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ABSTRACT

The determination of transport coefficients plays a central role in characterizing hot and dense

nuclear matter. Currently, there are significant discrepancies between various calculations of the

electric conductivity of hot hadronic matter. It has been shown that dilepton emission spectra

can be described by calculating the electromagnetic correlator within the vector dominance model

(VDM). Transport coefficients probe the low-energy limit of the medium, thus the interactions

of the low mass pion are expected to play an important role in determining the conductivity of

hot hadronic matter. In the present work we calculate the electric conductivity of hot pion matter

by extracting it from the electromagnetic spectral function, as its zero energy limit at vanishing

3-momentum. Within the VDM the photon couples primarily to the rho meson. Therefore, we

use hadronic many-body theory to calculate the rho meson’s self-energy in hot pion matter. This

requires the dressing of the pion propagators within the rho self-energy with thermal π-ρ and π-σ

loops, and the inclusion of vertex corrections to maintain gauge invariance. Furthermore, in order

to obtain a finite conductivity, all intermediate particles must be dressed with self-energies. In

particular, we analyze the transport peak of the spectral function and extract its behavior with tem-

perature. Finally, we compare our results to previous calculations, including various calculations

of the electric conductivity of hot pion matter, to a proposed quantum lower bound, and a proposed

sum rule for the EM-spectral function.
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1. INTRODUCTION AND LITERATURE REVIEW

In this section we provide an introduction to hot and dense nuclear matter, and the intriguing

physical phenomena that arise under these conditions. To begin, in section 1.1, we discuss the

theoretical motivation to study hot and dense nuclear matter and address how it can be produced

and studied in heavy ion collisions (HICs). In section 1.2, we discuss how transport coefficients

can be used to analyze HICs and nuclear matter, with particular focus on the electric conductivity.

Finally, in section 1.3 we introduce the vector dominance model (VDM), emphasizing its success-

ful description of dilepton emission spectra, and how the electric conductivity is related to the rho

meson’s spectral function in this framework.

1.1 Hot and dense nuclear matter

Hot and dense nuclear matter is a promising area of study, to shed light on fundamental phe-

nomena such as: confinement, mass generation, and the nature of strongly coupled systems. The

physics of nuclear matter is governed by the strong interaction, which is described by Quantum

Chromodynamics (QCD) with the Lagrangian density [1, 2, 3]:

LQCD = q̄(iγµDµ −Mq)q −
1

4
Ga
µνG

µν
a , (1.1)

Dµ = ∂µ + igs
λa
2
Aaµ, (1.2)

with quark and gluon fields q and Aaµ, respectively, and Dirac, Gell-Mann and current-quark mass

matrices γµ, λa and Mq, respectively. QCD has been quantitatively confirmed in high-energy scat-

tering experiments, where the coupling is small and perturbation theory is reliable [4]. However, it

is not obvious how QCD gives rise to many-body nuclear physics. Many phenomena are yet to be

fully understood, such as quark confinement, mass generation, and the structure of the QCD phase

diagram [58].
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At small distances, the potential energy between two static quarks can be described with a

Coulomb like potential, however, for large distances, the potential grows linearly with distance.

The strong force is transmitted by gluons, which in the long distance limit can be visualized as a

"string" connecting the quarks. In nature we do not observe isolated quarks, because as one sepa-

rates two quarks it eventually becomes more energetically favorable for the "string" to "break", and

form additional quarks. These additional quarks will couple to the original two quarks, producing

separated hadrons, rather than two isolated quarks [7]. However, it is possible for quarks and glu-

ons to become the relevant degrees of freedom in a system, because at high temperatures (T) and

baryon chemical potentials (µB) the quark wave functions inside of hadrons begin to overlap. This

overlap eventually allows quarks and gluons to move freely throughout the system [7]. This state

is known as Quark-Gluon Plasma (QGP), and its study is a central objective of heavy-ion collision

experiments at the Relativistic Heavy-Ion Collider (RHIC) and the Large Hadron Collider (LHC)

[8, 9, 10, 11, 12].

The masses of quarks and other elementary particles are generated by a condensate of Higgs

bosons, which breaks electroweak symmetry [13]. However, the resulting mass of the light up

and down quarks is only about 3-5 MeV, while the mass of a nucleon is approximately 938 MeV.

Thus, the masses of the up and down quarks only account for about 2% of the nucleon mass. The

remaining mass is generated dynamically by the strong force [6]. The strong interaction also gen-

erates an quark anti-quark condensate that breaks the approximate chiral symmetry (conservation

of left and right handedness) of QCD. This spontaneous symmetry breaking results in a mass split-

ting between chiral partners such as the ρ meson and the a1 of about 500 MeV [6]. Furthermore,

spontaneous symmetry breaking implies the generation of a "massless" Goldstone boson, in this

case, the almost massless pion. The pion is in fact not massless, because chiral symmetry is also

explicitly broken by the light quark mass [6]. The relation between the broken symmetries and the

pion’s mass can be expressed through the Gell-Mann-Oaks-Renner relation [14]:

2



m2
πf

2
π = −2mq〈qq〉. (1.3)

From this relation, we see that m2
π ∝ mq, which demonstrates that should mq be driven to zero

the pion would become massless. Furthermore, since the pion mass is proportional to the root of

the quark mass and not the quark mass, the pion mass is significantly heavier (140 MeV) than the

light quark mass [14]. At high temperature and chemical potential, such as those obtained in HICs,

it is believed the quark anti-quark condensate will evaporate, resulting in the restoration of chiral

symmetry and a "melting" of hadronic masses [6].

Another goal of HICs is to probe the QCD phase structure. We have already mentioned that

at high temperature and density one expects the formation of a QGP. At lower temperature and

chemical potential matter will hadronize, forming hot hadronic matter. This state is also of interest

as chiral restoration commences in this phase, furthermore hot hadronic matter may represent

a strongly coupled system where particle widths become of the same order as their energy [6].

Finally, at high density and low temperature it is believed that quark Cooper pairs will condense,

resulting in a Color Super Conductor (CSC) [15]. Mapping out the QCD phase diagram will

require an understanding of the nature of the various QCD phase transitions, their locations, and

the search for possible critical points in the chiral phase transition.

1.2 Transport coefficients

One achievement of the field has been the description of HICs with relativistic hydrodynamics

[16]. Hydrodynamic models utilize transport coefficients such as viscosity as inputs, which helps

characterize the medium. Transport coefficients probe the long wavelength limit of the medium,

and describe how conserved quantities propagate through the medium. For instance, viscosity

describes the flow of 4-momentum, the heavy-quark transport coefficient describes the diffusion

of heavy quarks, and electric conductivity describes the transport of charge. The viscosity over

entropy density has been extracted from measurements of the elliptic flow in off-central collisions

3



[16]. Heavy-quark transport coefficients have also been inferred, from measurements of elliptic

flow and transverse momentum spectra of heavy-flavor particles [17, 18]. One believes that these

quantities should be closely related, as they all quantify transport through the same medium.

This work will focus on the calculation of the electric conductivity, closely related to soft

dilepton emission [19]. One can investigate the medium produced in HICs by studying charge

correlations, which quantify how pairs of conserved charge, created during the collision, propa-

gate through the medium [20]. The electric conductivity is related to charge diffusion, and should

impact the evolution of charge correlations in HICs. Recent calculations of the electric conduc-

tivity in hot hadronic matter have been performed, however, their results have varied considerably

[21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. These calculations utilized various formalisms includ-

ing: kinetic theory, chiral perturbation theory, K-matrix, hadronic many-body theory, perturbative

approaches to the QGP, approximate solutions to the relativistic transport equation, lattice QCD,

and conformal field theory. A quantum lower bound was also proposed in [22].

Here, we seek to perform a hadronic quantum many-body calculation, which approximately

maintains gauge invariance. Our calculation is rooted in dilepton emission calculations reviewed

in references [6, 32], which describe observed dilepton spectra in HICs. The dilepton emission

rate is proportional to the electromagnetic spectral function (ImΠEM
µν ) [33, 34],

dRl+l−

d4q
=
−α2

EM

3π3M2
fB(q0, T )gµνIm[Πµν

EM(M, q, T, µB)], (1.4)

where fB denotes the Bose distribution, M2 = q2
0 − ~q 2 is the dilepton’s invariant mass and αEM

the fine-structure constant, αEM = e2

4π
. In particular the electric conductivity can be obtained from

ΠEM
µν in the zero-momentum, low-energy limit [35]:

σel(T ) =
−e2

3
lim
q0→0

Im[Πii
EM(q0, ~q = 0, T )]

q0

, (1.5)

demonstrating the connection to dilepton emission calculations.

Reference [35] evaluated transport coefficients in weakly-coupled high-temperature gauge the-
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ories and found that, at zero momentum, the electromagnetic spectral function displays a Lorentzian-

like transport peak centered at zero energy. For vanishing coupling the transport peak becomes

a Dirac δ-function, resulting in an infinite conductivity. As the coupling is increased the peak

broadens, implying a finite conductivity. In figure 1.1 we demonstrate how a medium particle can

interact with a photon through an intermediate pion. The bubble on the pion represents the pion’s

interaction with the medium. These interactions generate a finite width for the resonant particle.

As previously stated, if this width is ignored an infinite conductivity results, as is expected from a

non-interacting gas. Furthermore, because the conductivity is extracted from the low energy limit,

one requires an interaction that is not subject to a low energy threshold, such as vacuum decays.

Therefore, at least two thermal particles are necessary to obtain a finite conductivity, one incoming

particle to create a resonance and a second to generate the resonance’s low energy width.

Figure 1.1: Photon coupling with the medium through a rho meson. The rho meson interacts with
the medium through an intermediate pion. The bubble represents the width the pion obtains due to
interaction with the medium.

1.3 Vector dominance model

The electromagnetic correlation function is defined through [36]:

Πµν
EM(q0, ~q) = −i

∫
d4xeiq·xΘ(x0)〈〈[jµem(x), jνem(0)]〉〉, (1.6)

where jµem is the hadronic EM current. For invariant mass below approximately 1 GeV, the EM

spectral function is well described within the vector dominance model (VDM) [36]. In the VDM it

is assumed that electromagnetic interactions in hadronic matter are mediated by the neutral vector

5



mesons (ρ, ω, and φ), the EM current is then given by the field current identity [36]:

jµem(M ≤ 1 GeV) =
m2
ρ

gρ
ρµ +

m2
ω

gω
ωµ +

m2
φ

gφ
φµ, (1.7)

and the EM correlation function by:

Πµν
EM ≈

(m0
ρ)

4

g2
ρ

Dµν
ρ +

(m0
ω)4

g2
ω

Dµν
ω +

(m0
φ)4

g2
φ

Dµν
φ . (1.8)

The dominant contribution to ΠEM
µν comes from the rho meson. This can be seen by writing jµem in

the quark basis [6]:

jµem =
1√
2
ψ̄γµψ

[
ūu− d̄d√

2
+

1

3

ūu+ d̄d√
2
−
√

2

3
s̄s

]
. (1.9)

After inserting jµem into eq. 1.6 ones sees that the ω meson is suppressed by a factor of 1
9
, and the φ

meson by a factor of 2
9
. Additionally, the φ meson has a mass approximately 300 MeV higher than

the ρ and ω mesons, and contains strange quarks. Thus, the electromagnetic spectral function can

be approximated in terms of only the ρ meson. The electric conductivity is then given by:

σel(T ) =
−e2(m0

ρ)
4

3g2
ρ

lim
q0→0

Im[Dii
ρ (q0, ~q = 0, T )]

q0

. (1.10)

The rho propagator can be expressed in terms of the transverse and longitudinal projection opera-

tors P µν
T and P µν

L [37]:

Dµν
ρ (q, T ) =

P µν
T

M2 − (m0
ρ)

2 − ΣT
ρ (q, T )

+
P µν
L

M2 − (m0
ρ)

2 − ΣL
ρ (q, T )

+
qµqν

(m0
ρ)

2M2
, (1.11)

6



wherem0
ρ is the bare rho mass andM2 = q2

0−~q 2 is the rho meson’s invariant mass. The projection

operators are defined by:

P µν
T =


0 µ = 0 or ν = 0

δµν − qµqν

~q2
µ, ν ∈ {1, 2, 3}

, P µν
L =

qµqν

M2
− gµν − P µν

T . (1.12)

The rho self-energy, Σµν
ρ , characterizes the rho’s interactions in the vacuum and with the medium.

The transverse and longitudinal components of the rho self-energy, ΣT
ρ and ΣL

ρ , are defined through:

Σµν
ρ (q, T ) = P µν

T ΣT
ρ (q, T ) + P µν

L ΣL
ρ (q, T ). (1.13)

One can use eq. 1.12 and eq. 1.13 to show:

ΣT
ρ (q, T ) =

1

2
P µν
T Σρµν(q, T ), ΣL

ρ (q, T ) = P µν
L Σρµν(q, T ). (1.14)

In order to calculate the conductivity, one requires Dii
ρ . One can write Dii

ρ in terms of ΣT
ρ and

ΣL
ρ using eq. 1.11:

Im[Dii
ρ (q, T )] = Im

[ P ii
T

M2 − (m0
ρ)

2 − ΣT
ρ (q, T )

+
P ii
L

M2 − (m0
ρ)

2 − ΣL
ρ (q, T )

]
= Im

[ 2

M2 − (m0
ρ)

2 − ΣT
ρ (q, T )

+
q2

0

M2

1

M2 − (m0
ρ)

2 − ΣL
ρ (q, T )

]
. (1.15)

For ~q = 0, ΣT (q, T ) = ΣL(q, T ), therefore one can write:

Im[Dii
ρ ({q0, ~q = 0}, T )] = Im

[ 3

M2 − (m0
ρ)

2 − ΣT ({q0, ~q = 0}, T )

]
. (1.16)

The conductivity is then given by:

σel(T ) =
−e2(m0

ρ)
4

g2
ρ

lim
q0→0

Im
[ 1

q2
0 − (m0

ρ)
2 − ΣT

ρ ({q0, ~q = 0}, T )

]
. (1.17)
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In ref. [38] it was found that there are two rho self-energy diagrams required to maintain

gauge invariance in vacuum, see fig. 1.2. The first is the ππ-loop, which gives rise to the vacuum

ρ → ππ decay. The second is the tad pole loop, which involves a vacuum four-point interaction,

and produces a constant shift in the rho mass.

Figure 1.2: Left: The ππ-loop of the rho self-energy. Right: The rho self-energy tadpole loop.
These diagrams are the minimum diagrams necessary to maintain gauge invariance in vacuum.

If one extends the ππ-loop to finite temperature, it encompasses ρπ-scattering into an interme-

diate pion state. As fig 1.1 suggests, such scatterings are crucial when calculating the conductivity.

The pion’s width is included by dressing the pion propagators in figure 1.2 with a pion self-energy

(Σπ):

Dπ(k) =
1

k2 −m2
π − Σπ(k)

. (1.18)

Similarly to Σµν
ρ , the pion self-energy characterizes the pion’s medium interactions. These inter-

actions provide the second thermal particle necessary to obtain a finite conductivity. One can then

calculate Πµν
EM within a fully quantum formalism, by integrating over the off-shell effects of the

dressed propagators within the self-energies.

The contributions of thermal baryons to Σµν
ρ were calculated in refs. [19, 37, 39, 40, 41, 42,

43]. Reference [40] considered γπ scattering, however the pion’s width was generated through

interactions with nucleons. The effects of ππ-scattering were not included. At small temperatures
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and low baryon chemical potential baryon-antibaryon excitations are suppressed and the effects of

the lighter pions dominate. Thus, we seek to add ππ-scattering to the baryonic effects calculated

in [40]. It was found in references [38, 43] that adding in-medium pion self-energies violates

gauge invariance. In order to maintain gauge invariance, vertex corrections were constructed and

calculated in references [38, 40, 41, 43, 44]. In this work, the electromagnetic spectral function

and the electric conductivity will be calculated in hot pion matter both with and without vertex

corrections.

This thesis is organized as follows: in chapter 2 we discuss the basic expressions for the rho

meson self-energy in vacuum and at finite temperature, and discuss simplifying scenarios for the

conductivity including sharp (on-shell) pions and constant pion widths. We calculate the pion

self-energy in chapter 3, focusing on S- and P-wave scattering through sigma and rho resonances,

respectively. The vertex corrections required to maintain gauge invariance are calculated in chapter

4. In chapter 5 we discuss the EM spectral function and the conductivity of hot pion matter with

and without vertex corrections. Applications of the EM spectral function are discussed in chapter

6, specifically the calculation of the charge susceptibility and comparison to a sum rule from ref.

[45]. Finally, we summarize and discuss future work in chapter 7.
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2. RHO MESON SELF-ENERGY

In this chapter we discuss the rho meson’s self-energy, and demonstrate how it can be used

to calculate the electric conductivity. The vacuum self-energy is calculated in section 2.1. In

section 2.2, we introduce the Ward-Takahashi identities and show that gauge invariance is satisfied

in vacuum. The rho self-energy is extended to finite temperature in section 2.3, by introducing

thermal ρπ-scattering and Bose enhancement of the vacuum ρ→ ππ decay. In section 2.4 we take

the transverse projection of the rho self-enery. Next, we address the need to introduce a finite pion

width into the rho self-energy. In section 2.5, the conductivity is approximated for a small constant

pion width. Finally, in section 2.6 we calculate the conductivity for a constant width, without use

of the small width approximation.

2.1 Vacuum self-energy

In ref. [38] it was found that there are two rho self-energy diagrams required to maintain gauge

invariance in vacuum, see Fig. 1.2. The self-energies were derived from the Lagrangians:

Lπ + Lρ =
1

2
∂µ~φ · ∂µ~φ−

1

2
m2
π
~φ · ~φ− 1

4
ρµνρ

µν +
1

2
(m(0)

ρ )2ρµρ
µ (2.1)

Lπρ =
1

2
igρρµ(T3

~φ · ∂µ~φ+ ∂µ~φ · T3
~φ)− 1

2
g2
ρρµρ

µT3
~φ · T3

~φ. (2.2)

Here, ρµν = ∂µρν − ∂νρµ, T3 = −iε3ab, and mπ = 140 MeV is the pion mass. One can derive the

vacuum rho propagator (Dρ), pion propagator (Dπ), ρππ vertex (Γ
(3)
µ(ab)) and ρρππ vertex (Γ

(4)
µν(ab))

from eqs. 2.1 and 2.2, given by:

Dπ(k) =
1

k2 −m2
π + iε

(2.3)

Dµν
ρ (k) =

−gµν + kµkν

k2

k2 − (m0
ρ)

2 + iε
+

kµkν

(m
(0)
ρ )2k2

(2.4)

Γ
(3)
µabc = gρεcab(2k + q)µ (2.5)

Γ
(4)
µν abcd = ig2

ρ(2δabδcd − δacδbd − δadδbc)gµν , (2.6)
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where gρ is the ρππ coupling, Greek indices are used to denote Lorentz space, and Roman are

used to denote isospin. The expression for the pion propagator in eq. 2.3 differs from that given

in eq. 1.18, in that eq. 2.3 does not include the pion self-energy. Equation 2.3 defines the sharp

pion propagator, which assumes pions to be noninteracting. In chapter 3 we will derive the pion

self-energy and demonstrate how the sharp propagator can be dressed to obtain eq. 1.18. Figure

2.1 expresses the propagators and vertices diagramatically.

Figure 2.1: From left to right: π-propagator, ρ-propagator, ππρ vertex, and ππρρ vertex.

The rho self-energy is then given by:

Σµν
ρ (q) =

−i
2

∫
d4k

(2π)4
Dπ(k)Dπ(q + k)Γ

(3)
µ 3ab(k, q)Γ

(3)
µ 3ba(q + k,−q)

−1

2

∫
d4k

(2π)4
Dπ(k)Γ

(4)
µν aa33(k, q), (2.7)

where repeated isospin indices are summed over. The first integral corresponds to the ππ-loop in

fig. 1.2, and the second integral to the tad pole loop. A symmetry factor of 1
2

has been added to

both terms to remove double counting of pion states. This is because the pion is distinguishable in

particle space, but not in isospin space. In eq. 2.7 we have written Σµν
ρ in terms of a general pion

propagator and general ρππ and ρρππ vertices. If one inserts the vacuum propagator and vertices

into eq. 2.7 one obtains:

Σµν
ρ (q) = ig2

ρ

∫
d4k

(2π)4

(2k + q)µ(2k + q)ν

(k2 −m2
π + iε)((q + k)2 −m2

π + iε)

−2ig2
ρ

∫
d4k

(2π)4

gµν

k2 −m2
π + iε

. (2.8)
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One must take care to not violate gauge invariance when regularizing Σµν
ρ . In references [46, 38]

the Pauli-Villars regularization scheme was used. In this scheme, rho self-energies are calculated

using heavy pion propagators, that is one replaces mπ with a higher mass, but keeps the quantum

numbers of the pion. The heavy pion terms are then subtracted from the vacuum rho self-energy.

The regularized self-energy is given by:

Σ′µνρ (q) = Σµν
ρ (q,mπ)− 2Σµν

ρ (q,
√
m2
π + Λ2

0) + Σµν
ρ (q,

√
m2
π + 2Λ2

0). (2.9)

We adopt the values gρ = 5.9, m(0)
ρ = 853 MeV, and Λ0 = 1 GeV, which were obtained by

fitting the P-wave ππ-scattering phase shift and the pion electromagnetic form factor in ref. [46].

It was demonstrated in ref. [38], that the vacuum rho self-energy can be resummed into the rho

propagator:

Dµν
ρ (k) = Dρ(k)(−gµν +

kµkν

k2
) +

kµkν

(m
(0)
ρ )2k2

, (2.10)

Dρ(k) =
1

k2 − (m0
ρ)

2 − Σρ(k)
, (2.11)

Σµν
ρ (k) = (−gµν +

kµkν

k2
)Σρ(k). (2.12)

2.2 Gauge invariance in vacuum

In the VDM the rho couples to a conserved current, and thus must be four-dimensionally trans-

verse (qµΣρµν = 0) [40]. Transversality is ensured if the ρππ and ρρππ vertices satisfy the

Ward-Takahashi identities:

qµΓ
(3)
µab3 = gρε3ab(D

−1
π (k + q)−D−1

π (k)) (2.13)

qµΓ
(4)
µν ab33 = igρ(ε3caΓ

(3)
ν bc3(k,−q)− ε3bcΓ(3)

ν ca3(k + q,−q)). (2.14)
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It is straight forward to demonstrate that Σµν
ρ will be four-dimensionally transverse if the Ward-

Takahashi identities are satisfied:

qµΣρµν(q, T ) =
−i
2

∫
d4k

(2π)4
qµΓ

(3)
µab3(k, q)Γ

(3)
ν ba3(q + k,−q)Dπ(k)Dπ(q + k)

− 1

2
qµ

∫
d4k

(2π)4
Γ

(4)
µν aa33(k, q)Dπ(k)

=
−i
2

∫
d4k

(2π)4
gρε3ab(D

−1
π (k + q)−D−1

π (k))Γ
(3)
ν ba3(q + k,−q)Dπ(k)Dπ(q + k)

− 1

2

∫
d4k

(2π)4
igρ(ε3baΓ

(3)
ν ab3(k,−q)− ε3abΓ(3)

ν ba3(k + q,−q))Dπ(k)

=
−i
2
gρ

∫
d4k

(2π)4
ε3abΓ

(3)
ν ba3(q + k,−q)Dπ(k)

− −i
2
gρ

∫
d4k

(2π)4
ε3abΓ

(3)
ν ba3(q + k,−q)Dπ(q + k)

− i

2
gρ

∫
d4k

(2π)4
(ε3baΓ

(3)
ν ab3(k,−q)− ε3abΓ(3)

ν ba3(k + q,−q))Dπ(k).

(2.15)

One can now make the change of variable k → k − q in the second integral to obtain:

qµΣρµν(q, T ) =
−i
2
gρ

∫
d4k

(2π)4
ε3abΓ

(3)
ν ba3(q + k,−q)Dπ(k)

− −i
2
gρ

∫
d4k

(2π)4
ε3abΓ

(3)
ν ba3(k,−q)Dπ(k)

− i

2
gρ

∫
d4k

(2π)4
(ε3baΓ

(3)
ν ab3(k,−q)− ε3abΓ(3)

ν ba3(k + q,−q))Dπ(k)

= 0.

(2.16)

The shift in k does not violate gauge invairance, because Σµν
ρ is regularized with the Pauli-Villars

schema [46].

One can easily show that the Ward identities are satisfied in vacuum. For the ρππ vertex one

finds:

qµΓ
(3)
µab3 = gρε3ab(2k · q + q2) = gρε3ab((k + q)2 −m2

π − k2 +m2
π)

= gρε3ab(D
−1
π (q + k)−D−1

π (k)), (2.17)
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and for the ρρππ vertex we start with the right hand side of eq. 2.14 to show:

igρ(ε3caΓ
(3)
ν bc3(k,−q)− ε3bcΓ(3)

ν ca3(k + q,−q))

= igρ(ε3caε3bcgρ(2k − q)ν − ε3bcε3cagρ(2k + q)ν)

= ig2
ρε3caε3bc(−2q)ν

= ig2
ρ(δ3aδ3b − δab)(−2q)ν

= i2g2
ρ(δab − δ3aδ3b)q

µgµν

= qµΓ
(4)
µν ab33. (2.18)

Although the Ward identities are satisfied in vacuum, the addition of medium effects within Dπ

violates the Ward identities and will be addressed in chapter 4.

2.3 In medium rho-self-energy

At finite temperature, the self-energy experiences Bose enhancement. In the imaginary-time

formalism, this can be implemented by replacing the energy integration with an infinite summation

over discrete Matsubara frequencies (ωn) [47]:

∫
dk0

(2π)
→ iT

∑
n

, k0 → iωn, ωn = πnT, (2.19)

where n is summed over even integers for bosons and odd integers for fermions. In order to

perform the summation, we rewrite propagators using the spectral representation:

F (k0) =
−1

π

∫ ∞
−∞

dv
Im[F (v)]

k0 − v + iε
, (2.20)
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where ε is infinitesimally small. Equation 2.20 holds for any analytic function, F , if the real part

of F is calculated from the principal value of the integral. At finite temperature Σµν
ρ is given by:

Σµν
ρ (q) =− g2

ρT
∑

n(even)

∫
d3k

(2π)3

∫ ∞
−∞

dvdv′

π2

(2k + q)µ(2k + q)νIm[Dπ(v,~k)]Im[Dπ(v′, ~k + ~q)]

(iωn − v + iε)(q0 + iωn − v′ + iε)

+ 2g2
ρg

µνT
∑

n(even)

∫
d3k

(2π)3

∫ ∞
−∞

dv

−π
Im[Dπ(v,~k)]

iωn − v + iε
.

