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ABSTRACT 

 

Geospatial technology has rapidly developed over the past ten years and is 

making substantial impacts in geomorphology. The new techniques, which have been 

developed, require high computational ability to produce in-depth analysis, accurate 

mapping, and precise characterization of details. Thus, geospatial technology is an 

excellent technology for completing sophisticated tasks in geomorphology. 

Unfortunately, existing commercial software coupled with traditional geomorphological 

methods do not adequately satisfy the demands of geomorphologists today. In addition, 

current geospatial technology consistently lags behind the technology advancement in 

other relevant domains (e.g., computer vision and digital image processing). It also 

appears many geomorphologists because of their lack of training in computational 

programming skills, are forced to use only commercially available software. 

Unfortunately, this leads to inadequate and incomplete analysis because many of the 

commercial software, in many instances, are too generalized to address specific 

geomorphological problems. To overcome the above-mentioned limitations in 

geomorphologic studies, this dissertation focuses on designing multiple, innovative 

geospatial algorithms for mapping and studying in the alpine and glacial environments. 

The objective of this dissertation was to 1) develop an ANN (artificial neural 

network) based protocol to map basic geomorphology in the alpine and glacial 

environments; 2) create a protocol by using graph theory with object-oriented analysis to 

quantify changes in the surface structure of glaciers. 
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Two study sites were selected for this research: the San Juan Mountains in 

Southwestern Colorado and the Southern Patagonia Ice Field, Argentina. Results from 

the ANN analysis of the San Juan Mountains suggest that the combination of ANN and 

innovative topographic indices can facilitate the geomorphology mapping in alpine 

settings. 

Secondly, this dissertation focused on two glaciers in Patagonia: the Glacier 

Perito Moreno (GPM) and Glacier Ameghino (GA) for the period 2000-2011, which was 

the best available DEMs to study the area. GPM has been stable since the first in situ 

field measurement in Patagonia, whereas GA has been retreating during the same time. 

Thus, this dissertation suggests that a stable terminus does not necessarily represent a 

stable supra-glacier surface structure or a decrease in the dynamic activities of a glacier. 

The result suggests that the surface structure of GPM has more rapidly transitioned into 

a more fragmented system when compared to GA. Four underlying reasons could 

account for this contrasting pattern: solar panel effect, prehistorical landslide relict, 

glacier orientation shift, and AAR (accumulation area ratio) difference. Both glaciers are 

located side-by-side and flow in the same direction. 

This dissertation does not diminish the need for field work but does facilitate 

study of areas of extreme accessibility. 
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DEDICATION 
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1. INTRODUCTION 

A geomorphology map contains exponentially more information than plain 

words (Vitek et al., 1996). For almost every geomorphological project, an accurate, 

visual depiction of the study area could help the map end-user gain a basic geospatial 

sense of the study interest at first glance, including size, shape, orientation, scale, spatial 

complexity, texture, and patterns (Whitmeyer et al., 2010). A more comprehensive 

understanding of the study interest, such as existing landforms, dominant processes, 

underlying Quaternary geomorphic evidence, can also be obtained by the analyzing an 

accurate map (Walsh et al., 1998). Thus, an accurate geomorphology map is imperative 

for undertaking any fundamental and/or applied geoscience study (Williams et al., 

2018). 

The advent of Geography Information Systems (GIS) in 1960s has enhanced 

traditional field mapping that relies on accurate identification and representation 

(Goodchild et al., 2007). GIS can assist mapping geomorphology in various ways, from 

data acquisition and storage to spatial analysis and product visualization (Bubniak et al., 

2020). To undertake a more sophisticated geomorphological or hydrological science 

projects, however, GIS itself can not satisfy the need because of the following four 

reasons: 

i. GIS has limited geo-computation capacities. A civilian GIS system today 

significantly depends on the computational capacity. Thus, supercomputer and cloud 

computation are important for mass-data processing (Wang, 2010). 
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ii. GIS is limited when addressing digital image processing and computer 

vision. Raster and vector are two basic data formats in a GIS setting. With LiDAR and 

UAV data acquisition used to generate high-resolution images and DEMs, the existing 

raster-based algorithm is not sufficient for geomorphologic studies, however, many 

raster-based algorithms can be directly adapted from image processing and computer 

vision to fulfill this need (Weickert, 2000).     

iii. GIS users are more frequently locked in a tight coupling GIS setting, as 

an echo chamber. A loose GIS coupling environment is more powerful than a tight 

coupling GIS setting when dealing with a geomorphic phenomenon because these 

processes are more complicated than an individual commercial software can handle 

(Eldrandaly et al., 2005). 

iv. Artificial intelligence has minimal application in the current GIS 

environment. Not matter if it is Artificial Neural Network or Machine Learning, the 

existing artificial intelligence has been proven highly efficient and accurate in numerous 

geomorphologic studies, including landform classification, pattern recognition, feature 

extraction, and change detection (Openshaw, 1992; Basu, et al., 2019). 

Geomorphometry, which is the science and the methodology to characterize 

Earth surface from process-based point of view, uses mathematical, statistical, and 

computational solutions to quantify hydrological, morphological, ecological, and other 

aspects of land surfaces. This approach is optimal for geomorphic mapping and research 

(Evans, 2019). To overcome the existing issues listed above for a traditional GIS 

mapping framework, this dissertation focuses on integrating geomorphometry with a 
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newly developed, innovative algorithm designed to address unique geomorphologic 

problems in alpine and glacial settings. Specifically, my dissertation contains four major 

research objectives: 

i. investigate how scientists conduct impact analysis of surface change 

using advanced geospatial technologies, 

ii. design a more suitable mapping protocol for process geomorphology in 

alpine areas, 

iii. create a protocol of integrating ANN and this new topographic index for 

mapping automation, and 

iv. create a protocol to combine graph theory and object-oriented analysis to 

study glacier dynamics. 

To achieve these objectives, two study locations were selected for this 

dissertation, i.e., San Juan Mountains, Colorado, USA, and the Patagonia Ice Field, 

Argentina. The geomorphologic diversity and human habitation of the San Juan 

Mountains make it ideal for mapping and studying natural and anthropomorphic 

landforms (Gamache et al., 2018). More details about the natural and anthropomorphic 

landforms in this area is discussed in Chapter 4. 

The Patagonia Ice Field is the largest ice mass in the Southern Hemisphere excluding 

Antarctica (Manquehual-Cheuque et al., 2021). The contrasting patterns of glacier 

dynamics in Patagonia are suitable for mapping and analyzing the underlying reasons for 

differing glacier movement patterns (Carrasco et al., 2002).  
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Innovative mapping with ANN can further help in the mapping of basic 

landforms to show the impact of human activities in alpine environments. This 

dissertation demonstrates multiple self-designed geospatial algorithms can be used to 

solve challenging problems in geomorphologic studies today. In addition, graph theory 

and object-oriented analysis were used to study glacier dynamics. This dissertation 

suggests that the applicability of topographic shielding is one key component to 

understand topographic control and local weather circulations. 

This dissertation consists of three manuscripts tailored for publication in various 

geoscience journals. Manuscript One is an analysis of the impact of surface change. 

Manuscript Two uses object-oriented analysis and graph theory to examine the 

contrasting patterns on supraglacial surface structure of glacial activity in the Southern 

Patagonian Icefield. And Manuscript Three integrates a new topographic index and 

artificial neural networks (ANN) for automated stratification of surface expressions to 

study geomorphology in the Western San Juan Mountains, Colorado. 
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2. TECHNIQUES FOR STUDYING SURFACE CHANGE 

Introduction 

This chapter focuses on addressing the fundamental techniques about how 

geoscientists conduct analysis of the impact of surface change today. Geospatial 

technology is developing rapidly, however, more often than not, the knowledge domain 

does not keep up with the technology advancement. This chapter updates the 

advancement of technology.   

More than half of the land surface of Earth has been “plowed, pastured, 

fertilized, irrigated, drained, fumigated, bulldozed, compacted, eroded, reconstructed, 

manured, mined, logged, or converted to new uses” (Richter and Mobley, 2009). In less 

than three centuries, 46 million acres of the virgin landscape in America have been 

converted to urban uses; and in the next 25 years that number will more than double to 

112 million acres (Carbonell and Yaro, 2005). Activities like these have far reaching 

impacts on life-sustaining processes of the near-surface environment, recently termed the 

“Critical Zone” (Richter and Mobley, 2009), and if the current rate of land 

transformation continues, it is unsustainable. 

A new geological epoch referred to as the Anthropocene has been proposed 

(Amundson et al., 2007; Aguilar et al., 2020). The Anthropocene (~250 y BP to present) 

encompasses some of the most noticeable changes in the history of surface of Earth. 

(Amundson et al., 2007).  

Driven by these myriad global changes caused by human interaction with the 

natural environment, the Critical Zone concept was conceived in 1998 to represent the 
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importance of system science in integrating the research of the four scientific spheres 

(lithosphere, hydrosphere, biosphere, and atmosphere) that interact at the surface of 

Earth, by studying the linkages, feedbacks, and processes that occurred in the past, are 

occurring today, and will operate in the future (Dawson et al., 2020).   

The Critical Zone is the area of the surface and near-surface systems that extends 

from bedrock to the atmosphere boundary layer (Anderson et al., 2010). The critical 

zone lies at the interface of the lithosphere, atmosphere, and hydrosphere (Amundson et 

al., 2007) and encompasses soils and terrestrial ecosystems. It is a complex mixture of 

air, water, biota, organic matter, and Earth materials (Brantley et al., 2007). For detailed 

analysis of the critical zone concept see Giardino and Houser (2015). Thus, the critical 

zone concept is an appropriate description of the two study locations for the dissertation. 

Numerous instruments have been designed and deployed for collecting data 

related to atmosphere, the surface of Earth, oceans, and the cryosphere (IPCC AR5, 

2014). These observational data once retrieved, can be rigorously analyzed with spatial 

statistics to predict a hazard. The National Oceanic and Atmospheric Administration 

(NOAA) has been the main driver of state-of-art remote-sensing technology for 

monitoring precipitation and clouds for long-time periods (Table 1). Radar technology 

can be used to help measure cloud-water content and microphysical features such as 

water-droplet size, ice-crystal shape and type (Germann et al., 2006). By using radar 

observations, hazards resulting from severe storms and tornados can be predicted, 

identified, and further tracked. 
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Table 1. NOAA operated Radars adopted for precipitation and cloud observations 

(NOAA). 

NOAA Precipitation and Cloud Radars 

Radar 
Waveleng

th 
Application 

NOAA/D                

(Hydro-radar) 
3.2 cm 

Precipitation, 

Snow, Storms, 

Ocean Surface 

NOAA/K               

(Cloud radar) 
8.7 mm 

Clouds, Boundary 

Layer, Ocean 

Surface 

NPCO                

(Cloud radar) 
8.7 mm 

Long-term Cloud 

Profiling 

MMCR-ARM                

(Cloud radar) 
8.7 mm 

Long-term Cloud 

Monitoring 

Ron Brown               

(Precipitation 

Radar) 

5 cm 

Ocean 

Precipitation 

Measurement 

S-PROF                

(Precipitation 

profiler) 

10 cm Precipitation 
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Artificial Intelligence 

Artificial intelligence (AI) is a knowledge-based technique that can serve as an 

alternative to traditional approaches when modeling environmental complexity is 

needed. It facilitates insight towards physical process and simulation like a bright brain 

making its most suitable processing for solving hazard-related problems. To elaborate, 

12 AI techniques exist, including: 1) artificial neural networks (ANN), 2) cellular 

automata (CA), 3) fuzzy cognitive map (FCM), 4) case-based reasoning, 5) rule-based 

systems, 6) decision tree, 7) genetic algorithms, 8) multi-agent systems, 9) swarm 

intelligence, 10) reinforcement learning, 11) hybrid systems, and 12) Bayesian networks 

(Chen et al., 2008). In this section, the focus is on the most popular three, which are 

ANN, CA, and FCM.  

Artificial Neural Network 

Artificial neural networks (ANN) are a machine-learning technique, which can 

learn relationships between specified input and output variables. Neural networks 

constitute an information processing model that stores empirical knowledge through a 

learning process and subsequently makes the stored knowledge available for future use. 

ANN can mimic a human brain to acquire knowledge from the environment through a 

learning process.  

A neuron is the fundamental processing unit in ANNs. A neuron consists of 

connection links characterized with certain weights (Figure 1). Input is passed from one 

end of the links, multiplied by the connection weight and transmitted to the summing 

junction of the neuron (Haykin, 1999). In environmental studies, ANN can facilitate the 
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modeling of cause-effect relationships such as water-quality forecasting (Palani et al., 

2008), and rainfall-runoff modeling (Hsu et al., 1995). 

In a classic ANN organization (Figure 1), neurons are simplified by a group of 

interconnected nodes. The layer of nodes that receive external information is the input 

layer. The layer that produces the result is the output layer. The layer between them are 

the hidden layers. 

 

Figure 1. An example of an artificial neural network. 

 

Cellular Automata (CA) 

CA is designed for modeling physical processes during which only a local 

neighborhood interacts (Figure 2). These processes are usually discrete in space and 

time; however, the state of each neighborhood is synchronously updated according to the 

preset rules. The spread of wildfire is a good example of such a physical process. When 

a spot is ignited, the fire propagates along a specific path. Land-cover type, wind speed 
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and direction, elevation and slope, and meteorologic conditions all are combined to 

decide the path of fire propagation, which is called the rule in CA. The state of each 

neighborhood (i.e., burned, burning and unburned) is the result of the rule and the time 

(Karafyllidis et al., 1997). 

 

Figure 2. Typical neighborhood: (a) 3-cell neighborhood, (b) 5-cell neighborhood, i.e., 

‘von Neumann neighborhood,' and (c) 9-cell neighborhood, i.e., ‘Moore neighborhood'. 

 

Fuzzy Cognitive Mapping 

Fuzzy-set theory is designed to exhibit a degree of indeterminate boundaries 

among target objects that contain members (Sui and Giardino, 1995). Fuzzy-cognitive 

maps (FCM) are fuzzy-graph structures useful for representing causal reasoning. They 

represent conceptual nodes that are connected based upon the perceived degree of 

causality between concepts (Kosko, 1986). Their graph structure allows systematic 

causal propagation, specifically forward and backward chaining, as used as allowing 

knowledge representation and analytical reasoning based upon the strength, and 
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direction of causal connections (Figure 3). FCM is an integration of ANN and Fuzzy-set 

theory. Thus, it is substantially efficient to adopt FCM to characterize complicated 

systems such as natural hazards. To date, FCM has been widely used in biomedical, 

industrial, and engineering fields (Papageorgiou, 2012; Papageorgiou and Salmeron, 

2013). In environmental studies, FCM has been applied for predicting cryovolcanism in 

Titan and evaluating aeolian stability in Texas (Furfaro et al., 2010; Houser et al., 2015). 

 

 

 

Figure 3. Typical FCM architecture. In this example, there are four nodes, which are 

connected according to the cause-effect relationship. The initial node of each arrow is 

the factor that can lead to the result at the end of the arrow. The degree of influence (-1 

to 1) can be quantified by human input. The positive sign indicates a direct causal 

relationship, whereas a negative sign indicates no direct causal relationship. 
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Mitigation 

As mentioned earlier, natural processes are the cause of substantial number of 

disasters. Hurricanes, earthquakes, tornadoes, floods, landslides and other natural 

disasters, unfortunately, cannot be foiled. Although these processes cannot be prevented, 

many opportunities exist to reduce the potential impacts on loss of life, serious injury, 

damage to the built environment, and curtailment of business operations and negative 

impact on the environment. Numerous mitigation strategies exist and can be used to 

reduce damage from hazards. In this section, a Triangular Hazard Mitigation Strategy 

(THMS; Figure 4) is presented, which is a refined version of risk management theory 

developed by Greiving et al. (2006). 

 

Figure 4. The THMS. Because pre-mitigation does not necessarily prevent a hazard, a 

dashed line is used to link pre-mitigation and emergence. 



 

15 

 

In THMS, an occurring hazard is named as an emergency. Emergency- 

mitigation is the instantaneous action that is needed following an emergency. An 

efficient emergency-mitigation requires prompt alerts for evacuation, timely and 

effective rescue, maximized damage-reduction, and transparent information-sharing with 

the public. Following emergency-mitigation, a short-term, post-mitigation action is 

applied. Thorough, post-mitigation response includes a full evaluation report of the 

emergency, explicit summary for lessons learned, applicable repair, and reconstruction, 

if necessary. The pre-mitigation stage is a long-term preparedness approach to minimize 

risk at the lowest level. Pre-mitigation activity includes purchase of insurance to cover 

financial loss, continuous monitoring, prediction modeling, and sustainable planning for 

infrastructure location, and natural resources usage. A pre-mitigation action does not 

necessarily prevent the process from becoming a hazard. 

Climatology Methods 

Overview 

Climatologists have long established various approaches for employing current 

technology for addressing climate-related issues. These approaches, however, are 

constrained by time and space. All climatology projects begin with data, so in this 

section, typical climate data are introduced, including observational data and simulation 

data. Also, statistics such as linear regression, geostatistics, Principal Component 

Analysis (PCA), Empirical Orthogonal Function (EOF), and wavelet are also addressed 

in this section. 
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Weather data 

Weather data are essential for climatologists. Acquiring data from appropriate 

sources requires a cautious approach. Types of data include observational data and 

modeling data. Observed data include in situ data, satellite, and reanalysis data. Climate 

modeling data are an excellent addition to observed data, such as GCM (general 

circulation model). 

Observational data 

In situ data are the most direct way for climate data acquisition. Many weather 

variables have constantly been measured at meteorological stations, such as 

precipitation, temperature, wind speed, wind direction, air pressure, air humidity, solar 

radiance, snow depth etc. Careful selection of instruments is fundamental for collecting 

useful data. In addition to the instrument itself, data loggers play vital roles for in situ 

data storage at remote locations. New trends for data loggers include an interconnection 

with digital sensors, real-time data uploading using telemetry with statistics and 

collecting data via the internet. 

Satellite data facilitate in situ data collection, because: 1) satellite can collect data 

for remote locations, such as very rugged, isolated terrain, and 2) satellites offer a large 

footprint for spatial coverage. Satellites have been used for climate researchers for 

decades. Examples of mainstream satellites are listed in Table 2. 

In essence, the data retrieved from the satellite are digital numbers (DN). 

Numerous algorithms have been developed to convert the DN into a more complex 
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biophysical parameter for climatological purposes. Table 3 summarizes some satellite-

derived indices that are widely used in climatology. 

 

 

 

Table 2. Six examples of satellites, ASTER, AVHRR, Landsat, MERIS, MODIS, and 

SPOT (Chen, 2015). 

Name Resolution Orbiting 

ASTER 15 m 16 days 

AVHRR 1.1 km Daily 

Landsat 30 m 16 days 

MERIS 300 m 3 days 

MODIS 1 km Daily 

SPOT 6 m 26 days 
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Table 3. Biophysical indices can be calculated from remote sensing image (Deng and 

Wu, 2012). 

Acronym Full Name Field 

NDVI Normalized Difference Vegetation Index 

Vegetation 

LAI Leaf Area Index 

SVI Simple Vegetation Index 

SAVI Soil Adjusted Vegetation Index 

PVI Perpendicular Vegetation Index 

NDWI Normalized Difference Water Index Water 

NDSI Normalized Difference Snow Index Snow 

SI Salinity Index 

Soil SINDRI 

Shortwave Infrared Normalized Difference Residue 

Index 

NDTI Normalized Difference Tillage Index 

LCA Lignin-Cellulose Absorption Index 
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Reanalysis data are a data-assimilation product used in climatological research. It 

produces climate data sets on a global scale with a time-step of 6-12 hours. During each 

time-step, approximately 8 million observations are assimilated, including ship reports, 

weather station records, satellite-data retrieval, buoy information, and radiosonde data. 

