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ABSTRACT

Signature plays an important role in geometry and topology. In the space with singularity,

Goresky and MacPherson extend the signatures to oriented pseudomanifolds with only even codi-

mensional stratums by using generalized Poincare duality of intersection homology. After that

Siegel extended the signature on Witt spaces. Higson and Xie study the C∗- higher signature on

Witt space. Non-Witt spaces need a refined intersection homology to hold Poincare duality. Fol-

lowed by the combinatorial framework developed by Higson and Roe, this dissertation construct

the C∗-signature on non Witt space with noncommutative geometric methods. In conical singular

case, we compare analytical signature of smooth stratified non Witt space by Albin, Leichtnam,

Mazzeo and Piazza.
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NOMENCLATURE

W p̄
∗ (X) filtered simplicial chain with perversity p̄

IHm̄
i (X) lower middle perversity intersection homology

W̃m
∗ (X) interpolated filtered chain with lower middle perversity m̄

ĨH
m̄

i (X) interpolated lower middle perversity intersection homology

W̃ n
∗ (X) interpolated filtered chain with lower middle perversity n̄

ĨH
n̄

i (X) interpolated lower middle perversity intersection homology
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1. INTRODUCTION

Signature sign(M) of oriented 4k manifold M is an invariant of nondegenerate symmetric

quadratic forms in the middle cohomology H2k(M). Connection with signature and L class by

Hirzebruch inspired many research such as index theorem. If manifold is not simply connected and

BG is the classify space for the fundamental group G, for homology class [x] ∈ H∗(BG,Q), the

higher signature is defined as sign[x](M, f) = 〈L(M) ∪ f ∗[x], [M ]〉 . Famous Novikov conjecture

states that higher signature is homotopy invariant.

However, in pseudomanifold there is no classical signature because of lacking Poincare duality.

In the pseudomanifold, singularity prevent the well defined cup product. Goresky and MacPherson

introducing intersection homology to generalize the Poincare Duality with perversity [18]. Then

the signature with cobordism invariance extend to the pseudomanifold with only even codimension

stratum.

For a special case of the oriented pseudomanifold called Witt space, Siegel prove the Poincare

Duality and define the signature with similar property [33]. Albin, Leichtnam, Mazzeo and Piazza

used an analytic approach to study the higher signature index class for Witt space in [3]. Roe

and Higson in [21] , [22] and [23] develop a framework to connect algebraic surgery and k theory

of C∗− algebra. Higson and Xie use a combinatorial method to study the C∗-algebraic higher

signatures of Witt spaces[24].

If the pseudomanifold is not a Witt space, there is not any self dual chain in terms of the

sheafification of intersection homology. However, some important space for example Zuckers

reductive BorelSerre compactification of a locally symmetric space in [40] is generally not a Witt

space. It is worth to develop the signature theory on the non Witt space.

Cheeger in [11] develop L2 cohomolgy theory to study riemannian space with conical singular-

ity. Cheeger, Goresky and McPherson find L2 cohomology is closely connected lower and upper

middle perversity intersection homology in [13]. Also in [11] he finds the Lagrange condition

of Poincare duality of boundary which called Cheeger boundary condition. Albin, Leichtnam,

1



Mazzeo and Piazza developed a theory to use iterated fibration structure to generalize smooth

stratified space. In A pseudomanifold which has self dual mezzoperversities called Cheeger space.

They study the higher signature index class for Cheeger space in [4].

In sheaf theoretical intersection homology, Banagl construct a self dual sheaf which is compat-

ible with intersection homology in [2]. The space with self dual sheaf is called L space. Then he

construct L class of stratified non Witt space in [9].

In this dissertation, I will to construct the C∗-algebraic higher signature on the non-Witt space

X . We actually build a geometrically controlled Poincare complex on X . This is not a direct

application of other research of non Witt space. Then we follow the framework of Higson and

Xie [24] in Witt space. The advantage of this framework is combinatorial and easy to compute K

homology class.

Below is the organization of this thesis.

In chapter two, we introduce the geometric and algebra preliminaries and notation. Here the

property of Hilbert-Poincare complex and the filtered complex W p̄
∗ (X) with perversity p̄ in pseu-

domanifold are the fundamental knowledge in the later argument.

In chapter 3, we study non Witt space X where the Witt condition only fails in the link of

conical singularity. If the signature of links is 0, we construct two equivalent modified chain

complex W̃ m̄
j (X) and W̃ n̄

j (X) which interpolate between filtered simplicial complex with lower

middle perversity and upper middle perversity:

W m̄
j (X) ↪→ W̃ m̄

j (X) ↪→ W̃ n̄
j (X) ↪→ W n̄

j (X).

Next step is prove the generalized Poincare duality map P̃ from W̃ ∗
m̄(X) to W̃ n̄

n−∗(X)

P̃ := −∩̃[X] : W̃ j
m̄(X)→ W̃ n̄

n−j(X),

is a geometrically controlled chain equivalence. Then X is a geometrically controlled Poincare

pseudomanifold. After the `2 completion, we can construct the signature on the Hilbert Poincare

2



complex based on W̃ m̄
j (X).

For chapter 4, we build a self dual chain complex of Non Witt space X when X exists the

compatible Lagrange structure on every odd codimensional stratum. We can construct an iterated

modified Wm
∗ (X)[i] on this space for every odd codimensional stratum χn−2si−1. Let the final

chain be W̃m
∗ (X). Then we will show the non Witt space X which admit W̃m

∗ (X) is Poincare

pseudomanifold. The construction of signature is basically same with the one of conical case.

3



2. PRELIMINARIES

Some basic technique are given in this chapter. First is the quick introduction of signature .

Section 2 is a description of k theory of C∗− algebra and index. Then we introduce the framework

of Hilbert-Poincare complex in section 3. Poincare duality in the category of geometric module is

introduced in section 4 . Then we introduce the intersection homology in pseudomanifold in sec-

tion 5. For developing a self dual chain complex which is geometrically controlled automatically,

section 6 discuss a filtered simplical complex W p
∗ (X). Last part is the argument why Lagrange

structure is necessary in the link.

2.1 Poincare Duality and Signatures

Poincare in [28] founded the framework of algebraic topology. For a compact oriented n-

manifoldM , the intersection ∩ of i-cycle c1 and j-cycle c2 is a well defined (i+j−n)-cycle whose

homology class depends only the homology class of c1 and c2. This means intersection define a

product of homology :Hi(X) × Hj(X) → Hi+j−n(X). Poincare Duality P is isomorphism from

Hk(M) to Hn−k(M). It guarantees the product by intersection is a nondegenerate bilinear form :

Hk(M,Q)×Hn−k(M,Q)
∩−→ H0(M,Q)→ Q.

For the dimension of manifold is 4k, the bilinear form is symmetric:

H2k(M,Q)×H2k(M,Q)→ Q.

After diagonalization, assume the symmetric bilinear form is (η+, η−). Signature of M , denoted

as sign(M), is defined to be η+ − η−.

Signature is a homotopy invariant because it only relays on homology. Given two manifold M

and N ,if there exists a compact manifold W whose boundary is the disjoint union of M and N ,

∂W = M tN , we say M and N are cobordism. Thom in [34] prove that Signature is cobordism
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invariant. And he proved signature of manifold has these propositions:

1. sign(M tM ′) = sign(M) + sign(M ′).

2. For the product of M and M ′, sign(M ×M) = sign(M) · sign(M).

3. if M is the oriented boundary of a manifold then we have sign(M) = 0.

We can define the signature as the index of signature operator. Consider the square-integrable

de Rham complex on Riemannian manifold M of 4k, d : Ωp(M) → Ωp+1(M) is the exterior

derivative, d∗ is the adjoint operator with inner product Ωp+1(M)→ Ωp(M). We defineD = d+d∗

to be the signature operator of M . It maps Ω+(M)→ Ω−(M). Then the index of D is

index(D) = dim (kerD)− dim (cokerD)

Because of Hodge theory Ω(M) = ker4⊕ ker d⊕ ker d∗, we know:

index(D) = sign(M).

If the L polynomial is the multiplicative formal power series of
√
z

tanh(
√
z)

and pk is the Pon-

trjagin classes of vector bundle E over M pk(E,Q) ∈ H4k(M,Q). The Hirzebruch’s signa-

ture theorem connect signature of closed and oriented 4n-manifold M with L class L(M) =

Ln (p1(M), . . . , pn(M)):

sign(M) = 〈L(M), [M ]〉 ∈ Z.

Then Hirzebruch’s work and Riemann-Roch theorem motivated Atiyah and Singer the prove

the famous index theorem in [7], [6] and [5].

For non simply connected manifold M . Suppose BΓ is the classifying space for Γ = π1(M)

and f : M → BΓ be a continuous map. For each cohomology class [x] ∈ H∗(BΓ;Q), the so called

higher signature class is defined as :

〈f ∗(x) ∪ Li(M), [M ]〉 ∈ Q

5



The higher signature class can be seen as a special case of K-theoretical higher index.

2.2 C∗− algebra and Index

Begin with Connes in [14], Noncommutative geometry contain a large area in mathematics

now. K theory plays an key role in studying the topology especially in classify C∗− algebra and

index theory. This section is based on the textbook of [36] , [30] and a survey [37].

Let X be a proper metric space. A nondegenerate X-module is a separable Hilbert space

H equipped with a nondegenerate ∗-representation of C0(X). With help of X- module, we can

introduce two important C∗− algebra : Roe algebra and localization algebra.

Definition 2.2.1. [36] Let HX be a X-module and T a bounded linear operator acting on HX .

1. The propagation of T is a nonnegative real number

sup{d(x, y) | (x, y) ∈ supp(T )},

where supp(T ) is the complement (in X ×X) of the set of points (x, y) ∈ X ×X for which

there exist f, g ∈ C0(X) such that gTf = 0 and f(x) 6= 0, g(y) 6= 0;

2. T is locally compact if fT and Tf are compact for all f ∈ C0(X);

3. T is pseudo-local if [T, f ] is compact for all f ∈ C0(X).

Motivated by local index, Yu in [38] introduced localization algebra.

Definition 2.2.2. [36] Let HX be a standard nondegenerate X-module and B(HX) the set of all

bounded linear operators on HX .

1. The Roe algebra C∗(X) of X is the C∗-algebra generated by all locally compact operators

in B(HX) with finite propagation.

2. Localization algebra C∗
L(X) is the C∗-algebra generated by all bounded and uniformly

6



norm-continuous functions f : [0,∞)→ C∗(X) such that

propagation of f(t)→ 0, as t→∞.

3. C∗
L,0(X) is the kernel of the evaluation map

ev : C∗
L(X)→ C∗(X), ev(f) = f(0).

In particular, C∗
L,0(X) is an ideal of C∗

L(X).

If X is a locally compact metric space X with a proper and isometric action of Γ. Let HX be

a X-module equipped with a covariant unitary representation of Γ. We call (Hx,Γ, φ) is covariant

system if:

π(γ)(ϕ(f)v) = ϕ (fγ) (π(γ)v).

Here φ is the representation of C0(X), π is the representation of Γ , and f ∈ C0(X), γ ∈ Γ, v ∈

HX fγ(x) = f (γ−1x). We assume the covariant system (Hx,Γ, φ) is admissible in sense of

[39]. we use C[X]Γ to denote the ∗-algebra of all Γ-invariant locally compact operators with finite

propagations in B(HX). We define the equivariant Roe algebra C∗(X)Γ to be the completion of

C[X]Γ in B(Hx). In this situation, C∗(X)Γ is ∗-isomorphic to C∗
r (Γ) ⊗ K. Kasparov in [25]

introduce K-homology which is abstract elliptic operator to study index theory further.

Definition 2.2.3. [25] Let X be a locally compact metric space with a proper and cocompact

isometric action of Γ. HX is an admissible (X,Γ)-module, F is Γ-equivariant and F ∈ B(HX).

The K-homology groupsKΓ
∗ (X) are generated by the following cycles modulo certain equivalence

relations:

1. an even cycle for KΓ
0 (X) is a pair (HX , F ) such that, F ∗F − I and FF ∗ − I are locally

compact and [F, f ] = Ff − fF is compact for all f ∈ C0(X).

2. an odd cycle for KΓ
1 (X) is a pair (HX , F ) such that F 2− I and F −F ∗ are locally compact

7



and [F, f ] is compact for all f ∈ C0(X).

Given a short exact sequence of C∗− algebra:

0→ J → A→ A/J → 0,

we know a six-term exact sequence in K-theory. The boundary is ∂0 : K1(A/J ) → k0(J ).

Suppose u is an invertible element inA/J , and v is the inverse of u. Let U , V be the lifts of u and

v in A. We define:

W =

 1 U

0 1


 1 0

−V 1


 1 U

0 1


 0 −1

1 0

 and e11 =

 1 0

0 0


Then P = We11W

−1 − e11 is an idempotent of J . Define the index of u to be

∂([u]) := [P ]− [e11] ∈ K0(J ).

Suppose (HX , F ) is a even cycle of KΓ
0 (X). Choose a Γ− invariant locally finite open cover

{Ui} of X with diameter (Ui) < c for fixed c. If {φi} is a Γ-invariant continuous partition of unity

subordinate to {Ui}, define F :

F =
∑
i

φ
1/2
i Fφ

1/2
i .

∂([F ]) is the higher index of (HX , F )

For the local index, we change c to 1/n for the cover {Ui}. For t ∈ [n, n+ 1], define F(t):

F(t) =
∑
j

(1− (t− n))φ1/2
n,jFφ

1/2
n,j + (t− n)φ1/2

n+1,jFφ
1/2
n+1,j

The local index of (HX , F ) is ∂([F(t)]) ∈ K0

(
C∗

L(X)Γ
)
.

Theorem 2.2.4. [38] If a discrete group Γ acts properly on a locally compact space X , then the

local index map is an isomorphism from the K-homology group K∗Γ(X) to the K-group of the

8



localization algebra K∗(C
∗
L(X)Γ).

Let Γ = π1(M) be a higher index class in Kn(C
∗
r (Γ)) is called the higher signature of M.

2.3 Signature on the Hilbert-Poincare Complex

In 2005, Higson and Roe [21] introduce analytic surgery exact sequence. This section is ba-

sically from a serious article [21] [22] [23]. Let us introduce the Hilbert-Poincare complex over

C∗-algebra A in order to build the higher signature on any geometry controlled Poincare complex.

Definition 2.3.1. [21] A n-dimensional Hilbert-Poincare complex (E, b, T ) over C∗− algebra C

is a complex of finitely generated Hilbert C-module with adjointable operator T : Ep → En−p:

E0
b1←E1

b2← ...
bn−1← En−1

bn←En

such that:

1. if v ∈ Ep ,then T ∗v = (−1)(n−p)pTv;

2. if v ∈ Ep, then Tb∗v + (−1)pbTv = 0;

3. T introduce the isomorphism of homology of dual complex(quasi-isomorphism here).

...
b∗←En−p

b∗←En−p−1
b∗← ...

b∗←Ep+1
b∗←Ep

b∗← ...

If (E, b, T ) is the n-dimensional Hilbert-Poincare complex. We can define the self adjoint

bounded operator by Sv = ip(p−1)+lTv. Let B = b + b∗. Then the self adjoint operator B ± S is

invertible .

Definition 2.3.2. [21] The signature of Hilbert-Poincare complex (E, b, T ) is :

• For odd-dimensional Hilbert-Poincare complex (E, b, T ), the signature in K1(C) is defined

by the invertible operator

(B + S)(B − S)−1 : Eev → Eev,

9



where Eev = ⊕pE2p

• For even-dimensional Hilbert-Poincare complex (E, b, T ), the signature is defined by the

positive projection [P−]− [P+] of B + S and B − S.

Let (E, b, T ) and (E ′, b′, T ′) be a pair of n-dimensional HilbertPoincare complexes. A homo-

topy equivalence with other is a chain map A : (E, b) → (E ′, b′) which induces an isomorphism

on homology, and for the two chain maps:

ATA∗, T ′ :
(
E ′

n−∗, b
′∗)→ (E ′

∗, b
′)

induce the same map on homology.

Then signatures in Kn(C) of two homotopy equivalent n-dimensional HilbertPoincare com-

plexes are equal. The signature of Hilbert Poincare complex still has the bordism property .

Theorem 2.3.3. [21, Theorem 7.6] If (E, b, T, P ) is an (n + 1)-dimensional algebraic Hilbert

Poincare pair then the K-theoretic signature of its boundary (PE, Pb, T0) is zero.

In the third article [23], Higson and Roe use this framework to connect the algebraic surgery

exact sequence and exact sequence of K-theory of C∗-algebra extension.

There are two important geometrical realization of Hilbert Poincare complex .

First is Hodgede Rham complex of a complete Riemannian manifold X . Let b is operator

adjoint of differential d. After L2-completions :

Ω0
L2(X)

b← · · · · · · b← Ωn−1
L2 (X)

b← Ωn
L2(X)

For the complete Riemannian manifold, the two minimal domain and maximal domain are the

same. Hodge operator T : Ωp
L2(X)→ Ωn−p

L2 (X) by 〈Tα, β〉 =
∫
M
α ∧ β̄ provide the (Ωi

L2(X), b∗)

is a Hilbert Poincare complex.

Another is
(
Cℓ2

∗ (X), b∗
)

on boundary geometry simplicial complex. HereCℓ2

∗ (X) is `2 cochain.

Moreover, the two Hilbert Poincare complex
(
Ω∗

L2(X), d
)

and
(
Cℓ2

∗ (X), b∗
)

are homotopy equiv-

10



alent in the sense of Hilbert Poincare complex. Furthermore, the signature of
(
Ω∗

L2(X), d
)

or(
Cℓ2

∗ (X), b∗
)

defined here is equal with classical signature of X . We will prove the similar result

on self dual non Witt space with conical singularity.

In this thesis, we consider the Hilbert space in Hilbert Poincare complex are the analytically

controlled X-modules. A linear map between two analytically controlled X-modules T : H1 → H2

is said to be analytically controlled if T is the norm limit of locally compact and finite propa-

gation bounded operators . Hodge de Rham complex on a complete Riemannian manifold and

(`2, b) chain complex on boundary geometry simplicial complex Analytically Controlled Hilbert

Poincare complex. For analytically controlled Poincare complex over X , the signature index is in

K∗(C
∗(X)).

2.3.1 Geometric Control

There is a natural way from the geometrically controlled category to the analytically controlled

category. In this section, we consider the X is a connected simplicial complex with a path metrics

d.

