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ABSTRACT

The Cyber Physical Resilient Energy Systems (CYPRES) project at Texas A&M University

aims to create a next generation of energy management systems (EMS) using a secure cyber-

physical systems (CPS) modeling foundation. The CYPRES research team has created the Re-

silient Energy Systems Lab (RESLab) cyber-physical testbed. Our primary contribution to this

project was to implement Hardware-in-the-Loop (HIL) to create a full end-to-end testing ground

for the RESLab testbed. This HIL would be capable of taking in voltage and current phasor mea-

surement data inputs from a power grid simulator using the IEEE C37.118 industry standard pro-

tocol and output actual voltage signals to a relay protection system. In this way, the relay can

be tested and perform actions as if it were connected to a full-scale power grid network. This

was accomplished by utilizing PowerWorld Dynamic Studio (PWDS) for the power grid simula-

tor, National Instruments’ (NI) CompactRIO platform for the voltage generator, and a Schweitzer

Engineering Laboratories (SEL) Protection Relay for detecting the voltages.

Another major contribution of this work was designing and testing false data and command

injection cyber attacks on the IEEE C37.118 protocol and testing different machine learning (ML)

classifiers to determine their level of accuracy in effectively detecting the cyber attack on this

industrial protocol. This was completed by using PowerWorld Dynamic Studio (PWDS) power

simulator to generate the C37.118 traffic and Common Open Research Emulator (CORE) to emu-

late the network where the C37.118 packets are transmitted. The attack scripts were written using

Python programming language network packet dissector called Scapy. The three different machine

learning classifiers evaluated were k-Nearest Neighbor, Decision Tree, and Naïve Bayes.

Finally, our HIL implementation can also help answer the research question of what constitutes

a relay misconfiguration and how this misconfiguration can be detected. The misconfiguration can

be caused by human error or a malicious user trying to perform a cyber attack on the grid.
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

1.1.1 Problem Identification

The fourth industrial revolution has seen the implementation of Internet of Things (IoT) devices

into everything from smart appliances to smart cars, and the power grid is no exception. As more

and more communication devices are added to create the next generation smart grid, the need for

cyber-attack mitigation becomes more significant. This requires a power grid testbed that can be

used for end-to-end testing of different types of cyber-attacks as well as allow for the development

of different preventative and mitigation techniques.

The current Resilient Energy Systems Laboratory (RESLab) testbed [1, 2] contains all the

current industry standard power-grid network equipment. It can simulate different power grid

networks but has no way of taking the values from the simulated grid and using it to drive the

physical equipment so that the equipment operates as if it were directly connected to a power grid.

This dissertation focuses on how can we implement hardware-in-the-loop (HIL) to bridge this gap

between simulation and physical hardware as well as identify any new vulnerabilities that would

be associated with this. An example of the RESLab testbed updated to include the HIL is shown in

Figure 1.1. The RESlab testbed currently has a utility control center, a communications network,

and a substation. The HIL will add a protection relay device that will be connected to the real-time

automation controller (RTAC) in the substation.
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Figure 1.1: RESLab Testbed with Hardware-In-the-Loop

1.2 Literature Review

We have been working on the Cyber Physical Resilient Energy Systems (CYPRES) [1] project

to develop a way for driving the power grid protection relays currently installed in the ResLAB

Testbed without using high voltage power supplies. There are other groups that have implemented

HIL for power grid testbeds but only one of them have done it using low voltage inputs. This is

what my work has been focused on improving upon.

The article in [3] discusses how the PRIME testbed at Pacific Northwest National Laboratory

(PNNL) is an improvement over current power system testbeds because they introduce Remote

Hardware in the Loop (RHIL) into what is normally a software-simulation-only testbed. Most

power system testbeds use industry standard simulation programs to conduct their test and train-

ing. The first problem with these software simulators is that the communication protocols are

typically abstracted/over-simplified to the point that cyber-defense testing is not feasible. The sec-
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ond problem is that these simulators do not replicate the latency between detecting a line fault and

the time to recover because most simulators are event-driven simulators, which do not follow a

real-time clock but execute to the next scheduled event [4]. These problems are solved by adding

RHIL to physically represent a substation environment. The RHIL is constructed using three main

components: a power grid simulator to generate the synchrophasor values, a National Instruments

(NI) Compact RIO to convert the digital synchrophasor measurement values from digital to analog,

and power protection relays to read the analog inputs from the Compact RIO as real signal inputs

from a power grid. By physically representing a substation, a variety of new test scenarios can be

created to test network latency and integrity.

The purpose of our work is to implement a HIL solution similar to the RHIL by PNNL, but

improve upon it to also include a manual control option to allow for greater control of the relay

input variables.

The article in [5] discusses a new type of cyber-physical testbed that utilizes real time models

of power grid network models, power hardware-in-the-loop, and physical hardware such as invert-

ers and system controllers. It allowed for accurate power grid network testing over all components

that are typically used in the modern power grid. By using the actual hardware instead of only sim-

ulating it, these tests also account for any added latency caused by the hardware that a simulation

would not show.

Unlike the testbed in [5], our approach to add hardware-in-the-loop does not require the high

power and expensive power grid generation equipment that is necessary to drive the different power

grid relay devices.

Also, in our experiments the main communication protocol used was the IEEE C37.118, an

industrial application layer protocol for the transmission of Synchrophasor data packets for power

systems [6].

For the other major contribution of this work – conducting cyber attacks the IEEE C37.118

protocol – several other works were examined to see how they compared with our work. In the first

related work [7], the authors focused on designing a Denial-of-Service (DoS) attack on the IEEE

3



C37.118 protocol that would prevent packets from being received by a phasor data concentrator

(PDC). The authors then created a way for the IEEE C37.118 traffic to do Multipath-Transmission

Control Protocol port hopping in order to mitigate the DoS attack.

In another related work [8], the authors focused on modifying the global positioning system

(GPS) timestamps that are received by phasor measurement units (PMU) so that the units report

incorrect GPS times. Unlike these two other works, our attack on IEEE C37.118 focuses on in-

tercepting and manipulating the packets while they are in transit as well as modifying the phasor

values.
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2. Description of Project

2.1 Project Overview

The primary goal of this project was to develop a way to take simulated synchrophasor (phasors

with amplitude, phase, and frequency values) AC voltage and current measures from the Power-

World Dynamic Studio (PWDS) simulator and feed them to a protection relay. This connection

to the relay needed to be done in a way that utilized low voltage inputs to the relay but still had

the relay operate as if these inputs were of medium or high voltage. For example, if the simulated

voltage from PWDS is 75 kVolts, the inputted value to the relay needs to be 0.615 Volts in order

for the relay to show that it is reading 75 kVolts. This makes the relay operate as if it is actually

connected to a power grid. This then allows for cyber-physical testing of the relay and any other

connected components in an environment that represents normal power grid operation without the

need for full scale power grid generation equipment.

Another goal of this project was to test the resilience of these systems against cyber threats in

order to demonstrate the need for cyber-physical testing on power grid networks. This was done

by compromising one of the industry standard communication protocols, i.e., the IEEE C37.118

protocol, that carries the phasor measurement units (PMU) to add for false data and command

injection.

2.2 Hardware in the Loop Components

The Hardware-In-the-Loop for the RESLab testbed can be broken into several major com-

ponents. The first component is the IEEE C37.118 Synchrophasor protocol which is the com-

munication protocol used by power grid systems to transmit phasor measurements. The second

component is PowerWorld Dynamic Studio (PWDS), a power system simulator that generates the

simulated phasor measurements. The third component is the NI CompactRIO which is used to

generate analog voltages from the information in the C37.118 data packets. The last component

is the Schweitzer Engineering Laboratories 351 (SEL-351) Protection Relay which is a common
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power grid device that monitors transmission lines. These are the main components that make up

the HIL.

2.2.1 IEEE C37.118

The IEEE C37.118 standard is used for the transmission of synchrophasor data measurements

from a Phasor Measurement Unit (PMU) to a Phasor Data Concentrator (PDC). The article in [6]

goes into detail on the structure and contents of the IEEE C37.118 packet. A C37.118 packet ex-

ists in the application layer of a data packet. These packets can run over any type of transmission

medium and can be transmitted using either Transmission Control Protocol (TCP) or User Data-

gram Protocol (UDP) as well as serial connections. The TCP or UDP communication follows a

client-server architecture. In our case, the TCP client was the NI CompactRIO and the TCP server

was PWDS.

