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ABSTRACT

Since the Bose-Einstein condensation (BEC) of magnons in ferromagnetic films was realized,

it has drawn much attention due to the unique property of magnon spectrum. Namely, the BEC has

two components corresponding to the two ground states of magnons. In recent years, experiments

showed the repulsive nature of magnons and the spatial separation of condensate magnon cloud,

contradicting the existing quasi-equilibrium theory. To explain such phenomena, we found the

error in this theory: The equilibrium state of the two components is never reached, and, on the

contrary, the flipping rate of magnon from one component into the other is much lower than its

self-decay rate.

In the following part, we proposed the two-time model, treating magnons as classical particles.

The model is based on the continuity equation of magnon creation, annihilation, and flow. With its

help, we can not only explain the experimental findings, but also explore a fundamental question:

the spatial distribution of BEC magnons.
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NOMENCLATURE

OGAPS Office of Graduate and Professional Studies at Texas A&M
University

BEC Bose-Einstein condensation

YIG Yttuium iron garnet

BLS Brillouin light scattering

BECM Bose-Einstein condensate of magnons

L length of the sample along ẑ direction

l width of the control line

ℓ dipolar length

d sample thickness

H the strong uniform external magnetic field

h(z) the extra non-uniform magnetic field as a potential well

Q the in-plane wave vector of condensate magnons (positive
branch)

n0 equilibrium density of BEC magnons without the presence of
h(z)

n(z, t) density of BEC magnons with h(z) applied

τmin−min inter-minima relaxation time

τm lifetime of condensate magnons

j(z) current density of magnon flow
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1. INTRODUCTION

Bose-Einstein condensation (BEC) of magnons was first discovered in 2006 by the Münster

University experimental team led by S.O. Demokritov [1]. The experiment was performed with an

Yttrium Iron Garnet (YIG) film, or Y3Fe2(FeO4)3 under steady state pumping at room temperature.

The Brillouin light scattering (BLS) was used to detect magnon density. BEC of magnon occurs

when chemical potential reaches the minimal energy of magnons.

Bose-Einstein condensate of magnons (BECM) received much attention in the following years,

because of its unique properties. The spectrum of magnons in the film is quite non-trivial. Let’s

set the external magnetic field H directs towards ẑ, parallel to the film, while x̂ is perpendicular

to film. The spectrum has two symmetric minima: ωmin ≈ eH
m∗c , ±Q = (0, 0,±Q) (Q =

(2π3)
1/4

√
ℓd

[2]), and a local maximum at k = (0, 0, 0). ωmax ≈ e
m∗c

!
H (H + 4πM) corresponds to the

ferromagnetic resonance.

The presence of two ground states with equal energy makes BECM different from the usual

BEC system. Naturally, one would wonder: will the BEC of magnons have two components?

And how do the two components interact? In 2012, the same group [3], observed the interference

pattern of two condensate components. Although the two ground states share the same energy,

their density may vary significantly, and the interference found to be weak, with the depth of

interference pattern only about 3-4% of total density.

In 2013, Li, Saslow, and Pokrovsky [4] proposed the quasi-equilibrium theory, which explained

the asymmetry of the density of two components. Considering magnon interaction, (especially

magnon-non-conserving terms in 4th order Hamiltonian), the distribution was calculated by mini-

mizing total energy. The prediction was: for the film thickness d < dc ∼ 100nm, the system stays

in a high-contrast symmetric state, while for d > dc it is in a low-contrast non-symmetric state.

For small thickness d < 40nm, there remains only one minimum at zero wave vector.

However, two recent reports of the Demokritov team [5] [6] displayed several important facts

contradicting existing theories of the BECM. Although a complete theoretical description of these
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experiments is still in development, we will present simplified theoretical arguments to determine

the properties of the uniform stationary BECM established under the steady state parametric pump-

ing that follows from the experimental facts.
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2. LITERATURE REVIEW

2.1 Experiment I

In the first experiment [5], the sample of YIG film was a square with the side L = 4mm, and

thickness d = 5µm, which mounts on the interface of the dielectric resonator. The constant mag-

netic field H = 600Oe along ẑ fixed the spontaneous magnetization M in the same direction. The

experiment was performed at room temperature that is below the ferromagnetic phase transition.

The value of spontaneous magnetization at this temperature is M = 109.4G. A nanometer-thick

golden stripe of width l = 10µm was inserted between the sample and resonator, along direction

ŷ (perpendicular to H but within the plane of film), so that the central line of the stripe divided the

sample into two equal halves. Let the upper surface of the sample be the plane x = 0. The length

of the stripe was a few centimeters. It is much larger than all other linear sizes of the system and

in all calculations will be treated as infinity. During the experiment, the steady current I through

the stripe created magnetic field h, whose z-component hz could be either antiparallel or parallel

to the field H, representing a potential well or potential barrier for magnons, respectively. The ab-

solute value of hz varied in limits between 10 to 20 Oe. In all measurements, the strong inequality

|hz| ≪ H was satisfied. A schematic drawing of the experimental device is shown in Fig. 2.1 (a).

