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ABSTRACT

Human-computer interaction(HCI) has become a trendy research field recently. Many HCI

systems are based on bio-signal analysis and classification. EMG signal which is formed due to

muscle activation, is used in this thesis. sEMG signals play a central role in many applications,

including clinical diagnostics, control of prosthetic devices, and some human-machine interactions.

These applications are commonly referred to as myoelectric control. Many factors would influence

the classification in myoelectric control, and limb positions are focused on in this thesis.

Two research goals in this thesis are:

1. Decease the effect of arm positions when recognizing a gestures. To tackle this issue, a

CNN-LSTM neural network is introduced. Compared to Dr. Shin’s work, the new model is

able to classify more gestures with more positions.

2. Apply the new model to a human-computer interaction system. A 7-DoF Kinova robot arm

is used here. And a go and grasp task is designed to test the system. For most cases, the

myoelectric control system finished the task successfully in an acceptable time longer than a

joystick control. In addition, this control method is easier to master compared to a joystick

control.

In conclusion, this research focuses on EMG-based dynamic gestures recognition with multiple

limb positions. First, the CNN-LSTM neural network, which combined the advantages of CNN

and LSTM is proposed in this thesis. Then this model is used for a myoelectric control system. A

7-DoF robot arm is controlled by human gestures via the system.
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Literature Review

Human-computer interaction(HCI) has become a very popular research field recently. Many

HCI systems are based on bio-signals analysis and classification. One of the essential bioelectrical

signals is the Surface ElectroMyoGraphic (sEMG) signal, which is formed due to muscle activ-

ities, including muscle excitation and contraction[1]. EMG signals play a central role in many

applications, including clinical diagnostics, control for prosthetic devices and for human-machine

interactions[2]. These applications are commonly referred to as myoelectric control.

1.1.1 ElectroMyoGraphic Signal

ElectroMyoGraphic(EMG) signals are electrical signals that are generated by the various ions

that are present in the muscle during its flexion and contraction movements, which can be moni-

tored by 2 techniques[32]. In invasive methods, the prosthetic device needs to be connected directly

to the targeted muscle tissues surgically whereas, in non-invasive methods, signals are recorded

from the surface of the muscle regions[35]. Also, multiple-channel electrodes could cover more

areas, which is more effective than single-channel electrodes.

Pattern recognition for EMG classification usually consist of data pre-processing, data segmen-

tation, feature extraction, dimensionality reduction, and classification stages[4].

1



Figure 1.1: EMG Pattern Recognition Structure[4]

In the pre-processing stage, raw EMG signals’ noise like motion artifacts would be reduced.

Then for the segmentation part, the two main techniques for data segmentation include adjacent

windowing and overlapping windowing. Also, for real-time systems, the length of these segments

plus any computation must be less than 300 ms to avoid noticeable delays[5]. A lot of studies

focus on feature extraction because different features could influence the accuracy of classification.

And EMG features have been commonly divided into three categories: frequency-domain, time-

domain, and time-frequency domain[6][11][8]. The frequency-domain features are obtained using

Fourier transform having relatively poor real-time performance. On the contrary, the time-domain

features are direct and easily extracted from the time series of the original sEMG signal without

any conversion process[9]. Dr.Shin[3] use eight time domain features for his classification, and the

features are in table 1.1.

2



Table 1.1: Time Domain Features (reprinted with permission from [3])

Dimensionality reduction is for selecting an optimal subset of good performance features or 

combining features and their projection. Sequential forward selection (SFS), genetic algorithms 

(GA), principal component analysis (PCA), and independent component analysis (ICA) are com-

mon techniques for this process[10]. For the final part, supervised learning like linear discriminant 

analysis(LDA) is used for years. With the development of deep learning recent years, more and 

more deep neural networks have been proposed. Mukhopadhyay et al. [11]introduced a deep neu-

ral network(DNN) which includes an input layer, several feed-forward layer and softmax layer 

could achieve 98.88% accuracy. Atzori et al.[16] have used a convolutional neural network(CNN) 

to classify 50 hand movement.