Definition 2.3.4. [22] X is bounded geometry if exist a number N such that each of the vertices of

X lies in at most N different simplices of X .

Next we can introduce geometrically controlledX-modules and geometrically controlled linear

map over simplicial complex.

Definition 2.3.5. [22] Let X be a proper metric space. A complex vector space V is geometrically

controlled over X if it is provided with a basisB ⊂ V and a function c : B → X with the following

property: for every R > 0 there is an N < ∞ such that if S ⊂ X has diameter less than R then

c−1[S] has cardinality less than N . The function c is the control map for V . A geometrically

control linear map T : V → W is :

1. V and W geometrically controlled,

2. the matrix coefficients of T is uniformly bounded,
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3. the propagation of T is finite.

The geometrically controlled Hilbert Poincare complex (E, b, T ) is a complex of n-dimensional

geometrically controlled X-modules Ei together with geometrically controlled linear maps T :

Ei → En−i and b such that:

1. if v ∈ Ei ,then T ∗v = (−1)(n−i)iTv;

2. if v ∈ Ei, then Tb∗v + (−1)ibTv = 0;

3. T introduce the isomorphism of homology of dual complex.

One important example of geometrically controlled Poincare complex is the simplicial complex

of a closed smooth manifold. Let C l2
∗ (X) to be the Hilbert space of square integrable simplicial

∗-chains on X . Then the chain complex:

Cℓ2

0 (X)
b∗−→ · · · b∗−→ Cℓ2

n (X)

is a Hilbert complex. Moreover, (Cℓ2

∗ (X), b∗) is still a Hilbert complex.

Suppose f ∈ C0(X) and c =
∑
kσ[σ] is an p− chain. Let cσ be the barycenter of σ. It is

natural to define C l2
∗ (X) as an X-module:

f · c =
∑

f(cσ)kσ[σ].

Definition 2.3.6. [ Definition 3.13 in [22]] Let X be a bounded geometry simplicial complex. X is

a geometrically controlled Poincare complex of dimension n if it is provided with an n-dimensional

fundamental cycle [X] for which the associated duality chain map P is a chain equivalence in the

geometrically controlled category.

In [22] section 4 Higson and Roe prove the proposition below:
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Proposition 2.3.7. Let X be an oriented bounded geometry combinatorial manifold with trian-

gulation T . Then the Poincare dual map with fundamental class [X] gives X the structure of a

geometrically controlled Poincare complex.

We will prove a similiar result for bounded geometry combinatorial Non Witt space with trian-

gulation T . For any geometrically controlled Poincare complex with P, define T = 1
2

(
P∗ + (−1)p(n−p)P

)
.

Proposition 2.3.8. [22, Proposition 4.1] After `2 completion, every geometrically controlled Poincare

complex defines an analytically controlled Poincare complex .

Bordism invariance of higher signature. First we introduce the Poincare pair of Hilbert Poincare

complex. A complemented subcomplex (PE, Pb) of the geometrically controlled (E, b) is a family

of complemented geometrically controlled submodules complex which Pbmaps PEi to PEi−1 for

all p. Then we can define complement complex (P⊥E,P⊥b).

Definition 2.3.9. [21] An (n + 1)-dimensional algebraic HilbertPoincare pair is a complex of

finitely generated Hilbert modules together with a family of bounded adjointable operators T :

Ep → En+1−p and a family of orthogonal projections P : Ep → Ep such that

1. the orthogonal projections P determines a subcomplex of (E, b);

2. the range of the operator T0 = Tb∗ + (−1)pbT is contained within the range of P ;

3. P⊥T induces an isomorphism from the homology of the complex (E, b∗) to the homology

of the complex (P⊥E,P⊥b);

4. T ∗ = (−1)(n+1−p)pT : Ep → En+1−p.

The geometrically controlled Poincare complex (PE, Pb, T0) is defined as the boundary of the

geometrically controlled Poincare pair (E, b, T, P ). Then Higon and Roe in [21] theorem 7.6 prove

the signature of algebraic Hilbert Poincare pair in the meaning of 2.3.2 is bordism invariance. In

other words

signature of (PE, Pb, T0) = 0 (2.1)
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2.4 Coefficient System and Geometric modules

In this section we will introduce some basic proposition of geometric module and coefficient

system. It plays role to construct geometrically controlled complex of pseudomanifold. In simpli-

cial category, there are 3 different but closely connected conception.

2.4.1 Poincare Duality in Geometric Modules

With help of geometric algebra, it is easy to prove Poincare dual map is chain equivalence in

the category of geometrically control.

In the following sections, we assume the X is a combinatorial manifold simplicial complex.

X ′ is the first barycentric subdivision. For the simplex σ . the Dual cell of σ is notated as D(σ).

The star of σ is st(σ),the link of σ is lk(σ) .

In order to explore the further structure over geometrically controlled Poincare complex of X ,

Roe in [29] introduce geometric R−X module. Geometric module play an important role in the

controlled topology. Later we will see the filtered chain complex W p
∗ (X) as the chain complex of

geometric module.

Definition 2.4.1. [29] The geometric R- module M over simplicial complex X is a list of Mσ of

R- module parameterized by the faces σ of X . The geometric morphism φ : M → N is a list of

φτ,σ R-linear map from Mσ to Nτ . If τ is not the face of σ, we have φτ,σ = 0.

The diagonal part φ̂ of geometrical morphism φ is defined as

φ̂σ,τ =


φσ,τ if σ = τ

0 others

In fact we only need to consider the diagonal part of geometric morphism due to the global-local

principle.

Theorem 2.4.2. [29] A chain map between finite chain complex of geometric (R,X)-modules is a

chain equivalence if and only if the induced map on the diagonal part is chain equivalence.
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Next we consider the R module is the C vector space. The first key example of geometric

module is that we see i-cochain complex Ci(X) with coefficient C as the geometric module. This

is by giving each i-simplex σ a free generator in dimension i and zero boundary maps. Another

is the geometric (C, X)- module over X ′. Here Cq(X
′, R) assigns to a simplex σ ∈ K the free C

vector space generated by those q-simplices of X ′ whose root is σ.

Usually we only need to consider the diagonal part of geometrical module because of Global-

Local principle. For the C•(X ′,C), the diagonal part over σ is spanned by all those simplices of

X ′ which have σ as their tip.. For the C•(X
′,C), the diagonal part is the (D(σ), ∂D(σ)).

For oriented n -dimensional homology manifold, the cap product introduce the chain equiva-

lence in the category of (C, X) -modules:

C•(X ′,C)→ Cn−•(X
′,C)

The key point of geometric Poincare duality is k-fold suspension isomorphism:

Hr(X,X 	 σ̂;C)→ Hr−k(D(σ,X), ∂D(σ,X)).

2.4.2 Coefficient System

Sheaf is a appropriate tools to handle the global and local relation. Especially, Deligne observe

that intersection homology is very suitable to approach with sheaf language, see more detail in [27]

and[15]. Coefficient system is the dual category of constructible sheaf by Schneider in [31] and

[32]. It is helpful to define Verdier duality of Building. Coefficient system is also called cellular

cosheaf by Curry in [15].

A sheaf is a presheaf with Gluing property. For detail information of sheaf, see [10]. Here we

require the module should be complex vector space.

In a simplicial complex X , the interior of σ is σ̊, then for every σ, the open star S̊t(σ) of σ is

open covering, and we have σ < τ then S̊t(τ) ⊂ S̊t(σ), then we can construct the constant sheaf

CX for every open set on simplicial complex by this cover. For a given sheaf, we can define the
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sheaf cohomology Ȟi(X,F) via Čech cohomology. We have Ȟi(X,CX) = Hi(X,C).

Local constant sheaf F is the sheaf for each x in X, there is an open neighborhood U of x such

that F|U is a constant sheaf on U. Local constant sheaf are not preserved by the functors Rf ∗,

Rf !, f ∗, f ! in general. The smallest closure of constant sheaf is the set of constructible sheaf.

A sheaf is S-constructible about the stratification S if it is locally constant on the stratum . It is

called cohomologically S-constructible if it is cohomology locally constant for all i. Constructible

sheaf on the simplicial complex is also named cellular sheaf.

Definition 2.4.3. [15] The cellular sheaf V = (VF )F is a list of complex vector spaces on X , For

each face F ⊂ X , there is a C-vector spaces VF , and there is the linear maps rF2
F1

: VF2 → VF1

for each pair of facets F2 ⊂ F1(restrication map not extension), these maps hold for rFF = id and

rF1
F3

= rF2
F3
◦ rF2

F1
for any F2 ⊂ F1 and F3 ⊂ F2.

Let I is the injective resolution. For cellular sheaf, the injective sheaf is very easy to construct.

For f : X → Y , the right derived functor Rf∗ of f∗ is f∗ ◦ I . The advantage of cellular sheaf is

the injective sheaf of that is simple. Let V be a vector space,

[σ]V (τ) =


V τ ≤ σ

0 others

here [σ]V is named elementary injective. Every injective cellular sheaf is isomorphic to ⊕
σ∈X

[σ]Vσ .

A building X of G carries a natural G-action which is isometric and respects the partition into

facets.

With help of coefficient system, it is easy to connect the other research when intersection

homology are defined on sheaf. Furthermore, Xie and Higson give a general method to construct

K− homology class on self dual constructible sheaf of any simplicial complex .

For convenience, we need the coefficient system on the simplicial setting for building K-

homology class for equivariant case. When we consider higher signature, it requires to prove

the Poincare duality map is chain equivalence under Cr
∗(Γ) module.
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In general, the map of cosheaf is extension map instead of restriction map. The Poincare-

Verdier duality exchange the coefficient system and Constructible sheaves.

Let X be a simplicial complex and Sh(CX) is the abelian category of sheaves of C-vector

space Db(X) is the bounded derived category. Let Db(Cons(X)) be the bounded derived category

of constructible sheaves on X . Actually, the coefficient system can use to express the dualizing

complex ωX . For any facet F in X , the star of facet St(F ) is unions of all facet . The morphism

T : Db(Cons(X))→ Db(X)is equivalence of category.

For any x ∈ X , let F (x) be the unique facet containing x, define st(x) = st(F (x)). Given any

sheaf S, then SF = S(st(F )) is the weakly constructible sheaf. There is a equivalent functor from

coefficient system to constructible sheaf.

Definition 2.4.4. [31] The coefficient system V = (VF )F is a list of complex vector spaces on X ,

For each face F ⊂ X , there is a C-vector spaces VF , and there is the linear maps rF1
F2

: VF1 → VF2

for each pair of faces F2 ⊂ F1, these maps hold for rFF = id and rF1
F3

= rF2
F3
◦ rF2

F1
for any F2 ⊂ F1

and F3 ⊂ F2.

Given a cellular sheaf F on X , It is easy to define the coefficient system F̂ via dual cell, let σ

is a simplex, σ̄ is the dual simplex about σ, then define F̂(σ̄) = F(σ). By definition, coefficient

system is a geometrical module. Let Coeff(X) be the abelian category of coefficient system in X ,

Db(Coeff(X)) is the bounded derived category of coefficient system.

Given a coefficient system V , the complex of oriented chains is defined as:

Cor
c

(
X(d),V

) ∂−→ . . .
∂−→ Cor

c

(
X(0),V

)
X(q) denotes the set of all q-dimensional oriented facet (F, c). Then we define the homology of

coefficient system by the oriented chains. The functor from coefficient system to constructible

sheaf is closed related with dualize functor named ω(v) so we use the same notation.

In [17], a oriented cellular pseudomanifold is a convex linear cell complex K, purely of some

dimension d, such that every d-1-dimensional cell is a face of exactly two d-dimensional cells;
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together with a choice of orientation of each d-dimensional cell such that the induced orientations

cancel on every d− 1-dimensional cell. Then intersection homology chain is coefficient system.

2.5 Intersection Homology on Pseudomanifold

If we consider the space with singularity such as suspension of torus, the intersection of two

cycle may be not a cycle. This means the usual intersection product of homology is not well

defined in orientated pseudomanifold due to the singularity. Furthermore, the Poincare dual map

induced by fundamental class [X] is not isomorphism.

Hn−i(X) −→ Hi(X)

Instead, Goresky and MacPherson introduce the intersection homology IHp̄
i which is

Hn−i(X)−→IHp̄
i (X)−→Hi(X).

to assert the generalized Poincare duality for complementary perversity. The intersection homol-

ogy has many good properties such as: topological invariant, stratified homotopy equivalent, in-

variant under normalization , and independent in the stratification.

Furthermore, if the oriented pseudomanifold satisfies the Witt condition called Witt space then

Poincare duality holds for lower middle perversity intersection homology. So we can define the

signature on oriented Witt space.

In this article, we consider the question in the piecewise linear (PL) category. I will use the

basic knowledge and notation in [18] and [16]. In that category, the pseudomanifold is defined as

below:

The object in this category are polyhedrons and the morphism are piecewise linear homomor-

phism. In the PL pseudomanifold, it admits the PL-stratification.

WhenX is the n-dimensional pseudomanifold, that means locally compact spaceX and closed

singular space of Xsig such that: dim(Xsig) < n − 1 and X −Xsig is oriented n-manifold which
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is dense in X . For every pseudomanifold exists a stratification :

X = Xn ⊃ Xn−2 ⊃ Xn−3... ⊃ X1 ⊃ X0. (2.2)

for each point p ∈ Xi − Xi−1, there is a filtered space V = Vn ⊃ Vn−1 ⊃ · · · ⊃ Vi = p.

The neighborhood of p in Xi − Xi−1 is piecewise linear homomorphically to V × Bi. If χi =

Xi −Xi−1 6= ∅ , χi is an open manifold, we call i stratum of the stratification. satisfying:

Assume Z is the pseudomanifold of dimension (n − 1) and a closed subspace of X . If X −

(
∑
X ∪ Z) is an n-dimensional oriented manifold which is dense in X and Z is collared in X, we

say this n-dimensional pseudomanifold with boundary is a pair of pseudomanifolds (X,Z). The

stratification of the pair (X,Z) satisfies the filtration of Z given by Zj−1 = Xj ∩ Z stratifies Z ,

the filtration of X − Z given by Xj − Zj−1 stratifies X − Z and the filtration respect the collaring

of Z in X .

The object in this category are polyhedrons and the morphism are piecewise linear homomor-

phism. In the PL pseudomanifold, it admits the PL-stratification. In the simplicial viewpoint,

pseudomanifold can be defined as below.

Definition 2.5.1. [20] A n− dimensional and closed pseudomanifold is a finite simplicial complex

with the following characteristic:

1. it is non-branching: Every (n-1) dimensional simplex is a face of precisely two n-dimensional

simplices.

2. Any two n-dimensional simplices σ σ′ can be joined by a "chain" of n-dimensional simplices

σi, each pair (σi, σi−1) have a common (n− 1)-dimensional face.

3. every simplex is a face of some n-dimensional simplex.

Here the characteristic 1 is equivalent to dim(Xsig) < n− 1.

Definition 2.5.2. Let the triangulation T is compatible with the piecewise linear structure and
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CT
i (X) is the chain complex of X with T . The chain complex Ci(X) is the direct limit under

refinement of CT
i (X) for all triangulations T .

The key point of Goresky and MacPherson’s work is using allowable condition and perversity

to control chain with meaningful intersection with singularity.

Definition 2.5.3. [18] The perversity is a sequence of integer p̄ = (p2, p3, p4, ....pn, ...) with p2 = 0

and pi+1 = pi or pi+1 = pi + 1.

For intersection homology theory, there are four special but important perversities. The zero

perversity is 0̄ = (0, 0, ...0), and maximum perversity is defined as t̄ = (0, 1, 2, ...n−2). The lower

middle perversity is m̄ = [n−1
2
] and upper middle perversity is n̄ = [n−2

2
]. If two perverities satis-

fies p̄ + q̄ = t̄, we say they are complementary perversities. Clearly m̄ and n̄ are complementary

perversities.

We can define the (p̄, i)− allowable condition.

Definition 2.5.4. [18] For a perversity p̄ and an integer i, a subspace Y ⊂ X is called (p̄, i)−

allowable, if dim(Y ) ≤ i and dim(Y ∩Xn−k) ≤ i− k + pk for all k ≥ 2.

Definition 2.5.5. [18] ICp̄
i (X) is the subgroup of Ci(X) consisting of ξ such that the support of ξ

and ∂ξ are both (p̄, i)− allowable.

Definition 2.5.6. [18] The intersection homology with perversity p̄ is the homology group of chain

complex ICp̄
i (X). We use the notation IHp̄

i (X) to denote. Although the intersection homology

seems to consider the direct limit of all triangulation, we only need to consider the stratification

with barycentric subdivision of skeleton in [17].

Usually the intersection homology are not equal for different perversity. However, Siegel find

pseudomanifold in some condition have the homology isomorphism :

IHm̄
j (X) ∼= IHn̄

j (X). (2.3)
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The pseudomanifold with the Witt condition is called Witt space. Many space such as manifold

and any complex projective variety are the Witt space. This is because manifold has no singular

stratum and complex variety has only even codimensional stratum. However, the suspension of a

torus is not a Witt space because of H1(T
2) 6= 0.

Definition 2.5.7. [33] Let X be a stratified pseudomanifold, with stratification 2.2, (L(χi, x) is the

link of χi at x. Then X is a Witt space if and only if for any i = n− (2l + 1) with l ≥ 1.

IHm̄
ℓ (L (χi, x) ;Q) = 0

Because we research the non witt space, we consider the Witt condition for the stratum χi:

Definition 2.5.8. The Witt condition for the codimensional stratum χi is the vanishing of the

rational intersection homology of intrinsic links (L(χi, x) :

IHm̄
ℓ (L (χi, x) ;Q) = 0 (2.4)

The condition of Witt space is stratified homotopy invariant. If X is a Witt space for some

stratification then it is a Witt space for any stratification.

In [18] Theorem 3.3, Goresky and McPherson prove the Generalized Poincare Duality for

intersection homology with complementary perversities p̄ and q̄.

Theorem 2.5.9. [18] Suppose X is a oriented pseudomanifold. Let p̄ and q̄ are complementary

perversity. Then the bilinear form from intersection pairing:

IHp̄
i (X,Q)× IHq̄

i (X,Q)→ IHt̄
0(X,Q)

is nondegenerate.

With the combination pf Generalized Poincare Duality and 2.5, it is natural to find lower mid-

dle perversity intersection chain is a self dual chain. Siegel construct the generalized signature

invariant on the Witt space.
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There are some important conception such as link and star needed to study pseudomanifold.

