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ABSTRACT

We introduce an efficient method to support generation of geometric winding paths on para-

metric shapes. Filament winding is a technology for producing composite materials by winding

resin-infused fibers around the underlying model. While filament winding is a long-standing man-

ufacturing method, only a few shapes, primarily cylinders, have been manufactured in practice.

Extending this to a broader range of parametric surfaces is desirable.

For convex objects without friction, generating a winding path over a model is equivalent to

finding a locally geodesic path on the surface. We propose a physically-based method ideally

suited for generating these geodesics, and show how it can be augmented to incorporate friction in

the simulation process. For non-convex objects, it is important to correctly handle the bridging of

filaments across local concavities. We therefore propose an efficient method for lifting a filament

from and returning it to a surface, within the same simulation framework.

We demonstrate how this method forms the basis for an end-to-end system that designers can

use to create, visualize, and redesign winding paths for a variety of shapes.
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1. INTRODUCTION

This work deals with the generation of paths formed by filaments as they are pulled over a

surface in tension and under friction. This work is motivated by the manufacturing process of

filament winding. Our path generation approach is an important step toward expanding the range

of shapes that can be created with this process.

1.1 Motivating Problem

Filament winding is a long-standing method used for manufacturing composite materials, par-

ticularly tanks, pipes, and other containers [24]. The basic process involves winding filaments with

embedded resins around a shape, then curing that shape to produce a strong (yet usually thin and

light) object. The base shape is referred to as a mandrel, and it is usually mounted on a machine

that spins the mandrel about a single axis. While the mandrel is rotated continuously, a movable

head dispenses filaments under tension, and the head is moved (typically either with 2 or 5 degrees

of freedom) so that the fibers are gradually wound around the entire object. Fig. 1.1 illustrates how

a winding machine works. There are usually two families of fibers (cyan and green) which are

wound in different directions. In Fig. 1.1 the blue fiber is the one being wound. Q represents the

head position and P the contact point on the mandrel. l is the axis the mandrel is rotating around.

Figure 1.1: An example of filament winding on a cylinder.

However, to this point, most of the practical work in winding has been to manufacture only

a very limited range of objects, with cylinders (often for gas and liquid storage tanks) by far the

1



most common shape. Some previous works have developed approaches allowing for winding

around T-junctions of cylinders [33], winding around a torus [22, 45], winding around elbows

(bends in a cylinder) often based on the torus formulation [18, 19, 43], or winding over a “dome”

shape that might cap a cylinder [44]. The range of shapes has remained very limited. Our goal is to

significantly expand the range of shapes that it is feasible to use filament winding for, by generating

winding paths for more general shapes and by providing analysis tools that identify when a shape

is feasible to wind, or how it might be modified to become more feasible for winding.

1.2 Filament Winding Paths and Geodesics

For strength, fibers are typically wound around the object in multiple directions, so that dif-

ferent layers of filaments cross over each other. In order to manufacture an object, appropriate

winding paths must be determined that allow the filaments to cover the surface of the mandrel. For

cylindrical shapes, the questions to be answered are usually just the angle to wind the filaments

over the surface, considering the width of filaments laid down at a time, the desired angle at which

fibers cross, and the number of layers needed. For a more general shape, there are more significant

challenges in determining feasible winding paths, beginning with determining whether winding is

even possible.

The paths that a filament can take when being wound around a surface are strongly connected

to the geometry of the surface. Since the filaments are laid down on the surface in tension, if the

surface is completely smooth then the filaments must follow a geodesic path on the surface. That

is, when determining a completely feasible winding path, one must identify a geodesic path on the

surface. Incorporating friction opens the possibility of non-geodesic winding paths.

Feasibility requires more than just geodesic (or near-geodesic) properties, however. In partic-

ular, the filament must travel over the surface in a direction where the surface is locally convex in

the direction of the filament. Because the filaments are under tension, they will “bridge” across

any concave region of the surface. Fig. 1.2 illustrates this, where the green path is feasible since

the geodesic is convex along the curve. The red path, though geodesic, is not a feasible solution

because of its local concavity. In manufacturing, if the winding machine follows the red path, the

2



winding result will end up with the blue curve, which is partially off the surface.

Figure 1.2: An example of convex and concave geodesic paths.

Note, then, that convex regions of the surface can be locally wound in any directions, fully

concave regions cannot be wound, and saddle regions can be wound in some directions but not

others. Fig. 1.3 shows an example. In (a) and (c), each rectangle represents a vertex. Green parts

on a rectangle represent convex directions, which are possible for winding. Red parts represent

concave directions, which are impossible for winding. In (b) and (d), green means convex points,

yellow means saddle points, and red means concave points. (a) and (b) use an identical model while

(c) and (d) use a different one. Obviously, if a vertex in (a) has an all-green or all-red rectangle,

it is in the green or red area in (b). If the vertex’s corresponding rectangle contains both red and

green, it is in the yellow area. The same is true for (c) and (d).

A concave point is impossible to wind regardless of the direction of the winding path. But for

a saddle point, the ability to wind depends on the curve’s direction. We can modify the shape and

minimize the concave area by popping out concave vertices. In Fig. 1.3, the model in (c) and (d)

are modified from (a) and (b).

In a practical setting, there are other considerations for valid winding paths, such as ensuring

that the head can maneuver appropriately without colliding with the mandrel. These considerations

are global, scale-dependent, and specific to the physical winding machine, rather than a fundamen-

3



(a) (b)

(c) (d)

Figure 1.3: Possible winding directions of a model. (a) and (c) show the possible directions (con-
vex, green) and impossible directions (concave, red) for filament winding. (b) and (d) show the
convex points (green), concave points (red), and saddle points (yellow) on the surface. The model
in (c) and (d) is a modified version of the one in (a) and (b), where some concave vertices have
been pushed outward.
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tal characteristic of the surface shape itself. So, we will ignore these considerations for the purpose

of this work.

For a variety of reasons, people have also been exploring non-geodesic paths for filament wind-

ing. This is particularly motivated by desire to adjust the angles of fiber crossings, improve cov-

erage of the mandrel shape, and obtain correspondence with principal lines and designed path

layouts. Non-geodesic paths rely on the ability of the surface to resist slipping as the filaments are

wound over them, and the extent to which this is really feasible is dependent on materials and the

setup of the machine itself (tension plays a role). Geodesic paths are therefore ideal, and the closer

a non-geodesic path is to geodesic, the better.

Producing a “good” filament-wound part involves many other considerations, such as generat-

ing pairs of winding paths that cross at larger angles (for greater strength) and ensuring density of

fiber coverage of the mandrel surface. In this work, we demonstrate how our method can be used

in an end-to-end system that can provide a designer feedback in such ways.

Our goal is to generate winding paths for a wide class of shapes, such that a designer can

understand what winding is produced for a given shape, and can modify the shape design as a

result. As a result, our work in this work is focused on finding paths that closely follow geodesic

curves on the surface, and to do so while considering convexity of the surface along the winding

path. We wish to do this for a wide range of surfaces and shapes.

1.3 Thesis

The filament winding problem can be solved with physically based fiber simulation in the 2D

parametric space. With the method we propose, the winding solution can be both accurate and fast

to generate.

To achieve this goal, we will introduce a physically-based model for geodesic solving on para-

metric surfaces. Our model will be simulated in the 2D parametric space. In real-world manu-

facturing, a winding path is influenced by friction and may not be an exact geodesic. We plan to

include friction in our method. Due to local concavities, winding path bridging may happen in the

winding process. We will develop an algorithm to handle bridging.
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Winding path evaluation can be used to provide feedback to filament winding designers. So

we will propose several analysis methods to help improve winding paths. To demonstrate the pos-

sibility of applying our method in real-world manufacturing, we present an end-to-end system for

filament winding design. Besides parametric surfaces, there are many other geometry representa-

tion methods that are widely used. So we will also apply our method to a wider range of geometries

such as free-form meshes.

1.4 Contributions and Organization

We present a new approach for finding feasible winding paths across arbitrary parametric sur-

faces. Specifically, we present:

• a physics-based model of the filament motion under tension that can be solved for dynami-

cally in 2D and incorporation of friction in the filament behavior model (Chapter 4);

• a method for dealing with bridging behavior across concave areas within the same framework

(Chapter 5);

• methods for winding path analysis and evaluation, an end-to-end filament winding design

system, and an automatic shape editing method (Chapter 6);

• filament winding examples generated by our method including freeform meshes (Chapter 7).
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2. BACKGROUND WORK

The generation of paths on surfaces has a number of applications, and this has motivated a

great deal of study within the graphics community. We discuss three areas of related work: work

in filament winding, work in computing geodesic paths on surfaces, and work in physically-based

modeling.

2.1 Filament Winding

Filament winding has a long history, with the technique going back over 50 years [31]. The

basic process is described in a number of books related to manufacture of composite materials [24].

Research in filament winding has ranged from computation of winding paths and shape generation

(the focus of our work) to work on materials, machine construction, and machine operation to

realize a given path. Research in the topic has been published in a wide range of forums in fields

including materials science and various engineering disciplines, and it is still a topic of active

interest [36].

In practice, the use of filament winding is overwhelmingly oriented toward cylindrical objects

or closely related shapes such as domes (to cap cylinders) [20, 44], tori (to connect cylinders)

and elbows (to change cylinder directions) [18, 19, 43, 22, 45], and cylinder junctions [33, 32].

Filament winding has also been extended to some surfaces of revolution [1, 17, 39, 13]. Costalonga

Martins et al. [7] introduce a core-less filament winding method, which requires post-winding

processing.

