
 

 

 

 

DEVELOPMENT OF A MACHINE LEARNING ALGORITHM TO MINIMIZE RUNOFF 

THROUGH AN AUTOMATED SMART IRRIGATION SYSTEM 

 

A Thesis  

by 

                                                    SAMBANDH BHUSAN DHAL 

 

Submitted to the Office of Graduate and Professional Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of  

MASTER OF SCIENCE 

 

     Chair of Committee,          Ulisses Braga Neto 

     Co-Chair of Committee,      Jorge Alvarado 

     Committee Members,          Nicholas G. Duffield 

         Stavros Kalafatis 

                                                  Benjamin Wherley 

     Head of Department,           Miroslav M. Begovic 

                                                 

                                                                  December 2019 

 

Major Subject: Electrical Engineering   

                                                

                                               Copyright 2019 Sambandh Bhusan Dhal   



 

 

ii 

 

 

                                                                     ABSTRACT 

 

 The study of proper water management practices is of prime importance due to the ever-

increasing population and rapid industrialization which results in shortage of portable water 

supplies throughout the world. The current water supplies are not expected to meet the increasing 

demand in the upcoming decades which could in result affect the socio-economic stability and 

have a detrimental effect on human livelihood.  

 About 30% of the current municipal supplies in the world are used for outdoor irrigation 

activities such as gardening and landscaping purposes. These numbers are on the rise due to the 

ever increasing human population. Due to the current inefficient landscape practices, substantial 

amount of water is lost in the form of runoff. This poses a great threat to the environment with its 

potential for transporting fertilizers and pesticides into storm sewers and, eventually, surface 

waters. Thus, this study focuses on designing a Machine Learning approach which would act as a 

Decision Support System (DSS) to irrigate turfgrasses to minimize runoff in the plots while 

maintaining the quality of the turfgrasses. 

 For this, a robust Machine Learning approach named as Radial Basis Function - Support 

Vector Machine (RBF-SVM) was proposed which was trained on the synthetic data generated 

from the datapoints recorded during the year 2015-16 and 2016-17 at the Turfgrass Laboratory in 

Texas A & M University, College Station. For each of the approaches, the target variable was 

changed and the number of features were varied in each case to see which gives the best results. 

Among all the target variables, predicting the Soil Wetting Efficiency Index, devised by Wherley, 

et. al.[33] was the most applicable as it is one of the most generic approaches since it is not site-

specific and gave the highest validation testing accuracy of 90%. Thus, the latter approach was 



 

 

iii 

 

 

used in the ASIS controller to observe the robustness of the algorithm in controlling the 

effectiveness of the irrigation cycle. 

  Until now, only few irrigation cycles have been scheduled and experimental data are still 

being collected from the facility. Preliminary results suggested that the Machine Learning 

algorithm has the potential to save water as it helped in efficient regulation of irrigation cycles and 

even achieved a goal of zero runoff in two of the irrigation runs. The Green Cover percentage of 

the plots where the proposed ASIS controller was mounted showed an increment of about 12%, 

thereby validating the fact that the quality of turfgrasses was also maintained. With more irrigation 

cycles which would be scheduled over time, the proposed Machine Learning approach is expected 

to perform better with increase in observations and may nullify runoff eventually. 

 

 



 

 

iv 

 

 

DEDICATION 

 

To my mother, father, brother and my guru, 

Puspanjali, Bibhuti, Siddhant and Prof. Alvarado, 

My strengths, my faith, my joy 

 



 

 

v 

 

 

                                                    ACKNOWLEDGEMENTS 

 

          Firstly, I would like to thank my advisor and co-advisor, Dr. Ulisses Braga Neto and Dr. 

Jorge Alvarado for their patience, guidance and for being a constant source of support throughout 

my thesis. I thank them for believing in me and giving me a chance to work on this project. They 

have always motivated me to work hard, do better and implement ideas out of the box. I am 

impressed with their work ethics and group dynamics and I look forward to incorporate these 

qualities in my professional life. 

       The other student in Dr. Alvarado’s group, Tomas Reyes, a Senior in Electrical and Computer 

Engineering, has been the key contributor to the project. The design of the entire smart controller 

was done by him single-handedly and this project would not have been a success of this kind 

without him. He has been cooperative and diligent throughout and his inputs have been very 

instrumental in designing my approach. As the project included scrapping of historical weather 

data, Shubham Jain, a PhD student in Geosciences, has been instrumental in helping me collect 

the data to begin with. I would also like to express my sincere gratitude to Rupali Sahu, a PhD 

student in Aerospace Engineering for helping me with her presentation and artistic skills, which 

have been a huge help for my thesis and for being my support and inspiration ceaselessly. 

        I would like to thank Dr. Benjamin Wherley, Dr. Nicholas G. Duffield and Dr. Stavros 

Kalafatis for serving on my committee. Since the project needed a lot of domain knowledge about 

irrigating turfgrasses, Dr. Wherley’s expertise has not only been instrumental in understanding the 

practical side of the project but his constant intervention has always assured that we progressed on 

the right track. Dr. Duffield taught me Data Mining and Analysis which deepened my interest in 

the field and gave me the confidence to carry out different approaches in the project. Dr.Kalafatis’ 



 

 

vi 

 

 

research on optimization tasks related to the field of architecture enlightened me about its 

application in various scenarios and related research in the field. 

            I would like to extend my hearty thanks to all my friends who made my time in College 

Station enjoyable and fun. Being an international student, transition to the culture in the United 

States was not easy. Given the amount of course load and research in graduate school, life would 

not have been easy without you all. Thank you Radhika, Abhishek, Sahil, Soniya, Ayush, Nikita, 

Priya, Siddharth, Jay, Aishwarya, Hemant, Mahesh, Anirudh, Ajinkya, Akash, Keyur, Rahul, 

Anoop, Arjun, Keerthi, Dwarkanath and Devansh for standing by me in my tough times and for 

lifting my spirit up. Also, I would like to thank my friends from India; Abhishek, Chandan, Vineeta 

and Utkarsh who have always kept in touch and provided me the encouragement and support to 

pursue my dreams. 

           Lastly, I thank my mother Dr. Puspanjali Jena for motivating me to do research. Also, I 

would like to thank my father Bibhuti Bhusan Dhal and my younger brother Siddhant for believing 

in me and pursuing me to study abroad and pursue research. The thesis, for all its worth, is 

dedicated to them.  

 

      

 

 



 

 

vii 

 

 

CONTRIBUTORS AND FUNDING SOURCES 

Contributors 

         This work was supported by a thesis committee consisting of Dr. Ulisses Braga-Neto 

[advisor] of the Department of Electrical and Computer Engineering and Dr. Jorge Alvarado [co-

advisor] of the Department of Engineering Technology and Industrial Distribution and also Dr. 

Benjamin Wherley of the Department of Soil and Crop Sciences and Dr. Nicholas Duffield and 

Prof. Stavros Kalafatis of Electrical and Computer Engineering. 

       The design and programming of the smart controller in Chapter 4 was provided by Tomas 

Reyes, an undergraduate student in the Department of Electrical and Computer Engineering.  

       All other work for the thesis was completed by me independently. 

 

Funding Sources 

 

This work was also made possible in part by Account Number 28-163043-00001 under 

Water Seed Grant by Dr. Alvarado and in part by Account Number 114252-95180 under Dr. 

Wherley. 

 

 

 

 

 

 

 

 



 

 

viii 

 

 

NOMENCLATURE 

                                             

DI                             Deficit Irrigation 

HTTP                       Hypertext Transfer Protocol 

API                          Application Programming Interface 

ML                          Machine Learning 

TAMU                    Texas Agricultural and Mechanical University  

SVM                       Support Vector Machine 

ET                           Evapotranspiration 

TM                         Thermatic Mapper 

ANN                       Artificial Neural Network 

UNWC                   United Nations Watercourses Convention    

UNECE                  United Nations Economic Commission for Europe 

SDG                       Sustainable Development Goals 

LID                         Low Impact Development 

BMP                       Best Management Practices 

SWMM5                Storm Water Management Model 5 

GAP                       Good Agricultural Practices 

TSS                        Total Suspended Solids 

TN                          Total Nitrogen 

CW                         Constructed Wetlands 

RNN                       Recurrent Neural Network 

LM                         Levenberg-Marquardt 

                                               



 

 

ix 

 

 

BP                      Back Propagation 

DTDNN            Distributed Time Delay Neural Network 

EM                    Expected Maximization 

MI                     Multiple Imputation 

KNN                 K Nearest Neighbors 

MRI                  Magnetic Resonance Imaging  

MDS                 Multi-Dimensional Scaling 

PCA                  Principal Component Analysis  

MCMC             Markov Chain Monte Carlo 

MNIST             Modified National Institute of Standards and Technology 

SMOTE            Synthetic Minority Over-Sampling Technique 

LIRMS             Landscape Irrigation Runoff Mitigation System 

GRIDMET       University of Idaho Gridded Surface Meteorological Dataset 

ET0                  Reference Evapotranspiration Rate 

VPD                 Vapor Pressure Deficit 

SWEI               Soil Wetting Efficiency Index 

MDG                Millennium Development Goals 

SGD                 Stochastic Gradient Decent 

SysFor              A Systematically Developed Forest of Multiple Decision Trees 

LargeVis           Algorithm for Visualizing Large-scale and High-Dimensional Data 

ELM                 Extreme Learning Machine                                               

MSE                 Mean Squared Error 

CCA                 Complete Case Analysis 



 

 

x 

 

 

ACA                 Available Case Analysis 

GC                    Green Cover 

SI                      Synthetic Imagery 

DA                    Data Augmentation 

RBF-SVM        Radial Basis Function – Support Vector Machine 



 

 

xi 

 

 

                                                      TABLE OF CONTENTS 

 

Page 

ABSTRACT .............................................................................................................................. ii 

DEDICATION .......................................................................................................................... iv 

ACKNOWLEDGEMENTS ...................................................................................................... v 

CONTRIBUTORS AND FUNDING SOURCES .................................................................... vii 

NOMENCLATURE .................................................................................................................viii 

TABLE OF CONTENTS……………………………………………………………………   xi 

LIST OF FIGURES…………………………………………………………………………   xiv 

LIST OF TABLES…………………………………………………………………………    xvi 

I. INTRODUCTION .............................................................................................................. 1 

            1.1    Background…………………………………………………………………….  1   

            1.2    Previously implemented approach for runoff minimization…………………     2 

            1.3    Motivation for current work…………………………………………………..    6 

 

II. LITERATURE REVIEW ................................................................................................... 8 

  2.1 Addressing global freshwater shortage ................................................................ 8 

  2.2 Detrimental effects of agricultural runoff ............................................................ 9 

 2.3    Urban runoff mitigation techniques …………………………………………    11 

            2.4    Smart irrigation strategies and initiatives………………………                        12 

 2.5    Current prediction-based models for controlling irrigational runoff……           15  

 2.6    Missing data imputation techniques for completeness of the historical ASIS 

                     dataset…………………………………………………………………………..18          

 2.7    Data clustering techniques for visualization of ASIS dataset to determine  

                     target variables’ thresholds……………………………………………………..20 

  2.8 Feature extraction techniques for better prediction of target variables in ASIS 

                     dataset…………………………………………………………………………  23 

 2.9    Data augmentation techniques using synthetic data for enabling Machine 

                     Learning approaches in irrigation control…………………………………       25 

            2.10  Advantages and challenges of recent ML studies in the context of irrigation 

                     control…………………………………………………………………………  27 



 

 

xii 

 

 

III. ANALYSIS OF THE ASIS DATASET AND IMPLEMENTATION OF                                

 APPROPRIATE MACHINE LEARNING MODEL………………………………         28 

 

  3.1 Transformation and construction of field-based dataset for analysis………      28 

                    3.1.1 Review of the previous dataset…………………………………………    31 

                    3.1.2 Addition of new features in the dataset………………………………….  33 

          3.1.3 Deciding the value of Evapotranspiration rate to be used in the analysis.. 34 

                    3.1.4 Description of the features used………………………………………      38 

                    3.1.5 Final list of features used for analysis………………………………….    41 

  3.2 Selection of appropriate response or target variable for runoff minimization    42 

                    3.2.1 Approach I……………………………………………………………….. 42 

                    3.2.2 Approach II………………………………………………………………  43 

                    3.2.3 Approach III……………………………………………………………     44 

  3.3 Data visualization……………………………………………………………...  46 

  3.4 Generation of synthetic data…………………………………………………...  50 

            3.5    Results…………………………………………………………………………  55 

                   3.5.1 Approach I [Classification of runoff as the target class]………………….  55 

                   3.5.2 Approach II [Classification of time until first runoff as the target 

                                                  class]………………………………………………………..  57 

                   3.5.3 Approach III 

                             CASE I: Classification of Soil Wetting Efficiency Index into two 

                                             classes…………………………………………………………   58 

                             CASE II: Classification of Soil Wetting Efficiency Index into three 

                                             classes…………………………………………………………   60 

            3.6   Choosing the best model for implementation and deciding the irrigation 

                    rules……………………………………………………………………………    61     

 

IV. FIELD IMPLEMENTATION OF THE MACHINE LEARNING ALGORITHM IN  

      THE CUSTOMIZED CONTROLLER…………………………………………………    63 

 

            4.1    Proposed scheme/approach used by the controllers [Rachio, B-hyve and the  

                     proposed ASIS controller]…………………………………………………….    63 

                    4.1.1 Irrigation scheme used by Rachio controller      ………………………….  63 

                    4.1.2 Irrigation scheme used by B-hyve controller      …………………………   64 

                    4.1.3 Irrigation scheme used by the proposed ASIS controller…………………  65 

                             (a). Initialization of the algorithm…………………………………………  66 

                             (b). Algorithm for calculation of Evapotranspiration and 

                                    Effective Rainfall…………………………………………………….   67 

                             (c). Machine Learning algorithm…………………………………………   71 

                             (d). Implementation and field deployment of the algorithm based on ML 

                                    output…………………………………………………………………  71 

            4.2    Analysis of performance of controllers by observing their runoff profile…….   78 

4.2.1 Runoff profile for Rachio controller……………………………………  78 

4.2.2 Runoff profile for B-hyve controller……………………………………  80 

                    4.2.3    Runoff profile for ASIS controller……………………………………     81 

            4.3    Analysis of efficiency of controllers by observing the percentage of Green 



 

 

xiii 

 

 

                     Cover (GC)  in turfgrasses…..…………………………………………………  82 

                 4.3.1    Evaluation of quality of turfgrasses irrigated by Rachio controller…..        83 

      4.3.2    Evaluation of quality of turfgrasses irrigated by B-hyve controller…..       84 

                 4.3.3    Evaluation of quality of turfgrasses irrigated by the proposed ASIS  

                             controller………………………………………………………………….. 85 

            4.4    Impact of the ML algorithm in minimizing runoff ……………………….…… 86          

                                                 

 

V. CONCLUSION AND FUTURE WORK………………………………………………... 88 

  5.1 Conclusion ...........................................................................................................88 

  5.2 Future work ..........................................................................................................89 

REFERENCES………………………………………………………………………………. 90 

APPENDIX A……………..………………………………………………………………...   93 

APPENDIX B……………………………………………………………………………       104 

APPENDIX C……………………………………………………………………………       118 

 

 

 

 

 

 



 

 

xiv 

 

 

LIST OF FIGURES 

 

FIGURE   Page 

   2.1 Pipeline of data visualization technique proposed by Tang, et.al. Reprinted 

               from [21]……………………………………………………………………………   20 

 

   2.2 Proposed Data Space model by Ed H Chi. Reprinted from [25]……………………  23 

 

   2.3 PCA-FX pipeline prescribed by Park, et. al. Reprinted from [28]………………….  25 

 

   3.1 Overview of the plot used for analysis in TAMU Turfgrass Lab ..............................  28 

 

   3.2 Dynamax T𝐻20 moisture meter used for measuring soil moisture content...............  29 

 

   3.3 Teledyne ISCO flow meter and runoff sampler       ……………………………….   30 

   3.4       Flowmeter used in TAMU Turfgrass Laboratory for measuring applied irrigation 

               volume……………………………………………………………………………….. 31 

 

   3.5       Plot comparing the calculated and web-scrapped values of ET0……………………  38 

   3.6       Distribution of the runoff volume observed by CONTROL approach………………. 43 

   3.7       Distribution of the variable showing the time until first instance of runoff 

               in seconds…………………………………………………………………………….  44 

 

   3.8       Distribution of the variable showing the Soil Wetting Efficiency Index……………   45 

   3.9       Plot showing Proportion of Variance Explained Vs the number of PCs used in our 

               analysis………………………………………………………………………………   46 

 

   3.10     Clustering of the datapoints considering the 1st two Principal Components…………  48 

 

   3.11     Clustering of the datapoints considering the 1st and the 3rd Principal Components 

               used in the analysis…………………………………………………………………… 48 

 

   3.12     Clustering of the datapoints considering the 2nd and the 3rd Principal Components 

               used in the analysis…………………………………………………………………… 49 

 

   4.1       Schematic representation of the working of Rachio controller………………………  63 

 

4.2       Schematic representation of the working of B-hyve controller………………………  64 

 



 

 

xv 

 

 

 

4.3        Schematic representation for the initialization algorithm used in the  

    ASIS controller………………………………………………………………………..   66 

 

4.4       Schematic representation for Evapotranspiration and Effective Rainfall 

            based algorithm used in the ASIS controller…………………………………………... 67 

 

4.5       Schematic representation for cumulative Evapotranspiration and forecasted rain 

            algorithm used in the ASIS controller………………………………………………...   69 

 

4.6       Schematic representation for pausing and pulsing for the sprinkler system used in  

            the ASIS controller…………………………………………………………………….. 72 

 

4.7      Schematic representation when the output from the ML algorithm is 1                 

           (Active time > Run time) used in the ASIS controller…………………………………..74 

 

4.8      Schematic representation when the output from the ML algorithm is 1  

           (Active time < Run time) used in the ASIS controller…………………………………. 76 

 

4.9      Schematic representation when the output from the ML algorithm is 0 used in the  

           ASIS controller…………………………………………………………………………. 77 

 

4.10 Plot showing percentage of Green Cover over the irrigation season…………………   82 

 

4.11    Images showing the turfgrass quality of Plot 10 irrigated by Rachio controller 

          (Left image: clicked on 07/05; Right image: clicked on 08/28)………………………… 84 

 

4.12    Images showing the turfgrass quality of Plot 13 irrigated by B-hyve controller  

           (Left image: clicked on 06/21; Right image: clicked on 08/28)…………………………85 

 

4.13    Images showing the turfgrass quality of Plot 12 irrigated by the proposed ASIS 

           controller (Left image: clicked on 08/01; Right image: clicked on 08/28)……………    86 

 

 

 

 



 

 

xvi 

 

 

LIST OF TABLES 

 

TABLE Page 

 

  1.1 Past weather parameters that were used as features in this approach by Udaya 

               Bhaskar Kothapalli. Reprinted from [4]……………………………………………..   3 

 

  1.2 Current weather parameters that were used as features in this approach by Udaya 

               Bhaskar Kothapalli. Reprinted from [4]……………………………………………..   3 

 

  1.3    Forecasted weather parameters that were used as features in this approach by Udaya 

               Bhaskar Kothapalli. Reprinted from [4]……………………………………………..   3 

 

  1.4 Irrigation parameters that were used as features in this approach by Udaya Bhaskar 

               Kothapalli. Reprinted from [4]……………………………………………………….  4 

 

  1.5 Prescribed irrigation rules for the Spring and Fall Seasons used in this approach by 

               Udaya Bhaskar Kothapalli. Reprinted from [4]………………………………………  5 

 

  1.6 Prescribed irrigation rules for the Summer Season used in this approach by 

               Udaya Bhaskar Kothapalli. Reprinted from [4]……………………………………… 5 

  2.1 List of predictors used by Caparo, et. al. to train the RNN. Reprinted from [18] …... 15 

 

  2.2        Specifications of the RNN used by Caparo, et. al. Reprinted from [18]…………….. 16 

 

  2.3 Specifications of the ANN used by Karasekreter, et. al. Reprinted from [6]………..  16 

  2.4 Specifications of the ANN used by Umair, et. al. Reprinted from [8]………………. 17 

 

  3.1       An excerpt from the old dataset recorded by Udaya Bhaskar Kothapalli. Reprinted 

              from [4] ………………………………………………………………………………. 32 

 

  3.2       Comparison of calculated and measured ET values with relative error……………     37 

  3.3       List of predictors removed from the analysis………………………………………….41 

  3.4        Loading Matrix of the first 3 Principal Components used in the analysis……………47 

 

  3.5       Testing accuracies for different Test:Train Split Ratio when the target variable 

              is ‘Runoff volume observed’ ......................................................................................   56 

 

  3.6       Testing accuracies when RBF-SVM is trained on the synthetic data and the target 

              variable is ‘Runoff volume observed’……………………………………………….   56 



 

 

xvii 

 

 

  

  3.7      Testing accuracies for different Test:Train Split Ratio when the target variable is ‘The 

              time until the 1st instance of runoff was observed’  ....................................................   57 

 

  3.8      Testing accuracies when RBF-SVM is trained on the synthetic data and the target 

             variable is ‘The time until the 1st instance of runoff was observed’  ...........................   58 

 

  3.9    Testing accuracies for different Test:Train Split Ratio when the target variable is 

              SWEI (Binned into 2 classes) .....................................................................................   59 

 

  3.10    Testing accuracies when the RBF-SVM is trained on the synthetic data and the target 

             variable is SWEI (Binned into 2 classes)…………………………………………….   59 

 

  3.11    Testing accuracies for different Test:Train Split Ratio when the target variable is 

             SWEI (Binned into 3 classes)………………………………………………………..    60 

  

  3.12    Testing accuracies when RBF-SVM is trained on the synthetic data and the target 

             variable is SWEI (Binned into 3 classes)…………………………………………….   61  

 

  4.1      Irrigation profile of the runs carried out by Rachio controller…………………….       78 

 

  4.2      Irrigation profile of the runs carried out by B-hyve controller……………………        80 

 

  4.3      Irrigation profile of the runs carried out by the proposed ASIS controller…………..    81 

 

                                                  

 



1 

 

CHAPTER I 

                                                                INTRODUCTION  

 

1.1   Background 

 Almost 71% of the surface of the Earth is covered with water. However, less than even a 

percent of it is fit for consumption. The Earth is home to nearly 6.5 million terrestrial organisms 

and 2.2 million aquatic organisms. With such less amount of portable water, water scarcity is an 

alarming issue which has garnered the interest of the scientific community for the last three 

decades or so. In Texas alone, as of 2010, the water consumption by the agricultural sector 

accounted to 58% of the total freshwater usage but it has accounted for only 0.6% of the state’s 

economy. Due to this, more economically viable ways for water conservation must be practiced; 

otherwise, it could lead to a drought like situation in the next half a century. 

Chang, et. al. [1] recommended to market the usage of water on theoretical grounds, but 

for any implementation of these policies, it is required to have a proper administrative control and 

structure to be in place. Talking of Texas alone, this state faces an important issue in harnessing 

market forces to address the problem of scarcity and depletion of groundwater.  

  Agam, et. al. [2] suggested that it is very important to have an estimation of the water 

budget of any particular area for planning purposes. One of the main variables in the management 

of water resources in irrigation applications is the evaporation loss, often referred to as 

evapotranspiration. Other physical characteristics are also important including water inflow into 

land masses. Specific management techniques can be practiced so as to decrease these kinds of 

losses, to reduce the impact on water resources. However, there are still other forms of water losses 

which are unavoidable such as soil-related permeation. Certain methods such as Deficit Irrigation 



2 

 

(DI) [3] have been proposed for improving the economic viability of agricultural systems, but these 

kinds of practices impose a lot of adjustments in the entire system. This forces us to think of 

alternative data modelling for water resources management to optimize the water needed for 

irrigation with minimal wastage of water (minimal runoff). In summary, irrigation management 

should rely on data mining and mathematical modeling to prescribe optimal irrigation practices.  

 

1.2   Previously implemented approach for runoff minimization 

The previously implemented approach for runoff minimization was conceived by Udaya 

Bhaskar Kothapalli [4] as part of a project funded by the Water Seed Grant Program at Texas 

A&M University. The designed controller relied on HTTP GET method to store all the irrigation 

activity on to a server named irrigation.db. The system also consisted of a continuous monitoring 

and storing of the weather data approach for every 15 minutes of operation. A Python Script was 

implemented on the server, which recorded the current and future weather data from the Open 

Weather API. Adding to this, he also used irrigation activity-based features, which were taken into 

account in the analysis of the data. 

A total of 36 important features were determined due the process of data analysis and were 

used for training the Machine Learning (ML) classifiers. The set of predictors used in the analysis 

have been shown in the tables 1.1, 1.2, 1.3 and 1.4. 

 

 

 

 

 



3 

 

Table 1.1: Past weather parameters that were used as features in this approach by Udaya 

Bhaskar Kothapalli. Reprinted from [4] 

      PREDICTOR NAME             DESCRIPTION & UNITS 

PAvg_Humidity Average humidity for the last 3 days (%) 

PAvg_Pressure Average pressure for the last 3 days (hPa) 

PAvg_Temp_min Average minimum temperature for the last 3 days (K) 

PAvg_Temp_max Average maximum temperature for the last 3 days (K) 

PAvg_Wind_speed Average wind speed for the last 3 days (m/s) 

PAvg_Clouds Average cloudiness for the last 3 days (%) 

P_Rain Rain volume for the last 3 days (inches) 

P_Snow Snow volume for the last 3 days (inches) 

Numday_last_rain The number of days since the last rain event was recorded 

Numday_last_irrigated The number of days since it was last irrigated 

 

Table 1.2: Current weather parameters that were used as features in this approach by 

Udaya Bhaskar Kothapalli. Reprinted from [4] 

    PREDICTOR NAME            DESCRIPTION & UNITS 

C_Temp Current temperature (K) 

C_Humidity Current humidity (%) 

C_Pressure Current atmospheric pressure (hPa) 

C_Temp_min Min temperature last recorded by weather station (K) 

C_Temp_max Max temperature last recorded by the weather station (K) 

C_Wind_speed Current wind speed (meter/sec) 

C_Wind_deg Current wind direction (degrees) 

C_Clouds Current cloudiness (%) 

C_Rain Rain volume recorded in the last 3 hours (inches) 

C_Snow Snow volume recorded in the last 3 hours (inches) 

 

Table 1.3: Forecasted weather parameters that were used as features in this approach by 

Udaya Bhaskar Kothapalli. Reprinted from [4] 

       PREDICTOR NAME             DESCRIPTION & UNITS 

F_Humidity Average humidity forecast for the next day (%) 

F_Pressure Average pressure forecast for the next day (hPa) 

F_Temp_min Minimum temperature forecast for the next day (K) 

F_Temp_max Maximum temperature forecast for the next day (K) 

F_Wind_Speed Average wind speed forecast for the next day (m/s) 

F_Clouds Average cloudiness forecast for the next day (%) 

F_Rain Rain forecast for the next day (%) 

F_Snow Snow forecast for the next day (%) 

 



4 

 

Table 1.4: Irrigation parameters that were used as features in this approach by Udaya 

Bhaskar Kothapalli. Reprinted from [4] 

     PREDICTOR NAME             DESCRIPTION & UNITS 

Effective_Irrigation_Time The time for which the last irrigation cycle was run (min) 

Number_Runoffs The number of runoffs before irrigation is completed 

Total_runoff_time Total runoff time observed in the irrigation cycle (min) 

Time_to_First_Runoff Irrigation time until the first instance of runoff was 

observed (min) 

Time_to_Second_Runoff Irrigation time until the second instance of runoff was 

observed (min) 

First_Runoff_Interval The time interval between the start and end of first runoff 

(min) 

Second_Runoff_Interval The time interval between the start and end of second 

runoff (min) 

Soil_Moisture The pre soil moisture content of the soil (%) 

 

 

Around 400 synthesized datapoints were generated from the limited previous irrigation 

activity recorded in 2015 and 2016 field tests at the TAMU Turfgrass Lab on plots 15, 17 and 18. 

Multinomial Logistic Regression, Multilayer Perceptron and SVM classification schemes were 

used on these synthesized feature vectors. These Machine Learning algorithms output a certain 

irrigation code and a set of irrigation rules were devised by the author in consultation with 

Dr.Wherley, a faculty in Soil and Crop Sciences, Texas A & M University for each output 

irrigation code throughout the entire year and have been included in the Tables 1.5 and 1.6. 

 

  



5 

 

 

Table 1.5: Prescribed irrigation rules for the Spring and Fall Seasons used in this   

approach by Udaya Bhaskar Kothapalli. Reprinted from [4] 

Irrigation 

Settings 

Code 

Start 

Time 

Pause 

Time 

Maximum 

Operational 

Time 

Effective 

Irrigation 

Time 

Suitable for 

lawn/weather 

condition 
M0 0 0 0 0 No Irrigation 

Needed 

M1 12 AM 3 hours 6 hours 15 min  Too Wet 

M2 12 AM 3 hours 10 hours 20 min Wet 

M3 7 PM 3 hours 12 hours 20 min Wet 

M4 12 AM 2 hours 8 hours 25 min Moderate 

M5 10 PM 3 hours 8 hours 25 min Moderate 

M6 12 AM 2 hours 8 hours 30 min Dry 

M7 12 AM 2 hours 6 hours 30 min Dry 

 

Table 1.6: Prescribed irrigation rules for the Summer season used in this approach by 

Udaya Bhaskar Kothapalli. Reprinted from [4] 

Irrigation 

Settings 

Code 

Start 

Time 

Pause 

Time 

Maximum 

Operational 

Time 

Effective 

Irrigation 

Time 

Suitable for 

lawn/weather 

condition 
M0 0 0 0 0 No irrigation 

needed 

M1 7 PM 3 hours 12 hours 30 min  Wet 

M2 12 AM 3 hours 10 hours 30 min Wet 

M3 10 PM 3 hours 8 hours 35 min Moderate 

M4 12 AM 2 hours 8 hours 35 min Moderate 

M5 12 AM 2 hours 6 hours 35 min Dry 

M6 12 AM 2 hours 8 hours 40 min Too Dry 

 

 

Before training the classifiers, the entire dataset was normalized, and 75 percent of the data 

was randomly used for training and 25 percent of the data was used for testing and validation of 

the classifiers. The MultiLayer Perceptron used in this case consist of three layers: the input layer, 

the hidden layer and the output layer. The specifications of the MultiLayer Perceptron used in this 

case are as follows: 

1. Activation function : Logistic sigmoid function 



6 

 

2. Learning strategy : Stochastic Gradient Descent (SGD) 

3. Learning rate : Adaptive learning rate 

4. Number of epochs : 200 

The classification accuracies for all the three classifiers were recorded and it was concluded that 

MultiLayer Perceptron gave the highest accuracy on the testing data (94.5%) followed by SVM 

Classification and Multinomial Logistic Regression with an accuracy of 85% and 83% 

respectively. 