Let σ be a simplex in X with triangulation T . The star of σ is the set of all simplices having σ as

a face.

St(σ, T ) = {τ ∈ T |σ ≤ τ}.

Usually the star is not closed set, we use St to represent the closure. The link of σ (denoted

lk(σ, T )) is set of all simplices in the closed star that are disjoint from σ.

lk(σ, T ) = {v ∈ St(σ, T ) | v ∩ σ = ∅}

The intrinsic link plays an important role in pseudomanifold. The intrinsic link of barycenter of

i-dimensional simplex σ̂ is defined as L(σ̂). Moreover, we have

L(σ̂) ∗ Si−1 = lk(σ, T ′).

Locally, the neighbourhood U of x ∈ χi is PL-homomorphics to Bi × C(L(x)). (local trival

condition). It is because χk is the union of interior of k-simplex. For one simplex named σ, we

have

D(σ, T ′) = σ̂ ∗ lk(σ, T ′)

2.6 Filter complex and W p
∗ (x)

In order to study the pseudomanifold, we introduce a special simplical chain complex named

W p
∗ (X). These chain are first introduced in Siegel’s dissertation [33]. Xie and Higson in Appendix

A of [24] find the map for every basis of W p
∗ (X) is geometrically controlled.

Based on fixed stratification, there are 3 different types of chain related with intersection ho-

mology. Although IC p̄
∗ is enough to define intersection homology, this chain is not exploit enough

to study the stratified homotopy equivalent. Goresky and MacPherson in [18] introduce the basic

set Qi
p(X) which suits for intersection pairing to prove many proposition. However, the disadvan-

tage of the basic sets Qi
p is not fine enough to show chain equivalence. I will use W p

∗ instead of
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others.

With the triangulation T , X can be seen as simplicial complex. Usually we can give the

stratification by the skeleton of T . More precisely, Xi is a subcomplex of the i-th skeleton of X.

X = Xn ⊃ Xn−2 ⊃ Xn−3... ⊃ X1 ⊃ X0.

With T ′ is the barycentric subdivision of T , and Rp̄
i (X) are the (p̄, i) allowable simplex in T ′

with respect to the stratification:

dim(Rp̄
i (X)) ≤ i, dim(Rp̄

i (X) ∩Xn−k) ≤ i− k + pk.

Let CT ′
i (Rp̄

i ) be the free abelian group generated by simplices of Rp̄
i (X).

Definition 2.6.1. W p̄
i (X) are the subgroup in CT ′

i (Rp̄
i ) with boundary supported in Rp̄

i .

The intersection homology IHp̄
∗(X) with the perversity p is defined as the homology group with

chain complex W p̄
∗ (X) with boundary map ∂ below:

W p̄
n(X)

∂→W p̄
n−1(X)

∂→W p̄
n−2(X)....W p̄

2 (X)
∂→W p̄

1 (X)
∂→W p̄

0 (X).

Remark 2.6.2. For equivariant case we need to consider the chain complex with coefficient F =

C∗
r (Γ).

Because the intersection homology deal with cone frequently. The filtration of C(Z) to define

W p̄
i (C(Z) is different because v ∗ z′ is not barycentric subdivision. Suppose there is a filtration

with Z:

Z = Zn ⊃ Zn−1 ⊃ · · · ⊃1⊃ Z0.

Then it induces a filtration on C(Z) = v ∗ Z by

C(Z) = v ∗ Zn ⊃ v ∗ Zn−1 ⊃ v ∗ Zn−2 ⊃ · · · ⊃ v ∗ Z1 ⊃ v ∗ Z0 ⊃ {v}
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This filtration is flag like and the homology respected by W p̄
i (C(Z) is intersection homology .

The advantage of using W m̄
∗ (X) instead of ICm̄

∗ (X) or Qi
p(X) is that W m̄

j (X) ⊂ W n̄
j (X)

for every j. Moreover W m̄
∗ (X) has many important properties to construct the Hilbert Poincare

complex.

In this thesis, the continuous map f : X → Y between two stratified spaces require to be

stratum- preserving . That is for each pure stratum T of Y , the inverse image f−1(T ) is a union of

pure strata of X . A stratum-preserving map f : X → Y is placid if for each pure stratum T of Y :

codim(f−1(T )) ≥ codim(T ).

For all finite filtered simplicial complex Z of dimension K − 1, denote Mk to be the set of all

C(Z). A element ξ in W m̄
j (X) is modeled by Mk if there exists a cone C(Z) ∈ Mk and a placid

simplicial map φ : C(Z)→ X such that ξ = φ(ω), where ω ∈ W p̄
k (C(Z).

Lemma 2.6.3. [24, Proposition A.6] If X is a filtered simplicial complex. There is a natural basis

ξi of (W m̃
∗ (X)) such that ξi cannot written as a sum of two nonzero elements and modeled by an

element of Mk.

The lemma of 2.6.3 means every basis is supported on the star of vertex, which means the basis

element is geometrically controlled over X . W m̄
j (X) is a geometrically controlled X- module.

Next we see the filtered complex W p̄
i (X) is a geometric module over simplicial complex.

Specially in the case of Witt space, that means the lower middle perversity intersection ho-

mology in the odd codimensional stratum about the link vanish, the inclusion map is the chain

equivalence in [33].

ι : W m̄
∗ (X) ↪→ W n̄

∗ (X)

In particular, we can conclude that for lower middle perversity m̄: IHm̄
j (X) ∼= IHm

n−j(X).

Definition 2.6.4. [24] Let X be an oriented pseudomanifold of dimension n. X is a geometrically

controlled Poincare pseudomanifold of dimension n if the duality chain map P associated to the

fundamental class [X] is a chain equivalence in the geometrically controlled category.
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Higson and Xie in [24] theorem C.9 prove oritended Witt space is a geometrically controlled

Poincare pseudomanifold. In this thesis, we need the result below.

Recall lower middle perversity m̄ = [n−1
2
] and upper middle perversity n̄ = [n−2

2
].

Theorem 2.6.5. [24, Theorem 4.3] There exists a diagonal approximation map

∆ : W 0
∗ (X)→ W m̄

∗ (X)⊗W n̄
∗ (X)

that is unique up to chain homotopy. Then the cap product is defined as :

∩ : W j
m̄(X)⊗W 0

k (X)
q⊗∆−→W j

p̄ (X)⊗ (W m̄
∗ (X)⊗W n̄

∗ (X))k
ε⊗1−→W n̄

k−j(X)

Here we use W j
m̄(X) = Hom

(
W p̄

j (X),C
)

to represent the dual cochain complex of W m̄
j (X).

The general Poincare duality map for lower middle perversity chain W m̄
∗ and upper middle perver-

sity chain W n̄
∗ can be defined by

P := − ∩ [X] : W j
m̄(X)→ W n̄

n−j(X),

here the [X] ∈ IH0
n(X) are the fundamental class.

This map satisfies ∂Pυ = (−1)jP∂∗υ for all υ ∈ W j
n̄(X), and this map introduce a chain

equivalence and furthermore an isomorphism from IHj
m̄(X) to IHn

n−j(X).

In the equivariant case, we use the filter complex W p̄
i (X,F ) with the local coefficient system

F = C∗
r (Γ), we obtain a chain complex of C∗

r (Γ)-Hilbert module

In this dissertation, motivated by Cheeger [12], I use Higson and Xie’s technique and results in

[24] to prove in some condition there are two equivalent chain W̃ n̄
∗ (X) which interpolate with the

lower middle perversity and upper middle perversity intersection homology chain complex:

W m̄
j (X) ↪→ W̃ m̄

j (X) ↪→ W̃ n̄
j (X) ↪→ W n̄

j (X).
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Because we know the Poincare map is P := − ∩ [X] : W j
m̄(X) → W n̄

n−j(X), the new Poincare

dual on the new chains:

P̃ := −∩̃[X] : W̃ j
m̄(X)→ W̃ n̄

n−j(X),

More specially, ĨH
m̄

j (X) ∼= ĨH
n̄

n−j(X). Because every basis of is modelled by an element of cone,

let us consider the cone first.

Remark 2.6.6. In the pseudomanifold, the neighborhood of x in χk is piecewise linear homomor-

phic to x ∗ Sk−1 ∗ Lx, here Lx is unique in P.L-category when x in the same stratum χk. So the

key point of this note is dealing with the cone of link. Furthermore, we have IHp
i (X,X − x) =

IHp
i−k−1(Lx) when i > n− p(n− k)− 1, and otherwise is 0. That means local homology is total

decided by the link of stratum. [19]. However, the local homology of manifold is totally different

with the pseudomanifold. For the manifold M , any point x ∈M , the only non trivial homology is

Hn(M,M − x) = Z. So the key point of Poincare duality is the duality in the link of stratum.

2.6.1 Lefschetz Dual in the Cone

Because the cone of link is building block of pseudomanifold, so we need to find a chain

compatible with intersection homology chain in the cone first. For the compact R–oriented n-

manifold M with boundary ∂M , we have the Lefschetz duality :

Hk(M) ∼= Hn−k(M,∂M).

Let us assume n dimensional compact oriented manifold X which are not homotopic to the n-

sphere. Let us consider the cone over manifold C(X), we know the Lefschetz duality fails in

C(X). Due to the cone formula of intersection homology for the perversity p, we have :[26]

IHp
i (C(X)) =


IHp

i (X) i < n− p(n+ 1)

0 otherwise.
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Let v be the vertex of the cone. If we consider the relative homology of (C(X), C(X)− {v}), we

can use the Mayer-Vietoris sequence by [18]:

...→ IHp
i (C(X)− {v})→ IHp

i (C(X))→ IHp
i (C(X), C(X)− {v})→ ...

then we have

IHp
i (C(X), C(X)− {v}) =


0 i < n− p(n+ 1) + 1

IHp
i−1(X) otherwise.

.

I use relative case to replace Borel-Moore homology.

Because X satisfy the Poincare duality theorem, we have IHm
i (X) = IHn

n−i(X). For the case

of lower middle perversity m and upper middle perversity n, we can find if i < n − m(n + 1),

IHm
i (C(X)) = IHm

i (X) = IHn
n−i(X) = IHn

n+1−i(C(X), C(X)−{v}), for i > n−m(n+1)− 1,

IHm
i (C(X)) = 0 = IHn

n+1−i(C(X), C(X) − {v}), this means that the generalized Lefschetz

duality holds for the cone. Especially, if n 6= 2s or Hs(x) = 0, we can find for lower middle

perversity, IHm
i (C(X), C(X)−{v}) = IHm

n+1−i−1(C(X)). This is the simplest case of Witt space

condition [33].

If n = 2s and Hs(x) 6= 0, because [19], if the triangulation T of X is flag-like, we can

assume the stratification Xn−2 = X0 = v and Xn = X , here the triangulation is inherited from

X . The codimension of the vertex is 2s+1, and we know that 2s − m(2s + 1) = s + 1 and

2s − n(2s + 1) = s. The difference of s + 1 dimensional m allowable chain ICm
s+1(C(X)) and

n allowable chain ICn
s+1(C(X)) is that ICn

s+1(C(X)) can meet v. Because of IHm
s (C(X)) =

IHn
s+1(C(X), C(X) − v) = Hs(x), and IHn

s (C(X)) = IHm
s+1(C(X), C(X) − v) = 0. So the

obstruction is from the dimension s and s+ 1, We need to change the chain ICm
s+1(C(X)).

Because we know there is a intersection product structure on Hs(X). Hs(X) ∩ Hs(X) ∈

H0(X). For the space Hl, denoted H⊥
l the annihilator space of Hl with this product. Let us

decompose Hs(x)

Hs(x) = Hl

⊕
H⊥

l .
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For h is a representative cycle of H1, the join space of v ∗ h is not (m, s + 1) allowable but

(n, s + 1)-allowable. We use C(Hl) to represent all join space between v with representative of

Hl. So we define new ĨC
m

s+1(C(X)) = ICm
s+1(C(X)) + C(H1). Because if h ∈ H1, ∂(v ∗ h) =

h ∈ H1, ∂ is the boundary operator. So the new chain kills the part of s-th homology group, we

get IHm
s (C(X)) = Hl. Let us consider the Mayer-Vietoris sequence:

...→ IHp
s+1(C(X))→ IHp

s+1(C(X), C(X)− {v})→ IHp
s(C(X)− {v})→ ...

Because we know ĨC
m

s+1(C(X)) ∈ ICn
s+1(C(X))and IHm

s+1(C(X)) = 0, so ĨH
m

s+1(C(X))

is still 0. This means the map from IHm
s+1(C(X), C(X) − v) to ĨH

m

s+1(C(X)) is injective, the

generator of ĨH
m

s+1(C(X), C(X) − {v}) is the preimage from IHm
s (C(X) − {v}). Furthermore,

if u is representative for H1, C(u) generate the ĨH
m

s+1(C(X), C(X) − {v}). which should be

isomorphic to Hl. So the necessary requirement for ĨH
m

s+1(C(X), C(x) − {v}) ∼= ĨH
m

s (C(X))

should be Hl
∼= H⊥

l . This means we require a Lagrange space of Hs(X), and we use Hlag to

represent Hl

2.7 K-homology Class on the Geometrically Controlled Hilbert Poincare Complex

In the appendix of [35], Weinberger, Xie and Yu construct the analytic K-homology class of

signature class on the PL manifold M . In fact, their methods can generalize to any combinatorial

geometrically controlled Poincare complex on the PL pseudomanifold in [24]. They proved that if

there is a self dual coefficient system on simplicial complex, we can build the K-homology class on

it. An advantage of this construction of k-homology is that we can define higher signature class if

we consider the coefficient systemC∗
r (Γ) -Hilbert module. My research use the same framework to

study higher signature on the Non-Witt space. My next target is building geometrically controlled

Poincare complex on the Non-Witt space.

A bounded geometry combinatorial manifold with triangulation is a bounded geometry simpli-

cial complex.

The outline of [35] is that. Suppose there is a control map ϕ : X → X . Here X is a metric
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space with path metric. The key property is that the geometrically controlled X-module E in PL

space is homotopy invariant under the subdivision. Then we obtain a geometrically controlled

Poincare complex Ej of X whose propagation approaches 0 as j → ∞. Then it is nature to

form a continuous family of geometrically controlled Poincare complexes parametrized by t. This

family determines the localization algebra C∗
L(X) then the K-homology class is an element of

Kn (C
∗
L(X)).

Because we consider the bounded geometry space. This requires the number of simplices

containing any given vertex should be uniformly bounded for all successive subdivision. This is

call standard subdivision. Then we can use this subdivision to control the propagation. It is natural

to construct the element of K-homology

Definition 2.7.1. [35] Let σ = [v0, ....vn] be a standard simplex where the vertices vi with given

order. Define the standard subdivision Sub(σ) as below :

vij = (vi + vj)/2 when i ≤ j (2.5)

When j = i, vii is just vi. Hence the new division inherits the partial order of old vertices by setting

:

vij ≤ vkl if k ≤ i and j ≤ l (2.6)

We can follow the method of [24] chapter 6 without any change. If X is a bounded geometry

piecewise linear Poincare pseudomanifold, then Subn(X) = Sub(Subn−1(X)) is uniform bounded

geometry for n ∈ N. Let (W△
∗ (X)⊗C, b) be the Poincare complex based on the filtered simplicial

complex W p̄
∗ (X).

Let us define Q0 =
⊕

kW
△
k (X)⊗ C and Q2 =

⊕
kW

△
k (Sub(X))⊗ C. Build Q̂1 and Q1 for⊕

k C
△
k (Sub(X)) with this different geometrically controlled X-module structure such that Q0 is

submodule of Q̂1, Q̂1 and Q1 are isomorphic. Next construct a uniform family of geometrically
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controlled Poincare complexes {(Qt, bt, St)}t∈[0,2] to connect Q0 and Q2:

(Qt, bt, St) =


(
Q̂1, bt, St

)
if 0 ≤ t ≤ 1

(Qt, b, S) if 1 ≤ t ≤ 2

Similar, define the geometrically controlled X-module Q2j =
⊕

kW
△
∗ (Subj(X)). If there

is a geometrically controlled Poincare complex of X , propagation of Poincare complex on Q2j

approach 0 when j go to∞.

Moreover connect all Q2j , {(Qt, bt, St)}t∈[0,∞) is a uniform family of geometrically controlled

Poincare complexes.

ε1 < ‖Bt ± St‖ < C1

p(x) is a polynomial on [ε, C]∪ [−C,−ε] such that supx∈[ε,C]

∣∣p(x)− 1
x

∣∣ < 1
C
. Then p(Bt− St) is

invertible. Let

Ut := (Bt + St) · p (Bt − St)

In fact, it is a norm-bounded and uniformly continuous path of invertible elements and the propaga-

tion of Ut approach 0. So we can use the definition of K-homology class of the signature operator

on Riemannian manifold M to define the K-homology class on X .

Definition 2.7.2. The K-homology class of the signature operator of X is defined to be the K-

theory class of the path U in K1(C
∗
L(X)). K-homology class is [Dsign] .

Definition 2.7.3. The K-homology class of the signature operator on X is defined to be the K-

theory class in K0(C
∗
L(X)) determined by Q: a norm-bounded and uniformly continuous path of

σ-quasi-projections [0,∞]→ C∗(X).
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3. NON WITT SPACE WITH CONICAL SINGULARITIES

In this chapter we consider the odd non Witt space where the Witt condition only fails in the

link of conical singularities. We will show the Lagrange structure make X to be a geometrically

controlled Poincare pseudomanifold. Then we give the higher signature index class for this spaces

in the framework of Higson and Roe.

Let X be an odd dimensional pseudomanifold. Here the dimension we assume is k = 2s + 1.

For the odd codimensional stratum χk−2j+1, we define the intrinsic link about x ∈ χk−2j−1 is

L(χk−2j−1, x). We know the Witt condition about the intersection homology of intrinsic link is

L(χk−2j−1, x):

IHm̄
j (L(χk−2j−1, x), Q) = 0.

Definition 3.0.1. The Non Witt space X in this chapter is a 2s + 1 dimensional pseudomanifold

satisfies:

IHm̄
s (L(χ0, x), Q) 6= 0.

and for any other odd codimension 2j + 1 stratum χk−2j+1, we have:

IHm
j (L(χ2s+1−2j−1, x), Q) = 0.

