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ABSTRACT 

In this research, five subjects which are related to offshore structure (mooring lines and 

risers) performance assessment and monitoring will discuss mainly such as chain mooring 

OPB-induced failure and riser structure health monitoring with numerical sensors.  

First, a multi-scale approach concept is introduced to estimate OPB (out of plane bending)-

induced failure considering time-varying interlink bending stiffness by using both high-

fidelity nonlinear-FEM (finite element method)-based local structural analysis and low-

fidelity global-system-simulation program so that they can mutually be interfaced during 

the time-stepping procedure.  

Second, the effects of underwater-chain-stopper (UCS) bearing friction at fairlead 

connection and time-varying interlink EI (bending stiffness) at the UCS exit on the OPB-

fatigue-induced chain failure are investigated. To demonstrate their effects through 

numerical simulations, three different approaches, such as only considering time-varying 

EI, considering both time-varying EI and fairlead bearing friction, and neither considered, 

are modeled and the results are systematically compared.  

Third, a new algorithm for the real-time structural health monitoring of TLP (tension-leg 

platform) tendons is presented. The algorithm is based on bi-axial sensors installed along 

the tendon and top tension-meter. Then, the tension and bending moment along the tendon 

can be estimated by using the developed algorithm. For bending moment, a generalized-
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coordinate-based FEA (Finite Element Analysis) formulas with cubic interpolation are 

derived. For tension, analytical formulas with small angle assumption are derived.  

Fourth, the methodology for the real-time tracing of riser profile and bending moment by 

multiple inclinometers along the riser is presented with the assumption that its top (by 

GPS; global positioning system) and bottom (anchoring) points are known. For riser x-y-

z displacement and bending-moment tracing, quadratic and cubic interpolation functions 

for each line element between two neighboring bi-axial inclinometers are employed with 

respect to the global and generalized coordinate systems to derive analytical solutions. 

Lastly, the monitoring methodology with minimum top sensors using digital twin with 

assumption that there is a significantly wave excitation loads reduction below certain 

water depth (last sensor attached) is presented. Also, multivariate regression can be 

applied to predict current profile at the remaining water depth.    
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1. INTRODUCTION 

 

Due to world economic growth, the global consumption of oil and gas has continuously 

been increased. Many experts expect that this long-term trend will not change in the near 

future. In the oil and gas production, offshore structures have played an important role as 

a significant energy supply source. However, all kind of offshore system failures such as 

chain mooring OPB (Out of Plane Bending)-induced failure and riser breakdown are still 

reported to the industry. Thus, the performance assessment and monitoring of those 

offshore structures will continuously be a very critical issue in the offshore oil and gas 

industry. With this background, the research motivation and purpose of chain mooring 

OPB-induced failure assessment and riser structure health monitoring will be explained in 

the following.  

 

1.1 Chain Mooring OPB-induced Failure 

Chain mooring system with underwater-chain-stopper (UCS) has been used in many 

offshore platforms. Even though its design has been based on standard guidelines, 

numerous accidents of mooring rupture have been reported during the past twenty years. 

The chain OPB (out of plane bending) / IPB (in plane bending)-induced fatigue drew 

industry’s attention after the report of Girasol SPMB (single-point-mooring-buoy) chain-

mooring failure in 2002 [1].  The “OPB” and “IPB” terminology mean the bending caused 

by the relative rotational angles between any two neighboring chain links [2].  

Furthermore, due to the restrictive links near fairlead with large tension and friction, 
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critical bending moment occurs at the fairlead connection [3]. Usually, IPB-induced 

fatigue damage is much smaller than that by OPB in chain bending failure [2]. Offshore 

industry launched several JIPs (joint-industry-projects) to further investigate the key 

features and physics of the OPB-induced mooring failure through numerical and 

experimental investigations [2, 4]. Despite those efforts, the details of the procedure and 

methodology to reliably check the possible OPB-induced failure are not fully established 

yet.  Thus, many researchers are still making effort to develop more rigorous approach.  

Since most OPB-induced failures happen locally near fairlead, high-fidelity FEM analysis 

can be used for more detailed structural analysis there. Based on this background, many 

researchers focused on that kind of local FEM analysis. For example, [5] suggested  a 

novel procedure for predicting OPB-induced failure using the stress at the last step. 

Structure failure detection methodology based on the first- and second-order of reliability 

was reported by [6]. [7] studied OPB-induced failure on 7 pocket roller type fairlead 

structure.  To increase the accuracy of local FEM results, a new non-linear contact model 

was suggested by [8]. To investigate the difference between tensile stress and bending 

stress, another FEM model was established by [9].  

However, for the rigorous estimation of the OPB-induced stresses, both local FEM 

analysis and global mooring dynamics should be coupled at the same time and solved 

simultaneously. The approach to solve OPB/IPB-induced failure by mainly focusing on 

the local behavior was suggested by [10]. Also, [11] introduced a de-coupled approach for 

the interlink-angle calculation with respect to the mooring-global-performance analysis. 

Furthermore, [12-15] underscored the importance of the rigorous modeling of local-
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connection complexity including fairlead bearing friction in assessing OPB-induced 

failure.  

However, [10, 11, 16] pointed out that the chain interlink bending stiffness was changed 

according to the interlink angle and its tension in time-stepping procedure. Thus, first, I 

developed the most rigorous multi-scale approach considering the time-varying chain 

interlink bending stiffness obtained from detailed local FE analysis at the critical point in 

the time marching of global-line simulation. The importance of floater connection 

boundary condition (B.C.) for fatigue damage is also underscored. 

Furthermore, I also developed a rigorous approach that considers the UCS breakout angle 

effect caused by fairlead bearing friction. During the time-stepping procedure in global 

mooring simulation, the time-varying fairlead boundary condition and time-varying chain 

interlink bending stiffness at UCS exit are simultaneously considered at each time step, 

which has rarely been attempted in the previous studies. That fairlead modeling was done 

according to the results of instantaneous UCS and breakout angles. Furthermore, since 

line-discontinuity can be varied by UCS (or chain-hawse) design, the corresponding 

sensitivity is checked with varying UCS and fairlead-connection parameters to better 

understand their effects on OPB-induced failure.  

For the proposed multi-scale approach, in this research, in-house hull-mooring-riser fully-

coupled dynamics solver CHARM3D (TAMU in-house program) [17-20] was used for 

the global mooring simulation. A commercial non-linear FEM program Abaqus 6.12 was 

used for the detailed local structural analyses of chain links near the target point (UCS 

exit). 
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1.2 Riser Structure Health Monitoring using Numerical Sensors 

As explained previously, due to fast global economic expansion, energy demand has 

increased a lot, and this trend will likely continue in the near future. With this background, 

offshore energy sources can be divided into two categories such as offshore platform and 

ocean renewable energy converter (wind turbine or wave energy converter). 

Generally, offshore structures including FOWT monitoring methodology can be divided 

into two categories: sensor based and NDT (Non-Destructive Testing), In deep water, the 

latter typically uses ROVs (Remotely Operated underwater Vehicle) [21], which is costly, 

and limited in structural assessment. For example, in fatigue failures of base material, most 

of the stress cycles usually occur before a detectable crack appears. After that, failure 

occurs fast, and thus fatigue failures may not be prevented by NDT.  

Thus, sensor-based monitoring is a more attractive low-cost health-monitoring option with 

automation potential [22]. Simple sensors such as accelerometers, inclinometers, and/or 

strain gauges are installed and their signals are analyzed by analytical or numerical 

methods to estimate the structural integrity. However, the sensors require continuous 

power supply to generate and transmit signals, which is also challenging in deeper waters.  

So far, many sensor-based monitoring technologies and methodologies have been 

developed and reported.  [23] tested their monitoring program using localized strain and 

motion measurement. Also, scaled model experiments were conducted by [24] to evaluate 

the dynamic responses of FOWT and validate sensor-measurement strategies.  [25] 

investigated piezo-electric converters as an energy supplying method for subsea sensors. 

In addition, [26] utilized operational modal analysis coupled with accelerometer data for 
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wind-turbine structural health monitoring. Using acceleration and angular-rate data, a 

decision-making methodology for riser angles was proposed by [27].  Also, an acoustic-

telemetry-based riser fatigue monitoring system was suggested by [28].   [29] researched 

a methodology for flexible riser monitoring using hybrid magnetic/optical strain gauges. 

For slender structures, VIV (vortex-induced vibration) responses, an adopted 

methodology using modal decomposition and linear regression was presented by [30] 

including sensitivity tests. Also, the statistical-pattern-recognition paradigm was also 

introduced by [31].  [32] employed an ANN (artificial neural network)-based technology 

for a rigorous monitoring of FOWT fatigue.  

In this research, first, I introduce the new algorithms that can do real-time riser or mooring 

monitoring including tensions, internal stresses, and accumulated fatigue damage by using 

a top-tension-meter and a series of bi-axial inclinometers along the line. The validity of 

the developed algorithms is demonstrated by using the CHARM3D (TAMU in-house 

program) for floater-turbine-mooring fully-coupled dynamic simulation [33]. As a 

validation example, the tendon monitoring of a TLP (Tension Leg Platform)-type FOWT 

(Floating Offshore Wind Turbine) is selected [34, 35].     

Furthermore, the algorithms for the real-time tracing of riser profiles and internal stresses 

are developed by using multiple inclinometers along the riser. Since accelerometers are 

not used, double time integration is not necessary to obtain riser’s real-time displacements. 

As a result, the profile tracing method is much more robust than the accelerometer-based 

approach. In addition, the real-time estimation of internal stresses and accumulated fatigue 

damages are also possible, which has rarely been reported in the open literature. To 
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validate the developed algorithms, riser dynamics of a FPSO under typical sea 

environments are simulated by using a commercial software (OrcaFlex).  Then, numerical 

inclinometers are distributed along the riser and they provide sensor signals like physical 

sensors. Subsequently, the inputted sensor signals are applied to the developed algorithms 

to enable the real-time prediction of instantaneous riser profiles and internal stresses. 

Lastly, the real-time predicted profiles and internal stresses are compared with the 

originally generated ones to validate the accuracy of the developed methodologies and 

algorithms.  Since CHARM3D (TAMU in-house program) will use mainly in this 

research, the theoretical description of numerical software (CHARM3D) will be explained 

at Appendix.  
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2. MULTI-SCALE APPROACH FOR CHAIN-MOORING OPB-INDUCED FAILURE 

CONSIDERING TIME-VARYING INTERLINK BENDING STIFFNESS AND 

FAIRLEAD CONDITION* 

2.1 Description of High-Fidelity Nonlinear FEM Model for Local Analysis 

There are several papers related to chain-mooring OPB/IPB phenomena using non-linear 

FEM [10, 12, 16, 36] For chain-mooring, proof-load test is performed to check its 

structural robustness during chain manufacturing stage. Usually, proof-load is applied at 

70% of Minimum Breaking Load (MBL). As a result, it may cause permanent deformation 

of chain link surface. This permanent deformation and the corresponding residual stress 

can be one of important factors relevant to chain-mooring OPB/IPB-induced failure (see 

Figure 1). To consider the processes from manufacturing stage to on-site operation, four 

sequential loading steps (Figure 1) are applied in the non-linear FEM model. The boundary 

condition of the left end of the chain links is assumed to be fixed considering the 

restrictions by stopper inside chain-hawse. Sequential loadings (proof-test loading, 

unloading, and operational loadings (tension and bending moment) are applied at the right 

side of the chain link. The interlink angles, corresponding bending moment and resulting 

stresses can then be calculated based on the non-linear FEM program. Here, a commercial 

non-linear FEM program, ABAQUS, is used and the results are compared with those of 

[12] for the exactly same case and material properties.  Figure 2 shows the computed 

relationship between OPB chain interlink angle and OPB moment for various applied 

                                                 

* Parts of this chapter are previously published from [15]. 
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tensions. The general trend (3 stages of sticking-rotating-sliding) agrees well with that of 

other published results and the case of tension=2250 kN agrees well with that of [12]. 

 

 

Figure 1 Loading Steps in non-linear FEM computation, Reprinted with permission from 

[15] 
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Figure 2 Results of OPB interlink angles vs. Moments for various tensions (Studless, 

Chain Grade R3, Friction Coefficient = 0.7, Ref.=[12] , Reprinted with permission from 

[15] 

 

 

2.2 Description of Low-Fidelity Global Line Dynamics Program 

2.2.1 CHARM3D 

CHARM3D is TAMU-in-house computer program that has been developed by the TAMU 

OSCL during the past 20 years for multi-hull-mooring-riser fully-coupled nonlinear 

dynamic analysis in time domain [33]. The computer simulation program has been 

extensively validated against various experimental and field data (e.g.[18]). In 

CHARM3D, the slender-elastic-rod theory developed by Garrett [37] is used for risers and 

mooring lines. Their governing equations are derived with respect to the position vector 

r(s, t) which is function of arc length (s) in general coordinate and time (t).     
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− (Pr′′)′′ + (λr′)′ +  q =  ρr̈ 

P =  EI 

r′ ∙ r′ = (1 +  
T

AIE
)2  ≈ 1 + 2

λ

AIE
                                                                                  (2.1) 

In Eq. (2.1), E=Young’s modulus, I=sectional moment of inertia, q =distributed load, ρ = 

rod density, λ = Lagrangian multiplier, T = tension, AI =effective cross-sectional area, 

primes represent derivative with respect to arc length (s) and dot represent differentiation 

with respect to time (t). The distributed load (q) is composed of rod element weight (w), 

hydrostatic load (Fs), and hydrodynamic load(Fd). Those loads are based on the unit 

length of the rod. Also, hydrostatic load (Fs) can be estimated using Eq. (2.2).  

Fs = Buoyancy − (HAIr
′)′          (2.2)   

where, H = hydrostatic pressure at position r  

In addition, hydrodynamic load can be computed following Eq. (2.3).   

Fd = −CAρAIr̈
n + [(CA + 1)ρAIV̇

n] + 
1

2
CDρAD|Vn − ṙn|(Vn − ṙn)   (2.3) 

 

In Eq. (2.3), Vn , V̇n are velocity and acceleration vectors of fluid which are normal to the 

center line of the rod.  The symbols ṙn, r̈n are velocity and acceleration vectors of rod 

element which are normal to the center line of the rod. Also, CA, CD, AD, ρ represent added 

mass coefficient, drag coefficient, projected area of line, seawater density, respectively.  

The first term in (2.3) is to be moved to the left-hand side to be combined with line mass. 
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Through Eq. (2.1) ~ (2.3), the final equation of motion for rod element (Eq. (2.4)), can be 

derived as below. 

mr̈ +  CAρAIr̈
n + (EIr′′)′′ + (λ̃r′)

′
=  w̃ +  F̃d   (2.4) 

where m = mass per unit length of the rod element 

λ̃ = T̃ − EIk2   

T̃ = effective tension of the rod element 

k = local curvature of the rod element 

w̃ = net weight of the rod element 

F̃d = [(CA + 1)ρAIV̇
n] + 

1

2
CDρAD|Vn − ṙn|(Vn − ṙn) 

The external dynamic loads are evaluated at instantaneous position of the lines at each 

time step. Once this final non-linear equation of motion is solved with respect to r and λ, 

the displacements and forces of the rod element can be found respectively. To solve the 

line dynamics in time, high-order FEM was used. The banded matrix for line dynamics is 

combined with the full matrix of 6DOF platform dynamics through proper connection 

conditions. The combined full-matrix equation is solved at each time step and the time-

marching continues. 

 

2.2.2 OrcaFlex 

OrcaFlex [38] is a popular commercial program developed by Orcina. One of main 

differences between OrcaFlex and CHARM3D is the way to make the line element model. 

In OrcaFlex, lumped-mass elements are continuously connected by massless 
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springs/dampers at each node to represent axial, torsional, and bending properties of the 

line elements [38]. In addition, mass, net buoyancy, and drag forces for line elements can 

be inputted into each node/element. The distributed hydrodynamic load can be estimated 

in a similar way as presented in Eq. (2.5). In addition, the final equation of motion for line 

elements considers axial tension, buoyancy, gravity, torsion, and bending effects. In this 

study, torsion (or twisting) effect is not considered, as in CHARM3D modeling, since its 

effect is negligible for long mooring lines. The final dynamic behavior is to be solved from 

M(p, a) + C(p, v) = F(p, v, t) − K(p)                                                                           (2.5) 

where  M  = inertia load, C  = damping load, K  = stiffness load, p , v , a  represent the 

position, velocity, and acceleration vectors, respectively, with t as time.  To solve the 

equation of motion, implicit scheme (Generalized-α integration scheme) using constant 

time step is selected. More details about the program can be found in OrcaFlex manual.  

 

2.3 Description of Target Model (Semi-Submersible) 

As pointed out in the previous section, a generic drilling semi-submergible is taken as the 

target rig. 3D diffraction/radiation panel program (WAMIT) was used for the calculation 

of hydrodynamic coefficients (added mass, radiation damping, and first- & second-order 

wave forces) [39].  Since the semi-submersible model is symmetric with respect to X and 

Y axes, only 1 quadrant of the hull below mean water level (MWL) is discretized with 

1308 quadrilateral elements. The configuration is shown in Figure 3. Convergence tests 

were performed with increasing panel numbers until reasonably good accuracy was 

obtained. In addition, Morison drag formula was applied to the columns and pontoons to 
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capture viscous cross-flow-drag effects on the hull. At each time step, the fully-coupled 

dynamic response of hull-mooring-riser system is solved from the combined matrix 

equation of the overall system.   

 

Figure 3 The configuration and numerical modelling of the generic semi-submersible, 

Reprinted with permission from [15] 

 

 

Mooring lines and risers are also employed in the fully-coupled numerical model as shown 

in Figure 4. Twelve mooring lines form four groups at each corner with 5-degree intervals. 

Each mooring leg has chain-polyester rope-chain combination. The top portion of the 

chain mooring near fairlead is guided by 3.1m-long chain-hawse. At the outlet of the 

chain-hawse, the discontinuity of mooring chain is expected, where the bending-induced 

chain failure problem is the most seriously anticipated. In addition, four steel catenary 

risers (SCR) are considered in this study, as shown in Figure 4, and the water depth is 

1,219 m. More detailed particulars of the hull are given in [40]. 



14 

 

 

Figure 4 Arrangement of mooring lines and risers and direction of environmental 

heading, Reprinted with permission from [15] 

 

The material properties of chain, polyester rope, risers, and chain-hawse used in this study 

are presented in Table 1 and Table 2. To analyze the OPB/IPB problems for chain mooring 

near fairlead, the detailed modeling of the fairlead and chain-hawse is very crucial.  In this 

study, it is assumed that the chain-hawse is a circular steel tube with 10mm wall thickness 

that has a chain stopper at its outlet. The chain stopper holds the chains tightly inside. Each 

mooring line has one chain-hawse of 3.1m length at its top. Polyester rope is used between 

the top (near fairlead) chain blocks and bottom (near anchor) chain blocks. The chain-

hawse is connected to the hull by freely-rotating pin-joint. Other connection conditions, 

such as friction-induced fixed B.C are also tested to consider floater-connection effect. 

The initial fairlead-anchor coordinates of lines are as shown in Table 3 along with their 

pretensions. Figure 5 and Figure 6 illustrate fairlead, chain-hawse, mooring line, and 

cross-section of chain-hawse. 
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Figure 5 Modeling of chain-hawse and mooring line near fairlead, Reprinted with 

permission from [15]  

 

Table 1 Mooring Material Properties, Reprinted with permission from [15] 

Mooring Material Properties  

  Unit Chain Rope Chain-hawse 

 Type [-] R3 Studless Polyester Circular Tube 

Diameter [mm] 147 220 290 

Mass in Air [kg/m] 430 39 499 

Displaced Mass [kg/m] 56 29.2 124 

MBL(Min. Braking Load) [kN] 14700 8250 14700 

Axial Stiffness (EA) [MN] 1845.4 52.76 1845.4 

Bend Stiffness (EI) [MN-m^2] 0 0 18.3 

Drag coefficient [-] 2.4 1.2 1.2 

 

Table 2 SCR Material Properties, Reprinted with permission from [15] 

SCR Material Properties  

  Unit SCR_Oil SCR_Gas SCR_WI SCR_FL 

Diameter [mm] 457.2 355.6 273.1 219.1 

Mass in Air [kg/m] 335.25 141.61 233.74 171.07 

Displaced Mass [kg/m] 186.95 39.79 173.7 132.43 

Axial Stiffness (EA) [MN] 5660 3390 4810 3740 

Bend Stiffness (EI) [MN-m^2] 135 49 36 17 
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Figure 6 3D view of chain-hawse shape , Reprinted with permission from [15] 

 

Table 3 Coordinates of the mooring lines and risers , Reprinted with permission from 

[15] 

Kinds  
Line 

No.  

Fairlead Point Anchor Point Pre-

Tension X Y Z X Y Z 

m m m m m m kN 

Mooring 

Lines 

1 34.44 31.25 -22.25 1122.22 1327.61 -1219.20 1993.9 

2 34.44 28.20 -22.25 1234.06 1224.82 -1219.20 1995.3 

3 34.44 25.15 -22.25 1330.80 1112.93 -1219.20 1996.5 

4 34.44 -25.15 -22.25 1330.80 -1112.93 -1219.20 1984.6 

5 34.44 -28.20 -22.25 1231.06 -1224.82 -1219.20 1982.1 

6 34.44 -31.25 -22.25 1122.22 -1327.61 -1219.20 1979.5 

7 -34.44 -31.25 -22.25 -1122.22 -1327.61 -1219.20 1923.5 

8 -34.44 -28.20 -22.25 -1231.06 -1224.82 -1219.20 1922.1 

9 -34.44 -25.15 -22.25 -1330.80 -1112.93 -1219.20 1920.8 

10 -34.44 25.15 -22.25 -1330.80 1112.93 -1219.20 1933.6 

11 -34.44 28.20 -22.25 -1231.06 1224.82 -1219.20 1936.3 

12 -34.44 31.25 -22.25 -1122.22 1327.61 -1219.20 1939.1 

Risers 

SCR

_WI 
-33.53 -5.00 -22.10 -962.82 -86.30 -1219.20 2572.6 

SCR

_Oil 
33.53 -5.00 -22.10 962.74 -86.30 -1219.20 2786.6 

SCR

_Gas 
33.53 5.00 -22.10 962.46 86.27 -1219.20 593.2 

SCR

_FL 
-33.53 5.00 -22.10 -962.61 26.28 -1219.20 1961.4 
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2.4 Time-Varying OPB/IPB Chain Interlink-Angle Assessment 

Interlink angle measuring methodology in the fully-coupled global performance 

simulation [41] is shown in Figure 7.  The definition of chain interlink angle in the fully-

coupled global performance simulation is similar as that in high-fidelity non-linear FEM 

analysis. The relative angle of two adjoining vectors in the localized horizontal plane (xy 

plane) is the OPB chain interlink angle.  Similarly, by changing the reference plane to the 

localized vertical plane (xz plane), IPB angle also can be measured. As shown in Figure 

7, the end of chain-hawse where first free-to-rotate chain link which is prone to bending-

induced failure is the target reference point. It can be measured at each time step during 

the hull-mooring-riser fully-coupled global performance simulation.  

 

 

Figure 7 Definition of OPB Chain Interlink Angle – Global Performance Simulation, 

Reprinted with permission from [15] 
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OrcaFlex and CHARM3D are used to cross-check OPB/IPB chain-mooring interlink-

angle calculations in time-domain global-performance analysis as described in the 

previous section. To maintain consistency, the fully-coupled platform motions with risers 

and mooring lines are first simulated for the given environmental conditions by 

CHARM3D. The motion of a target fairlead point is recorded in time. Then, the same 

target mooring line is also modeled by OrcaFlex and its dynamics for the prescribed 

fairlead motion is simulated under the given environmental condition.  

First, both cases are simulated under the same regular head-wave condition (H=5m, 

T=10s, Heading =180º). The 6DOF vessel motions under the given wave condition are 

presented in Figure 8. As expected in head waves, sway-roll-yaw motions are very small 

compared to surge-heave-pitch motions due to the hull-mooring geometric symmetry. 

However, the riser arrangement and its pretension are asymmetric with respect to the x-

axis causing small non-zero mean values for the horizontal-plane motions.  

To evaluate the local vectors (directional-cosine) of mooring lines near the target point 

(the discontinuity caused by the chain-hawse), a post-process using 3 neighboring nodal 

displacements was devised for OrcaFlex because OrcaFlex does not compute them 

directly. In case of CHARM3D, the local vectors (directional-cosine) for each node are 

directly outputted. In the post-process, the interval between each point near the target node 

is 0.9 m. To observe the effects of chain-hawse on OPB/IPB interlink angles, the chain 

mooring lines with and without the chain-hawse were identically modeled and the results 

are compared. In the case of with chain-hawse, it is assumed that the chain-mooring inside 

chain-hawse moves with chain-hawse due to the stopper inside. In the initial chain-
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mooring global-performance simulation, it is also assumed that the bending stiffness of 

the chain-mooring can be neglected, which is actually true for the entire length of long 

chain-mooring.  

