
 

 

 

UNMANNED AERIAL REMOTE SENSING FOR ESTIMATING COTTON YIELD 

A Dissertation 

by 

JEFFREY ALAN SIEGFRIED 

 

Submitted to the Graduate and Professional School of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of 

 

DOCTOR OF PHILOSOPHY 

 

Chair of Committee,  Nithya Rajan 

Committee Members, Curtis Adams 

 Steve Hague 

 Ronnie Schnell 

 Robert Hardin 

Head of Department, David D Baltensperger 

 

December 2021 

Major Subject: Agronomy 

Copyright 2021 Jeffrey Alan Siegfried



 

ii 

 

ABSTRACT 

 

Unmanned aerial systems (UAS) allow collection of imagery with unprecedented 

temporal, spatial, and spectral resolutions suitable for specialized purposes. Crop yield 

data is critical both for precision agriculture management purposes and crop breeding 

programs. However, collecting yield data at fine scales necessary for small plot research 

is labor-intensive. UAS could be leveraged to quantify yield variability while limiting 

labor requirements. Therefore, the objectives of this dissertation were to examine the 

relationship between cotton yield and derivatives from UAS multispectral and thermal 

infrared imagery and to determine optimal in-season timing of UAS flights for the 

strongest relationship with cotton yield. The experimental design was a 3x8 factorial 

within a completely randomized design arrangement with four repetitions and the study 

was conducted over four growing seasons (2017-2020). One treatment factor was three 

irrigation levels applied as a percentage of the estimated crop evapotranspiration (ETc) 

requirement: 0%, 40%, and 80% ET replacement while the other factor was eight 

commercial cotton cultivars. UAS imagery was acquired at biweekly intervals to 

produce high resolution multispectral and thermal infrared orthomosaics. Normalized 

Difference Vegetation Index (NDVI), Normalized Difference Red Edge (NDRE), a 

pixel-based classification of cotton bolls termed Boll Area Index (BAI), and canopy 

temperature were derived from the orthomosaics and analyzed to determine suitability 

for cotton yield estimation. NDVI had a positive linear relationship with yield, which 

was strongest at approximately 1200 heat units (R2 = 0.61, 0.78, 0.49, and 0.78 in 2017, 
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2018, 2019 and 2020, respectively). There were strong positive linear relationships 

between BAI and yield each year (R2 = 0.61, 0.79, 0.67, and 0.73). Multiple linear 

regression using vegetation indices, boll area index, and/or canopy temperature from two 

flight dates produced better yield estimates (Adjusted R2 = 0.79, 0.89, 0.84, and 0.81 for 

2017, 2018, 2019 and 2020). Vegetation indices, BAI, and canopy temperature could 

differentiate variation among irrigation levels. Results suggest that derivatives from just 

two or three UAS flights presents a detailed dataset for cotton yield prediction while 

limiting labor, risk, requisite computational resources, and equipment wear. 
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1. INTRODUCTION  

 

Seed cotton and lint yield data are valuable metrics for making management 

decisions in commercial cotton production, especially for precision agricultural 

purposes. Commercial yield monitors are the most prevalent method for quantifying 

variability at field scale. These yield monitors were a key advancement in precision 

agriculture technology because they provided fine spatial resolution yield measurements 

(Mulla, 2013). 

However, adoption of cotton yield monitors has lagged behind adoption of grain 

yield monitors due to early issues in their accuracy and reliability (Vories et al., 2019). 

While adoption of cotton yield monitors has increased, this is primarily due to new 

cotton harvesting machinery sold with yield monitors as standard equipment (Nair et al., 

2014). Unfortunately, farmers must purchase an unlock key to digitally enable the yield 

monitor. Some researchers suggest that monitors are collecting data that is never used, 

and it remains unclear whether farmers are leveraging it for management decisions 

(Ortiz & Duzy, 2016). While commercial yield monitor data in combination with fiber 

quality data has proven valuable for creating profit maps (Ge et al., 2011; Wanjura et al., 

2015), they require careful cultivar-specific calibration (Vories et al., 2019). Regardless, 

yield monitor data is collected at the end of the growing season when it is only useful for 

the following season. Unmanned aerial systems (UAS) could uncover in-field spatial and 

temporal variability during the growing season and the data could be used in 
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combination with variable rate technology for in-season adjustment of crop inputs such 

as fertilizer, irrigation, plant growth regulators, and pesticides. 

For crop breeders endeavoring to improve field performance of crops, yield data 

is useful for evaluating experimental lines in pedigree selection programs. This is 

especially true for early generations, where poor performing lines could be eliminated 

before costly harvesting and boll sampling. Yield estimates derived from UAS could 

potentially provide yield estimates for eliminating the worst performing lines, but 

accuracy may not be adequate for screening advanced lines. UAS are a cost-effective 

alternative to proximal systems which generally slowly collect datasets for high-

throughput phenotyping purposes and increase field traffic. 

UAS are now much more affordable for farmers (Sugiura et al., 2005) and they 

allow exceptional flexibility to choose ideal spatial, temporal, and spectral resolution 

based specifically on research or management objectives (Shi et al., 2016). These 

advantages have stimulated considerable interest in research for agronomy purposes. 

However, recent efforts related to UAS cotton yield estimation methods generally focus 

on segmenting techniques to isolate bolls in inexpensive red, green, and blue 

orthomosaics for quantifying yield after defoliation. These methodologies are not useful 

for in-season purposes, and the literature lacks thorough studies (i.e. across several 

growing seasons) into using high quality narrowband multispectral imagery to quantify 

yield during the growing season. Furthermore, very few researchers investigated yield 

estimation by including image products from both multispectral and thermal infrared 

cameras. 
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Therefore, this dissertation was divided into three chapters with the following 

objectives. For Chapter Two, the objectives were to 1) examine the relationship between 

in-season UAS-derived narrowband vegetation indices and cotton yield across irrigation 

regimes and time and 2) determine if heat unit accumulation can provide a physiological 

basis for optimizing the timing of UAS flights for in-season yield prediction. For 

Chapter Three, the objectives were to 1) determine the efficacy of a pixel-based 

multispectral image classification technique for cotton yield estimation and 2) develop a 

multiple linear regression model to enhance the accuracy of cotton yield estimates. 

Finally, the objectives for Chapter Four were to 1) evaluate infrared thermography for 

detecting differences in crop water stress across irrigation regimes and cotton cultivars 

2) explore the relationship between UAS-derived canopy temperature and cotton yield 

across irrigation regimes, and 3) examine the relationship between soil moisture and 

UAS-derived canopy temperature. 
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2. UAS-DERIVED VEGETATION INDICES FOR IN-SEASON COTTON YIELD 

PREDICTION 

 

2.1. Introduction 

Yield data is an important metric for plant breeding to assess genetic diversity 

and traits that contribute to improving field performance of experimental genotypes. 

Collecting yield data along with fiber samples from machine harvesters is labor-

intensive for cotton breeding programs where many small plots are harvested, weighed, 

and ginned individually. UAS could increase the efficiency of cotton breeding through 

rapid phenotyping of secondary traits (Maja et al., 2016; Pabuayon et al., 2019; Rutkoski 

et al., 2016; Sun et al., 2018; Thompson et al., 2020). UAS facilitate quick collection of 

dense datasets, especially when compared to proximal systems used for high-throughput 

phenotyping that take almost three hours to collect one hectare of data (Thompson et al., 

2018). Accurate in-season yield estimates made using remote sensing, such as from an 

unmanned aerial systems (UAS) platform, could also reveal spatiotemporal yield 

variability during the growing season for precision agriculture management to optimize 

crop production through more efficient distribution of irrigation water, fertilizer, plant 

growth regulators, and other inputs.  

Researchers have explored methods for estimating cotton yield with remote 

sensing for over twenty years. Early efforts began with proximal measurements from 

handheld sensors (Ansari et al., 1999), while recent efforts have focused on using high 

spatial resolution imagery captured with UAS. Leon et al. (2003) found correlations 
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between cotton yield and common vegetation indices derived from aerial multispectral 

imagery. In their study, correlation coefficients (R) between Normalized Difference 

Vegetation Index (NDVI) and lint yield ranged from 0.23 to 0.87 across two sites in 

1999 and 2000, while the best model coefficient of determination (R2 = 0.76) selected by 

stepwise regression was at 105 days after planting. They identified the better timing for 

determining variability in cotton growth as between first bloom and first open boll, but 

this was based on only two image acquisition dates from each site-year for the yield 

analysis. More flights would be necessary to determine optimal timing. Leon et al. 

(2003) also noted that correlations were not consistent over multiple dates within each 

growing season. Huang et al. (2013) observed similar correlations (R2 = 0.47) between 

yield and Ratio Vegetation Index (RVI) calculated from manned airborne multispectral 

imagery of a cotton field with irrigation and nitrogen treatments. The highest 

correlations with lint yield were at peak bloom and soil electrical conductivity 

measurements improved yield estimation (R2 = 0.53), but measures of error were not 

reported. Read et al. (2003) concluded that plant height, leaf area index, and lint yield 

were closely related to NDVI maps and near infrared reflectance acquired from either 

aircraft or proximal sensors. 

Yang et al. (2004) investigated the relationship between airborne hyperspectral 

imagery captured at maximum canopy cover and cotton yield data generated from an 

optical yield monitor installed on a four-row cotton picker. The hyperspectral system had 

128 bands between 457 to 922 nm, a bandwidth of 3.63 nm, and the resulting image had 

a spatial resolution of 1.3 m. They observed that narrowband vegetation indices 
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explained yield variability better than broadband indices and individual bands. 

Correlation coefficients between yield monitor data and the narrowband indices ranged 

from 0.32 to 0.68 over the two cotton fields in the one-year study. Zarco-Tejada et al. 

(2005) used hyperspectral data from an airborne flight to estimate cotton yield using 

narrowband vegetation indices, which performed slightly better than broadband NDVI. 

They also observed that vegetation indices related to leaf-area index and canopy 

structure, such as Renormalized Difference Vegetation Index (RDVI) and Optimized 

Soil-Adjusted Vegetation Index (OSAVI), had the strongest relationships with yield 

earlier in the growing season. At later growth stages (i.e. closer to harvest) the best 

relationships were from hyperspectral indices closely related to crop physiological 

status, such as Modified Chlorophyll Absorption Index (MCARI) which was designed to 

maximize sensitivity to chlorophyll concentration while limiting the effects of soil 

reflectance and non-photosynthetic materials (Daughtry et al., 2000). The 

aforementioned studies were generally limited by the technology of their time. Coarse 

spatial resolution and a limited number of flights were inadequate for exploring 

vegetation indices as potential tools for cotton breeding and precision agriculture. 

Recent efforts related to remote sensing for yield estimation have focused on 

using high spatial resolution imagery captured with UAS. Researchers explored 

segmentation and classification techniques to isolate open cotton bolls in imagery from 

inexpensive red, green, and blue (RGB) cameras to estimate cotton yield (Feng et al., 

2018; Huang et al., 2016; Maja et al., 2016; Yeom et al., 2018). The model R2 values 

ranged from 0.78 to 0.83 for these techniques that produced imagery with 0.6 to 3.4 cm 



 

9 

 

ground sampling distance (GSD). The authors noted some problems with accuracy 

caused by variable lighting conditions such as clouds, shadows, and bright soil but the 

root mean squared error ranged from about eight percent to 19 percent. These 

methodologies require imagery captured after defoliation and are not useful for in-season 

management. 

Researchers then began investigating cotton yield estimation using imagery from 

two or more cameras. Feng et al. (2020) used a modified RGB camera to capture near-

infrared, red, and green images with bandwidths of 80, 80, and 50 nm, respectively, and 

a GSD of 1.6 cm. They also collected imagery using an unmodified RGB camera (2.6 

cm GSD) and thermal camera (6.8 cm GSD) for modeling crop yield with multiple 

image-derived features. The models had R2 values up to 0.94 and RMSE ranged from 

164 to 362 kg ha-1 (7 - 14%). While adjusted R2 was not reported, Akaike’s Information 

Criterion (AIC) was used to evaluate model complexity. The seed cotton yield 

estimation model they suggested was optimal based on accuracy (RMSE = 194 kg ha-1) 

and cost included both plant height and the a* channel from the CIE 1976 L*a*b* (CIE-

Lab) color space. Plant height estimates were calculated from the digital surface model 

(DSM) of the canopy and the closest bare soil surface within each plot. While this 

requires only one flight, a major disadvantage of this methodology is that it requires 

visible bare soil within the plot boundary or region of interest, which is not available 

when the canopy closes. Otherwise, interpolation methods to estimate the soil surface 

become an additional source of error. As an alternative, a digital terrain model (DTM) 

could be generated from an additional flight immediately following planting to obtain a 
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baseline surface to later subtract from the DSM to estimate plant height, but this requires 

an additional flight during a busy time. This method relies on accurate, repeatable 3D 

georeferencing, which is not always available. Feng et al. (2020) also noted that cotton 

yield estimation may be affected by growth stage.  

Ashapure et al. (2020) used a combination of canopy features derived from RGB 

and multispectral UAS imagery to determine how early in the growing season a machine 

learning model could accurately predict cotton yield with canopy volume, Excess Green 

Index, and irrigation status as the input variables. They found that an artificial neural 

network model had reasonable accuracy as early as 70 days after planting (R2 = 0.72). 

While the authors included many flights for analysis, these 30 flights were collected 

from only one growing season. Furthermore, the multispectral camera had very large 

bandwidths of 100, 300, and 160 nm for the green, red, and near-infrared channels, 

respectively. 

Remote sensing studies using UAS for in-season cotton yield estimation 

generally have not included multispectral imagery from higher quality narrowband 

cameras with discrete sensors, global shutters, and irradiance sensors that can be used to 

correct for variable lighting conditions (e.g. clouds). Furthermore, information about 

cotton yield estimation using in-season imagery alone and associated ideal timing for 

UAS flights is sparse. While researchers previously established the link between 

narrowband vegetation indices and cotton yield, they were limited to proximal sensing or 

a small number of manned flights within a growing season. Very few explored 

vegetation indices for agronomic treatment comparisons, and the literature lacks more 
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thorough investigations using imagery with the fine spatial resolution achievable with 

UAS. Therefore, the objectives of this study were to 1) examine the relationship between 

in-season UAS-derived narrowband vegetation indices and cotton yield across irrigation 

regimes and time and 2) determine if heat unit accumulation can provide a physiological 

basis for optimizing the timing of UAS flights for in-season yield prediction. 