 

1.3   Motivation for current work 

As mentioned before, it is very crucial to monitor and manage the regional budgeting of 

water in specific areas including turfgrass lawns.  In the management of turfgrasses, water loss due 

to evaporation is one of the most important factors which should be taken into account when 

prescribing controlled irrigation events. Other factors such as insolation forcing, Vapor Pressure 

Deficits and regional dry air advection should be considered as well. To fully account for water 

loss due to natural mechanism including evaporation, many regional-scale Evapotranspiration 

(ET) models [2] have been proposed, which use remote-sensing data in order to gauge the soil 

temperature and surface soil moisture. Another approach that has been proposed is the generation 

of monthly or bi-monthly sub-field-space spatial resolution maps which are acquired with the help 

of Thematic Mapper (TM) [2].  

  Irrigated agriculture consumes about 70-80% of the water where the aridity of the soil is 

high. Therefore, the concept of Deficit Irrigation (DI) [3] has been proposed for irrigation under 

limited water conditions.  



7 

 

Apart from these abovementioned approaches, there have been data-driven models which 

take climatic predictors as inputs and predicts the amount of water required for irrigation. Capraro, 

et. al. [5] proposed a prediction model i.e. a Neural Network within the control algorithm to take 

the soil moisture level to the desired level. Karasekreter, et. al. [6] proposed a similar Artificial 

Neural Network (ANN) which takes soil moisture, soil type, product type and time intervals as 

inputs. This model determines the amount of water required for irrigation and the irrigation time 

intervals for strawberry orchards in Turkey with improved efficiency in the range of 24%. Khan, 

et al. [7] proposed various data mining techniques for predicting the irrigation water needs for 

different types of crops using suitable prediction algorithm.  These models and previous work 

helped guide and motivate the existing work for developing similar models for turfgrass irrigation, 

taking into consideration climatic and field-specific predictors. 

  



8 

 

CHAPTER II 

 

LITERATURE REVIEW 

                                                      

  

2.1   Addressing global freshwater shortage 

 

  Veera Gnaneswar Gude [10] recognized the act of ensuring freshwater as the most basic 

need for the survival of humanity. Over the last few decades, overpopulation coupled with rapid 

industrialization and increased living standards has resulted in an unprecedented demand for 

freshwater all over the world. More than 30% of the people in the world lack access to clean water 

sources for basic sanitation needs and it is projected that by 2060, more than 60-70% of the global 

population would go on to live in regions of absolute water scarcity. To address this issue, two 

main approaches related to management and technology development have been proposed: 

demand mitigation and supply enhancement. Demand mitigation refers to a set of practices where 

one tends to enforce a more responsible behavior by the users through economic pricing of natural 

water available. Supply enhancement is a set of water conservation practices which exist like 

rainwater harvesting. 

  Stuart E Bunn [11] recognized the need for massive investments to be made in the present 

world to offset the threat to human water scarcity. However, they have come at a considerable cost 

to the aquatic biodiversity and no attempts have been made to offset this damage. For this reason, 

certain global initiatives have been taken up in the last half of the century. The Millenium 

Development Goals (MDGs) were successful in reducing the biodiversity loss primarily with 

terrestrial and aquatic ecosystems. Yet, the omission of freshwater systems was a significant 

oversight owing to the fact that 40% of the world’s vertebrae species stay in these ecosystems. 

Another such initiative was the setting up of United Nations Watercourses Convention (UNWC) 

and the United Nations Economic Commission for Europe (UNECE) Water Convention, which 



9 

 

played an important role in strengthening international laws on freshwater usage. Some of the 

initiatives and actions have also been taken up at the local and regional level. Most of the 

Australian cities have significantly reduced per capita water usage through a large number of 

initiatives pertaining to demand management while increasing the gross value of production. The 

Rio+20 commitment to Kyoto-compliant energy resources has resulted in building nearly about 

3500 dams for effective fragmenting of the planet’s free flowing rivers.  

Another important point which has been addressed in this paper under the Water 

Sustainable Developmental Goals (SDGs) by the United Nations for the year 2030, is the problem 

of point and non-point pollution. There has been a billion-dollar investment to tackle the water 

pollution resulting from urban and industrial waste. Tackling non-point pollution remains a bigger 

challenge throughout the world. Riparian management guidelines have been prescribed for the 

rehabilitation of these streams and rivers, but they seem to be ineffective as they have failed to 

consider the social and economic aspect of the problem.  

 

2.2   Detrimental effects of agricultural runoff 

Willis, et. al. [12] reviewed how the quality of water in freshwater bodies is inversely 

affected due to the presence of pesticides in runoff. This paper iterated the fact that the use of 

pesticides has increased about 50-fold in the last few decades. In the United States alone, farmers 

use about 661 million pounds of pesticides and the United States amounts to about 65% of the total 

usage. The use of herbicides is on the rise; however, use patterns of insecticides have shifted from 

organochlorine to organophosphate and carbonate compounds. Sustainable use of pesticides is a 

prime concern and it requires knowledge of how they are transported, partitioned, detoxified and 

accumulated in the environment.  



10 

 

There are a few factors which affect the concentration of pesticides in runoff, a few of them 

being: 

1. Rainfall characteristics: The duration and the frequency of rainfall are instrumental in 

determining the concentration of pesticides observed in agricultural runoff. The 

relationship between them is strictly directly proportional to one another. 

2. The time interval between application of pesticides and rainfall: It is instrumental in 

determining the amount of runoff which is detected in agricultural fields. It is observed that 

the concentration of pesticides in runoff is higher when the application time between them 

is less. 

3. Properties of pesticides: The chemical and physical composition, formulation and 

persistence of pesticides is consequential in determining the concentration of pesticides in 

runoff. The pesticides which are insoluble or partially soluble in water generally contribute 

to the long-term potential loss by runoff since the half-life of these compounds (time 

required for 50% of these pesticides to disappear) is very high. 

4. The rate of application of pesticides and the amount of pesticide loss in runoff: Both 

of them are positively correlated, but the relationship between them is not strictly linear 

and this effect goes on to dwindle in due passage of time. 

5. Texture of soil and topography: The steepness of the slope and the texture of the soil are 

instrumental in determining the amount of pesticides in runoff. Higher runoff generally 

tend to occur in places which have fine-textured soils rather than places, which have coarse-

textured soils, since the infiltration rate of the former is low. The steepness of the slope 

also does play a role in the amount of runoff which the soil may incur. The higher the 

steepness, greater would be the runoff and vice-versa. 



11 

 

6. Soil moisture level/content: If the soil moisture content is high i.e. if the soil is wet/moist, 

then the soil infiltration rate is extremely low and there is a high chance of runoff, thereby 

increasing the pesticide concentration in the effluent stream. 

7. Ground cover type and quantity: Ground cover, including crop residues, reduces the 

amount of soil erosion, thereby decreasing the transportation of pesticides in runoff. These 

ground covers aid in avoiding the transportation of water insoluble pesticides. 

8. Transport distance: The greater the distance of transport of runoff across an untreated 

land, the lower the concentration of pesticides present in runoff. These lands absorb most 

of these pesticides, thereby reducing the pesticide concentration in runoff. 

Out of all these factors, the major factors contributing to the concentration of pesticides in runoff 

are the first three factors [12]. 

 

2.3   Urban runoff mitigation techniques 

Xie, et. al. [13] identified an appropriate drainage solution to minimize the potential 

flooding risk in urban areas for long rainfall duration, such as a combination of Rain Barrel, 

Previous Concrete and Green Roof. The experiment was carried out in a developed area in 

Shanghai under different considerations and it was concluded that increasing the pipe size could 

result in improved node flooding if the rainfall is for a shorter duration. 

  Besides extremely heavy rainfall events, the problem of impervious surfaces need to be 

addressed, which is one of the main hydraulic changes in the catchment processes due to 

urbanization. These impervious surfaces decrease the infiltration of runoff in urban areas, and 

indirectly affect downstream flooding. These were traditionally used as a means of controlling 



12 

 

runoff, but due to the cost involved in it, Green Infrastructure practices, have been considered as a 

better alternative. 

  As an alternative to the existing traditional gray infrastructure, Green Infrastructure 

techniques like Green Roof, Bio-Retention Cell, Vegetative Swale and Permeable Swale are being 

considered. These techniques alone do not help in the reduction of urban runoff. There have been 

certain Low Impact Development (LID) practices implemented before at an in-situ level, but they 

do not tackle the issue of surface runoff, which is one of the main causes of contamination of the 

urban water bodies. So, the main focus of future research is to formulate a framework to combine 

LID techniques and Green Infrastructure practices judiciously. 

 

2.4   Smart irrigation strategies and initiatives 

Gaborit, et. al. [14] identified stormwater detention ponds as one of the Best Management 

Practices (BMPs) for limiting runoff in urban landscape. These kinds of ponds store water during 

the rainy season, limiting the velocity of water and also improves its quality. The concept of dry 

retention ponds are widely practiced in the United States of America and Canada. The paper 

touches on finding techniques like SWMM5, which is a prediction-based approach for managing 

the routing of flow in the system. This designed model is helpful for simulation of runoff and the 

suspended solids in it over the catchment area. Although the simulation assumes ideal conditions, 

which results in an overestimation in the calculation of efficiency of the model, the overall model 

holds well for the hydrologic-hydraulic simulation process. 

Tang, et. al. [15] studied the flow of water on and inside the surface of soil where the soil 

below has impenetrable rocks and tile drains. This work stresses on the evaluation of various 

mitigation strategies for reducing runoff, such as, constructing wetlands, ditches and long stripes 



13 

 

of vegetation. The vegetated strips/buffer strips used help in the reduction of pesticides from runoff 

in the following manner: (1) By facilitating the sorption of particles which reduce the overland 

runoff that contain the dissolved pesticides and (2) Enhancing pesticide retention by increasing the 

infiltration time. The performance of vegetative strips for filtering out pesticides and its effect on 

the environment has not been evaluated and still remains a point of contention among most of the 

researchers. A significant amount of research needs to be dedicated to investigating the effect of 

trapped pesticides through different physiological processes in these buffer zones, and the 

preventive measures that can be taken to avoid their release. This paper also discusses a few 

measures that need to be taken while applying pesticides like considering the nozzle diameter, the 

climate and soil restrictions and the variability in application distance. The application of 

pesticides must be reduced in high-risk areas because the differences in the composition of the 

pesticides play a more important role than the variability of field-specific characteristics. There is 

another Good Agricultural Practice (GAP), which needs to be practiced such as tillage practice. 

This process alters the soil hydraulic properties, thereby affecting the water flow pathways in the 

soil. The third most commonly used GAP is the process of Tile Drainage which is used in places 

where shallow groundwater table exists. This process reduces the runoff over the land by 38% and 

significantly reduces the pesticide losses by about 56%. 

Davis, et. al. [16] prescribed Bioretention, Bio-infiltration and Rain Gardens as one of the most 

innovative and efficient state-of-the-art techniques for managing storm water in urban areas. These 

techniques are extremely important for managing other pollutants like pathogenic bacteria and 

thermal pollution, but many design questions also persist for this practice such as the depth of the 

pooling area and the fill media used, the options used before treatment is applied and the selection 

of vegetative buffers. 



14 

 

The general features of the prescribed bioretention system include two major steps: 

• 0.7 m to 1 m of soil media to help in the infiltration of runoff 

• Using different types of vegetative strips to have a few inches of runoff pooling 

As this entire process is still evolving and there is enough evidence to substantiate its efficiency in 

reducing urban runoff, there are certain fields of resear/ch which need serious attention. A few of 

them have been listed below.  

• The fill media depth and composition 

• The configuration and basin geometry of drainage 

• Vegetation selection 

Total Suspended Solids (TSS) removal and Total Nitrogen (TN) removal using this 

abovementioned technique in select field and laboratories have been studied in detail at sites in 

College Park, Charlotte, Durham, Villanova and few other places and have been summarized in 

this paper. 

  Vymazal, et. al. [17] proposed the use of Constructed Wetlands (CWs) for controlling the 

concentration of pesticides in runoff in most developing nations. So far, there has been wide usage 

of Constructed Wetlands with open and free water surfaces. Current work is being carried out on 

subsurface flow Constructed Wetlands (CWs) which have proven to be quite instrumental in 

controlling the concentration of pesticides in runoff as there have been a large number of 

physiological and biological processes involved in these CWs. However, there is strong evidence 

to suggest that the vegetative strips used in these wetlands play the most significant role. In 

summary, many irrigation controls studies have considered passive techniques to minimize runoff 

and pesticide contamination into water streams. 

 



15 

 

2.5   Current prediction-based models for controlling irrigational runoff 

Caparo, et.al. [18] prescribed a controller, which monitors the soil moisture around the 

desired level. A Recurrent Neural Network (RNN) is used, which takes the plant’s in-roots soil 

moisture level as the input and its predicted future values. The use of Recurrent Neural Network 

in a control system has been proposed before, but this paper showcased its application to 

agricultural systems. These models which are developed from the existing irrigation programming 

models consider the predictors mentioned in Table 2.1. 

 

Table 2.1: List of predictors used by Caparo, et. al. to train the RNN. Reprinted from [18] 

1. Environmental variables Temperature 

Pressure 

Solar radiation 

Wind speed and direction 

2. Plant variables Stem size 

Sap flow 

3. Soil variables Soil temperature 

Humidity 

Conductivity 

 

 

The training process was carried out using the experimental data about the soil moisture content 

of the soil and the time period for which the irrigation cycles were run. As stated before, the Neural 

Network used in this case is a Recurrent Neural Network. The specifications of the RNN used in 

this case are as mentioned in Table 2.2. 

 

 

 

 



16 

 

Table 2.2: Specifications of the RNN used by Caparo, et. al. Reprinted from [18] 

1. Input layer 10 inputs and 8 delays 

2. Hidden layer 20 neurons with tanh(.) activation function 

3. Output layer 1 neuron with linear activation function 

 

Then, the output from the Recurrent Neural Network is normalized before feeding it to the input 

which is achieved by dividing the output by the maximum volumetric level. 

Karasekreter, et. al. [6] developed techniques to predict Irrigation Ratios and Time 

Intervals using an Artificial Neural Network (ANN) where the Levenberg-Marquardt (LM) and 

the BackPropagation (BP) algorithms were used to train our Neural Network and achieved 

successful results in the classification process. The input parameters and specifications of the 

Distributed Time Delay Neural Network (DTDNN) are shown in Table 2.3. 

       

Table 2.3: Specifications of the ANN used by Karasekreter, et. al. Reprinted from [6] 

1. Input parameters Soil moisture 

Soil type 

Product type 

Time interval 

2. Input layer 4 Neurons 

3. Intermediate layer 10 Neurons 

4. Output Layer 1 Neuron 

 

This design is primarily aimed at conserving water and promoting the concept of irrigation during 

nighttime as it helps in reducing the water losses resulting from evaporation. This test was 

performed at a strawberry orchard spanning over 0.24 acres of land in Turkey and resulted in 

20.5% savings in water and 23.5% savings in energy. 



17 

 

  Khan, et. al. [7] prescribed the irrigation water requirement for different types of crops 

with the aim to reduce wastage of water in irrigated agriculture. The input dataset consisted of T-

max, T-min, humidity, wind speed, rainfall, solar radiation, soil type and crop type; and the crop 

water usage was generated as the output. An approach named Reference Evapotranspiration Based 

Estimate was proposed to carry out the preprocessing of the data and a set of different Machine 

Learning algorithms were applied both on the processed and unprocessed dataset and their 

accuracy was observed in both the cases. A 3-fold cross-validation procedure was used to validate 

the model and it showed that there was a minor difference in the prediction accuracy for major 

Data Mining techniques such as SysFor, Decision Tree and ANN. This resulted in obtaining a 

prediction accuracy of 78% using SysFor, followed by Decision Tree and SVM with 74% and 64% 

prediction accuracy respectively. 

Umair, et. al. [8] collected the environmental data recorded by sensors and were passed to 

the next stage which converted these parameters to actual soil moisture. Then, this calculated soil 

moisture was compared with the required soil moisture with the help of an Artificial Neural 

Network (ANN) and a decision was made dynamically on how much water would be required to 

irrigate the plots.  The topology of the ANN used in this case is mentioned in Table 2.4. 

 

Table 2.4: Specifications of the ANN used by Umair, et. al. Reprinted from [8] 

1. Type of ANN Distributed Time Delay Neural Network 

2. Training function used Bayesian Regulation Function 

3. Performance measure used Sum Squared Error 

4. Learning rate 0.5 

 

 



18 

 

2.6   Missing data imputation techniques for completeness of the historical ASIS dataset 

 

For developing an efficient Machine Learning (ML) algorithm using the ASIS historical 

dataset for a smart controller, the ML predictors should not have any missing values. Therefore, 

an applicable and robust ML learning algorithm capable of dealing with missing values within the 

data set should be used. 

Schafer, et. al. [19] proposed techniques to impute or assign multiple missing values in 

datasets collected from the Adolescent Alcohol Prevention Trial. The questionnaire had several 

questions, which the subjects were either unwilling to respond due to lack of time or interest. The 

questionnaire consisted of three parts, where every one-third of the correspondents received any 

two of the three sections randomly. Previous approaches included estimation of mean for the 

datapoints as it is one of the simplest and most straightforward means to impute missing values. 

However, this method increased the correlation between the predictors thereby interfering with the 

analysis. That is why, in this case, the author proposed Multiple Imputation techniques where 

Bayesian techniques were used to construct a predictive distribution for the features and missing 

data was imputed with multiple values derived from this distribution. These results were combined 

to get overall estimates for the missing-data uncertainty. It was observed that, at most, only 3-5 

imputations were required to get the desired results by this approach. The efficiency of an estimate 

based on m imputations has been summed up as: (1 +
𝛾

𝑚
)

−1

 where 𝛾 is the fraction of missing 

information for the quantity being estimated. 

  Therese D. Pigott [20] reviewed many methods for handling missing data while conducting 

a questionnaire-based survey for students exhibiting asthma symptoms. Four different reasons for 

missing data were figured out in the survey: absence from school during the time the survey was 

conducted, symptom severity data missing, response mechanism missing and the last being 



19 

 

students forgetting to fill up all the data fields in the survey. The scale and the distribution of all 

the variables used in the study are considered to be multivariate normal and then, seven commonly 

used missing data methods were implemented to impute the missing values. Using Complete-Case 

Analysis (CCA), all the observations that have even one missing value in the analysis were dropped 

and Linear Regression is used to impute all the missing values. The main disadvantage of this 

method is that in 90% of the cases, there was at least one missing predictor value; thereby, reducing 

the size of the training dataset to only 15 observations which is too low to train any model. The 

second approach used in their case is the Available Case Analysis (ACA), which does not take 

validation data, training data and testing data separately. The drawback of this approach is that it 

works only for the variables that are weakly correlated with the response. For the observations 

where the variables are either strongly or moderately correlated, this entirely could ruin the 

analysis. The third approach used in this case is based on the averaging values of the predictor 

with available data to fill up the missing values. This approach leads to underestimate the variance 

of these variables and under no condition, would this approach produce unbiased results. The 

fourth and fifth approaches focus on using model-based methods, namely imputation using EM 

algorithm and Multiple Imputation techniques. The EM algorithm focuses on finding the statistical 

estimates of a distribution like the mean and covariance matrix when there is no defined solution 

to maximize the likelihood. Using Multiple Imputation, the researcher aims to impute the missing 

data with possible values for each observation. 

 

 

 



20 

 

2.7   Data clustering techniques for visualization of ASIS dataset to determine target     

variables’ thresholds 

Machine Learning approaches involve data clustering techniques to be able to bin 

observations into different categories to enable suitable decision-making. For that purpose, Tang, 

et. al. [21] identified a technique for finding representation of huge dimensional data into lower 

spatial dimensions. The basic idea is to retain the inherent structure of the datapoints while 

projecting them in lower dimensions. In this paper, the author proposed a technique called 

LargeVis algorithm, which works by constructing a graph based on the KNN algorithm before 

projecting it out in lesser dimensions. This KNN Graph works well over all the other algorithms 

since it uses a principled probabilistic model with a synchronous gradient descent algorithm for 

optimization. The pipeline for the data visualization process as explained by LargeVis is shown in 

Figure 2.1. 

 

 

Figure 2.1: Pipeline of data visualization technique proposed by Tang, et. al. Reprinted 

from [21] 

 



21 

 

 From the pipeline, it is clear that LargeVis algorithm constructs a K-Nearest Neighbor 

graph of all the datapoints and projects the same onto a lower-dimensional space. This algorithm 

is very efficient for constructing a principled probabilistic model for graph visualization, the 

objective of which can be optimized effectively. Most of the future work would be planned on 

building on how to use this algorithm for low-dimensional layouts, how to generate more intuitive 

and meaningful visualizations for high-dimensional data and how to handle data dynamically over 

time. 

Pickett, et. al. [22] proposed the concept of graphic icons for visualizing high-dimensional 

data where these datapoints in multiple dimensions were reduced to two-dimensions, which were 

then structured in the form of gradients and contours for analysis. This work is one of the earliest 

works in the field of dimensionality reduction when working with image data, which were recorded 

by earth satellites and MRIs. 

Daniel A Keim [23] proposed a classification technique on how to deal with one-

dimensional data, two-dimensional data, multi-dimensional data, text and hypertext. All the 

techniques used are explained in detail, as follows: 

(a) Geometrically Transformed Displays: These include techniques from exploratory statistics 

such as scatterplot matrices. There are certain other projection techniques, including Prosection 

Views, Hyperslice and the Parallel Coordinates visualization techniques. The parallel coordinates 

visualization technique maps the k-dimensional space into two dimensions. 

(b) Iconic Displays: These map the attribute values of multidimensional data to the features of an 

icon. 



22 

 

(c) Dense Pixel Displays: These kinds of displays use different permutations and combinations of 

the pixels in an image to obtain correlation data among them, which is an instrumental step in 

feature reduction. 

(d) Stacked Displays: The basic principle of this display is the juxtaposing of one coordinate 

system over the other and so on.  Apart from the visualization techniques, some interaction and 

distortion techniques for effective data exploration have also been introduced in Keim [23]. The 

interaction techniques allow the analyst to interact with the visualizations and dynamically change 

them according to the exploration objectives. The distortion techniques help in retaining the 

structure of the data, but it also goes on to provide means of focusing on more details. The basic 

idea is to differentiate parts, which need to be showed with high amount of detail from the parts, 

which are showed with low amount of detail. 

Buja, et. al. [24] implemented data visualization techniques with Multidimensional Scaling 

(MDS). This algorithm works by constructing maps in the sample space by interpreting the 

dissimilarities as distances. This approach has found recent application in the Machine Learning 

(ML) domain motivated by large databases. This approach of dimensionality reduction and 

visualization went on to become more popular with the emergence of kernelizing approaches 

inspired by Support Vector Machines (SVMs). 

Ed H Chi [25] proposed an extension to taxonomize information visualization techniques 

by using the Data Space Model [Chi98]. This paper shows that this model not only helps 

researchers understand the space of design, but it also helps implementers understand how 

different data visualization techniques can be applied more broadly. The structure of the Data 

Space Model is shown in Figure 2.2. 

                    



23 

 

 

Figure 2.2: Proposed Data Space Model by Ed H Chi. Reprinted from [25] 

 

 

 

2.8   Feature extraction techniques for better prediction of target variables in ASIS dataset 

 

 In applications where the number of observations is limited but have a large number of 

features, it can be challenging drawing inferences to postulate an accurate fitting model. Therefore, 

many feature selection techniques have been considered over the years. 

In recent years, Lei Yu, et. al. [26] introduced a novel concept, which takes into account a 

predominant correlation, and a fast filter method to identify relevant features in the data without 

any pairwise correlation analysis. Using Symmetrical Uncertainty as the goodness measure, the 

technique was used to decide whether a feature was relevant to the class or not using an user-

defined SU value.  The SU value determines whether a relevant feature is redundant or not using 

pair-wise correlations between all features. 



24 

 

Jaworska, et. al. [27] stated how Multi-Dimensional Scaling (MDS) can be used as a tool 

in various psychological domains for exploratory data analysis. This works by condensing large 

amount of data into relatively simpler spatial maps that convey important relationships in the most 

economical manner. This tool can be used to model nonlinear relationships among variables, and 

it does not require multivariate normality. This insight has proven to be highly effective in reducing 

multi-dimensional outputs from MDS, and can be regressed with more objective variables, thereby 

providing more confidence in the emerging scaling solution and its interpretation. 

Park, et. al. [28] suggested the feature extraction scheme, which uses class information to 

extract features by the Principal Component Analysis. The algorithm was tested on Yale face 

database and its performance was compared with the other algorithms. This algorithm consists of 

mainly 3 steps: 

• Addition of labels to the datapoints 

• Principal Component Analysis for feature extraction 

• Determination of transformation matrix W 

The pipeline of the PCA-FX algorithm is shown in figure 2.3. This algorithm achieved the lowest 

classification error (6.06%) on the testing dataset and is better than all other algorithms even 

though it uses the least number of features. 

 



25 

 

Figure 2.3: PCA-FX pipeline prescribed by Park, et. al. Reprinted from [28] 

 

2.9   Data augmentation techniques using synthetic data for enabling Machine Learning 

approaches in irrigation control 

                               

In certain applications, lack of adequate data quantity can make any Machine Learning 

approach almost impossible to implement. Therefore, synthetic data generation is necessary for 

developing a robust ML approach. Dyk, et. al. [29] introduced an effective technique for 

augmenting data, which uses both marginal and conditional augmentation strategies with 

approximation methods. This strategy was applied to three common classes of models namely 

multivariate t, probit regression and mixed-effect models to obtain efficient Markov Chain Monte 

Carlo (MCMC) algorithms for posterior sampling. The basic feature of all these algorithms is that 

all of these are positive recurrent sub-chains of recurrent Markov Chains (MCs) constructed in 

larger spaces. These models rely heavily on the way data is distributed and which type of 

distribution the datapoints follow to ascertain a particular type of data distribution. 



26 

 

  Wong, et. al. [30] stated that while transforming data from data space to feature-space, 

generic augmentation techniques achieved far better performance and reduced the chance of 

overfitting while training the model. The concept of data warping was introduced in this case for 

training large neural networks. The warped training data was created by applying affine 

transformation and elastic distortion to the character images (MNIST dataset) to reduce the 

imbalance in the training dataset.  This concept of data warping was compared with another 

technique called as Synthetic Minority Over-Sampling technique (SMOTE) in which synthetic 

examples are created in the feature space from randomly selected pairs of real world examples 

from the minority class. Another alternative data augmentation technique called as Synthetic 

Imagery (SI) was also introduced in the process as an alternative to both the techniques. After 

using these data augmentation frameworks, the samples were fed to a convolutional 

backpropagation-trained neural network, convolutional support vector machine and a 

convolutional extreme learning machine classifier. While training the convolutional neural 

network (CNN), augmentation in data space using elastic deformations gave a better improvement 

in error percentage than augmentation in feature space. Using SMOTE algorithm for augmentation 

in the feature-space, the test error % decreased when the number of samples was increased to 

50000 samples. Similarly, while using the Convolutional SVM, data augmentation in the feature-

space using warping techniques provided only a very low improvement in testing error %, but 

augmentation in data space using SMOTE algorithm did not improve the performance of SVM. 

Similarly, when the Convolutional ELM was trained, the augmentation in data space did not show 

a monotonic trend, rather SMOTE showed more promising results on the dataset. 

Wei, et. al. [31] presented two approximations for the analysis of missing-data problems 

namely the Poorman’s Data Augmentation algorithm and the Asymptotic Data Augmentation 



27 

 

algorithm. Both algorithms were applied in the censored regression case to obtain semiparametric 

methodologies. The results showed that even when the size of the sample is as small as 40, the 

algorithms yielded reasonable results in terms of the model bias and the Mean Squared Error 

(MSE) of the models. 

 

2.10   Advantages and challenges of recent ML studies in the context of irrigation control 

            

The Machine Learning models, which have been discussed here mostly deal with irrigation 

of crops.  Many of them have been used to model taking into account the geospatial characteristics 

of the area where the observations were recorded. However, runoff minimization has not been 

addressed or discussed in any of the cited literature. 

All the studies cited above consider the distribution of data as part of synthetic data 

generation process. However, none of the papers have dealt with the estimation of statistical 

characteristics for synthetic data generation. Moreover, the data visualization and feature 

extraction approaches, which have been discussed do not take into account the case of scarcity of 

data in their applications. In summary, all these concerns need to be addressed in future studies. 

 

 

 

 

 

 

 

 



28 

 

CHAPTER III 

 

ANALYSIS OF THE ASIS DATASET AND IMPLEMENTATION OF APPROPRIATE 

MACHINE LEARNING MODEL 

               

                                        

3.1   Transformation and construction of field-based dataset for analysis 

                 

An irrigation dataset was generated as part of an on-going field study in which irrigation 

characteristics were measured and recorded. The dataset which has been used in this approach was 

recorded at the Turfgrass Laboratory, Texas A&M University, College Station. The data was 

collected using plots 15, 17 and 18 for the years 2015-16 and 2016-17, and similarly, the new data 

for the year 2018-19 has been recorded from the plots 10,12 and 13. Both the historical and the 

current data generated have been amalgamated together to be used for analysis and design of an 

appropriate Machine Learning approach. All the data used for analysis have been generated using 

CONTROL approaches in which the entire system was programmed to water the plots for a 

stipulated amount of time, and runoff was observed for each of these plots. All the plots used in 

the analysis are 13 ft by 27 ft, as shown in Fig. 3.1. 