(Adapted from "Schematic of the experiment." in [5])
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Figure 2.1: Experimental setup. a) A general view. The sample YIG film is placed on the Dielectric
resonator, which pumps magnon constantly into the film. The static uniform outside magnetic
field is H0. The yellow stripe is the control line, which creates an extra magnetic field h as a
potential well for magnons. The green cone stands for the laser probe used in the BLS method
to detect the density of BEC magnons. b) A cross-section of the system. c) A schematic plot of
condensate magnon density and magnetic field versus z coordinate. Adapted from "Schematic of
the experiment." in [5]. Used under https://creativecommons.org/licenses/by/4.0/.

There are several length scales in the problem. One of them is the dipolar length ℓ that defines

a scale at which the exchange and dipolar interactions are of the same order of magnitude. It is

defined by the exchange interaction term in the Landau-Lifshitz Hamiltonian written in the form:

Hex =
D

2

"
(∇M)2 d3x, (2.1)

where M is the vector of magnetization and D stands for renormalized exchange constant. The

dipolar length is defined as ℓ =
√
D. For YIG at room temperature, ℓ = 38nm [7]. The same

length ℓ is also called in literature the exchange length. The second characteristic length l is the

width of the gold plate generating inhomogeneous magnetic field in experiment I. The third length

is the distance between the golden plate and the sample x0. Two other lengths are the sample size:

its thickness d and the length of the side of the square sample L = 4mm. In the experimental

device, strong inequalities ℓ ≪ x0 ≪ d < l ≪ L were satisfied.
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The main result obtained in experiment I is the direct evidence that the magnons of condensate

repel each other. To show that, the experimenters switched off the pumping and followed how

the shape of the peak of condensate density changes with time. The results are shown in Fig. 2.2

(a), where the relative density n (z, t) /n (0, t) is displayed for several consecutive moments after

switching off the pumping t = 0. Fig. 2.2 (b) shows the exponential decay with different decay

time for different points of the initial density profile. Combining the two parts of Fig. 2.2, we can

see that: While the average condensate density exponentially decreases with time, the width of the

profile decreases as well. In other words, the larger the average magnon density is, the broader its

distribution grows in space. This is direct evidence of their repulsion.

Figure 2.2: Decaying of magnon density after pumping is turned off. a) Normalized spa-
tial density of condensate magnons, recorded at different delay time, in a potential well with
∆Hmax = −10Oe. Solid lines are a guide for the eye. b) Time dependence of condensate density
at different positions. Dashed lines are exponential fit of data. Effective decay times are labeled
using the same color as the corresponding data. Reprinted from "Time evolution of the conden-
sate density in a potential well after turning the microwave pumping off." in [5]. Used under
https://creativecommons.org/licenses/by/4.0/.

2.2 Experiment II

The second experiment [6] was performed in the same geometry as the first one. A short pulse

of magnetic field submitted to magnons of condensate an additional amount of energy ∆ε. It splits

the condensate initially distributed between two minima into four moving condensate clouds corre-

sponding to four points of the magnon spectrum with energy εmin +∆ε (0 < ∆ε < εmax − εmin).
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These beams have finite velocities. Listing in the order of increasing kz, velocities of 4 clouds

are −v1, v2,−v2, v1, which are equal to derivatives dε
dk

in the four points of the spectrum. Such

a motion of the beams was observed in experiment II as is shown in Fig. 2.3 (a) (Adapted from

"Idea of the experiment." in [6]). The clouds eventually smear out since the field in the pulse is

non-uniform, and ∆ε depends on z. The clouds display some asymmetry for reflection kz ⇔ −kz,

but it is not strong.

Figure 2.3: a) Schematic drawing of the splitting of the 4 clouds in real space. b) Magnon spectrum
after the pulse is applied. The thick curve is the spectrum at the center, where magnetic field is
H0+∆H . And the thin curve is spectrum far away from the center. The arrows show schematically
the velocities (in real space) of the corresponding cloud. Adapted from "Idea of the experiment."
in [6]. Used under https://creativecommons.org/licenses/by/4.0/.