Because the Witt condition is necessary for IHm
i (X) ∼= IHn

i (X), we can get IHm
i (X) 6=

IHn
i (X) at least for some dimension i. Specially, the W m̄

∗ (X) is chain equivalent to W n̄
∗ (X).

In this section, we use the technique of Xie and Higson’s article [24] Appendix C to filter the

W m̄
∗ (X) and W n̄

∗ (X). This method is a generalization of framework in [33] Chapter III section 3.

First we define the perversity P̄r :

P̄r(i) =

 m̄(i) for i < r

n̄(i) for i > r
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Let us consider the filtration

W m̄
∗ = W p̄2r+1

∗ ⊂ W p̄2r−1
∗ ⊂ · · · ⊂ W p̄3

∗ ⊂ W p̄1
∗ = W n̄

∗

By the definition, for all other odd codimension 2j + 1 6= 2s+ 1, we have Witt condition,

IHm
l (L(χ2s+1−2j−1, x), Q) = 0,

then it can be proved W P̄2j−1
∗ (X) and W P̄2j+1

∗ (X) are chain equivalent by [33] Chapter III, The-

orem 3.2.In fact in [24] Appendix C, the chain equivalence is in a geometrically controlled chain

equivalent. Similar, W n̄
∗ (X) and W P̄2s−1

∗ (X) are chain equivalent.

So we only need to consider the chain complex W
P̄2s+1
∗ (X) and W

P̄2s−1
∗ (X), the allowable

requirement of the two chains complex are the same except codimension 2s + 1 . When y ∈

W
P̄2s−1

i (X), let us consider the P̄2s−1 allowable inequality respect to X0 = χ2s+1−(2s+1):

dim(y ∩ χ2s+1−(2s+1)) ≤ i− (2s+ 1) + P̄2s−1(2s+ 1) = i− s− 1.

The stronger restriction about y ∈ W P̄2s+1

i (X) is:

dim(y ∩ χ2s+1−(2s+1)) ≤ i− (2s+ 1) + P̄2s+1(2s+ 1) = i− s− 2.

Clearly we can find for i < s + 1 and i > s + 1, W P̄2s+1

i (X) = W
P̄2s−1

i (X). So we only need to

consider the s+ 1 dimensional chain . Let us fix the direct sum decompose

W
P̄2s−1

s+1 (X) = W
P̄2s+1

s+1 (X) + U. (3.1)

We need to change the W P̄2s+1

s+1 (X) and W P̄2s−1

s+1 (X) such that the new chains are chain equivalent

respect to the inclusion map. Next Step shows that the Poincare duality map still holds for new

chains.
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Let T be the triangulation for defining W m̄
∗ (X). Define T ′ as first barycentric subdivision. For

the chain W m̄
∗ (X), there is a basis which element is minimal and modeled byMk in [24]. There

is a natural basis
∑
ui in the space of U . So we require ui intersect with X0.

dim(ui ∩X0) = 0.

We assume the intersection points are τi ∈ X0. For each τi, we can see the subchain of ui as the

combination of simplices σj which is the join complex with the intersection point and s-simplex

vi ∈ CT ′
s+1(lk(σi, T

′)):

ui = τi ∗ vi.

Here lk(σi, T ′) is the link respect to τi in T ′, then it is the intrinsic link with singular stratum.

In [33] Chapter III, Lemma 3.3 , we know v̄i is actually a cycle of CT ′
s+1(lk(σi, T

′))

∂(vi) = 0.

So we can find the subspace U is linear combination of τi ∗ vi. Moreover, there is a canonical

isomorphism between cycle v̄i ∈ CT ′
s (lk(σi, T )

′) and vi. In addition, by Siegl [33] Lemma 3.4, vi

satisfies the allowable condition of perversity m̄. Combine all information above, we get

v̄i ∈ W m̄
s (lk(σi, T )

′).

We can decompose the cycle v̄i into the boundary of chain

w̄ ∈ W P̄2s+1

s+1 (lk(σi, T )
′)

and the representative element in homology group h̄ ∈ IHm̄
s lk(σi, T ), such that

v̄ = ∂(w̄) + h̄.
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Let the set of s-cycle in W m̄
s (lk(σ, T )) be V . Next we will separate V into 3 sets.

3.1 Lagrange Structure

Let us consider the lower middle intersection homology IHm̄
s (lk(σi, T )). Cheeger in [11] prove

that if the signature of the link is 0, there is a Lagrangian space in H. This means that there is a

subspace Hl which is isomorphic to its annihilator about the intersection form. In the geometrical

viewpoint it means:

1. IHm̄
s (lk(σi, T )) = Hlag ⊕ H⊥

lag,

2. Hlag
∼= H⊥

lag,.

3. For every h1 ∈ Hlag and h2 ∈ H⊥
lag, then there exist two representatives v1 for h1 and v2 for

h2 , we have v1 ⋔ v2 6= 0. Here the signal ⋔ is the transverse intersection.

By assumption, if −[L′] is the fundamental class of lk(σi, T ′) , we know there is a mapping from

IHs
m̄(lk(σi, T )) to IHm̄

s (lk(σi, T )) induced by Poincare dual map of P′ = −[L′]. For any two

cohomology class [v∗1] ∈ Hom(Hlag,C) and [v∗2] ∈ Hom(H⊥
lag,C), then we can get

P′([v∗1]) ∈ H⊥
lag , and P′([v∗2]) ∈ Hlag.

Let the space Vlag be all the possible nonzero representative of Hlag, i.e

Vlag = {h+ ∂w ∈ V |h 6= 0 ∈ Hlag , and w ∈ W p2s+1

s+1 (lk(τi, T )
′)}. (3.2)

We can define V ⊥
lag similarly . For Vo we define :

Vo = {∂w ∈ V |w ∈ W p2s+1

s+1 (lk(wi, T )
′)}. (3.3)

So we decompose V into:

V = Vlag ⊕ V ⊥
lag ⊕ Vo
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We know U =
∑
τi ∗ vi, so the separation of V is the separation of U. Define C(Vlag) as:

C(Vlag) =
∑

τi ∗ vi when vi ∈ Vlag

Similarly, we can define C(V ⊥
lag) and C(Vo). Hence we can decompose U as :

U = C(Vlag)⊕ C(V ⊥
lag)⊕ C(Vo) (3.4)

Let us define:

W̃
P̄2s−1

s+1 = W
P̄2s−1

s+1 − C(V ⊥
lag)

W̃
P̄2s+1

s+1 = W
P̄2s+1

s+1 + C(Vlag) + C(Vo)

For the definition, we can still get W̃ P̄2s+1

s+1 ⊂ W̃
P̄2s−1

s+1 .

Because ∂W̃ P2s+1

s+1 (X) ⊂ W̃ P2s+1
s (X), the chain complex are well defined in the X . For any

subcomplex Y of the X , we can let

W̃
P2s−1

j (Y ) = W
P2s−1

j (Y ) ∩ W̃ P2s−1

j (X).

The refined intersection homology is not topological invariant or stratified homotopy invariant

because it depends on the Lagrange structure of boundary, but it can play role in other fields.

Because we know the W P2j−1
∗ (X) is equivalent to W P2j+1

∗ (X) when j < s or j > s, we need

to add the same space for these chain complex. If j < s, we define : W̃ P̄2j−1

j (X) = W
P2s−1

j (X)

If j > s W̃
P̄2j+1

j (X) = W
P2s+1

j (X). Specially, for chain complex of lower middle perversity

W m̄
∗ = W

p̄2r+1
∗ and upper middle perversity W p̄1

∗ = W n̄
∗ , we can make the same change.

Definition 3.1.1. The modified intersection chain W̃ m̄
∗ (X) and W̃ n̄

j (X) are defined as:

W̃ m̄
j (X) = W m̄

j (X) + C(Vlag) + C(Vo). (3.5)
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W̃ n̄
j (X) = W n̄

j (X)− C(V ⊥
lag). (3.6)

Because ∂W̃ m̄
j (X) ⊂ W̃ m̄

j−1(X), in fact we construct two chain complex W̃ m̄
n (X) and W̃ m̄

n (X):

W̃ m̄
n (X)

∂→ W̃ m̄
n−1(X)

∂→ W̃ m̄
n−2(X)....W̃ m̄

2 (X)
∂→ W̃ m̄

1 (X)
∂→ W̃ m̄

0 (X).

These two chain complex interpolate the filter chain complex with lower middle perversity and

upper middle perversity.

Lemma 3.1.2. The new chains W̃ m̄
∗ (X) and W̃ n̄

∗ (X) are chain equivalent respect to the inclusion

map ι.

Proof. Witt condition holds for other odd codimensional stratums. W P2s−1
∗ (X) is equivalent to

W n
∗ (X) and W̃ P2s−1

∗ (X) is chain equivalent to W̃ n
∗ (X) Because of [33] Chapter III, Theorem 3.2.

In fact, W̃ P2s+1
∗ (X) and W̃ P2s−1

∗ (X) are chain equivalent due to the construction.

By the construction, W̃ n̄
j (X) are chain equivalent to W̃ P2s−1

j (X). Let W̃ ∗
n̄(X) be Hom(W̃ n̄

∗ ,C),

and W̃ ∗
m̄ = Hom(W̃ m̄

∗ (X),C). Let di = ∂∗i be the differential operator which is adjoint of the

boundary map ∂. Because Hom(,C) functor are exact, then the W̃ m̄
∗ (X) and W̃ n̄

∗ (X) are chain

equivalent by the lemma 3.1.2. Here the chian map from W̃ m̄
∗ (X) to W̃ n̄

∗ (X) is ι∗ which is induced

by ι.

... W̃ i+1
n̄ (X) W̃ i

n̄(X) W̃ i−1
n̄ (X) ...

... W̃ i+1
m̄ (X) W̃ i

m̄(X) W̃ i−1
m̄ (X) ...

di+1

ι∗i+1 ι∗i

di

ι∗i−1

di−1 di−2

di+1 di di−1 di+1

Proposition 3.1.3. There is a basis of W̃ m̄
∗ (X) such that each basis element is minimal and more-

over modeled by Mk.

Because of the proposition A.6 in [24] (also see2.6.3), we know we just add the Lagrange

subspace C(Vlag) of U to W m̄
∗ (X) to construct W̃ m̄

∗ (X).
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3.1.1 Cone Formula

The diagonal approximation and Poincare duality relay on the cone formula of intersection

homology. Let Z be a simplex of dimension j in X , and the cone C(Z) = τ ∗ Z. The intersection

homology IHp̄
i with perversity p̄ we have the cone formula because of [26]:

IHp̄
i (C(Z)) =


IHp̄

i (Z) i < j − p̄(j + 1)

0 otherwise.

(3.7)

Because we know the difference between W̃ m̄
∗ (X) and W m̄

∗ (X) is in the dimension s + 1. When

j < 2s− 1, we get

s+ 1 > j − m̄(j + 1).

So we get the cone formula related W̃ m̄
i (C(Z)) is just same with IHp̄

i (C(Z)). The intersection

homology of cone formula respect to W̃ n̄
i (C(Z)) is same too, because W̃ m̄

∗ is chain equivalent

with W̃ m̄
∗ .

ĨH
m̄

i (C(Z)) =


IHm̄

i (Z) i < j − m̄(j + 1)

0 otherwise.

(3.8)

When j = 2s and τ is the vertex in the singularity, s + 1 = j − m̄(j + 1). For intersection

homology with lower middle perversity and upper middle perversity is same when i 6= s

IHm̄
i (C(Z)) = IHn̄

i (C(Z)).

For dimension s, IHn̄
s (C(Z)) = 0 and IHm̄

s (C(Z)) = IHm̄
s (Z). Here is because W n̄

s−1(X) =

W m̄
s+1(X) + U. and the element of U is the cone of cycle in W m̄

s (lk(σ, T )).

Consider the construction in previous section, we add C(Vlag) to W m̄
s+1(x), the non trivial

homology element is from C(V ⊥
lag). That means ĨH

m̄

s (C(Z)) should be Hlag. We get the cone
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formula :

ĨH
m̄

i (C(Z)) = ĨH
n̄

i (C(Z)) =


IHm̄

i (Z) i < s

Hlag ∈ IHm
s (Z) i = s

0 otherwise.

(3.9)

Remark 3.1.4. The property of the intersection homology is invariant after the normalization of

pseudomanifold, so the self dual chain should satisfy this property. The new homology is not

independent of stratification.

3.2 Diagonal Approximation for Modified Intersection Chain

Diagonal approximation plays important role in Poincare dual map. However, the front j face

or back n − j face of (p̄, i)-allowable chain may not be (p̄, i)-allowable or (p̄, n − j)-allowable

respectively, so the ordinary Whitney-Alexander diagonal approximation fails to exist in the inter-

section chain. In [24] Apendix B , there exists the diagonal approximation map for lower middle

perversity W m̄
∗ (X) and upper middle perversity W n̄

∗ (X) :

4 : W 0̄
∗ (X)→ W n̄

∗ (X)⊗W m̄
∗ (X).

with those properties:

1. diagonal approximation is natural in X, for the filtered simplicial complex and placid sim-

plicial maps.

2. 4(x) = x⊗ x for any (0̄, 0)− allowable simplex x ∈ X .

Here 0̄ = 0 is the zero perversity, and the placid map is a stratum-preserving map for every

pure stratum T , the codimension of every pure stratum in f−1(T ) is no less than codimension

of T . Furthermore, this diagonal approximation is unique up to homotopy in the category of

geometrically controlled.

Remark 3.2.1. First we recall that for the zero perversity 0̄, the minimal element of W 0̄
k (X) is

modeled by W 0̄
k (C(Z)). Here Z is the intrinsic link of simplex σ. Hence it is natural to consider
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the link

The boundary map in tensor product of chains is :

∂(c⊗ c′) = ∂c⊗ c′ + (−1)kc⊗ ∂c′.

So the tensor product of cycle is still a cycle. In this section, I will build the diagonal approximation

4̄ in the new chain W̃ m̄
s (X) and W̃ n̄

s+1(X).

Lemma 3.2.2. There exists a diagonal approximation 4̃ for the new chains W̃ m̄
j (X) and W̃ n̄

j (X)

in the meaning of [24].

4̃ : W 0̄
∗ (X)→ W̃ m̄

∗ (X)⊗ W̃ n̄
∗ (X). (3.10)

Moreover 4̃ is unique up to chain homotopy.

Proof. The proof is standard method of acyclic models. Because in article [24] apendix B has

defined the diagonal approximation map

4 : W 0̄
∗ (X)→ W m̄

∗ (X)⊗W n̄
∗ (X).

In order to define 3.2.2, consider in 3.1.1 that we just modified W m̄
s+1(Y ) and W n̄

s+1(Y ). When the

dimension ∗ is less than s+1, the diagonal approximation map 4̃ is the original4. Let us use the

mathematical induction to deal with dimension from s+1 to 2s. The basis of W 0
s+1(X) is modeled

over the cone, it is enough to consider the case W 0
s+1(C(Z)) for some cone C(Z).

For s < j < 2s+ 1, because4j should be a chain morphism, this means

∂(4j(∂ω)) = 0.

So4j(∂ω) is a cycle. Because of the lemma 3.2.3, we can observe that is a boundary of

∃ζ ∈ (W̃ n̄
∗ (C(Z)⊗ W̃ n̄

∗ (C(Z))j+1, s.t 4i (∂ω) = ∂ζ.
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So we can define4j+1 because it satisfy the chain map property ∂∆i+1(ω) = ∂ζ = ∆i(∂ω):

4j+1(ω) = ζ.

Next we prove the uniqueness up to homotopy. Let us assume there is another diagonal ap-

proximation 4̃
′
. Then construct the homotopy {hi} between 4̃ and 4̃

′
by using mathematical

induction. Because of 4̃0 = 4̃
′
0. then we define h0 = 0. If we have defined hi for all i < s, the

chain homotopy hi+1 : W
0
i+1(X)→ (W̃ m̄

∗ (X)⊗ W̃ n̄
∗ (X))i+2 must meet :

∂hi+1 + hi∂ = ∆i+1 −∆′
i+1.

When ξ is a basis of W 0
i+1(X), ∂hi+1ξ = (∆i+1 −∆′

i+1 − hi∂)ξ is a cycle. This is because

∂
(
∆i+1 −∆′

i+1 − hi∂
)
ξ = (∆i∂ −∆′

i∂ − ∂hi∂) ξ

=(∆i∂ −∆′
i∂ − (∆i −∆′

i − hi−1∂) ∂) ξ = 0

Then due to lemma 3.2.3, we know ∂hi+1ξ should be a boundary of ζ in W̃ m̄
∗ (X) ⊗ W̃ n̄

∗ (X))i+2.

Then it is natural to define hi+1(ω) = ζ . Then we define a chain homotopy hj between 4̃ and

4̃
′
.

Application of acyclic method need to compute the homology. For any i-subcomplex of Z ∈

X , C(Z) ∈ X is a cone. Assuming the diagonal approximation map exist for the link Z:

4̃ : W 0̄
∗ (Z)→ W̃ m̄

∗ (Z)⊗ W̃ n̄
∗ (Z).

For the the chain complex W̃ m̄
∗ (Z)⊗ W̃ n̄

∗ (Z) in the image of 4̃(W 0̄
∗ (Z)), then we have the lemma

below:

Lemma 3.2.3.

Hk(W̃
m̄
∗ (C(Z))⊗ W̃ n̄

∗ (C(Z))) = 0,
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for k ≥ i.

Proof. Because of algebraic Kunneth formula :

Hk(W̃
n̄
∗ (C(Z)⊗ W̃ n̄

∗ (C(Z)) =
⊕
i

ĨH
m̄

i (C(Z))⊗ ĨH
n̄

k−i(C(Z)).

we can compute Hk(W̃
n̄
∗ (C(Z)) ⊗ W̃ n̄

∗ (C(Z))). When dimension of Z < 2s, we know cone

formula 3.8 ĨH
m̄

i (C(Z)) = 0 for i ≥ j−m̄(j+1) . So when k ≥ i, we can find the Hk(W̃
n̄
∗ (C(Z)⊗

W̃ n̄
∗ (C(Z)) = 0.

For the diemsion of Z is 2s, the cone formula 3.9 show that:

ĨH
m̄

i (C(Z)) = ĨH
n̄

i (C(Z)) = 0 for i > s.

For k > 2s, we have Hk(W̃
n̄
∗ (C(Z)⊗ W̃ n̄

∗ (C(Z)) = 0.