There are three main formats of a C37.118 packet: command, configuration, and data. These

are shown in Figure 2.1. All three packet formats contain the same information blocks with the

only difference being the command, configuration, and data blocks themselves.

Command frames are sent from a client to the server and will include one of three different

commands for negotiation of what information the server should send. The first command is Data

Transmission Off. This informs the server to end the transmission of data frames to the client. The

second command is Data Transmission On, which informs the server to begin sending the Data

Frames to the client. The third is Send Configuration Frame, which requests the configuration

frame from the PMU.

Configuration frames contain the necessary information about the structure of the data frames

so that the client will know how to parse the data. These are sent from the server to the client.

Typical parameters contained within this type of frame include time resolution, number of stations,

station IDs, number of PMUs in each station, phasor and station names, conversion factors and

nominal line frequencies for each PMU, and the rate of transmission of data frames.

6



Figure 2.1: IEEE C37.118 Packet Frames

Data frames contain the measured values taken by PMUs and other relevant data such as flags

per station. These frames are sent from the server to the client. The phasor measurements received

per PMU are raw unscaled integers in rectangular form. The voltage value is an unsigned short

integer and the phase angle is a signed short integer. In order to get these integers to represent

their actual values, they must be multiplied by their corresponding conversion factor that was sent

in the configuration frame and then converted from rectangular to polar. Data frames also include

frequency deviation from the nominal as a signed short integer that needs to be added to its nominal

line frequency sent in the configuration frame. The last value is the rate of change of frequency as

a signed short integer. An example of an actual C37.118 data packet is shown in Figure 2.2, which

carries information of three stations. Station 1 measurements are highlighted in the figure.

7



Figure 2.2: An example of an IEEE C37.118 data packet for a three-bus substation.

There is a standard header frame which is the same for all C37.118 frames. The first two bytes

of every C37.118 frame is a synchronization word which indicates which of the three C37.118

frames it is: 0xAA41 for Command Frame, 0xAA31 for Configuration Frame, and 0xAA01 for

Data Frame. The header includes other useful information such as the framesize, PMU/DC ID

number, SOC timestamp, time quality flags, and the fraction of a second the packet was sent. The

header is followed by the payload specific to its frame type. At the end of the frame there is a

two-byte checksum that is calculated using CRC-16/CCITT-FALSE.

2.2.2 Simulated Power Grid

PowerWorld [9] is a software package used for simulating high voltage power grid networks.

This package allows for testing different power grid failures to predict the outcome and thus im-

plement real-world efforts to prevent any serious failures from occurring. There are two main

components to this software package that are relevant to this paper, PowerWorld Simulator and

PowerWorld Dynamic Studio.

PowerWorld Simulator is used for the design and development of different power grid net-
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works. It can be used to model a power grid network such as buses, transmission lines, generators,

and loads. Once the network parameters are created, events, such as a generator going down, can

be set to occur at specific times during the real-time simulation and the simulator will adjust based

on that event.

PowerWorld Dynamic Studio is used to run the simulation created with PowerWorld Simulator

in real-time. The real-time values can be viewed within the program but can also be sent to other

programs or physical hardware. The most relevant of these is IEEE C37.118 protocol which is

utilized to gather data from PowerWorld as if it were a phasor data concentrator (PDC). This

ability of PowerWorld to output PMU data over other power system mediums makes it useful in

testbeds that want to physically replicate just one section of a much larger system but still want to

validate their network against the entire system.

Figure 2.3: Small Three-Bus PowerWorld DS Model
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Figure 2.4: Texas 2000-Bus PowerWorld DS Model

During the development of this project, several PWDS simulation models were used. For the

initial development of this project, a small three-bus test case, shown in Figure 2.3, was used to

develop and test a major portion of the code written for the NI CompactRIO. The benefit of this

this three-bus case was that it had all the necessary information for IEEE C37.118 but with just

three buses so that the packet sizes were small and easy to learn to dissect. Once the HIL was

able to be conducted using the three-bus case, work was done to allow the LabVIEW program to

scale up to a much larger case. Specifically, the Texas 2000-bus Synthetic model [10, 11], which is

the primary model used for testing the RESLab testbed, was the desired power grid simulation for

running the HIL. This simulation represents a synthetic power system model that includes 2000

different buses and hundreds of substations that resemble the Texas power grid. Figure 2.4 shows

the Texas 2000-bus model in PowerWorld simulator.

10



2.2.3 NI CompactRIO

National Instruments (NI) CompactRIO system [12] is a platform of modular devices that can

be customized for different applications. They are used for high-speed, high-performance data

processing that utilizes multiple inputs and outputs and is easily programmable using National

Instruments LabVIEW software tool. The benefits of this system for this project are its integrated

field programmable gate arrays (FPGA) for generating the necessary AC sine waves as well as its

network connected real-time processor which is used for LabVIEW network programming. With

these tools, we created a program that establishes a client TCP connection to a power grid simulator

(PWDS) to receive synchrophasor measurement data units in the format of C37.118 data packets.

Our program reads those PMU packets to output relative voltages to a protection relay. The specific

module used for this research contains an analog output module which is used to output the AC

sine waves.

The specific National Instruments equipment selected for this are a cRIO-9035 and a NI-9264.

The cRIO-9035, shown in figure 2.5, is an eight-slot embedded controller that contains a field-

programmable gate array (FPGA) which is used for generating the analog AC Sine Waves. The

second component is the NI-9264 C Series Voltage Output Module which is installed in one of the

eight module slots of the cRIO-9035. The NI-9264 module, shown in figure 2.6 is a 16-channel

voltage output device capable of outputting 16 different voltages between +10 and -10 Volts. This

device is used for outputting the AC sine waves. Output connections for the NI-9264 are attached

using terminal blocks where terminals 1-16 are the analog outputs and 20-35 are the corresponding

grounds for each analog output channel, shown in table 2.1.
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Table 2.1: Analog Outputs and Corresponding Grounds for NI-9264

Analog Output Terminal Corresponding Ground Terminal

1 20

2 21

3 22

4 23

5 24

6 25

7 26

8 27

9 28

10 29

11 30

12 31

13 32

14 33

15 34

16 35
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Figure 2.5: Nation Instruments cRIO-9035

Figure 2.6: National Instrument NI-9264

To conduct digital to analog voltage conversions using a NI CompactRio, a feature known as

NI CompactRIO FPGA Mode is utilized. This feature was used to generate the sine waves gener-

ated by the Compact RIO. PMU measures sent from PowerWorld DS are parsed using a custom
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LabVIEW digital to analog program. This program then scales down the data measurements and

uses custom FPGA program to output the analog voltage to the NI 9264 Analog Output Module

attached to the CompactRIO. These outputs of the NI 9264 are connected to the Low-Level Test

Interface of the SEL-351 protection relay system.

2.2.4 NI LabVIEW

National Instruments (NI) LabVIEW [13] is graphical programming language used for rapid

development of applications requiring visualization of the inputs and outputs. Specifically for this

project, LabVIEW is utilized to configure and control the NI CompactRIO. The program developed

is capable of operating in two different modes: IEEE C37.118 control, and Manual Control. As

such, the HIL Code is split into two functions based on the two modes. Besides the standard NI

LabVIEW packages, another package called Frame APIs for PDC by NI [14] was also installed to

simplify the addition of C37.118 protocols into the program.

2.2.4.1 IEEE C37.118 Control Mode Function

The IEEE C37.118 control mode establishes a TCP network connection to the PowerWorld DS

simulation model to receive IEEE C37.118 synchrophasor data packets, process those packets to

extract the desired values, generate corresponding sine waves, and output those sine waves over the

analog output module on the NI CompactRIO connected to the low-level test interface on the SEL-

351 protection relay. The C37.118 control mode is broken up into three sequences: initialization,

main loop, and shutdown.