(2.21)

One can rewrite the first term using partial fractions such that:

1

(iωn − v + iε)(q0 + iωn − v′ + iε)

=
1

q0 + v − v′ + iε

( 1

iωn − v + iε
− 1

q0 + iωn − v′ + iε

)
.

(2.22)

The summations can be performed using the identity [51]:

T
∑
n

1

iωn − v + iε
= −f(v), (2.23)

were f(v) is the Bose distribution function for even n, and the Fermi distribution function for odd

n. The in medium rho self-energy is then given by:

Σµν
ρ (q) =g2

ρ

∫
d3k

(2π)3

∫ ∞
−∞

dvdv′

π2

(2k + q)µ(2k + q)ν

q0 + v − v′ + iε

Im[Dπ(v,~k)]Im[Dπ(v′, ~k + ~q)](f(v)− f(v′))

− 2g2
ρg

µν

∫
d3k

(2π)3

∫ ∞
−∞

dv

−π
Im[Dπ(v,~k)]f(v).

(2.24)

The first term is complex, while the second is purely real. The imaginary part of Σρ can be obtained

using the identity:
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Im
[ 1

ω − v + iε

]
= (−π)δ(ω − v), (2.25)

resulting in:

ImΣµν
ρ (q) =g2

ρ

∫
d3k

(2π)3

∫ ∞
−∞

dv

−π
Im[Dπ(v,~k)]Im[Dπ(q0 + v, ~q + ~k)]

(2k + q)µ(2k + q)ν(f(v)− f(q0 + v))

=g2
ρ

∫
d3k

(2π)3

∫ q0

0

dv

−π
Im[Dπ(v,~k)]Im[Dπ(q0 − v, ~q + ~k)]

(2k + q)µ(2k + q)ν(1 + f(v) + f(q0 − v))

+ 2g2
ρ

∫
d3k

(2π)3

∫ ∞
0

dv

−π
Im[Dπ(v,~k)]Im[Dπ(q0 + v, ~q + ~k)]

(2k + q)µ(2k + q)ν(f(v)− f(q0 + v)),

(2.26)

where we have made use of the identity,

f(−v) = −1− f(v), (2.27)

for the Bose distribution function.

In the second equality we have separated the self-energy into two "cuts". These "cuts" corre-

spond to the imaginary part of the self-energy, and represent different physical processes. The first

term is the unitarity cut, which represents the vacuum ρ → ππ decay and its Bose enhancement.

The second term is the Landau cut, which gives the contribution from ρπ-scattering through an in-

termediate pion state. The energy dependent portion of the real part of Σµν
ρ can be calculated from

a dispersion relation, while a constant shift from the tadpole diagram can be calculated directly,

giving:
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ReΣµν
ρ (q0, ~q) =

−1

π
p.v.

∫ ∞
0

dv2 1

q2
0 − v2

ImΣµν
ρ (v, ~q)

− 2g2
ρg

µν

∫
d3k

(2π)3

∫ ∞
−∞

dv

−π
Im[Dπ(v,~k)]f(v),

(2.28)

where p.v. indicates that one should take the principal value of the integral.

2.4 Transverse projection

In order to calculate the conductivity, we require the transverse projection of Σµν
ρ . We now

calculate the transverse projection of Σµν
ρ . The Lorentz structure of Σµν

ρ is given by the ρππ and

ρρππ vertices. For the ππ-loop to calculate the transverse projection one must evaluate:

1

2
P µν
T (2k + q)µ(2k + q)ν =

1

2
(4~k2 + 4~k · ~q + ~q2 − 4

(~k · ~q)2

~q2
− 4~k · ~q − ~q2) =

1

2
(4~k2 − 4

(~k · ~q)2

~q2
) =

2~k2(1− cos(θ)), (2.29)

where θ is the angle between ~q and ~k. It is convenient to align the z-axis with ~q, so that θ also

corresponds to the angle between k and the z-axis. To calculate the transverse projection of the

tadpole loop one must evaluate:

1

2
P µν
T gµν =

1

2
(−3 +

~q 2

~q 2
) =

−1. (2.30)
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The transverse projection of the in medium rho self-energy is then given by:

ΣT
ρ (q) =g2

ρ

∫
d3k

(2π)3

∫ ∞
−∞

dvdv′

π2

2~k2(1− cos(θ))
q0 + v − v′ + iε

Im[Dπ(v,~k)]Im[Dπ(v′, ~k + ~q)](f(v)− f(v′))

+ 2g2
ρ

∫
d3k

(2π)3

∫ ∞
−∞

dv

−π
Im[Dπ(v,~k)]f(v).

(2.31)

Finally, for ~q = 0, the explicit θ dependence can be integrated out analytically:

ΣT
ρ (q0, ~q) = g2

ρ

8π

3

∫
d|~k|~k2

(2π)3

∫ ∞
−∞

dvdv′

π2

2~k2

q0 + v − v′ + iε

Im[Dπ(v,~k)]Im[Dπ(v′, ~k)](f(v)− f(v′))

+2g2
ρ

∫
d3k

(2π)3

∫ ∞
−∞

dv

−π
Im[Dπ(v,~k)]f(v)

=
g2
ρ

3

∫
d3k

(2π)3

∫ ∞
−∞

dvdv′

π2

4~k2

q0 + v − v′ + iε

Im[Dπ(v,~k)]Im[Dπ(v′, ~k)](f(v)− f(v′))

+2g2
ρ

∫
d3k

(2π)3

∫ ∞
−∞

dv

−π
Im[Dπ(v,~k)]f(v). (2.32)

2.5 On-shell approximation

Now that the transverse projection of the rho self-energy has been established, we will inves-

tigate how it generates the transport peak in ΠEM. Within the VDM, the conductivity is given

by:

σel =
−e2(m0

ρ)
4

3g2
ρ

lim
q0→0

ImDii
ρ (q0, 0)

q0

=
−e2(m0

ρ)
4

g2
ρ

lim
q0→0

ImDT
ρ (q0, 0)

q0

, (2.33)

with:

ImDT
ρ (q0, 0) = Im[

1

q2
0 − (m0

ρ)
2 − ΣT

ρ (q0, 0)
]

=
ImΣT

ρ (q0, 0)

(q2
0 − (m0

ρ)
2 − ReΣT

ρ (q0, 0))2 + ImΣT
ρ (q0, 0)2

. (2.34)
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At zero-energy, ImΣρ must go to zero, due to the retarded nature of the propagator. Furthermore,

we will see in chapter 6 that a sum rule requires ReΣρ to return to it’s vacuum value at q0 = ~q = 0

[45]. Reference [46] found that the rho self-energy must vanish for q2 = 0 thus the conductivity

can be expressed as:

σel =
−e2

g2
ρ

lim
q0→0

ImΣT
ρ (q0, 0)

q0

. (2.35)

From eq. 2.35 one sees that σel is proportional to ImΣρ, which is in turn generated by two

physical processes: ρ → ππ decay and ρπ-scattering. For sharp pion propagators, ρ → ππ

decays cannot occur unless the rho’s invariant mass is greater than two times the pion mass, due

to conservation of energy. For finite pion widths, the rho’s unitarity cut gains strength below

the 2-pion threshold, because the pions do not need to be on-shell. However, the conductivity

is calculated in the zero energy limit, and the typical pion width (≈ 25 MeV atT = 150 MeV)

[48] is significantly smaller than the pion mass (140 MeV). Thus, even when a pion width is

included, the unitarity cut’s contribution to the conductivity is expected to be small. The Landau

cut corresponds to ρπ scattering through an intermediate pion, ρπ → π. However, at finite energy

and zero momentum this interaction is once again forbidden for sharp pions, because, for ~q = 0,

the pions in the final and initial states have the same 4-momentum. Thus, any additional energy

added to the initial state by the photon will violate conservation of 4-momentum. This interaction

is allowed for q0 = 0, however the self-energy is infinite at this point. This is precisely what

was found in ref. [35], where the spectral function developed a delta function at q0 = 0 for zero

coupling. The solution is to include the pion’s interactions with the medium, smearing out the delta

function, thus generating a finite conductivity.

The Landau cut provides the dominant contribution to the conductivity. If one inserts the
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transverse projection of the Landau cut into eq. 2.35 one finds:

σel = lim
q0→0

[−2e2

3q0

∫
d3k

(2π)3

∫ ∞
0

dv

−π
Im[Dπ(v,~k)]Im[Dπ(q0 + v,~k)]

4|~k|2(f(v)− f(q0 + v))
]
. (2.36)

The limit can be performed analytically using L’Hospital’s rule:

lim
q0→0

1

q0

(f(v)− f(q0 + v)) =
e
v
T

T (−1 + e
v
T )2

. (2.37)

The conductivity is then given by:

σel =
−2e2

3q0

∫
d3k

(2π)3

∫ ∞
0

dv

−π
Im[Dπ(v,~k)]2

4|~k|2e vT
T (−1 + e

v
T )2

. (2.38)

As a first approximation, we calculate the conductivity using a small, but finite, pion width Γπ.

The pion propagator is then given by:

Dπ(k) =
1

2ωk

( 1

k0 − ωk + iΓπ
2

− 1

k0 + ωk + iΓπ
2

)
, (2.39)

with ωk =
√
k2 +m2

π. For small widths and positive k0 Im[Dπ] is dominated by the first term

in eq. 2.40, because the second term does not contain a pole. Therefore, one can express the

imaginary part of the pion propagator as:

ImDπ(k) ≈ 1

2ωk
Im
[ 1

k0 − ωk + iΓπ
2

]
=
−Γπ
4ωk

1

(k0 − ωk)2 + Γ2
π

4

. (2.40)

For sharp pions, the propagator can be expressed in terms of a Dirac δ-function:

Im[D(k)] =
−π
2ωk

δ(k0 − ωk). (2.41)

It is straight forward to derive equation 2.41. First, we note that as Γπ approaches zero, Im[D(k)]
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goes to zero for all k0 except k0 = ωk, where it is infinite. Next, we integrate Im[D(k)] over all k0:

∫ ∞
−∞

dk0
−Γπ
4ωk

1

(k0 − ωk)2 + Γ2
π

4

= lim
k0→∞

1

2ωk

[
ArcTan

(2(ωk − k0)

Γπ

)
− ArcTan

(2(ωk + k0)

Γπ

)]
=
−π
2ωk

. (2.42)

From eq. 2.42 one sees that the sharp pion propagator satisfies the definition of a delta function

times −π
2ωk

.

To obtain a finite conductivity we must derive an expression similar to eq. 2.41 for Im[D(k)]2,

in the small width limit. To begin, we write the imaginary part of the propagator squared, while

dropping the terms in Dπ that do not contain a pole:

Im[D(k)]2 ≈
(−Γπ

4ωk

1

(k0 − ωk)2 + Γ2
π

4

)2

. (2.43)

It is easy to see that for small widths Im[D(k)]2 approaches zero away from the pole. To relate

Im[D(k)]2 to a delta function we must determine how Im[D(k)]2 behaves when integrated over k0.

If one integrates Im[D(k)]2 over all k0 one finds:

∫ ∞
−∞

dk0

(−Γπ
4ωk

1

(k0 − ωk)2 + Γ2
π

4

)2

= lim
k0→∞

1

4ω2
k

[1

2

(−ωk + k0)

(Γπ
2

)2 + (ωk − k0)2
− 1

Γπ
ArcTan

(2(ωk − k0)

Γπ

)
−1

2

(−ωk − k0)

(Γπ
2

)2 + (ωk + k0)2
+

1

Γπ
ArcTan

(2(ωk + k0)

Γπ

)]
=

π

4ω2
k

1

Γπ
. (2.44)

The definition of the Dirac delta function and eq. 2.44 imply that for small Γπ:

Im[D(k)]2 ≈ π

4ω2
k

1

Γπ
δ(k0 − ωk). (2.45)
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Equation 2.45 allows one to approximate one propagator with a delta function, without dropping

the second propagator’s width. Therefore, it can be used in eq. 2.38 without producing and infinite

conductivity. One can now use eqs. 2.45 and 2.38 to show:

σel =
2e2

3T

∫
d3~k

(2π)3

v2
k

Γπ
f(ωk)(1 + f(ωk)), (2.46)

where vk =
~k
ωk

is the pion’s velocity.

Reference [49] calculated the conductivity by solving the Boltzmann equation in the relaxation

time approximation:

σel =
1

3T

∑
i

e2
iniτ, (2.47)

where i is summed over all particle species in the medium, ei and ni are the charge and density for

a given species, respectively, and τ is the mean time between collisions. For a pion gas equation

2.47 is summed over the three iospin states of the pion. Only two of the isospin states are charged,

so after the summation eq. 2.47 will increase by a factor of two rather than three. This result is

similar to what we find in 2.46, if one replaces the collision time with v2k
Γπ

. We note that we pick

up the factor of v2
k due to relativistic effects. Furthermore, our approximate conductivity agrees

with similar calculations in references [23, 30], which express the conductivity in terms of the pion

width.

2.6 Constant pion width

The approximate conductivity in section 2.5 requires the pion’s width to be small. As the width

increases the approximation breaks down. In fact, eq. 2.46 approaches zero for large Γπ, and thus

would violate any potential quantum lower-bound, in the strong-coupling limit. To obtain a non-

zero conductivity in the strong-coupling limit one must dress both pion propagators with a constant
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width. For an arbitrary width the pion propagator is given by:

Dπ(k) =
1

k2
0 − ~k2 −m2

π + ik0Γπ
. (2.48)

We use eqs. 2.36 and 2.48 to calculate the conductivity with two dressed pion propagators, in-

tegrating over off-shell effects. Figure 2.2 displays how the conductivity varies with width for a

constant temperature of T=150 MeV. While the sharp pion approximation works well for widths

below approximately 100 MeV, the results diverge as the width increases. This discrepancy indi-

cates that one must perform the full quantum calculation to study the strong-coupling limit of the

medium.

Figure 2.2: Electric conductivity for a fixed temperature of 150 MeV, plotted as a function of the
pion width, Γπ. The blue line shows the result when the imaginary part of one pion propagator is
approximated with a delta function, and the second propagator is dressed with a constant width.
The red line shows the result when both propagators are dressed with constant widths.
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3. PION SELF-ENERGY

As emphasized in section 2.5, the pion’s medium interactions are essential to extract a finite

conductivity. Therefore thermal ππ-scattering plays a decisive role in calculating the conductivity

at low temperature and chemical potential. In this chapter, we calculate the pion self-energy due

to thermal S- and P-wave ππ-scattering. The resonant scattering model is able to describe S- and

P-wave ππ interactions up to about 1 GeV [50]. Such scatterings occur predominantly through

sigma and rho resonances, respectively. These resonant scattering as shown diagrammatically in

fig. 3.1.

Figure 3.1: The pion self-energy resulting from resonant scattering of a pion with a thermal pion
through an intermediate ρ (left) or σ (right) meson.

In section 3.1 we show how one can resum self-energy loops into the pion propagator. In

section 3.2 we calculate the pion self-energy due to the rho resonance, using the previously estab-

lished Lagrangian from eq. 2.2. In Section 3.3 we calculate the pion self-energy due to the sigma

resonance, following the approach used in refs. [50, 51]. In section 3.4 we fit our parameters to

the measured S- and P- wave phase shifts, and compare our ππ-cross section to the experimen-

tally measured cross section. Finally, in sections 3.5 we calculate the pion self-energy at finite

temperature.
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3.1 Dressed pion propagator

In chapter 1 the resummed pion propagator (eq. 1.18) was introduced without justification.

Equation 1.18 can be derived from an infinite summation of interaction loops, as illustrated in

figure 3.2.

Figure 3.2: Above: Pion propagator dressed with the self-energy from ππ resonant scattering
through a rho resonance. The propagator is resummed to infinite order in the interaction loop.

Figure 3.2 can be written as [51]:

Dπ(k) = D0
π(k) +D0

πΣπ(k)Dπ(k), (3.1)

where D0
π(k) is the vacuum pion propagator. Equation 3.1 can then be rewritten in a closed form

expression:

Dπ(k) = D0
π(k)

∞∑
n=0

(Σ(k)D0
π(k))n

= D0
π(k)

1

1− Σπ(k)D0
π(k)

=
1

k2
0 − ~k2 −m2

π − Σπ(k)
.

(3.2)

Thus, one can see that eq. 1.18 dresses the pion propagator with interaction loops to infinite order.

3.2 Rho resonance

In this section we calculate the pion self-energy due to the rho resonance. The ρππ vertex

was established in chapter 2 along with the rho and pion propagators. One can use the vertex and

25



propagators, along with standard Feynman rules, to construct the pion self-energy for ππ-scattering

through a rho resonance. With this approach one obtains:

Σπ(ρ)(k, T ) = −
g2
ρε3abε3ab

2
T
∑

n(even)

∫
d3p

(2π)3

[
(k − p)µ(k − p)νDµν

ρ (p+ k)

Dπ(p)F̃Fρ[qCM]2
]
p0=iωn

, (3.3)

where we have added a symmetry factor of 1
2
, as was also the case for the rho self-energy. We

also add a form factor F̃Fρ[qCM] at each vertex, because regularizing the pion self-energy using

the Pauli-Villars scheme presents significant numerical difficulty. Thus we opt for a simpler form

factor defined as:

F̃Fρ[qCM] =
Λ2
ρ +m2

ρ

Λ2
ρ + 4(m2

π + qCM[p, k]2)
, (3.4)

qCM[p, k]2 =
1

(p+ k)2

(1

4
((p+ k)2 − k2 − p2)2 − k2p2

)
, (3.5)

where qCM is the center of mass momentum and Λρ is the form factor cutoff, which will be fit to

scattering data in section 3.4. It is convenient to redefine our cutoff parameters, so that the form

factor is more similar to that used in ref. [46]. Thus we define:

FFρ[p, k] = F̃Fρ[qCM] =
Λ2

1ρ

Λ2
2ρ + qCM[p, k]2

, (3.6)

Λ1ρ =

√
Λ2
ρ +m2

ρ

4
, (3.7)

Λ2ρ =

√
Λ2
ρ

4
+m2

π. (3.8)

However, we stress that the two form factors F̃Fρ[qCM] and FFρ[p, k] are equivalent. Finally, we

note that for Dµν
ρ we use the vacuum rho propagator established in eq. 2.10.
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3.3 Sigma resonance

We have not established a σππ vertex, so in order to calculate the pion self-energy due to

scattering through a sigma resonance, we follow the approach outlined in references [50, 51]. We

begin with the interaction Lagrangian for the linear sigma model [32, 51, 52, 53]:

Lintππσ = −g
2
σ

2
fπ~π

2σ − g2
σ

8
(~π2)2. (3.9)

The I=0 Born amplitude is given by [52]:

M I=0
B,ππσ(s, t, u) = g2

σ

(
3
s−m2

π

s−m2
σ

+
t−m2

π

t−m2
σ

+
u−m2

π

u−m2
σ

)
, (3.10)

where mσ is the bare sigma mass and s, t, and u are the Mandelstam variables. Reference [50]

created a separable potential using an off-shell continuation of the Mandelstam variables in which

the pion energies in t and u where placed on their mass shell, while s was kept as an external

variable in the scattering equation. In this continuation the Mandelstam variables become:

s = E2,

t = 2m2
π − 2ωqωq′ + ~q · ~q ′,

u = 2m2
π − 2ωqωq′ − ~q · ~q ′, (3.11)

where E is the invariant mass of the sigma meson, and q and q′ are the center-of-mass momenta of

the incoming and outgoing pions. Here, we deviate from references [50, 51] by only considering

the first term in eq. 3.10. We make this approximation because t and u channels yield non-resonant

terms (t, u << m2
σ) in eq. 3.10, which are suppressed by 1

m2
σ

. Therefore, we use the interaction

kernel:

V 00
ππσ(E, q, q′) = 3g2

σ

E2 −m2
π

E2 −m2
σ

F̃Fσ[q]F̃Fσ[q′], (3.12)
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where F̃Fσ[q] is the σππ form factor given by:

F̃Fσ[qCM] =
Λ2
σ

Λ2
σ + 4(m2

π + qCM[p, k]2)
, (3.13)

FFσ[p, k] =
Λ2

1σ

Λ2
2σ + qCM[p, k]2

, (3.14)

Λ1σ =
Λσ

2
, (3.15)

Λ2σ =

√
Λ2
σ

4
+m2

π, (3.16)

where we again provide two equivalent parameterizations for the form factor, to make latter com-

parisons to ref. [46] more convenient. One can obtain the partial wave scattering amplitude for a

given spin-isospin channel using the Lippmann Schwinger equation:

M JI
ππ(E, q, q′) = V JI

ππ(E, q, q′)

+

∫ ∞
0

dkk2

(2π)2
V JI
ππ(E, q, k)Gππ(E, k)M JI

ππ(E, k, q′). (3.17)

Here J and I denote the spin and isospin of the ππ-scattering channel, respectively, and Gππ(E, k)

is the 2-pion propagator:

Gππ(E, k) =
1

ωk

1

E2 − 4ω2
k + iε

. (3.18)

For a separable potential, V (q, q′) = v(q)v(q′), one can resum equation 3.17 to obtain:

M JI
ππ(E, q, q′) =

3g2
σ(E2 −m2

π)

E2 −m2
σ − Σσ(E)

F̃Fσ[q]F̃Fσ[q′], (3.19)

where Σσ(E) is the sigma self-energy, given by:

Σσ(E) = 3g2
σ

∫
d|~k|~k2

(2π)2

(E2 −m2
π)F̃Fσ[k]2

ωk(E2 − 4ω2
k + iε)

. (3.20)

Figure 3.3 displays the Feynman diagram corresponding to Σσ(E).
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Figure 3.3: Vacuum sigma self-energy from a ππ-loop.

The forward scattering amplitude can now be used to calculate the pion self-energy [48]:

Σπ(k) = −T
∑

n(even)

∫
d3p

(2π)3

[
Mππ(p+ k, qCM, qCM)Dπ(p)

]
p0=iωn

, (3.21)

where the forward scattering amplitude (Mππ) is calculated by summing M IJ
ππ over all relevant

spin-isospin channels using [51]:

Mππ(E, q, q′) =
1

6

∑
J

∑
I

(2J + 1)(2I + 1)MJI
ππ (E, q, q′). (3.22)

In this section we only calculate the pion self-energy due to the sigma resonance (Σπ(σ)), thus we

only include the J = 0, I = 0 channel and obtain:

Σπ(σ)(k, T ) = −1

6
T
∑

n(even)

∫
d3p

(2π)3

[
M00

ππ(p+ k, qCM, qCM)Dπ(p)
]
p0=iωn

= −g2
σT

∑
n(even)

∫
d3p

(2π)3

[((p+ k)2 −m2
π)

2
Dσ(p+ k)

Dπ(p)FFσ[p, k]2
]
p0=iωn

, (3.23)

where Dσ is the vacuum sigma propagator:

Dσ(E) =
1

E2 −m2
σ − Σσ(E)

. (3.24)
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Finally, we note that in ref. [51] the off-shell continuation of the Mandelstam variables was

also used to calculate P-wave scattering through the rho resonance. We do not use this off-shell

continuation when calculating Σπ(ρ), in order to maintain consistency with the ρππ vertex from

ref. [46], however for on-shell pions our self-energy is identical to the result from ref. [51]

3.4 Vacuum fits

Next, we compare our scattering amplitudes to experimental measurements. The forward scat-

tering amplitude for a given spin-isospin channel is related to the propagator for a given resonance

through:

M00
ππ(E, qCM, qCM) =

g2
σ

2
(E2 −m2

π)Dσ(E)F̃Fσ[q′CM]2 (3.25)

M11
ππ(E, qCM, qCM) = g2

ρ(E
2 − 4m2

π)Dρ(E)F̃Fρ[q′CM]2. (3.26)

For comparisons to vacuum data we take the pion energies k0 and p0 to be on-shell, but keep the

resonant particle’s energy, E, as an external variable. The center of mass momentum is then given

by:

q′CM[
√
s] =

1

s

(1

4
(s− 2m2

π)2 −m4
π

)
. (3.27)

The parameters: gσ, mσ, and Λ(ρ/σ) can be fit to S- and P-wave ππ-scattering phase shifts [54].

The ππ-scattering phase shifts are related to the sigma and rho propagators by [55]:

tan δ0
0(E) =

Im[Dρ(E)]

Re[Dρ(E)]
, (3.28)

tan δ1
1(E) =

Im[Dσ(E)]

Re[Dσ(E)]
. (3.29)

In order to fit Λρ we cannot use the previously established Σµν
ρ in eq. 3.28. This is because Σµν

ρ

was regularized with Pauli-Villars regularization, thus it is independent of Λρ. Instead, we define a
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new rho self-energy regularized with FFρ for use in 3.28:

Σ′µνρ (q) =ig2
ρ

∫
d4k

(2π)4

(2k + q)µ(2k + q)ν

(k2 −m2
π + iε)((k + q)2 −m2

π + iε)
F̃Fρ[k]2. (3.30)

We must also refit m(0)
ρ within Dρ, since we neglect the tadpole diagram in Σ′µνρ . Σ′µνρ is only used

to fit Λρ, while Σµν
ρ is used for the rest of this work, in order to maintain consistency with [40, 46].

The resulting fits are given in figure 3.4.

Figure 3.4: Left: Fit for Σπ(σ) to the S-wave phase shift. Right: Fit for Σπ(ρ) to the P-wave phase
shift. Data are taken from ref. [54].

The fits provide the values: gσ = 8.86, mσ = 934 MeV, Λρ = 1.85 GeV, and Λσ = .745 GeV.

