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ABSTRACT

This dissertation focuses on Bayesian sampling, Bayesian evidence estimation and supervised

functional principle component analysis (PCA) and the corresponding theoretical, computational

and application challenges. In Bayesian statistics, strategies for estimating normalizing constants

often require samples from the underlying target distribution, but obtaining these samples can be

challenging, especially when the target is multi-modal. Some Markov chain Monte Carlo (MCMC)

and adaptive importance sampling (AIS) methods are specifically designed to address this chal-

lenge, such as parallel tempering. However, tuning these algorithms can be time-consuming, and it

is typically unclear which estimation strategy should be applied once the samples are obtained. We

propose a new adaptive MCMC method to sample from multi-modal target densities and simul-

taneously perform much of the computation needed for our complementary normalizing constant

estimator. Our approach adapts the bridge sampling estimation techniques and proposes a new ver-

sion of the Warp-U bridge sampling estimator. An important aspect of our overall method is that it

requires minimal tuning and is simpler to apply than many competing techniques. The ergodicity

of our sampling algorithm is established. In functional data analysis, incorporating covariates into

functional PCA can substantially improve the representation efficiency of the principal components

and predictive performance. However, many existing functional PCA methods do not make use

of covariates, and those that do often have high computational cost or make overly simplistic as-

sumptions that are violated in practice. We propose a new framework, called Covariate Dependent

Functional Principal Component Analysis (CD-FPCA), in which both the mean and covariance

structure depend on covariates. We propose a corresponding estimation algorithm, which makes

use of spline basis representations and roughness penalties, and is substantially more computation-

ally efficient than competing approaches of adequate estimation and prediction accuracy. A key

aspect of this work is our novel approach for modeling the covariance function and ensuring that it

is symmetric positive semi-definite. We demonstrate the advantages of our three methods through

simulation studies and astronomical data analysis.
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1. INTRODUCTION

Bayesian sampling and normalizing constants estimation, e.g., Bayesian evidence estimation,

are two fundamental problems in Bayesian statistics. Bayesian sampling methods are used for

Bayesian parameter estimation, while Bayesian evidence is often used for model selection and

hypothesis testing. These methods have gained popularity in a wide range of scientific fields and

here we particularly highlight their use in astronomy. Another method that is widely used for the

analysis of astronomical data is functional data analysis (FDA). Among a variety of functional

data approaches, the most fundamental is functional principal component analysis (FPCA). This

dissertation proposes a new Markov chain Monte Carlo (MCMC) method for Bayesian sampling, a

new version of the Warp-U bridge estimator (Wang et al., 2020) for Bayesian evidence estimation

and a new supervised functional PCA framework. These methods are then used to analyze several

astronomical datasets.

Normalizing constants play a central role in modern statistical applications, e.g., Bayesian evi-

dences are widely used in many scientific fields. For instance, Nelson et al. (2018) and Pullen and

Morris (2014) discussed the computation of Bayesian evidences in the context of exoplanet detec-

tion and systems biology, respectively. Given the many scientific uses of normalizing constants,

computationally and statistically efficient methods for estimating them are of high practical value,

and many powerful algorithms have been introduced. On the other hand, some ubiquitous scenar-

ios remain challenging, such as estimating normalizing constants for multi-modal target densities.

Indeed, Nelson et al. (2018) applied numerous strategies for estimating the Bayesian evidence for

the presence of an exoplanet orbiting a star and obtained somewhat divergent estimates, even after

substantial calibration efforts. We make two main contributions in these fields of Bayesian sam-

pling and Bayesian evidence estimation. Our first contribution is to introduce a new Markov chain

Monte Carlo (MCMC) sampling algorithm, called Warp-U MCMC, which alternately applies the

Warp-U transformation (Wang et al., 2020) and then its inverse. Our second contribution is to sub-

stantially improve the computational efficiency of the Warp-U bridge estimation strategy (Wang

1



et al., 2020).

Functional data analysis (FDA) is increasingly important in many scientific fields including

astronomy, biology, and neuroscience. It is a powerful tool that can be used to jointly model col-

lections of curves, time series, spatial structures, or other functional observations, and can address

difficulties such as sparse and irregularly spaced measurements. The key to FDA is exploiting the

widespread presence of underlying smoothness in real data to efficiently model similarities and

differences between functional observations, e.g., the similarities and differences between time se-

ries capturing the changing brightness of stars of a given type. We propose an FPCA method that

incorporates covariates information in a computationally efficient manner which overcomes the

computational challenge, while simultaneously allowing both the mean function and the covari-

ance function to depend on the covariates in a non-linear way, as well as permitting unbalanced

sampling patterns.
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2. WARP-U MCMC AND STOCHASTIC BRIDGE SAMPLING

2.1 Introduction

We consider the following general context: for an unnormalized probability density q with sup-

port Θ, we seek to estimate the normalizing constant c =
∫

Θ
q(θ) dθ. In statistical approaches to

this problem, there are typically two key tasks: (i) obtaining samples θ1,θ2, · · · ,θn from π = 1
c
q

or some related density (or densities), and (ii) constructing an estimate of c based on the sam-

ples. These tasks may be performed sequentially or in combination, depending on the specific

strategy. If π is multi-modal, then substantial inefficiencies can result from not addressing this in

both the sampling and estimation tasks, (i) and (ii), respectively. On the other hand, addressing

multi-modality does not guarantee an efficient estimator of c.

We propose a powerful new algorithm that efficiently samples from a multi-modal target den-

sity and then applies a complementary estimation strategy which estimates the target normalizing

constant. The estimation step is complementary in the sense that much of the necessary compu-

tation is completed during the sampling stage. Both our sampling and estimation steps make use

of the stochastic Warp-U transformation proposed by Wang et al. (2020), which transforms multi-

modal densities into approximately uni-modal ones. The key conceptual step of constructing a

Warp-U transformation is to induce a mixture representation of the target π(θ) =
∑K

k=1 wkπk(θ),

where intuitively πk can be viewed as a ‘component’ of the target density, for k = 1, . . . , K. We

review further details of the Warp-U transformation in Section 2.2.1.

We make two main contributions that enable us to construct our overall algorithm. Our first

contribution is to introduce a new Markov chain Monte Carlo (MCMC) sampling algorithm, called

Warp-U MCMC, which alternately applies the Warp-U transformation and then its inverse. The al-

gorithm thus updates a current draw from the target density by stochastically mapping it first to a

uni-modal density draw then back to a (different) target density draw. The key to this approach

is that the Warp-U transformation maps each ‘component’ πk of the target to almost the same in-

3



termediate uni-modal density, meaning that the inverse Warp-U transformation maps to a random

‘component’ of the target density, and therefore easily explores many modes. Our simulation stud-

ies, demonstrate that this property makes our algorithm substantially more efficient than competing

approaches, such as parallel tempering (Geyer, 1991).

The Warp-U transformation proposed by Wang et al. (2020) depends on a Gaussian mixture

approximation to the target density π, but initially there are no target draws with which to estimate

the mixture parameters. To address this issue we create an adaptive version of our sampling algo-

rithm which starts by sampling from a uniform density, or any other crude approximation to the

target density, and then proceeds in stages, updating the approximating density at each stage. Im-

portantly, as with the Warp-U bridge sampling estimation strategy proposed by Wang et al. (2020),

it is not necessary for the approximating density to be a precise representation of the target density;

any reasonable approximation is sufficient. This means that the number of stages needed in our

algorithm is typically small, e.g., less than ten. We prove that our adaptive MCMC algorithm is

ergodic, following the approach of Roberts and Rosenthal (2007).

Our second contribution is to substantially improve the computational efficiency of the Warp-U

bridge estimation strategy (Wang et al., 2020), which is the key to our normalizing constant estima-

tion step. Suppose that draws from the target density have been obtained, e.g., using our Warp-U

MCMC sampler. Warp-U bridge estimation applies the Warp-U transformation to the target den-

sity draws to obtain draws from an approximately uni-modal density π̃, and then applies standard

bridge sampling estimation using these new draws and q̃ = cπ̃ (which is easily constructed from

q). We prove that a substantial reduction in asymptotic variance can be obtained by instead apply-

ing standard bridge sampling to estimate the normalizing constant of each mixture ‘component’

qk = cπk, for k = 1, . . . , K, and then combining the results to estimate c. Since this estimator

is also computationally more efficient, it is superior to that proposed by Wang et al. (2020) (both

approaches are asymptotically unbiased). Indeed, in our simulation studies, our normalizing con-

stant estimator has substantially lower root mean squared error (RMSE), given fixed computational

resources.
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Many algorithms have been developed to sample from multi-modal densities, and there are

also a number which simultaneously perform sampling and estimation of normalizing constants.

A leading example of the latter technique is the Generalized Wang-Landau (GWL) algorithm pro-

posed by Liang (2005), which is an energy based adaptive importance sampling method. The

multi-stage approach used in our adaptive method is loosely based on the GWL algorithm, and

earlier adaptive importance sampling strategies such as Liang (2002), Berg and Neuhaus (1991),

and Wang and Landau (2001). There have been several extensions to the GWL algorithm, in-

cluding Liang et al. (2007) and Bornn et al. (2013), but also some concerns about its convergence

properties, e.g., Jacob et al. (2014) showed that only some variations reach the so-called flat his-

togram convergence criterion in finite time, whereas other variations do not. Furthermore, Wang

et al. (2020) illustrated that the GWL normalizing constant estimator is sometimes inefficient, and

the alternative strategy of applying Warp-U bridge estimation to the GWL draws (after weighted

resampling) can substantially reduce RMSE (for fixed computational resources). Indeed, although

it is conceptually appealing to combine sampling and estimation in a single step, existing tech-

niques for performing these tasks separately are in some ways more developed. Perhaps the best

known general strategy for sampling from multi-modal densities is parallel tempering, see Geyer

(1991). On the other hand, parallel tempering does not perform any estimation, and therefore must

be combined with a separate estimation strategy, e.g., bridge sampling. In our simulation studies,

we find that our proposed strategy is computationally more efficient than parallel tempering for

two reasons: firstly, more of the computation for the estimation step is performed by our Warp-U

MCMC sampler than by parallel tempering, and secondly, our approach has only one chain and

always accepts inter-mode proposals. Of course, we do not suggest that our Warp-U sampler is

more efficient in all cases, but the evidence presented here does support the view that it may be

useful in many practical cases.

Even when parallel tempering or another sampler is preferred to our Warp-U MCMC sampler,

our stochastic Warp-U bridge estimation approach is still useful for the normalizing constant esti-

mation step. Bridge sampling estimation was first proposed by Bennett (1976) and was later further
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developed by Meng and Wong (1996). A number of other popular normalizing constant estimation

methods are special cases of bridge sampling estimation, e.g., Mira and Nicholls (2004) showed

that the multi-block Metropolis-Hastings estimators proposed by Chib and Jeliazkov (2001) are

bridge sampling estimators. Transformations can be used to improve bridge sampling and other

normalizing constant estimation strategies, e.g., Meng and Schilling (2002) proposed transforma-

tions for uni-modal target densities, and Wang et al. (2020) extended these ideas to multi-modal

densities. Our approach is related to these methods, but differs in that we first split the target

density into ‘components’ and then compute separate bridge sampling estimators for each, before

finally combining the estimators.

A further advantage of our overall approach compared to many other methods is that it is gen-

erally simpler to implement, because the key tool is mixture distributions which are intuitive and

straightforward to fit. A limitation is that the number of components in the mixture distribution has

to be chosen (or inferred). However, this is conceptually and practically simpler than adjusting the

tuning parameters in many other algorithms, e.g., the number and values of different temperature

levels in parallel tempering. Indeed, we find that our approach is generally quite robust to the

number of components, especially if the number is larger than the number of modes. Thus, with

adequate computational resources, one can always avoid tuning by setting the number of compo-

nents to be high initially. A second limitation of our adaptive Warp-U MCMC sampler is that it

is likely inefficient in the case of very isolated modes, partly because it may take time to identify

the modes, and partly because its advantages over a Metropolis-Hastings (MH) algorithm with a

mixture density proposal rely on overlap between modes, and is diminished in the case of isolated

modes. On the other hand, sampling from isolated modes with unknown locations is universally

challenging.

The chapter related to Warp-U MCMC and stochastic bridge estimation is organized as follows.

Section 2.2 briefly reviews bridge sampling estimation and Warp-U transformations before intro-

ducing our adaptive Warp-U MCMC sampler and the complementary stochastic bridge estimation

method. Section 2.3 provides theoretical justification for our approach in the form of theroems
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establishing the ergodicity of our sampler and the greater efficiency of stochastic bridge estimation

compared with Warp-U bridge estimation. Section 2.4 provides several numerical studies demon-

strating the utility of our method. Section 2.5 applies our approach to estimating the Bayesian

evidence for exoplanets based on radial velocity (RV) datasets. Discussion and open problems are

found in Section 2.6.

2.2 Warp-U Sampling and Estimation Methods

2.2.1 Bridge Sampling Estimation and Warp-U Transformations

Let q1 and q2 denote unnormalized densities with unknown normalizing constants c1 and c2,

respectively, and for simplicity assume that both have support Θ = Rd. Furthermore, suppose that

we are interested in estimating the ratio r = c1/c2, e.g., a Bayes factor. For this scenario, Bennett

(1976) and Meng and Wong (1996) introduced bridge sampling estimation which is a strategy for

estimating r given draws from the normalized densities pi = qi/ci, for i = 1, 2. Their method is

based on the key identity

r =
c1

c2

=
Ep2 [q1(θ)α(θ)]

Ep1 [q2(θ)α(θ)]
, (2.1)

where α is the ‘bridge’ function (discussed below), and Epi denotes an expectation with respect to

pi, for i = 1, 2. The bridge sampling estimator of r is the sample counterpart of (2.1), i.e.,

r̂ =
n−1

2

∑n2

j=1 q1(θ2,j)α(θ2,j)

n−1
1

∑n1

j=1 q2(θ1,j)α(θ1,j)
, (2.2)

where θi,1, . . . ,θi,ni
iid∼ pi, and hence ni denotes the number of samples from qi, for i = 1, 2. If the

samples are obtained via MCMC then they will not usually be independent, but fortunately inde-

pendence is not crucial in practice and is only assumed for the purposes of asymptotic theory. Un-

der independence, Meng and Wong (1996) showed that the optimal α is αopt(θ) ∝ 1
s1q1(θ)+rs2q2(θ)

,

where si = ni
n1+n2

, i = 1, 2, in the sense that this choice yields the smallest asymptotic variance for

the estimator r̂. The unknown r appears in αopt, but Meng and Wong (1996) addressed this diffi-

culty by introducing an iterative scheme which alternates between applying (2.2) (with α = αopt)
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and plugging the resulting r̂ into αopt until convergence.

In many cases, and in the current dissertation, there is only one unnormalized density q = cπ,

and hence only one normalizing constant c that needs to be estimated. In this scenario, we set

q1 = q in (2.2), and choose q2 = p2 to be a normalized density (i.e., c2 = 1), such as a Gaussian

distribution. The choice of p2 is important because the asymptotic variance of r̂ decreases as the

separation between p1 = π and p2 decreases, where the separation divergence is defined as

HA(p1, p2) = 1−
∫

Θ1∩Θ2

[η1p
−1
1 (θ) + η2p

−1
2 (θ)]−1 dθ, (2.3)

where ηi =
s−1
i

s−1
1 +s−1

2

, si = ni
n1+n2

, Θi is the support of pi, for i = 1, 2, and HA is known as

the sample-size adjusted harmonic divergence. For efficiency, it is also important that p2 can be

evaluated and sampled from with minimal computational cost.

Given the above considerations, if π = q/c is multi-modal, it is natural to choose p2 to be a

Gaussian mixture distribution approximating π, i.e.,

φmix(θ) =
K∑
k=1

φ(k)(θ) =
K∑
k=1

wk|S−1
k |φ(S−1

k (θ − µk)), (2.4)

where wk, µk, and Sk, denote a weight, mean vector, and scale matrix, respectively, for k =

1, . . . , K, and φ is the density function of Nd(0, I), i.e., the standard d-dimensional multivariate

Gaussian distribution. In (2.4) and throughout, we use φ(k) to denote the k-th component of φmix

including its weight wk. Standard bridge sampling estimation would proceed by applying (2.2)

with densities q (unnormalized) and φmix. However, Wang et al. (2020) proposed an improved

approach called Warp-U bridge estimation based on the idea of warp bridge sampling estimation

introduced by Meng and Schilling (2002), as we now explain.

By the properties of f -divergences (Ali and Silvey, 1966), for any transformation F we have

HA(p1, p2) ≥ HA(F(p1),F(p2)). Since the asymptotic variance of r̂ decreases with the diver-

gence (2.3), a transformation of the initial densities will generally decrease the asymptotic vari-

ance, although care must be taken to avoid transformations which alter the underlying normalizing
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constants. In many cases, a good choice of F can provide substantial efficiency gains. In the

multi-modal scenario, Wang et al. (2020) proposed a stochastic transformation that maps multi-

modal densities to ones which are approximately uni-modal. Specifically, their Warp-U stochastic

transformation makes use of the approximation φmix and is given by θ∗ = Fψ(θ) = S−1
ψ (θ−µψ),

where the random component index ψ is drawn from the conditional distribution under θ ∼ φmix,

i.e.,

$(ψ|θ) =
φ(ψ)(θ)

φmix(θ)
. (2.5)

The Warp-U transformation is based on a coupling argument whereby we impose the condi-

tional distribution (2.5) when θ ∼ π, so that the joint density function of (ψ,θ) is p(ψ,θ) =

$(ψ|θ)π(θ). Applying (2.5) to φmix gives the standard Gaussian density φ, and since φmix ap-

proximates p, it is intuitive that applying (2.5) to p also gives an approximately uni-modal den-

sity. The analogy between φmix and q (or equivalently π) is further demonstrated by noting that

q(k)(θ) = cwkπk = $(k|θ)q(θ), viewed as a function of θ only, can be interpreted as the k-th

‘component’ of q induced by the conditional distribution (2.5). Here πk denotes the k-th induced

component of π, i.e., $(k|θ)π(θ)/wk. See Wang et al. (2020) for full details and graphical illus-

trations. The transformed version of q is given by

q̃(θ∗) =
K∑
k=1

φ(θ∗)
q(Skθ

∗ + µk)

φmix(Skθ
∗ + µk)

wk, (2.6)

Wang et al. (2020) demonstrated that the normalizing constant of q̃ is c, i.e., the same as the

normalizing constant of q, meaning that q̃ is potentially useful for estimating c, and π̃ = q̃/c is a

normalized probability density.

To perform Warp-U bridge estimation one applies Algorithm 1 below. Wang et al. (2020)

pointed out that the estimation in Step 3 of Algorithm 1 can be further improved by applying the

simple warp transformations introduced by Meng and Schilling (2002) to q̃ and φ to further reduce

the divergence (2.3), e.g., location shifts and scaling. These simple transformations can be effective

for reducing the divergence after the Warp-U transformation because q̃ is approximately uni-modal
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(and φ is uni-modal).

Algorithm 1 Warp-U estimation of c (Wang et al., 2020)
1: Input: parameters K and wk, Sk,µk, for k = 1, . . . , K, see (2.4), and samples
θ1,1, . . . ,θ1,n1 ∼ π and θ2,1, . . . ,θ2,n2 ∼ φ.

2: Set θ∗1,j = Fψj(θ1,j), where Fψj(θ1,j) = S−1
ψj

(θ1,j − µψj), and ψj’s are independently drawn
according to (2.5), for j = 1, . . . , n1.

3: Apply (2.2) using the densities q1 = π̃ in (2.6) and q2 = φ, and the samples θ∗1,j, . . . ,θ
∗
1,n1
∼ π̃

(Step 2) and θ2,1, . . . ,θ2,n2 ∼ φ (Step 1).

2.2.2 Warp-U MCMC Method

The Warp-U transformation θ∗ = Fψ(θ) = S−1
ψ (θ −µψ) maps the multi-modal target density

p to an approximately uni-modal one p̃, which is the normalized version of (2.6). Here we also

consider the inverse stochastic transformation Hψ∗(θ
∗) = F−1

ψ∗ (θ∗) = Sψ∗θ∗ + µψ∗ , where to

ensure that (ψ∗,Hψ∗(θ
∗)) has the same distribution as (ψ,θ), the index ψ∗ must be drawn from

P (ψ∗|θ∗) = $(ψ∗|Hψ∗(θ
∗))π(Hψ∗(θ

∗))|H′ψ∗(θ∗)|, where the final term on the right hand side is

a Jacobian. By repeatedly applying F and then H we can generate a sequence of draws of (ψ,θ)

which regularly switches between modes. As mentioned in Section 2.1, the key to this approach

is that the Warp-U transformation maps each induced component πk of the target to almost the

same intermediate uni-modal density, meaning that the inverse Warp-U transformation maps to a

random component of the target density, and therefore easily explores many modes.

We begin by assuming that a reasonable approximating mixture φmix has already been con-

structed, and return to identifying such an approximation at the end of this section. Algorithm 2

above specifies the basic version of our Warp-U MCMC sampler. In addition to the transforma-

tions already described, we include a MH step at the beginning of each iteration. This is necessary

because otherwise our sampler sometimes gets stuck in a loop whereby it visits several modes and

then returns to exactly the point where it started. This problem typically occurs when the number

of components K is small and φmix is a poor approximation to π, because in that case the condi-
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Algorithm 2 Basic Warp-U MCMC sampler

1: Input: parameters K and wk, Sk,µk, for k = 1, . . . , K, see (2.4), proposal variance σ2, initial
value θ0, and number of samples to be collected T .

2: for t = 1, . . . , T do
3: (i) Generate θMH using a MH step with proposal N (θt−1, σ

2I).
4: (ii) Sample ψ from

$(ψ|θMH) =
φ(ψ)(θMH)

φmix(θ
MH)

.

5: (iii) Set θ∗ = Fψ(θMH), where Fψ(θMH) = S−1
ψ (θMH − µψ).