Reanalysis data can be used to produce continuous data back to 1948 (Fan et al., 2008). 

This technique has been criticized, however, for its lack of reliability, data inaccuracy, 

and observation discrepancy. Two major climate reanalysis data sources are 

NCEP/NCAR and ERA-40 (Bromwich and Fogt, 2004). 

Modelling data 

A simple climatic model can be as basic as a Lapse Rate model, which can be 

used to build the linear relationship between air temperature and elevation. More 

complicated models, however, are numerical simulations of Earth to investigate the 

consequence of the climate system as a response to different forcings, which is also 

known as a general circulation model (GCM). GCMs can be used to predict future 

climate at regional and global scales. GCMs can be applied to most climate-related 

dynamics including the atmosphere, the ocean, sea ice, land surfaces, carbon cycle, 

hydrology, aerosol, and insolation. For any GCM, three factors need to be considered: 1) 

spatial resolution, 2) temporal resolution, and 3) level of complexity. These three factors 

altogether influence the model accuracy and computing cost. Most GCMs facilitate 

temporal and spatial downscaling capacities for specific research needs (Leung, 2006).  

GCMs are numerical modeling of nature, and one must evaluate the existing 

accuracy of a model to improve them, which is crucial in climatological research. 
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Scientists have been collectively working to ensure the compatibility of a model. The 

undergoing Coupled Model Intercomparison Project Phase (CMIP) is a comprehensive 

collaboration framework for advancing the scientific understanding of climate system 

(Li et al., 2021). The CMIP has undergone five different phases since 1995, and the 

current phase is 6 (i.e., CMIP6). The CMIP has focused the research agenda as: 1) 

investigating climate responses to forcings, 2) evaluating model uncertainties, and 3) 

assessing future climate change. The progress of CMIP5 has been explicitly documented 

in the Fifth Assessment Report (AR5) of IPCC (Intergovernmental Panel on Climate 

Change). 

Data Sources and Collaborations 

Geoscientists collecting data for climate-change impact analysis need to consider 

the following factors: 1) grant-writing for financial support, 2) instrument purchase and 

calibration, 3) making fieldtrip plans, 4) transportation and lodging, 5) sampling 

strategy, 6) placement of in-field instrumentst, 7) raw-data assessment, 8) data transfer 

and storage, and 9) field -work safety. High-quality field work can be time consuming, 

laborious, and expensive. Thus, use of a reliable climate-data sharing platform will 

substantially reduce individual output. Major online climate-data sources are listed in 

Table 4. In addition, these sources are free and can be downloaded via the internet. 

The analysis of the impact of climate-change requires collaborations at all 

societal, academic, and governmental levels. Non-profitable organizations exist to help 

scientists and geoscientists. As addressed previously, IPCC is a good example of global 

collaboration for solving issues related to climate-change. Additional organizations 
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include the American Geophysical Union (AGU), the American Meteorological Society 

(AMS), the American Association of Geographers (AAG), the Geological Society of 

America (GSA), and the World Meteorological Organization (WMO) to mention a few. 

Governmental agencies also play vital roles in building bridges between climate 

data and user interfaces, such as the National Aeronautics and Space Administration 

(NASA), the United States Environmental Protection Agency (US EPA), the United 

States Geological Survey (USGS), the United Nations Development Programme 

(UNDP), the United Nations Educational, and the Scientific and Cultural Organization 

(UNESC). 
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Table 4. Online climate-data sources (Camarillo-Naranjo et al., 2019). 

Name Manager Data 

PRISM Oregon University 
High-resolution 

climate data 

DAYMET Oak Ridge National Laboratory Daily climate data 

NCEI 
NOAA-National Centers for 

Environmental Information 

Historical weather 

data 

ESRL 
NOAA-Earth System Research 

Laboratory 

Climate Reanalysis 

data 

CPC NOAA-Climate Prediction Center 
Climate predictions 

and teleconnections 

GES 

DISC 

NASA-Goddard Earth Sciences Data 

and Information Services Center 

Observed climate data 

from space 

TRMM NASA-Goddard Space Flight Center 

Observed 

precipitation in low 

latitude 

NSIDC National Snow & Ice Data Center Snow and Ice data 

USGS U.S. Geological Survey Runoff, discharge data 

NRCS National Water & Climate Center Runoff, discharge data 

IPCC 
Intergovernmental Panel on Climate 

Change-Data Distribution Centre 
GCM data 
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Missing data 

Filling temporal data gaps 

Time-series data retrieved from field locations are episodic in nature. Thus, 

missing data are common encounters in climatic research. For instance, datasets on river 

discharge retrieved from the United States Geological Survey (USGS) may include data 

gaps as the result of instrument malfunction or human misoperation. Understanding the 

missing mechanism is important for handling missing data so that the correct 

replacement method is used. If the missing data occur randomly, common methods such 

as multiple regression, expectation maximization, and regression trees can be used in 

estimating missing values (Kim et al., 2009; Schneider, 2000). If the missing data 

occurrence is conditioned on a deterministic event that affects the data values, such as a 

flood, however, the method of estimation of missing values is more complicated (Little 

et al., 2002).  

Filling gaps in spatial data  

Biophysical variables, such as surface temperature, exhibit a continuous surface gradient 

in reality. Field sampling, however, cannot adequately record every location because of 

limited time and funding. A subset of samples in the form of points can be measured. To 

fill the spatial gaps or unsampled area, different interpolation methods have been widely 

adopted in climate research. These methods differ from three perspectives: 1) the 

mathematic function adopted, 2) the distance and weight being considered, and 3) the 

number of samples being taken into account. Five typical interpolation approaches are: 

1) Nearest Neighborhood interpolation, 2) Fixed Radius (i.e., local averaging), 3) 
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inverse-distance-weighted (IDW) interpolation, 4) Splines interpolation, and 5) Kriging 

(Jeffrey et al., 2001). Kriging is also a good geostatistical method for characterizing 

scale-related issues, which is detailed in following section. 

Statistics in Climatology 

Weather variables can exhibit collinearity (Carleton, 1999). To employ this type 

of approach requires specific statistical skills to extract the spatial structure underlying 

each climate phenomenon. In this section, the basic concepts of linear regression, 

geostatistics, and data reduction methods (PCA, EOF) and spectral analysis (wavelet) are 

discussed. 

Linear Regression Analysis and Significance Test 

In climatology, linear regression is used for modeling the relationship between 

the dependent variable Y and various independent variable(s) X(s). If only one 

independent variable exists, it is a simple linear regression. Otherwise, it is multiple-

linear regression. One must understand that it is different from multivariate linear 

regression in which a set of correlated dependent variables (Ys) are predicted. In this 

section, the focus is placed on simple and multiple linear regressions. 

Linear regression has two major applications in climatology: 1) modeling for 

prediction purpose, and 2) examining correlations among X(s) and Y. For the first 

application, a fitting function can serve well as a prediction model for linking different 

climate variables. For instance, the Lapse Rate model is a simple linear regression model 

for predicting air temperature based upon elevation and altitude. For the second 

application, Pearson-correlation coefficient is the statistical criteria for the degree of 
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dependence between X and Y. The coefficient ranges from -1 to +1, where -1 is a totally 

negative linear relationship, +1 is a totally positive linear relationship, and 0 shows no 

linear relationship. In climatology, a significance test is typically followed by correlation 

analysis, because the correlation relationship could be real in nature or could be just a 

statistical artifact. Over-emphasis on p-values and significant levels, however, could 

mislead the result of a climate study (Marden, 2000; Ziliak and McCloskey, 2008; 

Ambaum, 2010; Ling and Mahadevan, 2013). 

Geostatistics 

Geostatistics are suitable for characterizing spatial variations of weather 

phenomena. Kriging is one of the geostatistical methods that can quantify the spatial 

dependence of natural resources. Matheron (1971) first proposed the theory of 

geostatistics, and Curran (1988) further expanded the theory into remote-sensing studies. 

As mentioned previously, Kriging is an interpolation method.   It is distinct from other 

interpolation methods, however, because the core of Kriging is a statistical model that 

adopts spatial autocorrelations, by which spatial structure can be first computed based 

upon available samples, and new predictions can be made after. Kriging also provides 

cross-validation capacity to evaluate interpolation accuracy (Krige, 1951). 

Spatial autocorrelation is a criterion for examining the statistical relationship 

among observations. The distance between a pair of sampling points and the direction 

linking these samples are two major factors that must be considered when computing 

spatial autocorrelation. A semi-variogram summarizes spatial autocorrelation with the x-
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axis as distance and y-axis as semivariance. Semivariance can be calculated with the 

following function: 

 γ(h) =
1

2n(h)
∑ [Z(i) − Z(i + h)]
n(h)
i=1  (1) 

where, semi-variance is γ(h), n(h) is the number of paired sampling points at distance h, 

and Z(i) is the surface value at location i. The complete set of sampling pairs is used to 

generate a semi-variogram (Longley et al., 2004). 

Figure 5. is a classic semi-variogram, in which closer distance exhibits smaller 

semi-variance whereas longer distance exhibits larger semi-variance. Such a pattern 

suggests that features closer are more likely to be similar, and that is Tobler’s First Law 

of Geography (Joo et al., 2017). Thus, a semi-variogram can serve as an excellent tool 

for investigating scale dependence and spatial variability in climatology (Burrough, 

1983). 
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Figure 5. A traditional semi-variogram (Silveira et al., 2018). 

Another benefit of the semi-variogram is that it can be used to help determine the 

best sampling interval when developing strategies for data collection in the field. As 

shown in Figure 8., a range-distance is a distance where semi-variance approaches flat. It 

means as distance increases, semi-variance increases; however, spatial autocorrelation 

decreases until no spatial autocorrelation exists beyond that range. Thus, a range is the 

maximum distance that a sampling interval can be used in the field to capture every 

spatial variability because within the range, one point can be representative of every 

location if they are spatially autocorrelated (Chiles and Delfiner, 1999; Cressie, 1993). 
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PCA (EOF) and Wavelet Analysis 

Principle Component Analysis (PCA) is a data reduction method used in 

climatology. PCA is a technique that can transform an original dataset with potentially 

correlated variables into a new dataset with linearly uncorrelated variables (Bretherton et 

al., 1992). This type of orthogonal transformation can significantly reduce data 

dimensionality because: 1) the number of new variables is less than or equal to the 

previous number of variables, 2) the first principal component carries the maximum 

variance of the original dataset, and 3) all the following principal components carry most 

variance for the remaining principal components. As a result of the mathematical nature 

of PCA, it has been widely used for exacting spatial patterns of weather variables at 

different scales. Empirical Orthogonal Function (EOF) is an extreme case of PCA 

because EOF is a PCA when applied to time-series data. Thus, EOF is suitable for 

processing weather data (Lauren, 1956; Thuiller, 2004). 

In recent decades, spectral analysis such as wavelet has been used in numerous 

applications, such as harmonic analysis, numerical analysis, signal and image 

processing, nonlinear dynamics, fractal analysis, etc. The wavelet transform is very 

popular in dealing with time-frequency, orthogonality, and scale-space analysis 

(Foufoula-Georgiou and Kumar, 1994). The essence of wavelet analysis is to transform 

an array of numbers at a certain dimension from the original digits into an array of 

wavelet coefficients. A wavelet coefficient informs the correlation between a wavelet 

function of a certain size and data (Daubechies, 1992). In recent years, wavelet analysis 

has been employed as a tool for analyzing the power spectra of time-series data in 
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climatology (Torrence and Compo, 1997). This analysis can help researchers capture 

regional and overall views of the match between a wavelet function and target data by 

changing the size of wavelet function and shifting the wavelet, which is called 

localization (Hubbard, 1998).  

The variability of a one-dimensional data array can be represented in the form of 

a two-dimensional plot showing the variability of amplitude at different scales and how 

the amplitude is changing at different time frequencies (Lau and Weng, 1995; Torrence 

and Compo, 1997). For instance, a wavelet analysis can be applied to a precipitation 

dataset to reveal the periodicity of the high-frequency event such as rain during monsoon 

seasons. 

 

Geomorphometry: The Best Approach for Impact Analysis 

Overview 

Geomorphometry is a numerical representation of topography, which integrates 

various disciplines: i.e., mathematics, Earth science, engineering, and computer science 

(Pike, 1995). Human beings interact with the surface of Earth every day, so to depict a 

landform in a qualitative manner is not a big challenge per se. It becomes a major 

obstacle for individuals, however, who lack the domain knowledge to delineate land 

surface quantitatively, or even complex when one attempts to characterize a complicated 

Earth-surface processes, such as erosion and deposition. Geomorphometry is the best 

approach to overcome such obstacles (Franklin, 2020). 
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Geomorphometry can help in the understanding of natural processes associated 

with the surface of Earth, and also it can help support technological needs of society 

(Pike, 1995). For instance, geomorphometry can help in extracting some underlying 

information from various fields of study, such as geology, hydrology, and climatology. 

The extracted information can further be applied in evaluating natural hazards and 

conserving natural resources. On a societal level, geomorphometry can be used in 

engineering, transportation, public works, and military operations. 

Naturally, the next question is how is a surface categorized in a 

“GEOMORPHOMETRICAL” manner? Traditionally, six factors that contribute to the 

topographic existence: 1) elevation, 2) terrain surface-shape, 3) topographic position, 4) 

topographic context, 5) spatial scale, and 6) landform (object type). The first four factors 

can be parameterized whereas the last two can be analyzed (Deng, 2007).  

As technology advances, especially the advent of GIS and remote sensing, it 

significantly accelerates the capacities of calculating the aforementioned factors 

(Goodchild, 1992). Numerous commercial software that can be used in the field of 

geomorphometry have unique analytical functionality as well as modularity. It is 

especially common that different software adapts different algorithm even when 

calculating one single parameter, e.g., slope or aspect. Thus, it is important to first assess 

the software before using a specific one.  

Geomorphometry research and applications 

Many applications of geomorphometry exist and include, for example, 

optimizing crop yields, measuring runway roughness, mapping types of sea-floor terrain, 
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guiding missiles, assessing soil erosion, analyzing wildfire propagation, mapping 

ecological regions, and modeling climatic changes. (Pike, 1995). Geomorphometry is 

especially effective when combined with remote sensing and GIS. Remote sensing can 

provide raw data to GIS, and various GIS functions have been developed to aid in the 

interpretation of remote sensing data. Thus, it is difficult to separate remote sensing from 

GIS in an analytical study (Sofia, 2020). 

In geomorphometry, remote sensing normally means collecting information from 

aerial platforms, such as airplanes, Unmanned Aerial Vehicle (UAV) and satellites. Even 

though remote sensing cannot replace traditional geomorphic field observations, it has 

become fundamental to use remote sensing because it offers a synoptic overview of a 

study area (Eichel et al., 2020). 

In the early days of geomorphic research, besides in situ study, geomorphologists 

primarily interpreted phenomena qualitatively from remotely sensed images. 

Quantitative methods are readily used in geomorphometry today. One significant 

advantage of using remote sensing in geomorphometry is that it facilitates access to data 

that are inaccessible via in situ observations. A significant advantage of remote sensing 

is in the recording of information chronologically. Aerial photography records date back 

to the 1920s. The first Earth Resources Satellite, i.e., Landsat-1 was launched in 1972 

(Jensen, 2005). 

To conduct successful geomorphometry research using remote-sensing imagery, 

the spatial, temporal, and spectral resolution need to be carefully scrutinized. The spatial 

resolution is the smallest cell size of IFOV (instantaneous field of view), which is 
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closely related to the concept of scale-dependency. Temporal resolution defines the 

frequency of retrieving images from the same site. Spectral resolution tells the spectral 

characteristics the channels used by the sensor (Ramsey, 2020). 

A 3D view of the landscape can be rendered with the help of remote-sensed 

images, which significantly enhances the interpretability of land surfaces (Widodo, 

2021). Stereoscopic measurements can be used to generate topographic maps or digital 

representations of topography (i.e., DEM).  

Currently Synthetic Aperture Radar (SAR) and Light Detection and Ranging 

(LiDAR) are two popular technologies used in geomorphometry. SAR is valuable 

because it can penetrate dry materials, such as sand or dry snow. LiDAR has many 

merits in delineating land-surface details (Feciskanin and Minár, 2021). 

Software Package Evaluation      

At present, numerous software packages that can be used to conduct 

geomorphometric research. In this chapter, thirteen are examined. These software 

packages can be further classified into four categories, i.e., digital image processing 

software, GIS systems, hydrology software, and geomorphometry software.  

Eighteen criteria were assessed, and the evaluations are summarized in Table 5-9. 

Each criterion is further ranked as Strong (S), Weak (W), or Null (N). The current url for 

each software package is listed in Table 10. 

In general, ArcGIS®, ENVI®, Erdas Imagine®, GRASS®, and IDRISI® are the top 

five software packages that are standard for geomorphometric research. Based on 

evaluation, the ranks for geomorphometric capacity are as follows (from high to low): 
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GRASS®, Erdas Imagine®, ENVI®, ArcGIS®, IDRISI®. Other software packages have 

many disadvantages at some point. Some uniqueness of these software packages is listed 

in Table 11. 

Table 5. Evaluation on Lidar input, GPS tracks, Spatial Analysis and Spatial 

Interpolation. Strong (S), Weak (W), or Null (N). 

Software 

Name 
Category 

LiDAR 

Input 

GPS 

Tracks 

Spatial 

Analysis 

Spatial 

Interpolation 

ENVI® Digital  

Image  

Processing 

S S S W 

Erdas 

Imagine® S S S S 

ER mapper® N S W N 

Arc GIS® 

Geographic 

Information 

Systems 

S S S S 

GRASS® S S S S 

SAGA® S S S S 

IDRISI® W S S S 

ILWIS® S S S S 

PC-Raster® N W S S 

TAS® Hydrology S S S S 

Surfer® 

Geomorphometry 

Systems 

N S S N 

Landserf® N S S N 

MicroDEM® S N N N 
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Table 6. Evaluation on Geostatistics, Image filters, and Image transformation (e.g., 

PCA). Strong (S), Weak (W), or Null (N). 

Software 

Name 

Category Geo-

statisics 

Image 

Filters 

Image 

Transformation 

(e.g., PCA) 

Spatial 

Modeling 

ENVI® Digital  

Image  

Processing 

W S S N 

Erdas 

Imagine® S S S S 

ER mapper® N S S N 

Arc GIS® 

Geographic 

Information 

Systems 

S W W S 

GRASS® S S S S 

SAGA® S S N N 

IDRISI® S S S S 

ILWIS® S W S N 

PC-Raster® S N N S 

TAS® Hydrology S S W W 

Surfer® 

Geomorphometry 

Systems 

S N N N 

Landserf® S N N N 

MicroDEM® N N N N 
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Table 7. Evaluation on Image enhancement, Geodatabase, Classification, and 

Segmentation. Strong (S), Weak (W), or Null (N). 

Software 

Name 
Category 

Image 

Enhancement 

Geo-

database Classification Segmentation 

ENVI® Digital  

Image  

Processing 

S W S S 

Erdas 

Imagine® S S S S 

ER mapper® S N S N 

Arc GIS® 

Geographic 

Information 

Systems 

W S W N 

GRASS® S S S S 

SAGA® N W W N 

IDRISI® S S S S 

ILWIS® S W S N 

PC-Raster® W W W N 

TAS® Hydrology S W W N 

Surfer® 

Geomorphometry 

Systems 

N N N N 

Landserf® N N W W 

MicroDEM® N N N N 
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Table 8. Evaluation on Pattern recognition, Terrain analysis, and Raster analysis. Strong 

(S), Weak (W), or Null (N). 

