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ABSTRACT

This dissertation explores the use of Shannon’s entropy and mutual information to
quantify uncertainty and to support experimental planning and parameter selection in
simulation models. The implications of uncertainty in the results of simulation models are
highlighted through an illustrative example where a queue system is modeled using
stationary univariate distributions.

In section 2, entropy measures are estimated using histogram-based method with
probability density function and discrete empirical distribution. Different number of bins
and different normalization methods are investigated. Challenges of working with entropy
measures for continuous variables are identified and solutions to these challenges are
developed.

In section 3, entropy measures are estimated using kernel-based method, k-nearest
neighbors, and fuzzy-histogram-based methods. Different parameters of each method,
such as bandwidth, number of k-nearest neighbors, and number of bins, are investigated.
This section is an extension of section 2. A different solution to handle the challenges of
calculating entropy measures for continuous variables is proposed, which has the
advantage of being independent of the choice of the number of bins.

In section 4, entropy measures are applied to investigate the measures’ ability to
support input parameter selection and experiment planning in simulation models. By using
statistical methods, such as regression analysis and contingency analysis, and by

comparing the results of the entropy measures with the results from the standard error of



the mean and ANOVA, there is empirical evidence that entropy measures can support the
identification of the number of replications that leads to the largest uncertainty and the
selection of the most important parameters. With respect to the group of seeds, entropy
measures can identify differences among the groups consistently with the standard error
of the mean, but not the group of seed that leads to the largest uncertainty.

Overall, the experimental results indicate that entropy measures when estimated
using the histogram-based method with discrete empirical distribution appear to be
capable to support uncertainty quantification, experimental planning, and parameter
selection in simulation models. However, there are still open questions about this topic

and directions for further research on this area are articulated at the end of this dissertation.
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1. INTRODUCTION

1.1. Background

Simulation models are developed to mimic real systems. Despite the increased
details that can be added to simulation models, modelers and researchers acknowledge
that a model can seldom precisely reconstruct the real system under investigation due to
the system complexity, the large number of variables involved, the dependencies among
the variables, the system variability over time, among other factors.

Simulation models are mostly used to represent complex systems and to support
critical decisions in terms of economic or social aspects. These models usually show
spatial, temporal, and multi-variate dependence that affect the quality and accuracy of their
results (Schefzik, Thorarinsdottir, & Gneiting, 2013). Ignoring these dependencies and the
consequent uncertainties can lead to over- or under-confidence in the model results
(Barton, Nelson, & Xie, 2010).

According to Xie, Nelson, and Barton (2014b), the random input variables are
widely modeled as independent univariate distributions in simulation models. However,
these input variables may depend on each other or may exhibit a pattern throughout time.
Lack of fidelity in the random input models can lead to an inaccurate representation of the
system and poor simulation estimates.

Hanson and Hemez (2003) declared that simulation models are also naturally

dependent on the modeler’s understanding of the system. This idea was reinforced by
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Christley et al. (2013) in their paper entitled ““Wrong, but useful’: negotiating uncertainty
in infectious disease modelling”. According to these authors, epidemiological models, as
any simulation model, are surrounded by assumptions, approximations, and human
influence.

As highlighted by Oberkampf, DeLand, Rutherford, Diegert, and Alvin (2002), a
simulation model is always a simplified representation of the reality and any complex
system, or even simple ones, contains details that are not represented in the model.
Besides, if a system is driven by inputs with randomness, uncertainty will always be
present in the model (Biller & Gunes, 2010). Consequently, simulation models are always
subject to errors and uncertainty (Marelli & Sudret, 2014).

DeVolder et al. (2002) argued that the more complex the system is, the harder it is
to get a precise solution from the model because the uncertainties are also greater. These
authors also mentioned that this is somewhat ironic, because models, especially simulation
models, are mostly needed to represent complex systems.

To emphasize the trade-off between model complexity and model uncertainty, the
Council for Regulatory Environmental Modeling (CREM) showed that the total
uncertainty is depicted as a sum of the model framework uncertainty and the data
uncertainty. As illustrated in Figure 1, increasingly complex models reduce model
uncertainty as more details and, consequently, better understanding are incorporated into
the model (Council for Regulatory Environmental Modeling, 2009). On the other hand,

more details increase data uncertainty as more input variables and data are required.



Therefore, a trade-off decision must be made between model complexity and uncertainty
and there is an appropriate level of complexity that will lead to the minimum total

uncertainty.
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Figure 1. The trade-off between model complexity and uncertainty.
Source: Council for Regulatory Environmental Modeling (2009).

Model uncertainties may not only lead to social or economic losses, but they can
also hinder society’s trust in using models as a decision support tool (Kitching, Hutber, &
Thrusfield, 2005). The usefulness of simulation models depends, then, on controlling their
error and uncertainty (Barton, Nelson, & Xie, 2014). However, calibration tools and some
other practices may not resolve the issue of model uncertainty. By calibrating some

parameters, modelers could be actually ignoring or altering the uncertainty inherent to the
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system and, consequently, the uncertainty and errors of the model results could be larger.
Roy and Oberkampf (2011) agree that model calibration may not always be the best
technique to deal with model inaccuracy. According to these authors, sometimes it may
be better to simply account for the mismatch when reporting the results. Barton et al.
(2014) added that input-uncertainty error can be aggravated by some practices adopted to
control simulation-estimation error. The conclusion to be made is that model uncertainty
cannot be eliminated if one wants to correctly represent the system under investigation
(Biller & Nelson, 2002).

Although models are inevitably uncertain, the consensus in the academic field is
that based on model uncertainty identification and quantification and given the appropriate
reflection about this uncertainty, models can still effectively support decision-making.
According to Oberkampf et al. (2002), a model with limited, but known applicability, is
more useful than a very detailed or complex model with unknown uncertainty. The
appropriate reflection on model uncertainty involves informing decision-makers about
how uncertain the model results may be, and where, when, and under which conditions
the model results are applicable.

Considering the importance of uncertainty for simulation results, DeVolder et al.
(2002) claimed that an algorithm or a systematic method was needed to quantify
uncertainty in simulation models. These authors believed that to be an effective decision-

support tool, simulation models must provide estimates about their level of accuracy and



level of applicability so that decision-makers could determine the appropriate level of
confidence to be placed on the results.

Nevertheless, estimating or quantifying uncertainty is not an easy task. Christley
et al. (2013) reasoned that only a few uncertainties can be quantified, and even this
quantification is most likely uncertain.

With the advances in communication systems, sensors, and computer technology,
a large amount of data has become available to the modelers. The increase in data has
stimulated modelers to consider larger number of parameters in their studies, even though
this data may be sometimes inaccurate or irrelevant.

Two other reasons for modelers to consider more parameters in their studies
include: an attempt to better mimic the reality and the limited knowledge about the system
under investigation. This last reason implies a larger number of parameters to be tested.
Consequently, computer models are usually high-dimensional with respect to the input
parameters and, sometimes, even with respect to the responses of interest (outputs).

The increase in the number of parameters in simulation models may lead to a better
approximation of the real system, but it can also increase uncertainty. Moreover, an
increased number of parameters also means increased resource needs.

To extract meaningful results from a simulation model, a modeler needs to input
(accurate) data into the model and run it for an adequate time period, known as run-length,
and for an adequate independent number of times, known as replications. Each of these

replications is known as an experiment unit. A group of replications with identical settings,



also known as treatment, is called scenarios. The study in which one or more treatments
are applied to experimental units is called experiment.

With a large number of parameters, a great deal of experimentation is required
(Callao, 2014). The simulation outputs are affected by the numerous input parameters. A
larger number of replications is needed to determine whether a parameter has significant
influence on the output or how a specific scenario significantly differs from another
scenario.

Computer time, as well as modeler time, can be expensive. Besides the costs
incurred by increased time requirements, time itself is also a constraint. That is, a
modeler’s time is limited and the simulation model must provide information in a timely
manner in order to be appropriately used for decision-making. In order to minimize the
cost and time required for experimentation, either the run-length, or the number of
replications, and/or the number of experiments itself must be reduced.

Despite the large number of parameters used in simulation models, the Pareto
principle frequently applies (Box & Meyer, 1986a). According to the Pareto principle, a
large proportion of changes or effects in the system can be explained by only a small
proportion of the input parameters (Box & Meyer, 1986b). The existence of only a few
important parameters is referred to as factor sparsity. This means that appropriately
selecting the parameters from which to construct the model is of critical importance not
only to provide accurate responses, as highlighted by Elizabeth G. Ryan, Drovandi,

Thompson, and Pettitt (2014), but also to improve utilization of resources. Eliminating



unimportant parameters at an early stage allows experiments to be run more quickly, with
fewer resources, and usually with increased accuracy/reduced uncertainty in the results.

Determining the optimum number of replications to be run is also of critical
importance, as running too few replications may not give enough information about the
system, but running too many replications may not bring any marginal information to the
system as stated by the law of diminishing returns. In this thesis, marginal information
refers to the increment in information resulting from a unit replication increment to the
total number of replications used in the experiment.

Therefore, to use the resources efficiently, simulation modelers must carefully
select the parameters to include in the simulation model, design the experiments that will
be run, and plan the configuration of the experiments. The complexity in planning and
designing the simulation experiments increases when there is more than one response of
interest, because input parameters that are not important for one response of interest, may
be critical for another one. A similar challenge occurs when dealing with different
estimators: parameters that may affect a measure of dispersion, may not have the same
effect on a measure of central tendency and vice versa. Therefore, the choice regarding
the appropriate model design and the appropriate experiment design and configuration
may also depend on what the modeler is expecting to obtain (Clyde, 2001).

The aforementioned context can be summarized by the following trade-off
discussion. Modelers want to incorporate more details (i.e., parameters) into simulation

models in order to better approximate the models to reality and, consequently, help



decision-makers better understand the system dynamics. The ultimate goal is to increase
the accuracy of the model results. Ideally, modelers would like to include as many
parameters as possible. However, knowledge, data, computational power, and time are
limited. The available data can also be inaccurate. Therefore, by including more
parameters one can, possibly, introduce more uncertainty and errors in the model and,
hence, reduce its accuracy. Ignoring the model uncertainty can have negative impacts,
such as: over- or under-confidence in the model results, economic losses, accidents,
fatalities, and so on. Unfortunately, model uncertainty cannot be eliminated if one wants
to correctly represent the system under investigation. Nevertheless, simulation models can
still be useful in supporting decision-making, as long as the decision-makers are informed
about the uncertainty in the model results. To quantify the simulation model uncertainty,
one has to run experiments. Due to limited budget and time, it is important to efficiently
plan and design the simulation experiments in order to be as informative as possible, while
accounting for uncertainties in the model and for any available prior information while
choosing the design of the model. To acknowledge uncertainties in the model results will
not only lead to better-informed decisions, but also to a better understanding of the system
being modeled.

In this context of increased complexity and uncertainty, limited budget, limited
time, and different usability, smart use of the available resources is essential (Clyde,
2001). Clearly, a methodology is required for quantifying uncertainty in simulation

models and for understanding the experiment settings that contribute to uncertainty. The



management of uncertainty is essential when the number of replications is limited and the
simulation model involves a large number of parameters (Dean & Lewis, 2006). This

trade-off discussion is summarized in Figure 2.
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Figure 2. The need for a methodology for uncertainty quantification in simulation
models.

The remainder of this dissertation is organized as follows. Section 1.2. discusses
simulation experiments that show the relevance of this dissertation topic by exemplifying
the implications of uncertainty in the results of a queue simulation model. Section 1.3.
provides a brief overview of the topics of this dissertation and their contributions. Section
2 discusses the use of histogram-based entropy measures as a method for uncertainty
quantification in simulation models with stationary univariate distributions. Kernel, k-

nearest neighbors, and fuzzy-histogram-based entropy measures are discussed in Section
9



3 as a method for uncertainty quantification in simulation models. In Section 4 different
applications of entropy measures in combination with other methods such as regression
analysis and Tukey-Kramer multiple comparison test are presented to understand the input
parameters and experiment settings (i.e., number of replications and seed) that most
contribute to uncertainty in simulation models. Finally, conclusions and future research
directions are provided in Section 5.
1.2. Relevance of the Topic: Implications of Uncertainty in the Results of a
Simulation Model

As mentioned earlier, there is a trade-off between model complexity and model
uncertainty. In general, the more complex the simulation model is, the larger the number
of replications one will have to run in order to be able to reach statistically significant
conclusions. With the increase in the number of replications, a larger amount of data is
obtained about the system. This, in turn, is expected to reduce the uncertainty about the
system being investigated. However, one must be careful with this statement. By running
more replications, data uncertainty is in fact reduced. Nevertheless, the model uncertainty
remains the same and so does the confidence level in making statements about the output
of interest. As it is well known, the confidence interval (CI) either contains or does not
contain the point estimate of interest. Simply running more replications does not affect the
confidence level of the conclusions obtained from the simulation results. This means that
by running more replications and, consequently, consuming more resources, one may miss

the true estimate about the system, while a scenario with fewer replications and,
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consequently, with larger data uncertainty may contain the true estimate. In this context,
it is also important to assess if running more replications is economically and
computationally attractive. That is, it is important to evaluate whether the additional
replications bring substantial marginal information (i.e., increase in information per unit
of replication) to justify the additional use of resources. From this discussion, one can see
that the implications of uncertainty in the results of simulation models is complex and
deserves further attention.

To investigate the implications of uncertainty in the results of simulation models a
simple queue model was built using Simio® University Enterprise Edition v 10.165. The
model consists of a single source of arrivals, a single queue, and s servers providing the
same service. After being served, customers leave the system. Balking and reneging were
not considered in the model. Two input parameters were considered in the model, namely
inter-arrival time (1/4) and service time (1/u), and two output responses were considered,
namely average number of customers in the system (L or NIS) and average time spent in
the system (W or T15S).

The queue model was chosen because it has closed-form theoretical solutions for
some distributions of the input parameters and it also has good approximations for more
general distributions. The notation used in this dissertation follows the A/S/s Kendall’s
notation, where: A represents the arrival process, S the service time, and s the number of

servers. M is used for memoryless distributions and G for more general distributions.

11



Several scenarios were run with different number of replications, different traffic
intensities, different number of servers, different variances, different distributions (M =
exponential, and G = normal), different parameter values, and different seeds. The run
length of each scenario was 1,825 days, which included 365 days of warm-up. The
specified warm-up period was enough for the system to reach steady-state for all the
experiments.

The equations used to calculate the exact theoretical values of the two output
responses, namely L and W, were taken from Gautam (2012) and are given below.

M /M /s systems have the following exact solution:

A po(A/1)°A

s Equation 1
u o slsu[l—2A/(su)]? q
1 po(A/u)’ .
Wt Equation 2
h " STsu= A/ GuP q
where:
s—1 1 /1 n (/1/ ) 1 -1
= il e we s
Py LE;) {n! (#) } + st 1-— ,1/(5#)] quation

M /G /1 systems have the following exact solution:

22 (0% + 1/k)

L= Equation 4
1 A(c?+1/u? .
welp 2o tYw) Equation 5

w2 1-p
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where p = 1/(su) and a2 is the variance of the service time. Equation 5 is known
as the Pollaczek-Khintchine equation.

Due to the simplicity of the aforementioned system, one would expect to obtain
accurate results in the simulation model even when the simulation model is driven by only
a few input parameters (i.e., arrival time and service time). As acknowledged by
simulation stakeholders, because the input parameters themselves are usually unknown
and contain randomness, adding more parameters to the simulation model does not always
reduce uncertainty.

To verify the accuracy of the simulation results, response values computed for L
and W using the simulation model were compared with the theoretical true steady-state
values of the corresponding responses. A summary of this comparison is presented in
Table 1. As discussed in the previous paragraph, a simulation model representing a simple
real system like this (queue system) should have low uncertainty in terms of both the
extrinsic input-uncertainty and the intrinsic output-uncertainty and, consequently, the
theoretical steady-state values of the real system should be within the simulated CI.
However, the results in Table 1 indicate that this is not always true. Interesting

contradictions are highlighted below.

Table 1. Percentage of scenarios with theoretical values within simulated values.
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Number of % of Number of % of Average  Average
Model / Number theoretical scenarios theoretical scenarios of of
W values that L values that smallest  smallest
Number of of L . C gt
Replications  Scenarios V\{|th|n the contal_n Wlthln the conta!n absolute  absolute
simulated theoretical simulated theoretical error of error of
w ClI w LCl L w L
M/M/1 150 120 80.0% 122 81.3% 0.053% 0.072%
10 15 15 100.0% 15 100.0% N/A N/A
20 15 15 100.0% 15 100.0% N/A N/A
50 15 15 100.0% 15 100.0% N/A N/A
100 15 15 100.0% 15 100.0% N/A N/A
200 15 15 100.0% 15 100.0% N/A N/A
400 15 2 13.3% 2 13.3% 0.092% 0.099%
600 15 7 46.7% 8 53.3% 0.062% 0.073%
800 15 11 73.3% 11 73.3% 0.057% 0.058%
1000 15 11 73.3% 11 73.3% 0.054% 0.056%
1500 15 14 93.3% 15 100.0% 0.002% N/A
M/M/3 150 132 88.0% 133 88.7% 0.022% 0.023%
10 15 15 100.0% 15 100.0% N/A N/A
20 15 15 100.0% 15 100.0% N/A N/A
50 15 15 100.0% 15 100.0% N/A N/A
100 15 15 100.0% 15 100.0% N/A N/A
200 15 15 100.0% 15 100.0% N/A N/A
400 15 3 20.0% 3 20.0% 0.028% 0.032%
600 15 11 73.3% 10 66.7% 0.016% 0.014%
800 15 15 100.0% 15 100.0% N/A N/A
1000 15 15 100.0% 15 100.0% N/A N/A
1500 15 15 100.0% 15 100.0% N/A N/A
M/M/10 150 131 87.3% 136 90.7% 0.011% 0.014%
10 15 15 100.0% 15 100.0% N/A N/A
20 15 15 100.0% 15 100.0% N/A N/A
50 15 15 100.0% 15 100.0% N/A N/A
100 15 15 100.0% 15 100.0% N/A N/A
200 15 15 100.0% 15 100.0% N/A N/A
400 15 2 13.3% 6 40.0% 0.010% 0.018%
600 15 11 73.3% 12 80.0% 0.009% 0.014%
800 15 14 93.3% 14 93.3% 0.014% 0.013%
1000 15 14 93.3% 14 93.3% 0.013% 0.012%
1500 15 15 100.0% 15 100.0% N/A N/A
M/G/1 140 15 10.7% 27 19.3% 0.875% 0.939%
10 14 2 14.3% 3 21.4% 0.882% 0.918%
20 14 2 14.3% 3 21.4% 0.864% 0.893%
50 14 2 14.3% 3 21.4% 0.917% 0.973%
100 14 2 14.3% 3 21.4% 0.891% 0.935%
200 14 2 14.3% 3 21.4% 0.898% 0.946%
400 14 1 7.1% 2 14.3% 0.830% 0.867%
600 14 1 7.1% 3 21.4% 0.851% 0.981%
800 14 1 7.1% 3 21.4% 0.863% 1.001%
1000 14 1 7.1% 2 14.3% 0.868% 0.926%
1500 14 1 7.1% 2 14.3% 0.885% 0.951%
398 418 0.240% 0.262%
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The smallest absolute error of W or L was calculated using Equation 6.
Smallest Absolute Error of Y

Yineory — Lower Bound Cly

) Equation 6

Ytheory

- mm Yiheory — Upper Bound Cly

Yiheory

where:

Y is the variable under investigation (W or L);

Yineory IS the theoretical true value of W or L;

Lower Bound Cly is the lower bound of the simulated confidence interval of the
variable Y; and,

Upper Bound Cly is the upper bound of the simulated confidence interval of the
variable Y.

As the results shown in Table 1 indicate, the simulation model performed well, but
it was not 100% accurate in representing the queue system under the different scenarios
investigated. About 85.1% of the simulated confidence intervals (Cls) contained the true
W value of the M /M /s system and 86.9% of the simulated Cls contained the true L value.
However, only 10.7% of the simulated Cls contained the true W value of the M /G /1
system and only 19.3% of the simulated Cls contained the true L value. The average
absolute errors (including or excluding zeros) of W and L did not exceed 1% in any of the

scenarios investigated. The individual absolute error of W and L did not exceed 0.5% in
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any of the M /M /s scenarios investigated and it did not exceed 3.5% in any of the M /G /1
scenarios investigated.

Interestingly, for M/M /s systems, the highest individual absolute error was
always observed for 400 replications, regardless of the configuration. These results are
surprising for two reasons. First, M /M /1 queue systems have exact theoretical solutions
and, hence, the error is not due to the numerical solution. Second, with a higher number
of replications, the intrinsic output-uncertainty tends to decrease due to the increase in the
sample size. Consequently, a few possible explanations for these contradicting results are:
(1) the pseudorandom number generator of the software is not appropriate, (2) the warm-
up period is not long enough, (3) the extrinsic input-uncertainty is present and significant
in the model, and/or (4) the intrinsic output-uncertainty is not monotonically decreasing
with the increase in the number of replications. The first explanation is not adequate
because Simio® uses the Mersenne Twister pseudorandom number generator that has an
extremely long period and has been extensively tested for uniformity and independence.
The second explanation can also be eliminated because the effect of the warm-up period
was investigated for all the scenarios and the warm-up period used in the experiments was
considered satisfactory in all the scenarios. Moreover, if the warm-up period was the issue,
the effect should be even higher for scenarios with identical configuration and a larger
number of replications. As one can see from Table 1, the error tends to reduce again with
a higher number of replications. Therefore, the third and fourth explanations are the only

ones remaining unexplained and indicate the impacts that uncertainty may have on the
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simulation results. Figure 3 and Figure 4 show the boxplot of six different experiments,
with identical M/M /1 configuration but with different numbers of replications for the
simulation responses time in the system and number in the system, respectively.
Experiments are numbered from the lowest to the highest number of replications, where
experiment 376 is the M /M /1 system replicated 400 times. As can be seen in Figure 3
and Figure 4, experiment 376 is the experiment with the largest error between the
simulation responses and the theoretical responses among the experiments shown.

For M/G /1 systems, the largest individual errors were obtained in the scenarios
with the largest number of replications. Another interesting observation is that despite the
fact that the L response had a larger number of true values contained within the simulated
Cls, the highest absolute errors observed referred to this response and not to the W

response. This was observed for the majority of the scenarios under investigation.
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Figure 3. Boxplot of simulation response time in the system.
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Figure 4. Boxplot of simulation response number in the system.
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Although this is a simple example, the situation can be actually worse, because the
uncertainty level in more complex systems may be much higher than the ones observed
here. For instance, a realistic simulation model usually mimics a complex system that has
tens or hundreds of input parameters and at least a handful of responses of interest. In such
complex systems, extrinsic input-uncertainty, as well as intrinsic-output uncertainty, are
more likely to be higher due to the greater number of assumptions and approximations,
higher chances of data measurement errors, greater inherent variability, and so on.
Moreover, in more complex systems, there is also a higher probability that the responses
of interest will be a correlated nonlinear function of the inputs. Therefore, this illustrative
example shows the need for an uncertainty quantification analysis and careful use of the
simulation results.

Law (2007) emphasized throughout his book that simulation models are driven by
random inputs and, consequently, will produce random output. He argued that appropriate
analysis of the output is critical if the results are to be properly interpreted and used. Barton
et al. (2014) highlighted that not only corporate profitability may depend on the decisions
informed by simulation results, but also human lives. Therefore, simulation modelers
should search for systematic ways of improving the model results accuracy and estimating
the uncertainty level of the results in order to appropriately inform the simulation
stakeholders.

In this context, it is important to reinforce the fact that simulation results contain

uncertainty does not mean the results cannot support decision-making or have no use.
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What is important is that the decision-makers and simulation stakeholders are adequately
informed of these uncertainties and the consequent risks involved in their decisions. As
the quote says: “something is better than nothing”. A partially informed decision has
higher chances of success than a simple blind guess.
1.3. Research Topics and Contributions

Based on the trade-off between model complexity and uncertainty in simulation
models, this dissertation investigates the use of Shannon’s entropy and mutual information
as measures of uncertainty quantification in simulation models. The main research
question of this work is whether entropy and mutual information measures can quantify
the uncertainty and, consequently, the information present in simulation models and help
to understand the input parameters and experiment settings that contribute more to
uncertainty in simulation models. The work is divided into three topics. The first part
addresses the case where the simulation models are driven by stationary univariate
distributions and the entropy measures are calculated using the histogram-based method
with and without normalization. The second part is an extension of the first part, where
kernel-based method, k-nearest neighbors, and fuzzy-histogram method are used as the
entropy estimators. Finally, in the third part, the entropy measures are applied to identify
the input parameters and the experiment settings, such as number of replications and seed,
that contribute more to uncertainty. The contributions of each topic are detailed below.

Under topics one and two, Shannon’s entropy and mutual information, from the

information theory field, are used to quantify how uncertain is(are) the simulation
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outcome(s) and how much of this uncertainty can be attributed to each of the inputs. The
topic of uncertainty quantification has been widely investigated by researchers and
according to Barton et al. (2014), because there are robust methods for controlling and
measuring simulation-estimation error, one might be tempted to say that the problem of
estimating uncertainty has already been solved. Recent studies have concentrated on
estimating the input-uncertainty and providing confidence intervals that account for both
the simulation-estimation error as well as the uncertainty about the input models. In the
case of parametric distributions, input model uncertainty is reduced to input parameter
uncertainty (Song, Nelson, & Pegden, 2014). Barton and Schruben (1993) used uniform
and bootstrap resampling to estimate simulation output-uncertainty due to the uncertainty
in the empirical distribution used as input to drive the simulation. Barton et al. (2010) and
Barton et al. (2014) used metamodel-assisted bootstrapping to provide a confidence
interval that included the input-uncertainty from independent parametric input models and
the simulation-estimation uncertainty. Xie, Nelson, and Barton (2014a) introduced a
Bayesian framework to provide credible intervals for the mean that accounted for the
input-parameter uncertainty and the simulation-estimation uncertainty. The uncertainty
about the input parameters was represented via a posterior distribution conditional on the
real-world data and the uncertainty about the mean simulation response via a posterior
distribution conditional on a designed simulation experiment. Xie et al. (2014b) used

metamodel-assisted bootstrapping to provide a confidence interval that included the input-
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uncertainty from dependent Normal to Anything (NORTA) input models and the
simulation-estimation uncertainty.

In contrast, this dissertation investigates entropy measures as a method to estimate
the total uncertainty in simulation models and to quantify the amount of uncertainty in the
simulation response that can be attributed to each one of the inputs. The goal is to provide
a method for estimating the uncertainty on simulation responses that requires no additional
simulation effort and that is simple enough to be understood and implemented by the
majority of simulation stakeholders.

According to Song et al. (2014), decomposing the uncertainty, also known as
measures of contribution, is difficult and it is an area of active research. Song et al. (2014)
discussed what is called sample-size sensitivity. This technique quantifies how much the
estimator variance would be reduced by observing one more real-world sample data from
an input process x, given that one already has m observations. The input distributions with
the largest sensitivities would be targeted for more real-world data. However, Song et al.
(2014) highlighted that sample-size sensitivities are only local-gradients and, hence, not
ideal for budget allocation. Ankenman and Nelson (2012) presented a bootstrap method
to assess the input uncertainty relative to the simulation sampling variability and they
proposed a follow-up experiment using sequential bifurcation to identify the largest
sources of input uncertainty. Song and Nelson (2013) build on Ankeman and Nelson’s
(2012) work. Song and Nelson (2013) used bootstrap and variance decomposition to

estimate the relative contributions of each input model and to identify the input data
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sources from which collecting more data would lead to the most reduction in input
uncertainty. However, in contrast to the work of Ankenman and Nelson (2012), Song and
Nelson (2013) provided a new follow-up analysis in which no additional simulation
experiments were required. Table 2 lists some of the important works in the field of

uncertainty quantification and the methods used by them.

Table 2. Some of the important work in the field of simulation uncertainty

quantification.

Paper Method Assumptions

Barton and Schruben Uniform  and bootstrap  Independent univariate
(1993) resampling empirical distributions.
Barton et al. (2010) Meta-model-assisted Independent univariate

Song and Nelson

(2013)

Barton et al. (2014)

Xie et al. (2014a)

Xie et al. (2014b)

bootstrapping (stochastic
kriging meta-model), direct
bootstrap, Bayesian bootstrap,

conditional confidence
interval, and Bayesian
credible interval.

Bootstrap and  variance

decomposition

Meta-model-assisted
bootstrapping (stochastic
kriging meta-model)

Bayesian credible interval
assisted by  meta-model
(Gaussian process)

Meta-model-assisted

bootstrapping (stochastic
kriging meta-model) and
Spearman’s rank correlation

parametric distributions with
known families (exponential)
and unknown parameters.

Independent univariate
parametric distributions with
known parametric families
and unknown parameters.
Independent univariate
parametric distributions with
known parametric families
and unknown parameters, and
meta-model uncertainty can
be ignored.

Independent univariate
parametric distributions with
known families and unknown

parameters.

NORmal To  Anything
(NORTA) distribution
[multivariate parametric

distribution], which means
unknown dependent inputs
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(unknown multivariate
distribution), but  known
marginal distributions.

Table 3 shows a classification of the work discussed on Table 2 based on the

assumptions made in them.

Table 3. Classification of work on simulation uncertainty quantification based on

assumptions.

Type Description Work

Type A Independent non-parametric Barton and Schruben (1993)
distribution (empirical
distribution)

Type B Independent parametric Barton et al. (2010), Song and
distributions (stationary Nelson (2013), Barton et al.
univariate case) (2014), and Xie et al. (2014a)

Type C Dependent parametric Xie et al. (2014b)
distributions (stationary
multivariate case)

Type D Time-varying independent None available to the best of
parametric distributions (non-  our knowledge
stationary univariate case)

Type E Time-varying dependent None available to the best of

parametric distributions (non-
stationary multivariate case)

our knowledge

Under topic three, Shannon’s entropy and mutual information are applied in

conjunction with other methods such as contingency analysis, Tukey-Kramer multiple

comparison test, and regression analysis for identifying the input parameters and

understanding the experiment settings that contribute the most to the uncertainty in
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simulation models. The results are compared to the results of the standard error of the
mean and analysis of variance (ANOVA).

A general contribution of this dissertation is that although information theory has
been widely recognized for its importance in the area of uncertainty and information
quantification and feature classification, the theory has not been extensively applied in the
simulation field yet. This dissertation investigates entropy measures as potential measures
of uncertainty quantification in the simulation field and presents different potential
applications of the measures for input parameter selection and for experiment planning.

Uncertainty quantification in simulation models is a well-studied topic through the
use of meta-models, calibration techniques, and variance reduction techniques. This
dissertation contributes to the body of knowledge of uncertainty quantification in the
following manners: (i) by providing an empirical example to inform simulation
stakeholders about the implications of uncertainty in the results of simulation results; (ii)
by providing a method of uncertainty quantification in simulation models as a complement
to the existing methods in the literature and which can be easily understood by the majority
of the simulation stakeholders; and (iii) by being, to the best of our knowledge, the first
work to provide applications of entropy measures for uncertainty quantification and

experiment planning in the context of simulation models.
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2. AN INVESTIGATION OF INFORMATION THEORY AS A METHOD FOR
UNCERTAINTY QUANTIFICATION IN SIMULATION MODELS USING THE
HISTOGRAM-BASED METHOD WITH STATIONARY UNIVARIATE

DISTRIBUTIONS

2.1. Introduction

Decision-making is a part of everyday life. Examples include decisions about
what, when, and from which supplier to buy a product, when to travel, which route to take,
how much food to buy, and so on. These decisions made by both organizations and
individuals usually involve different responses of interest that may or may not be related
to each other. Although each of these decisions is likely different, there is a common
concern among all of them: how uncertain is the available information and, consequently,
what are the risks related to the decisions made?

When the system from which a decision needs to be made is composed of simple
relationships, it may be possible to use mathematical methods to support the decision-
making. However, when the relationships are too complex, which is the case of most real-
world systems, the decision-making must be supported by approaches, such as simulation
models (Law, 2007). Simulation is useful in supporting decision-making in different ways,
such as: (i) by allowing the investigation of potential benefits brought by changes that are
too costly to make in the real-world systems; (ii) by allowing the investigation of potential

benefits and costs brought by proposed new systems; (iii) by allowing the investigation of
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potential risks of scenarios that can be too dangerous for the system or society; (iv) by
allowing the investigation of system bottlenecks; and so on.

Simulation model is, thus, a tool commonly used to support decision-making of
complex systems. The ultimate goal of simulation models is to reduce the uncertainty in
the decision-making process by providing more and reliable information about those
complex systems. Despite being used to minimize uncertainties in the decision-making
process, simulation models are driven by stochastic inputs and, hence, simulation-based
estimates contain input estimation uncertainty as well as simulation estimation uncertainty
(Xie et al., 2014a).

There are two main sources of uncertainty in simulation models: the input-
uncertainty, due to fitting input distributions based on finite samples of real-world data;
and the simulation-estimation error (or the simulation-sampling error), due to a finite
amount of simulation effort (Xie et al., 2014a). Despite their uncertainties, simulation
models can still effectively support decision-making and promote system improvements
as long as simulation uncertainties are acknowledged (Christley et al., 2013).

In order to inform simulation stakeholders about the uncertainties present in
simulation models, one needs to first quantify the uncertainty. The goal of uncertainty
quantification is to identify and quantify the sources of error in simulation models and to
assess their net and overall impact on the simulation results (DeVolder et al., 2002). Yet,
an important question remains: how can one estimate uncertainty in simulation models?

Within this context, one can see that the use and development of methods for uncertainty
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quantification in simulation models are very important. The simulation uncertainty is
commonly characterized by confidence intervals, and other methods have been developed
in an attempt to quantify both the input and the simulation uncertainty. There is still more
work to be done in this area. There are some unanswered questions, such as: (1) how
uncertain are each one of the simulation inputs and outputs?, and (2) how much of the
information in the simulation output reflects valid information from the input, and how
much is noise?

In this dissertation, Shannon’s entropy and mutual information are proposed as
measures of simulation uncertainty. The main research question is: can entropy and mutual
information measures quantify the uncertainty and, consequently, the information present
in simulation models?

The analysis is restricted to simulation models using stationary univariate
distributions. This restriction is justified based on the fact that: (i) stationary univariate
distributions are the most common inputs in simulation models; and, (ii) this will give a
good illustrative example for which closed-form solutions are available for assessment of
the results.

The central contribution of this section is that it provides an analysis of Shannon’s
entropy and mutual information as measures of information and uncertainty in simulation
models when using histogram-based method.

In Scheidegger, Banerjee, and Pereira (2018), the authors have proposed a

framework for uncertainty quantification in simulation models, where they discussed the
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sources and nature of uncertainty in simulation models, as well as the steps that should be
followed to analyze and quantify uncertainty in simulation models. The authors also
presented an application where mutual information was used as a measure of uncertainty
in a mosquito-borne infectious disease simulation model using system dynamics. As the
authors have highlighted in their conclusions, their work involved a simple application,
which was a good starting point to show the potential of information theory for uncertainty
quantification in simulation models. However, further investigation is needed to address
some of the application’s drawbacks and, as the authors have suggested, to explore future
topics of investigation. Some of the drawbacks of Scheidegger et al. (2018) are: (i) the
work used discrete empirical histogram estimate and Shannon’s entropy for discrete
variables, although their model was driven by continuous variables; (ii) the data was
arbitrarily clustered into two bins with different sizes and the effect of number of bins and
binwidth was not assessed; (iii) the potential of the measures as an uncertainty
quantification method in simulation model was not discussed; and (iv) the authors only
explored mutual information, but did not explore entropy measures.

This section is intended to be a continuation of Scheidegger et al. (2018), exploring
some of the topics that were suggested for future work and addressing some of the
drawbacks. There are six goals for this section of the dissertation: (1) discuss the
challenges of computing entropy measures for continuous variables; (2) discuss the
dependence of entropy on the binwidth; (3) investigate the entropy and mutual information

as measure of uncertainty for different values of binwidth (fixed number of bins and
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optimum number of bins); (4) investigate the measures for different normalization
methods, different parameter values, and different contexts (different seeds for generating
random numbers, constant work-in-progress (CONWIP), and addition of a third input --
travel time); (5) assess the potential of the measures as an uncertainty quantification
method in simulation model; and, (6) compare the method when using histogram density
estimate and discrete empirical histogram estimate. For a detailed list of the experiments
performed and their configurations, please see Table 66 of the Appendix.

The rest of this section is organized as follows: section 2.2 provides a quick
overview of studies in uncertainty quantification in simulation models and a discussion of
entropy and mutual information, their challenges in the continuous case, and their
dependence on the binwidth. Section 2.3 discusses the proposed application of entropy
measures for uncertainty quantification in simulation models. Results and analyses are
reported in section 2.4. Concluding remarks and future research directions are presented
in section 2.5.

2.2. Background
2.2.1. Uncertainty quantification

Since the beginning of the 21st century, the topic of uncertainty quantification and
propagation has been attracting the attention of simulation modelers from a wide variety
of domains. Due to the increased importance of the topic, researchers now classify it as

model verification, validation, and uncertainty quantification (VV&UQ), instead of the
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previously well-known model verification and validation (V&V) paradigm (Roy &
Oberkampf, 2011).

Every uncertainty analysis problem can be decomposed into input, model, and
output uncertainty analysis (Marelli & Sudret, 2014). The input and output uncertainties
are also known as extrinsic input-uncertainty and intrinsic output-uncertainty,
respectively.

According to Song et al. (2014), the extrinsic input-uncertainty depends mainly on
two factors: the amount of real-data available from which the input distribution parameters
are estimated and the sensitivity of the response to those parameters. In other words, the
input-uncertainty depends on (1) how accurately the input was modeled, and (2) how
sensitive is the system response to the input model. Barton et al. (2010) mentioned that
estimating the input-uncertainty may lead to a better balance between decision-making
confidence and model results, and can also provide information about how much data must
be collected to obtain model results at a desired level of accuracy.

The most common methods used in input-uncertainty propagation and
quantification are: sampling-based methods, Bayesian methods, approximation methods,
and meta-models or surrogate models (Barton, 2012; Baudin, Dutfoy, looss, & Popelin,
2015). Among the sampling-based methods, the most common ones are: minimum energy
design, stratified sampling, direct resampling, bootstrap resampling, and meta-model
assisted bootstrap (Barton, 2012). Approximation methods include first-order reliability

method, second-order reliability method, and &-methods (Marelli & Sudret, 2014).
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Commonly used meta-models or surrogate models are: polynomial chaos expansion (also
known as Wiener chaos expansion) and kriging (also known as Gaussian process
regression). For a review of some of these methods, see Barton (2012). Graphical
techniques and sensitivity analysis are also used for input-uncertainty propagation and
quantification (Baudin et al., 2015; P. Chen, Quarteroni, & Rozza, 2013).

Regarding the intrinsic output-uncertainty, this uncertainty comes from the finite
run length and the finite number of replications (Barton et al., 2010). The intrinsic output-
uncertainty is already measured by all simulation software and it is characterized by
confidence intervals on the performance measures (Barton et al., 2014; Song & Nelson,
2013). As in any sampling experiment, increasing the number of replications in a
simulation project reduces the variance of the sample mean (Nelson, 1987a). However,
increasing the number of replications may be too costly or not feasible due to time and
computational resource constraints. Several techniques, such as antithetic variates (AV),
control variates (CV), and common random numbers (CRN), have been developed to
reduce the variance of simulation estimators without increasing the computational effort
(Nelson, 1987b). Variance reduction techniques (VRTSs) had their origins in Monte Carlo
estimation and survey sampling around 1965 and 1975, respectively (Nelson, 1987a).
Many simulation software offer built-in features that facilitate the execution of AV and
CRN, but CV usually requires some additional software support (Nelson, 1987b).

There were not many methods found in the literature for model uncertainty

analysis beyond model verification and validation.

32



Although there have been many methods applied to uncertainty quantification in a
wide range of applications, there is no consolidated method so far (P. Chen et al., 2013).
Besides, in general, the aforementioned methods focused on input-uncertainty
quantification due to limited real-world data or interval quantification rather than total
uncertainty quantification, and they require advanced mathematical and statistical
knowledge that are not always possessed by every simulation stakeholder.
2.2.2. Entropy measures and mutual information

In 1948, Claude Shannon introduced the concept of entropy as a measure of
information and uncertainty (Shannon, 1948). Shannon’s theory accurately measures how
much information can be transferred between different elements of a system and how
uncertain is(are) the outcome(s) of the system (Stone, 2015). Shannon asked three main
questions: (1) whether one could quantify the information produced by an information
source or not; (2) the amount of choice involved in the message selection; and (3) how
uncertain one would be about the outcome. In the context of uncertainty quantification in
simulation models, Shannon’s questions can be interpreted as: (1) how to quantify the
information produced by simulation models?; (2) how to select the simulation model?;
and, (3) how uncertain is(are) the simulation outcome(s)?

Related to Shannon’s entropy measure, Stone (2015) asked another key question:
how much of the entropy in the output reflects information in the input and how much is
noise? This can be measured by the mutual information between X and Y, which is the

average reduction in uncertainty about the value of X provided by the value of Y, and vice
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versa. The mutual information (MI) measures the amount of information contained in a
variable (or a group of variables) that helps to predict the system response. That is, Ml is
a symmetric measure that quantifies the statistical information shared between two
variables (Ghosh, 2002). According to Dionisio, Menezes, and Mendes (2004), Kinney
and Atwal (2014), and Haeri and Ebadzadeh (2014), Ml is also a measure of linear and
non-linear dependence among two variables. Despite the advantages of Ml for quantifying
information and the relationships between variables, its application, especially for
continuous data, is not straightforward. MI requires an estimate of the probability
distribution of the underlying data. How to compute this estimate in a way that does not
bias the resulting MI remains an open problem (Kinney & Atwal, 2014).

In his work, Shannon discussed that if such a measure of information and
uncertainty existed, it would require the following properties (Reza, 1961):

(i) Continuity: if the event probability is slightly changed, the associated measure
of uncertainty or information should change accordingly in a continuous
manner.

(i) Symmetry: the measure must be functionally symmetric in relation to the
probability set, i.e., the amount of information associated with a sequence of
outcomes does not depend on the order in which those outcomes occur.

(iii) Extremal property: the maximum entropy is obtained when all the events are

equiprobable.
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(iv) Additivity: because entropy is nonnegative, partitioning the system into
subevents cannot decrease the entropy of the system or the information
associated with a set of outcomes is obtained by adding the information of
individual outcomes.

Based on these properties, Shannon established that the only measure satisfying

all the assumptions is represented by Equation 7, where k is a positive constant that only

refers to the choice of the unit of measure and p; is the probability of the it* event.

n
H(X) =—-k zl_lp(xi)logp(xi) Equation 7

In an analogous manner, but without any proof, Shannon defined in his paper that
the entropy of a continuous variable with probability density function f(x), known as

differential entropy, is given by Equation 8.