We are not aware of any prior work that deals with general parametric shapes or arbitrary

winding paths as we do. The closest related prior work is that of Fu et al. [12]. Like our work,

their method can deal with a wider range of shapes than other filament winding work, includes

consideration of friction, and can detect bridging in a path. However, the filament winding is not

analyzed as a process (just a path that is geometrically updated), the friction is used only for final

analysis and not during the simulation, and the bridging is detected only as a collision/condition to
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be avoided, so is neither representable in the final path nor able to be maintained in intermediate

steps to obtain different final paths. Most importantly, their shapes are limited to nearly axisym-

metric models. There is prior work on optimization of filament paths that, though different from

our approach, nevertheless has a similar goal of improving a winding path from a given path [9].

2.2 Geodesic and Curve Computation on Surfaces

Since filament winding paths without friction are geodesics, much of the goal of winding path

generation becomes finding geodesic or near-geodesic paths on surfaces. Most work in this area

has come from the geometric modeling and computer graphics communities.

Computing geodesics on surfaces, polyhedra, and meshes [6, 16, 15, 23] has a long history.

For a mesh, the computation of geodesic curvature and other discrete geometric values opened the

door to a wide range of mesh-based geometric calculation [26].

A great deal of work has been done in computing geodesic paths on surfaces, usually focused

on finding shortest paths across a manifold from some starting point [38, 41, 8, 42, 27]. Methods for

doing this have ranged from computational geometry calculations to solutions to a heat equation.

Although our goal is quite different, some of the techniques for computing geodesics are related to

our own methods, though a notable difference is that our approach requires us to consider surface

convexity (and, related, bridging), which is not an issue in most other applications where curves

are constrained to the surface.

More generally, all geodesic calculations can be seen as a form of energy-minimizing curve

on a manifold [14]. Our basic curve model (without bridging) fits into this framework, though

the frictional consideration would generally be more difficult to incorporate, since it counteracts

minimization.

Families of geodesic-based curves can be used to “ribbonize” a shape [30, 25], or compute

weaving “foliations” [40]. They have also been used to compute manufacturing and physical

behavior of models [28, 29]. Though the goals of these prior studies are quite different from ours,

families of geodesic (or approximately geodesic) curves are also produced by filament winding.

Our own approach tries to improve paths to make them more geodesic, which has also been a
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topic of prior research [21].

2.3 Physically-Based Filament Simulation

There has been significant previous work in physics-based simulation, and we borrow many of

these ideas in our framework. Our method’s focus is on generating a filament path, and not the

animation of the filament winding process. But, we obtain the path through a simulation of a strand

moving on a surface, and thus filament winding could be viewed similar to simulating hair [34],

discrete elastic rods [3], rope [5], etc. In particular, it can be viewed as a type of highly-constrained

strand in contact with a surface and in tension [37].

Our work is most notably different from the prior work in two important ways. First, our

problem is defined solely in the context of a parametric surface. This enables us to make several

computational simplifications in the physics model, in particular in projecting the forces into the

tangent plane. For free-form meshes, there are plenty of previous works about mesh parameteri-

zation [11, 35]. With any of those method, a free-form mesh can be converted into a parametric

surface and then apply our method to generate winding paths. Second, we can safely ignore the

twisting behavior of the filament, greatly simplifying the formulation. These two differences allow

use to derive a concise and efficient simulation model for the winding path process.
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3. GEOMETRY AND PHYSICS IN FILAMENT WINDING

Parametric surfaces, including NURBS, are widely used in shape design and modeling. So, we

focus on solving the geodesic and filament winding problem on parametric surfaces in this work.

We describe in this chapter some fundamental definitions and characteristics of winding paths;

although this formulation is our own, the concepts have been used in prior work.

3.1 Physical Constraints for Filament Winding

Suppose the mandrel shape is defined as a parametric surface ~s(u, v), and the filament winding

path is a parametric curve ~r(t) = ~s(u(t), v(t)) defined on ~s(u, v). Without loss of generality, we

assume that ~r(t) is the arc-length parameterization of the curve.

Fig. 3.1 shows the force analysis on a small piece of fiber from t0 to t1 = t0 + ∆t (the blue

curve). In a stable situation, all the forces are in balance. ~N is the support force; ~T0 and ~T1 are the

tension forces; ~fr is the friction. The surface’s normal is ~ns(u, v), and the curve’s tangent, normal,

and bi-normal are ~tr(t), ~nr(t), and ~br(t), respectively. The magnitude of tension along the fiber is

T (t). Obviously the direction of tension is ~tr(t). So ~T0 = −T (t0)~tr(t0) and ~T1 = T (t1)~tr(t1). For

a small segment of the fiber, the stability condition is

−T (t0)~tr(t0) + T (t0 + ∆t)~tr(t0 + ∆t) +

∫ t0+∆t

t0

~Ftotal(t)dt = 0, (3.1)

where ~Ftotal(t) is the total force the surface exerts on the fiber per unit length. ~Ftotal(t) can be

decomposed as

~Ftotal(t) = N(t)~ns(u(t), v(t)) + ~fr(t),

~ns(u(t), v(t)) · ~fr(t) = 0,

(3.2)

where N(t) is the magnitude of the force in the surface normal direction (support force, ~N in Fig.

3.1), and fr(t) is the magnitude of the remaining force of the support force (friction, ~fr in Fig.
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3.1). For simplicity, denote ~ns(t) = ~ns(u(t), v(t)).

Figure 3.1: Force analysis on a small piece of fiber.

By taking a limit of ∆t in Eq. 3.1, we get the derivative form

T ′(t)~tr(t) + T (t)~t′r(t) +N(t)~ns(t) + ~fr(t) = 0. (3.3)

In filament winding, we can always adjust the magnitude of fiber tension by controlling the robot

arm. So we suppose that the magnitude of fiber tension is a constant T . It means that the stable

condition Eq. 3.3 becomes

T ~t′r(t) +N(t)~ns(t) + ~fr(t) = 0. (3.4)

For the curve in 3D space,

~t′r(t) = ‖~r′(t)‖~nr(t), (3.5)

where ~nr(t) is the curve’s normal. Combining Eq. 3.4 and Eq. 3.5, we have

−T‖~r′(t)‖~nr(t) = N(t)~ns(t) + ~fr(t). (3.6)
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As the friction ~fr is always tangent to the surface and the surface normal ~ns is always perpendicular

to the surface, ~ns · ~fr = 0. After squaring both side of Eq. 3.6, we get

T 2‖~r′(t)‖2 = N(t)2 + fr(t)2 + 2N(t)~ns · ~fr = N(t)2 + fr(t)2. (3.7)

Suppose that µ is the coefficient of friction of the surface material (we assume a Coulomb

friction model, where frictional force is proportional to normal force). Conceptually, the larger

µ is, the rougher the surface is, and thus the more a filament path can deviate from the normal

direction without slipping. So, the following inequality is always true when the winding path is

stable.

fr(t) ≤ µN(t), (3.8)

By plugging in Eq. 3.7 we can get that

T 2‖~r′(t)‖2 ≤ (1 + µ2)N(t)2,

T‖~r′(t)‖ ≤
√

1 + µ2N(t).

(3.9)

T and ‖~r′(t)‖ are positive, and N(t) is non-negative. Compute the dot product of Eq. 3.6 and

~ns(t), then we know

T‖~r′(t)‖(−~nr(t) · ~ns(t)) = N(t). (3.10)

Obviously, −~nr(t) · ~ns(t) ≥ 0. So

√
1 + µ2N(t)(−~nr(t) · ~ns(t)) ≥ N(t),

(−~nr(t) · ~ns(t)) ≥
1√

1 + µ2
,

(3.11)
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which is equivalent to

Angle(~ns(t),−~nr(t)) ≤ arctan(µ), (3.12)

where Angle(·, ·) is the angle between two vectors [13].

In Eq. 3.11, we assume that N(t) is positive. When N(t) = 0, the winding path must touch

the surface without supporting force, which means that the path must be a locally straight line at t.

That is

~nr(t) = 0,

Angle(~ns(t),−~nr(t)) = 0 ≤ arctan(µ).

(3.13)

So Eq. 3.12 is still correct.

With no friction (i.e., arctan(µ) = 0) in Eq. 3.12, we have

~ns(t) = −~nr(t). (3.14)

That is, the outward normal of the surface must match the normal of the curve, and thus the path

must be geodesic in the absence of friction. For a non-zero µ, the angle between ~ns(t) and ~nr(t)

must be bounded by arctan(µ), as illustrated by Fig. 3.2. The green curve is an exact geodesic

and goes through the point s1. ~nr1 is the curve’s normal and ~ns1 is the surface normal. Obviously

~ns1 = −~nr1 and the angle is 0. The blue curve is an approximate geodesic and goes through the

point s2. ~nr2 is the curve’s normal and ~ns2 is the surface normal. θ is the angle between −~nr2 and

~ns2. For a stable winding path, θ must be no larger than arctan(µ).

If we constrain the curve to the surface (the traditional geodesic problem), Eqs. 3.12 and 3.14
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Figure 3.2: Exact geodesic vs. approximate geodesic.

do not hold at concave parts of the surface. In this case, we use

Angle(~ns(t),±~nr(t)) ≤ arctan(µ), (3.15)

~ns(t) = ±~nr(t). (3.16)

Here, ±~nr(t) is determined by the direction of ~nr(t) and ~ns(t). When ~nr(t) · ~ns(t) > 0, we use

~nr(t) in Eq. 3.15 and Eq. 3.16, and vice versa.

