Xu, and Y. Zhang, “Short-Term

Residential Load Forecasting Based on LSTM Recurrent Neural Network,” IEEE

Trans. Smart Grid, vol. 10, no. 1, pp. 841–851, Jan. 2019, doi:

10.1109/TSG.2017.2753802.

[54] M. Q. Raza and A. Khosravi, “A review on artificial intelligence based load demand

forecasting techniques for smart grid and buildings,” Renew. Sustain. Energy Rev.,

vol. 50, pp. 1352–1372, Oct. 2015, doi: 10.1016/j.rser.2015.04.065.

[55] K. Chahine et al., “Electric load disaggregation in smart metering using a novel

feature extraction method and supervised classification,” Energy Procedia, vol. 6,

pp. 627–632, 2011, doi: 10.1016/j.egypro.2011.05.072.

[56] A. I. Saleh, A. H. Rabie, and K. M. Abo-Al-Ez, “A data mining based load

forecasting strategy for smart electrical grids,” Adv. Eng. Informatics, vol. 30, no.

3, pp. 422–448, Aug. 2016, doi: 10.1016/j.aei.2016.05.005.

[57] A. Jindal, A. Dua, K. Kaur, M. Singh, N. Kumar, and S. Mishra, “Decision Tree

and SVM-Based Data Analytics for Theft Detection in Smart Grid,” IEEE Trans.

Ind. Informatics, vol. 12, no. 3, pp. 1005–1016, 2016, doi:

10.1109/TII.2016.2543145.

[58] M. W. Ahmad, M. Mourshed, and Y. Rezgui, “Trees vs Neurons: Comparison

between random forest and ANN for high-resolution prediction of building energy

consumption,” Energy Build., vol. 147, pp. 77–89, 2017, doi:

10.1016/j.enbuild.2017.04.038.

[59] S. Yang, C. Shen, and others, “A review of electric load classification in smart grid

environment,” Renew. Sustain. Energy Rev., vol. 24, pp. 103–110, Aug. 2013, doi:

167

10.1016/j.rser.2013.03.023.

[60] T. Warren Liao, “Clustering of time series data - A survey,” Pattern Recognit., vol.

38, no. 11, pp. 1857–1874, Nov. 2005, doi: 10.1016/j.patcog.2005.01.025.

[61] X. Yang, P. Zhao, X. Zhang, J. Lin, and W. Yu, “Toward a Gaussian-mixture

model-based detection scheme against data integrity attacks in the smart grid,”

IEEE Internet Things J., vol. 4, no. 1, pp. 147–161, Nov. 2016, doi:

10.1109/JIOT.2016.2631520.

[62] I. Khan, J. Z. Huang, and K. Ivanov, “Incremental density-based ensemble

clustering over evolving data streams,” Neurocomputing, vol. 191, pp. 34–43, 2016,

doi: 10.1016/j.neucom.2016.01.009.

[63] X. Yuan, “An improved Apriori algorithm for mining association rules,” in AIP

Conference Proceedings, 2017, vol. 1820, no. 1, p. 80005, doi: 10.1063/1.4977361.

[64] M. K. Najafabadi, M. N. ri Mahrin, S. Chuprat, and H. M. Sarkan, “Improving the

accuracy of collaborative filtering recommendations using clustering and

association rules mining on implicit data,” Comput. Human Behav., vol. 67, pp.

113–128, 2017, doi: 10.1016/j.chb.2016.11.010.

[65] A. A. Munshi and Y. A. R. I. Mohamed, “Big data framework for analytics in smart

grids,” Electr. Power Syst. Res., vol. 151, pp. 369–380, 2017, doi:

10.1016/j.epsr.2017.06.006.

[66] A. El Khaouat and L. Benhlima, “Big data based management for smart grids,” in

Renewable and Sustainable Energy Conference (IRSEC), 2016 International, 2016,

pp. 1044–1047, doi: 10.1109/irsec.2016.7983902.

[67] D. Vohra, Practical Hadoop Ecosystem, First Edit. New York: Apress, 2016.

[68] A. B. M. Moniruzzaman and S. A. Hossain, “NoSQL Database: New Era of

Databases for Big data Analytics - Classification, Characteristics and Comparison,”

Int. J. Database Theory Appl., vol. 6, no. 4, pp. 1–13, 2013, [Online]. Available:

http://arxiv.org/abs/1307.0191.

[69] R. Kumar, B. B. Parashar, S. Gupta, Y. Sharma, and N. Gupta, “Apache Hadoop ,

NoSQL and NewSQL Solutions of Big Data,” Int. J. Adv. Found. Res. Sci. Eng.,

vol. 1, no. 6, pp. 28–36, 2014.

[70] G. Liu, W. Zhu, C. Saunders, F. Gao, and Y. Yu, “Real-time Complex Event

Processing and Analytics for Smart Grid,” Procedia Comput. Sci., vol. 61, pp. 113–

119, 2015, doi: 10.1016/j.procs.2015.09.169.

[71] C. L. Stimmel, Big data analytics strategies for the smart grid, First Edit. Auerbach

Publications, 2016.

168

[72] S. Ghemawat, H. Gobioff, and S. T. Leung, “The google file system,” Oper. Syst.

Rev., vol. 37, no. 5, pp. 29–43, Dec. 2003, doi: 10.1145/1165389.945450.

[73] S. Landset, T. M. Khoshgoftaar, A. N. Richter, and T. Hasanin, “A survey of open

source tools for machine learning with big data in the Hadoop ecosystem,” J. Big

Data, vol. 2, no. 1, Nov. 2015, doi: 10.1186/s40537-015-0032-1.

[74] S. Landset, T. M. Khoshgoftaar, A. N. Richter, and T. Hasanin, “A survey of open

source tools for machine learning with big data in the Hadoop ecosystem,” J. Big

Data, vol. 2, no. 1, p. 24, Nov. 2015, doi: 10.1186/s40537-015-0032-1.

[75] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop distributed file

system,” in 2010 IEEE 26th Symposium on Mass Storage Systems and

Technologies, MSST2010, May 2010, pp. 1–10, doi:

10.1109/MSST.2010.5496972.

[76] D. Borthakur, “HDFS architecture guide,” Hadoop Apache Proj. http//hadoop

apache …, vol. 53, pp. 1–13, 2008, [Online]. Available:

http://archive.cloudera.com/cdh/3/hadoop-0.20.2-

cdh3u6/hdfs_design.pdf%5Cnpapers3://publication/uuid/BE03DF70-D0C1-441E-

A65F-1888C84992D6.

[77] A. Bahga and V. Madisetti, Big data science & analytics: A hands-on approach,

First Edit. VPT, 2016.

[78] G. Turkington, T. Deshpande, and S. Karanth, Hadoop: Data Processing and

Modelling, First Edit. Birmingham: Packt Publishing Ltd, 2016.

[79] V. Kalavri and V. Vlassov, “MapReduce: Limitations, optimizations and open

issues,” in Proceedings - 12th IEEE International Conference on Trust, Security

and Privacy in Computing and Communications, TrustCom 2013, Jul. 2013, pp.

1031–1038, doi: 10.1109/TrustCom.2013.126.

[80] Apache Software Foundation, “Apache Storm.” Accessed on: Oct. 2, 2020.,

[Online]. Available: http://storm.apache.org/.

[81] B. Peng, M. Hosseini, Z. Hong, R. Farivar, and R. Campbell, “R-storm: Resource-

aware scheduling in storm,” in Middleware 2015 - Proceedings of the 16th Annual

Middleware Conference, 2015, pp. 149–161, doi: 10.1145/2814576.2814808.

[82] Apache Software Foundation, “Apache ZooKeeper.” Accessed on: Oct. 2, 2020.,

[Online]. Available: http://zookeeper.apache.org/.

[83] B. Chambers and M. Zaharia, Spark, the definitive guide: Big data processing made

simple. “ O’Reilly Media, Inc.,” 2017.

[84] Shyam R., B. Ganesh H.B., S. Kumar S., P. Poornachandran, and Soman K.P.,

“Apache Spark a Big Data Analytics Platform for Smart Grid,” Procedia Technol.,

169

vol. 21, pp. 171–178, 2015, doi: 10.1016/j.protcy.2015.10.085.

[85] S. Sakr, “Big Data Processing Stacks,” IT Prof., vol. 19, no. 1, pp. 34–41, Jan. 2017,

doi: 10.1109/MITP.2017.6.

[86] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark:

Cluster computing with working sets,” 2010. Accessed: Dec. 09, 2020. [Online].

Available: https://www.usenix.org/event/hotcloud10/tech/full_papers/Zaharia.pdf.

[87] H. Zhiwei et al., “Transient power quality assessment based on big data analysis,”

in China International Conference on Electricity Distribution, CICED, Sep. 2014,

vol. 2014-Decem, pp. 1308–1312, doi: 10.1109/CICED.2014.6991919.

[88] M. Mayilvaganan and M. Sabitha, “A cloud-based architecture for Big-Data

analytics in smart grid: A proposal,” in 2013 IEEE International Conference on

Computational Intelligence and Computing Research, IEEE ICCIC 2013, 2013, pp.

1–4, doi: 10.1109/ICCIC.2013.6724168.

[89] A. A. Munshi and Y. A. R. I. Mohamed, “Data Lake Lambda Architecture for Smart

Grids Big Data Analytics,” IEEE Access, vol. 6, pp. 40463–40471, 2018, doi:

10.1109/ACCESS.2018.2858256.

[90] H. Hu, Y. Wen, T. S. Chua, and X. Li, “Toward scalable systems for big data

analytics: A technology tutorial,” IEEE Access, vol. 2, pp. 652–687, 2014, doi:

10.1109/ACCESS.2014.2332453.

[91] E. Summary, “Challenges and Opportunities with Big Data: A community white

paper developed by leading researchers across the United States,” Washington,

D.C., Mar. 2009.

[92] A. Labrinidis and H. V. Jagadish, “Challenges and opportunities with big data,”

Proc. VLDB Endow., vol. 5, no. 12, pp. 2032–2033, Aug. 2012, doi:

10.14778/2367502.2367572.

[93] D. Haak, “Achieving high performance in smart grid data management,” Dublin,

Ireland, Accenture, Tech. Rep. WSS141, 2010.

[94] Accenture, “Applying Smart Meter Analytics.” Accessed: Jul. 14, 2020, [Online].

Available: https://www.accenture.com/nl-en/blogs/insights/.

[95] Iberdrola, “At the forefront of digital transformation.” Accessed: Mar. 7, 2018,

2019, [Online]. Available: https://www.iberdrola.com/about-us/utility-of-the-

future/digital-transformation.

[96] Wood Mackenzie Power & Renewables, “Big Data Is Boosting Power Production,

Reducing Downtime Across Wind Fleets.” Accessed: Jul. 28, 2020, [Online].

Available: https://www.greentechmedia.com/articles/.

170

[97] S. Johnson, “OpenWay Demand Response Maximizing Value and Efficiency in

Energy Delivery,” Liberty Lake, Washington, 2010.

[98] L. Hogg, “Business Intelligence for Enterprise Energy Management,” Itron, Liberty

Lake, WA, USA, Tech. Rep. 100710WP-02, 2007, 2007.

[99] S. Moore, “Key features of meter data management systems,” Itron, Liberty Lake,

WA, USA, Tech. Rep. 100910WP-01, 2008, 2008.

[100] International Business Machines Corporation, “E.ON and IBM Deliver Innovative

Service Offerings to Customers with New Smart Energy Solutions.” Accessed:

Aug. 7, 2018.

[101] Wood Mackenzie Power & Renewables, “C3’s Tom Siebel Opens Up About His

Secretive Firm’s Smart Grid Data Analytics.” Accessed: Jul. 7, 2020, [Online].

