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ABSTRACT 

In a real-time scenario of load forecasting, it is crucial to determine the future 

electric energy consumption in power distribution electrical networks. The electric energy 

forecasting models need to be updated with real-time trends of energy consumption as the 

analyzed energy consumption data exhibits high variability between historical and current 

data. This work proposes a multi-stage supercomputing-based big data analytics service 

for parallel and real-time load forecasting. Moreover, theoretical and experimental 

perspectives are proposed for multi-core parallel short-term load forecasting. 

Additionally, the knowledge from existing load forecasting based on deep learning models 

is used to innovatively develop highly accurate transfer learning models at different 

distribution nodes. Transfer learning models present practical applicability and productive 

possibilities in cases when sufficiently large data is not available. A novel approach based 

on deep neural network models is employed for load forecasting. Firstly, the electrical 

distribution nodes are grouped into different clusters with an aim to decrease the number 

of deep learning models to be trained. Secondly, network architecture information, 

weights, and biases are transferred from the first developed clustered model to subsequent 

models with an aim to reduce the training time of a large number of clustered models. And 

incremental learning is employed to incorporate newer data points for real-time processing 

and improving the forecasting accuracy of the clustered models on individual distribution 

points. Furthermore, parallel pool-based processing is employed to make efficient 

utilization of computing cores and to reduce the model development time further. The 

proposed big data real-time analytics methodology is evaluated on real-world energy 
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consumption data collected from 105,148 Spanish electrical distribution transformers. The 

proposed methodology aims to reduce the number of trained models, training time, and 

execution time while still maintaining high prediction accuracy.  
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CHAPTER I  

INTRODUCTION*1  

1.1 Introduction 

Electrical power system has recently witnessed massive developments. Technical 

developments have been witnessed not only in the power generation side but also in the 

transmission and distribution. Furthermore, the new technology is expected to 

revolutionize the end user side with adopting various demand management programs and 

techniques. For instance, the renewable energy sources such as solar and wind are not just 

added to the generation side by the utility companies, but also by the end consumers and 

microgrids. Moreover, vehicle to grid technology has provided the opportunities of power 

flow management and its flow from vehicles to the grid.  

  Once the electricity from renewable sources is increased to a large quantity, it 

would bring variability in the electrical system. This variability requires that innovative 

flexibility measures are considered to balance the demand and supply all the time. Novel 

approaches are required to improve the flexibility of the energy system ranging from 

supply to demand side. The concept of a smart grid and the use of big data analytics will 

help to manage the power systems better and also to increase resilience. 

There has been and will be more massive installation of smart meters at the 

customer premises. These meters monitor the near real-time usage of energy and also 

collect and communicate the data to the electric utilities. The advent of the power system 

 

1 Reprinted with permission from “Smart Grid Big Data Analytics: Survey of Technologies, Techniques, and Applications.” by 
Dabeeruddin Syed, Ameema Zainab, Ali Ghrayeb, Shady S. Refaat, Haitham Abu-Rub, and Othmane Bouhali, 2021. IEEE Access, 9, 

59564-59585, Copyright 2021 by Dabeeruddin Syed. 
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deregulation on the delivery side and the moving away of the vertically integrated utility 

business model has also contributed to the development of the smart grids. Smart grid 

principle solves the power demand problems by providing two-way power and 

information flow between the consumers and utility [1]. Smart meters have been installed 

across the world in the past years along with the transformation of the traditional power 

grid into smart grid. The development of smart grid is fully associated with the big data 

flow. There are various potential applications of big data analytics on smart grid data such 

as the real time and automatic processing of the electrical consumer’s energy 

consumption, automatic billing, intelligent energy planning and pricing, detection of 

outages due to faults and anomalies, load and generation forecast under high 

unpredictability, load management with demand response, and asset management [2]. 

High volume of data obtained from various smart grid sources satisfy the characteristics 

of big data. This grid data not only displays the Volume, Velocity and Variety 

characteristics but also the V’s characteristics of Veracity, Visibility, and Value [3]. These 

characteristics are the challenges when dealing with the big data analytics along with other 

major concerns such as security, privacy [4]. 

The smart grid allows for the two-way energy and information flow between the 

consumers and utilities [5]. However, managing the real time data for making business 

valued decisions is still a persisting challenge [6], [7]. Currently, there are many utilities 

installing large number of smart meters and some of them have efforts to use the data. As 

an example, IBERDROLA has installed more than 11 million smart meters in Spain, 

generating 240 million registers every day [8]. Big data techniques over an estimated 
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volume of 90 billion registers per year is being used to improve revenue collection and to 

optimize energy use. In smart grid, the number of smart sensors is much higher, and the 

generated data is significantly much larger.  

More data utilization helps improving grid reliability and performance and ensures 

better decisions by the utility provider and customers which allows for effective demand 

side management and demand response [9]. However, the high volume of raw data is not 

directly comprehensible or useful without a dependable and consistent ability to process, 

analyze, and understand the information contained within such huge amount of data. 

Therefore, the data should be transformed into useful information before action can be 

taken based on it which is a complicated process because this beneficial information is not 

obvious from the data. The factors that contribute to the complications are the visualization 

and the use of data itself. Some information needs to be used by the automated systems 

while other information needs to be visualized and presented to people. Also, the time 

scales for different applications are different, from milliseconds to days. The challenges 

involved with the use of smart grid data for analytics can be categorized as 1) decisions 

on corresponding the data collection infrastructure to the desired applications, 2) 

application of new architecture and tools to manage grid data as streams in real-time, 3) 

transforming processes throughout the utilities to support the big data infrastructure, 4) 

managing the humongous amounts of data to make decisions that allow the benefits from 

the information obtained from smart grids data. 

The smart grid contains a large number of sensors for various monitoring, 

communication, control, and management functionalities which enable effective, stable, 
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reliable, and efficient operation of the power grid [10], [11]. Load forecasting plays a 

crucial role in the effective operation and management of large electrical systems [12], 

therefore this topic has been of high research and development focus during the past years 

[13]. A particular use of load forecasting is demand-side management (DSM) that plays 

an important role in creating the next smart grid energy paradigm and in improving the 

current grid efficiency and reliability. 

The main challenge with the DSM at the residential and distribution levels is the 

need for high precision control and management which requires precise short-term and 

long-term load forecasting.  Such DSM ensures proper and timely decision making on the 

power purchase, generation, and consumption. However, it is very difficult to predict the 

operation and consumption of the largely expanding electrical systems. The factors that 

affect the electric power demand and makes its forecasting a challenge are the differences 

in weather, season changes, weekends and holidays, operation scenarios of the power 

plant, faults occurring on the networks, economic growth, population growth, incentives, 

and others. The better demand prediction gets, the more effective is the DSM also in 

reducing the outages and blackouts.  

Load forecasting helps the utilities to plan the amount of generation, load 

switching and infrastructure development. The load forecast can be divided into three 

main categories: Short-term forecast: ranges from few hours to few weeks [14]; Medium 

forecast: ranges from few weeks to few years [15]; Long-term forecast: ranges more than 

a year [16]. 
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The main features for different categories of the forecast are short-term forecast 

includes time factor, weather data, and possible customer classes. Short-term load 

consumption depends on the time of the day or day of the week. For hotter regions, the 

energy consumption is higher during the noon time. Weather usually refers to temperature, 

humidity, cloud cover, wind speed, and Ultraviolet (UV) index. 

The major factors that can be used for medium and long-term load forecast include 

[17]: historical load data, historical weather data, number of customers in different 

categories, age and characteristics of customers, electrical appliances in the area, 

appliances sales data, and economic and demographic categories. 

The load forecast enables the service providers to control and plan the generation 

of electricity ahead of time. This in turn helps providers to manage the peak load [18]. 

Deep learning techniques could be used for load forecasting. They can be incorporated in 

the modern electrical systems easily as the grids are getting smarter with various smart 

sensors, devices, and meters. These smart devices generate data at a very high rate and in 

high quantities and can benefit the forecasting process. The data are collected from various 

sources that include the generation plants, transmission systems, and distribution systems. 

1.2 Problem Definition – Research Objectives 

Electrical energy must be generated whenever there is a demand for it. It is crucial 

for electric utilities to estimate the load demand on their systems. To minimize the 

operating cost, electrical utilities use load forecasting to control the number of operating 

generator units. The electric energy consumption data are collected by smart meters at 

high velocity, variety, and volume; making the data characterized as big data. The smart 
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meter data, representing the energy consumption and customer consumption behavior at 

the household level, enable the electrical utilities to perform capacity planning, capacity 

building, and efficient operations. The various and different data collection points in a 

large electrical grid require parallel and real-time processing of the generated data for 

creating an accurate load forecasting. However, providing parallel and real-time load 

forecasting is a challenge for the operation and planning of electrical power generation. It 

is highly crucial to optimize the tradeoff between the accuracy of forecasting models and 

the execution time for economic operation of power system. 

1.3 Research Contribution 

The goal of this research is to provide a big data analytics methodology for parallel 

and real-time load forecasting in smart grid. The key contributions of this research work 

are summarized as follows. 

1. Machine learning pipeline for predictive models is developed. Insights to set the 

strategic direction for the enhancement of energy forecasting accuracy are 

generated. 

2. A multi-stage deep-learning and clustering-based transfer learning methodology 

to forecast short-term energy consumption at distribution nodes in a large electrical 

network. 

3. The proposed clustering layer aims to identify the distribution nodes that have 

similar trends/profiles of energy consumption and cluster these nodes together. 

The objective of clustering approach is to reduce the number of deep learning 
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models required to be trained and developed while still achieving accurate load 

forecasting. 

4. A hybrid cross-model adaptation layer capable of transferring the knowledge from 

one deep learning forecasting model to others is proposed. This layer is aimed at 

and proven to reduce the training time of load forecasting models. 

5. A decoupled weight regularized optimizer is proposed to eliminate the negative 

transfer learning between the dissimilar clusters in transfer learning layer. 

6. The incremental learning is proposed to avoid the regeneration and retraining of 

the forecasting models. This layer allows for real-time and online fine tuning of 

the models and for enhancing the forecasting accuracy. 

7. A data mining module that integrates the weather and location API is developed 

to study the impact of feature selection. 

8. Multiprocessing and parallel processing strategy is developed to enhance the 

scalability of the proposed methodology. 

9. A novel objective function is proposed to penalize the tendency of deep learning 

models to underestimate. 
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CHAPTER II  

LITERATURE REVIEW*2,3 

In this chapter, background and related works on smart grid data flow, big data 

analytics process, technologies in the literature for big data analytics and industrial applied 

solutions are discussed. Additionally, an introduction to machine learning, supervised 

algorithms, unsupervised methods, and dimensionality reduction techniques is provided. 

Moreover, the chapter discusses scope of big data analytics in smart grid, different 

applications possible and different literature efforts that utilize various data-driven 

 

2 Reprinted with permission from “Smart Grid Big Data Analytics: Survey of Technologies, Techniques, and Applications.” by 
Dabeeruddin Syed, Ameema Zainab, Ali Ghrayeb, Shady S. Refaat, Haitham Abu-Rub, and Othmane Bouhali, 2021. IEEE Access, 9, 

59564-59585, Copyright 2021 by Dabeeruddin Syed. 
3 Reprinted with permission from “Deep Learning-Based Short-Term Load Forecasting Approach in Smart Grid with Clustering 

and Consumption Pattern Recognition.” by Dabeeruddin Syed, Haitham Abu-Rub, Ali Ghrayeb, Shady S. Refaat, Mahdi Houchati, 

Othmane Bouhali, and Santiago Bañales, 2021. IEEE Access 9, 54992-55008, Copyright 2021 by Dabeeruddin Syed. 

 

Figure 1 Smart grid as enabling engine - depiction of opportunities 
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methodologies for load forecasting, in addition to their methodologies of data acquisition, 

analysis, and performance. 

2.1 Smart Grid Data Flow 

A smart grid is formed by the integration of information and communications 

technology, electrical networks, and automation. The smart grid as an enabling engine is 

depicted in Figure 1. The electrical networks in the smart grid require the deployment of 

smart meters, sensors, devices, and control strategies. These have evolved due to the 

integration of renewable energy sources that are normally considered variable and 

unreliable sources of energy and are completely clean to the environment [19]. The smart 

grid aims to incorporate all the energy sources to match not only the baseline load but also 

the intermediate and peak loads. 

 

Figure 2 Scope of Big Data Analytics in Smart Grid 
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In the smart grid, there is a lot of scope with big data analytics apart from creating 

intelligence and obtaining information from the raw data [20], [21]. The scope of big data 

analytics has been illustrated in Figure 2. It is required that the big data methodology 

provides the potential to perform different types of analytics on the voluminous data to 

interpret it and derive business-valued applications. The different application areas for big 

data analytics in a smart grid will be discussed. 

2.1.1 Big Data Sources 

The data from the smart grids is generated at a very high rate and volume and in 

real time [22]. Extracting information from smart grid data which is required for specific 

applications calls for deep insight into the sources of smart grid data. The data is obtained 

from the sensors, smart meters, grid devices, detectors, and SCADA. The collected signals 

relate to power utilization habits of consumers, phasor measurement, energy consumption, 

energy pricing and bidding, operation or financials for running the utility. Types of sensors 

and information obtained from those sensors are described in Table 1. Also, large data sets 

not related to grid such as weather data, GIS data should be used for situational awareness 

and decision making. Owing to security and privacy concerns, the electric utilities do not 

share the smart meter data publicly and this poses a challenge to the research community. 

There are several benchmarks and publicly accessible data that have been anonymized or 

semi-anonymized and that the researchers can use to validate the performance of their 

proposed modeling and data analytics methodologies. The summarization of the list of 

public data sources is given in Table 2 [23], [24]. 
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Table 1 Smart Grid Sensors and Devices. 

 
Sources Quantity being measured Information extracted and 

applications 

Advanced Metering 

Infrastructure (AMI) 

E, Cumulative energy usage, peak 

load, load curve, phase, failure counts 

& logs, P.F., tamper factor, last 

interval demand 

Market pricing, real-time on 

demand, remote meter 

configuration, demand-side 

management, electric usage, 

power quality monitoring, and 

local control 

Distributed Generation 

Sensors 

V, P.F. Load balancing 

Digital Fault Recorder 

(DFR) 

Power swing, load variation, transient 

phase angle changes, frequency 

fluctuations, also records power 

system events such as time of fault, 

and power disturbance. 

Faults classification 

Electrical Measurement 

Sensors (EMS) 

V, I, E, Vsag, P.F., Qreac, electric & 

magnetic fields 

Revenue 

Fibre Bragg Grating 

sensor (FBG) 

wavelength shift under changes in 

strain & temperature 

Prediction of overheating, sag, 

vibration, galloping 

Geographical 

Information System (GIS) 

GIS data Asset management & map the 

location of outages 

Hall Effect sensor V and magnetic field Current sensing, proximity 

switching, positioning, speed 

detection 

High Voltage Line 

Temperature and 

Weather Condition 

Sensors 

T, record weather conditions Preventive maintenance 

Intelligent electronic 

device (IED) 

Records status changes in substation 

and outgoing feeders 

Relay protection 

Line Fault detectors V, I, P, harmonics, phase angle Transmission or Distribution 

faults 

Magnetoresistive sensors Current, power, total energy, 

frequency, modulation 

Transient Magnetic Field, EMI in 

substation 

Phasor Measurement 

Unit (PMU) 

V, I, P, harmonics, phase angle Time synchronized 

measurements with phase angles, 

electrical waves measurement of 

power grid 

Remote Terminal Unit 

(RTU) 

Transmits telemetry data and 

controllable by micro-processor 

system operation status 

Smart Capacitor control V, I, VAR and harmonic monitoring Monitoring & control of 

capacitor banks remotely 
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Sagometer T Line Sagging 

Smart Sensors for Outage 

Detection 

T, I Outage detection 

SCADA V, I, E, P.F. Automatic control, protection, 

system monitoring, event 

processing and alarm 

Smart Sensors for 

Transformer Monitoring 

V, I, T, load tap changer values, 

partial discharge, dissolve gas data 

Preventive maintenance 

Smart Voltage Sensors V Voltage Regulation 

Wide area monitoring 

system (WAMS) 

Deals with incoming data from PMUs Dynamic stability of the grid 

V = Voltage, I = Current, P = Power, E = Energy, Vsag = Voltage sag, P.F. = Power factor, T = temperature 

 

Table 2 Publicly accessible data sources. 

 
Data Source Name Data Description 

Ausgrid network [25] Load profile data at the substation level. 

Commission for Energy Regulation (CER) smart 

metering project [26] 
Smart meter data from Ireland. 

Cornell campus smart grid [27] Smart meter data. 

The École polytechnique fédérale de Lausanne (EPFL) 

smart grid data (Switzerland) [28] 
PMU data. 

Electric Reliability Council of Texas (ERCOT) data [29] Market data. 

North American SynchroPhasor Initiative (NASPI) data 

[30] 
PMU data. 

Pecan Street project [31] Smart meter data. 

Pennsylvania-New Jersey-Maryland (PJM) market data 

[32] 
Market data. 

Residential or commercial data [33] Consumption, electric vehicles, power 

quality, PV generation, reliability, 

weather, wind-based generation, and 

general energy data. 

University of California (UC) Berkeley campus smart grid 

[34] 

Smart meter and building consumption 

data. 

 

2.1.2 Data Structures 
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Contrary to the traditional data analysis, big data analysis deals with semi-

structured, quasi-structured and unstructured data in addition to the structured data [35], 

[36]. 

• Structured data: Structured data is the data that comprises clearly defined data types, 

structure, and format whose patterns make the data easily searchable. Few examples 

include data that can be stored in spreadsheets, Comma-separated Values (CSV) file, a 

traditional Relational Database Management System (RDBMS), data cubes in Online 

Analytical Processing (OLAP), relational tables containing customer information, and 

electrical consumption data in numbers or strings. Meters’ data, distribution management 

data, equipment parameters, load control data, and marketing system data in relational 

format are examples of structured data in smart grids. 

• Semi-structured data: Semi-structured data is textual data that contains perceptible data 

patterns and enables parsing. For example, the XML and JSON data files are self-

describing and defined by its schema. Web service data, load monitoring, and power 

quality data are examples of semi-structured data in smart grids. 

• Quasi-structured data: Quasi-structure data is textual data that contains erratic data 

formats but can be properly formatted with tools after time and effort. The only difference 

between the semi-structured and quasi-structured data is that semi-structured data has 

metadata associated with them and the metadata can be easily used to structure or format 

the data. Whereas the quasi-structured data requires intelligence-aware approaches to 

structure or format them. For example, web clickstream that contains erratic formats and 

data values, web scrapping data, and search engine results are quasi-structured data. 
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• Unstructured data: Unstructured data is data that has no pre-defined models or schema. 

Examples include publicly collected census and text, social media streams and tweets, 

audio, video, and photographs. Meteorological information, customer service data, and 

economy data of distribution regions are examples of unstructured data in smart grids. 

The high-level view of the data flow into the utility is illustrated in Figure 3 [37]. 

The first step is the data collection in which the major classes of data are collected from 

various sources, e.g., the customer data is collected using smart meters, grid data is 

measured on distribution and transmission lines using PMUs and synchrophasors. Other 

important data, that are collected, include SCADA data, market data, weather data, and 

customer feedback in the form of tweets, text, videos, audio, and pictures. The complex 

and heterogeneous data from multiple sources are then transmitted through various 

communication networks and stored in the relational database, data warehouse, file 

servers, application servers, and Hadoop clusters. This comes under the phase of data 

management where the data undergoes extraction, cleaning, aggregation, and encoding. 

Finally, the data are loaded into any in-memory distributed databases for further analytics. 

The third phase is analytics where the actual information stored in data is extracted to 

represent business value. The data analytics is performed using approaches such as time 

series analysis, feature selection, feature extraction, machine learning modeling, deep 

learning modeling, clustering, incremental learning, adaptive learning, and reinforcement 

learning with an aim to enhance applications for enterprise intelligence, grid operations, 

and customer insight. The applications may include the following but are not limited to: 

load profiling, load forecasting, demand response, program marketing, outage 
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management, and bad data detection [21], [37], [38]. Finally, the information should 

enable action in the form of automation, external communication, and monitoring through 

visualization and dashboards. 

2.2 Big Data Analytics Process 

Big Data analytics requires pre-defined strategies because of the high volume of 

data. Also, the velocity and variety of data pose challenges in the data analytics process. 

It is very crucial that the data from the smart grid are processed in real-time because 

significant patterns can be recognized from the data to make better decisions. Data 

 

Figure 3 High level view of flow of data into the utility 

 

Figure 4 Big Data Analytics Process 
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analytics deals with the extraction of actionable knowledge and patterns from the available 

data [39]. The big data analytics process is illustrated in Figure 4. 

There are four major types of big data analytics [40]. These are described as 

follows: 

a) Descriptive Analytics: Descriptive analytics illustrates what happened in the past using 

the historical data available and shows the data in an easily understandable form or 

visualization. In general, the data is illustrated using graphs, bar diagrams, pie 

diagrams, maps, and scatter plots. In short, descriptive analytics is performed to 

understand or illustrate the patterns in the data. 

b) Predictive Analytics: It extrapolates from the data available to predict what can happen 

in the future. The tools that are used for predictive analytics are time-series analysis 

using statistical methods and other data mining algorithms. Predictive analytics is 

usually performed to predict which events can happen in the future. 

c) Exploratory Analytics: It finds hidden correlations or relationships between features 

in the data. This helps us to estimate values for a dependent feature when information 

is available for the independent features. Exploratory analytics is basically performed 

to determine the cause behind the events that have happened in the past. 

d) Prescriptive Analytics: It is used to discover the best outcome of past events when the 

features of the data and operating parameters of a system are given. It helps to develop 

strategies for future events under similar conditions. The techniques involve 

simulation tools, and these simulate the operating conditions or features to finally 

come up with the best outcome. The simulation techniques strategize how to plan for 
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similar events in the future. Prescriptive analytics is basically performed to know how 

preferable events can be made to happen in the future. Example: power flow analysis. 

Data analytics starts with the acquisition of data following which the data is 

processed to reveal information. 

2.2.1 Data Acquisition 

The first step in any of the data analytics process is the collection of data. The data 

in the smart grid are collected from various sources as mentioned in the earlier section. 

With the data collection already in place, the other subtasks in data acquisition are data 

communication and data pre-processing. The raw data need to be transmitted either to a 

real-time stream processing system or to a storage system from where the data can be sent 

to the offline batch processing system for further analysis. Since the data have been 

collected from diverse and multiple sources, the data aggregation and cleaning are the 

foremost and crucial steps. Data aggregation services should be in place to integrate the 

data from varied sources and furnish a unified view of the available data. In data pre-

processing, the inconsistent and missing data are to be filled or one among the records, 

and the features are to be removed to improve the data quality [41]. It is crucial to refine 

the features in the extracted data as there are noise and redundancy in the collected raw 

data. Refining the features involve either feature selection or feature extraction. If the data 

contain highly correlated features, then the machine learning algorithms, in general, 

perform poorly. Regularization techniques are used to overcome the issues of overfitting 

whereas underfitting would require the acquisition of more data and that is not an issue in 

the case of big data [42]. 
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2.2.2 Data Processing 

The data collected and transmitted should be stored in storage infrastructure for 

further processing. The stage, at which the data is processed, classifies data processing 

into the following types: 

1) Batch Processing: Batch analytics is fundamentally the analysis of data in batches. It 

involves the workflow on offline data where all the data are available, pre-extracted, 

and ingested using scripts and a huge group of data is analyzed in a single execution. 

Distributed file systems (DFS) provide for the fault-tolerant scalable storage of data 

across commodity hardware where the storage nodes do not share memory however 

are connected virtually through networking [43]. MapReduce and Hadoop framework 

provides such a DFS framework. In MapReduce, a huge amount of data is processed 

by dividing the job into a set of sub-jobs and each sub-job handles a small portion of 

data and all the sub-jobs operate in parallel to obtain the intermediate outcomes. The 

final result is then obtained by the aggregation of the intermediate outcomes. The 

advantage of the MapReduce paradigm with respect to batch processing is the data 

locality principle. In this principle, the algorithm or the user code is moved close to 

data rather than moving the data to the algorithm. This requires the movement of 

computational resources to where the data is located and thus, prevents overhead from 

the data transmission. The disadvantage of batch processing is that it cannot provide 

analytics results in real-time. An example of batch processing in smart grids includes 

the training of data-driven models using offline data for applications of topology 

identification, predictive maintenance, and energy forecasting. These models would 
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require re-training if new data become available and need to be included in the 

modeling performance. There is no specific time interval defined to term processing 

as batch analytics. However, it is usually considered that if the processing is scheduled 

to happen with an interval equal to or greater than 20 minutes, then it is batch 

processing. 

2) Stream Processing: Stream processing is primarily the processing of each new data 

instance as soon as it is available instead of waiting for batches of offline data. The 

idea behind the stream processing is that the potential worth of information from data 

relies on the freshness of data [44]. Hence, it is crucial that the stream processing 

model processes the data as soon as the data instance is available to obtain 

approximation results. If the data are continuously available in huge streams, a portion 

of the data can be stored in memory until it is processed. 

In the subsequent sections, the  technologies that possess the capability of processing 

big data in real-time are reviewed. They provide a huge advantage of handling data 

with high-velocity requirements. In one of the proposed works, the Hadoop File 

system is used as a storage system and spark streaming provides the real-time 

processing solution along with tools such as Spark Structured Query Language (SQL), 

Spark Machine Learning Library (MLlib), and GraphX. Examples of stream 

processing in a smart grid include stateless conversion, stateless filtering, aggregation, 

pre-processing, and wavelet transformations of the data. The time interval for data 

processing to be termed as stream processing is typically seconds or milliseconds. 
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3) Iterative Processing: There are few big data problems which require processing of 

data iteratively and demands for a greater number of read and write operations than 

the batch processing and stream processing and so involve more Input Output transfer 

and are time consuming. 

For big data analytics on smart grid data, the batch and the stream processing are 

focused upon and the comparison of these processing types is given in the Table 3. 

Table 3 Batch v/s Streams Processing. 

 

 
Batch Processing Stream Processing 

Input Form Chunks of data Streams of data 

Size of Data Input known & finite unknown & infinite 

Is Data Stored? Stored Data Data is not stored (or) 

small streams stored in 

memory 

Hardware Used multiple CPUs/memory limited amount of memory 

Processing multiple rounds single or few passes over 

data 

Time longer time seconds or milliseconds 

Applications widely adopted sensor networks, and web 

mining. 

 

2.2.3 Data Analytics Techniques 

Multiple machine learning algorithms are used as data analytics techniques in 

smart grids. These techniques are used to map the relationship between the features in the 

data and the prediction label. If the labels exist, the techniques employed are named as 
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supervised techniques. Whereas the data may not explicitly consist of labels, and it is the 

algorithm that recognizes the patterns in the data. The techniques that analyze data without 

labels are termed as unsupervised techniques. 

The summarization of the different classes of machine learning techniques, that 

have been previously applied in smart grids, is presented in Table 4, Table 5, and Table 6. 

Table 4 Dimensionality Reduction Algorithms. 

 

Algorithm Description 

Principle Component 

Analysis (PCA) [45] 

Most widely used unsupervised technique; heuristic 

approach to extract variance structure from high-

dimensional data; involves 1) feature scaling & mean 

normalization, 2) calculation of covariance matrix and 3) 

sorting the eigenvectors that represent components. 

Linear Discriminant 

Analysis (LDA) [46] 

Supervised technique; projection of data from higher 

dimensional space to lower one so that it maximizes 

between-class & minimizes within-class distances. 

Kernel Discriminant 

Analysis (KDA) [47] 

Obtains linear separation by non-linear mapping of input 

space to high-dimensional feature space. 

t-distributed stochastic 

neighbor embedding (t-

SNE) [48] 

Converts high-dimensional data into a matrix of pair-wise 

similarities using conditional probabilities, and variation of 

stochastic neighbor embedding. 
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Table 5 Supervised Algorithms. 

 

Algorithm Description 

Linear Regression 

(LR) [49] 

Curve fitting regression technique for linear functions; the 

hypothesis function is linear. 

Polynomial Regression 

[50] 

Curve fitting regression technique for non-linear functions; 

the hypothesis is a linear model of basis functions (linear, 

polynomial, Gaussian Radial Basis Function (RBF), and 

sigmoid) 

Logistic Regression 

[51] 

Classification technique to identify decision boundary; the 

hypothesis function is sigmoid. 

Neural Networks (NN) 

[52], [53] 

Performs classification & regression; capable of modeling 

highly non-linear relationships with large feature space; 

parametric model; can represent complex logic operations 

& comprises input, hidden & output layers with activation 

functions (threshold, logistic, arctan, gaussian & ReLU); 

and types: convolutional, and recurrent. 

Support Vector 

Machines (SVM) [54] 

Large margin classifier; classifies non-linear data by 

introducing slack variables; SVM is found by minimization 

formulation under constraints that are overcome using a 

Lagrangian multiplier. Types: linear, and kernel. 
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Naive Bayes [55] 

The parametric approach for likelihood estimation assumes 

that the data features are independent. 

k-Nearest Neighbor (k-

NN) [56] 

Non-parametric approach for likelihood estimation; 

classifies a data point to the majority class among k 

Neighbors; 

Decision Tree (DT) [57] 

Recursive, partition-based tree model that predicts a class 

based on split points; the algorithm takes leaf size and purity 

threshold as inputs; the process stops when leaf size or 

purity threshold is reached. 

Random Forest (RF) 

[58] 

Collection of low-bias, high-variance trees; and outputs 

mode of the classes or mean prediction. 

 

Table 6 Unsupervised Algorithms. 

 

Algorithm Description 

K-Means Clustering 

[59] 

The representative-based technique includes steps of 

initializing cluster centroids, grouping data points to nearest 

centroids, updating centroids, and uses Euclidean distances 

& variables are to be quantitative. 