2.3 Quasiequilibrium theory

In the article [4], it was assumed that the weakly interacting gas of magnons relaxes to the

equilibrium state with non-zero chemical potential µ. It happens if the relaxation time τrel is much

less than the lifetime of magnons. In the basic approximation of non-interacting magnons, the

energy does not depend on the distribution of magnons between two minima, as long as the total

density of magnons n = n+ + n− is fixed. This degenercy is lifted by interaction. The general

bilinear form of the interaction free energy per unit volume is:

Fint =
A
2

#
n2
+ + n2

−
$
+Bn+n−+

C
√
n+n− (n+ + n−) cos (φ+ + φ−) +

D
2

#
n2
+ + n2

−
$
cos 2 (φ+ + φ−)

(2.2)
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The calculation of coefficients A and B by Tupitsyn et al. and by F. Li et al. showed A < 0, B > 0

and |A| ≪ B for a thick film d ≫ ℓ. The coefficients C and D found first in the work by F. Li et

al. and recalculated in [8] have magnitudes much less than |A|. Nevertheless, the coefficient C and

D are important. If they are equal to zero, one of the two condensate densities n+ or n− will be

zero in the equilibrium state. The coefficient C makes both densities finite, although one of them

is much less than another. It also results in the phase trapping: the phase φ = φ+ + φ− is equal

to 0 or π depending on the sign of the coefficient C. A rather simple calculation of minimal free

energy of condensate for a thick film, at a fixed value of the total density n, gives the two solutions

for the ratios n±
n

. One of them is

n
(1)
+

n
≈ 1− C2

4B2
;
n
(1)
−
n

=
C2

4B2
(2.3)

The second solution differs from the first by permutation of n+ and n−. These solutions are clearly

strongly asymmetric. Thus, in a thick film of YIG, the interaction leads to a spontaneous violation

of symmetry between the two condensates: the density of one of them becomes much larger than

the other. Their free energy is equal to Fint ≈ An2

2
< 0. [9] [10]. The attraction makes the

homogeneous equilibrium state unstable. The free energy is minimized by a state with periodically

repeated phase solitons. For different systems, such a state was first predicted by Sonin [2]. This

conclusion contradicts experiment I by Borisenko et al. that has proved the repulsion of magnons.

2.4 Analysis

What went wrong in the quasi-equilibrium theory? The only possible conclusion is that com-

plete equilibrium was not established in the magnon system. The most probable reason is that the

inter-minima relaxation time τmin−min is much longer than the lifetime of condensate magnons τm.

Here we argue that it is indeed the case. The processes that flip the magnon from one minimum

to the other and lead to the inter-minima equilibrium are i) Compton scattering of the low-energy

magnon by a thermal magnon and ii) the direct 4th order processes of a coherent flip of conden-

sate magnon interacting with a thermal magnon. Both these processes have very small probability

7



being proportional to the fourth power of a small non-linearity.

What is the uniform stationary state of the condensate? Since the magnons repel each other,

the uniform stationary state of the condensate does not collapse. If the inter-condensate relax-

ation processes considered in the previous paragraph are negligible, then the stationary state of

the condensate must be symmetric. The reason is that the interactions responsible for parametric

pumping and for the finite magnon lifetime are identical for the two condensates. The weak inter-

condensate relaxation processes lead to a weak spontaneous violation of the reflection symmetry.

This prediction agrees with the inter-condensate interference structure of the condensate discov-

ered by Novik-Boltyk et al. [11] In real experiments, it is difficult to avoid a weak asymmetry of

the device that favors one of two slightly asymmetric stationary states. Such a device asymme-

try can explain the asymmetry observed in experiment II by Borisenko et al. If the asymmetry

is relatively small, then in eq. (2.2) the term Bn+n− is dominant and positive. This theoretical

conclusion agrees with experiment I and makes the concept of weak spontaneous violation of the

reflection symmetry self-consistent.
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3. CALCULATION OF INTER-MINIMA RELAXATION TIME

Before proceeding to the theory, it is important to check that the inter-minima relaxation time

is indeed much longer than the condensate lifetime. Below we briefly describe the amplitude

representation method that we applied.

3.1 Hamiltonian

There are three terms in our Hamiltonian: exchange, Zeeman, and dipolar terms, denoted as

Hex, HZ , and Hd, respectively:

H = Hex +Hz +Hd

Hex = −J
%

〈i,j〉

Si · Sj

HZ = −gµB

%

i

H · Si

Hd = −1

2
(gµB)

2
%

i ∕=j

3(Si · r̂ij)(Sj · r̂ij)− Si · Sj

r3ij

(3.1)

Here, g ≈ 2 and µB are g-factor and Bohr magneton, respectively, and H is the external magnetic

field. For exchange term, J is exchange integral, which is positive in ferromagnet material, and

〈i, j〉 means summing over nearest neighbor.

If we focus on long-wave magnons, meaning those with wavelength much larger than the lattice

constant, we could rewrite the Hamiltonian using continuous field S(ri) = Si/a
3 = M(ri)/(gµB)

:
Hex =

D

2

"
(∇M)2 d3x

HZ = −
"

H ·Md3r

Hd =
1

2

""
(M ·∇)(M′ ·∇′)

1

|r− r′|d
3rd3r′

(3.2)

where D is already introduced as square of dipolar length. M′ ≡ M(r′) , and ∇′ ≡ (∂x′ , ∂y′ , ∂z′).
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3.2 Amplitude representation

The standard Holstein-Primakoff transformation turns the spin operator S into creation and

annihilation operators:

S+
j =

√
2S

&
1−

a†jaj

2S

'1/2

aj

S−
j =

√
2Sa†j

&
1−

a†jaj

2S

'1/2

Sz
j = S − a†jaj

(3.3)

where S± = Sx± iSy. When dealing with long wave magnons, one can rewrite this transformation

in the classical limit, with amplitudes ψ(rj), ψ∗(rj) replacing aj , a∗j , and γ ≈ 2µB.