Available: https://www.greentechmedia.com/articles/.

[102] Smart Energy International, “KEPCO pilots big data projects for AMI and customer

service systems.” Accessed on: Oct. 2, 2020., [Online]. Available:

https://www.smart-energy.com/regional-news/asia/.

[103] Z. Chen, X. Pei, M. Yang, L. Peng, and P. Shi, “A novel protection scheme for

inverter-interfaced microgrid (IIM) operated in islanded mode,” IEEE Trans.

Power Electron., vol. 33, no. 9, pp. 7684–7697, 2017, doi:

10.1109/tpel.2017.2769559.

[104] A. Zainab, S. S. Refaat, D. Syed, A. Ghrayeb, and H. Abu-Rub, “Faulted Line

Identification and Localization in Power System using Machine Learning

Techniques,” in Proceedings - 2019 IEEE International Conference on Big Data,

Big Data 2019, Dec. 2019, pp. 2975–2981, doi:

10.1109/BigData47090.2019.9006377.

[105] J. J. Q. Yu, Y. Hou, A. Y. S. Lam, and V. O. K. Li, “Intelligent fault detection

scheme for microgrids with wavelet-based deep neural networks,” IEEE Trans.

Smart Grid, vol. 10, no. 2, pp. 1694–1703, Mar. 2019, doi:

10.1109/TSG.2017.2776310.

[106] B. Liu, S. Wu, M. Xie, and W. Kuo, “A condition-based maintenance policy for

degrading systems with age- and state-dependent operating cost,” Eur. J. Oper.

Res., vol. 263, no. 3, pp. 879–887, Dec. 2017, doi: 10.1016/j.ejor.2017.05.006.

[107] X. Wang, S. M. Strachan, S. D. J. McArthur, and J. D. Kirkwood, “Automatic

analysis of Pole Mounted Auto-Recloser data for fault diagnosis and prognosis,” in

2015 18th International Conference on Intelligent System Application to Power

Systems, ISAP 2015, Nov. 2015, doi: 10.1109/ISAP.2015.7325519.

[108] R. Rocchetta, L. Bellani, M. Compare, E. Zio, and E. Patelli, “A reinforcement

learning framework for optimal operation and maintenance of power grids,”

171

Applied Energy, vol. 241. pp. 291–301, 2019, doi:

10.1016/j.apenergy.2019.03.027.

[109] G. Peng, S. Tang, Z. Lin, and Y. Zhang, “Applications of fuzzy multilayer support

vector machines in fault diagnosis and forecast of electric power equipment,” Proc.

2017 IEEE 2nd Adv. Inf. Technol. Electron. Autom. Control Conf. IAEAC 2017, pp.

457–461, 2017, doi: 10.1109/IAEAC.2017.8054056.

[110] M. Rafiei, T. Niknam, J. Aghaei, M. Shafie-Khah, and J. P. S. Catalao,

“Probabilistic load forecasting using an improved wavelet neural network trained

by generalized extreme learning machine,” IEEE Trans. Smart Grid, vol. 9, no. 6,

pp. 6961–6971, 2018, doi: 10.1109/TSG.2018.2807845.

[111] S. Zhang, Y. Wang, M. Liu, and Z. Bao, “Data-Based Line Trip Fault Prediction in

Power Systems Using LSTM Networks and SVM,” IEEE Access, vol. 6, pp. 7675–

7686, 2017, doi: 10.1109/ACCESS.2017.2785763.

[112] C. Hu, “Ensemble Feature Learning-Based Event Classification for Cyber-Physical

Security of the Smart Grid,” 2019. [Online]. Available:

https://spectrum.library.concordia.ca/985779/.

[113] D. P. Wadduwage, C. Q. Wu, and U. D. Annakkage, “Power system transient

stability analysis via the concept of Lyapunov Exponents,” Electr. Power Syst. Res.,

vol. 104, pp. 183–192, 2013, doi: 10.1016/j.epsr.2013.06.011.

[114] S. Zadkhast, J. Jatskevich, and E. Vaahedi, “A multi-decomposition approach for

accelerated time-domain simulation of transient stability problems,” IEEE Trans.

Power Syst., vol. 30, no. 5, pp. 2301–2311, 2014, doi:

10.1109/tpwrs.2014.2361529.

[115] C. He, L. Guan, and W. Mo, “A method for transient stability assessment based on

pattern recognition,” 2016 Int. Conf. Smart Grid Clean Energy Technol. ICSGCE

2016, pp. 343–347, 2017, doi: 10.1109/ICSGCE.2016.7876081.

[116] J. Q. James, Y. Hou, A. Y. S. Lam, and V. O. K. Li, “Intelligent fault detection

scheme for microgrids with wavelet-based deep neural networks,” IEEE Trans.

Smart Grid, vol. 10, no. 2, pp. 1694–1703, Mar. 2017, doi:

10.1109/tsg.2017.2776310.

[117] L. Zhang, X. Hu, P. Li, F. Shi, and Z. Yu, “ELM model for power system transient

stability assessment,” in Proceedings - 2017 Chinese Automation Congress, CAC

2017, 2017, vol. 2017-Janua, pp. 5740–5744, doi: 10.1109/CAC.2017.8243808.

[118] G. N. Baltas, C. Perales-Gonzalez, P. Mazidi, F. Fernandez, and P. Rodriguez, “A

Novel Ensemble Approach for Solving the Transient Stability Classification

Problem,” 7th Int. IEEE Conf. Renew. Energy Res. Appl. ICRERA 2018, pp. 1282–

1286, 2018, doi: 10.1109/ICRERA.2018.8566815.

172

[119] M. Rahmatian, Y. C. Chen, A. Palizban, A. Moshref, and W. G. Dunford,

“Transient stability assessment via decision trees and multivariate adaptive

regression splines,” Electr. Power Syst. Res., vol. 142, pp. 320–328, 2017, doi:

10.1016/j.epsr.2016.09.030.

[120] J. I. Aizpurua et al., “Probabilistic Power Transformer Condition Monitoring in

Smart Grids,” ARWtr 2019 - Proc. 2019 6th Adv. Res. Work. Transform., pp. 42–

47, 2019, doi: 10.23919/ARWtr.2019.8930193.

[121] W. L. Woon, Z. Aung, and A. El-Hag, “Intelligent monitoring of transformer

insulation using convolutional neural networks,” in Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), 2018, vol. 11325 LNAI, pp. 127–136, doi: 10.1007/978-

3-030-04303-2_10.

[122] H. F. C. Tan, W. L. Woo, A. Sharma, T. Logenthiran, and D. S. Kumar, “Study of

Smart Condition Monitoring using Deep Neural Networks with Dropouts and

Cross-Validation,” in 2019 IEEE Innovative Smart Grid Technologies-Asia (ISGT

Asia), 2019, pp. 3965–3969, doi: 10.1109/isgt-asia.2019.8881423.

[123] M. Žarković and Z. Stojković, “Analysis of artificial intelligence expert systems

for power transformer condition monitoring and diagnostics,” Electr. Power Syst.

Res., vol. 149, pp. 125–136, 2017, doi: 10.1016/j.epsr.2017.04.025.

[124] N. G. Chothani, M. B. Raichura, D. D. Patel, and K. D. Mistry, “Real-Time

Monitoring Protection of Power Transformer to Enhance Smart Grid Reliability,”

in 2018 IEEE Electrical Power and Energy Conference, EPEC 2018, Dec. 2018,

doi: 10.1109/EPEC.2018.8598427.

[125] N. Mahmood and S. Yadav, “An Enhanced MPPT Technique by Using Fuzzy

Logic Controller,” J. Multimed. Technol. Recent Adv., vol. 6, no. 2, pp. 1–10, 2019,

[Online]. Available: http://computers.stmjournals.com/index.php.

[126] G. Gui, H. Pan, Z. Lin, Y. Li, and Z. Yuan, “Data-driven support vector machine

with optimization techniques for structural health monitoring and damage

detection,” KSCE J. Civ. Eng., vol. 21, no. 2, pp. 523–534, Feb. 2017, doi:

10.1007/s12205-017-1518-5.

[127] W. H. Allen, A. Rubaai, and R. Chawla, “Fuzzy neural network-based health

monitoring for HVAC system variable-air-volume unit,” IEEE Trans. Ind. Appl.,

vol. 52, no. 3, pp. 2513–2524, 2015, doi: 10.1109/tia.2015.2511160.

[128] A. A. Abdoos, P. Khorshidian Mianaei, and M. Rayatpanah Ghadikolaei,

“Combined VMD-SVM based feature selection method for classification of power

quality events,” Appl. Soft Comput. J., vol. 38, pp. 637–646, 2016, doi:

10.1016/j.asoc.2015.10.038.

173

[129] P. D. Achlerkar, S. R. Samantaray, and M. S. Manikandan, “Variational mode

decomposition and decision tree based detection and classification of power quality

disturbances in grid-connected distributed generation system,” IEEE Trans. Smart

Grid, vol. 9, no. 4, pp. 3122–3132, 2016, doi: 10.1109/tsg.2016.2626469.

[130] Y. Luo, K. Li, Y. Li, D. Cai, C. Zhao, and Q. Meng, “Three-layer Bayesian network

for classification of complex power quality disturbances,” IEEE Trans. Ind.

Informatics, vol. 14, no. 9, pp. 3997–4006, 2017, doi: 10.1109/tii.2017.2785321.

[131] R. Zhu, X. Gong, S. Hu, and Y. Wang, “Power quality disturbances classification

via fully-convolutional siamese network and k-nearest neighbor,” Energies, vol.

12, no. 24, 2019, doi: 10.3390/en12244732.

[132] Y. Chen, G. Fu, and X. Liu, “Air-Conditioning Load Forecasting for Prosumer

Based on Meta Ensemble Learning,” IEEE Access, vol. 8, pp. 123673–123682,

2020, doi: 10.1109/ACCESS.2020.2994119.

[133] W. Wang, N. Yu, B. Foggo, J. Davis, and J. Li, “Phase identification in electric

power distribution systems by clustering of smart meter data,” in 2016 15th IEEE

International Conference on Machine Learning and Applications (ICMLA), Dec.

2016, pp. 259–265, doi: 10.1109/icmla.2016.0050.

[134] R. Jiang, R. Lu, Y. Wang, J. Luo, C. Shen, and X. Shen, “Energy-theft detection

issues for advanced metering infrastructure in smart grid,” Tsinghua Sci. Technol.,

vol. 19, no. 2, pp. 105–120, 2014, doi: 10.1109/TST.2014.6787363.

[135] S. S. S. R. Depuru, L. Wang, and V. Devabhaktuni, “Support vector machine based

data classification for detection of electricity theft,” 2011 IEEE/PES Power Syst.

Conf. Expo. PSCE 2011, 2011, doi: 10.1109/PSCE.2011.5772466.

[136] H. Huang, S. Liu, and K. Davis, “Energy Theft Detection Via Artificial Neural

Networks,” Proc. - 2018 IEEE PES Innov. Smart Grid Technol. Conf. Eur. ISGT-

Europe 2018, 2018, doi: 10.1109/ISGTEurope.2018.8571877.

[137] D. Yao, M. Wen, X. Liang, Z. Fu, K. Zhang, and B. Yang, “Energy Theft Detection

with Energy Privacy Preservation in the Smart Grid,” IEEE Internet Things J., vol.

6, no. 5, pp. 7659–7669, 2019, doi: 10.1109/JIOT.2019.2903312.