2.2. Materials and Methods 

2.2.1. Study Site 

This experiment was conducted over the 2017, 2018, 2019, and 2020 cotton 

growing seasons in a 3 ha field at the Texas A&M University research farm near College 

Station, Texas (30.550° N, 96.436° W). The field has been managed with conventional 

tillage and subsurface drip irrigation for more than 10 years. The predominant soil series 

at the site is Belk clay, which is classified as a fine, mixed, active, thermic Entic 

Hapluderts (Soil Survey Staff, 2021) and has a slope of less than one percent. The 

climate is humid subtropical with an average annual precipitation of about 1018 mm and 

temperature of 20.6 ̊ C (Menefee et al., 2020). Weather data was logged at 15-minute 

intervals from a station installed adjacent to the study site and daily averages were used 

for subsequent analysis. 

2.2.2. Experimental Design and Cultural Practices 

For all four growing seasons, the experimental design was a 3x8 factorial 

arranged within a completely randomized design and had four repetitions. There were 

three irrigation levels, which were applied as a percentage of the estimated crop 

evapotranspiration (ETc) requirement at 80% (irrigated), 40% (deficit irrigated), and 0% 
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(dryland). The only exception was 2017, during which irrigation was applied at 90%, 

45%, and 0% of the ETc requirement. Crop evapotranspiration was estimated based on 

the FAO Penman-Monteith method using weather data from the study site and crop 

coefficients for upland cotton in Texas. For details on the methodology for calculating 

crop water requirements, see Allen et al. (1998). There were eight commercial cotton 

cultivars planted per season (Table 2.1). Raised beds with 1 m spacing were prepared in 

December or January, and cotton was planted in April on beds into four-row plots. Each 

plot was 12 meters in length. 

Table 2.1. Cotton cultivars planted in 2017 to 2020. 

Maturity between Early to Full refers to least determinate 

growth to most indeterminate growth habit, respectively. 

Year Cultivar Maturity 

2017, 2018 Deltapine 1549 B2XF Medium-Full 

2017 - 2020 Deltapine 1646 B2XF Medium-Full 

2017, 2018 FiberMax 1900 GLT Early-Medium 

2017, 2018 FiberMax 2484 B2F Medium 

2017, 2018 NexGen 1511 B2RF Medium 

2017, 2018 Phytogen 333 WRF Early 

2017, 2018 Phytogen 499 WRF Medium 

2017, 2018 Stoneville 4946 GLB2 Early-Medium 

2019 Deltapine 1835 B3XF Medium 

2019, 2020 Deltapine 1845 B3XF Medium-Full 

2019, 2020 FiberMax 2398 GLTP Medium 

2019 Phytogen 350 W3FE Early-Medium 

2019 Phytogen 480 W3FE Medium 

2019, 2020 Phytogen 580 W3FE Full 

2019, 2020 Stoneville 4550 GLTP Early-Medium 

2020 NexGen 4936 B3XF Medium 

2020 NexGen 5711 B3XF Medium-Full 

2020 Phytogen 400 B3XF Medium 
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Cultural practices varied slightly in each growing season. Table 2.2 includes 

information about nitrogen fertilizer, plant growth regulator, and defoliant applications 

along with planting and harvest dates. Weed control included pre-emergence herbicides 

and over-the-top glyphosate applications when necessary. Urea-ammonium nitrate 

fertilizer (32-0-0) was knifed-in either prior to planting or shortly after at rates based on 

yield potential and composite soil sampling. Mepiquat chloride was applied at labeled 

rates when needed to limit rank growth, and irrigation was suspended when cutout was 

reached in the 80% ETc treatment. Chemical defoliants were applied when the irrigated 

treatment reached at least 60% open boll. To mitigate potential edge effects, only the 

two interior rows of each four-row subplot were harvested using a 2-row spindle picker 

retrofitted with an onboard scale to measure seed cotton yield by mass. Cotton stalks 

were shredded after harvest each year and residue was incorporated via vertical tillage. 

Table 2.2. Summary of cultural practices and timing for each cotton growing 

season. 

 

2.2.3. Unmanned Aerial System and Image Acquisition 

A MicaSense RedEdge-3 (MicaSense, Seattle, Washington) multispectral camera 

was fixed to a DJI Matrice 100 quadcopter (SZ DJI Technology Company Limited, 

Shenzhen, China) with a pitched mount to maintain nadir view during forward flight. 

Year Planting Nitrogen (kg ha-1) Plant Growth Regulator Defoliation Harvest 

2017 April 28 
112 on 3/30 

112 on 6/20 

6/15 

7/16 

10/2 

 
10/26 

2018 April 12 112 on 5/22 6/27 9/6 9/18 

2019 April 24 112 on 5/29 7/11 9/24 10/3 

2020 April 16 112 on 4/9 --- 9/29 10/5 
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Camera specifications are presented in Table 2.3. The quadcopter was upgraded with a 

dual battery compartment to ensure it could cover the entire study area in a single flight 

(Figure 2.1). Using UgCS flight control software (SPH Engineering, Riga, Latvia), 

photogrammetry missions were flown about every two weeks at 30 m above ground 

level (AGL) to produce a 2 cm ground sampling distance (GSD) for all image dates 

except for 2017, which were ~1.3 cm from about 20 m AGL. Optimal weather, such as 

sunny conditions and minimal wind between around 12:30 - 14:30 (near solar noon), 

were prioritized to ensure quality image capture. Direct georeferencing was used in 2017 

and 2018, but permanent ground control points were installed in 2019 and surveyed 

using a Reach RS+ Global Navigation Satellite System receiver (Emlid Limited, Hong 

Kong, China) with Trimble VRS real-time kinematic corrections (Trimble Navigation 

Limited, Sunnyvale, USA). 

Table 2.3. Sensor characteristics for the MicaSense RedEdge-3 multispectral 

camera. 

Band Name Center Wavelength (nm) Bandwidth/FWHM (nm) 

Blue 475 20 

Green 560 20 

Red 668 10 

Red Edge 717 10 

Near Infrared 840 40 
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Figure 2.1. MicaSense RedEdge-3 multispectral camera payload attached via fixed 

mount to the DJI Matric 100 quadcopter. The Downwelling Light Sensor is 

attached above the aircraft on a mast. 
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2.2.4. Image Processing and Analysis 

Figure 2.2 includes detailed information on flight parameters and the image 

processing workflow used in this study. Radiometric 16-bit TIFF imagery from the 

MicaSense RedEdge-3 was processed using structure from motion photogrammetry in 

Pix4Dmapper software (Pix4D S.A., Prilly, Switzerland) to generate orthomosaics. 

These orthomosaics were then calibrated to reflectance using the MicaSense calibration 

target, a panel with known reflectance values for which images were captured prior to 

and following each flight. NDVI and Normalized Difference Red Edge (NDRE) were 

calculated with the following equations:  

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
          Equation 1 

𝑁𝐷𝑅𝐸 =  
𝑁𝐼𝑅 − 𝑅𝑒𝑑 𝐸𝑑𝑔𝑒

𝑁𝐼𝑅 + 𝑅𝑒𝑑 𝐸𝑑𝑔𝑒
 Equation 2 

Finally, average vegetation indices per plot were calculated using vector boundaries 

digitized in ArcMap (ESRI, Redlands, USA). Figure 2.3 shows an example NDVI 

orthomosaic and corresponding 2 row subplots from which averages were calculated. 

Solely to compare vegetation index values graphically for each season, all plots were 

averaged per treatment for all image dates and used to form line graphs similar to growth 

curves. 
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 Analysis of variance (ANOVA) and linear regression analysis was conducted in 

R Studio (R Core Team, 2021) to examine treatment effects and the relationship between 

yield and vegetation indices for 28 UAS flight dates over 4 years. Tukey’s Honest 

Significant Difference (HSD) tests were used for pairwise mean comparisons. Image 

acquisition dates were analyzed separately by year and separately by irrigation level to 

identify optimal in-season timing at which UAS-derived vegetation indices had the 

strongest linear relationship with seed cotton yield. Linear models were evaluated using 

R2, root mean squared error (RMSE) and normalized RMSE (NRMSE). NRMSE was 

calculated by dividing RMSE by mean yield and multiplying by 100. Models were 

validated using the R caret package for k-fold cross validation with 10 folds repeated 10 

times (Kuhn, 2021). To account for seasonal weather variation and to provide a more 

Figure 2.2. Flow chart summarizing the flight parameters and steps in the 

multispectral image processing workflow. 

 

Flight

•DJI Matrice 100 quadcopter with MicaSense RedEdge-3 on a fixed mount

•Grid pattern flight at 30m above ground level

•75% frontlap and 75% sidelap

•Within an hour of solar noon

Pix4Dmapper

•Mosaic TIFF images from MicaSense RedEdge-3

•Optimize georeferencing with ground control points

•Orthorectification using DSM generated from densified point cloud 

•Radiometric calibration using MicaSense reflectance panel and downwelling 
light sensor (incident solar radiation) metadata when necessary

•Calculate vegetation indices

ArcMap

•Digitize plot boundaries over color-infrared composite (rectangles of equal 
area)

•Average for each vegetation index using plot boundaries (Zonal Statistics)

•Pair average vegetation index values by plot with final yield
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universal and physiological basis for analysis, the data was plotted against heat units 

accumulated after planting rather than by time using R packages ggplot2 and ggpubr for 

graphics (Kassambara, 2021; Wickham, 2009). Daily heat units were calculated using 

on-site ambient temperature and the development threshold temperature of 15.6°C 

(Oosterhuis, 1990) as in the following equation: 

𝐻𝑒𝑎𝑡 𝑈𝑛𝑖𝑡𝑠 =  
𝑀𝑎𝑥 𝐴𝑚𝑏𝑖𝑒𝑛𝑡 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 °𝐶 −  𝑀𝑖𝑛 𝐴𝑚𝑏𝑖𝑒𝑛𝑡 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 °𝐶

2
− 15.6°𝐶 
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Figure 2.3. Normalized Difference Vegetation Index mosaic (left) and 2 row cotton 

subplots (right) from which averages were calculated for analysis. Of a total of 96 

plots, 70 are shown in these images. Subplots are approximately 2 x 12 m. 
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2.3. Results 

2.3.1. Seasonal rainfall and accumulated heat units 

The most notable difference among growing seasons was rainfall, with rain 

events occurring earlier in 2017 and 2019, and 2018 and 2020 being relatively dry 

throughout most of the growing season (Figure 2.4). The driest growing season was 

2018 with 323 mm of rain, and 2017 had the most rainfall with 1087 mm. Rainfall 

during 2019 and 2020 growing seasons was 528 mm and 395 mm, respectively. Much of 

the rain in 2017 and 2020 occurred after maturation. The cumulative estimated crop 

evapotranspiration requirement (ETc) varied each year and ranged from about 365 to 615 

mm (Table 2.4). Much of the total of 400 mm irrigation in 2019 was applied near the end 

of the growing season as precipitation diminished, while the 334 mm of irrigation 

required in 2018 was distributed more evenly over time. 

Ambient temperature trends were similar for 2019 and 2020, which is evident in 

the accumulated heat unit curves presented in Figure 2.4. Average ambient temperature 

during the 2019 growing season was about 2.5% higher than 2018 at 27.6 °C and 26.9 

°C. Average ambient temperature for 2017 and 2020 were 26.7 °C, and both years also 

had tropical weather towards the end of the season. 
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Figure 2.4. Daily rainfall represented by colored bars and accumulated heat units 

(15.6 ̊ C development threshold) represented by lines during each cotton growing 

season at the Texas A&M Research Farm in Burleson County, Texas from 2017 to 

2020. 

Total Precipitation 

2017 = 1087 

2018 = 323 

2019 = 528 

2020 = 395 
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Table 2.4. Weekly cumulative cotton crop evapotranspiration requirements, 

rainfall, and irrigation treatment amounts during the irrigation period for the 2018 

– 2020 growing seasons. 
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2.3.2. Seed Cotton Yield 

Irrigation level had a significant effect on seed cotton yield for each study year 

(Figure 2.5; Table 2.5). The highest and lowest seed cotton yield for each year were 

observed in the 80% ETc and dryland treatments, respectively. Irrigation at 80% ETc 

increased seed cotton yield by 106, 98, 44, and 99% compared to dryland cotton in 2017, 

2018, 2019, and 2020, respectively. Average seed cotton yield for 40% ETc (deficit 

irrigated) was highest (mean yield of 2830 kg ha-1) in 2018, ranging from 1752 to 3897 

kg ha-1 and lowest (mean yield of 1183 kg ha-1) in 2020, ranging from 769 to 1963 kg ha-

1 (Table 2.6, Figure 2.5). In 2019, deficit irrigation yielded 480 kg ha-1 more than the 

dryland treatment. In 2017, the average seed cotton yield of deficit irrigation was 1004 

kg ha-1 more than observed in the dryland cotton. In addition to irrigation level, seed 

cotton yield was affected by cotton cultivar: 2017 (P < 0.0001), 2018 (P = 0.044), and 

2019 (P < 0.0001). There was no difference in seed cotton yield among cultivars in 2020 

(P = 0.144). There was no interaction between irrigation level and cotton cultivar for 

seed cotton yield for any year (Table 2.5). 

Similar to seed cotton yield, irrigation level had a significant effect on NDVI for 

all years (Table 2.5). Mean NDVI of 80% ETc irrigation was 13 and 11% greater than 

dryland cotton mean NDVI in 2017 and 2019, respectively (Table 2.6). In 2020, average 

NDVI was 40% higher in the 80% ETc irrigated cotton than in the dryland cotton (Table 

2.6). Variation in NDVI was observed among cotton cultivars for all study years (Table 

2.5). There was significant irrigation by cultivar interaction in 2017 (P = 0.037), but not 

in any other year (Table 2.5). Pairwise irrigation treatment comparisons for NDVI and 
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NDRE generally matched those for yield (Table 2.6). As shown in Table 2.7, pairwise 

comparisons for cultivar yield in 2017 were similar to those for NDVI. The top three 

yielding cultivars were ranked the same using NDVI, but Deltapine 1549 had unusually 

high NDVI and NDRE with a low mean yield relative to other cultivars. In Cultivar 

NDRE means were ranked similarly to NDVI, except in 2019 when NDRE groups 

matched yield better than NDVI. 

 

Figure 2.5. Box and whisker plot of seed cotton yield separated by irrigation 

treatment for all four years in the study. 
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Table 2.5. Analysis of variance for cotton yield and corresponding NDVI during the 

same year for all years in the study. 