In conclusion, generating a filament winding path solution is equivalent to finding a curve ~r(t)

on a given surface ~s(u, v) such that Eq. 3.12 holds.

3.2 Geodesic

Solving for geodesics arises in a number of contexts, and the boundary conditions that are

specified vary. But basically, the degrees of freedom (DOFs) of the boundary condition for solving

a geodesic equation are 4. Two of the most straightforward conditions are: (a) Provide the start

point (2 DOFs), the start direction (a unit vector tangent to the surface at the start point, providing

1 DOF), and the length of the path (1 DOF); or (b) Provide the start point (a point on a 2-manifold,

providing 2 DOFs) and the end point (2 DOFs).

Generally speaking, solving geodesic problems with condition (a) is more straightforward than
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with condition (b).1 We start from the given point with given direction, and trace the curve along

the curve’s tangent or a vector field. We call this a forward solver. However, a forward solution

does not work with (b) very well. For condition (b), people usually regard it as a shortest path

problem, then solve them iteratively from an initial curve.

In this work, we use condition (b). That is, the two ends of a winding path are always given

as the boundary condition. With (a), it is hard to control the final result’s patten and we may not

generate results valid for manufacturing. In the result part, we show that our method can generate

regular winding patterns.

With boundary condition (a), we can use a forward method to solve for the geodesic by starting

from the start point and integrating along the tangent direction. This method can generate an

accurate geodesic by taking a very small step size. In this work, we will use this method to

generate ground truth geodesic. More details about the forward solver are provided in section 3.3.

Using an analytical explicit function to represent the curve can be hard and can have higher

complexity when optimizing the curve, so we use a discrete representation of the curve.

Pi = ~r(ti) (i = 1, 2, . . . , n) (3.17)

are a series of points (particles) on the curve. If n is large enough, we can use {Pi}ni=1 to approxi-

mate the curve. In our algorithm, we optimize the position of {Pi}ni=1 iteratively and finally get an

approximate result.

3.3 Forward Solver

In this section, we introduce a forward geodesic solver. To simplify the equations, we suppose

the parametric curve ~r(t) is parameterized by arc length in this section only. That is,

‖~tr(t)‖ = ‖~r′(t)‖ ≡ 1. (3.18)

Given a start point and a tangent direction as boundary condition, there is only one geodesic.
1(a) is an initial value problem, and (b) is a boundary value problem.
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The geodesic to be solved for is ~r(t) (parameterization by arc length). As the surface ~s(u, v) is a

parametric surface, ~r(t) on the surface in 3D space has a corresponding curve (u(t), v(t)) in the

2D parametric space. Suppose the start point is P0 = ~r(t0) = ~s(u0, v0) = ~s(u(t0), v(t0)) and the

tangent of the geodesic to be solved for at P0 is ~t0 = ~tr(t0). ~t0 must be a unit vector.

Denote p(t) = du(t)
dt

and q(t) = dv(t)
dt

, p0 = p(t0) and q0 = q(t0). Then

~t0 = p0
∂~s

∂u
(t0) + q0

∂~s

∂v
(t0). (3.19)

The differential equation of the geodesic is


d2u
dt2

+ Γ1
11

du
dt

du
dt

+ 2Γ1
12

du
dt

dv
dt

+ Γ1
22

dv
dt

dv
dt

= 0,

d2v
dt2

+ Γ2
11

du
dt

du
dt

+ 2Γ2
12

du
dt

dv
dt

+ Γ2
22

dv
dt

dv
dt

= 0.

(3.20)

Γk
ij are the Christoffel symbols of surface ~s:

Γ1
11 =

(~sv · ~sv)(~suu · ~su)− (~su · ~sv)(~suu · ~sv)
‖~su × ~sv‖2

,Γ2
11 =

(~su · ~su)(~suu · ~sv)− (~su · ~sv)(~suu · ~su)

‖~su × ~sv‖2
,

Γ1
12 =

(~sv · ~sv)(~suv · ~su)− (~su · ~sv)(~suv · ~sv)
‖~su × ~sv‖2

,Γ2
12 =

(~su · ~su)(~suv · ~sv)− (~su · ~sv)(~suv · ~su)

‖~su × ~sv‖2
,

Γ1
22 =

(~sv · ~sv)(~svv · ~su)− (~su · ~sv)(~svv · ~sv)
‖~su × ~sv‖2

,Γ2
22 =

(~su · ~su)(~svv · ~sv)− (~su · ~sv)(~svv · ~su)

‖~su × ~sv‖2
,

~su =
∂~s

∂u
, ~sv =

∂~s

∂v
, ~suu =

∂2~s

∂u2
, ~suv =

∂2~s

∂u∂v
, ~svv =

∂2~s

∂v2
.

(3.21)
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Replace du
dt

and dv
dt

with p and q, respectively, then we have:



du
dt

= p,

dv
dt

= q,

dp
dt

= −Γ1
11p

2 − 2Γ1
12pq − Γ1

22q
2,

dq
dt

= −Γ2
11p

2 − 2Γ2
12pq − Γ2

22q
2.

(3.22)

The initial value of the differential equation system is (u0, v0, p0, q0). (u0, v0) is the parametric

coordinate of the start point. (p0, q0) is the projection of direction ~t0 in the parametric space. p0

and q0 can be computed from the initial tangent ~t0 with Eq. 3.19. We use a Runge-Kutta method

(RK4) to solve the geodesic in this work.
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4. GEODESIC SOLVING

As a winding path must be a geodesic on the surface without friction, the first step of solving

the filament winding problem is to find a geodesic on the surface. Our method uses a physics-based

model to compute geodesics iteratively.

In filament winding, there may be windings that cross concavities, such as the blue path in Fig.

1.2. Many pure geometric methods do not work in this problem, as they suppose that the curve is

always on the surface. Borrowing from physically based simulation, we use a physical method to

solve the geodesic problem. In this chapter, we constrain the curve to the surface and formulate

the physical method. In Chapter 5, we introduce algorithms to “lift” the curve off the surface.

There are two assumptions that make our physics model ideally suited for our problem. First,

we assume that almost all portions of the curve are on the surface. We therefore derive the equa-

tions of motion using the 2D parametric surface as the degrees of freedom. Second, we assume

that tensile (stretching) and surface contact forces dominate bending and twisting forces. These

two assumptions allow us to derive a well-targeted computational model that is more efficient than

previous computational models for elastic rod simulation (e.g., [3]).

Table 4.1 shows the notations we use in this dissertation. Our method involves two different

spaces: the actual 3D space for winding and the parametric 2D space where the surface is defined.

We refer to them as “3D space” and “parametric space,” respectively.

In figures in this and the next chapters, unless stated otherwise, a gray curve means an ini-

tialization curve; a cyan curve means an exact on-surface geodesic (given by a forward geodesic

solver or analytical form); a green curve means an on-surface result given by our algorithm, and a

blue curve means an off-surface curve.

4.1 Equations of Motion

A geodesic between two points is a local minimum or maximum curve on the surface. There

can be more than one geodesic between two points on a surface, with the curve length being a
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Figure 4.1: An example of geodesic stability. The red curve is a local maximum curve while the
green curve is a local minimum curve.

local maximum or a local minimum. In Fig. 4.1, both the red (local maximum) and green (local

minimum) curves are geodesics, but the red curve is not stable since it is a local maximum. If the

curve is in tension, any small offset (the black arrow) would cause the curve to move to a local

minimum (the green curve). Thus, we want to find only locally minimal curves. In our method,

we simulate the winding path as particles connected by zero-length springs.

Notation Meaning

P , V , A Position, velocity, and acceleration in 3D space

P , V , A Position, velocity, and acceleration in parametric space

P, V, A Collection of all particles’ position, velocity, and acceleration in 3D space

P, V, A Collection of all particles’ position, velocity, and acceleration in parametric
space

J 3 by 2 Jacobian matrix of the mapping function f from parametric space to 3D
space

J Collection of all Jacobian matrices (3n by 2n)

Table 4.1: Table of notations.
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For a particle Pi (i /∈ {1, n}), the force applied to it is

F (Pi) = K(Pi−1 − Pi) +K(Pi+1 − Pi) = K(I,−2I, I) · (Pi−1, Pi, Pi+1), (4.1)

where K is the spring constant.

Suppose the velocity and acceleration of the particles are V = {Vi}ni=1 and A = {Ai}ni=1 and

the mass of all particles are the same, m. P1 and Pn are given. Then Ai = F (Pi)/m, and the

collection of 3D accelerations is

d

dt

P

V

 =

V

A



A =
K

m



0

I −2I I

I −2I I

. . . . . . . . .

I −2I I

0


P = KP,

(4.2)

where I is the 3 by 3 identity matrix. Note that the effect of mass can be handled by appropriately

scaling K. (i.e., we assume unit mass.)

Usually, we do physical simulation in the 3D space. In this problem, the winding path mostly

stays on the surface during the simulation. If we use general 3D simulation methods, it requires

lots of collision detection for each step and this can be very time consuming, as finding the inside

and outside needs lots of computation for parametric surfaces. Instead of 3D simulation, we can

simulate it in 2D, the parametric space. The motion equation still comes from 3D, but mapped

back to 2D with analytical forms. Then we can avoid the collision detection during the simulation.