H(X) = — fo_o_ f(x)log f(x)dx Equation 8

The above definition of differential entropy presents three main issues (Jaynes,
1968; Kittaneh, Khan, Akbar, & Bayoud, 2016): (i) it may be negative, while Shannon’s
entropy in the discrete case is always positive; (ii) it is not invariant under linear
transformation; and, (iii) it is not a limit of Shannon’s entropy of discrete approximations,
which means that one is unlikely to estimate the differential entropy using the entropy of
empirical distributions. Reza (1961) also added that the maximum entropy for a
continuous variable does not occur when events are equiprobable anymore, as it was in

the discrete case.
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It is easy to show why the differential entropy may be negative. In the discrete
case, the probability mass function is 0 < p(x;) < 1 and XX, p(x;) = 1, which implies
that log p(x;) < 0 or undefined when p(x;) = 0 in which case log p(x;) is considered to
be equal to 0 in information theory. Because entropy is expressed as

— > p(x) logp(x;), entropy is always positive. On the other hand, in the continuous
case the probability density functionis f(x) = 0V x and f_°°oo f(x)dx = 1. Because f(x)

can be greater than 1, log f (x) can be positive, in which case depending on the values of
all x, the entropy may be negative.
Regarding the lack of invariance issue, Reza (1961) considered a new variable Y

whose density function p(y) was given in Equation 9.

- |dx| Equation 9
p(y) = f(x) & quation

The entropy associated with Y can be calculated using Equation 10.

H(Y) = - f_o:op(y) log p(y)
=— j_o:o [f(x) |Z—;” log [f(x) |;l—;” dy Equation 10

=HX)+ f_o:of(x) log |Z—;| dx

The linear transformation of the variable is represented by Equation 11.

Y=AX+B Equation 11
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From Equation 10, it is possible to observe that the entropy of the continuous

random variable Y will be changed by a constant log|A| as shown in Equation 12.
H(Y) = H(X) + log|A| Equation 12

According to Stone (2015) and Reza (1961), when the entropy of a continuous
variable is discretized, that is, approximated by a discrete scheme, the entropy tends to
infinity as the discretization is made finer and finer. Stone (2015) showed that by
discretizing a continuous variable using a histogram in which each bin has a width equal
to Ax and where the height of the histogram p(x;) = P;/Ax was interpreted as a

probability density. This discretization leads to Equation 13.

m

m
HXY = - 1Pi log P; = E _ 1p(xl-) Axlog
= 1=

i

1
p(x;)Ax

zm (x) A [1 LI 1]
= X; X |10 og—
i=1p ' gp(xi) & hx

m 1 m 1
= x;) Axlo +Z P; log—
Zi=1p( 2 & p(x) LYY

Equation 13

Zm (x,) Ax log —— + log—
= X; X 10 og—
i=1p ' gp(xi) & Ax

Therefore, as the binwidth approaches zero, the first term on the right side of

Equation 13 becomes an integral and the second term approaches infinity.

*® 1
H(X =f x)log——dx + o Equation 14
X xz_oop() en) q

Stone (2015) argued that if all continuous variables had the same infinite entropy,

this would not be useful. Although, in principle, each continuous variable can convey an
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infinite amount of information, this is limited by the current capacity of the system and
accuracy of measurement devices. In fact, the noise of measurement devices transforms
continuous variables into discrete variables with m discriminable values, where m
decreases as the noise increases (Stone, 2015). Therefore, researchers in the field of
information theory agreed that the differential entropy of a continuous variable was the
portion of Equation 14 that ignored the infinity and only included the “important” part,
which agrees with the equation proposed by Shannon. However, important concerns
remained in the field of information theory related to how to fix the issues presented in the
differential entropy.

Methods and/or corrections have been proposed in the past to extend Shannon’s
entropy to continuous variables. Among the methods and corrections, three can be cited:
(i) the cumulative residual entropy proposed in (Rao, Chen, Vemuri, & Wang, 2004); (ii)
the estimation from a discrete approximation using histogram-based method and binwidth
adjustment (Stone, 2015); and, (iii) passing to the limit from a discrete distribution and
using an invariant measure (Jaynes, 1957, 1968).

In the correction mentioned in Stone (2015), when using the histogram-based
method and equal binwidth, the differential entropy can be estimated using Equation 15.
By using this method, entropy can be finitely estimated using a discrete scheme. However,

the issues of the negativity and invariance still persist.
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Hoy o (X2 E (x,) Ax log — EPI ax
. ~ x;) Ax lo = ;1o
dif i pLX; gp(xl) i i gPl
1
= § Pilog5+ § P;logAx = Equation 15
T l T
l l

—ZPI 1 ] 1—H(XA) ] !
LT8R T %% T %8 Ax
L
When the entropy is discretized, it is known that its maximum value is achieved

when all signals (or datapoints) are equally likely. That is, Hy 4, (X) = log, n. When the

max(x;)—-min(x

binwidth is calculated based on the number of bins, we have: Ax = "). When

the data is normalized between 0 and 1, we have: max(x;) = 1, min(x;) = 0, and,
consequently, Ax = % Therefore, Hy;r (X*) ~ H(X®) — logﬁ < Hyaxr(X) —log, n <
0, when the binwidth is based on the number of bins.

Jaynes (1957) proposed as a correction to the continuous case to pass it to the limit

from a discrete distribution by using Equation 16.
H(X) = —Jp(x) log M dx Equation 16
m(x)

where m(x) is an invariant measure proportional to the limiting density of discrete
points.

A question remains regarding what the measure m(x) should be. As pointed out
in Jaynes (1968), if the parameter space is not the result of any limiting process, the

conclusions will depend on the measure chosen. The measure m(x) also has an impact in
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the maximum entropy principle, which in the discrete case occurred when all the events
were equiprobable.

Reza (1961) mentioned that due to the difficulties in the continuous case, entropies
have no direct interpretation with respect to the information or uncertainty. However, the
author highlighted that the mutual information preserves its properties and, therefore, its
relevance. The mutual information is nonnegative, invariant under linear transformation,
and the problem of infinity disappears as the measure involves the difference between two
entropies (Reza, 1961; Stone, 2015). More specifically, mutual information is bounded
(Egnal & Daniilidis, 2000).

Reza (1961) and Egnal and Daniilidis (2000) mentioned that just as the definition
of random variables could be extended from one-dimension to two-dimension, the
definition of entropy could also be extended for joint and conditional entropy. The
conditional entropy H(Y|X) reflects the uncertainty of Y when X is known or the noise
and is given by Equation 17 (Stone, 2015). In other words, the more Y depends on X, the
lower the conditional entropy. The joint entropy H (X, Y) reflects the average information
of the system associated with the pair X and Y and is given by Equation 18 (Egnal &
Daniilidis, 2000; Stone, 2015). The mutual information is given by Equation 19 (Stone,

2015).

my My

HY|X) =— Z Z p(x;,y;) log p(y;lx;) Equation 17

i=1 j=1
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My my,
HX,Y) =- Z 12- 1p(xi'yj)logp(xi'yj)
i= j=

= H(X) + H(Y|X)

Equation 18

IXGY)=HX)+HY)-HX,Y) =HY) — H{Y|X) Equation 19

As the entropy of variables can vary significantly, a normalized mutual
information (NMI) is desirable for easier interpretation and comparisons (Estévez,
Tesmer, Perez, & Zurada, 2009; Strehl & Ghosh, 2002). Another reason for normalizing
is that M1 is biased towards multi-binned variables, which means that Ml increases with
the increase in the number of bins used to calculate the entropy of the variables (Estévez

et al., 2009; Strehl & Ghosh, 2002). Different normalization methods have been suggested

. . . _ I(x;y) . _ Ix;y) . _
in the literature: (1) NMIarL'th = Zm, (2) NMIgeom = m, (3) NMIjoint =
QR =1&1. and @) NMlypyr = NMI,,, = deng =
HXY)' ! theor log ™ max (max (H(X)),max (H(Y)))
1(X;Y)

These methods are discussed in Ghosh (2002), Hill, Batchelor, Holden,

max (lognylogny)’
and Hawkes (2001), Principe, Xu, Zhao, and Fisher (2000), and Strehl and Ghosh (2002).
Another difficulty during the calculation of entropy measures in the continuous
case is that the evaluation of the integral in Equation 8 requires numerical integration and
it is computationally inefficient (Beirlant, Dudewicz, Gyorfi, & Van der Meulen, 1997).
To overcome this difficulty, the following approximations are given in Xiong, Faes, and

lvanov (2017) and Steuer, Kurths, Daub, Weise, and Selbig (2002): (1) H(X) =
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—; i1 log £ (X0); (2) HX,Y) = —; i1 log (X, Y); HX|Y) =

_l n f(Xl Yi) = n FXyY;
o [ FrD ] and, (4) I(X;Y) = f(Xl)f(Yz)]

2.2.3. Histogram-based method and binwidth selection

Despite the advantages of information theory for quantifying information and the
relationships between variables, its application is not simple, especially for continuous
data. Entropy measures and MI require an estimate of the probability distribution of the
underlying data. How to compute this estimate in a way that does not bias the resulting
measures remains an open problem (Kinney & Atwal, 2014). There are three main non-
parametric approaches discussed in the literature: the histogram-based method, the kernel-
based method, and the k-nearest neighbors (KNN) distance method (Xiong et al., 2017).
Legg, Rosin, Marshall, and Morgan (2013) mentioned that the histogram-based method is
the most commonly used method for density estimation.

In the histogram-based method, the probability functions are approximated by
means of histograms where the data is divided into bins and the number of elements in
each bin is counted (Dionisio et al., 2004).

For equally spaced bins, the empirical distribution function is given by Equation

20 (Castro, 2015; Koshkin, 2014; Waterman & Whiteman, 1978).

n

1
pi(x) = EZ I{xi € [t;, tj+1)} forx; €B;,j=1,..,k Equation 20

i=1
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where B; = [t;,t;,1) denotes the jt" bin of a total of k bins, and I(.) is the
indicator function which is 1 if x; € [¢;, t;,1), and 0 otherwise.

pj(x) converges in probability to p;(x) as n —» o and its mean estimator is
unbiased; however, p;(x) is not continuous but a staircase function, which is a
disadvantage if one wants to use it to approximate a continuous random variable (Castro,
2015; Koshkin, 2014). For the statistic p;(x) to be meaningful when the random variable
is continuous, a probability density estimator must be used (Foutz, 1980).

In the histogram density estimation, the distribution is estimated by counting the
number of data points that are in each bin and assigning to that bin a probability equal to
the number of points it contains divided by the total number of data points and the
binwidth. When equally spaced bins are used, the histogram density can be estimated

using Equation 21 (Pace, 1995).
1 n
fhiStj(.X') = %Z I{xl- € [t], tj+1)} fOT' Xj € B],] =1,..,k Equation 21
i=1

where h is the binwidth, B; = [t;, t;,,) denotes the j*" bin of a total of k bins, and
I(.) is the indicator function which is 1 if x; € [¢;, t;,1), and 0 otherwise.

Equation 21 can be extended to the multivariate case; however, Silverman (1986)
recommended that as in any other multivariate procedure, one should normalize the data
to avoid extreme differences of spread in various directions.

A drawback of the histogram-based method is that it is not a continuous function

and it is not differentiable at the boundaries of the bins, which is undesirable to estimate a
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continuous probability density function. On the other hand, the histogram-based method
is very simple, easy to understand, computationally very efficient, and it makes few
assumptions about the probability function it is trying to estimate (Egnal & Daniilidis,
2000). M1 estimates based on this method are often called naive estimates as they may
overestimate or underestimate /(X; Y), the mutual information between X and Y (Dionisio
et al., 2004; Kinney & Atwal, 2014). Moreover, selecting the bin size (or length) is the
main source of error. Kinney and Atwal (2014) argued that this is not a problem in the
large data limit, because the probabilities can be determined to arbitrary accuracy as n —
0,

As seen from Equation 21, the histogram method is dependent on the choice of the
binwidth and also of the choice of the origin of the bin (or the start point of the bin)
(Hérdle, Muller, Sperlich, & Werwatz, 2012; Kanazawa, 1993; Xiong et al., 2017). As a
result, a common question when constructing a histogram is the size of the binwidth.
Selecting the bin length (or binwidth) is the main source of error on entropy measures
using the histogram-based method. Legg et al. (2013) stated that the binwidth choice is
also critical in the effectiveness of the mutual information.

According to Egnal and Daniilidis (2000), Wand (1997), and Kanazawa (1993),
selecting the binwidth parameter is the most important choice in the histogram method
because it controls the trade-off between bias and variance or oversmoothing and
undersmoothing (Scott, 1979). If the number of bins is too large, the variance is high, but

the bias is low. On the other hand, if the number of bins is low, the variance is low, but
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the bias is high. Similarly, a small binwidth results in a rough, undersmoothed, histogram
and a large binwidth results in a single block, oversmoothed histogram (Scott, 1979;
Wand, 1997). Ideally, the binwidth should balance the variance and bias, and should be
chosen so that the histogram displays the essential structure of the data, without giving too
much weight to the dataset at hand (Egnal & Daniilidis, 2000; Scott, 1979; Wand, 1997).

Wand (1997) mentioned that there are not many methods for choosing the starting
point of the bins apart from looking at different shifted histograms with the same binwidth,
but there are a number of proposed methods to theoretically determine the appropriate
binwidth of equal length. Some methods take a look at the data at hand and based on the
data decide the binwidth, while others try to predict the binwidth based on prior knowledge
and assumptions, and others select a measure of discrepancy between the histogram and
the density and, then, asymptotically minimize the expected value of the measure (Egnal
& Daniilidis, 2000; Kanazawa, 1993). Legg et al. (2013) and Birgé and Rozenholc (2006)
stated that although there are many methods, there is not a consensus on how to choose
the binwidth because none of the methods have been completely proved to be better than
the others. While rules of thumb are very simple and do not aim at any optimality property,
more sophisticated rules are based on asymptotic estimates and, in general, do not warrant
good performance for small sample size (Birgé & Rozenholc, 2006).

For practical efficiency, the majority of the methods for binwidth selection is based
on dividing the range of sampled data into k equally sized bins. Optimizing the number of

bins among regular partitions, or equally sized bins, is computationally easy and fast.
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While the use of irregular partitions (or differently sized bins) reduce the bias, optimizing
for irregular partitions increases the complexity of the selection problem significantly
(Birgé & Rozenholc, 2006).

A simple and probably the oldest rule of thumb for the number of bins was
proposed by Sturges in 1926 and is given by Equation 22 (Legg et al., 2013; Scott, 2015;
Sturges, 1926). The rule is based on the properties of the data and assumes the data is
normal (Legg et al., 2013). The binwidth is calculated by dividing the data range by the
total number of bins (Egnal & Daniilidis, 2000). Although simple, Sturges’ rule is shown
to lead to oversmoothed histogram, especially for large samples (Legg et al., 2013; Wand,
1997).

k=1+log,n Equation 22
where n is the sample size and k is the number of bins.

In 1976, Doane proposed a variation of Sturges’ rule to allow for skewness, which
is also known to lead to oversmoothed histograms (Hyndman, 1995; Wand, 1997).
Another famous rule was proposed by Scott in 1979 (Scott, 1979). Scott used the mean
integrated squared error (MISE) to obtain the asymptotically optimal binwidth for normal
data (Kanazawa, 1993). Scott’s rule is given by Equation 23 (Scott, 2015; Wand, 1997).

h = 3.490n"1/3 Equation 23
where o is the sample standard deviation. The rule proposed by Scott led to better

large sample performance of the histogram, but is not consistent itself (Wand, 1997). Scott
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also proposed a modification of his rule for varying degrees of skewness and kurtosis
(Scott, 1979, 2015).

Freedman and Diaconis’ (FD) rule given by Equation 24 uses the interquartile
range (IQR) of the data instead of the standard deviation as Scott’s rule (Hyndman, 1995;
Legg et al., 2013).

h=2IQRn™/3 Equation 24

Other rules include: Devroye and Gyorfi’s rule, Taylor’s rule, and Hall’s rule
(Kanazawa, 1993; Legg et al., 2013). Although there are many rules for binwidth
selection, based on a literature review performed by Legg et al. (2013), there is little
discussion regarding joint histogram binwidth selection and the impact of the binwidth on
the MI has not been fully investigated in the literature so far.
2.3. Material and methods

One of the main goals of a simulation model is to support and improve decision-
making. In order to avoid backfiring, the results of a simulation model must be as accurate
as possible and the uncertainty of the results must be acknowledged. In this context, there
are two questions to be answered regarding simulation models: how can one quantify the
uncertainty of the results and, consequently, the information produced by simulation
models?; and, how uncertain is(are) the simulation outcome(s)? The use of information-
based measures, namely Shannon’s entropy and mutual information, iS proposed to

quantify uncertainty and information in simulation models. The main goal is to determine
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whether these entropy measures are adequate for the purpose of quantifying uncertainty
and information in simulation models.

For simplification, the analysis is focused on measuring the total uncertainty of
each output and determining the extent of this uncertainty that can be attributed to each of
the simulation generated inputs. In other words, how much of this uncertainty can be
attributed to the inputs that are actually generated by the simulation software; e.g., the
pseudo-random numbers. The reason for this choice is that, if simulation modelers have
to choose, they should be more worried about the uncertainty of the simulation model
responses than any other uncertainty and how the inputs impact this uncertainty.
According to Song et al. (2014), the input uncertainty depends not only on the amount of
real-data available from which the input distribution parameters are estimated but also on
the sensitivity of the response to those parameters. In an analogous way, it is possible to
say that the output uncertainty depends not only on the finite amount of simulation effort,
but also on the sensitivity of the simulation response to the inputs, which justifies
investigating how much of the output uncertainty can be attributed to the simulation
generated inputs. Therefore, identifying the inputs that have a greater impact on the
outputs can provide information about where one should spend more effort in reducing
the uncertainty in order to reduce the total output uncertainty and to obtain the desired
level of simulation output accuracy.

Entropy measures are used to quantify the aforementioned idea. Figure 5 shows a

schematic of the proposed use of entropy measures to quantify uncertainty in simulation
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models. As can be seen in Figure 5, the simulation outputs are impacted by different
sources of noise (or uncertainty), namely: system noise, input modeling noise, and
simulation noise. The system noise is an inherent source of uncertainty and can never be
eliminated. As such, system noise will also be part of the total uncertainty of the simulation
output results as uncertainty is propagated throughout the system. The assumption is that
the values of the real system inputs and outputs are unknown (shown as dashed arrow).
This is the most common situation in the real world, especially with respect to the outputs.
Therefore, entropy measures are applied to quantify the total uncertainty of the simulation
outputs (H (Y)), the uncertainty of the simulation generated inputs (H (X)), and how much
of the simulation output uncertainty can be attributed to each of the simulation generated
inputs (I(X;Y)). According to Wijaya, Sarno, and Zulaika (2017), the greater the mutual
information between two variables, the greater the impact these variables have on each

other.
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- Initial conditions
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- Measurement errors
- Input modeling &
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Figure 5. Schematic of the use of entropy measures to quantify uncertainty in simulation
models.

There are many types of input models that can be used in simulation models, such
as: univariate input distributions, time-dependent (non-stationary) inputs, and multivariate
input distributions. Here, the focus is on investigating the application of entropy measures
in simulation models that consist of [ independent stationary univariate input processes
and the average estimate of p outputs of interest. Specifically, the adequacy of the

proposed method is investigated through an M/M/s illustrative example with two

simulation generated input processes and two outputs of interest, namely: X

N
Il

[X;:arrival process, X, — service process] and
[Y,: average number of customers in the system,
Y,: average time in the system]. Experiments on M/G /1 and G /G /s systems are run
to investigate how the entropy measures behave in different systems. However, only
M/M/s and M/G /1 systems are used to investigate the potential of the measures as an
uncertainty quantification method due to the availability of their exact closed-form
solutions.

The experiments are run using Simio® University Enterprise Edition v 10.165.
The experiments include different traffic intensities and several number of replications.
The model consists of a single source of arrivals, single queue, and s servers providing

the same service. After being served, entities leave the system. Balking and reneging were
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not considered in the model. The notation follows the A/S/s Kendall’s notation, where:
A represents the arrival process, S the service time, and s the number of servers. M is used
for memoryless distributions.

There are a few challenges when applying entropy measures for continuous
variables. Taking these challenges and important points into consideration, entropy and
mutual information measures are investigated as potential and adequate measures for
uncertainty quantification in simulation models by: (i) investigating the entropy and Ml
as measures of uncertainty for different values of binwidth; (ii) investigating the mutual
information measure for different normalization methods; (iii) investigating the entropy
and MI measures for different parameter values and different systems; (iv) assessing the
potential of the measures as an uncertainty quantification method for M/M /s and M /G /1
systems for which exact closed-form solutions are available; and, (v) comparing the
method when using histogram density estimate and discrete empirical histogram estimate.
Each one of these goals are discussed in detail below.

The entropy measures are calculated using the histogram-based method, where the
probability density functions are approximated by means of histograms by dividing the
continuous data into bins and by counting the number of elements in each bin as given by
Equation 21. The histogram-based method was chosen due to its computational efficiency
and for being commonly used and wider acceptance in academia. After computing the
probability density function, entropy and mutual information measures are then calculated

using approximations, instead of using numerical integration. However, applying entropy
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measures to continuous variables brings a difficulty of interpretability due to the
challenges previously discussed. In this case, a solution is needed to overcome the issue.
A few solution approaches have been proposed in the literature. Some issues still arise
when applying these solutions to continuous variables and, as a result, a new solution is
proposed.

In order to apply Equation 21 to estimate the probability density function using the
histogram-method, one needs to define the number of bins to be used and the binwidth.
Here, the binwidth is determined in two different ways: (1) fixed number of bins; and (2)
optimum number of bins, which uses formulas proposed in the literature to determine the
binwidth. For fixed number of bins, the following number of bins are investigated: 2; 5;
10; 25; 50; 100; 200; 500; 1,000; and, 2,000. These values were chosen in order to
investigate a large range for number of bins, which, in turn, leads to large and small
binwidths. The binwidth is calculated by taking the data range and dividing it by the
number of bins, as given by Equation 25. The start position of the first bin is given by the
minimum of the data range (Equation 26) and, based on that, all the remaining bins are
determined, as given by Equation 27. Following this calculation procedure, the end of the
last bin must coincide with the maximum of the data range (Equation 28). For optimum
number of bins, three different formulas are investigated: Sturges’ rule, Scott’s rule, and
FD’s rule.

_ max (x;) —min (x;) _
= - .

h i=1,..,n Equation 25

52



ty =min(x); i=1,..,n Equation 26
ti=tiath j=2,..,k Equation 27
tier =max (x;); i =1,...,n; Equation 28
where h is the binwidth, n is the sample size, k is the number of bins, t; is the start
of the 1%¢ bin, ¢; is the start of the j*" bin, and t., is the end of the k" bin.

Four normalization methods of mutual information are investigated: (1) NMI i,

(2) NMIgeom; (3) NMIjoint: and’ (4) NMItheOT'

H(X) is the average uncertainty of variable X, and I (X; Y), the mutual information
between X and Y, is the average reduction in uncertainty of the value of Y provided by the
value of X or the amount of information shared between these variables, their dependence.
Considering these definitions, different approaches are used to assess the potential of the
measures as a method of uncertainty quantification in a simulation model. The potential
of the entropy are assessed by comparing the entropy results with the sum of absolute error
(SAE), sum of squares error (SSE), mean absolute error (MAE), and mean squared error
(MSE) of the inputs and the outputs of the system. SSE and SAE can be calculated given
that the inputs were defined by the user and here they are assumed to be correct, and the
theoretical outputs can be calculated using results from queueing system theory. SSE and
SAE were chosen because these measures of error and uncertainty are widely accepted in
the literature. The potential of the mutual information are assessed by comparing the

mutual information results with three different measures of dependence between variables:
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distance correlation (Székely & Rizzo, 2009; Székely, Rizzo, & Bakirov, 2007), Pearson
correlation, and R?,4; (or adjusted coefficient of determination). Distance correlation was
chosen because it is a measure of dependence between two random variables that is able
to capture both linear and non-linear association (Székely et al., 2007). Pearson correlation
and R?,4; were chosen for being widely accepted in the literature. The downside of these
latter measures is that they only capture the linear association between the random
variables.

Finally, the last analysis performed is a comparison of the results when using
histogram density estimate, as given by Equation 21 and discrete empirical function, as
given by Equation 20, which is a gross approximation of the simulation inputs and outputs
as it considers the inputs and outputs as discrete variables.

2.4. Results and discussion
2.4.1. Challenges encountered while applying entropy measures for continuous
variables and method proposed to overcome the issues

The solutions proposed in the literature were used to overcome the challenges
faced while applying entropy measures to continuous variables. The first solution chosen
was the one provided in Equation 15, where the differential entropy is approximated by
calculating the discretized entropy and by adjusting with a correction dependent on the
binwidth. According to Stone (2015), this approximation eliminates the problem of
infinity. However, this method does not eliminate the issue of negative values, which leads
to a difficulty in interpretability and for performing comparison.
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It is known that for the discrete case, Shannon’s entropy is maximum when all the

n events are equiprobable, which is given by Equation 29 .
1 .
Max[H(X*)] = —log,p = —log, —= log,n Equation 29

Equation 15 can be rewritten as Equation 30 when binwidth is calculated based on
a fixed number of bins.

max(x;) — min(x;)

Hair (X*) = H(X*) + log, " Cauation 30
quation

= H(X") + log,[max(x;) — min(x;)] — log, n

From Equation 29, one can see that the maximum value H(X?) is log,n.
Therefore, from Equation 30 it is easy to see that depending on the value of the data range
and depending on the actual value of the entropy, which will be at most log,n, the entropy
may be negative and the difficulty in interpretability remains. As recommended by
Silverman (1986), when the data is normalized between 0 and 1 before calculating the
entropy, we have Hy; - (X*) = H(X*) + log,[1] — log, n < Max[H(X*)] —log, n < 0.

Next, the solution proposed by Jaynes (1957) and shown in Equation 16 was
investigated. In this method, it is important to define the invariant function m(x). While
Jaynes has not provided any suggestion for the function, there are a few suggestions made
in the literature: m(x) = sup[f(x)] and m(x) = E[f(x)] (Awad & Alawneh, 1987;

Kittaneh et al., 2016).
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One can immediately see that m(x) = E[f(x)] is not a good choice as f (x) may

f(x)

)>1 lgf

be greater than E[f (x)] In this case, > 0 and, hence, entropy is

)
m(x)
negative.

The suggestion to use m(x) = sup[f(x)] does not have this issue. For m(x) =

f (x)

f(x)
m(x) — =0

sup[f (x)], f(x) is never greater than m(x). In this case, 0 < < 1=log,

and, hence, entropy is always positive. However, there remain some issues of

interpretability when compared to the discrete case as shown in Table 4 below.

Table 4. Issues of interpretability of entropy in the continuous case when using m(x) =

sup|[f(x)].
Discrete
. case result  Continuous case result Interpretability

Scenario . .
(Shannon’s (using m(x) = sup[f(x)])  issue?
definition)

Events are all  Maximum (x) Yes

| fG) =m) =19

equiprobable (or all entropy

probability ~ density = log, fi")) -

function values are e

equal) = entropy =0

Events are either Maximum | f(x) Yes

equiprobable or surely entropy fG) =mk)= m(o) 1

will - - not o f(x) _

occur/impossible 920

(probability  density
function values are
equal or are 0)

All events will surely Entropy is Entropy isequalto0 No
not occur/impossible equalto 0

= entropy =0
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(probability  density
function values are 0)

Event will surely occur
(certainty)

Entropy
equal to 0

is How to represent certainty

in the nonparametric
continuous case?

If f;(x)=supf(x) and
fi(x) = 0;j # i, should this
be considered the certainty
case?

If yes:
f(x) = m(x) ﬁ% 1
= log, r]:l(();)) =

= entropy =0

However, one could
interpret that certainty does
not exist in the continuous
case as one can never be
sure about an event
occurring in the continuous
case (P(X = x) = 0).

Maybe

As shown in Table 4, when using Jaynes’ method and m(x) = sup|f(x)], there
are still difficulties in interpreting the entropy results from the discrete case to the
continuous case. This may not be an issue depending on the application. However, here,
the goal is to quantify uncertainty in simulation models and to be able to identify the inputs
that contribute the most to the uncertainty and the simulation response that users should

be most careful while making decisions due to its uncertainty. To achieve this goal, it is
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important to be able to compare entropy and MI measures among themselves, which is
difficult to perform when entropy measures do not have a lower bound and can be negative
and/or do not have an upper bound and can be infinite.

Observing this challenge and recalling what Silverman (1986) suggested to do
when one is working with multivariate estimates, the following solution was proposed to
work with entropy in the continuous case. Silverman (1986) recommended that data
should be normalized to avoid extreme differences of spread in the variables. So, the
solution here involves normalizing the data in a way that does not only avoid the
differences of spread, but also guarantees that 0 < f;(x) < 1, Vi.

The binwidth for fixed number of bins is calculated using Equation 31.

max(x;) — min(x;) b=1,..,m Equation 31

banldthb = hb =

ky ’
n
f hist RN = =1k Equation 32
f j(X)b = % 1 {xl- € [tj,tj+1)} = n_hb ;] =1, ., Ky quatlon
1=
0< 1<1:>0< i <1,b=1 Equation 33
~ nhy ~ n[max(x;) — min(x;)] D= e g
fhrst (x), = oL j=1,..k Equation 34
A
0st<1 o< il <1;b=1 Equation 35
~ hy = 7 max(x;) — min(x;) PP = hem g

where b is the number of different number of bins that are investigated, h;, is the
binwidth of the bt* number of bin being investigated, k,, is the total number of bins of the

bt number of bin being investigated, and n is the number of data points.
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Equation 31 is derived from Equation 25. Equation 21 shows how to estimate the
probability density function based on the histogram-method. One extreme case is to have
only one data point in the bin and the other extreme is to have all the n data points in the
bin, which from Equation 21 leads to Equation 32 and Equation 34, respectively.
Replacing Equation 31 in both Equation 32 and Equation 34 leads to Equation 33 and
Equation 35. Because Equation 35 is more restrictive, as long as Equation 35 is satisfied,
Equation 33 is also satisfied (max(x;) — min(x;) > 0, n > 0, and k;, > 0).

Therefore, the data normalization is determined by finding the data range that
satisfies Equation 35 for all b different number of bins simultaneously. Obviously, there
will be multiple solutions, but any solution can be picked. Now, all the probability density
function values are between 0 and less than 1. This enables calculation of entropy
measures in a similar way as the discrete case and similar interpretation can be made. It is
worth noting that different from the discrete case the interval excludes 1, because
whenever the probability mass function is equal to 1 all the other values are 0 and the
entropy is 0. However, in the continuous case, the probability density function may be
equal to 1 with other values different than 0. In this case, the entropy should not be 0, as
there is some uncertainty in the system regarding the events. To avoid this issue of the
extreme case equal to 1 (log,1 = 0), 1 was excluded from the interval.

By using the aforementioned alternative, the issues discussed in Table 4 are now

minimized to the scenario where the event will surely occur and to the fact that the entropy
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will not be maximum when the density functions are equal anymore, but it will at least not

be null, as shown in Table 5.

Table 5. Issues of interpretability of entropy in the continuous case when using proposed
data normalization method.

Discr .
screte Continuous case result
case result

Scenario (using proposed

Interpretability

(Shannon’s L . issue?
definition) normalization alternative)
Eve.nts are all  Maximum 0 < F(x) < 1= entropy # Not the same
equiprobable (or all entropy 0 result from
probability density discrete
function values are variable, but
equal) entropy is not 0

which allows for
comparison with
entropy results
of other
variables or
experiments.

Not the same

Events are either Maximum 0<f(x)<1=> entropy #

equiprobable or surely entropy 0 result from
will not Entropy will only be equal discrete
occur/impossible to 0 if all the probability variable, but
function values are equal to 0, which in this case which allows for
equal or are 0) the result will match the Comparison with
discrete variable result. entropy  results

of other

variables or

experiments.
All events will surely Entropy is Entropy isequal to 0 No

not occur/impossible equal to 0
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(probability  density

function values are 0)

Event will surely occur Entropy is How to represent certainty Maybe

(certainty) equalto0 in  the  nonparametric
continuous case?
If f;(x)=supf(x) and
fi(x) = 0;j # i, should this
be considered the certainty
case?
If yes, there is an issue, as
this case will not lead to
entropy equal to 0. In fact,
there will never be entropy
equal to 0, except when all
probability density function
values are equal to 0.
However, one could think
that certainty does not exist
in the continuous case as one
can never be sure about an
event occurring in the
continuous case (P(X =
x) = 0).

As can be seen, the procedure described above can be implemented when using
fixed number of bins, but, in general, it cannot be implemented when using formulas that
calculate the optimum number of bins or binwidth, because the binwidth is not a function

of the data range. This is an advantage of the fixed number of bins over the latter.
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Lemma 1. When using fixed number of bins, changing the data normalization does
not change the placement of data into bins because the binwidth is recalculated
accordingly.

It is possible to calculate the binwidth and start- and end-points of the bins as given
by Equation 36 to Equation 39.

maXoriginal data — mlnoriginal data

horiginal data = X Equation 36
tloriginal data = MiNoriginal datas Equation 37
Joriginal data =t F hij=2..k Equation 38
Like+1originat data = M3Xoriginal data Equation 39

where h is the binwidth, k is the number of bins, ¢; is the start of the Jtbin, tyq
is the end of the k" bin, and B; = [t;, t;,,) denotes the j** bin of a total of k bins.
The data normalization is performed using the approach shown in Equation 40.

xoriginal data — mlnoriginal data

xnew -

MaXoriginal data — MMNoriginal data Equation 40

X (maxdesired - mlndesired) + MiNgesired

Now, suppose there is a data point x, that is contained in the first bin, as given by

Equation 41.
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€ By = [t1,t3)

X1 original data

= [minoriginal datar minoriginal data T h)

= [minoriginal datar minoriginal data .
Equation 41

maxorl’ginal data — mlnoriginal data
k

_ . maxoriginal data +(k - 1) minorl’ginal data
= |MiNyriginal datar X

X1 original data &N be normalized using Equation 40. Let us now consider the

extremes. If x; ginal data = MiNoriginal data> We have:

mlnoriginal data — mlnoriginal data

xnew -

maxoriginal data — mlnoriginal data

. . Equation 42
X (maxdesired - mlndesired) + MiNgesired

= MiNgesired

Now, if the other extreme is considered x =

loriginal data

MaXoriginal data +(K—1) MiNoriginal data
k

, We have:
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xnew

maxoriginal data +(k B 1) minoriginal data .
k — MUNyriginal data

maxoriginal data — mlnoriginal data

X (maxdesired - mindesired) + mindesired

. Equation 43

maxoriginal data — mlnoriginal data
_ k

maxoriginal data — minoriginal data
X (MaXgesirea — MiNgesirea) T MiNgesirea
_ MAaXgesired — MiNgesired .
= X + MiNgesirea

Therefore, it IS possible to see that Xnew € B1,,,, =
. MAXgesired — MiNdesired . _ . . _
[Mingesirear X + mlndesired) = [mingesirea, h + MiNgegirea) =

[tlnew, tznew) and the normalization did not change the placement of data into bins

because the binwidth was recalculated accordingly using the data range.
2.4.2. The impact of different binwidths and different normalization methods on
entropy and mutual information measures

The discussion in this and the following sections are based on the results of the
experiments, which were detailed in section 2.3 and listed in Table 66 of the Appendix.
For simplification, the experiments are referred by their numbers.

It is worth mentioning again that entropy and MI measures are calculated in three
different ways: (1) using the histogram-based method with fixed number of bins and
probability density function based on the data normalization approach; (2) using the
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histogram-based method with optimum number of bins and probability density function;
and, (3) using the histogram-based method with fixed number of bins and discrete
empirical distribution function (discrete assumption). The third case was performed for
comparison as it was the method adopted in Scheidegger et al. (2018).

The analysis of Figure 6 shows that in the histogram-based method with fixed
number of bins and probability density function based on data normalization, the entropy
and MI measures tend to decrease with the increase in the number of bins (or decrease in
the binwidth) for the same number of replications. This is an important observation, as
this contradicts what is mentioned in the literature. The exception is when the number of
bins is small, between 2 and 10. In this range, there is no clear pattern and sometimes the
entropy and MI measures increase with the increase in the number of bins. The reason for
the observation here to be different from what has been found in the literature is that,
although entropy and MI measures are very useful in many fields, in the majority of
applications the measures have been applied for discrete variables only or considering that
continuous variables can be approximated using discrete probability functions and, hence,
binwidth is not taken into account in the histogram estimate. This will be discussed in
more detail later in this section.

From Figure 6, one can also see that the entropy and MI measures tend to increase
with the increase in the number of replications for the same number of bins (or binwidth).
The amplitude of the increase is higher for number of bins that are not too large nor too

small. When the number of bins is very large or very small, the amplitude of the increase
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becomes smaller. The exception is when the number of bins is equal to 2. In this case, the
entropy and MI measures do not increase or decrease considerably with the increase in the
number of the replications.

The number of bins used to calculate the entropy measures can be considered as
the level of accuracy one wants to obtain or one is interested in (i.e., number of bins =
1/targeted accuracy). This idea is similar to the indifference zone concept, where two
response values separated by less than the specified indifference zone value are considered
to be statistically equivalent. In a low number of bins scenario, the number of bins data
can be interpreted as: “the stakeholder is not concerned about a high level of accuracy”.
Therefore, running the first few replications should bring a great amount of information
about the inputs and outputs, and consequently, a great reduction in the uncertainty of the
output provided by the input (I(X;Y)), because initially, the stakeholder had no
information about the system. The next set of replications should still bring valuable
information about the system, if one does not have all the information. However, because
the stakeholder is not interested in a high level of accuracy, all the information about the
system should be gathered faster than when compared to a larger number of bins, which
means that the curve should stabilize faster (smaller slope of the curve) and at some point
running more replications would not yield any significant reduction in the uncertainty than
what was already provided during the initial number of replications. On the other extreme,
when the stakeholder is interested in very high level of accuracy, the initial replications

may not yield enough information or reduce the uncertainty, but more replications would
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result in a greater reduction of the uncertainty or more information would be available
until stability is reached. This stability will be reached at a later point than for lower
number of bins (lower accuracy). This could be seen as oversmoothing and
undersmoothing, respectively. Of course, in between the extremes, there are mid-range
values of the number of bins where the initial number of replications would provide great
reduction in uncertainty. This corresponds to a steep slope at first, and then as more
replications are run less information is obtained, and running more replications would not
be economically efficient anymore. The fact that the entropy and MI decrease with the
increase in the number of bins is expected from a measure of information and uncertainty.
When there is an emphasis on a greater level of detail or accuracy, the same number of
replications (or the same amount of the data) should be able to provide less information or

less reduction in uncertainty.
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Figure 6. Average of entropy and MI measures per number of bins using histogram-
based method with fixed number of bins and probability density function (experiments
#1 to #350).

There are three rules that are considered for obtaining the optimum number of bins:
Sturges’, Scott’s, and FD’s rules. These rules take the amount of data available and/or the
data characteristics, such as data dispersion, to calculate the optimum number of bins or
binwidth. For the experiments in this study, this resulted in low number of bins (or larger
binwidth) in all the cases. Figure 7 shows the impact of the binwidth on the entropy and
MI measures based on the optimum number of bins rules. The conclusions are similar to
the ones obtained from Figure 6 for low number of bins (i.e., between 5 and 10): there is
a tendency for the entropy and MI measures to increase with the increase in the number
of replications; however, this tendency is not as prominent as in Figure 6 anymore because

the number of bins parameter in Figure 7 is not fixed as it was in Figure 6.

68



Figure 7. Average of entropy and MI measures per number of bins using histogram-
based method with optimum number of bins and probability density function
(experiments #1 to #350).

Figure 8 shows the entropy and MI measures per number of bins when the
histogram-based method is used with discrete empirical distribution function. From Figure
8, one can see that as mentioned in the literature, the entropy and MI measures tend to
increase with the increase in the number of bins (or decrease in the binwidth) for the same
number of replications. This is different than what was observed for the histogram-based
method with probability density function. In the literature it is acknowledged that the
number of bins have an impact in the entropy and MI measures and, consequently, should
be taken into account. The difference between the histogram-based method with
probability density function and the histogram-based method with discrete empirical
distribution appears to be due to the binwidth being taken into account in the histogram
estimate of the first method, but not in the latter. This goes in agreement with what Stone
(2015) has stated in his book about the estimated entropy of a discretized continuous
variable increasing with the decrease of the binwidth. With respect to the number of
replications, the entropy and MI measures present a similar behavior to what was observed
in the histogram-based method with probability density function. However, here, for low
number of bins, the entropy and MI measures tend to be nearly constant or decrease with
the increase in the number of replications, while when using probability density function

the entropy and MI tend to be nearly constant or increase. For larger number of bins, the
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entropy and MI measures first increase, when the number of replications is not too large.
When the number of replications become too large, the entropy and MI measures stop
increasing and stabilize. Different than the probability density function, the amplitude of

the increase is greater for larger number of bins.

berofblns using histogram-
based method with fixed number of bins and discrete empirical distribution (experiments
#1 to #350).

As suggested in the literature, entropy and MI measures should be normalized to

eliminate the impact of the bins on the measures. The entropy was normalized by its

H(X)
max (H(X))

H(Y)

maximum: NH(X) = max (HT)

or NH(Y) = The MI was normalized using the

four different normalization formulas discussed in section 2.3. Figure 9 shows the results

of the normalized entropy and MI measures per number of bins when the histogram-based
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method is used with discrete empirical distribution function. From Figure 9, one can see
that after normalization the entropy and NM1,.,, measures present a behavior similar to
the observations in Figure 6. That is, the measures tend to decrease with the increase in
the number of bins, with exceptions when the number of bins is between 2 and 25 and a
clear pattern is not observed. The measures also tend to increase with the increase in the
number of replications. The exception again occurs when the number of bins is smaller
and between 2 and 25. This exception did not occur in the results shown in Figure 6. Based
on the other three normalization methods (NMIy itn, NMIgeom, NMljpin.), the M
measures still tend to increase with the increase in the number of bins as they did before
normalization. However, after normalization using these three methods (arith, geom, and
joint) the M1 measures tend to decrease with the increase in the number of replications.
There are a few important points to highlight. First, the normalized entropy and
the NMI,y..,» measures present a behavior similar to the entropy and the MI measures
calculated using the histogram-based method with probability density function and fixed
bins. Second, the difference in the behavior between the NMI;y,,,, and the

NMIyritn, NMlgeom and NMIj,im, can be explained by the normalization method
adopted. NM1,;,.., Was normalized using the theoretical maximum value of the entropy
measures, which is fixed regardless of the number of replications and changes with
number of bins. NMlgiin, NMIgeom and NMljy;,, Were normalized using the real
maximum value (from the data) of the entropy measures, which varies based on the

number of replications and number of bins. The entropy measures increase with the
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increase in the number of replications and number of bins as observed in the results shown
in Figure 8.

It is also important noting that the results of the M1 normalization methods appear
very similar but are not identical, as shown in Figure 9. This is due to the fact that the
same number of bins were used to calculate the entropy of all the inputs and outputs, and
therefore the maximum value of each of the inputs and the outputs is the same. The
recommendation is to use the same number of bins for all inputs and outputs whenever
using entropy measures as a method for uncertainty quantification in simulation models.
The idea comes from blocking in the design of experiments. By using the same number of
bins, the effect of the bins on the entropy values and, hence, on the uncertainty value is

being minimized.

\
PP
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Figure 9. Average of normalized entropy and MI measures per number of bins using
histogram-based method with fixed number of bins and discrete empirical distribution
(experiments #1 to #350).