Source of 

Variation 
DF F-value Pr > F F-value Pr > F F-value Pr > F 

 2017 Yield 
NDVI 

1239 Heat Units 

NDRE 

1239 Heat Units 

Irrigation 2 146.668 < 0.0001 147.773 < 0.0001 81.446 < 0.0001 

Cultivar 7 6.034 < 0.0001 6.787 < 0.0001 5.455 < 0.0001 

Irrigation x 

Cultivar 
14 1.508 0.13 1.923 0.0377 1.349 0.201 

 2018 Yield 
NDVI 

1108 Heat Units 

NDRE 

1108 Heat Units 

Irrigation 2 90.379 < 0.0001 128.512 < 0.0001 109.562 < 0.0001 

Cultivar 7 2.217 0.0444 3.195 0.00585 4.397 < 0.001 

Irrigation x 

Cultivar 
14 1.201 0.2975 0.406 0.96795 0.276 0.995 

 2019 Yield 
NDVI 

1237 heat units 

NDRE 

1237 Heat Units 

Irrigation 2 41.171 < 0.0001 21.157 < 0.0001 9.511 < 0.001 

Cultivar 7 8.236 < 0.0001 2.771 0.0131 4.228 < 0.001 

Irrigation x 

Cultivar 
14 0.682 0.785 1.167 0.3187 0.911 0.551 

 2020 Yield 
NDVI 

1154 Heat Units 

NDRE 

1154 Heat Units 

Irrigation 2 42.33 < 0.0001 26.734 < 0.0001 25.858 < 0.0001 

Cultivar 7 1.619 0.144 3.267 0.00454 3.729 0.002 

Irrigation x 

Cultivar 
14 0.8 0.666 0.352 0.98347 0.356 0.983 
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Table 2.6. Irrigation treatment means comparisons of cotton yield data and 

NDVI at corresponding heat units during the same year. 

Treatment Average Yield (kg ha-1) NDVI NDRE 

 2017 1239 Heat Units 1239 Heat Units 

Irrigated 2530 a 0.9047 a 0.5322 a 

Deficit Irrigated 2232 b 0.8919 a 0.5302 a 

Dryland 1228 c 0.8046 b 0.4580 b 

 2018 1108 Heat Units 1108 Heat Units 

Irrigated 3196 a 0.8383 a 0.4631 a 

Deficit Irrigated 2830 b 0.7752 b 0.4382 b 

Dryland 1614 c 0.6565 c 0.3730 c 

 2019 1237 Heat Units 1237 Heat Units 

Irrigated 2879 a 0.8366 a 0.5358 a 

Deficit Irrigated 2479 b 0.8535 a 0.5229 a 

Dryland 1999 c 0.7943 b 0.5030 b 

 2020 1154 Heat Units 1154 Heat Units 

Irrigated 1724 a 0.6798 a 0.3330 a 

Deficit Irrigated 1183 b 0.5849 b 0.2923 b 

Dryland 866 c 0.4859 c 0.2385 c 

 

 

Table 2.7. Cultivar mean comparisons of cotton yield data and NDVI 

during the same year at corresponding heat units. 

Cultivar Mean Yield (kg ha-1) NDVI NDRE 

2017 1239 Heat Units 1239 Heat Units 

Phytogen 499 2275 a 0.8955 a 0.5264 a 

Phytogen 333 2140 ab 0.8749 ab 0.5237 a 

Stoneville 4946 2125 ab 0.8692 ab 0.5101 ab 

DeltaPine 1646 2123 ab 0.8408 b 0.4826 b 

FiberMax 1900 2116 ab 0.8674 ab 0.4974 ab 

NexGen 1511 1751 b 0.8595 ab 0.4881 b 

FiberMax 2484 1735 b 0.8433 b 0.4979 ab 

DeltaPine 1549 1707 b 0.8860 a 0.5280 a 
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2018 1108 Heat Units 1108 Heat Units 

Stoneville 4946 2727 0.7735 0.4125 abc 

Phytogen 499 2722 0.7732 0.4226 abc 

DeltaPine 1646 2634 0.7471 0.4005 c 

NexGen 1511 2537 0.7655 0.4260 abc 

FiberMax 1900 2457 0.7498 0.4204 abc 

DeltaPine 1549 2347 0.7419 0.4435 a 

FiberMax 2484 2210 0.7195 0.4358 ab 

Phytogen 333 2185 0.7175 0.4070 bc 

2019  1237 Heat Units 1237 Heat Units 

Phytogen 580 2931 a 0.8813 a 0.5479 a 

Phytogen 480 2707 ab 0.8504 ab 0.5292 ab 

DeltaPine 1845 2607 ab 0.8272 ab 0.5287 ab 

Phytogen 350 2576 abc 0.8303 ab 0.5287 ab 

DeltaPine 1646 2382 bcd 0.8076 b 0.5114 abc 

Deltapine 1835 2319 bcd 0.8202 b 0.5066 bc 

Stoneville 4550 2090 cd 0.8505 ab 0.5234 abc 

FiberMax 2398 1985 d 0.8366 ab 0.4886 c 

2020 1154 Heat Units 1154 Heat Units 

Phytogen 400 1469 0.6084 ab 0.3015 ab 

Phytogen 580 1456 0.6878 a 0.3395 a 

NexGen 5711 1265 0.5906 ab 0.2697 b 

Stoneville 4550 1256 0.6012 ab 0.2914 ab 

DeltaPine 1845 1185 0.5928 ab 0.3049 ab 

NexGen 4936 1182 0.5501 b 0.2892 ab 

FiberMax 2398 1170 0.5207 b 0.2431 b 

DeltaPine 1646 1080 0.5171 b 0.2643 b 

 

2.3.3. Relationship Between Vegetation Indices and Yield 

There were significant positive linear relationships between vegetation indices 

and seed cotton yield for all irrigation levels and cultivars in 2017 (Figure 2.6, Table 

2.8). Correlation (R2 = 0.61) between NDVI and seed cotton yield reached a maximum 
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during the bloom period with similar R2 values and error (NRMSE of about 21%) 

between 1028 to 1328 heat units or 85 - 107 DAE. NDVI accounted for more yield 

variation than NDRE (R2 = 0.54) at 101 DAE and 6 out of 8 flight dates.  

Table 2.8. Coefficient of Determination (R2) and Root Mean Squared Error (RMSE) for 

linear regression of seed cotton yield on UAS-derived vegetation indices for all flight dates. 

Date DAE 
Heat 

Units 

NDVI NDRE 

R2 RMSE Signif. R2 RMSE Signif. 

6/14/17 38 399.7 0.30 568.1 *** 0.13 633.3 *** 

7/13/17 67 770.9 0.42 519.2 *** 0.06 659.5 * 

7/31/17 85 1028.4 0.60 431.0 *** 0.53 467.9 *** 

8/10/17 95 1151.6 0.60 431.6 *** 0.54 462.7 *** 

8/16/17 101 1239 0.61 425.8 *** 0.54 462.1 *** 

8/22/17 107 1326.8 0.59 433.5 *** 0.49 485.9 *** 

9/8/17 124 1498.2 0.04 665.6 * 0.09 648.1 ** 

10/20/17 166 1872.2 0.004 679.1 NS 0.04 667.8 NS 

6/28/18 68 727.5 0.04 829.5 NS 0.03 829.9 NS 

7/27/18 97 1108 0.78 392.8 *** 0.67 482.9 *** 

8/9/18 110 1278.7 0.76 413.9 *** 0.60 533.9 *** 

8/17/18 118 1385.73 0.73 441.7 *** 0.59 541.7 *** 

8/28/18 129 1551.8 0.69 466.7 *** 0.53 581.7 *** 

9/6/18 138 1666 0.65 501.8 *** 0.52 585.7 *** 

9/18/18 150 1794.8 0.26 724.6 *** 0.22 744.3 *** 

6/1/19 29 330 0.02 588.4 NS 0.02 587.6 NS 

7/9/19 67 774 0.10 562.4 ** 0.19 534.6 *** 

7/25/19 83 988.8 0.29 499.0 *** 0.40 461.1 *** 

8/12/19 101 1236.8 0.49 426.3 *** 0.56 395.8 *** 

8/22/19 111 1390 0.48 426.4 *** 0.62 366.9 *** 

10/3/19 153 1940.6 0.45 441.4 ** 0.34 483.5 ** 

6/5/20 42 386.6 0.06 461.3 *** 0.02 469.4 ** 

6/12/20 49 469 0.11 446.7 *** 0.12 445.9 *** 

7/3/20 70 709.3 0.48 343.4 *** 0.44 356.6 *** 

7/16/20 83 896.8 0.73 248.5 *** 0.69 266.0 *** 

8/4/20 102 1154.1 0.73 248.6 *** 0.67 272.9 *** 

8/18/20 116 1355.5 0.61 297.3 *** 0.55 319.4 *** 

10/4/20 167 1872.8 0.04 464.1 * 0.12 445.9 *** 

RMSE units = seed cotton yield kg ha-1 

0.001 (***) 0.01 (**) 0.05 (*) 
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Figure 2.6. Positive linear relationship between seed cotton yield and NDVI in 2017 

at 1239 heat units or 101 DAE (August 16, 2017); on July 27, 2018 at 1108 heat 

units or 97 DAE; on August 12, 2019 at 1237 heat units or 101 DAE; on August 4, 

2020 at 1154 heat units or 97 DAE. 
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In 2018, NDVI had the highest relationship (R2 = 0.78) with seed cotton yield 

and the lowest RMSE of 392.8 kg ha-1 (NRMSE = 15.8%) at 1,108 heat units or 97 DAE 

during bloom. Higher yielding cotton (generally irrigated) contributed to greater 

variation in yield prediction error. The model underestimated the highest yielding 

irrigated plot in the experiment (4515 kg ha-1). Weeds in a few irrigated plots contributed 

to greater variation in NDVI values while some irrigated plots reached maximum 

average NDVI. Cultivar differences in canopy structure contributed to differences in 

NDVI which did not necessarily affect seed cotton yield. 

 In contrast with other years, 2019 NDRE provided better correlations with seed 

cotton yield than NDVI. NDRE explained more yield variation in 2019 at peak bloom 

(Figure 2.7) with an R2 of 0.62 at 1,390 heat units (111 DAE) and NRMSE of 15%. 

Variation in yield of irrigated cotton was observed due to early season weed competition 

exacerbated by excessive rainfall. Presence of weeds affected yield and mean vegetation      

indices. Yields were above average for dryland cotton. The strongest relationship (R2 = 

0.49) between NDVI and seed cotton yield occurred at 1,236 heat units or 101 DAE, 

which aligned with the timing of other years. Although the relationships were weaker 

(lower R2 values) than other years, the NRMSE was 17.4% for the 2019 linear model at 

101 DAE and was comparable to the NRMSE of the best linear models for other years. 
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Figure 2.7. Positive linear relationship between seed cotton yield and NDRE in 2017 

at 1239 heat units or 101 DAE (August 16, 2017); on July 27, 2018 at 1108 heat 

units or 97 DAE; on August 22, 2019 at 1390 heat units or 111 DAE; and on July 

16, 2020 at 897 heat units or 83 DAE. 
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Despite lower seed cotton yields in 2020 relative to previous study years, 

vegetation indices provided good correlations with cotton yield. The strongest 

relationship (R2 = 0.73) between NDVI and yield occurred at 1154 heat units or 97 DAE 

(Figure 2.6). RMSE was minimized on the same day at 244 kg ha-1 (NRMSE = 19.4%). 

While NDVI models consistently outperformed NDRE with higher R2 and lower RMSE, 

NDRE also had strong relationships with yield (highest R2 = 0.69 with RMSE = 266 kg 

ha-1). 

The best NDVI yield estimation models were within the bloom period, particular 

between about 1100 to 1300 heat units (Table 2.8). Strong relationships began as early 

as first flower or about 900 heat units (85 DAE), became strongest during the bloom 

period, and deteriorated closer to harvest and especially after defoliation. While timing 

and R2 of the linear models varied by year (Figure 2.8), both NDVI and NDRE generally 

followed this seasonal trend. The higher yielding cotton had greater error in yield 

estimation using NDVI or NDRE. With seed cotton yield increasing with increasing 

irrigation levels (80% and 40% ETc), models for yield estimation using vegetation 

indices should be developed independently for contrasting irrigation management. 
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Figure 2.8. In-season Normalized Difference Vegetation Index (NDVI) yield 

estimation model coefficient of determination by accumulated heat units and 

separated by treatment. Each dot represents a flight date during each year for a 

total of 28 multispectral flights over 4 years. 
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Cross-validations of linear models were conducted for each irrigation level using 

all years of seed cotton yield as the dependent variable and NDVI measured closest to 

peak bloom (~1200 heat units). Significant linear models were found for all irrigation 

levels with R2 ranging from 0.38 to 0.42 (Table 2.9). The 2017 data was excluded 

because the image GSD was different than the other years. Doing so increased the 

strength of the relationships and excluding 2017 from cross validation increased the 

dryland R2 from 0.38 to 0.83. Irrigated cotton results improved (R2 > 0.58) relative to 

models using all years. Using the 2018-2019 dryland model (Figure 2.9 A), 2020 

dryland yield could be predicted with reasonable accuracy (RMSE = 151 kg ha-1, 

NRMSE = 17%) as shown in Figure 2.9 B. Predicting 2020 yield across irrigation levels 

from the 2018 – 2019 model (Figure 2.10) produced over 10% higher error (RMSE = 

368.5 kg ha-1, NRMSE = 28%). 

Table 2.9. Model parameters for linear regression of NDVI and seed cotton yield 

across growing seasons by irrigation level (left) and corresponding repeated k-fold 

cross validation results (right). 

Treatment 
Model Parameters (all years) Cross Validation 

Slope Intercept R2 RMSE NRMSE R2 RMSE MAE 

Irrigated 4417.1 -1091.2 0.42 559.2 22.1 0.44 548.13 439.15 

Deficit 

Irrigated 
3707.6 -689.5 0.40 532.7 23.8 0.42 523.94 440.54 

Dryland 2442.5 -245.9 0.38 435.2 30.3 0.41 428.14 341.27 

Treatment 
2018 - 2020 Cross Validation 

Slope Intercept R2 RMSE NRMSE R2 RMSE MAE 

Irrigated 5809.1 -2050.1 0.59 529.9 20.9 0.63 516.65 408.74 

Deficit 

Irrigated 
5056.6 -1574.5 0.58 499.4 22.2 0.61 489.46 415.62 

Dryland 3749.9 -930.1 0.81 254.9 16.9 0.83 248.46 191.58 



 

35 

 

 

 

 

 

A 

B 

Figure 2.9. (A) Dryland Seed Cotton Yield as a function of NDVI for 2018 - 2019 

and (B) 2020 observed vs. predicted yield regression line compared with a line that 

has a slope of one (red). 
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Figure 2.10. (A) Seed Cotton Yield as a function of NDVI for all irrigation 

treatments in 2018 - 2019 and (B) 2020 observed vs. predicted yield regression line 

compared with a line that has a slope of one (red). 

B 
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2.4. Discussion 

NDVI was effective for irrigation treatment mean comparisons, producing 

similar statistical results to observed yield. Variation in seed cotton yield among 

increasing levels of irrigation was accurately predicted with in-season vegetation indices.  