6: (iv) Sample ψ∗ from

ν(ψ∗|θ∗) ∝ $(ψ∗|Hψ∗(θ
∗))q(Hψ∗(θ

∗))|H′ψ∗(θ∗)|︸ ︷︷ ︸
cp(ψ∗,Hψ∗ (θ∗))|H′ψ∗ (θ∗)|

, (2.7)

whereHψ∗(θ
∗) = F−1

ψ∗ (θ∗) = Sψ∗θ∗ + µψ∗ .
7: (v) Set θt = Hψ∗(θ

∗).
8: end for

tional distribution P (ψ∗|θ∗) may strongly favor particular components in each iteration, causing

the components to be repeatedly sampled in a specific order. When the number of components is

large, the chance of visiting the components in the same order multiple times is low, and so the

problem is avoided. In any case, the issue is resolved by the MH step we include in Algorithm 2.

Algorithm 3 Adaptive Warp-U MCMC sampler

1: Input: proposal variance σ2, initial value θ0, number of within stage samples T , and number
of stages M .

2: Obtain T samples Θ0 from the uniform density with support Θ (or another initial density with
support Θ).

3: Compute φ(0)
mix by fitting φmix using the samples Θ0 from Step 2.

4: for s = 1, . . . ,M do
5: (i) Apply Algorithm 2 with the following inputs: parameters of φ(s−1)

mix , σ2, θ0, and T , we
can obtain new samples Θnew. Then we set Θs = Θs−1 ∪Θnew.

6: (ii) Compute φ(s)
mix by re-fitting φmix using the samples Θs from Step 5.

7: end for
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Figure 2.1: One marginal of the true target density (solid red line) and the estimated density (center
dash-dot blue line) obtained by running Algorithm 2. The left and right panels show the case where
φmix is set to be the target density and a two Gaussian mixture approximation, respectively. The
shaded blue regions indicate pointwise 95% confidence intervals.

The performance of Algorithm 2 depends on the quality of the approximation φmix. We now

consider the accuracy with which samples obtained from Algorithm 2 recover one marginal of the

six-dimensional target density π, specified by (A.1) in Appendix A.1. The left panel of Figure

2.1 shows the true density (solid red line) and estimated density (center dash-dot blue line) in

the case where φmix is the true target π, and the right panel shows the case where φmix is a two-

mode Gaussian mixture distribution given by (A.4) in Appendix A.1. The blue regions show

pointwise 95% confidence regions obtained by running Algorithm 2 fifty times with T = 3000 and

then applying the kernel density estimation function density in R to each set of 3000 samples

obtained. In both panels the confidence region is centered approximately on the true density, but

as expected, it is much narrower in the left panel where the underlying φmix is a closer (exact)

approximation to π.

In order to make our Warp-U MCMC sampler less dependent on the initial φmix, we introduce

Algorithm 3 above, which is an adaptive version of Algorithm 2 and periodically updates φmix. The

complexity of updating the Gaussian mixture approximation φmix is O(tmaxKTs), where tmax is
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Figure 2.2: Log Wasserstein distance between the true target density (see (A.1) in Appendix A.1)
and a kernel density estimate computed from samples generated via four versions of Algorithm 3,
against the stage number of Algorithm 3. The four algorithm versions are described in the main
text.

the maximum number of iterations of the EM algorithm to be used each time φmix is updated, and

s is the current stage number of Algorithm 3. In practice, to save computational resources, the sT

samples Θs in Step 5 of Algorithm 3 that are used to update φmix can be replaced by T samples

randomly selected from Θs, or alternatively the updating of φmix can be eventually stopped, e.g.,

once s > 10. Figure 2.2 shows the log Wasserstein distance between the true target density and

a kernel density estimate computed from samples generated via the following four versions of

Algorithm 3: (i) Algorithm 3 as written above (dash-dot blue line), (ii) Step 6 is skipped for

s > 10 (dotted orange line), (iii) the same as (i) except Step 6 uses T samples randomly selected

from Θs to update φmix, rather than all the available samples (dashed purple line), and (iv) the same

as (iii) except that 6 is skipped for s > 10 (solid green line). The log Wasserstein distances were

computed using the R package ‘transport’. Figure 2.2 shows that all four procedures perform

similarly as the stage number s increases.
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2.2.3 Stochastic Warp-U Bridge Estimation

Having obtained samples from π using the Warp-U MCMC sampler introduced in Section

2.2.2, we then use these samples to estimate the target normalizing constant c. Here we propose

a new estimation strategy which adapts and improves the Warp-U bridge estimator proposed by

Wang et al. (2020). The main limitation of the Warp-U bridge sampling estimator is that it has

high computational cost if q is expensive to evaluate, which is an important case because many

estimation approaches can work well if q is inexpensive to evaluate (indeed, exact integration can

be performed in the limit where q has no evaluation cost). The high computational cost is due to

the fact that evaluation of q̃ in (2.6) requires K evaluations of q. Overall Algorithm 1 requires

K(n1 + n2) evaluations of q to obtain an estimate ĉ. Thus, although the Warp-U bridge estimator

is statistically more efficient than standard bridge sampling with π and φmix, it is approximately

K times more expensive. Consequently, Wang et al. (2020) found that Warp-U bridge sampling

is only comparable to standard bridge sampling given fixed computational resources (and is some-

times slightly worse).

To propose a more computationally efficient strategy we exploit the expansion of q̃ given in

(2.6). For the sake of generality, we allow c2 6= 1. To aid clarity we write q̃1 = q̃, and then

re-express (2.6) as

q̃1(θ̃) =
K∑
k=1

q̃1k(θ̃)wk, (2.8)

where

q̃1k(θ̃) = φ(θ̃)
q(Skθ̃ + µk)

φmix(Skθ̃ + µk)
. (2.9)

We can then split the estimand of interest into K parts, i.e.,

r =
c1

c2

=

∫ ∑K
k=1 q̃1k(θ)wk dθ

c2

=
K∑
k=1

wk
c1k

c2

=
K∑
k=1

wkrk. (2.10)

Under this representation r can be interpreted as the expected value of a random variable R taking

values r1, . . . , rK , with probabilities w1, . . . , wK , respectively. In other words, (2.10) suggests a
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situation in which we want to estimate the normalizing constant of a random density divided by

c2. To estimate r we use the estimator

r̂SWB =
K∑
k=1

wkr̂k, (2.11)

where

r̂k =
n−1

2

∑n2

j=1 q̃1k(θ2,k,j)α(θ2,k,j)

n−1
1k

∑n1k

j=1 q2(θ∗1,k,j)α(θ∗1,k,j)
, (2.12)

{θ∗1,k,1, . . . ,θ∗1,k,n1k
} = {θ∗1k : ψ∗j = k}, for k = 1, . . . , K, and ψ∗j is drawn from the conditional

distribution$(·|θ1,j) given by (2.5), for j = 1, . . . , n1. Here (2.12) is the classical bridge sampling

estimator for rk, and indeed the corresponding bridge identity holds, i.e.,

rk =
c1k

c2

=
Eq2(q̃1k(θ)α(θ))

Eq̃1k(q2(θ)α(θ))
, (2.13)

for k = 1 . . . , K. We call our estimator (2.11) the stochastic Warp-U bridge (SWB) estimator in

reference to the random density interpretation described above. Our stochastic bridge estimation

procedure is detailed in Algorithm 4 below. It requires a total of n1 +Kn2 evaluations of q, which

is (K − 1)n1 fewer than that needed for Warp-U bridge estimation. In Section 2.3.2, we prove that

r̂SWB is more efficient than Warp-U bridge estimation in terms of precision per CPU second.

2.3 Theoretical Justification

2.3.1 Ergodicity Property

In this section we establish that Algorithm 3 produces an ergodic Markov chain with stationary

distribution π. We first consider Algorithm 2, which is non-adaptive. Let Pγ be the transition

kernel for Algorithm 2, where γ ∈ Y denotes the parameters of φmix, and is included as a reminder

that the kernel depends on these parameters, which are however treated as fixed in Algorithm 2.

Lemma 1 confirms that the target density π is the stationary distribution of Algorithm 2. The proof

is given in Appendix A.2.
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Algorithm 4 Stochastic Bridge Sampling
1: Input: parameters K and wk, Sk,µk, for k = 1, . . . , K, see (2.4), and samples
θ1,1, . . . ,θ1,n1 ∼ π and θ2,1, . . . ,θ2,Kn2 ∼ φ.

2: for i = 1, . . . , n1 do
3: (i) sample ψ∗ from probability (2.5). Set θ∗1ψ∗ = Fψ∗(θ1,i), where Fψ∗(θ1,i) = S−1

ψ∗ (θ1,i −
µψ∗).

4: (ii) collect θ∗1ψ∗ in set Q1,k = {θ∗1,k,1, . . . ,θ∗1,k,n1k
} = {θ∗1k : ψ∗ = k}, where all samples in

set {θ∗1k} follow q̃1k in (2.9), for k = 1, . . . , K.
5: end for
6: for each component k from 1 to K do
7: Apply all transformed samples in set Q1,k and n2 standard normal samples to classical

Bridge estimation (2.2) with q1 = q̃1k and q2 = φ to get the estimation r̂k.
8: end for
9: Calculate the estimation r̂ =

∑K
k=1 wkr̂k.

Lemma 1. The transition kernel Pγ satisfies

∫
π(θ)Pγ(θ

′|θ) dθ = π(θ′). (2.14)

To further prove that π is also the stationary distribution of Algorithm 3, we need to establish

that Algorithm 3 is ergodic, despite its adaptive nature. To achieve this we apply the framework

proposed by Roberts and Rosenthal (2007), i.e., we prove the that the diminishing adaptation and

simultaneous strongly aperiodic geometric ergodicity (SSAGE) conditions hold.

Lemma 2. Suppose that Θ = Rd and εs is the absolute tolerance used in the EM algorithm. If

εs → 0 as s → ∞, then the transition kernel of Algorithm 3 satisfies the diminishing adaptation

condition, i.e.,

lim
s→∞

P(sup
θ∈Θ
‖Pγ̂s( · |θ)− Pγ̂s+1( · |θ)‖TV ≥ δ1) = 0 (2.15)

for any δ1 > 0, where TV indicates the total variation distance. γ̂s and γ̂s+1 is the estimated

parameters of φmix used at s and s+ 1 stage.

Lemma 3. For a state space θ ∈ Θ, there exists a measurable set C ∈ B(Rd), a drift function

V : Rn → [1,∞] satisfying supθ∈C V (θ) < ∞, and scalars δ > 0, λ < 1, and b < ∞, such that
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the following two conditions hold:

C1. (Minorization). For each vector of map parameters γ̂ ∈ Γ, there is a probability measure ωγ̂

defined on C ⊂ Rn with Pγ̂( · |θ) ≥ δωγ̂(·).

C2. (Simultaneous drift). For γ̂ ∈ Γ and θ ∈ R,
∫
Rn V (β)Pγ̂( dβ |θ) ≤ λV (θ) + bIC(θ).

The proofs of Lemmas 2 and 3 are given in Appendix A.2. Lemma 2 and 3 verify the dimin-

ishing adaptation and SSAGE conditions hold, respectively. Finally, Theorem 1 establishes that

Algorithm 3 is ergodic. The proof is given in Appendix A.2.

Theorem 1. Assume the absolute tolerance used in the EM algorithm εs satisfies εs → 0 as

s → ∞. The Warp-U sampling algorithm produces a Markov chain which is ergodic with the

target distribution π as the stationary distribution.

2.3.2 Asymptotic Variance and Precision Per Second of Stochastic Bridge Estimation

In this section, we demonstrate that our stochastic bridge estimator has lower asymptotic vari-

ance and greater Precision per Second (PpS) than Warp-U bridge estimation, where Pps is defined

as 1/(RMSE × CPU seconds). We assume that all computational costs are negligible compare

with evaluating q, and therefore CPU seconds are given by eCg(q), where C is a constant, g(q)

is the time taken to evaluate q once, and e is the number of evaluations of q used by the method

under consideration. The values of e for the different methods we compare are shown in the right

three columns of Table 2.1, where n1 and n2 denote the number of the samples from the target and

auxiliary distribution, respectively. The auxiliary distribution is the standard Gaussian for Warp-U

bridge estimation and stochastic bridge estimation, and φmix for classical bridge sampling. The

number of Warp-U bridge estimation target evaluations is lower in the case of Warp-U MCMC

sampling because some of the necessary evaluations are computed during the sampling stage.

Meng and Wong (1996) showed that the asymptotic variance of the log bridge sampling esti-

mator λ̂ = log(r̂) under the i.i.d. assumption is

(
1

n1

+
1

n2

)[
(1−HA(p1, p2))−1 − 1

]
+ o

(
1

n1 + n2

)
, (2.16)
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Table 2.1: Number of evaluations of the unnormalized target density q for different sampling and
estimation methods, where No. Iters represents the number of iterations (accept and reject), n1 and
ñ1 denote the number of samples and average number of samples at each stage, respectively, M is
the stage number, Ml is the number of temperature levels in PT, and n2 is the number of samples
from the auxiliary distribution.

Sampling No. Iters Sampling Evals.
Estimation Evals.

Bridge Warp-U S. Warp-U
Warp-U MCMC n1M (K + 1)n1M n2 Kn2 n2

GWL ñ1M ñ1M n2 (K − 1)n1 +Kn2 n2

PT 2n1Ml n1Ml n2 (K − 1)n1 +Kn2 n2

where HA(p1, p2) is the sample-size adjusted harmonic divergence defined in (2.3). Theorem 2

and 3 below establish our key result that the stochastics Warp-U bridge (SWB) estimation enjoys

lower asymptotic variance and is computationally more efficient in terms of PpS under very mild

conditions. The proof is given in Appendix A.3 and A.4.

Theorem 2. Under the assumption of i.i.d. samples from π, φ and

K∑
k=1

[(
1 + β

β
− w2

k(w̃k + β)

w̃2
kβ

)
w̃km(p1k)

]
≥

K∑
k=1

1 + β

β
w̃k
m
′′
(τk)

2
(p1k − p1)2, (2.17)

the asymptotic variances satisfy,

V ar(λ̂SWB) ≤ V ar(λ̂WB), (2.18)

where β = n2

n1
, w̃k = n1k

n1
, m(τk) = (1−HA(τk, p2))−1 − 1, and τk is some density between p1k

and p1, for k = 1, . . . , K.

Theorem 3. Under the assumption of i.i.d. samples from π, φ and

K∑
k=1

[(
K

1 + β

β
− w2

k(w̃k + β)

w̃2
kβ

)
w̃km(p1k)

]
≥

K∑
k=1

K
1 + β

β
w̃k
m
′′
(τk)

2
(p1k − p1)2, (2.19)
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the precision per second satisfy,

PpS(λ̂SWB) ≥ PpS(λ̂WB), (2.20)

where β = n2

n1
, w̃k = n1k

n1
, m(τk) = (1−HA(τk, p2))−1 − 1, and τk is some density between p1k

and p1, for k = 1, . . . , K.

As mentioned in Section 2.2.3, stochastic bridge estimation requires (1 − K)n1 fewer target

evaluations than Warp-U bridge estimation, and therefore Theorem 3 does not necessarily imply

that stochastic bridge estimation has lower asymptotic variance than Warp-U bridge estimation

when only the condition (2.19) in Theorem 3 is satisfied. As stated in Appendix A.3 and A.4, both

conditions are very milder as long as the Gaussian mixture approximate φmix is not too poor such

that p1k is too different from p2 (usually set as standard Gaussian distribution). Since p1k is the

transformed distribution by Warp-U transformation, it will automatically follows a distribution that

is close to standard Gaussian distribution, see equation (2.9), and this will lead to the conditions

(2.17) or (2.19) can be easily satisfied, see details explained in Appendix A.3 and A.4. On the other

hand, since the n1 target samples are split between theK estimators r̂k in (2.12), for k = 1, . . . , K,

meaning that small value of n1 (relative to n2) can lead to excessive variance of the individual

estimators. To avoid this case, some criteria can be developed in the future to ensure each collection

has lower bounded numbers of samples which mentioned in the Section 2.6. If the condition in

Theorem 2 holds then we have

V ar(λ̂SWB) ≤ V ar(λ̂WB) ≤ V ar(λ̂BS). (2.21)

The final inequality states that the asymptotic variance of Warp-U bridge estimation is less than

that of standard bridge sampling (BS), see Section 2.2.1 and Wang et al. (2020) for details.
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2.4 Simulation Studies

2.4.1 Comparison of Sampling Methods

We now consider a six-dimensional multivariate Gaussian mixture target distribution π and

compare the performance of our Warp-U MCMC sampling method to Parallel Tempering (PT) and

Metropolis-Hastings (MH). PT (Geyer, 1991) is a widely used method designed to sample from

multimodal target distributions, but it is necessary to tune the temperature levels, which can be

time-consuming. For tuning the temperature level of PT, we apply Atchadé et al. (2011) to tune

the temperature levels which iteratively selecting the inverse temperatures by a stochastic approx-

imation algorithm described in Robbins and Monro (1951) and Andrieu and Robert (2001). For

MH, we set the proposal density to be φmix, i.e., the same density used in the Warp-U transfor-

mations needed for our Warp-U MCMC sampler. The unnormalized target distribution is given

by

q(θ) =
1

15
exp(−1

2
(θ + 11)T (θ + 11)) +

2

15
exp(−1

2
(θ − 12)T (θ − 12)) (2.22)

+
3

15
exp(−1

2
(θ + 8)T (θ + 8)) +

4

15
exp(−1

2
(θ − 7)T (θ − 7)) (2.23)

+
5

15
exp(−1

2
(θ + 2)T (θ + 2)), (2.24)

where bold numbers indicate the vectors in R6, e.g., 2 = (2, 2, 2, 2, 2, 2)T . Note that some of

the modes especially −2 and 7 are well separated, and therefore a simple Metropolis-Hastings

algorithm with a Gaussian proposal is not expected to work well.

We apply Algorithm 3 with T = 4000 (number of samples at each stage), M = 11 (number of

stages), and K = 10 (number of components). Figure 2.3 shows the densities and pointwise 95%

confidence intervals (middle dash-dot blue line and blue shaded regions) estimated from samples

obtained using our adaptive Warp-U MCMC sampler at stage 1 (top left panel), 2 (top right panel),

and 8 (bottom left panel), respectively. The solid red lines show the true target density. We can

see that at stage 1 the confidence interval is highly inconsistent with the target density (since the
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Figure 2.3: The top left, top right, and bottom left panels show the true target density (red line) and
the density estimated from samples obtained using our adaptive Warp-U MCMC sampler (middle
dash-dot blue line) after the first, second, and eighth stage of Algorithm 3, respectively. The blue
shaded regions show pointwise 95% confidence intervals (marked by the upper and lower dash-dot
blue lines). The bottom right panel shows the square of the 1/log KL divergence (solid blue line)
and a 95% confidence interval, as well as a linear fit (dashed red line).
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initial sampling is from a uniform distribution), but that the confidence interval at stage 8 covers

the target density well (88.3% coverage). After trying different order of KL divergence, we find

that square of 1/log Kullback-Leibler (KL) divergence can be well fitted by a linear function of

the stage number with 95% confidence interval (grey region) which is shown in the bottom right

of Figure 2.3.

Figure 2.4 shows the log Wasserstein distance between the true target density and the density

estimated from samples, as a function of target evaluations, when the sampling method is our

adaptive Warp-U MCMC method (solid blue lines) or PT (dashed orange lines). Figure 2.4 shows

that the samples obtained via our adaptive Warp-U MCMC sampler better approximate the true

target density than those obtained via PT, for a given number of target evaluations. In other words,

in this example, our approach has lower computational cost than PT for a given level of accuracy.
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Figure 2.4: Log Wasserstein distance between the true target density and estimated density con-
structed using our adaptive Warp-U MCMC method (center solid blue line) and PT (center dashed
orange line), as well as pointwise 95% confidence intervals (shaded regions).

Figure 2.5 shows the trace plot and auto-correlation function (ACF) for our non-adaptive Warp-
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U MCMC sampler specified in Algorithm 2 (left column) and the Metropolis-Hastings (MH) algo-

rithm with proposal density φmix (right column). We use the non-adaptive version of our sampler

to avoid having to change the MH proposal density at each stage and simplify the comparison.

The trace and ACF plots show that the Warp-U transformation used in Algorithm 2 greatly reduces

the dependence between samples compared with the Metropolis-Hastings approach, and facilitates

jumps between modes.
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Figure 2.5: Trace and autocorrelation plots for our Warp-U MCMC method (left column) and MH
with proposal density φmix (right column).
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Table 2.2: Summary statistics of the log target density evaluated at 106 samples, where the target
density is a 10-dimensional mixed skew-t distribution.

log(q) Min. 1st Qu. Median Mean 3rd Qu. Max.

Target samples -171.72 -27.86 -23.47 -24.67 -20.11 -10.26
Uniform samples -53.07 -45.23 -43.71 -43.52 -42.01 -26.65

2.4.2 Comparison of Estimation Methods

We now compare our stochastic bridge estimation approach given by Algorithm 4 with bridge

sampling (Meng and Wong, 1996) and Warp-U bridge estimation (Wang et al., 2020). The target

density we consider is that used in Wang et al. (2020), and in particular is a 10 dimensional mixture

of 25 multivariate skew-t distributions restricted to the support [−20, 20]10. A similar target density

was first introduced in a simulation study designed by Azzalini (2013). The target density presents

a challenge in that large regions of its support have low density. To illustrate this, we generated

106 samples first from the target density itself and then from a uniform distribution on [−20, 20]10.

In the case of the uniform samples, we found that 99.99% had target density value lower than

one-hundredth of the median target density value of the samples directly obtained from the target

density, see Table 2.2.

The three estimation methods we consider are all designed to estimate normalizing constants

given samples from the target density, and we investigate their performance when the samples are

obtained via three different approaches: (i) our Warp-U MCMC sampler given by Algorithm 3;

(ii) the GWL algorithm (Liang, 2005); and (iii) PT. The GWL algorithm does not directly sample

from the target density and therefore in the case of (ii) we apply the additional sub-sampling step

suggested in Section 5.2 of Wang et al. (2020). We set the number of samples from the target

density to be the same, i.g., 25937 for all three sampling methods.