Figure 10 shows the entropy and MI measures using the histogram-based method
with probability density function per queue model. Figure 10 is similar to Figure 6, but it
allows to see that the values of the entropy and MI measures are not identical among
themselves and vary based on the input and output, as well as queue model and other
factors. However, when the average over all the experiments is considered as in Figure 6,

the entropy and MI measures appear to be almost identical.

et

Figure 10. Averagé of entropy and MI measures per number of bins per queue model
using histogram-based method with fixed number of bins and probability density
function (experiments #1 to #350).
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2.4.3. The impact of different traffic intensities, different seeds, different parameter
values, and different systems on entropy and mutual information measures

It is important to evaluate the appropriateness of entropy and MI as measures of
uncertainty quantification in simulation models. The role of different traffic intensities,
different seeds, different parameter values, and different systems impacting the measures
are investigated here.

In the queue example used in this study, it is known that the uncertainty of the
input X; must be equal among the different traffic intensities because the same input model
and fixed seed were used in the simulation model. Based on the results obtained for the
histogram-based method using probability density function, which can be seen in Figure
11, the entropy of X; was equal among the different traffic intensities which indicates that
the entropy measure is possibly accurately measuring the information or uncertainty of

X,.
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Figure 11. Entropy measures per queue model per traffic-intensity using histogram-
based method with fixed number of bins and probability density function (experiments
#1 to #90).

Although a fixed seed was also used for input X,, it is not appropriate to expect
that X, should also have equal entropy among different traffic intensities. The impacts of
X, depend on how the system was modeled. In the approach adopted in this dissertation,
changes in traffic intensities were modeled by changing the capacity of the only existing
server, instead of adding or eliminating servers. By doing so, even though the seed of the
service time input, X, is fixed, the generated inputs X, changed and, thus, its entropy
should not remain the same among the different traffic intensities. Reviewing Figure 11,
it is possible to observe that the entropy of X, was able to capture some of the differences
among the different traffic intensities, which also indicates that the entropy measure is

correctly measuring the information or uncertainty of the simulation generated input X,.
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Similar results as the ones obtained for the histogram-based method with
probability density function and fixed number of bins were obtained for histogram-based
method with probability density function and optimum number of bins, and also for the
histogram-based method with discrete empirical distribution function and fixed number

of bins. This is shown in Figure 12.

Histogram-based method (optimum number of bins) Histogram-based method (discretized)
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Flgure 12 Entropy measures per queue model per traffic-intensity (experiments #1 to
#90) using histogram-based method with: (a) optimum number of bins with probability
density function (left-side) and (b) fixed number of bins with discrete empirical
distribution (right-side).

Another point is that one could expect the reduction in uncertainty in the output
provided by the input to be different in a high traffic intensity system than in a low traffic

intensity system. That is, the reduction in uncertainty of the average time in system (¥,)
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provided by the input service time (X,), or the mutual information I1(X,;Y,), is expected
to be different among the different traffic intensities. In systems that are headed towards
an unstable state, it is natural to expect the service time to have a different impact on the
average time in the system than in more stable systems. As shown in Figure 13, this was
indeed observed in the MI measures. Similar results were obtained when using optimum

number of bins or discrete empirical distribution.

Histogram-based method (fixed number of bins)
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Figure 13. MI measures per queue model per traffic-intensity using histogram-based
method with fixed number of bins and probability density function (experiments #1 to
#90).

As mentioned earlier, experiments with different seeds were run to investigate the
appropriateness of entropy and M1 as measures of uncertainty quantification. As shown in

Table 66, experiments #351 to #460 and #461 to #470 correspond to the initial
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experiments numbered #1 to #110 and #271 to #280, respectively, but with a different
group of seeds (here, named group “seed 27, the specific seed numbers used are shown in
Table 66). That is, the same experiment configuration was kept: same interarrival time,
same service time, same number of servers, but different groups of seeds were used for
the parameters. Similarly, experiments #471 to #580 and #581 to #590 correspond to the
initial experiments numbered #1 to #110 and #271 to #280, respectively, but with another
seed (here, named group “seed 3”).

As shown in Figure 14 and Figure 15, the entropy measures and mutual
information vary based on the group of seeds used. Although one may initially not expect
this to occur because the seeds are fixed, a good measure of uncertainty should indeed
vary based on the seeds being used. Entropy is a measure of the information or uncertainty
of the inputs and outputs. For different seeds, there are different uncertainties. Although
these differences should not be large because the same input model (or distribution) is
being used, the values cannot be identical either; otherwise, it would mean that exactly the
same information was observed, which is unlikely when using different seeds for
generating pseudo-random numbers. Therefore, by using a different group of seeds, one
should expect different entropy values for the inputs, different entropy values for the
outputs, and, consequently, different MI values as the results in Figure 14 and Figure 15
show. From Figure 14, one can also see that regardless of the group of seeds, the entropy
of X; is equal among the different traffic intensities. Although it is not shown here, similar

results were obtained for the entropy and MI measures calculated using the histogram-
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based method with optimum number of bins and the histogram-based method with fixed

number of bins and discrete empirical distribution.

Histogram-based method (fixed number of bins)
Quesebodel N Gueuetodel
W3 " w3

Figure 14. Entropy and MI measures per q[jeue model per traffic-intensity per seed
using histogram-based method with fixed number of bins and probability density
function.

From Figure 16 it is possible to make another interesting observation about the
impact of the group of seeds on the entropy and MI measures. As shown in Figure 16,
“seed 3” had a different impact in the entropy of ¥; and ¥, when compared to both the
original group of seeds and “seed 2”, and “seed 3” had a similar impact in the entropy of
X, and X, when compared to both the original group of seeds and “seed 2”. When
analyzing the MI, the impact of “seed 3” occurred in every MI measure, however the
impact appeared to be greater in I(X;;Y;) and I(X,; Y;) than in I(X;;Y,) and 1(X,; Y2),

when compared to the original group of seeds and “seed 2”. This is also observed in the
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results shown in Figure 17. From Figure 17, one can also see that entropy and MI measures
may be used to investigate the adequacy of seeds when running simulation models. While
one expects to observe some differences in the uncertainty values for using different
groups of seeds (different data), one does not expect a large difference as the input models
are the same and in the long-run the data should be similar. Therefore, if the difference is
large, as it is for group “seed 3” and especially for larger traffic intensity, this may possibly

indicate an issue with the group of seeds.
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Figure 15. Entropy and MI measures per queue model per seed using histogram-based
method with fixed number of bins and probability density function.
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Flgure 16. Entropy and MI measures per replication per number of blns using
histogram-based method with fixed number of bins and probability density function.
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Flgure 17. Entropy and MI measures per traffic-intensity per model using histogram-
based method with fixed number of bins and probability density function.
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To investigate the appropriateness of entropy and MI as measures of uncertainty
quantification, experiments with different parameter values were also run. Experiments
#591 to #700 and #701 to #710 correspond to the initial experiments numbered #1 to #110
and #271 to #280, respectively, but with different parameter values (here, named “number
2”, the specific parameter values used in the experiments are given in Table 66).
Experiments #711 to #820 and #821 to #830 correspond to the initial experiments
numbered #1 to #110 and #271 to #280, respectively, but with different parameter values
(here, named “number 3”).

From Figure 18 one can see that even though different values of inputs X; and X,
were used, the entropy of X; was different among the different experiments: “original”,
“number 2”, and “number 3”, but it was still equal among the different traffic intensities
within each group of experiments as expected for a fixed seed. Also, from Figure 18, one
can see that the traffic intensity appears to not have a clear relation to the uncertainty of
the outputs, as the uncertainty either increases or decreases based on the queue model and
that changes in the system configurations led to different values of uncertainty. Similar
results were obtained for the entropy and MI measures calculated using the histogram-
based method with optimum number of bins and the histogram-based method with fixed

number of bins and discrete empirical distribution, as shown in Figure 19 and Figure 20.

82



Histagram-based method (fixed number of bins) Histogram-aced methad (fxed numberof i)

M Wh MWD
Mdel Mol Model
e - Membed  Crigedl  embai?

T T T s Humbe? 2 " embet  Mumbed  Dginal Mumbe

Figufe 18. Entropy and MI measures per queUe model per traffic-intensity per parameter
value experiment using histogram-based method with fixed number of bins and
probability density function.
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Figure 19. Entropy and MI measures per queue model per traffic-intensity per parameter
value experiment using histogram-based method with optimum number of bins and
probability density function.
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Figure 20. Normalized entropy and NMI,E,,e‘,,r measures per queue model per traffic-
intensity per parameter value using histogram-based method with fixed number of bins
and discrete empirical distribution.

Finally, a last group of experiments was run to investigate whether the entropy and
MI measures would be able to capture the uncertainty of different systems. It was decided
to investigate two additional systems: a CONWIP system and the addition of a third input
parameter, namely travel time, in the queue system.

A total of 100 CONWIP experiments were run. Experiments #831 to #930 in Table
66 correspond to the initial experiments numbered #1 to #100, with same service time but
constant work in progress. CONWIP systems are systems where the number of items is
kept constant. Here, the number of customers (or entities) is kept constant, which means
that the next customer will only arrive when the current customer’s service is completed.

Because the number of customers is kept constant, the CONWIP system is expected to
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have no uncertainty regarding ¥; and, hence, the inputs X; and X, should have no impact
on ¥;. Moreover, the customer’s time in system is determined by how long it takes to be
serviced plus time spent in the queue, if any. The goal of using the CONWIP system is to
investigate the effectiveness of the entropy measures in capturing these known
characteristics. Here, different from the previous experiments, the arrival process is
determined by the service completion process.

Based on the aforementioned characteristics, one should expect the entropy of the
average number of entities in the system, ¥}, to be zero. One would expect the entropy of
the arrival process, X;, the service time, X,, and the average time in the system, ¥, to be
equal, as the arrival process and the time in system are dictated by the service time.
However, in a simulation model two events, e.g., an arrival and service completion, cannot
occur exactly at the same time. Therefore, some small differences should be expected in
this case. Moreover, knowing that the output uncertainty may not be only comprised by
the input uncertainty but also by some other uncertainties of the system (for instance, the
computational limitation just previously mentioned), some small differences between X,
and Y, are also expected.

From Figure 21, it is possible to observe that the entropy of ¥; is only equal to zero
for larger number of bins, i.e., number of bins greater than or equal to 1,000. For number
of bins greater than or equal to 25, the entropy of ¥; is close to 0, however it is not 0. For
number of bins smaller than 25, the entropy of ¥; is constant over the number of

replications but not equal to 0, which means that regardless of the amount of data of the
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simulation generated inputs X; and X, and the amount of data of the output ¥;, the
measured uncertainty by the entropy method was the same but not null. This can be
explained based on how the probability density is estimated using the histogram method.

According to the histogram-based method, the probability density is estimated using
frist () = — ¥ fx; € [t),tjp1)} for xj € Bj,j = 1,..., k. Because in the CONWIP
system the NIS is constant, all the ¥; are equal and, hence, all ¥; belong to the same j

resulting in fhiSfj(x)=:—h. If h did not exist, then fhistj(x)=§=1 and

log (f’”'“j (x)) = 0. However, since h is fixed, log (f’”'“j (x)) is constant. The smaller

the binwidth (or the larger the number of bins), the value of log (f’”'“j (x)) will be closer

to 0. Similar analysis can be made for the mutual information. One would expect that the
inputs X, and X, should have no impact on ¥; and, hence, I1(X;;Y;) and I(X,;Y;) should
be equal to 0. However, from Figure 21 one can see that the Ml is constant but not 0,
despite being close to or equal to 0 for larger number of bins. The reason for this is that
MI can be calculated by I(Xy;Y;) =H(X,)+ H(Y;) —H(X;,Y;). In this case,
H(X,,Y;) = H(X;). Hence, I(X;;Y;) = H(Y;).

From Figure 22 one can see that the entropy of X, and Y, are equal for number of
bins equal to 2 and same number of replications, but they start to differ with the increase
in the number of bins. The entropy of X, differs from the entropy of X, and ¥, in every

number of bins investigated.
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Flgure 21. Entropy and MI measures per queue model per number of blns using
histogram-based method with fixed number of bins and probability density function
(CONWIP vs original experiments).

Value vs, NumberReplications Value vs, NumberReplications
ooty Nunesapcnios ; e : i e r—
i, WATNS I s st an s e

Figure 22. En't"rg;;y and MI measures per number of biﬁsmgér replication using
histogram-based method with fixed number of bins and probability density function for
CONWIP systems.
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Using the histogram-based method with fixed number of bins and discrete
empirical distribution, the normalized entropy of ¥;, the NMI,,,,, between ¥; and X,, and
the NMI,,.,, between ¥; and X, are equal to zero regardless of the number of bins chosen,
as shown in Figure 23. Similarly, using the histogram-based method with probability
density function, the normalized entropy of X, X, and ¥, are not equal regardless of the

number of bins, which leads to similar results for the mutual information.
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Figure 23. Normalized entropy and NM1,.,, measures per queue model per number of
bins using histogram-based method with fixed number of bins and discrete empirical
distribution (CONWIP vs original experiments).

The NMIgrien, NMIgeom, and NMI,i,, between ¥; and X, and between ¥; and X,

are also equal to zero regardless of the number of bins chosen when using the histogram-
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based method with fixed number of bins and discrete empirical distribution, as shown in
Figure 24 and Figure 25. However, as already discussed, these normalized measures do
not present a behavior similar to the measures calculated using the histogram-based
method with fixed number of bins and probability density function. Instead, in this case
the measures, when not equal to zero, tend to decrease with the increase in the number of

replications. Because of that, NMI,;.,, appears to be a better normalization method

overall.

.....

L i

Figure 24. NMI,mth and NM1 ;,,, measures per queue mod‘ei’per number of bins
using histogram-based method with fixed number of bins and discrete empirical
distribution (CONWIP vs original experiments).
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Figure 25. NM1,;,,, measures per quéueﬂ model per number of bins using histogram-
based method with fixed number of bins and discrete empirical distribution (CONWIP
vs original experiments).

Next, a third input parameter X5, namely travel time, was added to the M/M/s
system. A total of 200 experiments with the third input was run. Experiments #931 to
#1030 in Table 66 correspond to the initial experiments numbered #1 to #100, with the
added third input as deterministic travel time of 10 minutes. Experiments #1031 to #1130
in Table 66 correspond to the initial experiments #1 to #100, with the added third input as
stochastic travel time exponentially distributed with a mean of 10 minutes and using a
fixed seed.

For the deterministic travel time input, one would expect the entropy of X; to be
zero, as there is no uncertainty associated with the input. Similarly, one would expect this
input to bring no reduction in the average uncertainty of the simulation outputs ¥; and ¥,

which means that one would expect 1(X5;Y;) and I(X5;Y,) to be equal to 0. For the
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stochastic case, there is uncertainty associated with the travel time input and the entropy
should capture it.

Using the histogram-based method with fixed number of bins and probability
density function, the results obtained for the deterministic travel time are similar to the
ones obtained for the average number in system in the CONWIP system using the same
method. As shown in Figure 26, the entropy of X5 is only equal to zero for larger number
of bins, i.e., number of bins greater than or equal to 1,000. For number of bins greater than
or equal to 25, the entropy of X5 tends to go to 0, however it is not 0. For number of bins
smaller than 25, the entropy of X5 is constant over the number of replications but not equal
to 0, which means that regardless of the amount of data of the simulation input X3, the
measured uncertainty by the entropy method was the same but not null. From Figure 26,
a similar analysis can be done for I(X5;Y;) and I(X5;Y,). For the stochastic case, the
entropy method captured the uncertainty of X5 in a similar way that it did for the

simulation generated inputs X; and X, and the simulation outputs ¥; and Y.
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Figure 26. Entrdﬁy and MI measures per queue model Egir‘}r;;umber of bins using
histogram-based method with fixed number of bins and probability density function
(deterministic travel time vs stochastic travel time).

Using the histogram-based method with fixed bins and discrete empirical
distribution, the results for the deterministic travel time are also similar to the ones
obtained for the average number in system in the CONWIP system using the same method.
For the deterministic case, Figure 27 shows that the entropy of X5 is equal to zero, as
expected, because there is no information or uncertainty added into the system by Xj;.
Although the travel time is deterministic, the travel time input will still impact the output
average number of entities in the system, ¥;, and average time in the system, ¥,. However,
running experiments and getting information about X; does not provide any extra
information about ¥; or ¥, nor reduce the uncertainty of these outputs, because running
more experiments does not provide more information about X5 than what was already

known before running the experiments. Therefore, X5 should impact the values of ¥; and
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Y,, but the mutual information between X, and Y; and between X5 and Y, are expected to
be equal to zero and these are the results obtained, as shown in Figure 27. For the
stochastic case, the entropy method captured the uncertainty of X5 in a similar way that it

did for the simulation generated inputs X; and X, and the simulation outputs ¥; and ¥,.
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Figure 27. Normallzed entropy and NM I}, measures per queue model per number of
bins using histogram-based method with fixed number of bins and discrete empirical
distribution (deterministic travel time vs stochastic travel time).

2.4.4. Analysis of entropy and MI as a measure of uncertainty quantification in
simulation models

Although the definition of uncertainty quantification is simple, developing a
systematic method to quantify uncertainty and validating or assessing the potential of the
proposed method is not an easy task. A queue model for which closed-form solutions are

available was adopted in this dissertation as an attempt to assess the potential of the
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measures as a method of uncertainty quantification in simulation models. As known in the
simulation field, with the increase in the number of replications, one expects to reduce the
intrinsic output-uncertainty. However, care must be taken because the extrinsic input-
uncertainty may outweigh the intrinsic output-uncertainty and the total uncertainty may,
thus, increase. But in general, one can say that the total uncertainty decreases with the
increase in the number of replications.

The mutual information is the average reduction of the uncertainty of the output
provided by the input and the entropy measure is the average information or uncertainty
per input or output. These measures are typically measured in bits, alternatively called
natural units (nats) or sometimes Shannons. The simulation generated outputs are usually
measured in different units and in different magnitude of scale. For this reason, the
Shannons unit cannot be directly compared to the simulation generated outputs or the
theoretical outputs, which hinders the validation or the assessment of the potential of the
proposed method.

Therefore, in order to investigate the potential of the entropy and M1 as a method
of uncertainty quantification in simulation model, the measures results were compared
against results of methods commonly applied in the scientific community. For the entropy
measures, the following comparisons were performed:

(i) The entropy measure (or average entropy measure) detects an increase or

decrease in uncertainty with the increase in the number of replications that is

in agreement with the detection by the error method being compared to.
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(if) The entropy measure (or average entropy measure) detects the experiment that
leads to the maximum uncertainty in agreement with the detection by the error
method being compared to.

For the comparisons, four error methods were considered: SAE, SSE, MAE, and

MSE. For consistency in the comparison, the average entropy measure was considered
instead of entropy measure when MAE or MSE was the error comparison method. This
led to a total of eight comparisons per input or output per method used to calculate the
entropy measures.

The reasons to perform the above comparisons are: (i) to understand whether the
entropy measure agrees with other uncertainty methods of the literature; and, (ii) identify
the experiment configuration with the highest uncertainty with respect to one of the inputs
or outputs. This can help assessing the potential of the entropy measures as a method of
uncertainty quantification in simulation models and determining the binwidth to use to
investigate the impacts of input uncertainty on the outputs.

The methods SAE and SSE were calculated in R using Equation 44 and Equation

45, respectively.
n
SAE = z 1|yi — ¥l Equation 44
1=

where y; is the observed value and y; is the predicted value. In this case, y; and y;
can refer to either the inputs X;, X, or X5 or to the outputs Y; or Y,. The predicted value is
the value calculated through the M /M /s or M /G /1 queue system exact solution and the

observed value is the value resulting from the simulation experiment.
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n
SSE = Z i — 92 Equation 45
i=1

Average entropy is the entropy measure divided by the number of replications n
and MAE and MSE are the SAE and SSE divided by the number of replications,
respectively.

JMP® and Tableau® software were used to perform the comparisons and analysis.
Each comparison was performed for the entropy measures calculated using: (1) the
histogram-based method with fixed number of bins and probability density function; (2)
the histogram-based method with optimum number of bins and probability density
function; (3) the histogram-based method with fixed number of bins and discrete empirical
distribution; and, (4) the histogram-based method with fixed number of bins, discrete
empirical distribution and normalization of the entropy measure.

To calculate the increase or decrease in uncertainty with the increase in the number
of replications, the entropy of one experiment was compared with another one with the
same configuration and smaller number of replications, as given by Equation 46.

Change in uncertainty;,; = H(Z;) 41 —H(Z);;j=1,...9 Equation 46
where Z; is either the input X;, X, or X;or the ouput Y; or Y, and j is the
experiment. The experiments are divided into groups with equal configurations but
different number of replications, which leads to groups of 10 experiments.
As shown in Table 6, considering the comparison to detect an increase or decrease

in uncertainty the entropy measure calculated using fixed number of bins and probability
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density function does not appear to have results in agreement with the SAE or SSE method
for a low number of bins. This implies that, in general, less than 50% of the time the results
of the entropy method matched the results of the SAE or SSE method for a number of bins
with a value of 2. Interestingly, for lower number of bins, the entropy method shows better
results with the outputs than the inputs. However, with the increase in the number of bins,
the entropy measures for the inputs slightly outperform the entropy measures for the
outputs. The results of the entropy method improve with an increase in the number of bins.
From number of bins with a value of 50 or higher, one can see that the entropy method is
in agreement with the SAE or SSE method more than 90% of the time. In fact, it is worth
noting that for any of the methods used to calculate the entropy measures, the comparisons
performed between the entropy measures and the SAE method led to exactly the same
results as of the comparisons performed between the entropy measures and the SSE
method.

Entropy measures are measures of total information of uncertainty in a system,
similar to the SAE or SSE. It is clear that the entropy measures compared to SAE and SSE
give better results than the average entropy measures compared to MAE and MSE.
However, a possible issue with that comparison is that both methods (entropy measures
for larger number of bins or SAE and SSE) have a tendency to increase with the increase
in the number of replications, i.e., the amount of data. Hence, a better comparison that
eliminates this possible bias towards the number of replications is to consider the MAE,

MSE, and average entropy.
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The average of the entropy measures calculated using histogram-based method,
fixed number of bins, and probability density function was compared to MAE and MSE.
In this case, it is observed that the performance of the method also improves with the
increase in the number of bins. However, after reaching a point, the performance appears
to reach its maxima and subsequently starts decreasing. For all, except for one comparison
against MAE or MSE, the best performance of the entropy measure was obtained when
the number of bins was 1,000, which indicates that this could potentially be a good number
of bins to be chosen for this object of study (queue system). Even in the case where the
number of bins equal to 1,000 did not give the best performance, it was able to give a
performance very close to the best. Although the entropy measures when compared
against the MAE or MSE perform poorer than when compared against SAE or SSE, if
appropriate number of bins is chosen, the method can still achieve a performance of at
least 60%.

Similar observations can be made in terms of the entropy measures performance
to detect the experiment that leads to the maximum uncertainty. As shown in Table 7, the
ability of the entropy measures in comparison to the SAE and SSE method increases with
the increase in the number of bins. Similar behavior also occurs when the average entropy
measures are compared to MAE or MSE. However, in the latter the performance decreases
beyond a certain number of bins.

When the entropy measures are compared to SAE or SSE, there are, in general,

different number of bins (e.g., from 500 to 2,000) for which the entropy measures show
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the same performance. However, when the average entropy measures are compared to

MAE or MSE it was observed that 1,000 bins usually lead to the maximum performance.

Table 6. Results from histogram-based method using fixed number of bins and
probability density function for detecting an increase or decrease in uncertainty with the
increase in the number of replications.

Mean of Mean of Mean of Mean of
Number comparison . comparison comparison
Entropy - comparison
of bins entropy vs. average entropy  average entropy

SAE entropy vs. SSE vs. MAE vs. MSE
2 35.67% 35.67% 44.30% 54.68%
5 66.67% 66.67% 44.30% 54.68%
10 44.30% 54.68%
25 44.59% 54.97%
HOE 50 50.15% 60.53%
1 100 51.75% 62.43%
200 43.42% 54.09%
500 52.92% 62.72%
1000 61.55% 71.05%
2000 60.53% 60.67%
2 40.94% 40.94% 45.39% 52.05%
5 67.54% 67.54% 45.39% 52.05%
10 77.78% 77.78% 45.39% 52.05%
25 45.39% 52.05%
HX,) 50 49.34% 56.29%
2 100 53.80% 61.33%
200 47.30% 55.12%
500 54.82% 63.82%
1000 63.60% 72.88%
2000 59.36% 65.42%
2 75.00% 75.00% 19.44% 24.44%
5 19.44% 24.44%

10 0, 0,
HX,) 19.44% 24.44%
25 20.00% 25.00%
50 21.67% 26.67%
100 25.00% 30.00%




21.67% 26.67%

500 26.67% 31.67%
1000
2000
2 56.29% 56.29% 49.20% 54.90%
5 74.93% 74.93% 48.76% 54.46%
10 48.76% 54.46%
25 48.90% 54.61%
(Y 50 52.34% 57.89%
100 56.43% 61.99%
200 48.76% 55.19%
500 54.24% 61.70%
1000 61.92% 68.49%
2000 56.51% 59.87%
2 53.87% 53.87% 48.10% 53.44%
5 73.68% 73.68% 47.81% 53.14%
10 47.81% 53.14%
25 47.81% 53.14%
H(E) 50 51.68% 57.31%
2 100 55.41% 61.77%
200 49.12% 55.48%
500 54.39% 61.62%
1000 61.99% 68.93%
2000 55.92% 61.11%

Table 7. Results from histogram-based method using fixed number of bins and
probability density function for detecting the experiment that leads to the maximum
uncertainty.

Mean of Mean of
Mean of Mean of . .
Entropy Number comparison comparison comparison comparison
of bins entroov vs. SAE  entropv vs. SSE 2verage entropy  average entropy
PYvs. PYvs. vs. MAE vs. MSE
2 0.00% 0.00% 10.53% 10.53%
5 53.95% 53.95% 10.53% 10.53%
HX,) 10 10.53% 10.53%
! 25 10.53% 10.53%
50 9.21% 9.21%
100 0.00% 0.00%
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100 89.47% 89.47% 1.97% 6.58%

200 2.63% 1.32%
500 5.26% 10.53%
1000 57.89% 60.53%
2000 14.47% 13.16%

For the histogram-based method using optimum number of bins, the entropy
measures did not show good results in comparison to the SSE, SAE, MAE, and MSE
methods for either detecting an increase or decrease in uncertainty with the increase in the
number of replications or for detecting the experiment that leads to the maximum
uncertainty, as shown in Table 8 and Table 9, respectively. Based on the results discussed
for the histogram-based method using fixed number of bins, these poor results were
expected because for the experiments in this study the number of bins turned out to be
small when using the optimum number of bins rules (e.g., = 10 to 20). Therefore, the
results for the optimum number of bins are in accordance with the previous results for the
fixed number of bins.

With the exception of the travel time input for detecting an increase or decrease in
the uncertainty with the increase in the number of replications, the different optimum
number of bins rules led to same results of performance among themselves when
compared to MAE or MSE. When compared to SAE or SSE, Sturges’ rule led to better
performance for both detecting an increase or decrease in uncertainty and for detecting the
experiment that leads to the maximum uncertainty. The only exception was again the

travel input for detecting an increase or decrease in the uncertainty with the increase in the

102



number of replications. In this case, FD had a better performance. This is due to the fact
that the travel input involved both stochastic and deterministic parameters, which affected
how the number of bins were calculated for Scott’s and FD’s rules. The sample standard
deviation and the interquartile range are taken into consideration in Scott’s and FD’s rules,
respectively. When the data is deterministic, this would lead to an optimum binwidth of
0. To overcome this issue, only Sturges’ rule was considered for the deterministic travel
time input in this work. Table 10 shows that when one considers only the stochastic travel
time, this input is not an exception anymore. The entropy measures calculated using the
histogram-based method and optimum number of bins showed better performance when
compared to SAE and SSE than when compared to MAE and MSE, similar to what was

observed with fixed number of bins.

Table 8. Results from histogram-based method using optimum number of bins and
probability density function for detecting an increase or decrease in uncertainty with the
increase in the number of replications.

Optimum Mean of Mean of Mean of Mean of
P comparison comparison comparison comparison
Entropy  number of
bins rule entropy vs. entropy vs. average entropy  average entropy
SAE SSE vs. MAE vs. MSE
FD 59.06% 59.06% 44.30% 54.68%
H(X1) Scott 59.94% 59.94% 44.30% 54.68%
Sturges 73.10% 73.10% 44.30% 54.68%
FD 56.36% 56.36% 45.39% 52.05%
H(X) Scott 61.99% 61.99% 45.39% 52.05%
Sturges 75.00% 75.00% 45.39% 52.05%
FD 42.22% 42.22% 19.44% 24.44%
H(X5) Scott 28.44% 28.44% 7.41% 8.33%
Sturges 22.22% 22.22% 0.00% 0.00%
H(Y;) FD 56.65% 56.65% 48.76% 54.46%
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Scott 62.57% 62.57% 48.76% 54.46%

Sturges 74.85% 74.85% 48.76% 54.46%

FD 56.94% 56.94% 47.81% 53.14%

H(Y;) Scott 63.45% 63.45% 47.81% 53.14%
Sturges 75.44% 75.44% 47.81% 53.14%

Table 9. Results from histogram-based method using optimum number of bins and
probability density function for detecting the experiment that leads to the maximum

uncertainty.

Optimum Mean _of Mean _of Mean _of Mean _of
Entropy number of comparison comparison comparison comparison
bins rule entropy vs. entropy vs. average entropy  average entropy
SAE SSE vs. MAE vs. MSE
FD 42.11% 42.11% 10.53% 10.53%
H(X,) Scott 44.74% 44.74% 10.53% 10.53%
Sturges 69.74% 69.74% 10.53% 10.53%
FD 30.26% 30.26% 2.63% 0.00%
H(X) Scott 46.71% 46.71% 2.63% 0.00%
Sturges 85.53% 85.53% 2.63% 0.00%
FD 75.00% 75.00% 50.00% 50.00%
H(X3) Scott 50.00% 50.00% 50.00% 50.00%
Sturges 90.00% 90.00% 50.00% 50.00%
FD 26.32% 26.32% 11.84% 9.87%
H(Yy) Scott 39.47% 39.47% 11.84% 9.87%
Sturges 75.66% 75.66% 11.84% 9.87%
FD 32.89% 32.89% 9.21% 4.61%
H(Y,) Scott 37.50% 37.50% 9.21% 4.61%
Sturges 80.26% 80.26% 9.21% 4.61%

Table 10. Results for stochastic travel time only from histogram-based method using
optimum number of bins and probability density function for detecting an increase or
decrease in uncertainty with the increase in the number of replications.

Op:rl]mu Mean of Mean of Mean of Mean of
comparison comparison comparison comparison
Entropy number
of bins entropy vs. entropy vs. average entropy  average entropy
SAE SSE vs. MAE vs. MSE
rule
FD 62.22% 62.22% 38.89% 48.89%
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H(>T<$) - Scott 44.44% 44.44% 38.89% 48.89%

(stochastic) ~ Sturge 74.44% 74.44% 38.89% 48.89%

Finally, for the histogram-based method using fixed number of bins and discrete
empirical distribution, observations similar to the histogram-based method with fixed
number of bins and probability density function can be made for the comparison to SAE

and SSE methods, as shown in Table 11 and

Table 12. The ability of the entropy measures in detecting an increase or decrease
in uncertainty with the increase in the number of replications or in detecting the
experiment that leads to the maximum uncertainty increases with the increase in the
number of bins. The ability of the entropy measures appears to be greater for detecting the
change in uncertainty than for detecting the scenario with the maximum uncertainty, as

shown in Table 11 and

Table 12.

While the histogram-based method with probability density function detected
change in uncertainty in agreement with the SAE or SSE method at least 90% of the time
when number of bins is 50 or higher. For the histogram-based method with discrete
empirical distribution this only occurs when number of bins is 200 or higher. The number

of bins that led to performance greater than 90% in detecting the experiment with the
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maximum uncertainty is also higher for the histogram-based method with discrete
empirical distribution than for the histogram-based method with probability density
function. As previously highlighted, the comparisons performed between the entropy
measures and the SAE method led to exactly the same results as of the comparisons
performed between the entropy measures and the SSE method.

In general, the entropy measures calculated using histogram-based method with
fixed number of bins and discrete empirical distribution appear to have a better
performance with the number of bins between 1,000 and 2,000. The entropy measures
calculated using the histogram-based method, fixed number of bins and discrete empirical
distribution show better performance when compared to SAE and SSE than when
compared to MAE and MSE. When compared to MAE or MSE, the measures appear to
perform worse than the entropy measures calculated using probability density function.

From Table 11 and

Table 12 one can see that the number of bins has no impact on the performance of
the average entropy measures when they are compared to MAE or MSE, different than the
histogram-method with probability density function where this was only observed for
lower number of bins. The average entropy measure calculated by the histogram-based
method with discrete empirical distribution is monotonically increasing with the number
of bins while the MAE or MSE are constant. Hence, the performance in detecting an

increase or decrease in uncertainty or the maximum uncertainty becomes constant.
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Results of the normalized entropy measures using the histogram-based method
with fixed number of bins and discrete empirical distribution are not shown here because
they are identical to the non-normalized results.

Figure 28 shows the results of the comparison for detecting an increase or decrease
in uncertainty with the increase in the number of replications for H(X;) using the
histogram-based method with fixed number of bins. From Figure 28, it is possible to
compare the results from the histogram-based method with probability density function

against the results from the histogram-based method with discrete empirical distribution.

Table 11. Results from histogram-based method using fixed number of bins and discrete
empirical distribution for detecting an increase or decrease in uncertainty with the
increase in the number of replications.

Mean of Mean of Mean .Of Mean .Of
erwropy /U0 comparisn  comparion R reaer
entropy vs. SAE  entropy vs. SSE vs. MAE vs MSE
2 59.21% 59.21% 44.30% 54.68%
5 36.26% 36.26% 44.30% 54.68%
10 34.50% 34.50% 44.30% 54.68%
25 53.36% 53.36% 44.30% 54.68%
HX) 50 63.01% 63.01% 44.30% 54.68%
100 79.09% 79.09% 44.30% 54.68%
200 44.30% 54.68%
500 44.30% 54.68%
1000 44.30% 54.68%
2000 44.30% 54.68%
2 54.75% 54.75% 45.39% 52.05%
5 33.55% 33.55% 45.39% 52.05%
H(X;) 10 38.52% 38.52% 45.39% 52.05%
25 50.80% 50.80% 45.39% 52.05%
50 65.42% 65.42% 45.39% 52.05%
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Table 12. Results from histogram-based method using fixed number of bins and discrete
empirical distribution for detecting the experiment that leads to the maximum
uncertainty.

Mean of Mean of Mean .Of Mean .Of
Entropy Num_ber comparison comparison comparison comparison
of bins entropy vs. SAE  entropy vs. SSE average entropy  average entropy
vs. MAE vs. MSE
2 7.89% 7.89% 10.53% 10.53%
5 0.00% 0.00% 10.53% 10.53%
10 0.00% 0.00% 10.53% 10.53%
25 0.00% 0.00% 10.53% 10.53%
H(X,) 50 1.32% 1.32% 10.53% 10.53%
100 7.89% 7.89% 10.53% 10.53%
200 10.53% 10.53%
500 10.53% 10.53%
1000 10.53% 10.53%
2000 10.53% 10.53%
2 7.89% 7.89% 2.63% 0.00%
5 0.00% 0.00% 2.63% 0.00%
10 0.00% 0.00% 2.63% 0.00%
25 0.00% 0.00% 2.63% 0.00%
H(X,) 50 3.95% 3.95% 2.63% 0.00%
100 26.32% 26.32% 2.63% 0.00%
200 79.61% 79.61% 2.63% 0.00%
500 2.63% 0.00%
1000 2.63% 0.00%
2000 2.63% 0.00%
2 50.00% 50.00% 50.00% 50.00%
5 50.00% 50.00% 50.00% 50.00%
10 50.00% 50.00% 50.00% 50.00%
25 50.00% 50.00% 50.00% 50.00%
H(X,) 50 55.00% 55.00% 50.00% 50.00%
100 60.00% 60.00% 50.00% 50.00%
200 50.00% 50.00%
500 50.00% 50.00%
1000 50.00% 50.00%
2000 50.00% 50.00%
2 0.00% 0.00% 11.84% 9.87%
H(Y) 5 0.00% 0.00% 11.84% 9.87%
10 0.00% 0.00% 11.84% 9.87%
25 0.00% 0.00% 11.84% 9.87%
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Figure 28. Results for detecting an increase or decrease in uncertainty with the increase
in the number of replications for H(X) using the histogram-based method with fixed
number of bins.

A final analysis performed in terms of the entropy measures was to compare the
results from the histogram-based method with fixed number of bins and probability
density function versus the results from the histogram-based method with fixed number
of bins and discrete empirical distribution. The first is the theoretically correct approach
but it brings challenges in its application. The second has practical benefits in terms of
calculations and it is frequently used by practitioners, but it may not yield real benefits in
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terms of applications. To compare the two methods, y? test at an a-level of 0.05 was
applied using JIMP®, where the null hypothesis H, was that there is no difference between
the results with the histogram-based method with probability density function and the
results with the histogram-based method with discrete empirical distribution.

The results of the y? test are shown in Table 13 to Table 18. As the results in Table
6, Table 7, Table 11, and Table 12 already indicated, Table 13 to Table 18 show that except
for large number of bins, the results of the methods are actually statistically significantly
different and, overall, the histogram-based method with probability density function
shows better results than the histogram-based method with discrete empirical distribution
for both detecting change in uncertainty and for detecting the experiment that leads to the
maximum uncertainty in agreement with the SSE method (or the SAE method).

When the y?2 test was performed on the average entropy measures in comparison
to the MAE or MSE methods, the results were slightly different. The histogram-based
method with probability density function was statistically significantly better than the
histogram-based method with discrete empirical distribution only for higher number of
bins (between 1,000 and 2,000). For a few cases where the number of bins was lower than
1,000, the histogram-based method with discrete empirical distribution was statistically
significantly better than the histogram-based method with probability density function for
detecting the experiment that leads to the maximum uncertainty.

Although there is not a consistency in the results, one can see that, in general, when
the methods are statistically significantly different, the histogram-based method with
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probability density function shows better results than the histogram-based method with
discrete empirical distribution. However, this difference varies based on the methods the
measures are being compared to and also on the number of bins used to calculate the

measures.

Table 13. x? test comparing the results of the histogram-based method using fixed
number of bins and probability density function versus the results of the histogram-based
method using fixed number of bins and discrete empirical distribution with respect to
their capability of detecting an increase or decrease in uncertainty with the increase in
the number of replications in agreement with the SSE method.

Proportion difference per number of bins

Entropy 2 5 10 25 50 100 200 500 1,000 2,000

H(X;) -0.225 0.318 0.473 0.367 0.321 0.181 0.013 0.000 0.004 0.000
H(X,) -0.182 0.352 0.404 0.372 0.343 0.181 0.035 0.007  0.000  0.000
H(X3) 0.006 0.217 0.178 0.036 0.144 0.083 0.000 0.017  0.000  0.000
H(Y;) 0.163 0.481 0.487 0.373 0.269 0.190 0.041 0.016  0.008  0.008
H(Y;) 0.126 0.488 0.509 0.410 0.301 0.171 0.029 0.007 0.003 0.003

P-value per number of bins

Entropy 2 5 10 25 50 100 200 500 1,000 2,000
<0000 <0000 <0.000 <0000 <0000  <0.000 1000 0083 _ 1.000

H(Xy) 1 1 1 1 1 1 0.1616 ™ 0 0
hGry <0000 <0000 <0000 <0000 <0000 <0000 <0000 0025 1000 1000

2 1 1 1 1 1 1 1 1 0 0
Hot) 09038 <o.foo <o.foo <o.foo <o.foo 00007 10000 O.%83 1.%00 1.%00
<0.000 <0.000 <0000 <0.000 <0.000 <0.000 0019 0041 0041

H(¥) 1 1 1 1 1 1 0.0003 1 1
<0.000 <0.000 <0000 <0.000 <0.000 <0.000 0163 0413 0413

H(Y;) 1 1 1 1 1 1 0.0030 g 6 6

Table 14. y? test comparing the results of the histogram-based method using fixed
number of bins and probability density function versus the results of the histogram-based
method using fixed number of bins and discrete empirical distribution with respect to
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their capability of detecting the experiment that leads to the maximum uncertainty in
agreement with the SSE method.

Proportion difference per number of bins
Entropy 2 5 10 25 50 100 200 500 1,000 2,000

H(X1) 0.544 0.861 0.942 0.984 0.839 0.139 0.000  0.000 0.000

0.076
H(X,) 0 (;38 0.786 0.861 0.879 0.902 0.649 0.171 0.013  0.000  0.000
H(X3) 0.000  0.450 0.400 0.500 0.450 0.250 0.000 -0.350 0.000 0.000
H(Y;) 0.380 0.734 0.810 0.690 0.772 0.722 0.247  -0.025 0.000 0.000
H(Y,) 0.266  0.824 0.848 0.809 0.915 0.674 0.202 0.038 0.000 0.013

P-value per number of bins

Entropy 2 5 10 25 50 100 200 500 1,000 2,000
0013 <0000 <0000 <0000 <0.000 <0.000 1000 1000  1.000

H(X,) 4 1 1 1 1 1 0.0015 ™y 0 0
0306 <0000 <0000 <0000 <0.000 <0.000 0318  1.000 1.000

H(X;) 2 1 1 1 1 1 0.0006 ™ 0 0
H(Xs) 1'%00 00013 00054 00003 00009 00809  1.0000 0'218 1'%00 1'%00
Hy <000 <0000 <0000 <0000 <0000 <0000 <0000 0516 1000 1000

1 01 1 1 1 1 1 1 5 0 0
<000 <0000 <0000 <0000 <0000 <0.000 0249 1000 0563

H(Y>) 01 1 1 1 1 1 0.0004 7, 0 0

Table 15. y? test comparing the results of the histogram-based method using fixed
number of bins and probability density function versus the results of the histogram-based
method using fixed number of bins and discrete empirical distribution with respect to
their capability of detecting an increase or decrease in uncertainty with the increase in
the number of replications in agreement with the MAE method.

Proportion difference per number of bins
Entropy 2 5 10 25 50 100 200 500 1,000 2,000
H(X;) 0000 0000 0000 0003 0058 0075 0009 008 0173  0.162
H(X;) 0000 0000 0000 0000 0039 008 0019 009 018  0.140
H(X;) 0500 0500 0500 0494 0478 0444 0478 0428 0111  0.117
H(y;) 0004 0000 0000 0001 0036 0077 0000 0055 0132  0.077
H(Y;) 0003 0000 0000 0.000 0039 0076 0013 0066 0142  0.081

P-value per number of bins

Entropy 2 5 10 25 50 100 200 500 1,000 2,000
H(Xy) 1'(())00 1.0000 1.0000 0.9134 0.0303 0.0058 0.7440 0.0014 <0.fOO <0.fOO
H(X3) 1'(())00 1.0000 1.0000 1.0000 0.1425 0.0018 0.4796 0.0004 <0.fOO <0.fOO
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1

1.0000

1.0000

<0.000
1

0.9569

1.0000

<0.000
1

0.1850

0.1519

<0.000
1

0.0044

0.0048

<0.000
1

1.0000

0.6266

<0.000
1

0.0423

0.0148

0.0149

<0.000
1

<0.000
1

0.0102

0.0041

0.0026

Table 16. y? test comparing the results of the histogram-based method using fixed
number of bins and probability density function versus the results of the histogram-based
method using fixed number of bins and discrete empirical distribution with respect to
their capability of detecting an increase or decrease in uncertainty with the increase in
the number of replications in agreement with the MSE method.