With the view of Mitra and Acharya[13], gestures can be divided as static motion and dynamic 

motion. Static motion was represented by repeated and constant multiple-dimensional EMG fea-

tures. On the contrary, dynamic motion is expressed by a temporal sequence of multiple EMG 

features that are changed during the motion. According to Dr. Shin’s work, the accuracy would be 

smaller when apply the before pattern recognition process to a dynamic motion with different limb

3



positions than apply pattern recognition process to a static motion. Dr. Shin proposed a sequence-

based classification in Fig 1.2. The three different steps from previous pattern recognition in Fig

1.1 are vital for the classification. TKEO is used to detect start and end points of dynamic motions.

DTW is employed to align different time-length dynamic motions like Fig 1.3 shows. And Pearson

product-moment correlation coefficient is used for template matching[3].

Figure 1.2: Sequence-based Classification (modified from [3])

Figure 1.3: Motions with Different Time Length Before and After Alignment by DTW(reprinted with 
permission from [3])

4



1.1.2 Myoelectric Control

Myoelectric control is an advanced technique concerned with the detection, processing, clas-

sification, and application of myoelectric signals to control human-assisting robots and other de-

vices[22]. Myoelectric control of neuroprostheses has been proposed since the introduction of

motor neuroprostheses (Vodovnik et al., 1965). The advantages of myoelectric control include a

simple sensor structure (two metal conductors separated by a fixed distance), a sensor that can be

applied equally well to many different muscles and the possibility of providing both on/off and pro-

portional control (Popovic et al. , 2001)[21]. With the development of machine learning and deep

learning, more and more researcher apply advanced algorithms for classification, which promotes

myoelectric control into real world problem significantly.

1.2 Observation

Gestures include dynamic and static motions recognition is a time-series problem. Therefore,

recurrent neural network(RNN) is proper for this. They take all previous steps of the sequence

into consideration and do not require a fixed size for the input sequences. Especially, long short

term memory network should be used which are able to learn and capture long term temporal

dependencies[33].

1.3 Thesis Objective

This project aims to design a system that enables people to use gestures with an MYO armband

to manipulate a robot arm. This system has two main parts: 1) recognition part: using neural net-

works to recognize dynamic gestures. 2) control part: implementing a relative functions on a robot

arm based on different gestures. In general, this system collects raw EMG signals from people

when they make dynamic motions, then recognizes the gestures mapped to a specific function to

control a 6-DOF robot arm with a 1-DOF gripper. This system should also ensure:

• Position Independent: Ensure that gestures could be recognized while limb positions change.

• Respond Promptly: Ensure that the time of completing a task by using myoelectric control
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is not much longer than other control methods.

Two devices are used in this research. First is the Myo armband, which was employed in

the study for collecting EMG signals. It includes eight EMG sensors and one IMU sensor. The

sampling rate of the Myo armband is 200Hz. The Myo armband is put on the right forearm of the

participant.

Figure 1.4: MYO Armband

Seocnd one is a 7 DoF Kinova robot arm and one of the degree is for the gripper.
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Figure 1.5: Kinova Robot Arm
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2. PROPOSED METHOD FOR GESTURE RECOGNITION

2.1 Introduction

But we still face some challenges commonly associated with this lack of reliability in practi-

cal conditions that can be roughly categorized into four confounding factors: limb position factor,

constrain intensity factor, electrode shift factor and within/between day factor[16]. Anand Kumar-

Mukhopadhyay and SumanSamui[11] explored a deep neural network (DNN) based classification

system for the upper limb position invariant myoelectric signal. The results turned out that the

average accuracy of test data based on the DNN model trained by one limb positions same as test

data is over 95% and the average accuracy of test data could only reach about 70% accuracy when

the limb position of the training data is not same as test data. Also, the DNN model trained by all

positions gained 75% accuracy approximately on test data for every position. The limb positions

made a significant impact on gestures recognition.