Later in chapter 5, we will describe how we handle curves lifting off at surface concavities. This

eliminates costly collision detection calculations.
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Suppose the 2D parametric surface is given by a function ~s(u, v). P = {Pi}ni=1 are sampled

from the curve. For now, we assume that all particles are on the surface. So P’s corresponding

parametric points are P = {P i}ni=1 ∈ R2 (Pi = ~s(P i)). V = {V i}ni=1 are the 2D velocities. Then

the 3D velocity, Vi, of the particle is

Vi =
dPi

dt
=
dPi

dP i

Ṗ i = JiV i,

Ji = J(P i) =

(
~su(P i) ~sv(P i)

)
,

(4.3)

where Ji is the Jacobian matrix at 2D position P i, V i is the 2D velocity of P i, ~su = ∂~s
∂u

, and

~su = ∂~s
∂u

. By differentiating Eq. 4.3, we get

Ai = V̇i = J̇(P i, V i)V i + J(P i)V̇ i,

A = J̇V + JV̇,

(4.4)

where we use bold letters to indicate global quantities containing all particles. After substituting

Eq. 4.2 and rearranging, Eq. 4.4 becomes

KP = J̇V + JV̇,

JV̇ = KP− J̇V.

(4.5)

J is a 3n by 2nmatrix and has full column rank as long as the parametric surface is not singular.

By multiplying JT on both side of the equation, we get

JTJV̇ = JT (KP− J̇V). (4.6)

Then JTJ is a full rank square matrix, and we can solve for the acceleration V̇ = {V̇ i}ni=1.

To make the spring system more stable and converge faster, we consider applying a damping
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force to the particles. If a damping force Fdp(Pi) = βVi = βJiV i is applied, Eq. 4.5 becomes

JV̇ = KP− J̇V − β

m
JV. (4.7)

β is the damping coefficient. The damping force plays a similar role as the friction, which is

introduced in a later section. So the damping force can be omitted when the friction is present.

Since we are interested only in the final configuration of the curve, we can safely ignore J̇V,

which is 0 when V = 0:

JTJV̇ = JTKP. (4.8)

As the computation of J̇ involves ~s’s second partial derivatives ~suu, ~suv, and ~svv, ignoring J̇V can

speed up the solving process.

The next step is choosing an integration scheme for the system. We discuss different schemes

below. We will use the following notation:

Given an integration variable Z (Z can be P , V , A, P , V , J , etc.), Zi represents the variable

for the corresponding particle Pi. The time step is ∆t = h. Z(k) means Z after the k-th step. For

example, V (k)
i means particle Pi’s 3D velocity after the k-th step and V(k) consists of all the V (k)

i

after the k-th step (t = t0 + kh).

4.2 Time Integration of Explicit Method

Euler. The most straightforward integration uses Euler’s (i.e., a first order) method. Applying

Euler integration to Eq. 4.6, we have

J(k)TJ(k)(V
(k+1) −V

(k)
) = hJ(k)T (KP(k) − J̇(k)V

(k)
). (4.9)
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The equations for an explicit Euler method are

V
(k+1)

= V
(k)

+ h(J(k)TJ(k))−1J(k)T (KP(k) − J̇(k)V
(k)

),

P
(k+1)

= P
(k)

+ hV
(k)
.

(4.10)

Applying a damping force, the equation for 2D velocity becomes:

V
(k+1)

=V
(k)

+ h(J(k)TJ(k))−1J(k)T (KP(k) − J̇(k)V
(k)

)− h β
m
V

(k)
. (4.11)

We can also derive a simpler version from Eq. 4.8:

V
(k+1)

= V
(k)

+ h(J(k)TJ(k))−1J(k)TKP(k). (4.12)

Simple Euler integration is very unstable in this situation and exploded in several steps, even

with damping, in our experiments.

Runge-Kutta. Runge-Kutta methods have higher orders than the Euler Method. As Runge-

Kutta methods are also explicit, they are still not stable enough. In experiments, we used RK4 and

RK4 is more stable than the explicit Euler method. But the result still exploded in several steps.

4.3 Time Integration of Implicit Method

From the explicit methods we discussed above, we find out that the explicit methods are unsta-

ble in the geodesic problem. Thus, we turn to implicit integration for stability.

Using backward Euler integration, we use the acceleration from step k + 1 in Eq. 4.8 (Eq. 4.6

without J̇V), so it becomes

J(k+1)TJ(k+1)(V
(k+1) −V

(k)
) = hJ(k+1)TKP(k+1). (4.13)

Given the nonlinear nature of J(k+1), we cannot have an analytical equation for V
(k+1)

, so we
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approximate J(k+1) with J(k). The positions, P(k+1) are approximated with backward Euler as

P(k+1) =~s(P
(k+1)

)

=~s(P
(k)

+ hV
(k+1)

)

≈~s(P(k)
) + hJ(k+1)V

(k)

=P(k) + hJ(k+1)V
(k)
.

(4.14)

Making these substitutions for P(k+1) and J(k+1), and dropping the superscript (k) in Eq. 4.13, we

get

JTJ(V
(k+1) −V) = hJTK(P + hJV

(k+1)
). (4.15)

Arranging the terms so that V
(k+1)

is on the left hand side, we get

JT (I− h2K)JV
(k+1)

= JTJV + hJTKP,

P
(k+1)

= P + hV
(k+1)

,

(4.16)

where I is the 3n × 3n identity matrix. We solve this linear system at every time step for the

parametric velocities, V
(k+1)

, which are then used to update the parametric positions, P
(k+1)

.

Fig. 4.2 shows an example of our method demonstrating that it produces good convergence and

accuracy. In (a), the gray curve shows a path with two fixed ends on a surface. Using the gray curve

as an initialization, our method can generate a geodesic (the green curve). As a reference, we also

show an exact geodesic sharing the same end points in (b). Our result and the exact geodesic are

visually identical. We measure the errors of all particles from our method’s result path and plot

the errors in (c) and (d). We measure the errors after 50, 100, 150 and 200 steps. (c) shows the

distance errors. For each particle on the curve, we compute the minimal distance from the particle

to the exact geodesic. (d) shows the angle differences described in Eq. 3.12. According to the

conclusion, the angle difference between the surface normal ~ns and the opposite curve normal−~nr
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(a) Initialization and Result (b) Exact Geodesic
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Figure 4.2: An example of our simulation result. In (a), the gray curve is the initialization curve,
and the green curve is the result after 50 iterations. As a comparison, the cyan curve in (b) shows
the exact result, which is visually the same as our result. (c) LOG plot that shows the distance from
each particle to the exact curve after different numbers of simulation steps. The horizontal axis is
the index of each particle and the vertical axis is distance. As a reference, the distance between the
two curve ends (Point A and B) is 2. (d) LOG plot that shows the angle difference between ~ns and
−~nr described in Eq. 3.12.

should be 0 if the curve is an exact geodesic. A small angle difference indicates that the curve is

close to an exact geodesic. The result shows that our method converge to an exact geodesic rapidly.

With a damping force, which is optional, Eq. 4.16 becomes

JT ((1 + h
β

m
)I− h2K)JV

(k+1)
= JTJV + hJTKP,

P
(k+1)

= P + hV
(k+1)

,

(4.17)
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4.4 Friction

To this point, we have not taken friction into consideration in our physically based simulation.

The method discussed above constrains the curve to be on a smooth surface. But in real-world

manufacturing, friction also needs to be considered. With friction, the winding path doesn’t have

to be an exact geodesic.

Given friction coefficient µ, we can use Eq. 3.12 as a stopping criterion. However, this does

not allow friction to influence the motion of particles during the simulation. For different µ, the

only difference is when to stop. So, we simulate the frictional force in each step. If the motion of

the path has stopped and all forces are balanced, Eq. 3.12 must hold for the current path.

We extend the frictional impulse approach of Bridson et al. [4]. In their original formulation,

the velocity of each particle is decomposed into a component tangential and a component perpen-

dicular to the surface, and then the tangential velocity is updated using the coefficient of friction

µ. With our method, the particles are on the surface, and the particle velocity is automatically

tangential to the surface, and so we can directly modify the velocity.

Let us denote the pre-friction velocity (output of Eq. 4.16) as V
pre

i in 2D and V pre
i in 3D. Then

update V (k+1)
i with

V
(k+1)
i = max(1− hµA

(k)
i · ~ns(P

(k)
i )

‖V (k+1)pre
i ‖

, 0)V
(k+1)pre
i , (4.18)

where ~ns(·) is the surface normal. A
(k)
i is the 3D acceleration which can be computed from

the spring force. Because V
(k+1)pre
i = J

(k)
i V

(k+1)pre

i and V
(k+1)
i = J

(k)
i V

(k+1)

i , we multiply

(J
(k)T
i J

(k)
i )−1J

(k)T
i on both sides of the equation. Then V

(k+1)

i can be updated by

V
(k+1)

i = max

(
1− hµ|Ai · ~ns(Pi)|

‖V pre
i ‖

, 0

)
V

pre

i , (4.19)

which is our final, post-friction velocity.

Fig. 4.3 shows identical experiments varying only µ. All setups are the same except µ in Fig.

26



4.3-a to Fig. 4.3-d. The gray curve is the initial curve, the cyan curve is ground truth, and the green

curves are simulation results.

In Fig. 4.3-a, friction is so large that the curve stays at the initial position and does not move. If

we decrease µ, friction becomes smaller and the curve moves closer to the geodesic (shown in Fig.

4.3-b and Fig. 4.3-c). If µ is too small, the curve will converge to the geodesic (Fig. 4.3-d). In Fig.