Finally, we compare our cross-section with the experimentally measured ππ-scattering cross-

section. The imaginary part of the forward scattering amplitude is related to the cross-section

by:

σππ(s) =
1√

s(s− 4m2
π)

Im[Mππ(
√
s)], (3.31)
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or in terms of the ρ and σ propagators:

σππ(s) =
1√

s(s− 4m2
π)

(
− g2

ρIm[Dρ(
√
s)](s− 4m2

π)FFρ[q′CM]2

+
−g2

σ

2
Im[Dσ(

√
s)](s−m2

π)FFσ[q′CM]2
)
. (3.32)

Figure 3.5 compares our cross-section to experimental measurements taken from ref. [56], and to

the cross sections used by ref. [29] for their K-matrix formulation, as well as the cross-sections

used in refs. [23, 21].

Figure 3.5: Comparison of our ππ cross-section (blue) to experimental data (black dots) from ref.
[56] and cross sections used in previous calculations: kinetic theory (red) [21], K-matrix (green)
[29]. For the K-matrix we plot only ref. [29]’s lowest lying resonance, the rho meson.

Our cross section is closest to the cross section used in the kinetic theory calculation, however

our cross section is larger for
√
s . 600 MeV, and has a narrower rho peak. For

√
s . 600 MeV
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our cross sections is increased due to the sigma resonance. Our cross section is narrower than

experimental data, because in eq. 3.32 we use the vacuum rho propagator from ref. [46]. Reference

[46] fitDρ to the pion electromagnetic form factor as well as the P-wave phase shift. As a result,Dρ

produces a narrower cross section, but the fit to the pion electromagnetic form factor is improved.

3.5 Pion self-energy at finite temperature

In this section, we calculate the pion self-energy at finite temperature. As was the case for the

rho self-energy, the Matsubara sums in eqs. 3.3 and 3.23 can be performed using eq. 2.23, if one

rewrites the propagators using a spectral representation. After performing the Lorentz contractions

and the summations, we obtain:

Σπ(ρ)(k, T ) = g2
ρ

∫
d3p

(2π)3

∫ ∞
−∞

dw

−π

∫ ∞
−∞

dw′

−π

[
Im[Dπ(w, ~p)]Im[Dρ(w

′, ~k + ~p)]

Nπ(ρ)[p, k, w
′]

k0 + w − w′ + iε
(f(w)− f(w′))FFρ[p, k]2

]
p0=w

, (3.33)

Σπ(σ)(k, T ) = g2
σ

∫
d3p

(2π)3

∫ ∞
−∞

dw

−π

∫ ∞
−∞

dw′

−π

[
Im[Dπ(w, ~p)]Im[Dσ(w′, ~k + ~p)]

Nπ(σ)[p, k, w
′]

k0 + w − w′ + iε
(f(w)− f(w′))FFσ[p, k]2

]
p0=w

, (3.34)

where,

Nπ(ρ)[p, k, w
′] = −(k − p)2 +

(k2 − p2)2

w′2 − (~p+ ~k)2
, (3.35)

Nπ(σ)[p, k, w
′] =

w′2 − (~k + ~p)2 −m2
π

2
. (3.36)

The imaginary part of the self-energy can be calculated using eq. 2.25. As was done for Σµν
ρ ,

we can split the imaginary part of the pion self-energy into various cuts. For the rho resonance we
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define:

ImΣU1
πρ(k, T ) = g2

ρ

∫
d3p

(2π)3

∫ ∞
0

dw

−π

[
−Θ(k0 − w)Im[Dπ(p)]Im[Dρ(k + p)]

Nπ(ρ)[p, k, p0 + k0]FFρ[p, k]2(1 + f(w) + f(k0 − w))
]
p0=−w

, (3.37)

ImΣU2
πρ(k, T ) = −ImΣU1

πρ(k, T )
∣∣
k0→−k0

, (3.38)

ImΣL1
πρ(k, T ) = g2

ρ

∫
d3p

(2π)3

∫ ∞
0

dw

−π

[
Θ(k0 + w)Im[Dπ(p)]Im[Dρ(k + p)]

Nπ(ρ)[p, k, p0 + k0]FFρ[p, k]2(f(w)− f(k0 + w))
]
p0=w

, (3.39)

ImΣL2
πρ(k, T ) = −ImΣL1

πρ(k, T )
∣∣
k0→−k0

. (3.40)

and for the σ-resonance:

ImΣU1
πσ(k, T ) =

g2
σ

2

∫
d3p

(2π)3

∫ ∞
0

dw

−π

[
−Θ(k0 − w)Im[Dπ(p)]Im[Dσ(k + p)]

Nπ(σ)[p, k, p0 + k0]FFσ[p, k]2(1 + f(w) + f(k0 − w))
]
p0=−w

, (3.41)

ImΣU2
πσ(k, T ) = −ImΣU1

πσ(k, T )
∣∣
k0→−k0

, (3.42)

ImΣL1
πσ(k, T ) =

g2
σ

2

∫
d3p

(2π)3

∫ ∞
0

dw

−π

[
Θ(k0 + w)Im[Dπ(p)]Im[Dσ(k + p)]

Nπ(σ)[p, k, p0 + k0]FFσ[p, k]2(f(w)− f(k0 + w))
]
p0=w

, (3.43)

ImΣL2
πσ(k, T ) = −ImΣL1

πσ(k, T )
∣∣
k0→−k0

. (3.44)

Equations 3.37, 3.38, 3.41 and 3.42 correspond to the pion unitarity cut (a pion decaying into
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another pion and a rho or sigma meson), while equations 3.39, 3.40, 3.43 and 3.44 correspond to

the Landau cut. The unitarity cuts are heavily suppressed, because the rho and sigma meson masses

are significantly larger than the pion mass. Furthermore, our goal is to dress the pion propagator

with thermal interactions, however the unitarity cut corresponds to corrections to the vacuum pion

propagator. Therefore, we drop all pion self-energy terms corresponding to the unitarity cut.

For positive energy, ImΣL1
π(ρ/σ) provides resonant scattering with a thermal pion through a (ρ/σ)

meson, while ImΣL2
π(ρ/σ) provides scattering with a thermal (ρ/σ) meson. However, for negative

energy ImΣL2
π(ρ/σ) corresponds to ππ-scattering, while ImΣL2

π(ρ/σ) provides scattering with a thermal

(ρ/σ) meson. In this work, we perform calculates in hadronic matter at temperatures between 100

and 180 MeV. Thermal rho and sigma excitations are heavily suppressed in this temperature range,

due to their large masses relative to the temperature. Therefore, we drop terms corresponding to

scattering with thermal rho or sigma mesons, and only calculate ImΣL1
π(ρ/σ) for positive energy.

In order to calculate the pion self-energy, for negative energy we note that the pion propagator is

retarded, implying that:

Σπ(−k0, ~k) = Σ∗π(k0, ~k). (3.45)

Therefore, one can infer the negative energy behavior from eq. 3.45.

The real part of Σπ is calculated through the subtracted dispersion relation:

ReΣπ(k) =
−1

π

∫ ∞
−∞

dw
( ImΣπ(k0, ~k)

k0 − w
− ImΣπ(0, ~k)

−w

)
. (3.46)

The subtraction ensures that ReΣπ is zero for zero energy. This is physically justified because the

pion is a Goldstone boson, thus its self-energy is expected to be small for zero energy. Further-

more, if ReΣπ is large at small energy (as is the case at high temperature and in the strong coupling

limit) the pion propagator can develop a pole at zero energy. This behavior is expected for strong

coupling, and corresponds to the development of a pion condensate. Although in principal the

condensate can be removed by including repulsive ππ-interactions, in this work any potential con-
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densate is avoided due to the zero energy subtraction.

We graph the real and imaginary parts of the optical potential in figures 3.6 and 3.7. The optical

potential is defined by:

Uπ(~k) =
Σπ(ωk, ~k)

2 ωk
. (3.47)

Although we dress the rho and sigma propagators in Σπ with the vacuum rho and sigma self-

energies, the pion propagator within Σπ is not dressed. This propagator will not induce an infinite

conductivity, because it corresponds to a thermal pion, while only intermediate particle states trans-

mit charge through the medium.

Figure 3.6: Left: Imaginary part of the optical potential, plotted as a function of momentum for
T = 150 MeV. Contributions from the rho (blue) and sigma (red) resonances are shown in addition
to the total (purple). Right: Real part of the optical potential, plotted as a function of momentum
for T = 150 MeV. Contributions from the rho (blue) and sigma (red) resonances are shown in
addition to the total (purple).

36



Figure 3.7: Left: Imaginary part of the optical potential, plotted as a function of momentum for
T = 100 MeV (blue), T = 150 MeV (red), and T = 180 MeV (purple). Right: Real part of the
optical potential, plotted as a function of momentum for T = 100 MeV (blue), T = 150 MeV
(red), and T = 180 MeV (purple).

Our results for the optical potential agree well with those in refs. [50, 51]. However, the

imaginary part of our total pion self-energy is a few MeV smaller than that obtained in ref. [51],

because more resonances where considered in ref. [51]. We do not consider additional resonances

here, because the rho and sigma provide the dominant contribution for low momentum, and the

inclusion of further resonances would require the calculation of additional vertex corrections. Our

pion self-energy is similar in form to those used in ref. [23] and [30]. However, ref. [23] calculates

the self-energy in terms of the ππ cross section, making use of the cross section shown in 3.5.

Reference [30] also expresses the self-energy in terms of the rho and sigma propagators, however

ref. [30] does not dress the rho or sigma propagators with widths. Furthermore, ref. [30]’s self-

energy due to the sigma resonance uses a factor of m2
σ in the numerator rather than s−m2

π.
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4. GAUGE INVARIANCE IN MEDIUM

In this chapter, we address how the Ward-Takahashi identities are maintained in medium. To

begin, we examine the violation of the Ward identities due to dressing Dπ in section 4.1, and gen-

erate the subsequent vertex corrections in section 4.2. In section 4.3 we demonstrate analytically

that the Ward identities are maintained when the vertex corrections are included. We discuss the

addition of form factors to the vertex corrections in section 4.4, including their effects of the Ward

identities. Next, in section 4.5, we discuss the need to dress the intermediate particles within the

vertex corrections and Σπ with widths, and its effect on the Ward identities. Sections 4.6 addresses

double counting that is encountered, and demonstrates how it can be removed without violating

gauge invariance. Finally, in section 4.7 we take the transverse projection of the rho self-energy

for vertices dressed with vertex correction.

4.1 Ward-Takahashi identities in medium

The Ward-Takahashi identities are straightforwardly satisfied in vacuum, but are upset by the

addition of a pion self-energy in Dπ. If one considers the Ward-Takahashi identity from eq 2.13 at

zero momentum one obtains:

q0Γ
(3)
0 ab3 = gρε3ab(2k0q0 + q2

0 − Σπ(k + q) + Σπ(k)). (4.1)

In general, eq. 4.1 will not be satisfied by the vacuum ρππ vertex. In figures 4.1, 4.2, and 4.3 we

plot the right hand side of eq. 4.1 at T=0 and at T=150 MeV (dropping the factors of ε3ab). The

difference in the two results provides a measure of the violation of the Ward identities induced by

dressing the pion propagators, without modifying the ρππ vertex.
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Figure 4.1: Comparison of q0 times the temporal component of the vacuum ρππ vertex, to the
result expected from the Ward-Takahashi identity, for q0 = 1 MeV and ~q = 0. Results are plotted
for on-shell pion energy as a function of pion momentum. Although the vacuum vertex is purely
real (blue line), the expected result from the Ward identity is complex. We plot the real part of the
Ward result in red and the imaginary part in purple.

Figure 4.2: Comparison of q0 times the temporal component of the vacuum ρππ vertex, to the
result expected from the Ward-Takahashi identity, for q0 = 350 MeV and ~q = 0. Results are
plotted for on-shell pion energy as a function of pion momentum. Although the vacuum vertex is
purely real (blue line), the expected result from the Ward identity is complex. We plot the real part
of the Ward result in red and the imaginary part in purple.
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Figure 4.3: Comparison of q0 times the tempral component of the vacuum ρππ vertex, to the result
expected from the Ward-Takahashi identity, for q0 = 770 MeV and ~q = 0. Results are plotted for
on-shell pion energy as a function of pion momentum. Although the vacuum vertex is purely real
(blue line), the expected result from the Ward identity is complex. We plot the real part of the Ward
result in red and the imaginary part in purple.

The percent difference between the vacuum vertex and the expected correction is largest for

small energies, where it is≈ 10%. As energy increases, the vacuum vertex increases quadratically,

while the expected correction approaches zero, due to our pion self-energy approaching zero for

large energy. Although the correction to the real part of the vertex appears small, the Ward identity

implies that the corrected ρππ will be complex, while the vacuum vertex is purely real. This

implies that the vertex corrections will create new cuts of the rho self-energy. Therefore, we set

out to calculate the complex vertex corrections, necessary to maintain the Ward identities.

4.2 Vertex corrections

It is difficult to predict the effect of this violation of gauge invariance on the conductivity, be-

cause the Ward identities only directly restrict the temporal components of the vertices for ~q = 0,

while the conductivity is determined only by the spatial components of the rho self-energy. How-

ever, the violation can be remedied by considering thermal corrections to the ρππ and ρρππ ver-

tices [44, 46]. The corrections to the ρππ vertex sufficient to maintain the Ward identities are
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generated by coupling a rho meson to Σπ in all possible configurations. Similarly, one can couple

two rho mesons to Σπ in all possible configurations to obtain corrections to the ρρππ vertex suf-

ficient to maintain the Ward identities [46]. We then analytically determine which corrections are

necessary to maintain the Ward identities when Dπ is dressed with only the Landau cut of the pion

self-energy. These vertex corrections completely fix both the temporal and spatial components of

our vertices for all q, and assure that gauge invariance is not violated. Thus, the Ward identities will

fix the spacial components of the vertex corrections, and provide a correction to the conductivity.

We follow the lead of references [40, 44] to calculate the required corrections. If one subtracts

the vacuum vertex from both sides of equations 2.13 and 2.14 one obtains:

qµΓ
′(3)
µab3 = gρε3ab(−Σπ(k + q) + Σπ(k)), (4.2)

qµΓ
′(4)
µν ab33 = igρ(ε3caΓ

′(3)
ν bc3(k,−q)− ε3bcΓ′(3)

ν ca3(k + q,−q)), (4.3)

where Γ
′(3)
µab3 and Γ

′(4)
µν ab3 are the vertex corrections to the ρππ and ρρππ vertices, respectively. The

total vertices are then given by:

Γ
(3)
µab3 = gρε3ab(2k + q)µ + Γ

′(3)
µab3 (4.4)

Γ
(4)
µν ab33 = 2ig2

ρ(δab − δ3aδ3b)gµν + Γ
′(4)
µν ab33. (4.5)

The three-point vertex corrections to the ρππ vertex can be derived by coupling a single rho

meson to the thermal Σπ loop in all possible ways, while the four-point vertex corrections to the

ρρππ vertex are derived by coupling two rho mesons to the thermal Σπ loop. Figures 4.4, 4.5, and

4.6 show the vertex corrections resulting from dressing Dπ with Σπρ and Σπσ.
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Figure 4.4: Corrections to the ρππ vertex due to Σπ(ρ).

Figure 4.5: Corrections to the ρρππ vertex due to Σπ(ρ).

Figure 4.6: Left: Correction to the ρππ vertex due to Σπ(σ). Right: Corrections to the ρρππ vertex
due to Σπ(σ).

We write the minimum diagrams necessary to maintain gauge invariance. Consequently, there

are fewer corrections due to the sigma resonance, because the sigma meson is neutral and the σππ
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vertex is a Lorentz scalar.

Calculation of the vertex corrections requires the ρρρ, ρρρρ, and σππ vertices. We derive the

ρρρ and ρρρρ vertices from the interaction Lagrangians:

Lρρρ =
−1

2
gρρµν · (ρµ × ρν), (4.6)

Lρρρρ =
g2
ρ

4
(ρµ · ρν · ρλργ − ρµ · ρλ · ρνργ). (4.7)

The resulting vertices are given by:

Γ
(3)
µνλ abc = gρεabc((p− q)νgλµ + (2q + p)λgµν − (2p+ q)µgνλ), (4.8)

Γ
(4)
µνλγ abcd = ig2

ρ((δabδcd + δbcδad − 2δacδbd)gµλgνγ

+(δabδcd + δbdδac − 2δbcδad)gµγgνλ

+(δacδbd + δcbδad − 2δcdδab)gµνgγλ). (4.9)

Figure 4.7 expresses these vertices diagrammatically.

Figure 4.7: Left: diagrammatic representation of the ρρρ vertex. Right: diagrammatic representa-
tion of the ρρρρ vertex.

Σπ(σ) was calculated from the Born amplitude, so we have not established a σππ vertex. In
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order to calculate the sigma vertex corrections we define the effective σππ vertex:

Γ
(3)
σ ab = iδabgσ

√
s−m2

π. (4.10)

If one uses Feynman rules along with Γ
(3)
σ ab to calculate Σσ and Σπ(σ) one obtains the same results

as eqs. 3.20 and 3.23. Γ
(3)
σ ab can then be used to calculate vertex corrections involving the σππ

vertex, so that the Ward identities will be satisfied.

We are now in place to calculate the vertex corrections resulting from the inclusion of Σπ. The

corrections to the ρππ vertex due to the ρ resonance are given by:

Γ
(3)Aρ
µab3 (k, q) = ε3ab

3g3
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dνλ

ρ (k + p)gµλ(k − p)ν
]
p0=iwn

, (4.11)

Γ
(3)Bρ
µab3 (k, q) = ε3ab

3g3
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dνλ

ρ (q + k + p)gµλ(q + k − p)ν
]
p0=iwn

,(4.12)

Γ
(3)Cρ
µab3 (k, q) = ε3ab

g3
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dπ(q + p)Dνλ

ρ (q + k + p)

(2p+ q)µ(−p+ k + q)λ(k − p− q)ν
]
p0=iwn

, (4.13)

Γ
(3)Dρ
µab3 (k, q) = ε3ab

g3
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dβλ

ρ (k + p)Dνα
ρ (q + k + p)

(−p+ k + q)α(k − p)β((q − p− k)νgµλ − (2q + p+ k)λgµν

+(2p+ 2k + q)µgνλ)

]
p0=iwn

. (4.14)

The vertex corrections induced by the σ resonance are given by:

Γ
(3)Cσ
µab3 (k, q) = ε3ab

gρg
2
σ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dπ(q + p)Dσ(q + k + p)

((q + k + p)2 −m2
π)(2p+ q)µ

]
p0=iwn

. (4.15)
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The corrections to the ρρππ vertex from ρ resonant scattering are give by:

Γ
(4)Aρ
µν ab33(k, q) = (−3δ3aδ3b + 5δab)

ig4
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dρµν(q + k + p)

]
p0=iwn

+(k → −k), (4.16)

Γ
(4)B1ρ
µν ab33(k, q) = −2δab

ig4
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dπ(p+ q)Dρ νβ(k + p)

(2p+ q)µ(p− k)β
]
p0=iwn

+ (k → −k), (4.17)

Γ
(4)B2ρ
µν ab33(k, q) = Γ

(4)B1ρ
νµab (k, q), (4.18)

Γ
(4)C1ρ
µν ab33(k, q) = −(δab − 3δ3aδ3b)

ig4
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dλβ

ρ (k + p)Dγα
ρ (q + k + p)

(p− k)βgαν
(
− (2q + k + p)λgµγ − (−q + p+ k)γgµλ

+(q + 2k + 2p)µgγλ
)]

p0=iwn

+ (k → −k), (4.19)

Γ
(4)C2ρ
µν ab33(k, q) = Γ

(4)C1ρ
νµab (k, q), (4.20)

Γ
(4)Dρ
µν ab33(k, q) = (δab + δ3aδ3b)

ig4
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dφθ

ρ (k + p)

Dγλ
ρ (k + p)Dαβ

ρ (q + k + p)(p− k)θ(p− k)λ(
(q − p− k)αgµγ − (2q + p+ k)γgµα + (q + 2k + 2p)µgγα

)
(
(q − p− k)βgνφ − (2q + p+ k)φgνβ

+(q + 2k + 2p)νgβφ
)]

p0=iwn

+ (k → −k), (4.21)

Γ
(4)Eρ
µν ab33(k, q) = (δab + δ3aδ3b)

ig4
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)2Dπ(p+ q)Dραβ(k + p)

(2p+ q)µ(p− k)α(p− k)β(2p+ q)ν

]
p0=iwn

+ (k → −k), (4.22)
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Γ
(4)F1ρ
µν ab33(k, q) = −2δ3aδ3b

ig4
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dπ(p+ q)Dγλ

ρ (k + p)

Dαβ
ρ (q + k + p)(q − k + p)β(2p+ q)ν(p− k)λ

((q − k − p)αgµγ − (2q + p+ k)γgµα

+(q + 2k + 2p)µgγα)

]
p0=iwn

, (4.23)

Γ
(4)F2ρ
µν ab33(k, q) = Γ

(4)F1ρ
νµab (k, q), (4.24)

Γ
(4)Gρ
µν ab33(k, q) = −2(δ3aδ3b + δab)

ig4
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)2Dαβ

ρ (k + p)

(k − p)α(k − p)βgµν
]
p0=iwn

, (4.25)

Γ
(4)Hρ
µν ab33(k, q) = −2(δ3aδ3b + δab)

ig4
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dαλ

ρ (k + p)Dβγ
ρ (k + p)

(k − p)α(k − p)β(gµλgνγ + gµγgνλ − 2gµνgλγ)

]
p0=iwn

. (4.26)

The corrections to the ρρππ vertex from σ resonant scattering are given by:

Γ
(4)Eσ
µν ab33(k, q) = (δab − δ3aδ3b)

ig2
ρg

2
σ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)2Dπ(p+ q)Dσ(k + p)

((k + p)2 −m2
π)(2p+ q)µ(2p+ q)ν

]
p0=iwn

+(k → −k), (4.27)

Γ
(4)Gσ
µν ab33(k, q) = −2(δab − δ3aδ3b)

ig2
ρg

2
σ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)2Dσ(k + p)

((k + p)2 −m2
π)gµν

]
p0=iwn

. (4.28)

One must calculate all diagrams resulting from replacing a vacuum vertex with a corresponding

vertex correction. For the four-point vertex corrections, we also include diagrams resulting from

interchanging rho or pion propagators when they produce unique vertex corrections. These terms

are represented above by the k → −k and µν ↔ νµ terms. Each term also includes a systemati-
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zation factor of 1
2
, as was the case for the pion and rho self-energies. Finally, we have not included

a form factor in the above equations, because the addition of the form factors will be discussed in

section 4.4. Furthermore, for our final calculation we drop all vertex corrections containing multi-

ple rho propagators, because they are suppressed by powers of 1
m2
ρ
. However, these diagrams will

be included when demonstrating analytically how the Ward identities are maintained. Finally, we

perform the summation for the vertex corrections after simplifying the expression using a spectral

representation. The results are shown in the appendix.

4.3 Satisfying the Ward identities

Here we show analytically that the vertex corrections satisfy eqs. 4.2 and 4.3. In this section

we use sharp propagators within Σπ and the vertex correction. The complications that arise from

adding particle widths and form factors will be addressed in 4.4 and 4.5 respectively. To begin, we

make note that with some algebra one can show:

qµ(2p+ q)µ = ((q + p)2 −m2
π)− (p2 −m2

π), (4.29)

and

qµ((p− q)νgλµ + (2q + p)λgµν − (2p+ q)µgνλ)(
− gαν +

(q + p)α(q + p)ν

m2
ρ

)(
− gβλ +

pβpλ

m2
ρ

)
=

(
(q + p)2 −m2

ρ

)(
− gαβ +

pαpβ

m2
ρ

)
−
(
p2 −m2

ρ

)(
− gαβ +

(q + p)α(q + p)β

m2
ρ

)
. (4.30)
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We now show that eq. 4.2 is satisfied by the corrections to the ρππ vertex (Γ(3)Aρ
µab3 , Γ

(3)Bρ
µab3 , Γ

(3)Cρ
µab3 ,

Γ
(3)Dρ
µab3 , and Γ

(3)Cσ
µab3 ). One can use eqs. 4.29 and 4.30 to show that:

qµΓ
(3)Cρ
µab3 (k, q) = ε3ab

g3
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dνλ

ρ (q + k + p)(q + k − p)λ(−q + k − p)ν
]
p0=iwn

−ε3ab
g3
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(q + p)Dνλ

ρ (q + k + p)(q + k − p)λ(−q + k − p)ν
]
p0=iwn

=
gρε3ab

2

(
Σπ(ρ)(q + k)− Σπ(ρ)(k)

)
+ε3ab

g3
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dνλ

ρ (q + k + p)(−2q)λ(q + k − p)ν
]
p0=iwn

−ε3ab
g3
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dνλ

ρ (k + p)(2q)λ(k − p)ν
]
p0=iwn

, (4.31)

qµΓ
(3)Dρ
µab3 (k, q) = −ε3ab

g3
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dνλ

ρ (k + p)(q + k − p)ν(k − p)λ
]
p0=iwn

+ε3ab
g3
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dνλ

ρ (q + k + p)(q + k − p)ν(k − p)λ
]
p0=iwn

=
gρε3ab

2

(
Σπ(ρ)(q + k)− Σπ(ρ)(k)

)
+ε3ab

g3
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dνλ

ρ (q + k + p)(−q)ν(q + k − p)λ
]
p0=iwn

−ε3ab
g3
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dνλ

ρ (k + p)(q)ν(k − p)λ
]
p0=iwn

(4.32)

qµΓ
(3)Cσ
µab3 (k, q) = ε3ab

gρg
2
σ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dσ(q + k + p)((q + k + p)2 −m2

π)

]
p0=iwn

−ε3ab
gρg

2
σ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(q + p)Dσ(q + k + p)((q + k + p)2 −m2

π)

]
p0=iwn

= gρε3ab
(
Σπ(σ)(q + k)− Σπ(σ)(k)

)
. (4.33)
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It is straight forward to use the above equations to show:

qµΓ
(3)Cρ
µab3 (k, q) + qµΓ

(3)Dρ
µab3 (k, q) + qµΓ

(3)Cσ
µab3 (k, q) =

gρε3ab
(
Σπ(q + k)− Σπ(k)

)
−ε3ab

3g3
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dνλ

ρ (q + k + p)qλ(q + k − p)ν
]
p0=iwn

−ε3ab
3g3

ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dνλ

ρ (k + p)qλ(k − p)ν
]
p0=iwn

. (4.34)

The last two terms in the eq. 4.34 are exactly canceled by qµΓ
(3)Aρ
µab3 and qµΓ

(3)Bρ
µab3 , thus we find:

qµΓ
(3)Aρ
µab3 (k, q) + qµΓ

(3)Bρ
µab3 (k, q) + qµΓ

(3)Cρ
µab3 (k, q) + qµΓ

(3)Dρ
µab3 (k, q) + qµΓ

(3)Cσ
µab3 (k, q)

= gρε3ab
(
Σπ(q + k)− Σπ(k)

)
, (4.35)

and eq. 4.2 is satisfied. Next we show that eq. 4.3 is satisfied. To begin, we break the corrections

to the ρρππ vertex into the following four subgroups:

Γ
(4)X1
µν ab (k, q) = Γ

(4)Aρ
µν ab33(k, q) + Γ

(4)B1ρ
µν ab33(k, q) + Γ

(4)C1ρ
µν ab33(k, q),

Γ
(4)X2
µν ab (k, q) = Γ

(4)B1ρ
νµ ab33(k, q) + Γ

(4)Eρ
µν ab33(k, q) + Γ

(4)F1ρ
µν ab33(k, q) + Γ

(4)Gρ
µν ab33(k, q),

Γ
(4)X3
µν ab (k, q) = Γ

(4)C1ρ
νµ ab33(k, q) + Γ

(4)Dρ
µν ab33(k, q) + Γ

(4)F1ρ
νµ ab33(k, q) + Γ

(4)Hρ
µν ab33(k, q),

Γ
(4)X4
µν ab (k, q) = Γ

(4)Eσ
µν ab33(k, q) + Γ

(4)Gσ
µν ab33(k, q). (4.36)

49



It is straight forward to show that eq. 4.3 will be satisfied if the subgroups fulfill:

qµΓ
(4)X1
µν ab (k, q) = igρ

(
ε3ca(Γ

(3)Aρ
ν bc3 (k,−q) + Γ

(3)Bρ
ν bc3 (k,−q)) (4.37)

−ε3bc(Γ(3)Aρ
ν ca3 (k + q,−q) + Γ

(3)Bρ
ν ca3 (k + q,−q))

)
,

qµΓ
(4)X2
µν ab (k, q) = igρ

(
ε3caΓ

(3)Cρ
ν bc3 (k,−q)− ε3bcΓ(3)Cρ

ν ca3 (k + q,−q)
)
, (4.38)

qµΓ
(4)X3
µν ab (k, q) = igρ

(
ε3caΓ

(3)Dρ
ν bc3 (k,−q)− ε3bcΓ(3)Dρ

ν ca3 (k + q,−q)
)
, (4.39)

qµΓ
(4)X4
µν ab (k, q) = igρ

(
ε3caΓ

(3)Cσ
ν bc3 (k,−q)− ε3bcΓ(3)Cσ

ν ca3 (k + q,−q)
)
. (4.40)

Thus, we must show that eqs. 4.37 through 4.40 are satisfied. We start by calculating qµΓ
(4)X1
µν ab .