Proportion difference per number of bins

Entropy 2 5 10 25 50 100 200 500 1,000 2,000
H(X,) 0000 0000 0000 0003 0058 0077 0006 0080 0164  0.060
H(X,) 0000 0000 0000 0000 0042 0093 0031 0118 0208 0134
H(X) 0500 0500 0500 0494 0478 0444 0478 0428 0089 0072
H(Y,) 0004 0000 0000 0001 0034 0075 0007 0072 0140  0.054
H(Y,) 0003 0000 0000 0000 0042 008 0023 0085 0158  0.080

P-value per number of bins

Entropy 2 5 10 25 50 100 200 500 1,000 2,000
H(X,) 1'%00 10000 10000 09136 00286 00036 08283 0.0025 <°'f°° 0.0249
H(X,) 1'%00 10000 1.0000 10000 0.1152 00005 0.2545 <0f00 <0'f00 <0'f00

<000 <0000 <0000 <0000 <0000 <0.000 <0.000 <0.000
Hxy) O : . . : . : 2 0038 00084
Her)  %%7° 10000 10000 09566 01995 00046 07856 0.0085 <OU%0 00428
H) %% 10000 10000 10000 01213 00012 03852 00015 “*0% 00028

Table 17. x? test comparing the results of the histogram-based method using fixed
number of bins and probability density function versus the results of the histogram-based
method using fixed number of bins and discrete empirical distribution with respect to
their capability of detecting the experiment that leads to the maximum uncertainty in
agreement with the MAE method.

Proportion difference per number of bins

Entropy

2

5

10

25

50

100
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500

1,000

2,000

H(X1)

0.000

0.000

0.000

0.000

-0.013
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H(X3) 0.000 0.000 0.000 0.000 -0.026 -0.026 0.013 0.039 0.664 0.132
H(X3) 0.000 0.000 0.000 0.050 0.050 0.050 0.000 0.000 0.250 0.000
H(Y,) 0.000 0.000 0.000 0.000 -0.046 -0.086 -0.118 -0.092 0.533 0.000
H(Y,) 0.000 0.000 0.000 0.000 -0.007  -0.072 -0.066 -0.039 0.487 0.053
P-value per number of bins
Entropy 2 5 10 25 50 100 200 500 1,000 2,000
H(Xy1) 1.0000 1.0000 1.0000 1.0000 0.7873 0.0035 0.0035 0.0035 <0.0001 0.1191
H(X3) 1.0000 1.0000 1.0000 1.0000 0.1566 0.1566 0.6519 0.2485 <0.0001  0.0040
H(X3) 1.0000 1.0000 1.0000 0.7590 0.7590 0.7590 1.0000 1.0000  0.1077  1.0000
H(Yy) 1.0000 1.0000 1.0000 1.0000 0.3324 0.0440 0.0018 0.0285 <0.0001 1.0000
H(Y,) 1.0000 1.0000 1.0000 1.0000 0.8864 0.0490 0.0868 0.3509 <0.0001 0.3185

Table 18. y? test comparing the results of the histogram-based method using fixed
number of bins and probability density function versus the results of the histogram-based
method using fixed number of bins and discrete empirical distribution with respect to
their capability of detecting the experiment that leads to the maximum uncertainty in
agreement with the MSE method.

Proportion difference per number of bins

Entropy 2 5 10 25 50 100 200 500 1,000 2,000
H(X,) 0.000 0.000 0.000 0.000 -0.013 -0.105 -0.105 -0.105 0.645 -0.066
H(X,) 0.000 0.000 0.000  0.000 0.000 0.000 0.000  0.105 0.697 0.151
H(X3) 0.000 0.000 0.000  0.000 0.000 0.000 0.000  0.500 0.250 0.000
H(Yy) 0.000 0.000 0.000 0.000 -0.007 -0.026 -0.086 -0.072 0.520 0.020
H(Y;) 0.000 0.000 0.000  0.000 0.007 0.020 -0.033  0.059 0.559 0.086

P-value per number of bins

Entropy 2 5 10 25 50 100 200 500 1,000 2,000
H(X,) 1.0000 1.0000 1.0000 1.0000 0.7873 0.0035 0.0035 0.0035 <0.0001 0.1191
H(X,) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0035 <0.0001 0.0003
H(X3) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.7590 0.1077 1.0000
H(Y;) 1.0000 1.0000 1.0000 1.0000 0.8879 0.5565 0.0196 0.0622 <0.0001 0.6956
H(Y;) 1.0000 1.0000 1.0000 1.0000 0.8500 0.5811 0.2206 0.1646 <0.0001 0.0618

In information theory, the mutual information between X and Y is the average
reduction in uncertainty in the value of Y provided by the value of X and vice-versa.
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Mutual information is also a measure of the dependence or association between the
variables X and Y. Therefore, in order to investigate the potential of the MI as a method
of uncertainty quantification in simulation model, the MI results were compared to the
results of three other measures of dependence between variables: distance correlation,
Pearson correlation, and R?,4;. To assess the results, the following analyses were
performed:

(i) The Ml is capable of identifying the input X; that has the greatest impact on

the uncertainty of the output ¥; in agreement with the measure of dependence.

(if) The Ml is capable of identifying the input X; that has the least impact on the

uncertainty of the output ¥; in agreement with the measure of dependence.
where i = 1,2 or i = 1,2,3 depending on the scenario being evaluated, and j =
1,2.

Distance correlation was proposed by Székely et al. (2007) as a measure of
dependence between two random variables that is able to capture both linear and non-
linear association. The distance correlation of the inputs and outputs were calculated using
the package “energy” in the software R. Pearson correlation and R?,,; were also

calculated in R. The latter was calculated using Equation 47.

n—1
R%gqj=1-— (1—R2)n_—

— Equation 47

where n is the sample size and p is the total number of independent variables.
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In order to compare the MI with the measures of dependence, an analysis
procedure was developed because there could be experiments where either the MI or the
measures of dependence would identify more than one input as the one with the greatest
impact on the output. Similarly, there could be experiments where the M1 or the measures
of dependence would identify more than one input as the one with the least impact on the
output. For the experiments that could have more than one input selected by the measures,
a procedure was needed to identify whether the M1 and the measure of dependence results
were consistent.

For experiments that involved 3 inputs, that is, where arrival time, service time,
and travel time were involved, the following procedure was followed:

1. If the Ml identified 3 inputs as having the greatest (or the least) impact on the
output, it means that none of the inputs are different than the other in terms of
the uncertainty impact on the output. In this case, if the measure of dependence
identified less than 3 inputs as having the greatest (or the least) impact on the
output, then the MI and the measure of dependence did not agree among
themselves. That is, the results were not consistent. Similarly, if the measure of
dependence identified 3 inputs as having the greatest (or the least) impact on the
output and the M1 identified less than 3 inputs as having the greatest (or the least)
impact on the output, then the MI and the measure of dependence did not agree

among themselves.
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2. If the MI identified 3 inputs as having the greatest (or the least) impact on the
output and the measure of dependence identified 3 inputs as having the greatest
(on the least) impact on the output, then the MI and the measure of dependence
strongly agree among themselves, as all the choices among them were exactly
the same.

3. If the Ml identified i inputs as having the greatest (or the least) impact on the
output and the measure of dependence identified i inputs as having the greatest
(or the least) impact on the output, where i = 1,2, then:

a. If all the inputs identified by the MI are the same as the ones identified by
the measure of dependence, then the measures strongly agree.

b. If at least one input identified by the measures is the same, then there is a
weak agreement between the measures (this case is not possible for i = 1).

c. Otherwise, the measures do not agree.

4. If the MI identified i inputs as having the greatest (or the least) impact on the
output and the measure of dependence identified i — 1 inputs as having the
greatest (or the least) impact on the output, where i = 2,3, then:

a. If at least one input identified by the measures is the same, then there is a
weak agreement between the measures.
b. Otherwise, the measures do not agree.

The procedure is summarized on Table 19. A similar procedure was implemented

for experiments that involved only 2 inputs (arrival time and service time).
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Table 19. Procedure to identify whether the MI and the measure of dependence agree or

not.
Method / Number of Measure of dependence
inputs with impact on
output 8 2 1
3 Strongly agree Do not agree Do not agree
If: If:
- all inputs are equal: - at least one input is
2 Do not agree strongly agree equal: weakly agree
- at least one input is - otherwise: do not
MI equal: weakly agree agree
If: If:
- at least one input is -inputisequal: strongly
1 Do not agree equal: weakly agree agree
- otherwise: do not - otherwise: do not
agree agree

The results of the comparisons of the MI versus the distance correlation, the
Pearson correlation, and the R?,,; methods are shown in Table 67 to Table 76 of the
Appendix. Table 67 and Table 68 show the results when the Ml is calculated using the
histogram-based method with fixed number of bins and probability density function.

Table 69 and Table 70 show the results when the MI is calculated using the
histogram-based method with optimum number of bins and probability density function.

Table 71 to Table 76 show the results when the MI is calculated using the
histogram-based method with fixed number of bins and discrete empirical distribution.
For the results shown in Table 67 to Table 76, either a weak or strong agreement, as
defined in the aforementioned procedure, were considered an agreement among the

measures.
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First, logistic regression with two-factor interaction effect was performed using
JMP® to investigate which factors affected the performance of the MI when compared
against the different measures of dependence. Next, y? test was performed using IMP®
to investigate whether the performance of MI was statistically significantly different based
on the method used to calculate the MI, the dependence measure to which the MI was
being compared to, or the output that was being investigated.

Logistic regression was performed on the results of Ml compared with each
measure of dependence (distance correlation, Pearson correlation, and R?,4;), from each
calculation method (fixed bins with probability density function, fixed bins with discrete
empirical distribution, and optimum number of bins with probability density function),
and from each combination of greatest or least impact on the simulation output (input with
the greatest impact on the NIS, input with the least impact on the NIS, input with the
greatest impact on the TIS, and input with the least impact on the TIS). For the logistic
regression, the following factors were considered as possible dependent variables that
could affect the performance of the MI (the independent variable): (i) the number of bins
(2, 5, 10, 25, 50, 100, 200, 500, 1000, 2000), (ii) the number of replications (10, 20, 50,
100, 200, 400, 600, 800, 1000, 1500), and (iii) the normalization method (non-
normalization, arith, joint, geom, and theor). The normalization method was only
considered as a factor when the calculation method was the discrete empirical distribution,

as it was the only method where normalization between 0 and 1 was possible and also
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where normalization was recommended by the literature due to the impact of the number
of bins.

Based on the whole model test, which compares the whole-model fit to the model
that omits all the logistic regression parameters except the intercepts, the model considered
here was statistically a better fit than the intercepts (p-value less than 0.0001 at a-level of
0.05). This test is analogous to the ANOVA for continuous responses. The null hypothesis
is that the model fits no better than the model that includes only the intercepts, while the
alternative hypothesis is that the model fits better than the model that includes only the
intercepts. Table 20 shows the misclassification rate of the logistic model by method of
calculation, measure of dependence, and impact on simulation output. Considering only
the aforementioned factors as variables that impact the performance of the M1 led to an

average misclassification rate of 36.8%.

Table 20. Misclassification rate of the logistic regression model by method of
calculation, measure of dependence, and impact on simulation output.

Method of calculation Measure of Impact on Misclassification
dependence simulation output rate

Fixed bins - probability density Distance correlation Greatest impact on 0.3691
function NIS '
F'XEd. bins - probability density Distance correlation Least impact on NIS 0.3996
function

Fixed bins - probability density Distance correlation Greatest impact on 0.3701
function TIS '
]Iflxed_ bins - probability density Distance correlation Least impact on TIS 0.3999
unction

Fixed bins - probability density Pearson correlation Greatest impact on 0.3647

function NIS
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Fixed bins - probability density

function

Fixed bins - probability density

function

Fixed bins - probability density

function

Fixed bins - probability density

function

Fixed bins - probability density

function

Fixed bins - probability density

function

Fixed bins - probability density

function

Pearson correlation
Pearson correlation
Pearson correlation
Rzadj
Rzadj
Rzadj

2
R adj

Least impact on NIS

Greatest impact on
TIS

Least impact on TIS

Greatest impact on
NIS

Least impact on NIS

Greatest impact on
TIS

Least impact on TIS

0.3738

0.3715

0.3910

0.3586

0.3689

0.3684

0.3796

Optimum number of bins
probability density function

Optimum number of bins
probability density function

Optimum number of bins
probability density function

Optimum number of bins
probability density function

Optimum number of bins
probability density function

Optimum number of bins
probability density function

Optimum number of bins
probability density function

Optimum number of bins
probability density function

Optimum number of bins
probability density function

Optimum number of bins
probability density function

Optimum number of bins
probability density function

Optimum number of bins
probability density function

Distance correlation
Distance correlation
Distance correlation
Distance correlation
Pearson correlation
Pearson correlation
Pearson correlation
Pearson correlation
R? 4;

R? 4;

Rzadj

2
R adj

Greatest impact on
NIS

Least impact on NIS

Greatest impact on
TIS

Least impact on TIS

Greatest impact on
NIS

Least impact on NIS

Greatest impact on
TIS

Least impact on TIS

Greatest impact on
NIS

Least impact on NIS

Greatest impact on
TIS

Least impact on TIS

0.4413

0.4363

0.3605

0.3265

0.4024

0.3820

0.3336

0.2994

0.4006

0.3870

0.3342

0.3000

Fixed bins - discrete empirical

distribution

Distance correlation
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Greatest impact on
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0.4051



Fixed bins
distribution

Fixed bins
distribution

Fixed bins
distribution

Fixed bins
distribution

Fixed bins
distribution

Fixed bins
distribution

Fixed bins
distribution

Fixed bins
distribution

Fixed bins
distribution

Fixed bins
distribution

Fixed bins
distribution

discrete

discrete

discrete

discrete

discrete

discrete

discrete

discrete

discrete

discrete

discrete

empirical

empirical

empirical

empirical

empirical

empirical

empirical

empirical

empirical

empirical

empirical

Distance correlation
Distance correlation
Distance correlation
Pearson correlation
Pearson correlation
Pearson correlation
Pearson correlation
Rzadj

Rzadj

Rzadj

2
R adj

Least impact on NIS

Greatest impact on
TIS

Least impact on TIS

Greatest impact on
NIS

Least impact on NIS

Greatest impact on
TIS

Least impact on TIS

Greatest impact on
NIS

Least impact on NIS

Greatest impact on
TIS

Least impact on TIS

0.3991

0.3752

0.3460

0.3837

0.3430

0.3598

0.3248

0.3799

0.3453

0.3578

0.3197

Table 21 shows the p-value and order of importance for the factors and effects in
the logistic regression model for an a-level of 0.05. As shown in Table 21, number of
replications appears to be the most important factor. With a few exceptions when using
the optimum number of bins rule, the number of replications was the first factor in order
of importance regardless of the method of calculation. With a few exceptions also when
using the optimum number of bins rule, number of bins was the third factor in order of
importance regardless of the method of calculation. Despite being the third factor in order

of importance in the model, number of bins was still statistically significantly important
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for the model in the majority of the cases. The normalization method and its interaction
effects were not statistically significantly for the model when using the discrete empirical
distribution, with the exception when considering the greatest impact on NIS. However,
for the normalization method, care must be taken. As showed in Figure 9, the different
normalized versions of the MI have different behaviors. Therefore, it is possible that if

only two methods were being investigated, the results would be different.

Table 21. P-value and order of importance of factors on logistic regression model.
Greatest Least Greatest Least
impact impact impact impact
onNIS onNIS onTIS onTIS
0.0000  0.0000  0.0000  0.0000

1) 1) 1) (1)

Method of  Measure of  Factor / P-value (order of
calculation  dependence importance)

Number of replications

Distance Number of bins 0.0725  0.0122  0.0001  0.0000
correlation ) ) ) )
Number of replications x  0.0000  0.0000  0.0000 0.0000
number of bins (2) (2) (2) (2)
Fixed Number of replications 0.0000  0.0000  0.0000  0.0000
number of P 1) 1) 1) 1)
bins - Pearson Number of bins 0.0019  0.0000  0.0000  0.0000
probability  correlation 3 3 3) 3)
density Number of replications x  0.0000 0.0000  0.0000  0.0000
function number of bins 2 2 (2) (2)
— 0.0000  0.0000  0.0000  0.0000
Number of replications (1) (1) (1) (1)
. 0.0034  0.0000 0.0000  0.0000
R?q4j Number of bins 3) 3) 3) 3)
Number of replications x  0.0000 0.0000  0.0000 0.0000
number of bins 2 2 (2 (2)
L 0.0000  0.0000  0.0000  0.0000
Number of replications @) @) ) 1)
Optimum Distance . 0.0469 0.7034  0.0000  0.0040
number of  correlation Number of bins 3) 3) 3) 3)
bins - Number of replications x  0.0000 0.0000 0.0000  0.0000
probability number of bins (@) ()] (2) (2)
density Number of reolications 0.0000  0.0000  0.0000  0.0000
function Pearson P 3) 1) 1) 1)
correlation 0.0000  0.0000  0.0000  0.0002

Number of bins

@ ®) @ ©)
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Number of replications x  0.0000 0.0000  0.0000  0.0000
number of bins ()] 2 3) 2
L 0.0000  0.0000  0.0000  0.0000
Number of replications @) 1) ) )
R? 4 Number of bins 0.(()3()))00 0.(();))00 0.(();))00 0.?3?)00
Number of replications x  0.0000 0.0000 0.0000  0.0000
number of bins (€3] (2) 3) (2)
L 0.0000  0.0000  0.0000  0.0000
Number of replications (1) (1) (1) (1)
Number of bins 0.0000  0.0000  0.0000  0.0000
®) ®) ®) ®)
Normalization method 0.9681  0.6725 0.9987  0.9981
Distance 4 4) 4) (4)
correlation ~ Number of replications x  0.0000 0.0000 0.0000  0.0000
number of bins 2) 2) 2 2
Number of replications x  1.0000 1.0000  0.9995 0.9997
normalization method 5) 5) (5) (5)
Number of bhins x 1.0000 1.0000 1.0000  1.0000
normalization method (6) (6) (6) (6)
L 0.0000  0.0000  0.0000  0.0000
Number of replications ) ) ) 1)
Number of bins 0.0000  0.0000  0.0000  0.0000
Fixed 3) 3) 3) 3)
number of Normalization method 0.0248  0.1421  0.9241 0.9880
bins - Pearson 4) 4 4 4)
discrete correlation ~ Number of replications x  0.0000  0.0000 0.0000  0.0000
empirical number of bins 2) 2) 2) 2)
distribution Number of replications x 0.9996  0.9989  0.9929 0.9966
normalization method %) %) (5) (5)
Number of bins x 09999 09999 1.0000  1.0000
normalization method (6) (6) (6) (6)
Number of replications 0.0000  0.0000  0.0000  0.0000
(1) (1) (1) (1)
Number of bins 0.0000  0.0000  0.0000  0.0000
@) ®) ®) @)
o 0.0444  0.1502 0.9440  0.9988
Normalization method @) @) @) (5)
2 .
R%aa Number of replications x  0.0000  0.0000  0.0000  0.0000
number of bins 2 2 2 2
Number of replications x  0.9993  0.9992  0.9922 0.9957
normalization method 5) %) 5) (4)
Number of bins x 09999 09999 1.0000  1.0000
normalization method (6) (6) (6) (6)
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Table 67 to Table 76 of the Appendix show the results of the comparison in a
granulated level, which makes it harder to perform the comparison among the different
methods and different measures of dependence. Table 22 shows the results summarized
by calculation method, normalization method, measure of dependence, and impact on the
output, where the green color represents the highest value per group, yellow the median,
and red the lowest value per group. Overall, distance correlation is the measure of
dependence that leads to the best performance when compared to the M1 calculated using
fixed number of bins with probability density function, while R?,4; is the measure of
dependence that leads to the worst performance. For MI calculated using optimum number
of bins rule and using fixed number of bins with discrete empirical distribution, Pearson
correlation is the measure of dependence that leads to the best performance, while distance
correlation is the measure of dependence that leads to the worst performance. However, it
IS important noting that there is no consistency in these results as this varies based on the
number of bins used to calculate the MI. Whenever fixed number of bins is used to
calculate the M1 with either probability density function or discrete empirical distribution,
depending on the number of bins used, either Pearson or distance correlation can lead to
the best performance of the measure. Also, these differences may not be statistically
significantly different as it will be investigated in the y? test later in this section. The
results of the y? test are shown in Table 26.

An interesting observation that can also be made from Table 22 is that the results
of the MI and the NM1,,,.,, are very similar, with differences only in the decimals, which
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is another indication that NMI,;.,, is the best normalization method for the mutual

information.

Table 22. Results from the comparison of the measures of dependence versus the Ml
summarized by calculation method, normalization method, measure of dependence, and
impact on the output.

Greatest Least Greatest Least

Calculation  Normalization Measure of impact impact impact impact Total
method method dependence onNIS onNIS onTIS onTIS [%)]
[%0] [%0] [%0] [%0]
N Distance 3782 4275 3775 4396 4057
Probability Non correlation
density - Pearson
function normalization correlation 37.48 40.42 37.95 43.16 39.75
Rzadj 36.87 39.70 37.63 42.03 39.06
Distance
Optimum correlation 49.03 55.40 56.71 61.90 55.76
number of e Pearson 5637 6135  60.08  64.68 60.62
bins rule normalization correlation . . . . .
Rzadj 56.03 60.55 59.75 63.54 59.97
Distance 4428 4971 5296 5643 50.84
Non- lc)orrelatlon
S earson
normalization correlation 49.71 53.58 54.65 57.14 53.77
Rzad]- 48.94 52.81 54.34 56.00 53.02
Distance 4459 5048 5268  56.16 50.98
correlation
Arith Pearson 4781 5197 5408 5675 52.65
correlation
, R?4; 4709 5120 5378 5561 51.92
Discrete Distance
empirical . 44.58 50.48 52.68 56.16  50.98
CR correlation
distribution . Pearson
Joint : 47.81 51.97 54.09 56.75  52.66
correlation
R?4; 4708 5120 5380 5561 51.92
Distance 4461 5048 5265  56.15 50.97
correlation
Geom Pearson 4782 5197 5400 5668 52.62
correlation
R? 44 4710 5120 5371 5554 51.89
Theor Distance 4424 4967 5295 5642 50.82
correlation
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Pearson
correlation

R? 4 4891 5278 5434 5600 53.01

49.68 53.56 54.65 57.14  53.76

Table 23 shows the results summarized by calculation method, number of bins,
measure of dependence, and impact on the output, where the green color represents the
highest value per measure of dependence within calculation method and red represents the
lowest values per measure of dependence within calculation method. When the MI is
calculated using fixed number of bins with probability density function there is not a clear
conclusion regarding the impact of the number of bins on the performance of the MI.
When NIS is the output being considered, 2 is the number of bins that leads to the worst
performance; and 10, for distance correlation, or 50, for either R?,,; or Pearson
correlation, are the number of bins that lead to the best performance. When TIS is the
output being considered, 2 is still the number of bins that leads to the worst performance
when distance correlation is the measure of dependence being compared to. However,
values of 1000 or 2000 are the number of bins that lead to worst performance when R? 4,
or Pearson correlation are the measures of dependence considered. For best performance,
the numbers of bins are 5 or 25 for R? 4 or Pearson correlation and 50 or 100 for distance
correlation. Results are found to be more consistent when the Ml is calculated using fixed
number of bins with discrete empirical distribution. Overall, 2 is the number of bins that
leads to the worst performance regardless of the measure of dependence and the output
and 5 is the number of bins that leads to the best performance. Although there is a lack of
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consistency when using probability density function, by comparing the results with the
discrete empirical distribution, one can see that it appears that either larger number of bins
(between 1000 and 2000) or very low number of bins (around 2) leads to worst
performance in terms of MI, while mid-range (between 10 to 100) leads to best
performance. However, it is important noting that as the results of Table 21 show, there is
a interaction between the number of replications and number of bins and, in general, the
interaction was shown to be more important than the number of bins alone. Therefore,
ideally one should not evaluate the MI performance by looking at the number of bins
alone, which could justify the lack of consistency.

When the Ml is calculated using the optimum number of bins rule, it is interesting
to note that regardless of the measure of dependence and the output, Sturges’ rule appears
to be the one that leads to the worst performance, while Scott’s rule leads to best
performance. FD’s rule leads to the best performance when compared to Pearson

correlation or R?,4; when considering the least impact on the NIS, but even in those cases

Scott’s rule performance is very close to FD’s rule.

Table 23. Results from the comparison of the measures of dependence versus the Ml
summarized by calculation method, number of bins, measure of dependence, and impact
on the output considering non-normalized version only.

Greatest  Least Greates Least
Calculation . Measure of impact  impact . impact
method Number of bins dependence onNIS  onNIS Impact onTIS
23 I 73 I 75
[%0]
2 Distance correlation 33.42 37.85 31.90 38.73
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Pearson correlation 32.66 34.81 34.18 39.49

R4 3215 3405 3380  38.35

2 Total 32.74 35.57 33.29 38.86

Distance correlation 36.08 42.66 38.73 44.05

5 Pearson correlation 36.20 40.13 41.52 46.84
Rzadj 35.32 39.37 41.27 45.70

5 Total 35.86 40.72 40.51 45.53

Distance correlation 40.76 46.71 39.75 45.95

10 Pearson correlation 37.34 40.89 40.00 45.44
R?q; 3671 4025  39.62  44.30

10 Total 38.27 42.62 39.79 45.23

Distance correlation 38.48 43.67 38.61 42.53

25 Pearson correlation 39.75 43.16 42.15 45.06
Rzadj 39.37 42.53 41.90 43.92

25 Total 39.20 43.12 40.89 43.84

Distance correlation 39.24 44.81 40.51 47.85

50 Pearson correlation 42.53 46.46 40.76 46.58
Rzad]- 41.90 45.82 40.63 45.44

Probability 50 Total 41.22 45.70 40.63 46.62
density Distance correlation 38.35 42.41 41.01  47.22
function 100 Pearson correlation 3899 4241  39.62  44.68
Rzad]- 38.35 41.65 39.37 43.54

100 Total 38.57 42.15 40.00 45,15

Distance correlation 40.38 44.68 40.63 46.84

200 Pearson correlation 41.27 43.92 40.25 45.44
Rzad]- 40.51 43.16 39.87 44.30

200 Total 40.72 43.92 40.25 4553

Distance correlation 37.09 41.14 38.61 45.44

500 Pearson correlation 36.84 39.37 34.56 41.01
Rzad]- 36.08 38.61 34.18 39.87

500 Total 36.67 39.70 35.78 4211

Distance correlation 36.33 42.03 34.05 41.65

1000 Pearson correlation 34.56 37.59 33.16 39.87
Rzad]- 34.43 36.84 32.78 38.73

1000 Total 35.11 38.82 33.33 40.08

Distance correlation 38.10 41.52 33.67 39.37

2000 Pearson correlation 34.68 35.44 33.29 37.22
Rzadj 33.92 34.68 32.91 36.08

2000 Total 35.57 37.22 33.29 37.55

FD Distance correlation 4886 5532 5658  62.28
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Pearson correlation 60.63 6519 6089 6532

Rzadj 59.62 64.30 60.51 64.18

FD's Total 54.10 56.37 61.60 59.32

Distance correlation 52.03 5570 61.52  64.05

Optimum Scott Pearson correlation 62.53 6494 6544  67.47
number of R?q4j 62.53 64.18 65.19 66.33
bins rule Scott's Total 5537 5903 6160  64.05
Distance correlation 46.20 5519 5203  59.37

Sturges Pearson correlation 45.95 5392 5392  61.27

Rzadj 45,95 53.16 53.54 60.13

Sturges' Total 45.78 46.03 54.09 53.16

Distance correlation 46.08 53.92 58.10 62.66

2 Pearson correlation 60.76 67.09 68.10 71.65

R2 44 5937 6620  67.85  70.51

2 Total 55.40 62.41 64.68 68.27

Distance correlation 49.87 56.96 62.91 68.48

5 Pearson correlation 63.04 68.35 70.00 73.92

Rzad]- 62.28 67.59 69.62 72.78

5 Total 58.40 64.30 67.51 71.73

Distance correlation 49.62 57.59 62.15 65.44

10 Pearson correlation 48.35 55.70 63.42 66.71

Rzad]- 47.09 54.81 63.16 65.57

10 Total 48.35 56.03 62.91 65.91

Distance correlation 48.10 55.70 57.59 60.38

Discrete 25 Pearson correlation 47.09 52.53 57.09 58.35
empirical Rzadj 46.71 51.77 56.84 57.22
distribution 25 Total 47.30 53.33 5717  58.65
Distance correlation 4291 47.85 49.87 53.54

50 Pearson correlation 45,82 49.62 51.39 53.80

Rzadj 46.08 48.99 51.27 52.66

50 Total 44,94 48.82 50.84 53.33

Distance correlation 42.66 47.72 48.48 51.52

100 Pearson correlation 50.25 54.56 47.97 50.13

Rzadj 49.62 53.80 47.72 48.99

100 Total 4751 52.03 48.06 50.21

Distance correlation 44.94 47.97 47.22 49.87

200 Pearson correlation 49.62 51.01 46.08 48.61

Rzadj 48.73 50.25 45.70 47.47

200 Total 47.76 49.75 46.33 48.65

500 Distance correlation 38.99 43.29 50.51 52.91

132



Pearson correlation 45.32 47.34 50.13 51.52

Rzadj 44.43 46.58 49.75 50.38

500 Total 42.91 45.74 50.13 51.60

Distance correlation 40.63 43.67 47.22 50.89

1000 Pearson correlation 45.32 45.82 46.96 49.62
R? 4; 44.43 4506  46.58  48.48

1000 Total 43.46 44.85 46.92 49.66

Distance correlation 38.99 42.41 45.57 48.61

2000 Pearson correlation 41.52 43.80 45.32 47.09
R2adj 4063 4304 4494 4595

2000 Total 40.38 43.08 45.27 47.22

Table 24 shows the results summarized by calculation method, number of
replications, measure of dependence, and impact on the output, where the green color
represents the highest value per measure of dependence within calculation method and red
represents the lowest values per measure of dependence within calculation method.
Regardless of the method used to calculate the MI, the measure of dependence to which
the Ml is being compared to, or the output that is being investigated, 10 is the number of
replications that leads to the worst performance of the MI. This is expected, as with 10
replications there is less information in the simulation generated inputs and, therefore, the
reduction in uncertainty of the output provided by the inputs is also lower and,
consequently, the ability of the MI to accurately detect the input with the greatest or least
impact on the output. With an increase in the number of replications, the performance
improves but it also depends on the number of bins, as there is an interaction between
number of bins and number of replications as shown in Table 21. When the MI is

calculated using fixed number of bins with probability density function, overall, 800 and
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1000 are the numbers of replications that lead to the best performance of the MI. When
the M1 is calculated using fixed number of bins with discrete empirical distribution, 100
and 200 are the numbers of replications that lead to the best performance of the MI. When
optimum number of bins rule is used, the number of replications that leads to the best
performance of the Ml varies between 50 and 200 for the output NIS and is 50 for the
output TIS. Although the values are lower when compared to the other methods, it is
important to remember that there is an interaction between number of bins and number of
replications. When only a lower number of bins (between 2 and 10) is considered for the
fixed number of bins method, either with probability density function or discrete empirical
distribution, the number of replications that leads to the best performance is also lower.
For the first, the number of replications is between 100 and 400, and for the second it is
between 20 and 100. In general, the performance of the MI when compared to R?,4; or
Pearson correlation is more similar than when compared to distance correlation, which is
expected as R?,4; is a function of R* that is equal to the square of the Pearson
correlation between the observed y and the predicted values of y. It is worth noting that
there are a few differences in terms of the number of replications that leads to the best
performance among the different outputs. This is important to highlight because this
indicates that depending on the output of interest, the optimum number of replications to

be run to reduce the uncertainty on the simulation output can be different.
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Table 24. Results from the comparison of the measures of dependence versus the Ml
summarized by calculation method, number of replications, measure of dependence, and

impact on the output considering non-normalized version only.
Greatest Least  Greatest Least

Calculation ~ Number of Measure of impact impact impact impact
method replications dependence onNIS onNIS onTIS onTIS

6] [%]  [%]  [%]

Distance correlation 14.68 17.22 15.32 18.10

10 Pearson correlation 13.42 5.70 14.94 11.77

R?qqj 11.14 6.08 11.77 5.44

10 Total 13.08 9.66 14.01 11.77

Distance correlation 23.04 27.34 23.42 28.99

20 Pearson correlation 23.16 17.85 23.92 24.81

Rzadl- 19.37 16.58 23.92 19.75

20 Total 21.86 20.59 23.76 24.51

Distance correlation 35.82 40.25 39.11 43.16

50 Pearson correlation 35.70 40.13 40.00 44.18

Rzadl- 35.70 36.33 40.00 44.18

50 Total 35.74 38.90 39.70 43.84

Distance correlation 47.72 51.01 41.77 47.47

100 Pearson correlation 42.66 46.58 40.25 47.72

Rzadl- 42.66 44.05 40.25 47.72

N 100 Total 44.35 47.22 40.76  47.64
Prg::g;l;ty Distance correlation 42.66 48.10 40.38 47.97
function 200 Pearson correlation 42.03 47.47 42.66 49.37
Rzad]- 42.03 47.47 42.66 49.37

200 Total 42.24 47.68 41.90 48.90

Distance correlation 42.03 47.47 41.77 48.73

400 Pearson correlation 41.77 47.47 41.77 48.48

Rzad]- 41.77 47.47 41.77 48.48

400 Total 41.86 47.47 41.77 48.57

Distance correlation 41.27 47.85 43.04 50.25

600 Pearson correlation 42.53 48.35 43.42 50.25

Rzadj 42.53 48.35 43.42 50.25

600 Total 4211 48.19 43.29 50.25

Distance correlation 45.44 51.65 44.56 52.03

800 Pearson correlation 45.70 51.52 44 .56 52.53

Rzadj 45.70 51.52 44.56 52.53

800 Total 45.61 51.56 44.56 52.36

1000 Distance correlation 43.92 49.75 45.32 52.41

Pearson correlation 45.70 51.27 45.70 53.16
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Rzadj 45.70 51.27 45.70 53.16

1000 Total 4511 50.76 45.57 52.91

Distance correlation 41.65 46.84 42.78 50.51

1500 Pearson correlation 42.15 47.85 42.28 49.37

Rzadj 42.15 47.85 42.28 49.37

1500 Total 41.98 4751 42.45 49.75

Distance correlation 33.33 41.77 37.97 41.77

10 Pearson correlation 40.51 33.76 42.62 37.55

R? 44, 3713 3333 3924 3122

10 Total 36.68 36.99 36.29 39.94

Distance correlation 52.74 63.71 56.54 68.78

20 Pearson correlation 57.38 61.60 58.65 67.51

Rzadj 57.38 60.34 58.65 62.45

20 Total 53.00 55.84 61.88 57.95

Distance correlation 56.96 64.14 65.40 70.46

50 Pearson correlation 62.45 68.78 69.20 74.68

Rzad]- 62.45 64.98 69.20 74.68

50 Total 55.95 60.62 65.96 67.93

Distance correlation 56.12 60.34 59.49 64.56

100 Pearson correlation 63.29 69.62 63.29 70.04

Rzad]- 63.29 67.09 63.29 70.04

. 100 Total 58.70 60.90 65.68 62.03

Optimum Distance correlation 48.10 54.01 56.96 62.03
number of

bins rule 200 Pearson correlation 65.40 73.00 64.56 71.73

Rzadj 65.40 73.00 64.56 71.73

200 Total 56.83 59.63 66.67 62.03

Distance correlation 43.46 48.52 59.07 64.14

400 Pearson correlation 62.03 68.78 65.40 70.89

Rzadj 62.03 68.78 65.40 70.89

400 Total 51.03 55.84 62.03 63.29

Distance correlation 45.99 53.59 56.12 62.45

600 Pearson correlation 57.38 65.40 63.29 69.20

Rzadj 57.38 65.40 63.29 69.20

600 Total 52.31 53.59 61.46 60.90

Distance correlation 51.48 57.38 58.65 63.29

800 Pearson correlation 54.85 61.18 60.34 65.40

Rzadj 54.85 61.18 60.34 65.40

800 Total 51.72 53.73 59.92 59.77

1000 Distance correlation 50.21 54.01 59.07 61.60

Pearson correlation 48.95 55.27 58.65 61.60
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Rzadj 48.95 55.27 58.65 61.60
1000 Total 49.75 49.37 54.85 58.79
Distance correlation 51.90 56.54 57.81 59.92
1500 Pearson correlation 51.48 56.12 54.85 58.23
Rzadj 51.48 56.12 54.85 58.23
1500 Total 51.52 51.62 56.26 55.84
Distance correlation 16.33 20.89 20.38 22.91
10 Pearson correlation 16.08 9.11 20.89 16.71
R? 44, 13.29 8.99 17.85  10.38
10 Total 15.23 13.00 19.70 16.67
Distance correlation 37.85 41.52 40.38 4291
20 Pearson correlation 39.24 33.29 41.01 38.99
R? 44 3430 3203 4101  33.92
20 Total 37.13 35.61 40.80 38.61
Distance correlation 50.00 53.42 54.81 58.35
50 Pearson correlation 50.76 53.80 56.08 59.62
Rzad]- 50.76 50.00 56.08 59.62
50 Total 50.51 52.41 55.65 59.20
Distance correlation 54.43 58.10 62.78 64.81
100 Pearson correlation 60.76 65.32 64.05 67.09
Rzad]- 60.76 62.78 64.05 67.09
100 Total 58.65 62.07 63.63 66.33
Discrete . .
empirical Distance correlation 50.00 54.81 60.76 63.92
distribution 200 Pearson correlation 58.73 63.16 64.18 67.47
R? 4 58.73 63.16 64.18 67.47
200 Total 55.82 60.38 63.04 66.29
Distance correlation 46.96 52.53 56.46 59.37
400 Pearson correlation 54.56 60.00 62.03 65.57
Rzadj 54.56 60.00 62.03 65.57
400 Total 52.03 57.51 60.17 63.50
Distance correlation 43.80 51.01 57.72 61.77
600 Pearson correlation 51.90 59.62 58.35 62.91
Rzadj 51.90 59.62 58.35 62.91
600 Total 49.20 56.75 58.14 62.53
Distance correlation 44.81 54.30 57.97 64.30
800 Pearson correlation 53.67 64.56 58.23 64.56
Rzadj 53.67 64.56 58.23 64.56
800 Total 50.72 61.14 58.14 64.47
1000 Distance correlation 48.35 54.18 59.37 63.54
Pearson correlation 56.46 64.18 61.27 64.56
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R? 44, 5646 6418 6127 6456

1000 Total 53.76 60.84 60.63 64.22

Distance correlation 50.25 56.33 58.99 62.41

1500 Pearson correlation 54.94 62.78 60.38 63.92
R?q4j 54.94 62.78 60.38 63.92

1500 Total 53.38 60.63 59.92 63.42

Table 25 shows the results summarized by calculation method, measure of
dependence, and impact on the output, where the green color represents the highest value
per impact on the output within calculation method and red represents the lowest values
per impact on the output within calculation method. As shown in Table 25, overall,
regardless of the method used to calculate the MI and the measure of dependence to which
the M1 is being compared to, the MI appears to have worst performance in detecting the
input that has the greatest impact on the NIS and best performance in detecting the input
that has the least impact on the TIS. In general, the simulation modeler should be more
interested in knowing the input that has the greatest impact on the output than the input
that has the least impact on the output, as this will allow the simulation modeler to better
plan the limited resources for data collection and for running the experiments in order to
reduce uncertainty in the simulation model. On the other hand, knowing the input that has
the least impact on the output allows the simulation modeler to eliminate inputs that are
not as valuable in case of limited resources.

Among the outputs considered, MI showed better performance in detecting the

input with either the least or the greatest impact on the TIS than on the NIS. Considering
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only fixed number of bins, this difference is more evident when using discrete empirical
distribution than probability density function. There is a possible explanation for the
difference. NIS is a simulation output that is an average over time and TIS is an average
over a number of entities that represent the customers in the system. When using the
histogram-based method, whether using the discrete empirical distribution or the
probability density function, information is lost by “binning”. Therefore, the discontinuity
of the histogram may explain the better performance for the output that has a discrete
behavior. The difference could also have different explanations: more replications are
needed in order to improve the performance for the NIS or the inputs in the system being
studied have a stronger relationship with TIS than with NIS, which makes it easier to

detect their relationship in either the low or high level.

Table 25. Results from the comparison of the measures of dependence versus the Ml
summarized by calculation method, measure of dependence, and impact on the output
considering non-normalized version only.

. Distan(_:e Pearso_n 2 . Total
Impact on the output Calculation method correlation correlation [0/‘;]1 [%]
[%0] [%0]
Discrete empirical distribution 44.28 49.71 48.94 47.64
Greatest impact on NIS Probability density function 37.82 37.48 36.87 37.39
Optimum number of bins rule 49.03 56.37 56.03 53.81
Greatest impact on NIS Total 41.94 42.09 4526 44.62
Discrete empirical distribution 49.71 53.58 5281 52.03
Least impact on NIS Probability density function 42.75 40.42 39.70 40.95
Optimum number of bins rule 56.71 60.08 59.75 58.85
Least impact on NIS Total 47.02 46.84 48.10 47.78
Discrete empirical distribution 52.96 54.65 5434 53.98
Greatest impact on TIS  Probability density function 37.75 37.95 37.63 37.78
Optimum number of bins rule 55.40 61.35 60.55 59.10
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Greatest impact on TIS Total 47.43 47.42 48.87 48.12

Discrete empirical distribution 56.43 57.14 56.00 56.52

Leastimpacton TIS  Probability density function 43.96 43.16 42,03 43.05
Optimum number of bins rule 61.90 64.68 63.54 63.38

Least impact on TIS Total 52.13 51.72 52.05 50.91

Finally, x? test at an a-level of 0.05 was performed to investigate whether the
performance of the MI was statistically significantly different based on the method used
to calculate the M, the dependence measure to which the MI was being compared to, and
the output that was being investigated, as shown in Table 26, Table 27, and Table 28,
respectively.

Table 26 shows the y? test results whether the performance of the Ml is statistically
significantly different based on the calculation method. For this test, only the non-
normalized version of the Ml is considered. The null hypothesis is that the MI performance
based on the two calculation methods are not different and the alternative hypothesis is
that the M1 performance based on the two calculation methods are different. When the Ml
is calculated using fixed bins with discrete empirical distribution or optimum number of
bins rule, the measure shows statistically significantly better performance than when it is
calculated using fixed bins with probability density function, regardless of the impact on
the output. The optimum number of bins rule is the method that led to the overall best
performance of the MI measure regardless of the impact on the output and the measure of
dependence to which the MI was being compared to. This unexpected better performance

of the optimum number of bins rule method, different than what was observed for the
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entropy measures, can be possibly explained due to the fact that the MI performance is
better for lower values of bins. In this work the optimum number of bins rule method

contains only lower number of bins, consequently its results are better.