 

Figure 8 6DOF Platform Motion Time History in Regular Wave (H=5m, T=10s, 

Heading =180º) , Reprinted with permission from [15] 

 

Figure 9 shows the results of OPB/IPB chain-interlink angles at the target point by 

OrcaFlex and CHARM3D without chain-hawse. It is confirmed that both results are 

matched well. We can also see that OPB/IPB chain interlink angles without chain-hawse 

are typically very small because there is no abrupt line discontinuity. It means that 

OPB/IPB-induced failure hardly occurs along the continuous chain mooring line without 

sudden connections or restrictions. With the chain-hawse, the interlink angles are 

significantly increased. Therefore, from this point on, only the case with chain-hawse will 

be considered. 
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Figure 9 Comparison of OPB(Up) / IPB(Down) chain-interlink angles without chain-

hawse by CHARM3D (C3D) vs. OrcaFlex (OF), ML09: Regular Wave (H=5m, T=10s, 

Heading =180º) , Reprinted with permission from [15] 

 

For comparison, Figure 10 shows the interlink-angle results at the target point after 

including chain-hawse. Compared to Figure 9, the OPB chain interlink angles at the target 

point are significantly increased. Both CHARM3D and OrcaFlex show the same trend. In 

this case, the IPB interlink angles are very small as expected. The two computer programs 

produce almost identical results for OPB/IPB chain-interlink angles when conventional 

approach is used. When considering time-varying interlink bending stiffness approach is 

used, only CHARM3D can produce the results. Therefore, from this point on, only the 

CHARM3D results will be presented for various case studies. 
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Figure 10 Comparison of OPB(Up) / IPB(Down) chain-interlink angles with chain-

hawse by CHARM3D (C3D) vs. OrcaFlex (OF), ML09: Regular Wave (H=5m, T=10s, 

Heading =180º) , Reprinted with permission from [15] 

 

2.5 Chain Interlink-Angle Variation among Mooring Lines 

Figure 11, Figure 12 and Figure 13 plot OPB/IPB chain interlink angles of all mooring 

lines at the target point with chain-hawse under the same regular-wave condition (H=5m, 

T=10s, Heading =180deg). It is clearly seen that the variations of interlink angles for lee-

side slack lines (ML07~12) are greater than those of taut-side lines (ML01~06). Table 4 

shows the initial equilibrium position of the platform before any environmental loads are 

applied. The platform has small negative (downstream) mean surge-offset and mean pitch 

angle due to the non-symmetric riser pre-tensions. The mean pitch angle and downstream 

surge mean offset cause the downstream mooring lines slack, which results in larger 

dynamic interlink angles.  Whereas, there are little differences in IPB interlink angles 

among the mooring lines. Actually, the bending-induced failure of chain is related to both 
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tension and interlink angle, as shown in Figure 2. For slack-side lines, interlink angles are 

larger but tensions are smaller compared to those of taut-side lines. As shown in Figure 

11 and Figure 13, ML03 is the most critical line in terms of tension and ML 09 is the most 

critical line in terms of OPB/IPB interlink angles. Usually, IPB interlink angles play much 

less role for failure.  From this point on, only the ML03, 09 OPB interlink angles will be 

tracked.     

 

Figure 11 OPB Interlink Angles for All Mooring Lines, Reprinted with permission from 

[15] 
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Figure 12 IPB Interlink Angles for All Mooring Lines, Reprinted with permission from 

[15] 

 

Figure 13 Tensions for All Mooring Lines, Reprinted with permission from [15] 
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Table 4 Platform Initial Position without environmental loadings, Reprinted with 

permission from [15] 

Surge  Sway Heave Roll Pitch Yaw 

m m m deg deg deg 

-2.67 -0.61 -0.04 0.47 -1.09 0.05 

 

 

 

 

The above argument “slacker lines tend to have larger OPB interlink angles” can further 

be supported by showing the trend of dynamic interlink angles of the ML03 and ML09 

line with increasing the initial pretension, as presented in Figure 14. With increasing the 

line pre-tension, both mean and dynamic interlink angles are decreased, while there is 

virtually no difference in IPB angles.  
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Figure 14 OPB/IPB angles for ML03 (Up), ML09 (Down) for various initial pre-tensions 

(with chain-hawse): Regular Wave (H=5m, T=10s, Heading =180º) , Reprinted with 

permission from [15] 
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2.6 Coupled Analysis between Low-Fidelity and High-Fidelity Analysis 

Figure 15 represents flow chart for the multi-scale approach with the simultaneous use of 

high- and low-fidelity models with time-varying chain interlink bending stiffness and the 

3D picture for pre-calculated chain interlink bending stiffness as function of tension and 

interlink angle in the expected range of variations. At each time increment, the interlink 

angle and tension at the target point, which is at the chain-hawse outlet in this research, 

can be computed. Those results can be used as the inputs to high-fidelity (local-FEM) 

analysis to obtain the corresponding interlink bending stiffness. Then, the new interlink 

bending stiffness that was read from Figure 15 is to be inputted to the low-fidelity global 

simulation by CHARM3D software. By using this mutually interfaced time-stepping 

procedure, the non-linear and time-varying nature of chain interlink bending stiffness can 

be considered in the time-domain simulation.  



27 

 

 

 

 

Figure 15 Consideration of Time-varying Chain Interlink Bending Stiffness and 3D 

Picture from FEA (Pre-Calculated with friction coefficient=0.7), Reprinted with 

permission from [15] 
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2.7 Effects of Time-varying Interlink Bending Stiffness 

2.7.1 Case 1: Frictionless hinged fairlead connection B.C  

As mentioned previously, the accurate modelling of fairlead portion of chain mooring in 

low-fidelity global-system simulation and analysis can be critical to assess the resulting 

OPB-induced fatigue damage. To increase the modelling accuracy, the time-varying 

interlink bending stiffness can be employed. It is a function of time-varying tension and 

interlink angle (Figure 15). The friction-induced interlink bending stiffness can be pre-

estimated by high-fidelity nonlinear-FEM program for various combinations of tensions 

and interlink angles. Then, the proper value at each time step can be selected from the pre-

calculated table and inputted to the time-marching process of the global simulation 

program.  

A typical irregular wave condition is applied as an example, as shown in Table 5. Similar 

fatigue estimations can be continued for a series of sea conditions. In random waves, 

slowly-varying surge vessel motions occur due to second-order difference frequency wave 

loadings, which is accounted for through Newman’s methodology [39]. Steady shear 

currents and dynamic winds are also included in the present simulation as shown in Table 

5. JONSWAP wave spectrum (Figure 16) and API wind spectrum are employed to 

generate random waves and winds. 

Figure 17 and Figure 18 show OPB angle time history and power spectral density (PSD) 

comparisons between conventional approach (basic: zero interlink bending stiffness) and 

present approach (time-varying interlink bending stiffness) under frictionless hinged 

fairlead connection B.C for ML03 and 09 lines. By considering time-varying interlink 



29 

 

bending stiffness effect, both mean (about 6.4% and 6.2% for ML03 and 09) and dynamic 

interlink angles are slightly decreased (about 20% and 13% for ML03 and 09) at wave 

frequency region. The interlink-angle variation of taut mooring line (=ML03) is much 

smaller than that of slack mooring line (=ML09), as already evidenced in Figure 14.  If 

the floater-connection B.C is changed to fixed B.C, the trend can be different, which is to 

be discussed in the next section.    

Tension comparisons are also given in Figure 19 and Figure 20 for ML03 and ML09. The 

effect of time-varying interlink bending stiffness on dynamic tension is generally small 

although there is appreciable difference at the peak near 0.05 rad/s. The peak is associated 

with slowly-varying surge responses of the semisubmersible in irregular waves [40]. The 

difference in mean tension between the taut and slack lines is clearly seen as expected. In 

the wave-frequency region, the tension variation at slack mooring line (=ML09) is slightly 

higher than that of taut mooring line (=ML03).   

The corresponding bending moments for both mooring lines are presented in Figure 21 

and Figure 22. While we use zero interlink bending stiffness in the global mooring 

dynamics, the bending moment is calculated from the local FE analysis based on the 

calculated dynamic tension and interlink angles at each time. Similar trends can be 

observed between the basic and time-varying interlink bending stiffness cases in both time 

histories and spectra. The time-varying interlink bending stiffness case gives slightly 

smaller values in both time histories and spectra, which means that the present, more 

rigorous approach is not supposed to significantly influence the fatigue-damage 

estimation. The trends of bending moment results are similar to those of interlink angles 
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(Figure 17 and Figure 18). The mean value of bending moment, as a function of mean 

tension and interlink angle, is slightly reduced for both mooring lines if the time-varying 

interlink bending stiffness is considered. Judging from the bending-moment results, taut 

lines (ML03) are less vulnerable to accumulated fatigue damage than slack lines (ML09). 

In Figure 21 and Figure 22, it is of interest to notice the presence of bending moment at 

higher frequencies than input wave frequencies, which is related to mooring-line 

dynamics.  Although their magnitudes are not large, the high-frequency bending moments 

can play a role in fatigue damage due to higher number of cycles.  

Figure 23 shows the time histories of time-varying interlink bending stiffness at the chain-

hawse outlet for both mooring lines. Taut line (=ML03) has larger mean value than slack 

line (=ML09) because of larger mean tension. The bending stiffness definition is a 

function of tension and interlink angle, as shown in Figure 15. As for the variation of 

bending stiffness values with time, slack lines have larger values.  

Floater motions are little affected by the basic or time-varying interlink bending stiffness 

modeling, as shown in Figure 24. Due to the head sea condition, only surge, heave, and 

pitch are presented. Their natural frequencies are 0.05 rad/s, 0.6 rad/s, 0.18 rad/s, 

respectively. The pitch response spectrum shows peaks at such three natural frequencies 

due to mode coupling.  
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Table 5 Environmental Condition, Reprinted with permission from [15] 

Wave Current Wind 

Gamma 
Direction 

from TN 

Significant 

Wave (Hs) 

Spectral 

Period 

(Tp) 

Depth Vel. Spectrum 

10 

min@+10m 

elevation  

Direction 

from TN 

(-) (deg) (m) (s) (m) (m/s) (-) (m/s) (deg) 

2.2 Omni 5.5 

10.1 

(0.62 

rad/s) 

0 0.5 

API 19.9 Omni 
63 0.375 

126 0 

mud 0 

 

 

 

Figure 16 Incident Wave Elevation Time History and Spectrum (Input vs Regenerated) , 

Reprinted with permission from [15] 
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Figure 17 OPB interlink angles comparison for ML03 (taut), Basic VS Time-Varying 

Interlink Bending Stiffness - Frictionless Hinged BC , Reprinted with permission from 

[15] 

 

Figure 18 OPB interlink angles comparison for ML09 (slack), Basic VS Time-Varying 

Interlink Bending Stiffness - Frictionless Hinged BC, Reprinted with permission from 

[15] 
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Figure 19 Tension comparison for ML03 (taut), Basic VS Time-Varying Interlink 

Bending Stiffness - Frictionless Hinged BC, Reprinted with permission from [15] 

 

Figure 20 Tension comparison for ML09 (slack), Basic VS Time-Varying Interlink 

Bending Stiffness - Frictionless Hinged BC, Reprinted with permission from [15] 
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Figure 21 Bending Moment comparison for ML03 (taut), Basic VS Time-Varying 

Interlink Bending Moment - Frictionless Hinged BC, Reprinted with permission from 

[15] 

 

 

 

Figure 22 Bending Moment comparison for ML09 (slack), Basic VS Time-Varying 

Interlink Bending Moment - Frictionless Hinged BC, Reprinted with permission from 

[15] 



35 

 

 

 

Figure 23 Interlink Bending Stiffness Time History for ML03 (taut), ML09 (slack) - 

Frictionless Hinged BC, Reprinted with permission from [15] 

 

 

 

Figure 24 Comparison: Surge-heave-pitch Motion PSD, Basic vs Time-Varying Interlink 

Bending Stiffness - Hinged fairlead connection , Reprinted with permission from [15] 
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2.7.2 Case 2: Fixed fairlead connection B.C.  

In this section, the effect of different fairlead connection (fixed B.C) is investigated. 

Practicing engineers suggest that the fairlead connection to platforms can be more 

restrictive than frictionless pin-joint due to increased friction by marine growth or 

corrosion during operation [12, 14]. It may cause additional external bending effect on 

chains near underwater chain-stopper to significantly increase the OPB-induced fatigue 

damage. Therefore, to see the effect of restriction at the fairlead connection as another 

extreme, fixed B.C is adopted in this section. The case of fairlead connection through a 

chain-wheel without using movable chain-hawse is close to this fixed BC. The increased 

restriction between hull and chain-hawse connection by marine growth and corrosion 

should be between the two extreme cases. In a sequel research, a sophisticated numerical 

modeling of fairlead connection considering friction and breakout angle effect is to be 

detailed.  

Figure 25 and Figure 26 show OPB-interlink-angle comparisons between basic (zero 

interlink bending stiffness) and time-varying interlink bending stiffness for ML03 and 

ML09 under fixed fairlead connection B.C.  Compared to the previous frictionless hinged 

connection, the variations of interlink angles are significantly increased for both mooring 

lines. This is expected since the chain-hawse in this case moves with the platform to have 

larger relative angles against mooring lines. On the other hand, the mean angles are 

decreased especially at taut side since the chain-hawse angle is initially aligned with the 

mooring line. On the contrary to the previous case, the variations of interlink angles at taut 

side are generally greater than those at slack side, which means that the taut-side mooring 
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is more vulnerable to OPB-induced failure. Taut mooring system is more affected by 

floater motion than slack mooring system.   

Figure 27 and Figure 28 show tension comparisons for both mooring lines (=ML03 and 

ML09). The results are very similar to those of Figure 19 and Figure 20. This means that 

the mooring tension is little affected by the change of fairlead connection.   

Figure 29 and Figure 30 show bending moment comparisons between basic and time-

varying interlink bending stiffness cases for both mooring lines (=ML03, ML09). The 

dynamic bending moments are significantly increased after fixing the fairlead connection, 

which is consistent with the witness of practicing engineers during the past two decades. 

Interestingly, the dynamic bending moment at taut side is significantly larger than that at 

slack side, which is opposite to the previous trend of frictionless fairlead connection 

(Figure 21 and Figure 22).  

In addition, in this case, the results of constant-interlink-bend-stiffness in the global 

simulation are added in the spectrum plot of Figure 30-31. The average value of bending 

stiffness was used in the new case (ML03, ML09 = 8.68E+06 kN-m/rad, 7.75E+06 kN-

m/rad). The resulting spectra are closer to the time-varying-EI curves when frequency>0.3 

rad/s and the opposite is true otherwise.     

The time-varying interlink bending stiffness with fixed fairlead connection is given in 

Figure 31 for both mooring lines. It is seen that both the mean values and time variations 

of bending stiffness are significantly increased compared to the previous frictionless 

fairlead connection (Figure 23). Similar to the previous case (Figure 23), the bending 

stiffness variation of slack-side mooring is larger than that of taut-side mooring.     
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Figure 32 shows the surge-heave-pitch response spectra for the surface platform. As 

compared to Figure 24, there is no apparent change, which means that the platform motion 

is little affected by the fairlead joint condition of chain-hawse. 

 

 

Figure 25 OPB interlink angles comparison for ML03 (taut), Basic VS Time-Varying 

Interlink Bending Stiffness - Fixed BC, Reprinted with permission from [15] 
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Figure 26 OPB interlink angles comparison for ML09 (slack), Basic VS Time-Varying 

Interlink Bending Stiffness - Fixed BC, Reprinted with permission from [15] 

 

Figure 27 Tension comparison for ML03 (taut), Basic VS Time-Varying Interlink 

Bending Stiffness - Fixed BC, Reprinted with permission from [15] 
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Figure 28 Tension comparison for ML09 (slack), Basic VS Time-Varying Interlink 

Bending Stiffness –Fixed BC, Reprinted with permission from [15] 

 

 

Figure 29 Bending Moment comparison for ML03 (taut), Basic vs Time-Varying 

Interlink Bending Stiffness vs Constant Interlink Bending Stiffness – Fixed BC, 

Reprinted with permission from [15] 
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Figure 30  Bending Moment comparison for ML09 (slack), Basic vs Time-Varying 

Interlink Bending Stiffness vs Constant Interlink Bending Stiffness – Fixed BC, 

Reprinted with permission from [15] 

 

 

Figure 31 Interlink Bending Stiffness Time History for ML03 (taut), ML09 (slack) - 

Fixed BC, Reprinted with permission from [15] 

 

 



42 

 

 

Figure 32 Comparison: Surge-heave-pitch Motion PSD, Basic vs Time-Varying Interlink 

Bending Stiffness - Fixed fairlead connection, Reprinted with permission from [15] 

  



43 

 

2.8 Comparisons of Short-term Fatigue Damage  

2.8.1 Hotspot Location 

As previously explained, many researchers investigated hotspot locations of chain links 

[3, 10]. In this research, only short-term fatigue during storm duration (3 hours) is 

considered. The present calculations for the areas of maximum stress are also consistent 

with those references. Based on those, four points are selected as hotspot locations, as 

shown in Figure 33. At each hotspot location, maximum principle stress can be estimated 

to generate the corresponding stress concentrate factor (SCF). Since non-linear FE is used 

with the sequential loading procedure, as given in Figure 1, residual stresses are also 

included in the SCF calculation. The accumulated fatigue damage with/without the 

residual stresses were calculated and compared. Once SCF is pre-calculated as function of 

tensions and interlink angles, the total stress time history can be generated by using eq.2.6 

with low-fidelity global-analysis results. Figure 34 shows the general procedure of fatigue 

damage calculation. After the total stress time history at each hotspot location is generated, 

Gerber mean stress correction model is applied as shown in eq. 2.7. Then, stress range-

cycle histogram is made by rain-flow counting method which is widely adapted. Finally, 

fatigue damage index (or accumulated damage) can be calculated using S-N curve and 

Palmgen-Miner’s accumulative fatigue damage rule (eq. 2.8). In this study, ABS-FC (Free 

Corrosion) curve is used as S-N curve to estimate cumulative fatigue damage.  

( )
( ) ( ( ), ( ))

2
Total TT OPB

T t
t SCF T t t

A
 +=                                                                              (2.6) 

T = tension, A = chain section area,  = OPB interlink angle 
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Gerber model: 

2
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 
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 

                                                                                     (2.7)                     

where, ,m u  = mean stress and tensile strength, respectively 

       a = stress amplitude 

       '

e = effective alternating stress at failure for a lifetime of N cycles 

Damage Index  
1

k
i

i i

n
D

N=

=                                                                                            (2.8) 

where, in = the number of cycles of the (effective) stress range 

      iN = the ultimate number of cycles of the (effective) stress range before fatigue 

failure 

 

Figure 33 Hotspot locations from Local FEM model, Reprinted with permission from 

[15] 
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Figure 34 Flow chart of fatigue damage estimation, Reprinted with permission from [15] 

 

Table 6 and Table 7 show the short-term fatigue estimation for the given system and sea 

condition. The same procedure can be repeated for various sea environments to estimate 

the accumulated fatigue damage. In the table, ‘basic’ means conventional approach with 

zero interlink bending stiffness and ‘time-varying’ means present approach with time-

varying interlink bending stiffness. Results are also given for two fairlead-connection 

conditions, frictionless hinged and fixed joints and for two mooring lines, ML03 (taut) 

and ML09 (slack). In Table 6 and Table 7, residual stresses after proof-loading test are 

included. 

As for fatigue damage with hinged fairlead connection (Table 6), the maximum fatigue 

damage occurs at slack-side B location by the basic and present approaches. The 

corresponding magnitude of basic approach is larger than that of present approach. In case 

of fixed fairlead connection (Table 7), both basic and time-varying-EI approaches produce 

the maximum fatigue damage at taut-side B location and basic approach gives larger value 
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than present approach. The corresponding maximum fatigue damage is greatly (order of 

100 times) increased when compared to the case of hinged fairlead connection. As pointed 

out earlier, the actual condition, with friction and given rotational-angle restriction, should 

be between the two extreme cases. The above conclusions are for four potential hot spots 

and more points need to be checked with more environmental loads.   

In Table 8, the residual stresses of the hot spots are given.  It is interesting that the residual 

stress of point A is 44% larger than that of point B. However, as discussed in the above, 

the short-term fatigue damage of B is larger than A after continuous loading by time-

varying tension and OPB bending. 

 

Table 9 and Table 10  show the accumulated fatigue damages without residual stress 

effect.  Again, the maximum fatigue damage occurs at slack-side B for hinged fairlead 

connection and taut-side B for fixed fairlead connection. However, when the residual 

stress effects are not accounted for, the fatigue damage is underestimated by 41% for 

hinged fairlead connection and by 33% for fixed fairlead connection. These differences 

are, however, much less when compared to the effect of fairlead-connection condition. 

The above procedure can repeatedly be used for various sea conditions during the service 

life to obtain the actual accumulated fatigue damage. 
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Table 6 Damage Index comparison Basic VS Time-Varying Interlink Bending Stiffness, 

Frictionless hinged floater connection B.C., ML03 and ML09, Residual stress included, 

Reprinted with permission from [15] 

Frictionless hinged floater connection B.C., ML03  

  A B C D 

Basic 3.99E-08 3.73E-08 1.66E-08 2.40E-08 

Time-Varying Interlink 

Bending Stiffness 
3.54E-08 3.61E-08 2.01E-08 2.44E-08 

Frictionless hinged floater connection B.C., ML09 

  A B C D 

Basic 4.08E-07 4.27E-07 1.99E-07 2.83E-07 

Time-Varying Interlink 

Bending Stiffness 
3.58E-07 3.84E-07 1.88E-07 2.57E-07 

 

 

Table 7 Damage Index comparison Basic VS Time-Varying Interlink Bending Stiffness, 

Friction-induced fixed floater connection B.C., ML03 and ML09, Residual stress 

included, Reprinted with permission from [15] 

Friction-induced fixed floater connection B.C., ML03 

  A B C D 

Basic 6.31E-05 6.44E-05 2.73E-05 4.44E-05 

Time-Varying Interlink 

Bending Stiffness 
5.88E-05 6.04E-05 2.57E-05 4.15E-05 

Friction-induced fixed floater connection B.C., ML09 

  A B C D 

Basic 2.97E-05 2.96E-05 1.15E-05 1.88E-05 

Time-Varying Interlink 

Bending Stiffness 
3.04E-05 3.07E-05 1.22E-05 1.96E-05 
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Table 8 Residual Stress at each Potential Hot Spot Location, Reprinted with permission 

from [15] 

Residual Stress 

A B C D 

MPa MPa MPa MPa 

196.55 136.22 45.31 136.21 

 

 

Table 9 Damage Index comparison between Basic vs Time-Varying Interlink Bending 

Stiffness, Frictionless hinged floater connection B.C., ML03 and ML09, Residual stress 

excluded, Reprinted with permission from [15] 

Frictionless hinged floater connection B.C., ML03 

  A B C D 

Basic 1.78E-08 2.13E-08 1.47E-08 1.44E-08 

Time-Varying Interlink 

Bending Stiffness 
1.60E-08 2.08E-08 1.78E-08 1.48E-08 

Frictionless hinged floater connection B.C., ML09 

  A B C D 

Basic 1.87E-07 2.48E-07 1.78E-07 1.74E-07 

Time-Varying Interlink 

Bending Stiffness 
1.66E-07 2.25E-07 1.69E-07 1.59E-07 

 

Table 10 Damage Index comparison Basic VS Time-Varying Interlink Bending 

Stiffness, fixed floater connection B.C., ML03 and ML09, Residual Stress excluded, 

Reprinted with permission from [15] 

Friction-induced fixed floater connection B.C., ML03 

  A B C D 

Basic 3.53E-05 4.31E-05 2.51E-05 3.11E-05 

Time-Varying Interlink 

Bending Stiffness 
3.28E-05 4.03E-05 2.37E-05 2.90E-05 

Friction-induced fixed floater connection B.C., ML09 

  A B C D 

Basic 1.42E-05 1.77E-05 1.05E-05 1.19E-05 

Time-Varying Interlink 

Bending Stiffness 
1.47E-05 1.86E-05 1.11E-05 1.24E-05 
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3. EFFECTS OF VARIOUS FAIRLEAD-CONNECTION PARAMETERS ON 

CHAIN-MOORING OPB-INDUCED FAILURE* 

3.1 Explanation of Target System (Semi-Submersible with UCS) 

As a target structure, semi-submersible system with 12 mooring lines and 4 risers is 

selected in 1219.2 m water depth. The potential-theory-based diffraction and radiation 

panel program WAMIT, which is widely used in the offshore industry, is selected to 

calculate the hydrodynamic coefficients such as added mass, radiation damping, first-

order and second-order-mean wave forces [39]. The geometric configuration and 

distribution of panels for the hydrodynamic-coefficient calculation is presented in Figure 

35 after checking its convergence. The subsequent time-domain hull-mooring-riser 

coupled-dynamics simulation was done by CHARM3D program.  It is TAMU-in-house 

computer program that has been developed by TAMU OSSL lab during the past 20 years 

for multi-hull-mooring-riser fully-coupled nonlinear dynamic analysis in time domain 

[33]. The computer simulation program has been extensively validated against various 

experimental and field data (e.g.[18]). In CHARM3D, the slender-elastic-rod theory 

developed by Garrett [37] is used for risers and mooring lines. The line dynamics are 

solved by rod-element FE (finite element) method using high-order elements and 

generalized coordinate. The detailed formulas and numerical implementation are given in 

[19, 40]. The external dynamic loads are evaluated at instantaneous position of the lines 

at each time step by using Morison equation [43]. The banded matrix for line dynamics is 

                                                 

* Parts of this chapter are previously published from [42] 
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combined with the full matrix of 6DOF platform dynamics through proper connection 

conditions. The combined full-matrix equation is solved at each time step and the time-

marching continues. 