Figure 2.6 shows the root mean square error (RMSE) of the estimator as a function of the

number of target evaluations for the classical bridge sampling (BS) estimator (green circles, and

dash-dot line), the Warp-U bridge (WB) estimator (red triangles, and dotted line), and our stochas-
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Figure 2.6: Root mean square error (RMSE) of three normalizing constant estimators as a function
of the number of target evaluations, where the samples are obtained using our adaptive Warp-U
MCMC sampler (left), GWL (middle), and PT (right). The three estimators are the classical bridge
sampling (BS) estimator (green circles, and dash-dot line), the Warp-U bridge (WB) estimator
(red triangles, and dotted line), and our stochastic Warp-U bridge (SWB) estimator (blue squares,
and solid line). The error bars show 2 times the standard errors. The x-axis gives the number of
estimation stage target evaluations as log10 of the proportion of target evaluations needed for an
11th stage of the GWL algorithm.
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tic Warp-U bridge (SWB) estimator (blue squares, and solid line), when the samples are provided

by our adaptive Warp-U MCMC sampler (left), GWL (middle), and PT (right). Our stochastic

bridge estimator has the smallest RMSE regardless of the sampling method used, except when the

number of target evaluations is small. Whether using GWL or Warp-U MCMC samples, the results

are similar, and slightly better than with PT samples. On the other hand, GWL does not directly

generate samples from target distribution, and additional sub-sampling steps (see Section 5.2 of

Wang et al. (2020)) are needed to get the target samples, so the total computational cost is higher

than for the other sampling methods (only the cost of estimation is illustrated in Figure 2.6).

We now return to Table 2.1 to compare the computational cost of the three estimation methods.

In Table 2.1,M denote the number of stages in our adaptive Warp-U MCMC sampler and the GWL

algorithm, and Ml denote the number of temperature levels for PT. For the GWL algorithm, the

number of samples collected at each stage is different, so we use ñ1 to denote the average number

of samples across all stages. In addition, the burn-in are needed in all three cases. Note that the

number of iterations given in Table 2.1 is not necessarily the number of unique samples, because

some proposed samples are rejected. Table 2.1 shows that classical bridge sampling and stochastic

Warp-U bridge estimation both require substantially less computation than Warp-U bridge estima-

tion, even when some estimation stage computation is saved by use our Warp-U MCMC sampling

method.

2.5 Bayesian Evidence: Explore New Planets Using Radial Velocity (RV) Data

In astronomy, plenty of types of data are explored to detecting the exoplanets. Among them,

Radial velocity (RV) data is a popular one. Measuring from the earth, the astronomers can record

the speed of the star moving away or towards us, i.e., the RV in meters per second. Since the

planets orbit the stars, we can infer whether there is an exoplanet or not there by measuring the

movement of the star. In the context of Bayesian statistics, we aim to compute the quantitative

evidence, i.e., Bayesian evidence,

Z ≡
∫
p(d|θ,M)p(θ|M) dθ, (2.25)
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where d is the RV data, M represents the underlying physical and noise model and the θ is the

parameters of model M. Here p(d|θ,M) is known as the likelihood and p(θ|M) as the prior.

The Bayesian evidence Z is the normalizing constant of the posterior. The statistics model of the

likelihood is illustrated by

vi = vpred(ti|θ) + εi, (2.26)

where vpred is the physical model introduced in Loredo et al. (2012), with input time t and model

parameters θ, see details in Appendix A.5. vi is the component of the d and ti is corresponding

time. εi is the component of the noise ε following from a multivariate Gaussian distribution, i.e.,

ε ∼ N (0,Σ). The covariance Σ can be captured by

Σij = κij + δij(σ
2
i + σ2

J). (2.27)

where κij is a quasi-periodic kernel, δij is the Kronecker delta, σ2
J is the amplitude of an additional

unknown noise term and σ2
i is the measurement error. Here the quasi-periodic kernel is chosen as

κij = α2 exp

[
−1

2

{
sin[π(ti − tj)/τ ]

λ2
p

+
ti − tj
λ2
e

}]
, (2.28)

where the hyperparameters are fixed as α =
√

3m/s, λe = 50.0 days, λp = 0.5 (unit-less), and

τ = 20 (days).

Our data set consists of n = 200 observations from the RV community, see Nelson et al.

(2018) for details. Each observation is accompanied by the time at which the RV is measured and

a known measurement error (i.e., standard deviation). Left panel of Figure 2.7 shows the data of

the RV varying with the time.

2.5.1 Comparison of the Density with Parallel Tempering and Hamiltonian Monte Carlo

To show the performance of our adaptive Warp-U MCMC sampler, we compare our method

with two popular sampling method PT and Hamiltonian Monte Carlo. Although the PT is one

of the popular sampling methods to samples from a multimodal target distribution, turning the
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Figure 2.7: The left panel shows the radial velocity as a function of time, and the associated
measurement errors. The right panel shows the marginal posterior distribution of the mean anomaly
parameter. It compares the estimated densities using the samples obtained by Warp-U MCMC
(dash-dot blue line), PT (dotted orange line) and Hamiltonian Monte Carlo(dashed green line).
The solid red line is the estimated target density by numerical integral.

algorithm is not user friendly and much time-consuming.

The right panel of Figure 2.7 shows the plot of comparison between different sampling meth-

ods. The adaptive Warp-U MCMC sampler is more accurate with the numerical integral. The

numerical integral is not a better choice when target density is multimodal because it has huge

computation cost. Here we only treat it as a reasonable true target density to make all comparisons

have a baseline, although the numerical integral costs huge time with the numerical error.

2.5.2 Estimation of the Bayesian Evidence

Now we compare the performance of stochastic Warp-U bridge estimation with classical bridge

sampling estimation and Warp-U bridge estimation. We first apply PT and our adaptive Warp-U

MCMC sampler to get target samples that is needed in estimation step. The temperature grid of

PT is turned by the algorithm in Atchadé et al. (2011). Then we treat these samples as the input of

bridge sampling, Warp-U bridge estimation, and stochastic Warp-U bridge estimation methods to

see the performance of each method, separately. To make the comparison fair, we set the number of
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the evaluation of the target density of all methods the same both in the sampling step and estimation

step.

Table 2.3: RMSE (and associated SE) when estimating the log10 Bayesian evidence for a planet using
bridge sampling, Warp-U bridge estimation, and stochastic Warp-U bridge estimation.

Bridge Warp-U S. Warp-U

Sampling RMSE SE RMSE SE RMSE SE

PT 0.238 0.015 0.239 0.017 0.115 0.008
Warp-U 0.136 0.004 0.137 0.008 0.059 0.002

Table 2.3 shows the comparison of root mean square error (RMSE) between bridge sampling,

Warp-U bridge estimation, and stochastic Warp-U bridge estimation. The RMSE of our stochas-

tic Warp-U bridge estimation is smaller than bridge sampling and Warp-U bridge estimation. It

also shows that the RMSE is lower when the target samples are obtained by the adaptive Warp-U

MCMC sampler than that obtained by PT which illustrates the better performance of our sam-

pling method. Our stochastic Warp-U bridge’s standard errors (SE) of RMSE are smaller than

the other two estimation errors and this result is consistent with the smaller asymptotic variance

compared with bridge sampling and Warp-U bridge estimation in Theorem 2. The best estima-

tor log10(−193.7386) is obtained by stochastic Warp-U bridge estimation using the samples from

Warp-U MCMC sampler. It is closest to the median value in Nelson et al. (2018), which can be

treated as the quasi true estimation.

2.6 Discussion

The component number of Gaussian mixture components in the approximating density φmix

plays a role in the performance of the Warp-U MCMC sampler. In many settings, starting with a

moderate number of components, e.g., K = 20, is practical. If the target density has fewer than

K modes, this will not substantially negatively impact the performance of the sampling method,

and the main price of specifying too many components is the computation cost of updating the
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Gaussian mixture approximation φmix. Of course, users can also use a model selection criterion,

e.g., BIC, to determine the number of components, and this may be particularly helpful when the

target density has many modes.

In stochastic Warp-U bridge sampling estimation, when allocating the samples to different

components in Steps 3-4 of Algorithm 4, there may be some components that have very few sam-

ples, which will lead to high variance of the bridge sampling estimator for those components. To

address this problem, future work could develop a restriction to ensure that each component has a

minimum number of samples.
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3. FUNCTIONAL PCA WITH COVARIATE DEPENDENTMEAN AND COVARIANCE

STRUCTURE

3.1 Introduction

Due to the prevalence and variety of functional data, and the computational challenges which

arise through their analysis, many FDA methods have been developed. Among these approaches,

the most fundamental is functional principal component analysis (FPCA), which we now briefly

overview, with essential mathematical details deferred to Section 3.2.1. A comprehensive intro-

duction of FPCA is given in Ramsay and Silverman (2005). In its canonical form, FPCA represents

each functional observation as a mean function plus a linear combination of functional principal

components (FPCs) and noise. The key to this method is that it is often possible to well capture

the data using only a small number of FPCs, i.e., by imposing a low rank structure on the under-

lying covariance function. Furthermore, by constraining the inferred FPCs to be smooth, we can

ensure that the corresponding covariance function is also smooth. Empirical studies have shown

that this type of smoothness often improves estimation accuracy and predictive performance due

to the usual bias-variance trade-off encountered in statistical inference.

One leading FPCA framework is based on the work of James et al. (2000), which interprets

FPCA as a mixed effects model for sparse and irregularly sampled functional data. Their es-

timation strategy relies on a basis representation of the underlying eigenfuctions or FPCs, and

imposes smoothness by limiting the number of basis functions in the expansion. Another popular

FPCA approach is to compute the eigenvectors of the sample covariance matrix resulting from

a locally smoothed approximation to the underlying covariance function, e.g., see Rice and Sil-

verman (1991); Yao et al. (2005). A third strategy, proposed by Cai and Yuan (2010), relies on

a covariance function expansion induced by a user-specified tensor product reproducing kernel

Hilbert space (RKHS). This approach has some appealing features, but suffers from the fact that

the number of parameters to be optimized grows linearly with the sample size (i.e., the number
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of curves) and quadratically with the number of observations per curve. Furthermore, it uses least

squares estimation which can be less efficient than maximum likelihood methods. In the Bayesian

setting, Suarez and Ghosal (2017) proposed an FPCA method that uses a basis expansion of the

FPCs (in a similar manner to James et al., 2000), and induces a prior on them via a prior on the ba-

sis coefficients. Van Der Linde (2008) suggested a variational inference approach to overcome the

computational challenges that arise in Bayesian FPCA. Further Bayesian FDA methods include,

e.g., Behseta et al. (2005); Rodríguez et al. (2009).

We propose an FPCA method that incorporates covariates in a computationally efficient man-

ner, which is a key extension of the above approaches. Indeed, covariates are often available in

practice, and their inclusion can facilitate low-rank representations of functional data and substan-

tially improve predictive performance. There are a number of existing strategies for incorporating

covariates, including early methods such as Capra and Müller (1997), and more recent approaches

which primarily build on the work of Yao et al. (2005), e.g., Jiang and Wang (2010, 2011); Zhang

et al. (2013); Zhang and Wang (2016). However, these methods all rely on local smoothing, which

is computationally costly. Thus, in practice, they are slow and cannot be used for analyzing datasets

which are large or have more than a few covariates. The literature also proposes a number of al-

ternative strategies which achieve greater computational efficiency at the expense of simplifying

assumptions, e.g., Li et al. (2016) assumes that only the FPC scores vary with the covariates, that

they do so linearly, and that the sampling points are the same for each functional observation (often

called balanced sampling). However, such assumptions are often violated in practice.

The approach we propose here overcomes the computational challenges of including covari-

ates, while simultaneously allowing both the mean function and the covariance function to depend

on the covariates in a non-linear way, as well as permitting unbalanced sampling patterns. We call

our method Covariate Dependent Functional PCA, or CD-FPCA for short. Its computational effi-

ciency results from a basis representation of the mean and covariance functions, similar to that used

by James et al. (2000), and a modeling approach which carefully avoids costly optimization prob-

lems. Non-linear dependence of the covariance function on the covariates is captured by allowing
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the underlying FPCs, as well as their scores, to depend flexibly on the covariates. Our CD-FPCA

approach contains as a special case the Supervised Sparse and Functional PCA (SupSFPC) method

proposed by Li et al. (2016), but avoids the simplifying assumptions mentioned earlier. As a re-

sult, our method outperforms SupSFPC in all our numerical studies, as well as James et al. (2000)

(no covariate dependence) and Jiang and Wang (2010), the latter being representative of the linear

smoothing approaches.

A challenge for our approach, and other FPCA methods, is ensuring that the underlying co-

variance function and FPCs have the required properties, e.g., positive semi-definiteness and or-

thogonality, respectively. In the James et al. (2000) framework, a low-rank covariance function is

assumed, meaning that only a small number of FPCs are needed to represent it via the Karhunen-

Loève expansion. This reduces the positive semi-definiteness constraint to ensuring that a small

number of eigenvalues are positive. Peng and Paul (2009) addressed the orthogonality constraint

by representing the FPCs with a finite basis expansion and using a restricted maximum likelihood

(REML) method to fit the basis coefficients. Our approach also relies on a finite basis expansion,

but considers the covariance function directly rather than the FPCs. In particular, we use the fact

that the low-rank covariance function can be represented by G(t, s|z) ≈ b(t)TΣ(z)b(s), where z

is a covariate vector and b(t) is a vector of the basis functions evaluated at t. Then we propose a

model for Σ(·) that maps Euclidean space to the symmetric positive semi-definite rank r matrix

manifold, thereby automatically ensuring that Σ and G are positive semi-definite, and facilitating

straightforward model fitting. Some recent papers have explored methods to model manifold-

valued data, e.g., Lin et al. (2017). We choose the basis to be orthonormal because this makes it

easy to obtain estimates of the underlying covariate dependent FPCs that satisfy the orthogonality

constraint after fitting the model.

We additionally make use of roughness penalties to ensure smoothness of the mean and covari-

ance function. This is preferable to controlling smoothness by choosing a small fixed number of

basis functions, because the latter approach is discontinuous in nature. Our penalization method is

based on the computationally efficient approach proposed by Wood (2006) for penalizing functions
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with multiple arguments. Roughness penalties are a well-established tool in FDA, e.g., Pezzulli

(1993); Silverman (1996); Cai and Yuan (2011).

This chapter related to supervised functional PCA is organized as follows. Section 3.2 briefly

reviews classical FPCA, presents our covariate dependent model for the mean and covariance func-

tions, and introduces a roughness penalty similar to that proposed by Wood (2006). Section 3.3

details our algorithm, which makes use of several approximations to reduce computational cost. In

Sections 3.4 and 3.5, we compare our method with the approaches proposed by Li et al. (2016),

James et al. (2000), and Jiang and Wang (2010) through a simulation study and an astronomi-

cal data analysis. Brief discussion is found in Section 3.6. Appendix B provide details of our

roughness penalty, proofs, and key information about the competing method proposed by Li et al.

(2016).

3.2 Covariate Dependent FPCA Model

3.2.1 Classical FPCA

Suppose that there are N latent functions of interest, denoted by xn, for n = 1, . . . , N . Let

xn(t) denote the value of the n-th latent function at time t, for n = 1, . . . , N . More generally,

we could consider functions of other types of variable, such as location, but here restrict our

attention to functions of time. The covariance function cov(xn(t), xn(s)) = G(t, s) has eigen-

decomposition G(t, s) =
∑∞

j=1 djfj(t)fj(s), where fj is the j-th eigenfunction or FPC and dj is

the corresponding eigenvalue. The eigenfunctions are orthonormal to each other, and the eigen-

values are ordered non-increasingly d1 ≥ d2 ≥ d3 ≥ . . . By the Karhunen-Loève theorem, the

function xn(t) can be expressed by a linear combination of a mean function µ(t) and the above

eigenfunctions, i.e.,

xn(t) = µ(t) +
∞∑
j=1

ξ(j)
n fj(t), (3.1)

where the ξ(j)
n =

∫
xn(t)fj(t)dt are uncorrelated random variables with mean 0 and variance

dj , for j = 1, 2, . . . , e.g., often it is assumed that ξ(j)
n ∼N (0, dj), where N denotes a Gaussian
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distribution. The low-rank approximation used by James et al. (2000) and others truncates the

summation in (3.1), and hence also the eigen-decomposition for the covariance function G. This

is generally a good approximation if
∑∞

j=r+1 dj �
∑r

j=1 dj . Next, a second modification of (3.1)

is needed because we typically only get to observe a noisy version of xn(t), which we denote by

yn(t), for n = 1, . . . , N . Putting these two points together, we write

yn(t) = xn(t) + ε(t) ≈ µ(t) +
r∑
j=1

ξ(j)
n fj(t) + ε(t) = µ(t) + fT (t)ξ(n) + ε(t), (3.2)

where ε(t) denotes white noise with mean 0 and variance σ2
e . The right-hand side of (3.2) uses the

vector notation f(t) = (f1(t), . . . , fr(t))
T and ξ(n) = (ξ

(n)
1 , . . . , ξ

(n)
r )T . The mixed effects inter-

pretation introduced by James et al. (2000) is derived from (3.2) by replacing µ(t) and fj(t), for

j = 1, . . . , r, by basis expansions. The resulting expression then has some fixed basis coefficients

and some random coefficients, hence the mixed effects interpretation.

3.2.2 Model extension to include covariates

Let z denote a vector of covariates, and suppose that t ∈ T and z ∈ Z , where T = [tmin, tmax]

and Z are compact domains. To incorporate covariate dependence we replace (3.2) by

yn(t, z) ≈ µ(t, z) +
r∑
j=1

fj(t, z)ξ
(n)
j + ε(t). (3.3)

In this model, both the mean function µ(t, z) and the FPCs fj(t, z) are allowed to vary smoothly

with the covariates z, as will be explained further in Sections 3.2.3 and 3.2.4 below. In the rest

of the work, we will particularly focus on the case when z ∈ R is a scalar to avoid the curse of

dimensionality.

The score vector ξ(n) follows a multivariate Gaussian distribution with zero mean and covari-

ance matrix Dz, which also depends on z, i.e., ξ(n) ∼ Nr(0,Dz), whereNr denotes a multivariate

Gaussian distribution of dimension r. For a given covariate vector z, the covariance function of

the random latent functions is G(t, s|z) ≈ fT (t, z)Dzf(s, z), with the elements of the vector
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f(s, z) being fj(t, z), for j = 1, . . . , r. Thus, the rank of the underlying covariance function is r,

regardless of z.

3.2.3 Covariate dependent mean function

In our model (3.3), we allow the mean function µ(t, z) to vary smoothly with both time t

and the covariates z, which we achieve using a tensor product spline basis, as we now explain.

Firstly, dependence on t is captured by an orthonormal cubic spline with l′ equally spaced knots

in the temporal domain T , i.e., with l = l′ + 2 degrees of freedom. Similarly, dependence on the

covariates z is captured using an orthonormal cubic spline with p′ knots, and therefore p = p′ + 2

degrees of freedom. In our implementation, these splines are represented using orthonormal cubic

B-spline bases, because computationally efficient methods for B-Splines and derivatives thereof are

well developed, e.g., see Butterfield (1976) and De Boor (1977) and penalties can be calculated

directly, see Section B.1 of Appendix B.

Let a(t) ∈ Rl and u(z) ∈ Rp be the values of the orthonormal B-spline basis functions

evaluated at t and z, respectively, e.g., the i-th entry of a(t) is the value of the i-th temporal

domain B-spline basis function evaluated at t and satisfy
∫
T a(t)a(t)Tdt = Il, where Il denotes

the identity matrix and will be used throughout with dimensions implied by the context, e.g., here

it has dimensions l × l. With this notation, our proposed mean function is given by

µ(t, z) ≈ a(t)TΘµu(z) =
l∑

i=1

p∑
j=1

ai(t)uj(z)θij = H(t, z)Tθµ, (3.4)

where Θµ =
(
θij
)
∈ Rl×p is the matrix of orthonormal B-spline basis coefficients, H(t, z) =

a(t) ⊗ u(z) is a tensor product spline basis, and θµ = vec(Θµ), i.e., the vectorization of the

coefficients matrix Θµ.

3.2.4 Covariate dependent covariance function

To model the covariance G(t, s|z), we rely on an orthonormal cubic B-spline basis with w− 2

knots in the temporal domain T and its function values at t are denoted b(t) ∈ Rw. We use
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an orthonormal basis because this enables us to easily express the penalties and obtain estimates

of the underlying FPCs after training our model. In general we set w > r to facilitate accurate

spline approximations of the true eigenfunctions, under the assumption of low rank structure. Our

covariance function model can now be introduced as

G(t, s|z) ≈ b(t)TΣ(z;β)b(s), (3.5)

where Σ(z;β) ∈ Rw×w is a matrix that depends on the covariates z and is parameterized by

coefficients β, as we now explain.

We must ensure that our covariance function G in (3.5) is symmetric positive semi-definite.

This is equivalent to requiring Σ(z ;β) to be a symmetric positive semi-definite matrix for each z.

Based on the ideas in Zhu et al. (2009), we construct Σ(· ;β) using a map fromZ to the symmetric

positive semi-definite rank r matrix manifold, i.e.,

Σ(·;β) : z 7→ Σ(z;β) = C(z;β)C(z;β)T . (3.6)

In the above, C(z;β) ∈ Rw×r depends on the covariates z and the unknown coefficients β. The

structure (3.6) is similar to that of Cholesky decomposition, except that the matrix C(z;β) is not

required to be lower triangular.

With the help of (3.6), the construction of a positive semi-definite Σ(z;β) is reduced to the

construction of a general matrix C(z;β) without restriction. We set Cij = v(z)Tβij , where

v(z) ∈ Rq are the values of an orthonormal B-spline basis evaluated at z and βij ∈ Rq are

the corresponding coefficients, for i = 1, . . . , w and j = 1, . . . , r. In summary, our model for

C(z;β) (and hence Σ(z;β)) has w × r × q unknown parameters, which are collected in a matrix
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Γ ∈ R(qw)×r:

Γ =



β11 β12 · · · β1r

β21 β22 · · · β2r

...
... . . . ...