4.3-g, we compute the mean angle differences between ~ns and ~nr at all locations in a single step.

The plot shows that the mean difference converges to (or, in some cases, becomes smaller than)

arctan(µ). The convergence shows that the curve reaches a stable solution satisfying Eq. 3.12. In

the four experiments, we also include a non-zero damping force.

Fig. 4.4 shows a more non-symmetric model example with different friction coefficients. Gen-

erally speaking, a larger friction coefficient, which means rougher surface, can generate more

stable winding paths. In this example, the heel part can be covered much better when the friction

coefficient is large.

We can apply variable coefficient of friction on the surface. Fig. 4.5 shows an example. The

dark gray area in (a) shows a larger friction area (µ = 0.4) while the light gray area represents a

smaller friction (µ = 0.1). Our method shows that the path stays on the convex area due to the

larger friction.
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(a) µ = 0.3 (b) µ = 0.2

(c) µ = 0.1 (d) µ = 0.0
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(g) Mean Angle Differences (µ =
0.1)

Figure 4.3: An example of how friction affects the simulation. (a)-(d) show four different experi-
ments with varying µ values. The surface is a parametric semi-sphere. The initial path is gray, and
the analytically calculated exact geodesic is cyan. The green curves are the simulation results after
200 iterations with different µ. From (a) to (d), µ is 0.3, 0.2, 0.1, and 0.0, respectively. Similar to
Fig. 4.2, (e) and (f) show the difference from the geodesic. (e) shows the distance from the result
to the exact geodesic, and (f) shows the angle difference between ~ns and −~nr. In (g), we averaged
all angle differences in a single step for µ = 0.1. The horizontal axis is the time step. The vertical
axis is the mean angle difference. We also marked arctan(µ) mentioned in Eq. 3.12 in plot (g).

28



(a) µ = 0.05 (b) µ = 0.2 (c) µ = 0.4

Figure 4.4: Leg cast model with different friction coefficients. Higher friction makes fibers harder
to slide.

(a) (b)

Figure 4.5: Leg cast model with variable friction coefficient. In (a), the light gray area’s friction
coefficient is µ = 0.1 and the dark gray area’s friction coefficient is µ = 0.4.

29



5. WINDING PATH GENERATING

In the previous chapter, our method constrains the curve to be on a surface. Multiplying JT

on both sides of Eq. 4.4 mapped the force to the tangent plane at each particle. While this works

well for finding a geodesic on the surface (or, with friction, an approximate geodesic), we need

additional techniques to handle fibers lifting off of and landing onto the surface during simulation.

Again, we take advantage of the fact that we work in the reduced, parametric space. First, in section

5.1, we describe how we detect concavities. Then in section 5.2, we describe how we modify the

equations of motion to handle lifted points. Finally in section 5.3, we describe how we utilize a

one-way coupled simulation to keep track of the lifted points to speed up collision detection.

5.1 Lifting From the Surface

To allow a particle to leave the surface, a concavity detection and lifting algorithm is necessary.

In this part, we use Fig. 5.1 to demonstrate how our lifting algorithm works. Fig. 5.1-a shows a

path with fixed ends on a non-convex surface. The blue curve in Fig. 5.1-b is the ideal solution.

If the curve normal and the surface normal are in the same direction,

ns · nr > 0, (5.1)

the force will move the fiber off the surface. We can calculate a discrete normal of the curve

as Pi−1 − 2Pi + Pi+1. We mark particles in this state as “off-surface” (and otherwise call them

“on-surface”). On-surface particles are connected with the nearest previous and next subsequent

on-surface particles. We use Pi− and Pi+ to represent the previous and next on-surface particles

of Pi. In Fig. 5.2, when i = 2, then P2− = P1 and P2+ = P5. When i = 5, then P5− = P2 and

P5+ = P6.

The green curve in Fig. 5.1-a represents a path consisting of only particles on convex parts. All

other concave parts are marked as blue. Fig. 5.1-c is a side-view of the curve and surface.

In many cases, the curve is locally convex, but still needs to leave the surface. In Fig. 5.1-c, if
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we mark all points on locally concave regions as off-surface and lift them, the curve will become

as in Fig. 5.1-d. Obviously, the curve is still not stable, and current on-surface particles will leave

the surface due to the fiber tension.

To model this behavior, we repeatedly calculate the new curve normal, using Pi− and Pi+

(rather than Pi−1 and Pi+1): (Pi− − 2Pi + Pi+). This may result in more points being lifted,

requiring repeated normal reevaluation, but the process will end.

If we apply this process to Fig. 5.1-d, we will get an updated path similar to that shown in Fig.

5.1-e. Continuing the process until no new particles leave the surface results in Fig. 5.1-f. Algo. 1

describes the lifting algorithm (which could be optimized further).

(a) (b) (c)

(d) (e) (f)

Figure 5.1: Lifting algorithm. (a) shows an initial on-surface curve, while the result should be as
seen in (b). Blue means locally concave and green means locally convex. (c) is the side view of
the curve. If we lift all the particles at locally concave regions, it will generate a path like (d). (e)
shows application of our algorithm to (d) to lift more particles, finally resulting in (f).

5.2 Curves with Off-Surface Points

In filament winding, the off-surface part of the fiber is always a straight line when stable or

moving relatively slowly. So we assume that all the off-surface particles (the blue particles in

Fig. 5.2-a) are distributed evenly on the straight line between two on-surface particles. With this
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ALGORITHM 1: Lifting Algorithm
Data: Points on the curve {Pi}, surface normal on these points {Ni}
Result: A boolean array {on_surfacei} indicates whether each point is still on the surface
Set detected_leaving = True;
while detected_leaving do

detected_leaving = False;
for Each on-surface particle Pi do

Find the first on-surface particle before it and after it, Pi− and Pi+ ;
if (Pi− − 2Pi + Pi+) ·Ni > 0 then

Mark Pi as off-surface: on_surfacei = False;
Update Pi’s 3D location with the linear interpolation of Pi+ and Pi− ;
detected_leaving = True

end
end

end

assumption, we ignore the regular motion and vibration in the 3D space, which are not important

for the filament winding problem. These particles won’t affect the motion of on-surface particles.

We will show how to modify the current system (Eq. 4.6) in the next section.

(a) (b)

Figure 5.2: Off-surface particles.

Assume that the subset of k on-surface particles are given, in order, by Pi1 , Pi2 , . . . , Pik(1 =

i1 < i2 < · · · < ik = n). We can ignore all off-surface particles (in between some of those

on-surface particles) and set the spring force using just on-surface particles. So, the total force on
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Pij is just K( 1
ij−ij−1

Pij−1
− ij+1−ij−1

(ij−ij−1)(ij+1−ij)
Pij + 1

ij+1−ijPij+1
) So the matrix K becomes

Ã =
K

m



0

a2I b2I a3I

. . . . . . . . .

ak−1I bk−1I akI

0


P̃ = K̃P̃,

aj =
1

ij − ij−1

, bj = − ij+1 − ij−1

(ij − ij−1)(ij+1 − ij)
.

(5.2)

Ã and P̃ mean that only the on-surface particles are involved. K̃ is a smaller matrix than K.

As an example, suppose there are 6 total particles in Fig. 5.2-b. P1 and P6 are endpoints. P2

and P5 are on-surface, while P3 and P4 are off-surface. In this case, Ã consists of only 4 rows that

correspond to P1, P2, P5, and P6, respectively. P2 and P5 are connected, and the forces applied to

P2 are Ks

−−→
P2P1 and Ks

3

−−→
P2P5 (as P2 and P5 are connected by 5 − 2 = 3 springs). P5 is similar. So

the Ã in this example is:

Ã =
K

m



0

I −4
3
I 1

3
I

1
3
I −4

3
I I

0


P̃. (5.3)

5.3 Landing On the Surface

Off-surface particles might return to (land on) the surface in later iterations. Rather than apply-

ing separate collision detection for particles, we present here a modification to Eq. 4.6 to handle

this problem. Algo. 2 describes our process.

Recall that off-surface particles are not simulated in 3D; we just interpolate their positions from

on-surface particles. For each off-surface particle, we first find the closest point on the surface. We
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ALGORITHM 2: Landing Algorithm
Data: Points on the curve {Pi}, the parametric surface f , a boolean array {on_surfacei}

described in Algo. 1, an approximate result {P i}
Result: Updated {on_surfacei} and the mapping back result {P ′i}
for Each off-surface particle Pi do

Use Newton method to find out the closest point on the surface P ′i = ~s(P
′
i);

Compute the surface normal Ni at P ′i ;
if (Pi − P ′i ) ·Ni ≤ 0 then

Mark Pi as on-surface: on_surfacei = True;
Update Pi with P ′i

end
end

use Newton’s method to find this point. The objective function is

g(P ) = ‖~s(P )− P‖2. (5.4)

Then P can be updated by

P
(k+1)

= P
(k) −Hg(P

(k)
)−1∇g(P

(k)
). (5.5)

Hg is g’s (2 by 2) Hessian matrix and∇g is g’s gradient vector.


(Hg)11 = ~suu · (~s− P ) + ‖~su‖2,

(Hg)12 = (Hg)21 = ~suv · (~s− P ) + ~su · ~sv,

(Hg)22 = ~svv · (~s− P ) + ‖~sv‖2,

(5.6)

∇g = 2JT
~s (~s− P ). (5.7)

Newton’s method is fast but sensitive to the initial value and can converge to different solutions.

In the landing algorithm, we need an initial guess for the nearest point for each particle and the

final result could be far away with a bad initialization. So, a reasonable initial guess for Newton’s
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method is important.