The initialization sequence of the C37.118 control mode function begins by first establishing

a TCP connection to the PowerWorld simulation. This is then followed by sending a C37.118

command packet requesting the configuration frame. The program then waits until it receives the

entire configuration frame and processes it. Lastly, another command packet is sent requesting

that the data stream from PowerWorld be started. The initialization sequence also opens the FPGA

program.

The main loop sequence of the C37.118 control mode function consists of a while loop that
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runs all of the main loop code until the operator selects to end the program. The first item inside

the while loop is a TCP receive function which waits until it receives a new data packet from

PowerWorld. When a new data packet is received, it is parsed and dissected using the information

from the configuration packet collected in the initialization sequence. From this information, the

user then is able to select which specific PMUs’ values should be outputted to the SEL-351. These

values are then passed into a function that generates the three phases for each PMUs. This is

required since PowerWorld only outputs one phase value for each PMU but three are needed to

create the three-phase sine waves. This function generates a waveform graph of what the expected

output from the CRIO should be. This is all done twice, once for the voltage and again for the

current. All this information is then exported into the FPGA program which is run in parallel with

the HIL program.

The shutdown sequence is entered after the operator has ended the while loop in the main

loop sequence. This sequence does three things. It first closes the FPGA program so that it does

not continue to run once the HIL program ends. Second, it sends a final command packet to

PowerWorld telling it to stop sending data packets. Lastly, it terminates the TCP connection.

2.2.4.2 Manual Control Mode Function

The Manual Control Mode Function operates in a similar way to the IEEE C37.118 control

mode except that instead of receiving the synchrophasor control values from PowerWorld DS, the

values are entered manually to LabVIEW and are then used to generate the sine wave outputs.

This mode allows for greater manipulation of the sine waves being generated and can create more

complex test cases for testing the SEL-351 relays, such as testing relay misconfiguration.

Other than the open and close functions for the FPGA, the rest of the code for the Manual

Control mode function exists inside a while loop that runs until the operator ends the HIL program.

Inside the while loop, the string values from the table on the Front Panel are extracted. These

string values are then converted into double precision. This allows mathematical operation to run

on these values and they can be used to drive the FPGA program. Other than the magnitude values,

which have to be scaled down to a voltage for the low-level test interface, these values are exported
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directly to the FPGA program that is running in parallel. These values are also shown using a

wavefrom graph so that the operator can visualize the waveforms being sent out. Once all the

values have been sent to the FPGA program, the HIL program waits until the duration set for these

values have passed before being updated. The while loop allows the program to loop through all

the rows in the Front Panel table until it reaches an empty row or the operate force stops it, at which

point the HIL and FPGA programs terminate.

2.2.5 NI FPGA

One of the key features of the NI CompactRIO are the built-in FPGA modules. These modules

allow for rapid development of programs that require high refresh rates which cannot be achieved

by software only. It is these FPGA modules that were utilized to generate the different AC sine

waves that are outputted from the CompactRIO.

The CompactRIO has two different operation modes, Scan Mode and FPGA mode. The ben-

efits of Scan Mode are that it is simpler to develop new programs in and easier for users that are

new to CompactRIO to learn since it includes a library of prebuilt modules for FPGA and does not

require the user to directly design any FPGA code. The limitation of this, however, is that Scan

mode has a limited refresh rate of about only 1 kHz. Most power grid sine waves operate about

60 Hz when combined with only a 1 kHz refresh rate. This results in each individual sine wave

only having a refresh rate of about 17 times per cycle, which created waves with steps instead of

a normal sine wave. This made the use of Scan Mode not a viable option for this project. This

required the use of FPGA Mode since it is capable of producing designs with MHz of refresh rates

which produces more accurate sine waves.
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Figure 2.7: HIL Program FPGA Code

The LabVIEW FPGA program in this project, shown in figure 2.7 consist of four parts: Inputs,

sine wave generation, voltage protection, and outputs. There are 20 inputs into the FPGA program.

Since the SEL-351 takes in three-phase voltage and current, the FPGA has to create six sine waves,

three for voltage and three for current. Each sine wave has its own magnitude, frequency, and phase

control. This makes up eighteen of the inputs. The remaining two inputs are a boolean stop for

ending the FPGA program and a boolean reset for resetting the waveforms to their set values. The
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waveform generation is done by a built-in LabVIEW FPGA function for sine wave generation with

inputs from frequency and phase. The output from the sine wave generator is then converted to

a corresponding value between -4 and 4. This value is then adjusted using the magnitude. Once

the final output is created, it is then verified to make sure the desired value does not exceed the

maximum input value for the SEL-351 in order to prevent damage to the hardware. If the value

exceeds the maximum, then a boolean indicator is activated. Otherwise, the final value is outputted

using the NI-9264 Analog Output module. As a final layer of protection and to encourage proper

startup and shutdown of the program, all analog outputs are set to zero at the start and end of the

FPGA program.

2.2.6 SEL-351 Protection Relay

The Schweitzer Engineering Laboratories 351 (SEL-351) Protection Relay Systems [15] are a

line of power grid protection relays that are used to detect a wide range of power grid faults and trip

circuit breakers when those detected faults are outside of the specified parameters. These relays

are common protection field devices used in utilities and industrial electrical systems. They are

connected to the communication network and have an internet protocol (IP) address. Because of

this, they are cyber-physical devices which makes them a focus of the CYPRES project.

The connection between the NI cRIO and the SEL-351 is done by utilizing the low-level test

interface which can be accessed from inside the SEL-351 protection relay by removing the connec-

tor between J2 and J12 and attaching jumper wires, shown in figure 2.8. However, the main board

still needs some of the connection from the lower board in order for the main board to be powered.

These include two +15V, three +5V, BATT_RET, BATT_COM, BATT_DIF, and the six GND left

of the VS pins. The low-level test pins, which are VA, VB, VC, IC, IB, and IA are connected to

the NI-9264 module according to the wiring diagram in Figure 2.9. Utilizing this setup allows the

SEL-351 to operate normally but instead of requiring the hundreds of Volts input to operate, it can

operate on less than two voltages to drive the inputs.

With the SEL-351, we can provide a way to drive the voltage and current inputs on the relay

using low voltages so that the relay operates as if it was directly connected to a power grid network.
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This will expand the capabilities of the RESLab testbed and allow for future research testbeds

utilizing HIL and the SEL-351 protection relay.

Figure 2.8: Jumper, Connector, and Major Component Locations on the SEL-351 Main Board
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Figure 2.9: Low-Level Test Interface (J2 or J12) Connector

2.2.7 HIL Testbed

The hardware-in-the-loop (HIL) testbed created for this project consists of several components:

PowerWorld DS, LabVIEW, NI CompactRIO with analog output module, and the SEL-351. Figure

2.10 shows the software and hardware components of our project. PowerWorld DS and LabVIEW
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are Windows applications that are installed on network connected PCs that are attached to the same

network as the NI CompactRIO. The LabVIEW interface is used to start the program on the NI

CompactRIO, set any parameters, and view outputs. When the LabVIEW program is started, the

NI CompactRIO initiates the IEEE C37.118 connection to PowerWorld DS. The SEL-351 relay is

connected to the Analog Output Module on the NI CompactRIO using the relay’s Low-Level Test

Interface, which is used to bypass the high voltage inputs located on the exterior of the machine.

There are six power connections made between the NI CompactRIO and the relay, three for three-

phase voltage and three for three-phase current.