(Evan Campbell et al., 2020) explained how the limb positions influence in detail: the muscular

activity that maintains limb positions against gravitational force is dependent on the position of the

limb[16]. When the limb positions are different, the supplemental muscle activities are different.

Additionally, while in different positions the underlying topography of the muscle fibers may shift

relative to the electrodes[16].

Dr. Shin’s work[3] shows that dynamic gestures are in principle more reliable indicators of

intent. From his sequence based pattern recognition model, accuracies of dynamic gestures which

has temporal information are higher than static gestures. Based on Dr. Shin’s work and the chal-

lenges I mentioned before, a CNN-LSTM neural network is introduced to classify five dynamic

gestures with five arm positions in this section.

8



2.2 Proposed Method

2.2.1 EMG Gestures Dataset

There are five dynamic gestures with five arm positions in the dataset. The gestures are shown

below.

Figure 2.1: Dynamic Gestures
Note: this figure is reprinted with permission from 

Sungtae Shin, 2016[3]

For each gestures, there are five common arm positions selected when performing the gesture.

Figure 2.2: Five Limb Positions of Finger Snap
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Figure 2.3: Five Limb Positions of Finger Beckon

Figure 2.4: Five Limb Positions of Palm Beckon
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Figure 2.5: Five Limb Positions of Wave

Figure 2.6: Five Limb Positions of Go Away

The training data is from seven human subjects. Every gesture at each position would be

repeated for 10 times. After finishing seven experiments, there are 7*5*5*10 = 1750 samples. For

each sample, there is a 8*680 matrix where 8 is the the amount of channels and 680 is the time

steps (The matrix would be pad zeros to make every matrix same length). Tn original dataset is in

below.
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gesture label number
finger snap 0 350
finger beckon 1 350
palm beckon 2 350
wave 3 350
go away 4 350

Table 2.1: Original Dataset

Since the dataset is not very large based on the amount of gestures and arm positions. In image

recognition, the data augmentation methods like figure flipping are usually used to add more data

to the dataset and the accuracy always be improved after the augmentation. According to (Wei

yang et all., 2018) research results[18], two kinds of data-augmentation operations:

1. Electrodes shift. The Myo armband may shift when human subjects performs gestures and

changes arm positions. Also, it is hard to guarantee that every human subjects put the arm-

band on exact same place of the forearm.

2. Wrong arrangement (on the other forearm). The arrangements of electrodes on the two

forearms should be mirrored.

helped in EMG-based gesture recognition. Therefore, the following augmentation operations are

implemented. Basically, the order of 8 channels is changed. The left part is the original order, the

first four rows on the right part are electrodes shift condition and the last row is wrong arrangement

condition.
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Figure 2.7: Augmentation Operations

After the augmentation, the new dataset was in the below table.

gesture label number
finger snap 0 1750
finger beckon 1 1750
palm beckon 2 1750
wave 3 1750
go away 4 1750

Table 2.2: Original Dataset

To get to know the function of the augmentation, in the following section, two models are

trained by using the two datasets respectively.

2.2.2 CNN-LSTM network Structure

Convolutional Neural Network known as CNN has a strong feature extraction function. In

a convolutional layer, each channel contains a set of parameters known as convolution kernel,

which connects to a small part of input data of fixed size from the previous layer. That small

part is usually called a patch and moves along all dimensions with a predefined increment size

at a time. Every channel’s convolution kernel (i.e. connection weights) evolves with the training

process[33].Therefore, the convolutional layer is able to capture the special local information of
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the input data. There are 1D, 2D and 3D convolutional layers. 1D convolutional layer is com-

monly used in time series data since the kernel only moves along the time axis which preserve the

important temporal information.

Figure 2.8: 1D Convolution with Multiple Channels

In this research, each gesture’s signal is a 8*680 matrix as a input for convolutional layer where

8 is 8 channels from 8 sensors and 680 is time steps. 1D convolutional layer with 8 channels is

used here.

