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ABSTRACT 
 

Traditional power grids are a single-layered physical system, while smart grids are an 

extension of traditional power grids that are cyber-physical networks, and the main difference is 

smart grids include an information layer. There is a huge amount of information being managed 

within recent smart grids, and the decentralized power generation adds an extra level of uncertainty 

to smart grids. The standard methods of monitoring and security available cannot work as expected 

when collecting and analyzing the large amount of data presented from different parameters in the 

power network. 

Compressive sensing is a signal processing tool that is used to monitor single and 

simultaneous fault locations in smart distribution and transmission networks, to detect harmonic 

distortions, and to recognize patterns of partial discharge. Compressive sensing reduces the 

measurement cost and the management cost since it can detect or rebuild a signal from very few 

samples. In this thesis, we propose to design and implement the fault detection via a feedforward 

neural network using similar regularizations as in compressive sensing. We shall use the adaptivity 

of neural networks to tackle with state changes in the smart grid, proving the scalability and the 

decentralized capability of a neural network for fault detection in the grid. 

Two codes have been created against two different databases, and it was found that indeed, 

a feedforward autoencoder would be great at fault detection, however, many things should be 

considered prior to implementing it on a large scale. The most important part of any autoencoder 

generation is a good dataset. 
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INTRODUCTION 

With newer technologies older technologies become obsolete. The technological boom of 

the 20th century has been continuously evolving, and in turn infrastructures must be modified in a 

way that follows the technological evolution. The “upgrade” of already existing systems is 

extremely challenging, as criteria of which an upgrade is feasible has many angles, whether it was 

economically sensible, or would be safer to operate. 

The most important source of energy available widely is electricity, and it is only natural 

that the ways of which we distribute the most important source of energy will develop over time. 

Since renewable energies have been slowly becoming competitive economically, we must account 

for them in our electrical grid. With traditional power grids, renewable energies cannot be utilized 

as the power generation is centralized, and with that we must have smart grids.  

Smart grids are important for monitoring as well as distributing electricity. With smart 

grids, it is possible to have increased communication between devices and allowing remote control 

for the utility provider. This paper is concerned with the sensing aspect of power grids. The 

infrastructure of the traditional power grids does not have many sensors on the power lines, and 

hence the accuracy of error detection is low. Smart grids on the other hand have more sensors 

placed on the lines, and rerouting power is less of a challenge thus making error detection higher. 

The amount of information to be handled is extremely dense, and the type of information 

can be digital or analog. Examples of digital signals can be circuit breaker status, while analog 

signals could be voltages or currents. Compressive sensing is the technology currently employed 

mostly in the field, and while it is abundant, using machine learning for this task is favorable as 

machine learning is designed to handle such tasks.  

Compressive sensing is relatively a recent topic and could be an answer to the issue of 

addressing the new changes with traditional power grids, however, machine learning has been 
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consuming most fields. It could be the proper answer to the smart grid information collection as 

well as analyzing information gathered. 

For machine learning to be used, the topology of the system must be found for the smart 

grid. The topology as well as fault detection has already been researched for compressed sensing 

look at [2], but for this research, we aim to transform the topology from compressive sensing to 

machine learning for smart grids. 
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QUICK LITERATURE REVIEW 

There have been many publications discussing smart grids, compressive sensing, and even 

machine learning as of recently. To establish the understanding to reach what is the work to be 

done, we must understand what has been already founded. 

A. Traditional Power Grid 

The traditional power grid is essentially the interconnection of various power systems like 

the likes of transformers, transmission lines, and different types of loads. Long transmission lines 

transfer the power from a far location from the power consumption area. [3] There is a lot of 

differences between the traditional grid and smart grids. 

B.  Smart Grids 

Smart grids (SGs) are electrical grids that can intelligently integrate the behavior and 

actions of all parameters, whether it is voltage, current, and the likes of it. The smart grid also can 

intelligently observe different users of the electrical grid [2], and this observation can be at a city 

level, to a country level, and even to a continental level. 