[138] M. Wen, D. Yao, B. Li, and R. Lu, “State Estimation Based Energy Theft Detection

Scheme with Privacy Preservation in Smart Grid,” IEEE Int. Conf. Commun., vol.

2018-May, 2018, doi: 10.1109/ICC.2018.8422731.

[139] S. C. Yip, W. N. Tan, C. K. Tan, M. T. Gan, and K. S. Wong, “An anomaly

detection framework for identifying energy theft and defective meters in smart

grids,” Int. J. Electr. Power Energy Syst., vol. 101, pp. 189–203, 2018, doi:

10.1016/j.ijepes.2018.03.025.

[140] Aasim, S. N. Singh, and A. Mohapatra, “Repeated wavelet transform based

174

ARIMA model for very short-term wind speed forecasting,” Renew. Energy, vol.

136, pp. 758–768, Jun. 2019, doi: 10.1016/j.renene.2019.01.031.

[141] A. Samalot, M. Astitha, J. Yang, and G. Galanis, “Combined Kalman filter and

universal kriging to improve storm wind speed predictions for the northeastern

United States,” Weather Forecast., vol. 34, no. 3, pp. 587–601, Jun. 2019, doi:

10.1175/WAF-D-18-0068.1.

[142] F. O. Hocaoglu and F. Serttas, “A novel hybrid (Mycielski-Markov) model for

hourly solar radiation forecasting,” Renew. Energy, vol. 108, pp. 635–643, 2017,

doi: 10.1016/j.renene.2016.08.058.

[143] M. Abuella and B. Chowdhury, “Solar power probabilistic forecasting by using

multiple linear regression analysis,” Conf. Proc. - IEEE SOUTHEASTCON, vol.

2015-June, no. June, 2015, doi: 10.1109/SECON.2015.7132869.

[144] L. Cai, J. Gu, J. Ma, and Z. Jin, “Probabilistic wind power forecasting approach via

instance-based transfer learning embedded gradient boosting decision trees,”

Energies, vol. 12, no. 1, 2019, doi: 10.3390/en12010159.

[145] R. Azimi, M. Ghayekhloo, and M. Ghofrani, “A hybrid method based on a new

clustering technique and multilayer perceptron neural networks for hourly solar

radiation forecasting,” Energy Convers. Manag., vol. 118, pp. 331–344, 2016, doi:

10.1016/j.enconman.2016.04.009.

[146] A. Zendehboudi, M. A. Baseer, and R. Saidur, “Application of support vector

machine models for forecasting solar and wind energy resources: A review,” J.

Clean. Prod., vol. 199, pp. 272–285, 2018, doi: 10.1016/j.jclepro.2018.07.164.

[147] H. Wang, Z. Lei, X. Zhang, B. Zhou, and J. Peng, “A review of deep learning for

renewable energy forecasting,” Energy Convers. Manag., vol. 198, 2019, doi:

10.1016/j.enconman.2019.111799.

[148] M. Abdel-Nasser and K. Mahmoud, “Accurate photovoltaic power forecasting

models using deep LSTM-RNN,” Neural Comput. Appl., vol. 31, no. 7, pp. 2727–

2740, Jul. 2019, doi: 10.1007/s00521-017-3225-z.

[149] D. Syed, S. S. Refaat, H. Abu-Rub, O. Bouhali, A. Zainab, and L. Xie, “Averaging

Ensembles Model for Forecasting of Short-term Load in Smart Grids,” in

Proceedings - 2019 IEEE International Conference on Big Data, Big Data 2019,

Dec. 2019, pp. 2931–2938, doi: 10.1109/BigData47090.2019.9006183.

[150] Y. Wang, Q. Xia, and C. Kang, “Secondary forecasting based on deviation analysis

for short-term load forecasting,” IEEE Trans. Power Syst., vol. 26, no. 2, pp. 500–

507, 2011, doi: 10.1109/TPWRS.2010.2052638.

[151] X. Zheng, X. Ran, and M. Cai, “Short-Term Load Forecasting of Power System

based on Neural Network Intelligent Algorithm,” IEEE Access, pp. 1–1, Sep. 2020,

175

doi: 10.1109/access.2020.3021064.

[152] D. Syed, S. S. Refaat, H. Abu-Rub, and O. Bouhali, “Short-term Power Forecasting

Model Based on Dimensionality Reduction and Deep Learning Techniques for

Smart Grid,” in 2020 IEEE Kansas Power and Energy Conference, KPEC 2020,

Jul. 2020, doi: 10.1109/KPEC47870.2020.9167560.

[153] D. Syed, S. S. Refaat, and H. Abu-Rub, “Performance evaluation of distributed

machine learning for load forecasting in smart grids,” Proc. 30th Int. Conf. Cybern.

Informatics, K I 2020, 2020, doi: 10.1109/KI48306.2020.9039797.

[154] D. Syed, S. S. Refaat, H. Abu-Rub, O. Bouhali, A. Zainab, and L. Xie, “Averaging

Ensembles Model for Forecasting of Short-term Load in Smart Grids,” in

Proceedings - 2019 IEEE International Conference on Big Data, Big Data 2019,

Los Angeles, CA, USA, Dec. 2019, pp. 2931–2938, doi:

10.1109/BigData47090.2019.9006183.

[155] M. Sajjad et al., “A Novel CNN-GRU-Based Hybrid Approach for Short-Term

Residential Load Forecasting,” IEEE Access, vol. 8, pp. 143759–143768, 2020, doi:

10.1109/ACCESS.2020.3009537.

[156] X. Shao, C. Pu, Y. Zhang, and C. S. Kim, “Domain Fusion CNN-LSTM for Short-

Term Power Consumption Forecasting,” IEEE Access, vol. 8, pp. 188352–188362,

2020, doi: 10.1109/access.2020.3031958.

[157] W. Kong, Z. Y. Dong, D. J. Hill, F. Luo, and Y. Xu, “Short-term residential load

forecasting based on resident behaviour learning,” IEEE Trans. Power Syst., vol.

33, no. 1, pp. 1087–1088, Jan. 2018, doi: 10.1109/TPWRS.2017.2688178.

[158] X. Wang, W.-J. Lee, H. Huang, R. L. Szabados, D. Y. Wang, and P. Van Olinda,

“Factors that impact the accuracy of clustering-based load forecasting,” IEEE

Trans. Ind. Appl., vol. 52, no. 5, pp. 3625–3630, 2016, doi:

10.1109/TIA.2016.2558563.

[159] N. Huang, W. Wang, S. Wang, J. Wang, … G. C.-I., and U. 2020, “Incorporating

Load Fluctuation in Feature Importance Profile Clustering for Day-Ahead

Aggregated Residential Load Forecasting,” IEEE Access, vol. 8, no. 1, pp. 25198-

-25209, 2020, doi: 10.1109/ACCESS.2020.2971033.

[160] Z. Han, M. Cheng, F. Chen, Y. Wang, and Z. Deng, “A spatial load forecasting

method based on DBSCAN clustering and NAR neural network,” J. Phys. Conf.

Ser., vol. 1449, no. 1, p. 12032, 2020, doi: 10.1088/1742-6596/1449/1/012032.

[161] H. H. H. Aly, “A proposed intelligent short-term load forecasting hybrid models of

ANN, WNN and KF based on clustering techniques for smart grid,” Electr. Power

Syst. Res., vol. 182, p. 106191, 2020, doi: 10.1016/j.epsr.2019.106191.

[162] Q. Zhang and J. Zhang, “Short-Term Load Forecasting Method Based on EWT and

176

IDBSCAN,” J. Electr. Eng. Technol., vol. 15, no. 2, pp. 635–644, Mar. 2020, doi:

10.1007/s42835-020-00358-0.

[163] B. Nepal, M. Yamaha, A. Yokoe, and T. Yamaji, “Electricity load forecasting using

clustering and ARIMA model for energy management in buildings,” Japan Archit.

Rev., vol. 3, no. 1, pp. 62–76, 2020, doi: 10.1002/2475-8876.12135.

[164] F. Fahiman, S. M. Erfani, and C. Leckie, Robust and Accurate Short-Term Load

Forecasting: A Cluster Oriented Ensemble Learning Approach. IEEE, 2019.

[165] L. Wang, S. Mao, B. W.-2019 I. Conference, and U. 2019, “Short-Term Load

Forecasting with LSTM Based Ensemble Learning,” in 2019 International

Conference on Internet of Things (iThings) and IEEE Green Computing and

Communications (GreenCom) and IEEE Cyber, Physical and Social Computing

(CPSCom) and IEEE Smart Data (SmartData), Atlanta, GA, USA, 2019, doi:

10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00145.

[166] G. Sideratos, A. Ikonomopoulos, and N. D. Hatziargyriou, “A novel fuzzy-based

ensemble model for load forecasting using hybrid deep neural networks,” Electr.

Power Syst. Res., vol. 178, no. 1, p. 106025, 2020, doi: 10.1016/j.epsr.2019.106025.

[167] S. Dasgupta, A. Srivastava, J. Cordova, and R. Arghandeh, “Clustering household

electrical load profiles using elastic shape analysis,” in 2019 IEEE Milan

PowerTech, Milano, Italy, 2019, pp. 1–6, doi: 10.1109/PTC.2019.8810883.

[168] K. P. Sinaga and M.-S. Yang, “Unsupervised K-Means Clustering Algorithm,”

IEEE Access, vol. 8, pp. 80716–80727, 2020, doi:

10.1109/ACCESS.2020.2988796.

[169] R. T. Ng and J. Han, “CLARANS: A method for clustering objects for spatial data

mining,” IEEE Trans. Knowl. Data Eng., vol. 14, no. 5, pp. 1003–1016, 2002, doi:

10.1109/tkde.2002.1033770.

[170] A. K. Srivastava, A. S. Pandey, and D. Singh, “Short-term load forecasting

methods: A review,” in 2016 International Conference on Emerging Trends in

Electrical Electronics & Sustainable Energy Systems (ICETEESES), 2016, pp.

130–138.

[171] C.-N. Yu, P. Mirowski, and T. K. Ho, “A sparse coding approach to household

electricity demand forecasting in smart grids,” IEEE Trans. Smart Grid, vol. 8, no.

2, pp. 738–748, 2016.

[172] Z. A. Khan and D. Jayaweera, “Approach for forecasting smart customer demand

with significant energy demand variability,” in 2018 1st International Conference

on Power, Energy and Smart Grid (ICPESG), 2018, pp. 1–5.

[173] D. Syed, H. Abu-Rub, A. Ghrayeb, and S. S. Refaat, “Household-level Energy

Forecasting in Smart Buildings using a Novel Hybrid Deep Learning Model,” IEEE

177

Access, 2021, doi: 10.1109/ACCESS.2021.3061370.

[174] D. Syed et al., “Deep Learning-Based Short-Term Load Forecasting Approach in

Smart Grid With Clustering and Consumption Pattern Recognition,” IEEE Access,

vol. 9, pp. 54992–55008, Apr. 2021, doi: 10.1109/access.2021.3071654.

[175] A. Ghasemi, H. Shayeghi, M. Moradzadeh, and M. Nooshyar, “A novel hybrid

algorithm for electricity price and load forecasting in smart grids with demand-side

management,” Appl. Energy, vol. 177, pp. 40–59, 2016.

[176] Y. Yang, W. Hong, and S. Li, “Deep ensemble learning based probabilistic load

forecasting in smart grids,” Energy, vol. 189, p. 116324, 2019.

[177] Y. Lu, T. Zhang, Z. Zeng, and J. Loo, “An improved RBF neural network for short-

term load forecast in smart grids,” in 2016 IEEE International Conference on

Communication Systems (ICCS), 2016, pp. 1–6.