For a complete CNN part, after convolutional layer, it follows batch normalization layer and

drop out layer.
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Figure 2.9: CNN Architecture

Broadly speaking, batch normalization is a mechanism that aims to stabilize the distribution

(over a minibatch) of inputs to a given network layer during training. This is achieved by aug-

menting the network with additional layers that set the first two moments (mean and variance)

of the distribution of each activation to be zero and one respectively. Then, the batch normal-

ized inputs are also typically scaled and shifted based on trainable parameters to preserve model

expressivity[19]. Dropout prevents overfitting and provides a way of approximately combining

exponentially many different neural network architectures efficiently. The term “dropout” refers

to dropping out units (hidden and visible) in a neural network. By dropping a unit out, we mean

temporarily removing it from the network, along with all its incoming and outgoing connections

as in the below figure. The choice of which units to drop is random[20].
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Figure 2.10: Dropout[20]

Long Short-Term Memory Network known as LSTM network is a type of recurrent neural

networks.RNN is wildly adopted in research areas concerned with sequential data like text, audio

and video[34]. Its internal state could store information which enables it to learn the relevant

information of the input data when the gap is not large.

Figure 2.11: RNN Example

. But due to the limited information storage, RNN are unable to learn when there is a big gap.

LSTM was proposed for the long-term memory, whose unit includes three gates which enable the

network handle long-term dependencies well.
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Figure 2.12: A LSTM Unit

X= X(1), X(2) . . . . . . X(t) is an input sequence, where x(t) is a sequential data of length T. In

the LSTM cell, the hidden unit ht and each parameter at the time t are given by the Eqs. (1), (2),

(3), (4), (5), (6) as follows:

Ct = ft ∗ Ct−1 + it ∗ C̃t (2.1)

ht = Ot ∗ tanh(Ct) (2.2)

ft = σ((Xt + ht−1)W
f + bf ) (2.3)

It = σ((Xt + ht−1)W
i + bi) (2.4)

Ot = σ((Xt + ht−1)W
o + bo) (2.5)

C̃t = σ((Xt + ht−1)W
c + bc) (2.6)
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*: element-wise multiplication

+: element-wise addition

W f ,W i,W o,W c are weight matrixes which will be calculated when the model are trained.

bf , bi, bo, bc are biases. Itis an input gate determines what part of Xt should be stored in the cell

Ct and ft is a forget gate decide what part of the previous cell Ct−1 would be forget. The output

gate Ot controls what part of the cell state to export as short-term memory ht. In addition, the cell

unit Ct is the recurrent unit, having the activation function tanh is computed from the input of the

current frame and the state of the previous frame ht−1. The hidden state ht is obtained through the

tanh activation and memory cell It[14].

In a trained network, the values of different gates vary by the information. When the informa-

tion is relevant, forget gate would be 0 and input gate would be 1, then the new useful information

would be stored in the cell and the old information would be forgotten. In contrast, once the in-

formation is irrelevant, forget gate would be 1 and input gate would be 0 so that new information

would not be stored and the old information would be saved and passed to next cell. Consequently,

the entire network can learn easily the long term dependencies between the sequences[9].

Using CNN to generate features which still maintain temporal information, then LSTM is used

for the temporal information. A CNN+LSTM neural network is shown in below.

Figure 2.13: CNN-LSTM Neural Network
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2.2.3 Training Results

The dataset is split into training dataset and validation dataset, which are 80% and 20% re-

spectively. Therefore, for the original dataset, there are 1750*0.8 = 1400 samples for training and

350 samples for validation. And for dataset after the augmentation, there are 10500*0.8 = 8400

samples for training and 2100 smaples for validation. The validation accuracy of original dataset

is appproximate 90% which is lower than the model trained by new dataset. The training accuracy

is 95.8% and validation accuracy is 92.7%. Therefore, the model trained by new dataset (after

augmentation) is chosen.