The details of the target semi-submersible floater are explained in [40]. As shown in Figure 

36, each mooring group consists of 3 mooring lines and 4 mooring groups (total 12 

mooring lines) are installed to enhance station-keeping capability and 4 risers are 

employed at each side. Due to riser pre-tension imbalance, initial floater displacements 

are slightly tilted so that ML01~06 is taut-side and ML07~12 is slack-side. For wave 

direction, head sea (180 deg) condition is considered. Each mooring line is modelled by 

the combination of chain and polyester rope. The length for chain-polyester-chain portion 

is 130m-1720m-250m.  Each mooring line is modeled by 29 quadratic elements with cubic 

variation of external loading. For chain-stopper, underwater-chain-stopper (UCS) 

connected to fairlead is adopted as shown in Figure 37. It is assumed that the underwater-

chain-stopper (or chain-hawse) is circular steel-pipe type with outer diameter 0.29m and 

wall thickness 10mm and chain inside is held by the chain stopper so that they move 

together. Furthermore, the friction coefficient of 0.7 is used in the high-fidelity local-FEM 

computation. The mooring and UCS properties and configuration are given in 

Table 1 and Table 12. The information about risers can be found in [15, 41]. To check the 

effects of UCS modeling on OPB-induced failure, numerous simulations were conducted 

with varying the approaches and parameters. In the following, the simulation results are 

presented only for ML03 (taut) and ML09 (slack) as representative taut-side and slack-

side lines. 
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The chain material properties are shown in Table 13. For the elastoplastic behavior of 

material at high fidelity local FEM computation, the multi-linear and isotropic hardening 

law proposed by Ramberg-Osgood was used as shown in eq.3.1 [44-46]. 

 

 

Figure 35 Panel Discretization of Semi-Submersible Model, Reprinted with permission 

from [42] 
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Figure 36  Configuration of Semi-Submersible System with 12 Mooring Lines and 4 

Risers, Reprinted with permission from [42] 

 

  
Figure 37  Configuration of Underwater-Chain-Stopper System [1] , Reprinted with 

permission from [42] 
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Table 11 Mooring and UCS (or Chain-Hawse) Modelling Properties , Reprinted with 

permission from [42] 

Mooring and UCS (or Chain-Hawse) Modelling Properties  

  Unit Chain Rope 
UCS (or Chain-

Hawse) 

 Type [-] R3 Studless Polyester Circular Tube 

Diameter [mm] 147 220 290 

Mass in Air [kg/m] 430 39 499 

Displaced Mass [kg/m] 56 29.2 124 

MBL(Min. Braking Load) [kN] 14700 8250 14700 

Axial Stiffness (EA) [MN] 1845.4 52.76 1845.4 

Bend Stiffness (EI) [MN-m^2] 
time-varying 

or 0 
0 18.3 

Drag coefficient [-] 2.4 1.2 1.2 

 

 

Table 12  Coordinates and pretensions of the mooring lines, Reprinted with permission 

from [42] 

Kinds 
Line 

No. 

Fairlead Point Anchor Point Pre-

Tension X Y Z X Y Z 

m m m m m m kN 

Mooring 

Lines 

1 34.44 31.25 -22.25 1122.22 1327.61 -1219.20 1993.9 

2 34.44 28.20 -22.25 1234.06 1224.82 -1219.20 1995.3 

3 34.44 25.15 -22.25 1330.80 1112.93 -1219.20 1996.5 

4 34.44 -25.15 -22.25 1330.80 -1112.93 -1219.20 1984.6 

5 34.44 -28.20 -22.25 1231.06 -1224.82 -1219.20 1982.1 

6 34.44 -31.25 -22.25 1122.22 -1327.61 -1219.20 1979.5 

7 -34.44 -31.25 -22.25 -1122.22 -1327.61 -1219.20 1923.5 

8 -34.44 -28.20 -22.25 -1231.06 -1224.82 -1219.20 1922.1 

9 -34.44 -25.15 -22.25 -1330.80 -1112.93 -1219.20 1920.8 

10 -34.44 25.15 -22.25 -1330.80 1112.93 -1219.20 1933.6 

11 -34.44 28.20 -22.25 -1231.06 1224.82 -1219.20 1936.3 

12 -34.44 31.25 -22.25 -1122.22 1327.61 -1219.20 1939.1 
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Table 13 Chain Material Properties, Reprinted with permission from [42] 

Chain 

Grade 

Yield 

Strength 

Ultimate 

Tensile 

Strength 

Ultimate 

Tensile 

Strain 

Young's 

Modulus 

Poisson 

Ratio 

[-] MPa MPa [-] MPa [-] 

R3 520 690 0.18 2.09E+05 0.3 

 

 

 

3.2 Chain Interlink Time-Varying EI (Bending Stiffness) at UCS Outlet 

The diagram below (Figure 38) represents flow chart for the ‘time-varying EI’ approach 

with the simultaneous use of high- and low-fidelity models with time-varying chain 

interlink bending stiffness. The 3D picture for the pre-calculated chain interlink bending 

stiffness as function of tension and interlink angle by using local-FEM program is shown 

in Figure 39. The convergence of the FEM meshes was also checked. The interlink angles 

can be measured using the relative angles between two localized neighboring directional 

vectors at each time step in the low-fidelity global simulation (Figure 40). More detailed 

explanation is given in [15]. In Figure 38, at each time increment, the interlink angle and 
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tension at the target point, which is at the UCS (or chain-hawse) outlet in this research, 

can be computed. Then, the instantaneous interlink stiffness can be read from Figure 39 

using the instantaneous tension and interlink angle. Then, the new interlink bending 

stiffness that was read from Figure 39 is to be inputted to the low-fidelity global simulation 

by CHARM3D software. By using this mutually interfaced time-stepping procedure, the 

non-linear and time-varying nature of chain interlink bending stiffness can be considered 

in the time-domain simulation.  

On the other hand, the ‘basic’ approach uses zero chain interlink bending stiffness while 

considering the discontinuity of material at the target point, as in existing commercial 

program such as OrcaFlex. In [15], the present CHARM3D result was compared with 

OrcaFlex result in the case of ‘basic’ approach and they agreed very well. However, at the 

target point, due to the material discontinuity, the variation of interlink angle there can be 

large and then the corresponding EI variation can matter. So, ‘time-varying EI’ approach 

is devised. No existing commercial mooring dynamics software has the capability of 

‘time-varying EI’ or ‘time-varying fairlead bearing friction (next section)’ models, so 

comparisons cannot be made in this regard. However, in the case of basic approach, 

comparison with the commercial program OrcaFlex is possible. The two independent 

results for the given system agreed well [15].  
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Figure 38  Process flow chart of time-varying EI approach, Reprinted with permission 

from [42] 

 

 

 

Figure 39 3D plots of bending stiffness as function of tension and interlink angle, 

Reprinted with permission from [42] 
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Figure 40 OPB/IPB Interlink Angle Measuring Configuration, Reprinted with 

permission from [42] 

 

3.3 UCS Bearing Friction Effect at Fairlead 

In this section, we consider the effect of UCS bearing friction at fairlead. In this regard, 

three different approaches, such as basic, time-varying EI, UCSBRK will be compared 

(Table 14). In Table 14, ‘TimeVarying-EI’ means that we consider time-varying interlink 

bending stiffness but time-varying bearing-friction effect is not taken into consideration. 

On the other hand, ‘UCSBRK’ represents the approach considering both time-varying 
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interlink bending stiffness and time-varying UCS bearing friction effect at fairlead. The 

term ‘basic’ means that neither of time-varying interlink bending stiffness nor UCS 

bearing friction effect at fairlead is considered.  

In the ‘TimeVarying-EI’ approach, the locally detailed nonlinear-FEM (finite element 

method) structural analysis near fairlead is coupled with global mooring dynamics 

simulation so that time-varying interlink bending stiffness can be used at each time step 

[15]. In addition to this non-linear effect, we can also consider another time-varying non-

linear effect in ‘UCSBRK’ approach due to UCS bearing friction at fairlead, as shown in 

Figure 41. At the fairlead connection, the UCS does not rotate when the UCS angle, which 

is the relative angle between initial (static) UCS position vector and current time-step 

position vector, is smaller than the breakout angle which is the reference angle to start the 

slide of UCS [12, 14]. Based on this background, if UCS angle is smaller than breakout 

angle, there is no rotation and additional secondary bending moment is generated at the 

target point, which is located at the exit of UCS. To simulate this non-linear mechanism 

during the global mooring dynamics simulation, the time-varying boundary condition at 

the fairlead connection needs to be applied at each time step along with the comparison 

between UCS angle and breakout angle. As shown in Figure 42, fixed B.C. was used if 

UCS angle is smaller than breakout angle (sticking mode). Whereas, hinged B.C. was 

imposed when UCS angle is greater than breakout angle (rotation mode). Of course, the 

sticking mode happens by large bearing-friction force when large tension is applied. In 

this research, 0.5 deg is used as the reference breakout angle [12]. The criterion can be 

changed depending on the type of bearing friction. Also, 0.12 is used as UCS bearing 
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friction coefficient with 0.05m radius of bearing pin. The value corresponds to the fairlead 

sliding stiffness of 1.0E+06 N-m/rad during the sticking mode, as inputted in this study 

[13]. On the other hand, frictionless hinged B.C. is imposed at the fairlead connection for 

both ‘basic’ and ‘time-varying EI’ cases. 

To observe the differences caused by the three different approaches, the time-domain 

dynamics simulations of the semi-submersible system in random waves are conducted. As 

summarized in Table 15, collinear (wind-wave-current from the same direction) 1-yr 

storm is selected as an environmental condition. JONSWAP wave spectrum [47] and API 

wind spectrum (wind speed of 10m/s at 10m altitude) [48] were used to generate the 

corresponding random-wave and wind-velocity signals. To confirm the correctness of the 

relevant procedure, the comparison results between the input spectrum and re-generated 

spectrum (from the generated time series) are presented in  Figure 43. The wave-wind-

current are co-linear and from head direction (180 degrees), as shown in Figure 36. A 

steady storm-induced shear current is also applied, as presented in Table 15. In the 

following sections, the same environmental loadings will repeatedly be applied to 

maintain consistency.  

 

The statistical values including mean value of interlink angle in both ML03 (taut) and 

ML09 (slack) are tabulated in Table 16. The absolute mean value of interlink angle is 

decreased especially in ML03 (taut) when the UCSBRK approach is applied compared to 

the other two approaches. It means that ML03 (taut) is more affected by UCS bearing 

friction at fairlead than ML09 (slack) due to larger bearing-friction with higher tension.  
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Figure 44 and Figure 45 show OPB interlink angle results (time history and spectra) at the 

target point for ML03 (taut) and ML09 (slack). As shown in Figure 44, the differences 

between basic and time-varying EI results are small compared to the differences between 

time-varying EI and UCSBRK results. Similar trend can also be observed in ML09 (slack) 

results. The interlink angles at the target point by the UCSBRK model are the largest. 

Furthermore, due to additional secondary bending moment (caused by fairlead bearing 

friction) at the target point, high frequency components related to UCS bending and high-

mode mooring dynamics can be observed in the UCSBRK case of ML03 (taut) while it is 

not clearly seen in ML09 (slack). In the case of slack-side mooring with UCSBRK 

approach, on the other hand, two peaks are shown in the low frequency region; lowest one 

associated with floater’s slowly-varying surge motion and second one associated with 

floater’s pitch natural frequency (see Figure 50).  The trend related to floater’s pitch 

natural frequency (second peak) does not appear in basic and time-varying-EI cases due 

to the frictionless hinged B.C. In this case, the wave-frequency components of interlink-

angle variation is significant due to floater’s heave motion (see Figure 50). 

 

Tension comparison results are shown in Figure 46 and Figure 47. Tension has a dominant 

peak at the low frequency close to floater’s surge natural frequency i.e. tension variation 

in this case is almost static and mainly caused by slowly-varying large-amplitude floater’s 

surge motions. The variation of tension magnitude is less affected by fairlead bearing 

friction and more influenced by time-varying-EI effect. In the simplest case of basic 

approach, the tension magnitude is underestimated.  
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Bending moment at the target point, which is post-calculated using 3D plot of bending 

moment as function of OPB interlink angle and line tension is given in Figure 48 and 

Figure 49. The general trend of bending moment is similar to that of interlink angle, as 

bending moment initially increases with OPB interlink angle. In the taut-side case of 

UCSBRK approach, there exists significant peak near 2.8 rad/s, as in the corresponding 

figure in Figure 44, which is related to the transient response of UCS when sudden 

transition occurs from sticking mode to rotation mode at the fairlead connection. The high-

frequency large-magnitude bending moment generates the corresponding bending stress, 

which will be a big problem in fatigue in view of high number of cycles. Judging from the 

bending moment results, with basic and time-varying EI approaches, the bending moments 

at the target point are significantly underestimated. This will result in serious under-

estimation of the OPB-induced accumulated fatigue damage there. Therefore, the accurate 

modeling of fairlead connection and time-varying EI is very important for reliable OPB-

induced failure. In the case of basic and time-varying EI approaches, the bending moment 

of ML03 (taut) is less compared to that of ML09 (slack) while the opposite is true when 

UCS bearing friction effect at fairlead is considered. Since IPB-induced moments play 

less role for chain bending failure, only OPB-induced moment is considered [2]. 

Floater motion spectra are presented in Figure 50. Due to head wave condition (180 deg), 

only surge-heave-pitch motion spectra are plotted. As expected, the differences between 

three different approaches are small except the slowly-varying surge motion.  It means 

that the accurate modeling of fairlead connection and time-varying EI is important for 

mooring OPB-induced failure but it makes little influence on floater motions. 
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Figure 41 Configuration of Consideration of UCS Bearing Friction at Fairlead 

(UCSBRK) , Reprinted with permission from [42] 

 

 

 

Figure 42 Chart for Consideration of UCS Bearing Friction at Fairlead (UCSBRK) , 

Reprinted with permission from [42] 
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Table 14 Consideration Chart for Basic vs Time-varying - EI vs UCSBRK, Reprinted 

with permission from [42] 

CASE 

Consideration 

Time-Varying Interlink  

Bending Stiffness 
Fairlead Bearing Friction 

BASIC X X 

TIMEVARYING-EI O X 

UCSBRK O O 

 

 

Table 15 Environmental Condition (1-year storm) , Reprinted with permission from [42] 

Wave Current Wind 

Gamma 
Direction 

from north 

Significant 

Wave (Hs) 

Spectral 

Period 

(Tp) 

Depth Vel. Spectrum 

10-min 

average 

at 10m 

elevation  

Direction 

from north 

(-) (deg) (m) (s) (m) (m/s) (-) (m/s) (deg) 

2.4 
180 (uni- 

directional) 
3.1 

8.4 

(0.75 

rad/s) 

0 0.5 

API 10.0 
180 (uni-

directional) 

63 0.375 

126 0 

mud 0 

 

 

 

 

Figure 43  Incident Wave Elevation Time History and Spectrum (Input vs Regenerated) , 

Reprinted with permission from [42] 
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Table 16  Statistical Value Comparisons for Basic vs Time-varying - EI vs UCSBRK, 

180deg, Reprinted with permission from [42] 

      STD Mean  Max. Min. 

ML03 

Basic 

Tension (kN) 18.39 2009.92 2073.01 1963.37 

OPB Angle (deg) 0.0020 -0.1429 -0.1340 -0.1496 

OPB Moment (kN-m) 0.26 -24.05 -22.86 -25.03 

TimeVaryi

ngEI 

Tension (kN) 27.65 2011.74 2100.79 1933.83 

OPB Angle (deg) 0.0022 -0.1342 -0.1246 -0.1412 

OPB Moment (kN-m) 0.25 -22.75 -21.60 -23.65 

UCSBRK 

Tension (kN) 27.80 2011.87 2103.47 1931.49 

OPB Angle (deg) 0.0845 0.0358 0.6264 -0.6783 

OPB Moment (kN-m) 12.93 6.44 73.92 -77.10 

ML09 

Basic 

Tension (kN) 18.29 1890.52 1939.98 1828.41 

OPB Angle (deg) 0.0029 -0.1473 -0.1379 -0.1591 

OPB Moment (kN-m) 0.39 -23.61 -21.91 -25.14 

TimeVaryi

ngEI 

Tension (kN) 27.30 1889.58 1969.85 1801.22 

OPB Angle (deg) 0.0029 -0.1386 -0.1291 -0.1497 

OPB Moment (kN-m) 0.38 -22.32 -20.78 -23.80 

UCSBRK 

Tension (kN) 27.29 1889.55 1971.44 1801.10 

OPB Angle (deg) 0.0348 -0.1403 0.0227 -0.4251 

OPB Moment (kN-m) 5.24 -22.48 3.37 -56.88 
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Figure 44 OPB interlink angle comparison for ML03 (taut), Basic vs TimeVarying-EI vs 

UCSBRK, 180deg, Reprinted with permission from [42] 

 

 

 

Figure 45  OPB interlink angle comparison for ML09 (slack), Basic vs TimeVarying-EI 

vs UCSBRK, 180deg, Reprinted with permission from [42] 
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Figure 46  Tension comparison for ML03 (taut), Basic vs TimeVarying-EI vs UCSBRK, 

180deg, Reprinted with permission from [42] 

 

 

 

Figure 47  Tension comparison for ML09 (slack), Basic vs TimeVarying-EI vs 

UCSBRK, 180deg, Reprinted with permission from [42] 
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Figure 48  Bending Moment comparison for ML03 (taut), Basic vs TimeVarying-EI vs 

UCSBRK, 180deg, Reprinted with permission from [42] 

 

 

 

Figure 49  Bending Moment comparison for ML09 (slack), Basic vs TimeVarying-EI vs 

UCSBRK, 180deg, Reprinted with permission from [42] 
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Figure 50  Comparison: Surge-heave-pitch Motion PSD, Basic vs TimeVarying-EI vs 

UCSBRK, 180deg, Reprinted with permission from [42] 

  



69 

 

3.4 Accumulated Short-term Fatigue Estimation 

Only short-term fatigue within one-hour duration by the three different approaches is 

considered in this research under 1-yr storm condition (Table 15). This kind of comparison 

pattern will be repeated for other sea states to generate accumulated long-term fatigue 

damage.  Many researchers reported and published about stress-hot-spot location based 

on their local FEM results [3, 10]. Based on those references, seven points are selected as 

hot-spot locations, as shown in Figure 51. The hot-spot selection is also consistent with 

the present simulation results. At each hotspot location, the corresponding time histories 

of axial stress and OPB bending stress are combined and added into the existing residual 

stress.  The residual stress was caused by the manufacturing process (loading up to 70% 

of MBL (minimum breaking load) during proof-load test and subsequently unloaded) and 

can be estimated from the detailed local modeling of chain link using nonlinear FEM 

program, such as Abaqus 6.12. Then the residual stress can be obtained as maximum 

principle stress. Subsequently, with the combination of low-fidelity global mooring 

simulation and pre-calculated axial/bending stress as function of tension magnitude and 

interlink angle based on local FEM analysis, as shown in eq.3.2, the total stress as well as 

SCF time series can be re-generated. To apply the corresponding mean-stress-correction 

effect, Gerber model is selected (eq. 3.3).  Then, stress range-cycle histogram is made by 

rain-flow counting method which is widely adopted [49]. Lastly, using S-N curve (eq. 3.4) 

(ABS-FC (Free Corrosion) the “W” curve (
105.33 10 ,  3.0A m=  = )) [50] and Palmgen-

Miner’s accumulative fatigue damage rule (eq. 3.5), the accumulated fatigue damage can 

be calculated.  
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 (3.2) 

T = tension, P = chain section area,  = OPB interlink angle 

Gerber model: 

2

'
1a m

e u

 

 

 
+ = 
 

                                                                                     (3.3)                     

where, ,m u  = mean stress and tensile strength, respectively 

       a = stress amplitude 

       '

e = effective alternating stress at failure for a lifetime of N cycles 

mN A S −=                                                                                                                     (3.4) 

N => Number of cycles to failure

S => Stress Range

A, m => Fatigue strength coefficient and exponent 

 

 

Damage Index  
1

k
i

i i

n
D

N=

=                                                                                            (3.5) 

where, in = the number of cycles of the (effective) stress range 

iN = the ultimate number of cycles of the (effective) stress range before fatigue failure 
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Figure 51 Hotspot locations from FEM model, Reprinted with permission from [42] 

 

The short-term cumulative fatigue damage for the given system and sea condition 

including residual stress at seven hot spots is summarized in Table 17 (ML03) and Table 

18 (ML09).  As shown in Table 17 and Table 18, G location has the maximum fatigue 

damage regardless of different approaches for both taut (ML03) and slack-side mooring 

line (ML09).  When UCSBRK is used, the corresponding maximum fatigue damage at 

every hot spot of ML03 (taut) and ML09 (slack) mooring is greatly increased compared 

to basic and time-varying EI approaches. Furthermore, ML09 (slack) is much more 

vulnerable to OPB-induced failure than ML03 (taut) when basic approach is used while 

the opposite is true when time-varying EI and UCSBRK approaches are applied. Thus, it 

can be concluded that OPB-induced failure at target point (out of UCS) is mainly governed 

by the UCS bearing friction effect at fairlead rather than time-varying interlink-bending-

stiffness effect. The above example underscores the importance of the accurate modeling 

of fairlead-connection condition in global mooring-dynamics simulation for the prediction 
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of OPB-induced fatigue failure. With crude mooring model without the details of fairlead 

connection and UCS, the OPB-fatigue prediction can be meaningless. The above 

conclusions need to be checked for other environmental loads and their directions. Also, 

to assess long-term fatigue damage, the above procedure has to be repeatedly applied for 

numerous environmental conditions of any given site. In the following section, residual 

stress due to proof load during manufacturing process will be compared and discussed.   

 

Table 17  Fatigue damage comparison, Basic vs TimeVarying-EI vs UCSBRK, ML03 

(taut), 180deg, Reprinted with permission from [42] 

Fatigue Damage, Basic VS TimeVarying-EI VS UCSBRK, ML03, 180deg 

  A B C D E F G 

Basic_ML03 
3.6924E-

09 

4.1019E-

09 

2.7200E-

09 

2.9089E-

09 

1.6199E-

09 

1.5308E-

08 

2.5848E-

08 

TimeVarying-EI_ML03 
4.0929E-

09 

6.1003E-

09 

6.3629E-

09 

4.9724E-

09 

2.8454E-

09 

4.5524E-

08 

7.2007E-

08 

UCSBRK=0.5deg_ML03 
7.0685E-

04 

7.0075E-

04 

2.8245E-

04 

4.5565E-

04 

3.5497E-

04 

3.8066E-

04 

7.9853E-

04 

 

 

Table 18  Fatigue damage comparison, Basic vs TimeVarying-EI vs UCSBRK, ML09 

(slack), 180deg, Reprinted with permission from [42] 

Fatigue Damage, Basic VS TimeVarying-EI VS UCSBRK, ML09, 180deg 

  A B C D E F G 

Basic_ML09 
1.1655E-

08 

1.2414E-

08 

6.6389E-

09 

8.3845E-

09 

4.7596E-

09 

1.4851E-

08 

2.7951E-

08 

TimeVarying-EI_ML09 
1.1260E-

08 

1.4259E-

08 

1.0643E-

08 

1.0430E-

08 

6.1371E-

09 

3.0918E-

08 

5.1664E-

08 

UCSBRK=0.5deg_ML09 
2.0632E-

05 

2.0238E-

05 

8.3251E-

06 

1.3081E-

05 

7.1269E-

06 

9.7865E-

06 

2.4289E-

05 
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3.5 Effects of UCS Bending Stiffness and Residual Stress 

In the previous section, it is seen that the largest OPB-fatigue damage occurs when the 

fairlead B.C is UCSBRK. Also, we observe that high-frequency bending moment can be 

generated at the taut side of mooring due to the UCS transient responses when sudden 

change of fairlead B.C. happens after friction resistance is released.  Therefore, the high-

frequency bending moment may be influenced by UCS bending stiffness. In this regard, 

by using UCSBRK approach, four simulations are conducted for four different UCS 

bending stiffness, such as 0.5EI=9.15E+06, EI=1.83E+07, 2EI=3.66E+07, and 

10EI=1.83E+08. All the other UCS parameters and environmental loadings are kept the 

same.  