Expectation-

Maximization 

Clustering [60] 

The representative-based technique includes steps of 

initializing cluster mean, calculating posterior probability, 

and re-estimating means, covariance & priors. 
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Gaussian Mixture 

Clustering [61] 

Fits k-Gaussians to cluster the data. The result is the 

weighted average of K-gaussian distributions. 

Hierarchical 

Clustering [59] 

Involves creating a sequence of nested partitions that can be 

visualized by a tree or hierarchy of clusters. 

Density-based Spatial 

Clustering of 

Applications with 

Noise (DBSCAN) [62] 

Density-based clustering that computes neighborhood to 

classify data points into core, border & noise points while 

also using a threshold called minimum points. 

Association Rules [63] 

Usually applied in market basket analysis, text mining, web 

usage mining, and linguistics mining to determine the co-

occurrence relationships or associations between all items 

in the database. 

Collaborative Filtering 

[64] 

Generally employed in recommender systems where 

preferences of a target user are predicted based on the user 

searches where users are like the target & mining on their 

preferences. 

 

2.3 Technologies for Big Data Analytics 

In this section, a hierarchical architecture of state-of-the-art core components of 

big data analysis for smart grids using Hadoop is shown in Figure 5a, and the architecture 

that uses Storm is depicted in Figure 5b. In one of the works, a big data analytics platform 

is proposed and the technologies for big data analytics for smart grids using Spark is 
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illustrated in Figure 5c [65], [66]. The major components perform the collection, storage, 

processing, visualization, and querying of data. There are a variety of workloads present 

in the scenario of massive-scale data analytics. A combination of these workloads will 

present a potentially effective solution for the business goals in the scenario of smart grids. 

2.3.1 Evolution of Big Data Technologies 

When dealing with massive-scaled data, the framework was initially developed for 

the processing of offline large datasets. Apache Hadoop and MapReduce models provide 

opensource software frameworks for the distributed processing of offline data spread 

across data nodes or clusters using simple programming paradigms of the map and reduce 

functions. MapReduce abstracts from distributed programming but it still requires 

programming to a certain level. Moreover, MapReduce is efficient for batch tasks and not 

for adhoc queries or iterative processing. If the offline analysis or background task of 

indexing websites is required, then MapReduce is a suitable option. Hence, the 

 
(a) Architecture using Hadoop (b) Architecture using Storm               (c) Proposed Architecture 

Figure 5 Different layers in one of the proposed platforms 
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combination of a distributed file system and MapReduce is suitable for write once and 

read many, or sequential data access, however not for random reading or write access 

applications [67]. Yet, random read/access is required for the online analysis of data or 

the ad-hoc querying. 

As a solution to the ad-hoc querying issue, Not only SQL (NoSQL) databases can 

be used. NoSQL Databases are of two types [68]. These are mentioned in the following. 

• Column databases: A column-oriented database is a database that stores data in 

columns rather than rows. Furthermore, it is very effortless to add columns and 

these columns can be added row by row as well. The databases offer great 

flexibility, performance, and efficiency. Also, the performance of the column 

databases can be significantly enhanced by compression, late materialization, and 

batch processing. 

Examples of column databases include BigTable, HBase in Amazon Dynamo, 

Google Bigtable, and Apache HBase. 

• Key-value stores: These are distributed data structures that provide key-based 

access to data and are also called Distributed Hash Tables. An example is Apache 

Cassandra. 

NoSQL Databases are very efficient when dealing with massive-scale data even if 

the data type is unstructured or semi-structured. However, the only disadvantage is that 

these do not offer SQL-like querying. To make querying SQL-like, many NoSQL 

databases have been evolved with the SQL-like interface (Contextual Query Language 



 

27 

 

(CQL) of Cassandra, Hive, and Pig.). There are developments in the form of SQL 

interfaces that can directly connect to the NoSQL databases (such as PrestoDB.). The 

SQL-like interfaced NoSQL databases are termed as NewSQL and these possess the 

inherent capability of organizing massive-scaled data and sorting to enable efficient 

offline analyses (H-Store, Google Spanner.) [69]. 

There has been a massive growth in the availability of digital data and the data are 

available in continuous streams. Therefore, NoSQL databases have been evolved to cater 

to the stream-processing solution with the fault-tolerant distributed data ingest systems 

such as Apache Kafka, and Flume [70]. Examples of stream processing solutions are 

Apache Storm and Samsa. Also, there are standalone stream processing frameworks that 

are faster. Additionally, there have been solutions developed to employ OLAP-like 

processing in the big data landscape. Built on top of data structures, there are currently 

libraries available for machine learning and big data analytics for real-time analytics 

processing. For example, there is an Apache Spark framework that contains machine 

learning libraries and can be used for massive-scale data analytics. 

2.3.2 Apache Hadoop and MapReduce 

a) Hadoop Framework: Heterogeneity, volume, performance, scaling, cost, and 

security concerns of big data hinder the process of data analytics at every stage [71]. 

Apache Hadoop is an open-source framework that renders the distributed storage and 

analytics of big data. It consists of the core (for storage part) called the Hadoop Distributed 

File System (HDFS), the processing component that is the MapReduce programming 
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model and resource scheduler called Hadoop YARN (Yet Another Resource Negotiator) 

[72]. 

Following is the list of modules in the Apache Hadoop Ecosystem (as shown in 

Figure 6 [73], [74]): 

1) Hadoop core: Hadoop core contains a pre-defined collection of utilities and 

libraries that can be used by other modules within the Hadoop ecosystem. For 

instance, if the data access module such as HBase, and Hive needs to access the 

file storage system in Hadoop, then these are required to build Java Archive (JAR) 

files stored in the Hadoop core. 

2) Hadoop Distributed File System: The default distributed storage system in Apache 

Hadoop is the HDFS. The huge datasets are dumped in the HDFS and when 

required, access to the data is provided to other Hadoop modules using utilities 

[75]. HDFS component provides reliable and quick access to the data by creating 

several copies of the data block and these copies are distributed across multiple 

 

Figure 6 Apache Hadoop Ecosystem 
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clusters. HDFS works on the master-slave architecture model and comprises three 

components namely NameNode, DataNode, and Secondary NameNode [76]. 

3) Hadoop YARN: YARN is the dynamic resource management component that lets 

the user run multiple Hadoop applications without having to worry about the 

aggravating workloads. YARN provides for improved cluster utilization. Key 

components of YARN are Resource Manager, Application Master, Node 

Manager, and containers. 

4) Hadoop MapReduce: This is a framework for parallel processing of large data set. 

b) MapReduce Programming model: MapReduce model is employed for the parallel 

computation and interpretation of massive-scale data and has three stages: map, shuffle, 

and reduce [77]. All the jobs are written in a functional programming style to create 

map and reduce tasks. Dynamic systems for the MapReduce model are commonly 

clusters that perform tasks such as data partitioning, scheduling of jobs, and 

communication between the cluster nodes and hence, are more suitable when dealing 

with massive-scale data. In the map phase, the data are read from the DFS and 

partitioned into clustered systems where the input is processed to compute the 

intermediary results which are then stored on the local node of the cluster where the 

map phase has run and waits for all the map functions to generate output in key-value 

pairs. The output in key-value pairs is then given as input to the reduce function to 

generate the final result. The advantage of the MapReduce model is that it takes 

processing to where the data resides and hence, decreases the transmission of data and 

improves efficiency. Therefore, the MapReduce model is more apt for the distributed 
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computing of massive-scale data. The summary of the Hadoop module is illustrated in 

Table 7 [78]. 

Table 7 Summary of Hadoop module. 

 

Stage Software Function 

Data Acquisition 

Flume 
Data acquisition from varied sources to 

a centralized location 

Sqoop 
Data Import & Export between centralized 

location & Hadoop 

Data Storage 

HDFS Distributed File System 

HBase 
Non-relational key-value based columnar data 

store 

Computation MapReduce A parallel computation programming model 

Querying Analysis 
Pig Procedural Data Flow platform 

Hive SQL-like language for querying 

Process Management Mahout Machine Learning Library 

Querying 

Zookeeper 
Centralized service to maintain configuration 

information & synchronization. 

Chukwa System Monitoring 

Hadoop has provided for storing and analyzing data at massive scales. However, 

data analytics technology cannot be applied to real-time systems [79]. The advent of the 

Internet-of-Things, smart meters, and devices has led to the possibility of real-time 

analysis of data for the benefits of business and many other advantages such as smart grid 

stability, and management. The real-time handling of data falls under one of the 

categories: Stream processing or Iterative processing. The stream processing framework 
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would work efficiently for big data analytics in the smart grid for real-time decisions about 

generation, and control. 

2.3.3 Apache Storm 

It is a scalable and distributed framework for reliable computation and processing 

of streams of real-time data with processing latencies in the order of milliseconds. Apache 

Storm can ingest the data from multiple sources using Kafka or Kinesis. A storm cluster 

is very alike to the data cluster in Apache Hadoop [80]. In Hadoop, MapReduce jobs are 

executed while topologies are executed in Apache Storm. Topologies are very similar to 

jobs, but topologies process messages or data forever until these are killed. 

In a Storm cluster, there are two types of nodes, namely master node and worker 

nodes [81]. A background process called Nimbus runs on the master node and this is 

analogous to Hadoop’s job-tracker. Nimbus process distributes the code in the cluster i.e., 

assigns tasks to the machines and monitors for any failures. On the machines other than 

the master node, the process called Supervisor runs and it listens for the work assigned to 

its machine by the Nimbus daemon. It starts and stops the worker node process depending 

upon the task assigned to the machine. Every worker process runs a subset of topologies. 

That means the execution of topology requires multiple worker processes that are assigned 

to different machines across the cluster. It requires coordination between Nimbus daemon 

and Supervisor processes, and this is taken care of by Zookeeper which is the coordinating 

service in the distributed environment [82]. Zookeeper takes care of naming, 

configuration, and synchronization. The important point to note is that all daemons in the 

Apache Storm are stateless and fail-fast and these come back up even if these are killed 
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by issuing manual commands. This provides for the stable and reliable real-time analysis 

of big data. 

2.3.4 Apache Spark 

Apache Spark is an open-source cluster computing framework for analyzing 

massive-scaled data. It was originally developed by Matei Zaharia at UC Berkeley 

AMPLab [83]. Spark has the capability for stream processing of big data and has many 

advantages over Hadoop MapReduce and Storm. In Apache Spark, data analytics is more 

stream processing than batch processing and hence, it avoids the reprocessing of the data 

[84]. This provides the stream processing model of Apache Spark to be dynamic and it 

becomes more crucial during the real-time processing of huge volumes of data collected 

from different sources. Even for iterative processing, the leading framework currently is 

Apache Spark as it possesses the capability of processing and holding the data in the 

memory nodes across the cluster. 

1) Characteristics of Apache Spark: 

▪ Speed: Spark extends the MapReduce model to support computations of stream 

processing and interactive querying and is 10 times faster than Hadoop MapReduce 

model. 

▪ Ease of Use: Applications written in any language Java, python, scala are compatible 

with Apache Spark. 

▪ Advanced Analytics: Spark supports MapReduce model of Hadoop, SQL-like 

Querying, streaming data, Machine Learning algorithms, and Graph algorithms too. 
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▪ Iterative and Interactive Applications: Spark is designed to execute both in-memory 

and on-disk. It holds the intermediary results in memory rather than writing on disk to 

avoid reprocessing the data if required again. Spark operators perform external 

operations on the data if it does not fit memory. 

▪ In Memory Computation: The data is stored in memory rather than written on disk. 

Hence, Spark reduces the response time to a great extent when the data is queried. 

▪ Directed Acyclic Graph (DAG): DAG in Apache spark is a set of vertices and edges 

where the vertices are the representations of the RDDs, and edges represent the 

operations to be performed on the RDDs. DAGs in spark can contain any number of 

stages. Even MapReduce model of Hadoop is a DAG of two stages - Map and Reduce. 

This allows for simple jobs to be completed in one stage and more complex jobs to be 

completed in one run of many stages unlike multiple jobs in MapReduce model. Thus, 

jobs in Spark execute faster than they would in the MapReduce model. 

2) Spark Framework: Other than core Spark, there are multiple components in the Spark 

ecosystem. These components as shown in Figure 7 [85]. 

 

Figure 7 Apache Spark 
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Spark Core is the base of all the Spark projects, and it allows basic input/output 

operations, distributed task dispatching, and scheduling through an Application 

Programming Interface (API) centered on RDD abstraction. RDD is a read-only 

collection of objects partitioned across a set of machines and it can be rebuilt if any of the 

partitions are lost [86]. RDDs are fault-tolerant, can be cached in-memory across 

machines, and can be reused in MapReduce for simultaneous computations. 

Spark SQL: Spark SQL is the Apache Spark module that is commonly worked with 

structured data. It lies on top of Spark core and is used to execute SQL queries. It 

introduces the schema RDD which can be manipulated. Users can interact with the SQL 

interface using the command line or over Open Database Connectivity (ODBC), and Java 

Database Connectivity (JDBC) server. 

Spark Streaming: It is the component of the spark that enables the processing of live 

streams of data (Figure 8). Spark streaming gives a programming interface for processing 

data streams. It resembles the Spark core’s RDD API, pushes data in small chunks, and 

does RDD transformations on the batches of data. 

MLib: Apache Spark comprises a library with common machine learning functionality 

and this library is called MLib. It processes data faster when compared to Hadoop’s disk-

based machine learning library called Mahout. 

GraphX: The GraphX API provides for users to view data in graphical format and to view 

RDDs without data movement or duplication. It uses the fundamental operators such as 
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subgraphs, joinVertices, and aggregateMessages. The summary of the proposed module 

of Spark on top of Hadoop is illustrated in Table 8. 

Table 8 Summary of Apache Spark Module. 

 

Stage Software Function 

Data Acquisition 

Flume 
Data Collection from sources to a centralized 

location 

Sqoop 
Data Import and Export between centralized 

location and HDFS 

Data Storage 
HDFS Distributed File System 

HBase Column-based datastore 

Computation Spark Streaming Computation Framework 

Querying Spark SQL SQL-like language for Querying 

Analysis Spark MLib Machine Learning Libraries 

Visualization Spark GraphX Visualizations 

 

2.3.5 Apache Drill 

It is an open-source software framework that provides for data-driven distributed 

applications requiring interactive processing of massive-scaled data. Apache Drill is the 

first and only distributed SQL engine that does not require schemas. Drill automatically 

understands the data when data are provided. This saves a lot of time and effort in defining 

 

Figure 8 Spark Streaming 
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schemas, transforming data, and maintaining those schemas. It is designed to handle 

Petabytes (PBs) of data spread across thousands of clusters and it responds to ad-hoc 

queries with high performance and low latency. 

It is a query layer that functions even when multiple data sources are present. It 

primarily scans the full tables instead of maintaining indices. The workers in Apache Drill 

are named Drillbits and run on each of the data nodes in the cluster. The coordination 

between the drillbits, optimization, scheduling, and execution is performed in a distributed 

way. 

The architecture of Apache Drill contains the following components: 

User interface: It provides an interface for the user or application-driven interaction. For 

example, interface through a command line, Representational state transfer (REST), 

JDBC, or ODBC. 

Processing layer: It comprises SQL Parses, Optimizer, Execution Engine, and Storage 

Engine. 

Data Sources: The data in the pluggable data sources may be spread across thousands of 

nodes (in-cluster) or they can be local. 

The   comparison   of   the   different   frameworks   can   be summed up as shown 

in Table 9. 

Table 9 Comparison between different frameworks for big data analytics. 

 

Features Hadoop Storm Spark Drill 

Source Code Open Open Open Open 
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Complexity Simple Simple Simple Complex 

Type of 

Processing 

Batch 

Processing 

Real-time Stream 

Processing 

Real-time 

Stream 

Processing 

Interactive 

Ad-hoc 

Querying 

Latency High Low Low Low 

 

2.4 Applied Solutions for Big Data Analytics in Smart Grids 

As mentioned before, there are few works that have been reported in the literature 

for big data analytics specifically in the smart grids. In particular, there are only a few 

commercial solutions available in the market. One of the earlier practical works on big 

data analytics was based on the Naive Bayes classification method using the MapReduce 

paradigm for novel transient power quality assessment [87]. In [88], the authors proposed 

a cloud-based architecture using Hadoop, Cassandra, and Hive for big data analytics in a 

smart grid using the data on power usage patterns of customers, historical weather data, 

supply and demand data. 

In [89], Munshi et al. presented an implementation of cloud-based Lambda 

architecture for smart grid big data analytics using Hadoop data lake. The Lambda 

architecture is aimed to provide a trade-off between latency throughput and fault tolerance 

while providing the batch and stream processing capabilities for parallel computation of 

arbitrary functions on distributed data. The Lambda architecture is based on three layers 

aptly named as a batch layer, speed layer, and serving layer [80]. The batch layer is 

required to perform two tasks including the storage of data in a distributed manner and the 

computation of batch views for the distributed data for low latency. The speed layer 

utilizes an online technique to store and update the real-time views of the recent data which 
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have not been considered by the batch layer. The serving layer is a specialized distributed 

database that integrates the data views provided by the batch and speed layers with an aim 

for real-time and online big data analytics in smart grids. The authors have integrated the 

capabilities of tools such as Hadoop, Spark SQL, Hive, Impala, and depicted generalized, 

low latent, scalable, and robust results for smart grid big data analytics. 

In [90], several challenges faced at each stage of performing big data analytics are 

presented. These challenges can be classified into three categories: data acquisition and 

handling, data processing, and system issues [91], [92]. 

In data acquisition and handling, the challenges are related to the competent 

presentation of heterogeneous data to reflect the diversity, hierarchy, and granularity of 

data. Also, the raw datasets often contain redundancy that needs to be reduced along with 

data compression without deteriorating the information in the data. Data life cycle 

management is of utmost importance because of the availability of huge amounts of data 

and the current storage systems cannot store the massive data available at an 

unprecedented rate. Therefore, there needs to be a practical system where the data is 

analyzed on the go and for that, the stream processing framework using HDFS, and 

Apache Spark has been proposed in this research work. The system challenges for 

analytics are faced with massive storage and high-speed processing. Furthermore, there 

are concerns about privacy and security since the data might contain personal information.  

In data analytics, the challenges posed are that of huge data and the requirement 

of real-time processing. One of the solutions to these challenges could be approximate 
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analytics providing approximate but real-time results. Mining on social media and 

customer feedback could present challenges as the data is generally unstructured 

Solving these challenges requires the use of large-scale parallel systems that 

further brings additional challenges such as energy management, scalability, and real-time 

collaboration. The energy usage of the large-scale parallel systems has been alarming due 

to massive data volume and analytics demand. Hence, system-wide energy management 

techniques should be utilized in big data system solutions. 

In the smart grid discipline, a cloud-based platform project has been presented in 

[22] where the University of South California microgrid was deployed as a testbed to 

transform the electrical utility into a smart grid in the future. 

The challenges and solutions to handle big data from smart grid units have been 

researched in academics and industrial centers. Solutions have also been implemented at 

the commercial level by a few utility companies. These utilities always strive to meet the 

goals of moving to a smarter grid to support distributed generation, distribution 

automation devices, providing new products and services, improving operational 

efficiency, and finally enhancing the system reliability. Some of the prominent industry 

efforts are described in the following: 

2.4.1 Accenture Solution 

Accenture proposed a system that uses grid observability to drive performance 

(Figure 9) and to govern five distinct smart grid data classes such as operational data, non-

operational data, event message data, meter usage data, and metadata [93]. All the classes 

of data should be treated and managed differently owing to their inherent characteristics 
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and different sources. The architecture was aimed to overcome the challenges of 

corresponding the data collection infrastructure to the desired outcome, application of 

tools to manage massive-scaled data, and analysis of master data to benefit from smart 

grid potential. The commercial solution is proposed to discover the information through 

the components as shown in Figure 9. 

The provided solution explains the analytical aspects of the proposed architecture; 

however, it does not provide detailed information on the data treatment, management, and 

storage processes. 

The Accenture architecture named Intelligent Network Data Enterprise (INDE) 

has the following components: 

• The software layer in the architecture acts as a layer between the grid data sources and 

the current utility enterprise IT platforms. It aims to integrate the data from various 

sources to enhance the utility business operations and customer operations. 

• The integration layer is prevalent to provide a unifying platform to the smart grid 

ecosystem products such as smart meters, communication lines, sensors, and other 

electrical network components. 

 

Figure 9 Using observability to ensure performance 
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• The visualization layer is provided to observe and monitor the different components 

in the grid. It also aims to recognize patterns in the raw data to correlate with different 

events and metadata 

The implemented solutions by Accenture at their clients’ sites indicate their 

emphasis on the following five major application areas for smart meter data [94]: 

• Enhancing outage management: The main goal of smart meter analytics has always 

been to enhance outage management. Outage management can be enhanced if the 

disturbances in the electric network are accurately predicted, localized, and restored 

by integrating the outage notifications, sectionalizing, and reclosing systems. 

• Power quality assessment: The smart meter data can be used to monitor the quality of 

power at every point in the electrical distribution network. The fluctuations in the 

frequency and voltage can cause damage or failure to the electric equipment. The 

remote assessment of power quality can help utilities to investigate legitimate claims 

of customers saving field effort and time. 

• Protect customers and detect losses: The system should protect the interests of all 

customers by detecting different losses including technical and nontechnical losses in 

the electrical network. The nontechnical losses occur when the customers tamper with 

electrical meter readings to reduce their bills. The integration of data from feeder 

meters and smart meters into the work management system will help utilities to 

identify electricity theft and investigate claims easily.  
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• Renewable energy forecasting: The generation of renewable energy is increasing in 

the grids. This calls for the proper management on part of the grid operator. Renewable 

energy is less predictable. However, accurate forecasting should be in place by 

integrating the data from smart meters and weather stations. This would help in the 

operational and investment decisions of utilities. With accurate forecasting, the grid 

operators can stabilize the supply and quality of power throughout the electrical 

distribution network.  

Future market developments: Long-term planning is required for balancing 

generation and load demand, and flexible energy tariff planning. 

2.4.2 IBERDROLA 

Big Data techniques are used to yield knowledge management solutions to control 

high turnover environments and to minimize the impact on call centres. Iberdrola has a 

part of its ambitious Digital Transformation Program [95] in the use of big data techniques. 

The company group targets to invest 4.8 billion euros in the digital transformation between 

2019 and 2022 to boost the performance and conservation of its assets using data analytics 

and artificial intelligence. Digital analytics provides for creating an analytical environment 

to inspire knowledge that aids to maintain the three lines of business: Networks, 

Renewables, and Customers. Some examples of these applications are: 

• Detection of non-technical losses and design of optimal time-of-use tariffs with the 

use of customer load curves to improve energy utilization [8]. The company has 

installed more than 11 million smart meters in Spain, generating 240 million registers 
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every day. Big data techniques over an estimated volume of 90 billion registers per 

year are being used to improve revenue collection and to optimize energy use.  

• Improvement of the operation and maintenance of the utility’s assets expanding the 

availability of its generation plants. For example, in the U.S., Iberdrola is saving $3 

million monthly by feeding wind turbine power generation data across multiple wind 

farms to develop curtailment optimization plans [96]. Iberdrola is leading a five-year 

project called Romeo, 16 million EU Horizon 2020 project, aiming at the reduction of 

the preservation cost of wind turbines using predictive machine learning algorithms, 

artificial intelligence, and cloud computing. Utility’s relationship with the customers 

can be transformed by the development of applications such as managing electricity 

consumption from mobile phones or scheduling electric vehicle charging [95]. Big 

Data techniques are also used to provide knowledge management solutions to 

command high turnover environments and prune the impact on call centers. 

2.4.3 ITRON-TERADATA Solution 

Itron-Teradata architecture is established on active smart grid analytics (ASA) as 

depicted in Figure 10. As per the solution, the data warehouse actively provides strategies 

for the parallel ingestion of massive-scale data from varied sources and executes complex 

analytics for applications such as energy diversion detection, power quality, demand 

response, transformer load management, load forecast, and customer profiling. The data 

arrive triggering actions and activating workflows [97]–[99]. 
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ASA is based upon the comprehensive Utility Logical Data Model (ULDM) of 

smart grids’ data. The ASA solution helps the customers through self-service with insight 

on how to convert their usage to green energy, and to make savings in energy and billing. 

The solution assists the utilities to develop communication channels for customer-utility 

interaction and to invest in assets that boost customer experience. Also, the regulatory 

agencies benefit from the ASA solution with insights on the efficiency standards of 

operations, the percentage of energy from alternative sources, and the fair pricing of 

energy. 

 

 

 

Figure 10 Service-oriented architecture of Itron-Teradata solution 
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2.4.4 International Business Machines (IBM) Solution 

Since 2013, IBM has worked on the smart metering infrastructure on the private 

cloud for E.ON with an aim to enhance the deployment and management of smart meters 

and to help incorporate renewable energy sources easily into the current grid [100]. The 

platform addresses the challenges of high data storage, low speed of report generation and 

analytics. With the platform, customers have better control of the energy usage with 

information on their usage profile, on electricity tariff for the time of use, and on changes 

in consumption patterns when compared to their historical data. IBM intends the platform 

to be scalable with low start-up and operational costs in order to provide for future growth. 

The platform has a high emphasis on ensuring the privacy of sensitive customer data, 

however, the data would be retained for a longer time to help with the emerging regulatory 

requirements in the future. 

2.4.5 USA EXELON 

Since 2014, Baltimore Gas and Electric (BGE) and Exelon have been working on 

a project by employing C3’s cloudbased data processing platform to control the working 

of millions of smart meters installed in the regions of Chicago and Philadelphia Electric 

Company (PECO) utilities [101]. They have been successfully tapping the data from the 

smart meters with an aim to locate and avert energy theft. They employ machine learning 

algorithms to encode every rule of meter tampering and unbilled power delivery as these 

change over time. The algorithms also integrate various types of data from systems in 

place for the management of data from meters, outage prevention, user profiling, billing, 

and asset management. These applications led to the program of Business Intelligence 
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Data Analytics (BIDA) and the solution of Data Analytics Platform (DAP). The solution 

supports the domains of business support, customer service, smart energy services, grid 

management, and AMI with a vision to assist future utilities, energy regulators, and 

customers. 

2.4.6 Korea Electrical Power Corporation (KEPC) Solution 

KEPCO launched two projects to use big data analytics on smart grids’ data to 

improve demand management, and load forecasting and has been achieving considerable 

success in its goals ever since [102]. The first project helps customers to save electricity 

by comparing similar customers energy consumption data and allows KEPCO to prevent 

brownouts and manage load demand. The second project involves analyzing the business 

risks of blackouts, user complaints, weather changes, climate change statistics with the aid 

of social networking data, internet data, and complaints.  

The companies do not explicitly describe their commercial solutions and do not 

release the information of the components of data management architecture in detail. 

However, noticing the potential of big data analytics to manage the demand-side response 

and user service, the utilities have now and again been cooperating with IT companies to 

tap the potential. This work has additionally presented the proposed architecture aiming 

for the streams data processing to provide real-time information and visual analytics. 

2.5 Applications of Big Data Analytics in Smart Grid 

This section discusses a few of the potential application areas which would avail 

from the big data analytics in the smart grid. It also details the previous application-based 

works and their proposed methodologies. 
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2.5.1 Fault Classification and Identification 

The invention of the smart grid was driven by the need for clean and alternative 

forms of energy. The utilization of distributed energy sources in distribution grids brings 

the integration of renewable energy sources to reality. The microgrids allow for energy 

generation closer to load and hence, assist the improvement of power delivery and 

reduction in the power transmission losses. Furthermore, the microgrids can be used in 

islanded mode, and consequently, the loads can be protected from the damages resulting 

due to fluctuations in voltage and frequency [103]. 

The fluctuations of the energy produced by renewable energy sources bring 

uncertainty in the energy generation from distribution grids. Usually, Inverted Integrated 

Distribution Grids (IIDG) are used to improve the power quality in microgrids. However, 

these IIDGs have low inertia and hence if the faults caused in microgrids are not detected 

and cleared in short times, this is a huge threat to the microgrids. The classical approaches 

to fault identification and clearing [104] are based on the measurement of overcurrent and 

negative sequences of current. These approaches are not suited to microgrids due to their 

low current capacity. The statistical features are extracted using the wavelet transforms on 

the current measurements in the branches sampled by protective relays. The deep learning 

model is developed with the training data available on the statistical features to detect 

faults, classify them, and localize the faults in [105]. 

2.5.2 Preventive Maintenance 

The pieces of equipment of the power grid are vulnerable to failures and a robust 

plan for preventive maintenance of equipment, and devices in the power grid can play a 
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crucial part in reducing the probability of occurrence of failures in the power grid. 

Preventive maintenance can signal for and provide maintenance for equipment before this 

fail and hence, will avert major events and disruption of power supply for long periods. 

The integration of renewable energy sources at the distribution level of grids through 

microgrids supply clean energy. Nevertheless, the uncertainty of supply and fluctuations 

of frequency and voltage increase vulnerability to failure. It is required that the occurrence 

of failures is detected before failure and the clearance time is averted using preventive 

maintenance. Preventive maintenance is categorized into two types - time-based and 

condition-based. In time-based maintenance, the components are subjected to maintenance 

at periodic intervals of time irrespective of their condition. This approach does not utilize 

the service life of the components efficiently. Condition-based maintenance monitors the 

health of the components and draws a correlation between the current status and future 

faults of the components so that the future maintenance plans are scheduled [106]. One of 

the approaches to prognostic maintenance is the design of a proposed integrated fault 

detection system developed after analysis of the data from SCADA and Pole Mounted 

Auto Reclosers (PMARs) [107]. PMAR is a breaker that trips for intermittent fault currents 

and closes automatically to supply the power after a short duration of time nonetheless, it 

stays open for a permanent fault. 