[178] Z. Y. Dong, D. J. Hill, and Y. Xu, “Short-Term Residential Load Forecasting based

on LSTM Recurrent Neural Network,” ieeexplore.ieee.org, 2017, doi:

10.1109/TSG.2017.2753802.

[179] A. Zainab, A. Ghrayeb, D. Syed, H. Abu-Rub, S. S. Refaat, and O. Bouhali, “Big

data management in smart grids: technologies and challenges,” IEEE Access, pp.

1–1, 2021, doi: 10.1109/ACCESS.2021.3080433.

[180] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio,

“Why does unsupervised pre-training help deep learning?,” J. Mach. Learn. Res.,

vol. 11, no. Feb, pp. 625–660, 2010.

[181] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer learning,” J.

Big data, vol. 3, no. 1, p. 9, 2016.

[182] J. Lu, V. Behbood, P. Hao, H. Zuo, S. Xue, and G. Zhang, “Transfer learning using

computational intelligence: A survey,” Knowledge-Based Syst., vol. 80, pp. 14–23,

2015.

[183] M. Rohrbach, S. Ebert, and B. Schiele, “Transfer learning in a transductive setting,”

in Advances in neural information processing systems, 2013, pp. 46–54.

[184] Z. Deng, K.-S. Choi, Y. Jiang, and S. Wang, “Generalized hidden-mapping ridge

regression, knowledge-leveraged inductive transfer learning for neural networks,

fuzzy systems and kernel methods,” IEEE Trans. Cybern., vol. 44, no. 12, pp.

2585–2599, 2014.

[185] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng, “Self-taught learning: transfer

learning from unlabeled data,” in Proceedings of the 24th international conference

on Machine learning, 2007, pp. 759–766.

178

[186] M. Ribeiro, K. Grolinger, H. F. ElYamany, W. A. Higashino, and M. A. M. Capretz,

“Transfer learning with seasonal and trend adjustment for cross-building energy

forecasting,” Energy Build., vol. 165, pp. 352–363, 2018.

[187] A. Hooshmand and R. Sharma, “Energy Predictive Models with Limited Data using

Transfer Learning,” in Proceedings of the Tenth ACM International Conference on

Future Energy Systems, 2019, pp. 12–16.

[188] R. Ye and Q. Dai, “A novel transfer learning framework for time series

forecasting,” Knowledge-Based Syst., vol. 156, pp. 74–99, 2018.

[189] J. Lago, F. De Ridder, and B. De Schutter, “Forecasting spot electricity prices: Deep

learning approaches and empirical comparison of traditional algorithms,” Appl.

Energy, vol. 221, pp. 386–405, 2018.

[190] A. S. Qureshi, A. Khan, A. Zameer, and A. Usman, “Wind power prediction using

deep neural network based meta regression and transfer learning,” Appl. Soft

Comput., vol. 58, pp. 742–755, 2017.

[191] A. Gepperth and B. Hammer, “Incremental learning algorithms and applications,”

in 2016 European Symposium on Artificial Neural Networks, Computational

Intelligence and Machine Learning, 2016.

[192] R. Polikar, L. Upda, S. S. Upda, and V. Honavar, “Learn++: An incremental

learning algorithm for supervised neural networks,” IEEE Trans. Syst. man,

Cybern. part C (applications Rev., vol. 31, no. 4, pp. 497–508, 2001.

[193] B. Pérez-Sánchez, O. Fontenla-Romero, B. Guijarro-Berdiñas, and D. Mart\’\inez-

Rego, “An online learning algorithm for adaptable topologies of neural networks,”

Expert Syst. Appl., vol. 40, no. 18, pp. 7294–7304, 2013.

[194] M. Zribi and Y. Boujelbene, “The neural networks with an incremental learning

algorithm approach for mass classification in breast cancer,” Biomed. Data Min.,

vol. 5, no. 118, p. 2, 2016.

[195] X. Qiu, P. N. Suganthan, and G. A. J. Amaratunga, “Ensemble incremental learning

random vector functional link network for short-term electric load forecasting,”

Knowledge-Based Syst., vol. 145, pp. 182–196, 2018.

[196] Y. Yang, J. Che, Y. Li, Y. Zhao, and S. Zhu, “An incremental electric load

forecasting model based on support vector regression,” Energy, vol. 113, pp. 796–

808, 2016.

[197] G. Grmanová et al., “Incremental ensemble learning for electricity load

forecasting,” Acta Polytech. Hungarica, vol. 13, no. 2, pp. 97–117, 2016.

[198] C. M. Bishop, Pattern recognition and machine learning, First ed. Springer

Science+Business Media, LLC, New York, NY, USA, 2006.

179

[199] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, First ed. MIT press,

Cambridge, MA, USA, 2016.

[200] Y. Li and Y. Liang, “Learning overparameterized neural networks via stochastic

gradient descent on structured data,” in Advances in Neural Information Processing

Systems, Montréal, Canada, 2018, pp. 8157–8166, [Online]. Available:

https://proceedings.neurips.cc/paper/2018/file/54fe976ba170c19ebae453679b362

263-Paper.pdf.

[201] A. Zainab, D. Syed, and D. Al-Thani, “Deployment of deep learning models to

mobile devices for spam classification,” Proc. - 2019 IEEE 1st Int. Conf. Cogn.

Mach. Intell. CogMI 2019, pp. 112–117, Dec. 2019, doi:

10.1109/COGMI48466.2019.00024.

[202] A. Zeyer, P. Doetsch, P. Voigtlaender, R. Schluter, and H. Ney, “A comprehensive

study of deep bidirectional LSTM RNNS for acoustic modeling in speech

recognition,” in ICASSP, IEEE International Conference on Acoustics, Speech and

Signal Processing - Proceedings, Jun. 2017, pp. 2462–2466, doi:

10.1109/ICASSP.2017.7952599.

[203] D. S. API, “Weather conditions.” https://darksky.net/dev (accessed Dec. 31, 2020).

[204] J. Sessa and D. Syed, “Techniques to deal with missing data,” in International

Conference on Electronic Devices, Systems, and Applications, Sarawak, Malaysia,

2017, pp. 1–4, doi: 10.1109/ICEDSA.2016.7818486.

[205] D. Syed, A. Zainab, S. S. Refaat, H. Abu-Rub, and O. Bouhali, “Smart Grid Big

Data Analytics: Survey of Technologies, Techniques, and Applications,” IEEE

Access, vol. 9, pp. 59564--59585, Nov. 2020, doi: 10.1109/access.2020.3041178.

[206] N. Zhang, S. L. Shen, A. Zhou, and Y. S. Xu, “Investigation on Performance of

Neural Networks Using Quadratic Relative Error Cost Function,” IEEE Access, vol.

7, pp. 106642–106652, 2019, doi: 10.1109/ACCESS.2019.2930520.

[207] D. Syed, S. S. Refaat, and H. Abu-Rub, “Performance evaluation of distributed

machine learning for load forecasting in smart grids,” in Proceedings of the 30th

International Conference on Cybernetics and Informatics, K and I 2020, Jan. 2020,

doi: 10.1109/KI48306.2020.9039797.

[208] S. Balasundaram and C. Subhash Prasad, “Robust twin support vector regression

based on Huber loss function,” Neural Comput. Appl., vol. 32, doi:

10.1007/s00521-019-04625-8.

[209] T. Moshagen, N. A. Adde, and A. N. Rajgopal, “Finding hidden-feature depending

laws inside a data set and classifying it using Neural Network,” Jan. 2021,

Accessed: Jul. 16, 2021. [Online]. Available: https://arxiv.org/abs/2101.10427v1.

[210] D. Ben Or, M. Kolomenkin, and G. Shabat, “Generalized Quantile Loss for Deep

180

Neural Networks,” Dec. 2020, Accessed: Jul. 16, 2021. [Online]. Available:

https://arxiv.org/abs/2012.14348v1.

[211] A. S. Khwaja, M. Naeem, A. Anpalagan, A. Venetsanopoulos, and B. Venkatesh,

“Improved short-term load forecasting using bagged neural networks,” Electr.

Power Syst. Res., vol. 125, pp. 109–115, Aug. 2015, doi:

10.1016/J.EPSR.2015.03.027.

[212] A. Khosravi, S. Nahavandi, and D. Creighton, “Construction of optimal prediction

intervals for load forecasting problems,” IEEE Trans. Power Syst., vol. 25, no. 3,

pp. 1496–1503, Aug. 2010, doi: 10.1109/TPWRS.2010.2042309.

[213] “UCI Machine Learning Repository: ElectricityLoadDiagrams20112014 Data Set,”

2015. https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014#

(accessed Jul. 06, 2021).

[214] D. Syed, H. Abu-Rub, S. S. Refaat, and L. Xie, “Detection of Energy Theft in Smart

Grids using Electricity Consumption Patterns,” Proc. - 2020 IEEE Int. Conf. Big

Data, Big Data 2020, pp. 4059–4064, Dec. 2020, doi:

10.1109/BIGDATA50022.2020.9378190 © 2020 IEEE. Reprinted, with

permission, from.

[215] A. Zainab, A. Ghrayeb, M. Houchati, S. S. Refaat, and H. Abu-Rub, “Performance

Evaluation of Tree-based Models for Big Data Load Forecasting using Randomized

Hyperparameter Tuning,” Mar. 2021, pp. 5332–5339, doi:

10.1109/bigdata50022.2020.9378423.

[216] Ö. F. Ertugrul, “Forecasting electricity load by a novel recurrent extreme learning

machines approach,” Int. J. Electr. Power Energy Syst., vol. 78, pp. 429–435, Jun.

2016, doi: 10.1016/J.IJEPES.2015.12.006.

[217] A. S. Berahas, J. Nocedal, and M. Takáč, “A Multi-Batch L-BFGS Method for

Machine Learning.”

[218] D. C. Liu and J. Nocedal, “On the limited memory BFGS method for large scale

optimization,” Math. Program., vol. 45, no. 1–3, pp. 503–528, Aug. 1989, doi:

10.1007/BF01589116.

[219] A. Zainab et al., “A Multiprocessing-Based Sensitivity Analysis of Machine

Learning Algorithms for Load Forecasting of Electric Power Distribution System,”

IEEE Access, vol. 9, pp. 31684–31694, 2021, doi:

10.1109/ACCESS.2021.3059730.

[220] C. Yuan and H. Yang, “Research on K-value selection method of K-means

clustering algorithm,” MDPI J — Multidiscip. Sci. J., vol. 2, no. 2, pp. 226–235,

2019, doi: 10.3390/j2020016.

[221] L. N. Smith, “Cyclical learning rates for training neural networks,” in Proceedings

181

- 2017 IEEE Winter Conference on Applications of Computer Vision, WACV 2017,

May 2017, pp. 464–472, doi: 10.1109/WACV.2017.58.

[222] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer,” Adv. Eng.

Softw., vol. 69, pp. 46–61, Mar. 2014, doi: 10.1016/j.advengsoft.2013.12.007.

[223] C. Efthymiou and G. Kalogridis, “Smart grid privacy via anonymization of smart

metering data,” in 2010 first IEEE international conference on smart grid

communications, 2010, pp. 238–243.

[224] S. Raschka and V. Mirjalili, Python Machine Learning: Machine Learning and

Deep Learning with Python, scikit-learn, and TensorFlow 2. Packt Publishing Ltd,

2019.

[225] H. Li, “Deep learning for natural language processing: advantages and challenges,”

Natl. Sci. Rev., 2017.

[226] H. Gjoreski, J. Bizjak, M. Gjoreski, and M. Gams, “Comparing deep and classical

machine learning methods for human activity recognition using wrist

accelerometer,” in Proceedings of the IJCAI 2016 Workshop on Deep Learning for

Artificial Intelligence, New York, NY, USA, 2016, vol. 10.