βw1 βw2 · · · βwr


. (3.7)

Let β = vec(Γ) denote the vectorized version of this matrix. It readily follows that the factor

matrix C(z;β) in (3.6) can be written as C(z;β) = (Iw ⊗ v(z)T )Γ.

3.2.5 Model negative log-likelihood

Our model for yn can now be written as

yn(t, z) ≈ H(t, z)Tθµ + b(t)TC(z;β)ψ(n)︸ ︷︷ ︸
xn(t,z)

+ε(t), (3.8)

where ψ(n) ∼ Nr(0, Ir), with 0 being the zero vector of length r, and ε(t) ∼ N (0, σ2
e) is white

noise. It follows that yn(t, z) is Gaussion distributed with mean H(t, z)θµ and covariance function

b(t)TΣ(z;β)b(s) + σ2
e . The model (3.8) is a direct extension of the simpler SupSFPC approach,

which can be recovered as a special case, details are given in Section B.4 of Appendix B.

To recover the eigenfunction in (3.3), at a fixed z, we take eigen-decomposition of the matrix

Σ(z;β) = C(z;β)C(z;β)T to get Σ(z;β) = ΘzDzΘ
T
z , where Θz is an orthonormal matrix

of eigenvectors and Dz is a diagonal matrix with decreasing eigenvalues. Suppose Θz,j is the jth

column of Θz, then model (3.8) has the correspondence relation fj(t, z) = bT (t)Θz,j (ignoring

the spline approximation error) for the j-th eigenfunction at this specific value of z. Moreover,

when C(z;β) has full column rank, we can set Vz = [C(z;β)TC(z;β)]−1C(z;β)TΘzD
1/2
z

and verify VzV
T
z = Ir. The matrix V establishes a connection between ψ(n) in (3.8) and ξ(n)

in (3.3) as follows: it holds that b(t)TC(z;β)Vz = bT (t)ΘzD
1/2
z = fT (t, z)D

1/2
z and that

ψ(n) = VzD
−1/2
z ξ(n).

In practice, yn is only observed at a finite collection of observation times tn = (t
(n)
1 , . . . , t

(n)
mn),

and has a specific value of the covariates associated with it, which we denote by zn. To simplify
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notation we collect the basis evaluations b(t(n)
i ) for the covariance function (see (3.5)) and the

tensor product basis evaluations H(t
(n)
i , zn) for the mean function (see (3.4)) into matrices Bn and

Hn, respectively, i.e.,

Bn = (b(t
(n)
1 ), b(t

(n)
2 ), . . . , b(t(n)

mn))T , (3.9)

and

Hn = (H(t
(n)
1 , zn),H(t

(n)
2 , zn), . . . ,H(t(n)

mn , zn))T . (3.10)

Thus, the observations yn = (yn(t
(n)
1 ), . . . , yn(t

(n)
mn))T follow a multivariate Gaussian with mean

Hnθµ and covariance matrix Σn = BnCnC
T
nBT

n + σ2
eImn , where Cn = C(zn,β). With this

notation, the negative log-likelihood of the full dataset is proportional to

L(θµ,β, σ
2
e) :=

N∑
n=1

log det Σn + tr(SnΣ
−1
n ), (3.11)

where Sn = (yn −Hnθµ)(yn −Hnθµ)T .

Suppose that θ̂µ and β̂ are the maximum likelihood estimates (MLEs) of the parameters ob-

tained by minimizing (3.11). For a given value of z, we can estimate the j-th FPC by f̂j(t, z) =

b(t)T v̂j , where v̂j denotes the eigenvector corresponding to the j-th largest eigenvalue obtained

from the eigen-decomposition of Σ(z; β̂) = C(z; β̂)C(z; β̂)T . Note the eigenvectors v̂j implic-

itly depend on the covariates z through the decomposition of Σ(z; β̂). In addition, for a fixed

z, the estimated eigenfunctions are orthonormal to each other, because the eigenvectors (v̂j’s) are

orthonormal to each other and b(·) is an orthonormal basis.

To encourage smoothness of the estimated mean and covariance functions, we follow the

approach of roughness penalty of Wood (2006); Reiss et al. (2014). The details of the rough-

ness penalty construction are given in Section B.1 of Appendix B. Combining the negative log-

likelihood (3.11) with the roughness penalties given by (B.8) and (B.9) in Appendix B, we obtain
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the following objective function to be minimized:

L+ P =
N∑
n=1

{log det Σn + tr(SnΣ
−1
n )}

+ θTµ (λ
(µ)
t S̃

(µ)
t + λ(µ)

z S̃(µ)
z )θµ + βT (λtIr ⊗ S̃t + λzIr ⊗ S̃z)β, (3.12)

where L and P denote the log-likelihood and penalty terms, respectively. We use cross-validation

to choose the four tuning parameters λt, λz, λ
(µ)
t , and λ(µ)

z . The next section presents an algorithm

for minimizing (3.12).

3.3 Algorithm

3.3.1 Model training

Given noisy observations of a collection of latent functions, we can estimate the mean and

covariance functions by optimizing (3.12). However, optimization is challenging because the ob-

jective function (3.12) is non-convex. Moreover, evaluating the log-likelihood L and its gradients

involves computing the inverses of Σn ∈ Rmn×mn , for n = 1, . . . , N , which has a combined com-

putational cost of O(
∑

nm
3
n). In practice, this latter issue is exacerbated by the need to perform

exploratory evaluations of the objective function to select a good step size, i.e., the tuning param-

eter that controls the magnitude of changes in the parameters in each iteration of the optimization

algorithm. We overcome these problems by proposing an initialization algorithm which identifies

good initial parameter values, and by developing efficient ways to evaluate the objective function

(3.12) and its gradient. Our gradient descent based optimization strategy is given in Algorithm 5

below. The algorithm iteratively updates the parameters θµ, β, and σ2
e until convergence.

In what follows, we repeatedly apply the matrix determinant lemma and Sherman-Morrison-

Woodbury formula to reduce the per curve cost of computing the matrix inverse and log-determinant

in Steps 4-6 of Algorithm 1 from O(m3
n) to O(r3). Initialization of β (Step 1) is discussed at the

end of this subsection. Proofs for all the results below are given in Section B.2 of Appendix B. We

begin with Lemma 4 which presents a more efficient expression for the log-likelihood L appearing
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Algorithm 5 Modified gradient descent for optimizing CD-FPCA objective (3.12)
1: Initialize β using Algorithm 6 (below);
2: Initialize θµ to be the zero vector, and σ2

e to be an appropriate small positive value;
3: repeat
4: Update θµ by gradient descent until convergence, gradient is sum of (3.16) and (3.22);
5: Update β by gradient descent until convergence, gradient is sum of (3.19) and (3.23);
6: Update σ2

e by gradient descent until convergence, gradient is given by (3.18);
7: until convergence

in (3.12) (also see (3.11)).

Lemma 4. The loss function L given by (3.11) is equal to

2
N∑
n=1

log det(Fn)− σ−4
e

N∑
n=1

‖hn‖2
2 + σ−2

e

N∑
n=1

‖yn −Hnθµ‖2
2 +

N∑
n=1

mn log σ2
e . (3.13)

where Fn is the Cholesky factor of Ir + σ−2
e Wn (i.e., FnF

T
n = Ir + σ−2

e Wn), with Wn =

CT
nBT

nBnCn, and hn = F−1
n CT

nBT
n (yn −Hnθµ).

Next, it is straightforward to verify that the gradients of the log-likelihood (3.11) with respect

to θµ and σ2
e are

∂L
∂θµ

=
N∑
n=1

2HT
nΣ−1

n (Hnθµ − yn), (3.14)

and
∂L
∂σ2

e

=
N∑
n=1

tr(Σ−1
n )−

N∑
n=1

(yn −Hnθµ)TΣ−2
n (yn −Hnθµ), (3.15)

respectively. Following a similar approach as for Lemma 4, these gradients can be expressed in a

computationally more efficient way.

Lemma 5. Let Fn and hn be defined as in Lemma 4 above. The gradient ∂L
∂θµ

given by (3.14) can

be expressed as

∂L
∂θµ

=
N∑
n=1

−2σ−2
e (HT

nyn −HT
nHnθµ) + 2σ−4

e HT
nET

nhn, (3.16)
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where En = F−1
n CT

nBT
n .

Lemma 6. The gradient ∂L
∂σ2
e

given by (3.15) can be expressed as

∂L
∂σ2

e

=
N∑
n=1

[
mnσ

−2
e − σ−4

e tr(ET
nEn)− σ−4

e ‖yn −Hnθµ‖2
2 + 2σ−6

e ‖hn‖2
2 (3.17)

− σ−8
e h

T
nEnE

T
nhn

]
, (3.18)

where hn and En are as given in Lemma 4 and Lemma 5 above.

We now consider the gradient of L with respect to β. Let βijk denote the k-th element of the

vector βij . We have

∂L
∂βijk

=
N∑
n=1

〈 ∂L
∂Cn

,
∂Cn

∂βijk

〉
, (3.19)

where the inner product is defined as 〈A,B〉 = tr(ATB), ∂Cn
∂βijk

is the matrix of zeros except that

its (i, j) element is vk(z), and

∂L
∂Cn

= 2×BT
n

[
Σ−1
n −Σ−1

n SnΣ
−1
n

]
BnCn. (3.20)

Lemma 7 below gives a more computationally efficient expression for (3.20).

Lemma 7. The gradient ∂L
∂Cn

given by (3.20) can be expressed as

∂L
∂Cn

= 2σ−2
e (BT

nBnCn −BT
nKnWn)

− 2σ−4
e (BT

n −BT
nKnC

T
nBT

n )Sn(BnCn −KnWn), (3.21)

where Wn = CT
nBT

nBnCn and Kn = BnCn{σ2
eIr + Wn}−1.

Lastly, the gradients of the penalty term P in (3.12) with respect to θµ and β are

∂P
∂θµ

= λ
(µ)
t (S̃

(µ)
t + S̃

(µ)T
t )θµ + λ(µ)

z (S̃(µ)
z + S̃(µ)T

z )θµ (3.22)
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and
∂P
∂β

= λt[(Ir ⊗ S̃t) + (Ir ⊗ S̃t)
T ]β + λz[(Ir ⊗ S̃z) + (Ir ⊗ S̃z)

T ]β, (3.23)

respectively. The gradients of the objective function (3.12) with respect to θµ and β are obtained

by summing (3.14) and (3.22) and summing (3.19) and (3.23), respectively.

It remains to specify a procedure to initialize β in Step 1 of Algorithm 5, and our approach is

summarized in Algorithm 6 below. Step 1 of Algorithm 6 divides the covariate domain into small

bins (or regions) Z1, . . . ,ZU , and treats the observations in each bin as having a fixed covariates

vector zu, for u = 1 . . . , U . The covariate vectors zu, for u = 1 . . . , U , are set to be the mean

observed covariate vector in each bin, i.e., zu = n−1
u

∑
n:zn∈Zu zn, where nu = |Zu| is the cardi-

nality of the set Zu. In Step 2, for each bin, we fit the classical FPCA model introduced in (3.2)

to the subset of functional observations falling in that particular bin, i.e., we fit it separately to

{(tn,yn) : zn ∈ Zu}, for each u ∈ {1, . . . , U}. Thus, we obtain an estimated covariance function

Ĝ(t, s|zu) = b(t)T Σ̂zub(s) for each fixed zu. Finally, making use of (3.6), Step 3 initializes β by

β(0) := arg minβ
U∑
u=1

‖Σ̂
1/2

zu −C(zu;β)‖2
F , (3.24)

where the subscript "F" denotes the Frobenius norm.

Algorithm 6 Initialization of β
1: Divide the covariates domain into small bins (or regions) Z1, . . . ,ZU .
2: Fit the classical FPCA model (3.2) in each bin to obtain Σ̂zu , for u = 1, . . . , U .
3: Initialize β by β(0) in (3.24).

3.3.2 Prediction

Suppose that we have applied Algorithm 5 to a training dataset, and now obtain noisy observa-

tions y∗ = (y∗(t
(∗)
1 ), . . . , y∗(t

(∗)
m∗))

T of a new latent function x∗(t) at the time points t(∗)1 , . . . , t
(∗)
m∗ ,

together with a corresponding covariate vector z∗. Suppose further that we want to estimate the
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scores ξ(∗) = (ξ
(∗)
1 , . . . , ξ

(∗)
r )T for the function x∗(t) (see (3.3)), and thereby predict the value of a

new observation y∗(t) at the time point t ∈ T .

Following Yao et al. (2005), our approach to this prediction task is motivated by the empirical

Bayes perspective. Let θ̂µ, β̂ and σ̂2
e denote the estimates of the model parameters (see (3.8))

obtained by applying Algorithm 5 to the training dataset. For the new observations, we define

basis matrices B∗ = (b(t
(∗)
1 ), . . . , b(t

(∗)
m∗))

T and H∗ = (H(t
(∗)
1 , z∗), . . . ,H(t

(∗)
m∗ , z∗))

T , analogous

to (3.9) and (3.10), respectively. Next, we compute the eigendecomposition Σ(z∗; β̂) = Θ∗D∗Θ
T
∗ .

Treating the parameter estimates θ̂µ, β̂ and σ̂2
e as if they were the the true values (i.e., the plug-in

approach), the joint distribution of y∗ and ξ(∗) is

 y∗
ξ(∗)

 ∼ N2m∗


H∗θ̂µ

0

 ,

B∗Σ(z∗; β̂)BT
∗ + σ̂2

eI B∗Θ∗D∗

D∗Θ
T
∗B

T
∗ D∗


 . (3.25)

This joint distribution results from assuming the prior ξ(∗) ∼ N (0,D∗), which is derived from the

training data (and z∗), hence the empirical Bayes connection. In a more complete empirical Bayes

treatment θµ, β and σ2
e would also be assigned priors, but this introduces additional complications

and computation and is therefore avoided here. Based on (3.25), the posterior distribution of ξ(∗)

is again a multivariate Gaussian whose mean and covariance matrix are given by

E(ξ(∗)|y∗) = D∗Θ
T
∗B

T
∗ (B∗Σ(z∗; β̂)BT

∗ + σ̂2
eI)−1(y∗ −H∗θ̂µ) (3.26)

and

Cov(ξ(∗)|y∗) = D∗ −D∗Θ
T
∗B

T
∗ (B∗Σ(z∗; β̂)BT

∗ + σ̂2
eI)−1B∗Θ∗D∗, (3.27)

respectively.

Finally, combining (3.26) and (3.27) with (3.8), the posterior predictive distribution of y∗(t) at

a new time t is a univariate Gaussian distribution with mean and variance given by

H(t, z∗)θ̂µ + b(t)TΘ∗E(ξ(∗)|y∗) (3.28)
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and

b(t)TΘ∗Cov(ξ(∗)|y∗)ΘT
∗ b(t) + σ̂2

e , (3.29)

respectively. If we are instead interested in the underlying latent function value x∗(t), then the

posterior predictive distribution will be the same except that the expression for the variance will

not have the σ̂2
e term. Sometimes, such as in astronomy, measurement errors are provided with

each observed value of y∗(t). In this case, we modify our predictions by replacing all instances of

σ̂2
e above by the actual measurement error value (including in the application of Algorithm 5 to the

training data).

3.4 Simulation Study

We now compare our CD-FPCA approach (Algorithm 5) with the methods proposed by James

et al. (2000), Jiang and Wang (2010), and Li et al. (2016). The James et al. (2000) method uses

a spline basis approach to approximate the classical FPCA model (3.2), but does not incorporate

covariates. Following Jiang and Wang (2010), we denote this approach by rFPCA, where the "r"

stands for reduced rank. Jiang and Wang (2010) proposed two local linear smoother based meth-

ods, which do incorporate covariate information, but with high computational cost. Their methods

are called fully adjusted FPCA (fFPCA) and mean adjusted FPCA (mFPCA); the former allows

both the mean and covariance function to depend on covariates, whereas the latter only allows the

mean function to do so. The supervised sparse and functional principal component (SupSFPC)

method proposed by Li et al. (2016) allows the scores ξ(n) in (3.2) (but not the mean function)

to vary with the covariates, and is computationally more efficient than all the other methods con-

sidered here (including ours). It is a state-of-the-art approach, and therefore a key comparison.

Nonetheless, it has a number of limitations including the linear assumption and a requirement that

the data have balanced sampling and regular spacing.

3.4.1 Simulated datasets

We simulate two datasets of noisy realizations of N = 100 and N = 7500 latent functions,

respectively. In both datasets, the n-th latent function xn(t, z) is a linear combination of a mean
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function µ(t, z) and r = 3 orthonormal eigenfunctions fj(t, z), j = 1, . . . , r. We set the covariate

z to be univariate, the mean function to be µ(t, z) = 30(t − z)2, and the three eigenfunctions to

be f1(t, z) =
√

2 cos(π(t+ z)), f2(t, z) =
√

2 sin(π(t+ z)) and f3(t, z) =
√

2 cos(3π(t− z)). To

further impose dependence of the covariance structure on the covariate z we set the eigenvalues to

be d =
(
2(z+20), z+10, z

)
. The scores ξ(n) are sampled from a Gaussian distribution with mean

0 and covariance matrix Dz = diag(d), see (3.3).

For easy comparison, all data generated in this section lie on a regular grid, i.e., the time points

ti = i−1
m−1

for i = 1, . . . ,m = 100. This accommodates the SupSFPC method which cannot handle

irregularly spaced functional data. The final simulated dataset contains m noisy realizations of

each latent function xn, i.e.,

yn(ti, z) = xn(ti, z) + ε(ti) = µ(tivz) +
r∑
j=1

ξ
(n)
j fj(ti, z) + ε(ti) (3.30)

= µ(ti, z) + fT (ti, z)ξ
(n) + ε(ti), (3.31)

for i = 1, . . . ,m, where ε is an independent white noise process with variance σ2
e = 0.1. We repeat

the simulation 10 times.

3.4.2 Results

For our CD-FPCA method, we set the number of B-spline basis functions for capturing the

dependence of the mean function on t and z to be to 10 and 5, respectively, i.e., l = 10 and

p = 5, see (3.4). For the covariance function, we set the number of basis functions for capturing

dependence on t and z to be 10 and 7, respectively, i.e., w = 10 and q = 7, see (3.5)-(3.8).

Similarly, for rFPCA we again use two sets of 10 basis functions to capture the dependence of the

mean and covariance function on t (the James et al. (2000) model does not incorporate covariates).

All the splines are cubic, and the spline basis for capturing the temporal evolution of the covariance

function b(t) ∈ Rw is orthonormal, as mentioned in Section 3.2.4. In the case of the SupSFPC

method, we use the average of all the observed curves as the mean function estimator, because
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Li et al. (2016) do not specify an estimator. For the mFPCA and fFPCA methods (Jiang and

Wang, 2010) we apply 10-fold cross-validation to the N = 100 dataset to select the smoothing

bandwidths (cross-validation is too time-consuming to apply to the N = 7500 dataset so we use

the same values for that dataset as well). In particular, to estimate the mean function we use the

bandwidths 0.57 and 0.52 to smooth across time t and the covariate z, respectively. To estimate

the eigenfunctions we use the bandwidths 0.57 and 0.66 to smooth across time t and the covariate

z (fFPCA only), respectively.

Table 3.1: MSE of the mean and eigenfunction estimators under CD-FPCA, SupSFPC, fFPCA,
mFPCA, and rFPCA.

MSE (SD)

Mean Fun. First Eigen. Second Eigen. Third Eigen.

N = 100

CD-FPCA 5.06 (1.86) 0.261 (0.097) 0.283 (0.106) 0.065 (0.050)
SupSFPC 6.20 (1.34) 0.762 (0.069) 0.774 (0.069) 0.864 (0.068)

fFPCA 5.79 (1.47) 0.266 (0.235) 0.305 (0.229) 1.857 (0.015)
mFPCA 6.17(1.52) 0.745(0.060) 0.748(0.061) 1.866(0.014)
rFPCA 30.12 (2.07) 0.746 (0.068) 0.771 (0.069) 0.867 (0.071)

N = 7500

CD-FPCA 0.14 (0.09) 0.001 (0.001) 0.001 (0.001) 0.002 (0.000)
SupSFPC 5.14 (0.06) 0.723 (0.007) 0.736 (0.007) 0.872 (0.009)

fFPCA — — — —
mFPCA 4.35 (0.09) 0.736 (0.010) 0.740 (0.010) 1.879 (0.002)
rFPCA 30.96 (0.32) 0.710 (0.007) 0.735 (0.007) 0.880 (0.009)

Table 3.1 gives the mean squared errors (MSE) of the estimators for the mean function and

eigenfunctions under each of the five methods considered: CD-FPCA, SupSFPC, fFPCA, mFPCA,

and rFPCA. For a function g and an estimate ĝ, we define the squared error to be

1

Nm

N∑
n=1

m∑
i=1

(g(ti, zn)− ĝ(ti, zn))2, (3.32)

where m is the number of grid points at which each function is observed. We approximate the

MSE by the mean of the squared error across the 10 replicate simulations. Table 3.1 also shows the

standard deviation (SD) of the MSE across the 10 simulations. Our CD-FPCA method has lower
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MSE than all the other approaches for all three eigenfunctions and the mean function. The second

best method in terms of MSE is fFPCA, but this approach has prohibitively high computational

cost, as we now illustrate. Figure 3.1 compares the computational cost of the five methods
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Figure 3.1: Log relative run time log10(TE/TSupSFPC), where TE denotes the mean run time in
seconds for E ∈ {CD-FPCA, fFPCA,mFPCA, rFPCA,SupSFPC}. The round points and triangle
points represent different datasets, i.e., N = 100 and N = 7500, separately

and in particular shows log10(TE/TSupSFPC), where TE denotes the mean run time in seconds for

E ∈ {CD-FPCA,SupSFPC, fFPCA,mFPCA, rFPCA}. SupSFPC is used as the baseline because

it is the fastest method. For reference, SupSFPC took 0.084 and 0.294 seconds for the N = 100

and N = 7500 cases, respectively. Our method is computationally more efficient than all the other

methods except SupSFPC. Despite its speed, the SupSFPC approach has limitations, because it

performs substantially worse than CD-FPCA (and fFPCA) in terms of MSE, e.g., Table 3.1 shows

that under SupSFPC the MSE for the first eigenfunction is almost three times higher than under
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CD-FPCA. Regarding the "?" symbol in Figure 3.1, note that the fFPCA algorithm was not run

for the case N = 7500 because it would have taken more than 1000 hours to complete. The time

given in Figure 3.1 for this case (marked by "?") was approximated by fitting a linear model to the

run times for smaller values of N and extrapolating to N = 7500 (an optimistic estimate). The

other local smoother based approach mFPCA was also computatiaonlly inefficient, although less

so. The high accuracy and comparatively low computational cost of our method means that it is

more suitable for application to large datasets than the other approaches.