A reinforcement learning-based framework is proposed in [108]. The framework 

monitors the health of the equipment, models the degradation, and computes the remaining 

useful life of the grid components. The framework tested on a case study on the power 

grid performs with good approximation capability by using an ANN ensemble model. All 
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of the data or subset of data from grid operations data, weather information, diagnostics 

data of the relay protection systems, galloping of power lines, fault tolerance current, and 

voltage signals have been used for the design of data-driven models for preventive 

maintenance in the power grids. Different machine learning models such as SVM [109], 

extreme learning machines [[110], Long Short Term Memory (LSTM) [111], hybrid 

ensemble models [112] are used to build data-driven models. The correlation between the 

actual faults that have occurred in the past and the features extracted from the data has 

been studied. These analyses models and studies are required to have high learning without 

iterative computations to converge faster, predict with higher accuracy and earliness. This 

would be an ideal solution for big data analysis for predictive maintenance. 

2.5.3 Transient Stability Analysis 

Transient stability analysis (TSA) is performed to study the safe operation of the 

power grid. However, the challenges to the TSA these days are the integration of 

intermittent renewable energy sources at the distribution level, fluctuating demand of load, 

and deregulated energy market. The efficient approaches that extract information and 

patterns in the highly redundant records of big data are required for TSA. The techniques 

for TSA can be classified into automatic learning approaches, direct techniques, and time-

domain techniques. Automatic learning approaches have edge over direct and time-

domain techniques for real-world applications. The direct techniques [113] have demerits 

in the construction of energy functions for large-scale power systems whereas time-

domain techniques are computationally inefficient for real-time applications [114]. 
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Steady-state variables are used as features for TSA in [115] thus avoiding the use 

of time-domain simulation. The approach takes into account the size of the electrical 

network, the topology, the location of a fault, and operating status. 

In [116], Yu et al. used time-series synchrophasor measurement data under 

different simulation contingency models to train the deep learning model of LSTM for 

online-assessment of transient stability status post-contingencies. Although the training of 

the TSA LSTM model was computationally expensive and time-consuming, the time 

adaptive nature and self-learning of temporal dependency by the LSTM model achieve 

better test accuracy and highly responsive time. Moreover, to reduce the training time, 

simpler models such as Extreme Learning Machines (ELMs) that are single-layer neural 

networks are used [117]. To address the uneven class distribution of power systems’ data 

with a higher number of data points representing stability and a lower number of data 

points representing contingency condition, Baltas et al. proposed a response-based 

ensemble model of diverse ELM [118]. 

Rahmatian et al. worked on the implementation of transient stability assessment in 

real-time using characteristic features of voltage and current phasors from PMU data, 

Classification and Regression Trees (CART), and Multiregression Adaptive Regression 

Splines (MARS) models [119]. The models predict if a situation is stable or unstable using 

CART and applies MARS along with online TSA to indicate the level of severity of a 

contingency and instability of the system with high accuracy. 

2.5.4 Health Monitoring 
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Failure in crucial components of the power grid such as transformers will lead to 

brownouts or blackouts in the electrical grid network. It is crucial that the health of the 

electrical components in the grid is monitored. Classically, the monitoring system is based 

on a threshold mechanism that monitors different parameters and readings for different 

grid components. 

The uncertainty and intermittent nature of renewable energy sources at the 

distribution level bring uncertainty in the life estimation of crucial components such as 

power transformers. In [120], Aizpurua et al. proposed a probabilistic health monitoring 

framework for power transformers by using a probabilistic forecasting approach along 

with Monte Carlo-based Kalman-filtering techniques. The lifetime estimation of 

transformers in these models is adaptive as the dynamics of smart grids is propagated to 

the power transformers to determine the probabilistic thermal model and lifetime model. 

There are different artificial intelligence-based approaches used for health 

monitoring using big data in smart grids. These include artificial neural networks [121], 

deep learning models [122], expert systems [123], fuzzy logic [124], [125], and genetic 

algorithm [126]. 

Mileta et al. analyzed the Mamdani model and Sugenomodel in the fuzzy expert 

system to compute the probability of occurrence of faults in the future and to determine 

the urgency of intervention or maintenance on the transformers based on their current 

condition [123]. The models utilized the online and offline data on historical and current 

conditions of transformers’ age, lower oil level, frequency response analysis, oil 

temperature, insulation temperature, insulation degradation, and polarization index. 
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Hybrid models are utilized to overcome the shortcomings of single models. For 

instance, a health monitoring system was developed by Allen et al. for the health 

diagnostics of building automation systems and variable air valve units using a fuzzy logic 

model [127]. The fuzzy logic model detected anomalies in the operating conditions and 

generated fault signatures. The neural network-based model was used to classify the fault 

signatures into different faults. The monitoring of the health of the components at lower 

granularity ensures that the energy consumption observed at higher levels is reduced and 

finally helps for energy savings, and efficient monitoring. 

2.5.5 Power Quality Monitoring 

When the frequency, magnitude, and waveforms of current and voltage are steady 

and within the prescribed limits, it is defined as power with high quality. Power quality 

also defines the performance and health of the smart grid components and the accuracy of 

utility metering. With the integration of non-linear sources of energy and power 

electronics-based devices, the harmonics appear in the voltage or current waves and it is 

essential that the power quality of the supply is maintained for the health of the devices, 

sensors, and appliances connected to the electric network. The power quality issues are 

currently addressed using dynamic voltage regulator, inverter, power quality monitoring, 

static synchronous compensator, and unified power quality conditioner. 

Power quality monitoring is performed using conventional approaches through the 

integration of SCADA, AMI, or by using artificial intelligence-based approaches. Multiple 

machine learning modeling such as Support Vector Machines [128], decision trees [129], 
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Bayesian networks [130], kNearest neighbors [131] have been employed for monitoring 

power quality disturbances. 

Wang et al. employed deep learning in each of the stages of power quality 

classification i.e. signal analysis, feature selection, and classification [38]. They used a 

deep convolutional neural network consisting of the 1-D convolutional layer along with 

pooling and batch normalization layers for the automatic extraction of features from 

disturbance samples. They presented evidence in terms of accuracy and training time cost 

that deep Convolutional Neural Networks (CNNs) performs better for applications of 

automatic power quality classification when compared to other deep learning models such 

as gated recurrent networks, long short-term memory, ResNet50, and stacked auto-

encoders. To overcome the non-distributed computing and feature extraction-based power 

quality classification, Chen et al. presented an integrated solution based on deep belief 

networks for real-time and distributed power quality disturbance analysis [132]. The 

developed models proved to have higher accuracy and more robustness on distributed 

platforms, however, the training time is also very high. 

2.5.6 Topology Identification 

The topology identification problem in the smart grid includes the identification of 

the structure of power distribution network, identification of customer phase connectivity, 

and associating a customer with a transformer at the distribution level. The identification 

of phase connectivity is crucial to the analysis of distribution system including distributed 

network estimation, power flow analysis, optimal power flow, distribution network 

reconfiguration and restoration, and load balancing. Topology identification could be 
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possible using specialized sensors such as micro-synchrophasors, and phase meters. 

However, using a special sensor for each customer is impractical and expensive. There are 

many approaches developed to identify topology using the data made available by the 

current infrastructure such as AMI, SCADA, GIS, Outage Management System (OMS), 

and besides machine learning approaches have been developed using training data on field 

validated phase connectivity. 

Voltage time series data have been utilized to extract feature vectors after the 

application of principal component analysis and the authors have suggested that the 

voltage data are predictive of the phase connectivity [133]. Afterward, the k-means 

clustering approach has been applied to cluster the different customers into the three 

different phases for phase connectivity identification. The innovative model was tested on 

a real distribution feeder and the test accuracy was about 90 %. 

2.5.7 Energy Theft 

Energy theft is defined as the act of changing the electricity consumption reading 

in order to reduce the bill through physical approaches such as bypassing the smart meter, 

tampering with meters, cyber approaches such as hacking into a smart meter to change the 

energy consumption values. Data-driven approaches are currently applied to identify 

energy theft and these approaches are classified into different types depending on the type 

of available data. When the smart meter data were not available, machine learning models 

such as fuzzy clustering [134], and SVM [135] have been applied to the annual energy 

consumption, and credit scores were determined to identify theft detection. When the 

smart meter data and theft cases data are available, then supervised machine learning 
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models such as neural networks [136], deep learning models [137] can be applied. Usually, 

energy theft cases are not available or disclosed for research. In such cases, the energy 

theft identification can be performed using smart meter data, and network topology 

information can be determined using state-estimation based approaches [138], and other 

anomaly detection techniques [139]. 

2.5.8 Renewable Energy Forecasting 

The renewable energy (RE) sources are environment friendly, clean, and unlimited 

replenishable sources of energy. Nevertheless, the uncertain and intermittent behavior of 

the supply poses many challenges in the generation of power using renewable energy 

sources. The reliable and accurate RE forecasting helps in the grid operations, load 

management, planning of capacity, scheduling of generation, and regulation of energy. 

Multiple approaches including physical models, statistical models, machine learning 

approach, and hybrid models have been used to date for renewable energy forecasting. 

Physical models include the simulation of geographic characteristics of an area. 

These models utilize weather forecasting, geographical information, and meteorological 

information. Physical methods require huge computational resources, are less accurate and 

also, are not suitable for short-term forecasting. Statistical models apply mathematical 

modeling to recognize the patterns in time-series data of renewable energy sources. The 

methods such as Auto Regressive Moving Average [140], Kalman Filters [141], and 

Markov models [142] have been applied previously. With the widespread popularity of 

machine learning models, these have been applied reliably on renewable energy 

forecasting. The machine learning algorithms include models such as linear regression 
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[143], decision trees regression [144], multi-layer perceptrons [145], support vector 

machines [146]. Owing to the inherent intermittent and non-linear nature of renewable 

energy supply, deep learning models have been found to be extremely efficient and 

effective [147]–[149]. Deep learning models such as deep belief networks, autoencoders, 

convolutional neural networks, long short-term memory, and deep learning ensemble 

models. have been applied to predict renewable energy from sources. The patterns of 

temporal changes in renewable energy are captured in the parameters of the deep layers. 

The high accuracy of renewable energy forecast will help in the planning, and 

development of reliable, and resilient integration of the sources in the distribution grids 

through microgrids. 

It has been observed that there is a need for a distributed computing and big data 

analytics platform that utilizes different types of technologies for real-time solutions in 

smart grids and also a middle-ware software is required to integrate all of the technologies 

with reliability and stability. Enterprises dealing with big data are required to address the 

challenges of security, privacy, and data handling. Before any big data techniques are 

employed in the smart grid, it is always necessary to consider steps such as data 

acquisition, data management, analytics, and visualization along with the requirement of 

the real-time processing of data. 

2.6 State-of-the-art Short Term Load Forecasting 

Short-term load forecasting in smart grid is currently of much research interest 

owing to the integration of variable energy resources at the distribution level and the 

stochastic nature of energy consumption behavior. The volatile load demand patterns at 
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the consumer level, if predicted with high accuracy, helps in load balancing and renewable 

energy efficient utilization. Initial works on short-term load forecasting in smart grid 

included time-series analyses and traditional statistical approaches. With the research 

interest shifting to artificial intelligence, various machine learning approaches and deep 

learning techniques have been utilized to forecast the energy consumption at the household 

level. In [150], Wang et al. proposed a two-stage forecasting methodology. In the first 

stage, the traditional time forecasting models were utilized to perform a day ahead load 

forecasts. To enhance the accuracy of the forecasts, the second stage utilized models such 

as support vector machines (SVM), linear regression, and quadratic models to generate 

predictions of deviations. These deviations were integrated with the forecasts from the 

first stage to yield the overall forecast values with an average Mean Absolute Percentage 

Error (MAPE) of 5.21%. However, the SVM model is not suitable for big data as the 

training time for the SVM model scales super linearly with the increase in data records.  

In [110], the authors proposed wavelet pre-processing, improved wavelet neural 

networks, and generalized extreme learning machines (ELMs) on training data. The 

predictions of the load were provided as intervals considering the uncertainties of the 

forecasting models and data noise. ELMs are neural networks with a single hidden layer. 

The usual disadvantages of ELMs are that the forecasting accuracy is heavily dependent 

on the activation function, and the generalization is poor. These shortcomings were 

effectively tackled by the introduction of wavelets as the activation functions in their 

methodology. However, the ELM-based methods do not effectively perform deep 
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extraction of inherent information and features associated with energy consumption data 

owing to their single layer-based modeling. 

In [151], the authors established mathematical models of backpropagation neural 

networks and Elman neural network. These models were used with small learning rates, 

and layers to store internal states, and to deal with time-varying characteristics of energy 

consumption data. Their results concluded that Elman neural networks perform better in 

dynamic load forecasting than backpropagation neural networks. However, these neural 

network-based models are bound to converge to local minima rather than global minima. 

This leads to poor generalization and further, causes overfitting. 

Recently, a lot of research attention has been focused on the development of deep 

learning models to recognize patterns in the energy consumption data and to perform the 

forecasts with high accuracy and efficiency. Typically, deep learning models suffer from 

the problem of exploding gradients (i.e., learning diverges) or vanishing gradients (i.e., 

the learning stops). This problem is taken care of by LSTM networks that introduce 

memory cells and computing gates. LSTMs are types of Recurrent Neural Networks 

(RNNs) that have been utilized in the past for time-series analyses and load forecasting 

problems. In our recent works, multiple efficient and accurate energy consumption 

forecasting models were developed based on ensemble models, extreme learning 

machines, LSTMs, deep neural networks, and dimensionality reduction techniques [152]–

[154]. 

In [155], the authors developed hybrid sequential learning based on the deep 

learning model. Their solution utilizes Convolution Neural Network (CNN) in the first 
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phase to extract the features from the energy consumption dataset and uses Gated 

Recurrent Unit (GRU) in the second phase to utilize its effective gated structure to make 

predictions. However, GRU-based models do not have as great volatility as LSTM-based 

models owing to their simplicity and a smaller number of gates for the gradient flow. 

In [156], the authors proposed an advanced domain fusion methodology based on CNN, 

which derived the time-domain and frequency-domain features representing the changing 

energy consumption trends, LSTM layers, and Discrete Wavelet Transforms (DWT). The 

authors reported a MAPE of around 1% on two datasets, which comprise energy 

consumption (MW) information at aggregated levels. 

In [157], Kong et al. proposed an LSTM memory-based framework for short-term 

energy forecasting at the residential level. They incorporated the appliances energy data 

from a Canadian household to illustrate the efficacy of their deep learning framework. 

Although minutely data were available, an aggregation of thirty minutes has been utilized 

in their work. However, only six appliances' energy data were utilized in the study. Their 

results were compared against the benchmarking models of Feed Forward Neural 

Networks (FFNN) and k-Nearest Neighbors (k-NN). The superior performance of the 

LSTM-based model, with a MAPE of 21.99% was displayed. 

The gist is that although numerous methodologies have been researched and 

incorporated, there are significant limitations such as lack of scalability to big data, as well 

as limitations to offline analyses rather than real-time analysis. Hence, it is essential to 

propose a framework with an aim to overcome the existing limitations. 
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CHAPTER III  

APPROACHES AND METHODS OF LEARNING FROM DATA*4 

In this chapter, different clustering and aggregation solutions are discussed for load 

forecasting. That is, the clustering algorithms including the k-Means algorithm and the k-

Medoids algorithm are proposed. Furthermore, works on transfer learning and incremental 

learning are presented. The transfer layer enables the faster convergence during training 

of deep learning models, and the incremental layer enables to update the trained deep 

learning models with arriving data points, thereby enhancing the forecasting accuracy of 

load forecasting models. These algorithms will be used in Chapter V in the proposed 

research in the clustering layer, transfer layer and the incremental layer of the hybrid multi-

stage framework. 

3.1 Unsupervised Machine Learning – Clustering Algorithm 

3.1.1 Overview 

The rising number of installed smart meters allows for the collection of data 

corresponding to consumers’ end devices. The smart meter data, representing the customer 

energy consumption behavior at the granularity of the household level, enable the 

electrical utilities to perform capacity planning, capacity building, and operations. The 

integration of the smart meters’ capability with the communication infrastructure in smart 

grids enhances the protection, reliability, efficiency, and safety of the energy supply to the 

consumers. The collected data have been aggregated to different levels to perform load 

 

4 Reprinted with permission from “Deep Learning-Based Short-Term Load Forecasting Approach in Smart Grid with Clustering 
and Consumption Pattern Recognition.” by Dabeeruddin Syed, Haitham Abu-Rub, Ali Ghrayeb, Shady S. Refaat, Mahdi Houchati, 

Othmane Bouhali, and Santiago Bañales, 2021. IEEE Access 9, 54992-55008, Copyright 2021 by Dabeeruddin Syed. 
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forecasting. For aggregated feeder level forecasting, the bottom-up approach is usually 

implemented. That is, the household level consumption data are aggregated to the feeder 

level and then the training is performed with the aggregated data. Similarly, the data at the 

feeder level can be aggregated to the level of the distribution transformers, while several 

distribution transformers could be aggregated to the level of substation and so on which 

helps in performing load forecasting at the needed level. The electric utilities rely on short-

term forecasts at the distribution feeder and transformer level to support peak planning 

and grid operation. Load forecasting enables the electric energy utilities to plan, identify 

the regions with high load demand, match the volatile energy demand by changing the 

generation capacity, reduce generation cost, regulate energy prices, and manage 

scheduling. 

The energy consumption varies from one location to another owing to different 

weather and climate conditions. And for the same reason, the energy demand varies on 

different days of the week and at different times of the day. Many researchers have been 

interested in grouping the different conditions or different locations based on the 

similarities between the available features of the data with an objective to reduce the 

number of forecasting models required for predictions [158], [159]. The clustering 

techniques intrigue researchers to improve the load forecasting methodology and to 

enhance accuracy. 

Reference [159] proposed a day-ahead forecasting algorithm that uses load 

fluctuations and feature importance to cluster different customers at the distribution level. 

Crow search algorithm was utilized to determine the initialization conditions to avoid local 
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minima convergence in the K-means clustering method and finally, an ensemble random 

forest model was generated to realize the day-ahead forecasting. The authors reported the 

lowest Mean Absolute Percentage Error (MAPE) of 1.633% for the random forest model 

and showed that the model performs better compared to Extreme Learning Machine 

(ELM), Neural Networks (NN), and Support Vector Machines (SVM). Their methodology 

benefited from the clustering of the 24 hours of a day into different clusters based on the 

fluctuation of energy consumption. Although the employed clustering method solves the 

issues of criteria for selection and initialization in the k-means algorithm, there is a scope 

of improvement in the crow search based k-means clustering algorithm when faced with 

high multi-modal peaks in the data formulations. 

In [160], the authors proposed a long-term energy forecasting methodology that 

utilizes the spatial clustering algorithm of Density-Based Spatial Clustering of 

Applications with Noise (DBSCAN) to predict year-ahead load values for power system 

planning. The density-based clustering technique benefits from its inherent ability to 

effectively dealing with the noise in the data by eliminating the outliers. Similar sub-zones 

are clustered using DBSCAN based on the features of historical yearly energy 

consumption profiles, land use types, and geographic information. Eventually, Non-Linear 

Auto Regressive (NAR) neural network models yield the values of the predicted load. 

They reported that their proposed model works better when compared to existing models 

such as exponential smoothing, grey theory, and Linear Regression (LR). However, the 

short-term load forecasting is not addressed using this methodology. In [161], the author 

proposed a hybrid model based on a Kalman filter, an artificial neural network, and 
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wavelet transforms. The hybrid model also used clustering techniques for short-term load 

and renewable energy forecasting. The work provided evidence that the hybrid models 

involving clustering-based wavelet and artificial neural networks perform better than 

conventional models and other hybrid model combinations. However, in this work, the 

clustering was based on geographical zones, rather than the actual patterns of energy 

consumption. 

Empirical Wavelet transformations (EWT) have been used to decompose the load 

data into Intrinsic Mode Functions (IMF) [162]. Along with LSTM modeling, the IMF 

functions are used to predict the low and medium frequency components for load 

predictions. Furthermore, the high-frequency components are highly varying components 

with uncertain characteristics, and these are clustered using Improved-DBSCAN 

(IDBSCAN) algorithm. The prediction results of the high, medium and low-frequency 

components are aggregated to determine the total load predictions for short-term load 

forecasting. Their methodology has the advantage of employing different prediction 

methods according to the characteristics and the variance of data. However, the 

methodology based on IDBSCAN is not effective if the data is scaled to higher 

dimensions. Also, it is efficient only when the different clusters have varying densities. 

Autoregressive Integrated Moving Average (ARIMA) model has been utilized as a 

baseline method for predicting energy consumption as it is easy to implement and 

generalize to a wide variety of specifications [163]. Nepal et al. used k-means clustering 

along with ARIMA modeling for predictions of energy consumption in buildings [163]. 

The clustering technique is used to cluster the days with similar load characteristics during 
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the hours of a day. In their work, the days of a year were clustered into 6 clusters. During 

the prediction phase, their methodology determines the cluster number of the days 

preceding the testing day and finally predicts the energy consumption of the testing day. 

The results indicate that the standalone ARIMA model can be improved with the addition 

of clustering-stage. However, the k-means clustering utilized is sensitive to outliers if 

present in the data. 

Fuzzy c-Shape clustering has been investigated by Fateme et al. to cluster the load 

data depending on the shape of energy consumption [164]. A horizontal ensemble model 

consisting of LSTM and XGBoost has been used to perform a day-ahead forecast of 30-

minute granular load prediction. A novel feature of apparent temperature is used in their 

analysis. The apparent temperature is the equivalent weather variable as experienced by 

humans due to the collective influence of humidity, temperature, water vapor pressure, 

and wind speed values. They have suggested that the addition of novel features, such as 

the representative feature of weather, will improve the accuracy of predictions from 

cluster-based ensemble models. However, their methodology is dependent on the 

empirically assumed function and formulation of equivalent apparent temperature. 

LSTM models have been of interest to many researchers to perform energy 

forecasting. In another work, an ensemble of LSTM was used to perform short-term 

energy forecasting [165]. The different branches of the ensemble utilize different 

clustering algorithms in their initial phases. The employed clustering algorithms include 

Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH), DBSCAN, and 

KMeans++. In the final phase, a fully connected neural network is employed to aggregate 
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the results from the different branches of the ensemble. The ensemble and deep learning 

models have been tested to yield better results when compared to nonensemble and 

classical models. In [154], Syed et al. proposed an averaging ensemble model of the 

classical algorithm including LR and deep learning algorithms including LSTM and 

DNNs. The results indicate that the averaging ensemble model overcomes the 

shortcomings of the individual models and provides synergy to enhance the overall 

accuracy. However, the ensemble models and the LSTMs are computationally expensive. 

In [166], a novel fuzzy-based clustering method is employed to cluster data into different 

clusters using the order of feature importance. The clustered data goes through two 

different phases of regression. In the first phase, a Radial Basis Function Neural Network 

(RBFNN) is employed. In the second phase, the output of the first phase is passed to a 

pooling layer followed by a convolutional layer and finally, through two fully connected 

neural networks. They tested their proposed method with two case studies to predict the 

hourly energy consumption for the next seven days with better results as compared to the 

classical energy forecasting methodologies. However, the clustering method utilizes 

common space where data are shared between neighboring clusters and this introduces 

redundancy and requires additional computations. 

Clustering has also been applied at the household level. In [167], Bayesian non-

parametric clustering model has been applied to cluster the households with similar energy 

consumption profiles across seasons and neighborhoods. The load profile curves are 

obtained after the removal of phase variability with the application of elastic shape 

analysis. The household-level energy consumption has high variability and with the 
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predictions on household-level load, it is difficult to aggregate the prediction results to 

high levels for the use of optimized utility operations. 

In summary, there has been a significant research effort in the application of 

clustering techniques at different levels of energy distribution networks. The metric for 

clustering has been a similarity in weather conditions, seasons, days of the week, and 

hours of the day. However, it is required that the metric for clustering should emphasize 

the patterns of energy consumption. 

3.1.2 k-Means Clustering Algorithm 

The objective of the K-means clustering algorithm [168] is to reduce the Error Sum 

of the Squares (SSE) scoring function that is given by 

𝑆𝑆𝐸 = ∑ ∑ ||𝑥𝑝 − μ𝑖||
2

𝑥𝑝∈𝐶𝑖
𝑘
𝑖=1 , (1) 

 

where 𝑘 represents total number of clusters, 𝐶𝑖 represents each cluster, 𝑥𝑝 represents each 

point in a cluster, and μ𝑖 is mean of all points in a cluster. 

K-means applies an iterative greedy approach to reduce the sum of squares error 

until it reaches a local optimum. K-means starts with the selection of the number of 

clusters k and the initial k number of centroids assigned to each cluster. This step is 

followed by the centroid update. At this stage, all the points are assigned to the clusters 

with the nearest centroids. Once all the points are assigned, the centroids are updated for 

each cluster as the mean values of all the points in the clusters. The cluster assignment and 

the centroid update are repeated until there is no change in the centroids in two subsequent 

loops. This indicates the point of local minima. 
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The algorithm for the k-means model is given in Algorithm 1. The value of k is 

selected in such a way that the average distance from points to centroid decreases rapidly 

till it converges or changes slowly thereafter. 

3.1.3 k-Medoids Clustering Algorithm 

It is known that means, as a statistic, is highly sensitive to the outliers. The k-

Means algorithm, that determines and utilizes the means of the data points in calculations, 

is particularly sensitive to the outliers in the data. To overcome this, a technique of using 

medoids instead of average values in a cluster is devised. Medoids are centrally located 

points in a cluster and the technique is called k-Medoids clustering algorithm. Although 

k-Medoids are computationally more demanding, k-Medoids clusters are not particularly 

sensitive to the presence of outlier points and are applicable to both continuous and 

discrete domains of data [169]. This algorithm minimizes the sum of dissimilarities 

Algorithm 1. K-Means Algorithm 

Input: ϵ, k, Data S 

Initialize k centroids randomly, μ1
𝑡 , μ2

𝑡 ,……, μ𝑘
𝑡  ∈ 𝑅𝑑 

Output: 

  1:    while ∑ ||μ𝑖
𝑡 − μ𝑖

𝑡−1||
2

𝑘
𝑖=1 ≤  𝜖 do 

  2:  𝑡 ← 𝑡 + 1 

  3: 𝐶𝑗 ← Φ for all j = 1, 2, 3, ...., k 

  4: for all 𝑥𝑝 ∈ 𝑆 do  

  5:        𝑝∗ ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑝{||𝑥𝑝 − μ𝑖||
2

} 

  6:        𝐶𝑝∗ ← 𝐶𝑝∗ ∪ {𝑥𝑝} 

  7: end for 

  8: for all 𝑖 =  1 𝑡𝑜 𝑘 do 

  9:        μ𝑖
𝑡 ←

1

𝐶𝑖
 ∑ 𝑥𝑝𝑥𝑝∈𝐶𝑖

 

10: end for 

11:     end while 
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between the objects in a cluster with the reference object selected for that cluster. 

Basically, the input given is the value of k that represents the number of clusters defined 

for the data. For each of the k-clusters, k-reference points are selected. The remaining 

points are clustered into the cluster of a reference point such that the sum of the 

dissimilarities between the reference object and the points in the cluster is minimized. 

With different initial medoids selected, the clusters obtained are different. The difference 

between the k-Means algorithm and the k-Medoids algorithm is that k-Means consider the 

average value in a cluster to be a reference point and k-Medoids consider the points to be 

a reference object for the clusters. Algorithm 2 presents the sequence of steps performed 

in the K-Medoids algorithm. 

3.2 Transfer Learning 

3.2.1 Overview 

Algorithm 2. K-Medoids Algorithm 

Input: ϵ, 𝑘, Data 𝑆 

Initialize 𝑘 medoids randomly, Θ1
𝑡 , Θ2

𝑡 ,……, Θ𝑘
𝑡  ∈ 𝑅𝑑 

Output: 

  1:    while ∑ ||Θ𝑖
𝑡 − Θ𝑖

𝑡−1||
2

𝑘
𝑖=1 ≤  ϵ do 

  2:  𝑡 ← 𝑡 + 1 

  3: 𝐶𝑗 ← Φ for all j = 1, 2, 3, ...., k 

  4: for all 𝑥𝑝 ∈ 𝑆 do  

  5:         𝑝∗ ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑝{||𝑥𝑝 − Θ𝑖||
2

} 

  6:        𝐶𝑝∗ ← 𝐶𝑝∗ ∪ {𝑥𝑝} 

  7: end for 

  8: for all 𝑖 =  1 𝑡𝑜 𝑘 do 

  9:        Θ𝑖
𝑡 ←

1

𝐶𝑖
 ∑ 𝑥𝑝𝑥𝑝 ∈ 𝐶𝑖

 

10: end for 

11:    end while 
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Data-driven methodologies have been used in different works to forecast energy 

with different time horizons leading to three branches: long, medium, and short term 

forecasting [170]. The training of the machine learning models and achieving high 

accuracy of predictions require a huge amount of historical energy consumption data. 

Machine learning (ML) algorithms are mainly categorized into three types: supervised, 

unsupervised, and reinforcement learning models.  

Power forecasting in smart grids has employed models such as Autoregressive 

Integrated Moving Average (ARIMA) [171], Linear Regression (LR) [172], Neural 

Networks (NN) [148], [173], [174], Support Vector Machines (SVM) [175], and Random 

Forests [176] in supervised learning. In unsupervised learning, dimensionality reduction 

models [152], [177] such as PCA, and LDA, and clustering models [174], [178] such as 

k-Means, and k-Medoids have been used. 

With the advent of the Internet of Things (IoT) and smart sensors, the data are 

generated at a very high frame rate [179]. However, sometimes adequate amount of 

historical data is not available at different distribution nodes in the electric network. In 

cases of unavailability of large amounts of historical energy consumption data, it is 

required that the prediction models are trained with limited amounts of data to achieve 

sufficiently high accuracy. Furthermore, it is important to note that the supervised machine 

learning algorithms commonly presume that the training points and testing points belong 

to the same statistical data distribution and that large amounts of historical data are 

available [180] [181]. However, the statistical data distribution and patterns of energy 

consumption have high variability between historical and future data points. Hence, it is 
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crucial to transfer the knowledge obtained from models that are trained on historical data 

to develop and train machine learning models on current energy consumption data points. 