[227] W. Mackenzie, “Global smart meter total to double by 2024 with Asia in the lead.”

Accessed: Oct. 02, 2020, 2020, [Online]. Available:

https://www.woodmac.com/news/editorial/.

[228] C. Consulting, “Big Data BlackOut: Are Utilities Powering Up Their Data

Analytics?” Accessed on: Oct. 2, 2020., [Online]. Available:

https://www.capgemini.com/consulting-no/wp-content/.

[229] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, “Machine learning classification

over encrypted data.,” in NDSS, 2015, vol. 4324, p. 4325.

[230] R. L. Rivest, L. Adleman, M. L. Dertouzos, and others, “On data banks and privacy

homomorphisms,” Found. Secur. Comput., vol. 4, no. 11, pp. 169–180, 1978.

[231] M. Ajtai and C. Dwork, “A public-key cryptosystem with worst-case/average-case

equivalence,” in Proceedings of the twenty-ninth annual ACM symposium on

Theory of computing, 1997, pp. 284–293.

[232] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proceedings of

the forty-first annual ACM symposium on Theory of computing, 2009, pp. 169–178.

[233] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and J. Wernsing,

“Cryptonets: Applying neural networks to encrypted data with high throughput and

accuracy,” in International Conference on Machine Learning, 2016, pp. 201–210.

[234] F. Bourse, M. Minelli, M. Minihold, and P. Paillier, “Fast homomorphic evaluation

182

of deep discretized neural networks,” in Annual International Cryptology

Conference, 2018, pp. 483–512.

[235] N. Carlini, C. Liu, Ú. Erlingsson, J. Kos, and D. Song, “The secret sharer:

Evaluating and testing unintended memorization in neural networks,” in 28th

USENIX Security Symposium (USENIX Security 19), 2019, pp. 267–284.

[236] A. Rajkumar and S. Agarwal, “A differentially private stochastic gradient descent

algorithm for multiparty classification,” in Artificial Intelligence and Statistics,

2012, pp. 933–941.

[237] N. Papernot, S. Song, I. Mironov, A. Raghunathan, K. Talwar, and Ú. Erlingsson,

“Scalable private learning with pate,” arXiv Prepr. arXiv1802.08908, 2018.

[238] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated multi-task

learning,” in Advances in Neural Information Processing Systems, 2017, pp. 4424–

4434.

[239] H. Takabi, E. Hesamifard, and M. Ghasemi, “Privacy preserving multi-party

machine learning with homomorphic encryption,” in 29th Annual Conference on

Neural Information Processing Systems (NIPS), 2016.

[240] R. Gilad-Bachrach, T. W. Finley, M. Bilenko, and P. Xie, “Neural networks for

encrypted data.” Google Patents, 2018.

[241] E. Hesamifard, H. Takabi, M. Ghasemi, and R. N. Wright, “Privacy-preserving

machine learning as a service,” Proc. Priv. Enhancing Technol., vol. 2018, no. 3,

pp. 123–142, 2018.

[242] H. Miyajima, N. Shigei, H. Miyajima, Y. Miyanishi, S. Kitagami, and N. Shiratori,

“New privacy preserving back propagation learning for secure multiparty

computation,” IAENG Int. J. Comput. Sci., vol. 43, no. 3, pp. 270–276, 2016.

[243] H. Kim, S.-H. Kim, J. Y. Hwang, and C. Seo, “Efficient privacy-preserving

machine learning for blockchain network,” IEEE Access, vol. 7, pp. 136481–

136495, 2019.

[244] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning: Concept and

applications,” ACM Trans. Intell. Syst. Technol., vol. 10, no. 2, pp. 1–19, 2019.

[245] M. Al-Rubaie and J. M. Chang, “Privacy-preserving machine learning: Threats and

solutions,” IEEE Secur. Priv., vol. 17, no. 2, pp. 49–58, 2019.

[246] M. Abadi et al., “Deep learning with differential privacy,” in Proceedings of the

2016 ACM SIGSAC Conference on Computer and Communications Security, 2016,

pp. 308–318.

[247] S. Truex et al., “A hybrid approach to privacy-preserving federated learning,” in

183

Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security,

2019, pp. 1–11.

[248] S. Kuri et al., “Privacy preserving extreme learning machine using additively

homomorphic encryption,” in 2017 IEEE symposium series on computational

intelligence (SSCI), 2017, pp. 1–8.

[249] X. Ma, F. Zhang, X. Chen, and J. Shen, “Privacy preserving multi-party

computation delegation for deep learning in cloud computing,” Inf. Sci. (Ny)., vol.

459, pp. 103–116, 2018.

[250] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in Proceedings

of the 22nd ACM SIGSAC conference on computer and communications security,

2015, pp. 1310–1321.

[251] M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully homomorphic

encryption over the integers,” in Annual International Conference on the Theory

and Applications of Cryptographic Techniques, 2010, pp. 24–43.

[252] M. Brenner et al., “A Standard API for RLWE-based Homomorphic Encryption,”

HomomorphicEncryption.org, Redmond WA, USA, Jul. 2017.

[253] Y. Tsiounis and M. Yung, “On the security of ElGamal based encryption,” in

International Workshop on Public Key Cryptography, 1998, pp. 117–134.

[254] N. Patel, P. Oza, and S. Agrawal, “Homomorphic Cryptography and Its

Applications in Various Domains,” in International Conference on Innovative

Computing and Communications, 2019, pp. 269–278.

[255] K. El Makkaoui, A. Ezzati, and A. Beni-Hssane, “Securely adapt a Paillier

encryption scheme to protect the data confidentiality in the cloud environment,” in

Proceedings of the International Conference on Big Data and Advanced Wireless

Technologies, 2016, pp. 1–3.

[256] S. Halevi and V. Shoup, “Algorithms in helib,” in Annual Cryptology Conference,

2014, pp. 554–571.

[257] W. Dai and B. Sunar, “cuHE: A homomorphic encryption accelerator library,” in

International Conference on Cryptography and Information Security in the

Balkans, 2015, pp. 169–186.

[258] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “{TFHE}: Fast Fully

Homomorphic Encryption Library.” .

[259] C. Aguilar-Melchor, J. Barrier, S. Guelton, A. Guinet, M.-O. Killijian, and T.

Lepoint, “NFLlib: NTT-based fast lattice library,” in Cryptographers’ Track at the

RSA Conference, 2016, pp. 341–356.

184

[260] K. Laine and R. Player, “Simple encrypted arithmetic library-seal (v2. 0),” Tech.

report, Tech. Rep., 2016.

[261] E. Crockett and C. Peikert, “$Λ$o$λ$: Functional Lattice Cryptography,” in

Proceedings of the 2016 ACM SIGSAC Conference on Computer and

Communications Security, 2016, pp. 993–1005.

[262] Y. Polyakov, K. Rohloff, and G. W. Ryan, “PALISADE lattice cryptography

library user manual,” Cybersecurity Res. Center, New Jersey Inst. ofTechnology

(NJIT), Tech. Rep, 2017.

[263] T. Takagi and T. Peyrin, Advances in Cryptology--ASIACRYPT 2017: 23rd

International Conference on the Theory and Applications of Cryptology and

Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, vol.

10625. Springer, 2017.

[264] “Lattigo 1.3.1.” Accessed on: Oct. 2, 2020, Feb. 2020, [Online]. Available:

http://github.com/ldsec/lattigo.

[265] W. Li, D. Deka, M. Chertkov, and M. Wang, “Real-time Faulted Line Localization

and PMU Placement in Power Systems through Convolutional Neural Networks,”

IEEE Trans. Power Syst., 2019.

[266] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully homomorphic

encryption without bootstrapping,” ACM Trans. Comput. Theory, vol. 6, no. 3, pp.

1–36, 2014.

[267] J. Domingo-Ferrer, “A provably secure additive and multiplicative privacy

homomorphism,” in International Conference on Information Security, 2002, pp.

471–483, doi: 10.1007/3-540-45811-5_37.

[268] E. U. Soykan, Z. Bilgin, M. A. Ersoy, and E. Tomur, “Differentially Private Deep

Learning for Load Forecasting on Smart Grid,” in 2019 IEEE Globecom Workshops

(GC Wkshps), 2019, pp. 1–6, doi: 10.1109/gcwkshps45667.2019.9024520.

185

APPENDIX A

PRIVACY PRESERVATION OF DATA-DRIVEN MODELS IN SMART GRIDS

USING HOMOMORPHIC ENCRYPTION*11

A.1 Overview

 The information layer embedded in the two-way communication electric smart

grid has various data sources such as Advanced Metering Infrastructure (AMI), smart

electrical measurement sensors, smart meters, detectors, Phasor Measurement Units

(PMU), Remote Terminal Unit (RTU), and Supervisory Control and Data Acquisition

System (SCADA) [11]. These sources generate huge amounts of data that satisfy the

volume, velocity, variety, veracity, and value characteristics of big data [40]. The data

generated from multiple sources are located at different nodes of an electric network.

However, electric utilities demand to preserve the security and privacy of the collected

and used data. The collected data represents the behavior of the customers and other

network players. Those data contain sensitive information about customers, electricity

consumption, trading, and operation of electricity distribution networks [223]. Those data

can be utilized to develop machine learning algorithms to improve the electrical utility

operation in terms of demand response, peak load shaving, and fault analysis.

Machine learning algorithms can be classified into two divisions; classical and

deep learning techniques [224]. There are merits and demerits of each division compared

to the other. Deep learning techniques have the merits of being more accurate, scalable

11 Reprinted with permission from “Privacy Preservation of Data-Driven Models in Smart Grids Using Homomorphic Encryption.”
by Dabeeruddin Syed, Shady S. Refaat, and Othmane Bouhali, 2020. Information Journal 11, no. 7, 357, Copyright 2020 by

Dabeeruddin Syed.

186

with more data, no requirement of complex feature engineering, adaptability, and

transferability to different domains and applications through transfer learning. [225]. The

classical machine learning techniques have merits of higher performance if the size of

available data is small, lower requirements of computational resources, and simplicity

[226]. However, all the machine learning approaches require the data which are collected

for processing from several nodes in the electric network. The data are transmitted from

the electrical nodes to a unified central system to develop the data-driven models. This

data transmission and collection by model developers endanger the privacy and security

of the information. Hence, security approaches such as homomorphic encryption and

federated machine learning, that avoid the movement of plain data can be considered as

potential solutions for securing the collected data. In recent years, many researchers have

attained noteworthy progress in the field of encryption schemes.

In the past decade, the rate of generation of energy data from utilities has increased

exponentially. The number of smart meters installed globally is around 660 million in

2017 with the data generated at a rate of 280 petabytes a year [227] [228]. Furthermore,

the number of people who have access to the data has increased multi-fold. For business

benefits, each of the teams of an entity has data scientists in-house who develop machine

learning models to recognize the patterns in the data and to discover ways to improve

business. This brings the security of the confidential information in the collected data at

risk and may lead to sensitive information disclosure. It has been impartially assumed for

decades that the encryption garbles up the numbers in the data and no practical

mathematical operations can be executed on the encrypted data [229]. One of the earliest

187

approaches to investigate the possibility of performing computations on the underlying

data without actually having access to the unencrypted forms of data was presented by

Rivest, Adleman, and Dertouzos in 1978 through their work entitled privacy

homomorphisms [230]. In 1996, Ajtai et al. proposed the use of lattice-based constructions

as an encryption scheme to develop a public-key cryptosystem [231]. The foundation of

these works has set in motion the advancement of first working Fully Homomorphic

Encryption (FHE) in 2009 [232]. The FHE scheme allows for the mathematical operations

and function mapping to be employed on encrypted data.