      

 

Figure 3.1: Overview of the plot used for analysis in TAMU Turfgrass Lab 



29 

 

 The soil moisture, which is one of the most important parameters in this analysis has been 

measured with a Dynamax T𝐻2𝑂 moisture meter as shown in Fig. 3.2. The pre and the post soil 

moisture readings have been taken after each irrigation run, and appropriate inferences have been 

carried out which have been discussed in the later part of this chapter. 

 

 

Figure 3.2: Dynamax 𝑻𝑯𝟐𝑶 moisture meter used for measuring soil moisture content 

 

The runoff volume observed in each of these plots was measured with the help of flowmeters 

which have been installed in each plot and stores the volume of runoff data recorded every two 

minutes. The data, which have been recorded were continuous time-series data and was summed 

over the time of an irrigation cycle. The unit in which this runoff volume was recorded was in 



30 

 

liters and is converted to gallons. The picture of the runoff meter used in the plots is as shown in 

Fig. 3.3.           

             

 

Figure 3.3: Teledyne ISCO flow meter and runoff sampler 

 

The irrigation volume observed in this case has been recorded using flow meters, which were 

installed under the soil at each of these plots. These meters record the volume of water observed 

in gallons when the irrigation system is run for a stipulated time. The pre and post readings were 

taken after each irrigation cycle to record the amount of water used in each case. The picture of 

the flow meter used in this case is as shown in Fig. 3.4. 

 

 



31 

 

 

Figure 3.4: Flowmeter used in TAMU Turfgrass Laboratory for measuring applied 

irrigation volume 

 

 

 

 

3.1.1   Review of the previous dataset 

The previous dataset used for analysis for the year 2015-16 and for the year 2016-17 were 

recorded using both CONTROL and LIRMS approaches. The data recorded by the CONTROL 

approach has been used to design our model, but the performance of the LIRMS system designed 

by Udaya Bhaskar Kothapalli [4] was also used to help reduce runoff over these plots.  An excerpt 

from the previous dataset has been included, as shown in Table 3.1. 



32 

 

 

 

                  Table 3.1: An excerpt from the previous dataset recorded by Udaya Bhaskar Kothapalli. Reprinted from [4] 

LIRMS 

(gal)

CONTROL 

(gal)

LIRMS   

(gal)

CONTROL 

(gal)

LIRMS      

Pre/ Post(%)

CONTROL 

Pre/Post(%)
LIRMS  CONTROL

1 8/13/2016 40min 35min 7:00:00 AM 1Hr 19min 42sec 7:19:42 AM 159 253 14.99 80.93 35.63/43.24 35.11/42.94 70.52 13.43 8.81 Good run

2 8/26/2016 40min 35min 7:00:00 AM 1Hr 15min 24sec 7:15:24 AM 126 254 20.35 75.16 35.23/43.54 35.89/44.15 45.42 18.72 9.06 Good run

3 9/2/2016 40min 30min 7:00:00 AM 1Hr 18min 53sec 7:18:57 AM 135 253 13.6 85.4 32.45/44.32 32.12/45.19 70.16 27.1 16.08 Good run

4 9/9/2016 40min 35min 7:00:00 AM 1Hr 16min 10sec 7:16:10 AM 129 251 25.3 62.74 36.32/42.23 34.54/43.01 21.54 12.61 9.77 Good run

5 9/23/2016 40min 35min 7:00:00 AM 1Hr 25min 17sec 7:25:17 AM 163 253 18.54 49.83 31.32/41.57 31.01/42.15 42.24 20.08 14.2 Good run

6 9/30/2016 40min 35min 7:00:00 AM 1Hr 19min 37sec 7:19:37 AM 146 251 32.7 101.4 33.5/42.4 32.7/43.1 44.6 18.2 12.6 Good run

7 10/7/2016 40min 35min 7:00:00 AM 1Hr 5min 10sec 7:05:10 AM 53 250 101.4 73.8 32.1/46.6 31.6/46.6 -548.6 85.5 18.9 Rain

8 10/14/2016 40min 35min 7:00:00 AM 1Hr 14min 23sec 7:14:25 AM 139 253 25.3 61.7 34.7/45.3 34/45.6 25.4 22.1 13.4 Good run

9 10/21/2016 40min 35min 7:00:00 AM 1Hr 24min 34sec 7:25:43 AM 162 250 22.3 44.6 36.3/43.7 35.5/44.5 22.9 12.7 10.1 Good run

10 10/28/2016 40min 35min 7:00:00 AM 1Hr 15min 12sec 7:15:13 AM 135 251 NAN NAN 35.3/44.3 35.1/43.8 NAN 18.9 9.8 Flow Data Needed

11 11/4/2016 40min 35min 7:00:00 AM 1Hr 18min 45sec 7:18:45 AM 139 250 NAN NAN 32.5/43.6 33.6/44.3 NAN 24.4 12.7 Flow Data Needed

12 11/11/2016 40min 35min 7:00:00 AM 1Hr 12min 57sec 7:12:57 AM 115 252 106.2 136.4 38.6/46.4 37.9/45.8 -70.6 17.7 8.3 Rain Or too moist

13 11/18/2016 40min 35min 7:00:00 AM 1Hr 19min 34sec 7:19:34 AM 146 253 32.8 93.3 34.3/43.3 33.9/43.1 39.1 18.0 10.8 Good run

14 11/25/2016 40min 35min 7:00:00 AM 1Hr 15min 16sec 7:15:16 AM 120 251 100.6 199.2 39.2/46.5 39.8/46.3 -5.6 15.5 6.6 Rain Or too moist

15 12/02/2016 40min 35min 7:00:00 AM 1Hr 13min 53sec 7:13:53 AM 119 252 NAN NAN 37.3/45.9 37.5/45.1 NAN 19.2 8.1 Flow Data Needed

16 12/9/2016 40min 35min 7:00:00 AM 1Hr 19min 28sec 7:19:28 AM 144 251 NAN NAN 35.5/44.3 34.8/43.9 NAN 17.4 10.5 Flow Data Needed

Comment

LIRMS 

Total 

Operation 

Time 

(hr:mins)

Irrigation Volume Runoff Volume Soil Moisture
Runoff 

Reduction 

by 

LIRMS 

(%)

Soil Wetting Efficiency 

IndexEffective 

Irrigation 

Time (mins)

Trial

Scheduled 

Irrigation 

Time  

(mins)

Pause 

Time 

(mins)

Start Time 

(hr:min)

Allowable 

Irrigation 

Window 

(hrs)

Test Date



33 

 

From the above table, the recorded data for the corresponding dates were analyzed. It was 

inferred from the table that irrigation cycles were carried on a weekly schedule on each of the plots 

using both approaches (LIRMS and CONTROL). There is a column which contains the 

information as to how much runoff was reduced using the LIRMS approach. This showed feasible 

results baring a few datapoints where the soil was either too moist or there was rain on that 

particular day. It also showed that the previous system did not take into account the weather 

forecast into consideration while running an irrigation cycle and thus, proved to be one of the 

major drawbacks of the LIRMS design.  

In the dataset mentioned before, there were four datapoints which had missing values for 

the runoff volume observed for both the CONTROL and LIRMS approaches. However, when this 

dataset was used, these values were imputed by running a Linear Regression over rest of the 

predictors which have been picked from the dataset. As the number of observations was too small 

to begin with, dropping the observations while doing the analysis was not a viable option. 

 

3.1.2 Addition of new features in the dataset 

 

Baring the old features of the previous dataset, while constructing the new dataset for 

analysis, the weather data from the GRIDMET website was scrapped for each of the corresponding 

dates. The website provides the remote sensing data for the location used for data collection. The 

new climatic factors which were included in the dataset for initial analysis are as follows: 

           (a) Solar radiation [Unit: 𝑀𝐽/𝑚2𝑑𝑎𝑦] 

           (b) Temperature [Unit: °𝐶] 

           (c) Wind speed [Unit: 𝑚𝑒𝑡𝑒𝑟/𝑠𝑒𝑐] 

           (d) Vapor Pressure Deficit [𝑈𝑛𝑖𝑡: 𝐾𝑃𝑎] 



34 

 

           (e) Relative Humidity [No Unit] 

           (f) Evapotranspiration Rate [Unit: 𝐾𝑃𝑎 ] 

Some site-specific predictors were also included in our analysis. The predictors include the 

following: 

(a) Texture of the Soil 

(b) Effective Depth of Rooting [Unit: 𝑖𝑛𝑐ℎ] 

(c) Infiltration Rate of the soil [Unit: 𝑖𝑛𝑐ℎ/ℎ𝑟] 

(d) Type of turf being irrigated 

Besides using the above two categories of predictors, three sprinklers parameters were also used 

for full data analysis. The sprinkler parameters are as follows: 

(a) Application Rate of the sprinkler [Unit: 𝐺𝑎𝑙 min
−1

𝑓𝑡−2 ] 

(b) Diameter of the nozzle [Unit: 𝑖𝑛𝑐ℎ ] 

(c) Area to be irrigated [Unit: 𝑠𝑞𝑢𝑎𝑟𝑒 𝑓𝑒𝑒𝑡 ] 

 

3.1.3 Deciding the value of Evapotranspiration rate to be used in the analysis 

Using the abovementioned predictors, mathematical equations were used to calculate some 

of the parameters used as inputs.  The web-scrapped values were compared with the calculated 

values for validation purposes. The relative error was recorded to have a better idea on the 

authenticity of the values obtained. 

One of the most important predictors in the study is the Evapotranspiration Rate (𝐸𝑇0) 

which gives a rough idea about the water requirement of the turfgrasses. As suggested by Dr. 

Wherley and Dr. Nithya Rajan, the scrapped values of 𝐸𝑇0 were verified with the calculated values. 



35 

 

A set of procedures was carried out systematically to calculate the 𝐸𝑇0 and has been included 

below. 

1. The value of Reference Evapotranspiration (𝐸𝑇0) was calculated from the Penmann Monteith 

Equation as shown in Equation 3.1. 

𝐸𝑇𝑜 =
0.408Δ(𝑅𝑛−𝐺)+𝛾(

900

𝑇+273
)𝑢2(𝑒𝑠−𝑒𝑎)

Δ+𝛾(1+0.34𝑢2)
            (3.1)                

The description of the parameters used for the calculation of 𝐸𝑇0  are as follows:    

ET0 = Daily evapotranspiration rate (Unit: mm day−1) 

Rn = Net radiation at crop surface (Unit: MJ m−2day−1) 

G = soil heat flux density (Unit: MJ m−2day−1) 

T = air Temperature at 2 m height (Unit: °C) 

u2 = Wind speed at 2 m height (Unit: m s−1) 

es = Vapour pressure of air at saturation (Unit: kPa) 

ea = actual vapour pressure (Unit: kPa) 

Δ =  slope of vapour pressure curve (Unit: kPa ° C−1) 

γ = Psychrometric constant (Unit:  kPa ° C−1) 

2. Some of the hyperparameters used in the equation were site-specific and were calculated for the 

Turfgrass Lab separately.  

The value of the psychometric constant (𝛾) has been calculated as follows: 

The height above the sea level for the TAMU Turfgrass Laboratory site (ZIP 77845) was set at 91 

m (z = 91m). 

The formula for atmospheric pressure (P) was used, as shown in Equation 3.2. 

P = (101.3) (
293−0.0065z

293
)

5.26

              (3.2) 



36 

 

Considering z = 91 m, the value of atmospheric pressure (P) was estimated to be 100.23 kPa. 

Considering this value of pressure, the value of 𝛾 was estimated as (0.665). (10−3). 𝑃 =

0.067 𝑘𝑃𝑎 °𝐶−1 . 

Similarly, the value of Δ was calculated from Equation 3.3 which was then substituted in Equation 

3.1 to get the value of ET rate.   

Δ =
4098[0.618 exp(

17.27𝑇

𝑇+273
)]

(𝑇+273)2              (3.3) 

where the value of temperature (T) varied every day. 

The value of wind speed at 2 m height (𝑢2) was calculated from the wind speed data recorded at 

10 m height (𝑢𝑧) by using Equation 3.4.  

𝑢2 = 𝑢𝑧 ×
4.87

ln(67.8𝑧−5.42)
                (3.4) 

where, 

u2 = wind speed at 2m height (Unit:  m s−1) 

uz = measured wind speed at height z (Unit:  m s−1) 

z = height of wind measurements above ground surface (Unit: m) 

After doing the calculations, the results were included in Table 3.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



37 

 

        Table 3.2: Comparison of calculated and measured ET values with relative error  

 

Test Date

Solar 

Radiation 

(MJ/m^2)

Temperature 

(deg c) Delta

Wind 

Speed 

(m/sec)

Wind Speed 

(m/sec_2m)

Vapour 

Pressure 

Deficit

Relative 

Humidity

ETO 

Calculated 

(mm/day)

ETO Web-

scrapped 

(mm/day)

ETO 

Relative 

Error

2/9/16 19.99 27.1 0.21 3.1 2.32 3.57 0.72 10.22 4.91 51.98

3/25/16 20.66 13.9 0.10 2.6 1.94 1.59 0.56 7.08 3.89 45.08

4/1/16 7.09 12.5 0.10 6.8 5.09 1.44 0.71 6.56 2.79 57.44

4/8/16 18.83 19 0.14 3.5 2.62 2.20 0.43 8.49 5.1 39.93

4/15/16 23.13 19.3 0.14 2.8 2.09 2.23 0.77 8.97 4.07 54.63

4/22/16 23.98 19.7 0.14 4.2 3.14 2.29 0.7 10.23 4.94 51.69

4/29/16 21.49 24.9 0.19 7 5.24 3.14 0.73 13.26 5.31 59.97

5/6/16 26.60 21.2 0.16 2.2 1.65 2.51 0.57 9.75 5.45 44.12

5/13/16 23.89 25.4 0.19 3.4 2.54 3.23 0.75 11.13 5.3 52.39

5/20/16 26.50 21.9 0.16 2.1 1.57 2.62 0.78 9.79 4.8 50.97

5/27/16 12.85 19.1 0.14 5.8 4.34 2.20 1 8.84 1.68 81.00

6/3/16 20.04 24.3 0.18 2.8 2.09 3.03 0.79 9.34 4.23 54.70

6/10/16 27.18 28 0.22 3.4 2.54 3.77 0.75 12.62 6.17 51.12

6/17/16 31.05 29.6 0.24 3.5 2.62 4.13 0.68 14.17 7.47 47.28

6/18/16 30.46 28.7 0.23 2.6 1.94 3.92 0.74 12.84 6.74 47.51

6/24/16 29.34 28.6 0.23 4.7 3.52 3.90 0.73 14.58 7.04 51.70

8/13/16 18.02 30 0.25 2.8 2.09 4.23 0.7 9.90 5 49.49

8/26/16 21.90 26.7 0.21 2.4 1.80 3.49 0.78 9.87 4.69 52.49

9/9/16 22.41 28.3 0.23 3.4 2.54 3.83 0.74 11.45 5.61 50.99

9/23/16 16.18 27.7 0.22 3.8 2.84 3.70 0.72 10.13 4.79 52.74

9/30/16 23.39 20.5 0.15 1.9 1.42 2.41 0.57 8.56 4.27 50.12

10/7/16 18.68 25.3 0.19 4.5 3.37 3.21 0.74 10.85 3.99 63.24

10/14/16 14.82 24.2 0.18 2.6 1.94 3.01 0.78 7.79 3.31 57.51

10/21/16 18.61 18.3 0.13 3.3 2.47 2.10 0.66 8.12 3.36 58.63

10/28/16 16.90 22.3 0.17 1.8 1.35 2.68 0.7 7.14 3.67 48.59

11/4/16 6.70 21.6 0.16 3.2 2.39 2.57 0.81 6.03 1.64 72.79

11/11/16 7.01 16.5 0.12 1.6 1.20 1.87 0.62 3.78 1.98 47.56

11/18/16 8.19 20.7 0.15 5.4 4.04 2.43 0.74 8.12 2.12 73.88

11/25/16 5.18 17 0.12 2.6 1.94 1.93 0.81 4.43 1.34 69.73

12/2/16 5.60 13.1 0.10 4.3 3.22 1.50 0.64 5.20 2.19 57.86

12/9/16 10.30 3.6 0.06 3.8 2.84 0.79 0.53 3.86 1.68 56.49



38 

 

 

Figure 3.5: Plot comparing the calculated and web-scrapped values of ET0 

 

 

From Table 3.2 and Figure 3.5, it was clear that while calculating the Evapotranspiration 

rate using the Penmann-Monteith equation, there was a scaling and normalization error while 

doing the analysis. A strong correlation coefficient of 90% was observed between the web-

scrapped and the calculated values of 𝐸𝑇0. However, as the Penmann-Monteith equation uses an 

empirical formula to calculate the Evapotranspiration rate, a decision was taken to proceed with 

the web-scrapped values of 𝐸𝑇0 for future analysis. 

 

3.1.4   Description of the features used 

 The description of all the predictors used in the dataset while constructing an initial 

approach using the CONTROL method is as follows: 

i. Test date (Unit: MM/DD/YYYY): The date on which the irrigation run was conducted. 

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00

1

4

7

10

13

16

19

22

25

28

31

COMPARISON OF ET0 VALUES

ETO Web-scrapped (mm/day) ETO Calculated (mm/day)



39 

 

ii. Start time (Unit: hr:min – 24 hour format): The time when the irrigation run was 

scheduled to start.  

iii. Scheduled irrigation time (Unit: min): The time for which the irrigation cycle was 

scheduled to run. 

iv. Solar radiation (𝑼𝒏𝒊𝒕: 𝑴𝑱/𝒎𝟐𝒅𝒂𝒚): The radiant energy emitted by the sun from a 

nuclear fusion reaction that creates electromagnetic energy. This is one of the most 

important factors in the calculation of Evapotranspiration. 

v. Temperature (Unit: °𝑪): The degree of hotness or coldness of the atmosphere on the °C 

scale. 

vi. Daily average wind speed (Unit: miles/hr): The mean estimate of the wind speed 

recorded every two minutes by any weather station over a particular area for an entire day. 

vii. Vapor Pressure Deficit (Unit: KPa): The difference between the saturation point 

moisture content and the actual amount of moisture in the air. 

viii. Area to be irrigated (Unit: sq. ft.): The size of the plot to be irrigated in square feet. 

ix. Nozzle diameter of the sprinkler (Unit: mm): It is an important parameter in the 

determination of pressure when the irrigation process is carried out. 

x. Application rate of the sprinkler (𝑼𝒏𝒊𝒕: 𝑮𝒂𝒍 𝒎𝒊𝒏−𝟏𝒇𝒕−𝟐): The average rate at which 

water is sprayed onto crops. It depends on the size of sprinkler nozzles, the operating 

pressure and the distance between sprinklers. The basic infiltration rate of the soil should 

be higher than the average application rate of the sprinkler, so higher absorption of water 

can nullify or minimize runoff. 

xi. Flow rate of the sprinkler (Unit: Gal/min):  The sum of the flow rates through the 

individual sprinklers of the entire sprinkler system which depends on water pressure. 



40 

 

The dimensions of the sprinkler opening and frictional losses in the sprinkler line also 

affect the overall flow rate.  

xii. Texture of the soil: The type of soil which is used to irrigate turfgrasses.  

xiii. Effective depth of rooting (Unit: cm): The depth of soil used by the main body of the 

plant roots to obtain most of the stored moisture and plant food under proper irrigation. 

xiv. Infiltration rate (Unit: cm): The velocity at which the water enters the soil. It is measured 

by the depth of the water layer that can enter into the soil in one hour. 

xv. Pre soil moisture (Unit: %): The soil moisture level of the soil before an irrigation cycle. 

xvi. Post soil moisture (Unit: %): The soil moisture level of the soil after an irrigation cycle. 

xvii. Type of turf being irrigated: The breed of turfgrass which is being irrigated. In this case, 

St. Augustine turfgrass was used. 

xviii. Evapotranspiration rate (Unit: mm/day): The rate at which water was transferred from 

the land to the atmosphere by evaporation from the soil and other surfaces and by 

transpiration from plants. 

xix. Runoff volume observed (Unit: Gallons): The amount of runoff recorded by the runoff 

meter after running the irrigation cycle for a stipulated amount of time. 

xx. Precipitation (Unit: inch): A major part of the hydrologic cycle, which is responsible for 

depositing most of the fresh water on the planet. 

xxi. Irrigation volume observed (Unit: Gallons): The amount of water used for irrigation 

while running an irrigation cycle. It is measured using meters installed below the soil where 

the pre and the post readings are taken and their difference gives the total irrigation volume. 

 

 



41 

 

3.1.5 Final set of features used for analysis 

 

There were a certain set of features which were needed to be removed since the number of 

observations were too little to work with a total of 21 features in the analysis. This increased the 

case of overfitting the model and giving erroneous outputs on the testing data. In Table 3.3, the list 

of features which had been removed from the analysis have been stated along with the reason for 

their removal. 

 

 

                        Table 3.3: List of features removed from the analysis 

 

Feature 

No 

Predictor Name Reason For Removal 

i Test date Irrelevant 

ii Start time  Already encoded into 4 classes (4:Evening, 2:Morning, 

1:Night, 3:Afternoon) 

iii Solar radiation Significant correlation with Evapotranspiration Rate 

iv Temperature Significant correlation with Evapotranspiration Rate 

v Vapor Pressure 

Deficit 

Significant correlation with Evapotranspiration Rate 

vi Area to be 

irrigated 

Variance = 0 (since all the 6 plots used are of same area) 

vii Application rate Variance = 0 (since the sprinkler parameter used is the 

same) 

viii Flow rate Variance = 0 (since the sprinkler parameter used is the 

same) 

ix Texture of the soil Variance = 0 (since the soil used is the same) 

x Effective depth of 

rooting 

Variance = 0 (since the soil used is the same) 

xi Infiltration rate Variance = 0 (since the soil used is the same) 

xii Pre soil moisture Significant correlation with Soil Wetting Efficiency 

Index 

xiii Post soil moisture Significant correlation with Soil Wetting Efficiency 

Index 

xiv Type of turf being 

irrigated 

Variance = 0 (since the turfgrass used is the same in all 

the 6 plots) 

 

 

 

 

  



42 

 

The final list of features used in the analysis were as follows: 

i. Reference Evapotranspiration rate 

ii. Average wind speed 

iii. Scheduled irrigation time 

iv. Precipitation 

v. Start time class: The start time variable has been encoded into 4 classes: 1:Night, 

2:Morning, 3:Afternoon and 4:Evening 

These were the final list of features used in the analysis and the response or target variable was 

changed to see which approach worked the best for the application. Details about this have been 

discussed in section 3.2. 

 

3.2 Selection of appropriate response or target variable for runoff minimization 

3.2.1 Approach I 

In this approach, the above 5 predictors were used and the runoff observed was estimated. 

The model was trained on the data generated by the CONTROL approach. Here, ‘Runoff Volume 

Observed’ was treated as a categorical variable which is binned on the basis of its distribution as 

shown in Fig. 3.6. 



43 

 

 
Figure 3.6: Distribution of the runoff volume observed by CONTROL approach 

  

The values of runoff data below 105 gallons show up as one cluster and the values greater 

than 105 gallons show up as another to classify them either as Class 0 or Class 1. 

3.2.2 Approach II 

 

Here, the time when the first instance of runoff was observed (Unit: seconds) was 

estimated. Using CONTROL approach, an irrigation cycle was carried out for a stipulated time, 

and runoff was observed for the first time in a few minutes of its operation. The distribution of the 

variable is shown in Fig. 3.7. 

 



44 

 

 
Figure 3.7: Distribution of the variable showing the first instance of runoff in seconds 

 

 

This variable was binned into 3 categories. For all the cases when the first instance of runoff was 

detected at 0 seconds was categorized as Category 0. Similarly, all the values between 0 and 600 

seconds and any value beyond have been categorized as Category 1 and Category 2, respectively. 

 

 

 

 

3.2.3 Approach III 

 

Here, the Soil Wetting Efficiency Index (SWEI) was used as the target variable. For this, 

the soil moisture reading was recorded after each irrigation cycle with the help of a soil moisture 

meter as shown in Fig. 3.2 and the irrigation volume before and after an irrigation cycle was 

recorded using flowmeters. The formula for Soil Wetting Efficiency Index, proposed by Wherley, 

et. al [33] is as follows: 

𝑆𝑂𝐼𝐿 𝑊𝐸𝑇𝑇𝐼𝑁𝐺 𝐸𝐹𝐹𝐼𝐶𝐼𝐸𝑁𝐶𝑌 𝐼𝑁𝐷𝐸𝑋 =

[[
𝑆𝑀𝑝𝑜𝑠𝑡 − 𝑆𝑀𝑝𝑟𝑒

𝑆𝑀𝑝𝑟𝑒
] ∗ 1000]

𝐼𝑅𝑅𝐼𝐺𝐴𝑇𝐼𝑂𝑁 𝑉𝑂𝐿𝑈𝑀𝐸
                (3.5) 



45 

 

 

By far, this seems to be the most reliable target variable for analysis since this variable is not site-

specific and is a more generic approach compared to others. 

The distribution of the Soil Wetting Efficiency Index is shown in Fig. 3.8. 

 

 

Figure 3.8: Distribution of the variable showing the Soil Wetting Efficiency Index     

Using this approach, the Soil Wetting Efficiency Index was categorized into 2 or 3 classes as 

follows. 

(a) Value of Soil Wetting Efficiency Index below 1.7 was categorized as Class 0 and the rest as 

Class 1 respectively. 

(b) Value of Soil Wetting Efficiency Index below 1.5 was categorized as Class 0, values of Soil 

Wetting Efficiency Index between 1.5 and 2.2 was categorized as Class 1 and the rest as Class 2, 

respectively. 

Both these sub-approaches were used to generate synthetic data and test our classifiers, which have 

been discussed in sections 3.4 and 3.5.  



46 

 

3.3   Data visualization 

Data visualization is a very important tool to check whether data is linearly separable or 

not. For this purpose, Principal Component Analysis was used to see whether data show up in 

clusters so that it can be used for further analysis of the data. 

 

 

Figure 3.9: Plot showing Proportion of Variance Explained Vs the Number of PCs used in 

our analysis             

From Fig. 3.9, using the Principal Components for analysis, 84% of the total variance in 

the dataset was explained by the first Principal Component, 6% by the second Principal 

Component and 4% by the third Principal Component respectively.  

 

  



47 

 

Table 3.4: Loading matrix of the first 3 Principal Components used in the analysis 

 ETO 

(mm/day) 

Avg wind 

speed (mph) 

Precipitation 

(inch) 

Effective 

Irrigation 

Time (min) 

Start 

time 

class 

PC – 1 -0.08 0.07 0.07 -0.03 0.99 

PC – 2 0.42 0.44 -0.08 -0.79 -0.02 

PC – 3 -0.43 0.21 0.85 -0.2 -0.12 

 

 

 From the loading matrix shown above, the features transformed into Principal Components 

were observed. The first Principal Component which explained 84% of the total variance in the 

dataset showed ‘Start time class’ as being the most strongly correlated predictor in PC-1 with a 

correlation coefficient of 0.99. The second and the third Principal Components showed ‘Effective 

Irrigation Time (min)’ and ‘Precipitation (inch)’ as the most important predictors respectively as 

they showed strong correlation with the respective PCs. 

As the size of the dataset was small to begin with, dimensionality reduction was a very 

important step and from Fig. 3.9, it was inferred that three Principal Components were enough to 

explain 94% of the total variance in the data. Therefore, there was a need to observe how the three 

Principal Components clustered up against each other, and a decision was made whether to use 

this information for further analysis of the data. 

 



48 

 

 

Figure 3.10: Clustering of the datapoints considering the 1st two Principal Components 

 

 

Figure 3.11: Clustering of the datapoints considering the 1st and the 3rd Principal 

Components used in the analysis 

 



49 

 

 

Figure 3.12: Clustering of the datapoints considering the 2nd and the 3rd Principal 

Components used in the analysis 

 

 

 From Fig. 3.10 and 3.11, on observing the plots between PC-1 vs PC-2 and PC-1 vs PC-3, 

four distinct elongated clusters were observed. It was inferred from the plots that PC-1 is the most 

dominant Principal Component. To further assert this inference, the feature ‘Start Time Class’ 

which was grouped into four categories while analyzing the data, dominated the plots as it had the 

highest coefficient in the first Principal Component. 

 From Fig. 3.12, on observing the plot between PC-2 vs PC-3, there was no clustering of 

the datapoints at all. Therefore, it was inferred that both the Principal Components explained equal 

amount of variance in the dataset and none of them dominated over the other.   

 

 

 



50 

 

3.4   Generation of synthetic data 

 

There are many ways of generating synthetic data, which have been discussed before in the 

literature review section.  In this study, the number of observations at hand are few, therefore, a 

special case of the Monte Carlo (MC) approach for synthetic data generation was used. For each 

binning of the target into different classes, a shared and a distinct mean and covariance matrix was 

generated among the classes. The simulations were run to generate data according to the 

distribution of the matrices. 

Before generating synthetic data for all these approaches, all the datapoints were 

normalized.  Normalizing the data entails subtracting the mean of the predictors from each of the 

datapoints and then dividing the values by their corresponding Standard Deviation. 