Software 

Name 
Category 

Pattern 

Recognition 

Terrain 

Analysis 

Raster 

Analysis 

ENVI® Digital  

Image  

Processing 

W S S 

Erdas 

Imagine® S W S 

ER mapper® N W W 

Arc GIS® 

Geographic 

Information 

Systems 

N S W 

GRASS® S S S 

SAGA® N W S 

IDRISI® W S S 

ILWIS® N S S 

PC-Raster® N W S 

TAS® Hydrology N W S 

Surfer® 

Geomorphometry 

Systems 

N S N 

Landserf® N S S 

MicroDEM® N S N 
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Table 9. Evaluation on Vector analysis, 3D visualization, Scripting functionality, and 

Batch processing. Strong (S), Weak (W), or Null (N). 

Software 

Name 
Category 

Vector 

Analysis 

3D-

visualization 

Scripting 

Functionality 

Batch 

Processing 

ENVI® Digital  

Image  

Processing 

N S S S 

Erdas 

Imagine® S S S S 

ER mapper® W S W W 

Arc GIS® 

Geographic 

Information 

Systems 

S S S S 

GRASS® S S S S 

SAGA® S S S W 

IDRISI® W S N N 

ILWIS® S S W N 

PC-Raster® N N S N 

TAS® Hydrology W W N N 

Surfer® 

Geomorphometry 

Systems 

N S S S 

Landserf® W S S S 

MicroDEM® N S N N 
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Table 10. Url for each software package. 

Software Name Link 

ENVI® http://www.harrisgeospatial.com/Home.aspx  

Erdas Imagine® http://www.hexagongeospatial.com  

ER Mapper® http://www.hexagongeospatial.com  

Arc GIS® http://www.esri.com/  

GRASS® https://grass.osgeo.org/ 

SAGA® http://www.saga-gis.org/en/index.html 

IDRISI® https://clarklabs.org/ 

ILWIS® http://www.ilwis.org/  

PC-Raster® http://pcraster.geo.uu.nl/  

TAS® https://www.tradeareasystems.com/products/tas-analyst 

Surfer® http://www.goldensoftware.com/products/surfer 

Landserf® http://www.landserf.org/  

MicroDEM® https://www.usna.edu/Users/oceano/pguth/website/microdem/microdem.htm  

 

 

 

 

 

 

http://www.harrisgeospatial.com/Home.aspx
http://www.hexagongeospatial.com/
http://www.hexagongeospatial.com/
http://www.esri.com/
https://grass.osgeo.org/
http://www.saga-gis.org/en/index.html
https://clarklabs.org/
http://www.ilwis.org/
http://pcraster.geo.uu.nl/
https://www.tradeareasystems.com/products/tas-analyst
http://www.goldensoftware.com/products/surfer
http://www.landserf.org/
https://www.usna.edu/Users/oceano/pguth/website/microdem/microdem.htm
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Table 11. Uniqueness of some software packages. 

 

Characterization of Rivers Basins in the San Juan Mountains, Colorado 

Background 

Alpine streams are a vital source of water for human settlements in mountain 

terrain, and potential hazards associated with spring melt and intense runoff from 

summer convective storms. Thus, the identification and characterization of alpine river 

basins is crucial for the optimization of potable water resources, as well as minimizing 

floods. Second- and third-order drainage basins are an integral part of the 

geomorphology of the San Juan Mountains (Figure 6; Strahler, 1952). With an increase 

in year-round residents and greater influx of tourists to the region, however, a need 

Software 

Name 
Uniqueness 

SAGA® This software has fractal dimension analysis module and pattern analysis module. 

IDRISI® It offers a triangular wavelet analysis function and trend analysis of time series images. 

TAS® It is highly dependent upon ArcGIS input. 

Surfer® It is very powerful of 3D visualization. 

Landserf® 
This is very powerful of generating geomorphometric parameters. Fractal dimensions 

and multi-scale topographic parameters can be calculated from it. 

MicroDEM® 
It can offer a way to visual 3D images in time series, and it also provide a dynamic 

recording of 3D images. 
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exists to improve the management of water resources and to minimize flood hazards in 

the San Juan Mountains (Nardini et al., 2020). 

Global change can dramatically impact alpine water resources by changing 

precipitation patterns and amount of precipitation as wells as warmer winter and summer 

temperatures. Temperature changes can promote higher rates of evaporation in summer 

months and changes in the type of precipitation from snow to rain. Seasonal change can 

also occur. The beginning of the winter precipitation season can be pushed to late fall or 

even mid-winter. And the beginning of spring melt season can be delayed by several 

weeks to a month. 

 

Figure 6. The Strahler stream order system. Second- and third-order drainage basins are 

an integral part of the geomorphology of the San Juan Mountains. 
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All the previously mentioned changes impact surface in groundwater resources. 

To analyze and understand the surface change on water resource requires study of the 

linkage between atmospheric processes and geomorphology of a drainage basin. Thus, 

this section demonstrates the use of a new time and cost of time and cost-effective 

technique to determine surface roughness. Surface roughness is a major basin-wide 

threshold, which serves as an indicator of precipitation as well as a controller of drainage 

pattern development and rate of runoff.   

In the San Juan Mountains, streams represent regional topography and local 

surface roughness. The study area encompasses the Ironton, Ophir, Ouray, Silverton, and 

Telluride USGS Quadrangles in Southwestern Colorado, covering an area of 805 Km2 

(Figure 7). 

I have developed a geospatial approach that implements a geomorphometric 

index to efficiently delineate river basins in mountain terrains. To accomplish this Fast 

Fourier Transformation (FFT) analysis is employed to confirm that no scale dependence 

for the regional topography exists. And, to supplement the FFT, a new topographical-

classification approach that addresses surface roughness to better understand 

hydrological controls in the study area, was created. Lithology was coupled with the 

topographical-classification map. Additionally, divergence and convergence indices 

were developed based on water flow to improve the existing river-channel extraction 

algorithm. This new method is cost-effective and speeds up delineating river basins in 

mountain terrains to better manage water resources and prepare hazard mitigation plans. 
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Figure 7. The topographic map the study area in San Juan Mountains. The San Juan has 

rugged topography dominated by ridges and valleys. 

 

Scale Characterization 

The 2-D Discrete Fourier Transformation (DFT) can benefit the field of digital 

image processing with respect to image enhancement, image restoration, data 

compression, data fusion, and other applications (Cooley et al., 1969; Anuta, 1970). DFT 
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transforms the information from an original image with spatial domain to frequency 

domain. Thus, it can aid in revealing information hidden in frequency domains, such as 

periodicity, orientation, and scale (Gonzalez et al., 2009). A Fast Fourier Transformation 

(FFT) algorithm is the implementation of DFT in reality and can be applied by a couple 

of software packages (e.g., ENVI) and several programing languages (e.g., MATLAB®, 

IDL® and Python®). 

To examine the scale-dependence issues in the San Juan Mountains, I developed 

a protocol to adopt FFT techniques and image filter technique. The steps in the protocol 

are as follows: a DEM of 10-meter spatial resolution of the study area (Figure 8a) is first 

converted into Fourier spectrum then centered and enhanced by a log transformation 

(Figure 8b). To check the scale regarding orientation, a wedge-based filter with 5-degree 

interval (Figure 8c) is applied to the FFT image. To check scale regarding distance, a 

ring-based filter with a 5-pixel interval (i.e., 50 m; Figure 8d) is also applied to the FFT 

image. 
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Figure 8. a) The DEM of the study area with 10-meter spatial resolution. b) The FFT 

image based on the DEM. A log transformation is applied for image enhancement. c) A 

wedge-based filter is applied to the FFT image. The interval is every 5 degrees. d) A 

ring-based filter is applied to the FFT image. The interval is every fifth pixels.  

 

Within each filter segment (i.e., wedge and ring), FFT intensity is first summed 

and then averaged by a count of pixels in each segment. The final statistics are plotted as 
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shown in Figure 9. Figure 9a illustrates no strong dependence based on surface 

orientation. Figure 9b illustrates that a strong scale dependence of 70 meters is evident. 

 

Figure 9. a) The average magnitude within each wedge segment. b) The average 

magnitude within each ring segment. 

 

Terrain Analysis 

Pennock et al. (1987) and Pennock (2003) have proposed a classification regime 

based on landform shapes, which Giardino (1971) developed, including divergent 

shoulder, convergent shoulder, divergent backslope, convergent backslope, divergent 

footslope, convergent footslope, and level (Figure 10). In Figure 10, A shows a slope 

that is flat and straight; B represents a slope that is convex in plain view and convex in 

elevation; C shows a slope that is convex in plain view and concave in elevation; D 

shows a slope that is convex in plain view and concave in elevation; E shows a slope that 

is concave in plain view and concave in elevation; F shows a slope that is concave in 

plain view and straight in elevation; and G shows a slope that is concave in plain view 
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and convex in elevation. The arrows on each diagram show potential flow pathways for 

water down the slopes. 

I adopted this algorithm to reclassify the DEM of the San Juan Mountains. The 

result shows a unique spatial pattern of different landforms in the San Juan Mountains, 

which has not been applied in other research (Figure 11). Surface roughness can 

facilitate evaluating rates of surface erosion, understanding drainage development and 

runoff pathways, and extracting geomorphic features (Hengl and Reauter, 2009; 

Florinsky, 2012). Hobson (1972) introduced the surface roughness factor (SRF) by 

incorporating slope and aspect of a local terrain. Hobson method was used to compute 

the surface roughness ratio over the San Juan Mountains (Figure 12). I then integrated 

landform, surface roughness, geomorphology, terrain convexity/concavity and lithology 

to assess the rate of erosion across the western San Juan Mountains. 
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Figure 10. Illustration of original classification based on landform (Giardino, 1971). 
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Figure 11. It shows the six slope categories (A-G) used to classify slopes in the San Juan 

Mountains. 
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Figure 12. Surface roughness in the San Juan Mountains based on the Hobson (1972) 

method. 

 

Extraction of River channels based on new topographic index 

Geomorphometry offers the efficiency and flexibility for developing new 

algorithms for impact analysis. This case study illustrates how I developed the 

topographic index for delineating the directions of river flow. This algorithm can be seen 

in Figure 13. Figure 13 shows the potential pathway for water flow from one pixel to an 

adjacent pixel. For each pixel, if water flows towards all eight neighboring pixels, this 
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pixel is classified as divergent. In contrast, if water flows into the center pixel from all 

eight neighboring pixels, this pixel is classified as convergent (Claps et al., 1994). 

Divergence and convergence images are computed based on this theory (Figure 14.) 

Divergent features, such as mountain ridges, are highlighted in the divergent image 

(Figure 14a). Convergent features, such as a river channel, are highlighted in the 

convergent image (Figure 14b). 

 

 

Figure 13. Illustration of the convergence and divergence concepts. a) Divergence, b) 

Level, c) Convergence. 
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Figure 14. a) The divergence index image, showing mountain ridges as highlighted. b) 

The convergent index image, showing drainage channels, as highlighted.  

 

To extract river channels from convergence images, two methods are tested and 

compared in this study, including a thresholding method and a fuzzy classification 

method. Because a divergence image is normalized between 0 to 1 (Figure 14b), based 

on the histogram, it is reasonable to establish several thresholds, which can separate a 

river channel from other low-intensity features. In this research, values at 0.8, 0.7, 0.6, 

0.5, and 0.4 were established. 

The thresholding method is a typical hard-classification rule to discriminate 

different classes. This rule omits that in reality only one transition exists between one 

class and another (Jensen, 2005). Fuzzy-set theory, however, can compensate the 

omission because of its strong capacity of dealing with imprecise data (Zadeh, 1965; 
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Wang, 1990). To apply a fuzzy classification, a fuzzy-membership function needs to be 

selected first. In this research, I adopted an exponential decay function for fuzzy 

classification (Figure 15). The classification results are shown in Figure 16 and Figure 

17. By comparison, fuzzy classification approach is more reliable than the thresholding 

approach. 

 

Figure 15. The exponential decay function used in fuzzy classification. Note the power 

of the function can dramatically alter the results of the classification. 
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Figure 16. The results from the thresholding method at values of a) 0.8. b) 0.7. c) 0.6. d) 

0.5. e) 0.4, respectively. 
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Figure 17. The results from the fuzzy classification at powers of a) 50. b) 25. c) 10. d) 5. 

e) 1, respectively. 

Discussion 

FFT is effective tools for characterizing scale dependence issues in mountainous 

settings. This case study shows the dominate scale in the San Juan Mountains is 70 m, 

and no strong scale associated with orientation exists. Landform classification and 

surface roughness can help better understand the geomorphology. Convergence index is 

a valuable resource for delineate drainage channels, and ongoing research is using 

rigorous statistics analysis can be used to validate the erosion rate in the San Juan 

Mountains. Drainage channel stratification can be implemented using topology and 

automation. 
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Comparison of the images in Figure 17 with Google Earth image at a scale of 

1:2400 shows that it is possible to detect second order and larger streams. Unfortunately, 

with a DEM resolution of 10 m the detection of first order is not doable. 

  



 

56 

 

REFERENCES CITED 

Aguilar, R.G., Owens, R. and Giardino, J.R., 2020. The expanding role of 

anthropogeomorphology in critical zone studies in the 

Anthropocene. Geomorphology, 366, p.107165. 

 

Amundson, R., Richter, D.D., Humphreys, G.S., Jobbágy, E.G. and Gaillardet, J., 2007. 

Coupling between biota and earth materials in the critical zone. Elements, 3(5), pp.327-

332. 

 

Ambaum, M.H., 2010. Significance tests in climate science. Journal of Climate, 23(22), 

pp.5927-5932. 

 

Anderson, R.S., Anderson, S., Aufdenkampe, A.K., Bales, R., Brantley, S., Chorover, J., 

Duffy, C.J., Scatena, F.N., Sparks, D.L., Troch, P.A. and Yoo, K., 2010. Future 

directions for critical zone observatory (CZO) science. CZO Community, 29. 

 

Anuta, P.E., 1970. Spatial registration of multispectral and multitemporal digital imagery 

using fast Fourier transform techniques. IEEE transactions on Geoscience 

Electronics, 8(4), pp.353-368. 

 

Brantley, S.L., Goldhaber, M.B. and Ragnarsdottir, K.V., 2007. Crossing disciplines and 

scales to understand the critical zone. Elements, 3(5), pp.307-314. 

 

Bretherton, C.S., Smith, C. and Wallace, J.M., 1992. An intercomparison of methods for 

finding coupled patterns in climate data. Journal of climate, 5(6), pp.541-560. 

 

Bromwich, D.H. and Fogt, R.L., 2004. Strong trends in the skill of the ERA-40 and 

NCEP–NCAR reanalyses in the high and midlatitudes of the Southern Hemisphere, 

1958–2001. Journal of Climate, 17(23), pp.4603-4619. 

 

Burrough, P.A., 1996. Opportunities and limitations of GIS‐based modeling of solute 

transport at the regional scale. Applications of GIS to the Modeling of Non‐point Source 

Pollutants in the Vadose Zone, 48, pp.19-38. 

 

Camarillo-Naranjo, J.M., Álvarez-Francoso, J.I., Limones-Rodríguez, N., Pita-López, 

M.F. and Aguilar-Alba, M., 2019. The global climate monitor system: from climate 

data-handling to knowledge dissemination. International Journal of Digital Earth, 12(4), 

pp.394-414. 

 

Carbonell, A. and Yaro, R.D., 2005. American spatial development and the new 

megalopolis. Land Lines, 17(2), pp.1-4. 

 

Carleton, A.M., 1999. Methodology in climatology. 



 

57 

 

Chen, S.H., Jakeman, A.J. and Norton, J.P., 2008. Artificial intelligence techniques: an 

introduction to their use for modelling environmental systems. Mathematics and 

computers in simulation, 78(2-3), pp.379-400. 

 

Chen, B., Huang, B. and Xu, B., 2015. Comparison of spatiotemporal fusion models: A 

review. Remote Sensing, 7(2), pp.1798-1835. 

 

Chiles, J.P. and Delfiner, P., 1999. Modeling spatial uncertainty. Geostatistics, Wiley 

series in probability and statistics. 

 

Claps, P., Fiorentino, M. and Oliveto, G., 1996. Informational entropy of fractal river 

networks. Journal of Hydrology, 187(1-2), pp.145-156. 

 

Cooley, J.W., Lewis, P.A. and Welch, P.D., 1969. The fast Fourier transform and its 

applications. IEEE Transactions on Education, 12(1), pp.27-34. 

Cressie, N., 1993. Statistics for spatial data. New York. 

 

Curran, P.J., 1988. The semivariogram in remote sensing: an introduction. Remote 

sensing of Environment, 24(3), pp.493-507. 

 

Daubechies, I., 1992. Ten lectures on wavelets. Society for industrial and applied 

mathematics. 

 

Dawson, T.E., Hahm, W.J. and Crutchfield‐Peters, K., 2020. Digging deeper: what the 

critical zone perspective adds to the study of plant ecophysiology. New 

Phytologist, 226(3), pp.666-671. 

 

Deng, C. and Wu, C., 2012. BCI: A biophysical composition index for remote sensing of 

urban environments. Remote Sensing of Environment, 127, pp.247-259. 

 

Eichel, J., Draebing, D., Kattenborn, T., Senn, J.A., Klingbeil, L., Wieland, M. and 

Heinz, E., 2020. Unmanned aerial vehicle‐based mapping of turf‐banked solifluction 

lobe movement and its relation to material, geomorphometric, thermal and vegetation 

properties. Permafrost and Periglacial Processes, 31(1), pp.97-109. 

 

Fan, Y. and Van den Dool, H., 2008. A global monthly land surface air temperature 

analysis for 1948–present. Journal of Geophysical Research: Atmospheres, 113(D1). 

 

Feciskanin, R. and Minár, J., 2021. Polygonal simplification and its use in DEM 

generalization for land surface segmentation. Transactions in GIS. 

 

Florinsky, I., 2016. Digital terrain analysis in soil science and geology. Academic Press. 

 



 

58 

 

Franklin, S.E., 2020. Interpretation and use of geomorphometry in remote sensing: a 

guide and review of integrated applications. International Journal of Remote 

Sensing, 41(19), pp.7700-7733. 

 

Furfaro, R., Kargel, J.S., Lunine, J.I., Fink, W. and Bishop, M.P., 2010. Identification of 

cryovolcanism on Titan using fuzzy cognitive maps. Planetary and Space 

Science, 58(5), pp.761-779. 

 

Germann, U., Galli, G., Boscacci, M. and Bolliger, M., 2006. Radar precipitation 

measurement in a mountainous region. Quarterly Journal of the Royal Meteorological 

Society: A journal of the atmospheric sciences, applied meteorology and physical 

oceanography, 132(618), pp.1669-1692. 

 

Giardino, J.R., 1971. A comparative analysis of slope characteristics for the Colorado 

Plateau (Master thesis, Arizona State University). 

 

Goodchild, M.F., 1992. Geographical information science. International journal of 

geographical information systems, 6(1), pp.31-45. 

 

Greiving, S., Fleischhauer, M. and Wanczura, S., 2006. Management of natural hazards 

in Europe: The role of spatial planning in selected EU member states. Journal of 

environmental planning and management, 49(5), pp.739-757. 

 

Haykin, S., 1999. Self-organizing maps. Neural networks-A comprehensive foundation, 

2nd edition, Prentice-Hall. 

 

Hengl, T. and Reuter, H.I. eds., 2008. Geomorphometry: concepts, software, 

applications. Newnes. 

 

Hobson, R.D., 1972. surface roughness in topography: quantitative approach. Pages 221-

245 in RJ Chorley, editor. Spatial analysis in geomorphology. Harper & Row, New 

York, New York, USA. 