The transfer of knowledge is obtained through transfer learning which is detailed in the 

next section. 

3.2.2 Traditional Learning and Transfer Learning Types 

Transfer learning is a technique of machine learning in which the knowledge 

gained during training of a model on a domain of features is leveraged to improve the 

performance of training another model or task on the same or different domain of features 

[182]. TL eliminates the assumption that the training data and testing data observe the 

same data distribution. The merits of TL are the following: training is done with less or 

little data, training gets faster, and model accuracy increases. 

Consider Feature Domain Fs, Label Vs, and Task Ts corresponding to the source 

application, and Feature Domain Ft, Label Vt, and Task Tt corresponding to the target 

application. The TL aims to improve the performance of Task Tt using the knowledge 

obtained in Task Ts where Ts ≠ Tt. 

 

Figure 11 Traditional Learning 
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Figure 11 illustrates the process of traditional machine learning where the 

knowledge gained after training one model is not retained or reused in further models. The 

retraining of a newer model or task is executed from scratch. Figure 12 illustrates the 

process of transfer machine learning where the knowledge gained after training one model 

(trained model 1 in Figure 12) is transferred to further models (model 2). The weights, 

knowledge of features, and the network structure are transferred to the training stage for 

the new task. 

The TL process has the benefits of improving the baseline performance of 

predictions and improving the time to train a machine learning model [181]. There are 

multiple types of TL algorithms. 

1. The Transductive transfer learning (the data features are not the same between the 

different tasks) [183]: If the tasks Ts and Tt being different infer that the source 

domain Fs and target domain Ft are also different, then it is called transductive TL. 

2. The inductive transfer learning (the data features are the same between different 

tasks) [184]: If the tasks Ts and Tt being different infer that the source domain Fs and 

target domain Ft are the same, then it is called inductive transfer learning. If the 

source label Vs exists, then this learning is called multitask learning. The learning is 

 

Figure 12 Transfer Learning 



 

72 

 

unsupervised in the absence of labels in the tasks and in such cases, the algorithm is 

called self-taught TL. 

3. The unsupervised transfer learning [185]: In this type of learning, the source tasks Ts 

& Tt are different, the domains Fs & Ft are similar, and the labels are not available in 

both tasks. 

3.2.3 Theoretical perspective of TL in cross-model load forecasting using NN 

Consider a trained neural network structure with three layers as shown in Figure 

13. The input layer with 𝐼 + 1 inputs with (𝐼 + 1)th node as bias node, 𝐻 + 1 hidden units 

with (𝐻 + 1)th node as bias node, and 𝑃 outputs. Consider that the neural network model 

is already trained on training data with 𝑁 records, i.e. {(𝑥1,𝑦1),(𝑥2,𝑦2),....,(𝑥𝑁,𝑦𝑁)}. Since 

the training is complete, it is safe to assume that the optimal weights have been determined 

with objective function on minimum training error. Consider that the weights between the 

input-hidden connections and hidden-output connections are 𝑤𝑖ℎ and 𝑣ℎ𝑝, where 1 ≤ 𝑖 ≤

𝐼 + 1,1 ≤ ℎ ≤ 𝐻 + 1, and 1 ≤ 𝑝 ≤ 𝑃. With transfer learning, it is expected to train the 

model with training record 𝑁 + 1 (refers to training record from new dataset), input 𝑥𝑁+1 

such that the predicted value from the model is equal to the true value of output, i.e., 

𝑦𝑁+1 = ŷ𝑁+1. The transfer training with data from a new dataset should minimize the 

effect on training errors (𝐸𝑛 (1  ≤ 𝑛  ≤ 𝑁) of previous historical data i.e. minimize the 

weight sensitivity. The cost objective for weight sensitivity can be given by 𝑇 ≜

1

8
∑ ∑ △ 𝐸𝑛𝑝

2𝑃
𝑝=1

𝑁
𝑛=1 . The goal of transfer learning is to determine the weights 4𝑤𝑖ℎ(𝑁 + 1) 

and 𝑣ℎ𝑝(𝑁 + 1) such that these do not have any effect on weight sensitivity represented 

by the objective function (𝑆) that balances the trade-off between weight sensitivity 
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objective function 𝑇 and error of prediction, for instance, 𝑁 + 1. The objective function 

𝑆 is given by the following: 

𝑆 ≜ 𝑇 +
λ

2
∑(𝑦(𝑁+1)(𝑝) − ŷ(𝑁+1)(𝑝))

𝑃

𝑝=1

 (2) 

 

where 𝜆 is the trade-off coefficient to balance the evolutionary training error and 

pre-evolutionary training error. 

T ≜
1

8
∑∑△Enp

2

P

p=1

N

n=1

 (3) 

 

𝑇 ≜
1

8
∑∑( ∑

δ𝐸𝑛𝑝

δ𝑤𝑖ℎ

(𝐼+1)𝐻

𝑖ℎ

△𝑤𝑖ℎ(𝑁 + 1) + ∑
δ𝐸𝑛𝑝

δ𝑣ℎ𝑝

(𝐻+1)

ℎ

△ 𝑣ℎ𝑝(𝑁 + 1))

2
𝑃

𝑝=1

𝑁

𝑛=1

 (4) 

The weight sensitivities of change in error can be given by (5) and (6). 

δ𝐸𝑛𝑝
δ𝑤𝑖ℎ

=
δ

δ𝑤𝑖ℎ
(𝑦
𝑝
(𝑛)− 𝑦

𝑝̂
(𝑛))

2

 (5) 

 

Figure 13 Neural network perceptron 
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𝛿𝐸𝑛𝑝
𝛿𝑤𝑖ℎ

= 2 ∗ (yp(n)− yp̂(n)) (0 −
δyp̂(n)

δwih
) 

𝛿𝐸𝑛𝑝
𝛿𝑤𝑖ℎ

= −2 ∗ (yp(n)− yp̂(n))
δyp̂(n)

δwih
 

δ𝐸𝑛𝑝
δ𝑣ℎ𝑝

=
δ

δ𝑣ℎ𝑝
(𝑦
𝑝
(𝑛)− 𝑦

𝑝̂
(𝑛))

2

 

(6) 

𝛿𝐸𝑛𝑝
𝛿𝑣ℎ𝑝

= 2 ∗ (yp(n)− yp̂(n)) (0 −
δyp̂(n)

δvhp
) 

𝛿𝐸𝑛𝑝
𝛿𝑣ℎ𝑝

= −2 ∗ (yp(n)− yp̂(n))
δyp̂(n)

δvhp
 

From (5) and (6), the equation (4) is modified as the following 

𝑇 ≜ ∑∑[∑[−(𝑦𝑝(𝑛) − 𝑦𝑝̂(𝑛))
δ𝑦𝑝̂(𝑛)

δ𝑤𝑖ℎ
△𝑤𝑖ℎ(𝑁 + 1)]

𝑖ℎ

]

𝑃

𝑝=1

𝑁

𝑛=1

 

(7) 

+∑[−(𝑦𝑝(𝑛) − 𝑦𝑝̂(𝑛))
δ𝑦𝑝̂(𝑛)

δ𝑣ℎ𝑝
△ 𝑣ℎ𝑝(𝑁 + 1)]

2

ℎ

 

 Let 𝑦𝑝(𝑛) ≜ ∑ 𝑢ℎ(𝑛)𝑣ℎ𝑝
𝐻+1
ℎ  and 𝑢ℎ(𝑛) ≜ 𝑓(𝑢ℎ

∗ (𝑛)), where 𝑓(. ) is the activation 

function of the hidden layer neuron, and 𝑢ℎ
∗ (𝑛) ≜ ∑ 𝑥𝑖(𝑛)𝑤𝑖ℎ

𝐼+1
𝑖 . It is important to note 

that 𝑥𝐼+1(𝑛) = 1 and 𝑢𝐻+1(𝑛) = 1 since the input node 𝐼 + 1 and hidden node 𝐻 + 1 are 

bias neurons in the artificial neural network considered. Therefore, the change of 

prediction with respect to the weights in the hidden-to-output layer connections is given 

by the following: 

δ𝑦
𝑝̂
(𝑛)

δ𝑣ℎ𝑝
= 𝑢ℎ(𝑛) (8) 

 

where 1 ≤ ℎ ≤ 𝐻 + 1, 1 ≤ 𝑝 ≤ 𝑃. 
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 The change of prediction with respect to the weights in the input-to-hidden layer 

connections is given by the following: 

δ𝑦
𝑝̂
(𝑛)

δ𝑤𝑖ℎ
= [
δyp̂(n)

δuh(n)
] [
δuh(n)

δwih
] 

(9) 

𝛿𝑦𝑝̂(𝑛)

𝛿𝑤𝑖ℎ
= [

δ𝑦𝑝̂(𝑛)

δ𝑢ℎ(𝑛)
] [
δ𝑢ℎ(𝑛)

δ𝑢ℎ
∗(𝑛)
] [
δ𝑢ℎ
∗(𝑛)

δ𝑤𝑖ℎ
] 

𝛿𝑦𝑝̂(𝑛)

𝛿𝑤𝑖ℎ
= 𝑣ℎ𝑝(𝑛)

δ𝑓(𝑥)

δ𝑥
𝑥𝑖(𝑛)|{𝑥 = 𝑢ℎ} 

𝛿𝑦
𝑝̂
(𝑛)

𝛿𝑤𝑖ℎ
= 𝑣ℎ𝑝(𝑛)𝑢ℎ(𝑛)(1 − 𝑢ℎ(𝑛))𝑥𝑖(𝑛) 

where 1 ≤ 𝑖 ≤ 𝐼 + 1, 1 ≤ ℎ <  𝐻, 1 ≤ 𝑝 ≤ 𝑃. 

It implies that, 

𝑇 =
1

8
 ∑∑[−(𝑦𝑝(𝑛) − 𝑦𝑝̂(𝑛) )  ∗

𝑃

𝑝=1

𝑁

𝑛=1

 ∑ [𝑣ℎ𝑝(𝑛)𝑢ℎ(𝑛)(1 − 𝑢ℎ(𝑛))𝑥𝑖(𝑛) △ 𝑤𝑖ℎ(𝑁 + 1)]

(𝐼+1)𝐻

𝑖ℎ

  

− (𝑦𝑝(𝑛) − 𝑦𝑝̂(𝑛) ∑ [𝑢ℎ(𝑛) △ 𝑣ℎ𝑝(𝑁 + 1)]

(𝐼+1)𝐻

𝑖ℎ

2

 

(10) 

 In transfer learning, the aim is to minimize the objective function 𝑆 that balances 

the trade-off between minimizing weight sensitivity 𝑇 on a historical trained model and 

the error of predictions on data from a new dataset. i.e., 𝑆  ≜  𝑇 +  
𝜆

2
 ( ∑ [(𝑦𝑝(𝑛 +

𝑃
𝑝=1

1)  −  𝑦𝑝̂(𝑛 + 1) ) }. 

3.2.4 Related work 

In the past decade, transfer learning has gained widespread research interest from 

researchers in different fields of study owing to its inherent capability of transferring the 

knowledge gained while training from one application to another. In [186], the authors 

used TL used with seasonal and trend adjustment to enhance forecasts on energy used in 
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a building with the aid of models trained on data from similar buildings. An improvement 

of 11.2% in Mean Absolute Percentage Error (MAPE) of predictions was reported after 

the use of TL. Their work assumes the similarity of buildings in terms of energy 

consumption to apply TL and did not employ clustering-based techniques to group 

different buildings. Their case study also limits the application of TL to similar buildings. 

In this work, the clustering-based techniques are employed and also, TL is applied to 

similar distribution nodes with an improvement of training time and testing accuracy and 

between dissimilar clusters with an improvement of training time. 

In [187], energy predictive models based on convolutional neural networks (CNN) 

and TL are proposed. In their work, energy predictive models were tested on a case study 

of 23 customers against the Seasonal Autoregressive Integrated Moving Average 

(SARIMA) model and fresh CNN model. The results proved that the performance in terms 

of accuracy is improved when the models are pre-trained using TL. 

In [188], Ye et al. proposed an ensemble model of online TL kernel-based extreme 

learning machines. The results presented in their work depict that the use of TL improves 

the performance in terms of accuracy compared to standard machine learning models. 

Their work utilizes extreme learning machines that are basically neural networks with one 

hidden layer. The developed approach provided many benefits such as eliminating the 

need for optimizing the number of hidden layers and a smaller number of parameters to 

be optimized while using extreme learning machines [154]. However, the deep learning 

models have displayed high accuracy while dealing with the time-dependent energy 
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forecasting problems if the tendency to over-fitting is controlled [189]. Hence, in this 

work, the use of TL is extended to deep learning models. 

In [190], the authors proposed a two-stage prediction model for wind power based 

on an ensemble of nine deep auto-encoders in the first phase and deep belief networks in 

the second phase. The work was based on five datasets from wind farms. The TL was 

utilized in the training of deep auto-encoders from two to nine using the knowledge 

obtained during the training of the first deep autoencoder. Their results indicate that the 

use of TL overperforms the baseline regression models based on ARIMA and Support 

Vector Regression (SVR). However, the performance comparison of the ensemble model 

without TL and with TL has not been discussed. It is unclear if the improvement in 

performance is due to the ensemble of the optimized deep auto-encoders or due to TL. 

3.3 Incremental Learning 

3.3.1 Overview 

In the case of online streams of data available and the predictions to be made after 

these data are available, it becomes necessary to update the models with the new data 

points. With a new set of information available, the global minimum of the model cost 

function varies from the existing one. That is the global minimum is reset every time a 

new data record is available. This calls for the updating of the network weights using the 

new batch of data records available. 

Owing to the characteristics of the electrical data available, the error function 

typically has a highly nonlinear relationship with the network parameters such as weights. 

This makes it possible for the multiple local minima to exist i.e. several weight 
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combinations will give a small error. For the successful application of the forecasting 

model using deep neural networks, it is required that the global minimum or the lowest 

local minima are determined. However, with streams of new data available, these minima 

are changed. To find a solution that updates with time and data available, it is necessary 

to compare the minima and update the weights periodically by running batch online 

learning continually at regular intervals. 

In incremental machine learning, the models learn 1 observation at a time or 'n' 

observations at a time. The value 'n' depends on the number of hours after which the 

incremental machine learning algorithm is invoked. 

The incremental machine learning provides the benefits of a smooth transition 

between successive models and consistency of data [191]. The new models are developed 

incrementally using the models developed on historical old data and new data points. 

There is no requirement to develop the models from scratch when new batches of data are 

available. Also, the consistency is maintained i.e. the performance of the incrementally 

trained model is unchanged for records comprised in the initial data instances. 

Usually, the incremental machine learning based on transfer learning suffers which 

phenomenon called catastrophic forgetting. This calls for the tradeoff between two 

characteristics called rigidity (rigid with old tasks and so perform better with old data 

instances) and plasticity (flexible with new tasks and so perform better with new data 

instances). However, in this methodology, the incremental machine learning is performed 

on the clustered models which are then incrementally trained on new datasets from 
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individual transformers. This avoids catastrophic forgetting for a significant duration of 

time initially, however in long run would lead to low accuracies. 

3.3.2 Related work 

There have been few works that have capitalized on the incremental learning 

approach to develop short-term energy forecasting models. 

Polikar et al. introduced incremental learning initially in the neural networks for 

classification tasks [192]. For every mini-batch of data, they generated a different 

hypothesis, and the result of classification is obtained by the aggregation of all the classes 

obtained by the ensemble of classifiers on the different mini-batches of data. This 

algorithm is termed Learn++. Learn++ proved to present new classes from new batches of 

data. 

To tackle the issues of changing patterns in a predicted variable, Sanchez et al., in 

their work [193], introduced a forgetting function to enable the adaptability of the models 

to the changing patterns. For applications where the patterns of predicted variables change 

over time, the results of predictions are based on incremental learning with higher weights 

given to the knowledge from new data and low weights to the knowledge from an old 

hypothesis. The proposed forgetting function methodology was applied to a two-layer 

feedforward neural network. 

Zribi et al. proposed an incremental learning methodology for neural networks 

wherein they start the development of a network from a simple structure to adding a neuron 

to the hidden layers until the error of the predictions reaches a threshold while 

incrementing the data [194]. 
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In [195], Qiu et al. proposed an incremental approach while using an ensemble 

model of Discrete Wavelet Transform (DWT)- Empirical Mode Decomposition (EMD) 

based Random Vector Functional Link network (RVFL) network for short-term load 

forecasting. However, the RVFL network is based on randomly generated weights 

between input and hidden layers, rather than a systematic approach to parameter 

optimization leaving scope for accuracy improvement. Reference [196] proposed an 

online support vector regression (SVR) based on nested particle swarm optimization 

(NPSO) for parameter optimization. 

In [197], Gabriela et al. proposed an incremental ensemble model utilizing the 

time-series characteristics such as seasonality, and concept drift of energy consumption 

data. The ensemble model was based on Multi-Linear Regression (MLR), Support Vector 

Machine (SVR), Seasonal decomposition of time series by loess (STL), Holt-Winters 

exponential smoothing (HW), Feed-forward neural networks (NNE), and autoregressive 

model (AR). 
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CHAPTER IV  

MACHINE LEARNING AND DEEP LEARNING MODELS*5,6,7 

In this chapter, the utilized and proposed machine learning and deep learning 

models are detailed. The research utilizes the existing machine learning and deep learning 

models for purposes of benchmarking the performance. Additionally, the research has 

proposed several deep learning and ensemble architectures. 

4.1 Linear Regression (LR) 

The hypothesis of LR is given by: 

ℎ𝑤(𝑥) = 𝑤0 + 𝑤1𝑥1 +𝑤2𝑥2 +⋯ .+𝑤𝑛𝑥𝑛    ,  (11) 

where 𝑥1, 𝑥2, …… . . , 𝑥𝑛 represent features, and 𝑤0, 𝑤1, 𝑤2, … . . , 𝑤𝑛 represent model 

parameters. 

The objective of the LR is to choose 𝑤0, 𝑤1, 𝑤2, … . . , 𝑤𝑛 so that the values of 

ℎ𝑤(𝑥) is as close to the actual values of the labels (y). This is achieved by the introduction 

of a constraint while determining 𝑤0, 𝑤1, 𝑤2, … . . , 𝑤𝑛. 

Conventionally, the objective constraint in LR is given by Equation 3 [198]. 

𝐽(𝑤0, 𝑤1, … . , 𝑤𝑛) =
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑤0𝑤1…𝑤𝑛

 
1

2𝑛
 ∑ (ℎ𝑤(𝑥

(𝑘)) − 𝑦(𝑘))
2𝑛

𝑘=1   ,  (12) 

Here, 𝐽(𝑤0, 𝑤1, … . , 𝑤𝑛) is the cost function in terms of model parameters. 

 

5 Reprinted with permission from “Deep Learning-Based Short-Term Load Forecasting Approach in Smart Grid with Clustering 
and Consumption Pattern Recognition.” by Dabeeruddin Syed, Haitham Abu-Rub, Ali Ghrayeb, Shady S. Refaat, Mahdi Houchati, 

Othmane Bouhali, and Santiago Bañales, 2021. IEEE Access 9, 54992-55008, Copyright 2021 by Dabeeruddin Syed. 
6 Reprinted with permission from “Averaging Ensembles Model for Forecasting of Short-term Load in Smart Grids.” by 

Dabeeruddin Syed, Shady S. Refaat, Haitham Abu-Rub, Othmane Bouhali, Ameema Zainab, and Le Xie, 2019. IEEE International 

Conference on Big Data, pp. 2931-2938, Copyright 2019 by IEEE. 
7 Reprinted with permission from “Household-Level Energy Forecasting in Smart Buildings Using a Novel Hybrid Deep Learning 

Model.” by Dabeeruddin Syed, Haitham Abu-Rub, Ali Ghrayeb, and Shady S. Refaat, 2021. IEEE Access 9, 33498–33511, Copyright 

2021 by Dabeeruddin Syed. 
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This constraint is basically the sum of squared error and the aim is to minimize 

this error while determining the weights. 

The LR has been used as one of the prediction models to act as a benchmark for 

training time as this model would have the lowest training time owing to the simplicity of 

the model but coarser accuracy. 

4.2 Deep Neural Networks (DNN) 

If the artificial neural networks have multiple hidden layers between the input layer 

and the output layer, then these are termed as DNNs [199]. DNNs have the capabilities of 

modeling linear or non-linear relationships between the data features. Also, the tendency 

to overfit can be reduced with the application of dropout where the neurons in random or 

systematic order are dropped. 

The non-linear function representing the data is effectively determined in the 

neural networks using summation and product operations. If a neuron 'j' of layer '𝑙' 

(depicted in Figure 14 from a neural network is considered, then the input to the neuron is 

𝑆𝑗
𝑙, the weight at the neuron is 𝑤𝑖𝑗

𝑙 . Let σ be the activation function, then 𝑥𝑗
𝑙  is the output 

from the neuron and this output acts as input to the neurons in the next layer. Here, i 

represents the neuron number in the previous layer and 𝑑𝑙 represents the number of 

neurons in the layer '𝑙'. 

The input to the neuron 𝑆𝑗
𝑙 is given as  

𝑆𝑗
𝑙 = ∑ 𝑤𝑖𝑗

(𝑙)𝑥𝑖
(𝑙−1)𝑑(𝑙−1)

𝑖=1 + 𝑏𝑗
(𝑙) = ∑ 𝑤𝑖𝑗

(𝑙)𝑥𝑖
(𝑙−1)𝑑( 𝑙−1)

𝑖=0  ,  (13) 

 

And, the output from the neuron j in layer 𝑙 is given as follows. 
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𝑥𝑗
𝑙 = σ(𝑆𝑗

𝑙) ,  (14) 

 

In the matrix form, the equation for the input to neuron in layer 𝑙 is given as: 

𝑆𝑙 = (𝑊𝑙)𝑇𝑥𝑙−1 ,  (15) 

 

This equation is used in the forward propagation calculations. The value 𝑥, which 

is input, is available initially. It is used with pre-initialized weights 𝑊(1) to calculate the 

input 𝑆(1) to the neurons in the hidden layer 1. This input when applied with activation 

function yields the output 𝑥(1) from the neuron in hidden layer 1. 

Graphically, the forward propagation can be represented as the calculations involving the 

following: 

𝑥 ≡ 𝑥(0)
𝑊(1)

→  𝑆(1)
𝜎
→𝑥(1)

𝑊(2)

→  𝑆(2)
𝜎
→𝑥(2) . . . . . . . . . . .  

𝑊(𝐿)

→  𝑆(𝐿)
𝜎
→𝑥(𝐿) ≡ h(x) ,  (16) 

 

Figure 14 Neuron 'j' of layer '𝒍' in a neural network 
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The algorithm for the forward propagation of the neural network is given in 

Algorithm 3. The aim of the forward propagation is to calculate the inputs and outputs in 

different layers of the network using the weights, bias, and activation functions. 

The backpropagation is utilized to determine the gradient of error in the direction 

of the last hidden layer to the first hidden layer while minimizing the gradient of the error 

with respect to the weights of neurons. 

The error associated with the predictions is given by Equation 8 [200]. The 

subsequent Equations 9, 10, and 11 are the calculation of error gradient with respect to the 

weight of the corresponding layer. 

𝐸 =
1

N
∑

𝛿𝑒𝑛

𝛿𝑊
𝑁
𝑛=1 (ℎ(𝑥𝑛 − 𝑦𝑛)

2
), (17) 

 
𝛿𝐸

𝛿𝑊𝑙  =  
1

N
∑

𝛿𝑒𝑛

𝛿𝑊𝑙
𝑁
𝑛=1   , (18) 

 

where 
∂𝑒𝑛

∂𝑊𝑙 is given by 
∂𝑒𝑛

∂𝑤𝑖𝑗
𝑙  that is equal to 

∂𝑒𝑛

∂𝑤𝑖𝑗
𝑙 =

∂𝑒𝑛

∂𝑠𝑗
𝑙

∂𝑠𝑗
𝑙

∂𝑤𝑖𝑗
𝑙  

     ,  (19) 

Algorithm 3. Forward Propagation 

Input: x(0) = 𝑥. Initialization of augmented vector 

Output: 

1:      for 𝑙 =  1, 2, 3, . . . , 𝐿 do 

2:  compute 𝑆𝑙 = (𝑊𝑙)𝑇𝑥𝑙−1 

3:  compute x(𝑙) = [
1

σ(𝑆𝑙)] 

4:      end for 

5:      compute ℎ(𝑥) = 𝑥(𝐿) 
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∂𝑒𝑛

∂𝑤𝑖𝑗
𝑙 =

∂𝑒𝑛

∂𝑠𝑗
𝑙 𝑥𝑖
𝑙−1    , (20) 

 

This brings the partial derivative of the error with respect to neuron weights to the 

following equation: 

∂𝑒𝑛

∂𝑤𝑖𝑗
𝑙 ≡

∂𝑒

∂𝑊𝑙 = δ𝑖
𝑙𝑥𝑖
𝑙−1 ,  (21) 

 

In the backpropagation, the error gradient δ𝑖
(𝐿)

 is determined first (L represents the 

last layer in the neural network) and by way of backpropagation, the error in the previous 

layers is calculated as the following: 

δ𝑖
𝑙−1 =

∂𝑒(𝑤)

∂𝑠𝑖
𝑙−1   

=∑
∂𝑒(𝑤)

∂𝑠𝑗
𝑙

𝑑𝑙

𝑗=1

∂𝑠𝑗
𝑙

∂𝑥𝑖
𝑙−1

∂𝑥𝑖
𝑙−1

∂𝑠𝑖
𝑙−1  

 

   = ∑ δ𝑗
(l)𝑤𝑖𝑗

𝑙 ∂𝑥𝑖
𝑙−1

∂𝑠𝑖
𝑙−1 

𝑑𝑙

𝑗=1  , 
(22) 

 

The above equation is the representation of the error gradient of a layer in terms of 

the error gradient of the next layer. 

All the steps of forming a DNN are provided in Algorithm 4. 

4.3 Long Short Term Memory (LSTM) 

LSTM is a type of Recurrent Neural Network (RNN) that predicts the output based 

on not only the current state of the hidden units but also on the previous states witnessed 

so far, with the help of storing information in memory blocks. LSTMs are sequential 
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models and hence, capture the temporal dependencies. These models are suitable for 

processing time-series data such as load forecasting data. In a standard RNN, there are 

two inputs at a time step t to a neuron: input of time step t (𝑥𝑡) and output obtained at time 

step t-1 (ℎ𝑡−1). Output at a time step is obtained by the weighted sum of 𝑥𝑡 and ℎ𝑡−1 which 

is then followed by using activation functions such as Rectified Linear Unit (ReLU), and 

hyperbolic tangent (tanh) on the weighted sum. 

LSTM places a mini neural network inside each neuron and therefore complicates 

the process of training. However, it helps to improve reliance and handles the long-term 

dependencies well by eliminating the issues of gradient vanishing and gradient explosion 

that usually exist with the use of standard RNN. The main idea of LSTM is to have two 

outputs and gates. One of the outputs goes to the output layer and the next time step. 

Besides, the other output goes to the next time step only. Gates are the multiply operations 

performed and there are several gates in the LSTM. The LSTM network determines the 

weights, and these weights are used to dot-product the inputs. 

Algorithm 4. Neural Network 

Input: Initialize all weights 𝑤𝑖𝑗
(𝑙)

 

Output: 

1:    for 𝑡 =  0, 1, 2, 3, … ., do 

2: pick 𝑛 ∈  1, 2, 3, … . , 𝑁 

3: Forward propagation: compute all 𝑥𝑗
𝑙 

4: Backward propagation: compute all 𝛿𝑗
𝑙 

5: update the weight: 𝑤𝑗
(𝑙)

 
𝑤
← 𝑤𝑗

(𝑙) –  η 𝑥𝑖
𝑙−1 𝛿𝑗

𝑙 

6: iterate to the next step until it is time to stop 

7:     end for 

8:     return the final weights 𝑤𝑖𝑗
(𝑙)
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An LSTM layer followed by a fully connected neural network is depicted in Figure 

16.  

To understand the working of LSTM to handle long-term dependency, consider an 

LSTM unit at a particular time step as shown in Figure 16. Unlike standard RNNs, LSTMs 

have complex mathematical operations, additional three gates termed as forget (𝑓𝑡), input 

(𝑖𝑡) and output (𝑜𝑡) gates, and additional layer called candidate layer [173], [201]. The 

gates utilize the sigmoid activation function and candidate layer operates using tanh 

 

Figure 16 LSTM with Fully Connected NN 

 

Figure 15 Mathematical operations in an LSTM unit at one time step 
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activation. Tanh activation is additionally adopted to calculate hidden cell state at next 

time step from prior memory cell state. 

From Figure 15, it can be observed that the inputs to an LSTM neuron at time step 

𝑡 are the current input 𝑋𝑡, hidden state from prior time step ℎ𝑡−1, and memory cell state 

from prior time step 𝑚𝑡−1. The outputs from the LSTM cell are hidden state at current 

time step ℎ𝑡, and memory state at current time step 𝑚𝑡. There are multiple operations 

taking place inside LSTM cell than those that occur in RNN cell. The merits of these 

operations are that the gradients are preserved through the network and these allow for 

long-term dependency information to pass. 

The forget gate looks similar to the input gate, however, its function is different, 

and it is to determine the usefulness of the previous hidden state memory cell whilst 

computing on current input. 

𝑓𝑡 = 𝜎(ℎ𝑡−1 · 𝑊𝑓 + 𝑥𝑡 · 𝑈𝑓 + 𝑏𝑓) (23) 

The input gate performs a significant function. It determines if the current input 

requires to be preserved based on the prior hidden state value.  