 

(a) Approach I [Any observed volume of runoff below 105 Gallons was classified as Class 0 and 

the rest as Class 1, respectively] 

Generation of data using distinct mean and covariance matrix for the classes: [500 observations 

each], as follows: 

START TIME CLASS = 0 and RUNOFF VOLUME CLASS = 0 

START TIME CLASS = 1 and RUNOFF VOLUME CLASS = 0 

START TIME CLASS = 2 and RUNOFF VOLUME CLASS = 0 

START TIME CLASS = 3 and RUNOFF VOLUME CLASS = 0 

START TIME CLASS = 0 and RUNOFF VOLUME CLASS = 1 

START TIME CLASS = 1 and RUNOFF VOLUME CLASS = 1 

START TIME CLASS = 2 and RUNOFF VOLUME CLASS = 1 

START TIME CLASS = 3 and RUNOFF VOLUME CLASS = 1 



51 

 

Total number of observations sharing distinct mean and covariance matrix among the classes = 

4000 observations X 5 predictors 

Generation of data using shared mean and covariance matrix for the classes: [1000 observations 

each], as follows: 

START TIME CLASS = 0 and RUNOFF VOLUME CLASS = 0,1 

START TIME CLASS = 1 and RUNOFF VOLUME CLASS = 0,1 

START TIME CLASS = 2 and RUNOFF VOLUME CLASS = 0,1 

START TIME CLASS = 3 and RUNOFF VOLUME CLASS = 0,1 

Total number of observations using shared mean and covariance matrix among the classes = 4000 

observations X 5 predictors 

Total number of observations = 8000 observations X 5 predictors 

 

(b) Approach II [Any observed value of time until first runoff = 0 seconds was classified as Class 

0, any observed value between 0 and 600 seconds was classified as Class 1 and anything beyond 

was classified as Class 2 respectively]  

Generation of data using distinct mean and covariance matrix for the classes: [500 observations 

each], as follows: 

START TIME CLASS = 0 and TIME UNTIL FIRST RUNOFF CLASS = 0 

START TIME CLASS = 1 and TIME UNTIL FIRST RUNOFF CLASS = 0 

START TIME CLASS = 2 and TIME UNTIL FIRST RUNOFF CLASS = 0 

START TIME CLASS = 3 and TIME UNTIL FIRST RUNOFF CLASS = 0 

START TIME CLASS = 0 and TIME UNTIL FIRST RUNOFF CLASS = 1 

START TIME CLASS = 1 and TIME UNTIL FIRST RUNOFF CLASS = 1 



52 

 

START TIME CLASS = 2 and TIME UNTIL FIRST RUNOFF CLASS = 1 

START TIME CLASS = 3 and TIME UNTIL FIRST RUNOFF CLASS = 1 

START TIME CLASS = 0 and TIME UNTIL FIRST RUNOFF CLASS = 2 

START TIME CLASS = 1 and TIME UNTIL FIRST RUNOFF CLASS = 2 

START TIME CLASS = 2 and TIME UNTIL FIRST RUNOFF CLASS = 2 

START TIME CLASS = 3 and TIME UNTIL FIRST RUNOFF CLASS = 2 

Total number of observations sharing distinct mean and covariance matrix among the 

classes = 6000 observations X 5 predictors                                                                                                

Generation of data using shared mean and covariance matrix for the classes: [1000 observations 

each], as follows: 

START TIME CLASS = 0 and TIME UNTIL FIRST RUNOFF CLASS = 0,1,2 

START TIME CLASS = 1 and TIME UNTIL FIRST RUNOFF CLASS = 0,1,2 

START TIME CLASS = 2 and TIME UNTIL FIRST RUNOFF CLASS = 0,1,2 

START TIME CLASS = 3 and TIME UNTIL FIRST RUNOFF CLASS = 0,1,2 

Total number of observations using shared mean and covariance matrix among the classes = 4000 

observations X 5 predictors 

Total number of observations = 10000 observations X 5 predictors 

 

(c) Approach III: 

CASE I: [Any value of Soil Wetting Efficiency below 1.7 was classified as Class 0 and the rest 

as Class 1 respectively] 

Generation of data using distinct mean and covariance matrix for the classes: [500 observations 

each], as follows: 



53 

 

START TIME CLASS = 0 and SOIL WETTING EFFICIENCY INDEX CLASS = 0 

START TIME CLASS = 1 and SOIL WETTING EFFICIENCY INDEX CLASS = 0 

START TIME CLASS = 2 and SOIL WETTING EFFICIENCY INDEX CLASS = 0 

START TIME CLASS = 3 and SOIL WETTING EFFICIENCY INDEX CLASS = 0 

START TIME CLASS = 0 and SOIL WETTING EFFICIENCY INDEX CLASS = 1 

START TIME CLASS = 1 and SOIL WETTING EFFICIENCY INDEX CLASS = 1 

START TIME CLASS = 2 and SOIL WETTING EFFICIENCY INDEX CLASS = 1 

START TIME CLASS = 3 and SOIL WETTING EFFICIENCY INDEX CLASS = 1 

Total number of observations sharing distinct mean and covariance matrix among the classes = 

4000 observations X 5 predictors 

Generation of data using shared mean and covariance matrix for the classes: [1000 observations 

each], as follows: 

START TIME CLASS = 0 and SOIL WETTING EFFICIENCY INDEX CLASS = 0,1 

START TIME CLASS = 1 and SOIL WETTING EFFICIENCY INDEX CLASS = 0,1 

START TIME CLASS = 2 and SOIL WETTING EFFICIENCY INDEX CLASS = 0,1 

START TIME CLASS = 3 and SOIL WETTING EFFICIENCY INDEX CLASS = 0,1 

Total number of observations using shared mean and covariance matrix among the classes = 4000 

observations X 5 predictors 

Total number of observations = 8000 observations X 5 predictors 

CASE II: [Any value of Soil Wetting Efficiency Index below 1.5 was classified as Class 0, any 

value between 1.5 and 2.2 was classified as Class 1 and the rest as Class 2, respectively] 

Generation of data using distinct mean and covariance matrix for the classes: [500 observations 

each], as follows: 



54 

 

START TIME CLASS = 0 and SOIL WETTING EFFICIENCY INDEX CLASS = 0 

START TIME CLASS = 1 and SOIL WETTING EFFICIENCY INDEX CLASS = 0 

START TIME CLASS = 2 and SOIL WETTING EFFICIENCY INDEX CLASS = 0 

START TIME CLASS = 3 and SOIL WETTING EFFICIENCY INDEX CLASS = 0 

START TIME CLASS = 0 and SOIL WETTING EFFICIENCY INDEX CLASS = 1 

START TIME CLASS = 1 and SOIL WETTING EFFICIENCY INDEX CLASS = 1 

START TIME CLASS = 2 and SOIL WETTING EFFICIENCY INDEX CLASS = 1 

START TIME CLASS = 3 and SOIL WETTING EFFICIENCY INDEX CLASS = 1 

START TIME CLASS = 0 and SOIL WETTING EFFICIENCY INDEX CLASS = 2 

START TIME CLASS = 1 and SOIL WETTING EFFICIENCY INDEX CLASS = 2 

START TIME CLASS = 2 and SOIL WETTING EFFICIENCY INDEX CLASS = 2 

START TIME CLASS = 3 and SOIL WETTING EFFICIENCY INDEX CLASS = 2 

Total number of observations sharing distinct mean and covariance matrix among the classes = 

6000 observations X 5 predictors  

Generation of data using shared mean and covariance matrix for the classes: [1000 observations 

each], as follows: 

START TIME CLASS = 0 and SOIL WETTING EFFICIENCY INDEX CLASS = 0,1,2 

START TIME CLASS = 1 and SOIL WETTING EFFICIENCY INDEX CLASS = 0,1,2 

START TIME CLASS = 2 and SOIL WETTING EFFICIENCY INDEX CLASS = 0,1,2 

START TIME CLASS = 3 and SOIL WETTING EFFICIENCY INDEX CLASS = 0,1,2 

Total number of observations using shared mean and covariance matrix among the classes = 4000 

observations X 5 predictors 

Total number of observations = 10000 observations X 5 predictors 



55 

 

3.5   Results 

Radial Basis Function - Support Vector Machine (RBF-SVM) was used in each case to test the 

approach. For different values of penalty parameter, the value of Gamma parameter was tuned 

using param_grid ( ). Two different types of tests were used to support the approach and the best 

model was selected based on the results.  Accordingly, appropriate irrigation rules were defined 

for the model, which produced best results. 

The two types of tests which have been used in our analysis are as follows: 

(a) The synthetic dataset for both training and testing the model was split in the ratio X (training):Y 

(testing), where both X and Y vary between 10 and 100 in intervals of 10 units used. 

(b) The synthetic dataset was used for training the model and the real dataset was used for 

validation purposes. 

Now, for all the three approaches, the results were obtained, and the best model was chosen for 

implementation which is explained in the next section. 

3.5.1 Approach I [Classification of runoff as the target class] 

The values of accuracy on the test data for different values of penalty parameter and the 

best Gamma are as follows. The Python code used to design this approach is shown in APPENDIX 

A. The values of test size for validating the model are shown in each case, and the values with the 

highest accuracy have been highlighted in red as shown in Table 3.5. 

  



56 

 

Table 3.5: Testing accuracies for different Test:Train Split Ratio when the target variable 

is ‘Runoff volume observed’ 

 

 Test Size = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

C = 1 81.33 80.47 80.84 80.23 80.08 79.67 79.3 78.08 78.68 

C = 10 82 81.93 81.91 82.16 81.89 81.24 81.4 79.83 80.92 

C = 20 82.93 81.87 81.91 82.1 81.94 82.06 81.77 80.31 80.63 

C = 30 82.67 81.93 81.96 82 82.13 81.91 81.7 80.35 80.72 

C = 40 82.67 82 82.13 82.3 82.21 82.22 82.15 80.4 80.52 

C = 50 82.67 82.13 82.27 82.3 82.24 82.17 82.08 80.36 80.49 

C = 60 82.67 82.2 82.31 82.17 82.10 82.13 81.77 80.26 80.46 

C = 70 82.67 82.13 82.35 82.1 82.03 82.15 82.08 80.18 80.4 

C = 80 83.2 82.2 82.76 82.27 82.10 82.08 82.08 80.23 80.28 

C = 90 83.2 82.27 82.8 82.23 82.13 82.13 82.09 80.03 80.22 

C = 100 83.06 82.33 82.84 82.3 82.16 81.93 82.17 80.02 80.38 

 

Once the model was trained using synthetic data generated, the classifier was tested on the real 

dataset. 

 

Table 3.6: Testing accuracies when the RBF-SVM is trained on the synthetic data and 

target variable is ‘Runoff volume observed’ 

 

Value of Penalty Testing Accuracy 

C =1 83.78 

C = 10 83.78 

C = 20 89.2 

C = 30 89.2 

C = 40 89.2 

C = 50 89.2 

C = 60 89.2 

C = 70 89.2 

C = 80 89.2 

C = 90 89.2 

C = 100 89.2 



57 

 

 

The highest accuracy was achieved on the testing dataset when the value of penalty parameter was 

20 and the score was 89.2% (Table 3.6). 

 

3.5.2 Approach II [Classification of time until first runoff as the target class] 

 

Here, the best value of Gamma for each train:test split has been chosen for different penalty 

parameters and the best testing accuracies have been highlighted in red as in Approach I, which is 

shown in Table 3.7. The Python code used to design this approach is shown in APPENDIX B. 

 

Table 3.7: Testing accuracies for different Test:Train Split Ratio when the target variable 

is ‘The time until the 1st instance of Runoff was observed’ 

 

 Test Size = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

C = 1 78 77.14 77.62 76.57 76.48 76.2 75.31 74.05 71.4 

C = 10 77 77.36 78.62 77.32 77.29 77.45 76.71 76.02 73.2 

C = 20 77.29 77.29 77.81 77.21 77.11 77.19 76.63 75.92 72.95 

C = 30 78 77.29 77.9 77.32 77.09 77.19 76.5 75.78 72.79 

C = 40 77.71 77.29 77.76 77.17 77.2 77.3 76.57 75.78 72.41 

C = 50 77.43 77.43 77.66 77.18 77.2 77.42 76.59 75.67 72.28 

C = 60 78 77.29 77.52 77.82 77.25 77.48 76.69 75.59 72.19 

C = 70 78.14 77.43 77.86 77.82 77.31 77.5 76.69 75.52 72.11 

C = 80 78 77.29 77.67 77.75 77.37 77.48 76.73 75.48 72.05 

C = 90 78.29 77.43 77.67 77.79 77.34 77.45 76.61 75.44 71.82 

C = 

100 

78.29 77.5 77.43 77.82 77.37 77.48 76.41 75.45 72.43 

 

 

Once the model was trained using synthetic data just as done in Approach I,  the model was tested 

on the real data and the testing accuracies have been shown below. 

 



58 

 

 

Table 3.8: Testing accuracies when the RBF-SVM is trained on the synthetic data and 

target variable is 'The time until 1st instance of runoff is observed' 

Value of Penalty Testing Accuracy 

C =1 75 

C = 10 75 

C = 20 75 

C = 30 77.8 

C = 40 75 

C = 50 77.78 

C = 60 77.78 

C = 70 77.78 

C = 80 77.78 

C = 90 77.78 

C = 100 77.78 

 

 

The highest accuracy was achieved on the testing dataset when the value of penalty parameter was 

30 and the score obtained was 77.8% (Table 3.8). 

 

3.5.3 Approach III 

 

CASE I: Classification of Soil Wetting Efficiency Index into two classes 

 

The Python code used to design this approach is shown in APPENDIX C(a). Here, the size 

of the testing dataset was adjusted as done in both of the abovementioned approaches, and the 

results were included in Table 3.9, as follows: 

 

 

  



59 

 

Table 3.9: Testing accuracies for different Test:Train Split Ratio when the target variable 

is SWEI (Binned into 2 classes) 

 

 Test Size = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

C = 1 82.17 80.92 82 81.75 81.3 80.75 80.07 77.64 74.19 

C = 10 83.5 81.92 83.5 83.5 83.43 83.25 82.76 81.73 79.98 

C = 20 83.67 81.42 83.5 83.21 82.87 83.33 82.83 82.21 80.5 

C = 30 83.67 81.33 83.2 83.71 83.13 83.16 82.54 82.42 80.46 

C = 40 83.67 81.25 83.28 83.67 83.77 83.25 83.05 82.27 80.59 

C = 50 83.5 81.67 83.17 83.46 83.8 83.28 82.88 82.38 80.56 

C = 60 83.5 81.25 83.22 83.58 83.76 83.19 82.83 82.44 80.3 

C = 70 83 81.58 83.17 83.62 83.76 83.33 82.97 82.38 80.28 

C = 80 83 81.75 83.11 83.5 83.76 83.42 82.69 82.52 80.37 

C = 90 82.83 81.67 83.05 83.67 83.73 83.19 82.67 82.44 80.37 

C = 100 82.83 81.67 83 83.58 83.73 83.19 82.67 82.44 80.41 

 

Once the model was trained using synthetic data generated in each case, the classifier was tested 

on the real dataset. The highest accuracy was achieved on the testing dataset when the value of 

penalty parameter was 100 and the score obtained was 86.49% (Table 3.10). 

 

Table 3.10: Testing accuracies when the RBF-SVM is trained on the synthetic data and 

target variable is SWEI (Binned into 2 classes) 

 

Value of 

Penalty 

Testing 

Accuracy 

C =1 72.97 

C = 10 72.97 

C = 20 72.97 

C = 30 75.67 

C = 40 75.67 

C = 50 78.38 

C = 60 81.08 

C = 70 81.08 

C = 80 83.78 

C = 90 83.78 

C = 100 86.49 

 

 

 

 



60 

 

CASE II: Classification of Soil Wetting Efficiency Index into three classes 

 

The Python code used to design this approach is shown in APPENDIX C(b). The values 

of accuracy on the test data for different values of penalty parameter and the best Gamma are 

shown in Table 3.11. The best testing accuracies have been highlighted in red. 

The model was also trained using synthetic data generated in each case, and the classifier was 

tested on the real dataset which is shown in Table 3.12. 

 

 

Table 3.11: Testing accuracies for different Test:Train Split Ratio when the target variable 

is SWEI (Binned into 3 classes) 

 

 Test Size 

= 0.1 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

C = 1 63.7 64.85 63.85 63.07 62.70 62.43 62.42 61.05 57.93 

C = 10 65.54 66.15 65.95 65.6 64.89 65.64 65.03 64.37 61.89 

C = 20 65.23 66.46 65.8 65.7 64.58 65.64 65.38 64.5 62.75 

C = 30 65.38 66.38 65.8 65.9 64.58 65.6 65.49 64.52 62.84 

C = 40 64.92 66.31 65.7 65.7 64.58 65.31 65.43 64.52 62.97 

C = 50 65.08 66.38 65.64 65.6 64.74 65.21 65.49 64.6 63 

C = 60 65.23 66.23 65.54 66 64.86 65.26 65.56 64.6 62.96 

C = 70 64.46 66.53 65.74 65.92 64.74 65.23 65.36 64.6 62.92 

C = 80 64.46 66.53 65.53 65.85 64.8 65.28 65.54 64.46 63.1 

C = 90 64.46 66.30 65.6 65.77 64.92 65.26 65.38 64.5 63.04 

C = 100 64.92 66.31 65.49 65.88 64.89 65.31 65.62 64.6 63 

 

 

  



61 

 

Table 3.12: Testing accuracies when the RBF-SVM is trained on the synthetic data and 

target variable is SWEI (Binned into 3 classes) 

 

Value of 

Penalty 

Testing 

Accuracy 

C =1 67.57 

C = 10 70.27 

C = 20 72.97 

C = 30 70.27 

C = 40 70.27 

C = 50 72.97 

C = 60 72.97 

C = 70 72.97 

C = 80 72.97 

C = 90 72.97 

C = 100 72.97 

 

 

The highest accuracy was achieved on the testing dataset when the value of penalty parameter was 

20 and the score obtained was 72.97%. 

 

3.6 Choosing the best model for implementation and deciding the irrigation rules 

 

             At first, after running data visualization to see the threshold for Soil Wetting Efficiency 

Index using historical dataset and the datapoints recorded for this year, the value of 1.7 was set as 

the threshold value [Approach III: Case I]. 

The values of SWEI predicted more than 1.7 were classified as observations which showed lower 

potential for runoff and vice-versa. Initially, the ML algorithm was proposedly used to predict the 

time of irrigation but it was decided that the time-to-irrigate should be calculated from the 

evapotranspiration rate and other climatic predictors directly by the controller, which was 

eventually used as a predictor in the analysis. 

For the ML model, certain classification rules have been stated as follows: 



62 

 

(a) If SWEI predicted is more than 1.7,  

Then  

Irrigation time = 80% of the prescribed time 

If first runoff is detected:  

Pause Time = 30 min 

Pulse Time = 2 min 

If second runoff is detected: 

Pause Time = 30 min 

Pulse Time = 2 min 

If third runoff is detected: 

the loop is terminated 

 

 

(b) If the SWEI predicted is less than 1.7, 

Then 

Irrigation time = 2 minutes 

If first runoff is detected: 

Pause Time = 1 hour 

Pulse Time = 2 min 

If second instance of runoff is detected: 

the loop is terminated 

With the approach described above, it is expected that runoff could be minimized during irrigation 

events.  



63 

 

CHAPTER IV 

FIELD IMPLEMENTATION OF THE MACHINE LEARNING ALGORITHM IN THE 

CUSTOMIZED CONTROLLER 

 

4.1   Proposed scheme/approach used by the controllers [Rachio, B-hyve and the customized   

ASIS Controller] 

Before explaining the significance of Machine Learning algorithm in acting as a “Control” 

mechanism in the proposed controller, specific explanation is given about the other controllers 

which are being used actively in the industry. To have a fair assessment of the performance of the 

controllers, Rachio controller was installed in Plot 10, the proposed ASIS controller was installed 

in Plot 12, and the B-hyve controller was installed in Plot 13 respectively. To have a better idea 

about how the controllers regulate the irrigation cycle, the working of each controller is illustrated 

in detail below. 

 

 

4.1.1 Irrigation scheme used by Rachio Controller 

 

 
Figure 4.1: Schematic representation of the working of Rachio controller 



64 

 

From the flowchart, it is evident that the Rachio Irrigation controller performs a thrice executed 

cycle clock where it irrigates for 12-13 minutes per cycle and has a 15 minutes soak between each 

of the cycles. The controller decides the time to irrigate a month in advance by taking the weather 

forecast for the upcoming month. Although the timings for irrigation are not exactly predictable, 

it has been noticed from the irrigation runs that the irrigation cycles are usually scheduled two to 

three hours before sunrise. 

 

  

4.1.2 Irrigation scheme used by B-hyve Controller 

 

 
Figure 4.2: Schematic representation of the working of B-hyve controller 

 

 



65 

 

The irrigation scheme used by the B-hyve controller is much simpler compared to the other 

industrial controllers. It has a static operation time much like the abovementioned Rachio 

controller. It irrigates for a period of 15 minutes, followed by a 15 minutes soak period, repeats 

this again for a total of 30 minutes of irrigation and a total of 15 minutes for soaking. From the 

irrigation runs, it has been observed that the B-hyve controller begins the first irrigation cycle 

typically at 6 AM. 

 

 4.1.3   Irrigation scheme used by the proposed ASIS controller 

The design of the entire ASIS controller was devised by Tomas Reyes, a senior in the Department 

of Electrical and Computer Engineering at Texas A&M University. The Machine Learning 

algorithm which acts as a Control algorithm in this case was devised by the author. 

The design proposed by Tomas is discussed in detail in this section, whereas the impact of the 

Machine Learning approach in minimizing runoff used in the ASIS is discussed in Section 4.3. 

To understand the irrigation scheme in detail, the entire algorithm has been broken up into four 

parts as follows: 

a) Initialization of the algorithm 

b) Algorithm for calculation of Evapotranspiration and Effective Rainfall 

c) Machine Learning algorithm 

d) Implementation and field deployment of the algorithm based on ML output 

Each part has been explained in detail along with their block diagram. 

 

 

 



66 

 

(a)  Initialization of the algorithm 

 

Figure 4.3: Schematic representation for the initialization algorithm used in the ASIS 

controller 

 

 

 

Variable descriptions: 

 

day: numerical index of the day of the week (0:Sunday, 1:Monday, 2:Tuesday,.. and so on) 

last watering day: numerical index of the day when the plot was last watered (index of the last 

entry in the day matrix) 

The initialization of the algorithm works as follows: 

(i) The drought conditions and environmental restrictions are accessed for watering on a particular 

day, and ‘Python Selenium’ algorithm is used to rip those days into a matrix. All the days are 

stored in the matrix in numeric form e.g. Sunday: 0, Monday: 1, Tuesday: 2, Wednesday: 3, 

Thursday: 4, and so on. 

(ii) The day scrapped from the website is compared with the present day’s numeric index. 



67 

 

If both of them match, then: 

• The data summary from Texas ET Network is scrapped for the day and is stored into a 

matrix using ‘Python Selenium’ algorithm. 

• The ‘day’ is set to the numerical day of the week. 

• Now, the ‘days since the plots were last watered’ is calculated which is the difference 

between ‘today’ and the ‘last watering day’ i.e. the numerical index when the plot was 

last watered is stored as the last entry day in day matrix. 

(iii) Now, the algorithm for calculation of Evapotranspiration and Effective Rainfall is executed 

which is discussed in the next section. 

 

(b) Algorithm for calculation of Evapotranspiration and Effective Rainfall 

       Branch I: Decision based on effective rainfall 

Figure 4.4: Schematic representation for Evapotranspiration and Effective Rainfall based 

algorithm used in the ASIS controller 

 



68 

 

Variable descriptions: 

i: Iterative variable which stores the day index 

sum_et: Cumulative Evapotranspiration rate until day i 

rem_rainfall: Effective Rainfall 

j: Iterative variable which is used for comparison of ‘day’ with ‘the difference between the next 

watering day and today (with warp around)’ 

(i) At first, the value of ‘i’ is compared with ‘the days since the plots were last watered’. 

(ii) If the value of the iterative variable ‘i’ is more than ‘the days since the plots were last watered’, 

then Branch II i.e. the algorithm, which shows the decision based on cumulative 

Evapotranspiration and forecasted rain is executed which is discussed in the next sub-chapter 

(Section 4.1.3 (b): Branch II). 

(iii) If the value of the iterative variable ‘i’ is less than ‘the days since the plots were last watered’, 

• The cumulative Evapotranspiration rate (sum_et) is calculated by summing over the 

Evapotranspiration rates until day i. 

• If the rainfall of day i [i.e. the day when the plot is supposed to be watered] is greater than 

1 inch, 

➢ The cumulative Evapotranspiration rate (sum_et) is decremented by 1 inch. 

➢ The Effective Rainfall (rem_rainfall) is decremented by 1 inch. 

➢ The value of cumulative Evapotranspiration rate (sum_et) is decremented by 67% 

of the Effective Rainfall. 

➢ The iterative variable ‘i’ is incremented by 1. 

➢ Step (i) is repeated. 

• If the rainfall of day i is less than 1 inch, 



69 

 

➢ The value of cumulative Evapotranspiration rate (sum_et) is calculated by 

subtracting the rainfall of day ‘i’ from the value of cumulative Evapotranspiration 

rate until day i. 

➢ Step (i) is repeated. 

 

Branch II: Decision based on Evapotranspiration and forecasted rain 

 

Figure 4.5: Schematic representation for cumulative Evapotranspiration rate and 

forecasted rain based algorithm used in the ASIS controller 



70 

 

This branch is executed when the value of the iterative variable ‘i’ is less than ‘the days since the 

plots were last watered’. The algorithm works in the following manner: 

(i) If the value of cumulative Evapotranspiration rate (sum_et) is greater than zero, 

• Cumulative Evapotranspiration rate (sum_et) is reduced to 65% of the value which is 

scrapped from the Texas ET Network. 

• The date and maximum precipitation is ripped from ‘meteoguru.com’ website for that 

particular date. 

• The ‘next watering day’ is the next entry in data matrix (with warp around). 

(ii) If the value of iterative variable ‘j’ is less than the difference between the ‘next watering day’ 

and ‘today’, 

• The value of iterative variable ‘j’ is incremented by 1. 

• The value of ‘forecasted rain’ is incremented by the value of maximum precipitation 

expected on day ‘j’. 

• Step (ii) is repeated. 

(iii) If the value of iterative variable ‘j’ is greater than the difference between the ‘next watering 

day’ and ‘today’, the value of ‘forecasted rain’ is compared with the cumulative 

Evapotranspiration rate (sum_et). 

If the value of ‘forecasted rain’ is greater than the ‘cumulative Evapotranspiration rate’, then the 

algorithm is terminated, else the values are plugged into the Machine Learning algorithm which 

has been briefly discussed in the next section (Section 4.1.3(c)). 

 

 

 



71 

 

(c) Machine Learning algorithm: 

Radial Basis Function-Support Vector Machine (RBF-SVM) is applied and the Soil Wetting 

Efficiency Index is observed by binning them into two categories (0 and 1). Details about the 

algorithm have already been discussed in Chapter 3 of the thesis. 

 

(d) Implementation and field deployment of the algorithm based on ML output 

Variable descriptions: 

watering time: This is calculated as the product between the cumulative Evapotranspiration rate 

and the max allowable irrigation time which is 35 minutes in this case 

Active time: The length of time for which the controller has been running. The minimum value 

that this variable can attain is zero and the maximum value is the run time of the controller 

Run time: It is calculated as 80% of the ‘watering time’ 

Pulse time total: It is calculated from 20% of the ‘Total watering time’ and is added by the 

difference between ‘Active time’ and ‘Run time’ 

Pause time: The length of time for which the controller has been running for the pulse. It keeps a 

track of the total time of the pulse  

 

After the output from the Machine Learning algorithm is obtained, the field deployment of the 

entire system is done for the outputs of the ML algorithm: 0 and 1. 

 

 

 

 



72 

 

Sub-routine: Algorithm for pausing and pulsing of the sprinkler system 

 

Figure 4.6: Schematic representation for pausing and pulsing for the sprinkler system used 

in the ASIS controller 

 

 

At first, the algorithm for pausing and pulsing of the sprinkler system is explained in detail which 

is a sub-routine for both the cases, as follows. 

(i) The irrigation system is started. 

(ii) The ‘Pause time’ variable is initialized to zero. 



73 

 

(iii) If the value of ‘Pause time’ variable is less than 2 minutes, then the ‘Pause time’ variable is 

incremented by 1. This step is repeated until stopping criterion is met (i.e. the value of ‘Pause time’ 

variable exceeds 2 minutes). 

(iv) When the value of ‘Pause time’ variable is more than 2 minutes, 

• The irrigation cycle is stopped. 

• The ‘Runoff time’ is initialized to zero. 

• If the value of ‘Runoff time’ is less than 30 minutes, 

➢ The physical occurrence of runoff is checked. 

➢ If runoff is detected, then the algorithm checks for ‘Total pulse time’. If the value 

of ‘Total pulse time’ is positive, step (i) is initiated, else the algorithm is terminated. 

➢ If no runoff is detected, the value of ‘Runoff time’ is incremented by 1 and the same 

variable is initialized to zero. The value of ‘Runoff time’ is again checked until it 

meets the stopping criterion. 

• If the value of ‘Runoff time’ is more than 30 minutes, 

➢ The ‘Total pulse time’ is decremented by 2 minutes. 

➢ If the value of ‘Total pulse time’ is positive, step (i) is initiated else the algorithm 

is terminated.  

 

If the output from the ML algorithm is 1: 

(i) At first, the algorithm for calculation of Evapotranspiration and Effective Rainfall is 

executed after initialization of the algorithm. 

(ii) The ‘Total watering time’ is calculated from the cumulative Evapotranspiration rate by 

using the formula: 



74 

 

           Total watering time = sum_et * 35 * 60 

(iii) If the ML output is 1, 

• The ‘Run time’ is calculated to be 80% of the ‘watering time’. 

• The irrigation cycle is started. 

• The ‘Active time’ variable is initialized to zero. 

• The algorithm for comparison of ‘Active time’ and ‘Run time’ is executed. 

 

Sub-branch 4.1.1: If Active time > Run time: 

 

Figure 4.7: Schematic representation when the output from the ML algorithm is 1 (Active 

time > Run time) used in the ASIS controller 

 

 

 

If ‘Active time’ is greater than ‘Run time’, 

• The ‘Pause time’ is scheduled to 10 minutes. 



75 

 

The ‘Total pulse time’ of the system is calculated as: 

Total pulse time = [20% of the watering time] + Run time + Active time 

• Then, the algorithm for pausing and pulsing of the sprinkler system is executed which has 

been discussed before. 