Traditional power grids are a single-layer physical system, while smart grids are huge 

cyber-physical networks. SGs have many parameters, and some of them are load consumption, 

reactive powers, voltage, current, and many more. 
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C.  Traditional Grids Vs. Smart Grids 

 

 

Figure 1. Traditional Grid VS. Smart Grid [4]. 

The differences between them are many, but there are key differences that can be noted 

and contrasted between the two technologies. [3] 

Technology: Traditional power grids are electromechanically operated, while smart grids 

are digital. This means that the smart grid has more communication between devices thus allowing 

remote control and self-regulation.  

Distribution: Traditional power grids have a one-way distribution while smart grids have a 

two-way distribution, meaning that traditional power grids cannot facilitate renewable energies, 

while smart grids are able to have a primary power plant, in addition to secondary providers. This 

means that if an individual has access to alternative energy sources, the user can feed back power 

to the grid. 

Generation: Traditional power grids have centralized power generation, while smart grids 

have distributed power generation. For the renewable energy aspect, it must be noted that having 

the energy generation to be centralized, means that you cannot incorporate multiple sources of 

energy into the grid. On the other hand, power can be distributed from multiple plants for smart 

grids, allowing to balance loads, decrease peak time strains, and limit the number of outages. 
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Sensors: There are few sensors in traditional power grids, while there are sensors 

throughout the smart grid. This also follows up closely to the idea of utilizing machine learning 

for smart grids. Compressive sensing in smart grids have aided us this far, but we are not achieving 

the maximum potential of smart grids, and hence this brings up to the next point, which is 

compressive sensing. 

D. Compressive Sensing 

Compressive sensing is a technique that uses data compression while accounting for the 

sparsity of the electrical consumption pattern in a transformation basis thus achieving sub-Nyquist 

compression. As the power consumption data has a varying sparseness level, the choice of 

transformation basis influences the compression performance significantly, adding the 

compression level as well as the reconstruction error. [1]  

Compressive sensing for smart grids has the benefit of fault detection, but for that a 

topology must be identified for the smart grid. 

There are a few problems with implementing compressive sensing such as the 

computational complexity of data collection and analysis procedures in large scale smart grids, the 

effect of distributed generation systems, and the uncertainty of system states and parameters 

caused by the behavior of loads. [2] 

Due to the sparse nature for the optimization problem of smart grid topology identification, 

the topology can be interpreted as a Sparse Recovery Problem (SRP), and hence it could be 

efficiently solved with SRP solvers, or optimization-based algorithms. [2] 

E. Machine Learning 

Machine learning (ML) is where artificial intelligence (AI) is used to automatically learn 

and improve from experience gained from training parameters without being programmed.  
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ML is mainly used in processes where human operation is impossible, as the information 

is far too huge. The decision making ultimately is supposed to be completely controlled by AI, and 

hence the end goal for most machine learning systems is complete automation. 

If smart grids could be completely operated by machine learning software, the end user 

would benefit from a more robust grid, as well as appropriate beneficial data could be available 

for the utility provider. This is due to the error detection capability of machine learning. 

The utility provider will also in general have lower costs as less manpower is meant to 

operate the machine learning algorithms. While this is the most evident gain for the utility provider, 

long term benefits can be significant. 

AUTOENCODERS 

Machine learning has many forms, whether it was supervised, or unsupervised, it must 

be considered when the application of machine learning is questioned. The architecture of which 

the machine learning is designed is also an important consideration, and thus we will discuss 

autoencoders. 

 Autoencoders are the simplest deep learning architecture, where they are a specific type of 

feedforward neural networks. The input is compressed into a lower-dimensional code, and then 

the output is reconstructed from the compressed code. Auto encoders consist of an encoder, a code, 

and finally a decoder.[5] 

 

Figure 2. A representation of an autoencoder [5]. 
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A. Autoencoder Architecture 

 

 

Figure 3. Architecture of a Symmetric, stacked, Autoencoder [5]. 