M+(r) =
√
γψ(r)

!
2M − γψ(r)ψ∗(r)

M−(r) =
√
γψ∗(r)

!
2M − γψ(r)ψ∗(r)

Mz(r) = M − γψ(r)ψ∗(r)

(3.4)

Here, the order of ψ(rj), ψ∗(rj) no longer matters, but they should obey the following Poisson

bracket:

{ψ(r),ψ∗ (r′)} = − i

!
δ (r− r′) (3.5)

In amplitude representation, the Hamiltonian is:

Hex =
γ2D

2

" #
∇

#
|ψ|2

$$2
dV +

γD

2

" (((∇
)
ψ
!

2M − γ|ψ(r)|2
*(((

2

dV

Hz = γH
"

|ψ(r)|2dV

Hd =
1

2

""
Ω̂(r)Ω̂ (r′)

dV dV ′

|r− r′|

(3.6)

while

Ω̂(r) =
#
M − γ|ψ|2

$
∂z +

!
γ (2M − γ|ψ|2)

2
(ψ∂− + ψ∗∂+) (3.7)
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The current goal is to express the Hamiltonian with ηqn and η∗qn, which annihilates/creates

a magnon with in-plane wave vector q, and a quantum number n describes the modes in the x̂

direction. What’s more, the state corresponding to ηqn and η∗qn should also be eigenstates of

quadratic Hamiltonian H2:

H2 = Hex2 +Hz2 +Hd2

Hex2 = γMD

"
|∇ψ|2dV

Hz2 = γH
"

|ψ|2dV

Hd2 =
γM

4

""
(ψ∂− + ψ∗∂+)

#
ψ′∂′

− + ψ′∗∂′
+

$

|r− r′| dV dV ′

(3.8)

Here H stands for external magnetic field. To perform the diagonalization, one should do an in-

plane Fourier transform:

ψ(r) =
%

q

χq(x)
eiqr√
A

χq(x) =
1√
A

"" ∞

−∞
ψ(r)e−iqrdydz

(3.9)

where Poisson bracket of χq(x) is:
+
χq(x),χ

∗
q′ (x′)

,
= − i

!δqq′δ (x− x′). After that we perform

a Bogoliubov transform (done first by Holstein and Primakoff in [12]):

ηqn =

" d/2

−d/2

-
uqn(x)χq(x) + vqn(x)χ

∗
−q(x)

.
dx

χq(x) =
%

n

#
u∗
qn(x)ηqn − v−qn(x)η

∗
−qn

$ (3.10)

Here, ηqn (η∗qn) is the annihilation (creation) operator of magnon (q, n), where q is its in-plane

wave vector, and n is the quantum number describing its mode in x̂ direction. The Poisson bracket

of ηqn is:
+
ηqn, η

∗
q′n′

,
= − i

!δqq′δnn′ .
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We required that ηqn and η∗qn can diagonalize H2. This is equivalent to:

{H2, ηqn} = iωqnηqn (3.11)

where !ωqn will be the energy of the corresponding state. Equation (3.11) can be used to solve for

uqn(x) and vqn(x).

3.3 How to calculate inter-minima relaxation time

To calculate inter-minima relaxation time, first we need to isolate the relevant terms in the

Hamiltonian. Two processes primarily concern us:

4-magnon process: A condensate magnon (Q, 0) reacts with a thermal magnon in state (k, n):

(Q, 0) + (k, n) → (−Q, 0) + (k+ 2Q, n′) (3.12)

Compton process: A combination of two 3-magnon process:

(Q, 0) + (k, n) → (k+Q, n′′) → (Q, 0) + (k+ 2Q, n′) (3.13)

The Feynman diagrams for these processes are shown in Fig. 4.

Figure 3.1: Feynman diagrams for two inter-minima flipping processes. Dashed lines stand for
condensate magnons, while solid lines stand for thermal magnons.

Consider 4-magnon process first. The corresponding 4th order Hamiltonian (before Bogoli-

12



ubov transformation) reads:

Hex4 =
γ2D

4A

" %

q1,q2,q3,q4

-
χ∗
q2
χ∗
q4
dxχq1dxχq3 + χq1χq3dxχ

∗
q2
dxχ

∗
q4

+
#
q2
1 + q2

2

$
χq1χ

∗
q2
χq3χ

∗
q4

− 4q1q2χq1χ
∗
q2
χq3χ

∗
q4

.
δq1−q2+q3−q4dx

(3.14)

and

Hd4 =
2πγ2

A

"" %

q1,q2,q3,q4,q

+
q2zχq1χ

∗
q2
χ′
q3
χ′∗
q4
δq1−q2+qδq3−q4−q

− 1

4
χq1χ

∗
q2

-
χq3 (dx + qy) + χ∗

−q3
(dx − qy)

. -
χ′
q4
(dx′ − qy) + χ′∗

−q4
(dx′ + qy)

.