 

Houser, C., Bishop, M.P. and Barrineau, P., 2015. Characterizing instability of aeolian 

environments using analytical reasoning. Earth Surface Processes and 

Landforms, 40(5), pp.696-705. 

 

Hsu, K.L., Gupta, H.V. and Sorooshian, S., 1995. Artificial neural network modeling of 

the rainfall‐runoff process. Water resources research, 31(10), pp.2517-2530. 

 

Hubbard, B.B., 1998. The world according to wavelets: the story of a mathematical 

technique in the making. AK Peters/CRC Press. 

 



 

59 

 

Jeffrey, S.J., Carter, J.O., Moodie, K.B. and Beswick, A.R., 2001. Using spatial 

interpolation to construct a comprehensive archive of Australian climate 

data. Environmental Modelling & Software, 16(4), pp.309-330. 

 

Jensen, J. R., 2007. Remote Sensing of the Environment. New Jersey: Pearson Prentice 

Hall. 

 

Jensen, J. R., 2005. Introductory Digital Image Processing. New Jersey: Pearson 

Prentice Hall. 

 

Joo, D., Woosnam, K.M., Shafer, C.S., Scott, D. and An, S., 2017. Considering Tobler's 

first law of geography in a tourism context. Tourism Management, 62, pp.350-359. 

 

Karafyllidis, I. and Thanailakis, A., 1997. A model for predicting forest fire spreading 

using cellular automata. Ecological Modelling, 99(1), pp.87-97. 

 

Kim, T.W. and Ahn, H., 2009. Spatial rainfall model using a pattern classifier for 

estimating missing daily rainfall data. Stochastic Environmental Research and Risk 

Assessment, 23(3), pp.367-376. 

 

Kosko, B., 1986. Fuzzy cognitive maps. International journal of man-machine 

studies, 24(1), pp.65-75. 

 

Krige, D.G., 1951. A statistical approach to some mine valuation and allied problems on 

the Witwatersrand: By DG Krige (Doctoral dissertation, University of the 

Witwatersrand). 

Kumar, P., 1994. Wavelet analysis in geophysics: An introduction. Wavelets in 

geophysics, pp.1-43. 

 

Lau, K.M. and Weng, H., 1995. Climate signal detection using wavelet transform: How 

to make a time series sing. Bulletin of the American meteorological society, 76(12), 

pp.2391-2402. 

 

Leung, L.R., Kuo, Y.H. and Tribbia, J., 2006. Research needs and directions of regional 

climate modeling using WRF and CCSM. Bulletin of the American Meteorological 

Society, 87(12), pp.1747-1751. 

 

Li, X., Liu, Y., Wang, M., Jiang, Y. and Dong, X., 2021. Assessment of the Coupled 

Model Intercomparison Project phase 6 (CMIP6) Model performance in simulating the 

spatial-temporal variation of aerosol optical depth over Eastern Central 

China. Atmospheric Research, 261, p.105747. 

 

Ling, Y. and Mahadevan, S., 2013. Quantitative model validation techniques: New 

insights. Reliability Engineering & System Safety, 111, pp.217-231. 



 

60 

 

Little, R.J. and Rubin, D.B., 2019. Statistical analysis with missing data (Vol. 793). John 

Wiley & Sons. 

 

Longley, P.A., Goodchild, M.F., Maguire, D.J. and Rhind, D.W., 2005. Geographic 

information systems and science. John Wiley & Sons. 

 

Marden, J.I., 2000. Hypothesis testing: from p values to Bayes factors. Journal of the 

American Statistical Association, 95(452), pp.1316-1320. 

 

Matheron, G., 1971. The Theory of Regionalized Variables and Its Applications. Paris: 

Mines Paris Tech. 

 

Nardini, A., Yepez, S., Zuniga, L., Gualtieri, C. and Bejarano, M.D., 2020. A Computer 

Aided Approach for River Styles—Inspired Characterization of Large Basins: The 

Magdalena River (Colombia). Water, 12(4), p.1147. 

 

Papageorgiou, E.I., 2011. Learning algorithms for fuzzy cognitive maps—a review 

study. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and 

Reviews), 42(2), pp.150-163. 

 

Papageorgiou, E.I. and Salmeron, J.L., 2012. A review of fuzzy cognitive maps research 

during the last decade. IEEE Transactions on Fuzzy Systems, 21(1), pp.66-79. 

 

Pennock, D.J., 2003. Terrain attributes, landform segmentation, and soil 

redistribution. Soil and Tillage Research, 69(1-2), pp.15-26. 

 

Pennock, D.J., Zebarth, B.J. and De Jong, E., 1987. Landform classification and soil 

distribution in hummocky terrain, Saskatchewan, Canada. Geoderma, 40(3-4), pp.297-

315. 

 

PIKE, R.J., 1995. Geomorphometry-progress, practice, and prospect. Zeitschrift für 

Geomorphologie. Supplementband, (101), pp.221-238. 

 

Ramsey, M.S. and Flynn, I.T., 2020. The spatial and spectral resolution of ASTER 

infrared image data: A paradigm shift in volcanological remote sensing. Remote 

Sensing, 12(4), p.738. 

 

 

Richter, D.D. and Mobley, M.L., 2009. Monitoring Earth's critical 

zone. Science, 326(5956), pp.1067-1068. 

 

Schneider, T., 2001. Analysis of incomplete climate data: Estimation of mean values and 

covariance matrices and imputation of missing values. Journal of climate, 14(5), pp.853-

871. 



 

61 

 

 

Silveira, E.M.D.O., Mello, J.M.D., Acerbi Júnior, F.W. and Carvalho, L.M.T.D., 2018. 

Object-based land-cover change detection applied to Brazilian seasonal savannahs using 

geostatistical features. International Journal of Remote Sensing, 39(8), pp.2597-2619. 

 

Sofia, G., 2020. Combining geomorphometry, feature extraction techniques and Earth-

surface processes research: The way forward. Geomorphology, 355, p.107055. 

 

Strahler, A.N., 1952. Dynamic basis of geomorphology. Geological society of america 

bulletin, 63(9), pp.923-938. 

 

Stocker, T.F., 2013. Close Climate Change 2013: The Physical Science Basis. 

Contribution of Working Group I to the Fifth Assessment Report of the 

Intergovernmental Panel on Climate Change. 

 

Sui, D.Z. and Giardino, J.R., 1995. Applications of GIS in Environment Equity Analysis. 

In GIS LIS-INTERNATIONAL CONFERENCE- (Vol. 2, pp. 950-959). AMERICAN 

SOCIETY FOR PHOTOGRAMMETRY AND REMOTE SENSING. 

 

Thuiller, W., 2004. Patterns and uncertainties of species' range shifts under climate 

change. Global change biology, 10(12), pp.2020-2027. 

 

Torrence, C. and Compo, G.P., 1998. A practical guide to wavelet analysis. Bulletin of 

the American Meteorological society, 79(1), pp.61-78. 

 

Wang, F., 1990. Fuzzy supervised classification of remote sensing images. IEEE 

Transactions on geoscience and remote sensing, 28(2), pp.194-201. 

 

Widodo, B., Edy, I., Suroso, J.S., Andry, C., Heri, N. and Santoso, G.A.A., 2021. 

Mapping and 3D modelling using quadrotor drone and GIS software. Journal of Big 

Data, 8(1). 

 

Woods, R.E., Eddins, S.L. and Gonzalez, R.C., 2009. Digital image processing using 

MATLAB. 

 

Zadeh, L.A., 1965. Fuzzy Sets, Information and Control, 8: 338-353. MathSciNet 

zbMATH. 

 

Ziliak, S. and McCloskey, D.N., 2008. The cult of statistical significance: How the 

standard error costs us jobs, justice, and lives. University of Michigan Press. 

 



 62 

3. CONTRASTING PATTERNS OF GLACIER ACTIVITIES IN THE SOUTH 

PATAGONIAN ICEFIELD 

 

Introduction 

This chapter focus on explaining the contrasting patterns of glacier activities in the 

Southern Patagonia Icefield. To have a better understanding of the confusing 

phenomenon, this chapter first develops a new technique to quantify the change of the 

glacial-surficial structure as a substitute to the traditional approach by using the 

fluctuation of glacier terminus and mass balance change. This chapter further evaluates 

the findings of this new method and explains the underlying reason by evaluating 

multiple factors. 

The Patagonian Icefield (PI) is intimately related to the livelihood of millions of 

people in Chile and Argentina (Courdrain et al., 2005; Bradley et al., 2006). 

Figuratively, the Patagonian Icefield functions as the water tower for this whole region 

(Figure 18), as it contains a large proportion of available fresh water and plays a 

significant role in the water circulation regime (Carey, 2010; Viviroli et al., 2011; Black, 

2016; Berthier et al., 2020). 

The down-wasting and accelerating glacial melt in the Patagonian Icefield is of 

concern because of its influence on downstream livelihood, social-economical related 

activities, such as power generation, irrigation, and tourism (Anacona et al., 2014; 

Carrivick and Tweed, 2016). Furthermore, the largest river, the Chile-Baker River, flows 

from the glaciers in Northern Patagonia Icefield (NPI), and glacial lakes in Southern 
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Patagonia Icefield (SPI) yield the last and largest free-flowing river, the Argentina-Santa 

Cruz River (Casassa et al., 2002; Tagliaferro et al., 2013).  

 

 

Figure 18. The Patagonia Icefields in the high altitude of South America. Northern 

Patagonia Icefield (NPI) and Southern Patagonia Icefield (SPI) together influence 

millions of livelihoods in Chile and Argentina. Figure 18 adapted from Antarctic.Org. 
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The Patagonian Icefield is also globally significant because the glacier melt in this 

close-sea region can impact the rise of local sea-level (Rignot et al., 2003; Gardner et al., 

2013). Ample geomorphic evidence of glacial melting, including down-wasting since the 

Little Ice Age, exists in this region (Aniya, 1995; Glasser et al., 2005). Simulations of 

climate change are useful for factors that facilitate accelerated glacial melting, including 

increasing temperature and shifting precipitation patterns (Bamber and Rivera, 2007; 

Schaefer et al., 2013; Natalia et al., 2020). Unfortunately, in situ records that could be 

useful for documenting glacier activities in the Patagonian Icefield are sparse (Pellikka 

and Rees, 2010). Glacier variations, however, can be archived using remote sensing. 

Nevertheless, a lack of systematic examinations of glacier fluctuations in the Patagonian 

Icefield still exists throughout recent decades (Raup et al., 2007; Ohmura, 2009; Malz et 

al., 2018). 

Excluding the Antarctic ice mass, the Patagonian Icefield is the largest ice mass in 

the Southern Hemisphere (Skvarca et al., 2010; Naruse et al., 1997; Rivera et al., 2007; 

Masiokas et al., 2009). Compared to other maritime glacial regions (e.g., Alaskan, or 

Northern European glaciers) the Patagonian Icefield is situated at a much lower latitude 

(46.5o and 51.5o). And despite location, the Patagonian Icefield glaciers are more 

vulnerable to climate change compared to various counterparts (Meier, 1984; Marzeion 

et al., 2017). As a result of melting, the Patagonia Icefield contributed 0.042 ± 0.002 mm 

per year to sea-level rise during the period 1968-2000, accounting for 9% of the sea-

level rise from mountain glaciers, whereas Alaskan glaciers contributed 30% to sea-level 

rise with a five-times larger area (90,000 Km2; Rignot et al., 2003). The Southern 
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Patagonian Icefield accounts for 73% of the amount in the Patagonian Icefield. Thus, 

this research focuses on Southern Patagonian glaciers (Casassa, 1987; Schaefer et al., 

2013). 

Of 69 major outlet glaciers in the Patagonian Icefield, 62 are calving glaciers (Aniya 

1999). These calving glaciers, however, do not exhibit uniform variations in response to 

similar micro-climatic conditions (Sakakibara and Sugiyama, 2014). For instance, 

Glacier Perito Moreno (GPM) and Glacier Ameghino (GA) are two glaciers with 

connected accumulation zones and a separation of 8 km at the lower reaches (Figure 19). 

GPM has been stable since the 1920s, but GA has been retreating rapidly (Minowa et al., 

2015). Greater rates of retreat have also been found in Glacier Upsala and Glacier Jorge 

Montt (Sakakibara and Sugiyama, 2014; Rivera et al., 2012). Other observations suggest 

that calving variations of the glaciers in the Patagonian Icefield are not controlled by 

micro-climate alone (Meier and Post, 1987; Benn and others, 2007; Post et al., 2011). 

Uncertainties still exist because limited research has been undertaken regarding rates of 

change in the glacier terminus, change in the absolute mass balance, and driving factors 

for each glacier in the Patagonian Icefield (Rivera et al., 2005; Raymond et al., 2005; 

Cassass et al., 2006; Schaefer et al., 2015; Mernild et al., 2017). 

Minowa et. al (2015) mapped two glaciers, Glaciar Perito Moreno (GPM) and 

Glaciar Ameghino (GA) in the SPI. SRTM DEM, ALSO DEM, Landsat ETM+/TM 

were used in their study, revealing that GPM has had a very stable terminus since 1920s, 

whereas GA is a fast-retreating glacier with 334m/yr before 1976 and 20m/yr after 1976. 
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Their study concluded that this contrasting pattern is the result of different AARs 

(Accumulation Area Ratio).  

 

 

Figure 19. GPM and GA glaciers. Both glaciers are adjacent to each other but exhibit 

totally contrasting responses to the environment. Figure 19 is adopted from Minowa et 

al. (2015). 
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Glacier fluctuations are governed by climate forcing, solar radiation, topographic 

exposure, and tectonic force (Lodolo et al., 2020). These four factors function together 

from daily scale to millennial scale to regulate glacier mechanics and further influence 

the rate of glacier fluctuation (Strecker et al., 2007). To what spatial scale each factor 

can influence glacier activity, however, has still not been addressed in existing research 

(Benn, 2014).  GA and GPM have connected accumulation zones, both located on the 

eastern side of the PI (Figure 19). In addition, GA and GPM calve into Lake Argentino, 

which indicates that these two glaciers have similar sensitivity to climate forcing 

(Masiokas et al., 2020). My research proposes a new conceptual model (Figure 20) to 

carefully examine how the glacier-surface structure changes over time in response to 

these four factors with an emphasis on topographic control. 
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Figure 20. The conceptual model. The change in glacier surface-structure as an 

intermedia state instead of glacier fluctuation as the only measure of glacier dynamics is 

highlighted. 

 

Pixel-based mapping approaches have numerous limitations, and do not account 

for spatial information of glacier-surface structure. Object-based mapping methods using 

topographic information can be more suitable for characterizing the glacier surface 

because of supra-glacial complexity. In my research, I first developed a new land-

surface parameter (convergence index) to facilitate the characterization of the glacier-

surface. Then I examined the potential of object-oriented analysis to characterize glacier 

surfaces, and I evaluated the suitability of network analysis of graph theory to assess 

glacier topography and change over time. Finally, I carefully checked the topographic 

exposure in the vicinity to evaluate the conclusion that Minowa et al. (2015) proposed. 
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Study Area 

Patagonian Icefields 

Patagonia is a climatically diverse region of South America extending from 

about 40oS to the southern tip of the continent at 56 oS (Figure 18; Minowa et al., 2021; 

Garreaud et al., 2002). In the western regions, extending from the Pacific coast to the 

crest of the Andes Mountains, cold temperatures and high rates of precipitation support 

rainforests, rivers, and the largest mid-latitude ice masses on Earth, the Hielo Patagónico 

or Patagonian Ice Fields (Warren and Sugden, 1993; Garreaud et al., 2002). Covering 

an area of 17,200 km2, the Patagonian Ice Fields are divided into two separate ice fields: 

Hielo Patagónico Norte (Northern Patagonian Icefield) and Hielo Patagónico Sur 

(Southern Patagonian Icefield) by a fjord (Aniya, 2013). The elevation of the total 

icefield ranges from 0 m on the west, to 3910 m at Monte San Valentin, located on the 

northeastern corner of the Northern Patagonian Icefield (Figure 18). 

 

Southern Patagonian Icefield 

The Southern Patagonian Icefield (SPI) is the larger of the two Patagonian ice fields 

and estimated to be the third largest on Earth, just after Greenland and Antarctica (Naruse 

and Anya, 1992; Warren and Sugden, 1993; Carrasco et al., 2002; Aniya, 2013). It is also 

the closest single body of permanent ice closest to the equator (Carrasco et al., 2002), 

extending from 49.5o S to 51.5o S along the 73.5o W meridian, the icefield covers over 

13,000 Km2 (Aniya et al., 2000). Elongated in a north-south direction with a length of ~360 



 

70 

 

km (Aniya and Skvarca, 1992), the width of SPI gradually narrows from North to South, 

with an average width of 30-40 km (Lopez et al., 2010).  

Climate 

The SPI has a high frequency of cloud-cover and precipitation events resulting 

from the mid-latitude westerlies regime and frontal systems (Figure 21), which 

dominate the region (Carrasco et al., 2002). The SPI is further influenced by annual 

weather cycles during which weak winds blow to the southwest during the winter 

followed by stronger, north-northwesterly winds in the summer. The elements of the 

weather system contribute to high levels of cloud cover and annual precipitation 

(Carrasco et al., 2002). The topography of the region causes higher precipitation to the 

west, exceeding 7,000 mm on the coast and 10,000 mm on the SPI. Precipitation on 

the eastern side of the Argentine Patagonia is often below 400 mm. Seasonal 

temperature oscillations are more pronounced on the eastern side of Patagonia than on 

the western side (Carrasco et al., 2002). 
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Figure 21. The average monthly precipitation and temperature of the Southern 

Patagonia Ice Field. 

 

Geomorphology 

Elevation of glacial ice ranges from 0 to 2,000 m and is punctuated by nunataks 

ranging in height from 2,000-3,500 m (Warren and Sugden, 1993). In the southern 

portions of the SPI, the ice field retains contiguous ice cover, but its dynamics are 

regarded as a series of small individual icecaps (Warrne and Sugden, 1993). With 48 

major outlet glaciers, the SPI is the most severely glaciated region of the Andes. The 

glaciers on the eastern side calve into proglacial lakes, and the glaciers on the western side 

calve into fjords of the Pacific Ocean (Aniya et al., 1997, 2013; Carrasco et al., 2002).  

The largest river in Chile, the Baker River, originates from the glaciers in NPI, 

and glacial lakes in SPI yield the last and largest free-flowing river in Argentina, the Santa 

Cruz River (Figure 18; Casassa et al., 2012; Tagliaferro, et al., 2013). The mountains of 
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the southern Chilean Pacific coast are prominent water towers for the region because of the 

large ice reserves and high rates of orographic precipitation (Immerzeel et al., 2020).  

Tectonic Setting 

Tectonics of southern Patagonia play a fundamental role in the topography and 

geomorphic processes, which dominate the region. The Nazca, South American, and Antarctic 

plates form a triple junction called the Chile Triple Junction (CTJ) in the fore-arc basin of the 

southern Patagonia Icefields which causes an abrupt and major increase in elevation and relief 

(Figure 21; Georgieva et al., 2016). The presence of an extensive slab window beneath southern 

Patagonia may be the cause of the abrupt and dramatic elevation increase in the region because 

it supports the high topography (Guillaume et al., 2010; Georgieva et al., 2016). Thomson et 

al. (2010) linked elevated summits in southern Patagonia with latitudinal climate gradients and 

alterations to the efficiency of glacial erosion, which further allows for slowed erosion and 

protection of high-relief topography. 
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Figure 22. The inset map shows the location of the study site in South America. The 

base satellite image is a mosaic of cloud-free images acquired by Landsat 8 on April 29, 

May 1, and May 24, 2016 (NASA Landsat Image Gallery). Ten onsite photos illustrate 

the surface complexity of glacier surface and extreme neighboring terrain. A calving 

activity was also well documented during the field work. 