Table 26. x? test results whether the performance of the Ml is statistically significantly

different based on the calculation method.

Measure of dependence Impact on output Proportion difference P-value

Greatest impact on NIS ~ 0.0646 (DED*-PDF?)  <0.0001

. . Least impact on NIS 0.0696 (DED-PDF) <0.0001
Distance correlation .

Greatest impact on TIS 0.1522 (DED-PDF) <0.0001

Least impact on TIS 0.1247 (DED-PDF) <0.0001

Greatest impacton NIS ~ 0.1223 (DED-PDF)  <0.0001

i Least impact on NIS 0.1316 (DED-PDF)  <0.0001
Pearson correlation )

Greatest impact on TIS 0.1670 (DED-PDF)  <0.0001

Least impact on TIS 0.1397 (DED-PDF)  <0.0001

Greatest impacton NIS ~ 0.1206 (DED-PDF)  <0.0001

R? Least impact on NIS 0.1311 (DED-PDF)  <0.0001

adj Greatest impacton TIS ~ 0.1671 (DED-PDF)  <0.0001

Least impact on TIS 0.1397 (DED-PDF)  <0.0001

Greatest impact on NIS ~ 0.1121 (OPT®-PDF)  <0.0001

. . Least impact on NIS 0.1265 (OPT-PDF) <0.0001
Distance correlation .

Greatest impact on TIS 0.1896 (OPT-PDF) <0.0001

Least impact on TIS 0.1794 (OPT-PDF) <0.0001

Greatest impacton NIS ~ 0.1889 (OPT-PDF) <0.0001

. Least impact on NIS 0.2093 (OPT-PDF) <0.0001
Pearson correlation )

Greatest impact on TIS 0.2214 (OPT-PDF) <0.0001

Least impact on TIS 0.2152 (OPT-PDF) <0.0001

Greatest impacton NIS ~ 0.1916 (OPT-PDF) <0.0001

R? Least impact on NIS 0.2085 (OPT-PDF) <0.0001

adj Greatest impacton TIS ~ 0.2211 (OPT-PDF)  <0.0001

Least impact on TIS 0.2152 (OPT-PDF) <0.0001

Greatest impact on NIS ~ -0.0475 (DED-OPT)  <0.0001

. . Least impact on NIS -0.0569 (DED-OPT)  <0.0001
Distance correlation .

Greatest impacton TIS ~ -0.0375 (DED-OPT) 0.0013

Least impact on TIS -0.0547 (DED-OPT)  <0.0001

141



Greatest impacton NIS ~ -0.0666 (DED-OPT)  <0.0001

. Least impact on NIS -0.0777 (DED-OPT)  <0.0001
Pearson correlation .
Greatest impacton TIS ~ -0.0544 (DED-OPT)  <0.0001
Least impact on TIS -0.0754 (DED-OPT)  <0.0001
Greatest impacton NIS ~ -0.0710 (DED-OPT)  <0.0001
R? Least impact on NIS -0.0774 (DED-OPT)  <0.0001
adj Greatest impacton TIS ~ -0.0541 (DED-OPT)  <0.0001
Least impact on TIS -0.0754 (DED-OPT)  <0.0001

!DED is the fixed bins with discrete empirical distribution method
2PDF is the fixed bins with probability density function method
30PT is the optimum number of bins rule with probability density function method

Table 27 shows the y? test results whether the performance of the Ml is statistically
significantly different based on the measure of dependence. The null hypothesis is that
there is no difference in the MI performance among the two measures of dependence and
the alternative hypothesis is that the two measures of dependence lead to differences in
MI performance. Regardless of the calculation method, there is no evidence of difference
in the results of the MI performance when M1 is being compared to Pearson correlation
versus when M is compared to R?,4;. When optimum number of bins rule is the method
used to calculate the M1, the y? test shows that the Ml is statistically significantly better
when compared to Pearson correlation and R?,,; than when compared to distance
correlation. When fixed number of bins with probability density function is the method
used to calculate the MI, the y? test only shows statistically significantly difference in the
MI performance to detect the input with the least impact on the NIS or the TIS. In these

cases, MI showed better performance when compared to distance correlation than when
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compared to Pearson correlation or R?,4;. When fixed number of bins with discrete

empirical distribution is the method used to calculate the M1, the x? test results are slightly
different based on the normalization used. If no normalization is considered the y? test
shows statistically significantly difference in the MI performance to detect the input with
the least or the greatest impact on the NIS. When normalization is considered (except
NMI.00r), the statistically significantly difference in performance only occurs for
detecting the input with the greatest impact on the NIS. In these cases, MI showed better
performance when compared to Pearson correlation or R?,,4; than when compared to
distance correlation, which is the opposite to what was observed when using probability
density function. A possible explanation for the difference in the y? test results when using
the probability density function and the discrete empirical distribution is that when using
probability density function the possible non-linear relation of the inputs and outputs has
been better captured than when using discrete empirical distribution and, hence, this first
calculation method has a better performance when compared to distance correlation than

when compared to Pearson or R? ;4.

Table 27. x? test results whether the performance of Ml is statistically significantly
different based on the measure of dependence.
Method of Normalization

calculation method Impact on output Proportion difference P-value
Probability Greatest impact on NIS 0.0034 (distance clorrelatlon i 0.6575
density Non- Pearson?)
function normalization Least impact on NIS 0.0233 (dlsgsgé%g?rrelatlon - 0.0030
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-0.0020 (distance correlation -

Greatest impact on TIS 0.7930
Pearson)
Least impact on TIS 0.0080 (distance correlation - 03121
Pearson)
Greatest impact on NIS 0.0095 (d'StIf,‘ch ():orrelatlon C o 0.2174
adj
Least impact on NIS 0.0305 (dlstagce correlation - <0.0001
) R adj) .
Greatest impact on TIS 0.0011 (d'StIf,‘ch ():orrelatlon ©0.8825
adj
Least impact on TIS 0.0194 (dlstagce correlation - 0.0139
R adj)
Greatest impact on NIS 0.0061 (Pearson - Rzad,-) 0.4294
Least impact on NIS 0.0072 (Pearson - Rzad,-) 0.3547
Greatest impact on TIS 0.0032 (Pearson - Rzad,-) 0.6817
Least impact on TIS 0.0114 (Pearson - Rzad,-) 0.1476
Greatest impact on NIS -0.0734 (distance correlation - <0.0001
Pearson)
Least impact on NIS -0.0595 (distance correlation - <0.0001
Pearson)
Greatest impact on TIS -0.0338 (distance correlation - 0.0184
Pearson)
Least impact on TIS -0.0278 (distance correlation - 0.0467
Pearson)
. Greatest impact on NIS -0.0700 (dlstaznce correlation - <0.0001
Optimum Non- R%aq)) _
nu.mber of normalization  Least impact on NIS -0.0515 (dlstaznce correlation - 0.0003
bins rule R*4aj)
Greatest impact on TIS -0.0304 (dls;?aznce )C orrelation - 1349
adj
Least impact on TIS -0.0165 (dlstaznce correlation - 0.2416
R adj)
Greatest impact on NIS 0.0034 (Pearson - Rzad,-) 0.8149
Least impact on NIS 0.0080 (Pearson - Rzad,-) 0.5718
Greatest impact on TIS 0.0034 (Pearson - Rzad,-) 0.8127
Least impact on TIS 0.0114 (Pearson - Rzad,-) 0.4138
Greatest impact on NIS -0.0543 (distance correlation - <0.0001
Pearson)
L east impact on NIS -0.0387 (distance correlation - <0.0001
Discrete Non- Pearson)
empirical normalization Greatest impact on TIS -0.0168 (les)teir;ggr::)orrelatlon i 0.0338
distribution . .
Least impact on TIS -0.0071 (distance correlation - 0.3685
Pearson)
Arith Greatest impact on NIS -0.0322 (distance correlation - - _, )¢
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-0.0149 (distance correlation -

Least impact on NIS 0.0604
Pearson)
Greatest impact on TIS -0.0139 (distance correlation - 0.0794
Pearson)
Least impact on TIS -0.0058 (distance correlation - 0.4605
Pearson)
Greatest impact on NIS -0.0323 (distance correlation - <0.0001
Pearson)
Least impact on NIS -0.0149 (distance correlation - 0.0604
Joint .Pearson) .
Greatest impact on TIS -0.0141 (distance correlation - 0.0767
Pearson)
Least impact on TIS -0.0058 (distance correlation - 0.4605
Pearson)
Greatest impact on NIS -0.0322 (distance correlation - <0.0001
Pearson)
Least impact on NIS -0.0149 (distance correlation - 0.0604
Geom Pearson)
Greatest impact on TIS -0.0135 (distance correlation - 0.0880
Pearson)
Least impact on TIS -0.0053 (distance correlation - 0.5004
Pearson)
Greatest impact on NIS -0.0544 (distance correlation - <0.0001
Pearson)
Least impact on NIS -0.0389 (distance correlation - <0.0001
Pearson)
Theor -0.0170 (distance correlation -
Greatest impact on TIS ' 0.0325
Pearson)
L east impact on TIS -0.0072 (distance correlation - 0.3600
Pearson)
Greatest impact on NIS -0.0466 (dls;?aznce )correlatlon "~ <0.0001
adj
Least impact on NIS -0.0310 (dlstaznce correlation - <0.0001
Non- R*4j)
normalization Greatest impact on TIS -0.0138 (dls;?aznce )correlatlon - 0.0820
adj
Least impact on TIS 0.0043 (dlstagce correlation - 0.5856
R adj)
Greatest impact on NIS -0.0249 (dls;?aznce )correlatlon ©0.0017
adj
Least impact on NIS -0.0072 (dlstaznce correlation - 0.3644
Avith R%aqj) i
Greatest impact on TIS -0.0110 (dls;?aznce )corre ation - 0.1654
adj
. . i lation -
Least impact on TIS 0.006 (d'sﬁgce correlation 0.4808
adj)
. . -0.0249 (di lation -
Joint Greatest impact on NIS 0.0249 (dls;?aznce )corre ation 0.0017
adj
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-0.0072 (distance correlation -

Least impact on NIS 2 0.3644
. R adj) .
Greatest impacton TIs 0011 (d'sﬁnce )Co”e'at'on T 0.1606
adj
Least impact on TIS 0.0056 (dlstagce correlation - 0.4808
R adj)
Greatest impact on NIS -0.0249 (dlslt;nce )correlatlon ©0.0017
adj
Least impact on NIS -0.0072 (dlslti)a;nce')correlatlon - 0.3644
Geom . -0.0106 (distanagé correlation -
Greatest impact on TIS R2,,) 0.1805
adj
Least impact on TIS 0.0061 (dlstagce correlation - 0.4419
R adj)
Greatest impact on NIS -0.0467 (dlslt_\):znce )C orrelation - 5 1001
adj
Least impact on NIS 0.0311 (dlslt_\)aznce')correlanon "~ <0.0001
Theor _oad) :
. -0.01 I -
Greatest impact on TIS 0.0139 (dls}tzaznce )corre ation 0.0793
adj
. .0042 (di lation -
Least impact on TIS 0.00 (dlstaglce correlation 0.5967
R a.dj)
Greatest impact on NIS 0.0077 (Pearson - R?;4;) 0.3317
Non- Least impact on NIS 0.0077 (Pearson - R?;4;) 0.3308
normalization  Greatest impact on TIS 0.0030 (Pearson - R? ) 0.7014
Least impact on TIS 0.0114 (Pearson - R? ;4;) 0.1486
Greatest impact on NIS 0.0072 (Pearson - Rzad,-) 0.3638
Arith Least impact on NIS 0.0072 (Pearson - R?;4;) 0.3315
Greatest impact on TIS 0.0029 (Pearson - R?;4;) 0.7136
Least impact on TIS 0.0114 (Pearson - R?;4;) 0.1490
Greatest impact on NIS 0.0073 (Pearson - Rzad,-) 0.3555
Joint Least impact on NIS 0.0072 (Pearson - Rzad,-) 0.3315
Greatest impact on TIS 0.0029 (Pearson - Rzad,-) 0.7135
Least impact on TIS 0.0114 (Pearson - Rzad,-) 0.1490
Greatest impact on NIS 0.0072 (Pearson - Rzad,-) 0.3638
Geom Least impact on NIS 0.0072 (Pearson - Rzad,-) 0.3315
Greatest impact on TIS 0.0029 (Pearson - Rzad,-) 0.7136
Least impact on TIS 0.0114 (Pearson - Rzadj) 0.1491
Greatest impact on NIS 0.0072 (Pearson - Rzadj) 0.3317
Least impact on NIS 0.0072 (Pearson - Rzadj) 0.3308
Theor i 5
Greatest impact on TIS 0.0030 (Pearson - R*,4) 0.7014
Least impact on TIS 0.0114 (Pearson - Rzadj) 0.1486
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Table 28 shows the y? test results whether the performance of the Ml is statistically
significantly different based on the output being investigated. The null hypothesis is that
there is no difference in the MI performance among the outputs being investigated and the
alternative hypothesis is that the outputs being investigated lead to differences in Ml
performance.

As shown in Table 28, with one exception, regardless of the method used to
calculate the MI, the normalization method, and the impact on the output, there is
statistically significantly difference in the MI performance based on the output being
investigated. The exception occurs when the Ml is calculated using fixed number of bins
with probability density function to detect the input with the greatest impact on the output.
The MI has statistically significantly better performance in detecting the impact on the
TIS than on the NIS. This has also been previously observed in the results shown in Table

25.

Table 28. x? test results whether the performance of Ml is statistically significantly
different based on the output being investigated.

Method of calculation Norrgweiuz?jtlon "25?;3?” sz?fzg(:::s: P-value
Probability density Non- Greatest impact -0.0038 (NIS-TIS) 0.3881
function normalization | east impact -0.0210 (NIS-TIS)  <0.0001
Optimum number of bins Non- Greatest impact -0.0504 (NIS-TIS) <0.0001
rule normalization | east impact -0.0428 (NIS-TIS)  <0.0001
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Non- Greatest impact -0.0634 (NIS-TIS) <0.0001

normalization [ east impact -0.0449 (NIS-TIS) <0.0001

Arith Greatest impact -0.0702 (NIS-TIS) <0.0001

Least impact -0.0495 (NIS-TIS) <0.0001

Discrete- empirical Joint Greatest impact -0.0703 (NIS-TIS) <0.0001
distribution Least impact -0.0495 (NIS-TIS) <0.0001
Geom Greatest impact -0.0694 (NIS-TIS) <0.0001

Least impact -0.0491 (NIS-TIS) <0.0001

Theor Greatest impact -0.0637 (NIS-TIS) <0.0001

Least impact -0.0452 (NIS-TIS) <0.0001

Figure 29 shows the results of M1 performance compared to the different measures
of dependence, per different number of bins, per different number of replications, per
method of calculation, and per output. Figure 29 shows some of the observations made in
this section in a more visual way for easier comparison. For instance, with respect to the
comparison between the MI performance among the discrete empirical distribution and

the probability density function or among the different number of replications.
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Ml vs. measure of dependence: input with greatest impact on output
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Figure 29. Results for M1 vs. measure of dependence for detecting the input with the
greatest impact on the output, per number of bins, number of replications, method of
calculation, measure of dependence, and output.

2.5. Concluding remarks
Although defining uncertainty quantification is simple, developing a systematic
method is difficult and hard to validate. In this work, through a total of 1,130 experiments,

Shannon’s entropy and MI calculated using the histogram-based method were investigated
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as potential measures of uncertainty quantification in simulation model. The first
contribution of this section of the dissertation was to discuss the challenges found while
applying entropy measures for continuous variables and to identify a few issues of
interpretability faced when using the method proposed by Jaynes (1957) with m(x) =
sup[f (x)]. Based on the issues, it was showed that when using fixed number of bins,
changing the data normalization does not change the placement of the data into bins and
an alternative to calculate the entropy and the MI measures for continuous variables was
proposed. This alternative involved normalizing the data in a way not only to avoid the
differences of spread in the inputs and outputs, but also to guarantee that 0 < f;(x) <
1,vi and, hence, to avoid the issues identified when m(x) = sup|f(x)]. However, it is
important to note that with this alternative, there is still the issue that the entropy is not
maximum when the f;(x) is equiprobable, as ¥'; f;(x) is not necessarily equal to 1 as it is
in when the inputs and outputs are discrete.

In section 2.4.2, the impact of different binwidths and different normalization
methods on the entropy and MI measures was discussed. An important contribution of this
section is that it was showed that when entropy and MI are calculated using histogram-
based method with probability density function, the measures tend to decrease with the
increase in the number of bins; while when the measures are calculated using histogram-
based method with discrete empirical distribution, they tend to increase with the increase
in the number of bins. This is important because while the latter is mentioned in the

literature, the first was not found to be mentioned in the information theory literature even
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after a comprehensive literature review. Due to the impact of the number of bins on the
entropy measures, the literature recommends normalizing the entropy and mutual
information. When the entropy and MI measures calculated using discrete empirical
distribution are normalized by the theoretical maximum, the measures behave in a similar
way to the measures calculated with probability density function. Nevertheless, if the Ml
is normalized by the real maximum, the measure still increases with the increase in the
number of bins. For this reason and because the NMI,;,,.,,» measures have similar results
of performance to the non-normalized MI version when compared to other measures of
dependence, the normalization using the theoretical maximum (NMl,;,.,,) is the final
recommendation on the basis of this work. Another recommendation is that normalization
should be used only for the entropy measures calculated using the discrete empirical
distribution, as the entropy measures calculated using the probability density function do
not increase with the increase in the number of bins. Normalization when using probability
density function is recommended for comparison of MI measures calculated using
different number of bins rather than to eliminate the effect of the number of bins.

For the case of the entropy and MI measures calculated using probability density
function or the theoretical normalized version of the discrete empirical distribution, the
number of bins could be interpreted as the level of accuracy one wants to obtain. This
interpretation would explain why entropy and M1 decrease with the increase of the number
of bins: when someone cares about a greater level of accuracy, the same number of

replications should be able to provide less information or less reduction in uncertainty.
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Another important point is that the first few replications should bring more information
about the system than any subsequent ones. This was observed when the entropy measures
were calculated either using the probability density function of the theoretical normalizaed
version of the discrete empirical distribution.

From section 2.4.2, it was also possible to observe that when the entropy and Ml
measures were calculated using either the probability density function or the discrete
empirical distribution after normalization, low number of bins (i.e. nhumber of bins
between 2 and 10) appeared to be inadequate as they led to results not consistent to results
from higher number of bins. The results of the entropy and MI measures calculated using
the optimum number of bins also leads to this conclusion, because most of these results
were not consistent and they were calculated with a low number of bins. Therefore, a
recommendation would be to use a number of bins of at least 25 to calculate the entropy
and MI measures.

In section 2.4.3, the impact of different traffic intensities, different seeds, different
parameter values, and different systems on the entropy and MI measures was investigated.
The main observations from this section were that regardless of the method chosen and
the number of bins used: (i) the entropy measure was able to correctly identify that X, has
the same information/uncertainty among the different traffic intensity experiments; and
(i) the entropy measures indicate differences in information/uncertainty based on different
seeds, different traffic intensities, and different parameter values. Although a consistency

was not observed on these latter differences, it is important to highlight that the focus was
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not to investigate the relationship among the entropy measures and the different seeds,
traffic intensities, and parameter values. An interaction among these factors and the model
type (M/M /1 and M /G /1), for instance, could exist and it was not investigated in this
work. Another important observation is that when the normalized entropy and NMIj,.0r
were calculated using discrete empirical distribution, the measures were able to
appropriately point the null uncertainty in ¥; in the CONWIP system and in X5 when the
latter is deterministic, as well as their zero impact in the inputs and outputs, respectively.
When the measures were calculated using probability density function, the null uncertainty
and the zero impact were only pointed for larger number of bins (when number of bins
was greater than or equal to 1,000). Although for lower number of bins, the entropy and
MI measures were not able to capture zero uncertainty, they were still able to capture some
deterministic behavior, as they were constant regardless of the number of replications
used. Therefore, through the results of this section, one can see the potential of the entropy
and MI as measures of uncertainty quantification in simulation models, as the measures
were able to capture different and important characteristics in the simulation model.
However, it is important to highlight that when the entropy and MI measures was
calculated using the probability density function, they were only able to fully capture the
deterministic behavior for number of bins greater than or equal to 1,000, which could
either indicate an issue with the measure or just the fact that the number of bins must be

well chosen for this method to work.
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Another important conclusion from section 2.4.3 is that entropy and MI may be an
alternative method to investigate the quality of a group of seeds in simulation models. As
the results indicated, while the entropy and MI of the original group of seeds and group
“seed 2” were similar among themselves, they were slightly different from group “seed
3”, which could indicate an issue with this latter group of seeds.

In section 2.4.4, the results of the entropy measures were compared to SAE, SSE,
MAE, and MSE and the results of the M1l measures were compared to distance correlation,
Pearson correlation, and R?,4; to identify whether the measures agreed with other
methods of the literature.

With respect to the entropy measures, the following observation are worth
highlighting: (i) when using fixed number of bins with probability density function,
overall, the agreement of the entropy measures with SAE, SSE, MAE, and MSE increased
with the increase in the number of bins and 1,000 was the number of bins that led to the
best results; and, (ii) when using fixed number of bins with discrete empirical distribution,
the percentage of the entropy measures that agreed with SAE and SSE increased with the
increase in the number of bins, but was constant with MAE and MSE, and, in general, the
number of bins between 1,000 and 2,000 led to the best results. Because comparing the
measures with SAE and SSE may have an issue of bias, the comparison to MAE and MSE
is preferred.

As the x? test showed, for the number of bins that led to the best performance, the
probability density function method was statistically significantly better than the discrete
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empirical distribution method. Other important conclusions from the entropy measures are
that the optimum number of bins rules did not lead to good results compared to the other
error measures (e.g., compared to MAE, the best results from this method ranged from
2.6% to 50%, while for the fixed number of bins with probability density function they
ranged from 57.9% to 81.1%). Another important observation is that the normalized
version of the entropy measure calculated using the histogram-based method with fixed
number of bins and discrete empirical distribution led to results identical to the non-
normalized version.

With respect to the MI measures, a relevant conclusion made from the logistic
regression model was that, overall, number of replications and interaction between number
of replications and number of bins were the most important factors in the performance of
the MI when compared to the other measures of dependence, regardless of the method
used to calculate the MI.

Based on the comparison of the MI to the other measures of dependences, a few
important observations could be made: (i) when using probability density function, low or
high-range number of bins had the worst performance and mid-range values had the best
performance, while using discrete empirical distribution, 2 had the worst performance and
5 had the best performance; (ii) when using optimum number of bins rules, Sturges’ led
to the worst performance, as expected, and Scott’s led to the best performance; and, (iii)
when using probability density function, 800 and 1,000 were the number of replications

that led to the best performance, while using discrete empirical distribution, 100 and 200
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replications led to the best performance, and for optimum number of bins it was between
50 and 200. Regarding the first observation about the number of bins, this result is different
from the entropy measure, where in general 1,000 was the number of bins that led to the
best results. However, it is important to note that there is an interaction between number
of bins and number of replications, which could explain the differences. Other
explanations for the differences are: (1) the fact that entropy and MI measures measure
different concepts (i.e., uncertainty of the inputs and outputs vs. the impact of the input on
the output and vice-versa), and, (2) the fact that the entropy and MI measures were
compared to other measures of uncertainty and dependence that may not have been the
most adequate comparison. For instance, distance correlation was the only measure
capable of measuring non-linear dependence and according to the literature, Ml is also
capable of measuring non-linear dependence. Therefore, comparing MI with other
measures that can only measure linear dependence may not be the most appropriate
alternative.

Regarding the differences in the number of replications, they can be possibly
explained by the fact that the optimum number of bins comprises smaller number of bins
experiments. In this case, if one thinks about number of bins as level of accuracy, one
should be able to obtain the optimum amount of information about the system more
quickly. Another possible explanation is that when using the discrete empirical
distribution, one is approximating the continuous data with a discrete method. Therefore,

one should also reach the maxima more quickly than when using the probability density
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function, as it is just an approximation. It is also important highlighting that there are a
few differences in terms of the number of replications that leads to the best performance
among the different outputs. This is important to note because if one is using the Ml
measures as an alternate method to determine the number of replications to run to reduce
the uncertainty on the simulation output, the optimum number of replications to be run
could be different based on the output of interest.

Different than what was observed for the entropy measures, the MI showed better
performance when calculated using optimum number of bins rule, followed by the discrete
empirical distribution and the probability density function with fixed number of bins,
respectively. This result is again contrary to what was observed in the entropy measures,
which is another indication that either the comparison of the MI with the measures of the
dependence may not be the best alternative or the comparison of the entropy with the
measures of error may not be adequate.

Another valuable insight from section 2.4.4 is that, as expected, the results of the
MI performance when MI was compared to Pearson were not statistically significantly

different than when M1 was compared to R?,4;. This is expected as R?,4; is a function of

R? that is equal to the square of the Pearson correlation between the observed y and the
predicted values of y. Overall, when the MI measures were calculated using the
probability density function, they showed better performance when compared to the
distance correlation measure. When the MI measures were calculated using optimum
number of bins rule or discrete empirical distribution with normalization, the Ml

157



performance was in general statistically significantly better when compared to Pearson
correlation and R?,4; than when compared to distance correlation. This may indicate that
when the MI measures are calculated using the discrete empirical distribution or low
number of bins, the non-linear relation of the inputs and outputs is not being captured.

As for the main limitations of this work, there are: (i) histogram-based method was
the only method used to calculate the entropy and MI measures; and (ii) although the
method was compared with other well-known measures of the scientific community, the
method was not validated theoretically. Nevertheless, as showed in this work, despite the
challenges encoutered in the application, entropy and mutual information measures
present good and promising results in measuring uncertainty in simulation model.

A recommendation for future research is to investigate how other methods, such
as the kernel-based method and the k-nearest neighbors method would affect the results.

A question one could ask is: “Given the challenges discussed and the lack of
theoretical validity, why would someone choose to use the proposed entropy method for
uncertainty quantification instead of simply using the well-known confidence intervals
based on the standard error of the estimator?” First, confidence intervals do not quantify
uncertainty. That is, confidence intervals do not provide information about uncertainty in
a way that you can compare them, if you want, for instance, to identify which output have
the greatest uncertainty. Second, through MI, the proposed method shows the impact of
each input on each output. This can be further explored for determining the parameters for

which it may be useful to collect more data for instance, or also as an input parameter
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selection and model reduction method, for selecting the parameters that should be
eliminated in case the simulation model must be simplified. Finally, for a fixed number of
bins, the method also gives information about the additional benefit that the additional
group of replications is providing in the reduction of the output uncertainty. This can be
useful when computational power is limited and one wants to estimate the benefits/costs
of running extra replications. Clearly, it is important to further investigate this to check
whether there will be inflection points or not and whether a linear or quadratic function
can be estimated. The proposed method is also different from Song and Nelson (2013) and
Song and Nelson (2015), as their work focus on quantifying the input uncertainty when
the input model are estimated from limited real-world data and how to appropriately adjust
the confidence intervals due to this uncertainty.

Meanwhile, based on the results, the recommendation when using the method is:
(1) to use the histogram-based method with fixed number of bins and probability density
function for which a method was proposed in this work to deal with the challenges found
while applying entropy measures for continuous variables. The method proposed in this
work is based on data normalization, which not only eliminates some of the challenges of
working with continuous variables, but also allows for easy and fair comparison among
the different entropy measures. When using the probability density function to calculate
the entropy measures, the suggestion is to use number of bins around 1,000 as this was the
number for which the entropy measures showed the best results and that was able to fully

capture the deterministic behavior. Nevertheless, based on the MI, the recommendation
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would be to use a number of bins around 25 or 50. The second suggestion would be to use
the theoretical normalized entropy and MI measures calculated using the histogram-based
method with fixed number of bins and discrete empirical distribution. The normalization
of the entropy and MI measures is recommended to eliminate the effect of the bins on the
measures. These measures present the best results in capturing the deterministic behavior
and for number of bins around 200 or 500, they also present entropy performance results
that are as good as the ones from the probability density function. Moreover, in this case,
the recommendation of the number of bins based on the entropy and MI performance
would match.

As already mentioned, there are still many open questions about this topic and
more experiments must be performed in different contexts in order to investigate the
potential of entropy measures as a method of uncertainty quantification in simulation
models. But as the results indicated, the method appears to be valuable as a method of
uncertainty quantification and for identifying the inputs with the greatest impacts on the

outputs. Future research in this area is invaluable and deemed necessary.
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3. AN INVESTIGATION OF INFORMATION THEORY AS A METHOD FOR
UNCERTAINTY QUANTIFICATION IN SIMULATION MODELS USING KERNEL
METHOD, K-NEAREST NEIGHBORS, AND FUZZY-HISTOGRAM-BASED

METHOD WITH STATIONARY UNIVARIATE DISTRIBUTIONS

3.1. Introduction

In 1948, Claude Shannon in his paper entitled “A Mathematical Theory of
Communication” introduced the concept of entropy as a measure of information and
uncertainty (Shannon, 1948). After Shannon’s initial concept of entropy, many other
information entropy measures have been proposed, such as Renyi’s entropy, Kolmogorov-
Sinai entropy, approximate entropy, sample entropy, and several others. According to
Kapur (1983), these other mathematical entropies do not measure the same characteristic
and their definitions have been motivated by diverse considerations. These different
measures have been developed as an attempt to generalize the axioms proposed by
Shannon and due to the generalization, Kapur (1983) highlighted that they may violate
some of the essential properties required (or expected) from a measure of information or
the underlying uncertainty.

The research studies on the area of entropy measures led to the development of the
field of information theory. Since its first proposal, entropy measure has become one of
the most common methods used to quantify complexity, uncertainty, and the amount of

information present in real-world systems (Lacasa & Just, 2017; Xiong et al., 2017).



Despite the advantages of entropy measures for quantifying information and the
relationships between variables, its practical application, especially for continuous data, is
not simple due to the existing variety of entropy measures and estimators (Xiong et al.,
2017). Entropy measures also require an estimate of the probability distribution of the
underlying data and the method to compute the estimate without the introduction of bias
in the resulting measure remains an open problem (Kinney & Atwal, 2014). Moreover, the
application of entropy measures to continuous variables is not a limit of Shannon’s entropy
of discrete approximations and it brings some challenges and issues of interpretability as
discussed earlier in section 2.4.1.

There are three main estimators discussed in the literature: the histogram-based
method, the kernel-based method, and the k-nearest neighbors method (Xiong et al.,
2017).

In the histogram-based method, the probability density functions (PDF) are
approximated using histograms where the continuous data is divided into bins and the
number of elements in each bin is counted (Dionisio et al., 2004). Selecting the bin size
(or binwidth) is the main source of error. Mutual information estimates based on this
binning procedure are often called naive estimates as they may be overestimated or
underestimated 1(X;Y) (Dionisio et al., 2004; Kinney & Atwal, 2014). The histogram-
based method is computationally very efficient. In the kernel-based method, kernels are
used to approximate the PDF by combining basis functions. According to Estévez et al.
(2009), the quality of this approach is high, but the computational load is also significant.

It is also worth pointing out that similar to the bin size selection in the histogram-based
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method, in the kernel-based method the smoothing parameter is called bandwith and,
consequently, the choice of the bandwidth also has an impact in the final result of the
kernel-based method, as well as the kernel function chosen. Finally, in the k-nearest
neighbors method entropies are estimated from KNN distances (Haeri & Ebadzadeh,
2014; Kraskov, Stogbauer, & Grassberger, 2004). Tesmer and Estévez (2004) argue that
this method has an accuracy closer to the kernel-based method and it is as fast as the
histogram-based method.

Haeri and Ebadzadeh (2014) proposed an adaptation to the histogram-based
method, where fuzzy partitioning was used for classifying the data. According to the
authors, the fuzzy partitioning approach uses a general form of fuzzy membership
functions, which includes the class of crisp membership functions as a special case. The
authors also argued that the method showed an average absolute error less than that of the
naive histogram-based method.

The main research question is: can entropy and mutual information measures
quantify the uncertainty and, consequently, the information present in simulation models?
In section 2, Shannon’s entropy and mutual information measures were calculated using
the histogram-based method. Their potential as measures of uncertainty quantification in
simulation models were investigated through different binwidths, different normalization
methods, different parameter values, and different systems. This section is also restricted
to simulation models using stationary univariate distributions, because this gives a good
illustrative example for which closed-form solutions are available for validation of the

results.
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The central contribution of this section is to extend the work of section 2, by
providing an analysis of Shannon’s entropy and mutual information as measures of
information and uncertainty in simulation models using different estimators, namely
kernel-based method, k-nearest neighbors, and fuzzy-histogram-based method. This
analysis is done by: (1) continuing the discussion on the challenges of computing entropy
measures for continuous variables; (2) investigating the entropy and mutual information
as measures of uncertainty for different estimators and different estimators parameters
(kernel function, bandwidth, fuzzy membership function, etc.); (3) investigating the
measures for different normalization methods, different parameter values, and different
contexts (different seeds for generating random numbers, CONWIP, and addition of travel
time); (4) assessing the potential of the measures as an uncertainty quantification method
in simulation model; and, (5) comparing the method when using these aforementioned
different entropy estimators.

The rest of this section is organized as follows: section 3.2 provides a brief
theoretical background that is important for the study being conducted. Next, section 3.3
provides an overview per entropy estimator on how entropy measures will be applied to
quantify uncertainty in simulation models. Results are discussed in section 3.4, and
concluding remarks and future research directions are presented in section 3.5.

3.2. Background
Shannon (1948) in his original work proposed information or uncertainty to be

quantified by a new measure named entropy, as shown in Equation 48.
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H(X) = —Zp(xi) logp(x;) Equation 48
i=1

Shannon’s measure possesses many important properties, such as: non-negativity,
it attains maximum value when the probabilities are equal, and it is consistent and additive
(Kittaneh et al., 2016).

Shannon (1948) assumed, without any derivation, that the analog expression of
— > p(x) logp(x;) for the continuous case, known as differential entropy, was

expressed as shown in Equation 49 (Awad & Alawneh, 1987; Jaynes, 1968).

H'(X) = —jf(x) log f(x) dx Equation 49

This assumption without mathematical derivation resulted in the following main
issues: (1) differential entropy may result in negative values, and (2) lack of invariance
under linear change of variables x — y(x) (Jaynes, 1968; Kittaneh et al., 2016).
According to Awad and Alawneh (1987), in Shannon’s applications the issues were not
significant and did not affect the final results. However, the use of H'(X) leads to results
that depend heavily on the choice of variables. To resolve the issues, Jaynes (1962)

proposed the use of Equation 50:

H'(X) = —jf(x) log % dx Equation 50

where m(x) is a well-behaved continuous invariant measure function. In his
works, Jaynes never specified an explicit form for m(x) (Jaynes, 1957, 1962, 1968). Awad

and Alawneh (1987) proposed the use of m(x) = sup,eg f(x), While Kittaneh et al.
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(2016) proposed the use of m(x) = E[f(x)]. By using m(x) = supyeg f(x), the
differential entropy becomes positive and consistent (Kittaneh et al., 2016).

Another solution for the differential entropy was proposed by Rao et al. (2004) and
it was named cumulative residual entropy (CRE). The CRE involved using the cumulative
distribution of the random variable X, instead of the probability density function.
However, the difficulty is that the joint CRE in this case is not defined as a natural

extension of the CRE. The CRE is given by Equation 51.:
CRE(X) = f(l — F(x))log(1 — F(x)) dx Equation 51

The computation of these information-theoretic measures from real-world data is
challenging as it involves a two-step process, where: first, the probability mass function
or the probability density function has to be estimated, and, thereafter, the entropy or
mutual information can be calculated.

Several probability estimators have been proposed in the literature to address the
first task and they differ in the approach used to approximate the probability function
utilized in the computation of the entropy measures. The estimators are typically classified
into two different groups: model-based estimators (parametric) or model-free estimators
(non-parametric) (Xiong et al., 2017). Model-based estimators involve entropy measures
that are calculated using functions of the parameters of the known parametric probability
distribution. Model-free estimators have no fixed structure and involve entropy measures
that are calculated by approximating the probability distribution directly from the data.

According to Pace (1995) and Xiong et al. (2017), histogram-based method, linear
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estimator, kernel estimator, and k-nearest neighbors estimator are the most common
methods used for calculating entropy measures.

There are two histogram methods: the equidistant histogram method and the
equiprobable histogram method. In the most common histogram method, the equidistant
method, the probability estimate fs¢(x) is calculated by dividing the range of sampled
data into n equally sized bins. The probability density function is estimated by counting
the number of data points that fall into each bin and assigning to that bin a probability
equal to the number of points it contains divided by the total number of data points and
the binwidth, as shown in Equation 52 (Pace, 1995). To estimate the probability mass
function, the number of data points that fall into each bin is counted and divided by the
total number of data points. There is also the equiprobable histogram method, where rather
than forming bins of equal width, one forms bins of equal mass (equal number of points
in each bin) (Bonnlander & Weigend, 1994). In this case, the probability associated with
each bin is given by the number of points, which is roughly equal, divided by the size of

the bin.
1 n
fhist () = %Z I{x; € [t;,t;,1)} forx € Bj,j =1,...,k Equation 52
i=1

where h is the binwidth, B; = [t;, t;,) denotes the j** bin of a total of k bins, and
I(.) is the indicator function which is 1 if x; € [t;, t;,1) and O otherwise.

As seen from Equation 52, the histogram method is highly dependent on the choice
of the binwidth and also on the choice of the origin of the bin (or the start point of the bin)

(Hérdle et al., 2012; Xiong et al., 2017). Another drawback of the histogram method is
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that it is not a continuous function and it is not differentiable at the boundaries of the bins,
which is undesirable to estimate a continuous probability density function.

The problem of choosing the start point of the bin can be alleviated by using the
kernel estimate method (Hérdle et al., 2012). The kernel estimate method removes the
dependence on the start point of the bins by centering each of the bins at each data point
rather than fixing the start point of the bins. So, one can see the procedure as counting the
number of data points that fall into the interval around x. However, the issue of the
binwidth has an equivalent in this method: a dependence on the choice of the bandwidth.
Similar to the histogram estimate method, where the smoothing parameter was called
binwidth, in the kernel estimate method the smoothing parameter is a non-negative funtion
called bandwidth. Changing the bandwidth changes the shape of the kernel. A lower
bandwidth means that only points close to the data are given any weight, while a larger
bandwidth means that distant points also contribute to the estimate. Therefore, the
resulting kernel method estimates are strongly influenced by the choice of the bandwidth:
a too small bandwidth may lead to an undersmoothed kernel-density estimate (low bias,
but high variance), while a too large bandwidth may lead to an oversmoothed estimate
(low variance, but high bias). Hence, there is a trade-off between reducing the bias and
variance of the estimator. According to Scott (2015) and Li and Racine (2007), the quality
of the kernel-density estimate has been recognized to be considerably determined by the
choice of the bandwidth and relatively insensitive to the choice of the kernel function. The

kernel-density estimate is shown in Equation 53.
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n
R 1 X — X;
Kernel - l .
f (x) = — El K( . ) Equation 53
i=

The kernel weighs information differently depending on how far they are from the
value point x. K (.) is the chosen kernel (weight) function and h is the bandwidth.

For the multivariate case, different approaches can be taken: (i) the use of the
product kernel as in Equation 54, or (ii) pre-whitening the data by linearly transforming
the data to have unit covariance matrix, estimating the density using a radial symmetric
kernel, and, then, transforming it back (Scott, 2015; Silverman, 1986). According to Scott
(2015), product kernels are, in practice, recommended. Silverman (1986) mentioned that
by normalizing the data there is, in general, no need to consider more complicated forms

of multivariate kernel density estimate.

n d

~ 1 X — X .
frernel(x) = —— E | | K< - > Equation 54
1 - q j .

i=1 \ j=1 77

The Epanechikov kernel function is frequently used in non-parametric estimation
because it has the lowest asymptotic mean square error, but there are several other kernel
functions such as Gaussian, triangular, and uniform (Scott, 2015). According to Scott
(2015), well-known functions, like the Gaussian kernel, for instance, may not be the first
recommendation as a kernel function due to computational overhead for computing its
exponentials, its relatively inefficiency, and its infinite support.

Regarding the choice of the bandwidth, the optimal choice is the one that
minimizes the MISE. This can be calculated using the Silverman’s rule of thumb. For the

Gaussian kernel estimator, Silverman’s rule of thumb is obtained as shown in Equation 55
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(Moon, Rajagopalan, & Lall, 1995; Scott, 2015). The equivalent kernel rescaling function
proposed by Scott (2015) can be used to calculate the optimal bandwidth for the

Epanechnikov kernel estimator. The equivalent rescaling function is shown in Equation

56.
4 1/(d+4) 1 )
h* = (—) on /(a+a) Equation 55
d+2
* h’l* * * .
hy' = —= V5 h* = 2236 hy Equation 56
K;

A drawback of the kernel-density estimate is its inability to deal with the tails of
the distribution without oversmoothing the main part of the density (Silverman, 1986).
This is due to the fixed smoothing parameter h that is constant and unrelated to x. When
f(x) is large at x more data points fall inside the interval [x — h, x + h], than when f(x)
is small. A possible alternative for that is the KNN estimate, which automatically adapts
to the amount of local information that is available (Li & Racine, 2007).

In the KNN method, the number of observations used to estimate the density is
fixed by using a bandwidth that may vary with x (Li & Racine, 2007). More specifically,
only the k observations nearest to x are used to estimate f(x) and the greater the amount
of local information, the smaller the range in which smoothing occurs. The estimate is

obtained as shown in Equation 57.

k

wWe(x) ncgrd (x)

FRM () =

Equation 57

where c, is the volume of the unit sphere with radius ¢ (x) in d dimensions, which

can be calculated using Equation 58, so that ¢; = 2, ¢, = m, and ¢3 = 4m/3.
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-

Ca = —— 7 1o\ Equation 58

a2 quation
r(&°)

I'(.) is the I function defined by I'(«) = [.” t*~te~!dt.

Equation 57 can be rewritten as Equation 59:

N
. 1 1 Il — ;| k .
FRNN 3y = Z (_) I <— <1)= Equation 59
R (x) &2 \cq R%(x) canRY
where: R%(x) = RY denotes the Euclidean distance between x and the k" nearest
K k

neighbor of x among the x;'s. ||.|| denotes the Euclidean norm, i.e., ||x — x;|| =

\/(x1 — xli)2 + -+ (x4 — x4;)?. Other distance metrics, such as Chebyshev could also

be used. I(.) is the indicator function that ensures that only the k observations nearest to
x are used to estimate f(x). k/n plays a role similar to the bandwidth h for the kernel
method.

A disadvantage of KNN is that it treats all the variables symmetrically, and hence,
lacks the ability to smooth out irrelevant variables (Li & Racine, 2007). The method is
prone to local noise and because RZ (x) is not differentiable, the density estimate may have
discontinuities. The method is also susceptible to the curse of dimensionality. One
difference between the KNN and the kernel method is that the bandwidth in the first is
now stochastic and, hence, the asymptotic analysis of the KNN estimator is more complex

(Li & Racine, 2007).
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In both kernel and KNN methods, when working with multiple variables data
should be normalized before estimating the density to avoid extreme differences in the
spread of the data (Li & Racine, 2007; Silverman, 1986).