In order to show the benefits of the Hardware-In-the-Loop, we are utilizing the Manual control

mode of the CompactRio to conduct relay fuzzing to look for any possible configuration within

the SEL-351 protection relay. This is done by adjusting, for different periods of time, each of the

different voltage and current parameters for magnitude, phase, and frequency to values that should

trigger the relay to trip and noting whether the relay responds appropriately. By doing this, we

are able to verify the functionality of the protection relay as well as check that the relay has been

configured correctly for proper operation. Once initial testing with the HIL Testbed is complete,

the HIL equipment will be integrated into the RESLab testbed so that it can be used to design

new test case scenarios and and evaluate control applications utilizing the other components of the

RESLab testbed.
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Figure 2.10: HIL Testbed Flow Diagram
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3. Implementing Hardware In the Loop in the RESLab Testbed

3.1 HIL Operation Program

The HIL Program is a custom LabVIEW program built specifically to drive the Low-Level

Test interface on the SEL-351 Protection Relay. This program allows for two different modes of

operation, C37.118 Operation Mode, and Manual Operation Mode. The C37.118 Operation Mode

allows the SEL-351 to be driven by a C37.118 synchrophasor packet stream. By driving the SEL-

351 with a synchrophasor packet stream, the relay can operate off of the data from a power grid

simulator, making it function similar to how it would if connected to an actual power grid trans-

mission line. This proves a way to test the functionality of the relay without having to invest in

expensive and complex high voltage power grid equipment to operate the relay. The Manual Oper-

ation Mode proved another way to control the SEL-351 but instead of requiring another source to

drive it, it can instead be driven directly from the LabVIEW program. Using the Manual Operation

Mode, variables of the sine wave signals inputted to the low-level test interface can be adjusted.

This is beneficial as it provides a way to test relay misconfiguration.

3.1.1 C37.118 Operation Mode

The C37.118 operation mode, shown in Figure 3.1 is used by first setting the variables under the

Initialization section before the starting the program. These values are used to properly establish

the C37.1178 communication. If these values are not set correctly before the start of the program,

the program will not be able to operate correctly and must be force ended. The required fields are

the IP address of the server running PowerWorld DS, the PDC ID of the stream, the time base for

the simulation, the port number for the C37.118 transmission, the size of the configuration packet

in bytes, and the size of the data packet in bytes.
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Figure 3.1: LabVIEW Front Panel IEEE C37.118 Control

The next section labeled Station Selection is used for selecting and controlling the desired

PMU stream when there is multiple PMUs included in the C37.118 data stream. The Station # is

the input for selecting which station the desired PMU is in. Voltage PMU and Current PMU are

used to select the correct PMU values for each from the list of PMUs within the selected station.

The A/O Enable is used to turn on and off all analog output, and Voltage Enable and Current Enable

are used to either specifically turn on or off either the voltage or current analog outputs. The reset

toggle switch is used to manually reset the output waveforms if one of them gets out of sync.

Timestamp, Frequency, PMU Voltage, Voltage Angle, PMU Current, and Current Angle show the

current timestamp, frequency, voltage magnitude, voltage angle, current magnitude, and current

angle received from the most recent data packet respectively. Outputted Voltage and Outputted

Current are the scaled down values of PMU Voltage and PMU Current that is outputted from the

CompactRIO. Over Voltage and Over Current light up when either the desired voltage or current to

be outputted is greater than the rated voltage for the relay. Whenever the voltage or current is over

the rated limit, the values for that output are set to zero in order to prevent damage to the relay.
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The large Stop button is used to properly stop and end the program. When this button is pressed,

the C37.118 data stream is turned off, the analog output is set to zero, and the LabVIEW program

is terminated. The graphs show the three-phase sine waves for both voltage and current as they are

being outputted by the CompactRIO. Since PowerWorld only outputs one voltage phase value and

one current phase value for each station and does not output magnitude and phase values for each

sine wave within a three-phase electric power system, only VA phase and IA phase are set to the

exact PowerWorld value. VB and IB are shifted 120 degrees from the values of VA and IA and VC

and IC are shifted 240 degrees from the values of VA and IA. All three voltage sine waves are set

to the same received voltage magnitude and all three currents are set to the same received current

magnitude.

3.1.2 Manual Mode

The Manual operation mode, shown in figure 3.2 is used to create different test scenarios that

allows the user to manipulate every aspect of the analog outputs. This operation mode is used by

setting each of the different parameters within the Table Control to a desired testing value. Once

all the desired test parameters have been set, the program can then be started and will run through

each row of parameters for their set duration before moving on to the next row. When the program

reaches a row that has no set duration value, the program will automatically terminate.
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Figure 3.2: LabVIEW Front Panel Manual Control

The first column labeled Duration is used to specify how long, in seconds, the values for the

rest of the parameters in that row should be set for. For example, if the duration for row 0 is set to 2,

then the other parameter values will be set on the analog output for 2 seconds. The columns labeled

VA, VB, and VC correspond to voltage magnitude for each independent sine wave of the three-

phase voltage sine wave outputted to the relay. The columns labeled IA, IB, and IC correspond to

current magnitude for each independent sine wave of the three-phase current sine wave outputted

to the relay. The columns labeled VA Phase, VB Phase, and VC Phase correspond to voltage

phase for each independent sine wave of the three-phase voltage sine wave outputted to the relay.

The columns labeled IA Phase, IB Phase, and IC Phase correspond to current phase for each

independent sine wave of the three-phase current sine wave outputted to the relay. The columns

labeled VA Frequency, VB Frequency, and VC Frequency correspond to voltage frequency for each

independent sine wave of the three-phase voltage sine wave outputted to the relay. The columns

labeled IA Frequency, IB Frequency, and IC Frequency correspond to current frequency for each

independent sine wave of the three-phase current sine wave outputted to the relay.
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The Stop button on the left is used to immediately stop the program before the test has finished.

The Current Time displays the current system time as a reference. Time Elapsed displays the time

elapsed, in seconds, since the program was started. Current Step corresponds to which row is

currently being processed, starting at 0. Step Begin is the time in Time Elapsed that the current

step began, and Step End is the time in Time Elapsed the current step will end. Step Duration

corresponds to how many seconds the current step will last. Over Voltage and Over Current light

up when either the desired voltage or current to be outputted is greater than the rated voltage for

the relay. Whenever the voltage or current is over the rated limit, the values for that output are

set to zero to prevent damage to the relay. The graphs show the three-phase sine waves for both

voltage and current as they are being outputted by the CompactRIO.

3.2 Verifying the HIL Outputs

Since the outputs from the CompactRIO are sine wave voltages with peak-to-peak values be-

tween zero and 4 Volts, these values can be seen on an oscilloscope; however, in order to determine

what the actual voltages and currents that are represented by these values, the peak-to-peak volt-

ages would need to be multiplied by their conversion values set in LabVIEW. This would be 11390

for the voltage values and 9300 for the current values. This would give the actual values that are

being set as inputs into the LabVIEW HIL program.

3.2.1 AcSELerator QuickSet

AcSELerator QuickSet [16] is a program used to view the data received by the SEL-351 Relay.

Once connected to the relay, the HMI is selected and opened. The information displayed in the

HMI for the phasors is shown in Figure 3.3. This figure shows the different angles between each

sine wave with relation to VA. It also shows the relative magnitude of the three-phase voltage’s and

current’s individual sine waves in relation to one another. This window also shows the frequency

of the received signal. The primary use of this display is to visualize how the relay is perceiving the

received inputs from the CompactRIO, since the CompactRIO is not actually generating Kilovolts

of voltage and hundreds of Amperes worth of current, but is instead using two conversion values
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to adjust the voltage and current.

Figure 3.3: SEL-351 AcSELerator QuickSet Phasor Display

The reason for these conversion values is that since the values from the CompactRIO are meant

to represent the values that would be expected by the low-level test interface on the SEL-351

Protection Relay, the voltages inputted into the HIL LabVIEW program must be converted as if

they were being run through the transformers located on the SEL-351. These conversion values

were found by taking the ratio between what the original high input was and what was being read

by the relay. These conversion values were found to be static and did not need to be adjusted as

the voltage and current values increased.

AcSELerator QuickSet can also be used to change and configure setting on the SEL-351 Pro-
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tection Relay. This is done reading the setting from the device and adjusting any of the values

accordingly. For example, using the default settings on the SEL-351, the maximum voltage that

could be detected was only about 50 KiloVolts, which was an issue since the maximum voltage for

many of the PowerWorld simulations would typically approach 200 KiloVolts. This was corrected

by adjusting the relay settings for PTR Phase (VA, VB, VC) PT Ratio in Group 1/Set 1 from the

default value of 180, shown in Figure 3.4 to 720. This allowed the relay to read maximum values

of over 200 KiloVolts.