In the previous formulation, we ignore all motions of off-surface particles during simulation.

Now, we will add back points on the surface corresponding to off-surface points. The actual

positions of off-surface particles are still in the straight line defined by on-surface particles, while

we simulate a copy of these particles on the surface at the same time. These false particles are like

the “shadow” of off-surface particles on the surface, so we call them “shadow particles” and the

resulting curve the “shadow path”. We then use the shadow path to initialize the Newton solver.

If we simply use Eq. 4.2, the on-surface particles will be influenced by the shadow particles,

which is not desirable. So a possible solution is to combine Eq. 4.2 and Eq. 5.2, and replace the

rows corresponding to on-surface particles in K with the equivalent rows in K̃. To be specific,

when filling the i-th row (in 3 by 3 blocks, 2 ≤ i ≤ n−1) of K, if Pi is on-surface and i = ij , then

Kii = − ij+1 − ij−1

(i− ij−1)(ij−1 − i)
K

m
I,

Kiij−1
=

1

i− ij−1

K

m
I, Kiij+1

=
1

ij+1 − i
K

m
I. (5.8)

Otherwise,

Kii = −2
K

m
I, Kii−1 = Kii+1 =

K

m
I. (5.9)

All other elements are filled with zeros. Then all on-surface particles are still moved as expected

while the shadow path is influenced by the on-surface particles.
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In the concrete example mentioned in section 5.1, the motion equation becomes

Ã′ =
K

m



0

I −4
3
I 1

3
I

I −2I I

I −2I I

1
3
I −4

3
I I

0


P̃′, (5.10)

where P̃′ consists of P1, P2, P ′3, P ′4, P5, and P6.

Eq. 5.10 is a size 3n by 3n linear system. But, as the on-surface parts and shadow paths are

one-way coupled, both the motion equations and results for on-surface particles should be the same

as Eq. 5.2. So, we can solve the on-surface particles with Eq. 5.2 first, then solve for other shadow

path particles with Eq. 5.10. The system is decomposed into two smaller systems, and can be

solved faster than solving Eq. 5.10 directly.

Once we have P ′i , the nearest point to Pi, we can check whether a collision occurred by deter-

mining whether Pi has moved below the surface. This can be done by forming the vector Pi − P ′i

and comparing direction to the surface normal at P ′i , Ni. If the direction is opposite, a collision

has happened, and we can mark that point as an on-surface point, with position P ′i .

If the distance from the real particle to the closest point is smaller than a given threshold, it

means that a collision may have happened. And if the direction from the particle to its closest

point is same as the face normal, that means that a collision happened and the particle has landed

on the surface. Algo. 2 describes our landing process.

Fig. 7.3-(a-c) shows an example of off-surface simulation.
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6. END-TO-END SYSTEM AND WINDING PATH EVALUATION

With our solver, winding paths can be generated easily. In this section, we will demonstrate an

end-to-end system for filament winding design.

Fig. 6.1 shows the workflow of our system. First a user designs a shape as input. The user can

also specify winding parameters at the same time. Then the path can be generated with our solver.

Our solver also provides an analysis of the winding path to guide the user to edit the surface. Users

can repeat the edit-generate-analyze loop until they are satisfied with the winding path.

In our implementation, we use cubic B-spline surfaces, but our end-to-end approach works

with any kind of parametric surface. We focus on the parametric surfaces that are homotopic to a

cylinder: ~s(u, v) = ~s(u+ Tu, v), where Tu is the minimum positive period with any v.

6.1 Winding Parameters

As described in the previous section, our solver uses a number of parameters, including the

particle count, spring stiffness, and friction coefficient. Experimentally we have found that the

default parameter values can generate geodesics successfully in most cases and do not influence

the result significantly. Another parameter, the number of curves generated, will influence the

accuracy with which the analysis (see section 6.2) is performed. The parameter that most influences

the results is the number of revolutions of the curves. In the rest of this section, we describe an

effective method for automatically computing this parameter.

As our end-to-end system focuses on shapes homotopic to a cylinder without two ends, the

number of revolutions can be defined as

nrev =
un − u1

Tu
, (6.1)

where P1 = (u1, v1) and Pn = (un, vn) are the two ends of a winding path. v1 and vn correspond

to the top and bottom v values. Once the number of curves is determined, we assume that the end

points of all paths are distributed evenly on the two ends of the cylinder. In the next section, we
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(a) Surface Design (b) User Editing (c) Path Generation (d) Visualization (e) Manufacturing

Figure 6.1: Workflow of our end-to-end filament winding system. The input of our system is a
parametric surface (a) and winding parameters. (b)-(d) show that users can design and evaluate
winding paths over several iterations. (e) shows a simulated winding process with the generated
paths from (c).

will show a non-uniformly distributed paths setup.

Since the endpoints of our curves do not change as we determine the curve path, the number

of revolutions is fixed by this parameter. And, since the geodesic curve is determined based on the

starting and ending points, this number of revolutions will have a major influence on the final path.

An inappropriate number of revolutions may lead to off-surface winding paths, which are not

desirable. Generally speaking, a better initialization may create better results when the path does

not move a lot during the simulation. Fig. 6.2 shows results with different numbers of revolutions.

As the initial path is a straight line in parametric space, the initial path also depends on the

number of revolutions. The initial path is

v =
vn − v1

Tunrev

(u− u1) + v1. (6.2)

If the initial path is always on the surface, the result may have fewer parts lifted. If a point (u0, v0)

is on an initial path, the path is on the surface at this point when the normal curvature in the
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Figure 6.2: Different numbers of revolutions will lead to significantly different results. From left
to right, the numbers of revolutions are 0.4, 0.5, and 0.8, respectively. The color shows the distance
from the winding path to the surface. All other parameters are the same.

direction (1, vn−v1
Tunrev

) points out of the surface:

(~suu +
vn − v1

Tunrev

~suv + (
vn − v1

Tunrev

)2~svv) · (~su × ~sv) > 0. (6.3)

After simplification, this is a quadratic function of nrev, and the solution consists of zero, one, or

two intervals.

We find all the intervals of nrev for all the points on the surface, and compute the most common

interval(s) of these intervals. We pick an initial value from the most common interval(s), so that

Eq. 6.3 holds for all or most of the points on the surface.

6.2 Winding Path Analysis

Our method is a semi-automatic method that requires the user to manually make adjustments.

So, it is necessary to have principles to help the user evaluate the winding path quality.

We develope some tools to provide such interactive feedback based on geometry, generally via

a color-coded map on the surface:
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• Angle of intersection: When two fibers intersect, they provide strength in different directions.

For example, if the fibers are only in one direction, the other direction cannot provide enough

strength; the material could “tear” along the fiber path direction relatively easily. Generally,

the more perpendicular the directions of two crossing fibers are, the stronger the resulting

manufactured object. In Fig. 6.3, (b) is a good solution while (c) may not provide enough

horizontal strength and (d) may not provide enough vertical strength. We define the angle

of intersection’s quality as the absolute cosine value of the intersection angle (|cos θ| in Fig.

6.3-a).

• Number of intersections: The paths that our method generates create two families of curves

with two different directions. So, a curve always intersects with curves in the other family

and is roughly (or for symmetric surfaces, exactly) parallel to curves in the same family.

Although angle of intersection is more important, generally speaking, the more intersections

between families, the higher strength the result.

• Path coverage: Although we simplify the filament as a geometric curve, actual fibers in man-

ufacturing are laid out in groups, and thus form “ribbons” with constant non-zero width.

Coverage can be computed to determine the area of the mandrel covered by the filaments.

We can display the variance of the coverage in different parts of the surface, highlighting

based on the number of layers of filaments covering any one portion of the surface (in some

direction). Approximately speaking, the closer a pair of parallel paths are, the greater the

coverage provided by the solution. So we use the segment length between two parallel paths

(d1 and d2 in Fig. 6.3-a) to represent the coverage of the winding paths.

The coverage heavily depends on the local concavities, especially Gaussian curvature when

the surface is locally convex. A larger Gaussian curvature usually “push away” paths harder,

and the paths are sparser. Similar to the case shown in Fig. 4.1, if a curve locates near a

locally convex area, the path is unstable, and will slide away under the tension. This will

result a locally sparsity of winding path.
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(a) (b) (c) (d)

Figure 6.3: Winding path analysis. (a) is a sketch of winding path analysis. The winding paths
generated by our method consist of two groups of parallel paths. The fiber width is l. The segment
between two paths from another group has a length of d1 and d2, respectively. The angle of
intersection is θ or π − θ. (b) - (d) shows different angles of intersection.

Fig. 6.4 shows how our system visualizes the winding quality.

Users can judge the final results with the three principles described in this subsection and adjust

the parameters such as the number of revolutions. But, a more extensive analysis might perform a

full finite element simulation of the resulting structure, which is computationally expensive.

We implement an end-to-end filament winding system which supports surface editing, parame-

ter control, path generation, path analysis, and winding process visualization. Fig. 6.5 is a demon-

stration of our system.

6.3 Non-Uniformly Distributed Paths

In Fig. 6.4-b, we notice that the coverage of winding paths can be significantly different all over

the model. In the previous sections, we suppose that the end points of winding paths are evenly

distributed. With non-uniformly distributed paths, the sparse area may be able to have a better

coverage.

Suppose there are two adjacent paths in the same family of paths. As we described before, they

don’t cross each other. We use the distance measurement in section 6.2 to compute the distance
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Figure 6.4: Winding path evaluation and visualization. (a) shows the angle of intersection quality,
and (b) shows the coverage quality.