Huang et al. (2013) also noted that NDVI values for irrigation treatments were 

significantly different in cotton. The strength of relationships between in-season 

vegetation indices and seed cotton yield ranged from moderate to strong within each 

growing season but were generally weaker when split by irrigation level. Adams et. al 

(2021) observed this same trend in subsurface drip irrigated cotton using a proximal 

phenotyping system. The linear regression models performed poorly across growing 

seasons except in dryland, for which 2020 yield was estimated from the previous 2 years 

NDVI with reasonable accuracy. This suggests that the methodology is best suited for 

dryland production systems, but more robust methodologies should be investigated for 

irrigated production. Vegetation indices could be useful for relative or potential dryland 

cotton yield estimates based on historical yield data for research or insurance claim 

purposes in situations where the crop is lost or cannot be harvested.   

While high yielding cultivars often had greater NDVI values and more 

significant differences among cultivars were found, differences in NDVI were likely due 

to variations in canopy architecture and were not necessarily directly related to observed 

yield. Thompson et al. (2018) also found NDVI measurements from a proximal sensing 

cart were significantly different between cotton breeding lines and broad-sense 

heritability estimates for NDVI ranged from 0.28 to 0.49. UAS flights timed during 
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bloom are generally suitable and the average ideal timing across all treatments (1185 

heat units) aligned closely with previous work that also found maximum correlations 

with yield around this time during bloom (Feng et al., 2020; Gutierrez et al., 2012; Leon 

et al., 2003; Satir & Berberoglu, 2016; Yang et al., 2004; Zarco-Tejada et al., 2005). 

NDVI could be useful as a phenotyping tool for cotton breeders during the early stages 

of pedigree selection to eliminate only the worst performing lines prior to investing labor 

resources for boll sampling and harvesting hundreds of small plots. However, this 

methodology is not accurate enough for screening advanced lines later in the selection 

process. Rutkoski et al. (2016) observed that secondary traits such as NDVI improved 

the accuracy of pedigree and genomic prediction for wheat grain yield and could 

improve breeding selection particularly during the early stages. Thompson et al. (2020) 

also found that a multispectral vegetation index (NDRE) from a single proximal 

measurement around peak bloom provided good cotton yield predictions (R2 up to 0.71) 

which is comparable to the results of this study. 

Vegetation indices accounted for much of the yield variability early enough in 

the growing season to inform nutrient, irrigation, growth regulator, and pest management 

decisions. Results suggest that it could potentially be used for in-season management 

purposes such as defoliation timing, plant growth regulator timing, scouting, disease 

tracking, and to update management zones for variable rate application of inputs such as 

fertilizer. At a minimum, the methodology should be suitable for spatially targeted 

sampling, for example using GNSS positioning to navigate in the field to extreme 

locations (i.e. unexpectedly low or high NDVI) for investigating and collecting any 
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necessary ground reference data (e.g. tissue samples, soil cores, soil moisture, plant 

height, pest incidence). Model parameters differ for each year, which may be partially 

attributed to cotton cultivar differences and environmental variation, but results suggest 

that NDVI yield estimation models are unlikely to be consistent across years except in 

dryland conditions.  

Contrary to all other years, NDRE explained more yield variability than NDVI 

across all image acquisition dates in 2019. The crop canopy closed earlier in 2019 than 

other years due to frequent rainfall early in the growing season. This led to some plot 

NDVI averages exceeding 0.9 as early as 83 DAE or ~1000 heat units and most likely 

caused NDVI to underperform because it was less sensitive due to saturation. Weaker 

relationships between vegetation indices and cotton yield when the crop canopy closed 

early and/or grew to suboptimal heights suggests that some adjustment to the 

methodology may be necessary in these situations as NDVI tends to become less 

sensitive. This along with lower harvest index may also explain why relationships with 

yield were usually weaker in the 80% ETc irrigated cotton than in deficit irrigated and 

dryland cotton. Feng et al. (2020) similarly observed saturated NDVI values in higher 

yielding cotton and higher canopy cover. While NDRE is likely a better choice than 

NDVI to address this issue as it is not susceptible to saturation (Adams et. al, 2021). The 

methodology is probably more suitable in low or average yielding cotton characteristic 

of dryland or deficit irrigated production systems. 

While the accuracy of this methodology would be affected by presence of weeds, 

areas with major weed pressure could be excluded from analysis by visually inspecting 
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suspected problem areas in the orthomosaics or those areas could be excluded via image 

classification methods. It is important to note that the multispectral camera used for this 

methodology is high-quality with discrete sensors, global shutters, and relatively narrow 

wavebands, so relationships with yield may be different when cheaper equipment such 

as modified RGB cameras with rolling shutters and broadband filters are used (Deng et. 

al, 2018). This methodology could limit equipment wear, risk, and field traffic relative to 

phenotyping rovers. 

Increasing the flight height AGL (i.e. coarser GSD) should produce similar 

results, but more investigation is warranted to determine an ideal GSD for research and 

production purposes. More complicated methodologies, such as image 

classification/segmentation, negative buffers, and data fusion may be necessary to 

enhance results in irrigated cotton. These are important topics for future research to 

improve absolute yield prediction accuracy. 

2.5. Conclusions 

Vegetation indices are among the simplest tools for agronomists and researchers 

to make use of multispectral imagery. Irrigation and cotton cultivar have a significant 

effect on vegetation indices measured during bloom. NDVI was effective for irrigation 

treatment comparisons, producing similar statistical results to observed yield. UAS-

derived narrowband vegetation indices from a single flight around 1200 accumulated 

heat units (bloom period) have the strongest relationship with cotton yield during the 

growing season. Planning UAS flights around the optimal in-season timing produces a 

powerful dataset while minimizing labor and requisite computational resources. This 
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presents a simple methodology accessible to a wider range of analysts working in 

research than more advanced methodologies that require many flights or imagery 

collected after defoliation. NDVI produced better linear regression models than NDRE 

for all years except 2019, which suggests that NDVI is better suited for this task in 

cotton. Except for the dryland treatment, for which 2020 yield was estimated with fair 

accuracy using the previous two years of NDVI data acquired closest to 1200 heat units, 

models were weaker when split by irrigation level across years. This demonstrates with 

greater confidence that narrowband vegetation indices derived from a single, properly 

timed UAS flight have value for cotton yield estimation and therefore should be 

considered as part of broader high-throughput phenotyping endeavors, particularly in 

dryland production systems. 
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3. COMBINING UNMANNED AERIAL MULTISPECTRAL AND THERMAL 

IMAGERY FOR COTTON YIELD ESTIMATION 

 

3.1. Introduction 

Precision agriculture technology was recognized over a decade ago as a top ten 

agricultural revolution (Crookston, 2006). Precision agriculture continues to benefit from 

technological advances that enable collection of more frequent and finer spatial 

resolution datasets. Analysis of these large datasets can account for spatiotemporal 

variability to improve sustainability of agricultural production (ISPA, 2021). Remote 

sensing has long provided rich datasets for such purposes, and the spatial resolution of 

spaceborne and airborne remote sensing imagery has improved over the last few decades 

from coarse resolutions of hundreds of meters to submeter resolutions (Mulla, 2013). 

The temporal resolution or revisit time has concurrently improved from weeks to daily 

global coverage (Menefee et al., 2020). While these advancements have increased the 

utility of those platforms, the advent of unmanned aerial systems (UAS) allows 

unprecedented flexibility to choose suitable temporal, spatial, and spectral resolution for 

specialized purposes (Shi et al., 2016). Along with many improvements to the reliability 

of UAS, cost has decreased from prices comparable to 100 kW tractors in 2005 (Sugiura 

et al., 2005) to affordable systems now more attainable for farmers. 

The many advantages of UAS have inspired much interest from agricultural 

researchers. Quantifying yield using UAS remains a primary goal for high-throughput 

phenotyping for crop breeding programs and precision agriculture analytics. Recent 
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efforts to estimate cotton yield with UAS imagery focus mainly on segmentation or 

classification techniques to isolate open cotton bolls in imagery from inexpensive red, 

green, and blue (RGB) cameras. Huang et al. (2016) captured UAS imagery at a ground 

sampling distance (GSD) of 2.7cm and investigated two different methods for yield 

estimation. The 3D point cloud was used to derive plant height, which was related to 

cotton yield (R2 = 0.43), but did not improve upon the correlation of manually measured 

plant height and yield. Their second method involved image segmentation to isolate 

cotton bolls from the background of the imagery and form a “cotton unit coverage” by 

dividing lint pixel area by plot pixel area (i.e. pixel counts multiplied by GSD). Although 

some outliers needed to be removed, the results were much better (R2 0.83) than the 

plant height method they investigated. 

Maja et al. (2016) calculated percent cotton area using images collected from an 

RGB camera. They employed a Gaussian blur followed by an unsupervised 

classification to isolate the cotton pixels. Dividing the cotton pixels by the total area of 

the plot produced the percent cotton area, which had a strong relationship with yield (R2 

= 0.78). Feng et al. (2018) also used an inexpensive RGB camera for in-season yield 

estimation. The authors generated a canopy height model from the imagery and 

conducted a correlation analysis with yield. Pearson correlation coefficients ranged 

between 0.66 to 0.96, and root mean squared error was less than ten percent. Feng et al. 

(2020) used a modified RGB camera to capture near-infrared, red, and green images 

along with unmodified RGB and thermal images (canopy temperature) for modeling 

crop yield with multiple image-derived features. The models had R2 values up to 0.94 
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when features from two cameras were used, but they noted that cotton yield estimation 

may be affected by growth stage. While Akaike’s Information Criterion (AIC) was used 

to evaluate the models, the corresponding R2 values reported do not appear to be 

adjusted for the number of predictors. Canopy temperature was often selected as a 

predictor in the best two and three variable multiple regression models.  

Canopy temperature is driven by transpiration, as water evaporation from the leaf 

surface helps cool the plant (Taiz et al., 2015). Researchers found it was correlated with 

cotton lint and grain yield as well as important traits such as water use efficiency and 

leaf water potential (Bai et al., 2016; Colaizzi et al., 2012; O'Shaughnessy et al., 2011). 

However, the influence of bare soil background was early recognized as a key limitation 

for accurately estimating canopy temperature with infrared thermography (Cohen et al., 

2005; Heilman et al., 1981; Sullivan et al., 2007; Wanjura et al., 1984). 

Using a classification technique to identify open cotton bolls in high spatial 

resolution UAS images, Yeom et al. (2018) calculated cotton boll area for yield 

estimation. Their algorithm involved initial seed points for which spatial features (e.g. 

size and shape) were calculated to identify potential cotton bolls. These potential areas 

were then classified as cotton bolls using the Otsu threshold method (Otsu, 1979). The 

resultant cotton boll area from this methodology had a strong positive correlation with 

cotton yield (R = 0.80). Jung et al. (2018) classified cotton bolls using a threshold value 

on the red band from DJI Phantom 2 camera. Boll pixels were clustered into individual 

cotton bolls then mapped and analyzed using patch analysis. The data were used for a 

cultivar selection process which improved average lint yield by about 10 percent.  
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Recent UAS studies such as these focused mostly on RGB cameras and did not 

leverage high quality narrowband multispectral imagery to incorporate in-season 

measurements of the cotton canopy into the yield estimation models. Furthermore, 

information about cotton yield estimation using multispectral pixel-based image 

classification and especially a combination of in-season vegetation indices and post-

defoliation imagery is sparse. These efforts also tend to be limited to imagery from only 

one camera and one growing season.  

UAS have been used to collect RGB and multispectral imagery for modeling 

yield in other crops (Galli et al., 2020). Except for biomass yield, multispectral features 

tend to be more closely related to crop yield than features such as plant height generated 

from RGB imagery (Herrero-Huerta et al., 2020). Most authors endeavored to directly 

model structural characteristics such as plant height in cotton and other crops, or even to 

detect sorghum panicles (De Souza et al., 2017; Malambo et al., 2019; Malambo et al., 

2018; Pugh et al., 2018). The literature currently lacks thorough investigations in cotton 

across several growing seasons using multiple image products from UAS multispectral 

imagery along with other advanced sensors such as thermal infrared cameras. Therefore, 

the objectives of this study were to 1) determine the efficacy of a pixel-based 

multispectral image classification technique for cotton yield estimation and 2) develop a 

multiple linear regression model to enhance the accuracy of cotton yield estimates. 
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3.2. Materials and Methods 

3.2.1. Study Site and Experimental Design 

This experiment was conducted from 2017 to 2020 at the Texas A&M University 

research farm near College Station, Texas (30.550° N, 96.436° W). The field was 

managed with conventional tillage and subsurface drip irrigation throughout the study 

period. Belk clay is the prevalent soil series and is classified as fine, mixed, active, 

thermic Entic Hapluderts. It is very deep, well drained, and very slowly permeable (Soil 

Survey Staff, 2021). The slope is less than one percent and the climate is classified as 

humid subtropical. Average annual precipitation is about 100 cm (National Weather 

Service, 2021) with nearly half of the rainfall typically occurring between April to 

September during the cotton growing season. 

The experiment was a 3x8 factorial design with four repetitions arranged within a 

completely randomized design. Irrigation rate was the main treatment factor. Irrigation 

amounts were determined as percent crop evapotranspiration (ETc) replacement: 80% 

(full irrigation), 40% (deficit irrigation), and 0% (dryland). In 2017, ETc was managed at 

90%, 45%, and 0%. ETc was estimated using the FAO-56 method described in detail by 

Allen et al. (1998) and data from a weather station adjacent to the field. The second 

treatment factor was commercial cotton cultivar. For each season, eight commercial 

cultivars were planted using a 4-row planter on raised beds at 1 m row spacing. Plots 

were 12 m long and only the center 2 rows of each plot were measured and harvested for 

a final plot size of 12 x 2 m. 
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3.2.2. Cultural Methods 

Cotton was planted on April 28 in 2017, April 12 in 2018, April 24 in 2019, and 

April 16 in 2020. Weed control included pendimethalin as Prowl® H2O (BASF, 

Ludwigshafen, Germany) pre-emergence herbicide and over-the-top glyphosate 

applications when necessary. Liquid urea-ammonium nitrate fertilizer (32-0-0) was 

injected at 112 kg ha-1 prior to planting in 2017 and 2020 and at first square in 2018 and 

2019. The 2019 cotton received an additional 112 kg ha-1 at first white bloom. In 2017, 

2018, and 2019, mepiquat chloride was applied at the labeled rate in June or July to limit 

rank growth, but growth regulator was not necessary in 2020. Chemical defoliants were 

applied when the irrigated treatment reached 60% open boll. Only the two interior rows 

of each four-row subplot were harvested using a 2-row spindle picker retrofitted with an 

onboard scale to measure seed cotton yield by mass. Harvest was in September or early 

October for 2018 – 2020 but was delayed until October 26th in 2017 due to inclement 

weather. Residual cotton stalks were shredded following the completion of harvest each 

year and residue was incorporated via vertical tillage. Raised beds were then prepared in 

December or January for the next growing season. 