2.3 Real Time Gestures Recognition

2.3.1 Real Time Recognition System

Based on the last section which shows a CNN-LSTM model has a good performance on vali-

dation data. a real-time recognition system is proposed here.

Figure 2.14: Real-time Recognition System

In this system, the fist is a trigger to notify the armband to collect the following gestures data.

For the trigger mechanism, a specific value as a threshold is set to identify if the sum of the absolute

values of each channel is higher than the threshold, which indicate a muscle activity.Figure below

shows the signals for no hand motion and fist. After the fist, the armband vibrates. Then gesture’s

19



signals would be recorded in the following 3 seconds. Compared to non-fist system, this system

has a clear start for one gesture and less noise of the signals, which increase the classification

accuracy.

2.3.2 Data Collection

The test data is from 12 human subjects. The armband is put on the right forearm of every

participant. Each gesture at each arm position is performed by the participant 10 times. There are

12*5*5*10 = 3000 samples for test.

2.4 Results

2.4.1 Real-time Classification Accuracy

The overall accuracy is 84.2%. The accuracy for each positions is in the table.

1 2 3 4 5
82% 82.14% 81.68% 84.5% 85.66%

Table 2.3: Accuracy in Each Limb Position

2.4.2 Results Analysis

From the table 2.3, the accuracies vary in a small range among different arm positions. To get

more details of the the accuracies, the distribution of accuracies on different positions for different

gesture is in the fig 2.15.

20



Figure 2.15: Accuracy Distribution

As we can see, for each gesture, the accuracies on different limb positions are similar. In

addition, some gestures are easier to classify like wave, and some are not like finger beckon.

The muscle activities of different dynamic motions are different may cause different recognition

difficulties.

To further explore the recognition condition, the detailed best and worst accuracy of subjects

are shown below. The five confusion matrixes represent the accuracy condition at five arm posi-

tions.

The best accuracy on one subject is 90.4%.
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Figure 2.16: Confusion Matrix on P1 position from Best Condition

Figure 2.17: Confusion Matrix on P2 position from Best Condition
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Figure 2.18: Confusion Matrix on P3 position from Best Condition

Figure 2.19: Confusion Matrix on P4 position from Best Condition
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Figure 2.20: Confusion Matrix on P5 position from Best Condition

The worst accuracy on one subject is 78%.

Figure 2.21: Confusion Matrix on P1 position from Worst Condition
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Figure 2.22: Confusion Matrix on P2 position from Worst Condition

Figure 2.23: Confusion Matrix on P3 position from Worst Condition
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Figure 2.24: Confusion Matrix on P4 position from Worst Condition

Figure 2.25: Confusion Matrix on P5 position from Worst Condition

From the matrixes, for one subject, performing the gestures in different arm positions would
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produce different accuracies, but the difference is not very large in this model. The model is

relatively arm position-invariant.

For different subjects, their accuracies are different; the model is not entirely subject indepen-

dently. The accuracy seems to be slightly influenced by subjects’ proficiency in gestures. To show

this clearly, the accuracies of finger snap from two subjects are shown below.

Figure 2.26: Finger Snap Recognition of Two Subjects

In the figure 2.26, finger snap has obvious different accuracies for different subjects. The

overall accuracy of S1 is higher than it of S2. And at each arm positions the accuracy of S1 is

higher or equal to the accuracy of S2.

2.4.3 Discussion

From the previous analysis, there are three observations:

1. The model is relatively position independent. The effect of arm positions still exists but is

small.

2. Different gestures impact recognition accuracy. In this model, influence on gestures may be

bigger than positions for classification accuracy. The gestures share less common would get
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better results.

3. The model is affected by subject dependency. The best and worst results show it clearly.

Due to the different performing habits for different human subjects, more data from various

people may help.