The HE schemes have been applied with classical machine learning models

initially and later, implemented with deep learning models. Earlier works on encryption

schemes with deep learning models presented works with activation function as high

degree polynomials whose computations are slow and require huge resources. The

possibility of low degree non-linear polynomials (such as square function) as activation

functions in the network layers was presented in [233]. Also, HE schemes allow the

execution of non-polynomial functions on encrypted data. Later, bootstrapping procedure

and use of sign function were introduced in later work with an aim to keep the scheme

complexity linear to the depth of the neural networks [234]. These developments enable

the possibility of use of, HE schemes in the real-world scenarios for encryption.

In this work, the homomorphic encryption model is applied for two smart grid case

studies namely, fault identification and localization data from the simulated IEEE 68 bus

system in order to develop highly secure and accurate deep learning model for fault

localization predictions, and real distribution transformer energy consumption data to

188

develop machine learning model for load forecasts. The main contributions of this work

are classified into the following main categories:

1. Designing a secure and privacy-preserving deep neural network (DNN) model

established on homomorphic encryption for smart grid applications.

2. Proposing a fault classification and localization model that has favorable accuracy

considering the fact that the model is trained on encrypted data. The encryption of

the data before modeling accentuates the need for data privacy and security. The

accuracy of the model trained on encrypted data is very close to the model trained

on non-encrypted data.

3. Proposing a load forecasting regression model such that the accuracy of the

predictions using encrypted data is close to accuracy using non-encrypted data.

A.2 State-of-the-art works

 In this section, we first present the security and privacy foundations required for

secure machine learning. Then, the possible solutions to achieve the security foundations

are discussed in the subsequent parts. At last, we discuss the literature review and previous

works in the field of privacy-preservation of machine learning models using homomorphic

encryption.

 The computational research community has been interested in privacy-preserving

machine learning to ensure that the data remains secure during all the stages of its

processing i.e., from the training stage to the predictions stage. There are four main pillars

needed to achieve privacy-preserving machine learning: namely, training data privacy,

189

model input privacy, model weights privacy, and model output privacy. They are shown

in Figure 54 and summarized as next.

1. Training Data Privacy: The privacy and security layer should be in place that no

malicious agent can reverse engineer the training data from the model or the

output.

2. Model Input Privacy: The input data cannot be obtained by any third party,

including the model creator; the input data owner is assumed as different than the

model creator.

3. Model Weights Privacy: The model parameters and weights cannot be obtained or

inferred by a malicious party.

4. Model Output Privacy: The output of the model cannot be observable by any third

party, except for the owner of the data.

Figure 54 Four Pillars of Privacy-Preserving Machine Learning

190

Hence, there are multiple challenges that need to be addressed to achieve the aims

of the four pillars of privacy in machine learning which is the goal of our paper. The

following subsections discuss various approaches to privacy-preserving machine learning.

A.2.1 Training Data Privacy

 Although it is difficult to reverse engineer the training data from the model

parameters and model outputs, it is not impossible. In [235], the authors have indicated

the leakage of information on training data using reverse engineering on the machine

learning models. The results of their work have indicated that the generative sequence

models can retain rare information from the raw data and that this memorization peaks

when the test loss is set to the minimum.

To prevent the memorization of training data in the developed models, there are

two major proposed solutions; Differentially Private Stochastic Gradient Descent

(DPSGD) [236], and Private Aggregation of Teacher Ensembles (PATE) [237]. These

solutions not only provide security to the data but also improve the generalizability of the

machine learning models.

The memorization and exposure of private knowledge from training data can be

reduced with the use of DPSGD. The DPSGD solution adapts differential privacy into

SGD to conserve the security of training data while developing deep learning models

[236].

PATE is a scalable alternative to DPSGD and is an ensemble model. The

components of the ensemble model train on the independent and identically distributed

(i.i.d.) subsets of the same dataset. If most of the models in the ensemble have the same

191

output, then it can be inferred that the models and their output do not expose any secure

information from the training data and hence, can be shared [237].

A.2.2 Model Input Privacy and Model Output Privacy

 Input data and the outputs (predicted variable values) from the data should be

accessible only to the owners of the data and protected from other parties including the

model developers. There are three solutions in the literature that have been successfully

applied to preserve the model input and output privacy. Those solutions are briefly

discussed below:

1. Federated Learning (FL) [238]: FL is machine learning on device. It can be made

secure with the use of differentially private stochastic gradient descent.

2. Homomorphic Encryption (HE) [239]: Homomorphic encryption makes provision

for the use of non-polynomial functions on encrypted data. With this capability of

homomorphic encryption, it is possible to apply classical machine learning

algorithms such as linear or logistic regression, naive bayes, and random forest and

deep learning models on encrypted data for training and obtain predictions [240].

However, initial works such as CryptoNets [240] have a limitation of high latency.

Also, the cryptonets do not support the popular activation functions (Relu, and

Sigmoid) and the pooling functions (Max Pooling). The limitations of the use of

activation functions were later overcome in [241] which approximates the

continuous functions of Sigmoid, Relu, and Tanh to lower degree polynomials

based on Chebyshev polynomials. Their results indicated that the replacement of

192

activation function with approximated lower degree polynomials adopts neural

networks to be effectively used with homomorphic encryption.

3. Secure Multiparty Computation (MPC) [242]: When multiple parties are involved,

they can decide on functions to calculate outputs using their private inputs. The

inputs are not revealed or exposed. The concept of secure MPC has been

successfully used in generative models and machine learning algorithms to protect

the data from reverse engineering.

A.2.3 Model Weights Privacy

 The model privacy is very crucial for companies who own data to avoid having

their AI applications and models easily copied or reverse engineered from inputs and

outputs. Hence, model privacy and model weights' privacy are extremely crucial.

The FL, HE, and MPC solutions could also be used to enhance the model privacy.

The solutions for model weights privacy include the following:

1. Differentially private stochastic gradient descent

2. Homomorphic Encryption

A.2.4 Related Work

 Multiple methodologies have been utilized in the discipline of privacy-preserving

machine learning [243] [244] [245]. These methodologies include, but are not limited to,

differential privacy [246], federated machine learning [247], homomorphic encryption

[248], and multi-party computation [249]. In this work, we utilize the homomorphic

encryption as it achieves the four pillars of privacy-preserving machine learning for smart

grid applications.

193

In [241], Hesamifard et al. proposed a framework called CryptoDL that aims to

preserve the security and privacy of the training data and the classification predictions

generated by the Machine Learning (ML) models especially Neural Networks (NN). The

authors have applied CryptoDL to different open datasets with encouraging and accurate

results. The framework accepts the training data in encrypted form, develop models, and

generate classification predictions which are encrypted under the data owner's public key

as well. Their experiments yield that the proposed approach of approximating activation

functions to low-degree Chebyshev polynomials outperforms other HE methodologies and

the developed models preserve the security of data.

In [250], Shokri et al. designed a privacy system that allows multiple parties to

train the deep learning models on their private data and share the knowledge from their

learned models. The sharing of the models improves the overall accuracy of the final

averaged model while also preserving the data privacy because individual data is not

shared between the multiple parties. Their system is based on Distributed Selective

Stochastic Gradient Descent (DSSGD) and parameter exchange protocol for different

parameters of the deep learning model.

In [229], the authors developed the classification models using decision trees,

hyperplane decision, and naive bayes classifiers on encrypted data using security

constraints. However, the accuracy of their classification models has not been reported in

the article. The efficiency of the models is evaluated in terms of classification time and

they reported that their models take a few milliseconds to a few seconds on large datasets.

194

A stable and significant implementation of fully homomorphic encryption was

presented in [232]. The author presented a modular framework of FHE that supports the

computations to a fixed depth. Then, he employed a bootstrap method to enhance the

framework with successful computations to a larger depth with a few constraints or

assumptions. The decryption works correctly if the noise in the encrypted text is small.

For example, 𝑐1 → 𝐸𝑛𝑐(𝑝1) and 𝑐2 → 𝐸𝑛𝑐(𝑝2) are cipher texts and these encrypted data

have noise 𝑛1, 𝑛2. Then, during addition and multiplication operations, these noise values

increase to 𝑛1 + 𝑛2 and 𝑛1 ⋅ 𝑛2 respectively. Hence, if the noise is significant after

encryption of data, this methodology performs well only in shallow networks. The

technique of bootstrapping is used to reduce the noise in the network after encryption as

it refreshes the cipher data. Consider 𝑐1 ∈ 𝐸𝑛𝑐(𝑝1) has large noise and a helper cipher

data 𝑐𝑘 → 𝐸𝑛𝑐(𝑠𝑒𝑐𝑟𝑒𝑡𝑘𝑒𝑦). A homomorphic evaluation of the decrypting function is

performed as 𝐸𝑣𝑎𝑙(𝐷𝑒𝑐, 𝐸𝑛𝑐(𝑐𝑘), 𝑐1) which refreshes the cipher data which encrypts

𝐷𝑒𝑐(𝑐𝑘, 𝑠𝑒𝑐𝑟𝑒𝑡𝑘𝑒𝑦) = 𝑝1. This bootstrapping technique is used to refresh the cipher data

and removes the noise in it. The cipher data are first calculated up to depth 'd' which is

efficient for fully homomorphic encryption. Then, bootstrapping is used to refresh the

cipher data which are devoid of noise. Finally, the encryption is performed starting from

depth 'd' to depth '2d', and bootstrapping is then applied at depth '2d' and so on. Dijk et al.

[251] simplified the complexity of Gentry's somewhat homomorphical bootstrappable

encryption scheme and applied it over the integers.

There are a few technical challenges associated with the privacy-preservation of

data [252]. These are listed as below:

195

• The data might come from multiple sources that use different secret keys for

encryption. In such a case, the homomorphic encryption is not straight-forward.

The solution to this will be MPC and HE.

• Also, developing deep learning models with homomorphic encryption may be hard

when compared to developing shallow models. However, in this work, the

developed deep learning models display high accuracy on testing.

There are multiple types of schemes in HE depending on the operations they can

perform. The HE encryption schemes that can perform only one type of operation are

called partially homographic encryption schemes. El Gamal scheme [253] and RSA

scheme [254] are partially HE schemes, and these can perform only multiplication

operations homographically whereas Paillier scheme [255] can perform addition

operations homographically.

MPC is similar to homomorphic encryption with an exception that the two users

involved X (user with data d) and Y (developer of function f) are required to interact over

multiple iterations to train the model f(d). For specific applications, MPC has proven to

perform better than Homomorphic encryption. However, MPC faces the difficulties of

high bandwidth requirements and network latencies. Hence, HE is more scalable for

generalized smart grid applications.

In practice, there are multiple open-source implementations of homomorphic

encryption schemes. These libraries are described in Table 29.

Table 29 Open-source implementations of HE.

Implementation Description

196

HELib [256] The low-level library implements HE with faster evaluation time employing

optimized Brakerski-Gentry-Vaikuntanathan (BGV) scheme with

bootstrapping.

cuHE [257] highly optimized GPU-accelerated library for Homomorphic encryption.

TFHE [258] open-source gate-by-gate bootstrapping library which evaluates

homomorphic encryption of binary gates, negation, and MUX gate

operations and performs computation over encrypted data.

NFLlib [259] open-source Number Theoretic Transform based Fast Lattice Library which

uses low-level processor functionalities.

SEAL [260] an extensively employed open-source library from Microsoft that supports

BGV and Cheon, Kim, Kim, and Song (CKKS) encryption schemes.

𝚲𝒐𝛌 [261] open-source Haskell library for functional lattice-based cryptography.