According to Loquin and Strauss (2006), a modification of the traditional
histogram-based method, called fuzzy-histogram method, appeared to be more robust than
the histogram density estimator method. The fuzzy-histogram based method was also
discussed by Arefi, Viertl, and Taheri (2012), Fajardo (2014), and Haeri and Ebadzadeh
(2014). According to this method, the datapoints of X define the universe and the universe
is partitioned into k fuzzy subsets A, (k= 1,2,..,p) based on a specific fuzzy

membership function. For each subset Ay, there is a membership function u,, (x) that

defines the degree of truth of x € Aj. The fuzzy-histogram density estimate is obtained
as shown in Equation 60 (Loquin & Strauss, 2008).

D=1 Hay (%)

Equation 60
nh

friam () =

According to Loquin and Strauss (2006), an interpolant, similar to the kernel

method, can be used to estimate the fuzzy-histogram density as shown in Equation 61.

ffuzzy (x) = ?Zl’uAk [ZLZK (x _hmk)] Equation 61
n

where my, is the k" node of the universe.
Similarly, for the multivariate case, Equation 62 can be used (Haeri & Ebadzadeh,

2014).

Yi=1 HayxB, (X, Y)
nh

fruzzy (x,y) = Equation 62
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where uy, g, (x,y) is the joint membership function of x and y. Based on the

cardinality of fuzzy sets, we know that p,, x5, (x,y) = min (uAk(x),yBk(y)) (Cheng &

Chen, 1999).

There are different choices for the membership function, such as the generalized
normal function, the triangular membership function, crisp partition, and cosine partition
(Haeri & Ebadzadeh, 2014). Table 29 shows the membership functions for the crisp,
triangular, and cosine strong uniform fuzzy partition of the universe. For the definition of
strong uniform fuzzy partition, please refer to Loquin and Strauss (2006), but the main
conditions for strength and uniformity include: (i) for all x € Q = [a, b], the universe,

p

k=1 Ma, =1, and, (ii) for k # p, hy = my 4 —my = h = constant, so m, =a+

(k — 1)/h.

Table 29. Membership functions of crisp, triangular, and cosine strong uniform partition
of the universe.

Membership

function  Cisp partition Triangular Cosine
— 1 -

Ha,y (X) I[mLWM +%] (.X') (mzh x) I[m1.mz] (X) E <COS <M) + 1) I[ml,mz] (X)

(x —my_q) 1 mlx —me)
.LLAk (x) [mk—%,mk+%] (mk+1 — x)

T’[mk'mkﬂ](x) +1 I[mk—1‘mk+1](x)

(x . ) %(Cos <T[(x ;l mp))

Ha, € I[mp_%mp] ) Tp_ll[mp—lrmp] )
+ 1)y, my ()
1
Uy (%) I[_%%] () (1 = |xDI-1,1) (%) E(COS(TUC) + DI 4y(x)

Source: Loquin and Strauss (2006).
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After the probability density function or the probability mass function has been
estimated, the entropy and mutual information measures can be finally computed. For the
calculation of the entropy measures, the evaluation of the integral in Equation 49 requires
numerical integration and it is computationally inefficient, especially if f(x) is a kernel
density estimator (Beirlant et al., 1997; Moddemeijer, 1989). To minimize the
computational burden, different estimates are available: the resubstitution estimate, the
splitting data estimate, the cross-validation estimate or leave-one-out density estimate, and
the sample-spacings estimates (Beirlant et al., 1997). The resubstitution estimates are
shown in Equation 63 to Equation 66, where Equation 63 refers to the entropy of X,
Equation 64 refers to the joint entropy of X and Y, Equation 65 refers to the conditional
entropy of X given Y, and Equation 66 refers to the mutual information of X and Y (Steuer

et al., 2002; Xiong et al., 2017).

1 n
AX) = —Hng Fx) Equation 63
i=1
1 n
AKX, Y) = —;210g FXL Y Equation 64
i=1
1w [FX,Y)
AX|Y) = ——Zlog sl Equation 65
n 4 fr)
i=1
1% X, YD)
ix;y) = —Z log %l Equation 66
n L B Faxpf )

3.3. Material and methods
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In this section of the dissertation, the entropy measures will be applied to quantify
the total uncertainty of the simulation outputs (H(Y)), the uncertainty of the simulation
generated inputs (H (X)), and the extent of the simulation output uncertainty that can be
attributed to each of the simulation generated inputs (I(X;Y)). Entropy measures will be
calculated using the kernel method, the KNN method, and the fuzzy-histogram based
method.

The experiments are run in Simio® University Enterprise Edition v 10.165 and
include different system configurations by: (1) varying the traffic intensities, the number
of servers, the seeds for generating random numbers, and the number of replications; (2)
adding a third input (i.e., travel time); and, (3) fixing the number of customers in the
system (constant work-in-progress). The model consists of a single source of arrivals,
single queue, and s servers providing the same service. After being served, customers
leave the system. Balking and reneging are not considered in the model. Specifically, the
adequacy of the proposed method will be investigated through an M/M /s and M /G /1

illustrative example with two simulation generated input processes and two outputs of

interest, namely: X = [X; — arrival process, X, — service process| and 7= [V, —
average number of customers in the system,Y, — average time in the system].
The notation used in this section of the dissertation follows the A/S /s Kendall’s notation,
where: A represents the arrival process, S the service time, and s the number of servers.
M is used for memoryless distributions and G for general distributions.

3.3.1. The kernel method
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For the kernel-based method, two different aspects are investigated: (1) different
kernel functions, and (2) different bandwidths (different values and Silverman’s rule of
thumb).

Two kernel functions are investigated in this work: the Gaussian function and the
Epanechnikov function. The latter is known to be the optimal kernel in the mean integrated
square error sense (Silverman, 1986). The Gaussian kernel function K(.) is shown in

Equation 67 and the Epanechnikov kernel function is shown in Equation 68 (Li & Racine,

2007).
K(w) = e 2", —0 < v < Equation 67
V) =——e¢e ,—00 << o uation
V2m a
3 1
= (1-Zp2)
K() =445 (1 57 )’lf vl <5 Equation 68
0, otherwise
where; v = 22X
The kernel estimator of a univariate density function can be expressed as shown in
Equation 69:

n
. 1 .
fx) = —z K(v) Equation 69
nh ¢ n
1=
where h is a smoothing parameter called bandwidth.
For the mutual information calculation, there is a need to resort to the
multidimensional case. Multivariate kernel estimators can be based on the product of
univariate kernel functions or on the general multivariate kernel estimator. Here, product

kernel is the adopted approach, which can be estimated using Equation 54 where the same
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univariate kernel is used in each dimension but with a different smoothing parameter for
each dimension.

While nonparametrical kernel estimation has been recognized as fairly insensitive
to the choice of kernel function, it is known that different bandwidths can lead to very
different impressions of the underlying distribution (Li & Racine, 2007). Therefore,
investigating the impact of different values of bandwidths on the entropy measures and on
quantifying uncertainty in simulation models is important to analyze the robustness of the
theory. It is known that a too small bandwidth reduces bias, but may lead to an
undersmoothed kernel density estimate and increased variance. On the other hand, a too
large bandwidth reduces variance, but may lead to an oversmoothed kernel density
estimate and increased bias. First, different values of bandwidth ranging from values close
to 0 to large values are used: 0.0001, 0.001, 0.01, 0.5, 0.2, 0.1, 1, 1.5, 5, 10, 100, 1000.
Next, Silverman’s rule of thumb is applied to calculate the optimal bandwidth to be used
on the Gaussian kernel estimator, as shown in Equation 70 (Moon et al., 1995; Scott,
2015). According to Silverman’s rule of thumb, the optimal choice of bandwidth is the
one that minimizes the mean integrated square error. The equivalent kernel rescaling
function proposed by Scott (2015) can be used to calculate the optimal bandwidth for the

Epanechnikov kernel estimator. This rescaling function is shown in Equation 71.

1
. (L) fa+) o~ cara) Equation 70
d+ 2
h *
h,* = JL =V5h*~2236h" Equation 71
K;

According to Silverman (1986), p. 77, as in many multivariate statistical

procedures to avoid extreme differences in the spread of the data it is recommended to
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pre-scale the data before attempting to estimate the kernel density. All the data is
normalized prior to estimating the kernel density, as well as the KNN and the fuzzy-
histogram density estimators.
3.3.2. The k-nearest neighbors method

For the k-nearest neighbors method, one aspect is investigated: (1) different values
of k-nearest neighbors are used to estimate the probability density, similar to the
bandwidth concept. Equation 59 is used to calculate the estimates, where k determines the
number of observations that are used to estimate f(x). Here, k is varied based on the
number of observations available in each experiment. For the analysis of the impact of the
different number of k-nearest neighbors on entropy and M, the goal is to have different
values of k that corresponds to low, medium, and high values in comparison with the
amount of data available in each experiment. Table 30 shows the values of k used for this
corresponding to the amount of data available. However, a different set of values of k
(k = 1,2,3,4,5,6,7,8,9) will be used to compare the entropy with other measures of error,

namely SAE, SSE, MAE, and MSE, in section 3.4.8

Table 30. Values of k used to estimate the probability density function based on the
number of datapoints available.

Number of datapoints available Different values of k investigated

10 [1,2,3,4,5,6,7,8,9]

20 [1,3,5,7,9, 11, 13,15, 17, 19]

50 [1,3,5,7,9,13, 19, 25, 35, 49]

100 [1,3,5,7,9,13, 19, 25, 49, 99]

200 [1,3,7,9, 19, 25, 49, 99, 150, 199]
400 [1, 3,9, 19, 25, 49, 99, 150, 199, 399]
600 [1, 3,9, 25,49, 99, 150, 199, 399, 599]
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800 [1, 3,9, 25, 49, 99, 199, 399, 599, 799]
1,000 [1, 3,9, 25, 49, 99, 199, 399, 599, 999]
1,500 [1, 3,9, 25, 49, 99, 199, 599, 999, 1499]

3.3.3. The fuzzy-histogram based method

For the fuzzy-histogram based method, two different aspects are investigated: (1)
different fuzzy membership functions, and (2) different number of fuzzy subsets (similar
to the concept of bins in the histogram method).

Three membership functions are investigated in this work: the crisp function, the
triangular function, and the cosine function. The assumption adopted in this section of the
dissertation is of the strong uniform fuzzy partition as mentioned in section 3.2. The
aforementioned functions are chosen for being commonly referred in the fuzzy literature.
Regarding the number of fuzzy subsets, similar numbers adopted in the histogram-based
method investigated in section 2 are being used in this section, which allows for
comparison of the results. Therefore, the following different number of fuzzy partitions
are investigated: [ = [2,5,10,25,50,100,200,500,1000]. Because [ is the number of
partitions, there is actually a total number of k = [ + 1 fuzzy subsets, which satisfies the
condition that k > 3 (Loquin & Strauss, 2006). The nodes of each fuzzy subset are defined

such that: m; = min (x,), m, = max (x,), and my =m,; + (k— 1h, for k # 1 and

k # p,whereh = e i Equation 61 is used to estimate the fuzzy histogram probability

density.

3.4. Results and discussion
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3.4.1. Challenges encountered while applying entropy measures for continuous
variables and method proposed to overcome the issues

In section 2.4.1, the challenges encountered while applying entropy measures for
continuous variables were discussed. These challenges go beyond requiring an estimate
of the probability distribution of the underlying data.

The first solution proposed in the literature to tackle these challenges is to
approximate the differential entropy by calculating the discretized entropy and adjusting
it with a correction dependent on the binwidth. This solution eliminates the issue of
entropy being infinity, but does not eliminate the issue of the entropy being a negative
value.

In section 2, the entropy was calculated based on the histogram-method and a data
normalization method, that guaranteed the data was always between 0 and 1, was proposed
to handle the challenges of calculating entropy for continuous variables. The procedure
resulted in non-negative entropy values and also solved some issues of interpretability in
the continuous case. However, the method could only be implemented when using fixed
number of bins. When formulas that calculate optimum number of bins or entropy
estimators that do not use number of bins are used, the method cannot be applied because
the binwidth is not a function of the data range.

Another approach commonly cited in the literature was proposed by Jaynes (1962).

In Jaynes’ approach, differential entropy is calculated as H(X) = — [ p(x) log [%] dx

and, hence, it is important to define the function m(x). Some authors suggest to use

m(x) = sup[f (x)] or m(x) = E[f(x)] (Awad & Alawneh, 1987; Kittaneh et al., 2016).
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Clearly, m(x) = E[f (x)] is not a good choice as f(x) may be greater than E[f (x)]. In

this case, U log

f()

m(x) 2 m(x)

> 0 and, H(X) may be negative. Here, two other functions

are proposed: m(x) = f(x)2(f (x) — 1)_1 andm(x) = f(x)(1 + f(x)). Table 31 shows

a discussion of the challenges and issues encountered when using each of these functions

and Table 32 summarizes these issues per proposed m(x).

Table 31. Issues and challenges encountered when using the different proposed m(x).

m(x)

Challenge or issue

m(x) = sup[f(x)]

- When events are all equiprobable (or all probability
density function values are equal) the differential entropy
is 0, but the discrete entropy is maximum.

- When there is a mix of events that are equiprobable and
events that will surely not occur (the probability density
function values are equal or 0, respectively) the
differential entropy is 0, but the discrete entropy is
maximum.

- An event will surely occur (certainty): there is an open
question regarding how to represent certainty in the
nonparametric continuous case. If f;(x) = sup f(x) is
considered the certainty, the differential entropy is 0, same
as the discrete entropy. However, one could interpret that
certainty does not exist in the continuous case as P(X =
x) =0.

m(x) =

fe?(feo -1)"

- When probability density function is between 0 and 1,
the proposed solution will be negative and, hence, the
logarithm does not exist.

- An event will surely occur: similar to above, it is an open
question. If one considers that certainty does not exist in
the continuous, an issue does not exist. On the other hand,
if certainty exists, what would be considered the certainty
value for which the entropy should be equal to 0? f;(x) =

sup f (x)?

m(x) = f)(1+ f(x))

- When probability density function is 0, the proposed
solution is 1, which could be an issue for the scenarios
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with events that will surely not occur. However,
log, (1) = 0 and, hence, no issue exists.

- An event will surely occur: similar to above, it is an open
question. If one considers that certainty does not exist in
the continuous, an issue does not exist. On the other hand,
if certainty exists, what would be considered the certainty
value for which the entropy should be equal to 0? f;(x) =

sup £ (x)?

Table 32. Summary of the challenges encountered per proposed m(x).
Challenge or issue / m(x) =  sup[f(x)] F(x)?(f(x) — 1)_1 fFO(1+fx)

Events equiprobable \ X X
Events equiprobable + events N X X
will surely not occur

All events will surely not occur X X X
Event will surely occur X * *
(certainty)

Probability density function X N X

between 0 and 1
Legend:
\ challenge is encountered
X challenge is not encountered
* challenge may be encountered

Based on the challenges discussed on Table 31 and Table 32, one can see that
mx) =f (x)(l +f (x)) is the function that shows most potential to be used in Jaynes’
method and, therefore, it will be the function used here. The entropy measures will be
calculated using the approach proposed by Jaynes (1962) in order to allow for the
calculation of the measures regardless of the choice of the bin and the choice of the density
estimation method.

3.4.2. Challenge encountered when using the kernel method
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Another challenge was encountered when using the kernel method in the
multivariate case, that is, more specifically when calculating the MI information measures.

From the experiments and based on the product kernel multivariate formula given by

Equation 54, we  know  that K (%) >0 =[], K (x:q) >0
] j j j

>3, ( ?:1 K (Xf—l]xl) ) > 0. When hy, ..., hy are very small, that is h; < 0, the product
j

1
nhl...hd

h, ... hg becomes very small. In this case, becomes very large and fXemmel(x) also

becomes very large. Given the normalization m(x) adopted in this work, the resulting joint
p gJ
fKernel(x) after normalization is very small.
MI can be approximated as given by Equation 66. Because the kernel density

estimates £(X;) and f(Y;) were calculated using a single bandwidth, there was not an

interaction among bandwidths. In this case, f(X;)f(Y;) >f(Xi'Yi):>f(X.)f(y.)

f (XY

f XY 1gn PO : :
i)] <0= nzlzllog [f(xi)f(yi)] < 0, which is theoretically incorrect and

= log FeATA)
indicates an issue.

According to Silverman (1986), in certain circumstances it may be more
appropriate to use a single smoothing parameter h, a vector of smoothing parameters, or
even a matrix of shrinking coefficients. The author reinforces that a matrix of smoothing
coefficients may be more adequate when the spread in the data points is much greater in
one of the coordinate directions than the others, while a single smoothing parameter is

appropriate when each data point is scaled equally. The author also restates his

recommendation of pre-scaling the data to avoid extreme differences in the spread of the
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data in the various coordinate directions. Although Silverman (1986) mentioned about a
single smoothing parameter, he still considered raising it to the power of the dimension of
the data.

All the data used in this dissertation is being pre-scaled to avoid differences in the
spread of the data. Due to the issue encountered while calculating the M1 using such data,
a solution proposed here is to calculate the product kernel using Equation 72. This
guarantees that the interaction among the smoothing parameters is not causing issues in

the multivariate case and, consequently, in the M1 calculations.

fKernel (x) — Tl Z 1_[ ( Xy > Equation 72

3.4.3. The impact of different kernel functlons and different bandwidth values on
entropy and mutual information measures calculated using kernel method

The discussion in this and the following sections are based on the results of the
experiments, which were detailed in section 3.3 and listed in Table 66 of the Appendix.
For simplification, the experiments are referred by their numbers. In summary, the
experiments consist of M/M /s, M/G /1, and G/G /s queue models with different traffic
intensities and number of replications and where different seeds were used to generate the
random numbers. An additional third input (i.e., travel time) and CONWIP configurations
were also investigated. Based on the results of the experiments, entropy and MI measures
were calculated in three different ways: (1) using the kernel method; (2) using the k-nearest

neighbors method; and, (3) using the fuzzy histogram-based method.
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For the kernel method, two different aspects are of interest: (1) the impact of
different kernel functions, and (2) the impact of different bandwidths on the entropy and
MI measures.

The analysis of Figure 30 shows that, different from the histogram-based method
with fixed number of bins and probability density function, the entropy and MI measures
tend to increase with the decrease in the bandwidth for the same number of replications
regardless of the kernel function being used. This behavior is similar to the observed
results of the histogram-based method with fixed number of bins and discrete empirical
distribution before normalization, but opposite to the one observed when histogram-based

method with fixed number bins and probability density function method used to calculate

the measures. If the bandwidth is interpreted as — 1 asitis the binwidth in the
number of bins

histogram-based method, this could indicate the need for normalization of the entropy and
MI measures to eliminate the impact of the bins on the measures as suggested in the
literature for the histogram-based method with discrete variables. By looking at the
histogram-based method probability density estimator and the kernel method probability
density estimator, one could expect the binwidth (or bandwidth) to have the same impact

on the entropy and MI measures. That is, according to the histogram-based method the

probability density is estimated by fhi“j (x) = % o lx; € [tj,t41)} forx; €B;,j =

1, ..., k, and according to the kernel method the probability density is estimated by

fKernel(x) = % n K (x;lxi). Therefore, one can see that the binwidth (or bandwidth)

h is being considered as a similar divisor in both estimators, although h also plays a role

185



within the kernel function in the kernel estimator. However, the first difference between

X=X
h

these two estimators is that ¥, I{x; € [t;, ¢;4+,)} € Z and Z?=1K( i) € R[0,1]. This
difference is not enough to explain why the results of the two estimators are different in
terms of changes in the binwidth. The approach proposed in this section of the dissertation

to calculate entropy and similarly to calculate Ml is based on the work of Jaynes’ and also

considers the entropy and MI approximation, which leads to: H(X) =

—%Z?’zllogf(Xj) = —% ¥_1log [ri((}:c))]’ where  m(x) = f(x)(1+ f(x)). When

histogram with fixed number of bins is the method being used N is equal to the number of
bins, which, in turn, determines the binwidth. When the kernel method is being considered,
N = n which is the number of datapoints. Therefore, one can see that although the
binwidth may affect the histogram and kernel probability density estimators in the same
way, it does not affect the entropy estimation likewise because with the increase in the
number of bins (or decrease in the binwidth), the divisor of the entropy approximation in
the histogram-based method is increasing and, hence, the entropy measure is decreasing,
which is the opposite of what is observed in the kernel method.

Based on the experiments performed and the range of bandwidths experimented,
for low values of bandwidth (bandwidth less than or equal to 0.01 for the experiments
performed in this study) the entropy and MI measures decrease with the increase of the
number of replications. For mid-range values of bandwidth (bandwidth between 0.1 and
0.5) the entropy and MI measures increase with the increase of the number of replications.

Finally, for large values of bandwidth (bandwidth greater than or equal to 1), the entropy

186



and MI measures are approximately constant with the increase of the number of
replications. This may reflect the impact of the bandwidth in undersmoothing or
oversmoothing the density estimation. With larger bandwidths, there is an increased risk
of oversmoothing, which is potentially being captured by the entropy and MI measures as
the measures become approximately equal and close to 0 regardless of the number of
replications used. This can be explained by how the probability density is estimated using

the kernel method. Using the kernel method, the probability density is estimated using
f(x) = % 1 K(v). For the experiments considered in this section of the dissertation, n

varied from 10 to 1500. More specifically, n=

10,20,50,100,200,400,600,800,1000,1500. Based on the approach proposed in this

. . PN 1 F(x) 1 1
dissertation, we have: H(X) = —;Z}-’zllog Iml =— ?:1108 lm] =

1

_1lyn _t ' =
- j=1log l(1+ﬁ2?=11<(v))l' When h is very small (h = 0.0001,0.001,0.01), for the

experiments under investigation % 1 K(w) will be large, ( ) will be a small

1
1+E Z?=1 K(U)

decimal number and, hence, log|—5=———=/| will be a greater negative number.
(142, K@)

. . 1 . .
However, for larger number of replications, — * 1 K(w) will be smaller, because nh is

) will be a larger decimal number and log [(;l

larger and, hence, -
( 143 K(v))

1+%Z?=1K(v)
a smaller negative number. Consequently, for small number of replications, the entropy

will be larger than for large number of replications. It is worth noting that another
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important explanation and condition for this to happen is the fact that with low values of
bandwidth, only the own datapoint being evaluated (or datapoints very close to it in value)
end up being inside the band of the kernel function and, consequently, adding any
information to the calculation. Therefore, only one or few data points are adding the same
(or close) amount of information in every calculation. Because this information is being
averaged by n, which depends on the number of replications, when n is larger the entropy
will be smaller. On the other hand, for mid-range values of bandwidth, in general, all the
datapoints will be adding information. Because of that, >, K (v) will be larger for larger
number of replications than for smaller number of replications and this will tend to

compensate the fact that nh also increases with the increase in the number of replications.

This way, for mid-range values of bandwidth, i ™ . K(v) will tend to be larger for larger

number of replications and, hence, log l( )l will be a greater negative number

T3 K(v)
and the entropy will be larger for larger number of replications than for smaller number of
replications. It is important noting that this is considering the data of the experiments
performed here and also the fact that all the data was normalized between 0 and 1. Finally,
the other extreme is to consider large values of bandwidth (e.g., h = 10,100,1000). With

large values of bandwidth two different things occur: (i) first, nh becomes so large that

1

—Xi=1 K (v) will tend to go to 0 and, hence, entropy will tend to go to 0 too, (ii) second,

before nh becomes so large, one can already see that when h is equal to 1 or 1.5, the
entropy is already constant over the number of replications. The reason is that when h is

large all datapoints are inside the band of the kernel function and, consequently,
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contributing with information. However, the information each datapoint contributes is
exactly the same. Because the information is the same, regardless of the number of

replications, the final average information will be the same. In other words, with large
values of bandwidth, K (v) tend to be equal among the different i. Therefore, L T KW)
nh

will be equal (or approximately equal) regardless of the number of replications and, hence,
the entropy will be constant over the number of replications.

Figure 31 shows the same results as Figure 30 but only for bandwidths greater than
orequal to 0.1. In Figure 31 it is possible to better perceive the observations just described.
Another important observation is that the amplitude of the change is higher for lower
values of the bandwidth. When the bandwidth increases the amplitude of the change
becomes smaller until there is almost no change as already mentioned. Similar
observations can be made whether the normal or the Epanechnikov kernel functions were
used, which goes in direction with the literature that recognizes the kernel estimation is
fairly insensitive to the choice of the kernel function but not to different bandwidths.

When Silverman’s rule of thumb was used to calculate the bandwidth, the
bandwidth is dependent on the data and, hence, varied based on that. In this case, plotting
the entropy and MI measures per Silverman’s bandwidth would not be very useful.
Therefore, the average entropy and MI measures over all the experiments was plotted,
instead per Silverman’s bandwidth, as shown in Figure 32. From Figure 32 it is not
possible to observe how the entropy and MI measures behave for the different Silverman’s
bandwidths. However, it is still possible to observe that when using Silverman’s rule of

thumb, the entropy and MI measures still tend to increase with the increase in the number
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of replications, as they did when calculated using the histogram-based method or when

using the kernel method with mid-range values of bandwidth.
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Figure 30. Average of entropy and MI measures per different bandwidths using kernel
method with different kernel functions (experiments #1 to #350).
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Figure 31. Average of entropy and MI measures per different bandwidths (bandwidth
greater than or equal to 0.1) using kernel method with different kernel functions
(experiments #1 to #350).
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Figure 32. Average of entropy and MI measures using kernel method and Silverman’s
rule of thumb with different kernel functions (experiments #1 to #350).

3.4.4. The impact of different number of k-nearest neighbors (k) on entropy and
mutual information measures calculated using KNN method

As mentioned by Gutierrez-Osuna (2020), the general expression for non-
parametric density estimation is given by p(x) = k/nV’ where k is the number of examples
inside the volume V, where V is the volume surrounding the data vector x, and n is the total
number of examples. V is simply the binwidth or bandwidth h. In the KNN method, k is

fixed and V is determined from the data. So, for the KNN method, there is one aspect of
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interest: (1) the impact of different values of k-nearest neighbors on the entropy and Ml
measures.

The analysis of Figure 33 shows that the entropy and MI measures tend to decrease
with the increase in the number of k-nearest neighbors used to calculate the measures. By
increasing the number of k-nearest neighbors used to calculate the measures, one is using
more data in the volume surrounding the data point to estimate the probability density, which

is translated in the method by using a larger ordered value to estimate the probability density.

k

. Because k
nV(x)

In the KNN method, the probability density is estimated by fX¥N (x) =
is larger, f(x) is larger, @Tl()) is smaller, and entropy will be larger. Therefore, the fact
X

that the entropy and MI measures tend to decrease with the increase in the number of k
agrees with the fact that the entropy and M1 measures tend to decrease with the decrease in
the binwidth (or increase in the number of bins) when using the histogram-based method
with fixed number of bins and probability density function or the histogram-based method
with fixed number of bins and discrete empirical distribution after normalization, although
for different reasons.

Based on the experiments performed and the different values of k experimented, the
entropy and MI measures increase with the increase of the number of replications for the
same value of k. The exception occurs for very low values of k (when k is less than or equal
to 3, as can be seen in Figure 33 and Figure 34). The increase of the entropy and MI measures
with the increase in the number of the replications was also observed in the histogram-based

method with probability density function and for most of the cases when using the
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histogram-based method with discrete empirical distribution regardless or not normalization

was applied.
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Figure 33. Average of entropy and MI measures per different values of k-nearest
neighbors using KNN method (experiments #1 to #350).

Frgu re 34 Average ofentropy and MI measures per Iow values of k nearest neighbors
(k = 1,2, and 3) using KNN method (experiments #1 to #350).
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3.4.5. The impact of different fuzzy membership functions and different number of
fuzzy subsets on entropy and mutual information measures calculated using fuzzy
histogram method

For the fuzzy-histogram based method, there are two different aspects of interest:
(1) the impact of different fuzzy membership functions, and (2) the impact of different
number of fuzzy subsets on the entropy and MI measures.

Figure 35 shows that, similar to the histogram-based method with fixed number of
bins and probability density function, the entropy and MI measures tend to decrease with
the increase in the number of fuzzy subsets for the same number of replications regardless
of the fuzzy membership function. This occurs especially for the entropy measures rather
than the MI measures and when larger number of fuzzy subsets are considered. The fact
that the entropy and MI measures tend to decrease with the increase in the number of fuzzy
subsets is similar to the results from the histogram-based method with fixed number of
bins and probability density function and also the histogram-based method with fixed
number of bins and discrete empirical distribution after normalization. The number of
fuzzy subsets can be seen as the number of bins in the histogram-based method and this is
why the behavior is similar to the one observed in the histogram-based method, because
in the entropy approximation the number of fuzzy subsets is used as divisor to approximate
the entropy as it is the number of bins in the histogram-based method.

Based on the experiments performed and the different number of fuzzy subsets

considered, one can see that the entropy and MI measures tend to increase with the
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increase in the number of replications for number of fuzzy subsets greater than or equal to
25. This behavior was also observed from other methods such as the KNN and the

histogram-based method with probability density function.
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Figure 35. Average of entropy and MI measures per different values of fuzzy subsets
and fuzzy membership functions using fuzzy-histogram based method (experiments #1
to #350).

3.4.6. The impact of different traffic intensities, different seeds, different parameter
values, and different systems on entropy and mutual information measures based
on the method used

As it was done when entropy and MI measures were calculated using the
histogram-based method, the appropriateness of the measures as an uncertainty

quantification method in simulation models will be investigated by discussing the impacts
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of different traffic intensities, different seeds, different parameter values, and different
systems on the measures.

In the queue example used in this study, it is known that the uncertainty of the
input X; must be equal among the different traffic intensities because the same input model
and fixed seed were used in the simulation model. For all the methods used (kernel method
with different values of bandwidth or with Silverman bandwidth, KNN method, or fuzzy-
histogram based method with different membership functions), the entropy of X; was
equal among the different traffic intensities which indicates that the entropy measure is
possibly accurately measuring the information or uncertainty of X;. This result can be seen
in Figure 36 to Figure 41.

Although a fixed seed was also used for the input X, it is not correct to expect that
X, should also have equal entropy among different traffic intensities because changes in
traffic intensities were modeled by changing the capacity of the only existing server,
instead of creating or eliminating servers. Therefore, even though the seed of the service
time input, X,, is fixed, the generated input X, are different and, thus, its entropy should
not remain the same among the different traffic intensities. Reviewing Figure 36 to Figure
41, one can observe that the entropy of X, was also able to capture some differences among
the different traffic intensities for all the methods considered.

Finally, one would also expect the reduction in uncertainty in the output provided
by the input to be different in a high traffic intensity than in a low traffic intensity system.

That is, the MI measures should be able to capture differences among the different traffic
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intensities as it did in Figure 36 to Figure 41, which indicates that the MI measure is

correctly measuring the information or uncertainty of the simulation generated inputs.

wopy-Kemel . M-Kemd

OueueModel
wws e ey wwn WM3 W

S Wk
ko

ety S
sy Ko

Figure 36. Entropy and MI measures per queue model per traffic-intensity using kernel
method with different values of bandwidth (experiments #1 to #90).
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Figure 37. Entropy and MI measures per quede model per traffic-intensity using kernel
method with Silverman bandwidth (experiments #1 to #90).
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Figure 38. Entropy and MI measures per queue model per traffic-intensity using KNN
method with different values of k-nearest neighbors (experiments #1 to #90).
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Figure 39. Entropy and MI measures per queue model per traffic-intensity using fuzzy-
histogram based method with different values of fuzzy subsets and cosine fuzzy
membership function (experiments #1 to #90).
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Figure 40. Entropy and MI measures per quéue model per traffic-intensity using fuzzy-
histogram based method with different values of fuzzy subsets and crisp fuzzy
membership function (experiments #1 to #90).
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Figure 41. Entropy and MI measures per queue model per traffic-intensity using fuzzy-
histogram based method with different values of fuzzy subsets and triangular fuzzy
membership function (experiments #1 to #90).
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Another aspect investigated was how using different seeds would impact the
entropy and MI as measures of uncertainty quantification. As shown in Table 66,
experiments #351 to #440 correspond to the initial experiments numbered #1 to #90, but
with a different seed (here, named “seed 2”, the specific seed number used is shown in
Table 66). That is, the same experiment configuration was kept: same interarrival time,
same service time, same number of servers, but different seeds were used for the
parameters. Similarly, experiments #471 to #560 correspond to the initial experiments
numbered #1 to #90 but with another seed (here, named “seed 37).

As shown in Figure 42 to Figure 48, the entropy measures and mutual information
vary based on the seed used. For different seeds, there are different uncertainties.
Therefore, one should expect different entropy values for the inputs, different entropy
values for the outputs, and hence different MI values as the results in Figure 42 to Figure
48 show. From Figure 42 to Figure 48 one can also see that regardless of the seed and the
method used to calculate the entropy measure, the entropy of X, is equal among the
different traffic intensities as expected.

Another interesting observation that can be made from Figure 43 to Figure 48 and
that is also similar from the results observed with the histogram-based method with fixed
number of bins and probability density function is that when using “seed 3” the entropy
of ¥; and Y, present the greatest variability among the experiments and, a few times, even
the highest values. This can be used as an indication that the seeds used as “seed 3” are
likely not a good combination to be used in the experiments as they are resulting in output
uncertainties that are somehow more different than the ones observed with the other seeds.
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This is possibly due to some interaction between the seeds used for the simulation
generated inputs X; and X, and it shows that entropy can be used to identify the adequacy
of seeds in simulation studies. The same observation cannot be made from Figure 42
because the graph shows the average of the results for all the values of bandwidth
experimented. As previously discussed, for larger values of bandwidth, the entropy
measures tend to go to 0 and, hence, the observation being discussed here cannot be made.
However, when only lower values of bandwidth are considered (e.g., bandwidth equal to
0.0001, 0.001, and 0.01), as shown in Figure 43, the same observation regarding the
impact of “seed 3” on the entropy of ¥; and ¥, can be made for the kernel method with

different values of bandwidth.
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Figure 42. Entropy and MI measures per dueue model per traffic-intensity per seed
using kernel method with different values of bandwidth.
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Figure 43. Entropy and MI measures per queue model per traffic-intensity per seed
using kernel method values of bandwidth equal to 0.0001, 0.001, and 0.01.
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Ifigure 46. Entropy and MI measures per aueue model per traffic-intensity per seed
using fuzzy-histogram based method with different values of fuzzy subsets and cosine
fuzzy membership function.
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lfigure 47. Entropy and MI measures per qc:Jeue model per traffic-intensity per seed
using fuzzy-histogram based method with different values of fuzzy subsets and crisp
fuzzy membership function.
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Iiigure 48. Entropy and MI measures per ciheue model per traffic-intensity per seed
using fuzzy-histogram based method with different values of fuzzy subsets and
triangular fuzzy membership function.
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Another aspect investigated was how different parameter values would impact the
appropriateness of entropy and M1 as measures of uncertainty quantification. Experiments
#591 to #680 correspond to the initial experiments numbered #1 to #90, but with different
parameter values (here, named “number 2”, the specific parameter values used in the
experiments are given in Table 66). Experiments #711 to #800 correspond to the initial
experiments numbered #1 to #90, but with different parameter values (here, named
“number 3”).

From Figure 49 to Figure 54 one can see that because different values of inputs X;
and X, were used, the entropy of X; and X, were different among the different
experiments: “original”, “number 2”, and “number 3”. However, as expected for a fixed
seed, the entropy of X; was still equal among the different traffic intensities within each
group of experiments. Similar to the observations made when using the histogram-based
method, from Figure 49 to Figure 54 one can see that regardless of the method being used
to calculate the entropy or MI measures, the traffic intensity does not appear to have a
clear relation to the uncertainty of the outputs, as the uncertainty either increases or
decreases based on the queue model and changes in the system configurations led to

different values of uncertainty without a clear pattern.

205



M1 - Kernel
Cueurodel

T
rrT——

F-igure 49. Entropy and MI measures per quéue model per traffic-intensity per parameter
value experiment using kernel method with different values of bandwidth.
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Ifigure 50. Entropy and MI measures per quéUe model per traffic-intensity per parameter
value experiment using kernel method with Silverman bandwidth.
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Figure 51. Entropy and MI measures per queﬂe model per traffic-intensity per parameter
value experiment using KNN method with different values of k-nearest neighbors.
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Figure 52. Entropy and MI measures per qt;eue model per traffic-intensity per parameter
value experiment using fuzzy-histogram based method with different number of fuzzy
subsets and cosine membership function.
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Figure 53. Entropy and MI measures per queue model per traffic-intensity per parameter

value experiment using fuzzy-histogram based method with different number of fuzzy
subsets and crisp membership function.
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Finally, the last aspect used to investigate the appropriateness of entropy and Ml
as measures of uncertainty quantification was whether or not the measures would be able
to capture the uncertainty of different systems. For that, two last groups of experiments
were run: a CONWIP system and the addition of a third input parameter, namely travel
time.

A total of 100 CONWIP experiments were run. Experiments #831 to #930 in Table
66 correspond to the initial experiments numbered #1 to #100, with same service time but
constant work in progress. CONWIP systems are systems where the number of items, here
the number of customers, is kept constant. Because the number of customers is kept
constant, the CONWIP system is expected to have no uncertainty regarding ¥; and, hence,
the inputs X; and X, should have no impact on ¥;. Moreover, the customer’s time in
system is determined by how long it takes to be serviced plus time spent in the queue, if
any. The goal of using the CONWIP system is to investigate the effectiveness of the
entropy measures in capturing these known characteristics. Here, different from the
previous experiments, the arrival process is determined by the service process.

Based on the aforementioned characteristics, one should expect the entropy of the
average number of entities in the system, Y7, to be zero. One could expect the entropy of
the arrival process, X;, the service time, X,, and the average time in the system, ¥, to be
equal, as the arrival process and the time in system are dictated by the service time.
However, in a simulation model two events, e.g., an arrival and service, cannot occur
exactly at the same time. Moreover, the output uncertainty is not only comprised by the

input uncertainty but also by some other uncertainties of the system (for instance, the
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computational limitation), and, hence, some small differences between X, and ¥, are also
expected.

From Figure 55, one can observe that when using the kernel method with different
values of bandwidth the entropy of ¥; is constant over the different number of replications
and it approximates O for larger values of bandwidth (bandwidth = 100 or 1,000).
However, the entropy of X,, X,, and Y, are also constant and approximate 0 for larger
values of bandwidth. The reason for the entropy to approximate O has already been
discussed in section 3.4.3 and can be an indication of oversmoothing. It is important to

discuss why the entropy of ¥; is constant even for lower values of bandwidth. The reason

_ 1
T nh

is that in the kernel method the probability density is estimated by f(y;) n K@)

where v = % In the CONWIP system, y V i are equal, which means v = 0, K(v)Vi

are equal, and because n and h are the same Vj, f (yj) are equal v j. Because entropy is

approximated using H(X) = —% 7_1log f(X;), regarding of the number of replications,

H(X) will be the same for the same value of bandwidth.

One would expect that the inputs X; and X, should have no impact on ¥; and,
hence, I(Xy;Y;) and I(X,; Y;) should be equal to 0. However, from Figure 55 one can see
that the M1 is not 0 and it slightly varies over the different number of replications for lower
values of bandwidth. The reason for this is that Ml can be calculated by I(X;;Y;) =
H(X,) + H(Y;) — H(Xy,Y;). As it was just discussed, in the CONWIP system H(Y;) is

constant regardless of the value of the bandwidth. In the kernel method, fXe™€!(x,,y,) =
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Ly (K (xl_x“')K (y ot ”)). Because K(v) €[0,1], we know that

nhy hy, hay hy,
K (xl—xu-) K (yrht) < K (m) K ("1"‘“') K (y 1y “') <K (w> and if
Py, hy, 7 hey ) sy hy, J hy, )’

K <x1h—x1i> =0, K (xl—xu) K (yl—yli> = 0. For lower values of bandwidth h, h, < h,

X1 hxl hYl

1

and h, h, < h,, .Therefore, in this case there is a high chance that H(X,,Y;) # H(X,).

More precisely, because K (xlh_x“') K (yl_y”) < K (%) f(x,y) tend to be smaller

X1 Y1 X1
than £ (x), even though there is also a decrease in the divisor hy, hy.. The joint entropy is
approximated by H(X.,Y;) = —%Z}Lllog [m] Hence, with the decrease in

1
1+£(xy)

£y,

increases and the joint entropy decreases. Hence, for lower values of
bandwidth, H(X;,Y;) tend to be smaller than H(X;) and I(X;;Y;) = H(X;) + H(Y;) —
H(Xy,Y;) will not be constant over the number of replications. As the value of the
bandwidth increases, all entropy measures tend to be constant over the number of
replications and, consequently, the M1 will also tend to be constant.

From Figure 56, one can see that, when using lower values of bandwidth, the
entropy of X;, X,, and ¥, are equal for low number of replications (number of replications
=10 or 20). As the number of replications increases, the differences between the entropy
of X;, X,, and ¥, also increase. This result is similar to what was observed with the
histogram-based method. There appears to be an interaction between the binwidth (or
bandwidth) and the number of replications used. When using the kernel method, the
differences between X;, X,, and ¥, increases with changes in the number of replications,
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while when using the histogram-based method with probability density function the
difference increases with changes in the number of bins (binwidth). Differences due to
number of bins may indicate that the specific bin is not adequate to estimate the
probability. On the other hand, differences due to number of replications may indicate that
as the data increases there are more uncertainties in the model and the differences between
the inputs and output increase. However, one can argue that if this was the case, this should

occur for every probability estimation method used to calculate the entropy measures.

nnnnnnn
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NN N NN, £ e
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Figure 55. Entropy and MI measures per queue model per number of bins using kernel
method with different values of bandwidth (CONWIP vs original experiments).
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Figufé 567.7E?ntropyiénd MI measures per different values of bandwidth per replication
using kernel method for CONWIP systems.

When using the KNN method to calculate the entropy and MI measures, one can
observe from Figure 57 that the entropy of ¥; is equal to O regardless of the number of k-
nearest neighbors used to calculate the measure. Similar behavior is not observed for the
entropy of X;, X,, and ¥,, which is an indication that when using the KNN method the
entropy is able to appropriately capture the characteristics of the CONWIP system.
However, when analyzing the MI, one can see that although I(X;;Y;) and I(X,;Y;) are
closer to 0 than 1(X;; Y,) and 1(X,; Y,), the 1(Xy;Y;) and 1(X,; Y;) are not equal to O as
expected in the CONWIP system and, hence, the MI is not appropriately representing the
average reduction in uncertainty about the value of X provided by the value of Y. The
reason for the MI to not be able to appropriately represent the average reduction in

uncertainty comes from how the method is estimated in the multivariate case. For
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calculating the entropy, the probability density was estimated using fXNN(y) =

i and for calculating the MI, the probability density was estimated using

n2 (3/1—J’1k)z

FENN (5 ) = i

- . In the CONWIP system, when y; is the NIS input,
nn\/(xl_xlk) +(Y1—J’1k)

(y1 — ylk)2 is equal to O because y; is always constant. The MI can be calculated by

I(X;Y,) =HX,) + H(Y;) — H(X;,Y;). Because we have, H(Y;) =0, I(X;Y;) =

H(X,) — H(X,,Y;). However, L > . and, hence,

nz\/(xl—xlk)z nnJ(xl—xlk)2+(y1—y1k)2

I(X;;Y;) > 0. Because H(Y;) = 0, I(X;;Y;) is usually smaller in the CONWIP system

than in the other systems. Similar analysis can be done for 1(X;; Y;).