One can use eqs. 4.29 and 4.30 to show:

qµΓ
(4)X1
µν ab (k, q) = (−3δ3aδ3b + 5δab)

ig4
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dρµν(q + k + p)(qµ)

]
p0=iwn

−2δab
ig4
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dρµν(k + p)(p− k)µ

]
p0=iwn

+2δab
ig4
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p+ q)Dρµν(k + p)(p− k)µ

]
p0=iwn

+(δab − 3δ3aδ3b)
ig4
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dρµν(k + p)(p− k)µ

]
p0=iwn

−(δab − 3δ3aδ3b)
ig4
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dρµν(q + k + p)(p− k)µ

]
p0=iwn

+(k → −k). (4.41)

After some algebra one can rewrite eq. 4.41 as:

qµΓ
(4)X1
µν ab (k, q) = −3(δab − δ3aδ3b)

ig4
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dρµν(q + k + p)(q + k − p)µ

]
p0=iwn

+3(δab − δ3aδ3b)
ig4
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dρµν(q − k + p)(q − k − p)µ

]
p0=iwn

.

(4.42)
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It is straight forward to show that the above expression is equivalent to the right hand side of eq.

4.37, by inserting Γ
(3)Aρ
µab3 and Γ

(3)Bρ
µab3 into eq. 4.37 and evaluating the resulting isospin contractions.

Next we will evaluate qµΓ
(4)X2
µν ab . One can use eq. 4.29 and 4.30 to show:

qµΓ
(4)X2
µν ab (k, q) =

{
− 2δab

ig4
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dπ(p+ q)Dρµλ(k + p)

(2p+ q)ν(q
µ)(p− k)λ

]
p0=iwn

+(δab + δ3aδ3b)
ig4
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)2Dρµλ(k + p)

(2p+ q)ν(p− k)µ(p− k)λ
]
p0=iwn

−(δab + δ3aδ3b)
ig4
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dπ(p+ q)Dρµλ(k + p)

(2p+ q)ν(p− k)µ(p− k)λ
]
p0=iwn

+ (k → −k)
}

+2δ3aδ3b

ig4
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dπ(p+ q)Dρµλ(k + p)

(2p+ q)ν(q − k + p)µ(p− k)λ
]
p0=iwn

−2δ3aδ3b

ig4
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dπ(p+ q)

Dρµλ(q + k + p)(2p+ q)ν(q − k + p)µ(p− k)λ
]
p0=iwn

−2(δ3aδ3b + δab)
ig4
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)2Dρµλ(k + p)

(qν)(k − p)µ(k − p)λ
]
p0=iwn

. (4.43)
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The above integrals can be combined to give:

qµΓ
(4)X2
µν ab (k, q) = −(δab − δ3aδ3b)

ig4
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dπ(p+ q)Dρµλ(q + k + p)

(2p+ q)ν(q − k + p)µ(q + k − p)λ
]
p0=iwn

−(δab − δ3aδ3b)
ig4
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dπ(p+ q)Dρµλ(q − k + p)

(2p+ q)ν(q + k + p)µ(q − k − p)λ
]
p0=iwn

. (4.44)

It is now straight forward to show that eq. 4.38 is satisfied by inserting the definition of Γ
(3)Cρ
µab3 into

the right hand side of eq. 4.38.
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We now calculate qµΓ
(4)X3
µν ab , using eq. 4.29 and 4.30:

qµΓ
(4)X3
µν ab (k, q) =

{
− (δab − 3δ3aδ3b)

ig4
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dµα

ρ (k + p)Dλβ
ρ (q + k + p)(p− k)α

(qβ)
(
− (2q + k + p)µgνλ + (q − p− k)λgµν + (q + 2k + 2p)νgµλ

)]
p0=iwn

−(δab + δ3aδ3b)
ig4
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dµα

ρ (k + p)Dλβ
ρ (k + p)(p− k)α

(p− k)β
(
− (2q + p+ k)µgνλ + (q − p− k)λgνµ + (q + 2k + 2p)νgµλ

)]
p0=iwn

+(δab + δ3aδ3b)
ig4
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dµα

ρ (k + p)Dλβ
ρ (q + k + p)(p− k)α

(p− k)β
(
− (2q + p+ k)µgνλ + (q − p− k)λgνµ + (q + 2k + 2p)νgµλ

)]
p0=iwn

+(k → −k)
}

−2δ3aδ3b

ig4
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dµα

ρ (k + p)Dλβ
ρ (q + k + p)(p− k)α

(q − k + p)β(−(2q + p+ k)µgνλ + (q − k − p)λgµν + (q + 2k + 2p)νgµλ)

]
p0=iwn

+2δ3aδ3b

ig4
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p+ q)Dµα

ρ (k + p)Dλβ
ρ (q + k + p)(p− k)α

(q − k + p)β(−(2q + p+ k)µgνλ + (q − k − p)λgµν + (q + 2k + 2p)νgµλ)

]
p0=iwn

−2(δ3aδ3b + δab)
ig4
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dµα

ρ (k + p)Dλβ
ρ (k + p)

(k − p)α(k − p)β(qµgνλ + qλgµν − 2qνgµλ)

]
p0=iwn

. (4.45)
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After performing some algebra one can rewrite the above equations as:

qµΓ
(4)X3
µν ab (k, q) = (δab − δ3aδ3b)

ig4
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dµα

ρ (k + p)Dλβ
ρ (q + k + p)(k − p)α

(q + k − p)β(−(2q + p+ k)µgνλ + (q − k − p)λgµν + (q + 2k + 2p)νgµλ)

]
p0=iwn

−(δab − δ3aδ3b)
ig4
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dµα

ρ (−k + p)Dλβ
ρ (q − k + p)(k + p)α

(q − k − p)β(−(2q + p− k)µgνλ + (q + k − p)λgµν + (q − 2k + 2p)νgµλ)

]
p0=iwn

.

(4.46)

It is straight forward to show the right hand side of eq. 4.39 is equal to the above expression, using

the definition of Γ
(3)Dρ
µab3 .

Finally, we show that 4.40 holds. One can use eq. 4.29 to show:

qµΓ
(4)X4
µν ab (k, q) =

{
(δab − δ3aδ3b)

ig2
ρg

2
σ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)2Dσ(k + p)

((k + p)2 −m2
π)(2p+ q)ν

]
p0=iwn

−
{

(δab − δ3aδ3b)
ig2
ρg

2
σ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dπ(p+ q)Dσ(k + p)

((k + p)2 −m2
π)(2p+ q)ν

]
p0=iwn

+ (k → −k)
}

−2(δab − δ3aδ3b)
ig2
ρg

2
σ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)2Dσ(k + p)

((k + p)2 −m2
π)qν

]
p0=iwn

. (4.47)
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One can rewrite the above equation as:

qµΓ
(4)X4
µν ab (k, q) = −(δab − δ3aδ3b)

ig2
ρg

2
σ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dπ(p− q)Dσ(−q + k + p)

((−q + k + p)2 −m2
π)(2p− q)ν

]
p0=iwn

+(δab − δ3aδ3b)
ig2
ρg

2
σ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dπ(p− q)Dσ(k + p)

((k + p)2 −m2
π)(2p− q)ν

]
p0=iwn

, (4.48)

which is equal to the right hand side of eq. 4.40. Thus we see that the listed vertex corrections

fulfill the Ward identities.

4.4 Vertex correction form factors

In this section, we introduce form factors to the vertex corrections. Ref. [46] calculated inter-

actions of pions with nucleons, and implemented non-relativistic approximations. Consequently,

ref. [46]’s πNN and πN∆ form factors, depended only on the pion’s three-momentum (the lab

frame momentum). For example, if Σ0
π is the pion self-energy without form factors, the regularized

pion self-energy is given by:

Σ̄π(k) = Σ0
π(k)

( Λ2
1

Λ2
2 + ~k2

)2

, (4.49)

where we write a bar over the self-energy to denote regularization with the lab frame momen-

tum. We have deviated slightly from reference [46], in that their form factor used the same cut off

in the numerator and denominator. We write a more general form factor, however reference [46]’s

formalism can easily be extended to this case. Reference [46] generated the form factor by attach-

ing a heavy pion propagator, 1

−~k2−Λ2
2

, to the external pions in Σπ, and assigning a factor of iΛ2
1 to

the "vertex" were the pion is converted to a heavy pion. This method was also used to regularize
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the vertex corrections, Γ
′(3)
µab3 and Γ

′(4)
µν ab33, giving:

Γ̄
(3)
µab3(k, q) = Γ

′(3)
µab3(k, q)

( Λ2
1

Λ2
2 + ~k2

)( Λ2
1

Λ2
2 + (~q + ~k)2

)
,

Γ̄
(4)
µν ab33(k, q) = Γ

′(4)
µν ab33(k, q)

( Λ2
1

Λ2
2 + ~k2

)2

, (4.50)

where Γ̄
′(3)
µab3 and Γ̄

′(4)
µν ab33 denote vertex corrections that are regularized with the lab frame momen-

tum. However, the regularized corrections violate the Ward identities, because the pion self-energy

and the corrections to the ρρππ vertex are regularized by
(

Λ2
1

Λ2
2+~k2

)2

while the corrections to the ρππ

vertex are regularized by
(

Λ2
1

Λ2
2+~k2

)(
Λ2
1

Λ2
2+(~q+~k)2

)
. Therefore, the form factors generate violations of

eqs. 4.2 and 4.3 given by:

V3(k, q) = gρε3ab
(
− Σ0

π(k + q)
[
FF0(q + k)2 − FF0(q + k)FF0(k)

]
+Σ0

π(k)
[
FF0(k)2 − FF0(q + k)FF0(k)

])
, (4.51)

V4(k, q) = igρ
(
ε3caΓ

′(3)
ν bc3(k,−q)

[
FF0(k)FF0(−q + k)− FF0(−q + k)2

]
−ε3bcΓ′(3)

ν ca3(k + q,−q)
[
FF0(q + k)FF0(k)− FF0(k)2

])
, (4.52)

with,

FF0(k) =
Λ2

1

Λ2
2 + ~k2

. (4.53)

Λ2
1

Λ2
2 + ~k2

→ Λ2
1

Λ2
2 + qCM[p, k]2

(4.54)

In ref. [46] additional vertex corrections were generated to remove this violation. The addi-

tional vertex corrections can be derived by coupling a rho meson to the heavy pion propagators.

In figure 4.8 we represent this schema diagrammatically for the pion self-energy and the vertex

corrections to the ρππ vertex.
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Figure 4.8: From left to right: the pion self-energy regularized with heavy pion propagators, the
vertex corrections to the ρππ vertex regularized with heavy pion propagators, and additional vertex
corrections generated by coupling a rho meson to a heavy pion propagator in the pion self-energy.

Similarly, one can generate corrections to the ρρππ vertex by coupling two rho mesons to

heavy pion propagators [46], as demonstrated in figure 4.9.

Figure 4.9: The regularized ρρππ vertex corrections, and the additional vertex corrections to the
ρρππ vertex generated by coupling two rho mesons to heavy pion propagators in the pion self-
energy.

The additional vertex corrections can be expressed in terms of the pion self-energy and the

original corrections to the ρππ vertex, such that the total regularized vertex corrections become
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[46]:

Γ̃
(3)
µab3(k, q) = Γ

′(3)
µab3(k, q)

( Λ2
1

Λ2
2 + ~k2

)( Λ2
1

Λ2
2 + (~q + ~k)2

)
+gρε3ab(2k + q)i

(Σ0
π(q + k)

Λ2
2 + ~k2

( Λ2
1

Λ2
2 + (~q + ~k)2

)2

+
Σ0
π(k)

Λ2
2 + (~q + ~k)2

( Λ2
1

Λ2
2 + ~k2

)2)
,

(4.55)

Γ̃
(4)
µν ab33(k, q) = Γ

′(4)
µν ab33(k, q)

( Λ2
1

Λ2
2 + ~k2

)2

− igρε3ca

Λ2
2 + ~k2

[
(2k − q)iΓ′(3)

ν bc3(k,−q)
( Λ2

1

Λ2
2 + ~k2

)( Λ2
1

Λ2
2 + (−~q + ~k)2

)
+(2k + q)jΓ

′(3)
µ cb3(−q − k, q)

( Λ2
1

Λ2
2 + ~k2

)( Λ2
1

Λ2
2 + (~q + ~k)2

)]
− igρε3bc

Λ2
2 + ~k2

[
(2k + q)iΓ

′(3)
ν ac3(−k,−q)

( Λ2
1

Λ2
2 + ~k2

)( Λ2
1

Λ2
2 + (~q + ~k)2

)
+(2k − q)jΓ′(3)

µ ca3(−q + k, q)
( Λ2

1

Λ2
2 + ~k2

)( Λ2
1

Λ2
2 + (−~q + ~k)2

)]
−ig2

ρ(δab − δ3aδ3b)

{
(2k − q)i(2k − q)j

[
Σ0
π(−q + k)

(Λ2
2 + ~k2)2

( Λ2
1

Λ2
2 + (−~q + ~k)2

)2

+
2Σ0

π(k)

(Λ2
2 + (−~q + ~k)2)(Λ2

2 + ~k2)

( Λ2
1

Λ2
2 + ~k2

)2
]

+(2k + q)i(2k + q)j

[
Σ0
π(q + k)

(Λ2
2 + ~k2)2

( Λ2
1

Λ2
2 + (~q + ~k)2

)2

+
2Σ0

π(k)

(Λ2
2 + (~q + ~k)2)(Λ2

2 + ~k2)

( Λ2
1

Λ2
2 + ~k2

)2
]

−4δij
Σ0
π(k)

Λ2
2 + ~k2

( Λ2
1

Λ2
2 + ~k2

)2
}
, (4.56)

where the short-hand i and j are used to represent the spatial components of µ and ν. For i = 0 or

j = 0 the corresponding term should be dropped.

It is straight forward to show that the above procedure satisfies the Ward identities, if Γ
′(3)
µab3 and

Γ
′(4)
µν ab33 satisfy eqs. 4.2 and 4.3. However, there are two complications that arise when applying

the regularization procedure from ref. [46] with the form factors introduced in chapter 3. First,

in chapter 3 different form factors were introduce for the S- and P-wave contributions to the self-
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energy, and second, the center of mass momentum was used to define the form factors in chapter

3.

In order to extend the approach from ref. [46] to multiple form factors we note that Σ0
π(ρ) and

its vertex corrections (Γ′(3)ρ
µ ab3 and Γ

′(4)ρ
µν ab33) independently satisfy eqs. 4.2 and 4.3, such that:

qµΓ
′(3)ρ
µ ab3 = gρε3ab(−Σ0

π(ρ)(k + q) + Σ0
π(ρ)(k)), (4.57)

qµΓ
′(4)ρ
µν ab33 = igρ(ε3caΓ

′(3)ρ
ν bc3(k,−q)− ε3bcΓ′(3)ρ

ν ca3(k + q,−q)). (4.58)

Similarly, Σ0
π(σ) and its vertex corrections (Γ′(3)σ

µab3 and Γ
′(4)σ
µν ab33) satisfy:

qµΓ
′(3)σ
µab3 = gρε3ab(−Σ0

π(σ)(k + q) + Σ0
π(σ)(k)), (4.59)

qµΓ
′(4)σ
µν ab33 = igρ(ε3caΓ

′(3)σ
ν bc3(k,−q)− ε3bcΓ′(3)σ

ν ca3(k + q,−q)). (4.60)

Equations 4.57 through 4.60 demonstrate that the sigma and rho resonances form subgroups that

independently satisfy the Ward identities. Thus, the regularization procedure from ref. [46] can

be applied separately to S- and P-wave scattering, using the appropriate form factor for each case.

The total regularized vertex corrections are then just the sum of the corrections for the rho and

sigma resonances:

Γ̃
(3)
µab3(k, q) = Γ

′(3)ρ
µ ab3(k, q)

( Λ2
1ρ

Λ2
2ρ + ~k2

)( Λ2
1ρ

Λ2
2ρ + (~q + ~k)2

)
+ Γ

′(3)σ
µab3(k, q)

( Λ2
1σ

Λ2
2σ + ~k2

)( Λ2
1σ

Λ2
2σ + (~q + ~k)2

)
+gρε3ab(2k + q)i

(Σ0
π(ρ)(q + k)

Λ2
2ρ + ~k2

( Λ2
1ρ

Λ2
2ρ + (~q + ~k)2

)2

+
Σ0
π(ρ)(k)

Λ2
2ρ + (~q + ~k)2

( Λ2
1ρ

Λ2
2ρ + ~k2

)2)
+gρε3ab(2k + q)i

(Σ0
π(σ)(q + k)

Λ2
2σ + ~k2

( Λ2
1σ

Λ2
2σ + (~q + ~k)2

)2

+
Σ0
π(σ)(k)

Λ2
2σ + (~q + ~k)2

( Λ2
1σ

Λ2
2σ + ~k2

)2)
,

(4.61)
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Γ̃
(4)
µν ab33(k, q) = Γ

′(4)ρ
µν ab33(k, q)

( Λ2
1ρ

Λ2
2ρ + ~k2

)2

+ Γ
′(4)σ
µν ab33(k, q)

( Λ2
1σ

Λ2
2σ + ~k2

)2

− igρε3ca

Λ2
2ρ + ~k2

[
(2k − q)iΓ′(3)ρ

ν bc3(k,−q)
( Λ2

1ρ

Λ2
2ρ + ~k2

)( Λ2
1ρ

Λ2
2ρ + (−~q + ~k)2

)
+(2k + q)jΓ

′(3)ρ
µ cb3(−q − k, q)

( Λ2
1ρ

Λ2
2ρ + ~k2

)( Λ2
1ρ

Λ2
2ρ + (~q + ~k)2

)
+(2k − q)iΓ′(3)σ

ν bc3(k,−q)
( Λ2

1σ

Λ2
2σ + ~k2

)( Λ2
1σ

Λ2
2σ + (−~q + ~k)2

)
+(2k + q)jΓ

′(3)σ
µ cb3(−q − k, q)

( Λ2
1σ

Λ2
2σ + ~k2

)( Λ2
1σ

Λ2
2σ + (~q + ~k)2

)]
− igρε3bc

Λ2
2ρ + ~k2

[
(2k + q)iΓ

′(3)ρ
ν ac3(−k,−q)

( Λ2
1ρ

Λ2
2ρ + ~k2

)( Λ2
1ρ

Λ2
2ρ + (~q + ~k)2

)
+(2k − q)jΓ′(3)ρ

µ ca3(−q + k, q)
( Λ2

1ρ

Λ2
2ρ + ~k2

)( Λ2
1ρ

Λ2
2ρ + (−~q + ~k)2

)
+(2k + q)iΓ

′(3)σ
ν ac3(−k,−q)

( Λ2
1σ

Λ2
2σ + ~k2

)( Λ2
1σ

Λ2
2σ + (~q + ~k)2

)
+(2k − q)jΓ′(3)σ

µ ca3(−q + k, q)
( Λ2

1σ

Λ2
2σ + ~k2

)( Λ2
1σ

Λ2
2σ + (−~q + ~k)2

)]
−ig2

ρ(δab − δ3aδ3b)

{
(2k − q)i(2k − q)j

[
Σ0
π(ρ)(−q + k)

(Λ2
2ρ + ~k2)2

( Λ2
1ρ

Λ2
2ρ + (−~q + ~k)2

)2

+
2Σ0

π(ρ)(k)

(Λ2
2ρ + (−~q + ~k)2)(Λ2

2ρ + ~k2)

( Λ2
1ρ

Λ2
2ρ + ~k2

)2

+
Σ0
π(σ)(−q + k)

(Λ2
2σ + ~k2)2

( Λ2
1σ

Λ2
2σ + (−~q + ~k)2

)2

+
2Σ0

π(σ)(k)

(Λ2
2σ + (−~q + ~k)2)(Λ2

2σ + ~k2)

( Λ2
1σ

Λ2
2σ + ~k2

)2
]

+(2k + q)i(2k + q)j

[
Σ0
π(ρ)(q + k)

(Λ2
2ρ + ~k2)2

( Λ2
1ρ

Λ2
2ρ + (~q + ~k)2

)2

+
2Σ0

π(ρ)(k)

(Λ2
2ρ + (~q + ~k)2)(Λ2

2ρ + ~k2)

( Λ2
1ρ

Λ2
2ρ + ~k2

)2

+
Σ0
π(σ)(q + k)

(Λ2
2σ + ~k2)2

( Λ2
1σ

Λ2
2σ + (~q + ~k)2

)2

+
2Σ0

π(σ)(k)

(Λ2
2σ + (~q + ~k)2)(Λ2

2σ + ~k2)

( Λ2
1σ

Λ2
2σ + ~k2

)2
]

−4δij
Σ0
π(ρ)(k)

Λ2
2ρ + ~k2

( Λ2
1ρ

Λ2
2ρ + ~k2

)2

− 4δij
Σ0
π(σ)(k)

Λ2
2σ + ~k2

( Λ2
1σ

Λ2
2σ + ~k2

)2
}
. (4.62)
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Next we address the uses of the center of mass momentum in the form factor. For ππ-scattering

we cannot apply the non-relativistic approximations used in ref. [46]. Therefore, we utilize a form

factor depending on the center of mass momentum (qCM). Furthermore, the dependence on qCM

rather than ~k prevents the introduction of spurious momentum dependencies. While, the use of

qCM makes the pion self-energy more robust, it is not clear how to satisfy the Ward identities in this

framework. However, one can see from eqs. 4.51 and 4.52 that the violation of the Ward identities

is proportional to a difference between form factors. For qCM this difference becomes:

X̃(ρ/σ)[p, k] =
(
FF(ρ/σ)[p, k]2 − FF(ρ/σ)[−q + p, q + k]FF(ρ/σ)[p, k]

)
= FF(ρ/σ)[p, k]2FF(ρ/σ)[−q + p, q + k](

FF(ρ/σ)[−q + p, q + k]−1 − FF(ρ/σ)[p, k]−1
)

= FF(ρ/σ)[p, k]FF(ρ/σ)[−q + p, q + k]

(
qCM[−q + p, q + k]2 − qCM[p, k]2

)
Λ2

2(ρ/σ) + qCM[p, k]2

= FF(ρ/σ)[p, k]FF(ρ/σ)[−q + p, q + k]
1

(Λ2
2(ρ/σ) + qCM[p, k]2)(p+ k)2[

(q · k)2 + 2k2(q · p) + 2(q · k)(q · p) + (q · p)2 − k2q2

−p2(2q · k + q2)− 2(p · k)(q · k − q · p+ q2)
]
. (4.63)

One can see from eq. 4.63 that the violation is proportional to a difference in pion momentum

squared over Λ2
2(ρ/σ). In order to extract the electric conductivity one must calculate the zero

momentum low energy limit. In this limit the violation is suppressed, because Λ2(ρ/σ) is on the

order of several hundred MeV, while the difference in qCMs is on the order of a few MeV. Therefore,

the violation of gauge invariance due to adding the form factor will be suppressed at small q0.

This is expected because form factors are constructed to constrain high energy behavior, while

minimally affecting the low energy regime.