When k = 2s, if

H2s(W̃
m̄
∗ (C(Z)⊗ W̃ n̄

∗ (C(Z)) 6= 0,

then the nonzero generator is from ĨH
m̄

s (C(Z)) ⊗ ĨH
n̄

s (C(Z)). Let us assume the generator is

h⊗ g, here h, g ∈ Hlag. However, consider the 2s-dimensional diagonal approximation 4̃2s in Z ,

because of the product in Lagrangian Structure of IHm
s (Z), there does not exist h⊗ g in the image

of 4̃2s. That is impossible. So we get H2s(W̃
n̄
∗ (C(Z)⊗ W̃ n̄

∗ (C(Z)) = 0 .

3.3 Poincare Duality

The original Poincare duality proof is based on the dual cell decomposition. In order to prove

the Poincare duality is a chain equivalence in geometrically controlled category, we need see

W̃ n̄
∗ (X) as the chain complex of geometric C− module 2.4.1 in this section.

In pseudomanifold the dual cell structure D(σ′) is unique piecewise linear homomorphism to

σ̂ ∗ ∂D(σ′) = σ̂ ∗ lk(σ, T ′). If we decompose it further, we get lk(σ, T ′) = Sk ∗ L(X). L(X) is

intrinsic link unique up to piecewise linear homomorphism.
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With help of diagonal approximation, we can define the cap product for the chain complex

W̃ j
n̄(X) of n− dimensional X by that:

∩̃ : W̃ j
n̄(X)⊗W 0

n(X)
i⊗△̃−−→W j

n̄(X)⊗ (W̃ n̄
∗ (X)⊗ W̃ m̄

∗ (X))
ε⊗1−−→ W̃ m̄

n−j(X). (3.11)

here the ε : W̃ n̄
∗ (X) ⊗ W̃ ∗

n̄(X) → C is the evaluation map. Similar with manifold, we define the

Poincare dual map P̃ is cap product with fundamental class [X]:

P̃ := −∩̃[X] : W̃ j
m̄(X)→ W̃ n̄

n−j(X) (3.12)

Before proving the Poincare duality, we need to prove the Mayer-Vietories sequence by us-

ing W̃ m̄
s (X ′, T ′) instead of W̃ m̄

s (X,T ). This is because the double subdivision T ′′ can give the

definition of the boundary of two link .

We know vertex of T ′ is the barycenter of σ in T , the simplicial structure of (Stσ̂, T ′′) is

indentical C(lk(σ̂, T ′)) . It is natural to use the filtration on the cone and cone formula defined

before to study W̃ m̄
i (X)|St(σ̂,T ′′). In particular, W̃ m̄

i (X)|St(σ̂,T ′′) = W̃ m̄
i (C(lk(σ̂, T ′)))

Lemma 3.3.1. (Mayer-Vietories sequence) Assume X is a non Witt space in 3.0.1 with the La-

grange structure in the link ofX0 . Y1 and Y2 are closed subpseudomanifold ofX , andX = Y1∪Y2.

Then we have the short exact sequence:

0→ W̃ m̄
∗ (Y1 ∩ Y2)

ι⊕ι−→ W̃ m̄
∗ (Y1)⊕ W̃ m̄

∗ (Y2)
ι−ι−→ W̃ m̄

∗ (X)→ 0

The question is the inclusion map from ι : Y1 → X is not a placid map because the codi-

mension of ι−1 of pure stratum in boundary. Instead, we need to cover X by images of cones.

Because we only change the s + 1 dimensional chain, it is enough to consider the inclusion map

of subcomplex involve stratum with non Witt condition.

Lemma 3.3.2. IfX is the n dimensional oriented Non Witt space defined in 3.0.1 with the Lagrange

42



structure in the link of X0, the generalized Poincare duality map P̃ from W̃ ∗
m̄(X) to W̃ n̄

n−∗(X)

P̃ := −∩̃[X] : W̃ j
m̄(X)→ W̃ n̄

n−j(X),

is a geometrically controlled chain equivalence.

Proof. We use the mathematical induction of dimension i to prove this lemma. Dimension 0 case

is clear. Suppose the Poincare duality holds for the i < k dimension. Then consider dimension

k + 1, It is enough to show Poincare duality hold for X is k + 1 dimension pseudomanifold.

The standard proof is based on Mayer-Vietories argument, and the local dual map is guaranteed

by Lagrange structure of the cone. It is enough to prove when P̃|∂Y is a chain equivalence then the

relative chain map P̃ = −∩̃[Y ]

P̃ : ĨH
i

m(Y, ∂Y )→ ĨH
n̄

k+1−i(Y ).

is chain equivalence. Here the relative cap product are still defined as the composition above.

∩̃ : W̃ j
n̄(Y, ∂Y )⊗W 0̄

n(Y )
i⊗△̃−−→W j

n̄(Y, ∂Y )⊗ (W̃ n̄
∗ (Y )⊗ W̃ m̄

∗ (Y ))
ε⊗1−−→ W̃ m̄

n−j(Y ). (3.13)

Suppose Y is a star of simplex σ, Y = σ̂ ∗ ∂(Y ). By assumption:

P̃ = −∩̃[∂Y ] : W̃ m̄
j (∂Y )→ W̃ j

n̄(∂Y )

is chain equivalence for ∂Y . Assume that ω and θ are basis of ĨH
m̄

∗ (∂Y ) and ĨH
n̄

∗ (∂Y ) respectively.

x and y are basis of W̃ m̄
∗ (∂Y ) and W̃ n̄

∗ (∂Y ). The image of 4̃[∂Y ] can be written as :

4̃[∂Y ] =
∑

|ω|+|θ|=k−1

ω ⊗ θ + ∂

 ∑
|x|+|y|=k

axyx⊗ y


The first target is to prove 4̃[∂Y ] is the boundary of chain complex in . It depends on the cone

43



formula.

When the dimension k < 2s, we use the original cone formula 3.8, that means

ĨH
m

i (Y ) =


IHm

i (∂Y ) i < k − 1− m̄(k)

0 otherwise.

(3.14)

When k = 2s , we can use the cone formula such that :

ĨH
m

i (Y ) =


IHm

i (Y ) i < s

Hlag ∈ IHm
s (Y ) i = s

0 otherwise.

(3.15)

Because we know |ω|+ |θ| = k− 1, if the dimension of ω is i 6= s, it is clear that only one of ω or

θ is a boundary. When the dimension of ω is s, we know that Lagrange structure of ∂Y make only

one element in Hlag or H⊥
lag is a boundary.

If ω is a boundary, then let ω̄ be a chain such that ∂ω̄ = ω; if ω is not a boundary, then define

ω̄ = ω. Define θ̄ in a similar way. In the chain complex ĨH
m̄

∗ (Y )⊗ ĨH
n̄

∗ (Y ) ), we have

∑
|ω|+|θ|=k−1

ω ⊗ θ = ∂

 ∑
|ω̃|+|θ̃|=k

ω̃ ⊗ θ̃

 .

Moreover, we get 4̃[∂Y ] is the boundary of
∑
ω̄⊗ θ̄+

∑
axyx⊗y. Because of the proposition

of chain map ∂4̃[Y ] = 4̃[∂Y ]. It concludes that the ∂4̃[Y ] is a boundary of
∑
ω̄⊗θ̄+

∑
axyx⊗y.

Next we combine the homology of lemma 4.1.13 to get :

4̃[Y ] =
∑

|ω̄|+|θ̄|=j+1

ω̄ ⊗ θ̄ +
∑

|x|+|y|=j+1

axyx⊗ y

Then we can define the duality operator P̃ : W̃ i
p̄(Y, ∂Y ) → W̃ q̄

n−i(Y ). Because of lemma 3.2.3,

this map is the homology isomorphism. Because the quasi-isomorphism of free chain complex is
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chain equivalence, the dual map P̃ is chain equivalence.

If we see the Link without Witt condition, the the symmetry of Lagrange structure make dual

map exist on higher dimension. That is when v ∈ V ⊥
lag, then P̃(v) ∈ C(Vlag). And when v ∈ Vlag,

then P̃(v) ∈ C(V ⊥
lag).

Recall Higson and Roe’s argument in [22] section 4, Mayer-Vietories sequence argument plays

an important role to prove the Poincare dual map is geometrically controlled chain equivalence in

bounded geometry combinatorial manifold. Similar, we can focus the star of a simplex σ named

Y in X to prove Poincare duality in geometrical control category because the map in the star of

simplex is geometrically controlled.

When we combine the lemma 3.3.2 and 3.1.2 together. For consistent with other notation in

[21], we use b for the boundary map of W̃ n̄
i (X), and b∗ is adjoint of b which is the differential of

W̃ i
n̄(X). Consider the diagram below:

... ... ...

W̃ i
n̄(X) W̃ i

m̄(X) W̃ n̄
k−i(X)

W̃ i+1
n̄ (X) W̃ i+1

m̄ (X) W̃ n̄
k−i−1(X)

... ... ...

ι∗i

b∗i+1 b∗i

∩[X]

bi

ι∗i+1 ∩[X]

We know the W̃ ∗
n̄(X) and W̃ ∗

m̄(X) are chain equivalent, and the cap product with [X] introduce

chain equivalence. So W̃ ∗
n̄(X) and W̃ n̄

k−∗(X) are chain equivalent.

When X is a Poincare pseudomanifold, it is natural to define a Hilbert Poincare complex on

X . Because we know the basis of chain complex W̃ n̄
∗ give a inner product. We identify (W̃ n̄

i , b
∗)

and (W̃ i
n̄, b) under this inner product. Let P̃∗ be the adjoint of P̃. We have two lemma below.

Lemma 3.3.3. P̃∗ is chain homotopy to (−1)i(n−i)P̃ in the geometrically controlled category. The

two maps

P̃ :
(
W̃ i

n̄(X), b∗
)

∩̃[X]−→
(
W̃ n̄

n−i(X), b
)
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and

P̃′ :
(
W̃ i

n̄(X), b∗
)

∩̃[X]−→
(
W̃ m̄

n−i(X), b
)

ι→
(
W̃ n̄

n−i(X), b
)

are chain homotopic in the geometrically controlled category.

Proof. The proof is similar with the Appendix C of [24], and all homotopy is from the unique

of diagonal approximation. If we define T : W̃ n̄
∗ (X) ⊗ W̃ n̄

∗ (X) → W̃ n̄
∗ (X) ⊗ W̃ n̄

∗ (X) is chain

isomorphism by :

T (x⊗ y) = (−1)|x||y|y ⊗ x

For α ∈ W̃ i
n̄(X), we can find that P̃(α) = ε(α⊗ ∆̃[X]) and P̃∗(α) = ε(α⊗ (T ◦ ∆̃)[X]). Clearly,

T ◦ ∆̃ is still a diagonal approximation and T ◦ ∆̃ is unique up to chain homotopy because of

lemma 3.2.2. Then P̃∗ is chain homotopy to (−1)i(n−i)P̃.

For the second statement, we just construct two diagonal approximation ∆ : W 0
∗ (X) →

W̃ n̄
∗ (X) ⊗ W̃ n̄

∗ (X) and ∆ : W 0
∗ (X) → W̃ m̄

∗ (X) ⊗ W̃ n̄
∗ (X). It is clear ∆ and (1 ⊗ ι) ◦ ∆′ are

homotopy equivalent diagonal approximation maps from W 0
∗ (X) to W̃ n̄

∗ (X)⊗ W̃ n̄
∗ (X). Then we

know P̃′(α) = ε (α⊗ (1⊗ ι) ◦∆′[X]) and P̃(α) = ε(α⊗∆[X]) by construction of Poincare map,

it finish the proof.

For the complex of inner space (W̃ n̄
∗ (X), b), then the complex (W̃ n̄

∗ (X), b, P̃) is a geometri-

cally controlled Poincare complex in the meaning of Higson and Roe in [22]. Finally, we get the

theorem.

Theorem 3.3.4. If X is the 2s+1 dimensional oriented Non Witt space defined in 3.0.1 with the

Lagrange structure in the link ofX0, then the Poincare dual map is chain equivalence for the chain

W̃ n̄
∗ (X). Moreover,(W̃ n̄

∗ (X), b, P̃) is a geometrically controlled Poincare complex.

Banagl in [8] define a topological stratified pseudomanifold exists nontrivial self dual sheaf in

SD(X̂) which call L-space. Here we use the same name.

Definition 3.3.5. If the non Witt space is a geometrically controlled Poincare pseudomanifold, it

called L space.
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In particular, because the chain map introduce a map for the homology group ĨH
n̄

∗ (X) of

W̃ n̄
∗ (X), this chain equivalent introduce the isomorphism ĨH

m̄

j (X) ∼= ĨH
n̄

n−j(X).

The signature should be stratified homotopy invariant and cobordism with closed self dual Non

Witt space.

3.4 C∗− Algebraic Signature of X

Next we can define C∗−Algebraic Signature ofX with the procedure introduced in 2.3. Given

the chain complex W̃ n̄
k−∗(X) with the canonical inner product, we identify W̃ n̄

∗ (X) with W̃ n̄
∗ (X),

and recall P̃∗ is the adjoint of P̃. Because of lemma 3.3.3, then T is :

T =
1

2
(P̃+ (−1)(n−i)iP̃∗)

then we can define Ẽn̄
∗ (X) as the `2 completion of W̃ n̄

∗ (X) in section 2.3.1. Then chain complex

of Hilbert spaces (Ẽn̄
∗ (X), b, T ) is an analytically controlled Hilbert Poincare complex because of

proposition 2.3.1. If we define B = b+ b∗, and S is defined as a bounded adjointable operator for

every v ∈ Ep

S(v) = ip(p−1)+lT (v).

Then B + S is an invertible. For every Hilbert-Poincare complex of dimension n determines an

signature as index class in 2.3.2.

Next we consider the Hilbert Poincare complex over C∗− algebra C∗
r (Γ) for equivariant case.

The key point is we use the local coefficient system F = C∗
r (Γ) instead of C for the chain

(W̃ n̄
∗ (X)⊗C. See the definition of coefficient system in 2.4.4. Here we obtain a chain complex of

Hilbert C∗
r (Γ)- module. We define the Hilbert Poincare C∗

r (Γ) module to be En̄
i (X,C

∗
r (Γ))

The so called C∗− algebraic higher signature signΓ(X, f) ∈ Kn (C
∗
r (Γ)) is the signature of

the Hilbert-Poincare complex (En̄
i (X;C∗

r (Γ)), b, T ).

Next we define the self dual L cobordant and stratified homotopy. In this dissertation, all the

continuous map between is required to keep the Lagrange structure. Precisely, for any continuous

map f : X1 → X2, the Lagrange structure Hlag,2 of X2 is defined as push forward of f for Hlag,1
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in X1.

Let X1 and X2 are two closed oriented L spaces with continuous maps f1 : X1 → BΓ and

f2 : X2 → BΓ. We say X1 and X2 are Γ− equivariantly L-cobordant if there exist a L space with

boundary W and a continuous map ∂W = X1 t (−X2) and F |X1
= f1 and F |X2

= f2. Here we

require the map f1 and f2 keep the Lagrange structure. Clearly, this L cobordism give the Hilbert

Poincare pair, we know signature of Hilbert-Poincare complex is bordism invariant due to 2.1.

A stratified homotopy equivalence between X and Y is a homotopy equivalence in the category

of codimension preserving maps. Here the stratum preserving map between two stratified spaces

φ : X → Y is for each stratum of S of Y , we have codim(φ−1(S)) = codim(S). The stratified

homotopy equivalence of L space φ induce a chain equivalence ofW n̄
∗ (X) andW n̄

∗ (Y ). Because of

the definition , it is a homotopy equivalence of Hilbert Poincare complex between (W̃ n̄
∗ (X), b, P̃)

and (W̃ n̄
∗ (Y ), b, P̃).

The next theorem is direct result of higher signature on Hilbert Poincare complex.

Theorem 3.4.1. 1. The C∗− algebraic higher signatures signΓ(X, f) ∈ Kn (C
∗
r (Γ)) of L

spaces X are invariant under L cobordism. If X1 and X2 are n dimensional two closed

oriented L spaces with continuous maps f1 : X1 → BΓ and f2 : X2 → BΓ. Suppose X1

and X2 are Γ-equivariantly L-cobordant, then

signΓ (X1, f1) = signΓ (X2, f2) .

2. C∗− algebraic higher signatures of L spaces are invariant under stratified homotopy equiv-

alences which keeps the Lagrange structure. Suppose X and Y are two closed oriented L

spaces, and f : Y → BΓ is a continuous map. If φ : X → Y is a stratified homotopy

equivalence and keep the Lagrange structure, then

signΓ(X, f ◦ φ) = signΓ(Y, f)
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3.4.1 Homotopy Invariance under Subdivision

In this subsection, I will show W̃ ∗
n̄(X) and W̃ ∗

m̄(X) are geometrically controlled homotopy

invariant under a subdivision of M in 2.7.1. We follow the framework in Section 6 and 7 of [24].

Then we can use the procedure of Subn(M) to construct K− homology class in X .

Given a triangulation T of X . We denote W̃ ∗
m̄(X;T, T ′) as the geometrically controlled

Poincare complex based on the barycentric subdivision of T . Now assume S is a subdivision of T .

We construct the geometrically controlled Poincare complexes W̃ ∗
n̄(X;T, S ′) and W̃ ∗

n̄(X;T, S ′).

Consider the inclusion chain maps below:

τ1 : W̃
∗
n̄(X;T, T ′)→ W̃ ∗

n̄(X;T, S ′)

and

τ2 : W̃
∗
n̄(X;S, S ′)→ W̃ ∗

n̄(X;T, S ′)

Lemma 3.4.2. τ1 and τ2 are geometrically controlled chain equivalences.

The proof is still an argument of Mayer-Vietoris sequence. Let Y be a star of σ in T . Because

the cone formula in 3.8 and 3.9, an isomorphism of homology in cone induce chain equivalence

between W̃ ∗
n̄(Y ;T, T ′) and W̃ ∗

n̄(Y ;S, S ′).

Corollary 3.4.3. If X is a closed oriented L space, then the two geometrically controlled Poincare

complexes W̃ ∗
n̄(X;T, T ′) and W̃ ∗

n̄(X;S, S ′) are geometrically controlled chain homotopy equiva-

lent.