When using the KNN method the entropy of X;, X,, and ¥, are different regardless
of the number of replications and the number of k-nearest neighbors used. Nevertheless,
these differences are not large, which could still be explained due to the computational

limitation of the simulation model of generating events simultaneously.
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method with different values k-nearest neighbors (CONWIP vs original experiments).

When using the fuzzy-histogram based method to calculate the entropy and MI
measures, one can observe from Figure 58 to Figure 60 that, regardless of the fuzzy
membership function considered, the entropy of ¥; is equal to 0. This result is similar to
what was observed from the KNN method. The reason for the entropy of ¥; be equal to 0
is due to how the probability density is estimated by the method. The issue here is that
because Y, is constant, the universe is y = Q = a instead of y € Q = [a, b], and,
consequently, it is not possible to define p fixed nodes of the universe m; <m, < -+ <

m,. For the universe y € Q = [a,b], hy = my4; —my = h = constant would be

Sy

determined by h = :‘11 When ¥; is constant, this would lead to h = 0. Because the

=

S up, )

, this would result in
nh

probability density is estimated by f“##(y) =
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indeterminations in the calculation. On the other hand, we know by definition that if y ¢

[y, My41], then ug, () = 0. Based on that, it was considered that when Y, is constant,

ug, (y) = 0. Because A(Y;) = —% 7, log [ﬁ] when f(y) = 0, H(Y;) = 0.

When analyzing the MlI, one can see that [(X;; ¥;) and I(X;; Y;) are not equal to O
as expected in the CONWIP system and, hence, the Ml is not appropriately representing
the average reduction in uncertainty about the value of X provided by the value of Y. The
reason again is due to how the probability densities are estimated by the method. The Ml

can be calculated by I(X;Y)=HX)+HWY,)—HX,Y) and H(X,Y) =
1 1 . N
==X log [m] In the fuzzy-histogram based method, f/“*%Y(x,y) =

Yiz1 hagxs ()

- , Where iy, «g, (x,y) = min (yAk(x),uBk(y)) is the joint membership

function of x and y. Based on that and the fact that g, (y) = 0, we have u4, x5, (x,¥) =
0, f(x;,v;) = 0,and H(X,,Y;) = 0. Therefore, I(X,;Y;) = H(X;) and not equal to O.
When using the fuzzy-histogram based method the entropy of X;, X,, and ¥, are
different regardless of the number of replications and the number of fuzzy subsets used.
The exception occurs when crisp membership function is used and 10 replications is
considered. In this case, the entropy of X, X,, and Y, are equal regardless of the number

of fuzzy subsets used.
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Figure 58. Entropy and MI measures per queue model per number of bins using fuzzy-
histogram based method with cosine fuzzy membership function (CONWIP vs original
experiments).
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Figure 59. Entropy and MI measures per queue model per number of bins using fuzzy-
histogram based method with crisp fuzzy membership function (CONWIP vs original
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histogram based method with triangular fuzzy membership function (CONWIP vs
original experiments).

In the last group of experiment, a third input parameter X5 representing the travel
time was added to the M /M /s system. A total of 200 experiments with this third input
was run: 100 experiments with the added third input as deterministic travel time of 10
minutes and 100 experiments with the added third input as stochastic travel time
exponentially distributed with a mean of 10 minutes and fixed seed.

When using the deterministic travel time input, the entropy of X5 should be zero,
as there is no uncertainty associated with the input. Similarly, the input X5 should bring
no reduction in the average uncertainty of the simulation outputs ¥; and Y5, which means
that 1(X5;Y;) and 1(X5;Y,) should be equal to 0. For the stochastic case, there is

uncertainty associated with the travel time input and the entropy and M1 should capture it.

218



The observations that can be made when adding the third input deterministic are
identical to the ones made from the CONWIP system, as can be seen from Figure 61 to
Figure 65.

When using the kernel method with different values of bandwidth the entropy of
X5 is constant over the different number of replications and it approximates 0 for larger
values of bandwidth (bandwidth = 1,000) but it is not equal to 0. With respect to the Ml,
as it was discussed in the CONWIP system, the MI will not be constant over the number
of replications because H (X3, Y;) tends to be smaller than H(Y;) and I(X5;Y;) = H(X3) +
H(Y;) — H(X5,Y;). The same explanation can be applied to I1(X5;Y,). Both I(X5; Y;) and
1(X5;Y,) will tend to become constant over the different number of replications and to
approximate 0 as the value of the bandwidth becomes large (bandwidth = 1,000). These
results of the entropy and MI indicate that the measures are somehow capturing the
deterministic behavior of the input X5, but are not appropriately capturing the lack of
uncertainty of this input nor the lack of impact of this input on the outputs, as can be seen
in Figure 61.

When using the KNN method, it is possible to observe from Figure 62 that the
entropy of X5 is equal to O regardless of the number of k-nearest neighbors used to
calculate the measure, but 1(X5; ¥;) and I1(X5; Y,) are not equal to 0, although these Ml
measures are closer to 0 than the other M1 measures.

Finally, when using the fuzzy-histogram based method, one can observe from
Figure 63 to Figure 65 that the entropy of X5 is equal to O regardless of the fuzzy
membership function and/or the number of fuzzy subsets used to calculate the measure,
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but I(X5;Y;) and I(X5; Y,) are not equal to 0. The KNN method and fuzzy-histogram based
method present similar results in detecting the uncertainty of the deterministic inputs and
the impact of this input on the outputs. The difference is that in the KNN method the Ml
is given by I(X5;Y;) = H(Y;) — H(X3,Y;), because H(X5,Y;) # 0, while in the fuzzy-

histogram based method H(X;,Y;) = 0 and hence, 1(X3;Y;) = H(Y;).

B R L T R L R FEE T R L TR T FFFRTEETTES PR RSYEERTATERNIRER TR RERGRREE T ARERE
W .

Figure 61. Entropy and MI measures per queue model per number of bins using kernel
method with different values of bandwidth (deterministic travel time vs stochastic travel
time).
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Figure 62. Entropy and MI measures per queue model per number of bins using KNN
method with different values of k-nearest neighbors (deterministic travel time vs
stochastic travel time).
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Figure 63. Entropy and MI measures per queue model per number of bins using fuzzy-
histogram based method with different number of fuzzy subsets and cosine fuzzy
membership function (deterministic travel time vs stochastic travel time).
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Figure 64. Entropy and MI measures per queue model per number of bins using fuzzy-
histogram based method with different number of fuzzy subsets and crisp fuzzy
membership function (deterministic travel time vs stochastic travel time).
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Figure 65. Entropy and MI measures per queue model per number of bins using fuzzy-
histogram based method with different number of fuzzy subsets and triangular fuzzy
membership function (deterministic travel time vs stochastic travel time).

3.4.7. The histogram-based method
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In section 2, the entropy and MI measures were calculated using the histogram-
based method. In that section, the use of a data normalization method was proposed to
overcome the challenges encountered when entropy is applied to continuous variables.
The issue with the data normalization method is that it could only be applied when fixed
number of bins was used.

In section 3, a different approach is being proposed based on Jaynes’ work. This
approach can be applied regardless of method and the number of bins being used. In this
section, the impact of different number of bins, different traffic intensities, different seeds,
different parameter values, and different systems on the entropy and mutual information
measures calculated using the histogram-based method with the approach based on
Jaynes’ work will be discussed.

From Figure 66 one can see that the entropy and MI measures calculated using the
histogram-based method with the approach built on Jaynes’ method lead to results similar
to the entropy and MI measures calculated using the histogram-based method based on
data normalization in terms of behavior of the measures over the number of bins and
number of replications. That is, the entropy and MI measures tend to decrease with the
increase in the number of bins (or decrease in the binwidth) for the same number of
replications and the entropy and MI measures tend to increase with the increase in the
number of replications for the same number of bins (or binwidth). The exception is when
the number of bins is low (number of bins less than or equal to 25). For low number of
bins, the results among the different approaches are somehow different. In the approach

based on Jaynes’ method, the entropy and MI measures tend to, in fact, decrease with the
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increase of the number of replications, while in the data normalization approach the
entropy is either constant or increases.

Another big difference among the approaches is that with the approach based on
Jaynes’ method, the entropy and MI measures are always between 0 and 1, while this is

not true for the method based on the data normalization. The reason that entropy is always

between O and 1 in the approach based on Jaynes’ method is that f’”“}.(x) =

1

1 .

—yn . .t
nthzll{xl € [t t +1)} > 0 and, consequently, 0 < 70 < 1, which leads to 0 <
5 1 1
A0 = ~L57log| =] = 1.

( 1) n&j=1 08 1+700] —

Histogram Histogram
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Figure 66. Average of entropy and MI measures per different bandwidths using
histogram-based method with different number of bins (experiments #1 to #350).
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As it occurred with all the other methods (kernel, KNN, and fuzzy-histogram
based) using the approach based on Jaynes’ work and also with the histogram-based
method with data normalization, the entropy of X; was equal among the different traffic
intensities when the entropy measure was calculated using the histogram-based method,
which indicates that the entropy measure is possibly accurately measuring the information
or uncertainty of X,, as can be seen in Figure 67. Although a fixed seed was also used for
the input X,, it is not correct to expect that X, should also have equal entropy among
different traffic intensities, as it has already been discussed. As Figure 67 shows, the
entropy of X, was also able to capture some differences among the different traffic

intensities, as expected.
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Flgure 67 Entropy and MI measures per queue model per trafflc |nten5|ty using
histogram-based method with different number of bins (experiments #1 to #90).
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Figure 68 and Figure 69 show how using different seeds and different parameter
values would impact the entropy and MI as measures of uncertainty quantification. As
shown in Figure 68, the entropy measures and mutual information vary based on the seed
used. For different seeds, there are different uncertainties, as expected. Similar from the
results observed with the other methods, when using “seed 3” the entropy of ¥; and Y,
present the greatest variability among the experiments, which can be potentially used as
an indication that the seeds used as “seed 3” are likely not a good combination to be used
in the experiments.

From Figure 69 one can see that because different values of inputs X; and X, were
used, the entropy of X, and X, were different among the different experiments: “original”,
“number 2”, and “number 3”. However, as expected for a fixed seed, the entropy of X;
was still equal among the different traffic intensities within each group of experiments.
Similar to the observations made from the other methods, it was not possible to identify a
clear relation between the traffic intensity and the uncertainty of the outputs, as the

uncertainty either increases or decreases based on the queue model without a clear pattern.
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The final aspect investigated was whether or not the measures would be able to
capture the uncertainty of different systems. More specifically, the CONWIP system and
the addition of a third input parameter, namely travel time. Again, the results obtained
were very similar to the ones obtained with the histogram-based method with probability
density function, fixed number of bins, and data normalization. As can be seen in Figure
70 and Figure 71, when the input or output is deterministic, the entropy is constant over
the number of replications and it approximates 0 as the number of bins increases. The Ml
presents identical behavior to the entropy measures for reasons already discussed. This
indicates that similar to the kernel, KNN, and fuzzy-histogram method, the measures
calculated using the histogram-based method are somehow capturing the deterministic
behavior of the output Y; (or input X3), but are not appropriately capturing the lack of
uncertainty of this output (or input) nor the lack of impact of this output (or input) on the

inputs (or outputs), as can be seen in Figure 70 and Figure 71.
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3.4.8. Analysis of entropy and MI as a measure of uncertainty quantification in
simulation models

In order to assess the potential of entropy and MI as measures of uncertainty

quantification in simulation model, the same procedure used in section 2.4.4 was adopted
here, where the measures were calculated using the histogram-based method. The
procedure consists of comparing the entropy and MI measures results against results of
methods commonly applied in the scientific community.

For the entropy measures, the following comparisons were performed:

e The entropy measure (or average entropy measure) detects an increase or
decrease in uncertainty with the increase in the number of replications that is
in agreement with the detection by the error method being compared to.

e The entropy measure (or average entropy measure) detects the experiment that
leads to the maximum uncertainty in agreement with the detection by the error
method being compared to.

For the comparisons, four error methods were considered: SAE, SSE, MAE, and

MSE. For consistency in the comparison, the average entropy measure was considered
instead of entropy measure when MAE or MSE was the error comparison method. This
led to a total of eight comparisons per input or output per method used to calculate the
entropy measures.

For details about the reasons for the above choice, please refer to section 2.4.4.

JMP® and Tableau® software were used to perform the comparisons and analysis. Each

comparison was performed for the entropy measures calculated using: (1) the kernel
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method with different number of bandwidths; (2) the kernel method with Silverman
bandwidth; (3) the KNN method; (4) the fuzzy-histogram based method with cosine fuzzy
membership function; (5) the fuzzy-histogram based method with crisp fuzzy membership
function; and, (6) the fuzzy-histogram based method with triangular fuzzy membership
function.

For the MI measure, the MI results were compared to the results of three other
measures of dependence between variables: distance correlation, Pearson correlation, and

R?44;. To assess the results, the following analyses were performed:

e The Ml is capable of identifying the input X; that has the greatest impact on

the uncertainty of the output ¥; in agreement with the measure of dependence.

e The Ml is capable of identifying the input X; that has the least impact on the

uncertainty of the output Y; in agreement with the measure of dependence.

where i = 1,2 ori = 1,2,3 depending on the scenario being evaluated and j = 1,2.

To compare the M1 with the measures of dependence an analysis procedure had to
be developed because there could be experiments where more than one input would be
identified as the one with the greatest impact on the output by either the Ml or the other
measures of dependence. Similarly, there could be experiments where more than one input
would be identified as the one with the least impact on the output by the MI or the other
measures of dependence. In these cases, where more than one input would be identified,
a procedure to identify whether the MI and the measure of dependence were in agreement
was important. This procedure was also described in detailed in section 2.4.4, so it is

skipped here.
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Table 33 to Table 41 show the results of the comparison between the entropy
measures and the SAE, SSE, MAE, and MSE for each of the density estimation methods
considered in this section of the dissertation (kernel method, KNN method, and fuzzy-
histogram based method).

As shown in Table 33, considering the comparison to detect an increase or decrease
in uncertainty the entropy measures calculated using kernel method with different values
of bandwidth and different kernel functions do not appear to have results in agreement
with the SAE or SSE method for low values of bandwidth (considering the values of the
bandwidth experimented — i.e., 0.0001, 0.001, and 0.001). This implies, for instance, that
only 2.39% of the time the results of H (X;) matched the results of the SAE or SSE method
for a value of bandwidth of 0.001 when using either the normal or the Epanechnikov kernel
functions. The agreement between the entropy measures and the SAE or SSE methods
increases as the bandwidth value increases until it reaches its maximum. It is worth noting
that the comparisons performed between the entropy measures and the SAE method led
to exactly the same results as of the comparisons performed between the entropy measures
and the SSE method.

The average of the entropy measures calculated using the kernel method with
different values of bandwidth and different kernel functions was compared to MAE and
MSE. In this case, it is observed that the performance of the method is, in general, constant
over the different values of bandwidth or for the outputs it shows slightly improvement in
performance with the increase of the value of the bandwidth. Although the entropy

measures when compared against the MAE or MSE perform poorer than when compared
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against SAE or SSE, the method can still achieve a performance of about 45% to 55%,
with the exception of when considering H(X3).

Similar observations can be made in terms of the entropy measures performance
to detect the experiment that leads to the maximum uncertainty. As shown in Table 34,
the ability of the entropy measures in comparison to the SAE and SSE method increases
with the increase of the value of the bandwidth until it reaches its maximum and the
performance of the average entropy measures when compared to MAE or MSE are
constant over the different values of bandwidth. Analogous to what was observed from
the results of the entropy measures calculated using the histogram-based method with
fixed number of bins and probability density function, the performance of the entropy
measures to detect the experiment that leads to the maximum uncertainty is poor when
compared to MAE or MSE.

By observing all the results, one can see that a potential good choice for the
bandwidth for the queue system under investigation would be a value between 0.2 and 0.5.
These values of bandwidth led to close to the best performance, if not the best
performance, and could also minimize the risks of oversmoothing that one may encounter
when choosing a large value of bandwidth such as 1,000 or even 5.

The results obtained with the kernel method are very similar to the ones obtained
with the histogram-based method using fixed number of bins and probability density
function in terms of behavior. The difference is that, overall, the kernel method appears to
have worse performance when compared to the SAE, SSE, MAE, and MSE than the

histogram-based method using fixed number of bins and probability density function.
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Another difference is that the performance of the entropy measure calculated using the
kernel method when compared with the MAE or MSE is in general constant over the
different values of bandwidth, while the performance of the entropy measure calculated
using the histogram-based method and probability density function is only constant for
lower number of bins. However, when histogram-based method and discrete empirical
distribution is considered, the performance of the entropy measure when compared with

the MAE or MSE is also constant over the different number of bins.

Table 33. Results from kernel method using different values of bandwidth and different
kernel functions for detecting an increase or decrease in uncertainty with the increase in
the number of replications.

Mean of Mean of
Mean of Mean of comparison comparison
Entro Function Bandwidth comparison comparison avgra o avgra o
Py type value entropy vs. entropy vs. g g
SAE SSE entropy vs.  entropy vs.
MAE MSE
0.0001 0.00% 0.00% 44.30% 54.71%
0.001 2.39% 2.39% 44.30% 54.71%
0.01 44.30% 44.30% 44.30% 54.71%
01 79.32% 79.32% 44.30% 54.71%
0.2 87.34% 87.34% 44.30% 54.71%
. 0.5 90.86% 90.86% 44.30% 54.71%
Epanechnikov
1 90.86% 90.86% 44.30% 54.71%
15 90.86% 90.86% 44.30% 54.71%
HX) 5 90.86% 90.86% 44.30% 54.71%
! 10 90.86% 90.86% 44.30% 54.71%
100 90.86% 90.86% 44.30% 54.71%
1000 90.86% 90.86% 44.30% 54.71%
0.0001 0.00% 0.00% 44.30% 54.71%
0.001 2.39% 2.39% 44.30% 54.71%
Normal 0.01 41.49% 41.49% 44.30% 54.71%
01 78.90% 78.90% 44.30% 54.71%
0.2 84.53% 84.53% 44.30% 54.71%
0.5 90.44% 90.44% 44.30% 54.71%
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0.0001
0.001
0.01
0.1
0.2
0.5

15

10

0.00%
1.69%
46.41%

0.00%
1.13%
41.21%

33.33%
12.78%
32.78%
61.11%
61.11%
57.22%
56.11%
50.56%
61.67%
67.22%

0.00%
1.69%
46.41%

0.00%
1.13%
41.21%

33.33%
12.78%
32.78%
61.11%
61.11%
57.22%
56.11%
50.56%
61.67%
67.22%

44.30% 54.71%
44.30% 54.71%
44.30% 54.71%
44.30% 54.71%
44.30% 54.71%
44.30% 54.71%
45.43% 52.18%
45.43% 52.18%
45.43% 52.18%
45.43% 52.18%
45.43% 52.18%
45.43% 52.18%
45.43% 52.18%
45.43% 52.18%
45.43% 52.18%
45.43% 52.18%
45.43% 52.18%
45.43% 52.18%
45.43% 52.18%
45.43% 52.18%
45.43% 52.18%
45.43% 52.18%
45.43% 52.18%
45.43% 52.18%
45.43% 52.18%
45.43% 52.18%
45.43% 52.18%
45.43% 52.18%
45.43% 52.18%
45.43% 52.18%
19.44% 24.44%
19.44% 24.44%
19.44% 24.44%
19.44% 24.44%
19.44% 24.44%
19.44% 24.44%
19.44% 24.44%
19.44% 24.44%
19.44% 24.44%
19.44% 24.44%
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0.0001
0.001

27.78%
7.22%
37.22%
50.00%
72.22%
56.11%
56.11%
56.11%
72.78%

0.98%
3.52%
45.99%

0.98%

2.95%
41.07%

0.56%
2.53%

27.78%
7.22%
37.22%
50.00%
72.22%
56.11%
56.11%
56.11%
72.78%

0.98%
3.52%
45.99%

0.98%
2.95%
41.07%

0.56%
2.53%

19.44% 24.44%
19.44% 24.44%
19.44% 24.44%
19.44% 24.44%
19.44% 24.44%
19.44% 24.44%
19.44% 24.44%
19.44% 24.44%
19.44% 24.44%
19.44% 24.44%
19.44% 24.44%
19.44% 24.44%
19.44% 24.44%
19.44% 24.44%
49.37% 54.85%
49.37% 54.85%
49.37% 54.85%
49.37% 54.85%
48.95% 54.43%
48.95% 54.43%
48.95% 54.43%
48.95% 54.43%
48.95% 54.43%
48.95% 54.43%
48.95% 54.43%
48.95% 54.43%
49.37% 54.85%
49.37% 54.85%
49.37% 54.85%
49.37% 54.85%
49.09% 54.57%
48.95% 54.43%
48.95% 54.43%
48.95% 54.43%
48.95% 54.43%
48.95% 54.43%
48.95% 54.43%
48.95% 54.43%
48.24% 53.45%
48.38% 53.59%



0.01 46.84% 46.84% 48.38% 53.59%
0.1 48.38% 53.59%
0.2 48.10% 53.31%
0.5 48.10% 53.31%
1 48.10% 53.31%
1.5 48.10% 53.31%
5 48.10% 53.31%
10 48.10% 53.31%
100 48.10% 53.31%
1000 48.10% 53.31%
0.0001 0.56% 0.56% 48.24% 53.45%
0.001 1.83% 1.83% 48.38% 53.59%
0.01 42.76% 42.76% 48.38% 53.59%
0.1 48.38% 53.59%
0.2 48.10% 53.31%
Normal 0.5 48.10% 53.31%
1 48.10% 53.31%
1.5 48.10% 53.31%
5 48.10% 53.31%
10 48.10% 53.31%
100 48.10% 53.31%
1000 48.10% 53.31%

Table 34. Results from kernel method using different values of bandwidth and different
kernel functions for detecting the experiment that leads to the maximum uncertainty.

Mean of Mean of
Mean of Mean of comparison  comparison
Function Bandwidth comparison comparison P P
Entropy average average
type value entropy vs.  entropy vs.
SAE SSE entropy vs.  entropy vs.
MAE MSE
0.0001 0.00% 0.00% 10.13% 10.13%
0.001 0.00% 0.00% 10.13% 10.13%
0.01 0.00% 0.00% 10.13% 10.13%
0.1 10.13% 10.13%
0, 0,
H(X,) Epanechnikov 0.2 10.13% 10.13%
0.5 10.13% 10.13%
1 10.13% 10.13%
15 10.13% 10.13%
5 10.13% 10.13%
10 10.13% 10.13%
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0.0001
0.001

0.00%
0.00%
0.00%

0.00%
0.00%
0.00%

0.00%
0.00%
0.00%

0.00%
0.00%

0.00%

0.00%
0.00%

0.00%
0.00%
0.00%

0.00%

0.00%
0.00%

0.00%
0.00%

10.13% 10.13%
10.13% 10.13%
10.13% 10.13%
10.13% 10.13%
10.13% 10.13%
10.13% 10.13%
10.13% 10.13%
10.13% 10.13%
10.13% 10.13%
10.13% 10.13%
10.13% 10.13%
10.13% 10.13%
10.13% 10.13%
10.13% 10.13%
2.53% 0.00%
2.53% 0.00%
2.53% 0.00%
2.53% 0.00%
2.53% 0.00%
2.53% 0.00%
2.53% 0.00%
2.53% 0.00%
2.53% 0.00%
2.53% 0.00%
2.53% 0.00%
2.53% 0.00%
2.53% 0.00%
2.53% 0.00%
2.53% 0.00%
2.53% 0.00%
2.53% 0.00%
2.53% 0.00%
2.53% 0.00%
2.53% 0.00%
2.53% 0.00%
2.53% 0.00%
2.53% 0.00%
2.53% 0.00%
50.00% 50.00%
50.00% 50.00%



0.01 0.00% 0.00% 50.00% 50.00%

0.1 45.00% 45.00% 50.00% 50.00%

0.2 45.00% 45.00% 50.00% 50.00%

05 45.00% 45.00% 50.00% 50.00%

1 45.00% 45.00% 50.00% 50.00%

15 45.00% 45.00% 50.00% 50.00%

5 | 9500%  9500%  50.00% 50.00%

10 45.00% 45.00% 50.00% 50.00%

100 50.00% 50.00%

1000 50.00% 50.00%

0.0001 0.00% 0.00% 50.00% 50.00%

0.001 0.00% 0.00% 50.00% 50.00%

0.01 0.00% 0.00% 50.00% 50.00%

0.1 45.00% 45.00% 50.00% 50.00%

02 | 9500%  9500%  50.00% 50.00%

Normal 05 45.00% 45.00% 50.00% 50.00%

1 45.00% 45.00% 50.00% 50.00%

15 45.00% 45.00% 50.00% 50.00%

5 45.00% 45.00% 50.00% 50.00%

10 45.00% 45.00% 50.00% 50.00%

100 50.00% 50.00%

1000 50.00% 50.00%

0.0001 1.27% 1.27% 13.92% 11.39%

0.001 2 53% 253% 13.92% 11.39%

0.01 3.80% 3.80% 13.92% 11.39%

0.1 13.92% 11.39%

0.2 13.92% 11.39%

. 05 13.92% 11.39%
Epanechnikov

1 13.92% 11.39%

15 13.92% 11.39%

) 5 13.92% 11.39%

10 13.92% 11.39%

100 13.92% 11.39%

1000 13.92% 11.39%

0.0001 1.27% 1.27% 13.92% 11.39%

0.001 2 53% 2 53% 13.92% 11.39%

Normal 0.01 3.80% 3.80% 13.92% 11.39%

0.1 13.92% 11.39%

0.2 13.92% 11.39%

05 13.92% 11.39%
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1 13.92% 11.39%

1.5 13.92% 11.39%

5 13.92% 11.39%

10 13.92% 11.39%

100 13.92% 11.39%

1000 13.92% 11.39%

0.0001 1.27% 1.27% 12.66% 6.33%

0.001 1.27% 1.27% 12.66% 6.33%

0.01 2.53% 2.53% 12.66% 6.33%

0.1 12.66% 6.33%

0.2 12.66% 6.33%

Epanechnikov 0.5 12.66% 6.33%
1 12.66% 6.33%

15 12.66% 6.33%

5 12.66% 6.33%

10 12.66% 6.33%

100 12.66% 6.33%

H(Y,) 1000 12.66% 6.33%
0.0001 1.27% 1.27% 12.66% 6.33%

0.001 1.27% 1.27% 12.66% 6.33%

0.01 1.27% 1.27% 12.66% 6.33%

0.1 12.66% 6.33%

0.2 12.66% 6.33%

Normal 0.5 12.66% 6.33%
1 12.66% 6.33%

15 12.66% 6.33%

5 12.66% 6.33%

10 12.66% 6.33%

100 12.66% 6.33%

1000 12.66% 6.33%

The entropy measures calculated using the kernel method and Silverman
bandwidth showed similar or better results than the entropy measures calculated using the
kernel method with different values of bandwidth and different kernel functions for either

detecting an increase or decrease in uncertainty with the increase in the number of

240



replications or for detecting the experiment that leads to the maximum uncertainty, as
shown in Table 35 and Table 36, respectively. In general, when the entropy measures
calculated using the kernel method and Silverman bandwidth were compared to MAE and
MSE, the results were identical to the results when the entropy measures were calculated
using the kernel method with different values of bandwidth and different kernel functions.
When the comparison was against SAE and SSE, the entropy measures calculated using
the kernel method and Silverman bandwidth outperformed the entropy measures
calculated using the kernel method with different values of bandwidth when
Epanechnikov kernel function is used. The only exception was when travel time input was
considered. A possible explanation for the better performance of the kernel method using
Silverman bandwidth and Epanechnikov kernel function than the kernel method with
different values of bandwidth is that the Silverman’s rule of thumb is a choice of the
bandwidth that minimizes the mean integrated squared error and the Epanechnikov kernel

function leads to the lowest asymptotic MSE.

Table 35. Results from kernel method using Silverman bandwidth and different kernel
functions for detecting an increase or decrease in uncertainty with the increase in the
number of replications.

Mean of Mean of Mean of
. Mean of comparison comparison
Kernel comparison .
Entropy function entrony vs comparison average average
SAE)IBE/ ' entropy vs. SSE entropy vs. entropy vs.
MAE MSE
HXD) Epanechnikov 94.80% 94.80% 44.30% 54.71%
' Normal 86.92% 86.92% 44.30% 54.71%
HX,) Epanechnikov 93.67% 93.67% 45.43% 52.18%
’ Normal 88.19% 88.19% 45.43% 52.18%
H(X3)  Epanechnikov 43.33% 43.33% 19.44% 24.44%
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Normal 40.00% 40.00% 19.44% 24.44%

HY) Epanechnikov 49.37% 54.85%
! Normal 49.37% 54.85%
HY) Epanechnikov 48.38% 53.59%
g Normal 48.38% 53.59%

Table 36. Results from kernel method using Silverman bandwidth and different kernel
functions for detecting the experiment that leads to the maximum uncertainty.

Mean of Mean of Mean of
Function cOmparison Mean of comparison comparison
Entropy P comparison average average
type entropy vs. entropy vs. SSE entropy vs entropy vs
SAE ' ' ’
MAE MSE
HX,) Epanechnikov 10.13% 10.13%
! Normal 10.13% 10.13%
H(X,) Epanechnikov 2.53% 0.00%
’ Normal 2.53% 0.00%
H(X,) Epanechnikov 50.00% 50.00% 50.00% 50.00%
’ Normal 45.00% 45.00% 50.00% 50.00%
H(Y,) Epanechnikov 13.92% 11.39%
! Normal 13.92% 11.39%
H(Y,) Epanechnikov 12.66% 6.33%
’ Normal 12.66% 6.33%

For the KNN method, in order to assess whether the entropy measures detect an
increase or decrease in uncertainty with the increase in the number of replications that is
in agreement with the detection by the error method being compared to, the same number
of k-nearest neighbors should be used by each experiment, which was not what was
initially proposed in section 3.3.2. In section 3.4.4, the goal was to have different values
of k that would correspond to low, medium, and high values in comparison with the

amount of data available in each experiment to assess the direct impact of k on the entropy
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and MI measures. In this section, because the same value of k is necessary, the following
values were considered k = 1,2,3,4,5,6,7,8,9.

From Table 37, Table 39, Table 40, and Table 41 one can see that both the KNN
and the fuzzy-histogram-based methods led to results similar to the kernel method for
detecting an increase or decrease in uncertainty with the increase in the number of
replications and for detecting the experiment that leads to the maximum uncertainty.

As shown in Table 37, considering the comparison to detect an increase or decrease
in uncertainty, the entropy measures calculated using the KNN method with different
values of k-nearest neighbors appears to have better results in agreement with the SAE or
SSE method for low values of k-nearest neighbors than for low values of bandwidth in
the kernel method. The fuzzy-histogram based method also showed slightly better results
in agreement with the SAE and SSE method for low values of number of fuzzy subsets
than for low values of bandwidth in the kernel method, as one can see in Table 40. The
agreement between the entropy measures and the SAE or SSE methods increases as the
number of k-nearest neighbors or number of fuzzy subsets increases. Similar to the kernel
method, the comparisons performed between the entropy measures and the SAE method
led to exactly the same results as of the comparisons performed between the entropy
measures and the SSE method when using either the KNN or the fuzzy-histogram based
method.

The average of the entropy measures calculated using the KNN and the fuzzy-
histogram based methods was compared to MAE and MSE. In this case, it is observed that

the performance of the method is, with a few exceptions, constant over the different values
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of k-nearest neighbors and fuzzy subsets. Similar to the kernel method, the entropy
measures when compared against the MAE or MSE also perform poorer than when
compared against SAE or SSE, but the method can still achieve a performance of about
45% to 50%. The only exception is when H(X3) is considered, in which case the
performance is actually about 70%.

Similar observations can be made in terms of the entropy measures performance
to detect the experiment that leads to the maximum uncertainty. As shown in Table 39 and
Table 41, the ability of the entropy measures in comparison to the SAE and SSE method
increases with the increase in the number of k-nearest neighbors or the number of fuzzy
subsets, with the exception of H(X;) when using the KNN method, and the performance
of the average entropy measures when compared to MAE or MSE are constant over the
different number of k-nearest neighbors or number of fuzzy subsets. Analogous to what
was observed from the results of the entropy measures calculated using the histogram-
based method with fixed number of bins and probability density function or from the
kernel method, the performance of the entropy measures to detect the experiment that
leads to the maximum uncertainty is poor when compared to MAE or MSE. More
precisely, the performance is between 0 to 14%, with the exception of H(X3).

By observing all the results, one can see that a potential good choice for the k-
nearest neighbors for the queue system under investigation would be a value of 9 and a
potential good choice for the number of fuzzy subsets would be a value of 1000. However,
for the KNN method, it is important noting that when more datapoints are available, one

can choose to use a larger value of k-nearest neighbors. As the results of Table 38 show,
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the performance of the KNN method for detecting an increase or decrease in uncertainty
with the increase in the number of replications varies considerably based on the number
of k-nearest neighbors used and also on the number of replications used, behavior that is
not observed from the other methods. In this case, a good choice for k-nearest neighbors
appears to be dependent on the number of replications being considered. Nevertheless, it
appears that a mid-range value of k-nearest neighbors (something around 50% of the data

available) is a good rule of thumb of be used.

Table 37. Results from KNN method using different number of neighbors (k) for
detecting an increase or decrease in uncertainty with the increase in the number of

replications.
Mean of Mean of Mean .Of Mean .Of
Entropy neigtl:bors comparison comparison avgg;rglgge:err:iggpy avzcr)arz;zirrlliggpy
entropy vs. SAE  entropy vs. SSE vs. MAE vs. MSE
1 32.35% 32.35% 44.16% 54.57%
2 46.55% 46.55% 44.30% 54.71%
3 63.15% 63.15% 44.30% 54.71%
4 73.00% 73.00% 44.30% 54.71%
H(X1) 5 81.58% 81.58% 44.30% 54.71%
6 80.45% 80.45% 44.30% 54.71%
7 80.17% 80.17% 44.30% 54.71%
8 78.76% 78.76% 44.30% 54.71%
9 79.47% 79.47% 44.30% 54.71%
1 32.63% 32.63% 45.43% 52.18%
2 47.12% 47.12% 45.43% 52.18%
3 64.84% 64.84% 45.43% 52.18%
4 73.42% 73.42% 45.43% 52.18%
H(X3) 5 79.75% 79.75% 45.43% 52.18%
6 78.34% 78.34% 45.43% 52.18%
7 77.64% 77.64% 45.43% 52.18%
8 78.90% 78.90% 45.43% 52.18%
9 79.61% 79.61% 45.43% 52.18%
H(X3) 1 68.33% 68.33% 69.44% 74.44%
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33.19% 33.19% 48.95% 54.43%
48.66% 48.66% 48.95% 54.43%
65.82% 65.82% 48.95% 54.43%
48.95% 54.43%
H(Y) 48.95% 54.43%
49.09% 54.57%
49.09% 54.57%
49.09% 54.57%
49.09% 54.57%
32.49% 32.49% 48.10% 53.31%
47.26% 47.26% 48.10% 53.31%
65.26% 65.26% 48.24% 53.45%
H(Y,)
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48.24% 53.45%
48.24% 53.45%
48.24% 53.45%
48.24% 53.45%
48.24% 53.45%
48.24% 53.45%

Table 38. H(X) results from KNN method using different number of neighbors (k) per
different number of replications for detecting an increase or decrease in uncertainty with
the increase in the number of replications.

Mean of Mean of
Mean of Mean of comparison  comparison
Entro Number of k comparison  comparison avgra o avgra o
Py replications  neighbors  entropyvs.  entropy vs. 9 g
SAE SSE entropy vs. entropy vs.
MAE MSE
H(X;) 20

10.13% 8.86%

11.39% 10.13%
11.39% 10.13%
11.39% 10.13%
11.39% 10.13%
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11 11.39% 10.13%
13 11.39% 10.13%
15 11.39% 10.13%
17 11.39% 10.13%
19 11.39% 10.13%
1
3
5
7
50 o
13
19
25
35
49
1 5.06% 2.53%
3 5.06% 2.53%
5 5.06% 2.53%
7 5.06% 2.53%
100 9 5.06% 2.53%
13 5.06% 2.53%
19 5.06% 2.53%
25 5.06% 2.53%
49 5.06% 2.53%
99 5.06% 2.53%
1 5.06% 5.06% 8.86% 16.46%
3 8.86% 16.46%
7 8.86% 16.46%
9 8.86% 16.46%
200 19 8.86% 16.46%
25 8.86% 16.46%
49 8.86% 16.46%
99 53.16% 53.16% 8.86% 16.46%
150 2.53% 2.53% 8.86% 16.46%
199 8.86% 16.46%
1 0.00% 0.00%
400 9
19
25
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99
150
199
399
1 0.00% 0.00% 0.00%
3 13.92% 13.92% 0.00%
9 15.19% 15.19% 0.00%
25 10.13% 10.13% 0.00%
600 49 2.53% 2.53% 0.00%
99 10.13% 10.13% 0.00%
150 67.09% 67.09% 0.00%
199 2.53% 2.53% 0.00%
399 1.27% 1.27% 0.00%
599 17.72% 17.72% 0.00%
1 0.00% 0.00% 0.00%
3 45.57% 45.57% 0.00%
9 0.00%
25 54.43% 54.43% 0.00%
800 49 44.30% 44.30% 0.00%
99 54.43% 54.43% 0.00%
199 54.43% 54.43% 0.00%
399 25.32% 25.32% 0.00%
599 24.05% 24.05% 0.00%
799 67.09% 67.09% 0.00%
1 0.00% 0.00%
3 63.29% 63.29%
9
25
1000 49
99
199
399
599
999
1 0.00% 0.00%
3 0.00% 0.00%
1500 9 43.04% 43.04%
25
49
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99
199
599

999 13.92% 13.92%
1499

Table 39. Results from KNN method using different number of neighbors (k) for
detecting the experiment that leads to the maximum uncertainty.

Mean of Mean of
Mean of Mean of comparison comparison
Entropy neighbors comparison comparison averagg entropy averagre)z entropy
entropy vs. SAE  entropy vs. SSE vs. MAE vs. MSE
1 0.00% 0.00% 8.86% 8.86%
2 0.00% 0.00% 10.13% 10.13%
3 0.00% 0.00% 10.13% 10.13%
4 7.59% 7.59% 10.13% 10.13%
H(X;) 5 34.18% 34.18% 10.13% 10.13%
6 45.57% 45.57% 10.13% 10.13%
7 59.49% 59.49% 10.13% 10.13%
8 26.58% 26.58% 10.13% 10.13%
9 36.71% 36.71% 10.13% 10.13%
1 0.00% 0.00% 2.53% 0.00%
2 0.00% 0.00% 2.53% 0.00%
3 0.00% 0.00% 2.53% 0.00%
4 15.19% 15.19% 2.53% 0.00%
H(X;) 5 35.44% 35.44% 2.53% 0.00%
6 31.65% 31.65% 2.53% 0.00%
7 36.71% 36.71% 2.53% 0.00%
8 40.51% 40.51% 2.53% 0.00%
9 41.77% 41.77% 2.53% 0.00%
1 50.00% 50.00% 50.00% 50.00%
2 50.00% 50.00% 50.00% 50.00%
3 50.00% 50.00% 50.00% 50.00%
4 70.00% 70.00% 50.00% 50.00%
H(X3) 5 50.00% 50.00%
6 50.00% 50.00%
7 50.00% 50.00%
8 50.00% 50.00%
9 50.00% 50.00%
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1 0.00% 0.00% 13.92% 11.39%
2 0.00% 0.00% 13.92% 11.39%
3 1.27% 1.27% 13.92% 11.39%
4 29.11% 29.11% 13.92% 11.39%
H(Yy) 5 45.57% 45.57% 13.92% 11.39%
6 43.04% 43.04% 13.92% 11.39%
7 51.90% 51.90% 13.92% 11.39%
8 49.37% 49.37% 13.92% 11.39%
9 55.70% 55.70% 13.92% 11.39%
1 0.00% 0.00% 12.66% 6.33%
2 0.00% 0.00% 12.66% 6.33%
3 0.00% 0.00% 12.66% 6.33%
4 17.72% 17.72% 12.66% 6.33%
H(Y>) 5 39.24% 39.24% 12.66% 6.33%
6 37.97% 37.97% 12.66% 6.33%
7 44.30% 44.30% 12.66% 6.33%
8 46.84% 46.84% 12.66% 6.33%
9 51.90% 51.90% 12.66% 6.33%

Table 40. Results from fuzzy-histogram based method with different number of fuzzy
subsets and different fuzzy membership functions for detecting an increase or decrease
in uncertainty with the increase in the number of replications.

Mean of Mean of
Mean of Mean of . .