𝑖𝑡 = 𝜎(ℎ𝑡−1 · 𝑊𝑖 + 𝑥𝑡 · 𝑈𝑖 + 𝑏𝑖) (24) 

The candidate layer takes the current input 𝑥𝑡 and prior hidden state value ℎ𝑡−1 and 

creates a new memory ct. 

ct = tanh(ℎ𝑡−1 · 𝑊𝑐 + 𝑥𝑡 · 𝑈𝑐 + 𝑏𝑐)  (25) 

The output gate differentiates the hidden state memory and determines how much 

of the information in the memory should be present in the hidden state at time 𝑡 as ℎ𝑡 is 

dependent on 𝑜𝑡.  
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ot = σ(ℎ𝑡−1 · 𝑊𝑜 + 𝑥𝑡 · 𝑈𝑜 + 𝑏𝑜) (26) 

As shown in (27), the final memory state 𝑚𝑡 is generated by two product sums: i) 

taking forget gate output 𝑓𝑡 and prior memory state value 𝑚𝑡−1, and ii) input gate output 

𝑖𝑡 and new memory 𝑐𝑡. 

𝑚𝑡 = 𝑓𝑡 · 𝑚𝑡−1 + 𝑖𝑡 · 𝑐𝑡 (27) 

The final hidden state value is dependent on the output gate as formulated in the 

following: 

ht = ot ∗ tanh(mt) (28) 

where 𝑏𝑓, 𝑏𝑖, 𝑏𝑐 are time step independent biases of forget gate, input gate, and candidate 

layer respectively. 𝑊𝑓, 𝑈𝑓, 𝑊𝑖, 𝑈𝑖, and 𝑊𝑐, 𝑈𝑐 are time step independent weights of forget 

gate, input gate, and candidate layer respectively. 

4.4 Proposed Averaging Regression Ensembles Model (AREM) 

Also, an ensemble model that provides better performance in terms of accuracy is 

proposed.  The proposed Averaging Regression Ensembles Model is based on three 

ensembles model consisting of ensemble extreme learning machines model, linear 

regression, and long short-term memory recurrent neural network model. For the ensemble 

of extreme learning ensembles model, the weights are randomly initialized, and the 

number of neurons used in every model is different. Different learning algorithms were 

used, however, the better performing learning algorithms such as LBFGS and Adam have 

been finalized for the ensemble of extreme learning machines model, and learning 

algorithms LBFGS and Adam have been finalized for LSTM recurrent neural network 
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model. The ensemble model, called as Averaging Regression Ensembles Model (AREM) 

model, is depicted in Figure 17 [154].  

4.5 Proposed Bidirectional LSTM Architecture (Bi-LSTM) 

 Bi-directional LSTM is a development over uni-directional LSTM models. The bi-

directional LSTMs process the inputs in two directions - in the forward pass, from past 

inputs to future inputs, and in the backward pass, from future inputs to past inputs. The 

combination of hidden states from the forwarding pass and backward pass preserves the 

information from both past inputs and future inputs through two different hidden layers. 

The output from these hidden layers is passed to the single identical output layer. This 

allows the bidirectional LSTMs to preserve the context and data patterns better from both 

past and future inputs without delay. It has been proven that bi-directional LSTMs perform 

better predictions and classifications than uni-directional LSTMs in diverse fields such as 

 

Figure 17 Architecture of Proposed AREM Model © 2019 IEEE 
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speech recognition [202]. However, the advantages of bi-directional LSTMs have not been 

much explored in the field of energy consumption forecasting in smart grids. 

 The architecture of the unfolded bi-directional LSTM model, comprising of 

forwarding LSTM units and backward LSTM units, is depicted in Figure 18 [173]. The 

forward pass output (ℎ⃗ ) is successfully determined using inputs in the positive sequence 

of time from 𝑇 − 𝑘 to 𝑇 − 1. Whereas the backward pass output (ℎ⃗⃖) is successfully 

determined using inputs in the negative sequence of time from 𝑇 + 𝑘 to 𝑇 + 1. There are 

no hidden-to-hidden layer connections between the forward LSTM units and the backward 

LSTM units. The calculations of outputs of the forward pass and backward pass utilize the 

traditional LSTM functions. The final output vector of the bi-directional LSTM layer is 

represented as 𝑍𝑇 = [𝑧𝑇−𝑘, 𝑧𝑇−𝑘+1, … . , 𝑧𝑇−1]. Each element in the final output vector is 

given by the following: 

 𝑧𝑡 = 𝜎(ℎ⃗ 𝑡 , ℎ⃗⃖𝑡)   (29) 

 

 

Figure 18 The architecture of unfolded bi-directional LSTM model © 2019 IEEE  
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where 𝜎 represents a function used to integrate the outputs from forwarding pass and 

backward pass. The 𝜎 function can be a summation, averaging, concatenating, or 

multiplication function. And the forward pass output (ℎ⃗ ) and backward pass output (ℎ⃗⃖) are 

given as follows. 

 ℎ⃗ = Ħ(𝑊𝑦ℎ⃗⃗ y𝑡 +𝑊ℎ⃗⃗ ℎ⃗⃗ ℎ⃗
 
𝑡+1 + 𝑏ℎ⃗⃗ )          (30) 

ℎ⃗⃖ = Ħ(𝑊𝑦ℎ⃗⃗⃖y𝑡 +𝑊ℎ⃗⃗⃖ℎ⃗⃗⃖ ℎ⃗⃖𝑡+1 + 𝑏ℎ⃗⃗⃖) (31) 

where Ħ represents the hidden layer function, 𝑦𝑡 represents the input sequence. 

4.6 Proposed Clockwork RNN (CWRNN) 

Clockwork RNNs are modifications to the vanilla RNNs such that the hidden 

layers in clockwork RNNs are partitioned into different modules. Each of the modules 

then processes the inputs to them at different temporal granularities and different preset 

clock rates. The advantages of such architecture are the reduction in the number of 

trainable parameters and an increase in accuracy when compared to the regular RNN and 

LSTM structures. 

Similar to RNNs, clockwork RNNs also have the input to hidden layers, hidden to 

hidden layers, and hidden to output layer connections. The only difference is that the 

hidden layer in clockwork RNNs is partitioned into k partitions of size m, each of it will 

have the clock period 𝑇𝑛 = {𝑇1, 𝑇2, . . . , 𝑇𝑘}.  

The different partitions have internal connections together, but there are no 

recurrent connections from i to j if the time period 𝑇𝑖 < 𝑇𝑗. That is, when the neural network 
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is built, the partitions are arranged in ascending order and the recurrent connections exist 

from the partitions with higher clock periods to partitions with lower clock periods only. 

The architecture of the clockwork RNN (CWRNN) is illustrated in Figure 19. The 

clock period of a partition 𝑖 can be determined as the following: 

𝑇𝑖 = 2
𝑖−1 , (32) 

where 𝑖 is the number of partition of a hidden layer. 

The input and hidden weight matrices are partitioned into 𝑘 block rows, as follows: 

𝑊 =

[
 
 
 
 
𝑊1
.
.
.
𝑊𝑘]
 
 
 
 

  𝑎𝑛𝑑 𝑈 =

[
 
 
 
 
𝑈1
.
.
.
𝑈𝑘]
 
 
 
 

  ,  (33) 

Here, 𝑊 is an upper triangular matrix, and each 𝑊𝑖 value is partitioned into block 

columns:    

 

Figure 19 The architecture of clockwork RNN 
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{01, … , 0𝑖−1,𝑊𝑖,𝑖, … ,𝑊𝑖,𝑘} (34) 

During the forward pass, only the block rows of the hidden weight matrix and the 

input weight matrix correspond to the executed modules. That is, 

𝑊𝑖 = {
𝑊𝑖, 𝑓𝑜𝑟 (𝑡 𝑚𝑜𝑑 𝑇𝑖)  =  0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (35) 

where 𝑖 represents the missing record number. 

The modules with lower clock rates learn and maintain long-term information from 

the input and the modules with the higher clock rates learn local information. Each hidden 

layer is partitioned into 𝑘 modules of size 𝑚, which means there are a total of 𝑛 =  𝑚𝑘 

neurons. Since neurons are only connected to those that have a similar or larger period, 

the number of parameters within the hidden-to-hidden matrix is as follows: 

𝑁𝐻 =∑∑𝑚(𝑘 − 𝑖 + 1)

𝑚

𝑘=1

𝑘

𝑖=1

=
𝑛2

2
+
𝑛𝑚

2
 (36) 

In vanilla RNNs, there are 𝑛2 parameters. If the ratio of 𝑁𝐻 to 𝑛2 is considered, it 

is around 1/2. Therefore, Clockwork RNN requires approximately 50% of the 

parameters. 

 



 

95 

 

CHAPTER V  

PROPOSED METHODOLOGY*8,9 

This chapter presents the multi-stage hybrid methodology proposed in this thesis 

for short-term load forecasting in large electrical networks. The main aim of the work is 

to train and build a deep learning hybrid model that provides high accuracy for electrical 

energy forecasts. The hourly energy forecasts one-day ahead are the goal of the work. 

A detailed description of the various steps involved in the proposed methodology 

is described in subsequent sections starting with the description of acquisition data sets 

used for the case studies. 

5.1 Data Acquisition 

The load forecasting data available for analysis is the energy consumption data at 

the distribution transformers’ level in Spanish Electrical Network. The data contain the 

hourly energy consumption data for 100,000 distribution transformers. The features in this 

dataset are timestamp, and energy consumption values. Feature engineering is performed 

to use the 24 energy lag values as features in the dataset to incorporate time dependency 

in the machine learning models to be developed. 

The energy consumption data for 100,000 transformers would be around 4.8 

billion rows for a five-year historical time. This corresponds to about 5.7 Terabytes of 

memory for data processing. The methodologies to be developed are required to use the 

 

8 Reprinted with permission from “Deep Learning-Based Short-Term Load Forecasting Approach in Smart Grid with Clustering 
and Consumption Pattern Recognition.” by Dabeeruddin Syed, Haitham Abu-Rub, Ali Ghrayeb, Shady S. Refaat, Mahdi Houchati, 

Othmane Bouhali, and Santiago Bañales, 2021. IEEE Access 9, 54992-55008, Copyright 2021 by Dabeeruddin Syed. 
9 Reprinted with permission from “Short-term Power Forecasting Model Based on Dimensionality Reduction and Deep Learning 

Techniques for Smart Grid.” by Dabeeruddin Syed, Shady S. Refaat, Haitham Abu-Rub, and Othmane Bouhali, 2020. IEEE Kansas 

Power and Energy Conference (KPEC), pp. 1-6, Copyright 2020 by IEEE. 
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concepts of big data, parallel computing, and clustering techniques to reduce the 

computation time for initial training of models and incremental online update of trained 

models dynamically. This additionally calls for the concepts of transfer learning and 

incremental machine learning to be incorporated in the proposed methodology. 

The methodologies have been proposed and these methodologies are scaled to be 

accurate, efficient, and with low latency as the size and rate of data increases. The data is 

used in the multiples of 10, 1000, and 100000 transformers to develop different strategies 

and algorithms. 

5.1.1 Dataset 1 

The load forecasting data available for analysis is the energy consumption data at 

the distribution transformers’ level for Spain. The data contain the hourly energy 

consumption data for 10 distribution transformers. The weather data for the location of 

these 10 distribution transformers is scraped online using an Application Programming 

Interface (API) named Darksky [203]. The data is available for 33 months from 01 January 

2017 to 28 September 2019. The weather data is merged with the energy consumption 

data. The data contain missing values for the weather features. The missing values should 

be either filled, extrapolated, or deleted [204]. The missing values for numerical features 

are filled with mean or median values. Otherwise, backward or forward filling methods 

are utilized to fill the missing values. Mode imputation is applied for categorical or ordinal 

features. In this work, the forward fill method has been used to fill missing values for 

numerical weather features. The dataset 1 consists of features such as datetime, wind 

speed, maximum temperature, minimum temperature, humidity, summertime, and other 
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weather features in addition to energy consumption values and lag hour values. Figure 20 

presents the standard deviation and mean of the energy consumption values for different 

transformers in dataset 1. The boxes represent the deviation of the energy consumption 

values, the horizontal blue line inside the blue box represents the median of the 

consumption, and the black circles represent the outliers. The higher width of the blue 

boxes represents that the energy consumption values for those transformers are highly 

varying. 

5.1.2 Dataset 2 

The load forecasting data available for analysis is the energy consumption data at 

the distribution transformers level for Spain. The data contains the hourly energy 

consumption data for 1000 distribution transformers. However, the location of these 1000 

transformers is not available currently. The data is available for the same 33 months as 

dataset 1. The difference for dataset 2 is the weather information for all 1000 different 

locations for every hour is not available. Hence, the dataset 2 consists of features including 

energy consumption values, lag hour values, and season. Figure 21 presents the standard 

 

Figure 20 The standard deviation of energy consumption for different 

transformers in Dataset 1 
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deviation and mean of the energy consumption values for a subset of transformers in 

Dataset 2. The high width of the boxes in Figure 21 depicts that the energy consumption 

values for transformers 21, 127, and 562 are highly varying. Also, it indicates that many 

records have zero values for consumption. The range and mean of energy consumption 

values in dataset 1 and dataset 2 are mentioned in Table 10. 

Table 10 Descriptive statistics of datasets. 

 Mean (KWh) Std (KWh) Min (KWh) Max (KWh) 

Dataset 1 75.25 111.87 0 754.60 

Dataset 2 45.41 1346.71 0 2147483.64 

 

5.1.3 Dataset 3 

The dataset 3 is energy consumption data from 105,148 transformers in the 

distribution network spread across the country of Spain. The size of the dataset is around 

250 GB and it contains 2.16 billion records of energy consumption. 

 

Figure 21 The standard deviation of energy consumption for different 

transformers in a sample of Dataset 2 
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5.2 Proposed Methodology 

There are multiple implementation layers to the load forecasting application in 

smart grids. These layers are depicted in Figure 22 and are listed below: 

• Feature Engineering Layer 

• Clustering Layer 

• Transfer Learning Layer 

• Machine Learning Models 

• Incremental Training Layer or Real-time Machine Learning 

 

Figure 22 Different layers in the proposed methodology 
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The core layer is the machine learning models layer where the training and testing 

of the machine learning models happen on the load forecasting historical data. All the 

other layers are added on top of the machine learning models layer to enhance the 

performance of the forecasting. The enhancement may be in terms of accuracy of 

predictions or to reduce the number of prediction models to be developed for 100,000 

distribution nodes or to reduce the training time of the models. 

5.3 Feature Engineering Layer 

This layer employs different feature extraction or dimensionality reduction 

techniques for the applications of short-term power forecasting using smart meters data. 

The number and data type of input features are crucial to the performance of power 

forecasting models. The input features in the dataset are weather parameters and lag hour 

values of energy. The performance of the machine learning models decreases with the 

increase in the number of input features. That is, the machine learning models tend to 

overfit, and the forecasting accuracy is reduced. The performance of the feature extraction 

or dimensionality reduction techniques has been evaluated in the context of the forecasting 

applications with models involving Artificial Neural Networks (ANN), Long Short Term 

Memory (LSTM), and Linear Regression (LR). While linear Principal Component 

Analysis (PCA) is a preferred dimensionality reduction technique for faster training times, 

kernel PCA, Non-negative Matrix Factorization (NMF), Independent Component 

Analysis (ICA), and Uniform Manifold Approximation and Projection (UMAP) yield 

better accuracies [152]. 
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The feature extraction techniques evaluated in this work are described in the 

following: 

5.3.1 Principal Component Analysis (PCA) 

PCA transforms the features in a dataset into new features which are termed as 

Principal Components. The principal component is a linear combination of the original 

variables of the dataset. Principal components are ranked so that the first principal 

component is the one that represents the maximum variance in the data. The subsequent 

principal components represent the remaining variance in the dataset. However, these are 

not correlated to the first principal component of the data. Singular Value Decomposition 

(SVD) decomposes the original matrix into its components based on the concept of 

eigenvalues and eigenvectors, and this is used to remove the redundant features. 

5.3.2 Independent Component Analysis (ICA) 

ICA is set up on information theory and it differs from PCA in the sense that PCA 

finds the uncorrelated factors whereas ICA finds the independent factors. The uncorrelated 

factors are those which do not have any linear relationship between them. However, 

independence is an absolute characteristic. 

5.3.3 Non-negative Matrix Factorization (NMF) 

NMF is a multivariate analytic technique used for dimensionality reduction (DR). 

The NMF breaks down a non-negative data matrix into two non-negative matrices. One 

of the component matrices is termed as the basis vectors. These basis vectors are projected 

onto a lower-dimensional space to perform DR. The peculiarity of NMF over PCA and 
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SVD is that it has non-negativity constraints. NMF is an iterative method and has merits 

in algorithms using large matrices. 

5.3.4 Manifold Isometric Mapping (ISOMAP) 

It is a manifold projection-based DR technique. For any data, a manifold close to 

the data is located, and the projection of data on that manifold is calculated. Finally, for 

the representation, the manifold is unfolded to determine the representation of the original 

data onto a lower-dimensional space. ISOMAP is a method that focuses to retrieve full 

low-dimensional projection of a non-linear manifold which is presumed to be smooth. 

5.3.5 t-Distributed Stochastic Neighbor Embedding (t-SNE) 

t-SNE recognizes the patterns in non-linear ways. It uses local approaches 

(mapping neighboring points on the manifold to neighboring points in the low dimensional 

data setting) and global approaches (preserving geometry at all scales, i.e. mapping 

neighboring points on a manifold to neighboring points and mapping far away points to 

faraway points in low-dimensional data setting) to map the data points into lower-

dimensional data representation. It computes the probability similarity of points in high 

dimensional representation and low dimensional representation. Basically, it computes the 

Euclidean distances between points in high or low dimensional expanse and converts these 

distances to conditional probabilities to represent similarities. However, there are a few 

drawbacks such as loss of large-scale information, slower execution times, and inability 

to represent larger datasets for the t-SNE method. t-SNE performs efficiently when the 

dataset is not huge and there is non-linear dependency among the data features. Usually, 

GPU-accelerated implementations of t-SNE (such as Barnes-Hut approach, and RAPIDs) 
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are employed to reduce the high processing times. However, the set of experiments in this 

work has been conducted only on the CPU implementations of the DR techniques. 

5.3.6 Uniform Manifold Approximation and Projection (UMAP) 

UMAP is a state-of-the-art DR technique that preserves much of local and global 

structure as compared to t-SNE. It uses the k-Nearest neighbor concept. It determines the 

span between the points in high-dimensional data representation and projects onto lower-

dimensional data representation and employs Stochastic Gradient Descent (SGD) to 

reduce the distance in the lower dimensional setting. It has the following advantages such 

as the ability to handle large datasets, faster computation time when compared to t-SNE, 

and preservation of local and global structures of data. 

5.4 Clustering Layer 

This layer provides the gain in training time and performance in terms of accuracy 

when the clustering-based deep learning modeling is employed for load forecasting. For 

100,000 distribution transformers, it is initially presumed that 100,000 machine learning 

models are required to make predictions at each transformer. However, by employing 

clustering methodology, the number of models to be developed can be reduced from 

100,000 models to a lesser number 'k'. 

The different forecasting models are generated for different clusters of load 

profiles. For clustering, k-Medoid based algorithm is employed. The clustering of the 

distribution transformers, based on the similarity in the energy consumption, improves the 

accuracy of the proposed methodology and reduces the number of models required for a 

large number of distribution transformers, consequently reducing the training time.  
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In current works, a deep neural network consisting of six layers and utilizing Adam 

optimization learning model using the TensorFlow framework has been employed. The 

case study has been successfully performed on real data of energy consumption at the 

distribution level for 1000 transformers in Spain Electricity Network. The results reveal 

that the proposed model has superior performance when compared to the state-of-the-art, 

and other classical load forecasting methodologies. The clustering-based approach 

improves accuracy by 0.005 to 2.9% and saves around 44% of training time using single-

core processing compared to non-clustering models.  

On 1000 transformers, the number of models to be developed has been reduced 

from 1000 to 93 models only. The number 'k' i.e. the number of clusters has been 

determined by utilization of the elbow curve which analyzes the within-cluster error to the 

number of clusters. 

The clustering approach currently successfully tested on 1000 transformers, is to 

be tested on 100,000 transformers to prove the scalability of the proposed approach.  

5.5 Transfer Learning Layer 

This layer is applied on the clustered models with an aim to reduce the training 

time. The method of knowledge transfer from model 1 to other models enables the 

subsequent models to reach the convergence faster.  

Also, if transfer learning is used between the transformers with similar energy 

consumption patterns, not only the training time but also the accuracy of the later models 

is improved. 
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Desired results have been obtained when transfer learning is utilized between 

transformers within the same clusters. However, there is an issue of local minima 

convergence when transfer learning is applied between different clusters of transformers. 

The aim of this layer is to employ a reliable transfer learning algorithm to use the 

knowledge from existing load forecasting machine learning models to innovatively 

develop highly accurate transfer learning models for cases of newly installed distribution 

nodes where the availability of load data is not sufficiently large. The work investigates 

how negative learning is avoided by transferring knowledge between similar and different 

distribution units. The overall results indicate that the knowledge transfer from developed 

models improves the accuracy of newer models, reduces the time of convergence to local 

minima, and reduces training time for deep learning models compared to that of models 

without transfer learning. 

5.6 Machine Learning and Deep Learning models Layer 

The modeling layer is the layer in which the offline training of the machine 

learning and deep learning models takes place. The modeling can be performed on 

encrypted data (if there is a security layer) or non-encrypted data (if there is no security 

layer). The primary work of this thesis focuses on the big data analytics and modeling on 

data without a security layer. However, our work that focused on the addition of security 

layer, where the homomorphic encryption of the data takes place before model training 

and the decryption of the predictions takes place after testing, is presented in Appendix A.  

In this layer, the classical machine learning models such as Linear Regression, and 

Decision Trees, or the deep learning models such as Long Short-Term Memory (LSTM), 
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and Deep Neural Networks (DNN) can be employed. The LR has been used as one of the 

prediction models to act as a benchmark for training time as this model would have the 

lowest training time owing to the simplicity of the model but coarser accuracy. 

5.7 Modeling the Learning Process 

5.7.1 Proposed Model Cost Function PULSE 

5.7.1.1 Overview 

Quadratic cost function such as Mean Squared Error (MSE) has been a widely used 

objective function whilst training deep neural networks for energy forecasting in Smart 

Grids. In this work, Penalizing Underestimation Logarithmic Square Error (PULSE), a 

novel objective function is proposed with an aim to reduce the tendency of deep learning 

models to underestimate the target variable. 

Load forecasting is the foremost and crucial step in power system planning [205]. 

The system operators utilize the information of load forecasts to make decisions on 

generation resource management, economic dispatch, and scheduled maintenance. 

Inevitably, perfectly accurate demand forecasting directly influences the costing and 

reliability of the power systems. However, peak demand forecasting is crucial to prevent 

blackouts or loss of energy. Although the accuracy of demand forecasting is highly 

important, the underestimation of demand is more harmful than the overestimation of 

demand. This is the motivation of the proposed PULSE cost function. Excess load demand 

and shortage of supply can lead to unintentional brownouts and blackouts that have severe 

negative effect on the life of energy consumers [149]. 
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The application of neural networks for forecasting load demand is to provide a 

black box of product-sum operations followed by activations to generate the non-linear 

mapping instead of formulating numerous mathematical derivations to explore the 

correlation and rules between input features and the output target variable. 

The weight contributions of previous layer outputs onto the next layer inputs are 

determined during the learning process that involves the forward propagation and error 

backpropagation method. Conventionally, the error backpropagation is based on the error 

cost function that needs to be minimized using optimization algorithms. The cost function 

can be customized to penalize the underestimation of the target variable during the training 

process so that the networks are more prone to overestimate than to underestimate.  

Currently, there are primarily five types of loss functions that evaluate the error in 

regression problems during the backpropagation method in neural networks: i) quadratic 

(L2) loss function such as mean squared error [206], ii) linear (L1) loss function such as 

mean absolute error [207], iii) Huber loss function [208], [209], iv) logarithmic cost 

function (logcosh) [209], and v) quantile loss function [210]. 

In [210], Ben et al. proposed a scheme to add a quantile constraint to any loss 

function of regression neural networks. Although quantile constraints do not yield any 

gradients, the authors formulated a method and an algorithm to minimize a generalized 

loss function. Their results presented that the cost function converges proving the 

feasibility of their proposed solution. The quadratic cost function has been adopted 

extensively in the deep learning methodologies for load demand forecasting owing to the 

least sum of squares postulate [174], [211]. In [174], Syed et al. utilized MSE as a loss 
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function to develop clustering-based deep learning models on big data for load forecasting. 

The demerit of the quadratic cost function is the low rate of gradient descent and this 

increases training time especially in the case of big data processing. The problem is evident 

in artificial neural networks and is more pronounced in deep neural networks (DNNs) such 

as dense networks, convolutional neural networks, and recurrent neural networks. 

In [212], Khosravi et al. proposed a weight decay cost function for decreasing the 

length of load forecasting intervals without affecting the coverage probability. Their 

results suggested that their proposed cost function overperformed the delta technique that 

is fundamentally utilized for constructing the load forecasting intervals instead of point-

based forecasts. 

To the best of my knowledge, there was no research work with a discussion on the 

elimination of underestimation of demand forecasting, and with proposed methodologies 

to reduce or eliminate the underestimation tendency of deep neural networks optimizing 

the quadratic, linear or quantile cost functions. The comprehensive results provide insights 

and investigate the models that are optimal keeping accuracy in consideration and compare 

these models with the proposed methodology that eliminates the tendency of 

underestimation. In this research, A custom cost function called Penalizing 

Underestimation Logarithmic Square Error (PULSE) is proposed with an aim of providing 

a tradeoff between high accuracy and removal of the underestimation tendency of deep 

learning models. A real case study based on a Portuguese load demand dataset of 

consecutive three years is used to investigate the efficiency of the proposed methodology 

that eliminates the tendency of underprediction of load demand. 
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5.7.1.2 PULSE Cost Function 

Conventionally, the loss function (ℓ) utilized to minimize the error of predictions 

from machine learning models is mean absolute error, mean percentage error or mean 

squared error. The proposed PULSE cost function is based on the custom proposed loss 

function which is formulated as (37).  

 where 𝑦 is the true value of the independent variable, 𝑦𝑝𝑟𝑒𝑑 is the predicted value 

of the independent variable, 𝛽 is the hyperparameter (called penalty coefficient) in this 

loss function, and ψ(. ) is the proposed modified approximation function. 𝛽 lies between 

0 and 1 for normalized data. ψ(. ), the approximation function is given by the following 

equation: 

 

 The proposed approximation function ψ(.) can be reformulated as given in (39). It 

can aptly be called a negative ReLU function due to its analogous similarity to the ReLU  

ℓ = [𝑙𝑜𝑔(𝑦 + 1)  −  𝑙𝑜𝑔(y𝑝𝑟𝑒𝑑 +  1)]
2
+ (𝛽) ∗ 𝑙𝑜𝑔(ψ(y𝑝𝑟𝑒𝑑 − 𝑦) + 1) (37) 

ψ(𝑥)= {
−𝑥, 𝑥 < 0
0, 𝑥 ≥ 0

 (38) 

 

Figure 23 Proposed approximation function 
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activation function and is illustrated in Figure 23. 

 

 The PULSE cost function (𝐽) is therefore modified as given in (40). 

 This can be rewritten as the following: 

 Figure 24 illustrates the backward propagation of deep neural networks. The 

backward propagation relies on the cost function to optimize the accuracy of prediction 

models updating weights in each epoch of an iteration. 

5.7.1.3 Case study for performance evaluation of PULSE 

5.7.1.3.1 Data description 

In this case study, an open-source real-world electricity load diagrams dataset is 

utilized for performance validation of the proposed cost function and methodology. The 

ψ(𝑥)=− 𝑚𝑖𝑛(0,𝑥) ∀ 𝑥 (39) 

J =
1

2𝑚
∑[𝑙𝑜𝑔(yi + 1)  −  𝑙𝑜𝑔 (yipred  +  1)]

2
𝑚

𝑖=1

+ (𝛽) ∗
1

2𝑚
∑[𝑙𝑜𝑔 (ψ(yipred − yi) + 1)]

2
𝑚

𝑖=1

 (40) 

J =
1

2𝑚
∑[𝑙𝑜𝑔 (

yi + 1

yipred  +  1
)]

2𝑚

𝑖=1

+ (𝛽) ∗
1

2𝑚
∑[𝑙𝑜𝑔 (ψ(yipred − yi) + 1)]

2
𝑚

𝑖=1

 (41) 

 

Figure 24 Backward propagation of deep neural networks 
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data contain electricity consumption information of 370 customers and cover 140256 

electricity consumption records for each customer [213]. In total, the records amount to 

around 51.89 million records for all customers and before processing, the dataset occupies 

around 694.33 MB memory on the compute node. 

5.7.1.3.2 Data processing 

The dataset does not contain any missing values. Therefore, imputation methods 

were not adopted in preprocessing step [41]. The energy consumption values were 

recorded in kW every 15 mins. The values have been aggregated to hourly consumption 

values expressed in kWh.  

Especially with neural network models, it is crucial to scale and normalize the 

features to a similar range [214]. Without feature scaling, convex optimization methods 

such as gradient descent take a long time to converge. Besides, normalization is performed 

so that each feature has approximately zero mean. The application of both feature scaling 

and mean normalization is formulated as (42). 

𝑥𝑗
(𝑖)′
=

𝑥𝑗
(𝑖)
− 𝑎𝑣𝑔(𝑥𝑗)

𝑚𝑎𝑥(𝑥𝑗) − 𝑚𝑖𝑛(𝑥𝑗)
 (42) 

where 𝑥𝑗
(𝑖)′

 is the scaled and normalized value of a feature in row 𝑖, 𝑥𝑗
(𝑖)

 is the original 

value of a feature in row 𝑖, 𝑗 represents a feature number, 𝑎𝑣𝑔(𝑥𝑗) refers to the average 

value of the feature 𝑥𝑗.  Similarly, 𝑚𝑎𝑥(𝑥𝑗) 𝑎𝑛𝑑 𝑚𝑖𝑛(𝑥𝑗) refer to the maximum and 

minimum of the feature respectively. 