Sub-branch 4.1.2: If Active time < Run time: 

If ‘Active time’ is less than ‘Run time’, 

• It checks whether the runoff sensor is active. 

• If runoff is detected, 

➢ The ‘pause time’ is set to 10 minutes. 

➢ The ‘Total pulse time’ of the system is calculated as: 

            Total pulse time = [20% of the watering time] + Run time + Active time 

➢ Then, the algorithm for pausing and pulsing of the sprinkler system is executed 

which has been discussed before (Section 4.1.3(d)). 

 



76 

 

 

Figure 4.8: Schematic representation when the output from the ML algorithm is 1 (Active time < Run time) used in the ASIS 

controller 



77 

 

 

If the output from the ML algorithm is 0: 

 

Figure 4.9: Schematic representation when the output from the ML algorithm is 0 used in 

the ASIS controller 

 

 

 

• At first, the algorithm for calculation of Evapotranspiration and Effective Rainfall is 

executed. 

• The ‘watering time’ is calculated from the cumulative Evapotranspiration rate in the 

following manner: 

watering time = sum_et * 35 * 60 

• If the output from the ML algorithm is zero, 

the ‘Total pulse time’ of the system is calculated as: 

Total pulse time = [20% of the watering time] + run time + active time 

Then, the algorithm for pausing and pulsing of the sprinkler system is executed which has 

been discussed before (Section 4.1.3(d)). 

 

 

 



78 

 

4.2   Analysis of performance of controllers by observing their runoff profile  

The irrigation runs for all the three controllers have been studied in detail from the 

observations recorded at the TAMU Turfgrass Laboratory. A detailed comparison of the efficiency 

of the controllers was made according to the runoff volume observed in all the three cases. Proper 

justification is given on how the proposed algorithm implemented in the ASIS controller helped 

in reducing runoff and would prove better than the existing systems in use.  

  

        4.2.1   Runoff profile for Rachio controller 

Table 4.1: Irrigation profile of the runs carried out by Rachio controller 

Date Start Time Start Time 2 
Start Time 

3 
Run time Gallons used 

Runoff 

(Gal) 

7/5/19 12:30 AM 2:36 AM 4:46 AM 35 218.81 32.40 

7/8/19 12:30 AM 2:36 AM 4:46 AM 35 218.81 38.01 

7/15/19 5:48 AM NAN NAN 35 218.81 10.34 

7/22/19 5:12 AM NAN NAN 35 218.81 29.36 

7/25/19 5:04 AM 5:44 AM 6:24 AM 30 187.55 NAN 

7/26/19 3:20 AM 3:49 AM 4:35 AM 45 281.32 NAN 

7/28/19 3:05 AM 3:50 AM 4:35 AM 45 281.32 NAN 

8/1/19 5:08 AM 5:52 AM NAN 28 175.04 5.93 

8/8/19 5:12 AM 5:53 AM 6:35 AM 36 225.06 73.01 

8/14/19 5:16 AM 5:57 AM 6:39 AM 36 225.06 25.59 

8/21/19 5:20 AM 6:01 AM 6:43 AM 35 218.81 48.00 

8/28/19 5:24 AM 6:05 AM 6:46 AM 33 206.30 44.77 

                   

  

The irrigation cycles using Rachio controller were carried out in Plot 10 at the TAMU Turfgrass 

Laboratory. For each of the dates when the irrigation cycles were run, it was observed that the 

Rachio started the first irrigation cycle at a time typically between midnight and early morning. 



79 

 

For most of the cases observed, Rachio ran a second and third irrigation cycle at irregularly spaced 

intervals. The cumulative run time of the controller ranged between 30 to 45 minutes.  

            For 30 to 35 minutes cumulative run time, it was observed that the runoff varied 

considerably. On 7/5, 7/8, 7/22 and 8/14, the runoff observed varied between 25 to 40 Gallons on 

each of the plots. For each of these dates, Rachio picked up the first start time either at midnight 

or in the earliest hours of the morning. On 7/15 and 8/1, when the value of runoff varied between 

5 to 10 Gallons, it was observed that the first start time picked up by Rachio was between 5 AM 

to 6 AM. 

         Baring 7/25, 7/26 and 7/28, where there were missing values of runoff, the values of 

precipitation were scrapped from the GRIDMET website to draw inferences about how the 

controller decided the run time and the start time of operation. The precipitation data on each of 

the dates either showed zero or extremely low values. Therefore, it was difficult to find any 

concrete evidence to justify how the controller chose to operate. 

 

  



80 

 

       4.2.2   Runoff profile for B-hyve controller 

 

Table 4.2: Irrigation profile of the runs carried out by Bhyve controller 

Date Time 1 Time 2 Run Time Gallons Used Runoff (Gal) 

6/21/19 6:00 AM 6:30 AM 30 mins 187.55 11.67 

6/24/19 6:00 AM 6:30 AM 30 mins 187.55 5.20 

6/28/19 6:00 AM 6:30 AM 30 mins 187.55 41.12 

7/13/19 6:00 AM 6:30 AM 30 mins 187.55 11.03 

7/15/19 6:00 AM 6:30 AM 30 mins 187.55 3.77 

7/22/19 6:00 AM 6:30 AM 30 mins 187.55 7.83 

7/25/19 6:00 AM 6:30 AM 30 mins 187.55 1.62 

7/29/19 6:00 AM 6:30 AM 30 mins 187.55 12.49 

8/1/19 6:00 AM 6:30 AM 30 mins 187.55 9.64 

8/8/19 6:00 AM 6:30 AM 30 mins 187.55 27.27 

8/14/19 6:00 AM 6:30 AM 30 mins 187.55 0.98 

8/21/19 6:00 AM 6:30 AM 30 mins 187.55 5.93 

8/28/19 5:59 AM 6:01 AM 1 min 2 sec 6.46 0.00 

 

 

 

 

The irrigation cycles using B-hyve controller were carried out in Plot 13 at the TAMU 

Turfgrass Laboratory. For each of the dates when the irrigation cycles were run, it was observed 

that the BHyve started its first irrigation cycle at 6:00 AM and the second irrigation cycle at 6:30 

AM. The cumulative irrigation run time was 30 minutes for all the cases. Unlike the Rachio 

controller, the BHyve irrigated at the scheduled time and for a fixed period. 

Based on the values of runoff observed, efforts were being made to draw inferences about 

how the BHyve chose to irrigate by classifying the observations into two categories. The runoff 



81 

 

value of 10 Gallons was chosen as the threshold. The values of precipitation were observed for 

each day in the table. However, as there was no variance in the start time and the cumulative run 

time of the controller, there was no concrete evidence to justify how the controller chose to operate. 

 

4.2.3   Runoff profile for ASIS controller 

Table 4.3: Irrigation profile of the runs carried out by the proposed ASIS controller 

 

 

 The irrigation cycles using the devised ASIS controller were carried out in Plot 12 at the 

TAMU Turfgrass Laboratory. Details about how the start time, total run time and pulse time was 

decided has been discussed in Section 4.1.3. A proper explanation of the Machine Learning part 

has been discussed in Chapter 3 of the thesis and its usefulness in reducing runoff is explained in 

the next section. 

       Except for the irrigation run on 08/21 (the observation marked in red), when the runoff sensor 

was clogged, all other observations showed extremely low runoff on the plots and there have been 

two instances where the goal of obtaining zero runoff was achieved. 

       In summary, a conclusion can be drawn by observing the runoff profile of the three controllers. 

The devised ASIS controller performs better than the Rachio and BHyve controllers in terms of 

Date Time 
ML 

Output 
Total 

Time 
Pre soil 

moisture 
Run 1 

Time 

Time 

until 

runoff 
Pulse 

Time 
Gallons 

Used 
Runoff 

(gal) 
Post Soil 

Moisture 

8/1/19 2:00 AM 1 
17 min  

31 sec 0.38 
14 min 

1 sec 
9 min 

1 sec 
8 mins 

31 seconds 109.50 4.79 0.36 

8/8/19 2:00 AM 1 
34 min  

15 sec 0.2 
27 min 

24 sec 
10 min 

43 sec 
23 min 

32 sec 214.12 
None 

recorded 0.2 

8/14/19 7:00 PM 1 
32 min  

42 sec 0.18 
26 min 

9 sec 
9 min 

56 sec 
22 min 

46 sec 204.43 6.94 0.25 

8/21/19 

12:00 

AM 1 

39 min 

57 sec 0.29 

31 min 

57 sec 

31 min 

57 sec 

7 min 

59 sec 249.75 26.6 0.36 

8/28/19 
12:00 

AM 1 
34 min  

20 sec 0.09 
27 min 

28 sec 
9 min 

1 sec 
25 min 

19 sec 214.62 
None 

recorded 0.38 



82 

 

minimizing runoff from the irrigational plots. Although more observations would be required to 

assert the proposed model, it is clear that the proposed algorithm is based on a more sophisticated 

approach than the existing ones since it considers the soil moisture content of the soil in supporting 

the decision-making process about watering the turfgrasses. 

 

4.3 Analysis of efficiency of controllers by observing the percentage of Green Cover (GC) 

in turfgrasses 

Although the main focus of the work is to minimize runoff from the plots, maintaining the 

quality of turfgrasses is also equally important. The quality of turfgrasses is measured by the 

percentage of Green Cover in these plots. To qualify the efficiency of the controllers, images were 

taken before and after each irrigation cycle for these plots and the percentage of Green Cover was 

recorded on each of the days to ensure that the quality of turfgrasses was also maintained. 

 

 

Figure 4.10: Plot showing percentage of Green Cover over the irrigation season 

 

80

82

84

86

88

90

92

94

96

98

100

6/14/2019 6/24/2019 7/4/2019 7/14/2019 7/24/2019 8/3/2019 8/13/2019 8/23/2019 9/2/2019 9/12/2019

Percentage of Green Cover

Plot 10 Plot 12 Plot 13



83 

 

 

 

 Figure 4.10 gives a clear view of how the percentage of Green Cover changed over the 

course of the irrigation season. When the irrigation cycle was started, it was decided to irrigate 

once a week but over the due course of time, it was noticed that the percentage of Green Cover 

dwindled significantly. Thus, it was decided to increase the frequency of the irrigation cycles 

thereby maintaining the turfgrass quality.   

  

         4.3.1   Evaluation of quality of turfgrasses irrigated by Rachio controller 

 

The turfgrass in Plot 10 was irrigated by the Rachio controller in TAMU Turfgrass Lab, 

College Station. The first irrigation cycle was carried out on 07/05 and the last irrigation cycle was 

recorded on 08/28 as shown in Table 4.1. The images of the plots on each of these dates have been 

shown below to validate the efficiency of the Rachio controller.  

 

 



84 

 

 
Figure 4.11: Images showing the turfgrass quality of Plot 10 irrigated by Rachio controller 

(Left image: clicked on 07/05; Right image: clicked on 08/28) 

 

 

  

The percentage of Green Cover on each of these dates was measured by Reagan Hejl, a 

technician in TAMU Turfgrass Laboratory using Sigmascan, Turf Analysis Macro software. As of 

07/05, the percentage of green cover on the plots was measured to be 83.61% and that on 08/28 

was 93.34%. 

 

         4.3.2   Evaluation of quality of turfgrasses irrigated by B-hyve controller 

 

The turfgrass in Plot 13 was irrigated by the B-hyve controller in TAMU Turfgrass Lab, 

College Station. The first irrigation cycle was carried out on 06/21 and the last irrigation cycle was 

recorded on 08/28 as shown in Table 4.2. The images of the plots on each of these dates have been 

shown below to validate the efficiency of the B-hyve controller. 

 



85 

 

  
Figure 4.12: Images showing the turfgrass quality of Plot 13 irrigated by B-hyve controller 

(Left image: clicked on 06/21; Right image: clicked on 08/28) 

 

 

 

 As of 06/21, the percentage of green cover on the plots was measured to be 84.92% and 

that on 08/28 was 94.86%. 

         4.3.3   Evaluation of quality of turfgrasses irrigated by the proposed ASIS controller 

 

The turfgrass in Plot 12 was irrigated by the proposed ASIS controller in TAMU Turfgrass 

Lab, College Station. The first irrigation cycle was carried out on 08/01 and the last irrigation cycle 

was recorded on 08/28 as shown in Table 4.3. The images of the plots on each of these dates have 

been shown below to validate the efficiency of the proposed ASIS controller. 

 

 



86 

 

 
Figure 4.13: Images showing the turfgrass quality of Plot 12 irrigated by the proposed 

ASIS controller (Left image: clicked on 08/01; Right image: clicked on 08/28) 

 

 

 

 

As of 08/01, the percentage of green cover on the plots was measured to be 81.72% and that on 

08/28 was 95.57%. 

In summary, all the three controllers helped in improving the quality of turfgrasses as 

measured by the percentage of Green Cover on the plots. However, when the runoff profile for all 

the three controllers are compared, the proposed ASIS controller seemed to perform the best. 

4.4 Impact of the ML algorithm in minimizing runoff  

The devised controller in this case was the first to use predictive approaches for minimizing 

runoff. After training the Radial Basis Function-Support Vector Machine classifier (the proposed 

ML approach) on the synthetic dataset generated from the previously recorded data, it was decided 

that predicting the Soil Wetting Efficiency Index was the best approach. This target variable was 

chosen after measuring the testing accuracy which was approximately about 89% (the details about 



87 

 

choosing the target variable has already been discussed in Chapter 3 of the thesis). This is the most 

generic approach to be used since it is not site-specific.  

The ASIS controller uses the Machine Learning approach as a Decision Support System (DSS) 

while watering the turfgrasses. The ML approach here does not prescribe the amount of water that 

the plots need, rather it prescribes the frequency at which the plots need to be irrigated.  

The frequency of irrigation is one of the most essential components that needs to be kept in 

mind to minimize runoff. One of the major reasons for attaining high runoff is that soils become 

saturated after irrigating continuously for long duration of time. Therefore, it is very important to 

irrigate plots at time intervals depending on the soil moisture content of the soil. The ML algorithm 

used in this case classified the observations into either of the two categories (SWEI of 1.7 is set as 

threshold). The predicted values of SWEI less than 1.7 showed higher potential for runoff and 

vice-versa. A set of irrigation rules based on the ML output have already been defined in Chapter 

3 (Section 3.5). It is expected that with increasing amount of observations, the value of threshold 

may change and in due process of time, a more robust approach would be in place which may 

nullify runoff entirely. 

 

 

  



88 

 

CHAPTER V 

CONCLUSION AND FUTURE WORK 

5.1   Conclusion 

  This work evaluates the performance of irrigiation controllers that attempt to minimize the 

water usage in turfgrass irrigation. The devised ASIS controller used with an in-built Machine 

Learning algorithm was tested and evaluated to show that it had the potential to nullify runoff from 

the plots. The tests were performed at the Texas A&M Turfgrass Research Laboratory, which is 

well equipped to support the observations. To further quantify and qualify the approach, the Rachio 

and BHyve controllers were installed in the adjacent plots and the runoff from the plots were 

recorded.  

 Since the Machine Learning algorithm acted as a Decision Support System (DSS), it 

prescribed the frequency of irrigating plots rather than the amount of water that would be required 

for irrigation. The ML algorithm was trained on the synthetic data generated from the previous 

field experiments carried out in the laboratory. The accuracy of the Radial Basis Function - Support 

Vector Machine tested on the recorded dataset was around 90%. Only few irrigation cycles were 

scheduled so far and experimental data are still being collected from the facility. Preliminary 

results show that the proposed irrigation controller with a built-in Machine Learning approach 

which uses Soil Wetting Efficiency Index as the target variable has the capacity to minimize the 

runoff in these plots. With more irrigation cycles which would be scheduled over time, the 

proposed Machine Learning approach would perform better with more datapoints and may nullify 

runoff eventually.  

 

 



89 

 

5.2   Future work 

Based on the preliminary results obtained from limited number of tests, it can be validated 

that the system has the potential to save water. However, more tests are required to quantify the 

overall water savings. The testing is scheduled to continue for the next few months. The entire 

LIRMS system is planned to be implemented in Round Rock, Texas to gather more data and to 

see how well the system performs while irrigating in rocky terrains. 

 The data on which the ML model was trained had been collected during a moderately wet 

season and for sandy-loamy soil. The characteristics of the plots on which the Machine Learning 

model was trained and tested were completely different. The training data was collected from Plots 

15, 17 and 18 where the soil series used was ‘Zack’ and the top soil cover on each of those plots 

were 26.3, 39 and 30.5 cm respectively. The model was tested on Plots 10, 12 and 13 where the 

soil series used was ‘Booneville’ and the top soil cover ranged between 30 to 45 cm. Therefore, it 

was difficult for the ML algorithm to perform accurately as the depth of the top soil and the climatic 

conditions varied substantially which in turn went on to affect the other irrigation parameters too. 

Another factor which must be considered is that the amount of runoff as well as the Soil Wetting 

Efficiency Index (SWEI) vary substantially depending on the geospatial conditions where the 

irrigation cycles are run. So, future work must be focused on constructing a more diverse dataset 

for training the Machine Learning model with precision. 

 With increase in the number of datapoints, the distribution of the data can be gauged and 

used with more certainty. The use of Bayesian techniques can be considered for making decisions 

as they are more robust and reliable compared to traditional Machine Learning approaches used in  

the study. 

  



90 

 

REFERENCES 

[1]  Xie, J., Chen, H., Liao, Z., Gu, X., Zhu, D., & Zhang, J. (2017). An integrated assessment of 

urban flooding mitigation strategies for robust decision making. Environmental Modelling & 

Software, 95, 143–155. doi: 10.1016/j.envsoft.2017.06.027  

 

[2] Agam, N., Kustas, W. P., Anderson, M. C., Li, F., & Colaizzi, P. D. (2007). Utility of thermal 

sharpening over Texas high plains irrigated agricultural fields. Journal of Geophysical 

Research,112(D19). doi:10.1029/2007jd008407 

 

[3] Fereres, E., & Soriano, M. A. (2006). Deficit irrigation for reducing agricultural water 

use. Journal of Experimental Botany,58(2), 147-159. doi:10.1093/jxb/erl165 

 

[4] Kothapalli, U. B. (December 2017). Field Deployment and Integration of Wireless 

Communication & Operation Support System for the Landscape Irrigation Runoff Mitigation 

System(Unpublished master's thesis). Texas A&M University. 

 

[5] Capraro, F., Patino, D., Tosetti, S., & Schugurensky, C. (2008). Neural Network-Based 

Irrigation Control for Precision Agriculture. 2008 IEEE International Conference on Networking, 

Sensing and Control. doi: 10.1109/icnsc.2008.4525240 

 

[6] Karasekreter, N., Başçiftçi, F., & Fidan, U. (2013). A new suggestion for an irrigation schedule 

with an artificial neural network. Journal of Experimental & Theoretical Artificial 

Intelligence,25(1), 93-104. doi:10.1080/0952813x.2012.680071 

 

[7] Mahmood A Khan, Md Zahidul Islam & Mohsin Hafeez (2013). Irrigation Water Requirement 

Prediction through Various Data Mining Techniques Applied on a Carefully Pre-processed 

Dataset. Journal of Research and Practice In Information Technology, pp. 1-13 

 

[8] S Muhammad Umair & R. Usman (2010). Automation of Irrigation System Using ANN based 

Controller. International Journal of Electrical & Computer Sciences, Vol. 10, No. 2, pp. 41- 47 

 

[9] Abdullah Gokhan Yilmaz & Nittin Muttil (2014). Runoff Estimation by Machine Learning 

Methods and Application to the Euphrates Basin in Turkey. Journal of Hydrologic Engineering, 

pp. 1015-1025 

 

[10] Gude, V. G. (2017). Desalination and water reuse to address global water scarcity. Reviews 

in Environmental Science and Bio/Technology,16(4), 591-609. doi:10.1007/s11157-017-9449-7 

 

[11] Bunn, S. E. (2016). Grand Challenge for the Future of Freshwater Ecosystems. Frontiers in 

Environmental Science,4. doi:10.3389/fenvs.2016.00021 

 

[12] Willis, G. H., & Mcdowell, L. L. (1982). Review: Pesticides In Agricultural Runoff And Their 

Effects On Downstream Water Quality. Environmental Toxicology and Chemistry,1(4), 267. 

doi:10.1897/1552-8618 

 



91 

 

[13]  Xie, J., Chen, H., Liao, Z., Gu, X., Zhu, D., & Zhang, J. (2017). An integrated assessment of 

urban flooding mitigation strategies for robust decision making. Environmental Modelling & 

Software,95, 143-155. doi:10.1016/j.envsoft.2017.06.027 

 

[14] Gaborit, E., Anctil, F., Pelletier, G., & Vanrolleghem, P. (2015). Exploring forecast-based 

management strategies for stormwater detention ponds. Urban Water Journal,13(8), 841-851. 

doi:10.1080/1573062x.2015.1057172 

 

[15] Tang, X., Zhu, B., & Katou, H. (2012). A review of rapid transport of pesticides from sloping 

farmland to surface waters: Processes and mitigation strategies. Journal of Environmental 

Sciences,24(3), 351-361. doi:10.1016/s1001-0742(11)60753-5 

 

[16] Davis, A. P., Hunt, W. F., Traver, R. G., & Clar, M. (2009). Bioretention Technology: 

Overview of Current Practice and Future Needs. Journal of Environmental Engineering,135(3), 

109-117. doi:10.1061/(asce)0733-9372(2009)135:3(109) 

 

[17] Vymazal, J., & Březinová, T. (2015). The use of constructed wetlands for removal of 

pesticides from agricultural runoff and drainage: A review. Environment International,75, 11-20. 

doi:10.1016/j.envint.2014.10.026 

 

[18] Troutman, B. M. (1985). Errors and Parameter Estimation in Precipitation-Runoff Modeling: 

1. Theory. Water Resources Research,21(8), 1195-1213. doi:10.1029/wr021i008p01195 

 

[19] Schafer, J. L., & Olsen, M. K. (1998). Multiple Imputation for Multivariate Missing-Data 

Problems: A Data Analysts Perspective. Multivariate Behavioral Research,33(4), 545-571. 

doi:10.1207/s15327906mbr3304_5 

 

[20] Therese D Pigott (2001). A Review of Methods for Missing Data, Educational Research and 

Evaluation, 7:4, 353-383, DOI: 10.1076/edre.7.4.353.8937 

 

[21] Tang, J., Liu, J., Zhang, M., & Mei, Q. (2016). Visualizing Large-scale and High-dimensional 

Data. Proceedings of the 25th International Conference on World Wide Web - WWW 16. 

doi:10.1145/2872427.2883041 

 

[22] Pickett, R., & Grinstein, G. (n.d.). Iconographic Displays For Visualizing Multidimensional 

Data. Proceedings of the 1988 IEEE International Conference on Systems, Man, and Cybernetics. 

doi:10.1109/icsmc.1988.754351 

 

[23] Keim, D. (2002). Information visualization and visual data mining. IEEE Transactions on 

Visualization and Computer Graphics,8(1), 1-8. doi:10.1109/2945.981847 

 

[24] Andreas Buja, Deborah F Swayne, Michael L Littman, Nathaniel Dean, Heike Hofmann & 

Lisha Chen (2008) Data Visualization With Multidimensional Scaling, Journal of Computational 

and Graphical Statistics, 17:2, 444-472, DOI: 10.1198/106186008X318440 

 

https://doi.org/10.1198/106186008X318440


92 

 

[25] Chi, E. (n.d.). A taxonomy of visualization techniques using the data state reference 

model. IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings. 

doi:10.1109/infvis.2000.885092 

 

[26] Lei Yu and Huan Liu (2003). Feature Selection for High-Dimensional Data: A Fast 

Correlation-Based Filter Solution. Proceedings of Twentieth International Conference on Machine 

Learning.  

 

[27] Jaworska, N., & Chupetlovska-Anastasova, A. (2009). A Review of Multidimensional 

Scaling (MDS) and its Utility in Various Psychological Domains. Tutorials in Quantitative 

Methods for Psychology,5(1), 1-10. doi:10.20982/tqmp.05.1.p001 

 

[28] Park, M. S., Na, J. H., & Choi, J. Y. (n.d.). PCA-based Feature Extraction using Class 

Information. 2005 IEEE International Conference on Systems, Man and Cybernetics. 

doi:10.1109/icsmc.2005.1571169 

 

[29] Dyk, D. A., & Meng, X. (2001). The Art of Data Augmentation. Journal of Computational 

and Graphical Statistics,10(1), 1-50. doi:10.1198/10618600152418584 

 

[30] Wong, S. C., Gatt, A., Stamatescu, V., & Mcdonnell, M. D. (2016). Understanding Data 

Augmentation for Classification: When to Warp? 2016 International Conference on Digital Image 

Computing: Techniques and Applications (DICTA). doi:10.1109/dicta.2016.7797091 

 

[31] Wei, G. C., & Tanner, M. A. (1991). Applications of Multiple Imputation to the Analysis of 

Censored Regression Data. Biometrics,47(4), 1297. doi:10.2307/2532387 

 

[32] Efron, B. (1994). Missing Data, Imputation, and the Bootstrap. Journal of the American 

Statistical Association,89(426), 463. doi:10.2307/2290846 

 

[33] Wherley, B. (2018). Method and System for Reduction of Irrigation Runoff. US9955636132 

 

[34] Wherley, B. (2018). Effect of Sodic Irrigation Water on Organic Carbon and Nitrogen 

Concentrations, Fluxes and Exports from Newly Installed St. Augustine Grass Sod in South-

Central Texas. Journal of Horticulture Vol. 5 Issue 2 pp. 1-7 

 

 

 

 

 

 

 

 

 

 

 

 



93 

 

APPENDIX A 

 

ML code when the target variable “runoff observed” is binned into two classes 

 

import pandas as pd 

import numpy as np 

from matplotlib import pyplot as plt 

 

data = pd.read_csv('C:/Users/samba/Desktop/ASIS_new.csv') #Importing the dataset 

 

print('Training data shape:', data.shape) #Initial volume of the dataset (31 observations and 

                                                                  32 observations)     

 

#Categorizing the start time variable which we would be using in our analysis 

#Any time between 9 pm and 4 am is categorized as Night time denoted by 1, any time 

between 4 am and 12 pm is categorized as Morning time denoted by 2, any time between 

12 pm and 4 pm is categorized as Afternoon time denoted by 3 and any time between 4 pm 

and 9 pm is categorized as Evening time denoted by 4   

hour1= [] 

rey = list(data['START_TIME_hr:min'].values) 

for i,j in enumerate(rey): 

    hrs,mins = j.split(':') 

    hrs = np.asarray(hrs) 

    hrs = hrs.astype(int) 

    for i in np.nditer(hrs): 

        if i>21 and i<=23: 

            hour1.append(1) 

        elif i>=0 and i<4:                         #Night 

            hour1.append(1) 

        elif i>=4 and i<=12:                     #Morning 

            hour1.append(2) 

        elif i>12 and i<=16:                     #Afternoon 

            hour1.append(3)                      

        elif i>16 and i<=21:                      #Evening 

            hour1.append(4) 

df1 = pd.DataFrame(hour1,columns=['START_TIME_CLASS']) 

result = pd.concat([data, df1], axis=1, join='inner') 

result = result.drop(['START_TIME_hr:min'], axis = 1) 

result 

 

#Final list of predictors to be used in the analysis 

Xcols=['ETO_mm/day','SCHEDULED_IRRIGATION_TIME_mins','AVG 

WIND__SPEED_MPH','PRECIPITATION_inch','START_TIME_CLASS', 

'RUNOFF_VOLUME_OBSERVED_Gal'] 

 

data3 = result[Xcols] 



94 

 

 

data3.to_csv('ASIS3.csv', index = False) #Saving the new generated encoded data 

                                                                   to a new file to use in our algorithm 

 

#There are 4 observations which have missing values of runoff. As the number of 

observations in the dataset are too less to drop any of them from the dataset, it was decided 

to impute the values of runoff by running a Linear Regression over rest of the predictors 

data = pd.read_csv('C:/Users/samba/Desktop/ASIS3.csv') #Importing the dataset 

df1 = data[data.isnull().any(axis=1)] 

x_test = df1.drop(['RUNOFF_VOLUME_OBSERVED_Gal'], axis = 1) 

x = data.dropna() 

x_train = x.drop(['RUNOFF_VOLUME_OBSERVED_Gal'], axis = 1) 

y_train = x['RUNOFF_VOLUME_OBSERVED_Gal'] 

data = data.fillna(0) #Replacing the missing values of runoff observed with zero 

                                  before imputing them 

from sklearn.linear_model import LinearRegression 

regressor = LinearRegression() 

reg = regressor.fit(x_train, y_train) #Fitting a Linear Regression model over the 

                                                          training data 

y_test = reg.predict(x_test) #Predicting the missing values of runoff observed 

data4 = data['RUNOFF_VOLUME_OBSERVED_Gal'] 

re = data4.as_matrix(columns=None) 

 

j=0 

for i, l in enumerate(re): 

    if l ==0 : 

        re[i] = y_test[j] 

        j+=1 

 

df3 = pd.DataFrame(re,columns=['RUNOFF_VOLUME_OBSERVED_Gal']) 

data = data.drop(['RUNOFF_VOLUME_OBSERVED_Gal'], axis = 1) 

            result = pd.concat([data, df3], axis=1, join='inner') #Storing the predicted values of 

                                                                                              runoff in one dataframe 

 

#Visualizing the runoff data 

from scipy.stats import norm 

x_d = np.linspace(-4, 8, 1000) 

re1 = result['RUNOFF_VOLUME_OBSERVED_Gal'].as_matrix(columns=None) 

from sklearn.neighbors import KernelDensity 

kde = KernelDensity(bandwidth=1.0, kernel='gaussian') #Instantiating and fitting 

                                                                                           the KDE model 

kde.fit(re1[:, None]) 

logprob = kde.score_samples(x_d[:, None]) #score_samples returns the log of the 

                                                                         probability density 

 

plt.fill_between(x_d, np.exp(logprob), alpha=0.5) 



95 

 

frame1 = plt.gca() 

frame1.axes.get_yaxis().set_visible(False) 

plt.plot(re1, np.full_like(re1, -0.01), '|k', markeredgewidth=1) 

plt.ylim(-0.02, 0.22) 

plt.xlabel('Values of runoff data in Gallons') 