Furthermore, the leading order in the numerator of 4.63 goes like q2
0 , while Λ2ρ is on the order

of 1 GeV for the rho resonance. Thus, the violation due to the form factors in Σπ(ρ) should still

be suppressed around the rho mass. Although Λ2σ is significantly smaller (≈ 400 MeV) than mρ,
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the effects of ππ-resonant scattering through a sigma resonance on the EM spectral function are

suppressed for large q0. Therefore, the violation of gauge invariance due to using qCM in the form

factor is expected to be small even for q0 around the rho mass. Thus, we will follow the approach

of ref. [46] in generating form factors and the additional vertex corrections involving heavy pion

propagators, however, at the vertices where a heavy pion propagator couples to a thermal loop we

will replace the lab frame momentum, ~k, with the center of mass momentum, qCM. The regularized

vertex corrections then become:
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Γ
′′(4)Aρ
µν ab33(k, q) = (−3δ3aδ3b + 5δab)

ig4
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dµν

ρ (q + k + p)

FFρ[q + p, k]2
]
p0=iwn

+ (k → −k), (4.64)

Γ
′′(4)B1ρ
µν ab33 (k, q) = −2δab

ig4
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dπ(p+ q)Dρνβ(k + p)

(2p+ q)µ(p− k)βFFρ[p, k]2
]
p0=iwn

+ (k → −k)), (4.65)

Γ
′′(4)C1ρ
µν ab33 (k, q) = −(δab − 3δ3aδ3b)

ig4
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dλβ

ρ (k + p)Dγα
ρ (q + k + p)

(p− k)βgαν(−(2q + k + p)λgµγ − (−q + p+ k)γgµλ + (q + 2k + 2p)µgγλ)

FFρ[p, k]FFρ[q + p, k]

]
p0=iwn

+ (k → −k)), (4.66)

Γ
′′(4)Dρ
µν ab33(k, q) = (δab + δ3aδ3b)

ig4
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dφθ

ρ (k + p)

Dγλ
ρ (k + p)Dαβ

ρ (q + k + p)(p− k)θ(p− k)λ

((q − p− k)αgµγ − (2q + p+ k)γgµα + (q + 2k + 2p)µgγα)

((q − p− k)βgνφ − (2q + p+ k)φgνβ + (q + 2k + 2p)νgβφ)

FFρ[p, k]2
]
p0=iwn

+ (k → −k), (4.67)

Γ
′′(4)Eρ
µν ab33(k, q) = (δab + δ3aδ3b)

ig4
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)2Dπ(p+ q)Dρ(k + p)αβ

(2p+ q)µ(p− k)α(p− k)β(2p+ q)ν

FFρ[p, k]2
]
p0=iwn

+ (k → −k), (4.68)
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Γ
′′(4)F1ρ
µν ab33 (k, q) = −2δ3aδ3b

ig4
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dπ(p+ q)Dγλ

ρ (k + p)

Dαβ
ρ (q + k + p)(q − k + p)β(2p+ q)ν(p− k)λ

((q − k − p)αgµγ − (2q + p+ k)γgµα + (q + 2k + 2p)µgγα)

FFρ[p, k]FFρ[q + p, k]

]
p0=iwn

, (4.69)

Γ
′′(4)Gρ
µν ab33(k, q) = −2(δ3aδ3b + δab)

ig4
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)2Dαβ

ρ (k + p)

(k − p)α(k − p)βgµνFFρ[p, k]2
]
p0=iwn

, (4.70)

Γ
′′(4)Hρ
µν ab33(k, q) = −2(δ3aδ3b + δab)

ig4
ρ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)Dαλ

ρ (k + p)Dβγ
ρ (k + p)

(k − p)α(k − p)β(gµλgνγ + gµγgνλ − 2gµνgλγ)

FFρ[p, k]2
]
p0=iwn

, (4.71)

Γ
′′(4)Eσ
µν ab33(k, q) = (δab − δ3aδ3b)

ig2
ρg

2
σ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)2Dπ(p+ q)Dσ(k + p)

((k + p)2 −m2
π)(2p+ q)µ(2p+ q)νFFσ[p, k]2

]
p0=iwn

+(k → −k), (4.72)

Γ
′′(4)Gσ
µν ab33(k, q) = −2(δab − δ3aδ3b)

ig2
ρg

2
σ

2
T
∑

n(even)

[ ∫
d3p

(2π)3
Dπ(p)2Dσ(k + p)

((k + p)2 −m2
π)gµνFFσ[p, k]2

]
p0=iwn

. (4.73)

The total vertex corrections, including terms where the rho meson couples to a heavy pion propa-
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gator, are then given by:

Γ̃
′(3)
µab3(k, q) = Γ

′′(3)ρ
µ ab3 (k, q) + Γ

′′(3)σ
µab3 (k, q)

+gρε3ab(2k + q)i

(Σπ(ρ)(q + k)

Λ2
ρ2 + ~k2

+
Σπ(ρ)(k)

Λ2
ρ2 + (~q + ~k)2

)
+gρε3ab(2k + q)i

(Σπ(σ)(q + k)

Λ2
σ2 + ~k2

+
Σπ(σ)(k)

Λ2
σ2 + (~q + ~k)2

)
, (4.74)

Γ̃
′(4)
µν ab33(k, q) = Γ

′′(4)ρ
µν ab33(k, q) + Γ

′′(4)σ
µν ab33(k, q)− igρε3ca

Λ2
ρ2 + ~k2

[
(2k − q)iΓ′′(3)ρ

ν bc3 (k,−q)

+(2k + q)jΓ
′′(3)ρ
µ cb3 (−q − k, q)

]
− igρε3ca

Λ2
σ2 + ~k2

[
(2k − q)iΓ′′(3)σ

ν bc3 (k,−q)

+(2k + q)jΓ
′′(3)σ
µ cb3 (−q − k, q)

]
− igρε3bc

Λ2
ρ2 + ~k2

[
(2k + q)iΓ

′′(3)ρ
ν ac3 (−k,−q)

+(2k − q)jΓ′′(3)ρ
µ ca3(−q + k, q)

]
− igρε3bc

Λ2
σ2 + ~k2

[
(2k + q)iΓ

′′(3)σ
ν ac3 (−k,−q)

+(2k − q)jΓ′′(3)σ
µ ca3 (−q + k, q)

]
−ig2

ρ(δab − δ3aδ3b)

{
(2k − q)i(2k − q)j

[
Σπ(ρ)(−q + k)

(Λ2
ρ2 + ~k2)2

+
2Σπ(ρ)(k)

(Λ2
ρ2 + (−~q + ~k)2)(Λ2

ρ2 + ~k2)
+

Σπ(σ)(−q + k)

(Λ2
σ2 + ~k2)2

+
2Σπ(σ)(k)

(Λ2
σ2 + (−~q + ~k)2)(Λ2

σ2 + ~k2)

]
+ (2k + q)i(2k + q)j

[
Σπ(ρ)(q + k)

(Λ2
ρ2 + ~k2)2

+
2Σπ(ρ)(k)

(Λ2
ρ2 + (~q + ~k)2)(Λ2

ρ2 + ~k2)
+

Σπ(σ)(q + k)

(Λ2
σ2 + ~k2)2

+
2Σπ(σ)(k)

(Λ2
σ2 + (~q + ~k)2)(Λ2

σ2 + ~k2)

]

−4δij
Σπ(ρ)(k)

Λ2
ρ2 + ~k2

− 4δij
Σπ(σ)(k)

Λ2
σ2 + ~k2

}
, (4.75)

where Γ′′(3)(ρ/σ) and Γ′′(4)(ρ/σ) are the regularized vertex corrections given in eqs. 4.64 through

4.73. Finally, we note that in chapter 5 we will assess the effect of the additional vertex corrections,

induced by adding a form factor, on the rho self-energy as an additional measure of the violation

of gauge invariance due to using the center of mass momentum.
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4.5 Dressing intermediate particles

The vertex corrections contain intermediate rho, sigma, and pion propagators. As was seen

with the Landau cut of Σµν
ρ , if these propagators are not dressed the conductivity will be infinite.

We dress the rho and sigma propagators with the vacuum rho and sigma self-energies and treat the

intermediate pion propagators self-consistently. However, thermal pions within vertex corrections

and the pion self-energy are not dressed, allowing us to make use of the identitiy from eq. 2.41.

The dressed pion, rho and sigma propagators are given by eqs. 1.18, 2.10, and 3.24, respectively.

The widths in the pion and rho propagators violates gauge invariance. However, the violation

due to dressing Dρ only occurs in vertex corrections containing multiple rho propagators, and

is thus suppressed by 1
m2
ρ
. The violation due to dressing intermediate pion propagators within

vertex corrections can be corrected by dressing the ρππ vertices that couple to an external ρ with

three point-vertex corrections and dressing thermal pion propagators, creating a self-consistency

equation. These effects are expected to be small, due to the small pion width, thus we will not

calculate these corrections in this work.

4.6 Removing double counting

We must take care when calculating Σµν
ρ to avoid double counting self-energy contributions.

Double counting is encountered due to the self consistent treatment of the ρππ vertex and the

pion propagator. For the corrections to the ρππ vertex double counting is encountered due to the

presence of the Landua cut within vertex corrections, ie thermal ππ-scattering with the external

rho. Furthermore, double counting is generated in all the corrections to the ρρππ vertex.

For the corrections to the ρππ vertex, double counting occurs due to Γ
′′(3)Cρ
µab3 and Γ

′′(3)Cσ
µab3 . In

figure 4.10 we demonstrate how these diagrams can generate double counting. Figure 4.10 displays

the rho self-energy diagrams generated by dressing the left hand vertex in the rho self-energy with

Γ
′′(3)Cρ
µab3 and the right hand vertex with the bare ρππ vertex, and vice versa. However, in figure

4.10 we replace the pions in the vertex correction with heavy pions. When heavy pions are used in

the vertex correction the two diagrams are unique. However, if one replaces the heavy pions with
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physical pions the diagrams become identical.

Figure 4.10: (Left/Right): Rho self-energy obtained by dressing the ππ-loop with Γ
′′(3)Cρ
µab3 on the

left/right hand ρππ vertex. The pion propagators within Γ
′′(3)Cρ
µab3 are replaced with heavy pions. One

can see that the self-energies become identical when the heavy pions are replaced with physical
pions.

Furthermore, consider the contribution to the rho self-energy obtained by dressing the left hand

vertex in Σµν
ρ with Γ

′′(3)Cρ
µab3 and the right hand vertex with Γ

′′(3)Aρ
µab3 , as shown in figure 4.11. As figure

4.11 demonstrates, this diagram can also be obtained by dressing the right hand vertex in Σµν
ρ with

Γ
′′(3)Cρ
µab3 and considering the second order vertex correction where the ρππ vertex within Γ

′′(3)Cρ
µab3

is dressed with Γ
′′(3)Aρ
µab3 . Similar arguments apply for all of the second order vertex corrections

produced by dressing the ρππ vertices in Γ
′′(3)Cρ
µab3 and Γ

′′(3)Cσ
µab3 .

Figure 4.11: Left: Rho self-energy contribution generated by dressing the ππ-loop’s left ρππ ver-
tex with Γ

′′(3)Cρ
µab3 and the right vertex with Γ

′′(3)Aρ
µab3 . Right: Second order vertex correction produced

by dressing Γ
′′(3)Cρ
µab3 with Γ

′′(3)Aρ
µab3 . One sees that the first diagram can be produced by dressing the

ππ-loop’s right hand vertex with the second order vertex correction.
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This double counting is encountered because the thermal particles in the vertex corrections are

identical to those in the rho self-energy. However, the vertex corrections are defined such that they

do not include vacuum particles, therefore we only encounter double counting when dressing the

Landau cut of Σµν
ρ . One can avoid encountering double counting in the ππ-loop by only dressing

the right hand ρππ vertex with the self consistently calculated Γ
′′(3)Cρ
µab3 or Γ

′′(3)Cσ
µab3 vertex correction.

Next, we address double counting in the corrections to the ρρππ vertex. As was seen for the

unitarity cut of the ππ-loop, double counting is avoided when we dress the vacuum tad pole loop

and its Bose enhancement. However, when the pion in the tad pole loop is thermal, all of the

four-point corrections generate double counting.

There are two scenarios that generate double counting in the four-point vertex corrections:

First, the rho self-energy contribution derived from the correction is equivalent to a previously

calculated rho self-energy diagram. This occurs in Γ
′′(4)B1ρ
µν ab33 , Γ

′′(4)B2ρ
µν ab33 , Γ

′′(4)Eρ
µν ab33, Γ

′′(4)F1ρ
µν ab33 , Γ

′′(4)F2ρ
µν ab33 ,

Γ
′′(4)Gρ
µν ab33, Γ

′′(4)Eσ
µν ab33, and Γ

′′(4)Gσ
µν ab33. The self-energy contributions resulting from these vertex corrections

are shown in figure 4.12.

Figure 4.12: Rho self-energy diagrams generated by dressing the tap pole loop with vertex correc-
tions. The above contributions are identical to previously encountered rho self-energy diagrams.
From left to right the top row of diagrams are generated by Γ

′′(4)B1ρ
µν ab33 , Γ

′′(4)B2ρ
µν ab33 , Γ

′′(4)F1ρ
µν ab33 and, Γ

′′(4)F2ρ
µν ab33 .

From left to right the bottom row of diagrams are generated by Γ
′′(4)Eρ
µν ab33, Γ

′′(4)Gρ
µν ab33, Γ

′′(4)Eσ
µν ab33, and

Γ
′′(4)Gσ
µν ab33.

One can see that Γ
′′(4)B1ρ
µν ab33 , Γ

′′(4)B2ρ
µν ab33 , Γ

′′(4)F1ρ
µν ab33 , and Γ

′′(4)F2ρ
µν ab33 can be generated from the ππ-loop us-

ing corrections to the ρππ vertex (specifically Γ
′′(3)Aρ
µab3 and Γ

′′(3)Dρ
µab3 ). Alternatively, Γ

′′(4)Eρ
µν ab33, Γ

′′(4)Gρ
µν ab33,
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Γ
′′(4)Eσ
µν ab33, and Γ

′′(4)Gσ
µν ab33 simply dress a pion propagator in Σµν

ρ with a thermal πρ or πσ loop. However,

these diagrams where already included by resumming the pion propagators with Σµν
π .

In the second scenario a unique diagram is generated by the vertex corrections, however the

diagram includes a ππ-loop in which the two pions have identical 4-momentum. This configura-

tion generates double counting, because the pions are indistinguishable. Therefore, an additional

symmetry factor of 1
2

is added when the tad pole loop contains a thermal pion. This scenario occurs

in Γ
′′(4)Aρ
µν ab33, Γ

′′(4)C1ρ
µν ab33 , Γ

′′(4)C2ρ
µν ab33 , Γ

′′(4)Dρ
µν ab33, and Γ

′′(4)Hρ
µν ab33, the resulting rho self-energy contributions are

shown in figure 4.13.

Figure 4.13: Rho self-energy diagrams generated by dressing the tap pole loop with vertex correc-
tions. The above contributions produce double counting due to the presence of ππ-loops involving
pions with identical 4-momentum. From left to right the top row of diagrams are generated by
Γ
′′(4)Aρ
µν ab33, Γ

′′(4)C1ρ
µν ab33 , and Γ

′′(4)C2ρ
µν ab33 . From left to right the bottom row of diagrams are generated by

Γ
′′(4)Dρ
µν ab33 and Γ

′′(4)Hρ
µν ab33.

Finally, we show that the rho self-energy will remain gauge invariant if all double counting is

removed. Figures 4.14 and 4.15 show the rho self-energy diagrams generated when Σµν
ρ ’s vertices

are full dressed, with Dπ and the ρππ vertex handled self consistently.

69



Figure 4.14: Self-energies resulting from dressing the ππ-loop with three-point vertex corrections.
Rows labeled X0 through X4 correspond to gauge invariant subgroups when combined with the
corresponding row in figure 4.15. Gray bubbles represent the dressing of a ρππ vertex with three-
point vertex corrections.

70



Figure 4.15: Self-energies resulting from dressing the tadpole loop with vertex corrections. Rows
labeled X0 through X1 correspond to gauge invariant subgroups when combined with the corre-
sponding row in figure 4.14. Gray bubbles represent the dressing of a ρππ vertex with three-point
vertex corrections.

The figures show the first order vertex corrections, while higher order corrections are repre-

sented with gray bubbles. The self-energies are organized into groups which are 4-dimensionally

transverse, so that each group is independently gauge invariant. These sub groups correspond to

the sub groups established in section 4.2.1 that were used to show the satisfaction of the Ward iden-

tities. Let us consider the Landau cut of the rho self-energy, where double counting is encountered.

We have shown that the diagrams in sub groups X2 and X4 must all be removed to avoid double

counting. However, because X2 and X4 are independently transverse their removal does not break

gauge invariance.

Next we consider sub group X1. We have established that diagrams (X1,7) and (X1,9) require

an additional symmetry factor of 1
2
. Furthermore, when the gray bubble in diagram (X1,8) is

expanded, one can reproduce all X1 diagrams in fig. 4.14. Therefore, one can avoid double
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counting by adding a factor of 1
2

to all diagrams in sub group X1, which does not violate gauge

invariance. Sub group X3 produces a similar scenario. Diagrams (X3,7), (X3,8), and (X3,10)

require an additional symmetry factor, while diagram (X3,9) can reproduce all diagrams in figure

4.14 belonging to sub group X3. Therefore, one can again avoid double counting by adding a

factor of 1
2

to the entire subgroup. Therefore, all double counting can be removed from the Landau

cut without violating gauge invariance. Finally, we note that we have omitted the additional vertex

corrections, generated by adding form factors from figures 4.14 and 4.15. This was done for

simplicity, and because these corrections do not produce double counting.

In this work we only calculate first order vertex corrections. Thus, we will not dress the ρππ

vertices within vertex corrections. Therefore, in our final calculations we are not required to drop

diagrams (X2,2) through (X2,6) to avoid double counting, because the second order vertex correc-

tions are not explicitly included.

4.7 Transverse projection of the rho self-energy

In this section we calculate the transverse projection of Σµν
ρ for arbitrary ρππ and ρρππ vertices,

Γ
(3)
µab3(k, q) and Γ

(4)
µν ab33(k, q), at ~q = 0. The results are then used to calculate the transverse

projection of Σµν
ρ for dressed vertices.

To begin, we calculate:

lim
~q→0

1

2
P µν
T Γ

(3)
µab3(k, q)Γ

(3)
ν ba3(q + k,−q), (4.76)

which appears in Σµν
ρ ’s ππ-loop. Γ

(3)
µab3(k, q) is a Lorentz vector, and thus must be proportional to

the 4-momenta we have introduced in the calculation, pµ, kµ, and qµ. However, we have integrated

over p, therefore we can express Γ
(3)
µab3(k, q) in terms of only the 4-momenta external to the vertex

(kµ, and qµ):

Γ
(3)
µab3(k, q) = kµΓ

(3)
k ab3(k, q) + qµΓ

(3)
q ab3(k, q), (4.77)
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where Γ
(3)
k ab3 and Γ

(3)
q ab3 can be determined in terms of Γ

(3)
µab3 by contracting eq. 4.77 with kµ and qµ.

The projection in eq. 4.76 can now be written as:

lim
~q→0

1

2
P µν
T Γ

(3)
µab3(k, q)Γ

(3)
ν ba3(q + k,−q)

= lim
~q→0

1

2

(
~k2Γ

(3)
k ab3(k, q)Γ

(3)
k ba3(q + k,−q) + ~k · ~q Γ

(3)
k ab3(k, q)Γ

(3)
q ba3(q + k,−q) +

~k · ~q Γ
(3)
q ab3(k, q)Γ

(3)
k ba3(q + k,−q) + ~q 2Γ

(3)
q ab3(k, q)Γ

(3)
q ba3(q + k,−q)

− 1

~q2

[
(~k · ~q)2Γ

(3)
k ab3(k, q)Γ

(3)
k ba3(q + k,−q) + (~k · ~q)~q 2 Γ

(3)
k ab3(k, q)Γ

(3)
q ba3(q + k,−q)

+(~k · ~q)~q 2 Γ
(3)
q ab3(k, q)Γ

(3)
k ba3(q + k,−q) + ~q 4 Γ

(3)
q ab3(k, q)Γ

(3)
q ba3(q + k,−q)

])
=

~k2

2

(
1− cos(θ)2

)
Γ

(3)
k ab3(k, q)Γ

(3)
k ba3(q + k,−q)

∣∣
~q=0

, (4.78)

where cos(θ) is the angle between ~k and ~q. We are free to align the z-axis with ~q, so that cos(θ) is

also the angle between ~k and the z-axis. One can determine Γ
(3)
k ab3 by contracting the left and right

hand sides of equation 4.77 with ki:

Γ
(3)
k ab3 =

kiΓ
(3)
i ab3

~k2
−
kiqiΓ

(3)
q ab

~k2
. (4.79)

At zero-momentum one finds:

Γ
(3)
k ab =

kiΓ
(3)
i ab3

~k2
=

Γ
(3)
3 ab3

|~k|
, (4.80)

where we have evaluated kiΓ
(3)
i ab3 in the frame where ~k is aligned with the z-axis. One can use eq.

4.80 and 4.76 to show:

1

2
P µν
T Γ

(3)
µab3Γ

(3)
ν ab3 =

1

2
(1− cos(θ)2)Γ

(3)
3 ab3(k, q)Γ

(3)
3 ab3(q + k,−q)

∣∣
~q
. (4.81)

Next we calculate the transverse projection of an arbitrary ρρππ vertex. As was seen for Γ
(3)
µab3,

Γ
(4)
µν ab33 can be expressed in terms of combinations of the external 4-momenta kµ and qµ. However,
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because Γ
(4)
µν ab33 is a tensor it can also include terms proportional to gµν , as was the case for the

vacuum ρρππ vertex. Thus we rewrite Γ
(4)
µν ab33 as:

Γ
(4)
µν ab33(k, q) = gµνΓ

(4)
1 ab33(k, q) + kµkνΓ

(4)
2 ab33(k, q) + qµkνΓ

(4)
3 ab33(k, q) + qµqνΓ

(4)
4 ab33(k, q).

(4.82)

The transverse projection of Γ
(4)
µν ab33 at zero-momentum is given by:

lim
~q→0

1

2
P µν
T Γ

(4)
µν ab33(k, q)

= lim
~q→0

1

2

[
− 3Γ

(4)
1 ab33(k, q) + ~k2Γ

(4)
2 ab33(k, q) + ~k · ~q Γ

(4)
3 ab33(k, q) + ~q 2 Γ

(4)
4 ab33(k, q)

1

~q2

(
~q 2Γ

(4)
1 ab33(k, q)− (~k · ~q)2Γ

(4)
2 ab33(k, q)− (~k · ~q)~q 2 Γ

(4)
3 ab33(k, q)− ~q 4Γ

(4)
4 ab33(k, q)

)]
= lim

~q→0

1

2

(
− 2Γ

(4)
1 ab33(k, q) + (1− cos(θ)2)~k2Γ

(4)
2 ab33(k, q)

)∣∣
~q=0

. (4.83)

One can calculate Γ
(4)
1 ab33 and Γ

(4)
2 ab33 by contracting eq. 4.82 with kikj and δij at ~q = 0:

kikjΓ
(4)
ij ab33(k, q)

∣∣
~q=0

= −~k2Γ
(4)
1 ab33(k, q) + ~k4Γ

(4)
2 ab33(k, q)

∣∣
~q=0

, (4.84)

δijΓ
(4)
ij ab33(k, q)

∣∣
~q=0

= −3Γ
(4)
1 ab33(k, q) + ~k2Γ

(4)
2 ab33(k, q)

∣∣
~q=0

. (4.85)

The above system of equations can be solve to obtain:

Γ
(4)
1 ab33(k, q)

∣∣
~q=0

= −Γ
(4)
ii ab33(k, q)

2
+
kikjΓ

(4)
ij aa33(k, q)

2~k2

∣∣
~q=0

, (4.86)

Γ
(4)
2 ab33(k, q)

∣∣
~q=0

=
−Γ

(4)
ii ab33(k, q)

2~k2
+

3kikjΓ
(4)
ij ab33(k, q)

2~k4

∣∣
~q=0

. (4.87)
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After inserting eqs. 4.86 and 4.87 into eq. 4.83 one finds:

lim
~q→0

1

2
P µν
T Γ

(4)
µν aa33(k, q) =

1

4

(
(1 + cos(θ)2)Γ

(4)
ii ab33(k, q) + (1− 3cos(θ)2)

kikjΓ
(4)
ij ab33(k, q)

~k2

)∣∣
~q=0

.

(4.88)

The second term will vanish after performing the angular integrations in Σµν
ρ . Thus, we can write

the transverse projection of the rho self-energy in terms of only Γ
(3)
µab3 and Γ

(4)
iiab33:

1

2
ρT µνΣ

µν
ρ (q0, ~q = 0) =

2π

3
T
∑

n(even)

∫
d|~k|~k2

(2π)3

[
Dπ(k)Dπ(q + k)

(
gρε3ab(2|~k|) + Γ

′(3)
3 ab3(k, q)

)
(
gρε3ba(2|~k|) + Γ

′(3)
3 ba3(k + q,−q)

)]
k0=iωn

+
1

2

4π

3
T
∑

n(even)

∫
d|~k|~k2

(2π)3

[
Dπ(k)

(
g2
ρ

−3

π
− iΓ′(4)

ii aa33(k, q)
)]

k0=iωn
,

(4.89)

where we have performed the angular integrations analytically. The vertex corrections introduce

nontrivial energy dependence into the vertices. Furthermore, the vertex corrections are complex,

and must be written with a spectral representation, before the Matsubara sums are performed.

In the appendix we establish the relevant spectral representations and calculate the Matsubara

summations in eq. 4.89.
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5. ELECTROMAGNETIC SPECTRAL FUNCTION IN PION MATTER

In this chapter we analyze the the EM-spectral function in hot pion matter and extract the

conductivity. In section 5.1 we calculate ΣT
ρ when pion propagators are dressed with Σπ, but do

not include vertex corrections. In section 5.2 we analyze the EM-spectral function without vertex

corrections. The conductivity over temperature, without vertex corrections, is plotted and analyzed

in section 5.3. We introduce vertex corrections to the rho self-energy in sections 5.4. Finally, we

present the EM-spectral function with vertex corrections in section 5.5, and extract the conductivity

over temperature in section 5.6.