3.4.3 Further comparison with SupSFPC

Here we more closely compare our CD-FPCA approach with SupSFPC because the latter is

the only other method considered here which can be applied to large datasets and also incorporates

covariate information. Firstly, to confirm the findings in Table 3.1, Figure 3.2 shows the estimated

mean function and eigenfunctions under CD-FPCA (dot-dash lines) and SupSFPC (oragne dotted

lines) as well as the true eigenfunctions (solid lines) given in Section 3.4.1, for a range of values

of the covariate z. For each function (i.e., each large panel), the SupSPFC estimates (dotted lines)

are all the same because the it is only the scores (ξ(n) in (3.2)) that vary with the covariates under

the SupSPFC method. The standard deviations associated with the estimated functions are all very

small and are not plotted. In summary, Figure 3.2 shows that CD-FPCA recovers the true mean

function and the three eigenfunctions almost exactly, whereas SupSPFC does not model any of the

variation in these functions across covariate values.

Next, we compare the prediction accuracy of the two methods. We treat the N = 7500 dataset

introduced in Section 3.4.1 as the training data, and generate noisy observations of an additional

N = 7500 latent functions to serve as a test dataset. We fix the mean function and eigenfunctions

using the training set introduced in Section 3.4.1. Using the fixed parameter estimates obtained in

Section 3.4.2, we apply the method described in Section 3.3.2 to make predictions for a selection of

the observations in the test dataset. In particular, for each function in the test dataset, we select first

20% of the time points to be observed (y∗ in (3.26)), and make predictions for the remaining 80%

by applying (3.28) for CD-FPCA and (B.47) in Section B.3 of Appendix B for SupSFPC. Some
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Figure 3.2: (Top left) estimates of the mean function under the CD-FPCA (dot-dash lines) and
SupSFPC (dotted lines) methods, for a range of covariate values. (Top right, bottom left, bottom
right) estimates of eigenfunctions 1, 2, and 3, respectively, under the CD-FPCA (dot-dash lines)
and SupSFPC (dotted lines) methods, for a range of covariate values. The true functions are shown
as solid lines
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Figure 3.3: Example predictions and 95% predictive intervals under CD-FPCA (center dot-dash
lines) and SupSFPC (center dotted lines). From left to right the panels correspond to covariate
values 0.03, 0.41 and 0.87, respectively. The solid lines show the true observed curves

example predictions and 95% predictive intervals are shown in Figure 3.3. The CD-FPCA and

SupSFPC predictive intervals were computed using (3.29) and (B.48) (Section B.3 of Appendix

B), respectively.

To quantitatively compare the predictions we compute the mean squared fitting errors (MSFE)

for the test set, i.e.,

1

Ñm̃

Ñ∑
n=1

m̃∑
i=1

{yn(t̃i, z̃n)− µ̂(t̃i, z̃n)−
r∑
j=1

ξ̂
(n)
j f̂j(t̃i, z̃n)}2, (3.33)

where Ñ is the number of observed curves in the test dataset, t̃1 . . . , t̃m̃ are the times points at

which predictions are made, z̃n is the covariate associated with curve n of the test dataset, and

ξ̂
(n)
j is the estimate of the score for eigenfunction j and curve n (based on the first 20% of the

observations for that curve). The mean function and eigenfunction estimates µ̂ and f̂j are those

from Section 3.4.1, and in the case of CD-FPCA they depend on both t and z, but in the case of
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Table 3.2: Test set MSFE (3.33) under CD-FPCA and SupSFPC.

CD-FPCA SupSFPC

MSFE MSFE

r = 1 52.77 (5.03) 60.32 (0.90)
r = 2 10.59 (0.29) 19.76 (0.15)
r = 3 1.03 (0.03) 20.15 (0.18)

SupSFPC they only depend on t. Table 3.2 gives the MSFE under both methods for three values of

r, i.e., the number of FPCs used, see (3.3). CD-FPCA has a lower MSFE for all three values of r.

Furthermore, in the examples shown in Figure 3.3 when r = 3, the 95% predictive intervals under

CD-FPCA (shaded regions marked by dot-dash lines) are generally much narrower than those

under SupSFPC (shaded regions marked by dotted lines), and yet still have better coverage of the

true observed curves (solid lines). The corresponding empirical coverage of CD-FPCA predictive

intervals on all predictions is 93.23% compared to 69.69% of SupSFPC.

The superior performance of CD-FPCA seen in Figure 3.3 and Table 3.2 is due to fact that

SupSFPC assumes that only the scores ξ(n) in (3.2) depend on the covariate, and that they do so

linearly, whereas these assumptions are clearly violated by the simulation settings described in

Section 3.4.1. If the assumptions were met then SupSFPC would perform more comparably, but

in practice, there is typically no reason to expect them to hold. Indeed, they do not seem to hold in

the real data application in Section 3.5.

However, to further investigate the flexibility of our CD-FPCA approach, we now generate a

dataset of noisy observations of N = 7500 latent functions using the SupSFPC model, which is

specified by (B.42) in Section B.3 of Appendix B. We set the mean function to be µ(t) = 0, the

three eigenfunctions to be f1(t) =
√

2 cos(π(t)), f2(t) =
√

2 sin(π(t)) and f3(t) =
√

2 cos(3π(t)).

and the eigenvalues to be d =
(
0.3, 0.2, 0.1

)
. The SupSFPC model assumes that the scores for

each eigenfunction vary linearly with the covariate and we set the slope coefficients for these linear

models to be T =
(
5, 8, 3

)
, see (B.42) (the intercepts are zero, because Li et al. (2016) specify that

the covariates should be centered). We sample covariates from a uniform distribution on [−10, 10].
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After training the models on this dataset, we compare CD-FPCA and SupSFPC predictions for

a test dataset generated under the same settings, again using (3.28) and (B.47) (Section B.3 of

Appendix B) to compute the CD-FPCA and SupSFPC predictions, respectively. Then, we select

the first 20% of the time points to be observed and predict the remaining observations. The first

row of Table 3.3 gives the prediction MSFE averaged across all time points in the test dataset, as

well as the empirical coverage of the CD-FPCA and SupSPFC predictive intervals.

Table 3.3: Overall prediction MSFE (and MSFE standard deviation) and empirical coverage of the
predictive interval under CD-FPCA and SupSFPC for the test dataset.

CD-FPCA (×10−2) SupSFPC(×10−2)

MSFE Emp. Coverage MSFE Emp. Coverage

Linear 15.91 (0.42) 94.65 (1.19) 15.86 (0.05) 96.21 (0.07)
Quadratic 16.00 (0.42) 94.62 (1.11) 38.16 (0.02) 95.39 (0.04)

These results show that CD-FPCA performs as well as SupSPFC, despite the data being gen-

erated under the SupSPFC setting. This is not surprising because the SupSFPC model is nested

within the CD-FPCA model, as detailed in Section B.4 of Appendix B. Of course, SupSFPC could

still benefit from the simplifying linear assumption, because here that assumption is correct, but

the resulting advantage appears to be negligible in this example.

As a final simulation study, we generate a dataset from a modified version of the SupSFPC

model in which the scores are assumed to have a quadratic relationship with the covariates, see

(B.50) in Section B.3 of Appendix B. The second row of Table 3.3 gives the resulting prediction

MSFE for CD-FPCA and SupSFPC (with the linear assumption), along with the empirical coverage

of the corresponding predictive intervals. Figure 3.4 shows predictions for an example curve in the

test dataset under the CD-FPCA (center dot-dash lines) and SupSPFC (center dotted line) methods,

for simulations under the linear (left panel) and quadratic (right panel) score model. The solid lines

show the true noisy curves and the shaded regions show 95% predictive intervals under CD-FPCA
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Figure 3.4: Example predictions under CD-FPCA (center dot-dash lines) and SupSFPC (center
dotted lines) when the data are generated using a linear (left panel) and quadratic (right panel)
score model. The shaded areas give 95% prediction regions and the true observed curves are
shown as solid lines

(regions marked by dot-dash lines) and SupSPFC (regions marked by dotted lines). In summary,

Table 3.3 and Figure 3.4 show that CD-FPCA performs comparably to SupSFPC when data are

generated under the latter model, and performs substantially better when data are generated under

a quadratic version of the SupSPFC model. This illustrates the greater flexibility of CD-FPCA

compared with SupSFPC, and suggests that the former method should be preferred, except perhaps

in the case of very large datasets for which we are confident that the SupSFPC assumptions are

satisfied.

3.5 Modeling Astronomical Lightcurves

In astronomy, a lightcurve is a time series of the observed brightness of a source, e.g., a star

or galaxy. Lightcurves are useful because some astronomical sources vary in brightness over time,

and these variations can be used to classify the type of source or infer its properties, e.g., the period

of star pulsations (from which additional physical insights can be gained). One type of variable
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source is an eclipsing binary system, which is a system of two stars orbiting each other. Many

stars visible to the eye are in fact eclipsing binary systems. If the orbits of the two stars lie in the

plane that also contains our line of sight then the stars will alternately eclipse each other from our

perspective. Binary stars cannot usually be resolved, but the eclipses block some of the light from

reaching us and create periodic dips in the observed lightcurve. These characteristics can be used

to distinguish eclipsing binary sources from other variable sources and help us to infer properties

of the two stars, e.g., their relative masses.

Our data set consists of N = 35615 eclipsing binary lightcurves from the Catalina Real-Time

Transient Survey (CRTS) (Drake et al., 2009) which were classified by the CRTS team in Drake

et al. (2014). Each observed magnitude (brightness) measurement is accompanied by a known

measurement error (i.e., standard deviation), that is determined by astronomers based on the prop-

erties of the telescope used. The data are publicly available from http://crts.caltech.

edu/. The top left panel of Figure 3.5 shows 10 standardized eclipsing binary lightcurves from

the dataset. The y-axis units are standardized magnitude: magnitude is an astronomical measure

of the intensity of light from a star, with smaller numbers indicating greater intensity. Standard-

izing so that all the measurements fall in [−0.5, 0.5] is necessary here because we are principally

interested in modeling the similar shapes of the lightcurves. For visual purposes the measurement

errors are not plotted; they have a median value of about 0.15 (in standardized magnitude units).

The x-axes in Figure 3.5 are phase of oscillation (as opposed to time), because eclipsing binary

lightcurves are periodic. The period of oscillation for each lightcurve was found by Drake et al.

(2014) and is treated as known for the purposes of our analysis. In practice, the periods would

have to be estimated, which is itself a challenging inference problem. It is worth noting that the

improved modeling we present here could in turn facilitate improved period estimation accuracy

in future.

An important feature in the top left panel of Figure 3.5 is that for some lightcurves the depth

of the two eclipses are similar, and for others they are very different. This distinction is due to

there being different types of eclipsing binary system. Eclipsing binaries are often divided into
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Figure 3.5: (Top left) standardized lightcurves of 10 eclipsing binary sources. (Top right, bot-
tom left, bottom right) example lightcurve predictions and 95% predictive intervals for CD-FPCA
(center dot-dash lines) and SupSFPC (center dotted lines). The solid lines show the true observed
lightcurves
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two classes, contact binaries which are sufficiently close to exchange mass, and detached binaries

which are more separated. Contact binaries typically consist of two sources with similar properties

(e.g., size and brightness), meaning that the two eclipses are similar. In contrast, detached binaries

may have eclipses of any relative size, because the two sources can have completely different

properties.

The above considerations raise an important modeling challenge: eclipsing binary lightcurves

can be modeled using somewhat similar functions, because they have similar shapes and covari-

ance structures, but it does not make sense to treat them as coming from a completely homogeneous

distribution, as is typically assumed in FPCA. The current solution is to divide eclipsing binaries

into contact and detached binaries and treat these groups as homogeneous, but this is still un-

satisfactory because the detached binaries group is heterogeneous. Treating eclipsing binaries as

homogeneous, means that any models we use to fit them will either be inaccurate or unnecessarily

complicated, which in turn will reduce our ability to classify them, estimate their periods, and learn

their other properties. Instead, we use our CD-FPCA method to learn a mean function and a set

of covariance matrix eigenfunctions that smoothly vary with the relative depth of the two eclipses.

This approach captures the fact that eclipsing binary lightcurves are similar, while also accounting

for a physically interpretable difference.

To implement our approach we need a parameter or covariate z related to the relative depth

of the two eclipses of each lightcurve. In practice, such information may sometimes be available

from a separate observation of the eclipsing binary system, e.g., from another telescope targeting a

different light wavelength range. However, in many cases a parameter capturing the relative depth

would need to be inferred from the data. For the sake of simplicity, in this work we calculate an

approximation of the relative depth of the eclipses of each lightcurve from the data and treat it as

a covariate z. In particular, we use a simple cubic B-spline approximation to each lightcurve and

compute the ratio of the change in standardized magnitude for the larger eclipse and that for the

smaller eclipse. For our dataset this gives z values in the range [1.00, 88.48]. The key point is that

this covariate is low dimensional (univariate) but still explains a great deal of the variation between
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Table 3.4: Prediction MSFE under CD-FPCA and SupSFPC for the gridded lightcurve data.

CD-FPCA (×10−2) SupSFPC(×10−2)

No. FPCs Training Set Test Set Training Set Test Set

r = 1 2.06 2.08 2.05 2.18
r = 2 1.73 1.74 1.70 2.12
r = 3 0.42 0.42 1.64 1.75

the lightcurves (which have infinite dimension).

We now compare the modeling and prediction performance of CD-FPCA to that of SupSPFC

for the lightcurve data. Since SupSFPC only handles regularly spaced data and does make use of

measurement errors, we initially consider a processed version of the data in which all the observa-

tions lie on a regular grid in phase space. In particular, we use a cubic spline fit to each lightcurve

to obtain observations at phases ti = i−1
m−1

for i = 1, . . . ,m = 101, regardless of the number of

observations in the original lightcurve. For this gridded data, we do not have measurement errors.

After comparing the methods on the gridded data, we will also apply CD-FPCA to the raw data

(including the measurement errors) to further demonstrate its applicability and performance.

We randomly divided the gridded dataset into a training set and a test set, composed of 80%

and 20% of the total number of ligthcurves, respectively. Table 3.4 shows the training and test

prediction MSFE for both CD-FPCA and SupSFPC. The predictions are computed in the same

way as in Section 3.4.2, except that a random 25% of the observations in each lightcurve are used

to estimate the lightcurve-specific scores ξ(n) (see (3.3)), and predictions are made for the other

75%. The rows of Table 3.4 correspond to different values of r, the rank of the matrix C used in

approximating the covariance matrix Σ, see (3.6). Table 3.4 shows that the training set prediction

MSFE is similar for both methods when r = 2, which suggests that the effective degrees of freedom

of the two models are similar in this case. However, the test set prediction MSFE is much lower

for our CD-FPCA method when r = 2, and in fact for all three choices of r.

The top right panel and two bottom panels of Figure 3.5 show estimates and 95% predictive

intervals for three example lightcurves in the test set under the CD-FPCA (center dot-dash lines)
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Figure 3.6: (Left panel) estimates of the mean function under the CD-FPCA (dot-dash lines) and
SupSFPC (dotted lines) methods, for a range of covariate values. (Right panel) estimates of the
first eigenfunction, under the CD-FPCA (dot-dash lines) and SupSFPC (dotted lines) methods, for
a range of covariate value, where the covariates have been scaled to [0, 1]

and SupSFPCA (center dotted lines) methods. The true observed lightcurves are also shown (solid

lines). CD-FPCA well captures the way the lightcurve shapes vary with the covariate, and also

provides reasonable 95% predictive intervals. In contrast, the SupSFPC method does not capture

the lightcurve shapes well, because its assumption that the scores vary linearly with the covariate

is not valid. To further demonstrate this, we set the loss function to be the prediction mean squared

fitting errors and plot it for both methods in the top left panel of Figure 3.7. CD-FPCA has similar

loss for all values of z, but SupSFPC has much higher loss for larger values of z. In particular, since

the SupSFPC method cannot properly capture the way the lightcurves change with the covariate, it

focuses on fitting lightcurves with low covariate values, which constitute the majority of the data

(and correspond to contact binaries).

Figure 3.6 shows the comparison of estimated mean and the first eigenfunction between CD-

FPCA and SupSFPC. The estimated mean function of CD-FPCA is much different when the co-

variate is larger than 0.9, which corresponds to β Persei, also known as Algol eclipsing system.
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Figure 3.7: (Top left) prediction MSFE loss for CD-FPCA (dot-dash line) and SupSFPC (dotted
line). (Top right, bottom left bottom right) CD-FPCA predictions and 95% predictive intervals
(center dot-dash lines) for three example raw test data lightcurves. The solid line shows the raw
lightcurves
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As stated in Kallrath et al. (2009), the fall of Algol lightcurves occupies only a small fraction of

the full light curve, typically less than approximately 15% for each minimum and the depth of the

two minima are very different. The estimated eigenfunctions of CD-FPCA are more interpretable

compared with SupSFPC. For different types of the eclipse system, e.g., contact binaries and de-

tached binaries, the intensity patterns of the light are much different. Since the contact binaries

typically consist of two similar sources (e.g., size and brightness), the intensity of the light may

enjoy the same pattern varying with the phase. While the intensity patterns of detached binaries are

much different because of their heterogeneous relative sizes. The estimated first eigenfunctions of

CD-FPCA capture this feature by the location of the fluctuation varying with the covariates(related

to the relative depth of the two eclipse binaries). When the covariate is small, the two periods of

the estimated first eigenfunction almost the same which shows the pattern of the contact binaries.

While the fluctuations become relatively larger around the second periodic dip as the covariate

increase which shows the pattern of the detached binaries. Especially when z = 0.73, 0.82, 0.91,

i.e., in the Algol eclipse binaries system where the hotter, bluer star dominates the light from the

system and make the brightness of the system more stable during the first half phase, the small fall

of the lightcurves may be undetectable, and this small fall near the first half phase is due to the "re-

flection effect" (a reprocessing of the hotter stars’ radiation as it impinges on the atmosphere of its

companion, increasing the cooler star’s luminosity in the irradiated area, see Kallrath et al. (2009)).

The estimated first eigenfunctions of CD-FPCA well capture this "reflection effect", showing that

the fluctuations in the first half phase are much small compared to larger fluctuations in the last

half phase.

Next, we apply CD-FPCA to the raw data, which cannot be analyzed using SupSFPC. In this

case the training and test set prediction MSFE are almost identical to those in Table 3.4, indicating

that the model still well captures the data. The top right and bottom two panels of Figure 3.7 show

95% predictive intervals for three example lightcurves in the test set. In this the case 95% predictive

intervals actually appear more consistent with the data than in the gridded data case. This is partly

due to chance and partly because, for the raw data, observation-specific measurement errors are
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available both for fitting the model and for making predictions. In practice, reliable observation-

specific measurement errors may not be available for predication (because measurement errors

are typically calculated at the time of observation), but we can still obtain rough estimates of the

measurement errors based on the training data, e.g., we could consider the median measurement

error or measurement errors at phases nearby to the point where a prediction is made.

3.6 Discussion

Our CD-FPCA method offers an attractive option for analyzing large functional datasets in

which both the mean and covariance function vary smoothly with covariates. It can flexibly incor-

porate this type of dependence and has substantially lower computational cost than popular local

smoother based covariate adjustment approaches, e.g., Jiang and Wang (2010), Jiang and Wang

(2011), Zhang et al. (2013), and Zhang and Wang (2016). While the SupSPFC approach proposed

by Li et al. (2016) has even lower computational cost than CD-FPCA, it does not achieve the same

levels of flexibility and accuracy. Indeed, in both our simulation study and our real data analysis,

CD-FPCA performed better than SupSFPC in all the accuracy comparisons that we considered,

e.g., mean and eigenfunction estimation, and prediction accuracy (except when the restrictive as-

sumptions of SupSFPC were exactly satisfied, in which case the two methods were comparable,

see the first row of Table 3.3). Furthermore, CD-FPCA can handle irregular and unbalanced ob-

servation times and incorporate measurement errors, whereas SupSFPC can not.

For simplicity we have focused on illustrations with univariate covariates, but our model for-

mulation in Section 3.2 is general, and in future work it would be valuable to investigate the

performance of our approach for datasets with higher dimensional covariates. Regarding further

methodological development, one could construct a map from Euclidean space to the Stiefel mani-

fold, as opposed to the symmetric positive semi-definite rank r matrix manifold (see (3.6)), because

the underlying FPC coefficients matrix, denoted Θz, lies on the Stiefel manifold (where, more

specifically, Θz is such that f(t, z) = ΘT
z b(t)). Indeed, the Stiefel manifold is a more frequently

used structure than the symmetric positive semi-definite rank r matrix manifold, and optimization

methods on the Stiefel manifold have been well developed, e.g., Boothby (1986), Balogh et al.
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(2004), Nishimori and Akaho (2005), Wen and Yin (2013). There may be advantages to a Stiefel

manifold based approach compared with our method proposed here, or vice versa, but this needs

to be further investigated.
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4. CONCLUSIONS

In my dissertation, we have proposed three novel methods. In the first chapter, we proposed

a new adaptive Markov chain Monte Carlo (MCMC) method to sample from multi-modal tar-

get densities and simultaneously perform much of the computation needed for our complemen-

tary Bayesian evidence estimator. We also established the theorem of ergodicity for our Warp-U

MCMC algorithm and offered theoretical proof of convergence of our algorithm. On the other

hand, we proposed a new version of the Warp-U bridge estimator (Wang et al., 2020) which has

lower asymptotic variance and offered theoretical proof. We also demonstrated the practical advan-

tages of our approaches through a simulation study and an astronomical exoplanet data analysis.