 

 Field work in Southern Patagonian Icefield was conducted in 2017 by a group of 

geologists including Dr. John R. Giardino. Ten classic field photos are selected in Figure 22 to 

illustrate the diverse surface structure of glaciers and the extreme neighboring terrains. The 
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complexity of glacier surface is the result of the mixed component of different 

geomorphological features, including terminal moraines, lateral moraines, crevasses, supra-

glacial streams, and debris. A calving event was also captured during this trip. 
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Methodology 

In this research I only focuses on the year from 2000 to 2011 to examine the change 

in the surface-structure on the GPM and GA. My research is only limited to the 11-year 

span is because of the following two reasons: 

i. SRTM DEM of 2000 has been widely used for multiple glacier studies, which 

commonly servers as a bassline DEM to conduct change analysis. 

ii. Southern Patagonia is notoriously known for the continuous cloud-cover, which 

makes it extremely difficult for generating DEM from multi-spectral sensors, 

e.g., Landsat and ASTER. Thus, only imageries from 2000-2011 were the only 

cloud-free images available. 

 

DEM analysis 

This research has adopted two DEMs, including Shuttle Radar Topography 

Mission (SRTM) DEM V4 and Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) GDEM V2. SRTM was generated in 2000 and ASTER DEM was 

generated in 2011. Both DEMs are first reprojected by using UTM18S coordinate 

system, and then DEM artifacts, including no-data pixels and stripes, are filled using 

cubic convolution. The spatial resolution of SRTM is 75 meters in mid-latitude and the 

spatial resolution of ASTER is 25 meters. ASTER DEM is then resampled into 75 

meters using bilinear interpolation to align with SRTM DEM-grids, suggesting that both 

centroids of each cell are 100% overlapped.  
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The elevation changes of the glacier surface from 2000 to 2011 was measured by 

differencing ASTER GDEM and SRTM DEM. Figure 23 illustrates the elevation 

difference with a span of 10 years where both GPM and GA glaciers are highlighted. 

For further spatial analysis, I digitized centerlines for these two glaciers starting 

from the terminus and ending at estimated equilibrium line altitude (ELA). The path 

length for GA is about 12 kilometers and GP is 13 kilometers. Along these centerlines, 

elevational differences are shown in Figure 24. The average of GPM is -4.3m whereas 

the average of GA is -20.3m. 

The correlation ecoefficiency of the two DEMs is 0.995 with an average 

difference of ±2.9m. A hypsometry analysis also suggests these two DEMs match 

closely with each other (Figure 25). Some small mismatch in high elevation areas do 

occur, especially in the accumulation zones because of low contrast of fresh snow when 

generating the DEM using stereoscopic techniques. Because this research mainly focuses 

on the structure change of the glacier surface in the ablation zone and the topographic 

control by the neighboring terrains, this small mismatch in the accumulation zone has 

minimal impact of the results of my study. 
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Figure 23. Surface-elevation changes over GPM and GA from 2000 to 2011. Glacier 

boundaries (in red) are retrieved from Global Land Ice Measurements from Space 

(GLIMS) database. The dashed curves represent the central flowlines from terminus to 

estimated ELA that was used in Minowa et al., 2015. Note the detectable area of high 

elevation of difference (i.e., >50m) only exist in either accumulation zones or mountain 

ridges because of clouds and shadow. 
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Figure 24. Change in surface elevation in GA and GPM along the central flowlines 

shown in Figure 23. GPM elevation change is very consistent, but GA elevation change 

varies significantly. 
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Figure 25. The hypsometry curves for SRTM and ASTER DEMs. With 0.995 correlation 

ecoefficiency, these two curves match. 

 

Convergence Index and Segmentation 

In this study, I designed a protocol of using a new topographic index for 

segmentation to characterize the structure of the glacier-surface (Figure 26). This index 

can be used as a terrain parameter to show the local relief as a set of convergent features 

(e.g., supraglacial ponds) and divergent features (e.g., ogives and medial moraines) on 

the glacial surface. Thus, the index is the most optimal parameter to measure the 

convexity and complexity of the glacial surface as a response to glacial mass movement 

and down-wasting cascade. 



 

80 

 

 

Figure 26. Schematic figure for this index. Illustration of the convergence and 

divergence concepts. a) Divergence, b) Level, c) Convergence. 

 

For each pixel, if water flows towards all eight neighboring pixels, this specific pixel 

is classified as divergent. In contrast, if water flows into the center pixel from all eight 

neighboring pixels, this specific pixel is then classified as convergent (Claps et al., 

1994). Mathematically speaking, convergence indices can be computed with a 3x3 

moving window using the following equation: 

𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 = ∑
|cos∅𝑖−cos∅𝜀,𝑖|+|sin∅𝑖−sin∅𝜀,𝑖|

4𝑛

𝑛
𝑖=0                (2) 

Where, n is the number of neighboring pixels, ∅i is the aspect of pixel i towards the 

center of the moving window, and the ∅ε,i is the aspect from the center towards the pixel 

i. The convergence index ranges from 0 to 1, and a higher value refers to a higher degree 

of convergence. For instance, a perfect pit pixel will equal 1 and a perfect peak will 

equal 0.    



 

81 

 

Specifically, the convergence index represents the agreement of flow direction of 

surrounding pixels within a local scale, which makes the convergence index perform 

better at delineating boundary changes than other first-order and second-order 

derivatives, including slope, aspect, profile curvature, tangential curvature, and surface 

roughness. The unique morphology of supraglacial features, thus, can be clearly 

characterized using such an index. In GA and GPM, glacier boundaries (terminus and 

lateral moraines) are relevantly convergent (Figure 27). In the ablation zone, glacier-

flow directions are also well delineated, and the glacier surface exhibits a much more 

complex spatial pattern compared to the accumulation zone and mountain terrains. Each 

glacier exhibits different spatial patterns, and the spatial frequencies of patterns are 

significantly enhanced on the glacier surface. 
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Figure 27. Convergence index computed based on Equation (1). The left image shows 

the SRTM convergence index, and the right image shows the ASTER convergence 

index. 

Furthermore, different glaciers demonstrate varying degrees of glacial activity 

from advancing to retreating as well as stagnating. Although these activities depict the 

status of the glacier-terminus, unfortunately, they neglect the dynamics of the glacier. 

For a given period, each glacier shows unique spatial complexity in its ablation zone, 

and the degree of complexity is determined by the spatial distribution of various features 

including ridging features (moraines), concave features (streams and ponds), and more 

complicated features (crevasses). Using such micro-topography can be a better 

alternative approach to investigate glacier dynamics and mass balance. 
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In addition, pixel-based convergence still cannot fully satisfy the need to 

understand glacial-surface change at a meaningful scale. To accomplish this, I used a 

segmentation approach to aggregate pixels showing similar convexity into one object, 

which carries certain feature information about the glacier surface. After numerous 

substantiation tests, I found using a threshold of 0.55 returns the best result for this study 

area (Figure 28). In Figure 28, the white color represents convergent features whereas 

the black color represents the divergent features. The GA and GPM glacier surface 

remains distinguished compared to other locations in the map because the flow direction 

of glaciers can be easily detected. In addition, each glacier maintains its own spatial 

signature. 

 

Figure 28. Segmentation results based on convergence index from Figure 27. I selected 

0.55 as the best threshold to generate the object. The white color shows convergent 

object and black color means divergent objects. The left is the SRTM convergence 

segmentation, and the right is the ASTER convergence segmentation. 
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Object-oriented network analysis (Graph Theory) 

Graph theory has been broadly used in the fields of hydrology, landscape 

ecology, debris-flow, and geomorphology (Dehmer et al., 2014; Heckmann, 2015). The 

common applications of graph theory in geoscience focus on analyzing the connectivity 

and network structure of meaningful spatial features within a specific system. Thus, the 

method has great potential to facilitate the study of complexity and dynamics of the 

structure of the glacial surface. In previous section, convergent and divergent objects are 

collectively highlighted on the glacier surface and represent specific glacial-

geomorphological features, which makes a strong case for using graph theory to connect 

the features and further quantify the network complexity, as a parameter to measure the 

surface down-wasting and movement dynamics. 

In this dissertation, I designed a glacier-specific graph theory protocol (Figure 

29) to quantitatively configure the linkages between convergent and divergent objects 

within certain search radii so supraglacial flux can be measured. In detail, from any pixel 

of a study area image, I calculated the number of convergent objects around the center 

pixel; and from each surrounding convergent object for that pixel, I calculated how 

many divergent objects are around the centroid of each convergent object. The sum of 

convergent and divergent objects clearly delineates the complexity of glacier surface. In 

Figure 29, the green star represents a specific gird location; the red dot represents 

centroid of convergent network; the yellow link represents the link from grid location to 

the convergent network; the blue triangle represents the divergent network; and the blue 

link represents the link from convergent network to divergent network. 

https://www.researchgate.net/profile/Tobias-Heckmann
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Figure 29. Conceptual diagram of network analysis. 

 

Technically speaking, I first had to perform a centroid analysis (Figure 30) for 

and ASTER segmentation images. The distance analysis of centroids is based on nearest 

pair of centroid points. For each point, whether it is convergent or divergent, I searched 

for its nearest point and calculated the distance. Relative scale size of each object had to 

be also considered. The result suggests a mean distance for the nearest pair for SRTM is 

526 meters and 389 meters for ASTER. Because both images are resampled into 75 

meter-resolution, 526 meters on the SRTM is equal to 7 pixel-sizes whereas 389 meters 

on the ASTER is equal to 5.1 pixel-sizes. This information helps to determine the proper 

search radius needed for graph theory. In this study, I used two-cascade search radius 

(Figure 29). For each pixel, I searched for a convergent object. The radius is 5 pixels. 

From convergent to divergent, the radius is 3. Both radii are comparable to the averaged 

pixel distance. 
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Figure 30. Overall object, divergent object, and convergent object images with centroids. 

SRTM centroids overlayed on convergent and divergent objects. Blue is divergent. Red 

is convergent. SRTM centroid-distance analysis is based on divergent and convergent 

objects. The mean distance of nearest pair of points for SRTM is ~500 meters. ASTER 

centroid-distance analysis is also based on divergent and convergent objects. The mean 

distance of nearest pair of points for ASTER is ~400 meters. 
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Topographic Exposure 

Topographic exposure, also known as TOPEX (Ruel et al., 2002), is a 

quantitative measurement of neighboring topography that constrains the local flux 

exchange, which is very important in glacial settings, including incoming direct solar 

radiation which provides the major energy source, wind-flow exposure which regulates 

the convection and evaporation, snowfall amount which contributes to accumulation on 

the glacier, and regional temperature which controls the ablation. Unfortunately, existing 

commercial software does not provide a feasible solution for generating accurate 

TOPEX, so I had to develop a protocol to effectively calculate TOPEX. 

For the algorithm, the inputs are height of the elevation and distance to the focal 

pixel. The combination of these two variables creates the angle of inflection, which is 

the angle used to quantify the shielding parameter. Figure 31 well demonstrates the 

relationship between elevation and distance for a certain location in a complex terrain 

setting. Semantically within a predetermined search radius in a specific direction, I 

calculated the inflection angles α of Point A, B and C, s. Point B yields the highest 

inflection angle whereas Point C yields the lowest inflection angle αc. The higher the 

inflection angle equates to a higher topographic shielding effect but lower exposure. As 

a result, within a search radius, zero minus the maximum inflection angle, 0-αb, is the 

TOPEX. 
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Figure 31. The semantics of how to calculate Topographic Exposure Index (a). Figure 

31b is the intermediate results of all inspection angles in eight directions. The dark 

border for each image is the padding zone of image processing within the search 

distance. 
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In the Patagonia Icefields, the surrounding mountains significantly influence the 

flux exchange of glacier mass, so it is essential to examine the topographic shielding of 

all aspects to assess the role and impact. This research adopts the semantics shown in 

Figure 31a to calculate the inspection angle in 8 different directions (i.e., north, 

northeast, northwest, south, southeast, southwest, west, and east) using a search radius 

from 225 meters (3 pixels) to 2025 meters (27 pixels). Figure 31b shows the 

intermediate results of all inspection angles in the eight directions, respectively. Zero 

minus the integrated inflection angles from 8 directions produces the final TOPEX for 

the study area.  

Results 

Object-oriented characterization of glacier surface 

Object-oriented analysis provides an innovative way to investigate glaciers from 

meaningful scale. Unlike traditional pixel-based approach, object-oriented analysis 

treated pixels sharing similar attribute as one feature, i.e., object. Thus, it is suitable to 

use this approach to examine the change in glacier-surface structure. 

The SRTM Segmentation works perfectly in separating the glacier terminus from 

proglacial lakes in GA and GPM (Figure 32). The convergent-divergence index and 

segmentation results set the tone of this research. Thus, it is very important to evaluate 

the accuracy of segmentation results. In glacial environments, the glacier terminus 

normally exhibits the sharpest transition from ice-snow mass to either a proglacial lake 

or the terminal moraine (Glasser et al., 2005); and this is especially the case for the 
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Southern Patagonia Icefield, because large amounts of the glaciers are calving into the 

ocean or continental lakes. In my study I found GA and GPM are calving into Argentino 

Lake, and the termini (Location 2 and 3 in Figure 32) can be clearly detected by 

segmentation images (Figure 34a, 34b) when comparing to the same locations of 

Landsat image retrieved in 2000 (Figure 32c). 

 

Figure 32. The SRTM convergence segmentation image (a); the SRTM divergence 

segmentation image (b); and the Landsat image retrieved in 2000 (c). Red arrow of 

Location 1 is the prehistorical glacial deposit. Red arrows of Location 2 and 3 are 

termini for GA and GPM respectively. 

The segmentation image facilitates the study of glacier dynamics in South 

Patagonia. Figure 39a is the convergent segmentation image whereas Figure 39b is the 
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divergent segmentation image, which is simply a binary-offset image to Figure 39a. The 

convergent segmentation (Figure 32a) highlights the features exhibiting convergent 

characteristics (e.g., crevasse and supra-glacial streams), which are the result of down-

wasting and glacier mass movement. On the contrary, the divergent segmentation 

(Figure 32b) highlights the features with divergent characteristics (e.g., lateral 

moraines), which can be used as an indicator for dominant glacier flow directions and 

surface structure complexity. In Figure 32, the termini of GA and GPM show divergent 

characteristics, and the flow direction can also be detected in the images. 

Additionally, location 1 in Figure 32 is a prehistorical glacial deposit that now 

functions as a glacier dam between the current GA and Argentino Lake. By examining 

the segmentation images, the structure of this glacial dam is well characterized, and the 

adjacent mountain terrain in the study area exhibit a totally different pattern from the 

glacial surface, which further suggests the accuracy of the segmentation protocol is of an 

acceptable level to be very useful for geomorphological mapping and glacial studies.  

Graph theory for the change in surface structure  

As discussed in the previous paragraph, in a supra-glacier system, the convergent 

objects and the divergent objects interact with each other to transport flux and energy, 

and the current morphologies and structures are the result of such a mechanism. In 

addition, these objects operate together in response to glacial processes to form a 

complete complex supra-glacial system (Heckmann et al., 2015). The innovative 

adoption of graph theory into glacial research creates a new path to evaluate the 

dynamics of the glacier-surface and quantify the complexity of the glacier-surface 
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structure. The link maps (Figure 33), which are the results from the accurate input of 

object parameters that are generated from the segmentation protocol, illustrate the 

number of links that are around each pixel in the study area utilizing a two-cascade 

network model (Figure 29). The relationship links, quantitatively shows the complexity 

of the relationship within the network and this parameter can be visualized in Figure 33 

as a measure of how complicated the surface structure is. In Figure 33, the SRTM-link 

image and the ASTER-link image have considerable agreement with each other in non-

glacial areas; however, on glacier surfaces, the difference is evident. Additional details 

from the centerline extraction analysis for GA and GPM are shown in Figure 34. The 

detailed information is summarized in Table 12. 

 

Figure 33. Network analysis results for SRTM and ASTER imageries. Both images 

show considerable agreement for nonglacial areas such as non-snow-covered mountains 

and low-elevation islands. 



 

93 

 

 

 

Figure 34. Cross-comparisons of center-line profiles extracted from network analysis 

over GA and GPM using SRTM and ASTER DEMs. 

 

Topographic Exposure 

Topographic features surrounding glaciers exert a profound influence on glacier 

activities via exposure that is shielding or lack of shielding. In my research I accurately 

calculated topographic exposure based on a distance-limited topographic exposure 
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model that was illustrated in Figure 31, and the results are shown in Figure 35. My 

topographic exposure index image (Figure 35a) addresses the nature of topographic 

control in the Southern Patagonian Icefields, and it provides a new approach to 

quantitatively evaluate the topographic constraints imposed by surrounding terrain. 
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Figure 35. The topographic exposure results. Figure 35a shows the TOPEX for the 

complete study area. Figure 35b is the 3D visualization of Figure 35a. Figure 35c helps 

to evaluate the potential of using TOPEX to map geomorphological features, such as 

glacier terminus, cirque, and mountain ridges. 
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In my results, all glacier valleys exhibit a relatively dark shade because (a) in a 

typical glacier system snow-ice mass is constrained by solid valley walls from 

neighboring terrains and (b) continuous glacial erosion further deepens the bedrock and 

enhances the shielding effects in the glacier valleys. Contrary to the glacier valleys, 

Figure 35a shows all mountain ridges are highlighted by the brightest shades because 

they are the most exposed geomorphic features in the study area. In addition, because 

this study adapts a search distance between 3 pixels to 27 pixels in eight compass 

directions, the ability to locate major topographic features is significantly enhanced. 

Figure 35b is the 3D visualization of the topographic exposure index overlaid with the 

SRTM elevation. Figure 35c is the planimetric view of GA and GPM, which helps to see 

the mapping potential of using the topographic-exposure index. In Figure 35b and 35c, 

GA (red arrow) and GPM (blue arrow) termini exhibit a distinguished shade change and 

the lateral boundaries are also well delineated. Some other glacial features, including 

cirques, horns, aretes, and truncated spurs, can also be clearly discriminated in the GA 

and GPM valley-glacier area. 

Figure 36 show additional analysis of topographic exposure in GA and GPM. 

Figure 36a is the extraction image of TOPEX only on glacier surfaces. Figure 36b is the 

center-line analysis for TOPEX in GA and GPM. Figure 36a provides a closer look of 

how topographic exposure differs on glacier surfaces. I suggest that overall GA exhibits 

a much lower exposure than GPM; and this is especially distinct in the GA terminus 

area, upper ablation zone, lateral boundary areas adjacent to glacier valley, and even in 



 

97 

 

some accumulation areas. Figure 36b further supports this observation by demonstrating 

(a) GPM has a higher exposure than GA from the terminus to the ELA, (b) GPM 

exposure curve remains stable, (c) GA exposure curve shows an increasing trend from 

the terminus to the upper ablation zone. A sharp decreasing trend also occurs when GA 

approaches the ELA, (d) the close-to-zero stale curve from GPM suggests the surface of 

GPM is relatively flat, and (e) GA has a well shielded terminus area and accumulation 

zone. 

 

 

Figure 36. TOPEX analysis for GA and GPM. Figure 36a is the glacier surface 

extraction for TOPEX. Figure 36b shows the center-line analysis for TOPEX. 
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Table 12. Detailed information shown in Figure 36. 
Subject Topic Findings 

GA 

(Figure 

36a) 

SRTM 

Terminus Area (0-1000m)  

SRTM GA increases from 30 to nearly 50 but then start dropping to below 30. 

Tongue (0-6000m) 
SRTM GA shows a relative stable structure in glacier tongue (0-6000m) with an average of 30 links. 