 

 The main goal of an autoencoder is to get an output which matches the input signal given. 

This is achieved through compressing the input with an encoder that is a fully connected artificial 

neural network (ANN), thus creating the code. Then by only using the code, we achieve an output 

by running the code on a similarly fully connected artificial neural network. [5]  

Each layer has a difference “size” and hence the code size is directly related to the 

compression rate. The smaller the code, the more compressed the input is. The number of layers 

is the choice of the user, but it is important to note that the number of layers does not account for 

the input and output layer. The middle layers are called “hidden layers.” 

A loss function is also incorporated, and it could be either mean squared error, or binary 

cross entropy. [6] Cross entropy is restricted for input values between the range of [0,1] and for 

any input that is not within that range, mean squared error is utilized. [5] 
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B. Autoencoder Number of Nodes in the Hidden Layers 

 The number of nodes in the hidden layers is a parameter that is completely under the control 

of the user. It is important to note that this could be the difference between different autoencoder 

types.  

C.  Sparse and K-Sparse Autoencoders 

 When an autoencoder has a single hidden layer, it is called a “sparse” autoencoder. With 

the advancements of sparse autoencoders, k-sparse autoencoders had been developed, where “k” 

is the number of neurons with the highest activation functions ignoring other functions by using 

ReLU activation functions and adjusting the threshold to obtain the largest neurons. This in turn 

tunes the value of k to obtain the best sparsity level for the dataset. [6] 

 

Figure 4. A sparse autoencoder [6]. 

 

D.  Stacked Autoencoders 

 A stacked autoencoder could be viewed as a group of sparse autoencoders, where the input 

and output layers are the same, but there are multiple hidden layers. These hidden layers have their 
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outputs connected to other hidden layers to create a “code” which is used to extrapolate the output 

and recreate the input.  

 The stacked auto encoder could be symmetric or asymmetric, as we have control over these 

different parameters in the hidden layer, and hence the following figure could be a stacked auto 

encoder example, however, unlike figure 3, this one is asymmetric. 

 

Figure 5. Asymmetric stacked autoencoder [7]. 

 As it could be noted from the figure above, this stacked autoencoder has three hidden layers 

for encoding, and only a single layer for decoding. 

E. Variational Autoencoders 

 A variational autoencoder’s input is mapped to a distribution instead of being mapped to a 

fixed vector. The only difference between a variational and a normal autoencoder is the hidden 

layer has two different vectors where one represents the mean of the distribution, while the other 

represents the standard deviation of the distribution. 

The loss function consists of two terms, the first one represents the reconstruction loss, and 

the other regularizes the autoencoder. [6] 
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Figure 6. The loss function of a variational auto encoder [6]. 

 Kullback-Leibler (KL) is the divergence between the encoder’s distribution qθ(z|x) and 

p(z). The divergence is the measurement of lost information when q is used to represent P. [6] 

DATA SETS 

In machine learning, when an autoencoder is to be applied, the information provided must 

be meaningful to our purpose. For this paper two data sets have been chosen. One is a fourteen-

bus data set, and the other is a Fifty-Six-Node.  

A. The Fourteen-Bus Data Set 

For the fourteen-bus data set, the following figure represents how the data is measured. 

 

Figure 7. The fourteen-bus system layout [8]. 

 The data has been recorded from Australia and is real. It spans a year of measurements in 

30-minute intervals from July of 2012 to June of 2013. The reason this data was chosen for this 
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paper is to understand how a real system should operate if an autoencoder were to be applied on 

it.  

B.  The Fifty-Six-Node Data Set 

For the Fifty-Six-Node data set, the following figure represents how the data is measured. 

 

Figure 8. Fifty-Six-Node data set [9]. 