 

#Categorizing the value of runoff based on its distribution. From the data visualization, 

the value of runoff volume below 105 Gallons was classified as Class 0 and any value over 

it was classified as Class 1 for analysis 

re2 = [] 

for i,l in enumerate(re): 

    if l < 105 : 

        re2.append(0) 

    else : 

        re2.append(1) 

df4 = 

pd.DataFrame(re2,columns=['RUNOFF_VOLUME_OBSERVED_Gal_CLASS']) 

result1 = pd.concat([result, df4], axis=1, join='inner') 

result1 = result1.drop(['RUNOFF_VOLUME_OBSERVED_Gal'], axis = 1) 

 

#Normalizing the features and constructing a new Dataframe by appending the target 

variable to be used for further analysis 

from sklearn import preprocessing 

min_max_scaler = preprocessing.MinMaxScaler() 

re2 = result.as_matrix(columns = None) 

X_scaled = min_max_scaler.fit_transform(re2[:,0:5]) 

X_cols3 = ['START_TIME_CLASS'] 

result2 = result1[X_cols3] 

X_cols4 = ['RUNOFF_VOLUME_OBSERVED_Gal_CLASS'] 

result3 = result1[X_cols4] 

#Constructing a new dataframe for the normalized features 

dat1 = pd.DataFrame({'ETO_mm/day':X_scaled[:,0]}) 

dat2 = pd.DataFrame({'AVG_WIND_SPEED_MPH':X_scaled[:,2]}) 

dat4 = pd.DataFrame({'PRECIPITATION_inch':X_scaled[:,3]}) 

dat7 = pd.DataFrame({'EFFECTIVE_IRRIGATION_TIME_min':X_scaled[:,1]}) 

dataset = pd.concat([dat1, dat2, dat4, dat7, result2, result3], axis=1) 

 

#Removing the target variable before running Principal Component Analysis on the 

dataset 

y_frame = dataset.iloc[:,-1] 

y_data = y_frame.as_matrix(columns = None) 

dataset = dataset.drop(['RUNOFF_VOLUME_OBSERVED_Gal_CLASS'], axis = 

1) 

 

#Principal Component Analysis on the dataset to get a clear idea about the variance 

explained 



96 

 

from sklearn.decomposition import PCA 

X = dataset.as_matrix(columns = None) 

pca = PCA(n_components=3) 

pca.fit(X) 

x_data_pca = pca.fit_transform(X) 

var1 = np.cumsum(np.round(pca.explained_variance_ratio_, decimals=2)*100) 

print(pca.explained_variance_ratio_) 

plt.xlabel("Number of components") 

plt.ylabel("Cumulative Proportion of the variance explained") 

plt.plot(var1) 

print(var1) 

data8 = pd.DataFrame(pca.components_,columns=dataset.columns,index = ['PC-

1','PC-2','PC-3']) 

 

#Synthetic Data generation for observations with runoff volume less than 105 Gallons and 

irrigation during night hours (Distinct mean and covariance matrix between the classes) 

import pylab as plb 

import matplotlib.pyplot as plt 

from scipy.optimize import curve_fit 

from scipy import asarray as ar,exp 

from scipy.stats import multivariate_normal 

dataset1=dataset.rename(index=str,columns={"RUNOFF_VOLUME_OBSERVE

D_Gal_CLASS": "B"}) 

dataset2 = dataset1.loc[lambda df: df.B == 0, :] 

dataset3 = dataset2.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset4 = dataset3.loc[lambda df: df.C == 1, :] 

dataset4 = dataset4.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

# Construct dataset 

X1,y1=make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, n_samples=500, 

n_features=4, n_classes=1, random_state=1) 

Synthetic_data_0=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_0=Synthetic_data_0.assign(**{'START_TIME_CLASS': 

1,'RUNOFF_VOLUME_OBSERVED_Gal_CLASS': 0}) 

 

 #Synthetic Data generation for observations with runoff volume less than 105 Gallons and 

irrigation during morning hours (Distinct mean and covariance matrix between the 

classes) 

dataset1=dataset.rename(index=str,columns={"RUNOFF_VOLUME_OBSERVE

D_Gal_CLASS": "B"}) 

dataset2 = dataset1.loc[lambda df: df.B == 0, :] 

dataset3 = dataset2.rename(index=str, columns={"START_TIME_CLASS": "C"}) 



97 

 

dataset4 = dataset3.loc[lambda df: df.C == 2, :] 

dataset4 = dataset4.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

#Construct dataset 

X1, y1 = make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, 

                                 n_samples=500, n_features=4, 

                                 n_classes=1, random_state=1) 

Synthetic_data_1=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_1=Synthetic_data_1.assign(**{'START_TIME_CLASS':2,'RUN

OFF_VOLUME_OBSERVED_Gal_CLASS': 0}) 

 

#Synthetic Data generation for observations with runoff volume less than 105 Gallons and 

irrigation during afternoon hours (Distinct mean and covariance matrix between the 

classes) 

dataset1=dataset.rename(index=str,columns={"RUNOFF_VOLUME_OBSERVE

D_Gal_CLASS": "B"}) 

dataset2 = dataset1.loc[lambda df: df.B == 0, :] 

dataset3 = dataset2.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset4 = dataset3.loc[lambda df: df.C == 3, :] 

dataset4 = dataset4.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

#Construct dataset 

X1, y1 = make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, 

                                 n_samples=500, n_features=4, 

                                 n_classes=1, random_state=1) 

Synthetic_data_2=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch',‘EFFECTIVE_IRRIGATION_TIME_min']

) 

Synthetic_data_2=Synthetic_data_2.assign(**{'START_TIME_CLASS':3,'RUN

OFF_VOLUME_OBSERVED_Gal_CLASS': 0}) 

 

#Synthetic Data generation for observations with runoff volume less than 105 Gallons and 

irrigation during evening hours (Distinct mean and covariance matrix between the classes) 

dataset1=dataset.rename(index=str,columns={"RUNOFF_VOLUME_OBSERVE

D_Gal_CLASS": "B"}) 

dataset2 = dataset1.loc[lambda df: df.B == 0, :] 

dataset3 = dataset2.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset4 = dataset3.loc[lambda df: df.C == 4, :] 

dataset4 = dataset4.drop(['C','B'], axis = 1) 



98 

 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

 #Construct dataset 

X1, y1 = make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, 

                                 n_samples=500, n_features=4, 

                                 n_classes=1, random_state=1) 

Synthetic_data_3=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_3=Synthetic_data_3.assign(**{'START_TIME_CLASS':4,'RUN

OFF_VOLUME_OBSERVED_Gal_CLASS': 0}) 

 

#Synthetic Data generation for observations with runoff volume more than 105 Gallons 

and irrigation during night hours (Distinct mean and covariance matrix between the 

classes) 

dataset1=dataset.rename(index=str,columns={"RUNOFF_VOLUME_OBSERVE

D_Gal_CLASS": "B"}) 

dataset2 = dataset1.loc[lambda df: df.B == 1, :] 

dataset3 = dataset2.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset4 = dataset3.loc[lambda df: df.C == 1, :] 

dataset4 = dataset4.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

 #Construct dataset 

X1, y1 = make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, 

                                 n_samples=500, n_features=4, 

                                 n_classes=1, random_state=1) 

Synthetic_data_4=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_4=Synthetic_data_4.assign(**{'START_TIME_CLASS':1,'RUN

OFF_VOLUME_OBSERVED_Gal_CLASS': 1}) 

 

#Synthetic Data generation for observations with runoff volume more than 105 Gallons 

and irrigation during morning hours (Distinct mean and covariance matrix between the 

classes) 

dataset1=dataset.rename(index=str,columns={"RUNOFF_VOLUME_OBSERVE

D_Gal_CLASS": "B"}) 

dataset2 = dataset1.loc[lambda df: df.B == 1, :] 

dataset3 = dataset2.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset4 = dataset3.loc[lambda df: df.C == 2, :] 

dataset4 = dataset4.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 



99 

 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

#Construct dataset 

X1, y1 = make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, 

                                 n_samples=500, n_features=4, 

                                 n_classes=1, random_state=1) 

Synthetic_data_5=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_5=Synthetic_data_5.assign(**{'START_TIME_CLASS':2,'RUN

OFF_VOLUME_OBSERVED_Gal_CLASS': 1}) 

 

#Synthetic Data generation for observations with runoff volume more than 105 Gallons 

and irrigation during evening hours (Distinct mean and covariance matrix between the 

classes) 

dataset1=dataset.rename(index=str,columns={"RUNOFF_VOLUME_OBSERVE

D_Gal_CLASS": "B"}) 

dataset2 = dataset1.loc[lambda df: df.B == 1, :] 

dataset3 = dataset2.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset4 = dataset3.loc[lambda df: df.C == 4, :] 

dataset4 = dataset4.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

 #Construct dataset 

X1, y1 = make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, 

                                 n_samples=500, n_features=4, 

                                 n_classes=1, random_state=1) 

Synthetic_data_7=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_7=Synthetic_data_7.assign(**{'START_TIME_CLASS':4,'RUN

OFF_VOLUME_OBSERVED_Gal_CLASS': 1}) 

 

#Combining all the generated data for distinct mean and covariance matrix into a single 

   Data frame  

result1 = Synthetic_data_1.append(Synthetic_data_0, ignore_index=True) 

result2 = result1.append(Synthetic_data_2, ignore_index=True) 

result3 = result2.append(Synthetic_data_3, ignore_index=True) 

result5 = result3.append(Synthetic_data_5, ignore_index=True) 

result8 = result5.append(Synthetic_data_7, ignore_index=True) 

 

#Synthetic Data generation for all irrigation events during the night (Shared mean and 

covariance matrix between classes)  

dataset1=dataset.rename(index=str,columns={"RUNOFF_VOLUME_OBSERVE

D_Gal_CLASS": "B"}) 

dataset2 = dataset1.rename(index=str, columns={"START_TIME_CLASS": "C"}) 



100 

 

dataset3 = dataset2.loc[lambda df: df.C == 1, :] 

dataset4 = dataset3.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

#Constructing the dataset 

X1,y1=make_gaussian_quantiles(cov=cov_xe,mean=mean_xe,n_samples=1000, 

n_features=4,n_classes=2, random_state=1) 

Synthetic_data_4=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_4 = Synthetic_data_4.assign(**{'START_TIME_CLASS': 1}) 

Synthetic_data_5=pd.DataFrame(y1,columns=['RUNOFF_VOLUME_OBSERV

ED_Gal_CLASS']) 

result_C_12=pd.concat([Synthetic_data_4,Synthetic_data_5],axis=1,join_axes=[S

ynthetic_data_4.index]) 

 

#Synthetic Data generation for all irrigation events during the morning (Shared mean and 

covariance matrix between classes)  

dataset1=dataset.rename(index=str,columns={"RUNOFF_VOLUME_OBSERVE

D_Gal_CLASS": "B"}) 

dataset2 = dataset1.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset3 = dataset2.loc[lambda df: df.C == 2, :] 

dataset4 = dataset3.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

#Constructing the dataset 

X1,y1= make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, n_samples=1000, 

n_features=4, n_classes=2, random_state=1) 

Synthetic_data_4=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch', 

'EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_4 = Synthetic_data_4.assign(**{'START_TIME_CLASS': 2}) 

Synthetic_data_5=pd.DataFrame(y1,columns=['RUNOFF_VOLUME_OBSERV

ED_Gal_CLASS']) 

result_C_13=pd.concat([Synthetic_data_4,Synthetic_data_5],axis=1,join_axes=[S

ynthetic_data_4.index]) 

 

#Synthetic Data generation for all irrigation events during the afternoon (Shared mean 

and covariance matrix between classes)  

dataset1=dataset.rename(index=str,columns={"RUNOFF_VOLUME_OBSERVE

D_Gal_CLASS": "B"}) 

dataset2 = dataset1.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset3 = dataset2.loc[lambda df: df.C == 3, :] 



101 

 

dataset4 = dataset3.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

#Constructing the dataset 

X1,y1= make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, n_samples=1000, 

n_features=4, n_classes=2, random_state=1) 

Synthetic_data_4=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch', 

'EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_4 = Synthetic_data_4.assign(**{'START_TIME_CLASS': 3}) 

Synthetic_data_5=pd.DataFrame(y1,columns=['RUNOFF_VOLUME_OBSERV

ED_Gal_CLASS']) 

result_C_14=pd.concat([Synthetic_data_4,Synthetic_data_5],axis=1,join_axes=[S

ynthetic_data_4.index]) 

 

#Synthetic Data generation for all irrigation events during the evening (Shared mean and 

covariance matrix between classes)  

dataset1=dataset.rename(index=str,columns={"RUNOFF_VOLUME_OBSERVE

D_Gal_CLASS": "B"}) 

dataset2 = dataset1.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset3 = dataset2.loc[lambda df: df.C == 4, :] 

dataset4 = dataset3.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

#Constructing the dataset 

X1,y1= make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, n_samples=1000, 

n_features=4, n_classes=2, random_state=1) 

Synthetic_data_4=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch', 

'EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_4 = Synthetic_data_4.assign(**{'START_TIME_CLASS': 4}) 

Synthetic_data_5=pd.DataFrame(y1,columns=['RUNOFF_VOLUME_OBSERV

ED_Gal_CLASS']) 

result_C_15=pd.concat([Synthetic_data_4,Synthetic_data_5],axis=1,join_axes=[S

ynthetic_data_4.index]) 

 

#Combining all the generated data into a single Data frame 

result5 = result_C_12.append(result_C_13, ignore_index=True) 

result6 = result5.append(result_C_14, ignore_index=True) 

result7 = result6.append(result_C_15, ignore_index=True) 

final_result = result8.append(result7, ignore_index=True) 

 



102 

 

#Training RBF SVM for different values of train:test split on the synthetic data 

from sklearn.model_selection import train_test_split 

from sklearn.model_selection import GridSearchCV 

from sklearn.metrics import accuracy_score 

X = final_result.drop('RUNOFF_VOLUME_OBSERVED_Gal_CLASS', axis = 1) 

y = final_result['RUNOFF_VOLUME_OBSERVED_Gal_CLASS'] 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.1, random_state 

= 42) 

import numpy as np 

import matplotlib.pyplot as plt 

from matplotlib import style 

style.use("ggplot") 

from sklearn import svm 

b = X_train.as_matrix(columns = None) 

c = y_train.as_matrix(columns = None) 

from sklearn import svm 

# Grid Search 

# Parameter Grid 

gammas = np.linspace(0.0, 1.0, num=100) 

param_grid = {'C': [100], 'gamma': gammas} #The value of penalty parameter is 

                                                                           varied from 1 to 100 in interval of 

                                                                          10 units. Best gamma is chosen for 

                                                                          each case. 

# Make grid search classifier 

clf_grid = GridSearchCV(svm.SVC(), param_grid, verbose=1) 

# Training the classifier 

clf_grid.fit(b,c) 

print("Best Parameters:\n", clf_grid.best_params_) 

print("Best Estimators:\n", clf_grid.best_estimator_) 

b1 = X_test.as_matrix(columns = None) 

c1 = y_test.as_matrix(columns = None) 

result = clf_grid.predict(b1) 

accuracy_score(c1, result) #Gives the accuracy score on testing data 

 

#Training RBF SVM on the entire synthetic data generated and training it on the real 

dataset 

from sklearn.model_selection import train_test_split 

from sklearn.model_selection import GridSearchCV 

from sklearn.metrics import accuracy_score 

X_train = final_result.drop('RUNOFF_VOLUME_OBSERVED_Gal_CLASS', 

axis = 1) 

y_train = final_result['RUNOFF_VOLUME_OBSERVED_Gal_CLASS'] 

style.use("ggplot") 

from sklearn import svm 

b = X_train.as_matrix(columns = None) 

c = y_train.as_matrix(columns = None) 



103 

 

X_test = dataset.drop('RUNOFF_VOLUME_OBSERVED_Gal_CLASS', axis = 1) 

y_test = dataset['RUNOFF_VOLUME_OBSERVED_Gal_CLASS'] 

b1 = X_test.as_matrix(columns = None) 

c1 = y_test.as_matrix(columns = None) 

            from sklearn import svm 

#Grid Search 

#Parameter Grid 

gammas = np.linspace(0.0, 1.0, num=100) 

param_grid1 = {'C': [100], 'gamma': gammas} 

            #Make grid search classifier 

clf_grid1 = GridSearchCV(svm.SVC(), param_grid1, verbose=1) 

  

#Train the classifier 

clf_grid1.fit(b,c) 

#clf = grid.best_estimator_() 

print("Best Parameters:\n", clf_grid1.best_params_) 

print("Best Estimators:\n", clf_grid1.best_estimator_) 

result1 = clf_grid1.predict(b1) 

accuracy_score(c1, result1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



104 

 

APPENDIX B 

 

ML code when the target variable “Time when the first instance of runoff is observed” 

is binned into three classes 

 

import pandas as pd 

import numpy as np 

from matplotlib import pyplot as plt 

 

data = pd.read_csv('C:/Users/samba/Desktop/ASIS_new.csv') #Importing the dataset 

 

print('Training data shape:', data.shape) #Initial volume of the dataset (31 observations and 

                                                                  32 predictors) 

 

#Categorizing the start time variable which we would be using in our analysis 

#Any time between 9 pm and 4 am is categorized as Night time denoted by 1, any time 

between 4 am and 12 pm is categorized as Morning time denoted by 2, any time between 

12 pm and 4 pm is categorized as Afternoon time denoted by 3 and any time between 4 pm 

and 9 pm is categorized as Evening time denoted by 4   

hour1= [] 

rey = list(data['START_TIME_hr:min'].values) 

for i,j in enumerate(rey): 

    hrs,mins = j.split(':') 

    hrs = np.asarray(hrs) 

    hrs = hrs.astype(int) 

    for i in np.nditer(hrs): 

        if i>21 and i<=23: 

            hour1.append(1) 

        elif i>=0 and i<4:                         #Night 

            hour1.append(1) 

        elif i>=4 and i<=12:                     #Morning 

            hour1.append(2) 

        elif i>12 and i<=16:                     #Afternoon 

            hour1.append(3)                      

        elif i>16 and i<=21:                      #Evening 

            hour1.append(4) 

df1 = pd.DataFrame(hour1,columns=['START_TIME_CLASS']) 

result = pd.concat([data, df1], axis=1, join='inner') 

result = result.drop(['START_TIME_hr:min'], axis = 1) 

result 

 

#Final list of predictors to be used in the analysis 

Xcols=['ETO_mm/day','SCHEDULED_IRRIGATION_TIME_mins','AVG_WIN

D_SPEED_MPH','PRECIPITATION_inch','START_TIME_CLASS', 

'TIME_UNTIL_FIRST_RUNOFF_sec'] 

 



105 

 

data3 = result[Xcols] 

 

data3.to_csv('ASIS3.csv', index = False) #Saving the new generated encoded data 

                                                                   to a new file to use in our algorithm 

 

data = pd.read_csv('C:/Users/samba/Desktop/ASIS3.csv') #Importing the dataset 

result = data 

 

#Visualizing the “time until the first instance of runoff is detected” in seconds 

from scipy.stats import norm 

x_d = np.linspace(-4, 8, 1000) 

re1 = result['TIME_UNTIL_FIRST_RUNOFF_sec'].as_matrix(columns=None) 

from sklearn.neighbors import KernelDensity 

kde = KernelDensity(bandwidth=1.0, kernel='gaussian') #Instantiating and fitting 

                                                                                            the KDE model 

kde.fit(re1[:, None]) 

logprob = kde.score_samples(x_d[:, None]) #score_samples returns the log of the 

                                                                         probability density 

 

plt.fill_between(x_d, np.exp(logprob), alpha=0.5) 

frame1 = plt.gca() 

frame1.axes.get_yaxis().set_visible(False) 

plt.plot(re1, np.full_like(re1, -0.01), '|k', markeredgewidth=1) 

plt.ylim(-0.02, 0.22) 

plt.xlabel('Values of time until the first instance of runoff is detected in seconds') 

 

#Categorizing the abovementioned data based on its distribution. From the data 

visualization, the value of time when the first instance of runoff was detected was 0 seconds 

was classified as Class 0, any value between 0 and 600 seconds was classified as Class 1 

and any value beyond was classified as Class 2 respectively 

re2 = [] 

for i,l in enumerate(re): 

    if l = = 0 : 

        re2.append(0) 

    elif l > 0 and l <= 600 : 

        re2.append(1) 

    else : 

        re2.append(2) 

df4=pd.DataFrame(re2,columns=['TIME_UNTIL_FIRST_RUNOFF_sec_CLASS

']) 

result1 = pd.concat([result, df4], axis=1, join='inner') 

result1 = result1.drop(['TIME_UNTIL_FIRST_RUNOFF_sec'], axis = 1) 

 

#Normalizing the features and constructing a new Dataframe by appending the target 

variable to be used for further analysis 

from sklearn import preprocessing 



106 

 

min_max_scaler = preprocessing.MinMaxScaler() 

re2 = result.as_matrix(columns = None) 

X_scaled = min_max_scaler.fit_transform(re2[:,0:5]) 

X_cols3 = ['START_TIME_CLASS'] 

result2 = result1[X_cols3] 

X_cols4 = ['TIME_UNTIL_FIRST_RUNOFF_sec _CLASS'] 

result3 = result1[X_cols4] 

#Constructing a new dataframe for the normalized features 

dat1 = pd.DataFrame({'ETO_mm/day':X_scaled[:,0]}) 

dat2 = pd.DataFrame({'AVG_WIND_SPEED_MPH':X_scaled[:,2]}) 

dat4 = pd.DataFrame({'PRECIPITATION_inch':X_scaled[:,3]}) 

dat7 = pd.DataFrame({'EFFECTIVE_IRRIGATION_TIME_min':X_scaled[:,1]}) 

dataset = pd.concat([dat1, dat2, dat4, dat7, result2, result3], axis=1) 

 

#Removing the target variable before running Principal Component Analysis on the 

dataset 

y_frame = dataset.iloc[:,-1] 

y_data = y_frame.as_matrix(columns = None) 

dataset = dataset.drop(['TIME_UNTIL_FIRST_RUNOFF_sec_CLASS'], axis = 1) 

 

#Principal Component Analysis on the dataset to get a clear idea about the variance 

explained 

from sklearn.decomposition import PCA 

X = dataset.as_matrix(columns = None) 

pca = PCA(n_components=3) 

pca.fit(X) 

x_data_pca = pca.fit_transform(X) 

var1 = np.cumsum(np.round(pca.explained_variance_ratio_, decimals=2)*100) 

print(pca.explained_variance_ratio_) 

plt.xlabel("Number of components") 

plt.ylabel("Cumulative Proportion of the variance explained") 

plt.plot(var1) 

print(var1) 

data8 = pd.DataFrame(pca.components_,columns=dataset.columns,index = ['PC-

1','PC-2','PC-3']) 

 

#Synthetic Data generation for observations when the first instance of runoff detected was 

at 0 seconds and irrigation was conducted during night hours (Distinct mean and 

covariance matrix between the classes) 

import pylab as plb 

import matplotlib.pyplot as plt 

from scipy.optimize import curve_fit 

from scipy import asarray as ar,exp 

from scipy.stats import multivariate_normal 

dataset1=dataset.rename(index=str,columns={“TIME_UNTIL_FIRST_RUNOFF

_sec_CLASS": "B"}) 



107 

 

dataset2 = dataset1.loc[lambda df: df.B == 0, :] 

dataset3 = dataset2.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset4 = dataset3.loc[lambda df: df.C == 1, :] 

dataset4 = dataset4.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

# Construct dataset 

X1,y1=make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, n_samples=500, 

n_features=4, n_classes=1, random_state=1) 

Synthetic_data_0=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_0=Synthetic_data_0.assign(**{'START_TIME_CLASS': 

1,'TIME_UNTIL_FIRST_RUNOFF_sec_CLASS': 0}) 

 

#Synthetic Data generation for observations when the first instance of runoff detected was 

at 0 seconds and irrigation was conducted during morning hours (Distinct mean and 

covariance matrix between the classes) 

import pylab as plb 

import matplotlib.pyplot as plt 

from scipy.optimize import curve_fit 

from scipy import asarray as ar,exp 

from scipy.stats import multivariate_normal 

dataset1=dataset.rename(index=str,columns={“TIME_UNTIL_FIRST_RUNOFF

_sec_CLASS": "B"}) 

dataset2 = dataset1.loc[lambda df: df.B == 0, :] 

dataset3 = dataset2.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset4 = dataset3.loc[lambda df: df.C == 2, :] 

dataset4 = dataset4.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

# Construct dataset 

X1,y1=make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, n_samples=500, 

n_features=4, n_classes=1, random_state=1) 

Synthetic_data_1=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_1=Synthetic_data_1.assign(**{'START_TIME_CLASS':2, 

'TIME_UNTIL_FIRST_RUNOFF_sec_CLASS': 0}) 

 

#Synthetic Data generation for observations when the first instance of runoff detected was 

at 0 seconds and irrigation was conducted during afternoon hours (Distinct mean and 

covariance matrix between the classes) 

import pylab as plb 



108 

 

import matplotlib.pyplot as plt 

from scipy.optimize import curve_fit 

from scipy import asarray as ar,exp 

from scipy.stats import multivariate_normal 

dataset1=dataset.rename(index=str,columns={“TIME_UNTIL_FIRST_RUNOFF

_sec_CLASS": "B"}) 

dataset2 = dataset1.loc[lambda df: df.B == 0, :] 

dataset3 = dataset2.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset4 = dataset3.loc[lambda df: df.C == 3, :] 

dataset4 = dataset4.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

# Construct dataset 

X1,y1=make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, n_samples=500, 

n_features=4, n_classes=1, random_state=1) 

Synthetic_data_2=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_2=Synthetic_data_2.assign(**{'START_TIME_CLASS':3, 

'TIME_UNTIL_FIRST_RUNOFF_sec_CLASS': 0}) 

 

#Synthetic Data generation for observations when the first instance of runoff detected was 

at 0 seconds and irrigation was conducted during evening hours (Distinct mean and 

covariance matrix between the classes) 

import pylab as plb 

import matplotlib.pyplot as plt 

from scipy.optimize import curve_fit 

from scipy import asarray as ar,exp 

from scipy.stats import multivariate_normal 

dataset1=dataset.rename(index=str,columns={“TIME_UNTIL_FIRST_RUNOFF

_sec_CLASS": "B"}) 

dataset2 = dataset1.loc[lambda df: df.B == 0, :] 

dataset3 = dataset2.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset4 = dataset3.loc[lambda df: df.C == 4, :] 

dataset4 = dataset4.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

#Construct dataset 

X1,y1=make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, n_samples=500, 

n_features=4, n_classes=1, random_state=1) 

Synthetic_data_3=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min']) 



109 

 

Synthetic_data_3=Synthetic_data_3.assign(**{'START_TIME_CLASS':3, 

'TIME_UNTIL_FIRST_RUNOFF_sec_CLASS': 0}) 

 

#Synthetic Data generation for observations when the first instance of runoff detected was 

between 0 and 600 seconds and irrigation was conducted during night hours (Distinct 

mean and covariance matrix between the classes) 

import pylab as plb 

import matplotlib.pyplot as plt 

from scipy.optimize import curve_fit 

from scipy import asarray as ar,exp 

from scipy.stats import multivariate_normal 

dataset1=dataset.rename(index=str,columns={“TIME_UNTIL_FIRST_RUNOF_s

ec_CLASS": "B"}) 

dataset2 = dataset1.loc[lambda df: df.B == 1, :] 

dataset3 = dataset2.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset4 = dataset3.loc[lambda df: df.C == 1, :] 

dataset4 = dataset4.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

# Construct dataset 

X1,y1=make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, n_samples=500, 

n_features=4, n_classes=1, random_state=1) 

Synthetic_data_4=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_4=Synthetic_data_4.assign(**{'START_TIME_CLASS':1, 

'TIME_UNTIL_FIRST_RUNOFF_sec_CLASS': 1}) 

 

#Synthetic Data generation for observations when the first instance of runoff detected was 

between 0 and 600 seconds and irrigation was conducted during morning hours (Distinct 

mean and covariance matrix between the classes) 

import pylab as plb 

import matplotlib.pyplot as plt 

from scipy.optimize import curve_fit 

from scipy import asarray as ar,exp 

from scipy.stats import multivariate_normal 

dataset1=dataset.rename(index=str,columns={“TIME_UNTIL_FIRST_RUNOFF

_sec_CLASS": "B"}) 

dataset2 = dataset1.loc[lambda df: df.B == 1, :] 

dataset3 = dataset2.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset4 = dataset3.loc[lambda df: df.C == 2, :] 

dataset4 = dataset4.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 



110 

 

from sklearn.datasets import make_gaussian_quantiles 

# Construct dataset 

X1,y1=make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, n_samples=500, 

n_features=4, n_classes=1, random_state=1) 

Synthetic_data_5=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_5=Synthetic_data_5.assign(**{'START_TIME_CLASS':2, 

'TIME_UNTIL_FIRST_RUNOFF_sec_CLASS': 1}) 

 

#Synthetic Data generation for observations when the first instance of runoff detected was 

between 0 and 600 seconds and irrigation was conducted during afternoon hours (Distinct 

mean and covariance matrix between the classes) 

import pylab as plb 

import matplotlib.pyplot as plt 

from scipy.optimize import curve_fit 

from scipy import asarray as ar,exp 

from scipy.stats import multivariate_normal 

dataset1=dataset.rename(index=str,columns={“TIME_UNTIL_FIRST_RUNOFF

_sec_CLASS": "B"}) 

dataset2 = dataset1.loc[lambda df: df.B == 1, :] 

dataset3 = dataset2.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset4 = dataset3.loc[lambda df: df.C == 3, :] 

dataset4 = dataset4.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

# Construct dataset 

X1,y1=make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, n_samples=500, 

n_features=4, n_classes=1, random_state=1) 

Synthetic_data_6=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_6=Synthetic_data_6.assign(**{'START_TIME_CLASS':3, 