Upper Ablation Zone (6000-12000m) 

SRTM GA suddenly drops to below 10 with a small fluctuation between 8000m to 12000m. 
Close to ELA (12000m-13000m) 

SRTM GA starts climbing from 5 links around 12000m to above 40 links when approaching ELA (13000m). 

Overall Trend 
Overall SRTM GA shows a stable glacier tongue but gradual decreasing trend till it’s getting close to ELA. 

ASTER 

Terminus Area (0-1000m)  

ASTER GA increases from 30 to 50 but then start dropping to 10. 

Tongue (0-6000m) 
ASTER GA shows a very unstable structure in glacier tongue (0-6000m). It swings 5 times between 50 and 10 

with an average of 30 links. 

Upper Ablation Zone (6000-12000m) 

ASTER GA continues the highly swinging pattern 4 times between 6000-1000m and then starts to climb up 

with a much smaller fluctuation range. 

Close to ELA (12000m-13000m) 
ASTER GA reaches 50 links again when approaching ELA. 

Overall Trend 

Overall ASTER GA shows a very unstable glacier tongue and upper ablation zone. It swings 10 times from 
terminus to ELA. 

GPM 

(Figure 

36b) 

SRTM 

Terminus Area (0-1000m)  

SRTM GPM’s terminus drops sharply from nearly 40 to 10 with first 400 meters and then comes back to 15 at 

around 1000m. 
Tongue (0-7000m) 

From 1000m, SRTM GPM shows a decreasing pattern, and it drops to 3 at about 3600m. Then SRTM GPM 

starts coming back to 20 but again drops under 10 at 7000m. 
Upper Ablation Zone (7000-12000m) 

From 7000m, SRTM GPM starts increasing from under 10 to 40 at 10000m. It drops gradually under 10 again 

at 12000m  
Close to ELA (12000m-14000m) 

SRTM GPM starts climbing above 20 at 13500m but suddenly drops under 10 when approaching ELA. 

Overall Trend 
Overall SRTM GPM shows a very unstable terminus area structure, but the remaining glacier tongue and upper 

ablation keep stable with moderate fluctuation. It is noted link number drops when approaching ELA for SRTM 

GPM. 

ASTER 

Terminus Area (0-1000m)  
ASTER GPM’s terminus also drops sharply from nearly 40 to 15 with first 400 meters but restores to 40 at 

around 1000m. 

Tongue (0-7000m) 
From 1000m, ASTER GPM drops sharply from 40 to 10 at 3600m. It’s combing back above 30 but also drops 

under 10 again at 7000m.  

Upper Ablation Zone (7000-12000m) 

From 7000m, ASTER GPM shows a high-amplitude vibration between 10 and above 50. It swings 5 times 

from 7000m to 12000m. 

Close to ELA (12000m-14000m) 
ASTER GPM has over lapping pattern with SRTM GPM. It starts climbing above 30 at 13500m but also 

suddenly drops under 10 when approaching ELA. 

Overall Trend 

Overall ASTER GPM shows an extreme unstable terminus area and glacier tongue area. The upper vibrates 

with high amplitude. The pattern close ELA agrees with SRTM GPM. 
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Table 13 Continued. 
Subject Topic Findings 

SRTM 
(Figure 

36c) 

GA VS. 

GPM 

Terminus Area 

Both SRTM GA and SRTM GPM starts at around 35 in terminus position. GA increased from 35 to nearly 50 
but GPM drops sharply in terminus area. 

Tongue 

SRTM GA shows a gradual decreasing pattern in glacier tongue, but SRTM GPM shows a relative stable 
pattern of fluctuation pattern in glacier tongue. SRTM GA is always above SRTM GPM in tongue area. 

Upper Ablation Zone  

SRTM GA keeps decreasing in upper ablation zone, but SRTM GPM starts increasing in the first half of upper 
ablation zone but decrease in the second half. 

Close to ELA 

SRTM GA keeps increasing to above 40 when approaching ELA. SRTM GPM increases to above 20 but then 
drops dramatically under 10 at ELA 

Overall Trend 

SRTM GA has much higher value in both glacier terminus region and glacier tongue. It shows a gradual 
decreasing pattern till 10000m approximately. The link number increases when approaching ELA. 

SRTM GPM has very unstable terminus but relatively glacier tongue. Its upper ablation zone has higher values 

than SRTM GA, but it drops to nearly 1 in ELA. 

ASTER 
(Figure 

36d) 

GA VS. 

GPM 

Terminus Area 

ASTER GA starts at 30 and increases to 50 within first 400m. ASTER GPM starts at 40 but decrease to 15 with 

first 400m.  

Tongue 

Both ASTER GA and ASTER GPM show fluctuation patterns in glacier tongues. ASTER GA exhibits higher 

amplitude in this area. 

Upper Ablation Zone  

Both ASTER GA and ASTER GPM still show fluctuation patterns in upper ablation zones. ASTER GPM 

exhibits slightly higher amplitude. From 10000m, ASTER GA starts climbing. 

Close to ELA 

ASTER GA keeps increasing when approaching ELA, but ASTER GPM dramatically decreases towards ELA. 

Overall Trend 

Overall, both ASTER GA and ASTER GPM exhibit very contrasting link patterns in every part of its own 
glacier body. 

It is worth to note 10000m is a watershed for GA. 
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Discussion: 

The existing approaches to mapping glaciers do not accurately map glacier 

boundaries in the Patagonia Icefields. In this section I first evaluated the current 

mapping protocols and assessed if my study can facilitate glacier mapping. This section 

also addressed the adaptability of integrating graph theory into glacier studies to 

understand glacier dynamics. The underlying reasons of the contrasting patterns of the 

GA and the GPM was also discussed in this section.   

Glacier mapping 

Existing glacier study frontiers and limitations 

In general, two major ways for evaluating sensitivity of a glacier to the impact of 

surface change: analysis of terminus fluctuation and measurement of mass balance. To 

note, each method has its individual merits over temporal and spatial scales; however, 

each method also entails disadvantages related with sampling accuracy and uncertainty 

(Malz et al., 2018; Casassa et al., 2014). 

The advent and wide adoption of remote sensing (rs) technology and its 

application with Geographic Information Science (GIS) have favored studying glacier 

system dynamics (Raup et al., 2007). New avenues of research, such as 

ground/aerial/satellite photography of surface characterization, digital terrain modeling, 

geomorphometry, geomorphological mapping, geo-computation, and geo-visualization 

(Giardino and Harbor, 2013), that used remote sensing and GIS began to augment 

traditional glacier studies around 1970s (Ye et al., 2006). Furthermore, these studies 



 

101 

 

allowed researchers to better conceptualize and to study the complexity of the glacier 

system (Figure 20).  

Before the International Geophysical Year (IGY) in 1957/1958, remote sensing 

was only used for the purpose of mapping the extent of glaciers. The advent of new 

remote sensing sensors and technologies after the IGY, however, enabled researchers to 

quantify many glacial parameters that were previously unattainable from in-situ 

measurement (Jensen, 2007). Some of these parameters include surface reflectance and 

albedo, surface temperature, gravity field and moisture content, glacier zones and mass 

balance, glacier area and topography, lithology, glacier volume, and surface velocity 

(Rees, 2005; Pellikka and Rees, 2010). 

The change in glacier terminus can be classified as retreat, advance, or 

stagnation; and it can serve as a good proxy for the change in the mass-balance of the 

glacier and can help to determine types of glaciers (Wilson et al., 2016). Sparse in situ 

data exists for documenting variations in glacier terminuses in SPI. Therefore, remote 

sensing and GIS can provide an alternative methodology for monitoring and analyzing 

glacier fluctuations as well as further assessing glacier sensitivity to climate change 

(Racoviteanu et al., 2008; Racoviteanu et al., 2009; Hock and Huss, 2021). The existing 

glacier inventory (e.g., WGI, RGI) is inadequate to meet scientific needs today, because 

the boundaries of glaciers are not accurate and need to be updated with more precision 

and accuracy. GLIMS is a big improvement for the global glacier inventory (Raup et al., 

2007), especially for glaciers in SPI. The semi-automated terminus-mapping algorithm 

in GLIMS needs more rigorous scrutiny of terminus detection aided by digital image 
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processing techniques and the incorporation of the direction of surface-flow into a 

transect approach for calculating changes in terminuses over time (Kargel et al., 2014). 

Room still exists to improve the research conducted using GLIMS, including automating 

the whole process of glacier terminus detection, enhancing the accuracy of mapping 

debris-covered glaciers, addressing, and correcting the errors associated with image 

processing, and designing a robust workflow for calculating terminus distance. 

To date, the major glacier inventories in SPI are based on manual digitization 

from satellite images; however, these methods are extremely time-consuming for large 

areas and errors can be easily introduced by varying spatial resolutions and human error 

introduced by the cartographer (Paul et al., 2013; Minowa et al., 2015). Other existing 

mapping methods in optical remote sensing can be grouped in four categories: (1) pixel-

based mapping to extract differences in the domain of spectral feature space, including 

supervised classification and artificial neural networks (ANNs; Keshri et al., 2009; 

Shukla et al., 2009; Bjambri and Bolch, 2009; Bhambri et al., 2011); (2) morphological 

variables derived from DEM, such as profile-plan-tangential curvatures, local relief, 

slope, and aspect (Bolch and Kamp, 2006). (3) multi-criteria approach to incorporate 

surface classification, spatial analysis, morphometric parameters, and thermal 

contrasting (Paul et al., 2004; Shukla et al., 2010); (4) objected-oriented mapping 

approach based on spectral information (Benz et al., 2004; Rastner et al., 2014). 

Unfortunately, these methods are all region specific and have not been thoroughly tested 

for SPI glaciers. Thus, it is timely and important to develop a new glacier mapping 

algorithm that is suitable for SPI glaciers. 
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Increasing debris load in several PI glaciers has been observed in recent decades 

(Glasser et al., 2016；Aniya et al., 1993; Harrison and Winchester, 1997; Janke et al., 

2015; Bravo et al., 2021). The existence of debris in PI glaciers make it notoriously 

difficult to map the terminus and to characterize glacial-surface structure (Bolch et al., 

2007; Pratap et al., 2015). This debris is transported to the glacier tongues by mass 

movement such as snow avalanches or ice/rock-falls from extremely steep adjacent 

terrain and the incorporation of bedrock movement from glacier bed into the glacier, and 

eventually at the surface (Fischer et al., 2006; Fischer et al., 2010). Thick debris acts as 

an insolation blanket and can retard glacier response to long-term changes in weather 

patterns (Pelto, 2000; Benn and Evans, 2014) and facilitate supraglacial lake formation 

(Benn et al., 2000; Benn et al., 2001; Sakai and Fujita, 2010). The thick debris, however, 

often hampers detection of the glacier boundary either in the field or by remote sensing 

because of the similar spectral signature of the debris to the surrounding terrain 

(Bhambri and Bolch, 2009; Bhambri et al., 2011). Traditional mapping methods on 

clean-ice glaciers adopt the spectral features of snow and ice in the visible and near-

infrared (VNIR) spectrum compared to short-wave infrared (SWIR), including 

Normalized Difference Snow Index (NDSI) and band ratioing (Kaab et al., 2002; Paul et 

al., 2002; Andreassen et al., 2008; Racoviteanu et al., 2008; Racoviteanu et al., 2009). 

Neither are suitable for mapping debris-covered glaciers (Quincey et al., 2005; Raup et 

al., 2007). 
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Can this study facilitate glacier mapping? 

My study proposes a stepwise approach to evaluate change in the structure of the 

glacier-surface, including convergence-index image (Figure 27), segmentation image 

(Figure 28), and link image (Figure 33); and each of which is very distinct from existing 

glacier mapping protocols as mentioned previously, because any of these parameters 

individually can facilitate glacier mapping at certain perspective. To elaborate, the 

convergence-divergence index can highlight the glacier terminus because of the calving 

nature of the dominant glaciers in SPI (Hata and Sugiyama, 2021.). Segmentation image 

can aggregate the pixels with similar topographic attribute (i.e., degree of convergence) 

into one object; thus, glacier mapping focuses on concrete geomorphologic features 

instead of individual pixels. Link images, based on graph theory, further quantify the 

structure complexity of the glacier surface and termini and lateral boundaries are well 

delineated. 

A photo taken by J. R. Giardino at Location 3 of Figure 32 can be used to 

validate the mapping protocol (Figure 37). In this photo, the calving front of the GMP 

shows a clear divergent characteristic, and this divergent nature is well reflected in 

Figures 27, 28 and 33. Note the sufficient gap between the GMP glacier terminus and the 

viewing station in this photo. This gap can be clearly detected in Figure 32b but not 

identifiable by Landsat image (Figure 32c), which further suggests the stepwise mapping 

protocol is more robust than traditional spectral information-based glacier mapping. 
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Figure 37. Photo of GPM terminus. The calving front of the glacier is well captured 

(Photo by J. R. Giardino, 2017). 

I admit a challenge exists when undertaking this research with respect to DEM 

noise from ASTER. Resampling a 25-meter ASTER DEM into the same size (75 meter) 

as a SRTM DEM, produces instrumental noise from ASTER DEM that is inherently 

downscaled to the new ASTER DEM. This noise is especially pronounced on water 

bodies because of the close to zero value, which results in a very sensitive response to 

any small noise and elevation change. This noise creates very tiny regional puddles in 

the fjords and Argentino Lake, which significantly hampers generating meaningful 

intermediate results that can be evaluated using graph theory. Thus, a cost-effective 
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noise removal method had to be developed. Figure 38a shows that before noise removal, 

dramatic elevation noise occurs in the ASTER DEM that hampers segmentation results. 

To minimize the ASTER DEM noise, I developed a cost-effective mask 

approach. First, I used a SRTM DEM as a reference because SRTM is well known for its 

high quality and noise-free reputation. Based on the SRTM DEM, I generated a 

waterbody mask, which covers the fjords and Argentino Lake. Second, I used this mask 

to extract the ASTER DEM to obtain all the waterbody elevation pixels. I statistically 

assessed the elevations within the mask and choose the most frequently occurring value 

to represent the new elevation for the entire waterbody. Third, I used the new value as a 

substitute value for the ASTER DEM waterbody pixels. The new segmentation result is 

shown Figure 38b.  

Five reasons support why this approach is well suitable for this study: (1) the 

research is investigating how the structure of the glacier-surface changes over time by 

use of object-oriented analysis and graph theory. Thus, this approach does not influence 

glacier-surface elevation. (2) Because of the calving nature of GA and GPM, this 

approach reduces pro-glacial waterbody noise and produces “cleaner” glacier termini. 

(3) The GPM glacier has been stagnant for decades, so substituting waterbody elevation 

around the glacier terminus will not influence terminus-structure change. (4) Even 

though the GA glacier has been retreating, the mask will still enhance data quality 

because considerable noise exists between the GA terminus and the prehistorical glacier 

dam (Figure 32). (5) If the waterbody noise is not removed, the surface structure from 
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both termini will be much more complex based on the two-cascade network analysis 

model (Figure 29). 

 

Figure 38. Segmentation results from the ASTER DEM before and after noise removal. 

Figure 40a is before noise removal, and Figure 40b is after noise removal. 

 

Change in the structure of the glacier surface  

Limitations of using mass balance and velocity field 

In the Patagonian Icefields, glacier mass balance can be remotely retrieved using 

four approaches: (1) extrapolation of limited field mass balance records (Rivera et al., 

2007; Bamber and Rivera, 2007; Quincey et al., 2014); (2) gravity field based on remote 

sensing images (Chen et al., 2007; Jacob et al., 2012; Wouters et al., 2014); (3) laser 

altimetry (Kaab, 2008; Moholdt and Kaab, 2012; Winsvold et al., 2018); and (4) 
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differencing between digital elevation models (Willis et al., 2012; Dussaillant et al., 

2018). In situ methods that are the foundation of numerous approaches, such as, repeated 

annual measurements of snow density by using snow stakes on the glacier surface are 

very labor-intensive, and the results of sampled glaciers used for extrapolating a whole 

region are generally unevenly distributed, which can easily introduce errors (Hubbard 

and Glasser, 2005).  Gravity retrieved from the GRACE (Gravity Recovery and Climate 

Experiment) satellite can be used to estimate glacier mass balance, but its low resolution 

of 300 m and its high sensitivity mass-balance signal is biased towards 

supraglacial/englacial water content and significantly limit its accuracy in ice extent 

areas located in rugged terrain, such as the SPI glaciers (Gardner et al., 2013). The laser 

altimetry method—using sensors such as ICESAT (Ice, Cloud and Land Elevation 

Satellite)—can be used to calculate the change in glacier-volume, but the accuracy of 

ICESAT is highly dependent on three factors: trends within the acquisition footprints, 

types of land-cover (including snow, ice, water, debris, and glacier boundary), and 

surface density. Thus, major uncertainty exists (Zwally et al., 2003; Jaber et al., 2012; 

Neckel et al., 2014). The DEM differencing approach requires a prior correction of 

artifacts, which can be the result of a combination of sensor error, altitude error produces 

by curvature, penetration error if using c-band of SRTM, and systematic errors 

introduced by stereographic techniques (Mölg et al., 2017; Dall et al., 2001; Kervyn et 

al., 2008; Paul, 2008; Bolch et al., 2011; Nuth and Kaab, 2011; Gardelle et al., 2012).  

To aggravate matters, even adopting the same method of calculating glacier-mass 

balance for the SPI, may yield different results by different research groups (Malz et al., 
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2018; Dussaillant et al., 2018). One could assume that these estimates are as much art-

based as they are science-based, and significant inconsistencies will remain. The existing 

knowledge gaps associated with mass-balance calculation can be somehow mediated by 

increasing the accuracy of the stratification and glacier-boundary delineation of the 

glacier surface, especially at the terminus (Paul et al., 2017). 

In addition to mas balance and its byproducts, the glacier-velocity field has also 

been used for understanding glacier dynamics even though it is extremely computational 

time-consuming from a regional scale perspective for mountain glaciers (Burgess et al., 

2013). Quality estimates of glacier-surface velocity can aid in the understanding of 

processes related to glacier dynamics, including supra-glacial mass transport, ice-flow 

instability, identification of surging type glaciers, supra-glacier lake development, ice-

flow direction, and glacier boundary (Paul et al., 2015). For the Patagonian Icefield, on 

most remote sensing platforms the dominant cloud cover across the year impedes the 

satellite acquisition for useful spectral signature of the Earth surface; the maritime 

environments and westerlies components of the upper circulation compound the 

difficulty of retrieving clear imagery. Even though synthetic aperture radar (SAR) has 

exceptional penetration of cloud and can serve as an alternative to optical remote 

sensing, it is oversensitive to moisture, which makes it more suitable for icesheets than 

for valley glaciers. Besides, most velocity fields are generated by two approaches: 

normalized cross-correlation in the spatial domain, and orientation correlation in the 

frequency domain (Heid and Kaab, 2012). The first approach is extremely labor 

intensive, and the second approach requires a computation region of high visual contrast 
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(Leprince et al., 2007; Lewis, 1995; Paul, 2015). Thus, both approaches are not ideal for 

the study of the SPI. 

Can this study help to understand glacier dynamics? 

The integration of object-oriented analysis with graph theory enables a new, 

innovative approach as an alternative to evaluating the dynamics of glacier-surfaces 

when compared to traditional methods. To better visualize the structure change over time 

and to verify the legitimacy of using this stepwise protocol as a substitute to mass 

balance and velocity field in the Southern Patagonian Icefield, I used the boundaries of 

GA and GPM to extract three major parameters, including convergence-index images, 

segmentation images, and link-number images (Figure 39). Figure 39 illustrates how this 

protocol is developed.  