In the second chapter, proposed a new supervised functional PCA framework in which both

the mean and covariance structure depend on covariates. We also proposed a corresponding esti-

mation algorithm, which makes use of spline basis representations and roughness penalties, and

is substantially more computationally efficient than competing approaches of adequate estimation

and prediction accuracy. We demonstrated the advantages of our methodology through a simula-

tion study and an astronomical light curves dataset analysis.

64



REFERENCES

Ali, S. M. and Silvey, S. D. (1966). A general class of coefficients of divergence of one distribution

from another. Journal of the Royal Statistical Society: Series B (Methodological), 28(1):131–

142.

Andrieu, C. and Robert, C. P. (2001). Controlled MCMC for optimal sampling. INSEE.

Atchadé, Y. F. (2006). An adaptive version for the metropolis adjusted langevin algorithm with a

truncated drift. Methodology and Computing in applied Probability, 8(2):235–254.

Atchadé, Y. F., Roberts, G. O., and Rosenthal, J. S. (2011). Towards optimal scaling of metropolis-

coupled markov chain monte carlo. Statistics and Computing, 21(4):555–568.

Azzalini, A. (2013). The skew-normal and related families, volume 3. Cambridge University Press.

Balogh, J., Csendes, T., and Rapcsák, T. (2004). Some global optimization problems on stiefel

manifolds. Journal of Global Optimization, 30(1):91–101.

Behseta, S., Kass, R. E., and Wallstrom, G. L. (2005). Hierarchical models for assessing variability

among functions. Biometrika, 92(2):419–434.

Bennett, C. H. (1976). Efficient estimation of free energy differences from monte carlo data.

Journal of Computational Physics, 22(2):245–268.

Berg, B. A. and Neuhaus, T. (1991). Multicanonical algorithms for first order phase transitions.

Physics Letters B, 267(2):249–253.

Boothby, W. M. (1986). An introduction to differentiable manifolds and Riemannian geometry,

volume 120. Academic press.

Bornn, L., Jacob, P. E., Del Moral, P., and Doucet, A. (2013). An adaptive interacting Wang–

Landau algorithm for automatic density exploration. Journal of Computational and Graphical

Statistics, 22(3):749–773.

Butterfield, K. R. (1976). The computation of all the derivatives of a b-spline basis. IMA Journal

of Applied Mathematics, 17(1):15–25.

Cai, T. and Yuan, M. (2010). Nonparametric covariance function estimation for functional and

65



longitudinal data. University of Pennsylvania and Georgia inistitute of technology.

Cai, T. and Yuan, M. (2011). Optimal estimation of the mean function based on discretely sampled

functional data: Phase transition. The annals of statistics, 39(5):2330–2355.

Capra, W. B. and Müller, H.-G. (1997). An accelerated-time model for response curves. Journal

of the American Statistical Association, 92(437):72–83.

Chib, S. and Jeliazkov, I. (2001). Marginal likelihood from the metropolis–hastings output. Journal

of the American Statistical Association, 96(453):270–281.

De Boor, C. (1977). Package for calculating with b-splines. SIAM Journal on Numerical Analysis,

14(3):441–472.

Drake, A., Djorgovski, S., Mahabal, A., Beshore, E., Larson, S., Graham, M., Williams, R., Chris-

tensen, E., Catelan, M., Boattini, A., et al. (2009). First results from the catalina real-time

transient survey. The Astrophysical Journal, 696(1):870.

Drake, A., Graham, M., Djorgovski, S., Catelan, M., Mahabal, A., Torrealba, G., García-Álvarez,

D., Donalek, C., Prieto, J., Williams, R., et al. (2014). The catalina surveys periodic variable

star catalog. The Astrophysical Journal Supplement Series, 213(1):9.

Geyer, C. J. (1991). Markov chain monte carlo maximum likelihood. Computing science and

statistics: Proceedings of 23rd Symposium on the Interface, Fairfax Station, 1991, pages 156–

163.

Jacob, P. E., Ryder, R. J., et al. (2014). The Wang–Landau algorithm reaches the flat histogram

criterion in finite time. The Annals of Applied Probability, 24(1):34–53.

James, G. M., Hastie, T. J., and Sugar, C. A. (2000). Principal component models for sparse

functional data. Biometrika, 87(3):587–602.

Jarner, S. F. and Hansen, E. (2000). Geometric ergodicity of metropolis algorithms. Stochastic

processes and their applications, 85(2):341–361.

Jiang, C.-R. and Wang, J.-L. (2010). Covariate adjusted functional principal components analysis

for longitudinal data. The Annals of Statistics, 38(2):1194–1226.

Jiang, C.-R. and Wang, J.-L. (2011). Functional single index models for longitudinal data. The

66



Annals of Statistics, 39(1):362–388.

Kallrath, J., Milone, E. F., and Wilson, R. (2009). Eclipsing binary stars: modeling and analysis.

Springer.

Li, G., Shen, H., and Huang, J. Z. (2016). Supervised sparse and functional principal component

analysis. Journal of Computational and Graphical Statistics, 25(3):859–878.

Liang, F. (2002). Dynamically weighted importance sampling in monte carlo computation. Journal

of the American Statistical Association, 97(459):807–821.

Liang, F. (2005). A generalized Wang–Landau algorithm for Monte Carlo computation. Journal

of the American Statistical Association, 100(472):1311–1327.

Liang, F., Liu, C., and Carroll, R. J. (2007). Stochastic approximation in monte carlo computation.

Journal of the American Statistical Association, 102(477):305–320.

Lin, L., St. Thomas, B., Zhu, H., and Dunson, D. B. (2017). Extrinsic local regression on manifold-

valued data. Journal of the American Statistical Association, 112(519):1261–1273.

Loredo, T. J., Berger, J. O., Chernoff, D. F., Clyde, M. A., and Liu, B. (2012). Bayesian methods

for analysis and adaptive scheduling of exoplanet observations. Statistical Methodology, 9(1-

2):101–114.

Meng, X.-L. and Schilling, S. (2002). Warp bridge sampling. Journal of Computational and

Graphical Statistics, 11(3):552–586.

Meng, X.-L. and Wong, W. H. (1996). Simulating ratios of normalizing constants via a simple

identity: a theoretical exploration. Statistica Sinica, pages 831–860.

Mira, A. and Nicholls, G. (2004). Bridge estimation of the probability density at a point. Statistica

Sinica, pages 603–612.

Nelson, B. E., Ford, E. B., Buchner, J., Cloutier, R., Díaz, R. F., Faria, J. P., Rajpaul, V. M., and

Rukdee, S. (2018). Quantifying the evidence for a planet in radial velocity data. arXiv preprint

arXiv:1806.04683.

Nielsen, F. and Nock, R. (2013). On the chi square and higher-order chi distances for approximat-

ing f-divergences. IEEE Signal Processing Letters, 21(1):10–13.

67



Nishimori, Y. and Akaho, S. (2005). Learning algorithms utilizing quasi-geodesic flows on the

stiefel manifold. Neurocomputing, 67:106–135.

Peng, J. and Paul, D. (2009). A geometric approach to maximum likelihood estimation of the

functional principal components from sparse longitudinal data. Journal of Computational and

Graphical Statistics, 18(4):995–1015.

Pezzulli, S. (1993). Some properties of smoothed principal components analysis for functional

data. Computational Statistics, 8(1):1–16.

Pullen, N. and Morris, R. J. (2014). Bayesian model comparison and parameter inference in

systems biology using nested sampling. PloS one, 9(2):e88419.

Ramsay, J. and Silverman, B. (2005). Principal components analysis for functional data. Func-

tional Data Analysis, pages 147–172.

Reiss, P. T., Huang, L., Chen, H., and Colcombe, S. (2014). Varying-smoother models for func-

tional responses. arXiv preprint arXiv:1412.0778.

Rice, J. A. and Silverman, B. W. (1991). Estimating the mean and covariance structure non-

parametrically when the data are curves. Journal of the Royal Statistical Society: Series B

(Methodological), 53(1):233–243.

Robbins, H. and Monro, S. (1951). A stochastic approximation method. The annals of mathemat-

ical statistics, pages 400–407.

Roberts, G. O. and Rosenthal, J. S. (2007). Coupling and ergodicity of adaptive markov chain

monte carlo algorithms. Journal of applied probability, 44(2):458–475.

Rodríguez, A., Dunson, D. B., and Gelfand, A. E. (2009). Bayesian nonparametric functional data

analysis through density estimation. Biometrika, 96(1):149–162.

Rubenstein, P. K., Bousquet, O., Djolonga, J., Riquelme, C., and Tolstikhin, I. (2019). Practical

and consistent estimation of f-divergences. arXiv preprint arXiv:1905.11112.

Silverman, B. W. (1996). Smoothed functional principal components analysis by choice of norm.

The Annals of Statistics, 24(1):1–24.

Suarez, A. J. and Ghosal, S. (2017). Bayesian estimation of principal components for functional

68



data. Bayesian Analysis, 12(2):311–333.

Van Der Linde, A. (2008). Variational bayesian functional pca. Computational Statistics & Data

Analysis, 53(2):517–533.

Wang, F. and Landau, D. P. (2001). Efficient, multiple-range random walk algorithm to calculate

the density of states. Physical review letters, 86(10):2050.

Wang, L., Jones, D. E., and Meng, X.-L. (2020). Warp bridge sampling: The next generation.

Journal of the American Statistical Association.

Wen, Z. and Yin, W. (2013). A feasible method for optimization with orthogonality constraints.

Mathematical Programming, 142(1-2):397–434.

Wood, S. N. (2006). Low-rank scale-invariant tensor product smooths for generalized additive

mixed models. Biometrics, 62(4):1025–1036.

Yao, F., Müller, H.-G., and Wang, J.-L. (2005). Functional data analysis for sparse longitudinal

data. Journal of the American Statistical Association, 100(470):577–590.

Zhang, X., Park, B. U., and Wang, J.-l. (2013). Time-varying additive models for longitudinal data.

Journal of the American Statistical Association, 108(503):983–998.

Zhang, X. and Wang, J.-L. (2016). From sparse to dense functional data and beyond. The Annals

of Statistics, 44(5):2281–2321.

Zhu, H., Chen, Y., Ibrahim, J. G., Li, Y., Hall, C., and Lin, W. (2009). Intrinsic regression mod-

els for positive-definite matrices with applications to diffusion tensor imaging. Journal of the

American Statistical Association, 104(487):1203–1212.

69



APPENDIX A

SETTING AND THEORETICAL PROOF OF WARP-U MCMC AND STOCHASTIC BRIDGE

SAMPLING

A.1 Simulation Settings for Figure 2.1

For the simulation summarized in Figure 2.1, the unnormalized target density is given by

q =
1

15
exp(−1

2
(θ + 11)T (θ + 11)) +

2

15
exp(−1

2
(θ − 12)T (θ − 12)) (A.1)

+
3

15
exp(−1

2
(θ + 8)T (θ + 8)) +

4

15
exp(−1

2
(θ − 7)T (θ − 7)) (A.2)

+
5

15
exp(−1

2
(θ + 2)T (θ + 2)). (A.3)

The two-mode Gaussian mixture distribution used as φmix in right panel of Figure 2.1 is given

by

φmix ∝
1

2
exp(−1

2
(θ + 11)T (θ + 11)) +

1

2
exp(−1

2
(θ − 12)T (θ − 12)). (A.4)

A.2 Proof of Ergodicity (Theorem 1)

Proof of Lemma 1. Let κ(θ1|θ0) be the transition kernel of the MH update in Step 3 of Algorithm

2, and let m(θ2|θ1) be the transition kernel of Steps 4-7 of Algorithm 2. Then, the full transition

kernel of Algorithm 2 is

Pγ(θ2|θ0) =

∫
m(θ2|θ1)κ(θ1|θ0) dθ1. (A.5)

We want to verify that the transition kernel (A.5) preserves the target distribution π which is there-
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fore the stationary distribution of Algorithm 2:

∫
π(θ0)Pγ(θ2|θ0) dθ0 =

∫ ∫
π(θ0)κ(θ1|θ0)m(θ2|θ1) dθ1 dθ0 (A.6)

=

∫
π(θ1) m(θ2|θ1) dθ1. (A.7)

The equality (A.7) holds due to the established result of the MH update.

To show the transition kernel m(θ2|θ1) preserves π, we denote Gψ∗,ψ = Hψ∗ ◦ Fψ as the

composite of the stochastics transformation in Steps 4-7 of Algorithm 2. Set θ2 = Gψ∗,ψ(θ1) =

Hψ∗ ◦ Fψ(θ1). When θ1 ∼ π(θ) and suppose the transformed variable θ2 has density f(θ), our

target is equivalent to show that π(θ) ≡ f(θ).

We firstly derive an explicit expression for the density f based on the transition probabilities

in Step 4–7 of Algorithm 2. Denote p(ψ∗, ψ|θ1) as the probability of choosing transformation Fψ

andHψ∗ given θ1. Let A be an arbitrary Borel set of Rd. Then, when θ1 ∼ π(θ), we have

P (θ2 ∈ A) =

∫ K∑
ψ,ψ∗=1

I(Gψ∗,ψ(θ1) ∈ A)p(ψ∗, ψ|θ1)π(θ1) dθ1 (A.8)

=

∫ K∑
ψ,ψ∗=1

I(θ2 ∈ A)p(ψ∗, ψ|G−1
ψ∗,ψ(θ2))π(G−1

ψ∗,ψ(θ2))×
∣∣∣∂G−1

ψ∗,ψ(θ2)

∂θ2

∣∣∣ dθ2 (A.9)

=

∫
A

K∑
ψ,ψ∗=1

p(ψ∗, ψ|G−1
ψ∗,ψ(θ2))π(G−1

ψ∗,ψ(θ2))×
∣∣∣∂G−1

ψ∗,ψ(θ2)

∂θ2

∣∣∣ dθ2. (A.10)

In the above, the second equality applies the change of variable θ1 = G−1
ψ∗,ψ(θ2) for the integral.

Therefore, when θ1 ∼ π(θ), the probability density for θ2 is

f(θ2) =
K∑

ψ∗,ψ=1

π(G−1
ψ∗,ψ(θ2))×

∣∣∣∂G−1
ψ∗,ψ(θ2)

∂θ2

∣∣∣× p(ψ∗, ψ|G−1
ψ∗,ψ(θ2)) (A.11)

=
K∑

ψ∗,ψ=1

π(G−1
ψ∗,ψ(θ2))× |Sψ| × |Sψ∗|−1 × p(ψ∗, ψ|G−1

ψ∗,ψ(θ2)). (A.12)

We continue to find an expression for p(ψ∗, ψ|G−1
ψ∗,ψ(θ2)). Denote θ∗ = H−1

ψ∗ (θ2) as the in-
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termediate Warp-U transformed sample (Algorithm 2 Step 5). The normalizing constant for the

sampling probability in equation (2.7) is

b(θ∗) =
K∑
ψ̃=1

$(ψ̃|Hψ̃(θ∗))× q(Hψ̃(θ∗))× |Sψ̃| (A.13)

=
K∑
ψ̃=1

$(ψ̃|G−1

ψ∗,ψ̃
(θ2))× q(G−1

ψ∗,ψ̃
(θ2))× |Sψ̃|, (A.14)

where the last equality uses thatHψ̃(θ∗) = Hψ̃ ◦ H
−1
ψ∗ (θ2) = F−1

ψ̃
◦ H−1

ψ∗ (θ2) = G−1

ψ∗,ψ̃
(θ2). Given

the starting point G−1
ψ∗,ψ(θ2) in Step 4 of Algorithm 2, the probability of choosing Fψ,Hψ∗ in the

subsequent steps is

p(ψ∗, ψ|G−1
ψ∗,ψ(θ2)) =p(ψ|G−1

ψ∗,ψ(θ2))× p(ψ∗|G−1
ψ∗,ψ(θ2), ψ) (A.15)

=$(ψ|G−1
ψ∗,ψ(θ2))× $(ψ∗|θ2)π(θ2)|Sψ∗|∑K

ψ̃=1$(ψ̃|G−1

ψ∗,ψ̃
(θ2))π(G−1

ψ∗,ψ̃
(θ2))|Sψ̃|

(A.16)

Consequently, combining (A.12) and (A.16), we can get

f(θ2) =
K∑

ψ∗,ψ=1

π(G−1
ψ∗,ψ(θ2))|Sψ| ×

$(ψ|G−1
ψ∗,ψ(θ2))×$(ψ∗|θ2)π(θ2)∑K

ψ̃=1 $(ψ̃|G−1

ψ∗,ψ̃
(θ2))π(G−1

ψ∗,ψ̃
(θ2))|Sψ̃|

(A.17)

=π(θ2)
K∑

ψ∗=1

$(ψ∗|θ2)
K∑
ψ=1

$(ψ|G−1
ψ∗,ψ(θ2))π(G−1

ψ∗,ψ(θ2))|Sψ|∑K
ψ̃=1$(ψ̃|G−1

ψ∗,ψ̃
(θ2))π(G−1

ψ∗,ψ̃
(θ2))|Sψ̃|

(A.18)

=π(θ2)
K∑

ψ∗=1

$(ψ∗|θ2) = π(θ2). (A.19)

From the above, we have proved the transition kernel m(θ2|θ1) in (A.7) preserves the stationary

distribution π.
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Proof of Lemma 2. We need to prove that

lim
s→∞

P( sup
θ∈Rd
‖Pγ̂s(θ, ·)− Pγ̂s+1(θ, ·)‖TV ≥ δ1) = 0 (A.20)

for any δ1 > 0, where d is the dimension of θ. For fixed θ, the map from γ̂ to Pγ̂(θ, A) is

continuous and bounded for any A, and therefore it suffices to show that

lim
s→∞

P(‖γ̂s − γ̂s+1‖ > δ) = 0, (A.21)

for any δ > 0. Recall that the estimate γ̂s is obtained from the EM algorithm using the samples

from all s stages run. To prove (A.21), we begin by using induction to show that for each iteration

t of the EM algorithm we have

lim
s→∞

P(‖γ̂s,tk − γ̂
s+1,t
k ‖ > δ) = 0 (A.22)

where γs,tk = (µs,t1 . . . ,µs,tk ,Σ
s,t
k , . . . ,Σ

s,t
k , w

s,t
k , . . . , w

s,t
k ) and µs,tk , Σs,t

k , w
s,t
k are parameters of the

k-th component of the Gaussian mixture approximation (2.4) at iteration t and stage s.

For t = 0, we have lims→∞ P(‖γ̂s,0k −γ̂
s+1,0
k ‖ > δ) = 0, because we initialize the EM algorithm

at the same values for each run. Next, assume that (A.22) holds for t iteration. We need to prove

that

lim
s→∞

P(‖γ̂s,t+1
k − γ̂s+1,t+1

k ‖ > δ) = 0. (A.23)

The E-step of EM algorithm is given by

P(Zi = k|θi) =
ws,tk N (θsi |µ

s,t
k ,Σ

s,t
k )∑K

k′=1w
s,t

k′
N (θsi |µ

s,t

k′
,Σs,t

k′
)

= hs,ti (k), (A.24)
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where θsi is the i-th sample in s stage. The M-step updates are given by

µs,t+1
k =

∑Ns
i=1 h

s,t
i (k)θsi

N s,t
k

, (A.25)

Σs,t+1
k =

∑Ns
i=1 h

s,t
i (k)(θsi − µ

s,t
k )(θsi − µ

s,t
k )T

N s,t
k

, (A.26)

ws,t+1
k =

N s,t
k

Ns

, (A.27)

where N s,t
k =

∑N
i=1 h

s,t
i (k) can be interpreted as the effective number of samples assigned to

component k. For any δ > 0, we have

P(‖µs,t+1
k − µs+1,t+1

k ‖ > δ) = P(‖ 1

N s,t
k

Ns∑
i=1

hs,ti (k)θsi −
1

N s+1,t
k

Ns+1∑
i=1

hs+1,t
i (k)θs+1

i ‖ > δ) (A.28)

= P(‖ 1

N s,t
k

Ns∑
i=1

hs,ti (k)θsi −
1

N s+1,t
k

Ns∑
i=1

hs+1,t
i (k)θsi −

1

N s+1,t
k

Ns+1∑
i=Ns+1

hs+1,t
i (k)θsi‖ > δ) (A.29)

≤ 1

δ
E(‖

Ns∑
i=1

(
1

N s,t
k

hs,ti (k)− 1

N s+1,t
k

hs+1,t
i (k))θsi‖) +

1

δ
E(‖ 1

N s+1,t
k

Ns+1∑
i=Ns+1

hs+1,t
i (k)θsi‖), (A.30)

where (A.30) results from the triangle and Markov inequalities. Since hs,ti (k) and hs+1,t
i (k) are

continuous functions of γs,t and γs+1,t, respectively, the continuous mapping theorem gives

lim
s→∞

P(‖hs,ti (k)− hs+1,t
i (k)‖ > δ) = 0. (A.31)

Thus,

E(‖
Ns∑
i=1

(
1

N s,t
k

hs,ti (k)− 1

N s+1,t
k

hs+1,t
i (k))θsi‖)→ 0, (A.32)

and

E(‖ 1

N s+1,t
k

Ns+1∑
i=Ns+1

hs+1,t
i (k)θsi‖)→ 0, (A.33)
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as s→∞, Ns →∞. Therefore,

lim
s→∞

P(‖µs,t+1
k − µs+1,t+1

k ‖ > δ) = 0 (A.34)

Analogous arguments apply for Σk and wk, and hence

lim
s→∞

P(‖γ̂s,t+1
k − γ̂s+1,t+1

k ‖ > δ) = 0, (A.35)

for k = 1, . . . , K. Thus, by induction, (A.22) holds for all t, and all δ > 0.