5.1 Rho self-energy without vertex corrections

Figures 5.1 and 5.2 display the imaginary and real parts of the transverse projection of the rho

self-energy for various temperatures, at ~q = 0. The pion propagators within ΣT
ρ are dressed with

Σπ. The medium effects on ReΣT
ρ are repulsive, causing the rho mass to increase. ImΣT

ρ increases

with temperature for all q0, but the increase is especially pronounced in the low energy regime. In

vacuum, ImΣT
ρ is zero below 2mπ, but at finite temperature a bump develops at low energy, which

corresponds to the transport peak in ΠEM.
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Figure 5.1: Imaginary part of the transverse projection of the rho self-energy in vacuum (blue), at
T=100 MeV (purple), T=150 MeV (brown), and T=180 MeV (red), plotted as a function of energy
at ~q = 0.

Figure 5.2: Real part of the transverse projection of the rho self-energy in vacuum (blue), at T=100
MeV (purple), T=150 MeV (brown), and T=180 MeV (red), plotted as a function of energy at
~q = 0.
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Figure 5.3 plots the Landau and unitarity cuts of ΣT
ρ separately. Though the unitary cut can

penetrate below the 2mπ threshold, due to the finite pion width, it is essentially zero below 220

MeV. While not a true threshold, the unitarity cut appears negligible compared to the Landau cut,

which provides a large increase at low q0.

Figure 5.3: Imaginary part of the transverse projection of the rho self-energy as a function of
energy at ~q = 0 for T=180 MeV. The Landau (brown) and unitarity (purple) cuts are plotted
separately, as well as the total (red) and the vacuum (blue). We see the low energy behavior is
dominated by the Landau cut.

5.2 EM spectral function without vertex corrections

In this section we calculate the EM spectral function without vertex corrections. In figure 5.4

we plot Πii
EM/q0 for various temperatures, scaled such that the conductivity corresponds to the

intercept at zero energy. At high energy, the rho’s width and mass increase due to an increase in

ΣT
ρ . While the the rho’s width is expected to increase with temperature, the repulsive shift of mρ is

due in part to the fact that our calculation is not chirally symmetric. We do not attempt the preserve

chiral symmetry in the present analysis, since doing so while also maintaining gauge invariance is
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beyond the scope of this work.

Figure 5.4: Imaginary part of the electromagnetic spectral function, scaled such that the zero-
energy intercept corresponds to σel, plotted as a function of energy at ~q = 0, for; vacuum (blue),
at T=100 MeV (purple), T=150 MeV (brown), and T=180 MeV (red). For finite temperature a
transport peak develops at low energy. Additionally, we see the rho’s width and mass increase with
temperature.

Figure 5.5 shows the scaled EM spectral function focusing on low energies. The transport peak

broadens as temperature increases, because Σπ increases with temperature. This is similar to the

Lorentzian-like structure found in ref. [35] that broadened with increasing coupling. At the same

time the conductivity decreases significantly when going from 100 MeV to 150 MeV, but increases

slightly between 150 MeV and 180 MeV. This demonstrates that a minimum can develop in the

conductivity, caused by a misalignment of thermal pion energies with that of the resonant particles

towards higher temperatures.
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Figure 5.5: Imaginary part of the electromagnetic correlator, scaled such that the zero-energy
intercept corresponds to σel, plotted as a function of energy at ~q = 0, for: T=100 MeV (purple),
T=150 MeV (brown), and T=180 MeV (red). We focus on the low energy region, emphasizing the
transport peak. The peak broadens as the interaction strength increases with temperature.

Finally, figures 5.6 and 5.7 plot the EM spectral function when only S-wave (sigma resonance)

or P-wave (rho resonance) scattering are considered, as well as the result when scattering is allowed

through both channels. From figure 5.6, one can see that the three scenarios have little impact on

the rho pole, where the unitarity cut dominates. The broadening of the rho pole is primarily due

to the addition of Bose enhancement terms (1 + f(ωk) + f(q0 + ωk)) in the rho self-energy,

with the relatively small pion width causing only slight broadening. Additionally, we note that

the broadening is augmented due to the increase in the P-wave phase space of the vacuum self-

energy, caused by the shift in the rho mass. Conversely, figure 5.7 indicates that both resonances

have significant impact on the low energy behavior of the spectral function, where the Landau cut

dominates. This is expected because limq0→0Πii
EM(q0, 0)/q0 is approximately proportional to 1

Σπ
,

and is particularly sensitive to Σπ’s low momentum behavior, as will be shown in section 5.3.
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Figure 5.6: Imaginary part of the electromagnetic correlator, scaled such that the zero-energy
intercept corresponds to σel, plotted as a function of energy at ~q = 0 and T=150 MeV. The vacuum
is plotted in blue, results for only P-wave scattering are plotted in red, results for only S-wave
scattering are plotted in brown, and results allowing P- and S-wave scattering are plotted in purple.
The energy range is chosen to emphasize the rho pole.

Figure 5.7: Imaginary part of the electromagnetic correlator, scaled such that the zero-energy
intercept corresponds to σel, plotted as a function of energy at ~q = 0 and T=150 MeV. The vacuum
is plotted in blue, results for only P-wave scattering are plotted in red, results for only S-wave
scattering are plotted in brown, and results allowing P- and S-wave scattering are plotted in purple.
The energy range is chosen to emphasize the transport peak
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5.3 σ/T without vertex corrections

Figure 5.8 displays our results for the conductivity divided by temperature without vertex cor-

rections, as a function of temperature. The conductivity over temperature decreases as a function

of temperature, but may develop a minimum beyond 180 MeV. We also plot the results when

considering only S-wave (sigma resonance) or P-wave (rho resonance) scattering. For high tem-

peratures the rho resonance generates a significantly smaller conductivity than the sigma. Since

the conductivity is inversely related to resistance the conductivity adds roughly inversely. Thus the

smallest individual contribution will exert greater influence on the total conductivity. P-wave scat-

tering provides the greater influence at higher temperatures, however the S-wave is more influential

below temperatures of approximately 110MeV. This hierarchy develops because Σπ(σ) dominates

the pion self-energy at low momentum, while Σπ(ρ) dominates at large momentum, as the rho’s

mass (770 MeV) is larger than the sigma’s (500 MeV). Transport coefficients are inherently low-

energy phenomena, however as temperature increases our calculation probes higher momentum.

Therefore, we see a crossing between ρ- and σ-contributions in figure 5.8 as we probe higher pion

momenta.

Figure 5.8: Electric conductivity divided by temperature as a function of temperature. The red
curve shows the result if one only allows ππ-scattering through a sigma resonance, the blue only
allows ππ-scattering through a rho resonance, and the purple allows scattering through both reso-
nances.
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We also compare our full off-shell result to the on-shell approximation from eq. 2.46. This is

done by evaluating Γπ with Σπ

(
ωk, ~k

)
/ωk in eq. 2.46. Figure 5.9 compares the two calculations.

Our results show that the approximation works fairly well, but becomes progressively worse as

the interaction rate
(

ImΣπ
ωk

)
increases with temperature. This suggests that the off-shell effects will

become important in the strong-coupling limit.

Figure 5.9: Electric conductivity divided by temperature as a function of temperature. We compare
the full off-shell calculation (purple) to the on-shell approximation from 2.46 (red).

One can analyze how different pion momenta contribute to the conductivity by plotting the ~k

integrand in limq0→0 Σρ(q0, ~q = 0)/q0. This integrand is given by:

Kσ(|~k|, T ) =
4πg2

ρ

3(2π)3
4~k4

∫ ∞
0

dv

−π
Im[Dπ(v,~k)]2

e
v
T

T (−1 + e
v
T )2

, (5.1)

where the q0 → 0 limit has been performed analytically. Figures 5.10 and 5.11 show Kσ(|~k|, T ) as

a function of momentum at various temperatures when only rho or sigma ππ-resonant scattering is

considered. The rho’s contribution peaks below 150 MeV, while the sigma peaks above 200 MeV.
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In both cases, the peak shifts to higher ~k and broadens with temperature. These peaks represent

the momenta most preferable for conducting charge, and are determined by the interplay of the

pion self-energy and the density. For example, the rho’s peak at T=100 MeV is remarkably large,

relative to other temperatures, because at T = 100 MeV is it difficult to find thermal pions with

enough energy to form a rho resonance, ie. Σπ(ρ) is small. Consequently, the pions interact quite

weakly and Kσ(|~k|, T ) rises sharply. At higher momentum the P-wave interaction becomes favor-

able, thus Kσ(|~k|, T ) is suppressed. Alternatively, the sigma resonance is quite broad, facilitating

scattering for low energy pions, where Σπ(ρ) is large. Therefore, in figure 5.11 Kσ is small for low

momenta, where S-wave scattering dominates. As ~k increases Σπ(σ) decreases, resulting in a rise

in Kσ, until it is eventually diminished due to thermal suppression of high energy pions.

Figure 5.10: Kσ(|~k|, T ) as a function of momentum for T=100 MeV (purple), T=150 MeV
(brown), and T=180 MeV (red). The integral of Kσ(|~k|, T ) with respect to |~k| is proportional
to the conductivity. The results only include ππ-scattering through a rho resonance.
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Figure 5.11: Kσ(|~k|, T ) as a function of momentum for T=100 MeV (purple), T=150 MeV
(brown), and T=180 MeV (red). The integral of Kσ(|~k|, T ) with respect to |~k| is proportional
to the conductivity. The results only include ππ-scattering through a sigma resonance.

Figure 5.12 plots Kσ(|~k|, T ) as a function of momentum for various temperatures, when reso-

nant rho and sigma scattering are included. The conductivity adds inversely, so the total result is

smaller than either individual contribution. Although, the S-wave interaction suppresses the low

~k region, a peak is still produced around ~k = 200MeV (most noticeably for T=100 MeV). This

occurs because even when S-wave interactions are included Σπ is still smallest at low momentum

(fig. 3.7). Thus Kσ(|~k|, T ) is largest at smaller momentum, where pions primarily interact through

S-wave scattering, but is suppressed at higher momentum where the stronger P-wave interactions

become more energetically favorable.
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Figure 5.12: Kσ(|~k|, T ) as a function of momentum for T=100 MeV (purple), T=150 MeV
(brown), and T=180 MeV (red). The integral of Kσ(|~k|, T ) with respect to |~k| is proportional
to the conductivity. The results include ππ-scattering through rho and sigma resonances.

5.4 Rho self-energy with vertex corrections

Figures 5.13 and 5.14 display the imaginary and real parts of the transverse projection of the

rho self-energy, for ~q = 0, for T=150 MeV with and without vertex corrections. In figures 5.15

and 5.16 we plot the rho self-energy, at ~q = 0, with vertex corrections for various temperatures.

The results include interactions through rho and sigma resonances
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Figure 5.13: Imaginary part of the transverse projection of the rho self-energy in vacuum (blue)
and at T=150 MeV with (purple) and without vertex corrections (red). Including vertex corrections
results in an increase in ImΣT

ρ . Results include the rho and sigma resonances.

Figure 5.14: Real part of the transverse projection of the rho self-energy in vacuum (blue) and
at T=150 MeV with (purple) and without vertex corrections (red). Including vertex corrections
results in an increase in ReΣT

ρ . Results include the rho and sigma resonances.
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Figure 5.15: Imaginary part of the transverse projection of the rho self-energy at ~q = 0 in vacuum
(blue), and for various temperatures, T=100 MeV (purple), T=150 MeV (brown), and T=180 MeV
(red), including vertex corrections. Results include the rho and sigma resonances.

Figure 5.16: Real part of the transverse projection of the rho self-energy in vacuum (blue), and
for various temperatures, T=100 MeV (purple), T=150 MeV (brown), and T=180 MeV (red),
including vertex corrections. Results include the rho and sigma resonances.
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We see that including vertex corrections results in an increase in the rho self-energy, which

becomes more pronounced as temperature increases. This increase is expected because the vertex

corrections introduce addition interactions for the rho. For q0 around the rho mass this results in

an increased rho width, while at low q0 we see an increase in the shoulder generated by the Landau

cut.

5.5 EM-spectral function with vertex correction

In this section we display the EM spectral function when vertex corrections are included. Fig-

ures 5.17 through 5.26 plot Πii
EM/q0 for various temperatures at ~q = 0, scaled such that the con-

ductivity corresponds to the intercept at zero energy. We include ππ-scattering through rho and

sigma resonances. Figures 5.17 through 5.20 and figures 5.22 through 5.25 compare the spectral

function with and without vertex corrections, respectively, for T=100 MeV, T=120 MeV, T=150

MeV, and T=180 MeV. Additionally, figures 5.21 and 5.26 compare the spectral functions at T=100

MeV, T=150 MeV, and T=180 MeV, when vertex corrections are included. Plots are given which

emphasize the rho pole at q0 = 770MeV as well as the low energy transport peak.

Figure 5.17: The electromagnetic spectral function at T=100 MeV, scaled such that the zero-
energy intercept corresponds to σel. Results are plotted as a function of energy at ~q = 0, for;
vacuum (blue), excluding vertex corrections (red), including vertex corrections (purple). The q0

range is set to emphasize the rho pole.
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Figure 5.18: The electromagnetic spectral function at T=120 MeV, scaled such that the zero-energy
intercept corresponds to σel. Results are plotted as a function of energy at ~q = 0, for; vacuum
(blue), excluding vertex corrections (red), including vertex corrections (purple). The q0 range is
set to emphasize the rho pole.

Figure 5.19: The electromagnetic spectral function at T=150 MeV, scaled such that the zero-
energy intercept corresponds to σel. Results are plotted as a function of energy at ~q = 0, for;
vacuum (blue), excluding vertex corrections (red), including vertex corrections (purple). The q0

range is set to emphasize the rho pole.
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Figure 5.20: The electromagnetic spectral function at T=180 MeV, scaled such that the zero-
energy intercept corresponds to σel. Results are plotted as a function of energy at ~q = 0, for;
vacuum (blue), excluding vertex corrections (red), including vertex corrections (purple). The q0

range is set to emphasize the rho pole.

Figure 5.21: The electromagnetic spectral function including vertex correction at T=100 MeV
(purple), T=150 MeV (brown), and T=180 MeV (red), scaled such that the zero-energy intercept
corresponds to σel. The vacuum is also plotted in blue. Results are plotted as a function of energy
at ~q = 0. The q0 range is set to emphasize the rho pole.
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Figure 5.22: The electromagnetic spectral function at T=100 MeV, scaled such that the zero-
energy intercept corresponds to σel. Results are plotted as a function of energy at ~q = 0, for;
vacuum (blue), excluding vertex corrections (red), including vertex corrections (purple). The q0

range is set to emphasize the transport peak.

Figure 5.23: The electromagnetic spectral function at T=120 MeV, scaled such that the zero-energy
intercept corresponds to σel. Results are plotted as a function of energy at ~q = 0, for; vacuum
(blue), excluding vertex corrections (red), including vertex corrections (purple). The q0 range is
set to emphasize the transport peak.
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Figure 5.24: The electromagnetic spectral function at T=150 MeV, scaled such that the zero-
energy intercept corresponds to σel. Results are plotted as a function of energy at ~q = 0, for;
vacuum (blue), excluding vertex corrections (red), including vertex corrections (purple). The q0

range is set to emphasize the transport peak.

Figure 5.25: The electromagnetic spectral function at T=180 MeV, scaled such that the zero-
energy intercept corresponds to σel. Results are plotted as a function of energy at ~q = 0, for;
vacuum (blue), excluding vertex corrections (red), including vertex corrections (purple). The q0

range is set to emphasize the transport peak.
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Figure 5.26: The electromagnetic spectral function including vertex correction at T=100 MeV
(purple), T=150 MeV (brown), and T=180 MeV (red), scaled such that the zero-energy intercept
corresponds to σel. The vacuum is also plotted in blue. Results are plotted as a function of energy
at ~q = 0. The q0 range is set to emphasize the transport peak.

The vertex corrections result in a broadening of the rho peak that increases with temperature.

This is expected because the corrections increase the rho’s interaction with the medium. Further-

more, we see an increase in the transport peak, due to the vertex corrections. We have shown that at

low q0 the transport peak is roughly proportional to the imaginary part of the rho self-energy. The

vertex corrections increase ImΣρ, thus the increased transport peak should be expected. However,

this is somewhat counter intuitive, because the transport peak is also proportional to the electric

conductivity. Therefore, it seems that increasing the medium interaction by including vertex cor-

rections has resulted in a more conductive medium. In order to understand this phenomena, one

must observe that the rho meson does not transmit electric charge through the medium. Charge is

transmitted by the charged pion states, and in fact any increase in ImΣπ will reduce the conductiv-

ity. Thus it is ImΣπ which determines the interaction strength in the medium and not ImΣρ. On

the other hand, the rho self-energy determines how the external photon couples to the medium.

Therefore, the various rho self-energy diagrams represent different channels through which elec-
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tric charge can travel. Therefore, the vertex corrections introduce additional channels for charge to

flow through, increasing the electric conductivity.

5.6 σ/T with vertex corrections

In this section we examine the electric conductivity, extracted from the transport peak of the

EM spectral function. In figure 5.27, we plot the conductivity over temperature with and without

vertex correction. Results are shown for ππ-scattering through only the rho or sigma resonance, as

well as the result when scattering through both resonances are accounted for.

Figure 5.27: Pion gas conductivity over temperature for different ππ-scattering resonances, with
and without vertex corrections. Results including only the sigma resonance are plotted in red
(vertex corrections excluded) and green (vertex corrections included). Results including only the
rho resonance are plotted in blue (vertex corrections excluded) and orange (vertex corrections
included). Results including both resonances are plotted in purple (vertex corrections excluded)
and brown (vertex corrections included).

Figure 5.27 shows that the vertex corrections have the largest impact when only the sigma reso-

nance is included, where they provide on average a∼30% increase in the conductivity. Conversely,

the vertex corrections have little impact when only the rho resonance is considered, providing ap-
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proximately a 2% increase. When both resonances are included the vertex corrections increase

the conductivity by approximately 10%. The relatively large increase in the sigma resonance re-

sults is caused primarily by Γ
(3)Cσ
µab3 . Although one might expect this correction to still provide a

significant increase in the conductivity when both resonances are considered, this is not the case.

This is because the Landau cut of Γ
(3)Cσ
µab3 is proportional to the pion’s width. Therefore, when the

rho self-energy’s Landau cut is dressed with Γ
(3)Cσ
µab3 the result is proportional to the pion’s width

squared. Thus, when the rho resonance is included in Σπ this contribution experiences significant

suppression relative to other rho self-energy diagrams. Due to this suppression, the largest correc-

tion to the rho self-energy, when both resonances are included, is from Γ
(3)Eρ
µν ab33 and Γ

(3)Eσ
µν ab33, which

account for about 70% of the vertex corrections’ contribution to the rho self-energy.

In figure 5.28 we examine the impact of the additional vertex corrections induced by the form

factor. The conductivity with and without the additional corrections is plotted, as well as the

conductivity without vertex corrections. However, form factors are still included in all results, in

order to assure convergence of the calculation. One can see that the form factor correction terms

provide a small increase in the total conductivity, approximately 2.5%. However, because the

contribution of the vertex corrections to the conductivity is rather small, these terms increase the

effect of the vertex corrections by about 30%. This increase is fairly concerning, thus we intend to

further investigate the violation of gauge invariance due to the form factor in future works.
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Figure 5.28: Pion gas conductivity over temperature without vertex corrections (blue), with vertex
corrections (red), and including all vertex corrections except those induced by the form factor
(green). The results include ππ-scattering through rho and sigma resonances.

Finally, we compare our results for the hot pion matter conductivity to previous calculations in

the literature in figures 5.29 and 5.30. In figure 5.29 we plot only results for hot pion matter, while

in figure 5.30 we include results from lattice QCD.
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Figure 5.29: Pion matter conductivity over temperature compared to previous calculations in hot
pion matter. The black dashed line shows a proposed lower bound from Ref. [22]. Our results
are shown with and without vertex corrections in blue and purple, respectively. The kinetic theory
results are plotted in brown [21], K-matrix results are plotted in green [29], chiral perturbation
theory results are plotted in orange [23], real-time field theory results are plotted in red [30], and
the results for the relaxation time approximation to the relativistic transport equation are plotted in
magenta [31].
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Figure 5.30: Pion matter conductivity over temperature compared to previous pion matter calcu-
lations, and lQCD results. The black dashed line shows a proposed lower bound from Ref. [22].
Our results are shown with and without vertex corrections in blue and purple, respectively. The
kinetic theory results are plotted in brown [21], K-matrix results are plotted in green [29], chiral
perturbation theory results are plotted in orange [23], real-time field theory results are plotted in
red [30], and the results for the relaxation time approximation to the relativistic transport equation
are plotted in magenta [31]. lQCD results for two NF = 2 calculations are plotted with black and
purple points [26, 27]. Finally, lQCD results for NF = 2 + 1 are plotted with cyan points [25].

Our conductivity is significantly larger than the kinetic theory [21], chiral perturbation theory

[23], and relaxation time approximation [31] results, but is smaller than the K-matrix calculation

[29]. However, our calculation agrees fairly well with the real-time field theory results [30]. Refer-

ences [21], [23], [29] and [30] provide expressions for the conductivity in terms of either the pion

width or the collision time, which are similar to our equation 2.46, however our inputs for the pion

width vary.

Our calculation and the kinetic theory calculation derive the conductivity from similar pion

cross sections. In ref. [21] the cross section is used to calculate the collision term, which is similar

to our pion self-energy. The collision term is then used to solve the linearized Boltzmann equation,

however when implemented in their electric charge current, ref. [21]’s interaction width appears
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to differ from ours by a factor of two. The larger width could account for the smaller conductivity

found in ref. [21].

In ref. [29] an expression for the conductivity in terms of the relaxation time is obtained by

solving the Boltzmann equation. The pion’s interactions are then calculated using the K-matrix

formalism. Although ref. [29] implements a similar cross section to our own, they do not include

the sigma resonance, which could account for some of the increase in ref. [29]’s calculation relative

to our own. Additionally, ref. [29]’s expression for the conductivity differs from eq. 2.46 in

that eq. 2.46 is proportional to the collision time, while ref. [29]’s expression is proportional

to the relaxation time. Multiple collisions are required for a particle to equilibrize (typically one

collision per spacial degree of freedom), thus the relaxation time is larger than the collision time.

This difference could also account for an increase in ref. [29]’s conductivity relative to our own.

In ref. [23] chiral perturbation theory is used to derive an expression for the conductivity, which

is equivalent to our eq. 2.46. The pion’s width is then calculated using the Inverse Amplitude

Method, which satisfies unitarity and matches ref. ??’s low-energy chiral expansion. Although ref

[23]’s width utilizes Boltzmann statistics rather than Bose, this should not produce a large effect in

the conductivity at low temperatures. More work is needed to understand the apparent discrepancy

between our pion width and that of ref. ??.

In ref. [30] real-time thermal field-theory is used to derive an expression for the conductivity

from the Kubo formula in terms of the pion width. Thermal pion widths are then derived from ρπ

and σπ loops. As mentioned in section 3.5, ref. [30]’s pion widths are quite similar to our own,

however ref. [30] does not dress the rho or sigma mesons with widths and uses a different σππ

vertex. We would expect ref. [30]’s result to be similar to our result without vertex corrections,

however [30]’s result is somewhat larger, which could be explained by ref. [30] implementing a

smaller pion width.

In ref. [31] the conductivity is estimated by solving the relativistic transport equation in the re-

laxation time approximation. Pion interactions are derived in terms of elastic scattering amplitudes

and consider scattering through both rho and sigma resonances. Furthermore, ref. [31] expresses
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their amplitudes in terms of the ππ-cross section and demonstrate a vacuum cross section which is

similar to our own. However, ref. [31] then derives a mean reaction rate (thermal average over pion

momentum) that is approximately four times larger than our own, indicating stronger interactions,

which may explain the discrepancy between the results.

From figure 5.30 we see that the pion gas results are significantly larger than lQCD calculations,

with most lQCD results falling below the proposed lower bound. Although this violation may

seem concerning, the proposed lower bound from ref. [22] depends on the number of degrees

of freedom in the calculation. Therefore, it may not be appropriate to compare pion matter and

lQCD results to this lower bound. We address a more "universal" bound proposed by ref. [22]

in chapter 6. Furthermore, in ref. [25] it is stated that their extraction of the conductivity at low

temperature should be taken with caution, because they would not detect possible narrow transport

peaks created by hadronic interactions.

Our results support a pion matter conductivity significantly higher than the lower bound pro-

posed in ref. [22], which will impact charge correlations in HIC, however a more complete cal-

culation in hadronic matter is required. Furthermore, our calculations indicate that the effects of

the vertex corrections are rather small (∼ 10%), instead the conductivity is dominated by the Lan-

dau cut of the rho self-energy, which is related to the pion’s width. As demonstrated in eq. 2.46,

the conductivity is inversely proportional to the pion’s width. Therefore, the conductivity is very

sensitive to pionic interactions and a robust calculation of the pion’s width is required in order to

reliably extract the conductivity.
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6. EM SPECTRAL FUNCTION THEORETICAL APPLICATIONS

In this chapter we perform further analysis of the EM spectral function. In section 6.1 we

calculate the electric conductivity over the charge susceptibility, which provides a more "universal"

lower bound on the conductivity [22]. We then test our EM spectral function against a sum rule

calculated in ref. [45] in section 6.2.

6.1 Charge susceptibility

From figure 5.30, we see that several calculations either approach or violate the lower bound

proposed in ref. [22]. However, one must be careful when comparing σel
T

to the lower bound,

because σel
T

depends on the number of degrees of freedom in the system. Reference [22] proposed

dividing the conductivity by the charge susceptibility. This cancels out the dependence on the

degrees of freedom and provides a more "universal" quantity. The proposed lower bound from

reference [22] is given by:

σel

e2Ξ
=

1

2πT
. (6.1)

In order to compare our results to the lower bound we calculate the charge susceptibility in

pion matter. To leading order in e2 the susceptibility is related to the electromagnetic Debye mass

squared by [57, 58, 59, 60]:

Ξ = − lim
~q→0

Π00
EM(q0 = 0, ~q ) = m2

D. (6.2)

With in the VDM one can write the Debye mass in terms of the rho propagator and self-energy
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[61]:

Ξ = − lim
~q→0

[(m0
ρ)

4

g2
ρ

D00
ρ (q0 = 0, ~q)−

(m0
ρ)

4

g2
ρ

D00
ρ vac(0, 0)

]
= − lim

~q→0

[(m0
ρ)

4

g2
ρ

( −1

−~q 2 − (m0
ρ)

2 − ΣL
ρ (0, ~q)

)
−

(m0
ρ)

4

g2
ρ

( −1

−~q 2 − (m0
ρ)

2 − ΣL
ρ vac(0, 0)

)]
=

(m0
ρ)

4

g2
ρ

( −1

(m0
ρ)

2 − Σ00
ρ (0, 0)

)
−

(m0
ρ)

4

g2
ρ

( −1

(m0
ρ)

2 − Σ00
ρ vac(0, 0)

)
. (6.3)

We see that while the conductivity corresponds to the time-like limit of ImΠµν
EM, the susceptibility is

determined by the space-like limit of ReΠµν
EM. Though our formalism can be extended to finite ~q, we

have not calculated vertex corrections at finite ~q, as this is beyond the scope of this work. However,

we have seen that the dominant contribution to Σρ comes from dressing the pion propagators with

Σπ. Here we calculate Ξ using the rho self-energy with dressed pion propagators, without including

vertex corrections.