'TIME_UNTIL_FIRST_RUNOFF_sec_CLASS': 1}) 

 

#Synthetic Data generation for observations when the first instance of runoff detected was 

between 0 and 600 seconds and irrigation was conducted during evening hours (Distinct 

mean and covariance matrix between the classes) 

import pylab as plb 

import matplotlib.pyplot as plt 

from scipy.optimize import curve_fit 

from scipy import asarray as ar,exp 

from scipy.stats import multivariate_normal 

dataset1=dataset.rename(index=str,columns={“TIME_UNTIL_FIRST_RUNOFF

_sec_CLASS": "B"}) 

dataset2 = dataset1.loc[lambda df: df.B == 1, :] 



111 

 

dataset3 = dataset2.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset4 = dataset3.loc[lambda df: df.C == 4, :] 

dataset4 = dataset4.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

# Construct dataset 

X1,y1=make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, n_samples=500, 

n_features=4, n_classes=1, random_state=1) 

Synthetic_data_7=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_7=Synthetic_data_7.assign(**{'START_TIME_CLASS':4, 

'TIME_UNTIL_FIRST_RUNOFF_sec_CLASS': 1}) 

 

#Synthetic Data generation for observations when the first instance of runoff detected was 

more than 600 seconds and irrigation was conducted during night hours (Distinct mean 

and covariance matrix between the classes) 

import pylab as plb 

import matplotlib.pyplot as plt 

from scipy.optimize import curve_fit 

from scipy import asarray as ar,exp 

from scipy.stats import multivariate_normal 

dataset1=dataset.rename(index=str,columns={“TIME_UNTIL_FIRST_RUNOFF

_sec_CLASS": "B"}) 

dataset2 = dataset1.loc[lambda df: df.B == 2, :] 

dataset3 = dataset2.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset4 = dataset3.loc[lambda df: df.C == 1, :] 

dataset4 = dataset4.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

# Construct dataset 

X1,y1=make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, n_samples=500, 

n_features=4, n_classes=1, random_state=1) 

Synthetic_data_8=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_8=Synthetic_data_8.assign(**{'START_TIME_CLASS':1, 

'TIME_UNTIL_FIRST_RUNOFF_sec_CLASS':2}) 

 

#Synthetic Data generation for observations when the first instance of runoff detected was 

more than 600 seconds and irrigation was conducted during morning hours (Distinct mean 

and covariance matrix between the classes) 

import pylab as plb 

import matplotlib.pyplot as plt 



112 

 

from scipy.optimize import curve_fit 

from scipy import asarray as ar,exp 

from scipy.stats import multivariate_normal 

dataset1=dataset.rename(index=str,columns={“TIME_UNTIL_FIRST_RUNOFF

_sec_CLASS": "B"}) 

dataset2 = dataset1.loc[lambda df: df.B == 2, :] 

dataset3 = dataset2.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset4 = dataset3.loc[lambda df: df.C == 2, :] 

dataset4 = dataset4.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

# Construct dataset 

X1,y1=make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, n_samples=500, 

n_features=4, n_classes=1, random_state=1) 

Synthetic_data_9=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_9=Synthetic_data_9.assign(**{'START_TIME_CLASS':2, 

'TIME_UNTIL_FIRST_RUNOFF_sec_CLASS':2}) 

 

#Synthetic Data generation for observations when the first instance of runoff detected was 

more than 600 seconds and irrigation was conducted during afternoon hours (Distinct 

mean and covariance matrix between the classes) 

import pylab as plb 

import matplotlib.pyplot as plt 

from scipy.optimize import curve_fit 

from scipy import asarray as ar,exp 

from scipy.stats import multivariate_normal 

dataset1=dataset.rename(index=str,columns={“TIME_UNTIL_FIRST_RUNOFF

_sec_CLASS": "B"}) 

dataset2 = dataset1.loc[lambda df: df.B == 2, :] 

dataset3 = dataset2.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset4 = dataset3.loc[lambda df: df.C == 3, :] 

dataset4 = dataset4.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

# Construct dataset 

X1,y1=make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, n_samples=500, 

n_features=4, n_classes=1, random_state=1) 

Synthetic_data_10=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_S

PEED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min'

]) 



113 

 

Synthetic_data_10=Synthetic_data_10.assign(**{'START_TIME_CLASS':3, 

'TIME_UNTIL_FIRST_RUNOFF_sec_CLASS':2}) 

 

#Synthetic Data generation for observations when the first instance of runoff detected was 

more than 600 seconds and irrigation was conducted during evening hours (Distinct mean 

and covariance matrix between the classes) 

import pylab as plb 

import matplotlib.pyplot as plt 

from scipy.optimize import curve_fit 

from scipy import asarray as ar,exp 

from scipy.stats import multivariate_normal 

dataset1=dataset.rename(index=str,columns={“TIME_UNTIL_FIRST_RUNOFF

_sec_CLASS": "B"}) 

dataset2 = dataset1.loc[lambda df: df.B == 2, :] 

dataset3 = dataset2.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset4 = dataset3.loc[lambda df: df.C == 4, :] 

dataset4 = dataset4.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

# Construct dataset 

X1,y1=make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, n_samples=500, 

n_features=4, n_classes=1, random_state=1) 

Synthetic_data_11=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_S

PEED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min’

]) 

Synthetic_data_11=Synthetic_data_11.assign(**{'START_TIME_CLASS':4, 

'TIME_UNTIL_FIRST_RUNOFF_sec_CLASS':2}) 

 

#Combining all the generated data for distinct mean and covariance matrix into a single 

   Data frame  

result1 = Synthetic_data_1.append(Synthetic_data_0, ignore_index=True) 

result2 = result1.append(Synthetic_data_2, ignore_index=True) 

result3 = result2.append(Synthetic_data_3, ignore_index=True) 

result4 = result3.append(Synthetic_data_4, ignore_index=True) 

result5 = result4.append(Synthetic_data_5, ignore_index=True) 

result6 = result5.append(Synthetic_data_6, ignore_index=True) 

result7 = result6.append(Synthetic_data_7, ignore_index=True) 

result8 = result7.append(Synthetic_data_8, ignore_index=True) 

result9 = result8.append(Synthetic_data_9, ignore_index=True) 

result10 = result9.append(Synthetic_data_10, ignore_index=True) 

result11 = result10.append(Synthetic_data_11, ignore_index=True) 

 

 



114 

 

#Synthetic Data generation for all irrigation events during the night (Shared mean and 

covariance matrix between classes)  

dataset1=dataset.rename(index=str,columns={"TIME_UNTIL_FIRST_RUNOFF

_sec_CLASS": "B"}) 

dataset2 = dataset1.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset3 = dataset2.loc[lambda df: df.C == 1, :] 

dataset4 = dataset3.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

#Constructing the dataset 

X1,y1=make_gaussian_quantiles(cov=cov_xe,mean=mean_xe,n_samples=1000, 

n_features=4,n_classes=3, random_state=1) 

Synthetic_data_4=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_4 = Synthetic_data_4.assign(**{'START_TIME_CLASS': 1}) 

Synthetic_data_5=pd.DataFrame(y1,columns=[''TIME_UNTIL_FIRST_RUNOF

F_sec_CLASS'']) 

result_C_12=pd.concat([Synthetic_data_4,Synthetic_data_5],axis=1,join_axes=[S

ynthetic_data_4.index]) 

 

#Synthetic Data generation for all irrigation events during the morning (Shared mean and 

covariance matrix between classes)  

dataset1=dataset.rename(index=str,columns={"RUNOFF_VOLUME_OBSERVE

D_Gal_CLASS": "B"}) 

dataset2 = dataset1.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset3 = dataset2.loc[lambda df: df.C == 2, :] 

dataset4 = dataset3.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

 #Construct dataset 

X1,y1= make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, n_samples=1000, 

n_features=4, n_classes=3, random_state=1) 

Synthetic_data_4=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_4 = Synthetic_data_4.assign(**{'START_TIME_CLASS': 2}) 

Synthetic_data_5=pd.DataFrame(y1,columns=[''TIME_UNTIL_FIRST_RUNOF

F_sec_CLASS'']) 

result_C_13=pd.concat([Synthetic_data_4,Synthetic_data_5],axis=1,join_axes=[S

ynthetic_data_4.index]) 

 

#Synthetic Data generation for all irrigation events during the afternoon (Shared mean 

and covariance matrix between classes)  



115 

 

dataset1=dataset.rename(index=str,columns={''TIME_UNTIL_FIRST_RUNOFF

_sec_CLASS'': "B"}) 

dataset2 = dataset1.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset3 = dataset2.loc[lambda df: df.C == 3, :] 

dataset4 = dataset3.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

#Construct dataset 

X1,y1= make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, n_samples=1000, 

n_features=4, n_classes=3, random_state=1) 

Synthetic_data_4=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch', 

'EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_4 = Synthetic_data_4.assign(**{'START_TIME_CLASS': 3}) 

Synthetic_data_5=pd.DataFrame(y1,columns=['TIME_UNTIL_FIRST_RUNOFF

_sec_CLASS']) 

result_C_14=pd.concat([Synthetic_data_4,Synthetic_data_5],axis=1,join_axes=[S

ynthetic_data_4.index]) 

 

#Synthetic Data generation for all irrigation events during the evening (Shared mean and 

covariance matrix between classes)  

dataset1=dataset.rename(index=str,columns={''TIME_UNTIL_FIRST_RUNOFF

_sec_CLASS'': "B"}) 

dataset2 = dataset1.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset3 = dataset2.loc[lambda df: df.C == 4, :] 

dataset4 = dataset3.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

#Construct dataset 

X1, y1=make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, n_samples=1000, 

n_features=4, n_classes=3, random_state=1) 

Synthetic_data_4=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_4 = Synthetic_data_4.assign(**{'START_TIME_CLASS': 4}) 

Synthetic_data_5=pd.DataFrame(y1,columns=['TIME_UNTIL_FIRST_RUNOFF

_sec_CLASS']) 

result_C_15=pd.concat([Synthetic_data_4,Synthetic_data_5],axis=1,join_axes=[S

ynthetic_data_4.index]) 

 

#Combining all the generated data into a single Data frame 

result12 = result_C_12.append(result_C_13, ignore_index=True) 

result13 = result12.append(result_C_14, ignore_index=True) 



116 

 

result14 = result13.append(result_C_15, ignore_index=True) 

final_result = result11.append(result14, ignore_index=True) 

 

#Training RBF SVM for different values of train:test split on the synthetic data 

from sklearn.model_selection import train_test_split 

from sklearn.model_selection import GridSearchCV 

from sklearn.metrics import accuracy_score 

X = final_result.drop(''TIME_UNTIL_FIRST_RUNOFF_sec_CLASS'', axis = 1) 

y = final_result['TIME_UNTIL_FIRST_RUNOFF_sec_CLASS'] 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.1, random_state 

= 42) 

import numpy as np 

import matplotlib.pyplot as plt 

from matplotlib import style 

style.use("ggplot") 

from sklearn import svm 

b = X_train.as_matrix(columns = None) 

c = y_train.as_matrix(columns = None) 

from sklearn import svm 

# Grid Search 

# Parameter Grid 

gammas = np.linspace(0.0, 1.0, num=100) 

param_grid = {'C': [100], 'gamma': gammas} #The value of penalty parameter is 

                                                                           varied between 1 to 100 I terms of 

                                                                          10 units. Best Gamma is chosen for 

                                                                          each case. 

# Make grid search classifier 

clf_grid = GridSearchCV(svm.SVC(), param_grid, verbose=1) 

# Training the classifier 

clf_grid.fit(b,c) 

print("Best Parameters:\n", clf_grid.best_params_) 

print("Best Estimators:\n", clf_grid.best_estimator_) 

b1 = X_test.as_matrix(columns = None) 

c1 = y_test.as_matrix(columns = None) 

result = clf_grid.predict(b1) 

accuracy_score(c1, result) #Gives the accuracy score on testing data 

 

#Training RBF SVM on the entire synthetic data generated and training it on the real 

dataset 

from sklearn.model_selection import train_test_split 

from sklearn.model_selection import GridSearchCV 

from sklearn.metrics import accuracy_score 

X_train = final_result.drop('TIME_UNTIL_FIRST_RUNOFF_sec_CLASS', axis 

= 1) 

y_train = final_result['TIME_UNTIL_FIRST_RUNOFF_sec_CLASS'] 

style.use("ggplot") 



117 

 

from sklearn import svm 

b = X_train.as_matrix(columns = None) 

c = y_train.as_matrix(columns = None) 

X_test = dataset.drop('TIME_UNTIL_FIRST_RUNOFF_sec_CLASS', axis = 1) 

y_test = dataset['TIME_UNTIL_FIRST_RUNOFF_sec_CLASS'] 

b1 = X_test.as_matrix(columns = None) 

c1 = y_test.as_matrix(columns = None) 

            from sklearn import svm 

#Grid Search 

#Parameter Grid 

gammas = np.linspace(0.0, 1.0, num=100) 

param_grid1 = {'C': [100], 'gamma': gammas} 

            #Make grid search classifier 

clf_grid1 = GridSearchCV(svm.SVC(), param_grid1, verbose=1) 

  

#Train the classifier 

clf_grid1.fit(b,c) 

#clf = grid.best_estimator_() 

print("Best Parameters:\n", clf_grid1.best_params_) 

print("Best Estimators:\n", clf_grid1.best_estimator_) 

result1 = clf_grid1.predict(b1) 

accuracy_score(c1, result1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



118 

 

APPENDIX C 

 

(a) ML code when the target variable “SOIL WETTING EFFICIENCY INDEX” is 

binned into two classes 

 

import pandas as pd 

import numpy as np 

from matplotlib import pyplot as plt 

 

data = pd.read_csv('C:/Users/samba/Desktop/ASIS_new.csv') #Importing the dataset 

 

print('Training data shape:', data.shape) #Initial volume of the dataset (31 observations and 

                                                                  32 predictors) 

 

#Categorizing the start time variable which we would be using in our analysis 

#Any time between 9 pm and 4 am is categorized as Night time denoted by 1, any time 

between 4 am and 12 pm is categorized as Morning time denoted by 2, any time between 

12 pm and 4 pm is categorized as Afternoon time denoted by 3 and any time between 4 pm 

and 9 pm is categorized as Evening time denoted by 4   

hour1= [] 

rey = list(data['START_TIME_hr:min'].values) 

for i,j in enumerate(rey): 

    hrs,mins = j.split(':') 

    hrs = np.asarray(hrs) 

    hrs = hrs.astype(int) 

    for i in np.nditer(hrs): 

        if i>21 and i<=23: 

            hour1.append(1) 

        elif i>=0 and i<4:                         #Night 

            hour1.append(1) 

        elif i>=4 and i<=12:                     #Morning 

            hour1.append(2) 

        elif i>12 and i<=16:                     #Afternoon 

            hour1.append(3)                      

        elif i>16 and i<=21:                      #Evening 

            hour1.append(4) 

df1 = pd.DataFrame(hour1,columns=['START_TIME_CLASS']) 

result = pd.concat([data, df1], axis=1, join='inner') 

result = result.drop(['START_TIME_hr:min'], axis = 1) 

result 

 

#Final list of predictors to be used in the analysis 

Xcols=['ETO_mm/day','SCHEDULED_IRRIGATION_TIME_mins','AVG 

WIND_SPEED_MPH','PRECIPITATION_inch','START_TIME_CLASS','SOIL_

WETTING_EFFICIENCY_INDEX’] 

 



119 

 

data3 = result[Xcols] 

 

data3.to_csv('ASIS3.csv', index = False) #Saving the new generated encoded data 

                                                                   to a new file to use in our algorithm 

                        data = pd.read_csv('C:/Users/samba/Desktop/ASIS3.csv') #Importing the dataset 

result = data 

 

#Visualzing the Soil Wetting Efficiency Index data 

from scipy.stats import norm 

x_d = np.linspace(-4, 8, 1000) 

re1=result['SOIL_WETTING_EFFICIENCY_INDEX'].as_matrix(columns=None

) 

from sklearn.neighbors import KernelDensity 

kde = KernelDensity(bandwidth=1.0, kernel='gaussian') #Instantiating and fitting 

                                                                                            the KDE model 

kde.fit(re1[:, None]) 

logprob = kde.score_samples(x_d[:, None]) #score_samples returns the log of the 

                                                                         probability density 

 

plt.fill_between(x_d, np.exp(logprob), alpha=0.5) 

frame1 = plt.gca() 

frame1.axes.get_yaxis().set_visible(False) 

plt.plot(re1, np.full_like(re1, -0.01), '|k', markeredgewidth=1) 

plt.ylim(-0.02, 0.22) 

plt.xlabel('Values of SOIL WETTING EFFICIENCY INDEX') 

 

#Categorizing the value of runoff based on its distribution. From the data visualization, 

the value of SWEI below 1.7 was classified as Class 0 and any value over it was classified 

as Class 1 for analysis 

re2 = [] 

for i,l in enumerate(re): 

    if l <= 1.7 : 

        re2.append(0) 

    else : 

        re2.append(1) 

df4=pd.DataFrame(re2,columns=['SOIL_WETTING_EFFICIENCY_INDEX_CL

ASS']) 

result1 = pd.concat([result, df4], axis=1, join='inner') 

result1 = result1.drop(['SOIL_WETTING_EFFICIENCY_INDEX'], axis = 1) 

 

#Normalizing the features and constructing a new Dataframe by appending the target 

variable to be used for further analysis 

from sklearn import preprocessing 

min_max_scaler = preprocessing.MinMaxScaler() 

re2 = result.as_matrix(columns = None) 

X_scaled = min_max_scaler.fit_transform(re2[:,0:5]) 



120 

 

X_cols3 = ['START_TIME_CLASS'] 

result2 = result1[X_cols3] 

X_cols4 = ['SOIL_WETTING_EFFICIENCY_INDEX_CLASS'] 

result3 = result1[X_cols4] 

#Constructing a new dataframe for the normalized features 

dat1 = pd.DataFrame({'ETO_mm/day':X_scaled[:,0]}) 

dat2 = pd.DataFrame({'AVG_WIND_SPEED_MPH':X_scaled[:,2]}) 

dat4 = pd.DataFrame({'PRECIPITATION_inch':X_scaled[:,3]}) 

dat7 = pd.DataFrame({'EFFECTIVE_IRRIGATION_TIME_min':X_scaled[:,1]}) 

dataset = pd.concat([dat1, dat2, dat4, dat7, result2, result3], axis=1) 

 

#Removing the target variable before running Principal Component Analysis on the 

dataset 

y_frame = dataset.iloc[:,-1] 

y_data = y_frame.as_matrix(columns = None) 

dataset = dataset.drop(['SOIL_WETTING_EFFICIENCY_INDEX_CLASS'], axis 

= 1) 

 

#Principal Component Analysis on the dataset to get a clear idea about the variance 

explained 

from sklearn.decomposition import PCA 

X = dataset.as_matrix(columns = None) 

pca = PCA(n_components=3) 

pca.fit(X) 

x_data_pca = pca.fit_transform(X) 

var1 = np.cumsum(np.round(pca.explained_variance_ratio_, decimals=2)*100) 

print(pca.explained_variance_ratio_) 

plt.xlabel("Number of components") 

plt.ylabel("Cumulative Proportion of the variance explained") 

plt.plot(var1) 

print(var1) 

data8 = pd.DataFrame(pca.components_,columns=dataset.columns,index = ['PC-

1','PC-2','PC-3']) 

 

#Synthetic Data generation for observations with SWEI less than 1.7 and irrigation during 

night hours (Distinct mean and covariance matrix between the classes) 

import pylab as plb 

import matplotlib.pyplot as plt 

from scipy.optimize import curve_fit 

from scipy import asarray as ar,exp 

from scipy.stats import multivariate_normal 

dataset1=dataset.rename(index=str,columns={"SOIL_WETTING_EFFICIENCY

_INDEX_CLASS": "B"}) 

dataset2 = dataset1.loc[lambda df: df.B == 0, :] 

dataset3 = dataset2.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset4 = dataset3.loc[lambda df: df.C == 1, :] 



121 

 

dataset4 = dataset4.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

# Construct dataset 

X1,y1=make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, n_samples=500, 

n_features=4, n_classes=1, random_state=1) 

Synthetic_data_0=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_0=Synthetic_data_0.assign(**{'START_TIME_CLASS':1,‘SOIL

_WETTING_EFFICIENCY_INDEX_CLASS’: 0}) 

 

 # Synthetic Data generation for observations with SWEI less than 1.7 and irrigation 

during morning hours (Distinct mean and covariance matrix between the classes) 

dataset1=dataset.rename(index=str,columns={“SOIL_WETTING_EFFICIENCY

_INDEX_CLASS”: "B"}) 

dataset2 = dataset1.loc[lambda df: df.B == 0, :] 

dataset3 = dataset2.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset4 = dataset3.loc[lambda df: df.C == 2, :] 

dataset4 = dataset4.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

# Construct dataset 

X1, y1 = make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, 

                                 n_samples=500, n_features=4, 

                                 n_classes=1, random_state=1) 

Synthetic_data_1=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_1=Synthetic_data_1.assign(**{'START_TIME_CLASS':2, 

‘SOIL_WETTING_EFFICIENCY_INDEX_CLASS’: 0}) 

 

# Synthetic Data generation for observations with SWEI less than 1.7 and irrigation during 

afternoon hours (Distinct mean and covariance matrix between the classes) 

dataset1=dataset.rename(index=str,columns={"SOIL_WETTING_EFFICIENCY

_INDEX_CLASS": "B"}) 

dataset2 = dataset1.loc[lambda df: df.B == 0, :] 

dataset3 = dataset2.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset4 = dataset3.loc[lambda df: df.C == 3, :] 

dataset4 = dataset4.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 



122 

 

#Construct dataset 

X1, y1 = make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, 

                                 n_samples=500, n_features=4, 

                                 n_classes=1, random_state=1) 

Synthetic_data_2=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch',‘EFFECTIVE_IRRIGATION_TIME_min']

) 

Synthetic_data_2=Synthetic_data_2.assign(**{'START_TIME_CLASS':3,'SOIL

_WETTING_EFFICIENCY_INDEX_CLASS': 0}) 

 

# Synthetic Data generation for observations with SWEI less than 1.7 and irrigation during 

evening hours (Distinct mean and covariance matrix between the classes) 

dataset1=dataset.rename(index=str,columns={'SOIL_WETTING_EFFICIENCY_

INDEX_CLASS': "B"}) 

dataset2 = dataset1.loc[lambda df: df.B == 0, :] 

dataset3 = dataset2.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset4 = dataset3.loc[lambda df: df.C == 4, :] 

dataset4 = dataset4.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

 #Construct dataset 

X1, y1 = make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, 

                                 n_samples=500, n_features=4, 

                                 n_classes=1, random_state=1) 

Synthetic_data_3=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_3=Synthetic_data_3.assign(**{'START_TIME_CLASS':4,'SOIL

_WETTING_EFFICIENCY_INDEX_CLASS': 0}) 

 

# Synthetic Data generation for observations with SWEI more than 1.7 and irrigation 

during night hours (Distinct mean and covariance matrix between the classes) 

dataset1=dataset.rename(index=str,columns={"SOIL_WETTING_EFFICIENCY

_INDEX_CLASS": "B"}) 

dataset2 = dataset1.loc[lambda df: df.B == 1, :] 

dataset3 = dataset2.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset4 = dataset3.loc[lambda df: df.C == 1, :] 

dataset4 = dataset4.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

#Construct dataset 

X1, y1 = make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, 

                                 n_samples=500, n_features=4, 



123 

 

                                 n_classes=1, random_state=1) 

Synthetic_data_4=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_4=Synthetic_data_4.assign(**{'START_TIME_CLASS':1,'SOIL

_WETTING_EFFICIENCY_INDEX_CLASS ': 1}) 

 

# Synthetic Data generation for observations with SWEI more than 1.7 and irrigation 

during morning hours (Distinct mean and covariance matrix between the classes) 

dataset1=dataset.rename(index=str,columns={"SOIL_WETTING_EFFICIENCY

_INDEX_CLASS": "B"}) 

dataset2 = dataset1.loc[lambda df: df.B == 1, :] 

dataset3 = dataset2.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset4 = dataset3.loc[lambda df: df.C == 2, :] 

dataset4 = dataset4.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

 #Construct dataset 

X1, y1 = make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, 

                                 n_samples=500, n_features=4, 

                                 n_classes=1, random_state=1) 

Synthetic_data_5=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_5=Synthetic_data_5.assign(**{'START_TIME_CLASS':2,'SOIL

_WETTING_EFFICIENCY_INDEX_CLASS ': 1}) 

 

# Synthetic Data generation for observations with SWEI more than 1.7 and irrigation 

during evening hours (Distinct mean and covariance matrix between the classes) 

dataset1=dataset.rename(index=str,columns={"SOIL_WETTING_EFFICIENCY

_INDEX_CLASS ": "B"}) 

dataset2 = dataset1.loc[lambda df: df.B == 1, :] 

dataset3 = dataset2.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset4 = dataset3.loc[lambda df: df.C == 4, :] 

dataset4 = dataset4.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

#Construct dataset 

X1, y1 = make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, 

                                 n_samples=500, n_features=4, 

                                 n_classes=1, random_state=1) 

Synthetic_data_7=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min']) 



124 

 

Synthetic_data_7=Synthetic_data_7.assign(**{'START_TIME_CLASS':4,‘SOIL

_WETTING_EFFICIENCY_INDEX_CLASS’: 1}) 

 

#Combining all the generated data for distinct mean and covariance matrix into a single  

Data frame  

result1 = Synthetic_data_1.append(Synthetic_data_0, ignore_index=True) 

result2 = result1.append(Synthetic_data_2, ignore_index=True) 

result3 = result2.append(Synthetic_data_3, ignore_index=True) 

result5 = result3.append(Synthetic_data_5, ignore_index=True) 

result8 = result5.append(Synthetic_data_7, ignore_index=True) 

 

#Synthetic Data generation for all irrigation events during the night (Shared mean and 

covariance matrix between classes)  

dataset1=dataset.rename(index=str,columns={"SOIL_WETTING_EFFICIENCY

_INDEX_CLASS ": "B"}) 

dataset2 = dataset1.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset3 = dataset2.loc[lambda df: df.C == 1, :] 

dataset4 = dataset3.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

#Constructing the dataset 

X1,y1=make_gaussian_quantiles(cov=cov_xe,mean=mean_xe,n_samples=1000, 

n_features=4,n_classes=2, random_state=1) 

Synthetic_data_4=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_4 = Synthetic_data_4.assign(**{'START_TIME_CLASS': 1}) 

Synthetic_data_5=pd.DataFrame(y1,columns=[‘SOIL_WETTING_EFFICIENCY

_INDEX_CLASS’]) 

result_C_12=pd.concat([Synthetic_data_4,Synthetic_data_5],axis=1,join_axes=[S

ynthetic_data_4.index]) 

 

#Synthetic Data generation for all irrigation events during the morning (Shared mean and 

covariance matrix between classes)  

dataset1=dataset.rename(index=str,columns={"SOIL_WETTING_EFFICIENCY

_INDEX_CLASS ": "B"}) 

dataset2 = dataset1.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset3 = dataset2.loc[lambda df: df.C == 2, :] 

dataset4 = dataset3.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

#Constructing the dataset 



125 

 

X1,y1= make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, n_samples=1000, 

n_features=4, n_classes=2, random_state=1) 

Synthetic_data_4=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_4 = Synthetic_data_4.assign(**{'START_TIME_CLASS': 2}) 

Synthetic_data_5=pd.DataFrame(y1,columns=['SOIL_WETTING_EFFICIENCY

_INDEX_CLASS ']) 

result_C_13=pd.concat([Synthetic_data_4,Synthetic_data_5],axis=1,join_axes=[S

ynthetic_data_4.index]) 

 

#Synthetic Data generation for all irrigation events during the afternoon (Shared mean 

and covariance matrix between classes)  

dataset1=dataset.rename(index=str,columns={"SOIL_WETTING_EFFICIENCY

_INDEX_CLASS ": "B"}) 

dataset2 = dataset1.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset3 = dataset2.loc[lambda df: df.C == 3, :] 

dataset4 = dataset3.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

#Construct dataset 

X1,y1= make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, n_samples=1000, 

n_features=4, n_classes=2, random_state=1) 

Synthetic_data_4=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch', 

'EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_4 = Synthetic_data_4.assign(**{'START_TIME_CLASS': 3}) 

Synthetic_data_5=pd.DataFrame(y1,columns=['SOIL_WETTING_EFFICIENCY

_INDEX_CLASS ']) 

result_C_14=pd.concat([Synthetic_data_4,Synthetic_data_5],axis=1,join_axes=[S

ynthetic_data_4.index]) 

 

#Synthetic Data generation for all irrigation events during the evening (Shared mean and 

covariance matrix between classes)  

dataset1=dataset.rename(index=str,columns={"SOIL_WETTING_EFFICIENCY

_INDEX_CLASS ": "B"}) 

dataset2 = dataset1.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset3 = dataset2.loc[lambda df: df.C == 4, :] 

dataset4 = dataset3.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

#Construct dataset 



126 

 

X1,y1= make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, n_samples=1000, 

n_features=4, n_classes=2, random_state=1) 

Synthetic_data_4=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_4 = Synthetic_data_4.assign(**{'START_TIME_CLASS': 4}) 

Synthetic_data_5=pd.DataFrame(y1,columns=[‘SOIL_WETTING_EFFICIENCY

_INDEX_CLASS’]) 

result_C_15=pd.concat([Synthetic_data_4,Synthetic_data_5],axis=1,join_axes=[S

ynthetic_data_4.index]) 

 

#Combining all the generated data into a single Data frame 

result5 = result_C_12.append(result_C_13, ignore_index=True) 

result6 = result5.append(result_C_14, ignore_index=True) 

result7 = result6.append(result_C_15, ignore_index=True) 

final_result = result8.append(result7, ignore_index=True) 

 

#Training RBF SVM for different values of train:test split on the synthetic data 

from sklearn.model_selection import train_test_split 

from sklearn.model_selection import GridSearchCV 

from sklearn.metrics import accuracy_score 

X = final_result.drop('SOIL_WETTING_EFFICIENCY_INDEX_CLASS’, axis = 

1) 

y = final_result['SOIL_WETTING_EFFICIENCY_INDEX_CLASS'] 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.1, random_state 

= 42) 

import numpy as np 

import matplotlib.pyplot as plt 

from matplotlib import style 

style.use("ggplot") 

from sklearn import svm 

b = X_train.as_matrix(columns = None) 

c = y_train.as_matrix(columns = None) 

from sklearn import svm 

# Grid Search 

# Parameter Grid 

gammas = np.linspace(0.0, 1.0, num=100) 

param_grid = {'C': [100], 'gamma': gammas} #The value of penalty parameter is 

                                                                          varied between 1 to 100 in interval 

                                                                         of 10 units. Best Gamma is chosen 

                                                                         for each case. 