 

The bending-moment time histories and corresponding spectra are presented in Figure 52 

and Figure 53. It is expected that the bending moment at the target point is governed by 

interlink angles since tension is almost identical regardless of UCS bending stiffness. In 

the case of taut-side mooring ML03, the spectral area of high-frequency components 

increases as UCS-EI increases but eventually decreases when EI is further increased. The 

corresponding spectral peak is also slightly shifted to higher frequency as UCS becomes 

stiffer.  At the slack-side mooring ML09, the general trends of time series and spectra 

remain the same while the lowest-frequency spectral peak is slightly increased as UCS-EI 

increases. However, the differences are not significant, which means that the bending 

moment and fatigue damage at the target point are not sensitive to the UCS-EI.  
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The corresponding accumulated short-term fatigue damage for various UCS bending 

stiffness (0.5EI, EI, 2EI, 10EI) is tabulated in Table 19 and Table 20 . As before, we have 

the maximum fatigue damage in ML03 (taut) with UCS bending stiffness=2EI. As was 

observed in the bending moment, the differences in fatigue damage for different UCS-EI 

are not that significant. Judging from the presented results, the maximum fatigue occurs 

at the taut-side G location when UCS bending stiffness=2EI. Due to the non-linearity of 

fairlead bearing friction and time-varying interlink EI, the above conclusions need to be 

checked with more UCS EI and environmental loads.    
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Figure 52  Bending Moment comparison for ML03 (taut), for various UCS Bending 

Stiffness, 180deg, Reprinted with permission from [42] 

 

 

Figure 53  Bending Moment comparison for ML09 (slack), for various UCS Bending 

Stiffness, 180deg, Reprinted with permission from [42] 
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Table 19  Fatigue damage comparison for various UCS Bending Stiffness, ML03 (taut), 

180deg, Reprinted with permission from [42] 

Fatigue Damage UCS Bending Stiffness, ML03, Included Residual Stress 

  A B C D E F G 

EI=9.15E06_ML03 
4.6246E-

04 

4.5685E-

04 

1.8421E-

04 

2.9660E-

04 

2.2671E-

04 

2.4512E-

04 

5.2336E-

04 

EI=1.83E07_ML03 
7.0685E-

04 

7.0075E-

04 

2.8245E-

04 

4.5565E-

04 

3.5497E-

04 

3.8066E-

04 

7.9853E-

04 

EI=3.66E07_ML03 
9.1799E-

04 

9.0853E-

04 

3.7031E-

04 

5.8854E-

04 

4.9888E-

04 

4.9630E-

04 

1.0267E-

03 

EI=1.83E08_ML03 
6.0076E-

04 

5.9991E-

04 

2.5280E-

04 

3.9874E-

04 

2.7792E-

04 

3.2862E-

04 

6.6560E-

04 

 

 

Table 20  Fatigue damage comparison for various UCS Bending Stiffness, ML09 

(slack), 180deg, Reprinted with permission from [42] 

Fatigue Damage UCS Bending Stiffness, ML09, Included Residual Stress 

  A B C D E F G 

EI=9.15E06_ML09 
1.7833E-

05 

1.7460E-

05 

7.1212E-

06 

1.1289E-

05 

6.2788E-

06 

8.8309E-

06 

2.1926E-

05 

EI=1.83E07_ML09 
2.0632E-

05 

2.0238E-

05 

8.3251E-

06 

1.3081E-

05 

7.1269E-

06 

9.7865E-

06 

2.4289E-

05 

EI=3.66E07_ML09 
1.9342E-

05 

1.9116E-

05 

7.8371E-

06 

1.2319E-

05 

6.7560E-

06 

9.6134E-

06 

2.3971E-

05 

EI=1.83E08_ML09 
1.6385E-

05 

1.6320E-

05 

6.7357E-

06 

1.0521E-

05 

5.7659E-

06 

8.4934E-

06 

2.1137E-

05 
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Finally, let us consider the effects of residual stress on the fatigue damage. As was pointed 

out before, chain mooring has to go through proof-loading test (loading up to 70% of MBL 

and unloading) before installation. If the chain is perfectly elastic, then after unloading the 

residual stress should be zero. However, due to material nonlinearity, there exist residual 

stresses after unloading [46]. There may be additional residual stress due to chain-curve-

forming process, which is not considered here. The magnitudes of the residual stresses on 

hot-spots can be calculated by using nonlinear FE program, such as Abaqus 6.12. The 

residual-stress results are given in Figure 54 at seven points around the hot-spots. The 

corresponding short-term fatigue damages without considering the residual-stress effects 

are given in Table 21. In taut-side case, the maximum fatigue damage occurs at point B 

and it is only about half of the case including residual stresses (see Table 19). We can also 

observe the similar amount of underestimation of short-term fatigue damage even at slack-

side mooring (see Table 20) when proper residual stresses are not taken into consideration. 
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Figure 54  Proof loading test (top) and the residual stresses after unloading at each hot 

spot points A, B, C, D, E, F and G (middle & bottom) , Reprinted with permission from 

[42] 
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Table 21  Fatigue damage without residual stresses, 180deg, Reprinted with permission 

from [42] 

Fatigue Damage UCSBRK Approach with 2EI UCS Bending Stiffness Excluding Residual Stress 

  A B C D E F G 

EI=3.66E07 (2EI)_ML03 

(taut) 

5.2584E-

04 

6.2004E-

04 

3.4216E-

04 

4.1497E-

04 

4.1272E-

04 

3.3572E-

04 

4.4097E-

04 

EI=3.66E07 (2EI)_ML09 

(slack) 

8.8654E-

06 

1.1163E-

05 

7.0362E-

06 

7.5806E-

06 

5.2179E-

06 

6.3135E-

06 

7.2213E-

06 

 

 

 

3.6 Effect of Environmental-Loading Direction 

Furthermore, since environmental heading can affect the OPB-induced failure, additional 

fatigue damage results under 135 deg heading are presented in this section (Table 22 and 

Table 23). As expected, the OPB-induced fatigue damage is decreased compared to the 

head-wave (=180deg) results (Figure 50) since the floater motions are reduced (Figure 

55). The G location still has the maximum fatigue damage in the three different 

approaches. Since head wave is the critical case for OPB-induced failure, only the head 

wave (=180deg) results will be considered in the ensuing sections.   
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Table 22 Fatigue damage comparison, Basic vs TimeVarying-EI vs UCSBRK, ML03 

(taut), 135deg, Reprinted with permission from [42] 

Fatigue Damage, Basic vs TimeVarying-EI vs UCSBRK, ML03, 135deg 

  A B C D E F G 

Basic_ML03 
2.6351E-

10 

4.5259E-

10 

5.1922E-

10 

3.7982E-

10 

2.2060E-

10 

4.2632E-

09 

6.8369E-

09 

TimeVarying-EI_ML03 
1.9835E-

10 

2.9789E-

10 

2.9428E-

10 

2.3728E-

10 

1.3704E-

10 

2.1836E-

09 

3.5360E-

09 

UCSBRK=0.5deg_ML03 
4.1361E-

07 

4.4260E-

07 

1.7893E-

07 

2.9081E-

07 

1.4778E-

07 

2.3874E-

07 

5.1579E-

07 

 

Table 23 Fatigue damage comparison, Basic vs TimeVarying-EI vs UCSBRK, ML09 

(slack), 135deg, Reprinted with permission from [42] 

Fatigue Damage, Basic vs TimeVarying-EI vs UCSBRK, ML09, 135deg 

  A B C D E F G 

Basic_ML09 
1.8571E-

10 

3.7590E-

10 

4.8139E-

10 

3.2470E-

10 

1.9937E-

10 

2.6640E-

09 

4.0554E-

09 

TimeVarying-EI_ML09 
1.3067E-

10 

2.3056E-

10 

2.6435E-

10 

1.9156E-

10 

1.1696E-

10 

1.4371E-

09 

2.1732E-

09 

UCSBRK=0.5deg_ML09 
2.2350E-

07 

2.2651E-

07 

9.6182E-

08 

1.4758E-

07 

8.1740E-

08 

1.3771E-

07 

3.3595E-

07 

 

 

Figure 55 Comparison: Surge-heave-pitch Motion PSD, Basic vs TimeVarying-EI vs 

UCSBRK, 135deg, Reprinted with permission from [42] 
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3.7 Comparison between UCSBRK and BV methodology 

In this section, the present approach (UCSBRK) is compared with the methodology by 

Bureau Veritas (BV methodology) [3] which is widely adopted by practicing engineers. 

In BV methodology, the non-linear effect of chain-interlink bending stiffness (= “time-

varying EI”) is ignored and the breakout-angle effect can be considered as post-process. 

Whereas, the time-varying EI can be considered in the present approach during the time-

marching step of low fidelity global analysis. The details of BV methodology are given in 

[3]. As shown in Table 24 and Table 25, BV methodology gives more conservative 

accumulated fatigue damage than UCSBRK in all hot spots for both ML03(taut) and 

ML09 (slack). Also, the difference between UCSBRK and BV methodology in ML03 

(taut) is smaller than ML09 (slack). 

 

Table 24  Fatigue damage comparison, UCSBRK vs BV methodology, ML03 (taut), 

180deg, Reprinted with permission from [42] 

Fatigue Damage, UCSBRK vs BV methodology, ML03, 180deg 

  A B C D E F G 

UCSBRK_ML03 
7.0685E-

04 

7.0075E-

04 

2.8245E-

04 

4.5565E-

04 

3.5497E-

04 

3.8066E-

04 

7.9853E-

04 

BV methodology ML03 
1.9609E-

03 

1.8575-

03 

7.1101E-

04 

1.1934E-

03 

7.3346E-

04 

8.4282E-

04 

2.0661E-

03 

 

Table 25  Fatigue damage comparison, UCSBRK vs BV methodology, ML09 (slack), 

180deg, Reprinted with permission from [42] 

Fatigue Damage, UCSBRK vs BV methodology, ML09, 180deg 

  A B C D E F G 

UCSBRK_ML09 
2.0632E-

05 

2.0238E-

05 

8.3251E-

06 

1.3081E-

05 

7.1269E-

06 

9.7865E-

06 

2.4289E-

05 

BV methodology ML09 
1.9415E-

03 

2.0238E-

03 

7.1637E-

04 

1.1826E-

03 

1.5994E-

03 

8.5583E-

04 

1.7016E-

03 
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4. STRUCTURAL HEALTH MONITORING FOR TLP-FOWT (FLOATING 

OFFSHORE WIND TURBINE) TENDON USING SENSORS 

4.1 Methodology 

 

The objective of the present study is to develop algorithms to trace lines in real time by 

using a series of inclinometers including the corresponding real-time internal stresses and 

accumulated fatigue. As shown in Figure 56, the algorithm starts from a two-dimensional 

beam element. Using basic FEM beam theory, displacements along the beam can be 

interpolated between sensor (or node) locations by a third-order polynomial (eq.4.1). 

Denoting s as the arc-length coordinate along the length L between both end nodes of the 

beam, v(s) is the normal displacement of a point at s, and 
dv

ds
 is the inclination at the same 

location. The boundary conditions (eq. 4.2) are displacements and inclinations given at 

both ends.   

 

 
 

Figure 56 Basic FEM Beam Model  
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2 3

0 1 2 3( ) ( , , , , )A B A Bv s f v v s a a s a s a s = = + + +                                                                               (4.1) 

 

( ) ,  ( ) ,  ,  
A B

A A B B A B
s s s s

dv dv
v s s v v s s v

ds ds
 

= =

= = = = = =   (4.2) 

 

Applying four boundary conditions (eq. 4.2) to the third-order polynomial equation (eq. 

4.1), the four coefficients of eq. 4.1 can be calculated as shown in eq. 4.3, which is a 

function of arc length s. This third-order polynomial equation can be expressed in matrix 

form as shown in eq. 4.4, where 1 2 3 4, , ,N N N N  represent shape functions and   express 

the nodal displacement and inclination vectors.   

 
2 3 2 3 2 3 3 2

2 3 2 2 3 2

3 2 2 3 2
( ) (1 ) ( ) ( ) ( )A A B B

s s s s s s s s
v s v s v

L L L L L L L L
 = − + + − + + − + −  (4.3) 

 

1 2 3 4( ) [N N N N ] [N]{ }

A

A

B

B

v

v s
v





 
 
 

= =  
 
  

                                                                                                          (4.4) 

 

Using linearized beam theory, the bending moment can be derived as shown in eq. 4.5.  

 
2

2 3 2 2 2 3 2

[N] 12 6 6 4 6 1

 

2 6 2
{ } [( ) ( ) ( ) (

 

) ]

 = ’  ,         

A A B B

E Young s modulus I the second moment of the sectional area

d s s s s
M EI EI v v

ds L L L L L L L L

where

 =  = − + − + − + −

=

 (4.5) 

 

To estimate the bending moment at the mid-point of the beam element, let 0.5
s

L
=  in eq. 

4.5, resulting in eq. 4.6 below:  

1
[ ( )]B AM EI
L
 = −                                                                               (4.6) 
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Once bending moment is obtained, the corresponding maximum bending stress can be 

estimated from eq. 4.7 

 

max
max

1
( ) [ ( )]B A

M y
s y E

s I L
 


 = =   −                                                                                              (4.7) 

 

where max y  is the largest distance from the neutral axis.  As can be seen in eq. 4.5, the 

bending moment at the mid-point of the beam element is independent of the displacements 

Av  and Bv . In other words, by using a series of inclinometers along the line, the bending 

moment and stress along the line at the discrete points (mid-length of each element) can 

directly be calculated even without tracing the actual instantaneous shape of the line. Then, 

the continuous bending moment distribution along the line can also be constructed by 

interpolation to find the value at other points.  

The formulas for eqs. 4.1 to 4.7 are derived for 2D case [51]. For small angles (less than 

10 degrees) with respect to the vertical axis, 3D bending moment can be estimated by 

decomposing the measured inclinations at the discrete points in two orthogonal directions, 

applying the formulas to both directions, and vector summing the results.  In the present 

research, the 3D extension is made in such a way and all the example cases are calculated 

from the 3D algorithm. Once bending moment distribution is estimated, the corresponding 

bending stress and the cumulative fatigue damage by it can be obtained in real time, 

respectively.  

 

Tension is also important for internal stress and fatigue, so its estimation is also critical to 

the structural integrity management. When the top tension can be monitored in real time 
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by strain-gauge based load cells or other type of monitoring at the tendon/hull interface, 

the corresponding tension distribution along the line can also be estimated as shown in 

[52] assuming small angles with respect to the vertical axis.       

As shown in Figure 57, the tension difference between the top and bottom is estimated by 

subtracting the beam effective weight (structural weight plus internal fluid weight minus 

displaced external fluid weight) from the top tension. In the case of TLP, the dynamic 

variation of tension is relatively much smaller than the effects of pretension and effective 

weight. As the present methodology is focused on TLP tendons, their axial responses, 

axial inertia and damping forces can be assumed to be small and neglected. 

The inclination sensors can be installed at the set intervals to provide A  and B  readings 

at their sampling rate. By exploiting the inclinometer signals with the top-tension 

measurement, the above methodology can produce the corresponding bending moment 

and tension distribution along the line in real time. To validate the developed algorithm, a 

TLP-type FOWT with tendons is numerically modeled using our in-house simulation 

program CHARM3D, a fully-coupled hull-mooring-riser dynamic analysis software [33]. 

The CHARM3D program has extensively been validated through comparisons with other 

commercial software, experimental and field measurements during the past two decades 

[18].  The inclinometer signals are generated by picking up the simulation results at the 

corresponding sensor locations, which may be called numerical-sensor signals. The top-

tension signal was also generated by the same way, which may be called numerical 

tensioner.  In case of real measurement, the signals may be contaminated by noises, which 

is assumed to be pre-filtered in the following simulation results. Then, the explained 
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algorithm is applied to those angle-sensor signals to produce the corresponding estimated 

bending moments, tensions, and internal stresses along the line and they are compared 

with their actual values calculated from CHARM3D.   

 

 
Figure 57 Tension distribution estimation model 

  

 

( ) ( )e tw i i e eT T p A p A= + − − −                                                                                                                        (4.8) 

where  ,   w  ,  

, ,  ,  , ,   
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i e i e
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p p inner external pressure A A inner external area

= =

= =
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w , ,  

effective
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w inner external weight

=

=

=
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4.2 TLP-FOWT Numerical Model 

 
To test the proposed methodology, a FOWT with mini-TLP hull and tendon is selected. 

Its hull discretization is shown in Figure 58. The detailed particulars and characteristics of 

this FOWT are given in [35]. The hydrodynamic coefficients, such as added mass, 

radiation damping, first/second-order wave forces, are estimated by using the potential-

based diffraction and radiation software, WAMIT, which is widely adopted in the offshore 

industry [39, 53]. Since the modeled hull is symmetric with respect to both X and Y axes, 

only a quarter of its surface below mean water level (MWL) is discretized by using 686 

quadrilateral elements. Subsequently, the dynamic response of the fully coupled hull-

mooring system is obtained by integration in time domain. To consider the viscous drag 

force on the hull, Morison drag element is used for the column. The drag force is calculated 

at the instantaneous hull position. At each time step, the entire system equations are 

assembled in a matrix form and solved. In this study, for simplicity, the dynamic 

interaction between the wind turbine and the hull is not considered assuming that the 

FOWT is idle and not generating power. Since we focus on the monitoring of tendon 

dynamics by a series of inclinometers, the numerical results are presented only for the 

tendons. 

The applied wave direction and tendon numbering are shown in Figure 59.  The water 

depth of 200m is considered. 10 bi-axial inclinometers are placed along the line to measure 

bi-axial slope angles. Table 26 shows the coordinates of tendon fairleads and anchor points 

and the pre-tensions. The tendon structural properties are given in Table 27. Several case 
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studies with different regular/irregular waves are presented in the following sections to 

assess the applicability of the proposed algorithm.  

The locations of inclinometers are shown in Figure 60. As pointed out in the previous 

section, the bending moment is estimated along the tendon at the mid-point between the 

sensors, while tension can be obtained continuously along the line. To demonstrate the 

accuracy of the predicted tension and bending moment distribution from sensor signals 

against the actual values, three representative points, top, middle, and bottom, are selected.  

Given the considered wave direction, tendon number five is the most critically loaded, so 

it is focused in this study. In the present case study, the second-order sum-frequency wave 

loads and dynamic coupling with the elastic modes of turbine [54] were not included since 

they are not directly related to the objective of the present study.  However, the second-

order slowly-varying wave forces causing large-amplitude horizontal hull motions are 

included, as described in [35], since they are important in generating the bending of 

tendons. 

 

 

 
Figure 58 TLP Configuration 
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Figure 59 Wave direction (=45deg) and tendon numbering  

 

 

Table 26 Tendon fairlead/anchor points and pre-tension 

  
Line 

No.  

Fairlead Point Anchor Point Pre-

Tension X Y Z X Y Z 

m m m m m m kN 

Tendon 

1 28.00 1.00 -24.00 28.00 1.00 -200.00 2008.816 

2 28.00 -1.00 -24.00 28.00 -1.00 -200.00 2008.816 

3 1.00 -28.00 -24.00 1.00 -28.00 -200.00 2008.816 

4 -1.00 -28.00 -24.00 -1.00 -28.00 -200.00 2008.816 

5 -28.00 -1.00 -24.00 -28.00 -1.00 -200.00 2008.816 

6 -28.00 1.00 -24.00 -28.00 1.00 -200.00 2008.816 

7 -1.00 28.00 -24.00 -1.00 28.00 -200.00 2008.816 

8 1.00 28.00 -24.00 1.00 28.00 -200.00 2008.816 

 

 

 

Table 27 Tendon material properties 

Tendon Structural Properties 

Outer 

Diameter 

Wall 

Thickness 

Mass in 

Air 

Submerged 

Weight 

Axial Stiffness 

(EA) 

Bend Stiffness 

(EI) 

[mm] [mm] [kg/m] [kN/m] [MN] [MN-m^2] 

457.2 100 335.25 1.454 5660 135 
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Figure 60 Measuring Location of Tension and Bending Moment  
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4.3 Numerical Results and Discussions 

4.3.1 Case 01 – Sensor Interval Effect 

 
First, sensor-positioning effects on the performance of the algorithm are assessed in the 

case of regular waves. Generally, near the top and bottom connections of the tendon, larger 

variation of bending moment occurs due to the imposed restrictions and denser distribution 

of sensors is needed. As shown in Table 28, two (uniform and variable) sensor 

distributions are considered for the 10 sensors. A regular wave (H=5m, T=10s) with 45-

degree heading is inputted as environmental loading. Also, hinged boundary conditions 

are employed at both ends of the tendon.  

 

Figure 61 and Figure 62 show tension and bending moment time series at three target 

points (top, middle, and bottom), comparing uniformly-distributed and top-bottom-

clustered sensor positions. As expected, the mean tension decreases with water depth due 

to the reduction of effective weight. Whereas, the dynamic tension remains similar along 

the length. The predicted tension results by the proposed algorithm agree well with the 

actual values by the FEA dynamics simulation program. This means that the tension 

variation is mainly caused by the hull motions (or forced oscillation of its top point), which 

can be captured by the top-tension measurement, with negligible effect from the axial 

inertia or frictional forces on the tendon itself. In case of tension prediction, the two 

different sensor distributions produce almost the same results. As for bending moment 

distribution, as the tendon is pinned (moment-free) at both ends, larger bending-moment 

variations can be seen in the middle section. However, as lateral wave loads are higher at 
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the top section of the riser, larger difference in bending moment at that region between the 

predicted (by algorithm) and actual (by FEA program) values can be noticed for the 

uniform-sensor- distribution case. By using denser sensor distribution at the top region 

with the same number of sensors, better accuracy can be achieved there, as evidenced in 

Figure 62, while maintaining the same accuracy for the remaining part of the tendon. 

Therefore, from this point on, top and bottom clustered sensor distribution is used.  

 

 

Table 28 Sensor installation location, Uniform VS Optimized  

Sensor Location  

along the length 

Uniform 

Distribution 

(uniform 

interval) 

Optimized 

Distribution 

(variable 

interval) 

[-] m m 

#1 (top) 17.6 5.2 

#2 17.6 5.2 

#3 17.6 25.87 

#4 17.6 25.87 

#5 (middle) 17.6 25.87 

#6 17.6 25.87 

#7 17.6 25.87 

#8 17.6 25.87 

#9 17.6 5.2 

#10 (bottom) 17.6 5.2 
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Figure 61  Tension and bending moment at 3 target points by uniform sensor 

distribution; comparison between the present algorithm and actual FEA calculation 

 

 

 
 

Figure 62  Tension and bending moment at 3 target points by variable sensor 

distribution; comparison between the present algorithm and actual FEA calculation  
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4.3.2 Case 02 – Tendon Failure Detection 

 
An important goal of structural health monitoring by sensors is real-time failure detection.  

Since the TLP-FOWT is unmanned, the early detection of one-tendon failure from the 

sensor signals is critical to prevent further failures. Thus, in this section, we investigate 

whether the tendon failure and the resulting instantaneous increases in tensions and 

bending moments can be detected/assessed by the present method. In this regard, sudden 

failure of tendon (#4) is considered to demonstrate the algorithm’s failure-detection 

capability. The model is setup so that tendon (#4) fails at 700s during the simulation. 

Figure 63 shows the corresponding results in tendon (#5).  It can be seen that the mean 

tension suddenly increases after the failure, as expected, to keep the same hull buoyancy 

with less tendons. In addition, high-frequency transient responses happen at the system’s 

natural frequency due to the impulse-kind-of loading right after the failure (Yang & Kim, 

2010). Since it is transient response, it quickly dissipates by system damping. However, 

its initial overshoot in magnitude can be dangerous. From Figure 63 and Figure 64, we 

can see that the detailed physics of line tensions and bending moments can excellently be 

predicted by the present algorithm compared with the actual values. Interestingly, there is 

no increase in bending moment after one-line failure, as shown in Figure 63. On the other 

hand, the effects of the transient high-frequency tension variations are reflected, especially 

for top and bottom portions, on the bending moment after the time of failure. The decay 

rate of the transient signal in the bending moment is higher than that of tension since the 

lateral hydrodynamic damping is larger than the axial one.   
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Figure 63 Tension and bending moment time series at 3 target points of tendon #5 after 

the sudden failure of tendon #4; comparison between the present algorithm and actual 

FEA calculation  

 

 

 

 
Figure 64 Tension spectra at the top point of tendon #5 before and after the sudden 

failure of tendon #4; comparison between the present algorithm and actual FEA 

calculation  
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4.3.3 Case 03 – Boundary-Condition Effect 

 
In a real design, different boundary conditions may be used in the tendon-hull interface, 

such as stress joints, flex joints or roto-latches.  As such, the algorithm is checked when 

the hull-joint BC is changed to fixed B.C. instead of hinged joint. Figure 65 shows the 

comparison between the hinged and fixed B.C. As expected, tension results are not 

sensitive to the boundary-condition change. However, bending moment results show 

significant differences, especially at the top region. The big increase of bending moment 

near the hull joint is clearly demonstrated in Figure 7.10 when compared with Figure 62. 

The present algorithm is able to capture the change of BCs with good accuracy.   

 

 
Figure 65  Tension and bending moment at 3 target points with the change of top BC to 

fixed one; comparison between the present algorithm and actual FEA calculation  
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4.3.4 Case 04 – Irregular Wave (10-yr storm)  

 
So far, we investigated the performance of the developed algorithm in regular waves. The 

ensuing case studies 04, 05 and 06 are for more realistic irregular waves. To assess 

tendon’s service life, tracking cumulative fatigue damage is needed. Fatigue damage is 

usually calculated using Miner’s rule, as accumulated damage by stress variations and 

their occurrences for continuously varying environmental conditions. As such, 

continuously estimating bending moment and tension and the resulting bending and axial 

stresses at several hot spots is essential, which can effectively be done by the present 

algorithm. In this regard, most severe operational condition and extreme survival 

condition are employed to assess the accuracy and practicality of the developed algorithm.  

A typical 10yr-storm environment is given in Table 29. JONSWAP wave spectrum and 

API wind spectrum (wind speed of 19.9m/s at 10m altitude) were used to generate the 

corresponding random wave and wind signals. Figure 66 shows a comparison between the 

original spectrum and the regenerated spectrum from the generated irregular-wave time 

series, which confirms the correctness of the relevant procedure. The wave-wind-current 

are collinear and their heading is 45 degrees. Steady storm-induced shear current is also 

applied. 