5.7.1.3.3 Sliding Window Method 
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The data are fundamentally time series data of load demand. Additionally, the 

datetime extracted features referring to the day, month, year, and day of the month are 

considered. Furthermore, the sliding time window approach is deployed to integrate the 

lag values of load demand as feedback to the input layer of network models. This is based 

on the fact that the load demand in the prior time may have a crucial influence on load 

demand at the current time. The fixed-length sliding time window enables the model 

networks to analyze the demand history to extract time-varying features. Suppose 

𝑦(𝑡);  𝑡 =  1, 2, 3, 4, . . . , 𝑛 be the load demand time series where 𝑡 is the index of time and 

𝑛 denotes the total number of time instances. The sliding window method assigns 𝛕 lagged 

load demand values to each instance of time series at entry 𝑡. A 𝛕x1 feature vector denoted 

by [𝑦(𝑡 − τ), . . . 𝑦(𝑡 − 4), 𝑦(𝑡 − 3), 𝑦(𝑡 − 2), 𝑦(𝑡 − 1)] is assigned to a typical instance 

of time series 𝑦(𝑡). The addition of extracted datetime features and the deployment of the 

sliding window method transforms the load demand time series data into a supervised 

machine learning problem. 

5.7.1.3.4 Model development – LSTMs 

For forecasting time-dependent target variables, recurrent neural networks (RNN) 

have been developed. These networks have memory cells that can retain information of 

the prior captured states of the input to make a forecast for a future time step. Long Short-

Term Memory (LSTM) is a special type of RNNs that can handle long-term dependencies 

and additionally address the problem of exploding and vanishing gradients using the forget 

and memory cells that decide on which information to forgo and which information to 

carry forward or retain respectively. The explicit handling of temporal dependence 
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between records while learning a mapping function from input variables to target variables 

is offered by RNNs such as LSTMs, unlike DNNs and Convolutional Neural Networks 

(CNNs). The theoretical perspective of LSTMs is illustrated in Chapter IV. 

5.7.1.3.5 Simulation Setup 

The simulations were performed for short-term hourly load demand forecasting. 

To ensure a fair assessment of the impact of formulating cost function i.e., the use of 

proposed PULSE cost function, the same built stacked LSTM network is employed along 

with sliding window method, regularization components, and batch normalization. The 

comparative investigation is performed for a problem of point-based forecasting. 

Additionally, the results of simulations are compared against the models developed in the 

literature. It is significant to note that the aim of this methodology is not just the supremacy 

of accuracy but to balance the tradeoff between accuracy and the avoidance of 

underestimation tendency. The configuration and specifications of the machine utilized 

for simulations are Intel® Xeon® CPU E5-2670 @ 2.60 Hz, 16 cores, 32 virtual 

processors, and 88.0 GB RAM. Python programming was employed, Keras API was 

utilized to build the deep learning models, and TensorFlow served as a backend for Keras. 

5.7.1.3.6 Convergence performance of PULSE 

The neural network model learning occurs by minimizing a cost function. Various 

optimization algorithms such as Gradient Descent, Normal Equations, and Adam can be 

utilized to determine a local or global minimum of a function [149]. The optimization 

algorithm enables the model to learn the gradients in the direction of minimization of error 

i.e., ultimately minimizing the defined cost function. A deterministic method of proper 
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learning using cost function is to plot a graph between the cost function value or error 

against the number of epochs of training. As the number of epochs iterates, it is ideal that 

the model converges after a particular epoch number yielding little or zero changes to the 

loss value going further. The variation of the cost function for a widely utilized MSE and 

the proposed cost function are illustrated in Figure 25 and Figure 26 respectively. The 

horizontal axes refer to the number of epochs during the learning process, and the vertical 

axes refer to the value of the cost function. As shown in Figure 26, the cost function value 

decreases logarithmically during the initial epochs and after 30 epochs, the cost function 

has converged to a minimum. From Figure 25 and Figure 26, it is evident that the models 

converged reasonably quickly, and both train and test performance remained similar in 

 

Figure 25 Convergence of widely used cost function (MSE) 

 

Figure 26 Convergence of proposed PULSE cost function 
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either of the cases. The performance and convergence behavior suggest that the proposed 

cost function is a good match for the learning process. 

5.7.1.3.7 Simulation Results 

The internal architecture and the optimized hyperparameters of the adopted deep 

learning model are presented in Table 11. Random search method is utilized for the 

optimization of hyperparameters. It has been empirically proven to work faster than the 

grid search method to discover precise values for the significant hyperparameters [215].  

Table 11 Optimized Hyperparameters. 

 
Parameter Utilized Model 

Number of layers 5 Stacked LSTM layers +  

5 Dropout Layers +  

5 Batch Normalization layers +  

1 Dense layer 

Number of neurons {260, 210, 160, 50, 5, 1} 

Dropout Rate {0.10, 0.20, 0.30, 0.30, 0.30} 

Number of Epochs 200 

Batch size 128 

Figure 27 illustrates the multiple plots of load demand predictions against the 

actual load demand for a subset of energy customers. The independent axes represent the 

time indices in hours and the dependent axes represent the inverse scaled hourly load 

demand in kWh. The results illustrate that the predicted load demand is never 

underestimated using the proposed PULSE loss function. The accuracy of the MSE loss 

function may or may not be greater than the PULSE loss function but it is evident that the 

model with MSE loss function is prone to the tendency of underestimation which can be 
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clearly prevented using the proposed PULSE function. The results cannot be quantified 

using the performance graphs of a subset of consumers. Hence, the evaluation metrics are 

utilized, and the results are tabulated as shown in Table 12. The PULSE function based 

deep learning model yields an nRMSE = 7.106x10-2, RMSE = 4.610x10-2 kWh, MAE= 

3.267x10-2 kWh on the normalized and scaled load demand data, whilst the MAPE value 

is 10.857 % which indicates a superior accuracy of the model. The MSE function based 

deep learning model yields an nRMSE = 6.671x10-2, RMSE = 4.555x10-2 kWh, MAE = 

3.271x10-2 kWh, whilst the MAPE value is 35.066% which indicates a high accuracy of 

the model. The aim of the PULSE function is achieved as the model based on it does not 

underestimate over the testing dataset, and it definitely reduces the tendency of the deep 

learning models to underestimate the target variable. 

Table 12 Evaluation Results. 

Results on scaled load 

demand data 
MSE cost function 

Proposed PULSE cost 

function 

      

     
 

Figure 27 Load Demand Forecasting Results using MSE and PULSE cost functions 

on Deep Learning Models 
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nRMSE (10-2) 6.671 7.106 

RMSE (10-2 kWh) 4.378 4.490 

MAE (10-2 kWh) 3.231 3.267 

MAPE (%) 35.066 10.857 

Train time per model (s) 1326.209 1470.010 

The performance of the deep learning models based on PULSE cost function is 

compared against the state-of-the-art models developed on the same dataset from literature 

and is presented in Table 13. As the results suggest, the proposed methodology performs 

better than ELM, RNN, LR, kSR, kNNR, GPR, and GRNN in terms of average RMSE 

error. There is RELM that has lower average RMSE when compared to the proposed 

methodology. It is crucial to note that the proposed methodology has an added advantage 

of avoiding underestimation tendency of deep learning models whilst predicting load 

demand. 

Table 13 Performance evaluation against the state-of-the-art models from literature 

for arbitrary-ordered data. 

 

Model RMSE (10-2 kWh) 

Extreme Learning Machine (ELM) [216] 6.47 

Recurrent Neural Network (RNN) [216] 4.68 

Linear Regressor (LR) [216] 6.46 

k-smooth regressor (kSR) [216] 6.49 

k-nearest neighborhood regressor (kNNR) [216] 7.32 
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Gaussian process regressor (GPR) [216] 6.45 

Generalized regression neural network (GRNN) [216] 6.45 

Recurrent extreme learning machine (RELM) [216] 3.94 

DL Model built in this work 4.378 

Proposed PULSE cost function-based model 4.490 

 

5.7.1.3.8 Insights 

With the proposed novel cost function PULSE, the deep learning models can 

optimize the convergence of error to a minimum whilst penalizing the tendency to 

underestimate the target variable. The investigated model consists of stacked long short-

term memory networks that employ sliding window method for better handling of long-

term dependencies, batch normalization, and dropout techniques to eliminate overfitting 

of the investigated model based on the proposed cost function. The simulated results 

indicate that the proposed PULSE cost function provides competitive accuracy and avoids 

underestimation of load demand with a superior training speed. This cost function can be 

applied to short-term, medium-term, and long-term load forecasting and its characteristic 

estimation behavior can enable the utilities to manage the generation resources properly 

to avoid any supply shortage.  

5.7.2 Model Optimizer 

Model optimizer is an algorithm that minimizes the cost function in the process of 

learning optimum values of weights and biases. Among the widely used model optimizers, 

the optimizers such as LBFGS and Adam has been utilized during model development. 
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Additionally, the decoupled weight regularized invariant of Adam has been proposed to 

break off from the local optima during transfer learning and the detailed explanation is 

provided in Section 6.2.2.3.  

5.7.2.1 Limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm (LBFGS) 

LBFGS is a limited memory quasi-Newton optimization solver [217]. For an 

optimization problem with 𝑛 variables, BFGS needs 𝑛 𝑥 𝑛 matrix to approximate the 

hessian while LBFGS only needs a small number of vectors of length 𝑛 to approximate 

the hessian. It does so by maintaining the knowledge of the historical states of previous 𝑚 

updates of current position and its gradient 𝑔 = ∇𝑓(𝑥). The historical states are 

maintained as last 𝑚 updates of the position difference and gradient difference. Each of 

these variables is a vector of length 𝑛. These 2𝑚 variables and the original gradient will 

be used in finding a new direction. The original description of LBFGS is given in [218]. 

5.7.2.2 Adaptive Moment Estimation (Adam) Optimizer 

Adam algorithm puts together gradient descent of RMSProp and gradient descent 

with Momentum for optimization. Adam algorithm has been proven to be very effective 

for different neural networks of a very wide variety of architecture. The Adam 

Optimization steps are illustrated in Figure 28 and are detailed as follows. 

1) Hyperparameters in this algorithm are learning rate, decay rates ρ1 and ρ2, and δ. 

Usually, the learning rate ϵ is the only term that is to be tuned. Whereas the rates 𝜌1, 

𝜌2, and 𝛿 are not required to be tuned and their default values are used. Usually, δ =

10−8, ρ1 = 0.9 and ρ2 = 0.999. ρ1 is the weighted average, and ρ2 is the weighted 

average of the squares. 
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2) First step is to initiate the moment variables s and r to 0. At this point, time step is 0. 

3) Until the stopping criteria is met, the following steps are performed. 

4) A sample data point is selected from the training data. 

5) Initially, the weights θ are calculated using current mini-batch gradient descent. 

6) Momentum exponential weighted average is updated as 𝑠 ← ρ1𝑠 + (1 − ρ1)𝑔̂. This is 

momentum like update with hyperparameter ρ1. 

7) Similarly, the RMS prop update is calculated as 𝑟 ← ρ2𝑟 + (1 − ρ2)𝑔̂ ⨀𝑔̂. 𝑔̂⨀𝑔̂ is 

the element wise squaring of the gradients 𝑔̂. This is RMSprop like update with 

hyperparameter ρ2. 

8) In the typical implementation of Adam, the bias correction is performed as 𝑠̂ ←

𝑠

1−ρ1
𝑡 , 𝑟̂ ←

𝑟

1−ρ2
𝑡 . 𝑡 is the iteration number. 

 
 

Figure 28 Adam Optimization 
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9) Finally, the θ is updated as the formula  θ ← θ + −ϵ
𝑠̂

√𝑟̂+δ
. Here the numerator in ∇θ 

is due to the moment operation and the denominator is due to the gradient descent of 

the RMSprop or bias correction. This brings the end to iteration. 

10) Make note of the points that the values of ρ1, ρ2, δ can be default values and only the 

learning rate ϵ is to be tuned for better performance. 

5.7.3 Batch Normalization 

Traditionally, the inputs to the neural networks are scaled and normalized to a 

range between 0 and 1. This type of normalization is generally efficient for the machine 

learning model performance. In the current research, batch normalization is additionally 

adopted to support dropout layer in removing overfitting of the neural network and deep 

learning models. In batch normalization, not just the inputs to the input layer but also the 

inputs to all the hidden layers are normalized. Batch normalization utilizes the mean and 

the standard deviation of the batch of data and not of entire data unlike the normalization 

of the input layer. The merits of batch normalization include the improvement of the 

accuracy performance of deep learning models and the reduction of overfitting. It is 

recommended to utilize batch normalization in every layer and alongside dropout. 

5.7.4 Dropout 

Artificial Neural Networks and Deep Learning Networks are prone to overfitting 

which corresponds to having high variance. Overfitting causes the models to have high 

training accuracy but perform with poor accuracy on testing data. The most common 

technique to eliminate overfitting in neural networks is called Dropout. In each iteration, 

dropout removes some neurons randomly on the defined layers as shown in Figure 29. 
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Dropout essentially trains different neural networks. That is, in each iteration different 

network is trained. At testing time, the combination of the different networks is generated 

by averaging the results. It is well known as a generalization that averaging multiple 

machine learning models reduces overfitting. 

5.8 Incremental Learning Layer 

This layer enables the proposed framework to perform online machine learning. 

This allows the deep learning models to use the data points that arrive at the current time 

and in the future to incrementally retrain the already trained machine learning models. The 

online training of trained models using new data points is termed incremental learning. 

Incremental learning is analogous to transfer learning. The historical data in incremental 

learning is similar to the dataset of application 1 in transfer learning and the newer data 

points in incremental learning are similar to the dataset of application 2 in transfer 

learning. 

                       

Figure 29 Standard Fully connected Neural Networks and Neural Networks 

with Dropout 
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Let 𝐿𝑘,𝑡 be the load of transformer k at time duration t. The load matrix for the 

transformers is represented by 𝐿𝐾×𝑇 (Equation (43)). The size of the matrix increases with 

the increase in the number of transformers or with the reduction in the aggregation level 

of energy consumption values. For the 1000 transformers dataset that is used in this work, 

the size of the load matrix is 1000x1001 where 1001 is the number of days between 01 

January 2017 to 28 September 2019. 

𝐿𝐾×𝑇  =  

[
 
 
 
 
 
𝐿1,1 𝐿1,2 . . . . 𝐿1,𝑡−1 𝐿1,𝑡
𝐿2,1 𝐿2,2 . . . . 𝐿2,𝑡−1 𝐿2,𝑡−1
: : . . . . : :
: : . . . . : :

𝐿𝑘−1,1 𝐿𝑘−1,2 . . . . 𝐿𝑘−1,𝑡−1 𝐿𝑘−1,𝑡
𝐿𝑘,1 𝐿𝑘,2 . . . . 𝐿𝑘,𝑡−1 𝐿𝑘,𝑡 ]

 
 
 
 
 

,  (43) 

 

The similarity between any two transformers 𝑘,𝑚 at any given time 𝑝 is 

determined based on pairwise Minkowski similarity as given by Equation (44). 

𝐷𝑘,𝑚,𝑝 = (∑ |𝐿𝑘,𝑡 − 𝐿𝑚,𝑡|
𝑞

24
𝑡=1 )

1

𝑞, (44) 

where 𝐿𝑘, 𝐿𝑚 represent the row vectors of load values for transformers k, m respectively. 

The optimized value of q in Equation (44) was determined to be equal to unity. 

Finally, the obtained distance matrix is passed as an argument to the clustering 

function to obtain the clusters of transformers with similar energy consumption patterns. 

The adoption of Minkowski similarity enhanced the performance of clustering. 
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Algorithm 5 presents the sequence of steps performed for incremental learning. 

Algorithm 5 Incremental Learning Framework 

 

Input Data 𝑆𝑡−1 with n rows: {𝑥𝑖,𝑦𝑖} where i represents the row number (i=1, 2, 

3, ..., n). 

 

Initialize k-medoid clustering algorithm to generate k number of clustered 

models which provides distribution function 𝑊𝑡−1. 

 

A hypothesis function ℎ𝑡−1 is generated at time t-1 along with the distribution 

fuction 𝑊𝑡−1. And, 𝑊𝑡−1 = [𝑤1, 𝑤2, . . . ., 𝑤𝑚]; m represents the number of 

layers in the neural networks. 

 

while new data 𝑆𝑡+𝑘
′  is available with n' instances. do 

 Hypothesis h' is updated using new data 𝑆𝑡+𝑘
′  

 𝑊𝑡+𝑘 = [𝑤1, 𝑤2, . . . ., 𝑤𝑚] is updated using new data 𝑆𝑡+𝑘
′  as the 

following: 

 for t = t, t+1, t+2, . . . . , t+k do 

  Forward propagation: compute all 𝑥𝑗
𝑙 

Backward propagation: compute all 𝛿𝑗
𝑙 

update the weight: 𝑤𝑗
(𝑙)

 
⬚
← 𝑤𝑗

(𝑙) –  η 𝑥𝑖
𝑙−1 𝛿𝑗

𝑙 

iterate to the next step until it is time to stop 

 end for 

 return the final weights 𝑤𝑖𝑗
(𝑙)

 as 𝑊𝑡+𝑘 

end while 
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CHAPTER VI  

PERFORMANCE ANALYSIS*10 

6.1 Performance Evaluation Metrics 

The metrics of evaluation used for accuracy are Root Mean Square Error (RMSE) 

and Mean Absolute Percentage Error (MAPE). Training time and testing time are used to 

evaluate the performance in terms of execution time. 

1) Root Mean Square Error (RMSE): RMSE is the square root of the sum of squares 

of the difference between actual and predicted energy consumption. RMSE is an 

effective performance metric for comparing forecasting errors of different models 

for a single attribute which is the case in this research work. However, it is not a 

recommended measure to compare performance between attributes as RMSE is 

scale dependent. RMSE is given by (45) [219]. 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝐸𝑟′ − 𝐸𝑟)2
𝑁
𝑟=1 , (45) 

2) Mean Absolute Percentage Error (MAPE): MAPE represents the ratio of the 

absolute difference between the actual and predicted value to the actual value at 

every record of energy consumption. It is necessary to make sure that the actual 

value is not zero while calculating MAPE. MAPE is given by (46) [219]. 

𝑀𝐴𝑃𝐸(%) =
100

𝑁
 ∑ |

𝐸𝑟
′ − 𝐸𝑟

 𝐸𝑟
|𝑁

𝑟=1 ,   (46) 

 

10 Reprinted with permission from “Deep Learning-Based Short-Term Load Forecasting Approach in Smart Grid with Clustering 
and Consumption Pattern Recognition.” by Dabeeruddin Syed, Haitham Abu-Rub, Ali Ghrayeb, Shady S. Refaat, Mahdi Houchati, 

Othmane Bouhali, and Santiago Bañales, 2021. IEEE Access 9, 54992-55008, Copyright 2021 by Dabeeruddin Syed. 
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For low prediction values, the MAPE value cannot exceed 100%. However, for 

high prediction values, there is no maximum control limit to the value of MAPE. 

3) nRMSE: 

𝑛𝑅𝑀𝑆𝐸 =
√1
𝑁
∑ (𝐸𝑟′ −  𝐸𝑟)2
𝑁
𝑟=1

𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛
 

(47) 

4) MAE:  

MAE =
∑ |𝐸𝑟

′ −  𝐸𝑟|
N
r=1

N
 (48) 

where  𝐸𝑟 is the actual energy consumption at instant 𝑡 = 𝑟, 𝐸𝑟
′  is the predicted value of 

energy consumption at instant 𝑡 = 𝑟, and 𝑁 denotes the total number of testing samples.  

 

6.2 Experimental Results 

The hardware specifications of the supercomputers utilized in the case study are 

described in Table 14. 

Table 14 Hardware Specification of the experimental setup. 

 

Hardware Specification Value 

Nodes 1-16 

Interconnect Onmi-Path 

CPU Architecture Intel Broadwell x86_64 CPU operating at 2.4 GHz 

CPU cores 8 per node 

Memory 16 GB RAM per node 

Job scheduler Slurm 
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6.2.1 Clustering 

Figure 30 represents the sequence of steps performed for developing the 

clustering-based short-term load forecasting model. As shown in the figure, the proposed 

methodology is carried out in four main stages: 

A. Data acquisition and pre-processing stage 

B. Clustering stage 

C. Training stage 

D. Testing stage 

 

6.2.1.1 Elbow Curve 

 

Figure 30 Clustering Layer Steps 
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In this work, the direct method of the elbow curve is utilized. The elbow curve 

calculates the within-cluster sum of square errors (WCSSE) and determines the k-value 

such that WCSSE is minimized. The aim of the selection of k is to determine a low value 

of k such that the sum of square error for that value of k is the minimum and if any more 

clusters are added, the clustering is not improved much. This is to provide a trade-off 

between the number of clusters and the accuracy. The elbow method is selected over other 

methods of determining the k-value for clustering because of its simple complexity. As 

per existing research [220], the execution time is the lowest for the elbow method when 

compared to other methods owing to its low complexity of utilizing the sum of the square 

distance between cluster points and representative centers. 

To determine the optimal number of clusters, the elbow curves are obtained for 

dataset 1 and dataset 2 as illustrated in Figure 31 and Figure 32. The independent axes in 

the figures indicate the number of clusters and the dependent axes in the figures represent 

the WCSSE for the corresponding number of clusters (k) value. As per Figure 31, the 

sharp decline in the WCSSE is observed for 𝑘 = 3. Hence, the optimum number of 

 

Figure 31 Elbow Curve for 10 transformers dataset 
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clusters is selected as 3 for 10 transformers dataset. The elbow in Figure 32 suggests that 

the optimal number of clusters is k=93 for the 1000 transformers dataset. Hence, the 

clusters are determined, and the deep learning models are developed with the number of 

clusters k=93. 

In this layer, the K-Medoid clustering is utilized to cluster similar transformers 

together. The similarity indicates that transformers have similar patterns of aggregated 

daily consumption and hourly consumption. The aim of the work is to evaluate the 

performance of individual models for 1000 transformers against the clustered models. 

Individual models mean that 1000 transformers have separately trained models using their 

individual data i.e. each transformer has a separate trained model built on its data. The 

clustered models indicate that the 1000 transformers are clustered into ’k’ different groups 

and each of these ’k’ clusters have one separate model trained on the data of the 

transformers within the clusters. The employment of a clustering technique reduces the 

required number of forecasting models from 1000 to k for 1000 transformers. As described 

in the previous subsection, the value of ’k’ (number of clusters) is optimized to minimize 

the within-cluster sum of square errors. 

 

Figure 32 Elbow Curve for 1000 transformers dataset 
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The performance of clustered and individual forecasting models for distribution 

transformers is evaluated in terms of RMSE, MAPE, training time, and testing time. 

The RMSE and MAPE values for individual models and clustered models using 

Deep Neural Networks (DNNs) are determined and these are depicted in Figure 33 and 

Figure 34.  

Figure 33 indicates the results of the DNN models for load forecasting. Each of 

the subfigures indicates a representative subset of 1000 transformers. As observed from 

the RMSE lines, mostly the individual models represent the lower boundary of the two 

lines. The RMSE values range between 0 and 30 kWh. These values are very low 

considering the range (0 to 2,147,484 kWh) of energy consumption in the dataset. At a 

few points, the clustered models over perform the individual models for the respective 

transformers. The MAPE values for the individual models range between 4 to 16 percent 

and the MAPE for clustered models range between 5 to 19 percent. These MAPE values 

 

Figure 33 Performance Evaluation (in RMSE) of Clustered Models v/s Individual 

Models for different Transformers 
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indicate that the clustered models are very comparable to the individual models. A few 

transformers exhibit high statistical variance in the energy consumption, i.e., they have 

either zero consumption values, or very high energy consumption values, or actual energy 

values range between 0 and 1. The MAPE values for such transformers are around 20-

32%. These transformers have been found to be alternate backup transformers that are 

used only during the periods of faults, preventive, or predictive maintenance of main 

transformers. 

Table 15 presents the results of clustering and individual models on 10 

transformers dataset when the machine learning models used are LR, LSTM, and DNNs. 

When accuracy is considered, the best performing model is the DNN model. In the 

clustering-based algorithm, the models are trained on a cluster whilst the testing is 

performed on each transformer within the cluster. If the clustering and individual models 

are compared, the individual models have slightly better accuracy when compared to 

clustered models. However, the accuracy of clustered models is highly competitive. If the 

 

Figure 34 Performance Evaluation (in MAPE) of Clustered Models v/s 

Individual Models for different Transformers 

 

FIGURE 10. Performance Evaluation (in RMSE) of Clustered Models v/s Individual Models for different Transformers 
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gain on training time is considered, then the clustered models are highly preferable to 

individual models. When the training times for different machine learning models are 

considered, LR is the best owing to its simplicity. The DNN models have 10 folds of lesser 

training times compared to LSTM models. As a trade-off between accuracy and training 

time, it can be concluded that the clustering based DNN models perform better. A similar 

pattern is also recognized in Table 16. It depicts the results of clustering and individual 

models on a 1000 transformers dataset when LR, LSTM, and DNNs are used for training 

and testing. 

Table 15 Results on 10 transformers dataset. 

 

Model Mean RMSE 

(kWh) 

Mean 

MAPE (%) 

Training 

Time (s) 

Testing Time 

(s) 

LR non-clustered 12.27 28.82 0.0656 0.0076 

LR + clustering 13.25 32.23 0.0525 0.0076 

ARIMA non-clustered 12.6305 30.2368 1.7182 1.8768 

ARIMA + Clustering 14.2755 31.6923 1.0611 1.0047 

LSTM non-clustered 2.2087 19.0902 421.00 3.7731 

LSTM + clustering 3.1301 21.6020 118.83 0.2520 

DNN non-clustered 2.3769 14.6451 14.63 0.0710 

DNN + clustering 2.6874 15.9380 10.76 0.1070 

 

Table 16 Results on 1000 transformers dataset. 

 

Model Mean RMSE 

(kWh) 

Mean 

MAPE (%) 

Training 

Time (s) 

Testing Time 

(s) 
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LR non-clustered 54.0449 20.3235 14.06 0.89 

LR + clustering 62.3503 20.8479 17.35 1.07 

ARIMA non-clustered 59.4144 37.7886 513.5092 14.7560 

ARIMA + Clustering 67.8725 39.4502 317.1253 8.6468 

LSTM non-clustered 22.52 7.27 113432 = 

31 hr 

378.86 = 6 min 

LSTM + clustering 37.06 11.10 29106 = 8 

hr 

110.41  

= 1.8 min 

DNN non-clustered 19.82 7.18 8409 = 

2.33 hr 

6.08 

DNN + clustering 21.25 7.22 4644 = 

1.29 hr 

4.57 

The comparison of a trained clustered STLF model using different machine 

learning algorithms is illustrated in Figure 35. The independent axis represents the time 

points, and the dependent axis represents the energy consumption in kWh. The results in 

the figure denote that the proposed k-Medoids methodology has generated accurate 

clusters, and the clustered model predicts energy consumption values close to the actual 

values of consumption for all machine learning algorithms in general. Figure 35 also 

 

Figure 35 Forecast comparison of a trained clustered STLF model using different 

machine learning algorithms 
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indicates that the DNN forecasts follow the consumption peaks better than LSTM and LR 

models. LSTM and LR at many time points forecast peaks after the peaks have occurred.  

Figure 36 illustrates the error bars that depict the standard deviation of predictions 

using DNN and LSTM-based clustering models for STLF. The shaded region around the 

blue line depicting predicted energy values using clustered DNN model represents the 

error region or the deviation of model predictions. The experiments were repeated a 

reasonable number of times i.e., 20 times to obtain the mean prediction and standard 

deviation of the predictions. LR-based clustering models had zero variance for predictions 

and hence, are not plotted. LSTM-based clustering models have variance tending to zero 

and additionally, DNN-based models have very low variance as shown in Figure 36. The 

sources of randomness are kept at the minimum whilst training the proposed models and 

the trained models can be saved using deep learning serialization for future testing in 

industrial applications. The standard deviation of the error metrics for retraining of 

forecasting models under similar initialization conditions will be negligible. 

6.2.2 Transfer Learning  

 

Figure 36 Error bars for forecasts using DNN and LSTM-based clustered STLF 

models 
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6.2.2.1 Transfer Learning Results 

The proposed solution uses homogeneous inductive transfer learning by fine-

tuning through all layers for target tasks. The homogeneous transfer learning is illustrated 

in Figure 37. As shown in Figure 37, dataset 1 is employed to train model 1 from scratch 

i.e., the weights of hidden layers in the base model are optimized. During the development 

of model 𝑥, the base layers from model 1 are utilized without freezing and the fine-tuning 

is performed through all layers. 

The integrated methodology of the construction of power forecasting models is 

depicted in Figure 38. The data of thousand distribution nodes are passed through the 

clustering stage to form the group of similar distribution nodes into clusters. The optimal 

number of clusters is determined to be 93 clusters [174]. Similar distribution nodes are 

formed into clusters. 

The hyperparameter k in the k-Medoids algorithm cannot be learned directly and 

hence, the elbow curve method is employed to select the optimal value of k which yields 

the least within-cluster error. 

 

Figure 37 Homogeneous Transfer Learning through Fine Tuning 
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In the next stage of methodology, a forecasting model one each for a cluster is 

developed using transfer learning. That is, a forecasting model (model 0) is firstly trained 

from scratch on the source dataset (cluster 0). Secondly, the model is re-trained on target 

datasets (cluster 1, cluster 2, . . ., cluster 𝑛) through fine-tuning all the layers in the neural 

network. For convenience, the clustered models formed using TL are denoted as Clus-Tr-

DNN and the clustered models formed without TL framework are denoted as Clus-DNN 

where DNN indicates the inherent deep learning neural network model. The accuracies of 

Clus-Tr-DNN are compared with the accuracies of the Clus-DNN. 