3.2.3. Unmanned Aerial Systems and Image Acquisition 

The multispectral camera used for the study was a MicaSense RedEdge-3 

(MicaSense, Seattle, Washington), which was attached via a fixed-mount on a Matrice 

100 quadcopter (SZ DJI Technology Company Limited, Shenzhen, China). The 

RedEdge-3 has 5 discrete sensors with global shutters and narrow spectral bands (Table 

3.1). The thermal camera was an ICI 8640p (Infrared Cameras Incorporated, Beaumont, 
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Texas). It was attached to an H3 gimbal (Gremsy, Ho Chi Minh City, Vietnam) on a DJI 

Matrice 600 Pro (Figure 3.1). The ICI 8640P has a 640 x 512 radiometric imager and 

requires less than 1 watt of power. The sensor was an uncooled microbolometer with a 

sensitivity of 0.02 °C at 30 °C and produces 14-bit thermal images for the spectral range 

between 7 – 14 micrometers. The attached lens was a 12.5 mm manual focus lens with 

50° by 37.5° field of view. 

 

Table 3.1. Sensor specifications for the multispectral MicaSense RedEdge-3 

camera. 

Band Name Center Wavelength (nm) Bandwidth/FWHM (nm) 

Blue 475 20 

Green 560 20 

Red 668 10 

Red Edge 717 10 

Near Infrared 840 40 

 

Flights for both systems were controlled using the UgCS software (UgCS 

Integrated Systems, Riga, Latvia) photogrammetry tool about every two weeks. Flight 

Figure 3.1. DJI Matrice 600 Pro (left) and Matrice 100 (right) with the Infrared 

Cameras Incorporated 8640P thermal camera and MicaSense RedEdge-3 

multispectral camera onboard, respectively. 
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height above ground level (AGL) was at 30m to produce a 2 cm ground sampling 

distance (GSD) for multispectral imagery at 40m AGL to produce a 5 cm GSD for 

thermal infrared imagery. Flights were consistently scheduled around solar noon (about 

12:30 – 14:30 Central Standard Time) during sunny conditions with minimal wind to 

ensure adequate image quality. Direct georeferencing (i.e. image metadata alone) was 

used for image processing in 2017 and 2018, but permanent ground control points 

(GCP’s) were installed into small concrete footings in 2019 and used again in 2020 for 

extremely consistent placement of reversible photogrammetric targets 0.36 m2 in size 

(Figure 3.2). One side was painted matte black and grey for identification in the 

multispectral imagery to prevent image overexposure in sunny conditions. Low 

emissivity aluminum tape was applied to the reverse side to ensure a stark contrast for 

easy target identification. A small hole was drilled in the center of each target to align it 

over threaded rod in permanent concrete footers. This ensured repeatable georeferencing 

over time and precise alignment of thermal infrared and multispectral mosaics. GCP’s 

were surveyed using a Reach RS+ GNSS receiver (Emlid Limited, Hong Kong, China) 

configured for Real Time Kinematic (RTK) corrections from Trimble VRS (Trimble 

Navigation Limited, Sunnyvale, USA). 
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3.2.4. Image Processing and Analysis 

Radiometric 16-bit TIFF imagery captured with the MicaSense RedEdge-3 

(Table 1) was imported into Pix4Dmapper software (Pix4D S.A., Prilly, Switzerland) 

and processed using structure from motion (SfM) photogrammetry to produce 

orthomosaics. The orthomosaics were calibrated to reflectance using image captures of 

the MicaSense calibration target (a white panel with known reflectance) before and after 

each flight. Normalized Difference Vegetation Index (NDVI), Normalized Difference 

Red Edge (NDRE), and Optimized Soil Adjusted Vegetation Index (OSAVI) were 

calculated from reflectance using the equations shown below:  

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
         Equation 1 

𝑁𝐷𝑅𝐸 =  
𝑁𝐼𝑅 − 𝑅𝑒𝑑 𝐸𝑑𝑔𝑒

𝑁𝐼𝑅 + 𝑅𝑒𝑑 𝐸𝑑𝑔𝑒
  Equation 2 

Figure 3.2. Reversible photogrammetric targets were used to ensure precise 

alignment of multispectral and thermal infrared orthomosaics.  
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𝑂𝑆𝐴𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑+0.16
  Equation 3 

To isolate image pixels corresponding to bolls, the multispectral orthomosaic from the 

day of harvest was classified using the supervised Mahalanobis-distance algorithm 

(Richards, 1999) in ENVI software (Exelis Visual Information Solutions, Boulder, 

Colorado). Training classes for cotton bolls, soil, and vegetation were selected in random 

locations throughout the scene to train the Mahalanobis-distance classifier to recognize 

each cover type. A count of the pixels classified as cotton bolls within each plot was 

generated using vector boundaries and Zonal Statistics in ArcMap software (ESRI, 

Redlands, USA). Boll Area Index (BAI) was then calculated by multiplying the cotton 

pixels counted as bolls within each plot by the image GSD to produce the final area 

measured in m2. Finally, average vegetation indices per plot were calculated in ArcMap 

with the same boundaries. Plot boundaries were adjusted slightly for 2017 and 2018 

when they did not perfectly surround the plots due to inaccuracies in georeferencing. 

However, the same plot boundaries for 2019 and 2020 were used for all spatial analysis 

due to the high accuracy of the georeferencing in those years where GCP’s were used.  

Thermal infrared images were converted to radiometric 16-bit TIFF images using 

proprietary IRFlash software from ICI and processed using Pix4Dmapper. The 

orthomosaics were calibrated to surface temperature using equations generated from at 

least four ground reference temperatures captured in the scene during each flight. Pixels 

from each reference were sampled and averaged using ENVI, paired with the 

corresponding thermocouple-measured ground reference temperature, and then a linear 

regression model was built and applied to the orthomosaics in ENVI. This procedure for 
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calibrating the thermal images to surface temperature is described in detail by Han et al. 

(2020).  

Soil background was removed from the thermal imagery using a temperature 

threshold determined by looking at the bimodal distribution of canopy and soil 

temperature. All pixels above the threshold temperature (i.e. soil background) were set to 

null values to ensure they were ignored in subsequent steps. The remaining canopy was 

compared visually with a natural-color composite to ensure canopy was accurately 

separated from bare soil. Finally, average canopy temperatures per plot were calculated 

using the vector boundaries. See Figure 3.3 for more detailed information on the image 

processing workflow. 

Figure 3.3. Flow chart summarizing steps in the multispectral and thermal image 

processing workflow. 
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3.2.5. Data Analysis 

Irrigation treatments and cultivars were compared using analysis of variance in R 

Studio (R Core Team, 2021). Significant differences indicated by ANOVA were then 

followed with Tukey’s Honest Significant Difference (HSD) post-hoc means tests. 

Multiple linear regression analysis was conducted to examine the relationship between 

cotton yield and UAS-derived vegetation indices, canopy temperature, and boll area 

index over four years. Available predictors were evaluated by finding the best multiple 

regression using the leaps package (Lumley & Miller, 2020) in R Studio. The leaps 

package returns the most explanatory linear regression model up to a specified number 

of independent variables using an exhaustive search technique (i.e. all possible subsets) 

of all the provided variables. Leaps was configured to provide the best subsets model up 

to four predictors from all image products produced from all flights during each growing 

season, which included NDVI, NDRE, BAI, and canopy temperature for 2019 and 2020 

only. Multiple regression models were further evaluated using the Bayesian Information 

Criterion (BIC) and Mallow’s Cp along with coefficient of determination (R2), adjusted 

R2, root mean squared error (RMSE) and normalized RMSE (NRMSE). NRMSE was 

calculated by dividing the mean yield from RMSE and then multiplying by 100. The R 

caret package was used for repeated k-fold cross validation, which was configured for 10 

folds repeated 10 times (Kuhn, 2021). Plots of the data (Kassambara, 2021; Wickham, 

2009) were generated using heat units accumulated since planting, rather than calendar 

date, for more universal results linked to crop physiology and seasonal weather 

variation. Daily heat units were calculated with ambient temperature from an on-site 
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weather station. The development threshold of 15.6°C (Oosterhuis, 1990) was used in 

the formula: 

 

𝐻𝑒𝑎𝑡 𝑈𝑛𝑖𝑡𝑠 =  
𝑀𝑎𝑥 𝐴𝑚𝑏𝑖𝑒𝑛𝑡 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 °𝐶 −  𝑀𝑖𝑛 𝐴𝑚𝑏𝑖𝑒𝑛𝑡 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 °𝐶

2

− 15.6°𝐶 

 

3.3. Results and Discussion 

3.3.1. Treatment Comparisons Using Boll Area Index 

The range of seed cotton yields varied for each growing season and irrigation 

level (Figure 3.4). Average yield for the dryland treatments ranged from 891 kg ha-1 in 

2020 to 1,525 kg ha-1 in 2018. Mean yield for the deficit irrigated treatments ranged 

from 1,310 kg ha-1 in 2020 to 2,830 kg ha-1 in 2018. The irrigated treatments mean yield 

ranged from 1,724 kg ha-1 in 2020 up to 3,195 kg ha-1 in 2018. Cetin and Bilgel (2002) 

observed similar seed cotton yields in subsurface drip irrigated cotton. Overall annual 

mean yields were 1,997 kg ha-1 in 2017, 2,545 kg ha-1 in 2018, 2,452 kg ha-1 in 2019, 

and 1,313 kg ha-1 in 2020. Yields were lowest in 2020 due to weather complications 

from nearby hurricane activity that interfered with defoliation and harvest timing. 

Furthermore, the growing season was shorter in 2020 because of delayed germination 

caused by cool, dry weather immediately following planting. 
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There were significant differences between the yield of irrigation treatments for 

all four years of the study. Similarly, BAI indicated significant differences among 

irrigation levels for each year (Table 3.2). Cotton irrigated at 80% ETc had greater seed 

cotton yield than at 40% ETc irrigation in all years of the study. In contrast, BAI 

indicated that cotton irrigated at 80% ET was greater than 40% ET in only 1 of the 4 

growing seasons. The inability to differentiate irrigation levels with estimation of BAI 

compared to direct yield measurements could be due to several issues. One is the 

Figure 3.4. Bar plot of seed cotton yield separated by irrigation treatment for all 

four years in the study. 
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propensity of irrigated cotton both to set bolls higher in the canopy (Dube et al., 2020; 

Pettigrew, 2004) and produce larger bolls which could cause the difference between 

mean BAI for irrigated and deficit irrigated treatments to be more subtle. In addition to 

boll size and position, drip irrigated cotton produces higher yields than other irrigation 

methods at lower irrigation levels by increasing the number of bolls produced per plant 

(Cetin & Bilgel, 2002). Plant height also increases with the amount of irrigation applied 

(DeTar, 2008). This makes it more likely that bolls were at least partially occluded by 

stems or other bolls in the imagery, and therefore the increase in BAI with increasing 

cotton yield may be limited. Although the GSD of the imagery used to derive BAI was 

fine (1.2 to 2 cm), it is possible that a smaller GSD would better capture these 

differences. 

 

Table 3.2. Analysis of variance for cotton yield and corresponding 

Boll Area Index (BAI) during the same year for all years in the study. 

Source of Variation DF F-value Pr > F F-value Pr > F 

 2017 Yield 2017 BAI 

Irrigation 2 146.668 < 0.0001 66.336 < 0.0001 

Cultivar 7 6.034 < 0.0001 4.433 0.000383 

Irrigation x Cultivar 14 1.508 0.13 2.467 0.006624 

 2018 Yield 2018 BAI 

Irrigation 2 90.379 < 0.0001 59.233 < 0.0001 

Cultivar 7 2.217 0.0444 3.289 0.00481 

Irrigation x Cultivar 14 1.201 0.2975 0.846 0.61819 

 2019 Yield 2019 BAI 

Irrigation 2 41.171 < 0.0001 22.23 < 0.0001 

Cultivar 7 8.236 < 0.0001 19.009 < 0.0001 

Irrigation x Cultivar 14 0.682 0.785 0.486 0.934 
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 2020 Yield 2020 BAI 

Irrigation 2 42.33 < 0.0001 118.495 < 0.0001 

Cultivar 7 1.619 0.144 7.137 < 0.0001 

Treatment x Cultivar 14 0.8 0.666 1.395 0.178 

 

In 2020, all irrigation levels were different both by yield and BAI (Table 3.3). 

There were significant differences in BAI among cultivars even when there were not for 

yield (Table 3.4), but cultivar ranked by BAI did not match rank by yield in any case. 

This suggests that although BAI may indicate differences between cultivars, BAI should 

not be used for cultivar comparisons without ancillary data. Further investigation is 

warranted to determine the cause of these cultivar differences, such as plant architecture 

along with previously mentioned factors like bolls distributed higher or lower in the 

canopy. 

 

Table 3.3. Treatment means comparisons of cotton yield data and Boll Area Index 

(BAI) during the same year.  

Treatment Mean Yield (kg ha-1) BAI 

 2017 

Irrigated 2530 a 1.343 a 

Deficit Irrigated 2232 b 1.328 a 

Dryland 1228 c 0.758 b 

 2018 

Irrigated 3196 a 2.727 a 

Deficit Irrigated 2830 b 2.579 a 

Dryland 1614 c 1.127 b 

 2019 

Irrigated 2879 a 4.241 a 

Deficit Irrigated 2479 b 3.929 a 

Dryland 1999 c 3.123 b 
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 2020 

Irrigated 1724 a 1.644 a 

Deficit Irrigated 1183 b 0.899 b 

Dryland 866 c 0.295 c 

 

Table 3.4. Cultivar mean comparisons of cotton yield data and Boll Area Index 

(BAI) during the same year.  