Figure 3.4: PTR Phase (VA, VB, VC) PT Ratio Setting in SEL-351 Protection Relay
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4. Testing and Detecting Relay Misconfiguration

4.1 Setup for New PowerWorld Testcase

The LabVIEW HIL Program can be easily re-purposed to work with almost any other C37.118

stream. This is done by changing some of the variables within the C37.118 Operation Mode

Front Panel to correspond to the new C37.118 stream. The first variable that needs to be set is

the PowerWorld IP address; this needs to be changed to the IP address of the new PowerWorld

simulation. The second variable that needs to be set is the PDC ID for the new PowerWorld

simulation. The third variable is the simulation Time Base. The standard for this is typically

1,000,000 but can be set in the simulation to different values. The next variable is the PowerWorld

port number which is normally 4712 but also can be adjusted in the simulation. The last two

variables are the configuration packet size and data packet size. These must be set to match the

size of the configuration and data packets exact size in order for the program to properly process

and dissect this C37.118 stream.

One way to do this is to use an open-source tool called PMU Connection Tester [17]. This

application allows for testing and troubleshooting C37.118 connections. The configuration packet

size can be found using this tool, setting the TCP connection IP and port addresses, setting the

protocol, device ID, and selecting connect. If these parameters are set correctly the C37.118 stream

will be displayed and begin being parsed. Figure 4.1 shows the location within PMU connection

tester to find the value for the configuration packets frame length. Figure 4.2 shows the location

within PMU connection tester to find the value for the data packets frame length. In these figures,

the configuration frame length for this stream is 174 and the data frame length is 44. These are

the values that would be entered into configuration and data packet size variables in the LabVIEW

HIL program.
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Figure 4.1: PMU Connection Tester Configuration Frame Length
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Figure 4.2: PMU Connection Tester Data Frame Length

4.2 Relay Fuzzing

The relay fuzzing was conducted using the the LabVIEW HIL program Manual Operation

mode. Using this mode, multiple tests can be conducted on the SEL-351 that test all the different

variables associated with the AC sine waves being sent. These include magnitudes, phases, and

frequency for each sine wave for both voltage and current. The results from these test are shown in

tables 4.2 to 4.8. Any parameters that are unlisted were set to the default values listed in table 4.1.

Voltages are stated in Volts. Currents are stated in Amps. Phases are in degrees, and frequencies

are in Hertz.

32



Table 4.1: Default Fuzzing Values

Standard Values (STD)

Voltage Magnitudes 50000

Current Magnitudes 100

Voltage Phase 0, 120, 240

Current Phase 0, 120, 240

Voltage Frequency 60

Current Frequency 60

Table 4.2 shows the testing parameters set for conducting the relay fuzzing test on voltage for

the SEL-351. This test found that the maximum voltage reading on the SEL-351 only reached

240kV which was less that the 250kV that was desired for testing. The reason for this is this is

a limitation of the maximum voltage that can be outputted by the CompactRIO. Since the Com-

pactRIO could not drive the voltage on the SEL-351 any higher than 240kV, the test was unable

to cause the relay to trip. This showed that the default conditions for the relay to trip within 60

seconds is greater than 240kV and therefore cannot be tripped under these conditions. Durations

and Times Tripped are in seconds.

Table 4.2: Voltage Magnitude Fuzzing Test

Test Number Voltage A Voltage B Voltage C Duration Trip Occurred? Time Tripped

1 25000 25000 25000 60 NO N/A

Table 4.3 shows the testing parameters that were set for conducting the relay fuzzing test on

current for the SEL-351. This test found that when the current is set for 1000A that it takes 20

seconds before the relay will trip, shown by test number three. From there the current amperage
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was increased in steps of 100A until the time to trip was instantaneous, which was found to be

around 1800A. For all but test four, current B and C were left at zero. This was done to prevent

potentially overloading the relay. However, by comparing test three and four, where test three has

only current a set to 1000A and test four has all three set to 1000A, both tests took the same amount

of time before the trip occurred. From there it was concluded that the relay trip time is not affected

by the number of currents active but by the highest value. Figure 4.3 shows a plot of time to trip

vs. current.

Table 4.3: Current Magnitude Fuzzing Test

Test Number Current A Current B Current C Duration Trip Occurred? Time Tripped

1 1000 0 0 5 NO N/A

2 1000 0 0 10 NO N/A

3 1000 0 0 20 YES 12.5

4 1000 1000 1000 20 YES 12.5

5 1100 0 0 20 YES 8.5

6 1200 0 0 10 YES 6.5

7 1300 0 0 10 YES 5.5

8 1400 0 0 10 YES 4.5

9 1500 0 0 5 YES 4

10 1600 0 0 5 YES 3.5

11 1700 0 0 5 YES 3

12 1800 0 0 5 YES immediate
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Figure 4.3: Time to Trip Vs. Current Graph

Tables 4.4 and 4.5 shows the results of the relay phase fuzzing test. This test involved adjusting

the phase of each sine wave to observe any changes and see if this would cause the relay to trip or

throw an alarm using the default configuration. The results showed that no significant changes in

the phase of any of the sine waves cause the relay to trip or throw an alarm. What was observed was

that the relay uses the phase of voltage A as the baseline for all the voltage and current phases. For

example, when voltage A phase was set to 90 degrees and all other sine waves were set to normal

values, the relay would read voltage A phase as 0 degrees and all other phases would be their

normal value minus 90 degrees, such as voltage B phase would be 30 instead of 120. However, if

the phase of any of the other sine waves besides voltage A phase were changed to something other

than their normal value, all other phases would still read correctly and the one changes would read

the value it was changed to. Examples of the results from these test are shown in table 4.6. The

numbers in the Test Results column correspond to a test number in either table 4.4 or table 4.5

based on "Volt" or "Cur". The phase values are the reading that were detected for each phase of

either voltage or current based on which test it corresponds to.
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Table 4.4: Voltage Phase Fuzzing Test

Test Number Voltage A Phase Voltage B Phase Voltage C Phase Duration Trip Occurred? Time Tripped

1 90 120 240 10 NO N/A

2 120 120 240 10 NO N/A

3 240 120 240 10 NO N/A

4 0 0 240 10 NO N/A

5 0 90 240 10 NO N/A

6 0 240 240 10 NO N/A

7 0 120 0 10 NO N/A

8 0 120 90 10 NO N/A

9 0 120 120 10 NO N/A

Table 4.5: Current Phase Fuzzing Test

Test Number Current A Phase Current B Phase Current C Phase Duration Trip Occurred? Time Tripped

1 90 120 240 10 NO N/A

2 120 120 240 10 NO N/A

3 240 120 240 10 NO N/A

4 0 0 240 10 NO N/A

5 0 90 240 10 NO N/A

6 0 240 240 10 NO N/A

7 0 120 0 10 NO N/A

8 0 120 90 10 NO N/A

9 0 120 120 10 NO N/A
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Table 4.6: Example Relay Readings from Relay Phase Fuzzing

Test Results Phase A Phase B Phase C

Volt 1 0 30 150

Volt 2 0 0 120

Volt 5 0 90 240

Volt 8 0 120 90

Cur 1 90 120 240

Cur 5 0 90 240

Cur 8 0 120 90

Tables 4.7 and 4.8 show the results from the relay frequency fuzzing tests. Frequencies were

tested between a maximum of 70Hz and a minimum of 50Hz because these were the maximum

and minimum frequencies that the relay was capable of detecting and so no test were conducted

outside this range as a result. These tests did not cause the relay to trip or throw an alarm. However,

similar to the Phase Fuzzing tests, it was noticed how the frequency of voltage A was used as the

baseline frequency that all the other phases were based off of. For example, when the frequency

of just voltage A was changed, the relay would assume that the frequency for all the other phases

should be equal to the frequency of voltage A, but since they are not, the reading for all other

phases would become sporadic and the magnitudes would read inaccurately. When the frequency

of VA was changed from the nominal of 60Hz to 59Hz, it would cause all other phase readings to

become sporadic but the magnitudes would remain relatively accurate. When the frequency of VA

was changed from the nominal of 60Hz to 50Hz, it would cause all other phase readings to become

sporadic and the magnitudes of all but voltage A to drop to a fifth of what they were supposed to

be. For example, voltage B would drop from 50,000V to 10,000V. When the frequency of VA was

changed from the nominal of 60Hz to 70Hz, it would cause all other phase readings to become

sporadic and the magnitudes to become half of what they were supposed to be; so voltage B would
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read 25,000V instead of 50,000V. When any other phase besides voltage A was changed, only the

phase and magnitude reading for that phase would be affected. Whenever one of the other phases

were changed, their phase reading would become sporadic and their magnitude would become a

fifth of what they were supposed to be. If the magnitude was changed to a value below 50Hz or

above 70Hz, the relay would no longer detect that phase and show it as down.