PALISADE

[262]

Open-source library for implementations of lattice-based encryption

building blocks and HE scheme.

HeaAN [263] Open-source implementation of HE encryption scheme using approximate

arithmetic of numbers.

Lattigo [264] library for lattice-based cryptography and MPC, written in Golang (Go)

language.

Our researched system attains significant security objectives in the context of deep

learning models applied for smart grid applications. It secures the training data before it is

transferred to the model developers. The model developers are enabled to control the

learning objectives of the data-driven deep learning models. The solution allows for the

application of machine learning and deep learning models along with generalization to a

wide variety of electrical applications.

A.3 Proposed Methodology for Privacy-Preservation of Data-driven Models

 This section presents the proposed methodology for the application of deep

learning over encrypted data with the homomorphic encryption method. The main

objective of this methodology is to add additional security and privacy layer to deep

learning models in smart grid electrical applications. As observed in Figure 55, the

197

encryption keys are used to encrypt the data on the server-side. Only the encrypted data is

communicated to the client-side or the model developers. The model is trained over the

encrypted data, then the predictions are obtained. Moreover, the predictions are encrypted

which requires decryption performed at the server side to obtain the final predictions. It is

important to note that the client or model developer does not have access to the encryption

keys, therefore the client can neither decrypt the data nor decrypt the predictions. In some

applications, the client is provided with a previously trained model and encrypted test data

to provide encrypted predictions back to the server. In such cases, the previously trained

model may have been trained on plain data on the server-side. The homomorphic

encryption allows for the privacy, reliability, and security of training data, model inputs,

weights, and outputs. However, the HE does not secure the data from the point of

generation to the server, but only after it reaches the server. The framework assumes that

Figure 55 Homomorphic encryption-based deep learning modeling for smart

grid applications

198

the smart grid platform supports secure data acquisition from different data sources. The

diverse storage services and policies should enforce privacy and security between the

points of data generation and server.

In the following sections, the main steps of the proposed methodology are

described.

A.3.1 Data description

 Two datasets have been collected for evaluating the performance of machine

learning models employing homomorphic encryption. One of the datasets is the simulation

data for fault localization in a power system network and another dataset is the time-series

load demand data at the distribution grid level (transformers). The following section

provides the description of the two datasets and the pre-processing steps employed on the

datasets.

A.3.1.1 Dataset 4

 The data utilized is the fault localization simulation data from the IEEE 68 bus

system which consists of 68 buses, 16 machines, 16 generators, and 20 transformers [104]

[265]. Figure 56 shows the reduced-order 68-bus system test simulation model. The

simulation data is PMU measurements acquired for pre and during fault conditions for a

subset of the grid buses in the system. The extracted features which characterize the

location and occurrence of the faults are determined to be the bus voltage variations before

and during the faults. The final feature set which is given as input to the classifier is given

by the imaginary part of the following (51).

199

Ψ = 𝑌0Δ𝑉 (51)

where 𝑌0 denotes the admittance matrix of the bus system before the faults and Δ𝑉

represents the difference in the bus voltage before and during the faults.

 The label of the data indicates the line number at which the fault occurs and hence,

there are 86 classes. 75% of the data is utilized as a training data set, and 25% of the data

is utilized as a validation data set.

A.3.1.2 Dataset 5

 The second case study is on the load forecasting at the distribution level. The data

acquired is the time series hourly load demand data at the distribution transformers level

for a real power grid between January 2018 to December 2018. After data acquisition, the

Figure 56 IEEE 68-bus system test simulation model

200

only features were time stamp, transformer id, season, and hourly load demand values. In

the pre-processing steps, the weather data is extracted and added as features to this dataset

using a freemium Application Programming Interface (API) called Darksky [203]. The

extracted features include maximum temperature, minimum temperature, cloud cover,

dew point, humidity, precipitation intensity, pressure, Ultraviolet rays (UV) index,

visibility, wind gust, and wind speed. This extraction introduces missing values that are

filled using an average of forward and backward fill for numerical features [149]. Also,

the 24 lag hour values are fed back to the dataset as additional features.

A.3.2 Homomorphic encryption

 The fully homomorphic encryption or simply homomorphic encryption is a

category of encryption methodology which differs from other classical methods in a way

that it enables the computations to be executed on the encrypted data without having a

requirement to access the secret encryption key [266]. The output of such computations is

also encrypted, and it can be decrypted with the help of a secret key that the data owner

possesses. A function 𝑓: 𝑅𝟙⟶ 𝑅𝟚 is said to be additive and multiplicative homomorphic,

if for every 𝑟1, 𝑟2 ∈ 𝑅𝟙, it implies that 𝑓(𝑟1 + 𝑟2) = 𝑓(𝑟1) ⊕ 𝑓(𝑟2) and 𝑓(𝑟1 ⋅ 𝑟2) =

𝑓(𝑟1) ⊗ 𝑓(𝑟2) respectively, where ⊕, and ⊗ are the operations in 𝑅𝟚 [267].

A homomorphic encryption technique has a supplemental algorithm property

called 𝐸𝑣𝑎𝑙 which can be executed or computed over encrypted data. Any party can run

𝐸𝑣𝑎𝑙 function on the encrypted data without requiring access to the private key with which

data is initially encrypted. That is, the ciphertext need not be decrypted to allow

computations on it in the evaluation function, and this maintains the privacy of the

201

underlying information in the encrypted data. Figure 57 illustrates the different mapping

functions and computations involved in Homomorphic Encryption Evaluation.

The homomorphic evaluation of a deep neural network with discretized inputs and

weights involves two steps mainly. These steps are enumerated as following:

1. Computation of multisum between the encrypted inputs that are given to the

neurons and the discretized weights at the respective neurons: The calculation of

multisum uses homomorphic addition as basic operation.

2. Extraction of the sign of the output at each neuron.

To make the neural network scalable in terms of the number of layers, the

bootstrapping operation is performed at every neuron in the layers to effectively encrypt

the sign of the output and use it in further computations to the next layers in the network.

 For privacy-preserving machine learning, we use the orthogonal matrix

transformations-based homomorphic encryption in the classification case study. The

secret key of the proposed matrix transformations based HE scheme is an invertible matrix

(U1) of size m, where m is the number of records in training data. And Paillier

cryptosystem is utilized for the case study of regression.

Figure 57 Homomorphic Encryption Evaluation

202

A.3.2.1 Encryptions of the data

 The data is encrypted using HE algorithm based on matrix transformations. The

aim of the encryption of the data is to generate highly accurate deep learning or machine

learning models and use the encrypted data for training or testing so that the model

developers do not have access to the plain data all the time.

 In the first case study for fault localization, two sets of simulations have been

conducted. In the first set, the DNN model is developed when the training data is plain,

and the model developer has access to the plain data. Here, there are no privacy-preserving

techniques involved. In the second set of experiments, the first stage encrypts the fault

identification and localization data using homomorphic encryption on the source side. The

data provided to the model developers are the encrypted version of data. So, no

information from the data can be leaked. The model developers develop the DNN model

using the encrypted data and return the encrypted predictions to the source side. The data

owner then uses the keys to decrypt the encrypted predictions to obtain the final

predictions. These predictions are used to calculate the accuracy of the developed models

using ground truth values.

Algorithms 6, 7, 8, and 9 present the encryption and decryption steps that are used

on the server-side in the fault localization case study.

203

Algorithm 7. Decryption of Train Data

 1: function DECRYPTIONTRAIN(𝑋,  𝑦,  𝑄1,  𝑄2)

 2: Choose (𝑄1)𝑚𝑥𝑚 as orthogonal matrix.

 3: (𝑋)𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑒𝑑 = 𝑄1
𝑇 . 𝑋. 𝑄2

−1

 4: (𝑦)𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑒𝑑 = 𝑄1
𝑇 . 𝑦

 5: return (𝑋)𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑒𝑑, (𝑦)𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑒𝑑

 6: end function

Algorithm 8. Encryption of Test Data

 1: function ENCRYPTIONTEST(𝑋,  𝑄2)

 2: Choose (𝑄1)𝑚𝑥𝑚 as orthogonal matrix.

 3: if 𝑛𝑜𝑂𝑓𝑅𝑜𝑤𝑠(𝑋) > 1 then

 4: Choose orthogonal 𝑄3 of size 𝑛𝑜𝑂𝑓𝑅𝑜𝑤𝑠(𝑋)

 5: else

 6: Choose orthogonal 𝑄2 of size 1

 7: end if

 8: (𝑋)𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 = 𝑄3. 𝑋. 𝑄2
−1

 9: return (𝑋)𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑, 𝑄3

10: end function

Algorithm 6. Encryption of Train Data

 1: function ENCRYPTIONTRAIN((𝑿)𝒎𝒙𝒏, (𝒚)𝒎𝒙𝟏)

 2: Choose (𝑄1)𝑚𝑥𝑚 as orthogonal matrix.

 3: if 𝑛 > 1 then

 4: Choose orthogonal 𝑄2 of size 𝑛

 5: else

 6: Choose orthogonal 𝑄2 of size 1

 7: end if

 8: (𝑋)𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 = 𝑄1
𝑇 . 𝑋. 𝑄2

 9: (𝑦)𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 = 𝑄1
𝑇 . 𝑦

10: return (𝑋)𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑, (𝑦)𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑, 𝑄1 , 𝑄2

11: end function

204

Algorithm 9. Decryption of Test Data

 1: function DECRYPTIONTEST(𝑦𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑, 𝑄3)

 2: (𝑦)𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑒𝑑 = 𝑄3
−1. 𝑦𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑

 3: return (𝑦)𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑒𝑑

 4: end function

 In the second case study for load demand forecasting, a machine learning model is

developed using the plain data where the model developers have initial access to data. The

knowledge gained i.e., model and its parameters can be transferred to points where load

demand predictions are required. At these points, access to the plain data is not required

and is encrypted during the training phase. In this work, a paillier encryption scheme [255]

is employed and public, and private key pair is generated. The test data is encrypted using

a public key and the predictions are generated using the model on encrypted testing data.

The load forecast values are encrypted and these can be decrypted only with the help of

private key which is available only to the data owner.

 The homomorphic encryption can secure a multitude of electrical applications in

smart grids by providing the following advantages:

• securing data stored in cloud server.

• enabling data analytics in regulated electric utilities.

• HE protects the systems against eavesdropping attacks after the data has reached

the server. The HE potentially renders any data leaked through eavesdropping

attacks or man-in-the-middle attacks indecipherable to attackers.

• HE can protect the data against unauthorized sharing.

A.4 Results

205

 This section presents the efficacy of the proposed homomorphic encryption- based

deep learning models for fault localization and detection. Also, the results of another case

study of Paillier scheme for load demand predictions are presented.

 The experiments have been conducted utilizing Python 3.7 for encryption and

decryption schemes. The execution was run on a computer with an Intel Core i7-7700HQ

CPU @ 2.80 GHz with eight logical processors, four physical cores, and 16 GB of RAM.

A.4.1 Case Study 1

 The machine learning model utilized to train on plain and encrypted data is the

deep neural network (DNN). It comprises of three categories of layers – an input layer, an

output layer, and hidden layers. The inherent non-linear characteristics of the layers enable

the DNNs structure to recognize and generalize the underlying patterns and information

in the data.

 The size of the input layer of DNN is 64 and the size of the output layer is 86. The

number of neurons in each hidden layer is 70 neurons. The activation function utilized in

the DNN model trained on plain and encrypted data is hyperbolic tangent (tanh) activation.

The input space is scaled to the range of (-1, 1) and the tanh activation function ranges

between the same values. It is also maintained that the weights have discrete values over

the domain of 𝑍 as real-valued weights render the use of homomorphic encryption

incompatible. A dropout percentage of 20% is utilized for the model trained on plain data.