Cultivar Mean Yield (kg ha-1) Mean BAI 

2017 

Phytogen 499 2275 a 1.384 a 

Phytogen 333 2140 ab 1.171 ab 

Stoneville 4946 2125 ab 1.249 ab 

DeltaPine 1646 2123 ab 1.231 ab 

FiberMax 1900 2116 ab 0.974 b 

NexGen 1511 1751 b 0.996 b 

FiberMax 2484 1735 b 1.070 ab 

DeltaPine 1549 1707 b 1.068 ab 

2018 

Stoneville 4946 2727 2.023 ab 

Phytogen 499 2722 2.724 a 

DeltaPine 1646 2634 2.324 ab 

NexGen 1511 2537 2.182 ab 

FiberMax 1900 2457 1.910 ab 

DeltaPine 1549 2347 2.073 ab 

FiberMax 2484 2210 1.873 b 

Phytogen 333 2185 1.567 b 

2019 

Phytogen 580 2931 a 5.410 a 

Phytogen 480 2707 ab 4.075 b 

DeltaPine 1845 2607 ab 3.447 bcd 

Phytogen 350 2576 abc 4.145 b 

DeltaPine 1646 2382 bcd 3.633 bc 

Deltapine 1835 2319 bcd 3.969 b 
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Stoneville 4550 2090 cd 2.629 d 

FiberMax 2398 1985 d 2.806 cd 

2020 

Phytogen 400 1469 1.051 abc 

Phytogen 580 1456 1.445 a 

NexGen 5711 1265 0.674 c 

Stoneville 4550 1256 1.003 abc 

DeltaPine 1845 1185 0.690 c 

NexGen 4936 1182 1.156 ab 

FiberMax 2398 1170 0.842 bc 

DeltaPine 1646 1080 0.709 bc 

 

3.3.2. Relationship between Boll Area Index and Yield 

There was a positive linear relationship between Boll Area Index (BAI) and yield 

in 2017 (R2 = 0.57, Figure 3.5). As the area classified as cotton bolls increased, there 

was a corresponding increase in yield. In-season NDVI at 1239 heat units or 101 DAE 

had a stronger relationship with yield (R2 = 0.61) than BAI. Since the cotton in 2017 was 

taller than the other three years, a likely explanation is that cotton bolls lower in the 

canopy were occluded by those closer to the top. This was the only year in which NDVI 

outperformed BAI. Vegetation indices should be explored as a second predictor in 

growing seasons during which managing plant height is more difficult. 

In 2018, BAI had a strong relationship with yield (R2 = 0.79). This result is 

comparable to the NDVI model at 1108 heat units, which had an R2 of 0.78 and similar 

RMSE. BAI also explained much of the yield variation in 2019 (Figure 3.5) with an R2 

of 0.67 and RMSE of 366.9 kg ha-1 (NRMSE = 15%) that outperformed the best 

vegetation index model (NDRE) during that year. In 2020, repeated rain events and wind  
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Figure 3.5. Positive linear relationship between boll area index (BAI) and seed 

cotton yield for the four cotton growing seasons between 2017-2020. 
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(tropical weather) after physiological maturity reduced seed cotton recovered by the 

picker and thus decreased observed yield. Despite this, BAI had a strong relationship 

with yield (R2 = 0.73, RMSE = 245.2). BAI alone provided only slightly better estimates 

than in-season NDVI alone at 1154 heat units or 102 DAE: R2 for both models was 0.73, 

but RMSE was 3.4 kg ha-1 higher for NDVI. 

BAI had stronger relationships with yield in the irrigated and deficit irrigated 

treatments than the dryland treatment for all years except 2017 (Table 3.5). This is likely 

due to bolls distributed lower in the canopy, decreased boll size, and increased presence 

of soil background in the dryland treatments. All of these could increase the difficulty 

for accurately classifying cotton bolls in the imagery. This is especially true for low 

quality imagery from cheaper cameras, but classifications for this study were accurate. 

Furthermore, irrigated cotton plants tend to set bolls higher in the canopy, closer to the 

top of the plant where they would be more easily identified in nadir imagery (Dube et 

al., 2020; Pettigrew, 2004). Boll area index consistently had strong relationships with 

seed cotton yield and generally had higher R2 values and lower RMSE than vegetation 

indices. 

Table 3.5. Linear regression results for relationships between boll area index (BAI) 

and seed cotton yield separated by treatment for the cotton growing seasons 

between 2017-2020. 

Irrigation 

Treatment 

Coefficient of Determination (R2) 

2017 2018 2019 2020 

Irrigated 0.14 0.58 0.76 0.42 

Deficit Irrigated 0.23 0.65 0.68 0.56 

Dryland 0.37 0.46 0.38 0.37 
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3.3.3. Multiple Regression Models for Cotton Yield Estimation 

To develop more robust models for cotton yield prediction, multiple regression 

models were evaluated. BAI, NDVI, NDRE, OSAVI, and canopy temperature were all 

included as potential predictors. The strongest multiple regression model included BAI 

along with both NDVI and NDRE at 400 heat units. Including the vegetation indices 

improved the Adjusted R2 to 0.79 from 0.57 using BAI alone and reduced the RMSE to 

321.6 kg ha-1 (NRMSE = 16%). Aside from incorporating early season crop vigor into 

the regression, it is unclear why the vegetation indices at 400 heat units were selected as 

part of this model. Imagery from early in the growing season was not generally selected 

otherwise. The best model with two predictors (Adjusted R2 = 0.7) consisted of BAI and 

NDVI at 1327 heat units. Both multiple linear regression models required only two UAS 

flights: one during the growing season and one just prior to harvest, after defoliation. 

The model with three variables (BAI, NDVI, and NDRE) was optimal based on 

minimizing BIC and Cp (Table 3.6). OSAVI produced similar results but did not 

improve upon multiple regressions selected by the best subsets algorithm. 

In 2018, the best multiple regression model with two predictors included BAI 

and NDVI at 1108 heat units for an Adjusted R2 of 0.87 and RMSE of 306.6 kg ha-1. 

Adding NDRE as the third predictor increased the Adjusted R2 slightly to 0.89 and 

reduced the RMSE to 283 kg ha-1 (NRMSE = 11.9%). This model with three variables 

(BAI, NDVI, and NDRE) was optimal based on the lowest BIC value (Table 3.6). Both 

models had considerably less error (80 - 103 kg ha-1) than vegetation indices or BAI 

alone. This was the best multiple regression model by BIC out of the study and suggests 
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that the accuracy of yield estimates could be adequate for some purposes with multiple 

products (e.g. NDVI, BAI) from the same multispectral camera. These results are 

comparable to Feng et. al (2020), who observed NRMSE around 10% or lower for 

Table 3.6 Multiple linear regression results using the best subset of all possible 

combinations with Adjusted R2, Root Mean Squared Error (RMSE), Bayesian 

Information Criterion (BIC), and Mallow’s Cp. 
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cotton yield models derived from UAS imagery from two or more cameras. OSAVI was 

not selected for any of the best subset models. 

For 2019, adding NDRE at 1390 heat units as the second predictor increased the 

Adjusted R2 to 0.82 and reduced the RMSE to 250 kg ha-1 (NRMSE = 10.2%). Further 

including canopy temperature at 1237 heat units in the multiple linear regression 

increased the Adjusted R2 slightly to 0.84 and reduced the RMSE to 233 kg ha-1 

(NRMSE = 9.5%). This multiple regression model with BAI, NDRE, and canopy 

temperature had a slightly higher BIC and Cp (Table 3.6) than the model with four 

predictors, but BIC difference was marginal. OSAVI had slightly better model R2 than 

NDVI in 2019, but neither were selected in a best subset because NDRE performed 

better. The best in-season model from a single day, i.e. a multispectral flight followed 

immediately by a thermal infrared flight, included NDRE at 1237 heat units or about 100 

DAE (Adjusted R2 = 0.67). The NDRE regression model alone had an R2 of 0.56 and 

canopy temperature alone had an R2 of 0.38. Herrero-Huerta et al. (2020) similarly 

observed improved soybean yield predictions by fusing data from multiple sensors for 

machine learning modeling approaches. The eXtreme Gradient Boosting and Random 

Forest regressions had lower R2 values (0.38 – 0.42) than observed for cotton in this 

study. 

Including 2020 BAI with NDVI at 897 heat units as the second predictor 

increased Adjusted R2 to 0.80 and reduced the RMSE to 211.5 kg ha-1 (NRMSE = 

16.1%). Including canopy temperature from the same day resulted in minimal 

improvements. The best in-season model from a single day occurred at 897 heat units or 
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about 83 DAE. At this point, NDVI and canopy temperature together had an Adjusted R2 

of 0.76 while reducing the RMSE by about 15 kg ha-1 from the NDVI alone, which 

provided more accurate in-season predictions (84 days prior to harvest) that rival post-

season predictions. OSAVI (R2 = 0.73) performed similarly to NDVI but was not 

selected for either multiple regression model. See Table 3.6 for a summary of the best 

regression subsets. 

Although BAI alone did not always provide the best yield estimates, 

incorporating it into multiple regression models with vegetation indices or canopy 

temperature always reduced error. For this reason, it should be considered for endeavors 

to estimate cotton yield after defoliation is complete or around harvest time. Canopy 

temperature from thermal imagery improved in-season yield estimation models and 

should be considered as part of in-season efforts. However, it provided minimal 

improvement as a third predictor for post-defoliation estimates because multiple 

regressions of NDVI and BAI already had quite strong relationships with yield (R2 = 0.7 

to 0.87). Three predictors were optimal for multiple linear regression models with one 

year of data because BIC improved only marginally with a fourth predictor. This differs 

from findings in other crops, such as those of Galli et al. (2020), who found that the best 

results for predicting grain yield in sorghum required only a single flight date and 

vegetation index with the same multispectral camera used in this study. 

3.3.4. Multi-year Yield Estimation with Boll Area Index 

A multiple linear regression of all four years BAI with NDVI (at ~1200 heat 

units) for yield estimation resulted in an Adjusted R2 of 0.68 and moderate error (RMSE 
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= 461 kg ha-1, NRMSE = 22.6%). Cross validation produced similar results even when 

split by treatment, although NRMSE decreased for the irrigated and deficit irrigated 

models (Table 3.7). Including NDVI in the models potentially compensates for year-to-

year variations of vegetative growth or vertical distribution of cotton bolls in the canopy, 

which varies with irrigation and genotype (Dube et al., 2020; Pettigrew, 2004).  

A multiple linear regression model built from 2018 – 2019 BAI and NDVI data 

could predict 2020 cotton yield with reasonable accuracy (RMSE = 216.1 kg ha-1, 

NRMSE = 16.5%) and has a slope of approximately one (Figure 3.7), which suggests 

that the model is well calibrated. The data from 2017 was excluded because image GSD 

was different than all other years. A model such as this built from historical data could 

therefore enhance the early stages of pedigree selection (Rutkoski et al., 2016) by 

helping to eliminate the worst performing lines prior to harvesting numerous small plots 

to ensure labor intensive data collection efforts are not wasted on lines that would be 

eliminated anyways. There is likely too much error for this methodology to be useful 

later in the crop improvement process.  
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Table 3.7. Cross validation results for multiple regression models of Boll Area 

Index and NDVI on seed cotton yield.  

Treatments R2 RMSE (kg ha-1) NRMSE MAE (kg ha-1) 

Irrigated 0.64 445.3 18.1 349.5 

Deficit Irrigated 0.62 432.1 19.3 361.9 

Dryland 0.68 319.9 22.3 247.4 

All 0.68 441.5 21.6 359.6 

2018 - 2019 0.51 507.9 21.0 407.0 

R2 = Coefficient of Determination, RMSE = Root Mean Squared Error, 

NRMSE = Normalized RMSE, MAE = Mean Absolute Error 

 

Figure 3.6. Observed yield vs. 2020 predicted yield from the multiple regression 

model built from 2018 – 2019 BAI and NDVI. The validation regression is the black 

line and the line with a slope of one is red in color. 
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Multiple regression with a second image product (e.g. vegetation index or canopy 

temperature) or more advanced machine learning techniques should be strongly 

considered to limit error. A subset of the plots could be harvested for calibrating the 

BAI-yield model each year to help reduce labor and machinery costs. An advantage of 

BAI over vegetation indices is that weeds are easily classified out and therefore do not 

adversely impact the methodology as long as weeds are not occluding harvested bolls 

from the imagery. Feng et al. (2020) similarly found that two image features (i.e. two 

predictors) are adequate to estimate cotton yield while keeping image processing and 

model complexity to a minimum. Canopy temperature from thermal imagery most often 

increased the efficacy of in-season multiple regression models (R2 increased by up to 

0.14), so cameras or payloads with both optical and thermal sensors are ideal for in-

season estimation endeavors but not necessary near harvest or after defoliation. 

Regardless, boll area index can reduce cotton yield estimation error and should be 

considered as part of high-throughput phenotyping methodologies. 

3.4. Conclusions 

Irrigation and cotton cultivar have a significant effect on boll area index, which 

was derived using a pixel-based multispectral image classification methodology. BAI 

was not reliable for comparison of irrigated and deficit irrigated treatment means, 

providing statistical results comparable to cotton yield only in 2020. While vegetation 

indices provide a simple means of estimating cotton yield in-season, after defoliation 

BAI had stronger relationships with seed cotton yield in all years but 2017. BAI has 

potential to substantially reduce error with a modest increase in image processing 
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requirements and only one additional flight after defoliation. Including NDVI acquired 

during the bloom period optimally at around 1200 heat units with BAI for multiple linear 

regression models reduced error substantially, and 2020 yield was estimated with 

reasonable accuracy using the model built from data collected in 2018 – 2019. Focusing 

UAS image collection efforts on just two or three flight dates per growing season 

delivers a robust dataset while striving to efficiently utilize labor and computational 

resources. This suggests that the methodology could be useful for cotton breeders to 

enhance efficiency during the early stages of pedigree selection by identifying the worst 

performing lines prior to labor-intensive harvest and related data collection efforts from 

which these poor performing lines could be excluded. However, the methodology may 

not be adequate for screening advanced lines later in the process when accuracy is more 

critical.  
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4. UAS-DERIVED CANOPY TEMPERATURE FOR ASSESSING COTTON YIELD 

AND IRRIGATION TREATMENTS 

 

4.1. Introduction 

Water use efficiency and drought tolerance are key traits for crop improvement 

programs, especially as pressure on available water resources continues to increase and 

the climate becomes more unpredictable. Climate projections for Texas indicate that 

conditions in the second half of the 21st century will be drier than the most arid times in 

the last millennium (Nielsen‐Gammon et al., 2020). Increasing irrigation efficiency and 

leveraging data to improve irrigation management decisions is similarly important, but it 

is necessary to account for both spatial and temporal variability in soil moisture caused 

by factors such as soil texture and uneven irrigation application. While mapping soil 

physical characteristics has become simpler through technologies such as 

electromagnetic induction sensing (Huang et al., 2016; McBratney et al., 2005; Sudduth 

et al., 2001), mapping soil moisture at both fine spatial and temporal resolutions during 

the growing season is less practical. However, canopy temperature is closely related to 

both crop and soil water status (Jackson et al., 1981) and advances in technology have 

made it possible to map canopy temperature using thermal cameras onboard unmanned 

aerial systems (UAS) at fine spatiotemporal resolution. 