×δq1−q2+q3+qδq4−q}Gq (x− x′) dxdx′

(3.15)

where Gq(x) = e−q|x|/2q is the Green function of 1d Helmholtz equation.

After Bogoliubov transformation, we need to isolate the amplitude of the term ηQ1ηknη
∗
−Q1η

∗
(k+2Q)n′ ,

let us denote it as T (k, n, n′). According to Fermi’s golden rule, the rate of condensate flip process

is:

1

τ4th
=

%

k,n,n′

2π

!
|T (k, n, n′)|2[(Nk,n + 1)(NQ,1 + 1)N−Q,1Nk′,n′

−Nk,nNQ,1(N−Q,1 + 1)(Nk′,n′ + 1)]δεk,n+εQ,1−ε−Q,1−εk′,n′

(3.16)

The calculation of flipping process due to exchange term is shown below.

The 4th-order terms in the exchange interaction can be separated into two classes: containing

the transverse derivatives H(1)
ex4 and not containing them H

(2)
ex4, where:

H
(1)
ex4 =

γ2D

4A

%

k,n

d
2"

−d
2

dx
#
ηk,nηQdxη

∗
k+2Q,n′dxη

∗
−Q + c.c.

$
(3.17)

H
(2)
ex4 =

γ2D

4A

%

k,n

d
2"

−d
2

dx
#
k2 +Q2 − 4kQ

$ #
ηk,nηQη

∗
k+2Q,n′η∗−Q + c.c.

$
(3.18)
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To distinguish the notations of the thickness of film from differentials, we use the roman d for

sample thickness. The value n′ that enters k′
x ≈ 2πn′

d
can be found from the energy conservation

law:

k2 + k2
x = (k+ 2Q)2 + k′2

x (3.19)

The first interaction Hamiltonian is always much less than the second one since the derivative of

the transverse wave function dxηk,n = dx

)!
2/d cos kxx

*
= −kx

!
2/d sin kxx is proportional

to the first power of the large wave vector kx, whereas the second term contains the square of this

large wave vector. Neglecting also the terms Q2 − 4kQ in the first round bracket of eq. (3.18), we

find the dominant term in the 4th-order exchange term:

Hex4 =
γ2D

4A

%

k,n

k2

d
2"

− d
2

dx
#
ηk,nηQη

∗
k+2Q,n′η∗−Q + c.c.

$
(3.20)

The transverse wave functions are real. Therefore the integral we need to calculate is:

I = 2×
/
2

d

02
d
2"

− d
2

dx cos2
2πx

d
cos kxx cos k

′
xx (3.21)

Employing a simple trigonometric identity, we transform this integral into

I =
2

d2

d
2"

− d
2

dx

/
1 + cos

4πx

d

0
[cos (kx − k′

x) x+ cos (kx + k′
x) x] (3.22)

Since cos (kx + k′
x) x is a very rapidly oscillating function, its contribution to the integral can be

neglected. The difference of two wave vectors kx−k′
x can be approximately calculated employing

eq. (3.19) as

kx − k′
x ≃ −2 (kQ)

kx
(3.23)
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Thus, the integral (3.22) can be calculated analytically as

I =
2kx
d2

1
1

kQ
+

kQd2

2
-
(kQ)2 d2 − 4π2k2

x

.
2
sin

kQd

kx
(3.24)

With this the transition matrix element is:

Tkkx,Q→k+2Qk′x,−Q =
γ2Dk2

4A
I (3.25)

Let us introduce abbreviated notations for three-dimensional vectors k = (k, kx) and k′ = (k+ 2Q, k′
x).

The differential of transition probability per unit time in the continuum approximation is:

dwk,Q→k′,−Q = 2π
! |Tk,Q→k′,−Q|2 δ [γMD (k′2

x − k2
x + 2kQ)]

×NkNQ (Nk′ + 1) (N−Q + 1) V d3k′

(2π)3
,

(3.26)

where V = Ad is the volume of the film. To find the complete probability of transition per unit

time or equivalently the rate of flip due to exchange interaction, it is necessary to first integrate

over possible finite states. The energy conservation allows making integration over k′
x. After that,

we get:
3 dwk,Q→k′,−Q

dk′x
dk′

x = V
8π2!γMD

3
d2k
k′x

×

|Tk,Q→k′,−Q|2 NkNQ (Nk′ + 1) (N−Q + 1)
(3.27)

In this result, the summation over the parallel component of the initial moment is already per-

formed. It is necessary to make an additional summation of the differential probability over kx

that, in the continuous approximation, is equivalent to integration d
3
dkx/ (2π). We also need

to subtract the rate of the inverse process. Thus, the total condensate magnon change rate due to

4th-order exchange interaction (3.20) can be rewritten as

1
τex4

= V d
16π3!γMD

3
d3k
k′x

|Tk,Q→k′,−Q|2 ×

[NkNQ (Nk′ + 1) (N−Q + 1)− (Nk + 1) (NQ + 1)Nk′N−Q]
d3k
(2π)3

(3.28)
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In this integral, k′
x must be replaced by the value found from eq. (3.23) and k′ = k + 2Q.