The data has been generated using MATLAB. The data spans a year of measurements for 

each of the above nodes, one measurement for each hour. The reason this data was chosen for this 

paper is to apply an autoencoder on it. 
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DATA PREPARATION AND ANALYSIS 

When training any data set, the features must be transformed by utilizing certain techniques 

for certain situations. The reason for this is to improve both performance and stability of any model 

that will be trained. 

There are four common normalization techniques that is generally useful to any machine 

learning training. [10] 

1- Scaling to a range. 

2- Feature Clipping. 

3- Log Scaling. 

4- Z-Score. 

 

Figure 9. Normalization techniques as illustrated by Google [10]. 

 

A. Scaling to a Range 

When a data set range is known, such as the normal height of humans, we can limit the 

height constraints to 50cm to 260cm. Hence scaling to a range is applicable when the following 

two conditions are met. 

1- The approximate upper and lower bounds are known, with few to no outliers. 

2- The data is distributed uniformly across the specified range. 
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Therefore, it could be noted that as per those two conditions, that scaling to a range for a 

data set containing a bias towards a certain extreme, that scaling to a range will compromise the 

training. An example for a biased data set can be seen as the income of a society. As there are far 

fewer people at the top than there are in the middle and bottom. 

B. Feature Clipping 

When a data set contains an extremely long “tail” that data could be considered as 

“outliers”. The solution for such an issue is to simply clip that data. Clipping the data would both 

provide us with a more meaningful (remaining) data set, as well as reduce the outliers that would 

not aid the training of our code. 

Feature clipping could be used in an example where the extreme values whether low or 

high are pointless to us. An example is temperature where anything less than -10 Celsius and +50 

Celsius is pointless to consider depending on the place where those readings are taken. 

C. Log Scaling 

Log scaling is used to “scale” a data set. This scaling is done by compressing the data set 

such that the range between the points are narrowed down from a wide range to a narrow one. 

Log scaling is useful when a few points are assigned to most of the values in the data set, 

while the majority has many points. The power law distribution is known as this distribution, and 

it can be shown in an example by Google below. 
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Figure 10. Ratings per movie vs log ratings per movie by Google [10]. 

 Log scaling manipulates the distribution such that it improves the linear model’s 

performance. 

D. Z-Score 

Z-score ensures that the features distributions has mean = 0 and standard deviation = 1. It 

is useful when there are outliers in the data set, but not so extreme that the data set requires clipping. 

E.  Summary of Data Preparation 

 

Figure 11. A Summary by Google [10]. 
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F.  Looking at our first Data set 

By plotting the entire first bus of the data set, it can be noted that there is no time pattern 

that will allow us to know what to do with the data set. 

 

 

 

 

 

 

However, when the histogram is considered, we can understand that the data distribution 

indeed has a recognizable pattern.  

The above plot can be estimated as a Fréchet, and hence, utilizing a mixture density 

network can allow us to produce a neural network that could estimate this shape. 

Figure 12. Scatterplot of the first column. 

Figure 13. The histogram of the first column. Power (MW 
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MIXTURE DENSITY NETWORKS (MDN) 
Our first data set is using real data (14-Bus data set), and in our day-to-day life, real data 

is generally noisy. While noise is not preferred, it is important towards building our model. A 

mixture density network is special because not only does it predict the expected value of a target, 

but it also predicts the underlying probability distribution. [11] 

A. Mixture Density Network Code 

A mixture density network code is simply a neural network that can predict a distribution 

such that the neural network is mapped to each parameter that determines the distribution. 

A Fréchet distribution requires three parameters to be mapped as a Generalized Extreme 

Value (GEV) distribution.  

 

Figure 14. Defining the GEV in the code. 

There are three important parameters to estimate our GEV. As it could be seen, they are ξ, 

σ, and μ. The reason we mention these three parameters, as it is important towards building our 

neural network. The neural network will operate in the following manner. 
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Figure 16 

Figure 16. The GEV equation [12]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Our Neural Network for Estimating a GEV. 