The main crop physiological process that drives variability in canopy 

temperature is transpiration. Water is pulled from the xylem into the leaf mesophyll, 

evaporates into the air spaces, and then diffuses out of the leaf through the stomatal 
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pores (Taiz et al., 2015). For uptake of water through the roots and transport through the 

xylem to leaves, plants must maintain a water potential gradient and turgor pressure 

through transpiration. Transpiration provides a cooling effect for plants via the 

evaporation of water from the leaf surfaces. Water deficit stress induces stomatal 

closure, which inhibits transpiration and limits evaporative cooling (Burke & Upchurch, 

1989). This causes leaf temperatures, and thus canopy temperature, to increase relative 

to an unstressed, actively transpiring plant that can better regulate its temperature. Water 

stress and heat stress together can increase canopy temperature by several degrees 

Celsius, which can cause many adverse reactions in the plant (Taiz et al., 2015). 

Scientists have shown that infrared thermography can be useful for precision 

agriculture and more specifically for precision irrigation management (Colaizzi et al., 

2012). Spatial variability of canopy temperature is closely related to irrigation 

management practices, irrigation application uniformity, and more directly to water 

deficit within the effective rooting zone of plants (Padhi et al., 2012; Pinter et al., 2003). 

Infrared thermography also has potential advantages over gas-exchange measurements in 

plant phenotyping studies where stomatal responses are important (Ishimwe et al., 2014), 

as canopy temperature measurements are not labor intensive (Ihuoma & Madramootoo, 

2017). Canopy temperature has performed similarly to multispectral vegetation indices 

for grain and lint yield estimation (Bai et al., 2016; O'Shaughnessy et al., 2011) and is 

strongly correlated to traits such as water use efficiency, leaf water potential, as well as 

derived water stress detection indices such as Crop Water Stress Index (Colaizzi et al., 

2012). Thermal imagery could also be applied for disease detection, mapping soil 
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properties, tillage mapping, drainage tile mapping, crop maturity mapping, and leaf 

water potential mapping (Cohen et al., 2005; Khanal et al., 2017).  

However, limitations remain for using available data for precision agriculture 

purposes. While thermal data from satellite platforms such as Landsat is freely available, 

the spatial and temporal resolutions (e.g. 100 meters and 16 days for Landsat 8) are 

currently too coarse for use in irrigated agriculture at commercial scales (Pinter et al., 

2003). Scientists have endeavored to capture canopy temperature more frequently by 

placing infrared thermometers (IRT’s) in the field or mounting them onto center pivot 

and linear irrigation systems (Colaizzi et al., 2017; O'Shaughnessy & Evett, 2010; 

O'Shaughnessy et al., 2012). However, the irrigation systems must be in operation to 

map canopy temperature, and the measurements are susceptible to the effects of soil 

background prior to canopy closure. Andrade-Sanchez et al. (2014) used two IRT’s with 

different orientations to help separate canopy temperature from bare soil on a 

phenotyping rover. One sensor was pointed downward at nadir while the other had an 

oblique view facing forward down the row. An IRT can only capture single point 

measurements in the sensor field of view and lack the spatial detail that thermal cameras 

provide. 

Scientists early identified the adverse impact of bare soil background as one of 

the major limitations of using infrared thermography for detecting canopy stress. This is 

especially true during early growth when canopy cover is low, in dryland production 

systems, and in semi-arid regions where the canopy does not completely cover the 

ground (Cohen et al., 2005; Heilman et al., 1981; Sullivan et al., 2007; Wanjura et al., 
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1984). Canopy temperature and indices derived from thermal imagery can overestimate 

water stress due to much warmer soil temperatures combining with cool crop 

temperatures (Pinter et al., 2003). Researchers have previously tried to address this issue 

by including a multispectral vegetation index to account for canopy cover in modeling 

endeavors (Bai et al., 2017; Clarke, 1997; Clarke et al., 2001; Gan et al., 2018; Moran et 

al., 1994). While this improved water deficit stress detection with thermal imagery, 

removing soil background altogether was identified early as the ideal solution (Jackson 

et al., 1981). Scientists have begun investigating machine learning for leveraging rich 

datasets captured from UAS, but few researchers use techniques such as support vector 

machines or random forests to detect crop water stress (Virnodkar et al., 2020). 

More recently, scientists have similarly endeavored to use ancillary RGB 

imagery to limit the influence of soil background (Ge et al., 2016). Drew et al. (2019) 

developed a method to isolate crop canopy from thermal images by using a visible 

camera to distinguish between soil background and crop canopy. While this technique 

may be useful for cameras such as the FLIR Duo ® Pro R (FLIR Systems Incorporated, 

Wilsonville, USA) that have an integrated color camera, more expensive thermal 

infrared cameras with dedicated sensors alone are typically more sensitive to subtle 

variations in temperature. 

While UAS now enable the collection of thermal imagery at unprecedented 

spatial resolutions that are fine enough to allow removal of soil background, few 

scientists have explored techniques to accomplish this in row-cropping systems without 

ancillary data sources. Literature exploring cotton yield estimation with thermal imagery 
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is also sparse. Therefore, the objectives of this study were to 1) evaluate unmanned 

aerial infrared thermography for detecting differences in crop water stress across 

irrigation regimes and cotton cultivars 2) explore the relationship between UAS-derived 

canopy temperature and cotton yield across irrigation regimes, and 3) examine the 

relationship between soil moisture and UAS-derived canopy temperature. 

4.2. Materials and Methods 

4.2.1. Study Site 

This experiment was conducted in 2019 and 2020 in a subsurface drip irrigated 

field at the Texas A&M University research farm near College Station, Texas (30.550° 

N, 96.436° W). The field was managed with conventional tillage during this period and 

for more than 10 years prior to beginning the project. Belk clay, which is a fine, mixed, 

active, thermic Entic Hapluderts, is the prevailing soil type at the site (Soil Survey Staff, 

2021). The slope of the field is less than 1 percent. The Koppen climate classification is 

humid subtropical, and average annual precipitation is 1018 mm (Menefee et al., 2020). 

Weather data was collected on-site from a station built directly adjacent to the study 

field. Daily averages were used in subsequent calculations. 

4.2.2. Experimental Design and Cultural Practices 

The experiment was a 3x8 factorial design within a completely randomized 

design arrangement and had four repetitions. The first factor was irrigation rate as a 

percentage of estimated crop evapotranspiration (ETc) requirement with three levels at 

80% (irrigated), 40% (deficit), and 0% (dryland). Data logged by the on-site weather 

station was used to estimate ETc requirements based on the FAO-56 method described 
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by Allen et al. (1998). Commercial cotton cultivar was the second factor. Eight cultivars 

were planted per growing season in April into four-row plots which were 12 meters in 

length. Seedbeds with 1 meter row spacing were prepared in December or January for 

the subsequent season. 

Cultural practices were similar between the two growing seasons. Weed control 

strategies included pre-emergence herbicide and glyphosate applied over-the-top when 

needed. Urea-ammonium nitrate fertilizer (32-0-0) was band applied via knives at 

squaring in 2019 and prior to planting in 2020. To limit rank growth in 2019, mepiquat 

chloride was applied at the labeled rate. Chemical defoliants were applied at the end of 

September when the irrigated treatments reached approximately 60% open boll. During 

the first week of October, the two center rows of the four-row plots were harvested with 

a 2-row spindle picker. The picker was retrofitted with a scale inside the basket to 

measure seed cotton yield mass. Cotton stalks were destroyed with a flail shredder 

following harvest, and the residue was later incorporated by means of vertical tillage. 

4.2.3. Soil Volumetric Water Content 

Soil moisture data (volumetric water content) was collected continuously with 

time domain reflectometry sensors (Model CS655, Campbell Scientific, Logan, UT) 

placed near the center of 6 subplots at 15 cm and 30 cm depths across the same cotton 

cultivar and in each irrigation treatment with two replications: 6 locations and 12 sensors 

total. These sensors were installed on June 7 in 2019 and June 8 in 2020 and connected 

to a Campbell CR1000x datalogger with a 1-minute scan interval and 15-minute 
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average. The VWC measurements logged during each UAS flight were averaged for 

analysis. The sensors were removed prior to chemical defoliation. 

 

4.2.4. Unmanned Aerial System and Image Acquisition 

An ICI 8640P (Infrared Cameras Incorporated, Beaumont, USA) thermal infrared 

camera was used in the study (Figure 4.1). The thermal camera was attached to a DJI 

Matrice 600 Pro hexacopter (SZ DJI Technology Company Limited, Shenzhen, China) 

on a Gremsy H3 gimbal (Gremsy, Ho Chi Minh City, Vietnam) to maintain nadir view 

during flight. The ICI 8640P camera has a 640 x 512 radiometric imager that produces 

14-bit thermal imagery for the spectral range between 7 – 14 μm. The sensor is a 

microbolometer with a sensitivity of 0.02 °C at 30 °C and requires less than a watt of 

operating power. The camera, which has a 12.5 mm manual focus lens with 50° by 37.5° 

field of view, was focused by hand on the ground using a laser rangefinder to position a 

photogrammetric target at the appropriate distance (40m). The focusing ring was 

permanently marked to ensure the camera was correctly focused prior to each flight. 

Using UgCS flight control software (UgCS Integrated Systems, Riga, Latvia), 

photogrammetry missions were flown at approximately 40m above ground level (AGL) 

to produce a 5 cm ground sampling distance (GSD). Four flights were conducted in 2019 

on July 9, July 25, August 12, and August 22. Four flights were conducted in 2020 on 

July 3, July 16, August 4, and August 18. 

Temperature-controlled reference targets made of aluminum plates about 60 x 60 

cm were prepared in the scene before each flight for calibration purposes (Han et al., 
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2020). One reference target was heated for the high temperature reference (50°C) while 

the other was cooled to serve as the low temperature reference (20°C). Temperature was 

measured with 9 thermistors distributed evenly across each reference plate and average 

temperatures during the flight were used for calibration. Optimal weather, such as sunny 

conditions and minimal wind between about 12:30 - 14:30 (near solar noon), were 

prioritized to ensure quality image capture. Permanent ground control points (Figure 4.2) 

were installed with concrete footings and surveyed using a Reach RS+ Global 

Navigation Satellite System receiver (Emlid Limited, Hong Kong, China) with Trimble 

VRS real-time kinematic corrections (Trimble Navigation Limited, Sunnyvale, USA). 

Figure 4.1. Infrared Cameras Incorporated 8640p thermal infrared camera 

attached to a Gremsy H3 gimbal. The gimbal mount includes a rubber damping 

system to isolate any vibration produced by the Matrice 600 Pro hexacopter. 
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Figure 4.2. Photogrammetric targets were used to ensure accurate georeferencing 

of thermal infrared orthomosaics. Low emissivity aluminum tape ensured a stark 

contrast for easy target identification in the thermal images. A small hole was 

drilled in the center of each target to align it over threaded rod in permanent 

concrete footers. 

 



 

91 

 

4.2.5. Image Processing and Analysis 

After each flight, raw 16-bit TIFF images were exported from ICI proprietary 

software. Unnecessary images during pre-flight checks, takeoff, and the landing 

sequence were removed prior to importing the images and ground control point positions 

into Pix4Dmapper. Orthorectified mosaics were generated using structure from motion 

photogrammetry (Pix4D S.A., Prilly, Switzerland). As described in detail by Han et al. 

(2020), the heated and cooled temperature reference targets were identified in the 

orthomosaics and paired with their measured temperatures to build a linear regression 

model relating the thermal image digital numbers to measured temperature references. 

The equation from this regression was used to apply a radiometric calibration to produce 

a final orthomosaic with surface temperature in degrees Celsius. A threshold temperature 

was then selected for each orthomosaic using the bimodal temperature data histogram of 

all temperatures within the orthomosaic. Canopy temperatures were separated from soil 

temperatures by identifying the minimum or trough centered between the two local 

maxima (peaks) in the bimodal distribution. All pixels above this identified temperature 

threshold, which essentially represented the maximum canopy temperature in the 

orthomosaic, were set to a null value using ArcMap (ESRI, Redlands, USA). To confirm 

the threshold was accurate, the new image was displayed over a natural-color composite 

to ensure it matched the canopy area. This effectively removed soil background from the 

surface temperature mosaics. Finally, a single canopy temperature for each plot was 

derived by averaging the temperatures within the plot vector boundaries (Figure 4.3). 
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4.2.6. Data Analysis 

Linear regression analysis was conducted in R Studio (R Core Team, 2021) to 

examine the relationship between canopy temperature and yield and between canopy 

temperature and soil moisture for 8 UAS flight dates over two years. All available 

canopy temperature data within each year was also analyzed with multiple regression 

using the R leaps package (Lumley & Miller, 2020), which returned the model with the 

highest Adjusted R2 value. The exhaustive search method included all possible subsets 

and was configured to select a maximum of 3 predictors. Linear models were evaluated 

using R2, root mean squared error (RMSE) and normalized RMSE (NRMSE). NRMSE 

was calculated by dividing RMSE by mean yield and multiplying by 100. Analysis of 

variance (ANOVA) of yield and canopy temperature was conducted in R Studio. Post-

hoc means comparisons were made using Tukey’s Honestly Significant Difference 

(HSD). 

Figure 4.3. Flow chart summarizing steps in the thermal infrared image processing 

workflow. Cool temperatures are represented by blue colors while red colors 

indicate warm temperatures. 
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To account for seasonal weather variation and to provide a more universal and 

physiological basis for analysis, the data was plotted against heat units accumulated after 

planting rather than by time with R packages ggplot2 and ggpubr (Kassambara, 2021; 

Wickham,2009). Daily heat units were calculated using on-site ambient temperature and 

the development threshold temperature of 15.6°C (Oosterhuis, 1990) as in the following 

equation: 

𝐻𝑒𝑎𝑡 𝑈𝑛𝑖𝑡𝑠 =  
𝑀𝑎𝑥 𝐴𝑚𝑏𝑖𝑒𝑛𝑡 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 °𝐶 −  𝑀𝑖𝑛 𝐴𝑚𝑏𝑖𝑒𝑛𝑡 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 °𝐶

2
− 15.6°𝐶 

 

4.3. Results and Discussion 

4.3.1. Irrigation Treatment Effects on Canopy Temperature 

There were significant differences in yield among irrigation levels in both 2019 

and 2020 (Table 4.1). There were also significant differences among irrigation levels for 

canopy temperature on all flight dates in 2019 and 2020. Pairwise comparisons for mid-

season canopy temperature matched yield results (Table 4.2), where all irrigation levels 

were different. However, in 2020 the 80% ETc irrigation and 40% ETc deficit irrigation 

treatments were not different by canopy temperature earlier in the growing season (July) 

when less than 1000 heat units had accumulated. In 2019, there was no significant 

difference between deficit irrigated and dryland at 989 heat units (July 3). This was due 

to 50 mm rainfall during the previous two weeks largely negating the need for irrigation 

in the deficit irrigated treatment. 