Here Nk are the Planck occupation numbers Nk =
)
exp γMDk2

T
− 1

*−1

. The energy conservation

implies Nk = Nk′ . The value N±Q are the number of magnons in two condensate components

N±Q = V n±. Employing these properties and eq. (3.25), we find the following expression for the

rate of thee flip process:

1

τex4
=

γ3d2D |n+ − n−|
256π3!M

"
d3k

k′
x

k4I2Nk (Nk + 1) (3.29)
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4. TWO-TIME MODEL FOR THE RECOVERING OF MAGNON DENSITY AND

CURRENT ALONG Z-AXIS

4.1 Simple theory of experiment I: potential well for magnons

A theory that explains the experimental results for potential well employing two fitting pa-

rameters was presented in the article [5]. Here we will present a theory that does not use fitting

parameters at all but applies a simplifying assumption. We start with the formulation of basic

equations.

The density of magnons n (z, t) and z-component of their current jz (z, t) = n (z, t) v (z, t)

obey the modified continuity equation for a stationary process:

djz
dz

=
n0 − n

τ
(4.1)

Here jz = nvz is the z-component of the current; v = !
m
∇φ is the local velocity of the condensate.

On the right-hand side, the two terms in the numerator represent the pumping amplitude and atten-

uation, respectively. The lifetime τ may depend on the density and other parameters. Further, we

omit subscript z in the notations of current and velocity. In experiments, the density of condensate

magnons was much larger than that of normal magnons with the momentum comparable to Q. The

convective current due to the condensate magnons significantly exceeds the diffusive current of the

thermal magnons, although the thermal magnon density is approximately 100 times larger than the

condensate density. [8]

The amplitude of the magnon potential energy u (x, z) is associated with the z-component of

magnetic field h (x, z) from the current-carrying plate as u = −2µBh. This value can be estimated

from the general expression for potential as a function of two variables:

u (x, z) = −2µBh0

4
arctan

z + l/2

x+ x0

− arctan
z − l/2

x+ x0

5
(4.2)

17



In calculating the magnetic field of the plate, we neglected the thickness of the plate and non-

uniformity in the current distribution. To calculate the average energy per magnon, the potential

energy (4.2) must be averaged over x from 0 to d with the statistical weight 2 sin2 πx
d

. Simplifying

this procedure, we get a rougher but reasonable approximation putting x = d/2 in eq. (4.2):

u (z) = −2µBh0

4
arctan

z + l/2

d/2 + x0

− arctan
z − l/2

d/2 + x0

5
(4.3)

The averaged energy u (z) is an even function of z, negative at any z and going to zero as

− l(2d+x0)
z2

for z → ±∞. At z = 0, it has minimum ūmin = −4µBh0 arctan
l

2d+x0
. Since |ūmin| ≫

!2/ml2 for h0 ≫ 0.1Oe, the potential well has many levels. The number of levels can be estimated

as N =
l
√

2m|umin|
! ≃ 50. The level width is Γ = !/τ . With the experimental value of the

magnon lifetime within the condensate density peak τ1 = 10−7s, Γ = 10−20erg = 1
50
|u|min.

Thus, the energy levels overlap. In this situation, the magnons filling the potential well should be

considered as classical particles, since the phase coherence is suppressed by the attenuation. They

all have parallel magnetic moments −2µB directed opposite to the magnetic field and spontaneous

magnetization. The magnons confined in the peak can be roughly treated as particles inside the

infinite in y-direction rod of width l and thickness d. The total interaction energy is the sum of

interaction energy for each pair. For most interacting magnon pairs, the line connecting this pair

of magnons is almost parallel to the y-axis. These magnon pairs contribute to the major part of

interaction energy. Therefore, overall, magnons repel each other. The characteristic value of the

interaction energy per particle within the peak is 2µ2
Bnmax.