In any stage s, the EM algorithm is run until either ‖γs,t+1
k −γs,tk ‖ < εs or t ≥ tmax, where tmax

is the maximum number of iterations allowed. Without loss of generality, suppose that it is run for

t1 and t2 iterations in stages s and s + 1, respectively, and that t1 ≤ t2. Since (A.22) holds for all

t, and all δ > 0, we have

lim
s→∞

P(‖γs,t2k − γs+1,t2
k ‖ > δ1) = 0. (A.36)

Thus,

lim
s→∞

P(‖γs,t1k − γs+1,t2
k ‖ > δ) (A.37)

≤ lim
s→∞

P(‖γs,t1k − γs,t1+1
k ‖+ ‖γs,t1+1

k − γs,t1+2
k ‖+ · · ·+ ‖γs,t2k − γs+1,t2

k ‖ > δ) (A.38)

≤ lim
s→∞

P((t2 − t1)ε+ ‖γs,t2k − γs+1,t2
k ‖ > δ) (A.39)

= lim
s→∞

P(‖γs,t2k − γs+1,t2
k ‖ > δ1) = 0. (A.40)

Therefore,

lim
s→∞

P(‖γ̂s − γ̂s+1‖ > δ) = 0 (A.41)
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Proof of Lemma 3. We begin by proving that condition C1 (minorization) holds. Since

∫
A

∫
Rd
κ(θ1|θ0)m(θ2|θ1) dθ1 dθ2 =

∫ K∑
ψ,ψ∗=1

κ(θ1|θ0)I(Gψ∗,ψ(θ1) ∈ A)p(ψ∗, ψ|θ1) dθ1

(A.42)

=

∫ K∑
ψ,ψ∗=1

κ(θ1|θ0)I(Gψ∗,ψ(θ1) ∈ A)$(ψ|θ1)× $(ψ∗|Gψ∗,ψ(θ1))π(Gψ∗,ψ(θ1))|Sψ∗|∑K
ψ̃=1 $(ψ̃|Gψ̃,ψ(θ1))π(Gψ̃,ψ(θ1))|Sψ̃|

dθ1

(A.43)

≥
∫
A

K∑
ψ,ψ∗=1

κ(θ1|θ0)$(ψ|θ1)× $(ψ∗|Gψ∗,ψ(θ1))π(Gψ∗,ψ(θ1))|Sψ∗ |∑K
ψ̃=1$(ψ̃|Gψ̃,ψ(θ1))π(Gψ̃,ψ(θ1))|Sψ̃|

dθ1, (A.44)

where the last equality uses that A ⊂ G−1
ψ∗,ψ(A) because for any θ1 ∈ G−1

ψ∗,ψ(A), θ1 = Gψ∗,ψ(θ1) ∈

A when ψ = ψ∗.

Let J(θ1) =
∑K

ψ,ψ∗=1$(ψ|θ1) × $(ψ∗|Gψ∗,ψ(θ1))π(Gψ∗,ψ(θ1))|Sψ∗ |∑K
ψ̃=1

$(ψ̃|G
ψ̃,ψ

(θ1))π(G
ψ̃,ψ

(θ1))|S
ψ̃
|
. We have J(θ1) > 0 for all

θ1 ∈ C, where C is one closed ball that contains A. Then δ1 = infθ1∈C J(θ1) > 0 and

∫
A

∫
Rd
κ(θ1|θ0)m(θ2|θ1) dθ1 dθ2 ≥

∫
A

δ1κ(θ1|θ0) dθ1. (A.45)

Following lemma 4.1 of Atchadé (2006), there is a probability measure ν and δ2 > 0 such that

∫
A

κ(θ1|θ0) dθ1 ≥ δ2ν(A). (A.46)

Hence, we have ∫
A

∫
Rd
κ(θ1|θ0)m(θ2|θ1) dθ1 dθ2 ≥ δ1δ2ν(A). (A.47)

Next, we prove that condition C2 (Simultaneous drift) holds. Define V (θ) = cvπ
−α(θ), where

α ∈ (0, 1) and cv = supθ π
α(θ), so that infθ V (θ) = 1. Following Lemma 3.5 of Jarner and

Hansen (2000), we only need to prove that the following two conditions hold:

sup
θ0∈X

∫
Rn V (θ2)Pγ̂(θ0, dθ2)

V (θ0)
<∞, (A.48)
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lim sup
‖θ0‖→∞

sup
γ∈Γ

∫
Rn V (θ2)Pγ(θ0, dθ2)

V (θ0)
< 1. (A.49)

Recall that κ(θ1|θ0) = α(θ0,θ1)q(θ1|θ0) + (1 − r(θ0))δ(θ0 − θ1), where α(θ0,θ1) =

min{1, π(θ1)q(θ0|θ1)
π(θ0)q(θ1|θ0)

} and r(θ0) =
∫
α(θ0,θ

′
)q(θ

′ |θ0) dθ
′
. To prove condition (A.48), we expand

it as

∫
Rn V (θ2)Pγ̂(θ0, dθ2)

V (θ0)
(A.50)

=

∫ ∫
A(θ0)

π−α(θ2)

π−α(θ0)
q(θ1|θ0)m(θ2|θ1) dθ1 dθ2 (A.51)

+

∫ ∫
R(θ0)

π−α(θ2)

π−α(θ0)

π(θ1)q(θ0|θ1)

π(θ0)q(θ1|θ0)
q(θ1|θ0)m(θ2|θ1) dθ1 dθ2 (A.52)

+

∫
R(θ0)

(
1− π(θ

′
)q(θ0|θ

′
)

π(θ0)q(θ
′ |θ0)

)
q(θ

′ |θ0) dθ
′
∫
m(θ2|θ0)

π−α(θ2)

π−α(θ0)
dθ2 (A.53)

where

A(θ0) = {θ1 ∈ Rn, π(θ1)q(θ0|θ1) ≥ π(θ0)q(θ1|θ0)}

and R(θ0) = A(θ0)c.

Because q(θ|θ0) is Gaussian and for any θ0 ∈ X , we can find 0 < ε1 < ε2 < ∞ and constant

KL and KU such that

KLgε1(θ2 − θ0) ≤ q(θ2|θ0) ≤ KUgε2(θ2 − θ0), (A.54)

where ga is the probability density function of a d-dimensional Gaussian distribution with mean

0 and covariance matrix aId, and a > 0. Then we can bound qα(θ0|θ1)q1−α(θ1|θ0) when θ1 ∈

A(θ0), i.e.,
π−α(θ1)

π−α(θ0)
q(θ1|θ0) ≤ qα(θ0|θ1)q1−α(θ1|θ0) ≤ KUgε2(θ1 − θ0) (A.55)
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Similarly, when θ1 ∈ R(θ0),

π−α(θ1)

π−α(θ0)

π(θ1)q(θ0|θ1)

π(θ0)q(θ1|θ0)
q(θ1|θ0) ≤ q1−α(θ0|θ1)qα(θ1|θ0) ≤ KUgε2(θ1 − θ0) (A.56)

For the first term of (A.50),

∫ ∫
A(θ0)

π−α(θ2)

π−α(θ0)
q(θ1|θ0)m(θ2|θ1) dθ1 dθ2 (A.57)

=

∫ ∫
A(θ0)

π−α(θ1)

π−α(θ0)
q(θ1|θ0)

π−α(θ2)

π−α(θ1)
m(θ2|θ1) dθ1 dθ2 (A.58)

≤
∫ ∫

A(θ0)

KUgε2(θ1 − θ0)πα(θ1)π−α(θ2)π(θ2)m̃(θ2|θ1) dθ1 dθ2 (A.59)

=

∫ ∫
A(θ0)

KUgε2(θ1 − θ0)πα(θ1)π1−α(θ2)m̃(θ2|θ1) dθ1 dθ2 (A.60)

where m(θ2|θ1) = π(θ2)m̃(θ2|θ1). Now, our goal is to prove (A.60) is smaller than∞. We first

prove that

πα(θ1)

∫
π1−α(θ2)m̃(θ2|θ1) dθ2 <∞ (A.61)

for any θ1.

Let g(θ1) =
∫
π1−α(θ2)m̃(θ2|θ1) dθ2. Similarly with the (A.8), for any Borel set A of Rd, we

have

∫
A

g(θ1) dθ1 =

∫ K∑
ψ,ψ∗=1

I(G−1
ψ∗,ψ(θ2) ∈ A)p(ψ∗, ψ|G−1

ψ∗,ψ(θ2))π−α(θ2) dθ2 (A.62)

=

∫ K∑
ψ,ψ∗=1

I(θ1 ∈ A)p(ψ∗, ψ|θ1)π−α(Gψ∗,ψ(θ1))×
∣∣∣∂Gψ∗,ψ(θ1)

∂θ1

∣∣∣ dθ1 (A.63)

=

∫
A

K∑
ψ,ψ∗=1

p(ψ∗, ψ|θ1)π−α(Gψ∗,ψ(θ1))× |Sψ∗| × |Sψ|−1 dθ1. (A.64)

In the above, the second equality applies the change of variable θ2 = Gψ∗,ψ(θ1) for the integral.
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Therefore,

g(θ1) =
K∑

ψ,ψ∗=1

π−α(Gψ∗,ψ(θ1))p(ψ∗, ψ|θ1)× |Sψ∗| × |Sψ|−1 (A.65)

=
K∑

ψ,ψ∗=1

π−α(Gψ∗,ψ(θ1))p(ψ|θ1)p(ψ∗|θ1, ψ)× |Sψ∗| × |Sψ|−1 (A.66)

=
K∑

ψ∗,ψ=1

π−α(Gψ∗,ψ(θ1))$(ψ|θ1)× $(ψ∗|Gψ∗,ψ(θ1))π(Gψ∗,ψ(θ1))|Sψ∗ |2|Sψ|−1∑K
ψ̃=1$(ψ̃|Gψ̃,ψ(θ1))π(Gψ̃,ψ(θ1))|Sψ̃|

. (A.67)

Hence,

πα(θ1)g(θ1) =
K∑

ψ∗,ψ=1

$(ψ|θ1)$(ψ∗|Gψ∗,ψ(θ1))πα(θ1)π1−α(Gψ∗,ψ(θ1))|Sψ∗|2|Sψ|−1∑K
ψ̃=1 $(ψ̃|Gψ̃,ψ(θ1))π(Gψ̃,ψ(θ1))|Sψ̃|

. (A.68)

Let |Smax| = maxψ∗,ψ∈{1...,K}
|Sψ∗ |2
|Sψ |

and M1 = maxψ∈{1...,K}
|Smax|
|Sψ |

. Note that $(ψ|θ1) ≤ 1 and

$(ψ∗|Gψ∗,ψ(θ1)) ≤ 1. Since there exist ψ̃ = ψ such that Gψ̃,ψ(θ1) = θ1, when

π(Gψ∗,ψ(θ1)) ≤ π(θ1), (A.69)

we have

πα(θ1)g(θ1) ≤
K∑

ψ∗,ψ=1

$(ψ|θ1)πα(θ1)π1−α(θ1)|Sψ∗|2|Sψ|−1∑K
ψ̃=1$(ψ̃|Gψ̃,ψ(θ1))π(Gψ̃,ψ(θ1))|Sψ̃|

(A.70)

≤
K∑

ψ∗,ψ=1

$(ψ|θ1)π(θ1)|Sψ∗ |2|Sψ|−1∑K
ψ̃=1$(ψ̃|Gψ̃,ψ(θ1))π(Gψ̃,ψ(θ1))|Sψ̃|

(A.71)

≤
K∑

ψ∗,ψ=1

$(ψ|Gψ,ψ(θ1))π(Gψ,ψ(θ1))|Sψ|M1∑K
ψ̃=1$(ψ̃|Gψ̃,ψ(θ1))π(Gψ̃,ψ(θ1))|Sψ̃|

≤ K2M1. (A.72)

Similarly, when

π(θ1) ≤ π(Gψ∗,ψ(θ1)), (A.73)
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we can also obtain that

πα(θ1)g(θ1) ≤
K∑

ψ∗,ψ=1

$(ψ|Gψ∗,ψ(θ1))π(Gψ∗,ψ(θ1))|Sψ∗|M1∑K
ψ̃=1$(ψ̃|Gψ̃,ψ(θ1))π(Gψ̃,ψ(θ1))|Sψ̃|

≤ K2M1. (A.74)

Therefore, we can conclude that

∫
πα(θ1)π1−α(θ2)m̃(θ2|θ1) dθ2 ≤ K2M1 <∞. (A.75)

Hence, (A.57) is bounded, i.e.,

∫ ∫
A(θ0)

π−α(θ2)

π−α(θ0)
q(θ1|θ0)m(θ2|θ1) dθ1 dθ2 (A.76)

≤
∫ ∫

A(θ0)

KUgε2(θ1 − θ0)πα(θ1)π1−α(θ2)m̃(θ2|θ1) dθ1 dθ2 (A.77)

≤
∫
A(θ0)

KUgε2(θ1 − θ0)K2M1 dθ1 <∞. (A.78)

Similarly for the second term of (A.50), with (A.75) holds,

∫ ∫
R(θ0)

π−α(θ2)

π−α(θ0)

π(θ1)q(θ0|θ1))

π(θ0)q(θ1|θ0)
q(θ1|θ0)m(θ2|θ1) dθ1 dθ2 (A.79)

=

∫ ∫
R(θ0)

π−α(θ1)

π−α(θ0)

π(θ1)q(θ0|θ1))

π(θ0)q(θ1|θ0)
q(θ1|θ0)

π−α(θ2)

π−α(θ1)
m(θ2|θ1) dθ1 dθ2 (A.80)

≤
∫ ∫

R(θ0)

KUgε2(θ1 − θ0)πα(θ1)π−α(θ2)π(θ2)m̃(θ2|θ1) dθ1 dθ2 (A.81)

=

∫ ∫
R(θ0)

KUgε2(θ1 − θ0)πα(θ1)π1−α(θ2)m̃(θ2|θ1) dθ1 dθ2 <∞ (A.82)

For the third term of (A.50), following the equation (A.75), we have

∫
πα(θ0)π1−α(θ2)m̃(θ2|θ0) dθ2 <∞. (A.83)
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Then

∫
R(θ0)

(1− π(θ
′
)q(θ0|θ

′
)

π(θ0)q(θ
′ |θ0)

)q(θ
′ |θ0) dθ

′
∫
m(θ2|θ0)

π−α(θ2)

π−α(θ0)
dθ2 (A.84)

≤
∫
R(θ0)

q(θ
′ |θ0) dθ

′
∫
πα(θ0)π1−α(θ2)m̃(θ2|θ0) dθ2 <∞. (A.85)

To prove the second condition (A.49), we first make the expansion of
∫
Rn V (θ2)Pγ̂(θ0, dθ2)

V (θ0)
same

with (A.50). Then, following the proof of Lemma 6.2 in Atchadé (2006), we have

lim sup
‖θ0‖→∞

sup
γ∈Γ

∫
A(θ0)

π−α(θ1)

π−α(θ0)
q(θ1|θ0) dθ1 (A.86)

+ lim sup
‖θ0‖→∞

sup
γ∈Γ

∫
R(θ0)

π−α(θ1)

π−α(θ0)

π(θ1)q(θ0|θ1)

π(θ0)q(θ1|θ0)
q(θ1|θ0) dθ1 = 0. (A.87)

With (A.75) holds, we can claim

lim sup
‖θ0‖→∞

sup
γ∈Γ

∫ ∫
A(θ0)

π−α(θ1)

π−α(θ0)
q(θ1|θ0)πα(θ1)π1−α(θ2)m̃(θ2|θ1) dθ1 dθ2 (A.88)

+ lim sup
‖θ0‖→∞

sup
γ∈Γ

∫ ∫
R(θ0)

π−α(θ1)

π−α(θ0)

π(θ1)q(θ0|θ1)

π(θ0)q(θ1|θ0)
q(θ1|θ0)θ2π

α(θ1)π1−α(θ2)m̃(θ2|θ1) dθ1 dθ2 = 0

(A.89)

For the third term of (A.50), we have

∫
R(θ0)

(1− π(θ
′
)q(θ0|θ

′
)

π(θ0)q(θ
′ |θ0)

)q(θ
′ |θ0) dθ

′
∫
m(θ2|θ0)

π−α(θ2)

π−α(θ0)
dθ2 (A.90)

≤
∫
R(θ0)

q(θ
′ |θ0) dθ

′
∫
πα(θ0)π1−α(θ2)m̃(θ2|θ0) dθ2 (A.91)

≤ πα(θ0)

∫
π1−α(θ2)m̃(θ2|θ0) dθ2 (A.92)

With (A.75) holds and when ‖θ0‖ → ∞, πα(θ0) will goes to 0. Therefore,

lim sup
‖θ0‖→∞

sup
γ∈Γ

∫
R(θ0)

(1− π(θ
′
)q(θ0|θ

′
)

π(θ0)q(θ
′|θ0)

)q(θ
′|θ0) dθ

′
∫
m(θ2|θ0)

π−α(θ2)

π−α(θ0)
dθ2 < 1 (A.93)
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Proof of Theorem 1. Since Lemmas 2 ensure the diminishing adaptation condition and lemma 3

ensure SSAGE condition. With lemma 1, 2 and 3 in hand, we can claim the ergodicity of adaptive

Warp-U algorithm by the framework of Roberts and Rosenthal (2007).

A.3 Proof of Theorem on Relative Asymptotic Variance (Theorem 2)

Proof of Theorem 2. Meng and Wong (1996) showed that under the i.i.d. assumption, the asymp-

totic variance of λ̂BS = log r̂BS is

(
1

n1

+
1

n2

)
[(1−HA(p1, p2))−1 − 1] + o

(
1

n1

+
1

n2

)
. (A.94)

Following Nielsen and Nock (2013), we express HA(p1, p2) and HA(p1,k, p2) as HA(p1, p2) =

n1n2

(n1+n2)2
χ2
P (p2, p1) and HA(p1,k, p2) = n1kn2

(n1k+n2)2
χ2
P (p2, p1,k), for k = 1, . . . , K, where χ2

P is Pear-

son Chi-type distances defined as

χ2
P (p2, p1) =

∫
Θ1∩Θ2

(p2(θ)− p1(θ))2

p2(θ)
dθ. (A.95)

Let n2 = βn1 and w̃k = n1k

n1
, l(y) = χ2

P (p2, y), and

m(y) = (1−HA(y, p2))−1−1 =

(
1− n1n2

(n1 + n2)2
χ2
P (p2, y)

)−1

−1 =

(
1− β

(1 + β)2
l(y)

)−1

−1.

(A.96)

We can obtain the first and second derivative of m(y), i.e.,

m
′
(y) =

β

(1 + β)2

(
1− β

(1 + β)2
l(y)

)−2

l
′
(y), (A.97)

and

m
′′
(y) =

β
(1+β)2

(
1− β

(1+β)2
l(y)

)
l
′′
(y) + 2

(
β

(1+β)2
l
′
(y)
)2

(
1− β

(1+β)2
l(y)

)3 . (A.98)
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Since

E(
n1k

n1

) =

∫
Rd
π(θ)

wkφ(S−1
k (θ − µk))|S−1

k |
φmix(θ)

dθ =

∫
1

c1

q(θ)
wkφ(S−1

k (θ − µk))|S−1
k |

φmix(θ)
dθ

(A.99)

=

∫
1

c1

φ(θ̃)
wkq(Skθ̃ + µk)

φmix(Skθ̃ + µk)
dθ̃ =

∫
wk
c1

q1k(θ̃) dθ̃ =
wkc1k

c1

, (A.100)

where the equality in (A.100) applies the change of variable θ̃ = S−1
k (θ−µk) for the integral, we

approximate the weight c1kwk
c1

by n1k

n1
= w̃k. Hence, p1(θ) =

∑K
k=1

c1kwk
c1

p1k(θ) ≈
∑K

k=1 w̃kp1k(θ).

To obtain the expression of asymptotic variance, we first obtain the Taylor series for m(p1k) at p1,

i.e.,

m(p1k) = m(p1) +m
′
(p1)(p1k − p1) +

m
′′
(τk)(p1k − p1)2

2
, (A.101)

where τk is some density between p1k and p1, for k = 1, . . . , K. Hence,

K∑
k=1

w̃km(p1k) = m(p1) +
K∑
k=1

w̃k
m
′′
(τk)(p1k − p1)2

2
. (A.102)

Therefore, writing .
= to denote asymptotic equality, we express V ar(λ̂WB) as,

V ar(λ̂WB)
.
= (

1

n1

+
1

n2

)[(1−HA(p1, p2))−1 − 1] =
1 + β

β

1

n1

m(p1). (A.103)

On the other hand, by the delta method, that is V ar[f(x)] = V ar(x)(f ′(E(x))2, we have

V ar(λ̂SWB) = V ar(log(r̂SWB))
.
=
V ar(r̂SWB)

(E(r̂SWB))2
=
V ar(

∑K
k=1wk exp(λ̂k,SWB))

r2
(A.104)

=
1

r2

K∑
k=1

w2
kV ar(λ̂k,SWB)e2E(λ̂k,SWB)) =

K∑
k=1

w2
kV ar(λ̂k,SWB), (A.105)

where V ar(λ̂k,SWB) is the variance of λ̂k, i.e.,

V ar(λ̂k,SWB)
.
= (

1

n1k

+
1

n2

)[(1−HA(p1k, p2))−1 − 1] =
w̃k + β

w̃kβ

1

n1

m(p1k). (A.106)
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Then

V ar(λ̂WB)− V ar(λ̂SWB) (A.107)

=
1 + β

β

1

n1

m(p1)−
K∑
k=1

w2
k

w̃k + β

w̃kβ

1

n1

m(p1k) (A.108)

=
1 + β

β

1

n1

(
K∑
k=1

w̃km(p1k)−
K∑
k=1

w̃k
m
′′
(τk)(p1k − p1)2

2

)
−

K∑
k=1

w2
k

w̃k + β

w̃kβ

1

n1

m(p1k)

(A.109)

=
1

n1

K∑
k=1

[(
1 + β

β
− w2

k(w̃k + β)

w̃2
kβ

)
w̃km(p1k)

]
− 1

n1

K∑
k=1

1 + β

β
w̃k
m
′′
(τk)

2
(p1k − p1)2.