Table 4.7: Voltage Frequency Fuzzing Test

Test Number Current A Phase Current B Phase Current C Phase Duration Trip Occurred? Time Tripped

1 59 60 60 10 NO N/A

2 50 60 60 10 NO N/A

3 70 60 60 10 NO N/A

4 60 59 60 10 NO N/A

5 60 50 60 10 NO N/A

6 60 70 60 10 NO N/A

7 60 60 59 10 NO N/A

8 60 60 50 10 NO N/A

9 60 60 70 10 NO N/A
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Table 4.8: Current Frequency Fuzzing Test

Test Number Current A Phase Current B Phase Current C Phase Duration Trip Occurred? Time Tripped

1 59 60 60 10 NO N/A

2 50 60 60 10 NO N/A

3 70 60 60 10 NO N/A

4 60 59 60 10 NO N/A

5 60 50 60 10 NO N/A

6 60 70 60 10 NO N/A

7 60 60 59 10 NO N/A

8 60 60 50 10 NO N/A

9 60 60 70 10 NO N/A
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5. MiTM Attack on Synchrophasor Protocol and ML Detection

Phasor measurement units (PMUs) use the IEEE C37.118 protocol to send telemetry to phasor

data collectors (PDC) and human machine interface (HMI) workstations in a utility control center.

However, the C37.118 protocol utilizes the internet protocol (IP) stack without any authentication

mechanism. This means that the protocol is vulnerable to false data injection (FDI) and false com-

mand injection (FCI). In this chapter, we describe different scenarios in which C37.118 protocol’s

integrity and confidentiality can be compromised by a malicious agent. We also show how machine

learning (ML) algorithms can be used to detect such attacks.

5.1 IEEE C37.118 Packet Dissection

In order to conduct a man-in-the-middle (MiTM) attack on the IEEE C37.118 protocol, there

had to be a way to properly dissect, interpret and modify the packets in real time. The problem was

that no open-source code existed that allowed for simple dissection and creation of C37.118 packets

using a common program language, such as Python. This would require the development of a

custom C37.118 packet dissector. To simplify the development of this C37.118 packet dissector, a

packet manipulation program, known as Scapy [18], was utilized.

The Scapy packet manipulator is a Python package that is used to build or dissect different

types of network packet protocols. Some of the native protocols that it supports are Bluetooth,

HTTP, Netflow, SCTP, and TCP. Scapy also allows custom packet dissectors to be written for

any protocol that is based on the Open System Interconnection (OSI) model [19]. For instance,

the authors in [20] developed new Scapy libraries for another industrial control protocol called

Distribute Network Protocol 3 (DNP3). In the case of this project, the IEEE C37.118 network

protocol was not a native protocol to Scapy which meant that this protocol would have to be

manually built and added to the Scapy protocols list.

There are three main complications with the IEEE C37.118 protocol that require extra pro-

gramming compared to simpler protocols that have static packet sizes, fields, and types. The first
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complication is that there are three types of IEEE C37.118 packets: Command, Configuration, and

Data. Since the format for each type of packet is different, Scapy must be able to interpret which

type of C37.118 packet it has received in order to properly dissect it. The second complication is

that the number of items in the configuration and data packets can vary greatly based on the number

of phasors. This requires Scapy to be able to determine both the number of stations and phasors per

station associated with a specific C37.118 stream. The third complication is that C37.118 sends

all the phasor values in the data packets appended one after the other. The only way to interpret

what values correspond to which phasors is to use the configuration packet associated with that

C37.118 stream. In order for Scapy to be able to properly parse the data packets, it must first parse

the configuration packet and store the information from the configuration packet so that it can be

referenced later for dissecting the data packets.

5.2 Testbed Architecture

The testbed architecture built to create the C37.118 cyber attack consisted of three virtual

machines: PowerWorld VM, Client VM, and the Common Open Research Emulator (CORE) VM.

Figure 5.1 shows the layout of how a synchrophasor data is transmitted between a PMU and a

control center. It also shows the ideal place that an attacker would want to target in order to have

the largest impact, which is right before the synchrophasor packets are sent to the control center

because this is the point where the C37.118 packets contain the most PMU measurements.
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Figure 5.1: Example Layout of Synchrophasor Data Transmission from a PMU to a Control Center

The PowerWorld VM is the server that simulates a C37.118 power grid network. The Client

VM acts as a regional transmission organization that is receiving the C37.118 data from the Pow-

erWorld VM. The CORE VM creates an emulated network that is used to connect the PowerWorld

VM and Client VM while also providing a realistic attack vector on the C37.118 packet stream.

Table 5.1 shows the different resources that were assigned to each of the VMs that allowed them to

operate ideally. The virtual environment was hosted using an open-source program called Oracle
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VirtualBox [21]. This program allows for the creation and operation of multiple virtual machines,

including all their virtual hardware, simultaneous as well as the creation of virtual networks that

can be used by the virtual machines to communicate with each other independently. Figure 5.2

shows the layout of the virtual machines used in the C37.118 attack testbed.

Figure 5.2: C37.118 Attack Testbed Diagram

In this testbed, two virtual networks were created. The first was between the PowerWorld VM

and the CORE VM. The second was between the CORE VM and the Client VM. The PowerWorld

VM and CORE VM each only had one network interface but the CORE VM had two network

interfaces so that it could connect to both the PowerWorld VM and the CORE VM simultaneously.

Table 5.1: Resources Available to Each VM in the Testbed

VM Name Operating System Software Internal Network # of Cores / RAM

PowerWorld VM Windows 10 PowerWorld PowerWorld 4 Cores / 8GB RAM

CORE VM Ubuntu 18.04 CORE PowerWorld / Control 2 Cores / 6GB RAM

Client VM Windows 10 PMU Connection Tester Control 2 Cores / 6GB RAM
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5.2.1 PowerWorld VM

The PowerWorld VM is a Windows 10 machine that is used primarily to run PowerWorld

Simulator and PowerWorld Dynamic Studio (PWDS). PowerWorld Simulator is used to design

and create new power grid simulations with different numbers of PMUs and types of events. These

simulations are then simulated using PowerWorld Dynamic Studio. PowerWorld Dynamic Studio

also allows for different types of power grid communication protocol and for other programs to

connect to it as if it were a real power grid. Specifically, in the C37.118 Attack, PWDS functions

as a small part of a power grid network that transmits its PMU measurements to a larger regional

organization that consolidates the PMU measurements for multiple other parts of a larger power

grid network. PWDS provides a realistic network packet stream that is representative of what

would be seen in an actual power grid network and it is for that reason that it was selected as the

server for the C37.118 Attack. Figure 2.3 shows the small three-bus power grid network that was

used for generating the C37.118 packet stream utilized in this attack.

5.2.2 Client VM

The Client VM is a Windows 10 machine that used to connect to PWDS, initialize the C37.118

packet stream, and parse the packets. This was done by utilizing a program called PMU Connection

Tester [17]. PMU Connection Tester is an open-source program that is capable of receiving and

parsing synchrophasor packet streams. This allows the Client to operate as a power grid regional

organization that consolidates the PMU measurements from multiple smaller power grid phasor

data concentrators. In this test, only one C37.118 packet stream was necessary; however, multiple

instances of PMU Connection Tester could be used to connect to multiple different phasor data

concentrators. PMU Connection Tester running in the client VM is shown in Figure 5.3.
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Figure 5.3: PMU Connection Tester on the Client VM

The Client VM was also the location where the C37.118 data was collected for processing

by the machine learning (ML) classifiers. This was done by using another open-source program

called Wireshark [22]. Wireshark is a program used for monitoring and capturing network packets

received and sent over a local network interface on the host machine. In this case, Wireshark was

capturing all the network traffic on the interface connected between the Client VM and the CORE

VM.
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5.2.3 CORE VM

The CORE VM is an Ubuntu machine that was used to emulate the network between the

PowerWorld VM and the Client VM. This was done using a program Common Open Research

Emulator (CORE) [23]. CORE is a tool developed by the U.S. Navy Research Laboratory which is

used to create virtual emulated networks. The benefits of using virtual emulated networks instead

of simulated networks is that emulated networks better represent how network traffic flows on a

physical network. For example, an emulated network is capable of accounting for the link delay

that occurs over transmission lines and between other devices, whereas a simulated network would

not include these real-time delays. These delays are important to this attack because without them

there is no time for the attack to occur between C37.118 packets.