# Make grid search classifier 

clf_grid = GridSearchCV(svm.SVC(), param_grid, verbose=1) 

# Training the classifier 

clf_grid.fit(b,c) 

print("Best Parameters:\n", clf_grid.best_params_) 

print("Best Estimators:\n", clf_grid.best_estimator_) 



127 

 

b1 = X_test.as_matrix(columns = None) 

c1 = y_test.as_matrix(columns = None) 

result = clf_grid.predict(b1) 

            accuracy_score(c1, result) #Gives the accuracy score on testing data 

 

#Training RBF SVM on the entire synthetic data generated and training it on the real 

dataset 

from sklearn.model_selection import train_test_split 

from sklearn.model_selection import GridSearchCV 

from sklearn.metrics import accuracy_score 

X_train = final_result.drop(‘SOIL_WETTING_EFFICIENCY_INDEX_CLASS', 

axis =1) 

y_train = final_result['SOIL_WETTING_EFFICIENCY_INDEX_CLASS'] 

style.use("ggplot") 

from sklearn import svm 

b = X_train.as_matrix(columns = None) 

c = y_train.as_matrix(columns = None) 

X_test = dataset.drop('SOIL_WETTING_EFFICIENCY_INDEX_CLASS', axis = 

1) 

y_test = dataset[‘SOIL_WETTING_EFFICIENCY_INDEX_CLASS'] 

b1 = X_test.as_matrix(columns = None) 

c1 = y_test.as_matrix(columns = None) 

            from sklearn import svm 

#Grid Search 

#Parameter Grid 

gammas = np.linspace(0.0, 1.0, num=100) 

param_grid1 = {'C': [100], 'gamma': gammas} 

            #Make grid search classifier 

clf_grid1 = GridSearchCV(svm.SVC(), param_grid1, verbose=1) 

  

           #Train the classifier 

clf_grid1.fit(b,c) 

#clf = grid.best_estimator_() 

print("Best Parameters:\n", clf_grid1.best_params_) 

print("Best Estimators:\n", clf_grid1.best_estimator_) 

result1 = clf_grid1.predict(b1) 

accuracy_score(c1, result1) 

 

 

 

 

 

 

 

 



128 

 

(b) ML code when the target variable “SOIL WETTING EFFICIENCY INDEX” is 

binned into three classes 

 

import pandas as pd 

import numpy as np 

from matplotlib import pyplot as plt 

 

data = pd.read_csv('C:/Users/samba/Desktop/ASIS_new.csv') #Importing the dataset 

 

print('Training data shape:', data.shape) #Initial volume of the dataset (31 observations and 

                                                                  32 predictors) 

 

#Categorizing the start time variable which we would be using in our analysis 

#Any time between 9 pm and 4 am is categorized as Night time denoted by 1, any time 

between 4 am and 12 pm is categorized as Morning time denoted by 2, any time between 

12 pm and 4 pm is categorized as Afternoon time denoted by 3 and any time between 4 pm 

and 9 pm is categorized as Evening time denoted by 4   

hour1= [] 

rey = list(data['START_TIME_hr:min'].values) 

for i,j in enumerate(rey): 

    hrs,mins = j.split(':') 

    hrs = np.asarray(hrs) 

    hrs = hrs.astype(int) 

    for i in np.nditer(hrs): 

        if i>21 and i<=23: 

            hour1.append(1) 

        elif i>=0 and i<4:                         #Night 

            hour1.append(1) 

        elif i>=4 and i<=12:                     #Morning 

            hour1.append(2) 

        elif i>12 and i<=16:                     #Afternoon 

            hour1.append(3)                      

        elif i>16 and i<=21:                      #Evening 

            hour1.append(4) 

df1 = pd.DataFrame(hour1,columns=['START_TIME_CLASS']) 

result = pd.concat([data, df1], axis=1, join='inner') 

result = result.drop(['START_TIME_hr:min'], axis = 1) 

 

#Final list of predictors to be used in the analysis 

Xcols=['ETO_mm/day','SCHEDULED_IRRIGATION_TIME_mins','AVG_WIN

D_SPEED_MPH','PRECIPITATION_inch','START_TIME_CLASS', 

'SOIL_WETTING_EFFICIENCY_INDEX'] 

                        data3 = result[Xcols] 

                        data3.to_csv('ASIS3.csv', index = False) #Saving the new generated encoded data 

                                                                   to a new file to use in our algorithm 

 



129 

 

data = pd.read_csv('C:/Users/samba/Desktop/ASIS3.csv') #Importing the dataset 

result = data 

 

#Visualizing the “SOIL WETTING EFFICIENCY INDEX” variable 

from scipy.stats import norm 

x_d = np.linspace(-4, 8, 1000) 

re1=result['SOIL_WETTING_EFFICIENCY_INDEX'].as_matrix(columns=None

) 

from sklearn.neighbors import KernelDensity 

kde = KernelDensity(bandwidth=1.0, kernel='gaussian') #Instantiating and fitting 

                                                                                            the KDE model 

kde.fit(re1[:, None]) 

logprob = kde.score_samples(x_d[:, None]) #score_samples returns the log of the 

                                                                         probability density 

 

plt.fill_between(x_d, np.exp(logprob), alpha=0.5) 

frame1 = plt.gca() 

frame1.axes.get_yaxis().set_visible(False) 

plt.plot(re1, np.full_like(re1, -0.01), '|k', markeredgewidth=1) 

plt.ylim(-0.02, 0.22) 

plt.xlabel('Values of SOIL WETTING EFFICIENCY INDEX') 

 

#Categorizing the abovementioned data based on its distribution. From the data 

visualization, the value of time when the SWEI calculated was less than 1.5 was classified 

as Class 0, any value between 1.5 and 2.2 was classified as Class 1 and any value beyond 

was classified as Class 2 respectively 

re2 = [] 

for i,l in enumerate(re): 

    if l <= 1.5 : 

        re2.append(0) 

    elif l > 1.5 and l <= 2.2 : 

        re2.append(1) 

    else : 

        re2.append(2) 

df4=pd.DataFrame(re2,columns=['SOIL_WETTING_EFFICIENCY_INDEX_CL

ASS']) 

result1 = pd.concat([result, df4], axis=1, join='inner') 

result1 = result1.drop(['SOIL_WETTING_EFFICIENCY_INDEX'], axis = 1) 

 

#Normalizing the features and constructing a new Dataframe by appending the target 

variable to be used for further analysis 

from sklearn import preprocessing 

min_max_scaler = preprocessing.MinMaxScaler() 

re2 = result.as_matrix(columns = None) 

X_scaled = min_max_scaler.fit_transform(re2[:,0:5]) 

X_cols3 = ['START_TIME_CLASS'] 



130 

 

result2 = result1[X_cols3] 

X_cols4 = ['SOIL_WETTING_EFFICIENCY_INDEX_CLASS'] 

result3 = result1[X_cols4] 

#Constructing a new dataframe for the normalized features 

dat1 = pd.DataFrame({'ETO_mm/day':X_scaled[:,0]}) 

dat2 = pd.DataFrame({'AVG_WIND_SPEED_MPH':X_scaled[:,2]}) 

dat4 = pd.DataFrame({'PRECIPITATION_inch':X_scaled[:,3]}) 

dat7 = pd.DataFrame({'EFFECTIVE_IRRIGATION_TIME_min':X_scaled[:,1]}) 

dataset = pd.concat([dat1, dat2, dat4, dat7, result2, result3], axis=1) 

 

#Removing the target variable before running Principal Component Analysis on the 

dataset 

y_frame = dataset.iloc[:,-1] 

y_data = y_frame.as_matrix(columns = None) 

dataset = dataset.drop(['SOIL_WETTING_EFFICIENCY_INDEX_CLASS'], axis 

= 1) 

 

#Principal Component Analysis on the dataset to get a clear idea about the variance 

explained 

from sklearn.decomposition import PCA 

X = dataset.as_matrix(columns = None) 

pca = PCA(n_components=3) 

pca.fit(X) 

x_data_pca = pca.fit_transform(X) 

var1 = np.cumsum(np.round(pca.explained_variance_ratio_, decimals=2)*100) 

print(pca.explained_variance_ratio_) 

plt.xlabel("Number of components") 

plt.ylabel("Cumulative Proportion of the variance explained") 

plt.plot(var1) 

print(var1) 

data8 = pd.DataFrame(pca.components_,columns=dataset.columns,index = ['PC-

1','PC-2','PC-3']) 

 

#Synthetic Data generation for observations when SWEI was calculated to be less than 1.5 

and irrigation was conducted during night hours (Distinct mean and covariance matrix 

between the classes) 

import pylab as plb 

import matplotlib.pyplot as plt 

from scipy.optimize import curve_fit 

from scipy import asarray as ar,exp 

from scipy.stats import multivariate_normal 

dataset1=dataset.rename(index=str,columns={“SOIL_WETTING_EFFICIENCY

_INDEX_CLASS": "B"}) 

dataset2 = dataset1.loc[lambda df: df.B == 0, :] 

dataset3 = dataset2.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset4 = dataset3.loc[lambda df: df.C == 1, :] 



131 

 

dataset4 = dataset4.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

# Construct dataset 

X1,y1=make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, n_samples=500, 

n_features=4, n_classes=1, random_state=1) 

Synthetic_data_0=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_0=Synthetic_data_0.assign(**{'START_TIME_CLASS':1,'SOIL

_WETTING_EFFICIENCY_INDEX_CLASS': 0}) 

 

#Synthetic Data generation for observations when the SWEI was calculated to be less than 

1.5 and irrigation was conducted during morning hours (Distinct mean and covariance 

matrix between the classes) 

import pylab as plb 

import matplotlib.pyplot as plt 

from scipy.optimize import curve_fit 

from scipy import asarray as ar,exp 

from scipy.stats import multivariate_normal 

dataset1=dataset.rename(index=str,columns={“SOIL_WETTING_EFFICIENCY

_INDEX_CLASS": "B"}) 

dataset2 = dataset1.loc[lambda df: df.B == 0, :] 

dataset3 = dataset2.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset4 = dataset3.loc[lambda df: df.C == 2, :] 

dataset4 = dataset4.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

# Construct dataset 

X1,y1=make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, n_samples=500, 

n_features=4, n_classes=1, random_state=1) 

Synthetic_data_1=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_1=Synthetic_data_1.assign(**{'START_TIME_CLASS':2,'SOIL

_WETTING_EFFICIENCY_INDEX_CLASS': 0}) 

 

#Synthetic Data generation for observations when the SWEI was calculated to be less than 

1.5 and irrigation was conducted during afternoon hours (Distinct mean and covariance 

matrix between the classes) 

import pylab as plb 

import matplotlib.pyplot as plt 

from scipy.optimize import curve_fit 

from scipy import asarray as ar,exp 



132 

 

from scipy.stats import multivariate_normal 

dataset1=dataset.rename(index=str,columns={“SOIL_WETTING_EFFICIENCY

_INDEX_CLASS": "B"}) 

dataset2 = dataset1.loc[lambda df: df.B == 0, :] 

dataset3 = dataset2.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset4 = dataset3.loc[lambda df: df.C == 3, :] 

dataset4 = dataset4.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

# Construct dataset 

X1,y1=make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, n_samples=500, 

n_features=4, n_classes=1, random_state=1) 

Synthetic_data_2=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_2=Synthetic_data_2.assign(**{'START_TIME_CLASS':3, 

‘SOIL_WETTING_EFFICIENCY_INDEX_CLASS': 0}) 

 

#Synthetic Data generation for observations when the SWEI was calculated to be less than 

1.5 and irrigation was conducted during evening hours (Distinct mean and covariance 

matrix between the classes) 

import pylab as plb 

import matplotlib.pyplot as plt 

from scipy.optimize import curve_fit 

from scipy import asarray as ar,exp 

from scipy.stats import multivariate_normal 

dataset1=dataset.rename(index=str,columns={“SOIL_WETTING_EFFICIENCY

_INDEX_CLASS": "B"}) 

dataset2 = dataset1.loc[lambda df: df.B == 0, :] 

dataset3 = dataset2.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset4 = dataset3.loc[lambda df: df.C == 4, :] 

dataset4 = dataset4.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

# Construct dataset 

X1,y1=make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, n_samples=500, 

n_features=4, n_classes=1, random_state=1) 

Synthetic_data_3=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_3=Synthetic_data_3.assign(**{'START_TIME_CLASS':3, 

‘SOIL_WETTING_EFFICIENCY_INDEX_CLASS': 0}) 

 



133 

 

#Synthetic Data generation for observations when the SWEI was calculated to be less than 

1.5 and irrigation was conducted during night hours (Distinct mean and covariance matrix 

between the classes) 

import pylab as plb 

import matplotlib.pyplot as plt 

from scipy.optimize import curve_fit 

from scipy import asarray as ar,exp 

from scipy.stats import multivariate_normal 

dataset1=dataset.rename(index=str,columns={“SOIL_WETTING_EFFICIENCY

_INDEX_CLASS": "B"}) 

dataset2 = dataset1.loc[lambda df: df.B == 1, :] 

dataset3 = dataset2.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset4 = dataset3.loc[lambda df: df.C == 1, :] 

dataset4 = dataset4.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

# Construct dataset 

X1,y1=make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, n_samples=500, 

n_features=4, n_classes=1, random_state=1) 

Synthetic_data_4=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_4=Synthetic_data_4.assign(**{'START_TIME_CLASS':1, 

'SOIL_WETTING_EFFICIENCY_INDEX_CLASS': 1}) 

 

#Synthetic Data generation for observations when the SWEI was calculated to be between 

1.5 and 2.2 and irrigation was conducted during morning hours (Distinct mean and 

covariance matrix between the classes) 

import pylab as plb 

import matplotlib.pyplot as plt 

from scipy.optimize import curve_fit 

from scipy import asarray as ar,exp 

from scipy.stats import multivariate_normal 

dataset1=dataset.rename(index=str,columns={“SOIL_WETTING_EFFICIENCY

_INDEX_CLASS": "B"}) 

dataset2 = dataset1.loc[lambda df: df.B == 1, :] 

dataset3 = dataset2.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset4 = dataset3.loc[lambda df: df.C == 2, :] 

dataset4 = dataset4.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

# Construct dataset 



134 

 

X1,y1=make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, n_samples=500, 

n_features=4, n_classes=1, random_state=1) 

Synthetic_data_5=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_5=Synthetic_data_5.assign(**{'START_TIME_CLASS':2, 

'SOIL_WETTING_EFFICIENCY_INDEX_CLASS': 1}) 

 

#Synthetic Data generation for observations when the SWEI was calculated to be between 

1.5 and 2.2 and irrigation was conducted during afternoon hours (Distinct mean and 

covariance matrix between the classes) 

import pylab as plb 

import matplotlib.pyplot as plt 

from scipy.optimize import curve_fit 

from scipy import asarray as ar,exp 

from scipy.stats import multivariate_normal 

dataset1=dataset.rename(index=str,columns={“SOIL_WETTING_EFFICIENCY

_INDEX_CLASS": "B"}) 

dataset2 = dataset1.loc[lambda df: df.B == 1, :] 

dataset3 = dataset2.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset4 = dataset3.loc[lambda df: df.C == 3, :] 

dataset4 = dataset4.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

# Construct dataset 

X1,y1=make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, n_samples=500, 

n_features=4, n_classes=1, random_state=1) 

Synthetic_data_6=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_6=Synthetic_data_6.assign(**{'START_TIME_CLASS':3, 

'SOIL_WETTING_EFFICIENCY_INDEX_CLASS': 1}) 

 

#Synthetic Data generation for observations when the SWEI was calculated to be between 

1.5 and 2.2 and irrigation was conducted during evening hours (Distinct mean and 

covariance matrix between the classes) 

import pylab as plb 

import matplotlib.pyplot as plt 

from scipy.optimize import curve_fit 

from scipy import asarray as ar,exp 

from scipy.stats import multivariate_normal 

dataset1=dataset.rename(index=str,columns={“SOIL_WETTING_EFFICIENCY

_INDEX_CLASS": "B"}) 

dataset2 = dataset1.loc[lambda df: df.B == 1, :] 

dataset3 = dataset2.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset4 = dataset3.loc[lambda df: df.C == 4, :] 



135 

 

dataset4 = dataset4.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

# Construct dataset 

X1,y1=make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, n_samples=500, 

n_features=4, n_classes=1, random_state=1) 

Synthetic_data_7=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_7=Synthetic_data_7.assign(**{'START_TIME_CLASS':4, 

'SOIL_WETTING_EFFICIENCY_INDEX_CLASS': 1}) 

 

#Synthetic Data generation for observations when the SWEI was calculated to be more 

than 2.2 and irrigation was conducted during night hours (Distinct mean and covariance 

matrix between the classes) 

import pylab as plb 

import matplotlib.pyplot as plt 

from scipy.optimize import curve_fit 

from scipy import asarray as ar,exp 

from scipy.stats import multivariate_normal 

dataset1=dataset.rename(index=str,columns={“SOIL_WETTING_EFFICIENCY

_INDEX_CLASS": "B"}) 

dataset2 = dataset1.loc[lambda df: df.B == 2, :] 

dataset3 = dataset2.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset4 = dataset3.loc[lambda df: df.C == 1, :] 

dataset4 = dataset4.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

# Construct dataset 

X1,y1=make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, n_samples=500, 

n_features=4, n_classes=1, random_state=1) 

Synthetic_data_8=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_8=Synthetic_data_8.assign(**{'START_TIME_CLASS':1, 

'SOIL_WETTING_EFFICIENCY_INDEX_CLASS':2}) 

 

#Synthetic Data generation for observations when the SWEI was calculated to be more 

than 2.2 and irrigation was conducted during morning hours (Distinct mean and 

covariance matrix between the classes) 

import pylab as plb 

import matplotlib.pyplot as plt 

from scipy.optimize import curve_fit 

from scipy import asarray as ar,exp 



136 

 

from scipy.stats import multivariate_normal 

dataset1=dataset.rename(index=str,columns={“SOIL_WETTING_EFFICIENCY

_INDEX_CLASS": "B"}) 

dataset2 = dataset1.loc[lambda df: df.B == 2, :] 

dataset3 = dataset2.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset4 = dataset3.loc[lambda df: df.C == 2, :] 

dataset4 = dataset4.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

# Construct dataset 

X1,y1=make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, n_samples=500, 

n_features=4, n_classes=1, random_state=1) 

Synthetic_data_9=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_9=Synthetic_data_9.assign(**{'START_TIME_CLASS':2, 

'SOIL_WETTING_EFFICIENCY_INDEX_CLASS':2}) 

 

#Synthetic Data generation for observations when the SWEI calculated was more than 2.2 

and irrigation was conducted during afternoon hours (Distinct mean and covariance 

matrix between the classes) 

import pylab as plb 

import matplotlib.pyplot as plt 

from scipy.optimize import curve_fit 

from scipy import asarray as ar,exp 

from scipy.stats import multivariate_normal 

dataset1=dataset.rename(index=str,columns={“SOIL_WETTING_EFFICIENCY

_INDEX_CLASS": "B"}) 

dataset2 = dataset1.loc[lambda df: df.B == 2, :] 

dataset3 = dataset2.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset4 = dataset3.loc[lambda df: df.C == 3, :] 

dataset4 = dataset4.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

# Construct dataset 

X1,y1=make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, n_samples=500, 

n_features=4, n_classes=1, random_state=1) 

Synthetic_data_10=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_S

PEED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min'

]) 

Synthetic_data_10=Synthetic_data_10.assign(**{'START_TIME_CLASS':3, 

'SOIL_WETTING_EFFICIENCY_INDEX_CLASS':2}) 

 



137 

 

#Synthetic Data generation for observations when the SWEI calculated was more than 2.2 

and irrigation was conducted during evening hours (Distinct mean and covariance matrix 

between the classes) 

import pylab as plb 

import matplotlib.pyplot as plt 

from scipy.optimize import curve_fit 

from scipy import asarray as ar,exp 

from scipy.stats import multivariate_normal 

dataset1=dataset.rename(index=str,columns={“SOIL_WETTING_EFFICIENCY

_INDEX_CLASS": "B"}) 

dataset2 = dataset1.loc[lambda df: df.B == 2, :] 

dataset3 = dataset2.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset4 = dataset3.loc[lambda df: df.C == 4, :] 

dataset4 = dataset4.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

# Construct dataset 

X1,y1=make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, n_samples=500, 

n_features=4, n_classes=1, random_state=1) 

Synthetic_data_11=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_S

PEED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min'

]) 

Synthetic_data_11=Synthetic_data_11.assign(**{'START_TIME_CLASS':4, 

'SOIL_WETTING_EFFICIENCY_INDEX_CLASS':2}) 

 

#Combining all the generated data for distinct mean and covariance matrix into a single 

   Data frame  

result1 = Synthetic_data_1.append(Synthetic_data_0, ignore_index=True) 

result2 = result1.append(Synthetic_data_2, ignore_index=True) 

result3 = result2.append(Synthetic_data_3, ignore_index=True) 

result4 = result3.append(Synthetic_data_4, ignore_index=True) 

result5 = result4.append(Synthetic_data_5, ignore_index=True) 

result6 = result5.append(Synthetic_data_6, ignore_index=True) 

result7 = result6.append(Synthetic_data_7, ignore_index=True) 

result8 = result7.append(Synthetic_data_8, ignore_index=True) 

result9 = result8.append(Synthetic_data_9, ignore_index=True) 

result10 = result9.append(Synthetic_data_10, ignore_index=True) 

result11 = result10.append(Synthetic_data_11, ignore_index=True) 

 

 

#Synthetic Data generation for all irrigation events during the night (Shared mean and 

covariance matrix between classes)  

dataset1=dataset.rename(index=str,columns={"SOIL_WETTING_EFFICIENCY

_INDEX_CLASS": "B"}) 



138 

 

dataset2 = dataset1.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset3 = dataset2.loc[lambda df: df.C == 1, :] 

dataset4 = dataset3.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

#Constructing the dataset 

X1,y1=make_gaussian_quantiles(cov=cov_xe,mean=mean_xe,n_samples=1000, 

n_features=4,n_classes=3, random_state=1) 

Synthetic_data_4=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch','EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_4 = Synthetic_data_4.assign(**{'START_TIME_CLASS': 1}) 

Synthetic_data_5=pd.DataFrame(y1,columns=[''SOIL_WETTING_EFFICIENCY

_INDEX_CLASS'']) 

result_C_12=pd.concat([Synthetic_data_4,Synthetic_data_5],axis=1,join_axes=[S

ynthetic_data_4.index]) 

 

#Synthetic Data generation for all irrigation events during the morning (Shared mean and 

covariance matrix between classes)  

dataset1=dataset.rename(index=str,columns={"SOIL_WETTING_EFFICIENCY

_INDEX_CLASS": "B"}) 

dataset2 = dataset1.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset3 = dataset2.loc[lambda df: df.C == 2, :] 

dataset4 = dataset3.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

#Construct dataset 

X1, y1 = make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, 

n_samples=1000, n_features=4, n_classes=3, random_state=1) 

Synthetic_data_4=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch', 

'EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_4 = Synthetic_data_4.assign(**{'START_TIME_CLASS': 2}) 

Synthetic_data_5=pd.DataFrame(y1,columns=[''SOIL_WETTING_EFFICIENCY

_INDEX_CLASS'']) 

result_C_13=pd.concat([Synthetic_data_4,Synthetic_data_5],axis=1,join_axes=[S

ynthetic_data_4.index]) 

 

#Synthetic Data generation for all irrigation events during the afternoon (Shared mean 

and covariance matrix between classes)  

dataset1=dataset.rename(index=str,columns={''SOIL_WETTING_EFFICIENCY

_INDEX_CLASS'': "B"}) 

dataset2 = dataset1.rename(index=str, columns={"START_TIME_CLASS": "C"}) 



139 

 

dataset3 = dataset2.loc[lambda df: df.C == 3, :] 

dataset4 = dataset3.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

#Construct dataset 

X1,y1= make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, n_samples=1000, 

n_features=4, n_classes=3, random_state=1) 

Synthetic_data_4=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch', 

'EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_4 = Synthetic_data_4.assign(**{'START_TIME_CLASS': 3}) 

Synthetic_data_5=pd.DataFrame(y1,columns=['SOIL_WETTING_EFFICIENCY

_INDEX_CLASS']) 

result_C_14=pd.concat([Synthetic_data_4,Synthetic_data_5],axis=1,join_axes=[S

ynthetic_data_4.index]) 

 

#Synthetic Data generation for all irrigation events during the evening (Shared mean and 

covariance matrix between classes)  

dataset1=dataset.rename(index=str,columns={''SOIL_WETTING_EFFICIENCY

_INDEX_CLASS'': "B"}) 

dataset2 = dataset1.rename(index=str, columns={"START_TIME_CLASS": "C"}) 

dataset3 = dataset2.loc[lambda df: df.C == 4, :] 

dataset4 = dataset3.drop(['C','B'], axis = 1) 

xe = dataset4.as_matrix(columns=None) 

mean_xe = np.mean(xe, axis=0) 

cov_xe = np.cov(xe, rowvar=0) 

from sklearn.datasets import make_gaussian_quantiles 

#Construct dataset 

X1,y1=make_gaussian_quantiles(cov=cov_xe, mean=mean_xe, n_samples=1000, 

n_features=4, n_classes=3, random_state=1) 

Synthetic_data_4=pd.DataFrame(X1,columns=['ETO_mm/day','AVG_WIND_SP

EED_MPH','PRECIPITATION_inch', 

'EFFECTIVE_IRRIGATION_TIME_min']) 

Synthetic_data_4 = Synthetic_data_4.assign(**{'START_TIME_CLASS': 4}) 

Synthetic_data_5=pd.DataFrame(y1,columns=['SOIL_WETTING_EFFICIENCY

_INDEX_CLASS']) 

result_C_15=pd.concat([Synthetic_data_4,Synthetic_data_5],axis=1,join_axes=[S

ynthetic_data_4.index]) 

 

#Combining all the generated data into a single Data frame 

result12 = result_C_12.append(result_C_13, ignore_index=True) 

result13 = result12.append(result_C_14, ignore_index=True) 

result14 = result13.append(result_C_15, ignore_index=True) 

final_result = result11.append(result14, ignore_index=True) 



140 

 

 

#Training RBF SVM for different values of train:test split on the synthetic data 

from sklearn.model_selection import train_test_split 

from sklearn.model_selection import GridSearchCV 

from sklearn.metrics import accuracy_score 

X = final_result.drop(''SOIL_WETTING_EFFICIENCY_INDEX_CLASS'', axis 

=1) 

y = final_result['SOIL_WETTING_EFFICIENCY_INDEX_CLASS'] 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.1, random_state 

= 42) 

import numpy as np 

import matplotlib.pyplot as plt 

from matplotlib import style 

style.use("ggplot") 

from sklearn import svm 

b = X_train.as_matrix(columns = None) 

c = y_train.as_matrix(columns = None) 

from sklearn import svm 

# Grid Search 

# Parameter Grid 

gammas = np.linspace(0.0, 1.0, num=100) 

param_grid = {'C': [100], 'gamma': gammas} #The value of penalty parameter is 

                                                                          varied from 1 to 100 in terms of 10 

                                                                         units. Best Gamma is chosen for each  

                                                                         case. 

# Make grid search classifier 

clf_grid = GridSearchCV(svm.SVC(), param_grid, verbose=1) 

# Training the classifier 

clf_grid.fit(b,c) 

print("Best Parameters:\n", clf_grid.best_params_) 

print("Best Estimators:\n", clf_grid.best_estimator_) 

b1 = X_test.as_matrix(columns = None) 

c1 = y_test.as_matrix(columns = None) 

result = clf_grid.predict(b1) 

accuracy_score(c1, result) #Gives the accuracy score on testing data 

 

#Training RBF SVM on the entire synthetic data generated and training it on the real 

dataset 

from sklearn.model_selection import train_test_split 

from sklearn.model_selection import GridSearchCV 

from sklearn.metrics import accuracy_score 

X_train = final_result.drop('SOIL_WETTING_EFFICIENCY_INDEX_CLASS', 

axis = 1) 

y_train = final_result['SOIL_WETTING_EFFICIENCY_INDEX_CLASS'] 

style.use("ggplot") 

from sklearn import svm 



141 

 

b = X_train.as_matrix(columns = None) 

c = y_train.as_matrix(columns = None) 

X_test = dataset.drop('SOIL_WETTING_EFFICIENCY_INDEX_CLASS', axis = 

1) 

y_test = dataset['SOIL_WETTING_EFFICIENCY_INDEX_CLASS'] 

b1 = X_test.as_matrix(columns = None) 

c1 = y_test.as_matrix(columns = None) 

            from sklearn import svm 

#Grid Search 

#Parameter Grid 

gammas = np.linspace(0.0, 1.0, num=100) 

param_grid1 = {'C': [100], 'gamma': gammas} 

            #Make grid search classifier 

clf_grid1 = GridSearchCV(svm.SVC(), param_grid1, verbose=1) 

  

#Train the classifier 

clf_grid1.fit(b,c) 

#clf = grid.best_estimator_() 

print("Best Parameters:\n", clf_grid1.best_params_) 

print("Best Estimators:\n", clf_grid1.best_estimator_) 

result1 = clf_grid1.predict(b1) 

accuracy_score(c1, result1) 

 

 

 