Figure 6.1: Electric conductivity divided by e2 times the charge susceptibility. The charge suscep-
tibility is calculated from Π00

EM without including vertex corrections, however results are plotted for
the conductivity with (red) and without (blue) vertex corrections. The black dashed line plots the
result for the proposed lower bound from reference [22].
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In figure 6.1 we plot our conductivity divided by e2 times the charge susceptibility compared

to the proposed lower bound from eq. 6.1 [22]. We see that our result is approximately a factor

of 5 larger than the proposed lower bound. Furthermore, our calculation begins to level off as

temperature increases while the lower bound is proportional to 1
T

. Therefore, we see that even

when the number of degrees of freedom is accounted for, our result is well above the proposed

lower bound.

6.2 Current conservation sum rule

In order to test our calculation, we utilize our EM spectral function to evaluate a sum rule

calculated in ref [45]. The sum rule reads:

∫ ∞
0

dw
1

w
ImΠ(w, T ) =

∫ ∞
0

dw
1

w
ImΠvac(w). (6.4)

Since the EM-correlator is proportional to the rho-spectral function in the VDM one can rewrite

the sume rule as:

∫ ∞
0

dw
1

w
ImDρ ii(w, T ) =

∫ ∞
0

dw
1

w
ImDρ ii vac(w). (6.5)

Equation 6.5 can be rewritten in the form of a dispersion relation at zero energy:

lim
q0→0

∫ ∞
0

dw
2w

q2
0 − w2

ImDρ ii(w, T ) = lim
q0→0

∫ ∞
0

dw
2w

q2
0 − w2

ImDρ ii vac(w). (6.6)

The dispersion relations can be solved analytically, as long as the rho propagator is analytic. Per-

forming these integrations gives:

ReDρ ii(0, T ) = ReDρ ii vac(0). (6.7)

Equation 6.7 implies that to satisfy the sum rule Dρ must be analytic and ReΣρ ii(0, T ) = 0.
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Calc T=100 MeV T=120 MeV T=150 MeV T=180 MeV

No VC .32% .34% .36% .57%
VC .92% .67% .33% .24%

VC No FF Corr. .38% .39% .32% .35%

Table 6.1: Violation of the sum rule proposed in ref. [45].

The energy dependent portion of ReΣT
ρ has been calculated with a dispersion relation, there-

fore Dρ is guaranteed to be analytic. Furthermore, one can see from figures 5.2 and 5.14 that

ReΣT
ρ (q0 = 0, ~q = 0) shows little deviation from zero. Therefore, we expect the violation of the

sum rule to be small. In order to quantify the violation of the sum rule, we calculate the percent

change in the left hand side of eq. 6.5 relative to the vacuum value. The violations with and with-

out vertex correction are given in table 6.1. We see that before including vertex corrections the

violation is extremely small, on average being less than .5%. When vertex corrections are included

the violation increases for T=100 MeV and 120 MeV, but is reduced for T=150 MeV and 180

MeV. Furthermore, we see that the addition of the corrections induced by the form factors tend to

increase the violation, especially for low temperature. Although the increase is a bit troubling, and

provides further motivation to investigate a form factor that do not violate gauge invariance, it is

reassuring that the violation is consistently less than 1%. In order to gain precision at this level

we would likely require higher numerical precision and may need to calculate further iterations of

the self-consistency equation induced by introducing the pion self-energy. This would require the

dressing of thermal pions with Σπ and the calculation of higher order vertex corrections.
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7. SUMMARY AND FUTURE WORK

The creation of the QGP and hot hadronic matter has been a major accomplishment of HIC

experiments at the LHC and RHIC. One means to study the medium created in HICs is to extract

transport coefficients, which probe the low-energy, long-wavelength limit of the medium and are

taken as inputs in transport models [16, 17].

In this work we set out to calculate the electric conductivity, which is expected to impact the

evolution of charge correlations in HICs [20]. In particular, we calculated the conductivity of

hot pion matter. The pion’s mass is much smaller than that of nucleons and other mesons, thus

ππ-scattering is expected to play the leading role at low temperatures and chemical potentials.

Previous calculations of the electric conductivity of pion matter and hot hadronic matter have

varied considerably[21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31].

We have performed a quantum calculation based on successful descriptions of thermal dilepton

emission rates [19, 62], where the EM spectral function was related to the imaginary part of the

rho meson’s propagator using the VDM. Interactions with the thermal medium were evaluated

through the rho self-energy, Σµν
ρ . In pion matter a transport peak was generated by the Landau cut

of Σµν
ρ , which corresponds to ρπ scattering. However, it was found that ππ-scattering needed to be

considered in order to generate the pion’s width and obtain a finite conductivity.

We included S- and P-wave scattering through sigma and rho resonances respectively, by re-

summing the pion propagators within Σµν
ρ with pion self-energies. We then corrected for the vio-

lation of gauge invariance induced by this dressing with corrections to the ρππ and ρρππ vertices.

In order to calculate the vertex corrections, we followed the approach from refs. [46, 44]

and generated vertex corrections by coupling rho mesons to Σπ. The vertex corrections contain

intermediate rho, sigma, and pi mesons, which transmit charge through the medium. Therefore,

these mesons where dressed with widths in order to extract a finite conductivity.

Dressing the pion propagators creates a self-consistency equation, because the vertex correc-

tions contain ρππ vertices. Furthermore, because the thermal particle in the rho self-energy’s
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Landau cut is identical to the thermal particle in Σπ and the vertex corrections, the vertex correc-

tions generated double counting, which was identified and removed. Finally, we regularized Σπ

and the vertex corrections with a form factor depending on the center of mass momentum, in order

to avoid spurious momentum dependencies. Although this addition violates gauge invariance, we

find that the violation is parametrically suppressed by the form factor cut off relative to the typical

thermal pion momentum. We have then calculated approximate corrections for the violation.

The effect of the vertex corrections on the conductivity is rather small, resulting in approxi-

mately a 10% increase in the conductivity, with the primary contribution to the conductivity com-

ing from the Landau cut of the rho self-energy. Furthermore, we have seen that both S- and P-wave

ππ-scattering contribute significantly to the conductivity. Although, the vertex corrections do not

tend to improve the current conservation sum rule, the violations with or without vertex corrections

are less than 1%, and correcting these violations will likely require the calculation of higher order

vertex corrections, the dressing of thermal pions with Σπ, and higher numerical precision. The

choice of the center of mass momentum in the form factor may also contribute to the violation.

Our results support a conductivity significantly larger than existing calculations with kinetic

theory, chiral perturbation theory, or the relaxation time approximation to the relativistic transport

equation [21, 23, 31]. The result is also significantly smaller than the K-matrix calculation from

ref. [29], but agrees fairly well with the real-time field theory calculation in ref. [30]. However,

the variation in the conductivity does not appear to be due to the choice of formalism. The dif-

ferent calculations produce similar expressions for the conductivity in terms of the pion width.

However, the various calculations input different pion widths, leading to differing conductivities.

Furthermore, our conductivity is well above the quantum lower bound proposed in ref. [22], even

when the dependency on the number of degrees of freedom is removed by dividing by the charge

susceptibility.

We intend to extend our formalism to the strong coupling limit by increasing gρ. In this limit,

the higher order corrections and the effect of the center of mass form factor may not be as heavily

suppressed, therefore these effects will require further investigation. We will then extend our
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calculation to hot hadronic matter with the addition of nucleons and kaons. The effect of nucleons

at finite density and temperature can be included by combining this work’s results with those of

ref. [40]. This will require combining this work’s pion self-energy with that of ref. [40] and the

calculation of additional vertex corrections to the rho self-energy. After including nucleons we

will continue our calculation of the conductivity of hot hadronic matter by calculating the effects

of thermal kaons on Σπ and the ρππ and ρρππ vertices. Both the probing of the strong coupling

limit and the more complete hadronic matter calculation will likely bring the conductivity closer

to the lower bound. However, our quantum calculation will be able to probe these scenarios by a

controlled means and should respect the lower bound. Furthermore, in a more strongly coupled

medium the increase in the conductivity due to the vertex corrections may be enhanced and provide

a significant contribution to the conductivity.

Finally, we note that the ALICE-3 experiment, planed for run 5 of the LHC in the early 2030’s,

will be able to measure momenta down to a few tens of MeV [63]. These measurements will

allow for the extraction of dilepton emission rates at low invariant mass where pionic interactions

are curtail. Thus, we intend to carry our formalism to finite momentum, in order to calculate low

energy dilepton emission rates. Furthermore, the experiment may allow for a measurement of the

electric conductivity of hot QCD matter, providing further motivation to extend our formalism to

more strongly coupled systems.
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APPENDIX A

Vertex correction Matsubara sums

In this appendix we perform the Matsubara sums involved in calculating the vertex corrections

introduced in chapter 4. The vertex corrections that remain after dropping corrections with multi-

ple rho propagators are: Γ
(3)Aρ
µab3 , Γ

(3)Bρ
µab3 , Γ

(3)Cρ
µab3 , Γ

(3)Cσ
µab3 , Γ

(4)Aρ
µν ab33, Γ

(4)B1ρ
µν ab33, Γ

(4)B2ρ
µν ab33, Γ

(4)Eρ
µν ab33, Γ

(4)Gρ
µν ab33,

Γ
(4)Eσ
µν ab33, and Γ

(4)Gσ
µν ab33. In order to avoid double counting, diagrams Γ

(4)B1ρ
µν ab33, Γ

(4)B2ρ
µν ab33, Γ

(4)Eρ
µν ab33,

Γ
(4)Gρ
µν ab33, Γ

(4)Eσ
µν ab33, and Γ

(4)Gσ
µν ab33 are only calculated when the external pion corresponds to a vac-

uum pion. Furthermore, the rho self-energy contributions resulting from these diagrams can be

expressed in terms of the pion unitarity cut. We begin by presenting the corrections to the ππ-loop

from the three-point vertex corrections in A.1.1. In section A.1.2 we present the corrections to

the tad pole loop from the four-point vertex corrections. Finally, in section A1.3 we give the total

correction to the rho self-energy.

A.1 ππ-loop corrections

It is straight forward to express the propagators in the vertex corrections in terms of a spectral

representation, as was done for the rho and pion self-energies. The Matsubara sums can then be

calculated using eq. 2.23. Here we write the imaginary parts of Γ
(3)Aρ
µab3 , Γ

(3)Bρ
µab3 , Γ

(3)Cρ
µab3 , and Γ

(3)Cσ
µab3

relevant for maintaining gauge invariance when Dπ is dressed with the Landau cut of the pion
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self-energy.

ImΓ
′′(3)Aρ
µab3 (k, q) = −ε3ab

3g3
ρ

2

∫
d3p

(2π)3

[ ∫ ∞
0

dw

−π
Im[Dπ(p)]Im[Dνλ

ρ (p+ k)]

gµλ(k − p)ν(f(w)− f(k0 + w))

θ(k0 + w)FFρ[−q + p, q + k]FFρ[p, k]

]
p0=w

+ε3ab
3g3

ρ

2

∫
d3p

(2π)3

[ ∫ ∞
0

dw

−π
Im[Dπ(p)]Im[Dνλ

ρ (p+ k)]

gµλ(k − p)ν(f(w)− f(−k0 + w))

θ(−k0 + w)FFρ[−q + p, q + k]FFρ[p, k]

]
p0=−w

, (A.1)

ImΓ
′′(3)Bρ
µab3 (k, q) = −ε3ab

3g3
ρ

2

∫
d3p

(2π)3

[ ∫ ∞
0

dw

−π
Im[Dπ(p)]Im[Dνλ

ρ (q + k + p)]

gµλ(q + k − p)ν(f(w)− f(q0 + k0 + w))

θ(q0 + k0 + w)FFρ[q + p, k]FFρ[p, q + k]

]
p0=w

+ε3ab
3g3

ρ

2

∫
d3p

(2π)3

[ ∫ ∞
0

dw

−π
Im[Dπ(p)]Im[Dνλ

ρ (q + k + p)]

gµλ(q + k − p)ν(f(w)− f(−q0 − k0 + w))

θ(−q0 − k0 + w)FFρ[q + p, k]FFρ[p, q + k]

]
p0=−w

, (A.2)
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ImΓ
′′(3)Cρ
µab3 (k, q) = ε3ab

g3
ρ

2

∫
d3p

(2π)3

[ ∫ ∞
0

dw

−π
Im[Dπ(p)]Re[Dπ(q − p)]Im[Dνλ

ρ (p+ k)]

(−2p+ q)µ(−p+ k + 2q)λ(k − p)ν(f(w)− f(k0 + w))

θ(k0 + w)FFρ[p, k]FFρ[−q + p, q + k]

]
p0=w

−ε3ab
g3
ρ

2

∫
d3p

(2π)3

[ ∫ ∞
0

dw

−π
Im[Dπ(p)]Re[Dπ(q − p)]Im[Dνλ

ρ (p+ k)]

(−2p+ q)µ(−p+ k + 2q)λ(k − p)ν(f(w)− f(−k0 + w))

θ(−k0 + w)FFρ[p, k]FFρ[−q + p, q + k]

]
p0=−w

+ε3ab
g3
ρ

2

∫
d3p

(2π)3

[ ∫ ∞
0

dw

−π
Im[Dπ(p)]Re[Dπ(q + p)]Im[Dνλ

ρ (q + k + p)]

(−2p− q)µ(−p+ k + q)λ(k − q − p)ν(f(w)− f(q0 + k0 + w)))

θ(q0 + k0 + wFFρ[q + p, k]FFρ[p, q + k]

]
p0=w

−ε3ab
g3
ρ

2

∫
d3p

(2π)3

[ ∫ ∞
0

dw

−π
Im[Dπ(p)]Re[Dπ(q + p)]Im[Dνλ

ρ (q + k + p)]

(−2p− q)µ(−p+ k + q)λ(k − q − p)ν(f(w)− f(−q0 − k0 + w))

θ(−q0 − k0 + w)FFρ[q + p, k]FFρ[p, q + k]

]
p0=−w

+ε3ab
g3
ρ

2

∫
d3p

(2π)3

[ ∫ ∞
0

dw

−π
Im[Dπ(p)]Im[Dπ(q + p)]Re[Dνλ

ρ (q + k + p)]

(−2p− q)µ(−p+ k + q)λ(k − q − p)ν(f(w)− f(q0 + w))

FFρ[q + p, k]FFρ[p, q + k]

]
p0=w

−ε3ab
g3
ρ

2

∫
d3p

(2π)3

[ ∫ ∞
0

dw

−π
Im[Dπ(p)]Im[Dπ(q − p)]Re[Dνλ

ρ (p+ k)]

(−2p+ q)µ(−p+ k + 2q)λ(k − p)ν(f(w)− f(q0 + w))

FFρ[p, k]FFρ[−q + p, q + k]

]
p0=−w

, (A.3)
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ImΓ
′′(3)Cσ
µab3 (k, q) = ε3ab

gρg
2
σ

2

∫
d3p

(2π)3

[ ∫ ∞
0

dw

−π
Im[Dπ(p)]Re[Dπ(q − p)]Im[Dσ(p+ k)]

((p+ k)2 −m2
π)(−2p+ q)µ(f(w)− f(k0 + w))

θ(k0 + w)FFσ[p, k]FFσ[−q + p, q + k]

]
p0=w

−ε3ab
gρg

2
σ

2

∫
d3p

(2π)3

[ ∫ ∞
0

dw

−π
Im[Dπ(p)]Re[Dπ(q − p)]Im[Dσ(p+ k)]

((p+ k)2 −m2
π)(−2p+ q)µ(f(w)− f(−k0 + w))

θ(−k0 + w)FFσ[p, k]FFσ[−q + p, q + k]

]
p0=−w

+ε3ab
gρg

2
σ

2

∫
d3p

(2π)3

[ ∫ ∞
0

dw

−π
Im[Dπ(p)]Re[Dπ(q + p)]Im[Dσ(q + k + p)]

((q + k + p)2 −m2
π)(−2p− q)µ(f(w)− f(q0 + k0 + w))

θ(q0 + k0 + w)FFσ[q + p, k]FFσ[p, q + k]

]
p0=w

−ε3ab
gρg

2
σ

2

∫
d3p

(2π)3

[ ∫ ∞
0

dw

−π
Im[Dπ(p)]Re[Dπ(q + p)]Im[Dσ(q + k + p)]

((q + k + p)2 −m2
π)(−2p− q)µ(f(w)− f(−q0 − k0 + w))

θ(−q0 − k0 + w)FFσ[q + p, k]FFσ[p, q + k]

]
p0=−w

+ε3ab
gρg

2
σ

2

∫
d3p

(2π)3

[ ∫ ∞
0

dw

−π
Im[Dπ(p)]Im[Dπ(q + p)]Re[Dσ(q + k + p)]

((q + k + p)2 −m2
π)(−2p− q)µ(f(w)− f(q0 + w))

FFσ[q + p, k]FFσ[p, q + k]

]
p0=w

−ε3ab
gρg

2
σ

2

∫
d3p

(2π)3

[ ∫ ∞
0

dw

−π
Im[Dπ(p)]Im[Dπ(q − p)]Re[Dσ(p+ k)]

((p+ k)2 −m2
π)(−2p+ q)µ(f(w)− f(q0 + w))

FFσ[p, k]FFσ[−q + p, q + k]

]
p0=w

. (A.4)
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In order to help group Γ
′′(3)Cρ
µab3 and Γ

′′(3)Cσ
µab3 into spectral representations we define the functions:

ImΓ
′′(3)Cρk
µab3 (k, q) = ε3ab

g3
ρ

2

∫
d3p

(2π)3

[ ∫ ∞
0

dw

−π
Im[Dπ(p)]Re[Dπ(q − p)]Im[Dνλ

ρ (p+ k)]

(−2p+ q)µ(−p+ k + 2q)λ(k − p)ν(f(w)− f(k0 + w))

θ(k0 + w)FFρ[p, k]FFρ[−q + p, q + k]

]
p0=w

−ε3ab
g3
ρ

2

∫
d3p

(2π)3

[ ∫ ∞
0

dw

−π
Im[Dπ(p)]Re[Dπ(q − p)]Im[Dνλ

ρ (p+ k)]

(−2p+ q)µ(−p+ k + 2q)λ(k − p)ν(f(w)− f(−k0 + w))

θ(−k0 + w)FFρ[p, k]FFρ[−q + p, q + k]

]
p0=−w

, (A.5)

ImΓ
′′(3)Cρq
µ ab3 (k, q) = ε3ab

g3
ρ

2

∫
d3p

(2π)3

[ ∫ ∞
0

dw

−π
Im[Dπ(p)]Re[Dπ(q + p)]Im[Dνλ

ρ (q + k + p)]

(−2p− q)µ(−p+ k + q)λ(k − q − p)ν(f(w)− f(q0 + k0 + w))

θ(q0 + k0 + w)FFρ[q + p, k]FFρ[p, q + k]

]
p0=w

−ε3ab
g3
ρ

2

∫
d3p

(2π)3

[ ∫ ∞
0

dw

−π
Im[Dπ(p)]Re[Dπ(q + p)]Im[Dνλ

ρ (q + k + p)]

(−2p− q)µ(−p+ k + q)λ(k − q − p)ν(f(w)− f(−q0 − k0 + w))

θ(−q0 − k0 + w)FFρ[q + p, k]FFρ[p, q + k]

]
p0=−w

, (A.6)

ImΓ
′′(3)Cρkπ
µab3 (k, q) = −ε3ab

g3
ρ

2

∫
d3p

(2π)3

[ ∫ ∞
0

dw

−π
Im[Dπ(p)]Im[Dπ(q − p)]Re[Dνλ

ρ (p+ k)]

(−2p+ q)µ(−p+ k + 2q)λ(k − p)ν(f(w)− f(q0 + w))

FFρ[p, k]FFρ[−q + p, q + k]

]
p0=−w

, (A.7)

ImΓ
′′(3)Cρqπ
µ ab3 (k, q) = ε3ab

g3
ρ

2

∫
d3p

(2π)3

[ ∫ ∞
0

dw

−π
Im[Dπ(p)]Im[Dπ(q + p)]Re[Dνλ

ρ (q + k + p)]

(−2p− q)µ(−p+ k + q)λ(k − q − p)ν(f(w)− f(q0 + w))

FFρ[q + p, k]FFρ[p, q + k]

]
p0=w

, (A.8)
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ImΓ
′′(3)Cσk
µab3 (k, q) = ε3ab

gρg
2
σ

2

∫
d3p

(2π)3

[ ∫ ∞
0

dw

−π
Im[Dπ(p)]Re[Dπ(q − p)]Im[Dσ(p+ k)]

(p+ k)2 −m2
π)(−2p+ q)µ(f(w)− f(k0 + w))

θ(k0 + w)FFρ[p, k]FFρ[−q + p, q + k]

]
p0=w

(A.9)

−ε3ab
gρg

2
σ

2

∫
d3p

(2π)3

[ ∫ ∞
0

dw

−π
Im[Dπ(p)]Re[Dπ(q − p)]Im[Dσ(p+ k)]

((p+ k)2 −m2
π)(−2p+ q)µ(f(w)− f(−k0 + w))

θ(−k0 + w)FFρ[p, k]FFρ[−q + p, q + k]

]
p0=−w

, (A.10)

ImΓ
′′(3)Cσq
µ ab3 (k, q) = ε3ab

gρg
2
σ

2

∫
d3p

(2π)3

[ ∫ ∞
0

dw

−π
Im[Dπ(p)]Re[Dπ(q + p)]Im[Dσ(q + k + p)]

((q + k + p)2 −m2
π)(−2p− q)µ(f(w)− f(q0 + k0 + w))

θ(q0 + k0 + w)FFρ[q + p, k]FFρ[p, q + k]

]
p0=w

−ε3ab
gρg

2
σ

2

∫
d3p

(2π)3

[ ∫ ∞
0

dw

−π
Im[Dπ(p)]Re[Dπ(q + p)]Im[Dσ(q + k + p)]

((q + k + p)2 −m2
π)(−2p− q)µ(f(w)− f(−q0 − k0 + w))

θ(−q0 − k0 + w)FFρ[q + p, k]FFρ[p, q + k]

]
p0=−w

, (A.11)

ImΓ
′′(3)Cσkπ
µab3 (k, q) = −ε3ab

gρg
2
σ

2

∫
d3p

(2π)3

[ ∫ ∞
0

dw

−π
Im[Dπ(p)]Im[Dπ(q − p)]Re[Dσ(p+ k)]

((p+ k)2 −m2
π)(−2p+ q)µ(f(w)− f(q0 + w))

FFσ[p, k]FFσ[−q + p, q + k]

]
p0=w

, (A.12)

ImΓ
′′(3)Cσqπ
µab3 (k, q) = ε3ab

gρg
2
σ

2

∫
d3p

(2π)3

[ ∫ ∞
0

dw

−π
Im[Dπ(p)]Im[Dπ(q + p)]Re[Dσ(q + k + p)]

((q + k + p)2 −m2
π)(−2p− q)µ(f(w)− f(q0 + w))

FFσ[q + p, k]FFσ[p, q + k]

]
p0=w

. (A.13)
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The real parts of the vertex corrections are given by the subtracted dispersion relations:

ReΓ
′′(3)Aρ
µab3 (k, q) =

−1

π

∫ ∞
−∞

dw

(
ImΓ

′′(3)Aρ
µab3 (k, q)

k0 − w

−
ImΓ

′′(3)Aρ
µab3

(
{k0 = 0, ~k}, q

)
−w

)
(A.14)

ReΓ
′′(3)Bρ
µab3 (k, q) =

−1

π

∫ ∞
−∞

dw

(
ImΓ

′′(3)Bρ
µab3 (k, q)

k0 − w

−
ImΓ

′′(3)Bρ
µab3

(
{k0 = −q0, ~k}, q

)
−w

)
, (A.15)

ReΓ
′′(3)C(ρ/σ)k
µ ab3 (k, q) =

−1

π

∫ ∞
−∞

dw

(
ImΓ

′′(3)C(ρ/σ)k
µ ab3 (k, q)

k0 − w

−
ImΓ

′′(3)C(ρ/σ)k
µ ab3

(
{k0 = 0, ~k}, q

)
−w

)
(A.16)

ReΓ
′′(3)C(ρ/σ)q
µ ab3 (k, q) =

−1

π

∫ ∞
−∞

dw

(
ImΓ

′′(3)C(ρ/σ)q
µ ab3 (k, q)

k0 − w

−
ImΓ

′′(3)C(ρ/σ)q
µ ab3

(
{k0 = −q0, ~k}, q

)
−w

)
, (A.17)

ReΓ
′′(3)C(ρ/σ)πk
µ ab3 (k, q) =

−1

π

∫ ∞
−∞

dw
ImΓ

′′(3)C(ρ/σ)πk
µ ab3 (k, q)

k0 − w
(A.18)

ReΓ
′′(3)C(ρ/σ)πq
µ ab3 (k, q) =

−1

π

∫ ∞
−∞

dw
ImΓ

′′(3)C(ρ/σ)πq
µ ab3 (k, q)

k0 − w
. (A.19)

The values for k0 used in the subtractions are chosen so that gauge invariance is maintained. These

subtractions are determined by the argument of the rho or sigma propagator, and are fixed by the

Ward identities and the subtractions used in the pion self-energy. Furthermore, ReΓ
′′(3)C(ρ/σ)π(k/q)
µab3

does not include a subtraction, because, unlike ReΣπ, ReΓ
′′(3)C(ρ/σ)π(k/q)
µab3 is not proportional to

ReD(ρ/Σ). Instead, ImΓ
′′(3)C(ρ/σ)π(k/q)
µab3 is proportional to ReD(ρ/Σ), this is in fact the first time

the real rho or sigma propagator has explicitly appeared in a self-energy or vertex corrections.