Figure 6.5: A demonstration of our end-to-end filament winding design system. Our design sys-
tem provides winding path simulation and generation, winding animation, and simulation result
analysis.
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(a) Base Paths (40 Paths) (b) Paths After Insertion (70
Paths)

(c) Uniformly Distributed
Paths (70 Paths)

Figure 6.6: Uniformly distributed paths vs. non-uniformly distributed paths. (a) shows a sparser
path configuration. Some gaps between paths are much larger than some others. After adaptively
inserting new paths, the winding paths become (b). If we use the same number of paths but with
uniform distribution, (c) is the result. It’s obvious that the non-uniformly distributed paths (b) have
smaller gaps than the uniformly distributed paths (c).

dist between them. If dist is larger than a user given threshold distmax, we insert ceiling( dist
distmax

)

new paths between the original two paths evenly, where ceiling(x) means the minimum integer

that is not smaller than x. Fig. 6.6 shows our result.

In Fig. 6.6, non-uniformly distributed paths form regular quadrilateral patterns with similar

sizes. It is obvious that our method can also be used for quadrangulation. By connecting all

path intersections, the paths become a quad-mesh of the original mandrel shape. Fig. 6.7 is a

quadrangulation of Fig. 6.6-b using our method.

6.4 Automatic Surface Editing

Not all the surfaces have a feasible winding solution due to local concavities. The designer can

edit the surface according to our analysis results, especially the distance from a path to the surface.

However, it can be hard to adjust the surface and make it windable. So it’s necessary to include an

automatic shape editing tool in our end-to-end system.

Most parametric surface based shape modeling methods use control points for surface editing,
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Figure 6.7: A quadrangulation example generated from non-uniformly distributed paths.

such as B-splines, NURBS, and some interpolation curves. Suppose the control points are C =

{Ci}mi=1. In this section, we explicitly denote the surface as

~s(P ;C). (6.4)

If the current path is lifted from the surface, we can adjust C to make the path on surface. Fig.

6.8 is the side view of the surface. The path is lifted due to the local concavities. Pi is on the lifted

path, and ~s(P i;C) is a point on the shadow path. ~ns(P i;C) is the surface normal at P i. Obviously,

we have

(Pi − ~s(P i;C)) · ~ns(P i;C) > 0. (6.5)

We move control points C to Cnew, then the point on the shadow path corresponding to Pi becomes

~s(P i;C
new). If ~s(P i;C

new) is above the lifted path, where Pi is, the surface is locally convex at

P i. That is:

(~s(P i;C
new)− ~s(P i;C)) · ~ns(P i;C) ≥ (Pi − ~s(P i;C)) · ~ns(P i;C). (6.6)

We will find Cnew such that for all off-surface particles, Eq. 6.6 is true. However, the formulation
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of ~s(P i;C
new) can be complicated and Eq. 6.6 is hard to solve directly. So we approximate Eq.

6.6 with a simpler form. Denote

∆C = Cnew −C,

JC(P ;C) =
∂~s(P ;C)

∂C
,

(6.7)

where JC(P ;C) is a 3 by 3m Jacobian matrix. m is the number of control points. Then

~s(P i;C
new)− ~s(P i;C) ≈ JC(P i;C)∆C. (6.8)

So Eq. 6.6 can be approximated by

~ns(P i;C)TJC(P i;C)∆C ≥ (Pi − ~s(P i;C)) · ~ns(P i;C). (6.9)

By collecting all off-surface particles Pi1 , Pi2 , . . . , Pik , we can build a system of linear inequalities:



~ns(P i1 ;C)TJC(P i1 ;C)

~ns(P i2 ;C)TJC(P i2 ;C)

...

~ns(P ik ;C)TJC(P ik ;C)


∆C ≥



(Pi1 − ~s(P i1 ;C)) · ~ns(P i1 ;C)

(Pi2 − ~s(P i2 ;C)) · ~ns(P i2 ;C)

...

(Pik − ~s(P ik ;C)) · ~ns(P ik ;C)


, (6.10)

and denote it as

M∆C ≥ B. (6.11)

M is a k by 3m matrix and B is a length k vector.

The editing should be as little as possible. So we can formulate the editing problem as a
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Figure 6.8: Control point modification. In (a), Ci−1-Ci-Ci+1 is a part of the control polygon. The
red curve is a slice of the surface. Space above the red curve is the outside of the surface. Pi is
an off-surface particle and it’s corresponding shadow point is ~s(P i;C). Suppose we move Ci to
Cnew

i like (b), the control polygon becomes Ci−1-Cnew
i -Ci+1 and the green curve is a slice of the

new surface. Now the shadow point ~s(P i;C
new) goes “above” the lifted path (the blue dash line),

and ~s(P i;C
new) becomes an on-surface particle.

optimization problem:

min
∆C

∆CT∆C

s.t. M∆C ≥ B.

(6.12)

This is a convex quadratic programing optimization and can be solved directly.

Because any particle can change its position in this optimization, the optimization cannot guar-

antee that the optimized curve is convex. So we repeat the optimization for several steps until the

current path is totally convex.
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Figure 6.9: Automatically edited surfaces. The numbers of revolutions for (a)-(d) and (e)-(h) are
0.5 and 0.3, respectively. (i)-(l) is a different model. (a), (e) and (i) are the initial winding results.
(b), (f) and (j) are the results after the first iteration of optimization. (c), (g) and (k) are results after
5 iterations. (d), (h) and (l) are results after 10 iterations.
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7. RESULTS

In this section, we show that our method applies to more complex situations, and we compare

our method with other methods.

7.1 Modeling Results

Besides static boundary conditions, our path generation method can also handle moving bound-

aries, which allow for representing a broader range of filament motions. Fig. 7.1 shows examples

for a valley surface with a peak inside. The path’s ends move along each side of the valley, and the

fiber is caught by the peak. The first and the third rows of Fig. 7.1 show the results using our on-

surface method without lifting; the second and the fourth rows show our off-surface algorithm with

path lifting. Notice that the on-surface solver is always stuck by the peak, while the off-surface

solver can jump over a smaller peak (the second row) and be stuck on a larger peak (the fourth

row). It is obvious that the off-surface solver is more realistic.

B-spline surfaces are very general parametric surfaces and are widely used. Fig. 7.2 shows an

example of applying our method to a B-spline surface. Fig. 7.2-a shows a B-spline surface with its

control grid. We pick two pointsP1 = f(P 1) and Pn = f(P n) at each end of the surface and use

them as the boundary. The initial path is given by mapping a straight line in the parametric space

to the model space. That is, the curve’s expression is P (t) = f((1− t)P 1 + tP n). After applying

our method to it, we can generate a winding path in Fig. 7.2-b. Due to the concavity of the surface,

there is some bridging. We use different colors to indicate the distance from the lifted curve to

the surface. By repeating this step with different boundary settings, we can get winding paths in a

regular patten, which is impossible for a forward solver.

Fig. 7.2-c also shows how our approach can be used to give feedback to a designer. If a concav-

ity is found, designers can edit the B-spline surface according to the analysis. In this example, the

designer moves the red control points in Fig. 7.2-a to the positions in Fig. 7.2-d. The subsequent

path generation (Fig. 7.2-e) shows that there is no more bridging in that region, and that other paths
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Figure 7.1: Examples with dynamic boundary conditions. The boundaries move at a constant
speed. From left to right, each column represents a time step at 0.0s (initialization), 3.0s (300
steps), and 5.0s (500 steps). The first and second rows are the same as the third and fourth rows,
but with a smaller peak. The first and third rows use the on-surface algorithm. The gray curves
are the initializations, and the green curves are simulation results. The curve will be blocked by
the peaks. Most current iterative methods for geodesic solving will be in the same situation. The
second and fourth rows use our off-surface method. The gray curves are the initializations, the
green curves are shadow paths, and the blue curves are the results. With the off-surface algorithm,
a curve can fly over smaller peaks while wrapping around higher peaks.

49



(a) (b) (c) (d) (e)

0

0.005

0.010

0.015

0.020

0.025

0.030

Figure 7.2: A B-spline surface example. (a) is the surface and its control grid. (b) is a single path
result computed by our algorithm. The color on it shows the distance from the curve to the surface.
By repeating (b) several times with different initial paths, a regular grid (c) will be generated. There
are still some off-surface parts (marked as red). A designer can then move all red control points in
(a) to get a modified model (d). The simulation results in (e) show the bridging is eliminated.

are changed only minimally.

We also test our algorithm’s computation time. We implemented the algorithm in C++ with

OpenMP and tested it on 6 threads of a PC with a Core i7 7700K processor. To generate Fig. 7.2-b,

we ran 1000 iterations (time steps) to obtain a single path, and the time spent is listed in Table 7.1.

From the table, we notice that the most significant parts are building and solving the linear

system. To reduce the computation time, we can reuse the same (factored) stiffness matrix for

several consecutive steps, as the stiffness matrix changes little, allowing us to get rid of the two

biggest bottlenecks. In section 7.2, we show that by reusing the stiffness matrix the method can

converge faster while maintaining an accurate result. The remaining time consuming part is the

lifting and landing algorithm. In Algo. 2, all off-surface particles need a nearest point calculation

in each step. If our method is used for finding an on-surface geodesic, or the surface is guaranteed

to be convex, it is not necessary to use the lifting algorithm, and we can save an additional 25% of

the time.