 

The resulting floater-motion time histories and spectra are presented in Figure 67. The 

results show that the natural frequencies are 0.08 rad/s for surge and sway, 1.65 rad/s for 

heave, 4.04 rad/s for roll and pitch, 0.35 rad/s for yaw, respectively. Heave motions have 

three peaks; the low-frequency peak is associated with the set-down effect caused by 
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slowly-varying horizontal motions, the second peak is at peak wave frequency, and the 

third peak is at heave natural frequency.  

 

The corresponding tension and bending moment time histories and spectra for three target 

locations (top, middle, bottom) are shown in Figure 68, Figure 69, and Figure 70. The 

mean tension decreases with water depth due to less submerged weight below the point, 

while dynamic tension caused by hull heave-pitch motions remains similar along the 

length. The mean and dynamic bending moments are the largest at the middle location, as 

was the case of regular wave. Towards the top and bottom ends, bending moments 

decrease since hinged boundary conditions are applied at both ends. As the heading of 

environmental loading is 45 degrees and hull is symmetric with respect to the x and y axes, 

the resulting bending moment of the tendon should have about the same values with 

respect to the x-z and y-z planes.   Also, it can be noticed that the dynamic bending moment 

has two peaks, one at very low frequency by floater’s slowly-varying horizontal motions 

(surge and sway) and the other at the floater’s heave natural frequency (1.65 rad/s). The 

effects of rotational motions (roll, pitch, yaw) on bending moments are small due to the 

hinged boundary conditions. Rotational motions are expected to more significantly affect 

dynamic bending moments if fixed B.C. is used, as shown later in Case 06. Examining the 

bending moment spectra, there is little energy near the peak wave frequency while tension 

energy is significant there by the combined effects of heave, roll, and pitch there.  
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Overall, the monitoring algorithm by sensors excellently captured the actual behaviors of 

tensions and bending moments along the tendons even without measuring the hull 

motions. The predicted and actual time series and spectra are almost identical (2.80% 

mean error for tension estimation and 1.60% for bending-moment estimation in time 

histories).   

 

 

 

Table 29  Operating Design Condition Environmental Data (10yr-return period) 

Wave Current Wind 

Gamma 
Direction 

from TN 

Significant 

Wave (Hs) 

Spectral 

Period 

(Tp) 

Depth Vel. Spectrum 

10 

min@+10m 

elevation  

Direction 

from TN 

(-) (deg) (m) (s) (m) (m/s) (-) (m/s) (deg) 

2.4 Omni 6.58 

8.2 

(0.77 

rad/s) 

0 1.54 

API 19.9 Omni 
25 1.00 

50 0.50 

mud 0.00 

 

 

 

 

 
Figure 66  Generated irregular-wave time series and the corresponding wave spectrum 

for 10-yr storm  
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Figure 67  Floater 6DOF Motions; Time History (Up) and PSD (Down) 
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Figure 68  Tension & bending moment time histories and spectra at top target point of 

tendon #5  

 

 
Figure 69  Tension & bending moment time histories and spectra at middle target point 

of tendon #5  
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Figure 70  Tension & bending moment time histories and spectra at bottom target point 

of tendon #5  
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4.3.5 Case 05 – One-Line Failure Detection during 10-yr storm 

 
As in Case 02, a sudden failure of one-line is simulated under 10-yr storm to verify if the 

developed monitoring algorithm can still detect the suddenly changed dynamic pattern 

effectively. Tendon #4 is intentionally broken at 1800s to check its detection capability. 

The floater motion time histories and spectra (before/after failure) are shown in  Figure 71 

and Figure 72. Comparing with the intact case (Figure 67), the mean heave suddenly 

increases after the failure due to the sudden weakening of the total vertical stiffness of 

tendons. Similarly, the roll mean is suddenly changed due to the imbalance in roll restoring 

moment.  

 

Generally, a sudden change of trend after failure can clearly be detected in the time series 

of heave, roll, and yaw motions while those in surge-sway-pitch are less conspicuous. 

When the heave-motion signal is examined, downward motions are much greater than 

upward motions. After failure, the increased mean tensions on the remaining tendons tend 

to reduce their heave motions. The biggest changes after failure happen in roll and yaw 

responses mainly due to the change in restoring moments and loss of symmetrical balance. 

The sudden appearance of the dominant peak in the roll spectrum at the heave natural 

frequency after failure is an interesting asymmetric coupling phenomenon. It is seen that 

the roll natural frequency decreases from 4.04 rad/s to 3.5 rad/s after failure.   

 

The corresponding tendon bending moment and tension signals for tendon #5 at the middle 

target points are presented in Figure 73 and Figure 74. The developed prediction algorithm 



104 

 

by sensors reproduce almost the same bending moment and tension signals compared to 

the actual values. The difference in time series is less than 1.2% in tension and 1.3% in 

bending moment. The general trends and accuracy for the top and bottom target points are 

similar to those of the middle target point. It is very clear that the developed real-time 

tendon-monitoring algorithm can produce even the details of the variations of tendon 

internal stresses in random waves including such a transient effect. 

 

As expected, both mean and dynamic tensions increase after the failure. The increase in 

dynamic tension after failure is caused by that the new heave-pitch-roll natural frequencies 

get closer to the input wave spectrum. On the other hand, the dynamic bending moments 

decrease after failure because the mean tensions of the remaining tendons become higher 

and contribute to the reduction of dynamic bending moment.  

 

 
Figure 71 Floater 6DOF motion time series before and after failure  
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Figure 72  Floater 6DOF motion spectra before and after failure  
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Figure 73 Bending moment time series and spectra of tendon #5 before and after tendon 

#4 failure 

 

 

 
Figure 74 Tension time series and spectra of tendon #5 before and after tendon #4 failure 
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4.3.6 Case 06 – Extreme Condition (100-yr storm) 

Finally, the monitoring capability of the developed algorithm for an extreme condition is 

investigated.  Table 30 presents the extreme survival environmental conditions with 100yr 

return period in GOM (Gulf of Mexico). As expected, compared to the maximum 

operational condition (Figure 67), the floater motions are significantly increased while the 

overall trends are similar. To observe the sensitivity of tendon’s bending moment for 

different boundary conditions, the top-end condition is changed to fixed BC. Similar to 

Case 04, tension and bending moment comparisons are shown in Figure 76 (top), Figure 

77 (middle) and Figure 78 (bottom). As in previous simulations, the dynamic tension does 

not vary significantly along depth. Due to the fixed top B.C., larger bending moments are 

observed near the top, as floater rotational (pitch and roll) responses are more directly 

transmitted to the tendon. The bending moments near the bottom remain small due to the 

moment-free hinged boundary condition. The general trends for bending moments are 

similar to those of 10-yr storm showing three peaks; first at low frequency associated with 

slowly varying surge-sway motions, second at wave peak frequency, third at wave peak 

frequency. The results show that the developed algorithm can monitor the actual values of 

tensions and bending moments even in the extreme environmental condition, with the 

errors smaller than 5.13% in tension time series and 1.62% in bending-moment time series.  

Through the previous six case studies, it is clearly shown that the developed algorithms 

have the capability of highly accurate real-time monitoring of tendon’s internal stresses 

(axial and bending stresses) along the line for various ocean environments. This capability 
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enables the real-time monitoring of accumulated fatigue damage at hot-spots by adding 

the corresponding fatigue-calculation algorithm, which is not presented in this research. 

 

Table 30  Extreme Design Condition Environmental Data (100yr-return period) 

Wave Current Wind 

Gamma 
Direction 

from TN 

Significant 

Wave (Hs) 

Spectral 

Period 

(Tp) 

Depth Vel. Spectrum 

10 

min@+10m 

elevation  

Direction 

from TN 

(-) (deg) (m) (s) (m) (m/s) (-) (m/s) (deg) 

2.4 Omni 16.2 

12.1 

(0.52 

rad/s) 

0 3.00 

API 60.0 Omni 

25 2.50 

50 2.00 

100 1.00 

mud 0.00 
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Figure 75 Floater 6DOF Motions; Time History (Up) and PSD (Down) 
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Figure 76 Tension & bending moment time histories and spectra at top target point of 

tendon #5 

 

 

 

 
Figure 77 Tension & bending moment time histories and spectra at middle target point 

of tendon #5 
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Figure 78 Tension & bending moment time histories and spectra at bottom target point 

of tendon #5 
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5. REAL-TIME TRACE OF RISER PROFILE AND BENDING MOMENT WITH 

INCLINOMETERS 

 

5.1 Methodology – Riser Profile (Node Displacements) Tracing  

5.1.1 Derivation of Line Length Equation in 3D 

In this section, an analytical solution for node displacements calculation for riser profile 

tracing using an inclinometer will be explained. First, let’s start derivation of the line 

length equation in 3D space as shown in Figure 79. The entire line length (
A BP PL ) can be 

calculated by the summation of linearized small segments ( iL ) length as shown in eq.5-1. 

Linearized each small segment length can be obtained (eq.5-2).  By applying the mean 

value theorem (eq.5-3) with the decomposed arbitrary quadratic interpolation function 

(Figure 80), a small segment length equation (eq.5-2) can be re-written as shown in eq.5-

4.  By substituting the derivative of arbitrary quadratic interpolation function (eq.5-5) into 

Eq.5-4, the small segment length equation (eq.5-2) is re-arranged with arbitrary 

coefficients (eq.5-6).  After applying the basic infinite integral theorem, the entire line 

length (
A BP PL ) in 3D space can be expressed with respect to the only single variable (x). 

This derived line length equation (a function of only single variable) in 3D space will be 

used to resolve the quadratic interpolation function for riser node displacements 

calculation in the next section. 
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Figure 79 Configuration for Derivation of Line Length Equation in 3D  
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Figure 80 Decomposed Quadratic Interpolation function for small segment (xy 

plane(left), xz plane(right))  
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5.1.2 Node Displacements Calculation  

Continually, the derivation of an analytical solution for node displacement tracing will be 

introduced. Usually, based on the basic FEM (Finite Element Method) beam theory, 

displacements along the beam can be obtained using interpolation function and it can be 

resolved with four boundary conditions. With the assumption that the riser is modeled 

with several beam segments connection, riser node displacements can be traced if the 

required information is given.  But, in this research, it is assumed that only inclinometer 

data at both ends of each riser segment and hang-off and anchor positions are available. 

    

Configuration for node displacements tracing is presented in Figure 81. The interpolation 

function between each sensor and its boundary conditions are tabulated in Table 31. Also, 

Eq. 5-8 represents the interpolation function and its spatial derivative equation with 

respect to the global coordinate system. By applying boundary conditions at the first 

segment endpoint (hang-off), the third coefficient (C) of the interpolation function can be 

derived (eq.5-9). Continually, with a combination of eq. 5-8 and third boundary condition, 

the second coefficient (B) also can be estimated. Now, one more condition is required to 

obtain the first coefficient (A). As explained in the previous section, the equation for line 

length (eq.5-12) between two points (sensor interval) can be applied here. By using the 

equation of line length (eq.5-12) and fourth boundary condition (eq.5-11), the first 

coefficient of interpolation function (A) finally can be obtained as shown in eq.5-13. If 

then, the interpolation function can be expressed as a function of only declinations (



116 

 

,  
A Bxz xz  ) as shown in eq.5-13.  Finally, two displacements of other ends (x and z) can be 

obtained (eq.5-14) firstly.  

 

Similarly, by repeating the same process with respect to the y-direction, the coefficients 

for interpolation function with respect to the xy-direction can be also obtained (eq.5-15) 

and another displacement of other end in y-direction finally can be calculated (eq.5-16) 

using same x displacement which is obtained previously. Those obtained node 

displacements can be used as an input again for the calculation of the next node 

displacements with the other riser segment. By repeating the above process, the entire riser 

node displacements can be traced in order of sequence from the top. Finally, the entire 

riser profile also will be generated with a combination of inclinometers and sensor interval.  
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Figure 81 Configuration for Node Displacements Tracing 

 

Table 31 Interpolation Function & Boundary Conditions, Node Displacements 

Calculation for Riser Profile Tracing, xz-direction 
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5.2 Methodology – Riser Discretized BM (bending moment) 

In this section, the analytical solution for riser bending moment estimation will be 

explained. As explained previously, if the quadratic interpolation function is used, the 

curvature which is double spatial-derivative of interpolation function becomes constant. 

Therefore, it cannot be used for proper bending-moment distribution continuous at each 

nodal point. Thus, the cubic interpolation function with respect to the generalized s-

coordinate system with directional cosine angles ( ,
A Bx x  ) is employed (eq. 5-17) here 

with corresponding boundary conditions (eq. 5-18). This is possible since all the 

instantaneous nodal positions can be determined as explained in the previous section. 

2 3

0 1 2 3( ) ( , , , , )
A B A Bx x x x xv s f v v s a a s a s a s = = + + +                                                                       (5-17)    
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= = = = = =

= =
                                                                                         (5-18)                                                                          

  

Applying boundary conditions (eq. 5-18) to the third-order polynomial equation (eq.5-17), 

the eq. 5-17 can be re-written as (eq. 5-19). The third-order polynomial equation can be 

re-constructed as matrix form as shown in eq. 5-20. In eq. 5-20, 1 2 3 4, , ,N N N N represent 

shape functions and   expresses the nodal displacements and inclinations.   
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By substituting eq. 5-20 to normal stress for beam bending (eq.5-21), eq. 5-22 is derived. 

Then, the beam bending moment equation can be derived as shown in eq. 5-23.  
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Eq (5-23) represents the distribution of bending moment along the line. It is interesting to 

see that the bending moment at the mid-point of each element can be obtained in a greatly 

simplified form as shown in eq. 5-24 by inputting 0.5
AB

s

L
=  to eq. 5-23.     
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For those points other than the mid-length point, the second spatial derivative (curvature) 

of the cubic shape function can be used. In the following section, we will prove whether 

the derived analytical solutions for node displacements and bending moments can actually 

be used for the real-time tracing of riser profile and bending moment from inclinometer 

signals only. In the present numerical experiment, the actual riser profile and bending 

moment were taken from the time-domain system simulation by the commercial program 

OrcaFlex (widely adapted in oil & gas industry). Then the numerical riser inclination 

signals at the inclinometer locations were taken and inputted with the given top point (from 

GPS) to the developed algorithm to see whether it can actually reproduce the actual riser 

profile and stress at each time step. The numerical experiment closely emulates the real 

situation except that the physical sensor is replaced by the numerical sensor. For 

simplicity, the potential detrimental effect of small physical sensor noise is not considered 

here. However, it was shown that the present algorithm is much more robust against sensor 

noises than the accelerometer-based method since double time integration is not needed at 

each time step. 
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5.3 Explanation of Target Structure – FPSO with SCR and SLWR  

As a target structure, FPSO (Floating Production Storage and Offloading) system with 

SCR (Steel Catenary Riser) or SLWR (Steel Lazy Wave Riser) is adopted in this research.  

It is well known that the SCR may experience local dynamic buckling near touch-down 

zone under extreme storm conditions [55]. To circumvent the problem, lazy-wave risers 

are frequently employed. 

Figure 82 and Figure 83 present the configuration of the FPSO system with SCR or 

SLWR. The sensor distribution along the riser with 10-m interval is presented in Figure 

84.  As a floater, the default FPSO given by OrcaFlex was selected with the corresponding 

added mass, radiation damping, first- and second-order wave loads [38]. Furthermore, a 

total of 12 spread mooring lines (with four groups) are employed for the station-keeping 

in 100m water depth. Each mooring line consists of chain components for entire arc length. 

For the SCR and SLWR, steel tube pipe with 356mm outer diameter is used. In the SLWR 

case, buoyancy modules are attached to make a lazy wave shape along the riser at arc 

length 100m ~ 110m. The details of the mooring and riser properties and SLWR buoyancy 

modules are tabulated in Table 32 and Table 33. For SCR and SLWR line segment 

modelling, each segment length of 0.1m was used for OrcaFlex. Furthermore, to represent 

seabed for the seabed-touching riser elements, the seabed stiffness of 50 kN/m³ is 

considered. For simplicity, the seabed induced Coulomb friction and damping effect are 

not considered in the numerical simulations. For the boundary conditions at the hang-off 

and anchor points, frictionless-hinged boundary condition (B.C.) is used as a typical 

condition of the riser. The 1-yr and 50-yr storm conditions with a co-linear WWC (wind-
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wave-current) heading of 45 degrees are considered as detailed in Table 34. For the wave 

and wind spectra, JONSWAP wave and API wind spectra are adopted. For the 

corresponding current profile, 1/7 power law is applied as shown in eq. 5-25. To 

demonstrate the prediction capability, all the results are plotted for 200s simulation 

duration.  

 

Figure 82 Configuration of FPSO with SCR  

 

 

Figure 83 Configuration of FPSO with SLWR  
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Figure 84 Sensor Distribution for SCR and SLWR, Coarse Interval (=10m) 

 

 

Table 32 Mooring Chain and Riser Material Properties 

Mooring Chain Riser (SCR and SLWR) 

 Type [-] 
R3 

Studless 
Outer Diameter [mm] 356 

Bar Diameter [mm] 140 Inner Diameter [mm] 254 

Mass in Air [kg/m] 390 Mass in Air [kg/m] 335.3 

Displaced Mass [kg/m] 51 Displaced Mass [kg/m] 184 

MBL (Min. Breaking 

Load) 
[MN] 17.6 Axial Stiffness (EA) [MN] 711.2 

Axial Stiffness (EA) [MN] 1674 Bend Stiffness (EI) 
[kN-

m^2] 
124.9 

Bend Stiffness (EI) 
[kN-

m^2] 
0 

Arc Length 

(SCR/SLWR) 
[m] 150/130 

Arc Length (SCR/SLWR) [m] 160/170 [-] [-] [-] 

 

 

Table 33 Buoyancy Module (SLWR) Material Properties 

Buoyancy Module (SLWR) 

Mass [te] 0.6 

Volume [m^3] 1.032 

Height [m] 1 
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Table 34 Environmental Condition (1-yr and 50-yr storms) 

Wave Current Wind 

Spectrum Gamma 

Direction 

from 

North 

Significant 

Wave (Hs) 

Spectral 

Period 

(Tp) 

Depth Vel Spectrum 

10 min 

at 10m 

elevation  

Direction 

from 

North 

(-) (-) (deg) (m) (s) (m) (m/s) (-) (m/s) (deg) 

JONSWAP 2.2 45 3.5 10.3 
Surface 0.3 

API 20 45 
1/7 law is used 

JONSWAP 2.2 45 7.5 14.3 
Surface 0.5 

API 26 45 
1/7 law is used 
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5.4 Comparisons between the predicted and actual riser profiles and BM  

In this section, various comparisons between the predicted and actual profiles and bending 

moments will be presented and discussed. It is assumed that the bi-axial inclinometers are 

attached uniformly along the entire riser arc length. Furthermore, two different sensor 

intervals (compact interval=2m, coarse interval=10m) are selected to show the sensor-

interval effect for both SCR and SLWR.     

 

The FPSO system with the respective riser is simulated first by the OrcaFlex computer 

program with the given inputs and parameters. Then, the inclination- and azimuthal-angle 

signals are collected from the sensor locations. Next, the developed algorithms are run by 

using the numerical-sensor signals to trace the instantaneous riser profile and bending 

moments at any location along the riser. Finally, the reconstructed riser profiles and 

bending moments are compared with the actual values at the respective time steps to assess 

the capability of the developed algorithms. Here, the possible sensor noises are not 

considered.  

 

First, the riser-profile-tracing capability by the presently developed algorithm for the SCR 

case is discussed. For the time history of riser displacements, four representative locations 

are selected i.e. 30m (upper), 70m (middle), 100m (lower), and 130m (on seabed). In 

Figure 85 and Figure 86, the respective x-y-z locations’ time histories for both compact 

(Int. =2m) and coarse (Int. =10m) sensor intervals are plotted. Both 1-yr and 50-yr storms 

are employed and both algorithm-predicted and actual profiles are compared. For both 
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storm conditions, the predicted riser movements at the upper-middle-lower locations 

excellently agree with the actual movements both for coarse and compact riser 

arrangements. This implies that longer than 10-m interval can also be used for practical 

applications depending on the level of target accuracy. At arc length 130m location, which 

is laid down on the seabed, the profile-tracing accuracy is still good even for 10-m sensor 

interval.  

 

In the case of SCR on the seabed, the seabed stiffness causes the sudden change of riser 

curvature near the touch-down zone, and thus the accuracy of the prediction algorithm is 

affected. To further explain this, the same SCR cases without seabed stiffness are 

presented in Figure 87. It is confirmed that there is almost no difference between the 

predicted and actual profiles regardless of the sensor interval since the curvature of the 

SCR smoothly changes with hanging profile below seabed if seabed stiffness is not 

considered (Figure 87). This is true even for the case of sparse sensor interval. Therefore, 

the sensors need to be arranged with smaller spacing when the curvature changes rapidly 

and high accuracy is needed.          
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Figure 85 SCR motion time histories at various locations with compact sensor 

interval=2m (with seabed stiffness), 1-yr (Up) 50-yr (Down)  
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Figure 86 SCR motion time histories at various locations with coarse sensor 

interval=10m (with seabed stiffness), 1-yr (Up) 50-yr (Down)  
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Figure 87 SCR motion time histories at various locations near touch-down point for two 

different sensor intervals (without seabed stiffness), 1-yr (Up) 50-yr (Down) 

 

 

 

In Figure 88 and Figure 89, the corresponding bending-moment comparisons at the middle 

point and off-middle point of each element (s/L=0.5 and 0.75) are presented. For each 

figure, the results for mid-arc-length point at 75m and 3 near-touch-down locations are 

plotted. Since the TDP (Touch Down Point) near the arc length of about 124m is the most 

critical region in view of bending stress, three locations near TDP are selected (arc length 

115m, 125m, and 135m). As was pointed out in the theoretical description, simple 

analytical results are available for the bending moment at the middle of each sensor 

interval while for other locations, the bending moment can be obtained by differentiating 

twice the cubic shape function of riser profile. In all cases, we observe the excellent 
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recovery of actual bending moments at both the middle (s/L=0.5) and off-mid locations 

(s/L=0.75) by the developed algorithm. As can intuitively be expected, the compact 

interval produces more accurate prediction than sparse interval. More interestingly, even 

the sparse cases give good recovery of actual values, which is very important in practical 

applications for saving budget.  For both 1-yr and 50-yr storms, the predicted bending 

moments by the developed algorithm reasonably well follow the actual bending moments. 

The prediction accuracy of the coarse interval case near TDP and on seabed is slightly 

worse than that of other upper locations, as was already seen in the displacement-tracing 

examples.  That can be attributed to the sudden change of line curvature at the TDP. To 

double-check this, another set of simulations without seabed stiffness were conducted in 

Figure 90. In this case, the agreement between the predicted and actual bending moments 

is excellent even for 10-m sensor interval regardless of the locations and storm conditions. 
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Figure 88 SCR bending moment time histories at the middle of sensor interval (s/L=0.5) 

with seabed stiffness, 1-yr (Up) 50-yr (Down) 
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Figure 89 SCR bending moment time histories at the off-middle point of sensor interval 

(s/L=0.75) with seabed stiffness, 1-yr (Up) 50-yr (Down) 
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Figure 90 SCR bending moment time histories at the middle point and ¾ of sensor 

interval, without seabed stiffness, 1-yr (Up) 50-yr (Down) 

 

 

  



136 

 

Next, let us consider the SLWR instead of SCR. The SCR may experience local-dynamic 

buckling problem when hull heave-pitch motions are excessive [55]. In this case, to avoid 

that kind of problem, SLWR needs to be used although it is more expensive and 

problematic in flow assurance. Since the developed algorithms can be applied to any types 

of line shapes, the prediction capability for a SLWR is also examined in the following.  

 

Intuitively, it is required that the sensors should be arranged densely around the highly 

curve-reversed lazy wave zone (arc length 100m ~ 110m) to have good prediction 

accuracy. The same algorithms and sensor intervals are applied to the SLWR movements 

and the results are compared at four locations i.e. at arc length 30m, 70m, 100m, and 120m 

with compact and coarse sensor distributions. The corresponding time histories are 

presented in Figure 91 (compact interval = 2m) and Figure 92 (coarse interval = 10m).  

 

Due to the geometric characteristic of the lazy wave shape, the dynamic motions of the 

SLWR in x, y, and z directions near concave and TDP (at 90m and 128m) are significantly 

reduced compared to those of SCR (at 124m). Also, the compact interval case can follow 

the rapid change of riser curvature in the lazy wave zone much better than the course-

interval case. As for the upper portion above the lazy wave zone, even the coarse interval 

case can predict the overall shape very well.  Therefore, sensor distribution can be coarse 

for the upper portion but needs to be denser around the lazy wave zone to achieve high 

accuracy. In the case of coarse sensor interval, if a point of inflection exists within the 

element, the representation of line by quadratic shape function may not be accurate. 
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Therefore, adjusted sensor arrangement may be needed near the lazy wave zone with 

double reverse curvature. In this regard, the case of optimal sensor arrangement with 

variable intervals is also presented by green-dashed line for 100m and 120m arc lengths. 