Equation (4.1) implies that dj
dz

is negative at the point z = 0. As a consequence of parity, n (z)

is an even function of z, and j (z) is an odd function. Therefore, j (0) = 0. The current j is

negative for z > 0. It reaches its minimum jmin at a point z1, where dj
dz

turns zero. According

to equation (4.1), this is the same point where the magnon density falls to its equilibrium value

n (z1) = n0. The value z1 has the order of magnitude l. From the experimental curve [5], we find
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that z1 ≈ 12µm = 1.2l. The value |jmin| can be estimated as

|jmin| ∼
(nmax − n0) l

τ1
, (4.4)

where we denoted τ1 the relaxation time within the peak. At the point z1, dn
dz

has the same order of

magnitude as its average in the peak

dn

dz
∼ −nmax − n0

l
. (4.5)

Therefore, the density of condensate continues to decrease. If it could reach the value n = 0,

then the magnon lifetime would change from τ1 in the peak to the much longer lifetime τ0 of

an isolated magnon. The latter can be estimated from the Landau-Lifshitz-Gilbert attenuation

constant α ≈ 10−5 for good YIG crystals and the condensate magnons frequency ωmin ≈ 1010s−1

at external magnetic field 600 Oe:

τ0 = (αωmin)
−1 ≈ 10−5s

It is by two decimal orders larger than τ1. The reason for such a sharp reduction of the lifetime in

the peak is the decoherence in the condensate caused by the large dissipative current j. However,

the value n = 0 is not attainable since the current j = nv would also be zero. It means that the

density reaches minimum value nmin at some point z2 > z1. We will assume that the lifetime τ0

persists at the minimum density nmin. Then in a vicinity of the point z2 eq. (4.1) becomes

dj

dz
=

n0 − n

τ0
(4.6)

Employing equation (4.6) in the entire interval (z1, z2) and assuming z2 − z1 ∼ l, the change of
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the current in this interval is

δj = j (z2)− j (z1) ∼ |jmin|
τ1
τ0

≪ |jmin|

The lifetime remains close to τ0 until the density is close to nmin and decreases when n grows.

However, as n approaches the value n0 the lifetime must go to infinity since the uniform equilib-

rium condensate remains coherent infinitely long time with the presence of steady state pumping.

Therefore, it is reasonable to assume that the large average value τ0 ≫ τ1 persists everywhere at

z2 < z < L/2.

Thus, at point z2, the current derivative dj/dz is finite and positive. The second derivative of the

current at z2: d2j
dz2

= − 1
τ0

dn
dz

is equal to zero. But it becomes negative for z > z2 and asymptotically

goes to zero for sufficiently large z ≫ l. Therefore, the positive value dj
dz

gradually decreases for

z > z2. Let us define the recovery length Lrec at which current vanishes and the stationary coherent

condensate is restored. Its lower boundary can be found employing eq. (4.6):

Lrec = |jmin| /
dj

dz

((((
z=z2

= |jmin|
τ0

n0 − nmin

(4.7)

According to eqs. (4.4) and (4.7), an estimate for Lrec can be rewritten as

Lrec ∼ l
nmax − n0

n0 − nmin

τ0
τ1

≫ l (4.8)

The experimental data are nmax

n0
= 5; nmin

n0
≈ 0.5, τ0 ≈ 10µs; τ1 ≈ 100ns. With these data

Lrec ≈ 800l = 8000µm = 8mm. But the linear size of the sample is L = 4mm. It occurs

that Lrec > L/2. Since the spins cannot propagate beyond the magnet, the current must be equal

to zero at both ends of the sample z = ±L/2. The relaxation of the current from zero to some

negative value proceeds on the correlation length for the current. At some z → L/2 ≫ l far

away from the control line, the coherence length is independent of l. Two linear sizes that may

be relevant are the dipolar length ℓ and the thickness of the film d. The total current is equal to
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j = n+v++n−v−+2
√
n+n− cos (2Qz + φ+ − φ−), where v± = !

m∗
∂φ±
∂z

. As we argued earlier, the

stationary state is rather weakly asymmetric. Therefore, n+ ≈ n− = n/2. The current averaged

over period is j = nv, v = v++v−
2

. Thus, the average current is established on the length of period
#
π
2

$1/4 √
ℓd = 1.12

√
ℓd. It plays the role of the current relaxation length. In experiment I, it was

equal to 4.9×10−4mm ≪ L/2 = 2mm. The estimate of the current derivative (4.6) with n = nmin

persists in the interval (z2, L/2).

All these relations can be summarized in the inequality:

nmax

n0

≳ n0 − nmin

n0

L

2l

τ1
τ0

+ 1 (4.9)

This inequality is the main result of our simplified theory. The right-hand side of this equation

can be considered as a rough estimate of the ratio nmax

n0
. We did not use the second hydrodynamic

equation. Eq. (4.9) shows that nmax

n0
becomes independent of the amplitude of inhomogeneous

field h0 or the current I through the plate as soon as the number of states in the potential well for

magnons N =
l
√

2m|u(0)|
! becomes much more than 1. In other words, nmax

n0
reaches saturation for

large current I in the plate.

For experimental data n0−nmin

n0
= 0.5 and L/l = 400 it follows that τ1

τ0
must be about 0.02 to

get the experimental value nmax

n0
= 5. The best fit parameters found in the experiment [1] were

τ1 = 130ns and τ0 = 10µs. However, the measurements of τ1 show different values at different

positions, from the maximum value 180 ns in the peak to the minimum value 120 ns at z = 10 nm.