Suppose τ : W̃ ∗
n̄(X;T, T ′) → W̃ ∗

n̄(X;S, S ′) is the chain map, and τ∗ is dual of τ. We need

to prove τ preserve the Poincare dual. Given triangulation T , let PT (α) = ε (α⊗∆T [X]) be the

Poincare dual map from α ∈ W i
n̄ (X;T, T ′). Similarly, PS(β) = ε (β ⊗∆S[X]) is Poincare dual

map for triangulation S. Then it is enough to observe that τ ◦PT ◦τ ∗(β) = ε (β ⊗ (τ ◦∆T ) [X]) =

ε (β ⊗∆S[X]) = PS(β).
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Assume µk
i is the basis of W̃ m̄

k (X) which is supported on the star of vertex vki . Then it can

define an X− module onH0 by acting on the vertex f · µk
i = f(vki )µ

k
i .

H0 =
⊕
k

W̃ m̄
k (X)⊗ C (3.16)

For each non negative integer i, define Subi(M) = Sub(Subi−1(M)), we can define Hk based on

the successive refinements:

Hk =
⊕
k

W̃ m̄
k (Subk(X))⊗ C (3.17)

Let H be the `2− completion of ⊕∞
i=0Hi. Then H is an ample nondegenerate X-module by in-

heriting X-module structure from Hk. Because the geometrically controlled Poincare complex is

homotopy equivariant with subdivision. Then it is possible to use the uniformly bounded subdi-

vision to control the propagation. Next is the standard construction of K-homology class in [35]

Appendix B. There is an outline in section 2.7.

Definition 3.4.4. The K-homology class of the signature operator of L space X is defined to be

the K-theory class of the path U in K1(C
∗
L(X)). K-homology class is [Dsign] .

Definition 3.4.5. The K-homology class of the signature operator on L space X is defined to be

the K-theory class in K0(C
∗
L(X)) determined by Q: a norm-bounded and uniformly continuous

path of σ-quasi-projections [0,∞]→ C∗(X).
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3.5 Connection with others Research

Albin, Leichtnam, Mazzeo and Piazza in [4] introduce the self dual mezzoperversity to con-

struct the signature package in Cheeger space. The authors above and Banagl in [2] redefine a

self dual intersection homology in Non Witt space. Banagl in the book [8] construct a signature

and L class in Non Witt space. In these construction, he talks about the obstruction of signature

existence on the Non-Witt space. Although the self-dual sheaf in [8] is not stratified homotopy, it

is independent of choice for Lagrangian structure for L class.

3.5.1 Hilbert Poincare complex on Cheeger space

In [22] , Higson and Roe prove the analytical Hilbert Poincare complex
(
Ω∗

L2(X), d
)

based on

Hodge de Rham complex and
(
Cℓ2

∗ (X), b∗
)

from `2 simplicial chain complex are chain equivalent

for combinatorial manifold. The similar result are generalized to Witt space with conical singular-

ity in [24]. In this section, we will prove Hilbert Poincare complex where [4] defined is controlled

chain homotopy equivalent to Hilbert Poincare complex (Ei(X), b) for the pseudomanifold with

conical singularity. Then the two signature is equivalent.

In [11], Cheeger consider the Cheeger boundary condition carries the Cauchy information

of the link, he prove a condition of self dual L2 cohomology on pseudomanifold with conical

singularity. In this section, I will follow Albin, Leichtnam, Mazzeo, and Piazza’s framework to

explain analytical signature on smooth stratified pseudomanifold [1]. Let us consider the stratified

space X with only one singular stratum Y . The resolution X̄ of X is obtained by blowing up each

of conical fibers at its vertex.

A smooth manifold X̄ with boundary ∂X̄ , a fibration of ∂X̄ over Y with fiber Z.

Z − ∂X̄ → Y

Let

mid =
dimZ

2
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In the complete edge metric is defined (also called iterated incomplete edge, or iie, metrics),

dx2 + x2 ∗ gZ + φ∗(gY )

Thus sections of iieT ∗X are locally spanned by dx, dy, xdz. The wedge operator is incomplete

edge operator and we need to consider the complete extension. The minimal extension is Dmin(d)

and the maximum extension is Dmax(d). All closed extension is between these two extensions.

Dmax (d) =
{
ω ∈ L2

(
X; Λ∗(iieT ∗X)X

)
: dω ∈ L2

(
X; Λ∗(iieT ∗X)X

)}
(3.18)

Dmin (d) = {ω ∈ L2
(
X; Λ∗(iieT ∗X)X

)
:

∃ (ωn) ⊆ C∞c
(
X; Λ∗(iieT ∗X)

)
s.t. ωn

L2

−→ ω and dωn is L2 -Cauchy }
(3.19)

The L2 differential form with Dmax or Dmin is a Hilbert complex [1]. We know the de Rham

cohomology H i
DR is isomorphic to simlicial homology Hi for smooth manifold. Similarly, L2

cohomology with Dmin is dual of upper middle perversity intersection homology group, and L2

cohomology with Dmax is dual of lower middle intersection homology For Witt space, the two

extension is same.

For non Witt space, Here the formulation of boundary condition is Cauchy data map. A local

ideal boundary condition is a bundle homomorphism, which is empty when X is Witt space. It is

corresponding to Lagrange structure of middle homology.

The Mezzoperversity (flat structure) require the global condition which means flat choice the

subbundle repsect to the connection5H . IfW is a flat subbundle:

W −→ Hmid(∂X/Y ) −→ Y

then Cheeger ideal boundary conditions fromW is:

DW(d) = {ω ∈ Dmax(d) : α (ωδ) is a distributional section of W} .
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A realization of de Rham operator in the ideal Cheeger condition is closed and self-adjoint Fred-

holm operator. Let mathscrDW is the orthogonal complement of W . Then the Poincare dual

map is

Q : H∗
W(X̂)× H∗

DW(X̂) −→ R

Definition 3.5.1. [4] A mezzoperversity W is self-dual ifW = DW . A pseudomanifold X with

a self-dual mezzoperversity is a Cheeger space.

Remark 3.5.2. Banagl in [8] define a topological stratified pseudomanifold exists nontrivial self

dual sheaf in SD(X̂) which call L-space. In the proposition 4.3 of [2], A smoothly stratified pseu-

domanifold is a Cheeger space if and only if it is an L-space. The requirement of pseudomanifold

with conical singularity to be the Cheeger space is the signature of the link is 0.

Let (X̂, g, B) be a Cheeger space with a self-dual mezzoperversityW , andB are the associated

Cheeger ideal boundary conditions withW . The signature operator ð+
sign is closed and Fredholm in

Theorem 6.6 [1], then the Fredholm index is the signature of the quadratic form with generalized

Poincare duality

DB

(
ð±
sign

)
= DB (ðdR) ∩ L2

(
X; Λ∗

±
(
iieT ∗X

))
For the uq ∼= B× C (Zq), because of Proposition 7.1 in [1], we have

Hk
(
d|Uq

,DB

(
d|Uq

))
=


Hk

B(Zq)
(Zq) if k < 1

2
dimZ

W (Zq) if k = 1
2
dimZ

0 if k > 1
2
dimZ

(3.20)

Because the signature of Zq is 0, W (Zq) is the Lagrange space of Hk(Zq). This means the cone

formula is same with 3.9. Let the Laplacian operator ∆ = ð2
sign , and heat operator is e−∆.

Next argument is basically same with proof of Hilbert Poincare complex equivalent of section

5 in [24]. If we just consider the punctured cone C0,1(N) = (0, 1)×N with conic Riemann metric

dr2 + r2gN .

Suppose the i-form θ in C0,1(N) is θ = g(r)φ+ f(r)dr∧β. Because of [11, Theorem 3.1], we
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know if the φi and ψj are the orthonormal basis of harmonic k-form Hk(N) satisfies the boundary

condition πHk(N)[θ(r, x)] = Σfiφi + Σgjψj with f ′
i(0) = gj(0) = 0. Let φi be the basis of

Lagrange space Va in the sense of [11, formula 3.16]. We need to map g(r)φi to the basis of Vlag.

For f(r)dr∧ω, it is in the image ofH∆ in [24, lemma 6.1], we do not need to worry that. The map

is defined by ξ 7→
∫
ξ
e−∆ω in [24, lemma 6.3]. Because of [24, lemma 6.5], it can define the chain

map Ψ :
(
L2
iie

(
X; iieΛ∗X

)
,DW(d)

)
→

(
Ẽ∗

n̄(X), b∗
)

is a controlled chain homotopy equivalence.

Theorem 3.5.3. Ψ∗ is a controlled homotopy equivalence from the Hilbert Poincare complex(
L2
iie

(
X; iieΛ∗X

)
,DW(d)

)
to Hilbert Poincare complex

(
Ẽ∗

n̄(X), b∗
)
.

3.5.2 Refined Intersection Homology

In this section I will introduce basic idea of sheaf in intersection homology. Then I will prove

refined intersection homology in [8] is equivalent to my construction in some case.

This based on the [19]. The stratification of n-dimensional X is:

X = Xn ⊃ Xn−2 ⊃ Xn−3... ⊃ X1 ⊃ X0,

define Uk = X\Xn−k, Yk = Xk\Xk−1 then we have

Uk
ik→Uk+1

jk←Yn−k

for the sheaf S of Uk+1, we have the exact sequence:

0→ j!j
∗S → S → i∗i

∗S → 0

then the distinguished triangle is : X
f→Y A is the sheaf on X and B is the sheaf on Y then we

have B → f∗f
∗B and f ∗f∗A→ A.

The basic idea of development of derived category is that complexes is better to handle than

cohomology. In the derived category, any quasi isomorphism which is isomorphism of homology.
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Let A• ∈ Db
c(X), Ux is a small distinguished open neighborhood of x. We have the hypercoho-

molgy:

Hi (A•)x
∼= Hi (Ux;A

•)

Hi (jx!A
•) ∼= Hi

c (Ux;A
∗)

By Goresky and MacPherson’s definition 3.3 in [19], the intersection homology sheaf AXp[S]

is the S-constructible sheaf and satisfies four axioms. (a) Normalization (b) lower bound (c) Van-

ishing condition: Hm(s∗k+1) = 0 for all m > p̄(k) − n. (d) Attaching For support dimension and

cosupport dimension is related with local intersection homology. The stalk is the colimit of F(U)

and limit of F(U) is costalk.

For any x in pseudomanifold, the neighbourhoodNx is homemorphic toNx
∼= Rm−k×C(LS).

Let us focus on the pseudomanifold with isolated singularity

Ip̄H
cl
−i (Nx) ∼= IpHcl

−i

(
Rm−k × C (LS)

) ∼= IpHcl
k−m−i (C (LS))

So here the costalk vanish is connectting with cone formula : H i
(
!xIpS•

X

) ∼= IHp̄
−i (C (LS))

When X is a pseudomanifold with conical singularity, we will show that the modified lower

middle perversity chain W̃ ∗
n̄(X) is satisfied the axioms RP below.

Definition 3.5.4. [definition 2.1 in [8]] Let X be a n dimensional stratified oriented pseudomani-

fold and S a constructible bounded complex of sheaves. S is a refined middle perversity complex

of sheaves if satisfies the axioms RP

• Normalization: there is an isomorphism of the restriction of S to the regular part U2 of X

and the constant rank 1 sheaf over U2

• Lower bound: Hℓ (j∗xS
•) = 0 for any x ∈ X̂ and ` < 0

• ñ-stalk vanishing: Hℓ (j∗xS
•) = 0 for any x ∈ Uk+1 \ U2 and l > n̄(k).

• m̃-costalk vanishing: Hℓ
(
j!xS

•) = 0 for any x ∈ Xn−k \Xn−k−1 and l ≤ m̄(k)+n− k+1.
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Because of Goresky and MacPhersons [AX1], Normalization and lower bound is satisfied for

intersection homology respect with any perversity. Here the modified intersection homology chain

is the interpolation so it is compatible with normalization and lower bound. ñ-stalk vanishing and

m̃-stalk vanishing are self-dual by axioms.

In fact the cone formula of ĨHm
i (X) is related with stalk vanish

ĨHm
i (C(Ls)) =


IHm

i (Ls) i < s

Hlag ∈ IHm
s (Ls) i = s

0 otherwise.

We know ĨHm
i (C(Ls)) = 0

Then interpolated chain W̃ ∗
n̄(X) I defined in this chapter satisfies axioms SD1 to SD4 in [8].

This is equivalent to self dual sheaf in SD(X̂) of [8]. Then because of the Theorem 4.1 in [2], it is

the redefined middle perversity complex of sheaves.
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4. C∗- SIGNATURE ON GENERAL NON WITT SPACE

In this chapter, we will show Non Witt space X can be a geometrically controlled Poincare

pseudomanifold if there exist W̃ m̄
∗ (X). The same framework in section 3.4 can be applied to

construct the C∗− signature on X . In fact, the method of construct the self dual chain Non Witt

space with only one special stratum can apply to general case.

4.1 Non Witt Space with only One Special Stratum

In this section, we consider the n-dimensional pseudomanifold X with one special singular

n− 2s− 1 dimensional stratum χn−2s−1. For each point x of χn−2s−1, the intrinsic link is written

as L(χn−2s−1, x). For the Non-Witt space with only one exception stratum, it means there is a point

x such that the lower middle perversity intersection homology about L(χn−2s−1, x) is not trivial

IHm
s (L(χn−2s−1, x), Q) 6= 0.

For all other odd codimensional stratum χn−2i−1, here i 6= s, the pseudomanifold has trivial lower

middle intersection homology for the link :

IHm
j (L(χn−2i−1, x), Q) = 0.

Because X is not Witt space, and we can get the inclusion map from W m̄
∗ (X) to W n̄

∗ (X) is not

chain equivalent. We still use the triangulation which is finer than the stratification. The general

method still decompose the difference space between W m̄
∗ (X) and W n̄

∗ (X). Then construct new

chains:

W m̄
j (X) ⊂ W̃ m̄

j (X) ⊂ W̃ n̄
j (X) ⊂ W n̄

j (X) (4.1)

In this section, we still use the technique from Xie and Higson’s article Appendix C in [24].
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First, we define the perversity Pr:

Pr(l) =

 m̄(l), l < r + 1

n̄(l), l > r
(4.2)

Next, let r be the maximum integer such that 2r + 1 ≤ n. We consider the filtration

W m̄
∗ (X) = W P2r+1

∗ (X) ⊂ W P2r−1
∗ (X)... ⊂ W P1

∗ (X) = W n̄
∗ (X).

Because for any other odd codimension i 6= s, we have IHm
l (L(χn−2i−1, x), Q) = 0. Then

W
P2i−1
∗ (X) and W P2i+1

∗ (X) are chain equivalent according to [33] Chapter III, Theorem 3.2. So

we get

W n̄
∗ (X) ∼ W P2s−1

∗ (X) and W m̄
∗ (X) ∼ W P2s+1

∗ (X).

The question is to decompose the W P2s−1
∗ (X) and W

P2s+1
∗ (X). When j 6= 2s + 1, then

P2s+1(j) = P2s−1(j), so the allowable requirement of the chain complexW P2s+1
∗ (X) andW P2s−1

∗ (X)

are same except for codimension 2s+1. When y ∈ W P2s−1

j (X), consider the allowable inequality

regarding χn−2s−1 = Y :

dim(y ∩ Y ) ≤ j − (2s+ 1) + P2s−1(2s+ 1) = j − s− 1.

The stronger restriction about y ∈ W P2s+1

j (X) is:

dim(y ∩ Y ) ≤ j − (2s+ 1) + P2s+1(2s+ 1) = j − s− 2.

Clearly, for j < s+1 and j > n− s+1, the inequalities are same and W P2s+1

j (X) = W
P2s−1

j (X).

In this case, we only need to consider the dimension s < j < n − s + 1. We need to define

W̃
p2s+1

j (X) and W̃ p2s−1

j (X) based on W p2s+1

j (X) and W p2s−1

j (X) such that:

W p2s+1
∗ (X) ⊂ W̃ p2s+1

∗ (X) ⊂ W̃ p2s−1
∗ (X) ⊂ W p2s−1

∗ (X)
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Moreover the inclusion map from W̃
p2s+1

j (X) to W̃ p2s−1

j (X) is chain equivalent.

Let us fix the direct sum decomposition when s < j < n− s+ 1

W
P2s−1

j (X) = W
P2s+1

j (X) + U j. (4.3)

Next, we want to build the connection between the s-dimensional cycle v in the intrinsic link

L(Y, y) of the stratum Y and U j . For the open stratum Y = χn−2s−1, it is the disjoint union of the

interior of n − 2s − 1 dimensional simplex σn−2s−1. Let uji be basis of U j. Every uji is minimal

and supported on the cone. ∑
uji = U j.

Similar to the case of conical singularity, let σn−2s−1
i be the simplex that intersect uji with this

condition:

dim(|uji | ∩ σn−2s−1
i ) = j − s− 1.

Let T be the triangulation for defining W m̄
j (X). Define T ′ as first barycentric subdivision of

T . Let τ j−s−1
i be j − s− 1 simplex of T ′ such that:

Int
(
τ j−s−1
i

)
⊂ |uji | ∩ Int(σn−2s−1

i )

We define lk(σi, T ′) as the link of σn−2s−1
i in T ′. We can see uji as the join complex with τ j−s−1

i

and s-simplex vi ∈ CT ′
s+1(lk(σi, T

′)):

uji = τ j−s−1
i ∗ vi. (4.4)

In [33] Chapter III Lemma 3.3, Siegel shows ∂ui ∩ Int(σi) does not contain Int(τi). In other

words :

∂(vi) = 0.

Because we can build a isomorphism between cycle v̄i ∈ CT ′
s (lk(σn−2s−1

i , T )′) and vi. Here v̄i
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is the chain complex in W m̄
∗ (lk(σ, T )). So v̄i is cycle of the link CT ′

s (lk(σn−2s−1
i , T ′)). We can

rewrite the cycle v̄i as addition of the boundary of chain w̄:

w̄ ∈ W m̄
s+1(lk(σ

n−2s−1
i , T )′)

and the Representative of h̄ ∈ IHm̄
i (lk(σi, T )

′) such that

v̄i = ∂(w̄) + h̄.

Hence we just consider the corresponding v̄i to take place of vi.If ci is a barycenter of σi, we

define the space V (ci) to be a set of all s-cycle in W m̄
∗ (lk(σi, T )).

In the conical singular case, we decompose the space of s-cycle V in the intrinsic link as:

V = Vlag ⊕ V ⊥
lag ⊕ Vo.

Similar, our target is the decomposition of V and furthermore U j .