The reason we need to find the three variables is because once we plug in the values in 

the equation of a GEV, the estimation will be plotted. 

 

 

 

 

Once all of this is considered, it is now time to construct the code to predict the values of 

ξ, σ, and μ through our neural network. 

It is important to note that a cost function is used, and the purpose of using a cost function 

is such that we know how well our model is fitting. The cost function is minimized through the 

gradient descent algorithm, which allows to increase how well our model fits. 
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Figure 17 

Figure 17. The Neural Network That Finds the GEV Parameters. 

 

Figure 18 

Figure 18. Final results of MDN. 

 

 

The batch size has been selected as we have 17,520 different inputs to our model, and 

having to go through 1000 epochs, it is preferred that we take batches of 2000 to reduce the 

computation time. 

After the neural network has finished compiling, the output is as follows: 
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Figure 19 

Figure 19. Our GEV Distribution vs. Original Distribution. 

 

It is important to note that our cost is not almost zero, which means that this model could 

be further optimized, however, we can still use the values gained by the neural network and 

compare to the original data. The reason why the final cost is not stabilizing near zero is due to the 

random initialization. If somehow the initialization could be properly controlled our results could 

be more consistent. 

 

While the predicted distribution is not a perfect fit to our model, it could be noted that this 

method is useful when applying a prediction to a noisy real-world data. The strength of this code 

is that most distributions could be predicted such that the neural network is adjusted in a way where 

the parameters of the distributions are mapped as the output.  

The reason the model is not fitting perfectly is due to the nature of the real-world data being 

of a random distribution. Furthermore, the initialization of each run of the code will result in 

different results for each parameter. This should be controlled such that the model can robustly 

predict each distribution with great confidence. 

Predicted 
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The great thing about this code is most distributions are not neat, and this code allows to 

map a neural network to recreate a distribution no matter how complex it is. If the model could be 

estimated as a GEV, then this code can be utilized to approximate the plot of the data set.  

 
  



 

21 
 

Figure 20 

Figure 20. Our data set with only 24 columns. 

 

AUTOENCODER IN A SMART GRID 

Looking at our second data set, we can see that the node system operates much like a smart 

grid, where we have different nodes that supply/take energy in MW from different places. This 

means that we can apply an autoencoder that will behave like an autoencoder in a smart grid. 

A. Data Set 

In our data we have 56 different columns, and for our use, using only half is more than 

enough to prove the theory. Hence, we took 24 columns, which is one more than half. 

 

 

 

 

 

 

 

 

 

 

 

 

Contrary to the first data set, this data set is more correlated, and this correlation can be 

found out by plotting the entire data set in the time domain. We have taken all the columns and 

plotted against a “time” domain generated by ourselves. 
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Figure 21 

 

Figure 21. All Columns Correlated in the Time Domain. 

 

 

 

 

 

 

 

 

Unlike the first data set, we can see that this data is much more organized than the original 

information. This is a great indication that upon utilizing an autoencoder from TensorFlow, we 

can find a great fit from the generated prediction 

 

The reason that data set correlation is important for our autoencoder, is that not all 

information is useful towards our autoencoder. If we have too much noise in our system, then our 

autoencoder will not be able to detect a pattern, and hence the prediction as well as the fitting of 

the model will not occur in the intended way. 

Remembering our first data set, the reason we needed to create an MDN, is due to the data 

set’s randomness in and of itself. By comparing figure 12 to figure 21, it can be easily seen that 

figure 21 would be a better “fit” for our TensorFlow autoencoder. 

To have a better idea on how the data set is distributed, for each column, a histogram was 

created, resulting in 24 different histograms. Upon inspecting each different histogram, again, it 

was shown that they mostly have a Fréchet shape, or a GEV function to be general.  
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This means that while our original code will work, since this data set is more correlated, 

the utilization of TensorFlow, and deep learning will be a better fit for this data set. 