In this study, the spatial pattern of chronical-surface structures demonstrates the 

influence of flow dynamics and glacier down-wasting that cannot be easily captured by 

optical remote sensing. As the glacier moves, either by bedrock sliding or internal 

deformation, other processes occur simultaneously on the glacier surface: (1) 

transportation; (2) deposition; (3) energy transfer; (4) weathering; (5) hydraulic process; 

and (6) topographic controlling. These processes work together to form distinctive 

glacial landforms. This new protocol is especially suitable for evaluating glacier 

dynamics from a process perspective because the degree of convergence reveals the 

uneven topographic nature of the glacier surface, which is the outcome of the above six 

processes.  
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Figure 39a and Figure 39b illustrate how the spatial unevenness is distributed 

over the surfaces. ASTER convergence retains some of the convergence from SRTM but 

still does exhibit more convergence features in the ablation zone and the upper 

accumulation zone of GA and GPM. After the convergence is aggregated into accurate 

geomorphic features, it is easier to detect the change in surface structure as shown by 

comparing Figure 39c and Figure 39d. Some agreement between SRTM and ASTER 

segmentation images exists. It is interesting that the ASTER segmentation image shows 

more details in approaching terminus. The link-image based on graph theory can further 

quantify the structure change occurring on glacier surface (Figure 39e and Figure 39f). 

The link image change from SRTM to ASTER for both glaciers has been explicitly 

examined. They are shown in Table 12. 
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Figure 39. Convergence images (a and b), segmentation images (c and d) and link 

images (e and f). 
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To further evaluate the change of the structure of the glacier-surface, I conducted 

a post analysis to calculate the difference between the SRTM-link image and the 

ASTER-link image (Figure 40a). This difference image (Figure 40a) is the first existing 

image that can quantitatively evaluate how the structure of the glacier-surface changes 

over time. A centerline analysis from this difference image (Figure 40b) also suggests 

this change is across the whole glacier-ablation zone. Based on Figure 40, additional 

interpretations regarding glacier dynamics are summarized in Table 13. The terminus of 

the retreating glacier GA has considerably less structure complexity, but the terminus of 

the stagnant glacier GPM has notable increasing surface complexity. The GA appears to 

have more active upper-ablation zone as well as on ELA, however, the GPM has an 

inactive upper-ablation zone and ELA. These findings further demonstrate that the 

contrasting patterns show in the rates of terminus fluctuation (Minowa et al., 2015) and 

extend to the change in the glacier -surface structure. 

Table 14. Details about how GA and GPM surface structure changes over time. 

 

  GA GPM 

Terminus Region 

Extreme decreasing 

structure  

complexity 

Extreme Increasing  

structure  

complexity 

Glacier Tongue 

Negative or small 

changes 

 for most areas 

Positive changes for  

most areas and  

very stable 

Upper Ablation Zone 

Significant increasing 

structure  

complexity and oscillate 

Decreasing 

and less structure 

complexity 

Close to ELA Close to zero Close to zero  
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Figure 40. Post analysis of link images. Figure 40a is the difference between ASTER-

link and SRTM-link images. Figure 40b is the centerline analysis of Figure 40a. 

 

Do contrasting patterns exist for GA and GPM? 

Topographic control 

Only TOPEX 

In a glacial environment, topographic control plays a vital role in regulating direct 

solar radiation input, diffuse radiation scattering, snow avalanche origin, wind-fetch 

path, and supraglacial microclimate. Explaining glacier activities by omitting 

topographic control can lead to inaccurate conclusions regarding glacier dynamics. 

Unfortunately, most existing glacier studies do not take topographic factor into 

consideration. My study uses TOPEX as a proxy for topographic control to evaluate if 

the TOPEX is the major reason for the contrasting patterns of the GA and the GPM 

respectively, and the findings (Figure 35 and Figure 36) are important because: 
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I. It demonstrates the GA has a much lower topographic exposure than the GPM. 

Because the GA still exhibits a retreating pattern, a lower TOPEX normally 

means the glacier is more shielded by local terrain. It further demonstrates that 

TOPEX alone may not explain well the contrasting patterns of these two glaciers, 

especially for the GA. 

II. The TOPEX of the GPM surface remains relatively stable. It demonstrates that 

the GPM terminus has been stable for decades. Topographic control, at least for 

the GPM, might help to form a substantially stagnant front because the glacier 

surface exhibits a balanced distribution of topographic exposure, which suggests 

the microclimate on the GPM is relatively consistent. 

Solar panel effect 

TOPEX alone cannot fully address the driving mechanism of contrasting patterns 

between the GA and the GPM. Nevertheless, the intermediate result for TOPEX, i.e., the 

maximum inspection angle (Figure 31b) can assist in explaining how much topographic 

conditions can influence glacier activity. Because the Patagonia Ice Field is in the mid-

high latitude of the Southern Hemisphere, the solar geometry allows north-facing slopes 

to receive much higher solar radiation in an alpine setting. Based on this fundamental 

knowledge base, I further developed an enhanced semantic model for topographic 

control (Figure 41). In this model, within the same search distance as shown in Figure 

31a, a location with higher inspection angle will receive more direct solar radiation than 

a location with a lower inspection angle, because like a roof-mounted solar panel, a 
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power unit of higher inspection angel normally means a broader interface occurs within 

a unit planimetric area. Thus, it will gain more solar energy than the lower one. 

 

Figure 41. The semantic diagram to show the “Solar Effect” in Patagonian Icefield. In 

the diagram, B and D are two semantic locations of different height but with the same 

search distance. αb and αb are the inspection angle for B and D. 

 

Figure 42 shows the North-facing inspection angle, and it clearly illustrates that 

the GA-adjacent North-facing slope (red arrow) has a much higher inspection angle than 

the GPM-adjacent North-facing slope (green arrow). If these North-facing slopes are 

viewed as solar panels, they will reserve solar energy in the daytime and release energy 

to adjacent objects with lower temperatures that is, glaciers. The energy transfer 

mechanism is beyond the scope of this study, and the solar panel effect is only one 

possible assumption. 
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Figure 42. The North-facing inspection angle image. The red arrow is pointing to the 

GA-adjacent North-facing slope and the green arrow is pointing to the GPM-adjacent 

North-facing slope. A brighter value means a larger Max Viewing angle in the search 

radius. Because these are north-facing slopes, which means brighter pixels will result in 

relatively larger interface to receive solar radiation. By comparing the GPM and the GA 

glacier valleys, one can see the large difference. The GA has much brighter north-facing 

slopes when compared with the GPM. 
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Landslide relic in the GA 

The Solar-Panel Effect provides a partial explanation of the contrasting patterns 

between the GA and the GPM, so a more detailed scrutiny of the geomorphological 

constraints is needed. Examination of multi-temporal satellite images from 1969 to 2011 

confirmed that a large rock-mass (Figure 43a) extrudes into the glacier tongue in the GA. 

This seemingly landslide relic significantly alters the GA glacier-flow dynamics because 

(1) the GA glacier valley has a narrowing trend; (2) the width of this landslide relic is 

more than one third of the glacier-valley width; (3) ring-shape ogives radiate around this 

rock mass (Figure 43b, red arrow) but no such pattern exists in the upper glacier tongue 

(Figure 43b, blue arrow). 

The third example, the magnitude of how the landslide relic influences the 

dynamics of glacier-flow of the GA is the ring-shape ogives, which are the result of 

Bernoulli’s principle. In fluid dynamics, Bernoulli's principle states that an increase 

(decrease) in the speed of the fluid occurs simultaneously with a fall (rise) in “static” 

pressure. The glacier valley narrowed by landslide relict caused an increase of 

movement for glacier close to the rock mass (Figure 43). This speed increase further 

resulted in a fall of “static” pressure. The pressure difference perpendicular to the flow 

direction is the major cause of the ring-shaped ogives. The maximum radius reaches all 

the way to the medial moraine, which is half the width of the GA surface. In addition, 

this landslide relic is also on the North-facing slope of the GA, which further contributes 

to the Solar Panel Effect by increasing the energy convection from rock to ice. 
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Figure 43. The high-resolution image from CNES Airbus (2020) over the GA and the 

GPM. A long-existing landslide relic that narrows the GA tongue (Figure 43a). Close 

examination of the ogives shows a ring-shaped pattern around the landslide relic (Figure 
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43b, red arrow); no such pattern can be found in the upper region (Figure 43b, blue 

arrow). 

 

 

3.5.3.2 AAR ratio, glacier geometry, and others 

Based on the preliminary results from Stuefer et al. (2007), Minowa et al. (2015) 

attribute the contrasting patterns of the GA and the GPM to different accumulation-area 

ratios (AAR). In their research, the GA has an AAR of 0.45 whereas the GPM has an 

AAR of 0.73. The researchers concluded that the AAR ratio is the major cause of the 

contrasting pattern based on the following: 

i. the average AAR for SPI the glaciers is 0.71(De Angelis, 2014); 

ii. once the AAR is greater than 0.8, calving glaciers are expected to advance 

regardless of climate forcing and other factors (Post et al., 2011); and 

iii. the GPM terminus geometry may contribute to a stable calving front (Minowa et 

al., 2015). 

Therefore, I suggest that these glacier systems are very sophisticated; and that glacier 

activities and its changes in surface-structure are the result from multiple controlling 

factors, including climatic forcing, topographic control, tectonic, bedrock conditions, 

glacier geometry, albedo resistant, relative-mass content (Aniya and Sato, 1995; Naruse 

et al., 1995; Nick et al., 2009). Thus, for calving glaciers, more factors need to be 

considered including proglacial-water property (i.e., temperature, salinity, sediment type 
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etc.), calving-front circulation mechanism, and melting condition of calving ice under 

water (Bartholomaus et al., 2013; Rignot et al., 2010). Even though AAR can seemingly 

explain why the GPM terminus is stagnant, it still does not explain why the GPM 

surface-structure in the glacier tongue shows greater complexity than the GA. My 

research suggests that even though the GPM has a stable terminus, its surface is 

extremely active, and this could be because of a continuously down-wasting of the 

surface and/or fast snow-ice nourishment in the accumulation zone. For the GA, besides 

the fact that its AAR is extremely low, the orientation of the GA upper ablation zone 

changed from east-west direction to nearly north-south direction. This sudden change 

begins approximating the red spot where it is placed in Figure 44 which is around 10 km 

from the terminus. This orientation shift also significantly influences surface-structure 

complexity because the link number of the GA has increased ~10km from the terminus 

(Figure 34 and Table 12). A north-south trending glacier surface receives more solar 

radiation than an east-west oriented low-reach. This orientation shift can also 

significantly alter the snow nourishment in the accumulation zone by reducing the 

influence of winter westerlies. 

 In conducting this research, I attempted to identify glacier that had similar 

orientation, similar zone of accumulation zone, similar terminus characteristics (e.., into 

a lake rather than one on a dry surface and one into a lake), and similar length of travel. 

The zone of accumulation of GPM is larger than the zone of accumulation of GA. 

Whereas, difference in the size of zone of accumulation could impact the overall 
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dynamics of glaciers, I assumed that the size would not have the direct impact on surface 

change just in the ablation zone.  

 

 

 

 
Figure 44. The GA and the GPM centerlines overlaid on a topographic exposure image. 

The orientation of the GPM is stable from terminus to the ELA, but orientation of the 

GA starts to change from the red dot as labeled, which is ~10 km from the terminus 

position. 
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Glacier Anomaly and future research 

Glacier Anomaly 

The IPCC ar4 (Cruz et al., 2007) examined glacier activities in the Southern 

Patagonia Icefields; however, since then, remote sensing, especially geodetic technology 

has improved the knowledge about the Patagonian glaciers (Cogley, 2009). IPCC ar5 

(Vaughan et al., 2013) acknowledges that glaciers in the Patagonia Icefields show 

similar glacial anomalies as other coastal glaciers in New Zealand and mountain glaciers 

in Karakoram and Norway (Solomina et al., 2016). They specially point out that 

prevalent glacial retreat along with mass loss are occurring in the Patagonia Icefields 

(Lopez et al., 2010; Davies and Glasser, 2012; Willis et al., 2012; White and Copland, 

2013;), however, some glaciers in the Southern Patagonia Icefields exhibit 

advancing/stagnant characteristics (Muto and Furuya, 2013; Sakakibara and Sugiyama, 

2014). 

An important question then becomes: is terminus fluctuation the only standard for 

distinguishing glacier anomaly? As I discovered in this study, even though GPM exhibits 

a stable terminus, its surface structure has changed dramatically in the terminus area and 

the glacier tongue. Using the terminus position as the only measure to evaluate glacier 

dynamics does not adequately reflect what is happening on glacier surfaces. I introduce a 

new technique to evaluate glacier dynamics by examining the change in surface-

structure using object-oriented analysis and graph theory as an alternative to traditional 

glacier anomaly measures. The characteristics of the new techniques are: 

i. it treats the glacier as a system and provides a way to quantify the system 

properties; 
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ii. it provides objected-oriented analysis can facilitate configuring the components 

within the system and map the geomorphological features accurately; 

iii. it allows glacier down wasting to be detected; and 

iv. it provides a way for change in the glacier surface-structure over time to be 

effectively represented by graph theory. 

 

 

Future research 

Glaciers can be impacted by climate change. Ten percent of the surface of Earth 

is covered by glacial ice, and only one percent of glacial ice occurs in mountain ranges 

(Cuffey and Paterson, 2010). Nevertheless, mountain glaciers have gained a lot of 

attention recently because these environments are sensitive to global climatic change and 

can serve as regulators for local climate cascades, such as cooling down the regional 

weather through increased rates of melting (Benn and Lehmkuhl, 2000; Benn and Evans, 

2014). From the North Pole to the South Pole, glaciers have been studied intensively. 

The Patagonian Icefield still remains, however, a “large blank spot on the map” as the 

result of minimal research and collaborations. Many fundamental glaciological questions 

still need specific answers, such as rates of glacier fluctuation, driving factors for 

Patagonian Glacier Anomalies, glacier-flow dynamics and distribution of supra-glacial 

debris loads, and mass balance change of the PI as well as its contribution to the rate of 
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sea level rise. I believe by introducing the new standard in my study, many above 

mentioned research question can be better addressed in the future.  

In addition, glaciers of the NPI and the SPI play a major role influencing water 

resources and hydroelectric power for South America. But negative impacts also occur. 

Glacial hazards can also destroy social and economic development of downstream 

communities. Thus, a better understanding of glacier system by using the new standard 

in the PI can facilitate urban planning and minimize risk of potential hazards. Bi-national 

(i.e., Chile and Argentina), and international collaborations are also required for future 

studies in the Patagonia Icefields. 

Conclusions 

In this study, I developed a new protocol by using object-oriented analysis and 

graph theory to evaluate glacier dynamics in the Southern Patagonian Icefield. I first 

examined the convergence index and its applicability for glacier mapping and feature 

extraction. Based on the convergence index, I developed an effective approach for 

segmentation. The segmentation results facilitate the understanding of glacier-surface 

complexity from a process perspective. The segmentation results are very important 

input for the two-cascade graph theory analysis in quantifying glacier-surface structure. 

From a technical point of view, I suggest that: 

i. object-oriented analysis and graph theory can be used for mapping glaciers;  

ii. network property patterns may be related to down-wasting patterns and 

ablation; 
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iii. changes in the temporal patterns of network properties may be related to 

glacier sensitivity to climate forcing; and 

iv. spatial-temporal patterns of glacier topography may be related to glacier 

dynamics. 

In the research I also evaluated how topographic control can influence glacier 

activities. Even though TOPEX alone cannot sufficiently explain the contrasting patterns 

between the GA and the GPM, the solar-panel effect, long-existing landslide relic, 

glacier-orientation shift, along with AAR difference can help to provide a better picture 

of why such contrasting phenomena occur.  Finally, with multiple illustrations, I 

ascertained that the GPM exhibits more surface changes in the glacier surface than the 

GA. Thus, using the terminus as the sole indicator of a glacier dynamics is not 

persuasive. The new technique I introduced to evaluate how changes in the glacier-

surface structure over time can be extended into other glaciated areas. 
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4. THE STRATIFICATION OF AUTOMATED SURFACE EXPRESSIONS 

USING NEW TOPOGRAPHC INDICS AND ARTIFICIAL NEURAL 

NETWORKS (ANN) 

 

Introduction 

Chapter 4 introduces artificial neural network (ANN) and new topographic 

indices for mapping applied alpine geomorphology via a case study in the San Juan 

Mountains. The results suggest my protocol can facilitate the mapping and 

understanding of geomorphic input in the urban planning mechanism (Lehmkuhl et al., 

2020). 

Geomorphology mapping is fundamental component of urban geomorphology. 

My research integrates innovative terrain parameters into an Artificial Neural Network 

(ANN) to first carefully map the basic surface expression and then assess its 

applicability to urban geomorphology (Lucà, 2020; Nefeslioglu et al., 2021). 

Traditional geomorphic mapping requires extensive labor and time. A qualified 

cartographer must possess the basic geological-domain knowledge to interpret different 

surface expressions, and also needs to be able to conduct field validation and be skilled 

in identifying the outline of each surface expression (Huff et al., 2021). Using GIS 

(Geographic Information System) also requires a cartographer to be able to digitize 

surface-expression outlines accurately either from aerial photographs or satellite 

imageries. Many questions still exist for manual mapping, such as an interpreter’s bias, 

drawing error, lack of accuracy, and the difficulty to reproduce. Thus, it is fundamental 
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to develop an automated mapping protocol for characterizing the surface expression 

accurately. My hope is that the protocol I have developed will facilitate automated 

geomorphic mapping protocol to be used in different settings. 

Optical remote sensing mapping relies on the spectral differences between 

different surface expressions; however, understand that background noise could 

potentially hamper accurate mapping. For instance, a bare-ground ridge during winter 

may be mapped differently when the ridge is covered by grass in summer. Although pure 

spectral information can help determine the type of surface material of certain surface 

expressions, it cannot satisfy the required detail for geomorphic mapping. Whereas, a set 

of characteristics, such as shape, size, texture, height, gradient, positions, can help to 

define the type of surface expressions; these characteristics are impossible to retrieve 

simply by using optical remote sensing. Thus, terrain information must be incorporated 

to address geomorphic mapping issues (Metelka et al., 2018). 

Information from terrain analysis can minimize the above-mentioned issues by 

revealing the underlying topographic structure to help characterize and detect different 

surface expressions. Before moving forward, several questions need to be considered. 

What type of surface expression am I going to map? Is the spatial resolution of available 

data fine enough to support the mapping task? Can the mapping be automated and used 

in a variety of geomorphological regions? What processes have produced the current 

landscape? These are important questions that should be considered before starting any 

mapping project. 
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Digital elevation models and the derivatives have been frequently used for 

geomorphic mapping in conjunction with other remote sensing data. Bolongaro-

Crevenna et al. (2005) used a simple topographic index, e.g., slope and curvature to map 

basic morphometric features as valleys, ridges, peaks and planes. High-resolution DEM 

retrieved from UAV (Unmanned Aerial Vehicle), or LiDAR (Light Detection and 

Ranging) significantly enhanced the potential of using terrain analysis for geomorphic 

mapping; however, the existing terrain-based mapping only focuses on a small number 

of surface expressions, limiting the mapping capacity in San Juan Mountains which 

consist of a large spectrum of different types of surface expressions (Latifovic et al., 

2018). 

Coates (1976) and Cooke (1984) suggest that geomorphology can be used in 

studies of urban environment by examining the suitability of different surface 

expressions for physical urban planning, evaluating geomorphic impacts during 

construction, analyzing the geomorphologic consequences from human-introduced 

surface expressions, and mitigation of hazard risks. Traditional geomorphological 

techniques, for instance field surveys, still have merit because of the long-established 

records (Goudie, 2003). The advent of geospatial technology, e.g., GIS and remote 

sensing, however, have significantly improved the study of geomorphology from a 

global-scale perspective (Hengl and Reuter, 2009). 