4.1.1 Compatible Lagrange Structure

In this section, we need to construct a compatible subspace of V such that the space U j exist

a subbundle The Lagrange structure is a Lagrange subspace of the middle intersection homology

IHm̄
s (L) of the intrinsic link L(x) for every point.

In general, the existence of Lagrange structure is not simple when the dimension of singular

stratum is not 0 ( conical singularity case). We know for each point y of Y , (here L(y) is the

intrinsic link ) then X can be seen as the fiber bundle over Y . The middle dimensional homology

of the link is the vector bundle in the base space of Y .

Let us go back to 4.4, for τ j−s−1
i ∗vi, we know v̄i is the s-cycle of the linkCT ′

s (lk(σn−2s−1
i , T ′)).

We need to consider the connection between lk(σn−2s−1
i , T ) for different σn−2s−1

i . We know that

stratum χn−2s−1 is disjoint union of interior of n − 2s − 1 dimensional simplex σn−2s−1. Let the

barycentric of σn−2s−1
i be ci. We define the intrinsic link of L(ci) as the link in simplicial meaning
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where the dimension of the points is higher than n − 2s − 1. What’s more, for any simplex τ of

σn−2s−1
i

L(τ) = {V |V ∈ lk(τ, T ) , and dim(V ) > n− 2s− 1}

Clearly we use the intrinsic link of the barycentric to substitute lk(σn−2s−1
i , T )′ because L(ci) ∼=

lk(σn−2s−1
i , T )′. In addition, the intrinsic link of any point in σn−2s−1

i is L(ci). Moreover, if the

dim(τ) = j < n− 2s− 1, we can find

L(τ) ∼= Sn−2s−2−j ∗ L(τ).

Let σn−2s−1
i , σn−2s−1

i+1 be two adjacent simplices, the intrinsic link L(ci) and L(ci+1) is cobor-

dant. If we define the intrinsic link of cici+1 is L(cici+1),

∂L(cici+1) = L(ci)− L(ci+1).

In fact, L(ci+1) and L(ci) are homotopy equivalence, because the allowable condition is same,

there is map φi : L(ci+1)→ L(ci) such that

φ∗(IHm̄
s (L(ci))) = IHm̄

s (L(ci+1)).

Similar with conical singular case, we can use the same condition of 3.1 to choose the Lagrange

subspace Hlag(L(ci)) of IHm̄
s (L(ci)). Here the Lagrange subspace Hlag(L(ci)) is isomorphic to its

annihilator Hlag(L(ci))
⊥ about the intersection form.

Hlag(L(ci)) ∼= Hlag(L(ci))
⊥

We can require that:

φ∗(Hlag(L(ci))) = Hlag(L(ci+1)).

Recall that s-dimensional cycle of L(ci) is V (ci). Similar with the conical case of 3.2, we
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define Vlag(ci):

Vlag(ci) = {h+ ∂w ∈ V (ci)|h 6= 0 ∈ Hlag(ci) , and w ∈ W p2s+1

s+1 (L(ci))}.

Vo(ci) = {∂w ∈ V (ci)| w ∈ W p2s+1

s+1 (L(ci))}.

The decomposition of V (ci) is

V (ci) = Vlag(ci)⊕ V ⊥
lag(ci)⊕ Vo(ci)

In fact, φ∗
i is the isomorphism from Vlag(ci) to Vlag(ci+1) . The map φ∗ here keep the intersection

product of IHm̄
s (L(ci)). So we do not worry the Lagrange structure.

Let us give an example to chose the Lagrange structure on a special nontrivial product case.

WhenX1 is a closed line, the link L(x) of every point x ∈ X1 is a 2-torus T 2. That is a fibre bundle

π : E → B = X1 where the fiber F is C(T 2). Choose a and b are two generator of IHm̄
1 (T

2).

For two points c1 and c2 on the line, the map of homology of link is defined as φ : IHm̄
1 (L(c1))→

IHm̄
1 (L(c2)) define as φ : a → a + b. Let the figure ?? represent the E. After triangulation T , we

use the DECG and ABHE to represent the cycle of torus. BE represent a cycle a and AB is b.

So it maps to DH = a + b here. We just connect all the points to make BEDH to be a simplex.

Remember that we in fact use a subdivison and triangulation T is finer than the graph.

We can define the compatible Lagrange space for all point in the segment cici+1 connected with

ci and ci+1.

Definition 4.1.1. In a cycle S =
∑
i

cici+1 , the compatible condition means there is a compatible

Lagrange space Hlag(L(ci)) ∈ IHm̄
s (L(ci)) for every L(ci) such that we can build the map connect

for every segment cicj:

φ∗
i (Vlag(L(ci))

∼= Vlag(L(ci+1)).
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Figure 4.1: a non trivial product case

In addition, for every i, we have

φ∗
i−1

−1 ◦ φ∗
i−2

−1.....φ∗
i+1 ◦ φ∗

i is a isomorphism of Vlag(L(ci)

Suppose the compatible condition 4.1.1 holds for every circle in χn−2s−1. For every two con-

nected point ci and cj , there is a map from Vlag(ci) to Vlag(cj). This means the compatible subspace

V s
lag of intrinsic link exists for every point of χn−2s−1. Let us consider the space U s+1, we know

us+1
i is τ 0i ∗ vi, here τ 0i is the intersection point in σn−2s−1

i . Because of the allowable condition

of lower perversity, the intersection point should be barycenter of σn−2s−1
i . Correspond to conical

case, we define U s+1
lag to be spanned by us+1

i :

U s+1
lag = {

∑
i

λju
s+1
i |us+1

i = ci ∗ vi, v ∈ Vlag(ci), λj ∈ Q}. (4.5)
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U s+1
lag

⊥
= {

∑
i

λju
s+1
i |us+1

i = ci ∗ vi, v ∈ Vlag(ci)⊥, λj ∈ Q}.

Clearly, we get the decomposition of U s+1 via decomposition of intersection homology. U s+1
lag is

the space of U s+1.

Let us focus the segment cicj again, because V (ci) is the space of cycle, we get

∂(V (ci) ∗ cicj) = {α− β|α ∈ V (ci) , and β ∈ V (cj)}

Assume we define the subspace Vlag(ci) and Vlag(ci+1). Because we need to build the chain com-

plex, this means the for every element v of subspace of V (L(cicj)), ∂v should be in V (ci) and

V (ci+1).

In this cycle S, because of compatible condition, we can define the s+2 dimensional simplex∑
cici+1 ∗ v, v ∈ V s

lag in the circle.

So we define the subspace V s+2 of U s+2 by:

U s+2
lag = {

∑
i

λju
s+2
i |us+2

i ∈ U s+2, and ∂(
∑
i

λju
s+2
i ) = α− β , α , β ∈ U s+1

lag }

Definition 4.1.2. The decomposition of U j is defined via the mathematical induction, when j =

s+ 1, U s+1
lag is defined by 4.5. For j < n− s− 3, assume that U j−1

lag is defined. Let U j
lag be

U j
lag = {

∑
i

λku
j
i |u

j
i ∈ U j, and ∂(

∑
i

λku
j
i ) = α− β , α , β ∈ U j−1

lag , λk ∈ Q}

U j
lag

⊥
= {

∑
i

λku
j
i |u

j
i ∈ U j, and ∂(

∑
i

λku
j
i ) = α− β , α , β ∈ U j−1

lag

⊥
, λk ∈ Q}

Hence, we define every space U j
lag when s < j < n− s+ 1. Let us define

U j
o = {

∑
i

λkτ
j−s−1
i ∗ vi|vi ∈ Vo(cj) λk ∈ Q}.
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Then the new chain W P2s+1

j [0](X) and W P2s−1

j [0](X) for s < j < n− s+ 1 is:

W
P2s+1

j [0](X) = W
P2s+1

j (X) + U j
lag + U j

o . (4.6)

W
P2s−1

j [0](X) = W
P2s−1

j (X)− U j
lag

⊥
. (4.7)

If j < s+ 1 or j > n− s, we define :

W
P2s−1

j [0](X) = W
P2s−1

j (X), and W
P2s+1

j [0](X) = W
P2s+1

j (X).

We can conclude next lemma.

Lemma 4.1.3. W P2s+1
∗ [0](X) and W P2s−1

∗ [0](X) are chain complex. Moreover, W P2s+1
∗ [0](X) and

W
P2s−1
∗ [0](X) are chain equivalent respect to the inclusion map.

Proof. First, we check W P2s+1

j [0](X) is a chain complex. This is equivalent to :

∂W
P2s+1

j [0](X) ∈ W P2s+1

j−1 [0](X).

For j < s+ 1 or j > n− s, we do not change the chain. When s < j < n− s+ 1,

∂W
P2s+1

j [0](X) = ∂W
P2s+1

j (X) + ∂U

That is the reason why we add the trivial homology class Uo in the construction. In the construc-

tions, W P2s+1
∗ [0](X) and W P2s−1

∗ [0](X) are same when s < j < n − s + 1. When j is other, they

are still same due to the filtration.

Because of ∂W P2s+1

s+1 [0](X) ∈ W P2s+1
s [0](X). For any subcomplex Y of the X , we can let

W
P2s−1

j [0](Y ) = W
P2s−1

j (Y ) ∩W P2s−1

j [0](X).

Then ∂W P2s−1

j [0](Y ) ∈ ∂W P2s−1

j (Y ) ∩ ∂W P2s−1

j [0](X). So the chain complex are well defined in
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the X .

For the chain respect to other perversity P2i+1 in 4.2 if i > s , let us define W P2i+1

j [0](X) as

the first modified chain :

W
P2i+1

j [0](X) = W
P2i+1

j [0](X) + U j
lag + U j

o . (4.8)

When i < s

W
P2i−1

j [0](X) = W
P2i−1

j [0](X)− U j
lag

⊥
. (4.9)

We know W
P2i+1

j (X) = W m̄
j (X) and W P1

j (X) = W n̄
j (X). Because of Witt condition for other

codimension, W P2i+1

j [0](X) is chain equivalent to W P2s−1

j [0](X), so in fact we build the interpola-

tion chain W m̄
∗ [0](X) between W n̄

∗ (X) and W m̄
∗ (X). However, that is not enough.

Remark 4.1.4. The intrinsic link of the vertex belong to the dimension n + 1 is coboundary for

intrinsic link of vertex belong to the dimension n. In the definition of Lagrange structure, we

need to keep the tranversality and local triviality. Locally, the neighbourhood of pseudomanifold is

trivial product R×C(L). We expect U j keep tranversality. Here tranversality is that the preimage

of fiber bundle is simplex.

Next we need to consider the modified chain W m̄
∗ [0] may break the Witt condition of other odd

codimension. Let us compute the intersection homology of the link about other odd stratum.

Theorem 4.1.5. If k < s, on every point x in the odd codimensional stratum χn−2k−1, the redefined

homology with respect to Wm
∗ [0](X) of intrinsic link L(χn−2k−1, x) is still trivial,

IHn
k [0](L(χn−2k−1, x), Q) = 0.

Proof. This is because when n−k−1 > n−s−1, the difference in the redefined chains and original

chains Wm
∗ [0](X)−Wm

∗ (X) is not involved with the k-homology of the link L(χn−2k−1, x).

Next we use mathematics induction to construct the iterated structure. Let i is integer from 0
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to [n+ 1/2]

s = s0 and si = s0 + i.

The [i] changed chain and [i] changed lower middle perversity intersection homology is defined

as W P2si+1

∗ [0](X) and IH
P2si+1

∗ [i](X). For each i, if the [i − 1] redefined lower middle perversity

intersection homology about the intrinsic link is trivial, we do not changed the chain.

IHn
si
[i](L(χn−2si−1, x), Q) = 0.

we get :

W
P2si+1

j [i](X) = W
P2si+1

j [i− 1](X) (4.10)

and we know from [24] W P2si+1

j [i](X) is equivalent to W P2si+1

j [i](X)

If [i−1] redefined lower middle perversity intersection homology about the intrinsic link is not

trivial, and we assume there is a compatible Lagrange structure.

IHP2si−1
si

[i− 1](L(χn−2si−1, x), Q) = Hlagi ⊕ H⊥
lagi

This means we need to change W P2k+1

j [i](X) and W P2k−1

j [i](X) because of the nontrivial homol-

ogy. For si + 1 < j < n− si, we have

W
P2s+1

j [i](X) = W
P2s−1

j [i](X) + U j[i]. (4.11)

Here, the existence of Lagrange structure for the homology of the link make it possible to

decompose Uj further. Next we use the formula 4.6 and 4.7 to define the changed chain about

W
P2si+1

j [i](X) and W P2si−1

j [i](X) for si + 1 < j < n− si:

W
P2si+1

j [i](X) = W
P2si+1

j [i− 1](X) + U j
lag[i] + U j

o [i]. (4.12)

W
P2si−1

j [i](X) = W
P2si−1

j [i− 1](X)− U j
lag

⊥
[i]. (4.13)
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The previous theorem 4.1.5 make the [i] changed chain does not affect the [i−1] change. Specially,

let us define W m̄
j [i](X) and W n̄

j [i](X) as :

W m̄
j [i](X) = W m̄

j [i− 1](X) + U j
lag[i] + U j

o [i].

W n̄
j [i](X) = W n̄

j [i− 1](X)− U j
lag

⊥
[i].

Let us repeat the actions for all other odd codimensional stratum n − 2h − 1, then we get a

sequence of sj represent for each actions. For every odd codimension 2sj + 1, we modify based

on the Lagrange structure in intersection homology of the link. Let the final interpolation chains

be W̃ n̄
∗ (X) and W̃ m̄

∗ (X).

Definition 4.1.6. Let si be the largest possible number such that 2si+1 ≤ n. Define the new chain

as:

W̃ m̄
j (X) := W m̄

j [i](X)

W̃ n̄
j (X) := W n̄

j [i](X)

Condition 4.1.7. The oriented non Witt spaceX in this chapter assume to has compatible Lagrange

structure for each odd codimensional stratum to construct W̃ n̄
∗ (X) and W̃ m̄

∗ (X) on X .

Similar, Let W̃ ∗
n̄(X) = Hom(W̃ n̄

∗ ,C), and W̃ ∗
m̄ = Hom(W̃ m̄

∗ (X),C). Because the Hom(,C)

functor are exact, then the W̃ m̄
∗ (X) and W̃ n̄

∗ (X) are chain equivalent by the lemma 4.1.3. Here the

chain map from W̃ m̄
∗ (X) to W̃ n̄

∗ (X) is g∗. And because of the construction, the inclusion map are

chain equivalence.

Lemma 4.1.8. The new chains W̃ m̄
∗ (X) and W̃ n̄

∗ (X) are chain equivalent respect to the inclusion

map ι.

Remark 4.1.9. The definition of the repeated interpolated chain is closely related with mezzoper-

versity for iterative Cheeger boundary conditions at each non-Witt stratum of even codimension of
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[3]:

L̃ = {W (Yn−3) ,W (Yn−5) , . . . ,W (Yℓ)}

4.1.2 Cone Formula

In this subsection, we compute the cone C(Z) = τ ∗ Z which is the join complex with τ .

Because of the requirement of diagonal approximation, we only need to consider τ ∈ χj , here

dim(z) = j and z is the subcomplex of L(τ, χj). The regular cone formula for the intersection

homology for perversity p̄ is :

IHm̄
i (C(Z)) =


IHm̄

i (Z) i < j − m̄(j + 1)

0 otherwise.

(4.14)

If j < 2s0, we know W̃ m̄
j (X) = W m̄

j (X) when j < s0 + 1, so the cone formula is unchanged

related W̃ n̄
i (C(Z)) and W̃ m̄

i (C(Z)) :

ĨHm̄
i (C(Z)) =


IHm̄

i (Z) i < j − m̄(j + 1)

0 otherwise.

(4.15)

The codim of (τ) with respect to Z is j + 1 , for the allowable condition of vertex τ , we can get

i− (j + 1) + m̄(j + 1) < 0

If the allowable condition is satisfied, IHm̄
i (C(X)) = W m̄

i (C(X) − {v}). Because the the chain

W̃ m̄
∗ (X) is an interpolation of W m̄

∗ (X) and W n̄
∗ (X), it is easy to prove that when i > j− m̄(j+1)

we have

ĨH
m̄

i (C(Z)) = 0. (4.16)
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Because m̄(j + 1) = n̄(j + 1) for j is odd. So when j = 2s, the only difference happen in

dimension s:

ĨHm̄
s (C(Z)) 6= IHn̄

s (C(Z))

Lemma 4.1.10. When j = 2sk and IHn
sk
[k](L(χn−2sk−1, x), Q) = 0, we have: ĨHm̄

sk
(C(Z)) = 0.

When j = 2sk and IHn
sk
[k](L(χn−2sk−1, x), Q) = Hlagk ⊕ H⊥

lagk
, then ĨHm̄

sk
(C(Z)) = Hlagk .

Proof. When i = sk+1, the construction of W̃ m̄
i (C(Z)) is chain equivalence toW

P2sk+1

i [k](C(Z)),

we know IH
P2sk+1

i [k](C(Z)) depends on the Lagrange structure. This construction means the cone

formula changed on the dimension sk.

Lemma 4.1.11. When j < 2sk, the IHn
sk
[k](C(Z)) = IHn

sk
[k](Z).

Proof. Let us see the allowable condition respect to the conical singular stratum. Because the

allowable condition is unchanged we can conclude that the intersection homology is same as usual.

Similarity, Let Borel-Moore intersection homology (intersection homology with compact sup-

port ) be BM [ĨHm̄
i ]. When j < 2s0, BM [ĨHm̄

i ] of the cone is that :

BM [ĨHm̄
i ](C(Z)) =


BM [ĨHm̄

i ](Z) i ≥ j − m̄(j + 1)

0 otherwise.
(4.17)

If j = 2s0, the construction of BM [W̃ m̄
j ](C(Z)) is chain equivalence to BM [W

P2s0+1

j [0]](C(Z))

This means the cone formula changed on the dimension s0:

BM [ĨHm̄
i ](C(Z)) =


BM [ĨHm̄

i ](Z) i > s0

Hlag0(Z) ∈ BM [IHm̄
s0](Z) i = s0

0 otherwise.

(4.18)
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When j = 2sk and IHn
si
[i](L(χn−2si−1, x), Q) = 0 , then we know it is similar with 4.15 although

the chain W̃ m̄
j (X) changed.

BM [ĨHm̄
i ](C(Z)) =


BM [ĨHm̄

i ](Z) i ≥ j −m(j + 1)

0 otherwise.