Treatment means comparisons during July always indicated two groups, where 

irrigated and deficit irrigated treatments were usually not different. All irrigation 
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treatments were different than the others for the flights conducted in August (as early as 

1154 heat units). Irrigated treatments consistently had lower mean canopy temperatures, 

and dryland cotton had higher canopy temperatures relative to other irrigation levels in 

each year (Figure 4.4). 

 

Table 4.1. Analysis of variance for cotton yield and corresponding canopy 

temperature (CT) for all years in the study. Accumulated heat units are presented 

in parenthesis behind each flight date. 

Source of Variation DF F-value Pr > F F-value Pr > F 

 2019 Yield 2020 Yield 

Irrigation 2 41.171 < 0.0001 42.33 < 0.0001 

Cultivar 7 8.236 < 0.0001 1.619 0.144 

Irrigation x Cultivar 14 0.682 0.785 0.8 0.666 

 CT on 7/9/19 (774) CT on 7/3/20 (709) 

Irrigation 2 4.438 0.0152 57.787 < 0.0001 

Cultivar 7 2.108 0.0534 1.85 0.092 

Irrigation x Cultivar 14 0.684 0.7827 1.105 0.37 

 CT on 7/25/19 (989) CT on 7/16/20 (897) 

Irrigation 2 41.054 < 0.0001 211.61 < 0.0001 

Cultivar 7 0.94 0.482 0.688 0.681 

Irrigation x Cultivar 14 0.661 0.804 0.554 0.89 

 CT on 8/12/19 (1237) CT on 8/4/20 (1154) 

Irrigation 2 378.18 < 0.0001 155.674 < 0.0001 

Cultivar 7 0.965 0.463 3.999 0.001 

Irrigation x Cultivar 14 0.682 0.784 0.296 0.99296 

 CT on 8/22/19 (1390) CT on 8/18/20 (1356) 

Irrigation 2 435.168 < 0.0001 68.835 < 0.0001 

Cultivar 7 2.018 0.0645 8.051 < 0.0001 

Irrigation x Cultivar 14 1.377 0.1876 0.855 0.609 
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Table 4.2. Tukey’s HSD post hoc test results for comparison of treatment means for 

yield data and canopy temperature for each year. Accumulated heat units are 

presented in parenthesis behind each flight date. 

Treatment Yield (kg ha-1) Canopy Temperature (°C) 

2019 
7/9/19 

(774) 

7/25/19 

(989) 

8/12/19 

(1237) 

8/22/19 

(1390) 

Irrigated 2879.2 a 31.02 a 31.07 a 33.87 a 29.37 a 

Deficit Irrigated 2479.2 b 31.25 ab 32.24 b 38.28 b 34.46 b 

Dryland 1998.5 c 31.55 b 32.55 b 39.38 c 35.75 c 

2020 
7/3/20 

(709) 

7/16/20 

(897) 

8/4/20 

(1154) 

8/18/20 

(1356) 

Irrigated 1724.4 a 32.87 a 32.87 a 33.8 a 35.51 a 

Deficit Irrigated 1183.1 b 33.27 a 33.27 a 35.5 b 37.43 b 

Dryland 866.2 c 35.20 b 35.20 b 37.0 c 38.05 c 

Figure 4.4. Box and whisker plot of cotton canopy temperature separated by 

Irrigation Treatment for August 4, 2020 at 1154 heat units. 
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There were not any significant differences in canopy temperatures among 

cultivars in 2019 for any flight date. However, there were significant differences (p < 

0.05) in canopy temperatures among cultivars in the August 2020 imagery despite the 

lack of differences in seed cotton yield. While cultivars with cooler canopy temperatures 

also generally had higher yields, relative cultivar canopy temperatures were not always 

consistent with final yield (Table 4.3). This could be related to the ability of each cotton 

cultivar to recover from water deficit or related heat stress while minimizing yield loss. 

When screening for traits related to drought tolerance, Thorp et al. (2018) similarly 

found significant differences in cultivar crop water use efficiency estimates (yield 

divided by amount of water consumed) derived from UAS multispectral remote sensing 

and noted that incorporating canopy temperature could improve crop water use 

efficiency estimates. Results suggest that canopy temperature could be used to target 

labor-intensive data collection efforts such as plant gas exchange measurements, which 

are sensitive to the severity of crop drought stress (Baker et al., 2007). 

 

Table 4.3. Tukey’s HSD post hoc test results for comparison of cultivar means for 

yield data and canopy temperature on 8/4/20 at 1154 heat units and on 8/18/20 at 

1356 heat units. 

Cultivar 
2020 Yield 

(kg ha-1) 

Canopy Temp. (°C) 

8/4/20 

Canopy Temp. (°C) 

8/18/20 

Phytogen 400 1469.3 a 35.3 abc 36.4 ab 

Phytogen 580 1456.0 a 34.8 a 35.9 a 

NexGen 5711 1265.2 a 35.5 abc 37.3bcd 

Stoneville 4550 1255.7 a 35.2 ab 37.5 cd 

DeltaPine 1845 1184.7 a 35.0 ab 36.5 abc 

NexGen 4936 1182.5 a 36.0 c 36.8 abc 
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FiberMax 2398 1170.1 a 35.8 abc 37.6 cd 

DeltaPine 1646 1079.8 a 35.8 bc 38.1 d 

 

4.3.2. Relationship Between Yield and Canopy Temperature 

There were strong negative linear relationships between canopy temperature and 

yield in 2019 and 2020. Cotton plots with cooler canopy temperatures had higher yields, 

while plots with hotter temperatures had reduced yields. The linear regression models 

with canopy temperature from a single date had R2 values that ranged from 0.39 to 0.72 

Figure 4.5. Negative linear relationship between seed cotton yield and canopy 

temperature on July 16, 2020 (897 heat units) represented by black line. Plots with 

cooler canopy temperatures tended to produce higher yields. Conversely, plots with 

warmer temperatures tended to yield lower. 
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(Figure 4.5) with RMSE’s of 299.2 and 249.7 kg ha-1, respectively. Thompson et al. 

(2020) found similarly strong relationships between cotton yield and canopy temperature 

measured with proximal sensors mounted on a high clearance sprayer. The best subset 

multiple regression model in 2019 included canopy temperature at 774 heat units (July 

9) and 1237 heat units (August 12) and had an adjusted R2 = 0.57 and RMSE of 372.7 kg 

ha-1 (NRMSE = 15.2%). The best subset multiple regression model for 2020 had an 

adjusted R2 = 0.72 and RMSE of 250.1 kg ha-1 (NRMSE = 19.2%) and included canopy 

temperature from 709 and 897 heat units or July 3 and July 16, respectively. While the 

error is moderate, these models are early enough in the growing season to adjust 

management practices in a commercial production setting. Both best subsets models 

included two independent variables (i.e. canopy temperature from two dates).  UAS-

derived canopy temperature could be used as timely data to help efficiently distribute 

irrigation water spatially through variable rate irrigation systems. Furthermore, issues 

with irrigation systems such as clogged sprinklers and field characteristics such as 

suboptimal terrain and drainage could be identified in the imagery and further used as 

part of cost-benefit analysis for weighing mitigation options. 

 

4.3.3. Relationship Between VWC and Canopy Temperature 

Canopy temperature from the thermal orthomosaics generally had negative linear 

relationships with VWC. In 2019, only canopy temperature at 1237 heat units (August 

12) had a significant relationship with VWC at 15 cm deep (R2 = 0.5). This was 

following a period of minimal precipitation and shortly after applying most of the 
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irrigation (Figure 4.6). The relationship between canopy temperature from the same date 

with VWC at 30cm deep was much stronger (R2 = 0.9). VWC at 30 cm was correlated 

with canopy temperature at 1390 heat units on August 22 (R2 = 0.37). The quantity of 

roots at 30 cm and deeper is much greater than roots at 15 cm (Ritchie et al., 2007), so it 

follows that VWC at 30 cm would be more strongly related to canopy temperature. 

Although Kamara et al. (1991) previously noted that emitter depth of drip irrigation did 

not affect cotton root depth or distribution, the 30 cm sensors were also closer to the 

depth of the drip tape. Out of both years, August 12 in 2019 (1237 heat units) was the 
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Figure 4.6. Daily precipitation and 80% ETc irrigation amounts during the 2019 

cotton growing season. Lines and dashed lines represent soil volumetric water 

content within each irrigation treatment. 
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only image date for which soil VWC also had significant differences among irrigation 

treatments, which were observed at both 15 cm (P = 0.04) and 30 cm (P = 0.007) depths. 

Soil VWC at 30 cm furthermore had a strong relationship with yield on the same date 

(R2 = 0.81).   

In 2020, there was a positive linear relationship (R2 = 0.48) between VWC at 15 

cm and canopy temperature at 897 heat units on July 3. There was limited range in VWC 

(0.41 for 80% ETc irrigated, 0.37 for 40% ETc deficit irrigated, and 0.46 for dryland) 

across irrigation treatments on that date caused by 50 mm rainfall over the previous two 

weeks (Figure 4.7). The model was not a negative relationship as expected because it 

was not driven by crop water deficit stress but more likely caused by differences in soil 

texture near saturated conditions. The relationship was negative at 1356 heat units on 

August 18 (R2 = 0.4) when the soil was drier and there was a greater range in VWC (0.24 

to 0.42). There were not any other significant relationships at 15 cm deep. For VWC at 

30 cm, there was only one significant relationship on July 3 (R2 = 0.47), which had a 

slightly positive regression coefficient. As the model did not have a negative slope as 

expected, this was not likely related to crop water stress. Results may have been clearer 

if tensiometers were used as such measurements are tied more directly to plant water 

stress (Irmak et al., 2000) than VWC and would be sensitive to the effects of soil 

physical properties such as texture (Sui et al., 2012). However, thermal imagery could 

likely be paired with soil moisture tension data from wireless sensor networks to better 

quantify soil moisture and crop water status together. 
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4.4. Conclusions 

Bare soil background was accurately excluded in UAS-derived thermal infrared 

orthomosaics using a simple threshold method without the need for ancillary imagery, 

and average canopy temperatures could be calculated for irrigation treatments and cotton 

cultivars. Canopy temperature was reliable for in-season irrigation treatment mean 

comparisons, providing similar results to cotton yield data while indicating more subtle 
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cotton growing season. Lines and dashed lines represent soil volumetric water 

content within each irrigation treatment. 
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differences between cultivars that could be further explored. For example, labor-

intensive data collection such as plant gas exchange measurements could be targeted 

only for cultivars of interest identified by canopy temperature. Cultivars with lower 

canopy temperatures generally had higher cotton yields with exceptions likely caused by 

differences in the cultivar’s capacity for recovering from heat or water deficit stress. 

There was a linear relationship between UAS-derived canopy temperature and seed 

cotton yield which ranged from weak to strong. Canopy temperature was generally 

correlated with VWC, but results suggest that single time point VWC measurements are 

not always representative of crop water status and should not be used alone but rather 

incorporated into broader irrigation management strategies. For example, thermal 

imagery could potentially be calibrated using georeferenced wireless soil moisture 

sensor networks for timely, high-resolution maps of soil moisture and crop water status. 
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5. CONCLUSIONS 

 

The relationship between UAS-derived vegetation indices and cotton yield across 

irrigation treatments was explored over time and accumulated heat units were 

investigated as a physiological basis for optimal timing of UAS flights for in-season 

yield predictions. There were strong positive linear relationships between vegetation 

indices and yield. NDVI produced better linear regression models than NDRE for all 

years except 2017, which suggests that NDVI is more suitable for quantifying yield in 

cotton. Except for the dryland treatment, models split by irrigation level were weaker 

than when pooled across irrigation levels. Results indicated that the optimal in-season 

timing was during the bloom period around 1200 accumulated heat units. Dryland yield 

for 2020 was estimated with fair accuracy from the previous two years of NDVI data 

captured closest to 1200 heat units. Furthermore, NDVI was sufficient for irrigation 

treatment comparisons with statistical results that were comparable to observed yield. 

UAS-derived NDVI could be useful during beginning stages of pedigree selection as a 

simple tool for cotton breeders to eliminate lines with poor performance ahead of labor-

intensive data collection efforts such as boll sampling and fiber quality analysis. NDVI 

could also act as a reserve dataset for potential yield based on historical data for 

insurance claims when crop losses occur. 

Boll Area index, which was derived from a pixel-based classification of cotton 

bolls in multispectral imagery, was sufficient for comparison of irrigation treatment 

means, delivering statistical results similar to observed cotton yield. BAI had strong 
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positive linear relationships with cotton yield. Incorporating BAI, vegetation indices, and 

canopy temperature in multiple linear regression models for yield estimation 

considerably reduced error. Yield for 2020 was estimated with fair accuracy using the 

multiple regression model generated from the previous two years of BAI combined with 

NDVI data captured during the bloom period. This methodology has potential to save 

time for cotton breeders during early stages of pedigree selection by excluding the worst 

performing lines before harvest and other labor-intensive data collection endeavors. 

Nevertheless, results suggest that it may not provide adequate accuracy for assessment of 

advanced lines later in the selection process. Multispectral UAS imagery from just two 

flight dates, one timed during bloom and another after defoliation, together provided 

better yield estimates than previous work which relied on RGB imagery after defoliation. 

Unmanned aerial infrared thermography was evaluated for comparing crop water 

deficit stress across irrigation treatments and commercial cotton cultivars, the 

relationship between cotton yield and canopy temperature derived from UAS was 

explored, and the relationship between canopy temperature and soil volumetric water 

content was examined. Accurately removing bare soil background from the high spatial 

resolution thermal orthomosaics was possible without secondary multispectral or RGB 

imagery. Average canopy temperature could be derived for both irrigation treatments 

and cotton cultivars for in-season pairwise mean comparisons, and it produced statistical 

results comparable to observed yield data. Canopy temperature also indicated potential 

differences between cultivars that could warrant further exploration, and such results 

could help constrain labor-intensive data collection efforts such as plant gas exchange 
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measurements only to cultivars identified as important by canopy temperature. The 

linear relationship between cotton yield and canopy temperature ranged from weak to 

strong. Soil volumetric water content did not have consistently strong relationships with 

canopy temperature. Results suggest that volumetric water content observations alone 

are not always indicative of water deficit stress and ideally should be considered 

alongside data such soil moisture tension which would be more representative of crop 

water status. 

Overall, UAS remote sensing has demonstrated potential as an efficient source 

for collection of multispectral and thermal infrared imagery, which are valuable for 

quantifying variability of crop yield and other important traits for high-throughput 

phenotyping purposes and precision agriculture analytics. Further investigation is 

warranted to determine the most economical UAS flight heights for collecting imagery 

intended for crop research and production purposes. Finally, scientists and agronomists 

should continue to improve the methodologies for analyzing and leveraging such 

imagery to its full potential as a means for improving crop production efficiency.  

 

 

 

 

 

 

 