Geomorphometry is the study of the quantitative analysis of the land-surface 

(Pike, 1995). Qualitative depiction of surface expression evolution has been replaced by 

numerical analysis approaches since the 1950s. Dramatic changes in geomorphology 

https://www.sciencedirect.com/science/article/pii/S0034425717303577#bb0065
https://www.sciencedirect.com/science/article/pii/S0034425717303577#bb0065


 

139 

 

have progressed after 1980s as a result of the following technological influences: (1) 

improved remote sensing platforms offering high-quality acquisition information on the 

surface of Earth; and (2) development of personal computers and improve computation 

capacity have significantly stimulated designing innovative and efficient algorithms for 

solving Earth science problems (Church, 2010).  

Geomorphometry is a modern science that obeys basic principles of classic 

geomorphology. For instance, to characterize the surface of Earth, six classic factors of 

topography need to be considered: elevation, terrain-surface shape, topographic position, 

topographic context, spatial scale, and surface expression object (Deng, 2007). With 

geomorphometry, the first four factors can be properly calculated, and the last two can 

be effectively analyzed. 

The combination of Geographic Information System (GIS) and remote sensing 

has significantly enhanced the computation capacity to solve Earth science related issues 

(Goodchild, 1992). Many commercial geomorphometry software exist; however, each 

employs its own analytical functionality. For example, to calculate a simple 

geomorphological factor, such as profile-curvature of a slope, different software may 

yield different results. Thus, recognizing the limitation of different software is as 

important as understanding the physical nature of the algorithm that is employed. 

Various geomorphometry applications exist, including mapping glacier terminus, 

extracting river channels, assessing terrain for military support, monitoring crop health 

condition, optimizing urban transportation system, and modeling solar radiation. 

Coupling GIS with remote sensing significantly enhances the computational capacity of 
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geomorphometry. Remote sensing can be used to acquire the information from the 

surface of Earth; GIS can be used to develop relevant functions to aid in the 

interpretation of the remote sensing data. Thus, it is important to integrate remote 

sensing and GIS in the study of landform processes. 

Traditionally, remote sensing is collecting information from aerial platforms, 

including airplanes, UAV, and satellites. One advantage of remote sensing is that it can 

access extremely roughed terrain where human beings cannot.  Another advantage of 

remote sensing is it can provide a chronological record of a specific area, which is very 

important in the study of geomorphology. Currently, Synthetic Aperture Radar (SAR) 

and LiDAR are two additional remote sensing technologies used in geomorphometry. 

SAR is good at penetrating dry materials, such as sand or dry snow. LiDAR is good at 

delineating land-surface details (Jensen, 2005). 

My research will exhibit two case studies of how to incorporate a set of 

meaningful and innovative terrain analysis layers as input for an Artificial Neural 

Network (ANN) to map surface geomorphology and as an input for reconnaissance 

mapping in the Western San Juan Mountains. Using ANN to map alpine geomorphology 

has not been attempted by other researchers. 

Background 

Study Area 

The San Juan Mountains are the largest mountain range by area in Colorado 

(Arcusa, 2020). The range covers 13 counties in the southwestern part of Colorado. The 
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San Juan Mountains are referred to as “Swiss Alps” of America as recognition of the 

variety of surface expressions with majestic scenery. Thirteen peaks rise to over 4,265 

m. Many lakes, waterfalls, and streams exist in this area. The Rio Grande origins from 

this mountainous area, as well as the Uncompahgre, San Miguel, and Animas rivers 

(Figure 45). 
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Figure 45. The study area of this research. Map is created based upon shaded relief. The 

elevations in general increase from north to south of this area. 
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Six communities in this area include Ridgway, Ouray, Mountain Village, 

Telluride, Ophir and Silverton. The well-known San Juan Skyway, consisting of U.S. 

Highways 62, 145 and 550, provides access to this region (Figure 45).  

Volcanic processes are dominant in this region from Precambrian to the present, 

which produced a highly mineralized alpine setting (Hoffman, 1997). Located at the 

southern extent of the Colorado Mineral Belt, the San Juan Mountains are famous for the 

mining of gold and silver. Besides volcanic process, the landscape has been sculptured 

by intense glaciation, fluvial erosion, and mass movement (Moore, 2004). 

 

ANN 

Artificial neural networks are a machine learning technique, which can learn 

relationships between specified input and output variables. Neural networks constitute an 

information processing model that stores empirical knowledge through a learning 

process and subsequently makes the adjusted output based on the knowledge training. 

ANN can mimic a thought process of a human brain to acquire knowledge from the 

environment through a learning process. A neuron is the fundamental processing unit 

used in ANNs (Figure 46). A neuron consists of connection links characterized by 

certain weights. Input is passed from one end of the links, multiplied by the connection 

weight and transmitted to the summing junction of the neuron (Haykin, 1999). In 

environmental studies, ANN can facilitate the modeling of cause-effect relationship such 

as water-quality forecasting (Palani et al., 2008), and rainfall-runoff modeling (Hsu et 

al., 1995). 
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Figure 46. An example of an artificial neural network (Zhao et al., 2018). 

 

For this area I adopted ANN for mapping geomorphology in the San Juan 

Mountains. This approach allowed a first approximation or reconnaissance-type to be 

compiled for this area. This technique is both time and cost effective. Kelkar (2017) 

compiled a detailed map of the geomorphology of this area. I used his map as a 

substitute for ground truthing the map I derived from the imagery. Kelkar created a 

mapping cascade of 27 subclasses, of which I generalized these surface expressions into 

6 major categories (Figure 47). This fundamental stratification of the geomorphology 

meets the basic need of mapping at a larger scale. 
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Figure 47. Surface expressions following Kelkar’s work (2017). 

 

Geomorphology Mapping 

Case description 

 Kelkar (2017) mapped the surficial geomorphology of the San Juan Mountains 

at a scale of 1:3,000 using aerial photographs and ground truthing. His map is the first 

detailed geomorphology map covering this alpine area. In Kelkar’s map, surface 

expressions are mapped into six categories: 1) glacial landforms; 2) glaciofluvial 

landforms; 3) gravitational landforms; 4) morphological components; 5) outcrop 

geology; and 6) periglacial landforms (Figure 49). When considering the high potential 

of mass-driven hazards in alpine settings, such as landslides, snow avalanches and debris  
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flows, a detailed geomorphic map can assist planners to gain priori knowledge and to 

mitigate damage to real property and plentiful loss of lives. In the future, an accurate 

geomorphology map of the San Juan Mountains can facilitate environment and 

engineering, urban planning, and tourism.  

 Whereas Kelkar’s map provides a first approximation of the geomorphology of 

the San Juan Mountains, manual mapping, however, is subjective, and labor-intensive. It 

is also challenging to educate a cartographer with the necessary expertise to conduct an 

accurate mapping task, as Mr. Kelkar did. In this research, I used the ANN (artificial 

neural network) based upon a careful selection of input layers to optimize the mapping 

efficiency of surficial surface expressions.  It should be noted that some of these input 

layers are innovative terrain indices and have yet to be applied in other studies. In 

addition, I tested the possibility of enhancing the mapping accuracy by introducing an 

input layer based on object-oriented analysis. The mapping protocol in my research is 

automated and objective; and it can be transplanted conveniently into other areas. The 

preliminary result is very encouraging when compared with Mr. Kelkar’s mapping 

product. 

Data Input 

Valid data input determines the accuracy of the mapping outcome. My research 

incorporates data at different levels, from first-order derivatives of DEMs to very 

sophisticated data, e.g., topographic shielding. Because the goal of my research is to map 

surface geomorphology, selecting the data input necessitates choosing data from a 



 

147 

 

process perspective. After scrutiny, 9 major input layers were chosen as ANN input 

layers, and these are: elevation, relief, orientation, valley bottom, horizontal distance to 

river, height above river, convergence, terrain object, and topographic shielding. The 

following discusses the description of each input layer. 

1-DEM integrates all terrain information, which serve as a basic input layer for 

ANN (Figure 48a). All other input layers are derived from this DEM; however, each 

represents one physical perspective when considering the process of landform formation. 

2-Relief can charactize local topographic change (Figure 48b). It can also serve 

as an alternative to surface roughness and slope. This index will hightlights landforms 

whose spatial distributions are highly influenced by gravity, such as landsldie, deposites, 

talus, and debris flows.     

3-Orientation is a quantifable number regarding aspect (Figure 48c). It clearlly 

differentiates north-oriented slope from south-oriented slope. Because the study area is 

located in the northern hemisphere, south-facing slopes will reveive more solar 

solaradiation compared to north-facing slopes. Solar radiation plays a vital role in the 

rock-weathering process. Thus, this index is fundamental. 



 

148 

 

 

Figure 48. The basic input layers: a) Elevation; b) Relief; c) Orientation. 

 

4-Valley Bottom is the calculation of the Multi-resolution Valley Bottom 

Flatness (MRVBF) index (Figure 49d; Gallant and Dowling, 2003). This index 

delineates the flatness and relative height of a landscape at different scales. This index 

allows one to extract valley bottoms that are relatively low compared to surrounding 

terrains. This index is essential when working in alpine settings because it can help one 

to identify u-shaped valley as an indicator of past glaciation. 

5-Horizontal Distance and 6-Height above nearest drainage (HAND) are both 

related to fluvial processes. Horizontal distance (Figure 49e) is the planimetric distance 
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from the grid cell centroid to the nearest drainage. Height above nearest drainage (Figure 

49f) is the elevational difference from the grid cell centroid to the nearest drainage. The 

schematic explanation can be viewed in Figure 50 for details. Horizontal distance can 

serve as measure of the potential of fluvial sediment transfer, whereas Height above 

river can serve as a measure of potential inundation and erosion. 

 

Figure 49. The basic input layers: d) Valley Bottom; e) Distance to River; f) Height 

above Nearest Drainage. 
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Figure 50. Definition of proximity measures for distances up (to ridge) and down to 

stream. Height above nearest drainage (HAND) is evaluated using vs, the vertical drop 

to the stream. hr, horizontal distance to ridge; vr, vertical rise to ridge; sr, surface 

distance to ridge; pr, direct-transect distance to ridge; hs, horizontal distance to stream; 

ss, surface distance to stream; and ps, direct transect distance to stream. (Revised from 

Zheng et al., 2018). 

 

7-Convergence is a valuable resource to show the structure of the topography as 

a combination of convergent regions (drainage channels) and divergent regions (ridges). 

This index is based on water flow and improves the existing river-channel extraction 

algorithm. This new method is cost-effective and can speed up delineating different 

surface expressions in mountain terrains (Figure 51g; Zhao et al., 2018). 
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8-Object layer (Figure 51h) is an object-oriented analysis layer based on layer 7 

(convergence). I use a threshold of 0.5 to classify regions into either concave or convex. 

This binary classification generates information about landform objects (i.e., features). 

Figure 52 illustrates that morphological landform exhibit a totally different patterns from 

periglacial landforms. This contrast has been found among other landforms as well. 

9-Shielding index is also known as topographic exposure (Figure 51i), which is a 

measure of the surrounding terrain and how it influences routes of wind transfer and 

incoming solar radiation. Wind and solar energy can influence a landform. 

 

Figure 51. The basic input layers: g) Convergence Index; h) Object Layer; i) Shielding 

Index. 
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Figure 52. These examples illustrate that different process result in different patterns of 

surface expression objects. Top image is the pattern of morphological surface 

expression. Bottom image is the pattern from periglacial surface expression. Note the 

pattern differences inside each red box. 
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ANN Training 

My research follows three rules for ANN training: 1) take the same number of 

samples for each surface expression category; 2) all samples should be based on 

randomly generated points; and 3) all samples should be spread across the region as 

much as possible. 

From these three rules, I randomly pick 1,000 sample points for each 

geomorphological category. All samples were spread evenly across the region (Figure 

53). The dimension of the study area is 2,710 by 5,950 pixels. Thus, the training rate is 

0.0372%. This training rate is much lower than most supervised mapping projects, 

including ANN. 
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Figure 53. Spatial distribution of sampling points across the region. 

 

Results 

After running the ANN based on the 9 input layers, the final output is shown in 

Figure 54A. From Figure 56A, six categories of fundamental geomorphology classes are 

captured. By visual comparison with Kelkar’s (2017) mapping results (Figure 54B), one 

can see the close alignment with fluvial and morphological surface expressions. In 

comparison to Kelkar’s map one can see that the ANN mapping overclassified gravity-
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related surface expressions and periglacial surface expressions. The ANN mapping also 

simplified the classification of glacial surface expressions and outcrop. 

Overall, however, ANN mapping does show a similar spatial pattern of surface 

expressions as Kelkar’s map. It should be noted that the ANN captured more details of 

the transition from one surface expression to another, whereas Kelkar’s mapping 

simplifies this transition. Thus, a more heterogenous pattern can be found in ANN 

mapping. 
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Figure 54. The comparison between ANN mapping (A) and Kelkar’s mapping (B). 
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Discussions 

Integrating ANN and innovative topographic parameters have been missing in 

geomorphic studies. My research used multiple topographic indices as input layers for 

ANN. The output suggests the integration of ANN and innovative topographic 

parameters can facilitate geomorphic mapping.  

This research demonstrates that automated geomorphic mapping in the San Juan 

Mountains is achievable. Using a very small number of training sites and limited time to 

test the mapping protocol, the existing mapping produced accurate results. The ANN 

mapping was ground-truthed using mapping conducted by Kelkar (2017). Automated 

mapping can be done within a timeframe of several hours once the protocol is 

established. On the other hand, field mapping in a complicated alpine region can take 

from month to years to complete the mapping. The ANN mapping is also cost-effective. 

Future ANN mapping protocols will require the following improvements: 

i. Evaluate training sites and carefully select training samples to enhance 

the mapping accuracy. In this research, the training rate is 0.0372% which 

is significantly small. In the future research, a more rigorous protocol of 

training sample selection is required. 

ii. Scrutinize the stratification of surface expressions in this research. In my 

research, 6 generalized surface-expression classes were selected. This 

generalization may reduce details of certain surface expressions; thus, a 

more scientific stratification is needed in future research.  
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iii. Develop a rigorous validation method to assess mapping accuracy. In my 

research, I only used Kelkar’s map as a validation dataset; however, the 

potential human error introduced by Kelkar can be inherent when 

validating my mapping result. A better validation dataset is needed in 

future. 

iv. Quantify the segmentation image as a new input layer to ANN. In my 

research, the segmentation exhibits its uniqueness for different surface 

expression. Because the unique pattern showing in segmentation image is 

not directly quantified in this research, it is essential to quantify these 

patterns for a more meaningful input layer to future research. 

My research indicates that the use of ANNs would improve remote predictive 

mapping as an effective tool for remote regions. ANN can be adopted to map surface 

expressions in the San Juan Mountains. Terrain-based input to ANN can facilitate 

mapping automation. In this research, controlling factors, such as training site selection, 

can influence the mapping outcome. Future research will require improve training data 

to better evaluate accuracy. 

Conclusion 

This research integrated new topographic indices with ANN to facilitate geomorphic 

mapping in the San Juan Mountains. The geomorphic mapping results demonstrated the 

adaptability of the methods proposed in this research. These topographic indices create a 
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new path to utilize terrain analysis in geomorphology. Thus, it is obvious that this new 

approach will generation a new research direction. More research is needed in future.  
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5. CONCLUSIONS 

Introduction 

Traditional GIS mapping framework has four limitations: 1) insufficient geo-

computation capacities; 2) incompatible with digital image processing and computer 

vision; 3) intendency of adapting a tight-coupling GIS setting; and 4) neglect of artificial 

intelligence. To mitigate the above-mentioned issues in traditional GIS mapping and 

studying framework, my dissertation integrated geomorphometry with self-designed 

geospatial algorithms to solve different geomorphic problems in multiple settings. My 

dissertation sought to achieve three objectives:  

• develop a more suitable mapping protocol for alpine and glacial environments, 

• evaluate the applicability of integrating ANN and innovative topographic indices 

for mapping automation, and 

• assess using graph theory and object-oriented analysis for glacier dynamics. 

To achieve these objectives, I conducted research in the San Juan Mountains in 

Southwestern Colorado and the Southern Patagonia Ice Field, Argentina. Results from 

the ANN classification of surface expressions suggests the high potential of combining 

ANN with new topographic indices for geomorphology mapping in alpine setting. The  

Geospatial algorithm development proposed in this dissertation illustrate that it can 

significantly broadens the scope of geomorphology studies. In addition, glacier 

dynamics can be re-evaluated by the protocol I developed in this dissertation. 

Finally, the integration of graph theory and innovative topographic indices can help 

facilitate geomorphology mapping and understanding system dynamics. 
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Future Direction 

Geospatial technology will continue moving on the track of increasing the 

computational power and the analytical capacity for solving various geomorphic 

problems. These advancements will significantly alter geomorphologists’ understanding 

of process. But will this 21st century geomorphology undergoes a revolution as dramatic 

as quantitative revolution in 1960s? I think the answer is no, because the development of 

modern geomorphology will largely be constrained by three major components: 

geomorphic flux transport laws, scale dependence of all processes, and complexity of the 

Earth system. 

Geomorphic transport laws dictate how Earth materials can be redistributed, thus, 

reshaping the landscape. Scales in time and space will limit the understanding of the 

geomorphological processes and the scope of numerical modelling. System complexity 

with an emphasis on the non-linear nature of Earth science will further constrain the 

capacity to thoroughly analyze processes to obtain uniformitarian understandings that 

can partially explain the above two constraints.  

Through my dissertation, I estimate more sophisticated geospatial techniques can 

somehow ease the constraints in geomorphology, to address scale dependence issues, or 

to simulate physical processes more accurately. 

 

 



 

165 

 

Future Direction Strengths and limitations of the new protocl 

The major contribution of my dissertation is the introduction of a new protocol 

incorporating graph theory with satellite imagery to examine the structure change of a 

glacier-surface as an indicator for glacier dynamics. This new protocol has both positive 

aspects as well as limitations. I think researchers need to know and understand the 

positive aspects as well as the limitations of my new technique. 

The positive points of the technique are: 

• the input layer of convergence can uniquely and clearly delineate surface 

topography on- and off-glaciers; 

• the objects-oriented analysis based on the convergence index can well reflect the 

pro-glacial processes; 

• graph theory can mathematically reconstruct the relations of surface structure in a 

glacial system; 

• this protocol challenges the tradition of using terminus position and mass balance 

as the only indicators for assessing glacier dynamics; 

• provides a means to do a global inventory of change on glaciers at a reasonable 

cost and time period; 

• topographic exposure index I developed can be useful for examining micro 

climate in glacial settings; and 

• it allows a relative fast method to compare various locations around Earth. 
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Researchers also need to be cognizant of some limitations. The limitations are: 

• original DEM quality plays a vital role in this protocol; especially the requestion 

still remains how to reconcile the DEMs retrieved from multiple years with 

different data sources; 

• I adopted a thresholding method for segmentation in this protocol, which is 

subjective and can influence the size and number of objects generated on a 

glacier surface; 

• it is essential to further evaluate the reproducibility of this protocol in other 

glacial environments, such as the Himalayas, Alaska, New Zealand and 

Antarctic; 

• atmosphere conditions, i.e., intense cloud cover limits the temporal availability of 

image selection; 

• because of the spatial resolution of various satellite platforms, detection of fine 

detail on surface of glaciers is limited; 

• expense of various imagery whereas not as expensive as field-based observation 

is still expensive and can limit the options for a researcher; and 

• the protocol facilitates detection and comparison of change on surface of glacier; 

it does not facilitate the calculation of glacier volume. 

 