The value of τ0 = 10µs was not measured in experiment I. It was extracted from the best fit for

the magnon mobility, assuming that the dispersion ω (k) can be approximated quadratically near

its minimum. In YIG film, the quadratic approximation is valid only in a small range because ω(k)

is strongly asymmetric at both minima, with kz < Q side much steeper than the other. As support,

note that the local maximum of frequency γ
!

H(H + 4πM) locates at k = 0. It is separated from

the minimum by the interval k1 = −Q = −(2π3)
1/4

√
ℓd

, whereas the same value of frequency to right

of minimum locates at k2 =

67
1 + 4πM

H
− 1/ℓ ≫ |k1|. For H = 600Oe and 4πM = 1750Oe
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the ratio k2/ |k1| ≈ 10.

4.2 Simple theory of experiment I: potential barrier for magnons.

Let us consider the case of a potential barrier. It is described by the same equation (4.2) with

positive h0. We again will use the approximation for averaged potential u (z) = 2µBh (d/2, z)

defined by eq. (4.3). It reaches its maximum z = 0 with

umax = 8µBh0 arctan
l

d+ 2x0

(4.10)

The value pmax =
√
2mumax determines characteristic (imaginary) momentum at the top of the

energy barrier. The tunneling probability T is determined by imaginary action S = pmaxl as

T = exp (−S/!) = exp
#
−
√
2mumaxl/!

$
(4.11)

We assume T ≪ 1. It implies that the ratio S/! is greater than 1. But it cannot be too large in the

experiment, limited by the resolution of the BLS signal at small condensate density. The minimum

density is n (0) = n0T
2.

As in the attractive case, the relation between the local density n (z) and z-component of the

current jz is expressed by equation (4.1). Since n (0) /n0 = T ≪ 1, we conclude that

dj

dz

((((
z=0

≈ n0

τ0
, (4.12)

where τ0 is the relaxation time at a very low magnon density. The current j is zero at z = 0, and

according to eq. (4.12), dj
dz

is positive here. Suppose j reaches its maximum value jmax at some

point z1 ∼ l. At this point, the growing density reaches value n (z1) = n0 and djz
dz

((
z=z1

= 0. The

value jmax can be estimated in the same way we estimate |jmin| in the potential well case. Like

eq. (4.4), there is jmax ≈ n0l
τ0

, and z1 ∼ l. For z > z1, the derivative djz
dz

becomes negative. Thus,

the density n (z) grows and becomes higher than n0. At z ∼ l, it reaches its maximum and then

starts to decrease. Here, the relaxation time τ1 may be shorter than in the center because the largest
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deviation of n(z) from its equilibrium value n0 is comparable to n0. For z ≳ l, the current must be

decreasing at a much faster speed djz
dz

∼ − (n−n0)
τ1

.

Therefore, unlike the potential well case, the recovery length of jz here should be much shorter.

On a distance of the order of a few l, the equilibrium density n0 will be established. This picture

agrees with the experimental observations [5]. It is obvious that there is no saturation of nmin/n0

for large h0 or current I .
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5. SUMMARY AND CONCLUSIONS

In this work, the main question we want to discuss is: for the Bose-Einstein condensation of

magnons (BECM) in YIG film, how to explain the phenomena found in experiments I and II, and

what determines the spatial distribution of condensate magnons.

Chapter 2 introduced the two experiments. Experiment I shows the repulsive nature of magnon

interaction, while in Experiment II, they managed to split the condensation magnons into four

moving clouds. These two experiments are important because both of their results contradict the

existing theory on BECM: the quasi-equilibrium theory. We argue that the equilibrium state of the

two-component BECM is never reached, and this can be proved by examining the inter-minima

relaxation time τmin−min against the lifetime of condensate magnons τm, and τmin−min should be

much longer than τm.

In Chapter 3, we first introduced how to calculate τmin−min using amplitude representation.

The two flipping processes considered are the 4-magnon process and the Compton process. The

calculation of τmin−min due to exchange interaction is performed.

In the end, we proposed the two-time model to explain the phenomena the experiments intro-

duced. This model treats magnons as classical particles carrying magnetic moment −2µB. With

this model, we also explored the spatial distribution of BECM. The model predicts the ratio of two

magnon densities: the density in the middle of the potential well and the density of the equilib-

rium system without a potential well. We can conclude that: the ratio will increase for a deeper

well, but will increase much more slowly if the depth exceeds some critical value (this value is

quite small). However, for the potential barrier case, such critical value don’t exist, and this ratio

decreases steadily as the barrier becomes higher.

The key of the two-time model is that we can capture the flow of magnons using two typical

lifetimes, τ0 and τ1. Although this is just the starting point, it already allows the two-time model to

make many correct predictions. As a new model to deal with the spatial distribution of BECM, we

expect that more detailed calculations of magnon interaction will help it make more predictions
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about this system.
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