In the adjusted sensor arrangement, 10m interval is used except for near the lazy wave 

zone (arc length 90m~110m) for which 2m interval is applied. As can be seen in the same 

figure (Figure 92), the adjusted sensor location (green-dashed-line) can produce 

satisfactorily high accuracy. Since the bottom touching portion of the SLWR is small, the 

modeling of the seabed stiffness in this case is not an important issue.  
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Figure 91 SLWR motion time histories at various locations with compact sensor 

interval=2m (with seabed stiffness), 1-yr (Up) 50-yr (Down) 
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Figure 92 SLWR motion time histories at various locations with coarse sensor 

interval=10m (with seabed stiffness), 1-yr (Up) 50-yr (Down)  
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Finally, the bending moment time histories of the SLWR at three locations (= arc length 

55m, 85m, and 105m) are presented in Figure 93 and Figure 94.  Figure 93 is for the mid-

point of the respective elements and Figure 94 is for the 3/4 point of each element. Both 

figures show the comparisons for compact and coarse intervals. The 85m and 105m 

locations are around the lazy wave zone since it is the most critical region in view of high 

bending stresses. Since the curvature variation of the lazy wave zone is relatively large, so 

denser sensor arrangement is needed there to capture the rapid change and improve the 

prediction accuracy (green-dashed line) as shown in Figure 93 and Figure 94. However, 

for the upper portions of the SLWR, even the coarse sensor arrangement gives good 

enough prediction accuracy, which helps the sensor designers to devise the most cost-

effective sensor-based monitoring methodology. So far, the tracing of riser profile and 

bending moment along the riser by using multiple bi-axial inclinometers was presented. 

The developed algorithms can in principle also be applied when additional riser-motion 

complexity exists due to VIV (vortex induced vibration). 
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Figure 93 SLWR bending moment time histories at the middle of sensor interval (2m 

and 10m sensor interval) at three locations (with seabed stiffness), 1-yr (Up) 50-yr 

(Down)  



142 

 

 

 

Figure 94 SLWR bending moment time histories at the 3/4 of sensor interval (2m and 

10m sensor interval) at three locations (with seabed stiffness), 1-yr (Up) 50-yr (Down) 
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Finally, Figure 95 shows several snapshots of SCR and SLWR profiles with 10-m sensor 

interval for SCR and optimized interval for SLWR under 50-yr storm at different time 

steps. It demonstrates that the whole profile can reliably be traced in real time by the 

developed algorithms.  

 

 

Figure 95 Snapshots of SCR (Left) and SLWR (Right) entire profiles, Int.10m (SCR), 

Optimization Int. (SLWR), 50-yr 
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6. DIGITAL TWIN METHODOLOGY FOR RISER STRUCTURE HEALTH 

MONITORING WITH MINIMUM SENSORS 

 

6.1 Digital Twin Approach for Riser Structure Health Monitoring   

In this section, for the comparison purpose, two different approaches such as digital twin 

(DT) and forced floater oscillation (FFO) will introduce to discuss advantages of digital 

twin approach (Figure 96). As shown in Table 35, since original (Ori) model will be used 

as real-field operating system in this study so that all kinds of environmental loadings 

(wind, wave and current) should be considered. However, for both approaches, it can be 

claimed that both wind and current loads effect will be considered in digital twin approach 

whereas only wind effect can be considered for forced floater oscillation approach. 

Furthermore, since wind loading will affect to floater motion and it is related to dynamic 

response of inclinometers attached along the top part of the riser, it can be asserted that 

wind effect is also considered in digital twin (DT) approach. Continually, the overview of 

digital twin approach for riser structure health monitoring with minimum sensors on the 

top part presented in Figure 97. First, signal data from sensors attached along the top part 

of the riser can be acquired. Then, the measured sensing data can be used as an input file 

for inverse current profile prediction using machine learning and it also can apply to trace 

node displacements and tension at target point (same location with last sensor attached). 

With assumption that there is a significant wave excitation load reduction below certain 

water depth, digital twin model can be established and implemented using traced target 

node displacements, tension and predicted current profile. As a floater, the default FPSO 
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given by OrcaFlex was selected with the corresponding added mass, radiation damping, 

first- and second-order wave loads. Furthermore, a total of 12 spread mooring lines (with 

four groups) are employed for the station-keeping in 100m water depth. Each mooring 

line consists of chain components for entire arc length. Also, it is assumed that only five 

inclinometers are attached along the top part of riser with 5m interval. Detailed mooring 

and riser material properties are summarized in Table 36. For forced floater oscillation 

approach, it is assumed that floater displacements can be traced directly by GPS (Global 

Positioning System) and traced floater displacements can be inputted to the system under 

calm water (no wave and current). 

In the following section, since riser near the touch down point (TDP) can be a critical 

region during the operation, three arc length locations near the TDP can be selected for 

comparison.  Furthermore, each of required information for digital twin approach such as 

node displacement and tension tracing algorithm and inverse current profile prediction 

process using multivariate regression will be explained in detail, accordingly.   
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Figure 96 Schematic view of Digital Twin Model and Forced Floater Oscillation 

 

 

 
Figure 97 Configuration for Digital Twin Model for Riser Structure Health Monitoring 

with Minimum Sensors 
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Table 35 Environmental Loadings Consideration 

  Original Digital Twin Forced Floater Oscillation 

Wave O X X 

Current O O X 

Wind O O O 

 

 

Table 36 Mooring Chain and Riser Material Properties 

Mooring Chain Riser  

 Type [-] 
R3 

Studless 
Outer Diameter [mm] 356 

Bar Diameter [mm] 140 Inner Diameter [mm] 254 

Mass in Air [kg/m] 390 Mass in Air [kg/m] 335.3 

Displaced Mass [kg/m] 51 Displaced Mass [kg/m] 184 

MBL (Min. Breaking Load) [MN] 17.6 Axial Stiffness (EA) [MN] 711.2 

Axial Stiffness (EA) [MN] 1674 Bend Stiffness (EI) [kN-m^2] 124.9 

Bend Stiffness (EI) [kN-m^2] 0 Arc Length  [m] 150 

Arc Length [m] 160 [-] [-] [-] 
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6.2 Methodology – Inverse Current Profile Prediction using MR 

In this section, inverse current profile prediction process with minimum sensors on the 

top part of riser will be discussed in this section. Here, Multivariate Regression (MR) 

model is selected as a machine learning algorithm [56]. Generally, MR model can be 

written N-dimensional using linear combinations of continuous response vectors and 

residual (error) vector (eq. 6-1) 

0 1 1 2 2

0

           

α = intercept

α  = multivariate regression coefficients, i=1,...,N

 = residual (error)

N N

i

Y X X X    



= + + + + +

                                                      (6-1) 

In eq. 6-1,    ( 1 ~ )iX i N=  is “independent” variables,  Y  is “dependent” variable. In this 

study, measured inclinometer signals can be used as an “independent” variables and 

current velocity at each water depth can be inputted as a “dependent” variable. To find 

MR coefficients, least square method will be used with correlated error variance-

covariance matrix to find best fit to minimize sum of the residuals [57].  Furthermore, as 

shown in Figure 98, to build multivariate regression model, massive training data should 

be generated at first. To do this, OrcaFlex which is widely adopted commercial tool in the 

offshore industry is used. For the training data generation, original approach model is used 

as a basement.  As shown in Figure 98, fully-coupled FPSO system will be simulated 

within environmental loading condition boundary at first and then average of declination 

value at each inclinometer can be computed and stored as an output for each corresponding 

environmental loading conditions. For wave and wind, JONSWAP and API spectra is used 
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as corresponding wave and wind spectrum, respectively. Furthermore, 4m to 10m with 

0.5m interval is selected as a significant wave height boundary whereas another boundary 

(8s to 16s) with 0.5s interval is selected in peak period case. Also, for wind training 

boundary, 10 m/s to 40 m/s with 5 m/s interval is selected as shown in Table 37. Thus, 

applying each boundary combination, total 1547 load cases are generated and simulated. 

However, for current profile generation for training, random generation based on Gaussian 

distribution is used. Table 38 present mean and standard deviation (STD) for current 

profile random generation for training. Once training data sets generation and simulation 

is completed, the training process is applied and finally the coefficients in eq. 9-1 can be 

obtained.  Using this trained multivariate regression model (eq. 9-1), current profile can 

be predicted inversely (Figure 99). In the following section, validation results for inverse 

current profile prediction will be presented.   

 

 

Figure 98 Training Data Generation for Multivariate Regression 
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Table 37 Wave and Wind Conditions for Training Data Generation (total 1547 sets) 

    Min. Max. Int. Sets # 

Wave 
Hs(m) 4 10 0.5 13 

Tp(s) 8 16 0.5 17 

Wind Speed(m/s) 10 40 5 7 

Total [-] [-] [-] [-] 1547 

 

Table 38 Random Generation for Current Profile, Training data 

Current 

Profile 

Water 

Depth 
Mean STD 

[-] [m] [m/s] [-] 

1 0 1.2 0.3 

2 25 1 0.2 

3 50 0.8 0.2 

4 75 0.6 0.2 

5 100 0.4 0.2 

 

 

Figure 99 Current Profile Prediction with Multivariate Regression 
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6.3 Numerical Results Comparisons for Riser Structure Health Monitoring 

In this section, numerical results comparison between digital twin approach and forced 

floater oscillation approach for riser structure health monitoring will be presented and 

discussed. For target environmental condition, 100-yr return period storm condition is 

selected as summarized in Table 39. However, for inverse current profile prediction, nine 

load cases are generated randomly (same process with training data generation) for 

validation purpose of trained multivariate regression model (Figure 100). As shown in 

Figure 101, it is confirmed that there is a good agreement between randomly generated 

current profile for validation and its corresponding predicted current profile inversely. 

Thus, it can be claimed that current profile can be traced well using and multivariate 

regression inversely with minimum sensors. Continually, to confirm digital twin approach 

for riser structure health monitoring, LC08 among inverse current profile prediction load 

cases is selected. Since current profile cannot be changed rapidly (steady) even in real-

field, it is assumed that predicted current profile is the same for duration of simulation in 

this research. Furthermore, node displacements should be traced to build digital twin 

model. As previously explained, using quadratic interpolation function and curve length 

equation in 3D space, node displacement can be traced progressively from the top with 

assumption that hang off location can be given in real-time by GPS signal (Figure 102). 

Additionally, tension information is also needed to build digital twin model. Even though 

there is a little shift as sensor submerged depth goes to deep, overall trend can be captured 

well with suggested algorithm until certain submerged depth (at least last sensor attached) 

as shown in Figure 103. Now, all required information to build digital twin approach such 
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as node displacements, tension and predicted current profile below certain water depth is 

obtained from measured signal of inclinometers. Since near TDP (touch down point) 

which is the 100m arc length in this FPSO system is the most critical region during SCR 

operation, three neighboring locations (95m, 100m, 105m) near the TDP are selected to 

assess riser structure performance.  In Figure 104, time history of tension and bending 

moment at three locations are presented. As it can expected, wave impact can be negligible 

based on the comparison result between original model and digital twin approach whereas 

there is a small difference in forced floater oscillation compared to the others due to current 

loading effect. Continually, statistical characteristic comparison is tabulated in Table 40. 

Also, the difference comparison with original model is summarized in Table 41. It can be 

confirmed that both mean and STD (greatly affect to accumulative fatigue calculation) 

monitoring accuracy of riser can be significantly increased if several additional 

inclinometers are attached only top part of the riser (easy maintenance and continuous 

power supply) compared to forced floater oscillation approach.   

 

 

Table 39 Environmental Conditions (100-yr) 

Wave Wind 

Spectrum Gamma 

Direction 

from 

North 

Significant 

Wave (Hs) 

Spectral 

Period 

(Tp) 

Spectrum 

10 min 

at 10m 

elevation  

Direction 

from 

North 

(-) (-) (deg) (m) (s) (-) (m/s) (deg) 

JONSWAP 2.2 45 9.4 15.2 API 35 45 
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Figure 100 Current Profiles for MR Validation 

 

 

 

Figure 101 Current Profile Prediction, Multivariate Regression (MR), SCR  
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Figure 102  Displacement Tracing, 100-yr, WD100, LC08, SCR  

 

 

 

Figure 103 Tension Estimation, 100-yr, WD100, LC08, SCR  
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Figure 104 Performance Monitoring Comparison between Digital Twin and Forced 

Floater Oscillation, Near TDP (=arc length 100m), 100-yr, WD100, LC08, SCR  
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Table 40 Statistical Characteristics Comparison, Original VS Digital Twin VS Forced 

Floater Oscillation, 100-yr, WD100, LC08, SCR  

  

Arc Length 95m, SCR 

Original (Ori.) Digital Twin (DT) 
Forced Floater 

Oscillation (FFO) 

TSN (kN) BM (kN-m) TSN (kN) BM (kN-m) TSN (kN) BM (kN-m) 

Mean 21.1191 6.5983 21.5372 6.5698 26.0730 5.7411 

Std. Dev. 9.4012 2.6629 9.4814 2.7460 10.5081 2.3060 

Max. 58.0527 13.4566 57.9200 13.7716 68.5442 11.9160 

Min. 5.0806 1.6604 5.2423 1.6733 7.5351 0.7493 

  

Arc Length 100m, SCR 

Original (Ori.) Digital Twin (DT) 
Forced Floater 

Oscillation (FFO) 

TSN (kN) BM (kN-m) TSN (kN) BM (kN-m) TSN (kN) BM (kN-m) 

Mean 18.3278 6.8188 18.7595 6.6372 23.2460 6.0596 

Std. Dev. 9.0855 2.0621 9.0827 1.9995 10.2045 1.8599 

Max. 55.1152 13.1828 54.6946 12.1941 65.5812 11.4439 

Min. 4.1406 1.1176 3.8889 0.4988 7.0750 1.2401 

  

Arc Length 105m, SCR 

Original (Ori.) Digital Twin (DT) 
Forced Floater 

Oscillation (FFO) 

TSN (kN) BM (kN-m) TSN (kN) BM (kN-m) TSN (kN) BM (kN-m) 

Mean 17.1357 3.9212 17.5593 3.9127 21.8606 4.1037 

Std. Dev. 8.5446 2.3601 8.4675 2.3172 9.5975 1.9577 

Max. 52.9389 10.7697 52.2340 11.3296 63.2775 11.5567 

Min. 4.1430 0.2028 4.0144 0.1898 6.9408 0.1863 
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Table 41 Difference Comparison with Original VS Digital Twin, Original VS Forced 

Floater Oscillation, 100-yr, WD100, LC08, SCR  

  

Arc Length 95m, SCR 

Digital Twin (DT) Forced Floater Oscillation (FFO) 

TSN (%) BM (%) TSN (%) BM (%) 

Mean -1.98 0.43 -23.46 12.99 

Std. Dev. -0.85 -3.12 -11.77 13.40 

Max. 0.23 -2.34 -18.07 11.45 

Min. -3.18 -0.78 -48.31 54.87 

  

Arc Length 100m, SCR 

Digital Twin (DT) Forced Floater Oscillation (FFO) 

TSN (%) BM (%) TSN (%) BM (%) 

Mean -2.36 2.66 -26.83 11.13 

Std. Dev. 0.03 3.04 -12.32 9.80 

Max. 0.76 7.50 -18.99 13.19 

Min. 6.08 55.37 -70.87 -10.96 

  

Arc Length 105m, SCR 

Digital Twin (DT) Forced Floater Oscillation (FFO) 

TSN (%) BM (%) TSN (%) BM (%) 

Mean -2.47 0.22 -27.57 -4.66 

Std. Dev. 0.90 1.82 -12.32 17.05 

Max. 1.33 -5.20 -19.53 -7.31 

Min. 3.10 6.42 -67.53 8.12 
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7. CONCLUSIONS  

  

7.1 Multi-scale Approach for Chain-Mooring OPB-induced Failure  

In chapter 2, a multi-scale approach of using both local-high-fidelity and global-low-

fidelity computational models is introduced to best estimate the OPB-induced chain-

failure assessment by numerical-simulation tools. At each time step of global-line 

simulation, by calculating the time-varying tension and OPB interlink angles at the target 

spot, the actual time-varying bending stiffness (as function of tension magnitude and 

interlink angle) between adjacent chains was read from the pre-calculated 3D plots from 

high-fidelity non-linear FEM calculation.  For the global-system-simulation computation, 

hull-mooring-riser fully-coupled in-house time-domain simulation program, CHARM3D, 

was used. The results were double checked by a commercial program (OrcaFlex) when 

comparison is possible for the simpler case of constant interlink bending stiffness. For the 

high-fidelity local structural analysis, a commercial non-linear FEM program (ABAQUS) 

was used.  

From the present study, it is found that the accurate modeling of chain-hawse and fairlead 

connection in the global-dynamics simulation is very critical for the reliable OPB-induced 

failure assessment. Several conclusions from the present case study can be drawn as 

follows: 

• Without modeling the actual chain-hawse in the global analysis, the OPB/IPB 

angles can significantly be under-estimated.  
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• The mean and variation of interlink angles at the critical point are increased with 

smaller pretension (slack-side) with frictionless hinged connection.    

• Residual stresses after proof-loading test by manufacturers play a role in OPB-

induced failure.   

• Mooring tensions change little due to the change of fairlead connection but 

bending moments on the chain are significantly affected.   

• In case of fixed fairlead connection, bending moments and interlink-angle 

variations at taut side are greater than those at slack side, which means that the 

taut-side mooring is more vulnerable to OPB-induced failure. In case of 

frictionless hinged fairlead connection, the opposite is true. 

• The dynamic bending moments are significantly increased after fixing the fairlead 

connection, which is consistent with the witness of practicing engineers during the 

past two decades 

• In case of fixed fairlead connection, the fatigue damage is greatly (order of 100 

times) increased compared to the hinged fairlead connection. 

• When the residual stress effects are not accounted for, the fatigue damage is 

underestimated by 41% for hinged fairlead connection and by 33% for fixed 

fairlead connection. These differences are, however, much less when compared to 

the effect of fairlead-connection condition. 
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7.2 Effects of Fairlead-Connection Parameters on Mooring OPB-induced Failure 

In chapter 3, the effects of underwater-chain-stopper (UCS) bearing friction at fairlead 

connection and time-varying interlink EI (bending stiffness) at the UCS exit on the OPB-

induced-fatigue chain failure were investigated. To demonstrate their effects through 

numerical simulations, three different approaches, only considering time-varying EI, 

considering both time-varying EI and fairlead bearing friction, and neither considered, 

were modeled and the results were systematically compared. The “time-varying EI” was 

the multi-scale approach of using both local-high-fidelity and global-low-fidelity so that 

they were mutually interfaced at each time step. With fairlead bearing friction, the fairlead 

boundary condition was adjusted during the time-marching simulation depending on the 

instantaneous UCS angle and breakout angle. The simultaneous use of “time-varying 

fairlead bearing friction” and “time-varying EI” was not attempted by other researchers. 

In addition, the effect of different environmental heading (135deg) on the OPB stress was 

investigated. Also, the present UCSBRK approach (considering both time-varying EI and 

fairlead bearing friction) was compared with widely accepted BV methodology and the 

latter gave more conservative fatigue results.   

In addition, since fairlead bearing friction is affected by UCS bending stiffness directly, 

UCS bending stiffness sensitivity test were modelled and analyzed.  

From present research, several conclusions can be drawn as follows: 

• OPB-induced short-term fatigue damage is significantly increased when 

“UCSBRK” approach is used compared to the “basic” and “time-varying EI” 
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approaches.  It can be concluded that OPB-induced failure at target point (UCS 

exit) is mainly governed by UCS bearing friction at fairlead.  

• When “basic” and “time-varying EI” approaches are used slack-side mooring is 

more vulnerable to OPB-induced failure than taut-side mooring while the opposite 

is true when “UCSBRK” approach is used. 

• When “UCSBRK” approach is used high-frequency large-magnitude bending 

moments and stresses are generated at the target point, which can be a big problem 

in fatigue in view of high stress level and high number of cycles. 

• The floater motions and mooring tension magnitudes are not appreciably affected 

by the three different approaches. 

• Head environmental condition (=180deg) produced larger OPB-induced fatigue 

damage than 135-deg heading.  

• BV methodology gave more conservative fatigue results than the present 

“UCSBRK” approach. 

• With “UCSBRK” approach, the short-term fatigue damage can be increased by 

factor of 2 depending on UCS bending stiffness. 

• With “UCSBRK” approach, the short-term fatigue damage can be underestimated 

by factor of 2 when residual stresses from nonlinear FEM are not considered.  
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7.3 Structural Health Monitoring for TLP-FOWT Tendon using Sensors 

In chapter 4, an algorithm for the real-time structural health monitoring of TLP tendons 

using bi-axial slope sensors and top tension-meter was presented. Based on a generalized-

coordinate-based FEM theory with high-order rod elements, essential equations were 

derived for estimating the variations of tensions and bending moments along the tendon. 

The simplified tension formula was derived by assuming small angles (less than 10 

degrees) of tendon with respect to the vertical axis and the results turned out to be highly 

reliable.  To validate the algorithm, several case studies were performed for various 

regular and irregular waves. The slope-sensor distribution is not necessarily uniform; 

instead, denser (or coarser) distribution for higher (or smaller) variation was 

recommended. The estimated tension and bending-moment signals by using the developed 

algorithms with numerical-sensor signals matched excellently against the actual values 

proving the accuracy and effectiveness of the proposed methodology.  

To observe whether the developed algorithms can monitor even the details of the transient 

variations in tensions and bending moments, a special case of sudden one-line failure was 

also tested and it was confirmed that the algorithm can successfully capture the resulting 

transient responses, and thus be used as the basis of a failure detection system. 

Furthermore, the change of boundary conditions (B.C.) by unexpected circumstances can 

also be detected by examining the patterns of stress signals. When tested for maximum 

operational and extreme survival storm conditions, the algorithm predicted the tension and 

bending moment with 97-98% accuracy in the operational condition and 95-98% in the 

extreme condition.     
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The demonstrated capability of real-time monitoring of axial and bending stresses by the 

developed algorithms enables the real-time monitoring of accumulated fatigue damage at 

hot-spots by adding the corresponding fatigue-calculation algorithm, which can 

straightforwardly be added.  

 

7.4 Real-Time Trace of Riser Profile and bending moment with Inclinometers 

In chapter 5, to monitor or predict riser dynamic responses and the corresponding bending 

moments by using multiple-inclinometer signals, unique algorithms were developed based 

on the high-order rod-element FE formulas and analytic curve-length equation. The top 

and bottom points were assumed to be known. For riser x-y-z displacement tracing, 

quadratic interpolation functions for each line element between two neighboring bi-axial 

inclinometers were employed with respect to the global coordinate system. Then, from the 

analytic solutions for given boundary conditions, the node positions along the riser were 

sequentially obtained node by node at each time step. To solve the quadratic interpolation 

function, the analytic curve length formula in 3D space was used. As for bending 

moments, cubic interpolation function with respect to the generalized coordinate system 

was employed to allow double spatial derivative of shape function. With the given scheme, 

a simplified analytic formula for the bending moment at the mid-point of each riser 

segment can be obtained. Furthermore, through double spatial derivative of the shape 

function, the bending moments (or stresses) at any points along the riser can be obtained 

at each time step.  
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To validate the developed real-time riser-monitoring algorithms, a FPSO system with SCR 

or SLWR was simulated for 1-yr and 50-yr collinear wind-wave-current conditions with 

45-deg heading and the corresponding numerical sensor signals were inputted to the 

algorithms for reproducing the real-time riser profiles and bending moments (or stresses). 

As a numerical tool, OrcaFlex, widely adopted commercial program in the oil & gas 

industry, was used. Two different sensor intervals, (compact (Int.=2m) and coarse 

(Int.=10m)), were tested.  

Several conclusions can be drawn based on the presented results as below. 

• Overall, the real-time prediction of riser profiles and bending moments (or 

stresses) by using the inclinometer signals with the developed algorithms agrees 

well with the actual values for both SCR and SLWR regardless of sea-

environmental conditions.  

• The computational time for the algorithm is minimal so that the real-time riser 

monitoring is possible. The developed algorithm is general, so it can be applied to 

any types of risers, mooring lines, and cables. 

• The coarse sensor interval (10m) performed well compared to the compact sensor 

interval (2m) if riser shape varies smoothly along the arc length. If there is an 

inflection point within the interval around which curvature rapidly changes, high 

accuracy is not necessarily warranted. In this case, adjusted sensor arrangement is 

recommended for the high-curvature-varying region.  

• The bending moments and bending stresses can be predicted equally well as the 

riser profiles when proper sensor arrangement is used.  
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7.5 Digital Twin Model for Riser Health Monitoring with Minimum Sensors 

In chapter 6, novel riser structure health monitoring methodology with minimum sensors 

using digital twin and multivariate regression is suggested. First, to implement digital twin 

approach with minimum sensors, algorithms and methodology to obtain required 

information such as node displacements and tension and current profile prediction are 

explained. Node displacements can be traced in real-time using derived curve length 

equation in 3D space and inclinometers signal. Furthermore, tension also can be traced 

using sensing signals and intervals. Lastly, current profile below certain water depth is 

predicted applying multivariate regression algorithm inversely. Using those gathered 

information, digital twin is modelled and simulated. To claim the advantage of presented 

methodology, two different approaches such as innovative digital twin and typical forced 

floater oscillation are systemically compared and discussed. As a target structure, FPSO 

system with SCR is selected under 100-yr return period storm condition. It is confirmed 

that accuracy of performance assessment is greatly increased by the suggested 

methodology (digital twin) compared to the typical approach (forced floater oscillation).            
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APPENDIX A  

WAVE FORCES ON OFFSHORE STURCTURES 

In this appendix, linear and second order wave theories will be discussed at first. 