A dropout percentage of 50% is utilized for the model trained on encrypted data.

Table 30 Evaluation of homomorphic encryption deep learning model for

classification problem (fault localization).

Model Name DNN HE+DNN

206

Validation accuracy 98.32 97.71

Test accuracy 99.98 98.59

Execution time (s) 20.61 23.64

Computation complexity of activation function O(1) O(1)

As shown in Table 30, the performance of the deep learning model on encrypted

data is close to the performance of the model on plain data. The validation accuracy of the

DNN model on plain data of fault identification and localization is 98.32%. However,

when the DNN model is trained on the encrypted data, the validation accuracy is 97.71%.

Also, a separate fault simulation data is used as a test data set. And, on the test data set,

the accuracy of DNN model trained on plain data is 99.98% whereas the accuracy of the

model trained on encrypted test data is 98.59%. The graphical representation of the results

is shown in Figure 58. Homomorphic encryption based DNN takes more time, but it

effectively protects the data and generates a comparative accurate model.

A.4.2 Case Study 2 (a)

Figure 58 Accuracy-wise performance of the proposed methodology

207

 The classical machine learning algorithm of linear regression is applied over the

Paillier scheme for the case study on load demand predictions. Mini-batch Gradient

descent optimizer is used with learning rate 0.01 and training epochs as 1000 as the data

is big and the computational memory is limited. Training of the model is performed on

unencrypted data which is then transferred to the encrypted testing data to make encrypted

predictions. Only the server-side private key can be used to decrypt the predictions.

However, a public key can be used to encrypt any data. 80% of data is used for training

and 20% of data is used as a validation dataset.

 Figure 59 depicts the training history in terms of mean square error against the

number of epochs of training. The smoothness in the graph indicates that the cost function

of the machine learning model keeps on decreasing over the set number of epochs and the

model approaches to convergence with minimum prediction error.

 Figure 60 plots the predicted values of load demand in testing data set after

decryption against the true values of load demand. A point on the straight line through

origin would indicate that there is no error in the predicted value, and it is the same as the

Figure 59 The mean square error as training progresses

208

actual load demand value. The homomorphic encryption-based modeling was thus

evaluated for the regression problem of load demand forecasting. The results of the

evaluation are displayed in Table 31. The results indicate that the machine learning model

without encryption has a coefficient of variation (CV) of 7% and the CV is around 10%

when encryptions are employed.

Table 31 Evaluation of homomorphic encryption for regression problem (load

forecasting).

Model Name Validation dataset Test dataset

RMSE (MWh) Coefficient of Variation

(CV) (%)

RMSE (MWh) CV (%)

LR 0.0248 7.49 0.0250 7.55

HE+LR 0.0352 10.63 0.0374 11.30

A.4.3 Case Study 2 (b)

 In this set of experiments, a similar methodology is applied on a different hourly

load forecasting scenario with an aim to compare the results of our methodology to

Figure 60 Predicted and actual values of load demand

209

existing work. The public data set is provided by PJM Interconnection LLC and consists

of hourly energy consumption data recorded by various distribution utilities in the Eastern

Interconnection grid in the United States. We utilized the data from the EIC grid for area

AECO between the periods of March 1, 2019 and June 19, 2020. The time-series data

contains 8713 records. In the feature engineering step, twenty-four lag hour values of

energy consumption are added as features to the data set. 90% of the data is employed for

training and 10% of data is used as a testing data set.

 Table 32 presents the results of our experiments. As observed in the Table 32, the

first forecasting experiment is performed without any encryption on the data, and this is a

baseline to relatively compare the results of encryption-based forecasting.

Table 32 HE for load forecasting problem - PJM dataset.

Model Name Testing dataset

RMSE (MWh) MAPE (%)

LR 28.18 2.007

HE+LR 31.65 6.15

 As per the results in Table 32, when the encryption-based methodology is applied,

MAPE is obtained as 6.15%. For the same data set, without any encryption involved, the

load forecasting MAPE is 2.007%. As the security of data is increased using encryption,

the forecasting accuracy is definitely decreased. However, we still obtain high accuracy

with a high degree of privacy. The decrease in accuracy, after our proposed methodology

is applied, is around 4.15% as against the 8.69% decrease in accuracy as reported by

previous work [268] in the same load forecasting scenario.

210

A.5 Insights

 In this paper, a privacy-preserving deep learning model based on homomorphic

encryption is presented for classification and a classical machine learning model based on

the Paillier scheme for homomorphic encryption is presented for regression. The proposed

model can achieve machine learning modeling in the encrypted domain. The simulations

of the model on different datasets indicate that the performance on encrypted data is as

accurate as modeling on plain data. Application of the proposed methodology in the smart

grids data processing is promising and implies a wide range of real-life electrical utility

applications. Hence, data privacy can be maintained by the use of encryption and the

machine learning models can be trained on encrypted data and still achieve the same

accuracy and training. The main contribution of this work is a data-driven method that

benefits from the accuracy of classical and deep machine learning algorithms with the

lucidity of employing homomorphic encryption. The amalgamation of algorithms from

cryptography, machine learning, and electrical engineering has demonstrated a

methodology that achieves accuracy and security of electrical data while maintaining high

throughput for computations. However, there is a scope of improvement in terms of

computation time by using Graphics Processing Units (GPUs). Also, more effective

encoding paradigms can be employed that require fewer parameters and obtain accelerated

computations.

211

APPENDIX B

LIST OF PUBLICATIONS

B.1 Patent

1. Dabeeruddin Syed, Ameema Zainab, Haitham Abu-Rub, Shady S. Refaat, Othmane

Bouhali, Ali Ghrayeb, Mahdi Houchati and Santiago Bañales Lopez. "Multi-stage

Distributed Big Data Analytics Platform for Faster Processing of Heterogeneous Data

Sources in Smart grids". Patent Filed (06/14/2021).

B.2 Published/Accepted Journal Papers

2. Dabeeruddin Syed, Haitham Abu-Rub, Ali Ghrayeb, Shady S. Refaat, Mahdi

Houchati, Othmane Bouhali, and Santiago Bañales. “Deep Learning-Based Short-

Term Load Forecasting Approach in Smart Grid with Clustering and Consumption

Pattern Recognition.” IEEE Access 9 (2021): 54992–55008.

doi:10.1109/access.2021.3071654.

3. Dabeeruddin Syed, Haitham Abu-Rub, Ali Ghrayeb, and Shady S. Refaat.

“Household-Level Energy Forecasting in Smart Buildings Using a Novel Hybrid Deep

Learning Model.” IEEE Access 9 (2021): 33498–33511.

doi:10.1109/access.2021.3061370.

4. Dabeeruddin Syed, Ameema Zainab, Ali Ghrayeb, Shady S. Refaat, Haitham Abu-

Rub, and Othmane Bouhali. “Smart Grid Big Data Analytics: Survey of Technologies,

Techniques, and Applications.” IEEE Access 9 (2021): 59564–59585.

doi:10.1109/access.2020.3041178.

5. Dabeeruddin Syed, Shady S. Refaat, and Othmane Bouhali. "Privacy Preservation of

Data-Driven Models in Smart Grids Using Homomorphic Encryption." Information

Journal 11, no. 7 (2020): 357. doi:10.3390/info11070357.

6. Zainab Ameema, Dabeeruddin Syed, Ali Ghrayeb, Haitham Abu-Rub, Shady S.

Refaat, Mahdi Houchati, Othmane Bouhali, and Santiago Banales Lopez. “A

Multiprocessing-Based Sensitivity Analysis of Machine Learning Algorithms for

212

Load Forecasting of Electric Power Distribution System.” IEEE Access 9 (2021):

31684–31694. doi:10.1109/access.2021.3059730.

7. Zainab Ameema, Ali Ghrayeb, Dabeeruddin Syed, Haitham Abu-Rub, Shady S.

Refaat, and Othmane Bouhali. "Big Data Management in Smart Grids: Technologies

and Challenges." IEEE Access 9 (2021): 73046-73059. doi:

10.1109/access.2021.3080433.

B.3 Accepted Abstract for Journal Special session

8. Dabeeruddin Syed, Haitham Abu-Rub, Ali Ghrayeb, Othmane Bouhali, Shady S.

Refaat, Mahdi Houchati, “Cloud-based Big Data Analytics for Load Forecasting

Targeting Demand Response”. In IEEE Transactions on Cloud Computing [Accepted

Abstract]

B.4 Published book chapters

9. Mohammed, Amira, and Dabeeruddin Syed. “Cloud Computing for Smart Grid.”

Smart Grid and Enabling Technologies (July 30, 2021): 333–357.

doi:10.1002/9781119422464.ch14.

B.5 Published/Accepted conference papers

10. Dabeeruddin Syed, Haitham Abu-Rub, Ameema Zainab, Mahdi Houchati, Othmane

Bouhali, Ali Ghrayeb, and Shady S. Refaat. “Investigation on Optimizing Cost

Function to Penalize Underestimation of Load Demand through Deep Learning

Modeling”. In 47th Annual Conference of the IEEE Industrial Electronics Society.

[Accepted]

11. Dabeeruddin Syed, Shady S. Refaat, Haitham Abu-Rub, Othmane Bouhali, Ameema

Zainab, and Le Xie. "Averaging Ensembles Model for Forecasting of Short-term Load

in Smart Grids." In 2019 IEEE International Conference on Big Data (Big Data), pp.

2931-2938. IEEE, 2019. doi:10.1109/bigdata47090.2019.9006183.

213

12. Dabeeruddin Syed, Haitham Abu-Rub, Shady S. Refaat, and Le Xie. " Detection of

Energy Theft in Smart Grids using Electricity Consumption Patterns." 2020 IEEE

International Conference on Big Data (Big Data) (December 10, 2020).

doi:10.1109/bigdata50022.2020.9378190.

13. Dabeeruddin Syed, Shady S. Refaat, and Haitham Abu-Rub. "Performance evaluation

of distributed machine learning for load forecasting in smart grids." In 2020

Cybernetics & Informatics (K&I), pp. 1-6. doi:10.1109/ki48306.2020.9039797.

14. Dabeeruddin Syed, Shady S. Refaat, Haitham Abu-Rub, and Othmane Bouhali.

"Short-term Power Forecasting Model Based on Dimensionality Reduction and Deep

Learning Techniques for Smart Grid." In 2020 IEEE Kansas Power and Energy

Conference (KPEC), pp. 1-6. doi:10.1109/kpec47870.2020.9167560.

15. Zainab, Ameema, Shady S. Refaat, Dabeeruddin Syed, Ali Ghrayeb, and Haitham

Abu-Rub. "Faulted Line Identification and Localization in Power System using

Machine Learning Techniques." In 2019 IEEE International Conference on Big Data

(Big Data), pp. 2975-2981, 2019. doi:10.1109/bigdata47090.2019.9006377.

B.6 Submitted Journal papers (under review)

16. Dabeeruddin Syed, Haitham Abu-Rub, Shady S. Refaat, Othmane Bouhali, Ali

Ghrayeb, Ameema Zainab, Mahdi Houchati, and Santiago Bañales Lopez,

“Enhancement of the Performances of Cross-model Power Forecasting in Smarts

Grids using Transfer Learning”. In IEEE Systems Journal [Submitted, Under Review].

B.7 Papers to be submitted

17. Dabeeruddin Syed, Haitham Abu-Rub, Ali Ghrayeb, Shady S. Refaat, “Enhancing

Short Term Load Forecasting using partitioned NN with recurrent connections”. In

IEEE Access [In pipeline]