To verify the accuracy of our winding calculation, we also 3D printed models of some shapes
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Timing (ms) Percentage
Building the Linear System 233.22 38.67%
Solving the Linear System 204.35 33.88%
Lifting and Landing 149.65 24.81%
Other Operations 15.86 2.63%
Total 603.08 100%

Table 7.1: Timing results of 1000 time steps. The table shows the time spent in each part of our
method. About 70% of the time is spent on building and solving the motion equation, which is a
sparse linear system. The timing result for lifting and landing includes Algo. 1 and Algo. 2. All
other parts are not significant and are counted in Other Operations.

and wound thread to compare the real result to the prediction. Fig. 7.3 shows a vase with significant

concavities, which our method handles effectively. Fig. 7.4 shows more 3D-printed examples. Our

method can be applied to a wider range of practical shapes than which has traditionally been done

in filament winding, such as the glider wing or leg cast shown in Fig. 7.4. We also show that our

method can handle much more complex shapes in Fig. 7.5.

7.2 Comparisons

There are plenty of methods to simulate strings or rods. In filament winding modeling, the

physical simulation of a winding path is significantly different from most of the string or rod sim-

ulation problems. The physical simulation of a winding fiber is almost irrelevant to twisting or

bending, which can make the problem much more complicated. Furthermore, the fiber is mostly

constrained on the surface. Thus, many rod simulation methods are significantly more complex and

slower than necessary. So, we compare our method only to two commonly used methods for con-

straining a 3D strand onto a surface: the penalty force method (PF) and the Karush–Kuhn–Tucker

method (KKT). The PF method uses stiff penalties to push particles away from the surface, and

the KKT method approximates the contact constraint as bilateral constraints, which can be turned

on/off by checking the sign of the Lagrange multipliers. For both of these comparison methods (PF

and KKT), we ignore twisting and bending energies, just like in our method. We do not consider

linear complementarity or quadratic programming approaches, since they are significantly more

expensive.
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(a) (b) (c)

(d) (e)

Figure 7.3: A vase example with concavities. The green curve in (a) is an initialization. The blue
path shows which points are lifted according to concavity. (b) is the simulation result with the
initialization in (a). The green curve is the shadow path and the blue path is the final result. Some
of the particles landed on the surface while some others left the surface. (c) shows the winding
path on a real 3D-printed part. The path matches our result (b). With better initialization, the path
can always stay on the surface as seen in (d). (e) is a 3D printed result of (d).
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(a) (b)

(c) (d)

Figure 7.4: Examples of applying our method to real models. (a) and (b) show a glider wing
model. (c) and (d) show a leg cast model. The models were wound by hand and the friction may
be different. So the winding results may be slightly different from the simulation results. If a
winding machine is used, the winding results can be closer to the simulation results.
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(a) (b) (c)

Figure 7.5: More complex examples using our method.

The first method is the penalty force (PF) method. In this method, we simulate the fiber in 3D.

When particles are far away from the surface, there is only the spring force. When the distance

between a particle and the surface is smaller than a threshold εPF , a penalty force

F (d) =


0, d > εPF

kPF
εPF−d
εPF

, εPF ≥ d > 0

kPF , 0 ≥ d

(7.1)

will be applied to the particle. d is the distance from the particle to the surface. d is negative when

the particle is inside the surface. The direction of the penalty force is defined by the direction from

the surface to the particle.

The second method is the Karush–Kuhn–Tucker(KKT) conditions method. If the system has

no constraints, we can formulate the simulation into a linearly implicit scheme

(M − h2K)v = Mv0 + hf. (7.2)

In the KKT method, when a particle touches the surface, we apply a surface constraint to the
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particle:

n · v = 0, (7.3)

where n is the surface normal at the particle, and v is the particle’s velocity. We can collect all the

constraints into a global matrix G, such that

Gv = 0. (7.4)

Solving Eq. 7.2 under the constraint Eq. 7.4 is equivalent to an optimization problem:

min
v

1

2
vTM̃V − vT f̃ , (7.5)

s.t. Gv = 0. (7.6)

The solution of Eq. 7.6 can be computed from

M̃ GT

G 0


v
λ

 =

f̃
0

 . (7.7)

Then λ can be computed from

GM̃GTλ = GM̃f̃ , (7.8)

and v can be computed from

M̃v = f̃ −GTλ. (7.9)

M̃ can be pre-factorized for faster computation. λ indicates the constraint force. When λ > 0, the

constraint force is pointing inside of the surface. In other words, the particle is leaving the surface.
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(a) Wall-clock Time (b) Simulation Time

Figure 7.6: Timing and convergence comparison. In (a), the X axis is wall-clock time (in seconds),
and in (b), the X axis is simulation time (in seconds). The Y axes in both (a) and (b) are the total
length of the simulated path (in cm). The figure shows the convergence of length using different
methods. According to (a), our method is faster than KKT, and more accurate than PF. According
to (b) our method has similar simulation behavior as KKT.

In this case, there should be a constraint. So all positive terms will be reset to 0. Otherwise, the

path will “stick” to the surface.

We compare the three methods as well as our method with reusing stiffness matrix (rep) in Fig.

7.6. In the figures, we use the total length of the path to evaluate the convergence. According to

the figures, our method and the KKT method produce almost identical results. The penalty force

approach always has some errors. Because the penalty force pushes the path away from the surface

when the path is very close (εPF ) to the surface, the error is highly related to εPF . When εPF is

large, the final result is far away from the ground-truth. When εPF is small, the method is unstable.

The KKT method is more robust, but converges slower in wall-clock time. Furthermore, similar to

the PF method, the KKT method requires parameter tuning (stabilization parameter [2]), though

nowhere near as much as the PF method. Our method can get an accurate result while having the

fastest computation speed, and does not require any parameter tuning for constraint handling. By

reusing the stiffness matrix, our method is even faster while the result is still accurate.

7.3 Freeform Mesh

Although parametric surfaces are flexible enough for shape designing, freeform meshes are

widely used. So we extend our method to freeform meshes. Parameterization is a way to convert a
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(a) Freeform Mesh (b) Parameterization (c) Winding Result

Figure 7.7: A freeform mesh example. Given a freeform mesh (a), we can parameterize it as (b).
(b) shows the parameterized mesh in the parametric space. A pixel’s RGB value represents the
XYZ coordinate of a surface point. Using our method, we can generate paths as in (c).

freeform mesh to a parametric surface.

One of our method’s basic assumption is that the surface should be isotopic to a cylinder. For

a closed mesh, first we choose two ends of the shape and map them to a cylinder’s ends. Then the

surface is cut through one end to the other end. The mesh can be parameterized as a rectangle in

the parametric space [10]. Without loss of generality, suppose the mesh is mapped to [0, 1]× [0, 1].

Then the mesh can be mapped to a cylinder by gluing two edges of the parameter space rectangle.

With a parameterized surface, we can compute the winding path using our method. Fig. 7.7 is

an example of a freeform mesh.
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8. CONCLUSION

We have presented a method for computing winding paths in the presence of concavities and

accounting for friction. This enables us to simulate path layouts that correspond to real behavior

in filament-wound parts. More specifically, we have introduced a physically-based model ideally

suited for this application that can incorporate dynamic friction (not just static analysis) into the

process. We have also shown how we can augment this simulator to model filaments that bridge

across concavities, without having to implement costly collision detection and resolution. Our

resulting end-to-end system demonstrates that we can handle dynamic behavior of filament wind-

ing across a variety of surfaces with friction and concavities, that the simulations we achieve are

close to the real-world winding paths, and that we can provide guidance to a designer to generate

windable parts.

The thesis of the dissertation states that:

The filament winding problem can be solved with physically based fiber simulation in the 2D

parametric space. With the method we propose, the winding solution can be both accurate and fast

to generate.

We prove the thesis by the following aspects:

• Existing filament winding path generation methods focus on simple shapes such as cylinders

and elbows. Our method significantly extended the range of mandrel shapes, which is not

explored in previous works. With our work, filament winding can be used in more applica-

tions with complex shapes. The shapes can be parametric surfaces or free-form meshes with

parameterization, which include most of the commonly used shapes.

• This work also makes the winding path generation fast enough for designers to see the sim-

ulation result in seconds. This lets the designers work more efficiently. The results are also

reliable and very similar to the real-world winding result, as our method also takes friction

and concavity into consideration.
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• Our analysis framework is another main contribution of this work. With our analysis frame-

work, designers and users can evaluate winding results more intuitively, and then edit the

winding paths or shapes by themselves or our automated methods according to the analy-

sis result. The framework also provides an evaluation method for other filament winding

methods beyond this work.

A motivating goal of our work is to support comprehensive design for a much wider range

of filament-wound parts than is now produced in practice. Although just one piece, our path

generation is the most critical aspect of achieving such a system. There remain several related

avenues for further work; among these directions are:

• Our basic end-to-end system could be extended to address a higher level of usability chal-

lenges, such as incorporating structural analysis or performing more generalized shape opti-

mization on the model.

• Our current winding paths do not take into consideration some of the fully global issues,

such as accounting for a particular physical winding machine geometry to ensure the head

positioning orientation. Such considerations might put additional constraints on the path

generation problem, and also present a different separate challenge of possible machine de-

sign and generating machine instructions.

• Our approach as described uses a parametric surface. Although we show our method can

be extended to general freeform meshes, there are also non-trivial challenges faced in such

cases (e.g., virtually cutting a mesh for multiple revolutions of winding, or defining fixation

points) that would need to be addressed before it could be considered solved.
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