Furthermore, radiation and diffraction theory for floating structure, first-order wave 

excitation forces calculation based on potential theory will be introduced.   

A.1 Wave Theory 

Based on Laplace’s equation (A.1), the wave theory can be derived with several 

assumptions such as incompressible, inviscid, irrotational [40, 58]. 

2 0  =                                                                                                                             (A.1) 

To find wave potential in Laplace’s equation, several boundary conditions such as 

kinematic and dynamic on the free surface and bottom can be applied. First, wave particles 

should be remained within the free surface (kinematic boundary condition) 

   at z= ( , , )u v x y t
t x y t

  


   
+ + =

   
                                                                            (A.2)  

where ( , , )x y t  is wave elevation on the free surface.  

Next, for the dynamic boundary condition which is that there is an agreement between the 

atmospheric pressure and the pressure along the free surface (A.3) 

2 2 21
( )        at z= (x,y,t)

2
x y z gz

t
  


+  + + = −


                                                        (A.3)    

For bottom boundary condition which is physically means that wave particles cannot 

penetrate the seabed (velocity of wave particle in vertical direction is always zero) (A.4).  

0          at z=-d,  d is water depth
z


=


                                                                            (A.4) 
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Even though available boundary conditions are applied, Laplace’s equation is still difficult 

to resolve exactly because of the non-linear terms on the free surface boundary conditions. 

Thus, here, perturbation approach is adopted with small wave amplitude assumption to 

estimate approximated solution with a certain level of accuracy [40, 58].  

The corresponding first- and second-order wave velocity potentials and free surface 

elevation are presented as below,  

(1) ( cos sin )cosh ( )
Re[ ]

cosh

i kx ky tigA k z d
e

kd

  



+ −+
 = −                                                                        (A.5) 

(1) cos( cos sin )A kx ky wt  = + −                                                                                     (A.6) 

(2) 2 (2 cos 2 sin 2 )

4

3 cosh 2 ( )
Re[ ]

8 sinh

i kx ky tk z d
A e

kd

   + −+
 = −                                                          (A.7) 

(2) 2

3

cosh
cos(2 cos 2 sin 2 )

sinh

kd
A kx ky t

kd
   =   + −                                                          (A.8) 

where A is wave amplitude,  is the wave frequency, k is wave number and   is wave 

heading angle.  

For generation of random sea environment condition, fully-developed wave model can be 

modelled using wave spectra. Based on given wave spectrum ( )S  , random wave 

elevation signal can be generated by combination of a numerous number of linear wave 

components with random phases [40, 59]. 

( )

1 1

( , ) cos( ) Re[ ]i i i

N N
i k x t

i i i i i

i i

x t A k x t Ae
    − +

= =

= + + =                                                                   (A.9) 

2 ( )i iA S  =                                                                                                               (A.10) 
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where N,  and   are the number of wave components and random phase angle 

(generated by random number generation function) and wave frequency intervals, 

respectively. In this study, adjusted formula will be applied to avoid the repetition of 

random wave realization with restricted wave components number [40, 58] 

( ( ) )

1

( , ) Re[ ]i i i i

N
i k x t

i

i

x t Ae
   − + +

=

=                                                                                     (A.11) 

where i  is the random perturbation number evenly distributed between 

  and  
2 2

  
− . 
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A.2 Wave Loads on Floating Structure 

Since wave excitation loading calculation on floater is essential for prediction of mooring 

and riser dynamic response, the methodology using the diffraction and radiation theory 

(based on previously derived wave velocity potential) and the Morison equation will be 

explained in this section. 

 

A.2.1 Diffraction and Radiation  

Total velocity potential   should satisfy the Laplace equation with several boundary 

conditions such as free surface (kinematic and dynamic) and bottom boundary condition. 

Furthermore, total velocity potential can be expressed using linear combination of 

incidental velocity potential I , diffraction velocity potential D , radiation potential R  

using perturbation approach and wave slope parameter   [40, 58] 

( ) ( ) ( ) ( )

1 1

( )n n n n n n

I D R

n n

 
 

= =

 =  =  + +                                                                   (A.12) 

where 
( )n  means the n th order of  .  

In addition, the body boundary condition of floating structure is required to resolve wave 

excitation loads on the floating structure (A.13). 

nV
n


=


        on the body surface                                                                               (A.13)  

where n  is normal vector on the surface, nV  is the normal velocity vector on the body 

surface.  
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Also, the Sommerfeld far field radiation condition should be satisfied for the diffraction 

D , radiation potential R   [40, 58]. 

,

,lim [ ] 0
D R

D R
r

r ik
r→


  =


                                                                                                (A.14) 

where r denotes the radial distance from center of the floating structure. 

 

A.2.2 First Order Boundary Value Problem  

Using perturbation approach, the first order wave velocity potential and the first order 

incident potential (1)

I  can be expressed as below (separating the time dependency 

explicitly), respectively.  

 

(1) (1) (1) (1)

(1) (1) (1)

( )

Re [ ( , , ) ( , , ) ( , , )]

I D R

i t

I D Rx y z x y z x y z e 



   −

 =  + +

= + + 
                                                 (A.15)  
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



+
= −                                                                       (A.16) 

where k means that a wave number vector under the Cartesian components 

( cos , sin ,0)k k  ,  x  is the position vector and   is the incident wave angle (related to 

x-axis).  

The summary of first order diffraction and radiation potential governed by the boundary 

value problem is presented as below. 

2 (1)

, 0D R =            within fluid domain (z < 0)                                                              (A.17) 

2 (1)

,[ ] 0D Rg
z

 


− +  =


         on the free surface (z = 0)                                                  (A.18) 
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(1)

,
0

D R

z


=


    on the bottom (z = -d)                                                                               (A.19) 
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(1)

,lim [ ] 0D R
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r ik
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
→


  =


     at far field                                                                              (A.21) 

where r is the position vector on the body surface, r is the radial distance from the center 

and n  is the unit normal vector (from body surface into the fluid domain).  

The corresponding first-order motion of the floating structure in translational 
(1)  and 

rotational (1)  are presented as below [40, 59]. 

(1) (1) (1) (1) (1) (1)

1 2 3Re[ ], [ , , ]i te     − = =                                                                           (A.22) 

(1) (1) (1) (1) (1) (1)

1 2 3Re[ ], [ , , ]i te     − = =                                                                        (A.23) 

In the above equations, the subscripts number means the six degrees of freedom motion 

direction such as 1,2,3 is for surge, sway and heave and 4,5,6 is for roll, pitch, yaw, 

correspondingly.  Those six degrees of freedom motions can be re-written as below,  

(1)

i i =           for i = 1,2,3                                                                                           (A.24) 

(1)

i i =          for i = 1,2,3                                                                                            (A.25) 

The radiation velocity potential which is caused by fluid disturbance near floating 

structure can be presented as below,  

6
(1) (1)

1

R i i

i

  
=

=                                                                                                                (A.26)  
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where i  is the first-order velocity potential under unit amplitude condition in the i  th 

mode.  Continually, the body boundary condition on the body surface can be re-written as 

below [40, 59], 

(1)

i
in

n


=


            for  i = 1,2,3                                                                                      (A.27) 

(1)

3[ ]i
ir n

n


−


= 


         for  i = 4,5,6                                                                                    (A.28) 

Also, the diffraction velocity potential can be applied the body surface boundary condition 

[40, 58] 

(1) (1)

D I

n n

  
= −

 
     on the body surface                                                                                (A.29)  

 

A.2.3 First Order Potential Forces 

Using the first order diffraction ( (1)

D ) / radiation ( (1)

R ) velocity potential, wave 

excitation loads on the floating structure can be obtained. Based on the perturbation 

approach, the hydrodynamic pressure on the floating structure surface can be written as 

below [40, 58]. 

(1)
(1)P

t



= −


                                                                                                             (A.30) 

Using combination of hydrodynamic pressure and wetted body surface S(t), total forces 

and moments exerted on the floating structure can be obtained as below [40, 59]. 
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( ) ( ) 4,5,6

i i

Sb

i i

Sb

F t Pn dS i

F t P r n dS i

= =

=  =





       

       
                                                                                        (A.32) 

Thus, total first order loads can be obtained.  

(1) (1) (1) (1)

HS R EXF F F F= + +                                                                                                  (A.32) 

where HS, R and EX represents the hydrostatic restoring, the radiation and the wave 

exciting (the incident and diffraction potentials) force and moments, accordingly.  

Here, due to dynamic response (motion) of the floating structure, the change of the first 

order hydrostatic restoring force and moment (1)

HSF is occurred.  

(1) (1)[ ]HSF K = −                                                                                                             (A.33) 

where K  is the hydrostatic restoring stiffness, 
(1)  is the first order motion.  

Continually, the radiation potential induced first order force and moment can be written 

as below,  

( )(1) (1)Re [ ] { }RF = f                                                                                                          (A.34) 

where 

b

i
ij j

S

f dS
n


 


= = −


f          i, j = 1,2, … ,6                                                                     (A.35) 

2 a

ij ij ijf M i C = − −                                                                                                              (A.36) 

Thus, radiation potential force and moment can be expressed as below [40, 59]. 

( )(1) (1) (1)Re [ ]{ } [ ]{ }a

RF  = +M C                                                                                          (A.37) 

where 
a

M  is the added mass coefficients and C is the damping (radiation) coefficients. 
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The force term (1)

EXF  in the below equation which is the first order wave force and 

moment based on incident and diffraction velocity potential can be defined as below [40, 

58]. 

0

(1) Re ( )
ji t

EX I D

S

F Ae dS
n




  
 

= − + 
  

             j = 1,2, …, 6                                       (A.38) 

As shown, the first order wave excitation loads are proportional to the frequency 

dependent wave amplitude. Thus, Linear Transfer Function (LTF= (1) /EXF A ) represents 

correlation between incident wave elevation and the first order diffraction forces on the 

floating structures [40, 59].  

 

A.2.4 Wave Loads in Time Domain Simulation 

During the time domain simulation (CHARM3D), the linear wave forces are calculated 

with given wave frequency, the second order sum and difference frequency forces also 

can be obtained using the interaction of bi-chromatic waves [40, 58, 59]. Using two 

Volterra series in the time domain, the linear and second order hydrodynamic loads on the 

floating structures induced from stationary Gaussian random seas condition can be written 

[40, 58]. 

(1) (2)

1 2 1 2 1 2 1 2( ) ( ) ( ) ( ) ( , ) ( ) ( )F t F t h t d h t t d d           
  

− − −

+ =  − +  −  −                (A.39) 

where 1( )h   represents the linear impulse response function and 2 1 2( , )h    is the quadratic 

impulse response function. Furthermore, ( )t  means the ambient wave free surface 

location at the reference position.  
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For N number of wave components under uni-directional sea state, the wave exciting loads 

from incident and diffraction velocity potential can be written as below [40, 59]. 

(1)

1

( ) Re[ ]i

N
i t

I i i

i

F t A e


=

=  L( )                                                                                          (A.40) 

( ) ( )(2) *

1 1 1 1

( ) Re[ ( , ) , ]j k j k

N N N N
i t i t

I j k j k j k j k

j k j k

F t A A e A A e
   

   
− +

= = = =

= −  +  D S( )          (A.41) 

(*) represent the complex conjugate. Also, L, D, S means linear transfer function (LTF), 

the difference ( D ) and sum ( S ) frequency quadratic transfer function (QTF), accordingly.  

Furthermore, the wave excitation loads for multi-directional waves can be expressed as 

below [40, 59]. 

(1)

1 1

( ) Re[ ]i

N M
i t

I jl j l

j l

F t A e
 

= =

=  L( , )                                                                             (A.42) 

( )

(2) *

1 1 1 1

( )

*

1 1 1 1

( ) Re[

]

j k

j k

i tN N M M

I jl km j k l m

j k l m

i tN N M M

jl km j k l m

j k l m

F t A A e

A A e

 

 

   

   

− −

= = = =

− +

= = = =

= 

+ 





D( ,- , , )

                 S( , , , )

                                            (A.43) 

For wave load caused by radiation velocity potential in time domain can be expressed as 

below [40, 58]. 

( ) ( ) ( )

t

a

RF t t d    
−

= −   − − M R( )                                                                     (A.44) 

where ( )a M  is the added mass at infinite wave frequency.  Also, the convolution 

integral term means that the memory effects of the wave loads on the floating structure 
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prior to time t . Furthermore, tR( )  is called the retardation function which is related to 

frequency domain solution for radiation problem as follow [40, 59].  

0

2 sin
( ) ( )

t
t C d


 

 



= R                                                                                                 (A.45) 

( )C   is the wave damping coefficient. The added mass at infinite frequency ( ( )a M ) is 

equivalent to constant value [40, 58]. 

0

( ) ( ) ( ) cosa a t t dt


 =  − M M R                                                                              (A.46) 

By summing each force terms, total wave force in the time domain can be calculated [40, 

59]. 

(1) (2)

(1) (2)

( ) ( ) ( )

( ) ( ) ( )

total

I I R

F t F t F t

F t F t F t

= +

= + +           
                                                                                    (A.47) 

 

A.2.5 Morison’s Formula 

Since wave loads based on velocity potential cannot consider viscous effect, Morison’s 

formula is employed additionally [43].  

2 2 1
( )

4 4 2
M m n a n D s n n n n

D D
F C u C C D u u

 
     = − + −  −                                        (A.48) 

MF  denotes the Morison force, mC  ( 1 aC= + ) is the inertia coefficient, aC  is the added 

mass coefficient, DC  is the drag coefficient, sD  is diameter or breadth of the floating 

structure,  nu  and nu  are the velocity and acceleration of the fluid normal to the structure,  

n  and 
n  are normal velocity and acceleration of the floating structure.  
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A.2.6 Time Domain Solution for Floating Structure Motion 

The equation of motion for floating structure in time domain can be expressed as below 

[40, 58]. 

[ ( )] ( ) ( , ) ( , )M M K F F F
a

I C Mt t t   +   +  = + +                                                               (A.49) 

( , ) ( )

t

C t t d   
−

= − − F R                                                                                                 (A.50) 

 where ( )FI t  is the first and second order wave exciting forces and ( , )FM t   is drag forces 

obtained from Morison Equation.  

In the numerical modeling, the second-order Adams-Moulton method (or mid-point 

method) is applied. Because the finite element analysis of the mooring lines and riser in 

time domain is developed based on this method, the same method should be applied here 

to resolve together at each time step (fully-coupled equations of mooring lines-riser-hull) 

[40, 58]. 

( ) ( , ) ( , )M  =F F F KI C Mt t t    + + −                                                                                (A.51) 

 =                                                                                                                                      (A.52) 

where 

( )M=M M
a+                                                                                                                       (A.53) 

Apply integration to the above equations from time step ( )nt  to ( 1)nt +  

( 1) ( 1)

( ) ( )

( 1) ( ) ( ( ) ( , ) ( , )) ( )M M F F F K

n n

n n

t t

n n

I C M

t t

t t t dt dt    

+ +

+ −  = + + −                                  (A.54) 

( 1)

( )

( 1) ( )

n

n

t

n n

t

dt  

+

+ − =                                                                                                                 (A.55) 
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Here, using the Adams-Moulton scheme: 

( 1)

( )

( ) ( 1)[ ]
2

 

n

n

t

n n

t

t
x dt x x

+

+
= +                                 (A.56) 

( 1) ( ) ( 1) ( ) ( 1) ( ) ( 1) ( )

( 1) ( )

[ ]
2

[ ]
2

M M F F F F F F

K ( + )

n n n n n n n n

I I C C M M

n n

t

t

 

 

+ + + +

+


 =  + + + + + +


− 

                            (A.57) 

( 1) ( ) ( 1) ( ) ( 1) ( 1) ( ) ( )2
[ ] [ ]

2
   -->   

n n n n n n n nt

t
       + + + +

− = + = − −


                                  (A.58) 

In the above equations, there are several unknown terms such as 
( 1)n +

 and 
( 1)n +

 , the 

convolution integral and drag force which are a function of the floater velocity at time step 

(n1). Thus, an iterative process is required to resolve the equations with initial guess of 

the 
( 1)n +

 term within calculation process the ( 1)
F

n

C

+  and ( 1)
F

n

M

+  [40, 58].  

Here, using the Adams-Bashforth scheme, the iterative procedure can be avoided for below 

non-linear loads terms [40, 58]. 

( 1)

( )

( ) ( 1) (0)[3 ]
2

 F F   = F   

n

n

t

n n

C C C C

t

t
F dt t

+

−
=  −        for  n=0                                                  (A.59) 

( 1)

( )

( ) ( 1) (0)[3 ]
2

 F F   = F   

n

n

t

n n

M M M M

t

t
F dt t

+

−
=  −      for  n=0                                               (A.60) 

The floating structure equation of motion in time domain can be expressed as below 

( ) ( 1) ( ) ( ) ( 1)

2

( ) ( 1) ( )

0

4 4
[ ] [ ] [3 ]

[3 ] 2 2

M+K M F F F F

F F K F

n n n n n

I I C C

n n n

M M

t t
 



+ −

−

 = + + +  −
 

+  − − +

                                          (A.61) 

0F  is a constant load (ex: net buoyancy force) 

where    
( 1) ( )n n  + = −                                                                                                   (A.62) 
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APPENDIX B  

DYNAMICS OF MOORING LINES AND RISER 

In this section, based on three-dimensional elastic rod theory [37], the modelling of legs 

such as mooring lines or riser in the CHARM3D is explained and discussed.  

B.1 Theory of Rod 

 

Figure 105 Coordinate system of slender rod 

 

In this section, behavior of slender rod can be described with respect to the center line of 

the rod. As shown in Figure 105, position vector ( ( , )r s t ) which is a function of arc length   

( s ) and time ( t ) is introduced to define curved line in three-dimensional space. Using 

assumption that the rod is inextensible, it can be defined that 'r  is the unit tangent vector 

and ''r  is the principal normal vector and ' ''r r  is bi-normal vector where the prime 

means the differentiate with respect to the arc length whereas the dot means the 

differentiation with respect to the time in the following.  

By applying equilibrium of the linear force and moment at the unit arc length, equation of 

motion of the rod can be expressed as below:  

' 0F q r+ − =                                                                                                              (B.1) 
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' ' ' 0M r F m+  + =                                                                                                        (B.2) 

where q  and m are the applied force and moment per unit length of arc length,    is the 

mass per unit length.  F  and M  are the resultant force and moment. The resultant 

moment M  can be re-written as below 

' ( ' '') ' 0M r EIr Hr−  − =                                                                                               (B.3) 

 where EI is bending stiffness of the rod, H is the torque.  It shows the relationship between 

the bending moment and the curvature along the bi-normal direction. Using this 

relationship, below equation is also derived.  

' [( '') ' ] ' ' '' 0r EIr F H r Hr m + + + + =                                                                                     (B.4)   

' ' 0H m r+  =                                                                                                                   (B.5) 

With assumption that the torque effect can be negligible and there is no distributed 

torsional moment, eq.3.4 can be re-written as 

' [( '') ' ] 0r EIr F + =                                                                                                              (B.6) 

Here, introducing the Lagrangian multiplier which is a scalar function ( , )s t , the force 

term and the scalar product can be re-written as below. 

( '') ' 'F EIr r= − +                                                                                                              (B.7) 

' ( '') ' 'F r EIr r =  −                                                                                                              (B.8) 

By introducing the tension (T ) and the curvature ( ) of the rod, above equation can be 

expressed again.  

2T EI = −                                                                                                                   (B.9) 
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Combining Equation 3.7 with 3.1, the equation of motion can be developed. Furthermore, 

the inextensible condition of the rod should be satisfied.  

( '') '' ( ') 'EI r r q r −  +  + =                                                                                           (B.10) 

' ' 1r r =                                                                                                                          (B.11) 

Continually, the elongation is infinite small and linear if the rod is extensible. Then, above 

equation can be approximated as: 

1
[ ' ' 1]

2

T
r r

AE AE


 − =                                                                                                        (B.12) 

It can be obtained the position vector (= ( , )r s t ) and the Lagrangian multiplier ( ( , )s t ) 

from above equation if sufficient information is given such as inextensible condition with 

initial and boundary conditions and applied force vector q. In addition, the gravity of the 

rod and the hydrostatic/hydrodynamic forces are related to the applied force vector q in 

offshore systems. Thus, it can be re-written as: 

s dq w F F= + +                                                                                                                      (B.13) 

where w is the rod weight per unit length,   s dF and F  are the hydrostatic / hydrodynamic 

forced applied on the rod unit length. Furthermore, hydrostatic force can be re-written as 

(Pr') 'sF B= −                                                                                                                     (B.14) 

where B is buoyancy force and P is the hydrostatic pressure at point r on the rod.  

With combination of the Morison’s formula as below,  

( )n n n n n n n

d A M D A dF C r C V C V r V r C r F= − + + − − = − +                                               (B.15) 
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where AC  is the added mass coefficient, MC is the inertia coefficient, dC  is the drag 

coefficient.  nV  and nV  are fluid around the structure velocity and acceleration, 

respectively.   Those terms can be expressed as: 

( ) [[ ] '] 'nV V r V r r r= − − −                                                                                               (B.16) 

- ( )nV V V r r=                                                                                                               (B.17) 

- ( ) 'nr r r r r=                                                                                                                   (B.18) 

( ') 'nr r r r r= −                                                                                                                (B.19) 

The equation of motion of the rod finally derived with its weight, hydrostatic and 

hydrodynamic forces in the sea water using combination of other equations (B.13~B.15 

and B.1). 

( '') '' ( ') ' 0n

A i dr C r EIr r w F − − − + + + =                                                                    (B.20) 

2T P EI = + −                                                                                                                  (B.21) 

w w B= +                                                                                                                          (B.22) 

T T P= +                                                                                                                               (B.23) 

w   and T  are the effective tension / weight of the rod. 

Finally, governing equation for the statics or dynamics of the rod is derived with 

combination equations (B.20) and (B.12). 
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B.2 Finite Element Modeling of Rod in CHARM3D 

The governing equation of the rod in the sea water can be re-written as: 

( '') '' ( ') ' 0
i

n

i A i i i i dr C r EIr r w F − − − + + + =                                                                (B.24) 

Also, inextensible of the rod condition can be expressed as: 

1
[ ' ' 1] 0

2
n nr r

AE


− − =                                                                                                  (B.25) 

Using finite element method, the governing equation of the rod can be discretized into 

several elements which has a finite length. For each element, the variables such as ( , )s t  

and ( , )ir s t  can be approximated as [40, 58]. 

( , ) ( ) ( )i i ilr s t A s U t=                                                                                                               (B.26) 

( , ) ( ) ( )m ms t P s t =                                                                                                          (B.27) 

where 0 s L   and lA  and mP  is called the interpolation function. By applying the 

Galerkin’s method along the element length, it can be expressed as [40, 58]. 

0

[ ( '') '' ( ') ' ] 0 
i

L

n

i i A i i i i dr r C r EIr r w F ds  − − − + + + =                                                     (B.28) 

With assumption that the term (
ijU  in ( )i l ilr A U t = ) is independent, the above 

equation can be resolved after integration by parts scheme is applied. 

0

0 0

[ ( ) '' '' ' ' ( )]

'' ' [ ' ( '') '] '

  

= 

i

L

n

l i A i l i l i l i d

L L

i l l i i l

A r C r EIA r A r A w F ds

EIr A r EIr A

 



+ + + − +

 + − 


                                                (B.29) 
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Furthermore, the stretching condition can be re-written and quadratic and cubic 

interpolation function can be applied for mP  and lA   [40, 58]. 

0

1
[ ( ' ' 1) ] 0
2

 

L

m n nP r r ds
AE


− − =                                                                                                    (B.30) 

2 2 2

1 2 3

2 3 2 3 2 3 2 3

1 2 3 4

1 3 2 , 4 4 , 2

1 3 2 , ( 2 ), 3 2 , ( )

    

      

P P P

A A L A A L

     

        

= − + = − = −

= − + = − + = − = − +
                (B.31) 

s

L
 =                                                                                                                                   (B.32) 

The parameters such as ilU  and m  can be written with assumptions that the position, 

tangent, the Lagrangian multiplier ( , ',    i ir r  ) are continuous between the neighboring 

elements, respectively [40, 58]. 

1 2 3 4(0, ), '(0, ), ( , ), '( , )      i i i i i i i iU r t U r t U r L t U r L t= = = =                                                     (B.33) 

1 2 3(0, ), ( , ), ( , )
2

    Lt t L t     = = =                                                                            (B.34) 

Using combination equations (B.19, B.26, B.27 and B.29), the equation of motion of the 

element can be presented as below:  

1 2( ) ( )a

ijkl ijkl jk ijkl n ijkl jk ilM M U K K U F+ + + =                                                                (B.35) 

0 0

   

L L

l i l k ij jk ijkl jkA rds A A ds U M U  =  =                                                                           (B.35a) 

0 0 0 0

0 0

[ ( ') '] [ [ ] [( ') '] ]

[ ( ' ' ) ]

   

L L L L

n

l A i l A i i i A l l i i

L L

a

A l k ij l k s t it js jk ijkl jk

AC r ds AC r r r r ds C A r ds A r r r ds

C A A ds A A A A ds U U U M U

= −   = −  

= −   = 

   

 

                (B.35b) 
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1

0 0

'' '' '' ''

L L

i i i k ij jk ijkl jkEIA r ds EI A A ds U K U=  =                                                                   (B.35c) 

2

0 0

' ' ' '

L L

l i n n l k ij jk n nijk jkA r ds P A A ds U K U   =  =                                                          (B.35d) 

0

( ) 
i

L

l i d ilA w F ds F+ =                                                                                                           (B.35e) 

ij  is called the Kronecker Delta Function. The resultant loads of the last element are not 

considered in the above equation because they are cancelling out during the derivation 

process of the final assembly equation.  The coefficients of the above equation such as 

mass, added mass, bending stiffness and axial stiffness are defined as below.  