Figure 5.4 shows the CORE network built for this attack. At the top there are two routers.

These routers are used to create separate subnets for the the Client network and the PowerWorld

network, since the C37.118 client and server would typically not be on the same subnet. Below

the two routers are two switches. These two switches are used to attach two devices to the Power-

World subnet and the Client subnet. At the bottom left and bottom right corners are two interface

connects. These items are used to connect to the two virtual network interfaces on the CORE VM

that are connected to the PowerWorld VM and the Client VM. Whenever CORE is started, it takes

ownership of the two CORE VM network interfaces and forwards all the network traffic over those

interfaces to each of the CORE subnets. Enp0s3 is the interface connected to the Client VM and

enp0s8 is the interface connected to the PowerWorld VM. The two machines (N5 and N6) located

at the bottom center are two emulated host machines that allow for direct interaction with the two

different subnets from with the CORE emulation. N5 is the host that runs the C37.118 attack, i.e.,

the Adversary host.
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Figure 5.4: C37.118 Attack CORE Network

5.3 False Data and Command Injection

Using the custom Scapy C37.118 protocol, the route between the Client VM and the Power-

World VM was compromised by the Adversary host shown in Figure 5.2. From this the Adversary

host is able to eavesdrop on all the traffic between the Client VM and PowerWorld VM. This means

that the attacker is able to learn all information about the different PMUs in the compromised

C37.118 packet stream, such as all the station names, number of PMUs, and the measurements

read from all the PMUs. This also sets the stage for the next part of the attack, false data and

command injection.

There were four different types of false data and command injection attacks created for this

project:

• Phase and Voltage Modification,

• Timestamp Modification,
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• CRC Modification,

• Transmission Off.

Phase and Voltage Modification, Timestamp Modification, and CRC Modification are all false

data injection attacks and Transmission Off is a false command injection attack. These attacks

were chosen because each of them affects a different key part of the C37.118 protocol. Phase

and Voltage Modification is used to target the phase and/or voltage of a specific PMU and adjust

the measurement to a different value than is originally transmitted. In this case the values are set

to zero to make the PMU appear as if the transmission line it is connected to has gone offline.

Timestamp Modification involved removing the timestamp of each packet and replacing it with a

timestamp that is plus or minus 30 seconds from what the actual timestamp was originally. This

was done to make the C37.118 packets appear as if they were being received out of order. CRC

Modification involved taking the CRC of each packet received, removing it, and replacing it with

an incorrect value. This was done to make all the C37.118 packets received appear as if they were

corrupted. Transmission Off would intercept all C37.118 command packets, remove the desired

command, and replace it with the command for transmission off. This would make PowerWorld

receive only commands to turn off the transmission to the client and never receive a Transmission

On command, preventing the client from ever being able to start the C37.118 data stream.

5.4 Data Set Collection and Generation

To gather the C37.118 data packets, Wireshark [22] runs on the Client VM to capture packet

capture (PCAP) data. The Client VM was used because it offers the point of view of the operator.

After each test, the VMs were reset to ensure that no data was carried over from one test to the

next. The rate of transmission for all test was set to eight data frames per second and each test was

ran for 20 minutes per experiment.

In order to get the PCAP data into a format that could be used by the ML classifiers, a two

step conversion process was done. The first step was exporting the PCAP Wireshark packets to a

PDML file. From there a custom Python script is run that extracts only the desired features from
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the PDML file. This data is saved as a CSV. The features that are saved are: Frame Rate per Second

(FRS), Timestamp (SOC), Checksum, Voltage, and Angle.

During a Wireshark packet capture, Wireshark defaults to capturing all network traffic detected

on the specified interface. This requires all Wireshark to then be set to filter out all traffic except

C37.118 packets. This is done so that there is less data being saved to the PDML file since these

files are already very large with just C37.118 packets and slow to parse.

In order for the ML classifiers to process data, it has to be in an acceptable format that can be

easily imported. One of those formats is as a CSV file. Wireshark does contain an export to CSV

function, but this does not export all the necessary C37.118 data that is required. The only export

function built into Wireshark that exported all the required fields was PDML. For this reason, a

custom conversion program was built to extract the required files from a PDML format and save it

as a CSV.

The reason for converting to CSV instead of directly parsing it using the ML classifiers is

because, even though it has all the data for the required features, these files are also very large and

mostly filed with unused data. Table 5.2 shows the different files sizes for each of the data types of

the same packet capture of the small three-bus case.

Table 5.2: Different File Sizes for a Single 20 Minute Small Test Case

Unfiltered PCAP 2,112 KB

Filtered PCAP 1,238 KB

PDML 251,699 KB

CSV 719 KB
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5.5 Machine Learning Classifiers

Machine Learning (ML) Classifiers are useful tools that are capable of detecting different types

of attacks. The goal of this project was to determine and compare the precision, recall, and F-1

score of three different ML classifier: k-Nearest Neighbor, Decision Tree, and Naive Bayes. This

was done by utilizing an online resource called Scikit-learn [24]. Each of these ML classifiers

was also configured to generate multi-labeled outputs so that they could identify packets that have

more than one modified field. For example, if both voltage and angle were modified in one packet,

multi-labeling allows the ML classifier to classify the attack as both a voltage attack as well as an

angle attack instead of only being able to chose one.

Each classifier was trained on the same training data set and the same test split. The normal

and each of the attack datasets were first combined into one large compiled dataset. This data in

this dataset is then randomized so that when the dataset is split into 80% training and 20% testing

there will be an even distribution of all the different types of data throughout. The dataset is then

normalized to prevent any over-fitting.

Once the final dataset is created, each of the ML classifiers is trained using the 80% training

data set of 50,482 packets. After the classifiers are trained, they then are tested using the 20%

testing data set of 12,621 in order to determine each classifier’s ability to predict each of the

different types of attacks. Lastly, the predicted labels are then compared against the real labels

for the test data to determine the categories each data point falls under as well as the efficiency of

each algorithm. The different evaluation metrics used for this application are true positives, false

positives, true negatives, false negatives, precision, recall, and F-1 score for each ML classifier.

There are four main categories that a classification will fall under: true positives, false positives,

true negatives, and false negatives. A true positive is when an attack data point is correctly labelled

as an attack data point. A false positive is when a normal data point is incorrectly labelled as an

attack data point. A true negative is when a normal data point is correctly labelled as a normal data

point. A false negative is when an attack data point is incorrectly labelled as being a normal data

point.
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The results from these four categories are then used to determine the precision and recall of

each classifier in order to understand the efficiency of each ML algorithm. Precision is the mea-

surement of the algorithms ability to correctly classify true and false positives. The equation for

precision is shown in figure 5.5. Recall is the measurement of each of the algorithms ability to

correctly classify true positives versus false negatives. The equation for recall is shown in figure

5.6. For this application, it was determined that a higher recall rate is more desirable that a higher

precision rate because it is more important to detect true positives even though this may generate

more false positives as well. The F-1 score is used to find the best balance between precision and

recall, where a value as close to one is the most desirable. The equation for finding the F1-score is

shown in figure 5.7.

Figure 5.5: Equation for Calculating Precision

Figure 5.6: Equation for Calculating Recall

Figure 5.7: Equation for Calculating F1-Score

While there are many other classifier algorithms that exist that could have been used to label the

C37.118 attack dataset, these three were chosen because each algorithm is capable of producing
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multi-labelled outputs. The other reason these three algorithms were chosen is because each of

them operates in a different and unique way so that a wider range of ML classifiers abilities are

tested on detecting attacks on C37.118.