(4.19)

For j = 2sk and IHn
si
[i](L(χn−2si−1, x), Q) 6= 0, the construction of ˜W m̄

sk
(C(Z)) means the cone

formula changed on the dimension sk:

BM [ĨHm̄
i ](C(Z)) =


BM [ĨHm̄

i ](Z) i > sk

Hlagk ∈ BM [IHm̄
sk](Z) i = sk

0 otherwise.

(4.20)

Hence, we in fact the cone formula build the locally duality with boundary in the cone .

4.1.3 Diagonal Approximation

In order to prove the Poincare duality with respect to W̃m
j (X), we need to build the diagonal

approximation for the new chain W̃m
j (X). A diagonal approximation should be a natural chain

homomorphism for the category of filtered simplicial complexes and placid simplicial maps and

4(X) = x⊗ x for any (0̄, 0)-allowable simplex. 0̄ = 0 is the zero perversity.

Because of [24] , there exists an unique diagonal approximation map up to homotopy for lower

middle perversity and upper middle perversity :

4 : W 0̄
∗ (X)→ W n̄

∗ (X)⊗W m̄
∗ (X).

What we need is to construct the new diagonal approximation 4̃ decomposeW 0̄
∗ (X) to W̃ m̄

∗ (X)⊗

W̃ n̄
∗ (X). Like the conical singularity, the key of diagonal approximation is cone formula for

W̃ m̄
j (X) and W̃ n̄

∗ (X) we defined before.
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Lemma 4.1.12. There exists a diagonal approximation 4̃ for the chains complex W̃ m̄
j (X) and

W̃ n̄
j (X) in the sense of [24].

4̃ : W 0̄
∗ (X)→ W̃ m̄

∗ (X)⊗ W̃ n̄
∗ (X).

Moreover 4̃ is unique up to chain homotopy.

Proof. It is the application of method of acyclic models.

Because the basis element of W 0
s+1(X) is minimal and modeled over the cone, it is enough to

consider the case W 0
s+1(C(Z)) for some cone C(Z):

4j : W
0̄
j (C(Z))→ W̃ m̄

∗ (C(Z)⊗ W̃ n̄
∗ (C(Z)).

Recall that we only modified W m̄
j [i](C(Z)) and W n̄

j [i](C(Z)) when si < j < n − si + 1. When

the dimension j is less than s0 +1 = s+1, the diagonal approximation map 4̃j is the original4j

which is defined in the article [24].

Let us use the mathematical induction to deal with dimension from s+ 1 to n.

For s < j < n, because4j should be a chain morphism, this means

∂(4j(∂ω)) = 0.

So4j(∂ω) is a cycle in W̃ m̄
∗ (C(Z)⊗ W̃ n̄

∗ (C(Z)). Because of the lemma 4.1.13, the trivial homol-

ogy means4j(∂ω) is a boundary of

ζ ∈ (W̃ m̄
∗ (C(Z)⊗ W̃ n̄

∗ (C(Z))j+1.

That is: 42s(∂ω) = ∂ζ. So we can define :

4j+1(ω) = ζ.
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This prove the existence of the modified diagonal approximation.

Next we prove the uniqueness up to homotopy. Let us assume there is another diagonal ap-

proximation 4̃
′
. Then we can inductively construct the homotopy hi between 4̃ and 4̃

′
. Because

of 4̃0 = 4̃
′
0. then we define h0 = 0. If we have defined hi for all i < s, we need to build hi+1, then

we get ∂hi+1 = ∆i+1−∆′
i+1−hi∂. When ξ is a basis ofW 0

i+1(X), ∂hi+1ξ = (∆i+1−∆′
i+1−hi∂)ξ

is still a cycle. Then due to lemma 4.1.13, we know ∂hi+1ξ should be a boundary of ζ in

W̃ m̄
∗ (X) ⊗ W̃ n̄

∗ (X))i+2. Then it is natural to define hi+1(ω) = ζ . We have define a chain ho-

motopy hj between 4̃ and 4̃
′
.

Lemma 4.1.13. Let Z ∈ X be a i−simplex. If the diagonal approximation map 4̃ exist for Z:

4̃ : W 0̄
∗ (Z)→ W̃ m̄

∗ (Z)⊗ W̃ n̄
∗ (Z).

for the image of diagonal approximation, we can get

Hk(W̃
m̄
∗ (C(Z)⊗ W̃ n̄

∗ (C(Z)) = 0,

for k ≥ i.

Proof. First we use the algebraic Kunneth formula :

Hk(W̃
m̄
∗ (C(Z)⊗ W̃ n̄

∗ (C(Z)) =
⊕
j

ĨH
m

j (C(Z))⊗ ĨH
n

k−j(C(Z)),

Because of 4.16 and cone formula 4.15, when j>i−m̄(i+ 1) we get :

ĨH
m̄

j (C(Z)) = ĨH
n̄

j (C(Z)) = 0

Hence k > i, we can find the

Hk(W̃
n̄
∗ (C(Z)⊗ W̃ n̄

∗ (C(Z)) = 0.
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Next we need to prove Hi(W̃
n̄
∗ (C(Z) ⊗ W̃ n̄

∗ (C(Z)) = 0. When dimension of Z is i < 2s0,

because of the cone formula 4.15, it is clear the equation holds.

When the dimension of Z is 2s0 or more generally 2sk , we need to use the new cone formula

lemma:

ĨH
m̄

i (C(Z)) =


ĨH

m̄

i (Z) i < sk

Hlagk(Z) ∈ IHm̄
sk
(Z) i = sk

0 otherwise.

(4.21)

If H2sk(W̃
n̄
∗ (C(Z) ⊗ W̃ n̄

∗ (C(Z)) 6= 0, from algebraic Kunneth formula we find the only possible

nontrival generator is from W̃ m̄
sk
(C(Z)⊗ W̃ n̄

sk
(C(Z)). Let us use hi ⊗ hj to represent the nonzero

term. However, consider the 2sk-dimensional diagonal approximation 4̃2sk
, there does not exist

hi ⊗ hj in the image of42sk because of the Lagrangian Structure of IHm
sk
(Z). So we get

H2sk(W̃
n̄
∗ (C(Z)⊗ W̃ n̄

∗ (C(Z)) = 0.

For the dimension of Z is odd or not equal to 2sk, because of the cone formula in section 4.1.2

it is similar to prove :

Hi(W̃
n̄
∗ (C(Z)⊗ W̃ n̄

∗ (C(Z)) = 0.

4.1.4 Poincare Duality

Similar, we will prove the Poincare duality in the category of geometric module. With help of

diagonal approximation, we can define the cap product by that:

∩̃ : W̃ j
n̄(X)⊗W 0

n(X)
i⊗△̃−−→W j

n̄(X)⊗ (W̃ n̄
∗ (X)⊗ W̃ m̄

∗ (X))
ε⊗1−−→ W m̄

n−j(X). (4.22)
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here the ε : W̃ n̄
∗ (X)⊗ W̃ ∗

n̄(X)→ C is the evaluation map. Define the Poincare dual map P is cap

product with fundamental class [X]:

P̃ := −∩̃[X]

We need the Mayer-Vietories sequence for new chain W̃ m̄
∗ (X).

Lemma 4.1.14. For X is a PL pseudomanifold. Y1 and Y2 are closed subpseudomanifold of X ,

and X = Y1 ∪ Y2. Then the short exact sequence of modified chain holds:

0→ W̃ m̄
∗ (Y1 ∩ Y2)

i1⊕i2→ W̃ m̄
∗ (Y1)⊕ W̃ m̄

∗ (Y2)
i1−i2−→ W̃ m̄

∗ (X)→ 0

Lemma 4.1.15. Suppose X is an n-dimensional oriented non Witt space with the condition 4.1.7.

The general Poincare duality map P̃ from W̃ ∗
m̄(X) to W̃ n̄

n−∗(X) :

P̃ : W̃ i
m̄(X)→ W̃ n̄

n−i(X).

is geometrically controlled chain equivalence .

Proof. The proof is similar with Lemma 3.3.2. We still use the mathematical induction to prove it,

first we assume the Poincare duality holds for the i ≤ k dimension. It is enough to show Poincare

duality hold for k + 1 dimension pseudomanifold case . Because of Mayer-Vietories sequence,

we can focus the star of a j dimensional simplex σ named Y in X which is enough to prove

Poincare duality in geometrical control category. In fact, if Z is the link of σ̂ in the first barycentric

subdivision, we have W̃ m̄
i (X)

∣∣∣
Stσ̂

= W̃ m̄
i (C(Z)). It is enough to prove the relative chain map

P̃ : W̃ i
m̄(Y, ∂Y )→ W̃ n̄

k+1−i(Y ).

is chain equivalence.
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By the induction, the dual operator P̃ = − ∩ [∂Y ] :

W̃ i
p̄(∂Y )→ W̃ q̄

n−i(∂Y )

is chain equivalence ∂Y because of the dimension. Consider the diagonal approximation 4̃[∂Y ]:

4̃[∂Y ] =
∑

|ω|+|θ|=j

ω ⊗ θ + ∂(
∑

|x|+|y|=j+1

axyx⊗ y)

Here ω and θ are basis of ĨH
m̄

∗ (∂Y ) and ĨH
n̄

∗ (∂Y ) respectively. Let x and y be basis of W̃ m̄
∗ (∂Y )

and W̃ n̄
∗ (∂Y ). By assumption, Y = σ̂∗∂(Y ) . In the case j = 2sk and IHn

si
[i](L(χn−2si−1, x), Q) 6=

0, we have the homology formula :

ĨH
m̄

i (Y ) =


ĨH

m̄

i (∂Y ) i < sk = j − m̄(j + 1)

Hlagk(Y ) ∈ IHm̄
sk
(∂Y ) i = sk = j − m̄(j + 1)

0 otherwise.

(4.23)

ĨH
n̄

i (Y ) =


ĨH

n̄

i (∂Y ) i < sk = j − n̄(j + 1)

Hlagk(Y ) ∈ IHm̄
sk
(∂Y ) i = sk = j − n̄(j + 1)

0 otherwise.

(4.24)

When |ω| + |θ| = j = 2sk, remember that there does not exist hi ⊗ hj in the lemma 4.1.13, just

one of ω or θ is a boundary.

In other cases, we have :

ĨH
m̄

i (Y ) =


ĨH

m̄

i (∂Y ) i ≤ j − m̄(j + 1)

0 otherwise.

(4.25)
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ĨH
n̄

i (Y ) =


ĨH

n̄

i (∂Y ) i ≤ j − n̄(j + 1)

0 otherwise.

(4.26)

When |ω| + |θ| = j, only one of ω or θ is a boundary. So we conclude ω ⊗ θ is a boundary. That

means there exist ω̃ ⊗ θ̃ such that

∑
|ω|+|θ|=j

ω ⊗ θ = ∂(
∑

|ω̃|+|θ̃|=j+1

ω̃ ⊗ θ̃ )

Moreover, we get 4̃[∂Y ] is the boundary of
∑
ω̃ ⊗ θ̃ +

∑
axyx ⊗ y. Because we know

∂4̃[Y ] = 4̃[∂Y ]. Next we combine the lemma 4.1.13 to get :

4̃[Y ] =
∑

|ω̃|+|θ̃|=j+1

ω̃ ⊗ θ̃ +
∑

|x|+|y|=j+1

axyx⊗ y

Then we can define the duality operator P̃ : W̃ i
p̄(Y, ∂Y ) → W̃ q̄

n−i(Y ). Because of lemma 4.1.13,

this map is the homology isomorphism. Because the quasi-isomorphism of free chain complex is

chain equivalence, the dual map P̃ is chain equivalence.

It is similar to prove Poincare duality in geometrical control category because the map in the

star of simplex is geometrically controlled.

Finally, we can get the result below.

Theorem 4.1.16. If X is the n dimensional oriented pseudomanifold satisfy the condition 4.1.7,

then Poincare dual map P̃ is geometrically controlled chain equivalence for the chain W̃ m̄
∗ . In

other words, X is a geometrically controlled Poincare pseudomanifold. In this case, we call it L

space.

The proof of next Lemma is totally same with the the proof of lemma 3.3.3 because of natural

property of diagonal approximation.

Lemma 4.1.17. P̃∗ is chain homotopy to (−1)i(n−i)P̃ in the geometrically controlled category. The
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two maps

P̃ :
(
W̃ i

n̄(X), b∗
)

∩̃[X]−→
(
W̃ n̄

n−i(X), b
)

and

P̃′ :
(
W̃ i

n̄(X), b∗
)

∩̃[X]−→
(
W̃ m̄

n−i(X), b
)

ι→
(
W̃ n̄

n−i(X), b
)

are chain homotopic in the geometrically controlled category.

Then (W̃ n̄
∗ (X), b, P̃) is the geometrically controlled Poincare complex. Let

T =
1

2

(
P̃+ (−1)(n−i)iP̃∗

)
.

And we define Ẽn̄
∗ (X) to be Hilbert space of W̃ n̄

∗ (X) with canonical inner product determined by

a natural basis of minimal elements. (Ẽn̄
∗ (X), b, T ) is a n-dimensional Hilbert- Poincare complex.
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4.2 General Case

In this section, we consider the n-dimensional oriented pseudomanifold X with a collection of

exceptional stratums {χn−2si−1}i, i ∈ Z. We require si > sj when i > j. For each i, the Witt

condition 2.5.8 fails for the the intrinsic link L(χn−2si−1, x). It means there are stratums that for

the lower middle perversity intersection homology about the intrinsic link {L(χn−2si−1, x)} is not

trivial

IHm
si
(L(χn−2si−1, x), Q) 6= 0.

Witt condition 2.5.8 holds for all other odd codimensional stratum {χn−2kj−1} when kj 6= si. Here

the pseudomanifold has trivial rational lower middle intersection homology of the intrinsic link :

IHm
kj
(L(χn−2kj−1, x), Q) = 0.

We still use the triangulation which is finer than the stratification. Because of Witt condition,

W m̄
∗ (X) is not equivalent toW n̄

∗ (X). We need to decompose the difference space betweenW m̄
∗ (X)

and W n̄
∗ (X).

W m̄
∗ (X) = W P2r+1

∗ (X) ⊂ W P2r−1
∗ (X)... ⊂ W P1

∗ (X) = W n̄
∗ (X).

Here we change from the highest codimension s1. When we consider the X − X2s1+1, it is still

a oriented pseudomanifold where the lower middle perversity intersection homology about the

intrinsic link {L(χn−2si−1, x)} is not trivial . It is just the situation in section 4.1.

If there is a compatible Lagrange structure on the link L(χn−2s2−1), we can construct the chain

W̃m
j (X − Xn−2s1−1) based on 4.1.6. Let us redefine that Wm

∗ (X)[1] = W̃m
∗ (X − Xn−2s1−1)

and W n
∗ (X)[1] = W̃ n

∗ (X − Xn−2s1−1) for the chain in the stratum of x ∈ Xn−2s1−1. We know

Wm
∗ (X)[1] and W n

∗ (X)[1] are two equivalent chain and it does not affect the Witt condition of

higher codimensional stratum. Hence we need to consider the next odd codimensional stratum

s2 where the non Witt conditions fails. We can keep construct W̃m
∗ (X)[2] based on the Lagrange
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structure of L(χn−2s2−1), all of this is similar with section 4.1.1. If all odd codimensional stratum

where the Witt condition fails has compatible Lagrange structure, the final interpolation chain is

defined to be W̃ m̄
∗ (X). With similar step we can build the diagonal approximation based on new

chains. There is no difference between previous section and general situation. Finally, we can get

the result below.

Theorem 4.2.1. If X is the n dimensional oriented pseudomanifold has enough compatible La-

grange structure to construct W̃ m̄
∗ (X), then Poincare dual map with fundamental class [X] is

geometrically controlled chain equivalence for the chain W̃ m̄
∗ (X). In other words, X is a geomet-

rically controlled Poincare pseudomanifold.

Moreover,(W̃ n̄
∗ (X), b, P̃) is a geometrically controlled Poincare complex. We can define the

Hilbert Poincare complex after completion. K homology of signature is defined with the similar

method.

Remark 4.2.2. In [1], Albin, Leichtnam, Mazzeo and Piazza define the smoothly stratified space

with depth k in mathematical induction. Let the Smooth manifold be depth 0 and assume space

with depth K has been defined. Then the space with depth k + 1. The self dual mezzoperversity

should be connected with compatible Lagrange structure for the general Cheeger space .
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5. SUMMARY

In this dissertation, we study the C∗- algebraic signature on piecewise linear non Witt spaceX .

We follow the Higson and Roe’s study of signature on Hilbert Poincare complex. The key

construction is to prove that Non Witt space is geometrically controlled Poincare pseudomanifold.

For non Witt space with conical singularities, the signature of links is 0, we construct a self dual

chain complex W̃ n̄
j (X) which interpolate between filtered simplicial complex with lower middle

perversity and upper middle perversity: W m̄
j (X) ↪→ W̃ n̄

j (X) ↪→ W n̄
j (X). Let the geometrically

controlled Poincare pseudomanifold without Witt condition be L space. We have following theo-

rem: (See section 3.4 and theorem 3.4.1 for the detail)

Theorem 1. 1. The C∗− algebraic higher signatures signΓ(X, f) ∈ Kn (C
∗
r (Γ)) of L spaces

X are invariant under L cobordism. That is , if X1 and X2 are n dimensional two closed

oriented L spaces with continuous maps f1 : X1 → BΓ and f2 : X2 → BΓ. Suppose X1

and X2 are Γ-equivariantly L-cobordant, then

signΓ (X1, f1) = signΓ (X2, f2) .

2. C∗− algebraic higher signatures of L spaces are invariant under stratified homotopy equiv-

alences which keep the Lagrange structure. Suppose X and Y are two closed oriented L

spaces, and f : Y → BΓ is a continuous map. If φ : X → Y is a stratified homotopy

equivalence and keep the Lagrange structure, then

signΓ(X, f ◦ φ) = signΓ(Y, f)

For general non Witt space X , the condition of Poincare pseudomanifold for Non Witt space

X is existence of the compatible Lagrange structure on every odd codimensional stratum. It still

can prove X is a Poincare pseudomanifold. Let the final chain be W̃m
∗ (X). (See section 4.2 for
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detail)

Theorem 2. If X is the n dimensional oriented pseudomanifold has enough compatible Lagrange

structure to construct W̃m
∗ (X), then Poincare dual map with fundamental class [X] is geometri-

cally controlled chain equivalence for the chain W̃ m̄
∗ (X).
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