0

      

L

ijkl l k ijM A A ds =                                                                                  for mass     (B.36) 

0 0

[ ( ' ' ) ]

L L

a

ijkl A l k ij l k s t it jsM C A A ds A A A A ds U U= −                              for added mass     (B.37) 

1

0

'' ''

L

ijkl l k ijK EIA A ds=                               for general stiffness from bending stiffness (B.38) 

2

0

' '

L

nijkl n l k ijK P A A ds=              for general stiffness from axial tension and curvature (B.39) 

0

( ) 
i

L

il l i dF A w F ds= +                                                                                                        (B.40) 

The imposed stretching condition equation also can be re-written as below with derivation 

process.  

m mil ik lk m mt tG A U U B C = − −                                                                                               (B.41) 
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0 0

1 1
[ ( ' ')] ' '
2 2

   

L L

m n n m i l ik lk mil ik lkP r r ds P A A ds U U A U U= =                                              (B.41a) 

0

1

2
 

L

m mB P ds=                                                                                                                    (B.41b) 

0 0

   

L L

m m t t mt tP ds P P ds C AE  = =                                                                                     (B.41c) 

 

 

B.3 Formulation of Static Problem 

The above formulas (B.35 and B.41) can be expressed to resolve static problem as 

below.  

1 2( ) 0ij il ijlk n ijlk jkR F K K U= − +  =                                                                             (B.42) 

0mG =                                                                                                                         (B.43) 

where ilF  is the term which is the combination with several loads on the line (rod) such 

as applied static force, gravity and drag forces.  Actually, it is hard to resolve these 

equations because of the non-linearity terms. Thus, to resolve these equations, the iterative 

approach (Newton-Raphson method) should be applied here. With neglect the higher order 

terms of the equations which is expanded with Taylor series about approximated the 

solution or previously iterated solution, it can be expressed (n is the number of iteration) 

as [40, 58]. 

( 1) ( ) ( ) ( ) 0n n il il
il il jk n

jk n

R R
R R U

U




+  
− −  −  =

 
                                                                   (B.44) 
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( 1) ( ) ( ) ( ) 0n n m m
m m jk n

jk n

G G
G G U

U




+  
− −  −  =

 
                                                                   (B.45) 

It can be reconstructed as matrix form:  

0( ) 1( ) ( )

0( ) 1( ) ( )

t n t n n
jkijlk iln il

t n t n n
nmjk mn m

UK K R

D D G

    − 
 =    
 −      

                                                                           (B.46) 

The process of re-numbering is applied to the global degree of freedom related to the 

parameters such as 
jkU  and n  in CHARM3D [40, 58]. 

For two-dimensions (2D): 

DOF of 
jkU  = DOF of 

1 2 7 8

3 4 9 10
   ilU

 
=  
 

  for i =1,2,3 and l  =1,2,3,4                            (B.47) 

DOF of n  = DOF of  5 6 11      m =   for m =1,2,3                                                  (B.48) 

For three-dimensions (3D): 

DOF of 
jkU  = DOF of 

1 2 9 10

3 4 11 12

5 6 13 14

   ilU

 
 

=
 
  

  for i =1,2,3 and l  =1,2,3,4                            (B.49) 

DOF of n  = DOF of  7 8 15      m =   for m =1,2,3                                                  (B.50) 

After re-numbering process is applied, the equation (B.46) can be re-written as [40, 58]: 

( ) ( ) ( ) 0F K y
n n−  =                                                                                                                (B.51) 

11 12 21 22 31 32 1 2 13 14 23 24 33 34 3[ , , , , , , , , , , , , , , ]y
T U U U U U U U U U U U U  =                              (B.52) 

11 12 21 22 31 32 1 2 13 14 23 24 34 34 3[ , , , , , , , , , , , , , , ]F
T R R R R R R G G R R R R R R G= − − −                       (B.53) 

 Also, the force vector can be obtained from right hand side of equation (B.29) as below:  
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0, 1

0, 2

0, 2

0, 3

0, 3

, 1

, 1

, 2

, 2

' ( '') '

( '') '

' ( '') '

( '') '

' ( '') '

( '') '

0

0

' ( '') '

( '') '

' ( '') '

( '') '

F          

i i s i

i i

i i s i

i s i

i i s i

i s i

r

i i s L i

i s L i

i i s L i

i s L i

r EIr

EIr

r EIr

EIr

r EIr

EIr

r EIr

EIr

r EIr

EIr













= =

= =

= =

= =

= =

= =

= =

= =

= =

− +

−

− +

−

− +

−

=

−

−

[1]

1

[1]

1

[1]

2

[1]

2

[1]

3

[1]

3

[2]

1

[2]

1

[2]

2

[2]

2

[2]

3

[2], 3
3

, 3

0

0

' ( '') '

( '') ' 0

0

                      

i i s L i

i s L i

N

L

N

L

N

L

N

L

N

L

N
r EIr

L
EIr

= =

= =

 
  −
  
  −
  −  
  −
  −  
  −
  
  
  = 
  
  
  
  
 
 
 
 
 −
 
 

 
  


















 
 
 
 
 
 
                                             (B.54) 

In the above equation, the subscript number one represents the first end of the element and 

number two means the second end (Ran, 2000; Kang, 2015).  Also, the nodal resultant 

force can be expressed 
1 2 3, ,N=[ ]

TN N N  and there is a relationship between 

1 2 3, ,L=[ ]
TL L L  and 

'
M=L r  (the nodal resultant moment). From force vector F

r
, the 

resultant loads at the end element can be calculated after resolving using iterative approach 

[40, 58]. 

( 1) 0F +F
r n+ =                                                                                                                       (B.55) 
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B.4 Formulation of Dynamic Problem – Time Domain Integration 

It needs to be re-called here the equation of motion to resolve the dynamic response of the 

rod. These equations (B.35 and B.41) can be re-written as: 

1 2

1 2

( ) ( )

ˆ( ) ( ) 0

a

ijlk ijlk jk ijlk n nijlk jk il

ijlk jk ijlk n nijlk jk il

M M U K K U F

M U K K U F





+ + + −

= + + − =
                                                           (B.56) 

1 2

1 2

ˆ( ) ( ) 0

ˆ

ijlk jk ijlk n nijlk jk il

il il il il

M U K K U F

F F F F

= − + + =

= − − + =
                                                               (B.57) 

m mil k lk m m tG A U U B C = = +                                                                                        (B.58) 

1 1 2 2ˆ , ,    a

ijlk ijlk ijlk il ijlk jk il n nijlk jkM M M F K U F K U= + = =                                           (B.59) 

The equation (B.57) can be expressed to apply the integration scheme [40, 58]. 

ˆ ˆ
ijlk jk ilM V F=                                                                                                                (B.60) 

jk jkU V=                                                                                                                      (B.61) 

The above equations (first-order) can be integrated from ( )nt  to ( 1)nt + : 

( 1) ( 1)

( ) ( )

ˆ ˆ  

n n

n n

t t

ijlk jk il

t t

M V dt F dt

+ +

=                                                                                             (B.62) 

( 1) ( 1)

( ) ( )

  

n n

n n

t t

jk jk

t t

U dt V dt

+ +

=                                                                                                  (B.63) 

Due to the term ˆ
ijlkM  can be varying with respect to the time, the term (

( 1)

( )

ˆ  

n

n

t

ijlk jk

t

M V dt

+

 ) 

can be simplified up to second-order accuracy by approximating the time-varying term (

ˆ
ijlkM ) in the time interval 

( 1 ( )( )n nt t t+ = −  to be constant:  
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( 1) ( 1)

( ) ( )

( 1)

( )

( 1/2) ( 1) ( 1/2) ( )

ˆ ˆ

ˆ ˆ ˆ

  

 

n n

n n

n

n

t t

ijlk jk il

t t

t

n n n n

ijlk jk ijlk jk il

t

M V dt F dt

M V M V F dt

+ +

+

+ + +

=

− =

 



                                                            (B.64) 

Furthermore, the equation (B.63) can be re-arranged using the trapezoidal rule up to 

second order accuracy:  

( 1) ( ) ( 1) ( )[ ]
2

n n n n

jk jk jk jk

t
U U V V+ +

= + +                                                                         (B.65) 

By re-constructing above equation, the followings can be obtained: 

( 1) ( 1) ( ) ( )2 2
[ ] ( )n n n n

jk jk jk jk jkV U U V U
t t

+ += − − = 
 

                                                    (B.66) 

( 1)

( )

( 1/2) ( 1/2)

2 2

4 4 2ˆ ˆ ˆ( ) ( ) 0 

n

n

t

n n

ijlk jk ijlk jk il

t

M U M V F dt
t t t

+

+ + −  − =
                                      (B.67) 

( 1) ( 1) ( 1) ( 1) ( 1)

( ) ( ) ( ) ( ) ( )

( 1) ( )

1 2 1 2ˆ ( ) ( )    

n n n n n

n n n n n

n n

jk jk jk

t t t t t

il il il il il il il

t t t t t

U U U

F dt F F F dt F dt F dt F dt

+ + + + +

+ = −

= − − + = − + +    
             (B.68) 

By applying the trapezoidal rules to the above equations first terms: 

( 1)

( )

1 1 ( )[ ( 2 )]
2

 

n

n

t

n

il ijkl jk jk

t

t
F dt K U U

+


=  −                                                                       (B.69) 

( 1)

( )

2 ( 1/2) 2 ( ) 2 ( ) ( 1/2) 2[2 2( ) ( )]
2

 

n

n

t

n n n n

il n nijlk jk n nijlk jk n nijlk jk

t

t
F dt K U K U K U  

+

− +
= +  +     (B.70) 

( 1/2) ( 1/2)n n

n n n  + − = −                                                                                               (B.71) 
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The terms (

( 1)

( )

 

n

n

t

il

t

F dt

+

 ) in (B.68) includes the applied force from hydrodynamic and gravity 

forces [40, 58]. To estimate the value, the Adams-Bashforth explicit scheme can be applied 

here.  

( 1)

( )

( ) ( 1) (0)(3 )
2

 

n

n

t

n n

il il il il

t

t
F dt F F t F

+

−
= − =                                                                   (B.72) 

With combination of several equations (B.64, B.65, B.60, B.70 and B.72), the equation 

of motion for dynamic integration scheme can be expressed:  

( 1/2) 1 ( 1/2) 2 2 ( )

2

( 1/2) ( ) 1 ( ) ( 1/2) 2 ( ) ( ) ( 1)

4 ˆ[ ] 2( )

4 ˆ 2 3

     

    

n n n

ijlk ijlk n ijlk jk n nijlk jk

n n n n n n n

ijlk jk ijlk jk n nijlk jk il il

M K K U K U
t

M V K U K U F F
t

 



+ +

+ − −

+ +  + 


= − − + −


                    (B.73) 

Furthermore, the mass term (
( 1/2)ˆ n

ijlkM +
) also can be approximated by the Adams-Bashforth 

explicit scheme: 

( 1/2) ( ) ( 1)1ˆ ˆ ˆ(3 )
2

n n n

ijlk ijlk ijlkM M M+ −= −                                                                              (B.74) 

However, in the equation (B.58) – the stretch condition, the term ( ( 1)n

mG + ) can be 

approximated from previously time step ( ( )n

mG ) by applying Taylor expansion: 

( ) 2 ( ) 1( )

( )
1( )

0

2 2 2

m mil k lk m m t

n n t n

m nijlk jk jk mn n

n
t n m

n

G A U U B C

G K U U D

G
D







= = + =

= +  + 


=



                                                              (B.75) 

The above equations (B.73 and B.75) can be re-written for the time domain formula [40, 

58]: 
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0( ) 1( ) ( )
ln

0( ) 1( ) ( )

ˆ ˆ ˆ

ˆ ˆ ˆ

      
      =  

t n t n n
ijlk i iljk

t n t n n
nmjk mn m

K K RU

D D G

    
    
 −       

                                                                  (B.76) 

 0( ) ( ) ( 1) 1 ( 1/2) 2

2

2ˆ ˆ ˆ[3 ]  
t n n n n

ijlk ijlk ijlk n nijlkK M M K K
t

− += − + +


                                                 (B.77) 

0( ) 2 ( )

ln
ˆ 2t n n

i nijlk jkK K U=                                                                                                (B.78) 

0( ) 2 ( )ˆ 2t n n

mjk mijlk ilD K U=                                                                                                (B.79) 

1( ) 1( )ˆ 2t n t n

mn mnD D=                                                                                                        (B.80) 

( ) ( ) ( 1) ( ) 1 ( )

( 1/2) 2 ( ) ( ) ( 1)

2ˆ ˆ ˆ[3 ] 2

2 3

   =   
n n n n n

il ijlk ijlk jk ijlk jk

n n n n

n nijlk jk il il

R M M V K U
t

K U F F

−

− −

− −


− + −

                                                             (B.81) 

( ) ( )ˆ 2n n

m mG G=                                                                                                                 (B.82) 

 

 

By changing the subscription ( n ) meaning (ex: n  th time step in dynamic whereas n  th 

iteration in static) and keeping the coefficients formulation, the final equation of motion 

of the rod can be obtained [40, 58]. After solving the combined equation of rod element 

motion for time step ( 1n + ), the nodal resultant load can be obtained. 

 

( ) ( )ˆ ˆ( ) 0K y F
n n − =     at n  th time step                                                                      (B.83)

( 1) 0F F
r n++ =                                                                                                              (B.84) 
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APPENDIX C  

COUPLING BETWEEN PLATFORMS AND MOORING LINES AND RISER 

C.1 Spring Coupling Between the Floating Structure and Lines  

The connection between the lines (mooring lines or riser) and the floating structure is 

modelled using springs such as translational (linear) and rotational.  The translational 

motion can be defined using linear spring whereas the rotational spring is related to the 

rotation of the floater. Here, the nodal resultant forces and moments in the motion equation 

(right hand side of eqn. (B.29)) is re-expressed as below: 

0

0 0

[ ( ) '' '' ' ' ( )]

'' ' [ ' ( '') '] '

  

= 

i

L

n

l i A i l i l i l i d

L L

i l l i i l

A r C r EIA r A r A w F ds

EIr A r EIr A

 



+ + + − +

 + − 


                                                (B.29) 

Continually, its vector form is expressed in eqn. (B.54) where 1 2 3[ , , ]N
TN N N=  is the 

nodal resultant force and 1 2 3[ , , ]L
TL L L=  is the nodal resultant moment M(=L r') . 

Furthermore, in the assembly equation, the resultant loads of the neighboring elements 

(intermediate nodes) are canceled out each other. However, the resultant forces and 

moment of the end element nodal point (connecting with the floating structure) are 

equivalent with the forces and moments from the spring. Thus, the forces exerted on the 

end node of the element caused from linear spring should be defined as below [40, 58].  

[ ] ( )N K X p p r
L =  + +  −                                                                                             (C.1) 

where [ ]K
L

 represents 3 x 3 the linear spring stiffness matrix (diagonal), X  is the 

translational motion of the floating structure,     is the rotational motion of the structure, 

p  is the position vector with respect to the body fixed coordinated system, r  represents 
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the position of the end node of the last element which is connected to the floating structure 

using springs. Thus, the equations (3.33, 3.34) can be labeled newly as: 

13 1 23 2 33 3( , ), ( , ), ( , )  U r L t U r L t U r L t= = =                                                                      (C.2) 

With contribution from the linear spring connector between last element and the floating 

structure, the loads exerted on the floater: 

0F N
L + =                                                                                                                   (C.3) 

0M p NL +  =                                                                                                             (C.4) 

However, since there is a proportional relationship between the moment applied the end 

node caused from rotational spring and the angle (between the tangent of the last element 

and the direction vector of the spring), it can be re-written with the assumption that small 

angular motion of the floater [40, 58]. 

' '
[ ] [ ]

' '

r r
L E e e

r r
K K  = − = +  −                                                                           (C.5) 

where  r' represents the tangential vector of the line. To unity of the tangent, the term (

'

'

r

r
) can be used. Also, E  denotes spring direction unit vector, e  is equivalent with E  in 

the body coordinate system and K
 means the rotational spring constant.  

Continually, with contribution from the rotational spring connector between last element 

and the floating structure, the loads exerted on the floater: 

0F
 =                                                                                                                          (C.6) 

M L r' L e
 =                                                                                                          (C.7) 

The loads applied on the connector can be re-defined in subscript notation here as below: 
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( )L

i i i j ji iN K X p C r= + + −                                                                                             (C.8) 

1/2

'
[ ]

( ' ')

i
i i j ji

k k

r
L K e D

r r

 = + −                                                                                      (C.9) 

and the connector loads (forces and moments) on the floating structure are expressed:   

( )L

i i i i i j ji iF N K X p C r= − = − + + −                                                                              (C.10) 

L

i k ki k kiM M M N C L D= + = +                                                                                       (C.11) 

 
3 2

3 1

2 1

0

0

0

p p

C p p

p p

− 
 

= −
 
 − 

                                                                                                       (C.12) 

 
3 2

3 1

2 1

0

0

0

e e

D e e

e e

− 
 

= −
 
 − 

                                                                                                         (C.13) 

In the static analysis, the connector forces at the last node in n+1 iteration from iteration 

n (previous) can be defined as [40, 58]: 

( 1) ( )

( )

...

...          

n n i i i
i i j j j

j j j

n rr rX r

i ij j ij j ij j

N N N
N N r X

r X

N K r K X K 






+   
= +  +  +  +

  

= −  −  −  +

                                                        (C.14) 

( 1) ( )

( ) ' ' '

' ...

' ...          

n n i i
i i j j

j j

n r r r

i ij j ij j

L L
L L r

r

L K r K 






+  
= +  +  +

 

= −  −  +

                                                                        (C.15) 

where the tangential stiffness coefficient (
AB

ijK ) for degree of freedom 
jB  in the equation 

iA  [40, 58]. 
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[ ( )]rr L Li
ij i i i j ji i i ij

j j

N
K K X p C r K

r r
 

 
= − = − + + − =

 
                                                (C.16) 

[ ( )]rX L Li
ij i i i j ji i i ij

j j

N
K K X p C r K

X X
 

 
= − = − + + − = −

 
                                               (C.17) 

[ ( )]r L Li
ij i i i j ji i i ij

j j

N
K K X p C r K  

 

 
= − = − + + − = −

 
                                                    (C.18) 

' '

1/2

1/2 3/2

'
[ ( )]

' ' ( ' ')

' '
[ ]
( ' ') ( ' ')

r r i i
ij i i j ji

j j k k

ij i j

m m n n

L r
K K e D

r r r r

r r
K

r r r r









 
= − = − + −

 

= −

                                                           (C.19) 

'

1/2

'
[ ( )]

( ' ')

r i i
ij i i j ji ij

j j k k

L r
K K e D K D

r r

  
 

 
= − = − + − = −

 
                                               (C.20) 

In the static analysis, the connector forces at the platform in n+1 iteration from iteration n 

can be defined as [40, 58]. 

( 1) ( )

( )

...

...          

n n i i i
i i j j j

j j j

n Xr XX X

i ij j ij j ij j

F F F
F F r X

r X

F K r K X K 






+   
= +  +   +

  

= −  −  −  +

                                                            (C.21) 

( 1) ( )

( ) '

' ...
'

' ...          

n n i i i i
i i j j j j

j j j j

n r r X

i ij j ij j ij j ij j

M M M M
M M r r X

r r X

M K r K r K K X   






+    
= +  +  +  +  +

   

= −  −  −  −  +

                                     (C.22) 

 

[ ( )]Xr L Li
ij i i i j ji i i ij

j j

F
K K X p C r K

r r
 

 
= − = − − + + − = −

 
                                                (C.23) 

[ ( )]XX L Li
ij i i i j ji i i ij

j j

F
K K X p C r K

X X
 

 
= − = − − + + − =

 
                                                   (C.24) 
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[ ( )]X L Li
ij i i i j ji i i ij

j j

F
K K X p C r K C 

 

 
= − = − − + + − =

 
                                                     (C.25) 

[ ]r Li
ij k ki k ki i ij

j j

M
K N C L D K C

r r

  
= − = − + =

 
                                                                         (C.26) 

' [ ]
' '

r i
ij k ki k ki i ij

j j

M
K N C L D K D

r r

  
= − = − + =

 
                                                                      (C.27) 

During the iterative procedure, the rod stiffness coefficients (
rr

ijK  and 
' 'r r

ijK ) is included 

in the elemental equation, the rigid body coefficients (
XX

ijK , 
X

ijK 
 and ijK 

) is included 

in the floater motion equation and the coupling stiffness coefficients (
rX

ijK , 
Xr

ijK , 
r

ijK 
, 

'r

ijK 
, 

r

ijK 
 and 

'r

ijK 
) is included to a coupling matrix. Furthermore, the forces vectors 

( ( )n

iN , ( )n

iL ,  ( )n

iF  and ( )n

iM ) will be added the equation of the line element and the 

floater (B.68) and will be integrated from time ( )nt  to ( 1)nt + :  [40, 58]. 

 

( 1) ( 1) ( 1) ( 1) ( 1)

( ) ( ) ( ) ( ) ( )

( 1) ( )

1 2 1 2ˆ ( ) ( )    

n n n n n

n n n n n

n n

jk jk jk

t t t t t

il il il il il il il

t t t t t

U U U

F dt F F F dt F dt F dt F dt

+ + + + +

+ = −

= − − + = − + +    
             (B.68) 

 

Equations for ir : 

( 1)

( )

( 1) ( ) ( )

( )

[ ] [ 2 ]
2 2

[ 2 ]
2

 

              

n

n

t

n n ni i i
i i i j j j i

j j jt
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Equations for '

ir : 
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and for connector loads on the floating structure. 

Equations for iX : 

( 1)

( )

( 1) ( ) ( )

( )

[ ] [ 2 ]
2 2

[ 2 ]
2

 

              

n

n

t

n n ni i i
i i i j j j i

j j jt

Xr XX X n

ij j ij j ij j i

F F Ft t
F dt F F r X F

r X

t
K r K X K F






+

+    
= +   +  +  +

  


= −  −  −  +


                  (C.30) 

Equations for i : 
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C.2 Damper Connection Modelling 

In CHARM3D, linear damping force which is related to the relative translational velocity 

is applied. The damping force term ( D

iN ) on the connection of the last line element is 

expressed:   

( )D

i i j ji iN D X C r= + −                                                                                                   (C.32) 
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where D  is a linear damping coefficient, r , X  and   are the velocity of the node, 

translational / rotational velocity, and  

3 2

3 1

2 1

0

[ ] 0

0

ij

p p

C C p p

p p

− 
 

→ = −
 
 − 

                                                                                          (C.33) 

In the time domain, the integration of the connecting force can be represented as below 

[40, 58]. Similar with previously explained, the damping coefficients are also added to the 

line and floater motion of equation (same way with stiffness case).  

( 1) ( 1) ( 1) ( 1) ( 1)

( ) ( ) ( ) ( ) ( )

( )

( ) ( ( )

     

 )

n n n n n

n n n n n

t t t t t
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t t t t t

i ji j i

N dt D X C r dt D dX D C d D dr

D X D C D r

 



+ + + + +

= + − = + −

=  +  − 

                      (C.34) 

Equations for iX : 

( 1) ( 1)

( ) ( )

( ) ( ( )   )

n n

n n

t t

D D

i i i ji j i

t t

F dt N dt D X D C D r

+ +

=− = −  +  +                                            (C.35) 

 

 

 

 

C.3 Force Vector of Hull, Mooring Lines and Riser Coupled Dynamics 

After fully-coupled modelling between the floater and mooring lines and riser, assembled 

matrix has a 8 ( 1) 1N + −  rows (N is the total element number) for legs. Also, a leg 

(mooring lines and risers) can be divided into N elements and its corresponding nodes (n 

= N+1) in CHARM3D. Due to coupling terms, the assembled matrix becomes sparse.  At 
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every time step, the six degree of freedom motion of end nodes in each element can be 

defined by 
jkU  and its corresponding tension also defined as  n . The fully-coupled 

global stiffness and forcing vector is presented in Figure 106.   

 

 

Figure 106 Coupled global stiffness and forcing vector matrix 
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( )E  = the last line element, 15 x 1 matrix ( ,  jk nU   )  

( )F  = the floater displacements, 6 x 1 matrix (  ) 

( )G  = the force vector of the line ,15 x 1 matrix (
( ) ( ))ˆˆ ,   
n n

il mR G− ) 

( )H  = the force vector of the platform, 6 x 1 matrix=> represents right hand side of the 

equation (A.61)  

( )I  = the force vector of the connector on the end node of the line ( ,  i iN L ), 6 x 1 

matrix=> represents right hand side of the equation (C.38)  

( )J  = the force vector of the connector on the end node of the line ( ,  i iF M ), 6 x 1 

matrix=> represents right hand side of the equation (C.39)  