5.5.1 K-Nearest Neighbor

The algorithm used by k-Nearest Neighbor (kNN) uses the distance between labeled training

data and unlabeled new data to determine how to label the new data [25]. There are several

different formulas that can be used for kNN, such as Euclidean, Manhattan, and Minikowski;

however, it was determined that the Euclidean distance formula, which is the most commonly

used, was the preferred formula for this experiment.

The k in k-Nearest Neighbor is a variable that must be tested to find the optimal value for each

application of kNN, since the value changes for each new application. To find the optimal value

for k, multiple values for k had to be tested through trial and error to determine the optimal value

that minimized the mean absolute error function. Using the Elbow method [26], k from 1 to 100

was tested, shown in Figure 5.8, and it was determined that seven was the optimal value for k for

this application. These means that the seven data points closest to the new unclassified data point

will be used to determine the classification for the new data point.
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Figure 5.8: Searching for the Optimal Value for k Ranging from 1 to 100

5.5.2 Decision Tree

The Decision Tree (DT) classifier functions uses a process called binary recursive partitioning

in order to build a decision tree capable of labeling data based on the different value features

[27]. These DT have a flowchart-like structure where each block represents a test and each branch

from that block represents a possible outcome. These decisions continue to branch off until every

possible outcome has been connected to a single branch. The DT algorithm uses a function known

as the impurity measurement, which determines when a branch should fracture into two different

leaf nodes. There are two different versions of the impurity measurement, Gini impurity [28] and

entropy. Both versions were tested and it was discovered that for this application that the Gini

impurity measurement produced a higher F-1 score and therefore was chosen for this project.

5.5.3 Naive Bayes

The Naive Bayes (NB) classifier uses the probability from previous events occurring along

with information from new events to determine the future probability of the next event [29]. NB

operates using the Bayes theorem. The Bayes algorithm predicts the label of new data points
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assuming that the features are independent of one another. However, in the real world features are

almost never independent. For this reason, it is called Naive Bayes (NB). For our application, the

Naive Bayes theorem was modified to allow for multi-label outputs.

5.6 Results

Using the results of the seven evaluation metrics, each of the three ML classifiers were com-

pared to determine which proved to be the most accurate at detecting the different types of false

data and command injection attacks in C37.118 data traffic. Figure 5.10 shows the evaluation met-

rics results for each type of attack within each ML classifier. As can be seen in Figure 5.9, DT had

the highest F1-score for angle modification, voltage modification, and normal traffic. The F1-score

for DT tied with NB for CRC modification and timestamp modification. DT had a 100% recall for

every dataset whereas kNN and NB only had 100% recall for a couple of datasets. DT also had

the highest F-1 score for Transmission Off, which was the hardest attack to detect since it involved

preventing the stream of data packets from starting and only generated a three C37.118 packets for

that dataset. While each ML classifier proved to be capable of detecting most attacks on C37.118

attacks, it is clear that Decision Tree is the most capable of detecting these types of attacks with

the greatest level of accuracy.
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Figure 5.9: F1-score Results for kNN, DT and NB Algorithms.

Figure 5.10: Evaluation Metric for Each FCI and FDI Attacks Organized by Type of Classifier
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6. Summary and Conclusions

6.1 Contributions

This work provides a way to conduct end-to-end testing on physical power grid network equip-

ment as well as show vulnerabilities in one of the common network protocols used for this com-

munication, the IEEE C37.118 protocol. As more power grid equipment becomes connected by

communication networks, it becomes necessary to test the cyber resilience of all these components

independently as well as together. Most cyber-physical power grid testbeds rely primarily on either

simulated or emulated networks with little to no physical hardware included in their environment,

and the ones that do support hardware-in-the-loop typically require expensive power grid gener-

ation equipment which limits the number of groups that can afford to fund projects to support

cyber-physical power grid testbeds.

An example of this vulnerability has been shown in this work, where the IEEE C37.118 stan-

dard used for transmitting PMU data is manipulated using false data and command injection. This

demonstrates that there are already vulnerabilities in current cyber-physical power grid systems

that need to be addressed in order to secure these systems and protect against attacks.

6.1.1 Lessons Learned

The first lesson learned in this project was the uses and operation of IEEE C37.118 Synchropha-

sor protocol. This took a couple of months to fully learn and understand. What helped me the best

to learn it was taking Wireshark captures of the protocol and then making my own programs that

could send and receive C37.118 packets. This was building up to the C37.118 packet dissection

for the LabVIEW HIL program and the development of the Scapy library for the C37.118 attack.

The second lesson learned was how to generate AC sine wave outputs using a NI CompactRIO.

This required learning the different operation modes of the CRIO, Scan Mode and FPGA Mode,

and how to program each. The first attempt was done using the Scan Mode of the CRIO since

it was the simpler of the two options and it worked well for generating DC outputs; however,
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when changed to AC outputs the refresh rate was too low to generate acceptable sine waves. This

resulted in having to learn the FPGA mode as well and required rewriting the LabVIEW program

from scratch since code between the two modes in not interchangeable. This again took several

months of reading documentation and trial and error before finally getting the correct output.

The third lesson learned was how to implement ML algorithms. I had never worked with ML

algorithms and so I had to first understand what they were, how different types operated, and then

how to implement them. Luckily there is a lot of good documentation and resources that explain

how to implement ML algorithms that simplified this process. It was also really helpful that I had

a partner on this project with experience in ML that was able to teach me everything I needed to

know.

The fourth and final major lesson learned was how to interface with the low-level interface

on the SEL-351. This proved the most difficult to learn since there is very little documentation

about this interface, only a single page in the SEL-351 manual. Learning the interface required

reaching out to the manufacture to verify the maximum voltage levels that could be imputed to

prevent damaging the hardware. There was also no conversion factors listed for this interface and

those had to be tested and calculated manually.

One more lesson learned was how to work as part of a team to create the goals and define the

scope of a project when the amount of work required to achieve the desired end goal is unknown.

For example, on two separate occasions during this project I had to make predictions on how long

it would take to complete a specific task which would require me learning a new skill from scratch.

The first time was when I had to learn how to use and operate the C37.118 protocol and then create

a custom program for it without any prior experience of synchrophasor protocols. The second was

when I had to make a prediction on how long it would take for me to learn to program in LabVIEW

FPGA to develop the required sine wave outputs in LabVIEW Scan Mode, which was still being

used at the time, but could not accurately generate the sine waves. Both of these tasks I was able

to complete within the time frame I originally gave and therefore was able to complete my project

on time.
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6.2 Future Work

Future Work that can extend this project would be to create new types of experiments in the

RESLAB Testbed using the HIL. For example, now that the HIL has been added to the RESLAB

testbed, the C37.118 attack also developed in this project could be applied on the synchrophasor

communication between the SEL-351 and the SEL RTAC already installed in the RESLAB testbed.

From there, the ML classifiers used to detect this attack could be implemented in real-time to

observe their performance at detecting synchrophasor attacks. This would prove if adding ML

classifier is a practical and necessary addition to the next generation intrusion detection systems in

a cyber-physical power grid. This is just one example of how the HIL can be beneficial.

Other areas where this work could be built on would be to automate and consolidate the

C37.118 attack, data collection, and ML classification programs. This could be done by building a

custom Python script that replaces the PMU Connection Tester program and is able to actively col-

lect the C37.118 packets instead of having to use Wireshark. Once these packets are collected, they

could then be stored in a format required by the ML classifier without having to manually parse

them. In doing this, the ML classifiers could potentially be implemented in real time. This new

program could also be developed to communicate with the Advisory node in the CORE network so

that the attacks could be controlled and automated by the new Python program. This would allow

for longer test times without requiring an operator present to start the next test and manually parse

the data.

The biggest benefit of the HIL is that now test ran within the RESLAB testbed is that now any

future test conducted will be able to test the resilience of all the common network components

commonly found in power grid systems while also controlling all inputs and outputs from the

system. This means that all future test will be conducted end-to-end and are now as close as

possible to how this equipment would be operating in a production environment.
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