The next stage of the proposed methodology involves the creation of models within 

clusters. These are individual models developed for each dataset. Already, the datasets 

which are similar in energy consumption patterns have been clustered together in the 

previous stage. Now, the knowledge transfer is performed only between the distribution 

datasets within the same clusters to eliminate any negative transfer of knowledge. In the 

first subset of experiments, TL is used to construct the  subsequent models within a cluster 

 

Figure 38 Clustering-based methodology with TL 
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using knowledge transfer from the source domain within the same cluster. For 

convenience, these models are denoted as Ind-Tr-DNN. To develop source domains from 

cluster 1 onwards, we utilize weight regularization optimizer to transfer knowledge from 

source domain within cluster 0. The use of weight regularization eliminates negative 

learning when knowledge transfer occurs between clusters. In another subset of 

experiments, the individual models are developed without the use of any TL.  For 

convenience, these models are denoted as Ind-DNN. 

Extensive experiments were performed to evaluate the performance of transfer 

learning-based methodology. The utilized datasets are the energy consumption data at ten 

and thousand distribution nodes in the Spanish electrical network.  

In one set of experiments, individual models are developed using the individual 

datasets and in another set of experiments, the clustering approach is applied to group the 

similar distribution nodes into clusters based on the similarity metric of daily energy 

consumption.  

The clustering technique employed is the k-Medoid clustering technique to 

eliminate the sensitivity to outliers in data analytics. According to the within-cluster error 

elbow curve, the optimal number of clusters is determined as 3 for 10 distribution nodes 

data and as 93 for 1000 distribution nodes dataset [174].  

The initial cluster (cluster 0) is trained using the conventional way without any TL. 

The other clusters are trained with the help of TL from cluster 0 and the fine-tuning is 

performed using the corresponding dataset of the cluster. The knowledge from the training 

of cluster 0 is used for training cluster 1, cluster 2, and so on.  
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6.2.2.1.1 Results on Dataset 1 – ten distribution nodes dataset 

The performance of traditional learning and TL between dissimilar clusters on 

clustered models for ten distribution nodes dataset is depicted in Table 17.  

Table 17 Testing of clustered models on cluster data with and without TL 

framework applied between clusters. 

 RMSE (kWh) Improvement 

(%) 
Clus-DNN Clus-TR-DNN 

Cluster 0 4.35 - - 

Cluster 1 12.86 9.92 +22.86 % 

Cluster 2 17.10 23.68 - 34.47 % 

 

The RMSE of cluster 1 shows significant improvement after the transfer of 

knowledge. However, the performance of the model for cluster 2 shows a negative transfer 

of learning indicating that the model converged to a local minimum rather than a global 

optimization point. The negative learning can be explained because the TL is performed 

between the dissimilar distribution nodes belonging to different clusters. A few potential 

solutions that can be considered to avoid convergence to local minima are the following 

[221], [222]: i) considering cyclic learning rate, ii) using Stochastic Gradient Descent 

(SGD) with warm restarts, iii) considering high values for learning rate, iv) using meta-

heuristic algorithms such as Grey-Wolf Algorithm, Ant Colony Optimization, and 

Harmony Search, and v) variants of optimizers such as Vanilla Gradient Descent, 

AdamW, QHAdam, YellowFin, AggMo, QHM, and Demon. The negative TL can be 

removed when the transfer of knowledge happens between the distribution nodes that are 
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similar. This is observed in subsequent tables. Moreover, the improvement with TL is 

more pronounced when the data for target tasks are not sufficiently large. 

The ten distribution nodes are clustered into 3 clusters. With the k-Medoid 

clustering algorithm, it was determined that the three clusters of distribution nodes are: 

{0, 1, 2, 6}, {5} and {3, 4, 7, 8, 9}. One clustered model based on deep neural networks 

was developed for each cluster. So, the three clustered models have been developed and 

these have been tested on the individual datasets of the distribution nodes and the results 

of the performance with and without the use of TL are depicted in Table 18.  

Table 18 Testing of clustered models on individual distribution node datasets with 

and without TL framework applied between clusters. 

 RMSE (kWh) Improvement 

(%) 
Clus-DNN Clus-Tr-DNN 

t/f 0 27.95 - - 

t/f 1 31.39 - - 

t/f 2 29.91 - - 

t/f 6 27.50 - - 

t/f 5 21.15 22.29 5.39 

t/f 3 18.49 12.97 29.85 

t/f 4 21.75 20.92 3.81 

t/f 7 16.52 20.42 -23.62 

t/f 8 16.19 19.32 -19.33 

t/f 9 17.47 20.52 -17.45 
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The first column in the table represents the distribution node number or 

transformer number (t/f). The similar distribution nodes are grouped into the same clusters 

however, any two clusters are assumed to be dissimilar. With the transfer of knowledge 

between dissimilar clusters, it is possible that the transfer is either positive or a little on 

the negative side. However, the gain in the execution or training time is always positive. 

The gain in time is displayed in Table 19. From Table 19, it is clear that the time to train 

the models with TL is much less than the time to train the models without TL. 

Table 19 Cluster training times after testing of clustered models with TL applied 

between clusters. 

 

 Training time (s) Improvement 

(%) Clus-DNN Clus-Tr-DNN 

Cluster 0 92 - - 

Cluster 1 49 40 9 

Cluster 2 79 50 36.7 

 

The negative transfer of knowledge is inherently eliminated when the TL is 

employed between similar distribution nodes. The k-medoid clustering algorithm based 

on similarity metric of energy consumption clustered the 10 distribution nodes into the 

clusters {0, 1, 2, 6}, {5} and {3, 4, 7, 8, 9}. The negative TL is eliminated when the 

knowledge from the model of dataset 0 is transferred to develop models on dataset 1, 2, 

and 6. The knowledge from the model of dataset 3 is transferred to develop models on 

datasets 4, 7, 8, and 9. The use of the clustering-based methodology eliminated any 
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negative TL within a cluster and the results are described in Table 20. The negative transfer 

learning between dissimilar clusters is eliminated by the weight regularization technique 

proposed in Section 6.2.2.3. 

Table 20 Testing of individual models on individual distribution node datasets with 

TL applied within clusters. 

 RMSE of individual models 

without TL (kWh) 

RMSE of individual models after 

transfer of knowledge (kWh) 

improvement 

(%) 

t/f 0 13.60 - - 

t/f 1 10.32 7.90 23.44 

t/f 2 7.35 5.03 31.56 

t/f 6 6.42 1.09 83.02 

t/f 5 18.68 - - 

t/f 3 2.18 - - 

t/f 4 2.30 1.26 45.21 

t/f 7 14.91 10.34 30.65 

t/f 8 3.81 2.22 41.73 

t/f 9 3.70 2.52 31.89 

 

6.2.2.1.2 Results on Dataset 2 – thousand distribution nodes dataset 

The performance of TL with respect to training time has also been verified with a 

second case study on 1000 distribution nodes which according to elbow curve and k-

Medoid clustering were grouped into 93 clusters and the models were developed using 

deep neural networks. As shown in Figure 39, the time to train the clustered models using 
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TL is always less when compared to the time taken to train the clustered models without 

TL. This confirms that the TL allows for faster convergence of models. The performance 

of TL in coalition with the clustering layer on the thousand distribution nodes dataset is 

depicted in Table 21. It takes 3.23 mins to develop 93 clustered models using TL when 

compared to 2.20 hours of training time without TL. However, the MAPE varies from 

7.22% to 14.37% when TL is employed between dissimilar clusters. 

6.2.2.1.3 Weight Regularization to eliminate negative learning between dissimilar 

datasets 

For transfer learning between dissimilar clusters, an improved Adam optimizer 

was proposed to eliminate any negative learning and to breakout from local convergence. 

The first optimization step involves the use of cyclical learning rate in which learning rate 

is initialized to a larger value and is scheduled to decrease subsequently to prevent the 

avoidance of global minima. The proposed optimizer invariant is utilized with decoupled 

weight regularization and cyclical learning rate (Adamw) to eliminate negative learning.  

The weight update rule in the general Adam optimizer is given by the following: 

 

Figure 39 Cluster training times for 1000 distribution nodes with TL applied 

between clusters 
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𝑤(𝑡) = 𝑤(𝑡 − 1) − 𝛼 ▽ 𝑓, (49) 

Here ▽ 𝑓 is the gradient, and 𝛼 is the learning rate. 

The general Adam optimizer is characterized by large step size when gradient 

change is less, smaller step size when gradient change is rapid and the adaptability in step 

size is performed by maintaining moving averages (called moments) of gradient over the 

steps. 

The implemented optimizer invariant employs decoupled weight regularization. 

This allows for weight regularization without the coupling of hyperparameters such as 

learning rate and weight decay factor. 

The weight update rule in the proposed optimizer invariant is given by the 

following: 

𝑤(𝑡) = (𝑤𝑒𝑖𝑔ℎ𝑡𝑑𝑒𝑐𝑎𝑦𝑓𝑎𝑐𝑡𝑜𝑟)𝑤(𝑡 − 1) − 𝛼 ▽ 𝑓,  (50) 

Here ▽ 𝑓 is the gradient, and 𝛼 is the learning rate. 

The weight decay factor is introduced as a coefficient to the weight at past instant 

and lies between 0 and 1. This forces the weights learnt to be small and so, the model 

generalizes better. For convenience, the models using weight regularization are denoted 

by Clus-Tr-WR-DNN. 

6.2.2.2 Results of TL after weight regularization 

6.2.2.2.1 Results on Dataset 1 – ten distribution nodes dataset 

Figure 40 and Figure 41 indicate the performance of TL after weight regularization 

on 10 distribution nodes dataset. The results, obtained after the testing of clustered models 
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is performed on cluster data, are illustrated in Figure 40. The graph of TL with weight 

decay regularization is at the lower bound of error when compared to the model 

development without TL for both cluster 1 and cluster 2. At no point, the error is high in 

case of model development after TL. This indicates that the negative learning has been 

eliminated by the use of weight regularization in the optimizer. 

The results, obtained after the testing of clustered models on individual 

transformers’ data, are illustrated in Figure 41. The graph of TL with weight decay 

regularization is at the lower bound of error when compared to the model development 

without TL for all the transformers including t/f 1, t/f 8, t/f 3, t/f 6, t/f 7, t/f 9. At no point, 

 

Figure 40 TL between clusters – testing on cluster data 

 

Figure 41 TL between clusters – testing on individual transformer data 
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the error is high in case of model development after TL. This corroborates that the negative 

learning has been eliminated by the use of weight regularization in the optimizer. 

6.2.2.2.2 Results on Dataset 2 – thousand distribution nodes dataset 

The performance of TL after weight regularization on 1000 distribution nodes 

dataset is presented in Table 21. To analyze the performance of the proposed weight 

regularization TL modeling (Clus-Tr-WR-DNN), several state-of-the-art benchmark 

models, including Linear Regression (LR), Autoregressive Integrated Moving Averages 

(ARIMA), and deep long-short term memory (LSTM) are selected as comparative 

methods as shown in Table 21. Weight regularization utilized during objective function 

optimization in the proposed model eliminates negative knowledge transfer. The proposed 

Clus-Tr-WR-DNN has a higher overall development time of 20.17 mins whilst 

maintaining average MAPE error to a minimum of 7.20% when compared to Clustering-

based TL modeling that has 3.23 mins as development time and average MAPE of 

31.96%. 

Table 21 Performance of TL on thousand distribution nodes dataset (Dataset 2). 

Model Train time (min) Average MAPE 

(%) 

Average RMSE 

(kWh) 

Ind-LR [174] 0.23 20.32 54.04 

Clus-LR [174] 0.28 20.84 62.35 

Ind-ARIMA [174] 8.55 37.78 59.41 

Clus-ARIMA 

[174] 

5.28 39.45 67.87 
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Ind-LSTM [174] 1890 7.27 22.52 

Clus-LSTM [174] 485 11.11 37.06 

Ind-DNN 140.15 7.18 19.82 

Clus-DNN 77 7.22 21.25 

Clus-Tr-DNN 3.23 14.37 31.96 

Clus-Tr-WR-DNN 

(Proposed) 

20.17 7.20 22.10 

 

6.2.2.3 Results of TL on targets with smaller datasets 

Besides, the effect of TL has been analyzed with smaller datasets. As observed in 

Figure 42, for smaller datasets, the model developed from scratch has low accuracy when 

compared to the model with knowledge transferred from a similar distribution point. As 

the size of the dataset increases, the accuracy of both the models, with and without TL, 

increases, and when a threshold size is reached, these models will have very close accuracy 

values. The results of the performance of TL, when the data availability is low, is verified 

 

Figure 42 TL results when the data availability is low 
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on the available dataset (Table 22). It has been found that the model with TL performs 

58% better than the model without TL when the data size for the second model is 5% of 

the original dataset. In all the cases of data availability, the TL model outperforms the 

conventional model by 13-43%. 

Table 22 Performance of TL when the data availability is low. 

Data size RMSE without TL RMSE with TL Improvement (%) 

5% 33.9412 20.9255 38.34 

20% 33.8498 20.3398 39.91 

30% 33.6460 19.9956 40.57 

40% 33.0107 18.5012 43.95 

50% 30.1865 17.7643 41.15 

60% 17.5656 13.4901 23.20 

70% 14.3533 12.4246 13.43 

80% 14.0287 11.8557 15.48 

95% 11.5013 8.8494 23.05 
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6.2.3 Incremental Learning  

With the incremental learning layer, the load forecasting can be performed in real-

time with streams of data collected at an interval of 1 hour. From Figure 43 and Figure 44, 

it is evident that the mean absolute error of the predictions using incremental machine 

learning is at the minimum for the horizon value of 24 hours. 

Figure 45 and Figure 46 depict the RMSE illustration for different horizons of short-term 

load forecasting on the dataset of 1000 transformers. Table 23 depicts the results of online 

machine learning for energy forecasting. It depicts the enhancement in the accuracy of the 

 

Figure 44 MAE for different horizons Incremental learning based STLF model 

 

Figure 43 Radar plot for MAE for different horizons 
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incrementally trained models over the clustered models and also indicates that 7 minutes 

is required for every 6 hours to generate the incrementally trained models for 1000 

distribution transformers. To capture the daily trends of energy consumption, the 

incremental algorithm has been invoked every 24 hours. The results of incremental 

learning with a 24-hour horizon indicate improvement in accuracy while also maintaining 

very low execution time for incremental stage.  

 The experiment is performed to illustrate the performance of incremental learning. 

There are three models developed here for every 24 hours. At time t=0, there is only one 

model developed which is from scratch using the historical data which is available. Now, 

this model is kept constant to predict the energy consumption values of all future days in 

 
Figure 45 RMSE for different horizons Incremental learning based STLF model 

 

Figure 46 Radar plot for RMSE for different horizons 
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case I which is represented by red dots in Figure 47. The second model is updated every 

24 hours with the help of incremental learning over the model at the last time point. It is 

represented by blue dots in the figure. The third model is an updated model till the current 

time point; however, it is developed from scratch at every time point. From the graph, it 

is evident that incremental learning provides efficient performance in terms of accuracy 

and it is developed in a fraction of the time it takes for model development from scratch. 

Table 23 Online machine learning results. 

 

 DNN (train 

stage) 

DNN (incremental stage 

6h horizon) 

DNN (incremental stage 

24h horizon) 

Avg. RMSE 

(kWh) 

21.2596 20.1149 19.43 

Train time (s) 1210.56 sec for 

training stage 

Extra 400 secs every 6 

hours.  

Extra 403 secs every 24 

hrs. 

Avg. MAPE 

(%) 

7.20 6.92 6.37 

 

6.2.4 Dask Parallel Computation 

 

Figure 47 Improvement using incremental learning 
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Dask framework is a flexible parallel computation library for data analysis. It 

works on datasets in an out-of-memory fashion, uses multiple cores inherently unlike 

python. It is efficient in high-performance computations with high flexibility, scalability, 

high throughput features, maximizes the utilization of cores, and memory. On a single 

node, Dask performs automatic scaling to a cluster of cores and utilizes its ability to scale 

over a cluster of nodes, when available. The characteristic features favoring dask in 

multiprocessing are 1) possibility of data sharing between workers, 2) low latency 

performance, 3) support for complex scheduling, and 4) easy to setup. 

In complex use cases where big data platforms such as spark do not provide a 

solution, for instance in transfer learning and incremental learning, dask is of much 

relevance. The big data processing engines are written in Scala, Java, and Python. 

However, dask is written purely in python. It can additionally interoperate with other 

python libraries such as scikit-learn, NumPy, pandas, and Keras. 

Dask provides flexibility to choose threads or processes. Initially, a dask setup was 

used for multiprocessing and a cluster was set up as illustrated in Figure 48 and Table 24. 

Table 24 Configuration of dask cluster. 

 

Parameter Value 

Workers 8 

 

Figure 48 Dask cluster setup 
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Threads 2 per worker 

Memory limit 32 GB per worker 

Dask provides the following user interfaces: 

• High-level: Arrays, Bags, Dataframes. 

• Low-level: Task schedulers for computation graphs. (Directed Acyclic Graphs). 

6.2.5 Multi-core processing in Python 

Fundamentally, Python has a bottleneck in the form of Global Interpreter Locker 

(GIL) that limits the capacity of multiple threads or programming processes. GIL exists 

on the compiler of python denoted by CPython and it causes a considerable penalty to the 

speed of multi-threaded python programs. Generally, multi-threaded python programs are 

50% slower than single-threaded operations owing to the significant CPU wait time. The 

problem of GIL in python can be overcome by the use of multiple processes instead of 

using multiple threads. The multiprocessing python library can be employed to imitate the 

multiple threads library interface and to solve the GIL problem. 

In this research, the method of pool mapping is employed for multicore processing. 

To map to the execution pool, a user-defined function is created which performs the 

analysis of the data. The analyses include clustering into groups, performing transfer 

learning, and incremental learning. So, the program is executed in two steps: 

Firstly, there is the main program that reads the data and stores the data in memory. 

There is a user-defined function that has the definition to predict and generate RMSE. 

Secondly, the main program calls this user-defined pool function multiple times, and each 
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of these calls is handled by a separate core. Hence, the multiple cores handle jobs 

simultaneously. Each core is mapped to the same subprogram but with a different cluster 

number. The application is built to support the functionality of multicore processing using 

the pool mapping method. 

The results of multi-core processing in the 1000 transformers dataset are depicted 

in Table 25. The scalability of the results is verified up to the size of 10,000 transformers. 

Table 25 Results of multi-core processing. 

 

Metric 

Clustering + Training 

1 core 8 cores 

Single-core processing map method map async 

Avg RMSE (KWh) 21.2596 21.2596 21.2596 

MAPE 7.57 7.57 7.57 

Train Time 4688.82 1054.188 903.589 

Testing Time 4.57 2.690 2.286 

6.2.5.1 Metrics of multi-core processing 

The performance of multi-core processing is evaluated in the following measures: 

• CPU Efficiency: CPU Efficiency is calculated as the ratio of the actual core time from 

all cores divided by the number of cores requested divided by the run time. 

• Memory Efficiency: Memory Efficiency is calculated as the ratio of the high-water 

mark of memory used by all tasks divided by the memory requested for the job. 

• Parallel Efficiency: Parallel efficiency, which compares the performance of the full 

system or a specific subset of the processors to the performance of one processor 

Two of the reasons for low CPU Efficiency are I/O bottleneck and CPU-bound 

bottlenecks. I/O bottlenecks are bottlenecks where a computer processor spends more time 
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waiting on various inputs and outputs than it does on processing the information. CPU-

bound bottlenecks exist in applications with a large amount of data to process. The CPU-

bound bottlenecks are limited by the computational speed of CPUs. If the CPUs are of 

high computational power, then the speed of processing is fast. 

6.2.5.2 Ways to improve CPU Efficiency 

The different ways to improve CPU efficiency while performing multi-core 

processing for load forecasting include the following: 

• Efficient Inter-process communication 

• Different methods involving the utilization of following parallel computing procedures: 

1) Pipes (package: os) 

2) Files (package:py-filelock; filelocks) 

3) Message Queue (package:activeMQ, redis.) 

4) Shared Memory (package:mmap; shared memory registers) 

5) Sockets 

6) Signals 

7) Remote procedure call (RPC) 

It is important to analyze how multi-cores perform actions. A core is an individual 

CPU unit that has all independent components and architecture to execute information. 

The following are the steps in a cycle through which each core goes through: 

• Fetch: It involves fetching instructions from the program memory. It is dictated by a 

program counter (PC), that identifies the location of the next step to the process. 

• Decode: The core converts the fetched instruction into a series of signals that will 

trigger other components of the CPU. 

• Execute: Finally, the execute step is performed. This is where the fetched and decoded 

instruction, is executed and the results are stored in a CPU register. 



 

155 

 

The results of eight-core processing depict that the parallel load forecasting can be 

performed using multiple cores with a parallel efficiency of 4 to 5. That is, when the 

number of cores used to perform parallel load forecasting is 8, the training time is reduced 

to 
1

4
 th to 

1

5
 th of the training time it takes when one core is utilized for processing. 

6.2.6 Results of proposed parallel computing methodology on big data 

To prove the scalability of the approach of parallel computing and multiprocessing 

using python framework, the modeling has been performed on datasets with increasing 

size in stages. The results of the proposed methodology on datasets collected from 10 

diverse sources and 1000 diverse sources have been illustrated in the previous subsections. 

In this subsection, the performance of proposed methodology on datasets that can be 

considered big data is illustrated. 

The optimization of number of clusters developed on dataset of 10,000 diverse 

sources is shown in Figure 49. The figure represents the elbow curve that depicts the 

within cluster sum of square errors on the dependent axis and the number of clusters is 

shown on the independent axis. The dip in the error is observed at x=890 indicating that 

890 clusters would be optimal to develop non-overlapping clusters on the dataset. This is 

in resonance to the results of elbow curve on 10 and 1000 transformers dataset that imply 

 

Figure 49 Elbow curve on 10,000 transformers dataset 
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that the factor of decrease in the number of models is 10 when applying clustering to the 

distribution transformers dataset.  

Hence, the forecasting models were developed for 10,000 distribution transformers 

and the statistical distribution of RMSE of the models is depicted in Figure 50. As per 

Figure 50, nearly 8000 transformer forecasting models have RMSE value less than 5 kWh 

indicating high success of the forecasting models. The statistical distribution of RMSE 

against MAPE is represented in Figure 51. 

 

Figure 50 Distribution of RMSE values for 10,000 transformer models 

 

Figure 51 Distribution of RMSE against MAPE for 10,000 transformer 

models 
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The results of development of models for 10,000 transformers is depicted in Table 

26. Additionally, it takes 48 minutes to cluster the 10,000 transformers into similar clusters 

and then takes around 3.09 hours to develop the forecasting models for the clusters. With 

the usage of dask dataframe to read or filter and pandas dataframe to process or sort data, 

the peak memory usage was reduced from 97.05 GB to 42.75 GB during the development 

of individual models on the dataset of size 64 GB. 

Dataset 3 described in Table 27 is an example of big data as it contains around 2.2 

billion records, and the processing of the dataset requires out of memory and parallel 

computing. The results of parallel multi-core processing on a non-Spark platform is 

mentioned in Table 27. 

Table 26 Results on 10,000 transformers. 

Data Field Cores Reading k-

optimization 

Clustered 

models 

Individual 

models 

1
0
,0

0
0

 

tr
an

sf
o
rm

er
s 

Avg. RMSE 

(kWh) 

8 - - 8.94 7.65 

Training 

time (s) 

8 5.88 

(dask) 

6480 = 1.8 hr 3.09 hr 50664.5 = 

14 h 

Test time (s) 8 - - 45.68 2802.5 = 

46.7 min 

 

Table 27 Results of parallel computing on big data (dataset 3). 

Parameter Parameter value 

No. of transformer models trained 105,148 

Resources 8 nodes. 48 cores each node. 

Execution time 144 hours (5.9 days) 

Mean RMSE 5.13 kWh 

Mean nRMSE 0.0619 

Mean MAPE 11.634 
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Mean MAE 3.282 

 

 The accuracy performance can be observed in Figure 52. The independent axis 

denotes the transformer number/model number, and the dependent axis represents the 

nRMSE value for a particular transformer. As shown in Figure 52, the nRMSE value for 

 
Figure 52 nRMSE results of the developed models for big data 

 

 
Figure 53 Frequency plots of nRMSE and MAPE for the developed models 
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the transformers do not exceed the value of 0.12 and this low value indicates the highly 

accurate prediction performance of the developed models. 

 The frequency plots of the performance of the developed and trained models are 

illustrated in Figure 53. 

 The performance of parallel computing in terms of execution time is tabulated in 

Table 28. 

Table 28 Time performance of parallel computing on multiple datasets. 

No. of transformers Model training 

time (hr) 

Datasize 

(GB) 

No. of nodes 

used 

Cores 

used 

RAM 

1,000 2.33 2.85 1 1 8 GB 

10,000 14 23.78 1 8 64 GB 

105,148 144 242.78 8 48 128 

GB/node 

 As observed in Table 28, the dataset size is increased linearly by 10 and 100 times. 

And, with the help of parallel computing and multicore processing, the development of 

models occurs under similar scaled time.  
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CHAPTER VII  

CONCLUSION AND FUTURE WORK 

7.1 Conclusion 

The use of the proposed hybrid framework with deep learning can be utilized to 

develop parallel and real-time forecasting system for the smart grids and to change 

positively the way the electrical grids save energy. In this work, various feature selection 

methods, clustering techniques, transfer learning, incremental learning, and multi-core 

processing have been employed and the integration of diverse data from multiple sources 

has been performed. The outstanding results of the proposed methodology demonstrate 

the reduction in the number of trained models by a factor of 10, the reduction in training 

time by a factor of 2, and the improvement in accuracy owing to real-time analytics 

approach and incremental learning of trained networks. Additionally, when the multi-core 

analysis is performed, the execution time is reduced by a factor of at least 
𝑘

2
, where k is 

the number of cores employed. According to the results, it is evident that the parallel 

computing of load forecasting provides satisfactory performance in terms of accuracy and 

computation times. The proposed PULSE cost function-based DL models eliminate the 

tendency to underestimate. The performance of the proposed multi-stage hybrid 

framework is evaluated on data collected from 100,000 diverse data sources indicating 

that the framework is highly scalable.  

7.2 Future Work 

In the future, the work can be further extended towards the optimization of the 

number of nodes, number of cores, and provided memory. This optimization will help in 
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the computation resource management for parallel computing. Current steps in progress 

are the partitioning of the recurrent network connections in neural networks to reduce the 

number of trainable parameters and to reduce the computational time for training and 

building networks. Additionally, the impact of forecasting horizon on the proposed 

PULSE function will be studied. 
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APPENDIX A 

PRIVACY PRESERVATION OF DATA-DRIVEN MODELS IN SMART GRIDS 

USING HOMOMORPHIC ENCRYPTION*11 

A.1 Overview 

 The information layer embedded in the two-way communication electric smart 

grid has various data sources such as Advanced Metering Infrastructure (AMI), smart 

electrical measurement sensors, smart meters, detectors, Phasor Measurement Units 

(PMU), Remote Terminal Unit (RTU), and Supervisory Control and Data Acquisition 

System (SCADA) [11]. These sources generate huge amounts of data that satisfy the 

volume, velocity, variety, veracity, and value characteristics of big data [40]. The data 

generated from multiple sources are located at different nodes of an electric network. 

However, electric utilities demand to preserve the security and privacy of the collected 

and used data. The collected data represents the behavior of the customers  and other 

network players. Those data contain sensitive information about customers, electricity 

consumption, trading, and operation of electricity distribution networks [223]. Those data 

can be utilized to develop machine learning algorithms to improve the electrical utility 

operation in terms of demand response, peak load shaving, and fault analysis.  

Machine learning algorithms can be classified into two divisions; classical and 

deep learning techniques [224]. There are merits and demerits of each division compared 

to the other. Deep learning techniques have the merits of being more accurate, scalable 

 

11 Reprinted with permission from “Privacy Preservation of Data-Driven Models in Smart Grids Using Homomorphic Encryption.” 
by Dabeeruddin Syed, Shady S. Refaat, and Othmane Bouhali, 2020. Information Journal 11, no. 7, 357, Copyright 2020 by 

Dabeeruddin Syed. 
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with more data, no requirement of complex feature engineering, adaptability, and 

transferability to different domains and applications through transfer learning. [225]. The 

classical machine learning techniques have merits of higher performance if the size of 

available data is small, lower requirements of computational resources, and simplicity 

[226]. However, all the machine learning approaches require the data which are collected 

for processing from several nodes in the electric network. The data are transmitted from 

the electrical nodes to a unified central system to develop the data-driven models. This 

data transmission and collection by model developers endanger the privacy and security 

of the information. Hence, security approaches such as homomorphic encryption and 

federated machine learning, that avoid the movement of plain data can be considered as 

potential solutions for securing the collected data. In recent years, many researchers have 

attained noteworthy progress in the field of encryption schemes. 

In the past decade, the rate of generation of energy data from utilities has increased 

exponentially. The number of smart meters installed globally is around 660 million in 

2017 with the data generated at a rate of 280 petabytes a year [227] [228]. Furthermore, 

the number of people who have access to the data has increased multi-fold. For business 

benefits, each of the teams of an entity has data scientists in-house who develop machine 

learning models to recognize the patterns in the data and to discover ways to improve 

business. This brings the security of the confidential information in the collected data at 

risk and may lead to sensitive information disclosure. It has been impartially assumed for 

decades that the encryption garbles up the numbers in the data and no practical 

mathematical operations can be executed on the encrypted data [229]. One of the earliest 
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approaches to investigate the possibility of performing computations on the underlying 

data without actually having access to the unencrypted forms of data was presented by 

Rivest, Adleman, and Dertouzos in 1978 through their work entitled privacy 

homomorphisms [230]. In 1996, Ajtai et al. proposed the use of lattice-based constructions 

as an encryption scheme to develop a public-key cryptosystem [231]. The foundation of 

these works has set in motion the advancement of first working Fully Homomorphic 

Encryption (FHE) in 2009 [232]. The FHE scheme allows for the mathematical operations 

and function mapping to be employed on encrypted data.  