2.5 Conclusion

This chapter aims to develop a model that is able to classify gestures performing at multiple

arm positions. A CNN-LSTM model is introduced here, trained by data from 7 human subjects

with five categories of dynamic motions and each type of gesture includes five arm positions. The

training and validation accuracy are both over 90%. Then a real-time recognition based on this

model for five dynamic gestures is designed and tested. The overall accuracy is 84.2%, which is

lower than the validation accuracy, but it is acceptable. The detailed accuracy distribution shows

that the model is relatively position-independent.
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3. REAL-TIME HCI SYSTEM FOR A 7-DOF ROBOT ARM CONTROL

3.1 Introduction

Nowadays, human-computer interaction has become more and more popular. Researchers are

trying to find a way for humans to communicate intuitively with a device. One approach for this

is myoelectric control, which sends human intention to a device like a robot arm using EMG

signals generated by muscle activities. Based on the need for myoelectric control, we proposed

a real-time control system to control a 6-DoF robot manipulator with 1-DoF gripper. The Myo

armband is used during the control process, which collects data of dynamic gestures. After getting

the gestures information, the computer would send a particular control command to the robot arm

based on the control algorithm.

3.2 Method

In this myoelectric control system, the gestures recognition part is introduced in chapter 2. To

estimate the performance of the system, the operation time of the system and joy stick control are

recorded.

3.2.1 Proposed Myoelectric Control

The control loop is in the below figure. This is a feed forward control. Once the specific

gestures are performed, their signals would be classified by the CNN-LSTM neural network. The

model here is trained by the data collected in chapter 2. The output of the model would be an input

to the control part, which sends control commands to the robot arm.
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Figure 3.1: Myoelectric Control System for the Kinova Robot Arm

Four gestures are used to complete four pieces of the path to finish a task in the control al-

gorithm. Each motion corresponds to a control command which enables the robot to move along

a specific route. Since the classification accuracy is not 100%, there will be wrong recognition

results, leading to wrong commands and paths. The mechanism to identify gestures’ order is in-

volved in the control algorithm. The i in the algorithm enables the commands to be always sent in

the correct order. In other words, the robot would move in a specific trajectory of the task every

time. If there is a wrong classification because the output and i do not match, no command would

be sent. Human subjects need to repeat the gestures in the order list until the robot move and then

perform the next motions. The control loop is in the below figure. This is a feed forward control.

Once the specific gestures are performed, their signals would be classified by the CNN-LSTM

neural network. The model here is trained by the data collected in chapter 2. The output of the

model would be an input to the control part, which sends control commands to the robot arm.
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Figure 3.2: Control Algorithm

3.2.2 Protocol of Experiment

In order to estimate the performance of the proposed myoelectric control system. A go and

grasp task is designed for it. First, the bottled water is put at a certain point where it is reachable

for the robot arm. The robot arm starts from its home position, approaches the bottled water and

closes its gripper to grab the water. Then move back to the home position with the water. The

experiment setup is as below.
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Figure 3.3: Experiment Setup

The trajectory of the myoelectric control is learned from the joystick control mode. So we use

the joystick to finish the task first. Then the path of the robot arm is recorded and written as the

control commands assigned to pre-defined gestures.

3.2.3 Performance Measurement

To measure the performance of the robot arm, the operation time of the task is chosen. Since

the joystick sends the command directly and myoelectric control needs time to perform gestures,

data collection, recognition and code processing, it assumed that joystick would use less time than

myoelectric control.

The participant would be asked to use a joystick to complete the task and repeat it three times.

The participant would be given about 10 minutes to get familiar with the joystick. Then they need

to use the myoelectric control system to repeat the task three times. The time of every task would

be recorded. If the manipulator knocks down the bottled water during one task, the task will keep

going, and the time to reset the bottled water would be in the task time.

32



Figure 3.4: Joystick

3.3 Results and Discussion

3.3.1 Experiment Results

The average time of task of 12 human subjects for two control modes is in the below.