  

Figure 22 Figure 22 The First Four Columns for Power Histograms. 
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Figure 23 

Figure 23. The Smart Grid Autoencoder. 

 

B. Building the Autoencoder  

 

 

 

 

 

 

 

 

 

The autoencoder has 24 inputs, 12, 6, 12 hidden layers, and 24 outputs. This means the 

autoencoder is a stacked symmetric autoencoder. It should be noted that ReLU functions were 

used for the hidden layers, and linear function was used for the output layer. 

 

Figure 24 

 

 

Figure 24. Fitting the Autoencoder. 

For the fitting of the auto encoder, 50 epochs with a batch size of 500 was used. This was 

used as the entire data set has only 8760 different rows, 500 batch size is more than enough. The 

optimizer was Adam, and the loss was used as MeanSquaredError.  
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Figure 25 

Figure 25. Testing the auto encoder with reasonable values. 

 

Figure 26 

Figure 26. MSE of reasonable values. 

 

C. Testing the Autoencoder 

 

After the model was fitted, a test_input array was created where meaningful values were 

injected to see if the autoencoder will detect that these values are fine. After following the different 

steps involved, the test values were compared against the predicted model. 

 

It was found that the MSE of the reasonable values to be 0.024, meaning the module is 

97.6% accurate at detecting whether the values returned by the grid are reasonable or not. 
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Figure 27 

Figure 27. Testing the auto encoder with unreasonable values. 

 

Figure 28 

Figure 28. the MSE of unreasonable values. 

 

 

 

 After seeing that our model can detect good values, we tested the model against values that are 

beyond the maximum values. This was imposed such that the model would be tested in its error 

detection capabilities. 

 

The autoencoder was able to detect, with 120% accuracy that the inputted test numbers 

were erroneous, meaning that our autoencoder has an error detection capability that is 120% 

accurate. This is because our inputted signal was unreasonable, so the behavior is expected. 
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CONCLUSIONS AND FUTURE WORK 

To sum, machine learning is booming in both researching and the industry, and the 

implementation of machine learning in smart grids is inevitable. There are a few points that must 

be noted for any researcher looking to implement autoencoders in grids. 

The most difficult thing in this project was finding a proper data set. Machine learning is 

extremely reliant on data and finding a proper data set was for our purpose much more difficult 

than what followed. Hence, it is advised that for whatever implementation that this program, real 

data must be captured from the grid of which it will be used on. Should that data be available, the 

analysis and implementation of the autoencoder will be much clearer. This is one of the reasons 

two data sets were used in this project, as one on its own was not going to suffice our usage. 

Another aspect is determining the threshold of which the alarm for fault detection to trigger. 

This threshold will vary greatly based on the initialization of the autoencoder, as well as the quality 

of the data inputted into the autoencoder. 

In the first code created, the MDN worked very well in estimating the power probability 

distribution. This is very interesting as the first data set was extremely noisy and being able to 

predict such a noisy data is a benefit for all future work in this field. 

As for the second code, it was found that an autoencoder with a relatively reasonable size 

can predict with great accuracy the error in signals, even though our dimension was 24, it was very 

fast in fitting as well as accurate in error detection. 
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The following is a suggestion of research axes to be investigated. Among them, we would 

like to consider the following: 

a. Training for smart grids requires a large database with thousands of physical 

measurements on dozens of grid parameters. Surprisingly, a neural network 

playing chess against itself (See AlphaZero at Google) is capable to beat any 

Chess Grand Master. We propose to investigate the extension of a measurement 

database via a variational autoencoder. 

b. In almost all implementations for smart grids, engineers are using symmetric 

auto-encoders. However, it would be interesting to investigate asymmetric 

structures where the number of layers and their size is tuned to the input 

dimension and distribution. 
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