The HE schemes have been applied with classical machine learning models 

initially and later, implemented with deep learning models. Earlier works on encryption 

schemes with deep learning models presented works with activation function as high 

degree polynomials whose computations are slow and require huge resources. The 

possibility of low degree non-linear polynomials (such as square function) as activation 

functions in the network layers was presented in [233]. Also, HE schemes allow the 

execution of non-polynomial functions on encrypted data. Later, bootstrapping procedure 

and use of sign function were introduced in later work with an aim to keep the scheme 

complexity linear to the depth of the neural networks [234]. These developments enable 

the possibility of use of, HE schemes in the real-world scenarios for encryption. 

In this work, the homomorphic encryption model is applied for two smart grid case 

studies namely, fault identification and localization data from the simulated IEEE 68 bus 

system in order to develop highly secure and accurate deep learning model for fault 

localization predictions, and real distribution transformer energy consumption data to 
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develop machine learning model for load forecasts. The main contributions of this work 

are classified into the following main categories: 

1. Designing a secure and privacy-preserving deep neural network (DNN) model 

established on homomorphic encryption for smart grid applications. 

2. Proposing a fault classification and localization model that has favorable accuracy 

considering the fact that the model is trained on encrypted data. The encryption of 

the data before modeling accentuates the need for data privacy and security. The 

accuracy of the model trained on encrypted data is very close to the model trained 

on non-encrypted data. 

3. Proposing a load forecasting regression model such that the accuracy of the 

predictions using encrypted data is close to accuracy using non-encrypted data. 

A.2 State-of-the-art works 

 In this section, we first present the security and privacy foundations required for 

secure machine learning. Then, the possible solutions to achieve the security foundations 

are discussed in the subsequent parts. At last, we discuss the literature review and previous 

works in the field of privacy-preservation of machine learning models using homomorphic 

encryption. 

 The computational research community has been interested in privacy-preserving 

machine learning to ensure that the data remains secure during all the stages of its 

processing i.e., from the training stage to the predictions stage. There are four main pillars 

needed to achieve privacy-preserving machine learning: namely, training data privacy, 
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model input privacy, model weights privacy, and model output privacy. They are shown 

in Figure 54 and summarized as next. 

 

1. Training Data Privacy: The privacy and security layer should be in place that no 

malicious agent can reverse engineer the training data from the model or the 

output. 

2. Model Input Privacy: The input data cannot be obtained by any third party, 

including the model creator; the input data owner is assumed as different than the 

model creator.  

3. Model Weights Privacy: The model parameters and weights cannot be obtained or 

inferred by a malicious party. 

4. Model Output Privacy: The output of the model cannot be observable by any third 

party, except for the owner of the data. 

 

 
Figure 54 Four Pillars of Privacy-Preserving Machine Learning 
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Hence, there are multiple challenges that need to be addressed to achieve the aims 

of the four pillars of privacy in machine learning which is the goal of our paper. The 

following subsections discuss various approaches to privacy-preserving machine learning. 

A.2.1 Training Data Privacy 

 Although it is difficult to reverse engineer the training data from the model 

parameters and model outputs, it is not impossible. In [235], the authors have indicated 

the leakage of information on training data using reverse engineering on the machine 

learning models. The results of their work have indicated that the generative sequence 

models can retain rare information from the raw data and that this memorization peaks 

when the test loss is set to the minimum.  

To prevent the memorization of training data in the developed models, there are 

two major proposed solutions; Differentially Private Stochastic Gradient Descent 

(DPSGD) [236], and Private Aggregation of Teacher Ensembles (PATE) [237]. These 

solutions not only provide security to the data but also improve the generalizability of the 

machine learning models. 

The memorization and exposure of private knowledge from training data can be 

reduced with the use of DPSGD. The DPSGD solution adapts differential privacy into 

SGD to conserve the security of training data while developing deep learning models 

[236]. 

PATE is a scalable alternative to DPSGD and is an ensemble model. The 

components of the ensemble model train on the independent and identically distributed 

(i.i.d.) subsets of the same dataset. If most of the models in the ensemble have the same 
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output, then it can be inferred that the models and their output do not expose any secure 

information from the training data and hence, can be shared [237]. 

A.2.2 Model Input Privacy and Model Output Privacy 

 Input data and the outputs (predicted variable values) from the data should be 

accessible only to the owners of the data and protected from other parties including the 

model developers. There are three solutions in the literature that have been successfully 

applied to preserve the model input and output privacy. Those solutions are briefly 

discussed below: 

1. Federated Learning (FL) [238]: FL is machine learning on device. It can be made 

secure with the use of differentially private stochastic gradient descent. 

2. Homomorphic Encryption (HE) [239]: Homomorphic encryption makes provision 

for the use of non-polynomial functions on encrypted data. With this capability of 

homomorphic encryption, it is possible to apply classical machine learning 

algorithms such as linear or logistic regression, naive bayes, and random forest and 

deep learning models on encrypted data for training and obtain predictions [240]. 

However, initial works such as CryptoNets [240] have a limitation of high latency. 

Also, the cryptonets do not support the popular activation functions (Relu, and 

Sigmoid) and the pooling functions (Max Pooling). The limitations of the use of 

activation functions were later overcome in [241] which approximates the 

continuous functions of Sigmoid, Relu, and Tanh to lower degree polynomials 

based on Chebyshev polynomials. Their results indicated that the replacement of 
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activation function with approximated lower degree polynomials adopts neural 

networks to be effectively used with homomorphic encryption. 

3. Secure Multiparty Computation (MPC) [242]: When multiple parties are involved, 

they can decide on functions to calculate outputs using their private inputs. The 

inputs are not revealed or exposed. The concept of secure MPC has been 

successfully used in generative models and machine learning algorithms to protect 

the data from reverse engineering. 

A.2.3 Model Weights Privacy 

 The model privacy is very crucial for companies who own data to avoid having 

their AI applications and models easily copied or reverse engineered from inputs and 

outputs. Hence, model privacy and model weights' privacy are extremely crucial. 

The FL, HE, and MPC solutions could also be used to enhance the model privacy. 

The solutions for model weights privacy include the following: 

1. Differentially private stochastic gradient descent  

2. Homomorphic Encryption 

A.2.4 Related Work 

 Multiple methodologies have been utilized in the discipline of privacy-preserving 

machine learning [243] [244] [245]. These methodologies include, but are not limited to, 

differential privacy [246], federated machine learning [247], homomorphic encryption 

[248], and multi-party computation [249]. In this work, we utilize the homomorphic 

encryption as it achieves the four pillars of privacy-preserving machine learning for smart 

grid applications. 
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In [241], Hesamifard et al. proposed a framework called CryptoDL that aims to 

preserve the security and privacy of the training data and the classification predictions 

generated by the Machine Learning (ML) models especially Neural Networks (NN). The 

authors have applied CryptoDL to different open datasets with encouraging and accurate 

results. The framework accepts the training data in encrypted form, develop models, and 

generate classification predictions which are encrypted under the data owner's public key 

as well. Their experiments yield that the proposed approach of approximating activation 

functions to low-degree Chebyshev polynomials outperforms other HE methodologies and 

the developed models preserve the security of data.  

In [250], Shokri et al. designed a privacy system  that allows multiple parties to 

train the deep learning models on their private data and share the knowledge from their 

learned models. The sharing of the models improves the overall accuracy of the final 

averaged model while also preserving the data privacy because individual data is not 

shared between the multiple parties. Their system is based on Distributed Selective 

Stochastic Gradient Descent (DSSGD) and parameter exchange protocol for different 

parameters of the deep learning model.  

In [229], the authors developed the classification models using decision trees, 

hyperplane decision, and naive bayes classifiers on encrypted data using security 

constraints. However, the accuracy of their classification models has not been reported in 

the article. The efficiency of the models is evaluated in terms of classification time and 

they reported that their models take a few milliseconds to a few seconds on large datasets. 
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A stable and significant implementation of fully homomorphic encryption was 

presented in [232]. The author presented a modular framework of FHE that supports the 

computations to a fixed depth. Then, he employed a bootstrap method to enhance the 

framework with successful computations to a larger depth with a few constraints or 

assumptions. The decryption works correctly if the noise in the encrypted text is small. 

For example, 𝑐1 → 𝐸𝑛𝑐(𝑝1) and 𝑐2 → 𝐸𝑛𝑐(𝑝2) are cipher texts and these encrypted data 

have noise 𝑛1, 𝑛2. Then, during addition and multiplication operations, these noise values 

increase to 𝑛1 + 𝑛2 and 𝑛1 ⋅ 𝑛2 respectively. Hence, if the noise is significant after 

encryption of data, this methodology performs well only in shallow networks. The 

technique of bootstrapping is used to reduce the noise in the network after encryption as 

it refreshes the cipher data. Consider 𝑐1 ∈ 𝐸𝑛𝑐(𝑝1) has large noise and a helper cipher 

data 𝑐𝑘 → 𝐸𝑛𝑐(𝑠𝑒𝑐𝑟𝑒𝑡𝑘𝑒𝑦). A homomorphic evaluation of the decrypting function is 

performed as 𝐸𝑣𝑎𝑙(𝐷𝑒𝑐, 𝐸𝑛𝑐(𝑐𝑘), 𝑐1) which refreshes the cipher data which encrypts 

𝐷𝑒𝑐(𝑐𝑘, 𝑠𝑒𝑐𝑟𝑒𝑡𝑘𝑒𝑦) = 𝑝1. This bootstrapping technique is used to refresh the cipher data 

and removes the noise in it. The cipher data are first calculated up to depth 'd' which is 

efficient for fully homomorphic encryption. Then, bootstrapping is used to refresh the 

cipher data which are devoid of noise. Finally, the encryption is performed starting from 

depth 'd' to depth '2d', and bootstrapping is then applied at depth '2d' and so on. Dijk et al. 

[251] simplified the complexity of Gentry's somewhat homomorphical bootstrappable 

encryption scheme and applied it over the integers.  

There are a few technical challenges associated with the privacy-preservation of 

data [252]. These are listed as below: 
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• The data might come from multiple sources that use different secret keys for 

encryption. In such a case, the homomorphic encryption is not straight-forward. 

The solution to this will be MPC and HE. 

• Also, developing deep learning models with homomorphic encryption may be hard 

when compared to developing shallow models. However, in this work, the 

developed deep learning models display high accuracy on testing. 

There are multiple types of schemes in HE depending on the operations they can 

perform. The HE encryption schemes that can perform only one type of operation are 

called partially homographic encryption schemes. El Gamal scheme [253] and RSA 

scheme [254] are partially HE schemes, and these can perform only multiplication 

operations homographically whereas Paillier scheme [255] can perform addition 

operations homographically. 

MPC is similar to homomorphic encryption with an exception that the two users 

involved X (user with data d) and Y (developer of function f) are required to interact over 

multiple iterations to train the model f(d). For specific applications, MPC has proven to 

perform better than Homomorphic encryption. However, MPC faces the difficulties of 

high bandwidth requirements and network latencies. Hence, HE is more scalable for 

generalized smart grid applications. 

In practice, there are multiple open-source implementations of homomorphic 

encryption schemes. These libraries are described in Table 29. 

Table 29 Open-source implementations of HE. 

Implementation Description 
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HELib [256] The low-level library implements HE with faster evaluation time employing 

optimized Brakerski-Gentry-Vaikuntanathan (BGV) scheme with 

bootstrapping. 

cuHE [257] highly optimized GPU-accelerated library for Homomorphic encryption. 

TFHE [258] open-source gate-by-gate bootstrapping library which evaluates 

homomorphic encryption of binary gates, negation, and MUX gate 

operations and performs computation over encrypted data. 

NFLlib [259] open-source Number Theoretic Transform based Fast Lattice Library which 

uses low-level processor functionalities. 

SEAL [260] an extensively employed open-source library from Microsoft that supports 

BGV and Cheon, Kim, Kim, and Song (CKKS) encryption schemes. 

𝚲𝒐𝛌 [261] open-source Haskell library for functional lattice-based cryptography. 

PALISADE 

[262] 

Open-source library for implementations of lattice-based encryption 

building blocks and HE scheme. 

HeaAN [263] Open-source implementation of HE encryption scheme using approximate 

arithmetic of numbers. 

Lattigo [264] library for lattice-based cryptography and MPC, written in Golang (Go) 

language. 

 

Our researched system attains significant security objectives in the context of deep 

learning models applied for smart grid applications. It secures the training data before it is 

transferred to the model developers. The model developers are enabled to control the 

learning objectives of the data-driven deep learning models. The solution allows for the 

application of machine learning and deep learning models along with generalization to a 

wide variety of electrical applications. 

A.3 Proposed Methodology for Privacy-Preservation of Data-driven Models 

 This section presents the proposed methodology for the application of deep 

learning over encrypted data with the homomorphic encryption method. The main 

objective of this methodology is to add additional security and privacy layer to deep 

learning models in smart grid electrical applications. As observed in Figure 55, the 
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encryption keys are used to encrypt the data on the server-side. Only the encrypted data is 

communicated to the client-side or the model developers. The model is trained over the 

encrypted data, then the predictions are obtained. Moreover, the predictions are encrypted 

which requires decryption performed at the server side to obtain the final predictions. It is 

important to note that the client or model developer does not have access to the encryption 

keys, therefore the client can neither decrypt the data nor decrypt the predictions. In some 

applications, the client is provided with a previously trained model and encrypted test data 

to provide encrypted predictions back to the server. In such cases, the previously trained 

model may have been trained on plain data on the server-side. The homomorphic 

encryption allows for the privacy, reliability, and security of training data, model inputs, 

weights, and outputs. However, the HE does not secure the data from the point of 

generation to the server, but only after it reaches the server. The framework assumes that 

 
Figure 55 Homomorphic encryption-based deep learning modeling for smart 

grid applications 
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the smart grid platform supports secure data acquisition from different data sources. The 

diverse storage services and policies should enforce privacy and security between the 

points of data generation and server. 

In the following sections, the main steps of the proposed methodology are 

described. 

A.3.1 Data description 

 Two datasets have been collected for evaluating the performance of machine 

learning models employing homomorphic encryption. One of the datasets is the simulation 

data for fault localization in a power system network and another dataset is the time-series 

load demand data at the distribution grid level (transformers). The following section 

provides the description of the two datasets and the pre-processing steps employed on the 

datasets. 

A.3.1.1 Dataset 4 

 The data utilized is the fault localization simulation data from the IEEE 68 bus 

system which consists of 68 buses, 16 machines, 16 generators, and 20 transformers [104] 

[265]. Figure 56 shows the reduced-order 68-bus system test simulation model. The 

simulation data is PMU measurements acquired for pre and during fault conditions for a 

subset of the grid buses in the system. The extracted features which characterize the 

location and occurrence of the faults are determined to be the bus voltage variations before 

and during the faults. The final feature set which is given as input to the classifier is given 

by the imaginary part of the following (51). 
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Ψ = 𝑌0Δ𝑉 (51) 

where 𝑌0 denotes the admittance matrix of the bus system before the faults and Δ𝑉 

represents the difference in the bus voltage before and during the faults. 

 The label of the data indicates the line number at which the fault occurs and hence, 

there are 86 classes. 75% of the data is utilized as a training data set, and 25% of the data 

is utilized as a validation data set. 

A.3.1.2 Dataset 5 

 The second case study is on the load forecasting at the distribution level. The data 

acquired is the time series hourly load demand data at the distribution transformers level 

for a real power grid between January 2018 to December 2018. After data acquisition, the 

 
Figure 56 IEEE 68-bus system test simulation model 
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only features were time stamp, transformer id, season, and hourly load demand values. In 

the pre-processing steps, the weather data is extracted and added as features to this dataset 

using a freemium Application Programming Interface (API) called Darksky [203]. The 

extracted features include maximum temperature, minimum temperature, cloud cover, 

dew point, humidity, precipitation intensity, pressure, Ultraviolet rays (UV) index, 

visibility, wind gust, and wind speed. This extraction introduces missing values that are 

filled using an average of forward and backward fill for numerical features [149]. Also, 

the 24 lag hour values are fed back to the dataset as additional features. 

A.3.2 Homomorphic encryption 

 The fully homomorphic encryption or simply homomorphic encryption is a 

category of encryption methodology which differs from other classical methods in a way 

that it enables the computations to be executed on the encrypted data without having a 

requirement to access the secret encryption key [266]. The output of such computations is 

also encrypted, and it can be decrypted with the help of a secret key that the data owner 

possesses. A function 𝑓: 𝑅𝟙⟶ 𝑅𝟚 is said to be additive and multiplicative homomorphic, 

if for every 𝑟1, 𝑟2 ∈ 𝑅𝟙, it implies that 𝑓(𝑟1 + 𝑟2) = 𝑓(𝑟1) ⊕ 𝑓(𝑟2) and 𝑓(𝑟1 ⋅ 𝑟2) =

𝑓(𝑟1) ⊗ 𝑓(𝑟2) respectively, where ⊕, and ⊗ are the operations in 𝑅𝟚 [267]. 

A homomorphic encryption technique has a supplemental algorithm property 

called 𝐸𝑣𝑎𝑙 which can be executed or computed over encrypted data. Any party can run 

𝐸𝑣𝑎𝑙 function on the encrypted data without requiring access to the private key with which 

data is initially encrypted. That is, the ciphertext need not be decrypted to allow 

computations on it in the evaluation function, and this maintains the privacy of the 
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underlying information in the encrypted data. Figure 57 illustrates the different mapping 

functions and computations involved in Homomorphic Encryption Evaluation. 

The homomorphic evaluation of a deep neural network with discretized inputs and 

weights involves two steps mainly. These steps are enumerated as following: 

1. Computation of multisum between the encrypted inputs that are given to the 

neurons and the discretized weights at the respective neurons: The calculation of 

multisum uses homomorphic addition as basic operation.  

2. Extraction of the sign of the output at each neuron. 

To make the neural network scalable in terms of the number of layers, the 

bootstrapping operation is performed at every neuron in the layers to effectively encrypt 

the sign of the output and use it in further computations to the next layers in the network. 

 For privacy-preserving machine learning, we use the orthogonal matrix 

transformations-based homomorphic encryption in the classification case study. The 

secret key of the proposed matrix transformations based HE scheme is an invertible matrix 

(U1) of size m, where m is the number of records in training data. And Paillier 

cryptosystem is utilized for the case study of regression. 

 
Figure 57 Homomorphic Encryption Evaluation 



 

202 

 

A.3.2.1 Encryptions of the data 

 The data is encrypted using HE algorithm based on matrix transformations. The 

aim of the encryption of the data is to generate highly accurate deep learning or machine 

learning models and use the encrypted data for training or testing so that the model 

developers do not have access to the plain data all the time. 

 In the first case study for fault localization, two sets of simulations have been 

conducted. In the first set, the DNN model is developed when the training data is plain, 

and the model developer has access to the plain data. Here, there are no privacy-preserving 

techniques involved. In the second set of experiments, the first stage encrypts the fault 

identification and localization data using homomorphic encryption on the source side. The 

data provided to the model developers are the encrypted version of data. So, no 

information from the data can be leaked. The model developers develop the DNN model 

using the encrypted data and return the encrypted predictions to the source side. The data 

owner then uses the keys to decrypt the encrypted predictions to obtain the final 

predictions. These predictions are used to calculate the accuracy of the developed models 

using ground truth values. 

Algorithms 6, 7, 8, and 9 present the encryption and decryption steps that are used 

on the server-side in the fault localization case study. 
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Algorithm 7. Decryption of Train Data 

  1:    function DECRYPTIONTRAIN(𝑋,  𝑦,  𝑄1,  𝑄2) 

  2:  Choose (𝑄1)𝑚𝑥𝑚 as orthogonal matrix. 

  3:  (𝑋)𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑒𝑑 = 𝑄1
𝑇 . 𝑋. 𝑄2

−1 

  4:  (𝑦)𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑒𝑑 = 𝑄1
𝑇 . 𝑦 

  5:  return (𝑋)𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑒𝑑, (𝑦)𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑒𝑑 

  6:    end function 

 

Algorithm 8. Encryption of Test Data 

  1:    function ENCRYPTIONTEST(𝑋,  𝑄2) 

  2:  Choose (𝑄1)𝑚𝑥𝑚 as orthogonal matrix. 

  3:  if 𝑛𝑜𝑂𝑓𝑅𝑜𝑤𝑠(𝑋)  >  1 then 

  4:        Choose orthogonal 𝑄3 of size 𝑛𝑜𝑂𝑓𝑅𝑜𝑤𝑠(𝑋) 

  5:  else 

  6:        Choose orthogonal 𝑄2 of size 1 

  7: end if 

  8: (𝑋)𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 = 𝑄3. 𝑋. 𝑄2
−1  

  9: return (𝑋)𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑, 𝑄3 

10:     end function 

 

 

Algorithm 6. Encryption of Train Data 

  1:    function ENCRYPTIONTRAIN((𝑿)𝒎𝒙𝒏, (𝒚)𝒎𝒙𝟏) 

  2:  Choose (𝑄1)𝑚𝑥𝑚 as orthogonal matrix. 

  3:  if 𝑛 >  1 then 

  4:        Choose orthogonal 𝑄2 of size 𝑛 

  5:  else 

  6:        Choose orthogonal 𝑄2 of size 1 

  7: end if 

  8: (𝑋)𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 = 𝑄1
𝑇 . 𝑋. 𝑄2  

  9: (𝑦)𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 = 𝑄1
𝑇 . 𝑦        

10: return (𝑋)𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑, (𝑦)𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑, 𝑄1 , 𝑄2 

11:     end function 
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Algorithm 9. Decryption of Test Data 

  1:    function DECRYPTIONTEST(𝑦𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑, 𝑄3) 

  2:  (𝑦)𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑒𝑑 = 𝑄3
−1. 𝑦𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 

  3:  return (𝑦)𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑒𝑑 

  4:    end function 

 

 In the second case study for load demand forecasting, a machine learning model is 

developed using the plain data where the model developers have initial access to data. The 

knowledge gained i.e., model and its parameters can be transferred to points where load 

demand predictions are required. At these points, access to the plain data is not required 

and is encrypted during the training phase. In this work, a paillier encryption scheme [255] 

is employed and public, and private key pair is generated. The test data is encrypted using 

a public key and the predictions are generated using the model on encrypted testing data. 

The load forecast values are encrypted and these can be decrypted only with the help of 

private key which is available only to the data owner. 

 The homomorphic encryption can secure a multitude of electrical applications in 

smart grids by providing the following advantages: 

• securing data stored in cloud server. 

• enabling data analytics in regulated electric utilities. 

• HE protects the systems against eavesdropping attacks after the data has reached 

the server. The HE potentially renders any data leaked through eavesdropping 

attacks or man-in-the-middle attacks indecipherable to attackers. 

• HE can protect the data against unauthorized sharing. 

A.4 Results 
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 This section presents the efficacy of the proposed homomorphic encryption- based 

deep learning models for fault localization and detection. Also, the results of another case 

study of Paillier scheme for load demand predictions are presented. 

 The experiments have been conducted utilizing Python 3.7 for encryption and 

decryption schemes. The execution was run on a computer with an Intel Core i7-7700HQ 

CPU @ 2.80 GHz with eight logical processors, four physical cores, and 16 GB of RAM. 

A.4.1 Case Study 1 

 The machine learning model utilized to train on plain and encrypted data is the 

deep neural network (DNN). It comprises of three categories of layers – an input layer, an 

output layer, and hidden layers. The inherent non-linear characteristics of the layers enable 

the DNNs structure to recognize and generalize the underlying patterns and information 

in the data. 

 The size of the input layer of DNN is 64 and the size of the output layer is 86. The 

number of neurons in each hidden layer is 70 neurons. The activation function utilized in 

the DNN model trained on plain and encrypted data is hyperbolic tangent (tanh) activation. 

The input space is scaled to the range of (-1, 1) and the tanh activation function ranges 

between the same values. It is also maintained that the weights have discrete values over 

the domain of 𝑍 as real-valued weights render the use of homomorphic encryption 

incompatible. A dropout percentage of 20% is utilized for the model trained on plain data. 

A dropout percentage of 50% is utilized for the model trained on encrypted data. 

Table 30 Evaluation of homomorphic encryption deep learning model for 

classification problem (fault localization). 

Model Name DNN HE+DNN 
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Validation accuracy 98.32 97.71 

Test accuracy 99.98 98.59 

Execution time (s) 20.61 23.64 

Computation complexity of activation function O(1) O(1) 

 

As shown in Table 30, the performance of the deep learning model on encrypted 

data is close to the performance of the model on plain data. The validation accuracy of the 

DNN model on plain data of fault identification and localization is 98.32%. However, 

when the DNN model is trained on the encrypted data, the validation accuracy is 97.71%. 

Also, a separate fault simulation data is used as a test data set. And, on the test data set, 

the accuracy of DNN model trained on plain data is 99.98% whereas the accuracy of the 

model trained on encrypted test data is 98.59%. The graphical representation of the results 

is shown in Figure 58. Homomorphic encryption based DNN takes more time, but it 

effectively protects the data and generates a comparative accurate model. 

A.4.2 Case Study 2 (a) 

 
Figure 58 Accuracy-wise performance of the proposed methodology 
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 The classical machine learning algorithm of linear regression is applied over the 

Paillier scheme for the case study on load demand predictions. Mini-batch Gradient 

descent optimizer is used with learning rate 0.01 and training epochs as 1000 as the data 

is big and the computational memory is limited. Training of the model is performed on 

unencrypted data which is then transferred to the encrypted testing data to make encrypted 

predictions. Only the server-side private key can be used to decrypt the predictions. 

However, a public key can be used to encrypt any data. 80% of data is used for training 

and 20% of data is used as a validation dataset. 

 Figure 59 depicts the training history in terms of mean square error against the 

number of epochs of training. The smoothness in the graph indicates that the cost function 

of the machine learning model keeps on decreasing over the set number of epochs and the 

model approaches to convergence with minimum prediction error. 

 Figure 60 plots the predicted values of load demand in testing data set after 

decryption against the true values of load demand. A point on the straight line through 

origin would indicate that there is no error in the predicted value, and it is the same as the 

 
Figure 59 The mean square error as training progresses 
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actual load demand value. The homomorphic encryption-based modeling was thus 

evaluated for the regression problem of load demand forecasting. The results of the 

evaluation are displayed in Table 31. The results indicate that the machine learning model 

without encryption has a coefficient of variation (CV) of 7% and the CV is around 10% 

when encryptions are employed. 

 

 

Table 31 Evaluation of homomorphic encryption for regression problem (load 

forecasting). 

Model Name Validation dataset Test dataset 

RMSE (MWh) Coefficient of Variation 

(CV) (%) 

RMSE (MWh) CV (%) 

LR 0.0248 7.49 0.0250 7.55 

HE+LR 0.0352 10.63 0.0374 11.30 

 

A.4.3 Case Study 2 (b) 

 In this set of experiments, a similar methodology is applied on a different hourly 

load forecasting scenario with an aim to compare the results of our methodology to 

 
Figure 60 Predicted and actual values of load demand 
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existing work. The public data set is provided by PJM Interconnection LLC and consists 

of hourly energy consumption data recorded by various distribution utilities in the Eastern 

Interconnection grid in the United States. We utilized the data from the EIC grid for area 

AECO between the periods of March 1, 2019 and June 19, 2020. The time-series data 

contains 8713 records. In the feature engineering step, twenty-four lag hour values of 

energy consumption are added as features to the data set. 90% of the data is employed for 

training and 10% of data is used as a testing data set. 

 Table 32 presents the results of our experiments. As observed in the Table 32, the 

first forecasting experiment is performed without any encryption on the data, and this is a 

baseline to relatively compare the results of encryption-based forecasting. 

Table 32 HE for load forecasting problem - PJM dataset. 

Model Name Testing dataset 

RMSE (MWh) MAPE (%) 

LR 28.18 2.007 

HE+LR 31.65 6.15 

 

 As per the results in Table 32, when the encryption-based methodology is applied, 

MAPE is obtained as 6.15%. For the same data set, without any encryption involved, the 

load forecasting MAPE is 2.007%. As the security of data is increased using encryption, 

the forecasting accuracy is definitely decreased. However, we still obtain high accuracy 

with a high degree of privacy. The decrease in accuracy, after our proposed methodology 

is applied, is around 4.15% as against the 8.69% decrease in accuracy as reported by 

previous work [268] in the same load forecasting scenario. 
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A.5 Insights 

 In this paper, a privacy-preserving deep learning model based on homomorphic 

encryption is presented for classification and a classical machine learning model based on 

the Paillier scheme for homomorphic encryption is presented for regression. The proposed 

model can achieve machine learning modeling in the encrypted domain. The simulations 

of the model on different datasets indicate that the performance on encrypted data is as 

accurate as modeling on plain data. Application of the proposed methodology in the smart 

grids data processing is promising and implies a wide range of real-life electrical utility 

applications. Hence, data privacy can be maintained by the use of encryption and the 

machine learning models can be trained on encrypted data and still achieve the same 

accuracy and training. The main contribution of this work is a data-driven method that 

benefits from the accuracy of classical and deep machine learning algorithms with the 

lucidity of employing homomorphic encryption. The amalgamation of algorithms from 

cryptography, machine learning, and electrical engineering has demonstrated a 

methodology that achieves accuracy and security of electrical data while maintaining high 

throughput for computations. However, there is a scope of improvement in terms of 

computation time by using Graphics Processing Units (GPUs). Also, more effective 

encoding paradigms can be employed that require fewer parameters and obtain accelerated 

computations. 
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