Until now the real part of the rho and sigma propagators have been calculated through subtracted

dispersion relations. Therefore, to ensure that the same rho and sigma propagators are used though

119



out our calculations, we perform a subtraction on ImΓ
′′(3)C(ρ/σ)π(k/q)
µab3 rather than ReΓ

′′(3)C(ρ/σ)π(k/q)
µab3 :

ImΓ̃
′′(3)Cρπk
µ ab3 (k, q) = ImΓ

′′(3)C(ρ/σ)πk
µ ab3 (k, q)− ImΓ

′′(3)Cρπk
µ ab3 ({k0 = 0, ~k}, q) (A.20)

ImΓ̃
′′(3)Cρπq
µ ab3 (k, q) = ImΓ

′′(3)C(ρ/σ)πq
µ ab3 (k, q)− ImΓ

′′(3)Cρπq
µ ab3 ({k0 = −q0, ~k}, q), (A.21)

ImΓ̃
′′(3)Cσπk
µab3 (k, q) = ImΓ

′′(3)C(ρ/σ)πk
µ ab3 (k, q)− ImΓ

′′(3)Cσπk
µab3 ({k0 = 0, ~k}, q) (A.22)

ImΓ̃
′′(3)Cσπq
µ ab3 (k, q) = ImΓ

′′(3)C(ρ/σ)πq
µ ab3 (k, q)− ImΓ

′′(3)Cσπq
µ ab3 ({k0 = −q0, ~k}, q). (A.23)

The above subtractions have the added benefit of ensuring that the imaginary part of each vertex

correction goes to zero for either k0 = 0 or q0 + k0 = 0 and do no violate gauge invariance.

The corrections can be grouped into the following spectral representations, before performing

the Matsubara sums in the rho self-energy:

Dπ(k)Γ
(3)k
µ ab3(k, q) =

−1

π

∫ ∞
−∞

dv
Im
[
Dπ(v,~k)Γ

(3)k
µ ab3({v,~k}, q)

]
k0 − v + iε

, (A.24)

Dπ(q + k)Γ
(3)q
µ ab3(q + k, q) =

−1

π

∫ ∞
−∞

dv′
Im
[
Dπ(v′, ~k)Γ

(3)q
µ ab3({v′, ~k}, q)

]
q0 + k0 − v′ + iε

, (A.25)

Dπ(k)Γ
(3)k
µ ab3(k, q)2 =

−1

π

∫ ∞
−∞

dv
Im
[
Dπ(v,~k)Γ

(3)k
µ ab3({v,~k}, q)2

]
k0 − v + iε

, (A.26)

Dπ(q + k)Γ
(3)q
µ ab3(q + k, q)2 =

−1

π

∫ ∞
−∞

dv′
Im
[
Dπ(v′, ~k)Γ

(3)q
µ ab3({v′, ~k}, q)2

]
q0 + k0 − v′ + iε

, (A.27)

where we define the functions:

Γ
(3)k
µ ab3(k, q) = Γ

′′(3)Aρ
µab3 (k, q) + Γ

′′(3)Cρk
µab3 (k, q) + Γ̃

′′(3)Cρkπ
µab3 (k, q)

+Γ
′′(3)Cσk
µab3 (k, q) + Γ̃

′′(3)Cσkπ
µab3 (k, q)

+gρε3ab(2k + q)i

( Σπ(ρ)(k)

Λ2
2ρ + (~q + ~k)2

+
Σπ(σ)(k)

Λ2
2σ + (~q + ~k)2

)
, (A.28)

Γ
(3)q
µ ab3(k, q) = Γ

′′(3)Bρ
µab3 (−q + k, q) + Γ

′′(3)Cρq
µ ab3 (−q + k, q) + Γ̃

′′(3)Cρqπ
µ ab3 (−q + k, q)

+Γ
′′(3)Cσq
µ ab3 (−q + k, q) + Γ̃

′′(3)Cσqπ
µab3 (−q + k, q)

+gρε3ab(2k − q)i
( Σπ(ρ)(k)

Λ2
2ρ + (~k)2

+
Σπ(σ)(k)

Λ2
2σ + (~k)2

)
. (A.29)
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The real part of the integrals in eqs. A.24 and A.27 are calculated from the principal values of the

integrals. Furthermore, we note that the functions in Γ
(3)k
µ ab3 and Γ

(3)q
µ ab3 include the corrections to the

ρππ vertex due to the addition of a form factor.

We are now in place to calculate the transverse projection of the ππ-loop diagrams containing

vertex corrections, at ~q = 0. In terms of Γ
(3)k
µ ab3 and Γ

(3)q
µ ab3 one can write the transverse projection of

the vertex corrections to the ππ-loop as:

Σρ1(q0, ~q = 0) =
2π

3
T
∑

n(even)

∫
d|~k|~k2

(2π)3

∫ ∞
−∞

dvdv′

π2

1

(k0 − v + iε)(q0 + k0 − v′ + iε)[
2gρε3ab(2|~k|)Im[Dπ(v,~k)Γ

(3)k
3 ba3({v,~k}, q)]Im[Dπ(v′, ~k)]

+2gρε3ab(2|~k|)Im[Dπ(v,~k)]Im[Dπ(v′, ~k)Γ
(3)q
3 ba3({v′, ~k}, q)]

+2Im[Dπ(v,~k)Γ
(3)k
3 ab3({v,~k}, q)]Im[Dπ(v′, ~k)Γ

(3)q
3 ba3({v′, ~k}, q)]

−Im
[
Dπ(v,~k)

(
Γ

(3)k
3 ab3({v,~k}, q)

)2]Im[Dπ(v′, ~k)]

−Im[Dπ(v,~k)]Im
[
Dπ(v′, ~k)

(
Γ

(3)q
3 ab3({v′, ~k}, q)

)2]]
k0=iωn

+ PV. (A.30)

One can now perform the Matsubara sum to obtain:

Σρ1(q0, ~q = 0) =
−2π

3

∫
d|~k|~k2

(2π)3

∫ ∞
−∞

dvdv′

π2

(f(v)− f(v′))

q0 + v − v′[
2gρε3ab(2|~k|)Im[Dπ(v,~k)Γ

(3)k
3 ba3({v,~k}, q)]Im[Dπ(v′, ~k)]

+2gρε3ab(2|~k|)Im[Dπ(v,~k)]Im[Dπ(v′, ~k)Γ
(3)q
3 ba3({v′, ~k}, q)]

+2Im[Dπ(v,~k)Γ
(3)k
3 ab3({v,~k}, q)]Im[Dπ(v′, ~k)Γ

(3)q
3 ba3({v′, ~k}, q)]

−Im
[
Dπ(v,~k)

(
Γ

(3)k
3 ab3({v,~k}, q)

)2]Im[Dπ(v′, ~k)]

−Im[Dπ(v,~k)]Im
[
Dπ(v′, ~k)

(
Γ

(3)q
3 ab3({v′, ~k}, q)

)2]]
+ PV, (A.31)

where PV represents the Paulli Villars regularization terms, defined by dressing the vacuum Pauli

Vilars terms with thermal pion self-energies and vertex corrections. These terms can be obtained

by taking the temperature in the Bose distribution (f(v)) to zero and replacing the pion mass inDπ
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with the appropriate heavy pion mass. Next, we must remove double counting from the Landau

cut of Σρ1. This is achieved by including a function Σ̃ρ1, which subtracts out the double counting:

Σ̃ρ1(q0, ~q = 0) = −−2π

3

∫
d|~k|~k2

(2π)3

∫ ∞
−∞

dvdv′

π2

θ(vv′)(f(v)− f(v′))

q0 + v − v′[
gρε3ab(2|~k|)Im[Dπ(v,~k)χk({v,~k}, q)]Im[Dπ(v′, ~k)]

+gρε3ab(2|~k|)Im[Dπ(v,~k)]Im[Dπ(v′, ~k)χq({v′, ~k}, q)]], (A.32)

where:

χk(k, q) = Γ
′′(3)Cρk
3 ba3 (k, q) + Γ̃

′′(3)Cρkπ
3 ba3 (k, q)

χq(k, q) = Γ
′′(3)Cρq
3 ba3 (−q + k, q) + Γ̃

′′(3)Cρqπ
3 ba3 (−q + k, q). (A.33)

A.2 Tad pole loop corrections

In this section we calculate the corrections to the tad pole loop from the ρρππ vertex correc-

tions. To begin we consider Γ
′′(4)Aρ
µν ab33, which we rewrite in terms of a function Γ̃

(4)Aρ
µν ab33 such that:

Γ
′′(4)Aρ
µν ab33(k, q) = i

(
Γ̃

(4)Aρ
µν ab33(k, q) + Γ̃

(4)Aρ
µν ab33(−k, q)

)
. (A.34)

We have factored an i out of the vertex correction, so that it more closely resembles the vacuum

ππρρ vertex. Furthermore, it is more convenient to define spectral representations with Γ̃
(4)Aρ
µν ab33

than Γ
′′(4)Aρ
µν ab33, because the imaginary part of Γ̃

(4)Aρ
µν ab33 can be broken into cuts corresponding to

corrections induced by either Σπ’s Landau or unitarity cut. After grouping propagators into spectral

representations and performing the Matsubara sum, the imaginary part of Γ̃
(4)Aρ
µν ab33 can be calculated
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using eq. 2.25:

ImΓ̃
(4)Aρ
µν ab33(k, q) = −(−3δ3aδ3b + 5δab)

g4
ρ

2

∫
d3p

(2π)3

[ ∫ ∞
0

dw

−π
Im[Dπ(p)]Im[Dµν

ρ (q + k + p)]

(f(w)− f(q0 + k0 + w))θ(q0 + k0 + w)FFρ[q + p, k]2
]
p0=w

+(−3δ3aδ3b + 5δab)
g4
ρ

2

∫
d3p

(2π)3

[ ∫ ∞
0

dw

−π
Im[Dπ(p)]Im[Dµν

ρ (q + k + p)]

(f(w)− f(−q0 − k0 + w))θ(−q0 − k0 + w)FFρ[q + p, k]2
]
p0=−w

, (A.35)

where we only write the cuts necessary to maintain gauge invariance with the Landau cut of Σπ.

The real part of Γ
′′(4)Aρ
µν ab33 can be calculated with the subtracted dispersion relation:

ImΓ̃
′′(4)Aρ
µν ab33 =

−1

π

∫ ∞
−∞

dw
( ImΓ̃

′′(4)Aρ
µν ab33(k, q)

k0 − w
−

ImΓ̃
(4)Aρ
µν ab33

(
{k0 = −q0, ~k}, q

)
−w

)
. (A.36)

The transverse projection of the rho self-energy corrections derived from Γ
′′(4)Aρ
µν ab33, at ~q = 0 are
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given by:

Σρ2(q0, 0) =
2π

3
T
∑

n(even)

∫
d|~k|~k2

(2π)3

[
Dπ(k)(−i)Γ′′(4)Aρ

ii aa33 (k, q)
]
k0=iωn

+ PV

=
4π

3
T
∑

n(even)

∫
d|~k|~k2

(2π)3

∫ ∞
−∞

dvdv′

π2
Im[Γ̃

(4)Aρ
ii aa33({−q0 + v′, ~k}, q)]

Im[Dπ(v,~k)]
1

(iωn − v + iε)(q0 + iωn − v′ + iε)
+ PV

=
−4π

3

∫
d|~k|~k2

(2π)3

∫ ∞
−∞

dvdv′

π2
Im[Γ̃

(4)Aρ
ii aa33({−q0 + v′, ~k}, q)]

Im[Dπ(v,~k)]
1

q0 + v − v′ + iε
(f(v)− f(v′))(1− 1

2
θ(vv′))

Im[Dπ(v,~k)]f(v)(1− 1

2
θ(vv′)) + PV, (A.37)

Σ0
ρ2 =

4π

3
T
∑

n(even)

∫
d|~k|~k2

(2π)3

∫ ∞
−∞

dv

−π
Re[Γ̃

(4)Aρ
ii aa33({0, ~k}, 0)]

Im[Dπ(v,~k)]

(iωn − v + iε)
+ PV

= −4π

3

∫
d|~k|~k2

(2π)3

∫ ∞
−∞

dv

−π
Re[Γ̃

(4)Aρ
ii aa33({0, ~k}, 0)]

Im[Dπ(v,~k)]f(v)(1− 1

2
θ(v)) + PV (A.38)

where the theta functions are added in the last equalities to remove double counting from the

Landau cut, as was described in section 4.6. Furthermore, we have explicitly calculated the self-

energy contribution from the subtraction constant in ReΓ̃
(4)Aρ
ii aa33 with Σ0

ρ2. This is done because

the spectral representation of Γ̃
(4)Aρ
ii aa33 has no knowledge of the subtraction, thus it must be handled

separately.

The corrections to the tad pole due to the addition of a form factor can be expressed in a similar
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form. We write these contributions in terms of the functions:

YFk(k, {q0, ~q = 0}) = −4gρε3cak3

Λ2
2ρ + ~k2

[
Γ
′′(3)Aρ
3 ac3 (k, q) + Γ

′′(3)Cρk
3 ac3 (k, q) + Γ

′′(3)Cρkπ
3 ac3 (k, q)

]
−4gρε3cak3

Λ2
2σ + ~k2

[
Γ
′′(3)Cσk
3 ac3 (k, q) + Γ

′′(3)Cσkπ
µac3 (k, q)

]
−4g2

ρ

{
4k2

3

[
Σπ(ρ)(k)

(Λ2
2ρ + ~k2)2

+
Σπ(σ)(k)

(Λ2
2σ + ~k2)2

]

−3
Σπ(ρ)(k)

Λ2
2ρ + ~k2

− 3
Σπ(σ)(k)

Λ2
2σ + ~k2

}
, (A.39)

YFq(k, {q0, ~q = 0}) = −4gρε3cak3

Λ2
2ρ + ~k2

[
Γ
′′(3)Bρ
3 ab3 (−q + k, q) + Γ

′′(3)Cρq
3 ab3 (−q + k, q)

+Γ
′′(3)Cρqπ
3 ab3 (−q + k, q)

]
−4gρε3cak3

Λ2
2σ + ~k2

[
Γ
′′(3)Cσq
3 ab3 (−q + k, q) + Γ

′′(3)Cσqπ
3 ab3 (−q + k, q)

]
−8g2

ρk
2
3

[
Σπ(ρ)(k)

(Λ2
2ρ + ~k2)2

+
Σπ(σ)(k)

(Λ2
2σ + ~k2)2

]
. (A.40)

The transverse projection of the corresponding rho self-energy correction at ~q = 0 is then given
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by:

Σρ3(q0, 0) =
2π

3
T
∑

n(even)

∫
d|~k|~k2

(2π)3

[
Dπ(k)

(
YFq(q + k, q) + YFq(q − k, q) +

YFk(k, q) + YFk(−k, q)
)]

k0=iωn

=
4π

3
T
∑

n(even)

∫
d|~k|~k2

(2π)3

∫ ∞
−∞

dvdv′

π2
Im[YFq({v′, ~k}, q)]

Im[Dπ(v,~k)]
1

(iωn − v + iε)(q0 + iωn − v′ + iε)

=
−4π

3

∫
d|~k|~k2

(2π)3

∫ ∞
−∞

dvdv′

π2
Im[YFq({v′, ~k}, q)]

Im[Dπ(v,~k)]
1

q0 + v − v′ + iε
(f(v)− f(v′)) + PV, (A.41)

Σ0
ρ3 =

4π

3
T
∑

n(even)

∫
d|~k|~k2

(2π)3

∫ ∞
−∞

dv

−π
Re[YFq({0, ~k}, 0)]

Im[Dπ(v,~k)]

(iωn − v + iε)
+

4π

3
T
∑

n(even)

∫
d|~k|~k2

(2π)3

∫ ∞
−∞

dv

−π
Im
[
YFk({v,~k}, 0)Dπ(v,~k)

]
(iωn − v + iε)

= −4π

3

∫
d|~k|~k2

(2π)3

∫ ∞
−∞

dv

−π
Re[YFq({0, ~k}, 0)]Im[Dπ(v,~k)]f(v)−

4π

3

∫
d|~k|~k2

(2π)3

∫ ∞
−∞

dv

−π
Im
[
YFk({v,~k}, 0)Dπ(v,~k)

]
f(v) + PV, (A.42)

where we again must calculate the contribution from the subtraction constants in ReYFq explicitly

with Σ0
ρ3. We note that the rho self-energy diagrams involving YFk only contribute a constant shift

to the real part of ΣT
ρ , and thus are also included in Σ0

ρ3.

Next, we calculate the corrections to the tad pole that can be expressed in terms of unitarity cuts

of ρπ or σπ-loops, Γ
′′(4)B1ρ
µν ab33 , Γ

′′(4)B2ρ
µν ab33 , Γ

′′(4)Eρ
µν ab33, Γ

(4)Gρ
µν ab33, Γ

′′(4)Eσ
µν ab33, and Γ

′′(4)Gσ
µν ab33. From figure 4.12, one

can see that the tad pole contributions derived from Γ
′′(4)Eρ
µν ab33, Γ

(4)Gρ
µν ab33, Γ

′′(4)Eσ
µν ab33, and Γ

′′(4)Gσ
µν ab33 simply

dress a pion propagator in the rho self-energy with a ρπ or σπ-loop. When the tap pole loop was

thermal this produced double counting, however the vacuum tad pole loop produces unique rho

self-energies. These rho self-energies dress a pion propagator with the unitarity cut of the pion

self-energy (ΣU
π ). ΣU

π is given for positive energy by the sum of eqs. 3.37 and 3.41. For negative
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energy ΣU
π is determined by enforcing the retarded property of the pion self-energy (eq. 3.45). The

real part of ΣU
π can then be evaluated with a dispersion relation. However, the dispersion relations

converges quite slowly, resulting in an unphysical shift of the pion mass by approximately 800

MeV. This shift is produced by vacuum π → ρπ decay and in principal should be absorbed into

the pion mass, however modifying the real part of the vacuum tad pole loop in only these diagrams

would violate gauge invariance. In order to remove the shift systematically and preserve gauge

invariance, we resum the pion propagators in the rho self-energy with ΣU
π giving:

Σµν
ρU(q) = g2

ρ

∫
d3k

(2π)3

∫ ∞
−∞

dvdv′

π2

(2k + q)µ(2k + q)ν

q0 + v − v′ + iε
(f(v)− f(v′))θ(vv′)

Im[
1

v2 − ~k2 −m2
π − Σπ(v,~k, T )− ΣU

π (v,~k, T )− ReΣU
π (mπ, 0, 0)

]

Im[
1

(v′)2 − (~q + ~k)2 −m2
π − Σπ(v′, ~q + ~k, T )− ΣU

π (v′, ~q + ~k, T )− ReΣU
π (mπ, 0, 0)

]

−2g2
ρg

µν

∫
d3k

(2π)3

∫ ∞
−∞

dv

−π
f(v)θ(v)

Im[
1

v2 − ~k2 −m2
π − Σπ(v,~k, T )− ΣU

π (v~k, T )− ReΣU
π (mπ, 0, 0)

], (A.43)

where

ReΣU
π (k) =

−1

π
p.v.

∫ ∞
0

dv2 ImΣU
π (v,~k)

k2
0 − v2

− ImΣU
π (v,~k)

−v2
, (A.44)

and we have limited the integration with theta functions to ensure we do not introduce new vacuum

rho self-energy diagrams. Finally, we apply Pauli Villars regularization to the vacuum ΣU
π loop,

such that:

ImΣU
π (k,mπ, T ) → ImΣU

π (k,mπ, T )− 2ImΣU
π (k,

√
m2
π + Λ2

0, T = 0)

+ImΣU
π (k,

√
m2
π + 2Λ2

0, T = 0), (A.45)

Equation A.43 contains the tad pole corrections derived from Γ
′′(4)Eρ
µν ab33, Γ

(4)Gρ
µν ab33, Γ

′′(4)Eσ
µν ab33, and

Γ
′′(4)Gσ
µν ab33 in the resummation of the pion propagator. However, in eq. A.43 we are free to treat ΣU

π
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equivalently to Σπ, performing a zero energy subtraction on ReΣU
π . Furthermore, we add a constant

shift ReΣU
π (k0 = mπ, ~k = 0, T = 0) to ensure that the vacuum pion mass is 140 MeV at ~p = 0. We

are now free to add this constant without violating gauge invariance, because it simply amounts

to a redefinition of the bare pion mass. Finally, because we have dressed the pion propagators

with ΣU
π the Ward identities imply that additional vertex correction should be calculated. These

additional correction simply correspond to the unitarity cuts of the previously calculated thermal

vertex correction. However, we have actually already encountered these corrections by dressing

the unitarity cut of the rho self-energy with thermal vertex corrections. For example, the first two

diagrams in figure 4.12 are derived from the vertex corrections Γ
′′(4)B1ρ
µν ab33 and Γ

′′(4)B2ρ
µν ab33 , however

one can also generate these diagrams by dressing the ππ-loop with the unitarity cut of Γ
′′(3)Aρ
µab3 .

This symmetry is precisely why double counting was encountered in the Landau cut. In fact,

the first order corrections to the resummation in eq. A.43 are already included in our formalism,

and attempting to explicitly calculate vertex corrections due to ΣU
π would only introduce double

counting into the unitarity cut of Σµν
ρ .

We now take the transverse projections of Σµν
ρU , at ~q = 0 to obtain:

Σρ4(q0, 0) =
4πg2

ρ

3

∫
dk~k2

(2π)3

∫ ∞
−∞

dvdv′

π2

4~k2

q0 + v − v′ + iε
(f(v)− f(v′))θ(vv′)

Im[
1

v2 − ~k2 −m2
π − Σπ(v,~k, T )− ΣU

π (v,~k, T )− ReΣU
π (mπ, 0, 0)

]

Im[
1

(v′)2 − (~q + ~k)2 −m2
π − Σπ(v′, ~q + ~k, T )− ΣU

π (v′, ~q + ~k, T )− ReΣU
π (mπ, 0, 0)

]

(A.46)

Σ0
ρ4(q0, 0) = −

8g2
ρ

3

∫
dk~k2

(2π)3

∫ ∞
−∞

dv

−π
f(v)θ(v)

Im[
1

v2 − ~k2 −m2
π − Σπ(v,~k, T )− ΣU

π (v~k, T )− ReΣU
π (mπ, 0, 0)

], (A.47)

where Σ0
ρ4 gives the constant shift in ReΣρ from dressing the tad pole loop.

Finally, we calculate the rho self-energy corrections due to Γ
′′(4)B1ρ
µν ab33 and Γ

′′(4)B2ρ
µν ab33 . We have
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already indicated that these corrections can be expressed in terms of the unitarity cut of Γ
′′(3)Aρ
µab3 :

ImΓ
′′(3)AUρ
µab3 (k, q) = ε3ab

3g3
ρ

2

∫
d3p

(2π)3

[ ∫ ∞
0

dw

−π
Im[Dπ(p)]Im[Dνλ

ρ (p+ k)]

gµλ(k − p)ν(1 + f(w) + f(k0 − w))

θ(k0 − w)FFρ[−q + p, q + k]FFρ[p, k]

]
p0=−w

−ε3ab
3g3

ρ

2

∫
d3p

(2π)3

[ ∫ ∞
0

dw

−π
Im[Dπ(p)]Im[Dνλ

ρ (p+ k)]

gµλ(k − p)ν(1 + f(w) + f(−k0 − w))

θ(−k0 − w)FFρ[−q + p, q + k]FFρ[p, k]

]
p0=w

−2
[
mπ →

√
m2
π + Λ2

0

]
T=0

+
[
mπ →

√
m2
π + 2Λ2

0

]
T=0

, (A.48)

where the last line implements the Pauli Villars regularization on the vacuum loop. The real part

of Γ
′′(3)AUρ
µab3 is given by the subtracted dispersion relation:

ReΓ
′′(3)AUρ
µab3 (k, q) =

−1

π
p.v.

∫ ∞
−∞

dv
ImΓ

′′(3)AUρ
µab3 ({v,~k}, q)

k0 − v
−

ImΓ
′′(3)AUρ
µab3 ({v,~k}, q)
−v2

.

(A.49)

The self-energy correction arising from Γ
′′(4)B1ρ
µν ab33 and Γ

′′(4)B2ρ
µν ab33 is then given by:

Σρ5(q0, 0) =
−8π

3

∫
d|~k|~k2

(2π)3

∫ ∞
−∞

dvdv′

π2
Im[Dπ(v′, ~k)]Im

[
Dπ(v,~k)Γ

(3)AUρ
3ba (v,~k)

]
(2gρ|~k|ε3ab)

(f(v)− f(v′))

(q0 + v − v′ + iε)
θ(vv′), (A.50)

where we again limit our calculation to the Landau cut of Σµν
ρ .
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A.3 Total corrections

The total contribution of the vertex corrections to the transverse projections of the rho self-

energy, at ~q = 0, is given by:

ΣV C
ρ (q0, 0) = Σρ1(q0, 0) + Σ̃ρ1(q0, 0) + Σρ2(q0, 0) + Σ0

ρ2 + Σρ3(q0, 0) + Σ0
ρ3

+Σρ4(q0, 0) + Σ0
ρ4 + Σρ5(q0, 0). (A.51)

The imaginary part can be calculated from Σρ1, Σ̃ρ1, Σρ2, Σρ3, Σρ4, and Σρ5 by converting 1
q0+v−v′+iε

into a delta function and performing the remaining integrations. The real part can then be calcu-

lated through the dispersion relation:

ReΣV C
ρ (q) =

−1

π
p.v.

∫ ∞
0

dv2ImΣV C
ρ (v, ~q)

q2
0 − v2

+ Σ0
ρ2 + Σ0

ρ3 + Σ0
ρ4, (A.52)

where we do not perform a subtraction, because we have explicitly calculated the nondispersive

constant with Σ0
ρ2, Σ0

ρ3, Σ0
ρ4.
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