(A.110)

Therefore, if

K∑
k=1

[(
1 + β

β
− w2

k(w̃k + β)

w̃2
kβ

)
w̃km(p1k)

]
≥

K∑
k=1

1 + β

β
w̃k
m
′′
(τk)

2
(p1k − p1)2, (A.111)

V ar(λ̂WB) ≥ V ar(λ̂SWB). (A.112)

The condition (A.111) is very mild because the left term of the inequality is no less than 0 while

the right term is near 0 for the following reasons. Following Rubenstein et al. (2019), when p1k

and p2 are not much different, the plot of χ2
p varying with the difference is an almost horizontal

line, i.e., l′(τk) ≈ 0 and l′′(τk) ≈ 0. Then we have m′′(τk) ≈ 0 by equation (A.98). Meanwhile,

(p1k − p1)2 ≈ 0, we have
∑K

k=1
1+β
β
w̃k

m
′′

(τk)
2

(p1k − p1)2 ≈ 0. In addition, when p1k is close to

p2, p1k will also be close to p1, then c1k
c1
≈ 1 which means wk ≈ w̃k. Since w̃k ≤ 1, we have∑K

k=1[
(

1+β
β
− w2

k(w̃k+β)

w̃2
kβ

)
w̃km(p1k)] ≥ 0. In conclusion, when p1k is not too different from p2

(usually satisfied because p2 is set as standard Gaussian distribution and p1k follows a distribution

that is close to standard Gaussian since p1k is the transformed distribution by Warp-U transforma-

tion, see equation (2.9)), V ar(λ̂WB) ≥ V ar(λ̂SWB).
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A.4 Proof of Theorem on Relative Precision Per Second (Theorem 3)

Proof of Theorem 3. When K = 1, then PpS(λ̂SWB) = PpS(λ̂WB) because SWB is identical to

WB in this case. When K ≥ 2, the number of target evaluations performed by WB, denoted nWB,

is at least K times larger than that performed by SWB, denoted nSWB, see Table 2.1 for details.

Therefore, to prove that PpS(λ̂SWB) ≥ PpS(λ̂WB), we need to show that the asymptotic variance

satisfies

V ar(λ̂SWB) ≤ KV ar(λ̂WB). (A.113)

Similarly with (A.107),

KV ar(λ̂WB)− V ar(λ̂SWB) (A.114)

=
1

n1

K∑
k=1

[(
K

1 + β

β
− w2

k(w̃k + β)

w̃2
kβ

)
w̃km(p1k)

]
− 1

n1

K∑
k=1

K
1 + β

β
w̃k
m
′′
(τk)

2
(p1k − p1)2.

(A.115)

When

K∑
k=1

[(
K

1 + β

β
− w2

k(w̃k + β)

w̃2
kβ

)
w̃km(p1k)

]
≥

K∑
k=1

K
1 + β

β
w̃k
m
′′
(τk)

2
(p1k − p1)2, (A.116)

KV ar(λ̂WB) ≥ V ar(λ̂SWB). (A.117)

Therefore, for all K ≥ 1, when (A.116) is satisfied, PpS(λ̂SWB) ≥ PpS(λ̂WB). The condition

(2.19) is milder compared with condition (2.17) of Theorem 2.

A.5 Physical Model of RV Prediction

Loredo et al. (2012) introduce the physical model to predict the RV. The prediction of RV is

vpred(t) = K (e cosω + cos [ω + φ(t)]) + γ, (A.118)
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where K is the velocity semi-amplitude, γ is systemic velocity parameter which combines the

projected center of mass (COM) velocity and other constant offsets in the measurement of the

velocity, e is eccentricity, and ω is the argument of periapsis. φ(t) is defined as

tan
φ

2
=

√(
1 + e

1− e

)
tan

E

2
, (A.119)

where E is an angle defined by Kepler’s equation E − e sinE =M andM is the mean anomaly

M = 2πt/τ +M0, whereM is the mean anomaly at epoch t = 0.
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APPENDIX B

ROUGHNESS PENALTY, COMPUTATION SIMPLIFICATION OF CD-FPCA AND DETAILS

OF SUPERVISED SPARSE FUNCTIONAL PCA

B.1 Roughness penalty

To encourage smoothness of the estimated mean function and covariance function, we add a

roughness penalty to the negative log-likelihood (3.11). In the cases without covariates, the classi-

cal roughness penalty for an arbitrary function g is Jt(g) =
∫ b
a
g
′′
(t)2dt. If g has the basis repre-

sentation g(t) =
∑K

k=1 α̃kφk(t) = α̃Tφ(t), for some basis φ(·) and corresponding coefficients α̃,

then Jt(g) is given by

Jt(g) = α̃T
∫ b

a

[
∂2

∂t2
φ(t)

] [
∂2

∂t2
φT (t)

]
dtα̃ = α̃TStα̃, (B.1)

where St =
∫ b
a

[
∂2

∂t2
φ(t)

][
∂2

∂t2
φT (t)

]
dt.

This classical penalty is not directly applicable to our setting, because our mean and covari-

ance functions depend on the unknown covariates z, in addition to time t. We instead rely on

the approach of Wood (2006); Reiss et al. (2014) for penalizing functions which take multi-

ple arguments and can be expressed using tensor product bases. The expression CT (z;β)b(t),

whose transpose appears in (3.8), is a vector of r functions evaluated at (t, z), and we denote

the j-th function by hj(t, z), for j = 1, . . . , r. Thus, our covariance function is G(t, s|z) =

b(t)TC(z;β)CT (z;β)b(s) =
∑r

j=1 hj(t, z)hj(s, z), and smoothness can be imposed by penaliz-

ing the hj(t, z)’s. Following Wood (2006), our penalty is

J(h) = λt

r∑
j=1

∫
Z
Jt(h

(j)
t|z)dz + λz

r∑
j=1

∫
T
Jz(h

(j)
z|t)dt, (B.2)

where Jt(h
(j)
t|z) evaluates the roughness of h(j)

t|z = hj(t, z) viewed as a function of t, and similarly

87



Jz(h
(j)
z|t) treats h(j)

z|t(z) = hj(t, z) as a function of z. The penalty function Jz is analogous to (B.1)

and evaluates the integrated squared value of the second order derivative of h(j)
z|t with respect to z.

We determine the tuning parameters λt and λz by cross-validation.

In the interest of computational tractability of (B.2), we write the functions h(j)
t|z(t) in terms of

the temporal and covariate domain orthonormal B-spline bases introduced in Section 3.2.4. Denote

β(j) as the j-th column of the coefficients matrix Γ in (3.7). We can write h(j)
t|z(t) = α̃(j)(z)Tb(t),

with α̃(j)(z) = Mzβ
(j) and Mz = Iw ⊗ vT (z) . By (B.1), the penalty Jt(h

(j)
t|z) can then be

expressed as Jt(h
(j)
t|z) = α̃(j)(z)TStα̃

(j)(z) =
(
β(j)

)T
MT
zStMzβ

(j), which yields

∫
z

Jt(h
(j)
t|z)dz =

(
β(j)

)T[ ∫
Z

MT
zStMzdz

]
β(j) (B.3)

=
(
β(j)

)T[ ∫
Z

(
Iw ⊗ v(z)

)(
St ⊗ 1

)(
Iw ⊗ vT (z)

)
dz
]
β(j) (B.4)

=
(
β(j)

)T[ ∫
Z

(
St ⊗ v(z)vT (z)

)
dz
]
β(j) (B.5)

Because that v(z) is orthonormal B-spline bases, i.e.,
∫
Z v(z)vT (z)dz = Iq, Eqn. (B.5) can be

simplified as

∫
z

Jt(h
(j)
t|z)dz =

(
β(j)

)T(
St ⊗

∫
Z
v(z)vT (z)dz

)
β(j) =

(
β(j)

)T
S̃tβ

(j), (B.6)

where S̃t = St ⊗ Iq. Note the result obtained hereby is similar but simpler than that of Reiss

et al. (2014). Their penalty matrix S̃t is the Kronecker product of two dense matrices. By using

orthonormal bases, one of our Kronecker product matrices become the identity matrix. When the

numbers of knots q and w are large, our penalty matrix S̃t is sparse, making the computational cost

smaller.

Similarly, with S̃z = Iw ⊗ Sz, the penalty for h(j)
z|t is given by

∫
T
Jz(h

(j)
z|t)dt =

(
β(j)

)T
S̃zβ

(j), (B.7)
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Combining (B.6) and (B.7) above, the roughness penalty (B.2) has an explicit expression

J(h) =
r∑
j=1

λt
(
β(j)

)T
S̃tβ

(j) +
r∑
j=1

λz
(
β(j)

)T
S̃zβ

(j) = βT (λtIr ⊗ S̃t + λzIr ⊗ S̃z)β, (B.8)

where β = vec(Γ).

We use an additional penalty, J(µ), to enforce smoothness of the mean function (3.4). The

penalty is obtained by applying procedures analogous to those discussed above. In particular, we

use the form

J(µ) = θTµ (λ
(µ)
t S̃

(µ)
t + λ(µ)

z S̃(µ)
z )θµ (B.9)

where S̃
(µ)
t = S

(µ)
t ⊗ Ip and S̃

(µ)
z = Il ⊗ S

(µ)
z .

Combining the negative log-likelihood (3.11) with the roughness penalties (B.8) and (B.9), we

obtain the objective function to be minimized:

L+ P =
N∑
n=1

{log det Σn + tr(SnΣ
−1
n )}

+ θTµ (λ
(µ)
t S̃

(µ)
t + λ(µ)

z S̃(µ)
z )θµ + βT (λtIr ⊗ S̃t + λzIr ⊗ S̃z)β, (B.10)

where L and P denote the log-likelihood and penalty terms, respectively. We use cross-validation

to choose the four tuning parameters λt, λz, λ
(µ)
t , and λ(µ)

z .

B.2 Proof of Lemmas

Proof of Lemma 4. With the help of the matrix determinant lemma and the Sherman-Morrison-

Woodbury formula, we can obtain the determinant and inverse of Σn = BnCnC
T
nBT

n + σ2
eI (and

reduce the computational cost at the same time), i.e.,

log |Σn| = log det(Ir + σ−2
e Wn) +mn log σ2

e (B.11)
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and

Σ−1
n = σ−2

e (Imn −BnCn{σ2
eIr + Wn}−1CT

nBT
n ), (B.12)

respectively, with Wn = CT
nBT

nBnCn. Using the above results, the log likelihood in (3.11) can

be simplified to

L =
N∑
n=1

tr
(
σ−2
e Sn[Imn −BnCn{σ2

eIr + Wn}−1CT
nBT

n ]
)

(B.13)

+
N∑
n=1

[
log det(Ir + σ−2

e Wn) +mn log σ2
e

]
(B.14)

=
N∑
n=1

[
log det(Ir + σ−2

e Wn) +mn log σ2
e + tr(σ−2

e Sn)
]

(B.15)

−
N∑
n=1

tr(σ−2
e SnBnCn{σ2

eIr + Wn}−1CT
nBT

n ]) (B.16)

=
N∑
n=1

log det(Ir + σ−2
e Wn) +

N∑
n=1

mn log σ2
e + σ−2

e

N∑
n=1

‖yn −Hnθµ‖2
2 (B.17)

−
N∑
n=1

(σ−2
e )2gTn{Ir + σ−2

e Wn}−1gn, (B.18)

where gn = CT
nBT

n (yn − Hnθµ). To further reduce computational cost, we use a Cholesky

decomposition when evaluating the log-likelihood. If we compute the Cholesky factor of Ir +

σ−2
e Wn, that is Ir + σ−2

e Wn = FnF
T
n , and set hn = F−1

n gn, then the objective function can be

expressed as

L = 2
N∑
n=1

log det(Fn)− (σ−2
e )2

N∑
n=1

‖hn‖2
2 + σ−2

e

N∑
n=1

‖yn −Hnθµ‖2
2 +

N∑
n=1

mn log σ2
e . (B.19)

Proof of Lemma 5. We use a similar approach as in the proof of Lemma 4 to reduce the computa-

tional cost of evaluating the log-likelihood gradients. As in Lemma 4, we set Fn as the Cholesky
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factor of Ir + σ−2
e Wn. Recall we have also set Wn = CT

nBT
nBnCn and hn = F−1

n CT
nBT

n (yn −

Hnθµ). Besides, denote En = F−1
n CT

nBT
n . Then, based on (B.12), the steps to simplify the gradi-

ent (given in (3.14)) are as follows:

∂L
∂θµ

=
N∑
n=1

2HT
nΣ−1

n (Hnθµ − yn) (B.20)

=
N∑
n=1

2σ−2
e HT

n [Imn −BnCn(σ2
eIr + Wn)−1CT

nBT
n ](Hnθµ − yn) (B.21)

=
N∑
n=1

2σ−2
e HT

n [Imn − σ−2
e BnCn(FnF

T
n )−1CT

nBT
n ](Hnθµ − yn) (B.22)

=
N∑
n=1

−2σ−2
e (HT

nyn −HT
nHnθµ) + 2σ−4

e HT
nET

nhn. (B.23)

This leads to the simplified expression of the gradient.

Proof of Lemma 6. First of all, based on (B.12), we have

tr(Σ−1
n ) = σ−2

e tr
[
Imn − σ−2

e BnCn(Ir + σ−2
e Wn)−1CT

nBT
n

]
(B.24)

= σ−2
e mn − (σ−2

e )2tr(ET
nEn). (B.25)

Eqn. (B.12) also implies that

Σ−1
n (yn −Hnθµ) = σ−2

e (yn −Hnθµ)− (σ−2
e )2ET

nhn, (B.26)

where hn and En are the same as defined in Lemma 4 and Lemma 5.

It follows that

{Σ−1
n (yn −Hnθµ)}T{Σ−1

n (yn −Hnθµ)} (B.27)

=σ−4
e ‖yn −Hnθµ‖2

2 − 2σ−6
e ‖hn‖2

2 + σ−8
e h

T
nEnE

T
nhn (B.28)

Combining (B.25) and (B.28), we can express the gradient of the log likelihood with respect to σ2
e
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(given in (3.15)) as

∂L
∂σ2

e

=
N∑
n=1

tr(Σ−1
n )− {Σ−1

n (yn −Hnθµ)}T{Σ−1
n {(yn −Hnθµ)} (B.29)

=
N∑
n=1

[
mnσ

−2
e − (σ−2

e )2tr(ET
nEn)− {Σ−1

n (yn −Hnθµ)}T{Σ−1
n (yn −Hnθµ)}

]
(B.30)

=
N∑
n=1

[
mnσ

−2
e − σ−4

e tr(ET
nEn)− σ−4

e ‖yn −Hnθµ‖2
2 + 2σ−6

e ‖hn‖2
2 (B.31)

− σ−8
e h

T
nEnE

T
nhn

]
. (B.32)

Proof of Lemma 7. Based on the Sherman-Morrison-Woodbury formula, we have

Σ−1
n =σ−2

e (Imn −BnCn{σ2
eIr + Wn}−1CT

nBT
n ) (B.33)

=σ−2
e (Imn −KnC

T
nBT

n ), (B.34)

where Wn = CT
nBT

nBnCn and Kn = BnCn{σ2
eIr + Wn}−1. Then, ∂L

∂Cn
in (3.20) can be equiva-

lently expressed as

∂L
∂Cn

= 2×BT
n

[
Σ−1
n −Σ−1

n SnΣ
−1
n

]
BnCn (B.35)

= 2σ−2
e (BT

nBnCn −BT
nKnWn) (B.36)

− 2(σ2
e)
−2(BT

n −BT
nKnC

T
nBT

n )Sn(BnCn −KnWn). (B.37)

B.3 Details of Supervised Sparse Functional PCA

The main assumption of the Supervised Sparse and Functional PCA (SupSFPC) method pro-

posed by Li et al. (2016) is that the scores ξ(n) in (3.2) are linearly related to the covariates zn,
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i.e.,

ξ(n) = τ 0 + TTzn + γ(n), (B.38)

where τ 0 ∈ Rr is an intercept vector, T is a coefficient matrix with rows corresponding to the

covariates and columns corresponding to the scores. The vector γ(n) ∈ Rr is an independent

Gaussian realization with mean zero and diagonal covariance matrix, denoted Σγ , with positive

decreasing eigenvalues along the diagonal. Under this assumption Li et al. (2016) write (3.2) as

yn(t) = µ(t) + fT (t)ξ(n) + ε(n)(t) (B.39)

= µ(t) + fT (t)(τ 0 + TTzn + γ(n)) + ε(n)(t) (B.40)

=
[
µ(t) + τ T0 f(t)

]
+ (zn)TTf(t) +

[
(γ(n))Tf(t) + ε(n)(t)

]
. (B.41)

In Li et al. (2016), the intercept term µ(t) + τ T0 f(t) is omitted since they assume that yn(t) and zn

are centered. Hence, the final SupSFPC model is

yn(t) = zTnTf(t) +
[
(γ(n))Tf(t) + ε(n)(t)

]
. (B.42)

The corresponding discretized version is

Y = ZTFT + QFT + E, (B.43)

where Y is an N × m matrix with Yij = yi(tj), Z is the matrix (z1, . . . zN)T , F is an m × r

matrix with Fjk = fk(tj), Q is the matrix (γ(1), . . . ,γ(N))T , and E is an N ×m error matrix E

with Eij = ε(i)(tj).

Li et al. (2016) use penalized maximum likelihood to obtain estimates T̂, Σ̂γ , and F̂ of the

coefficient matrix, covariance matrix, and eigenfunction matrix, respectively. Predictions for new

curves can then be made using an approach analogous to that in Section 3.3.2, as we now explain.

Suppose we observe noisy observations of a new curve y∗ = (y∗(t
(∗)
1 ), . . . , y∗(t

(∗)
m∗))

T together
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with the corresponding covariate vector z∗. We require that the time points t(∗)1 , . . . , t
(∗)
m∗ belong the

collection of time points in the training data, i.e., {t1, . . . , tm}, because SupSFPC is a discretized

FPCA method. Let F̂∗ be the sub-matrix of F̂ whose rows correspond to t(∗)1 , . . . , t
(∗)
m∗ . Then, using

a plug-in approach, the joint distribution of y∗ and ξ(∗) is approximated by

 y∗
ξ(∗)

 ∼ N2m∗


F̂∗T̂

Tz∗

T̂Tz∗

 ,

F̂∗Σ̂γF̂
T
∗ + σ̂2

eI F̂∗Σ̂γ

Σ̂γF̂
T
∗ Σ̂γ


 . (B.44)

The "posterior distribution" of ξ(∗) is then a multivariate Gaussian whose mean and covariance

matrix are given by

T̂Tz∗ + Σ̂γF̂
T
∗ (F̂∗Σ̂γF̂

T
∗ + σ̂2

eI)−1(y∗ − F̂∗T̂
Tz∗), (B.45)

and

Σ̂γ − Σ̂γF̂
T
∗ (F̂∗Σ̂γF̂

T
∗ + σ̂2

eI)−1F̂∗Σ̂γ , (B.46)

respectively.

Finally, combining (B.45) and (B.46) with (B.39), the posterior predictive distribution of y∗(tj)

at a new time tj is a univariate Gaussian distribution with mean and variance given by

f̂(tj)
TE(ξ(∗)|y∗) (B.47)

and

f̂(tj)
TCov(ξ(∗)|y∗)f̂(tj) + σ̂2

e , (B.48)

respectively.

In Section 3.4.3, we also generate from an extended version of SupFPCS where the mean of

the scores ξ(n) is a quadratic function of the covariates zn, i.e.,

ξ(n) = τ 0 + TTzn + UTz2
n + γ(n), (B.49)
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where z2
n is a vector whose elements are the squares of those of zn, and U is a coefficients matrix.

Thus, the model (B.42) is modified to

yn(t) = zTnTf(t) + (z2
n)TUf(t) +

[
(γ(n))Tf(t) + ε(n)(t)

]
. (B.50)

B.4 The Connection between SupSFPC and CD-FPCA

Here we show that SupSFPC is a special case of our CD-FPCA method. Under the SupSFPC

model (B.42), the observed noisy function at time t, i.e., y(t), follows the Gaussian distribution

N
(
zTTf(t),f(t)TΣγf(t) + σ2

e

)
. On the other hand, under the CD-FPCA model (3.8) we have

y(t) ∼ N
(
H(t, z)Tθµ, b(t)

TΣ(z;β)b(t) + σ2
e

)
. Therefore, SupSFPC falls under the CD-FPCA

framework, because the equations

f(t)TTTz = H(t, z)Tθµ = a(t)TΘµu(z) (B.51)

and

f(t)TΣγf(t) = b(t)TC(z;β)C(z;β)Tb(t), (B.52)

can always be satisfied for suitable bases a(t), b(t),u(z), and v(z). In particular, regarding (B.51),

note that we can choose u(z) = z, and that f(t)TTT is just another function of t, say g(t)T .

Thus, since Θµ is a matrix of unconstrained coefficients, we can choose Θµ such that f(t)TTT =

g(t)T = a(t)TΘµ, provided that a(t) is a suitable basis, and thus (B.51) can always be satisfied.

Similarly, regarding (B.52), let Θ be the coefficients matrix such that f(t) = ΘTb(t), for a suitable

basis b(t). Since C is unconstrained, it can be chosen such that C = ΘΣ
1/2
γ , and hence (B.52)

can also always be satisfied mathematically. Of course, CD-FPCA is more flexible than SupSFPC

and does not typically reduce to the latter in practice. In particular, if we replace the unknowns in

(B.51) and (B.52) by their estimates then the equalities will typically no longer hold. Whether they

approximately hold obviously depends on the specific data and the penalizations implemented.
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