Subject Average Time of Myoelectric Control(s) Average Time of Joystick Control(s)
1 41.6 37.0
2 36.2 35.6
3 36.6 52.7
4 44.1 26.6
5 57.3 30.06
6 43.2 43.4
7 48.6 43.0
8 40.6 23.0
9 50.6 31.62
10 36.87 41.9
11 28.4 55.8
12 36.4 37.91

Table 3.1: Average Time for Joystick Control and Myoelectric Control

For most subjects, the average time of joystick control is less than myoelectric control. But

for some subjects like subject 5, the time for the two control mode is similar. And for subject 6,
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the myoelectric control time is much smaller than joystick control. The times of three joystick

control and three myoelectric control of subject 1, subject 5 and subject 6 are shown as follows,

representing three conditions from table 3.1

Control Mode 1 2 3
Myoelectric Control 46.65 48.85 29.4
Joystick Control 41.43 32.49 37.12

Table 3.2: Task Time of Subject 1

Control Mode 1 2 3
Myoelectric Control 60 60.78 51
Joystick Control 44.45 23.98 21.75

Table 3.3: Task Time of Subject 5

Control Mode 1 2 3
Myoelectric Control 51.61 44.72 33.35
Joystick Control 47.53 37.88 46.78

Table 3.4: Task Time of Subject 6

3.3.2 Discussion

There are several observations from the results.

• The majority of results of the human subjects fit the assumption that myoelectric control

would use a longer time than the joystick control. But time differences are not huge. Con-

sidering the extra processing time of executing the motions, catching the movements, wrong

classification and recognition, the differences are acceptable.
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• For two control modes, the third task time is always shorter than the first task time. Practice

could improve the performance for both control mode.

• From subject 1 and subject 6, the time of joystick control do not reduce monotonically.

Because even human subjects would learn from the previous task, they cannot find the best

path every time.

Moreover, the fixed trajectory makes it impossible for the myoelectric control algorithm here

to complete other tasks unless the commands are modified according to the specific requirements.

But this helps the control system perform stably in every task. During the experiments, myoelectric

control is able to grab the bottled water successfully without knocking it down. But it happened

when using a joystick control because the trajectory of the myoelectric control method is fixed.

And the path by using joystick changes every time. In addition, the myoelectric control mode

is easier to start than the joystick control. Human subjects do not need to learn the rules and

practice for the task. Based on the discussion before, myoelectric control establishes a potential in

human-computer interaction.
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4. SUMMARY AND CONCLUSIONS

4.1 Summary of the Work

In this research a human computer interaction system is developed based a dynamic gestures

recognition system. Compared to other gestures recognition, the proposed method has the follow-

ing advantages:

• Using CNN to generate the features instead of calculating time or frequency domain features

manually before input

• Compared to many researches which focus on gestures recognition at the same limb position

and have bad performance when the limb position changes, the model in this research is

relatively position-invariant.

• Compared to Dr. Shin’s work[3] which involves 3 gestures and 4 limb positions in the real

time recognition, this research includes 5 gestures and 5 limb positions. The model is more

robust on gestures and limb positions for real-time classification.

Additionally, proposed myoelectric control system works well on go and grasp task. This

system could be used in other conditions to translate human intentions to a device.

4.2 Further Work

In this research, there exist two main parts: EMG-based dynamic hand gestures recognition

and HCI system for a robot arm control. Based on the results described in the previous chapters,

the possible future works are as below:

1. Removing the trigger(fist) in the real-time system.

2. Speeding up processing time. This could be done by using a better GPU.

3. Improving accuracy for the classification. Other advanced methods could be tried such as

transfer learning. Also more data from various types of people my help since the amount
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of gestures and arm positions is not small and there are considerable differences among

different human beings.

4. Increasing recognizable gestures

5. Reducing the arm position’s effect to gestures recognition. In other words, the gestures

performing at the random arm position could be classified successfully.

6. Decreasing the effect of human subject dependency.

7. Applying the proposed myoelectric control system on other applications like a drone control.

8. Adding feedback in the myoelectric control system.
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