Fuzzy Number comparison comparison comparison comparison

Entropy membership of fuzzy P P average average
. entropy vs. entropy vs.
function subsets SAE SSE entropy vs. entropy vs.
MAE MSE

2 12.38% 12.38% 44.30% 54.71%
17.58% 17.58% 44.30% 54.71%
10 31.79% 31.79% 44.30% 54.71%
25 46.55% 46.55% 44.30% 54.71%
cosine 50 57.10% 57.10% 44.30% 54.71%
100 71.31% 71.31% 44.30% 54.71%
H(X,) 200 87.20% 87.20% 44.30% 54.71%
500 97.61% 97.61% 44.30% 54.71%
1000 99.30% 99.30% 44.30% 54.71%
2 12.24% 12.24% 44.30% 54.71%
crisp 5 21.80% 21.80% 44.30% 54.71%
10 31.79% 31.79% 44.30% 54.71%
25 47.96% 47.96% 44.30% 54.71%
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50 58.23% 58.23% 44.30% 54.71%

100 75.11% 75.11% 44.30% 54.71%

200 44.30% 54.71%

500 44.30% 54.71%

1000 44.30% 54.71%

2 17.86% 17.86% 44.30% 54.71%

5 16.32% 16.32% 44.30% 54.71%

10 31.36% 31.36% 44.30% 54.71%

25 45.71% 45.71% 44.30% 54.71%

triangular 50 54.71% 54.71% 44.30% 54.71%
100 70.32% 70.32% 44.30% 54.71%

200 44.30% 54.71%

500 44.30% 54.71%

1000 44.30% 54.71%

2 16.46% 16.46% 45.43% 52.18%

5 18.00% 18.00% 45.43% 52.18%

10 28.13% 28.13% 45.43% 52.18%

25 46.84% 46.84% 45.43% 52.18%

cosine 50 56.12% 56.12% 45.43% 52.18%
100 72.71% 72.71% 45.43% 52.18%

200 45.43% 52.18%

500 45.43% 52.18%

1000 45.71% 52.46%

2 14.21% 14.21% 45.43% 52.18%

5 24.75% 24.75% 45.43% 52.18%

10 28.97% 28.97% 45.43% 52.18%

HX,) _ 25 50.91% 50.91% 45.43% 52.18%
crisp 50 65.54% 65.54% 45.43% 52.18%
100 78.06% 78.06% 45.43% 52.18%

200 45.43% 52.18%

500 45.43% 52.18%

1000 45.43% 52.18%

2 18.14% 18.14% 45.43% 52.18%

5 13.50% 13.50% 45.43% 52.18%

10 28.27% 28.27% 45.43% 52.18%

triangular 25 45.29% 45.29% 45.43% 52.18%
50 54.29% 54.29% 45.43% 52.18%

100 71.03% 71.03% 45.43% 52.18%

500 45.43% 52.18%

251



cosine

H(X3) crisp

triangular

cosine

H(Y;)

100
200
500
1000

crisp
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10

60.00%
59.44%

61.11%
63.33%

62.78%
59.44%

16.32%
20.82%
25.32%
43.60%
57.10%

17.86%
24.75%
28.27%

60.00%
59.44%

61.11%
63.33%

62.78%
59.44%

16.32%
20.82%
25.32%
43.60%
57.10%

17.86%
24.75%
28.27%

45.43%

52.18%

48.95% 54.43%
48.95% 54.43%
48.95% 54.43%
48.95% 54.43%
48.95% 54.43%
48.95% 54.43%
48.95% 54.43%
48.95% 54.43%
48.95% 54.43%
48.95% 54.43%
48.95% 54.43%
48.95% 54.43%



25 46.55% 46.55% 48.95% 54.43%

50 64.28% 64.28% 48.95% 54.43%

100 73.70% 73.70% 48.95% 54.43%

200 48.95% 54.43%

500 48.95% 54.43%

1000 48.95% 54.43%

2 15.61% 15.61% 48.95% 54.43%

5 14.77% 14.77% 48.95% 54.43%

10 25.32% 25.32% 48.95% 54.43%

25 42.33% 42.33% 48.95% 54.43%

triangular 50 54.29% 54.29% 48.95% 54.43%
100 67.93% 67.93% 48.95% 54.43%

200 48.95% 54.43%

500 48.95% 54.43%

1000 48.95% 54.43%

2 15.61% 15.61% 48.10% 53.31%

5 18.71% 18.71% 48.10% 53.31%

10 24.33% 24.33% 48.10% 53.31%

25 42.48% 42.48% 48.10% 53.31%

cosine 50 54.99% 54.99% 48.10% 53.31%
100 70.18% 70.18% 48.10% 53.31%

200 48.10% 53.31%

500 48.10% 53.31%

1000 48.24% 53.45%

2 15.89% 15.89% 48.10% 53.31%

5 24.05% 24.05% 48.10% 53.31%

10 27.99% 27.99% 48.10% 53.31%

H(Y;) 25 46.69% 46.69% 48.10% 53.31%
crisp 50 61.88% 61.88% 48.10% 53.31%
100 74.12% 74.12% 48.10% 53.31%

200 48.10% 53.31%

500 48.10% 53.31%

1000 48.10% 53.31%

2 16.60% 16.60% 48.10% 53.31%

5 14.77% 14.77% 48.10% 53.31%

10 24.19% 24.19% 48.10% 53.31%

triangular 25 40.23% 40.23% 48.10% 53.31%
50 52.04% 52.04% 48.10% 53.31%

100 68.35% 68.35% 48.10% 53.31%

200 | 8298%  8298% 4810% 53.31%
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500 48.10% 53.31%
1000 48.10% 53.31%

Table 41. Results from fuzzy-histogram based method with different number of fuzzy
subsets and different fuzzy membership functions for detecting the experiment that leads
to the maximum uncertainty.

Mean of Mean of
Fuzzy Number Mean .Of Mean .Of comparison  comparison
Entropy membership of fuzzy comparison comparison average average
function subsets entgcfé/ Vs entrsospél Vs entropy vs. entropy vs.
MAE MSE
2 0.00% 0.00% 10.13% 10.13%
5 0.00% 0.00% 10.13% 10.13%
10 0.00% 0.00% 10.13% 10.13%
25 0.00% 0.00% 10.13% 10.13%
cosine 50 0.00% 0.00% 10.13% 10.13%
100 5.06% 5.06% 10.13% 10.13%
200 34.18% 34.18% 10.13% 10.13%
500 10.13% 10.13%
1000 10.13% 10.13%
2 0.00% 0.00% 10.13% 10.13%
5 0.00% 0.00% 10.13% 10.13%
10 0.00% 0.00% 10.13% 10.13%
25 0.00% 0.00% 10.13% 10.13%
H(X,) crisp 50 0.00% 0.00% 10.13% 10.13%
100 5.06% 5.06% 10.13% 10.13%
200 73.42% 73.42% 10.13% 10.13%
500 10.13% 10.13%
1000 10.13% 10.13%
2 0.00% 0.00% 10.13% 10.13%
5 0.00% 0.00% 10.13% 10.13%
10 0.00% 0.00% 10.13% 10.13%
25 0.00% 0.00% 10.13% 10.13%
triangular 50 0.00% 0.00% 10.13% 10.13%
100 2.53% 2.53% 10.13% 10.13%
200 24.05% 24.05% 10.13% 10.13%
500 10.13% 10.13%
1000 10.13% 10.13%
HX,) cosine 2 0.00% 0.00% 2.53% 0.00%
5 0.00% 0.00% 2.53% 0.00%
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10 0.00% 0.00% 2.53% 0.00%
25 0.00% 0.00% 2.53% 0.00%
50 1.27% 1.27% 2.53% 0.00%
100 1.27% 1.27% 2.53% 0.00%
200 55.70% 55.70% 2.53% 0.00%
500 2.53% 0.00%
1000 2.53% 0.00%
2 0.00% 0.00% 2.53% 0.00%
5 0.00% 0.00% 2.53% 0.00%
10 0.00% 0.00% 2.53% 0.00%
25 0.00% 0.00% 2.53% 0.00%
crisp 50 1.27% 1.27% 2.53% 0.00%
100 12.66% 12.66% 2.53% 0.00%
200 78.48% 78.48% 2.53% 0.00%
1000 2.53% 0.00%
2 0.00% 0.00% 2.53% 0.00%
5 0.00% 0.00% 2.53% 0.00%
10 0.00% 0.00% 2.53% 0.00%
25 0.00% 0.00% 2.53% 0.00%
triangular 50 1.27% 1.27% 2.53% 0.00%
100 1.27% 1.27% 2.53% 0.00%
200 39.24% 39.24% 2.53% 0.00%
1000 2.53% 0.00%
2 50.00% 50.00% 50.00% 50.00%
5 50.00% 50.00% 50.00% 50.00%
10 50.00% 50.00% 50.00% 50.00%
25 50.00% 50.00% 50.00% 50.00%
cosine 50 50.00% 50.00% 50.00% 50.00%
100 55.00% 55.00% 50.00% 50.00%
200 60.00% 60.00% 50.00% 50.00%
H(X3) 500 _ 50.00% 50.00%
1000 50.00% 50.00%
2 50.00% 50.00% 50.00% 50.00%
5 50.00% 50.00% 50.00% 50.00%
crisp 10 50.00% 50.00% 50.00% 50.00%
25 50.00% 50.00% 50.00% 50.00%
50 50.00% 50.00% 50.00% 50.00%
100 60.00% 60.00% 50.00% 50.00%
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200 70.00% 70.00% 50.00% 50.00%

500 50.00% 50.00%

1000 50.00% 50.00%

2 50.00% 50.00% 50.00% 50.00%

5 50.00% 50.00% 50.00% 50.00%

10 50.00% 50.00% 50.00% 50.00%

25 50.00% 50.00% 50.00% 50.00%

triangular 50 50.00% 50.00% 50.00% 50.00%
100 55.00% 55.00% 50.00% 50.00%

200 60.00% 60.00% 50.00% 50.00%

1000 50.00% 50.00%

2 0.00% 0.00% 13.92% 11.39%

5 0.00% 0.00% 13.92% 11.39%

10 0.00% 0.00% 13.92% 11.39%

25 0.00% 0.00% 13.92% 11.39%

cosine 50 0.00% 0.00% 13.92% 11.39%
100 1.27% 1.27% 13.92% 11.39%

200 27.85% 27.85% 13.92% 11.39%

1000 13.92% 11.39%

2 0.00% 0.00% 13.92% 11.39%

5 0.00% 0.00% 13.92% 11.39%

10 0.00% 0.00% 13.92% 11.39%

25 0.00% 0.00% 13.92% 11.39%

H(Yy) crisp 50 0.00% 0.00% 13.92% 11.39%
100 6.33% 6.33% 13.92% 11.39%

200 60.76% 60.76% 13.92% 11.39%

1000 13.92% 11.39%

2 0.00% 0.00% 13.92% 11.39%

5 0.00% 0.00% 13.92% 11.39%

10 0.00% 0.00% 13.92% 11.39%

25 0.00% 0.00% 13.92% 11.39%

triangular 50 0.00% 0.00% 13.92% 11.39%
100 1.27% 1.27% 13.92% 11.39%

200 20.25% 20.25% 13.92% 11.39%

500 13.92% 11.39%

1000 13.92% 11.39%

H(Y>) cosine 2 0.00% 0.00% 12.66% 6.33%
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10

25

50
100
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1000

10
25
crisp 50
100
200
500
1000

10
25
triangular 50
100
200
500
1000

A final analysis performed in terms of entropy measures involved using y? test to
investigate whether the performance of each one the methods used to calculate the entropy
measures was statistically significantly different than the other method. The performance
referred here is in comparison to the measures of error SAE, SSE, MAE, and MSE. The
x? test was performed using JMP® at an a-level of 0.05, where the null hypothesis H,

means that there is no difference between the performance of the methods.
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The results of the y? test are shown in Table 42 to Table 47. As one would expect
from the results of each method presented in Table 33 to

Table 41, the methods are statistically significantly different from each other when
they are compared against the SSE or SAE measure of error. However, when the methods
are compared against either the MAE or MSE measure of error, the y? test did not have
enough evidence that one of the methods was statistically significant different than the
other. A possible explanation for the lack of evidence to reject H, is that the results of the
methods when compared to the MAE and MSE measures of error did not vary
considerably.

The results of the methods compared to the SAE measure of error are not presented
here because they are identical to the results of the methods compared to the SSE measure

of error, as indicated on Table 42 and Table 45 below.

Table 42. x? test comparing the performance of the methods with respect to their
capability of detecting an increase or decrease in uncertainty with the increase in the
number of replications in agreement with the SSE measure of error (or SAE measure of

error).
Proportion difference P-value
Entropy  Fuzzy vs Kernel vs Kernel vs Fuzzy vs Kernel vs Kernel vs
KNN KNN Fuzzy KNN KNN Fuzzy
H(X;) 0.1007 0.0369 0.1376 <0.0001 <0.0001 <0.0001
H(X,) 0.0884 0.0261 0.1144 <0.0001 0.0004 <0.0001
H(X3) 0.0479 0.2958 0.2479 0.0004 <0.0001 <0.0001
H(Yy) 0.1226 0.0289 0.1516 <0.0001 <0.0001 <0.0001
H(Y;) 0.1072 0.0354 0.1426 <0.0001 <0.0001 <0.0001
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Table 43. y? test comparing the performance of the methods with respect to their
capability of detecting an increase or decrease in uncertainty with the increase in the
number of replications in agreement with the MAE measure of error.

Proportion difference P-value
Entropy  Fuzzy vs Kernel vs Kernel vs Fuzzy vs Kernel vs Kernel vs
KNN KNN Fuzzy KNN KNN Fuzzy
H(X,) 0.0002 0.0002 0.0000 0.9997 0.9997 1.0000
H(X3) 0.0001 0.0000 0.0001 0.9999 1.0000 0.9998
H(X3) 0.0000 0.5000 0.5000 1.0000 <0.0001 <0.0001
H(Yy) 0.0006 0.0011 0.0017 0.9959 0.9885 0.9433
H(Y,) 0.0010 0.0001 0.0009 0.9886 0.9998 0.9825

Table 44. x? test comparing the performance of the methods with respect to their
capability of detecting an increase or decrease in uncertainty with the increase in the
number of replications in agreement with the MSE measure of error.

Proportion difference P-value
Entropy  Fuzzy vs Kernel vs Kernel vs Fuzzy vs Kernel vs Kernel vs
KNN KNN Fuzzy KNN KNN Fuzzy
H(X,) 0.0002 0.0002 0.0000 0.9997 0.9997 1.0000
H(X,) 0.0001 0.0000 0.0001 0.9999 1.0000 0.9998
H(X3) 0.0000 0.5000 0.5000 1.0000 <0.0001 <0.0001
H(Y;) 0.0006 0.0011 0.0017 0.9958 0.9884 0.9428
H(Y,) 0.0010 0.0001 0.0009 0.9885 0.9998 0.9824

Table 45. y? test comparing the performance of the methods with respect to their
capability of detecting the experiment that leads to the maximum uncertainty in
agreement with the SSE measure of error (or SAE measure of error).

Proportion difference P-value
Entropy  Fuzzy vs Kernel vs Kernel vs Fuzzy vs Kernel vs Kernel vs
KNN KNN Fuzzy KNN KNN Fuzzy
H(X,) 0.0375 0.4433 0.4057 0.1336 <0.0001 <0.0001
H(X,) 0.0600 0.4838 0.4238 0.0056 <0.0001 <0.0001
H(X3) 0.1407 0.2976 0.1569 0.0021 <0.0001 <0.0001
H(Y;) 0.0567 0.4022 0.4590 0.0094 <0.0001 <0.0001
H(Y,) 0.0089 0.4659 0.4570 0.8886 <0.0001 <0.0001

259



Table 46. x? test comparing the performance of the methods with respect to their
capability of detecting the experiment that leads to the maximum uncertainty in
agreement with the MAE measure of error.

Proportion difference P-value
Entropy  Fuzzy vs Kernel vs Kernel vs Fuzzy vs Kernel vs Kernel vs

KNN KNN Fuzzy KNN KNN Fuzzy
H(X,) 0.0014 0.0014 0.0000 0.9936 0.9937 1.0000
H(X3) 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000
H(X3) 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000
H(Yy) 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000
H(Y,) 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000

Table 47. x? test comparing the performance of the methods with respect to their
capability of detecting the experiment that leads to the maximum uncertainty in
agreement with the MSE measure of error.

Proportion difference P-value
Entropy  Fuzzy vs Kernel vs Kernel vs Fuzzy vs Kernel vs Kernel vs

KNN KNN Fuzzy KNN KNN Fuzzy
H(X,) 0.0014 0.0014 0.0000 0.9936 0.9937 1.0000
H(X,) 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000
H(X3) 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000
H(Y;) 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000
H(Y,) 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000

Mutual information quantifies the average reduction in uncertainty in the value of
Y provided by the value of X and vice-versa and it is also a measure of dependence
between X and Y. In order to investigate the potential of the MI as a method of uncertainty
quantification in simulation model, the M1 results were compared to the results of three
other measures of dependence between variables, namely: distance correlation, Pearson
correlation, and R? ;4 ;- To perform these comparisons the procedure described in section
2.4.4 was followed and the results are shown in Table 77 to Table 82 of the Appendix.

Table 77 and Table 78 show the results for the MI calculated using the kernel method.
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Table 79 and Table 80 show the results for the MI calculated using the KNN method.
Table 81 and Table 82 show the results for the MI calculated using the fuzzy-histogram
based method.

Table 77 to Table 82 of the Appendix show the results of the comparisons at a
granular level. For an easier and more objective comparison, Table 48 shows the results
summarized by calculation method, measure of dependence, and impact on the output.
Table 49 also summarizes the results by calculation method, measure of dependence, and
impact on the output, and it includes the function type (kernel function or fuzzy
membership function) as well. As the results in Table 48 show, overall the calculation
methods showed better performance when compared with the distance correlation measure
than when compared with Pearson correlation or R?,4;. This is expected as distance
correlation is the measure of dependence that is able to capture both linear and non-linear
relation between variables similarly to MIl. Among the methods, the KNN method led to
the best performance and the fuzzy-histogram method led to the worst performance. KNN
was not the best method when considering the greatest impact on the TIS. In this case, the
kernel method showed the best performance.

Table 49 does not include results for the KNN method because this method does
not use any function on its calculation. As can be seen in Table 49, the kernel function or
fuzzy membership function used to calculate the M1 measures does not appear to have a
significant impact on the performance of the MI because the results do not vary
considerably by function type. However, this need to be statistically verified and a logistic
regression model was used for that, which is discussed next.
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Table 48. Results from the comparison of the MI vs the measures of dependence
summarized by calculation method, measure of dependence, and impact on the output.

. Greatest impact on Least impact on
Calculation Method Measure of dependence
NIS TIS NIS TIS
Kernel Distance correlation 43.35% 43.99% 43.02% 43.45%
Pearson correlation 36.07%  43.01%  36.38%  43.13%
Rzadj 36.60% 43.28% 36.71% 43.50%
KNN Distance correlation 45.90%  40.26%  50.82%  47.33%
Pearson correlation 30.80%  38.84%  43.56%  45.39%
Rzadj 39.91% 38.76% 43.08% 44 59%
Fuzzy-histogram based Distance correlation 40.16% 25 380 43.60% 31.91%
Pearson correlation 3426%  19.26%  37.03%  25.30%
R® 3429%  19.23%  36.52%  24.50%

Table 49. Results from the comparison of the MI vs the measures of dependence
summarized by calculation method, measure of dependence, function, and impact on the

output.
Function Greatest impacton  Least impact on

Calculation Measure of dependence (kernel or
Method P membership NIS TIS NIS TIS

function)
. . Epanechnikov 43.06%  43.68% 42.74% 43.14%

Distance correlation N I
orma 43.64% 44.30% 43.30% 43.77%
. Epanechnikov 35.81% 42.72% 36.15% 42.85%
Kernel Pearson correlation N |

orma 36.32% 43.31% 36.61% 43.42%
2 Epanechnikov 363495  42.98% 36.49% 43.24%
adj Normal 36.85% 43.57% 36.92% 43.76%
Cosine 40.02% 2557% 43.41% 32.06%
Distance correlation Crisp 40.79%  25.32% 44.21% 31.88%
Triangular 39.69% 25.24% 43.19% 31.80%
Fuzzy- Cosine 34.13%  19.22% 36.85% 25.24%
histogram Pearson correlation Crisp 35.34% 20.01% 38.10% 26.04%
based Triangular 33.31% 18.53% 36.15% 24.62%
Cosine 34.12%  19.20% 36.34% 24.44%
R? Crisp 35.44% 19.97% 37.58% 25.24%
Triangular 33.31% 18.52% 35.62% 23.82%
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Logistic regression with two-factor interaction effect was performed in JMP® to
investigate which factors affected the performance of the MI when compared against the
different measures of dependence. Next, y? test was performed in JMP® to investigate
whether the performance of MI was statistically significantly different based on the
method used to calculate the M.

Logistic regression was performed on the results of MI compared with each
measure of dependence (distance correlation, Pearson correlation, and R?,4;), from each
calculation method (kernel, KNN, and fuzzy-histogram based method), and from each
combination of greatest or least impact on the simulation output (input with the greatest
impact on the NIS, input with the least impact on the NIS, input with the greatest impact
on the TIS, and input with the least impact on the TIS). For the logistic regression, the
following factors were considered as possible dependent variables that could affect the
performance of the Ml (the independent variable): (i) the value of bandwidth, the number
of k-nearest neighbors, or the number of fuzzy subsets for the kernel, KNN, or fuzzy-
histogram based method, respectively, (ii) the number of replications (10, 20, 50, 100,
200, 400, 600, 800, 1000, 1500), and (iii) the function type. The function type was only
considered for the kernel and fuzzy-histogram based methods. In the kernel method, the
function type was the kernel function, which was either normal or Epanechnikov. For the
fuzzy-histogram based method, the function type was the fuzzy membership function,
which was either cosine, crisp, or triangular. It is also important to mention that when
Silverman bandwidth was used, the bandwidth value was not a factor to be considered as
a possible dependent variable because there was only one sample in this case.
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Based on the whole model test, which compares the whole-model fit to the model
that omits all the logistic regression parameters except the intercepts, the model considered
here was statistically a better fit than the intercepts (p-value less than 0.0001 at a-level of
0.05) for each one of the results of Table 50. The null hypothesis is that the model fits no
better than the model that includes only the intercepts. Table 50 shows the
misclassification rate of the logistic model by method of calculation, measure of
dependence, and impact on the simulation output. Considering only the aforementioned
factors as variables that impact the performance of the MI the following average
misclassification rate was obtained: 41.04% for the kernel method, 43.05% for the KNN

method, and 30.95% for the fuzzy-histogram based method.

Table 50. Misclassification rate of the logistic regression model by method of
calculation, measure of dependence, and impact on simulation output.

Method of I_mpact_on Misclassification
. Measure of dependence simulation
calculation rate
output
Kernel Distance correlation Greatest impact 0.4335
on NIS
Kernel Distance correlation Least ;\rlr: gact on 0.4302
Kernel Distance correlation Greatest impact 0.4399
onTIS
Kernel Distance correlation Least |1r_r|1§act on 0.4345
Kernel Pearson correlation Greatest impact 0.3607
on NIS
Kernel Pearson correlation Least Kﬁgaﬂ on 0.3638
Kernel Pearson correlation Greatest impact 0.4301
onTIS
Kernel Pearson correlation Least ;[l:gact on 0.4313
RZ ) R
Kernel Zad} Greatest impact 0.3660
R on NIS

adj
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Least impact on

Kernel R® NIS 0.3671
2 Greatest impact
Kernel R” 4 on TIS 0.4328
Kernel Ry, Least mpacton 0.4350
KNN Distance correlation Greatest impact 0.4590
on NIS
KNN Distance correlation Least ;\rjr:gact on 0.4918
KNN Distance correlation Greatest impact 0.4026
onTIS
KNN Distance correlation Least ;[r:gact on 0.4733
KNN Pearson correlation Greatest impact 0.3980
on NIS
KNN Pearson correlation Least ;\rlr;gact on 0.4356
KNN Pearson correlation Greatest impact 0.3884
onTIS
KNN Pearson correlation Least '{.T gact on 0.4539
RZ ] .
KNN Zadj Greatest impact 0.3991
R? . on NIS
adj
KNN Rzadj Least ;\rlr;gact on 0.4308
KNN R0y, Grea;f]StT'I”S‘paCt 0.3876
KNN Rzadj Least ;[Tgact on 0.4459
.Fuzzy- Distance correlation Greatest impact 0.4016
histogram on NIS
hi';]ozgs/z;m Distance correlation Least ;\rlr:gact on 0.4360
_Fuzzy- Distance correlation Greatest impact 0.2538
histogram onTIS
_Fuzzy- Distance correlation Least impact on 0.3191
histogram TIS
.Fuzzy- Pearson correlation Greatest impact 0.3426
histogram on NIS
hi';]ozgs/a_m Pearson correlation Least ;\rlr: gact on 0.3703
h_Fuzzy- Pearson correlation Greatest impact 0.1926
istogram on TIS
_Fuzzy- Pearson correlation Least impact on 0.2530
histogram TIS
Fuzzy- Rzadj Greatest impact 0.3429
histogram Rzadj on NIS '
Fuzzy- 2 Least impact on
histogram R aqj NIS 0.3652
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Fuzzy-

Greatest impact

2
histogram R% qaj on TIS 0.1923
Fuzzy- 2 Least impact on
histogram R qqj TIS 0.2450

Table 51 shows the p-value and order of importance for the factors and effects in

the logistic regression model for an a-level of 0.05. As shown in Table 51, in general

number of replications appears to be the most important factor in every method. Overall,

number of replications and bandwidth value (or number of k-nearest neighbors or number

of fuzzy subsets), and the interaction among these factors were the most important factors

in the logistic model. In the fuzzy-histogram based model, the fuzzy membership function

also appeared to be important in a few cases, especially when the M1 was compared against

the Pearson correlation or the R?,4;. These results come to an agreement with the

observations initially made from Table 49.

Table 51. P-value and order of importance of factors on logistic regression model.

Factor / P- Greatest Least Greatest  Least
Method of Bandwidth  Measure of  value (order impact .
. Impact Impact  Impact
calculation type dependence of on NIS on onTIS  onTIS
importance) NIS
Number of 0.0034 0.0012 0.2788  0.0353
replications D D (8] (8]
. . 0.9961 0.8279  0.9668  0.8669
Distance Function type @) @) @) @)
correlation Number of
replications x 0.9965 0.9987 0.9990 0.9988
Kernel Silverman function type @) @) () )
bandwidth Number of 0.0146  0.0001  0.0236  0.0004
replications (D) @ (D) 1)
. 0.9808 0.8113 0.9951  0.9366
Pearson Function type ?) ?) @) @)
correlation Number of
. 0.9978  0.9984  0.9992  0.9990
replications x @A) @A) @3) 3)

function type
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Number of 0.0019 0.0000 0.0149  0.0001
replications 1) 1) 1) (D)
Function tvoe 0.9769 0.8130 0.9948 0.8689
R o) @ @ o) 0
rNel[J)rl?cba?t:oor:s . 09979 09984 09992  0.9971
function type ) ) ©) ©)
Number of 0.0000 0.0000 0.0000 0.0000
replications ()] Q ?3) ?3)
Value of 0.0000 0.0000 0.0000 0.0000
bandwidth (3) (3) 1) 1)
. 0.1929 0.1891 0.1566  0.1411
Function type @) @) @) 4
Number of
Distance replications x 0.0000  0.0000 0.0000  0.0000
correlation  value of 2) 2) 2) 2
bandwidth
:‘;Wé’;zo"é . 08422 08498 08824 08776
function type ©) ©) ©) ©)
B’;r:gsv?;th . 08108 08261 07721 07013
function type () () () ()
Number of 0.0000 0.0000 0.0000 0.0000
replications 2 2 3) 3)
Value of 0.0000 0.0000 0.0000 0.0000
bandwidth (3) (3) (1) 1)
Function tvpe 0.2691 0.3142 0.1816 0.2156
Different P ) @) @) )
values of Number of
bandwidth Pearson replications x 0.0000  0.0000  0.0000  0.0000
correlation  value of D D (2) (2)
bandwidth
rNeij)rlrl](E)aet:oorTs 09146 08150 09288  0.9370
function type ©) ©) ©) ©)
Vel ol 07246 09111 08254 08261
function type () () () ()
Number of 0.0000 0.0000 0.0000 0.0000
replications 2 2 3) 3)
Value of 0.0000 0.0000 0.0000 0.0000
bandwidth (3) (3) 1) 1)
. 0.2853 0.3476 0.1921 0.2504
Function type @) ) 3) @)
R® 4 Number of
replications x 0.0000 0.0000 0.0000  0.0000
value of 1) 1) 2 2
bandwidth
Number of 09260 09342 09402  0.9629
replications x ©) ©) ©) ©)

function type



Value of

- 0.7443 0.8188 0.8378 0.8414
band\_/wdth X (®) ®) ®) ®)
function type
Number of 0.0000 0.0000 0.0000 0.0000
replications ()] Q (D) (D)
r’:'e‘;Tet;fr ofk- 09109 07124 00000 00001

Distance neighbors @) @) @ @
correlation  Number of
;eupr::gitr'g?ix 09764 09885 0.0001  0.0067
nearest 3 3 3 3
neighbors
Number of 0.0000 0.0000 0.0000 0.0000
replications 1) 1) 1) 1)
r':'e‘;Tegfr ofk- 02501 05266 00022 0.0020
Pearson neighbors ) ) @) @)
KNN .
correlation ~ Number of
Lﬂ;@?g?ix 05973  0.8861 0.0001  0.0006
nearest 3) 3) (2) (2)
neighbors
Number of 0.0000 0.0000 0.0000 0.0000
replications 1) 1) 1) 1)
r':'e‘;Tegfr ofk- 02732 05809 00021  0.0020
2 neighbors (2) (2) 3 3
adj Number of
;ﬂ;ﬁ'g?ix 06130 0.8690 0.0001  0.0006
nearest 3) 3) (2 (2
neighbors
Number of 0.0000 0.0000 0.0000 0.0000
replications D D (8] (8]
Number of 0.0000 0.5604 0.0000 0.0000
fuzzy subsets 2 %) (2) (2)
Membership 0.2955 0.3621 0.7181 0.8804
function %) 3 (4) (4)
Number of
replicationsx ~ 0.0331  0.3770  0.9968  0.3637
) Distance number of 4 4 (6) 3)
Fuzzy-histogram based correlation  Tuzzy subsets
Number of
replications x 0.9037 0.6378 0.0043  1.0000
membership (6) (6) 3) (6)
function
Number of
f(“zzy SUDSE'S 0021 0.0079 09935  0.9999
Membership ©) @) ®) ®)
function
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Number of 0.0000 0.0000 0.0000  0.0000

replications ) 1) ) (D)

Number of 0.0000 0.0000 0.0000 0.0000

fuzzy subsets @ 2 (D) 2)

Membership 0.0015 0.0094 0.0299  0.0838

function (5) (@) 4 3)

Number of

replications x 0.0001 0.0271 0.0005 0.8736

e TUierl @6 O @

correlation Number of

replications x 0.9895 0.9682 0.1988  0.9649

membership (6) (6) (5) (5)

function

Number of

f(“zzy SUDSE's 0000 0.0027 06140  0.9933

Membership ©) ©) ©) ©)

function

Number of 0.0000 0.0000 0.0000 0.0000

replications 2 @ 2 1)

Number of 0.0000 0.0000 0.0000 0.0000

fuzzy subsets @ 2 (D) 2

Membership 0.0010 0.0087 0.0371 0.1221

function (5) @) (@) 3)

Number of

replications x 0.0001  0.0341  0.0004 0.7573

number of 4) 5) ) (4)

Rzadj fuzzy subsets

Number of

replications x 0.9971  0.9599  0.1472  0.9524

membership (6) (6) 5) (5)

function

Number of

f(“zzy SUDSE's 0001 0.0023 06127  0.9926

Membership ©) ©) ©) (©)

function

Finally, x? test at an a-level of 0.05 was performed to investigate whether the
performance of the MI was statistically significantly different based on the method used
to calculate the MlI, as shown in Table 52. The null hypothesis is that the MI performance
based on two calculation methods are not different and the alternative hypothesis is that

the MI performance based on two calculation methods are different. As can be seen from
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Table 52, with three exceptions the methods are statistically significantly different than
each other. The results of Table 52 also come to an agreement with the observations made
from Table 48. KNN is statistically significantly better than the fuzzy-histogram method
in every case and it is also statistically significantly better than the kernel in almost every
case. The exception is when considering the greatest impact on the TIS. In this case, the
kernel method is either statistically significantly better than the KNN method or there is
no evidence that the methods are different. In general, the kernel method is statistically

significantly better than the fuzzy-histogram based method.

Table 52. x? test results whether the performance of the Ml is statistically significantly
different based on the calculation method.

Measure of dependence Impact on output Proportion difference P-value
Greatest impact on NIS -0.0268 (Kernel-KNN) <0.0001
. ) Least impact on NIS -0.0797 (Kernel-KNN) <0.0001
Distance correlation .
Greatest impact on TIS 0.0344 (Kernel-KNN) <0.0001
Least impact on TIS -0.0418 (Kernel-KNN) <0.0001
Greatest impact on NIS -0.0385 (Kernel-KNN) <0.0001
. Least impact on NIS -0.0731 (Kernel-KNN) <0.0001
Pearson correlation .
Greatest impact on TIS 0.0391 (Kernel-KNN) 1.0000
Least impact on TIS -0.0254 (Kernel-KNN) <0.0001
Greatest impact on NIS -0.0342 (Kernel-KNN) <0.0001
Least impact on NIS -0.0651 (Kernel-KNN) <0.0001
Rzadj Greatest impact on TIS 0.0425 (Kernel-KNN) <0.0001
Least impact on TIS -0.0137 (Kernel-KNN) 0.0090
Greatest impact on NIS 0.0306 (Kernel-Fuzzy) <0.0001
] ) Least impact on NIS -0.0075 (Kernel-Fuzzy) 0.9655
Distance correlation .
Greatest impact on TIS 0.1832 (Kernel-Fuzzy) <0.0001
Least impact on TIS 0.1123 (Kernel-Fuzzy) <0.0001
. Greatest impact on NIS 0.0170 (Kernel-Fuzzy) <0.0001
Pearson correlation .
Least impact on NIS -0.0078 (Kernel-Fuzzy) <0.0001
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Greatest impact on TIS 0.2349 (Kernel-Fuzzy) <0.0001

Least impact on TIS 0.1755 (Kernel-Fuzzy) <0.0001

Greatest impact on NIS 0.0220 (Kernel-Fuzzy) <0.0001

Least impact on NIS 0.0006 (Kernel-Fuzzy) 0.4456

Rzadj Greatest impact on TIS 0.2378 (Kernel-Fuzzy) <0.0001

Least impact on TIS 0.1872 (Kernel-Fuzzy) <0.0001

Greatest impact on NIS -0.0574 (Fuzzy-KNN) <0.0001

. ) Least impact on NIS -0.0721 (Fuzzy-KNN) <0.0001
Distance correlation .

Greatest impact on TIS -0.1488 (Fuzzy-KNN) <0.0001

Least impact on TIS -0.1541 (Fuzzy-KNN) <0.0001

Greatest impact on NIS -0.0554 (Fuzzy-KNN) <0.0001

) Least impact on NIS -0.0653 (Fuzzy-KNN) <0.0001
Pearson correlation .

Greatest impact on TIS -0.1958 (Fuzzy-KNN) <0.0001

Least impact on TIS -0.2009 (Fuzzy-KNN) <0.0001

Greatest impact on NIS -0.0562 (Fuzzy-KNN) <0.0001

Least impact on NIS -0.0656 (Fuzzy-KNN) <0.0001

R? 4 Greatest impact on TIS -0.1953 (Fuzzy-KNN) <0.0001

Least impact on TIS -0.2009 (Fuzzy-KNN) <0.0001

3.4.9. Overall comparison

For easy reference and comparison, the results of section 2, which are directly
related to this section, are summarized in Table 53. Similarly, the results of this section

are summarized next in Table 54.

Table 53. Summary of results investigating information theory as a method for
uncertainty quantification in simulation models using the histogram-based method and
data normalization as solution for the challenge encountered while applying entropy for

continuous variables.

Histogram-based  Histogram-based Histogram-based Histogram-based
with probability with probability with discrete with discrete

Method /
Characteristics

and results of density function density function empirical empirical

and fixed number and optimum distribution and distribution, fixed
the method . . - X .

of bins number of bins fixed bins bins, and entropy
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and Ml

normalization

Characteristics
of the method
investigated

Number of
bins or
binwidth

Bandwidth
value

Number of k-
nearest
neighbors
Number of
fuzzy subsets

Number of
replications

Different seeds
used

Different
parameter
values

272

Number of bins

Entropy and Ml
decrease with
decrease in
binwidth (increase
in number of bins)

NA
NA

NA

Entropy and MI
increase with
increase in number
of replications (for

lower bins, the
curve tends to
stabilize quicker)
The method
resulted in same
entropy for X,
when using

different seeds and
different entropy
and MI for other
inputs and outputs.

The method
pointed larger
variability in
entropy of Y; and
Y, when using
"seed 3"

Different entropy
and MI when using
different
parameter values

Optimum number
of  bins rules
(Sturges', Scott's,
and FD's rules)

NA

NA

NA

NA

Entropy and MI

increase with
increase in
number of
replications

The method

resulted in same
entropy for X;
when using
different  seeds
and different
entropy and MI
for other inputs
and outputs. The
method  pointed
larger variability
in entropy of Y;
and Y, when using
"seed 3"

Different entropy
and MI when
using different
parameter values

Without
normalization

Entropy and MI
increase with
decrease in
binwidth (increase
in number of bins)

NA

NA

NA

Entropy and MI
increase with
increase in number
of replications (for

lower bins, the
curve tends to
stabilize quicker)

The method
resulted in same
entropy for X,
when using

different seeds and
different  entropy
and MI for other
inputs and outputs.

The method
pointed larger
variability in
entropy of ¥; and
Y, when using
"seed 3"

Different entropy

and M1 when using
different parameter
values

Normalization
method for entropy
and for MI (arith,
geom, joint, theor)
Entropy and MI
decrease with
decrease in binwidth
(increase in number
of bins) for entropy
and Ml .0 FoOr
other Ml
normalizations, the
MI increase with
decrease in binwidth
(increase in number
of bins)

NA
NA
NA
Entropy and Ml
increase with

increase in number
of replications (for
lower bins, the curve
tends to stabilize
quicker)

The method resulted
in same entropy for
X; when using
different seeds and
different  entropy
and MI for other
inputs and outputs.
The method pointed
larger variability in
entropy of Y; and Y,
when using "seed 3"

Different  entropy
and MI when using
different parameter
values



Different
traffic
intensities

CONWIP
system

Travel time
deterministic

Entropy
performance
compared to
measures  of
error

Ml
performance
compared to
measures  of
dependence

Comments

Not able to
identify any
pattern with

changes in traffic
intensity

Constant entropy
and MI for NIS,
which tend to go to
0 as number of
bins increase

Constant entropy
and MI for travel
time deterministic,
which tend to go to
0 as number of
bins increase

The performance
increases with the
increase in the
number of bins for
all measures of
errors. The best
performance is
found when
compared with
SAE (or SSE)

In  general, it
showed better
performance when
compared with
distance
correlation,
followed by
Pearson
correlation
Number of bins
appeared to be a
significant factor
for the

performance of the
method

Not able to
identify any
pattern with

changes in traffic
intensity

Entropy and Ml of
NIS slightly
decrease with
increase in
number of
replications

Entropy and Ml of
travel time
deterministic

slightly decrease

with increase in
number of
replications

The three different
optimum rules led
to the same
performance

when  compared
with  MAE or
MSE and Sturges'
rule led to the best

performance
when  compared
with  SAE (or
SSE)

In general, it
showed better
performance

when  compared
with Pearson
correlation,

followed by R? 4,

Not able to identify
any pattern with
changes in traffic
intensity

Entropy and Ml for
NIS are equal to 0
regardless of
number of bins

Entropy and Ml for
travel time
deterministic  are
equal to 0
regardless of
number of bins

The performance
when  compared
with SAE or SSE
increases with the
increase in the
number of bins and
it is constant over
the number of bins
when  compared
with MAE or MSE

In  general, it
showed better
performance when
compared with
Pearson
correlation,

followed by R?;4;

Number of bins
appeared to be a
significant  factor
for the
performance of the
method

Not able to identify

any pattern with
changes in traffic
intensity

Entropy and MI for
NIS are equal to 0

regardless of
number of bins.
However, for

MIjointv Mlarithl and
Mlgeom, MI for TIS
isequal orcloseto 1.
Entropy and MI for
travel time
deterministic are
equal to O regardless
of number of bins.
However, for
Mljointv Mlarithx and
Mlgeom, MI for TIS
isequal orclose to 1.

The  performance
when compared
with SAE or SSE
increases with the
increase in  the
number of bins and
it is constant over
the number of bins
when compared
with MAE or MSE

In general, it showed

better performance
when compared
with Pearson
correlation,

followed by R?4;

Normalization

method did not
appear to be a
significant  factor,
however all
normalization

methods were

analyzed together. If
the methods were
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investigated  only
two by two, the
results could have
been different.

Table 54. Summary of results investigating information theory as a method for
uncertainty quantification in simulation models using the kernel, KNN, fuzzy-histogram,
and histogram-based methods, and Jayne’s based approach as solution for the challenge

encountered while applying entropy for continuous variables.

Histogram-based

Method - / Kernel with Kernel with with probability
Characteristics  different . Fuzzy- . -
Silverman KNN . density function
and results of values of . histogram .
. bandwidth and fixed
the method bandwidth .
number of bins
Kernel Kernel Fuzzy subsets
Characteristics ; functions and  Number of k- y
functions and . and fuzzy .
of the method . Silverman nearest . Number of bins
. : bandwidth . ; membership
investigated bandwidth neighbors -
values functions
rule of thumb
Entropy and MI
decrease with
Number of bins decrease in
or binwidth A NA NA NA binwidth
(increase in
number of bins)
Entropy and
Bandwidth M_I increase NA NA NA NA
value with decrease
in bandwidth
Entropy and
N f I e
nearest NA NA . NA NA
neighbors in the number
of k-nearest
neighbors
Entropy and
MI decrease
Number of NA NA NA Wlth increase
fuzzy subsets in the number
of fuzzy
subsets
Entropy and Entropy and Entropy and Entropy and MI
MI increase MI increase MI increase increase with
. Entropy and - - . .
with increase . with increase with increase increase in
. MI  increase . .
Number of in number of . in number of in number of number of
L o with increase A L N
replications replications . replications replications replications  (for
- in number of .
for mid-range replications (for lower (for lower lower bins, the
values of P number of k- number  of entropy and MI
bandwidth. nearest fuzzy tend to decrease
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Different seeds

used

Different
parameter

values

For low-
values of
bandwidth,
the  entropy
and Ml
decreases
with the
increase in the
number of
replications.
For high
values, the
entropy and
Ml are
constant. The
slope of the
curve
becomes
shallower for
any value of
bandwidth
with the
increase in the
replications.
The method
resulted in
same entropy
for X; when
using
different
seeds and
different
entropy and
M1 for other
inputs  and
outputs. The
method
pointed larger
variability in
entropy of Y;
and Y, when
using "seed 3"
Different
entropy and
Ml when
using
different
parameter
values

The method
resulted in
same entropy
for X; when
using
different
seeds
different
entropy and
Ml for other
inputs  and
outputs. The
method
pointed larger
variability in
entropy of Y;
and Y, when
using "seed 3"

and

Different
entropy and
Ml when
using
different
parameter
values

neighbors,
the curve
tends to
stabilize)

The method
resulted in
same entropy
for X; when
using
different
seeds
different
entropy and
MI for other
inputs  and
outputs. The
method
pointed
larger
variability in
entropy of Y;
and Y, when
using ‘"seed
3

Different
entropy and
Mi when
using
different
parameter
values

and

subsets, the
entropy and
MI tend to be
constant)

The method
resulted in
same entropy
for X; when
using
different
seeds
different
entropy and
MI for other
inputs  and
outputs. The
method
pointed larger
variability in
entropy of Y}
and Y, when
using "seed
3

Different
entropy and
Ml when
using
different
parameter
values

and

with the increase
in the number of
replications)

The method
resulted in same
entropy for X,

when using
different  seeds
and different

entropy and Ml
for other inputs
and outputs. The
method  pointed
larger variability
in entropy of Y¥;
and Y, when using
"seed 3"

Different entropy
and MI when
using  different
parameter values
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Different
traffic
intensities

CONWIP
system

Travel
deterministic

Entropy
performance
compared
measures
error

time

to
of

Not able to
identify any
pattern  with
changes in
traffic
intensity
Constant
entropy that
tends to go to
0 as value of
bandwidth
increases and
Ml that
slighltly
decreases or
increases for
NIS. MI also
tends to go to
0 as value of
bandwidth
increases
Constant
entropy that
tends to go to
0 as value of
bandwidth
increases and
MlI that
slighltly
decreases or
increases for
travel time
deterministic.
MI also tends
to go to O as
value of
bandwidth
increases
The
performance
when
compared
with SAE or
SSE increases
with the
increase in the
value of
bandwidth
and it s
constant over
the value of
bandwidth
when

Not able to
identify  any
pattern  with
changes in
traffic
intensity

NA

NA

The two
different
kernel
functions led
to the same
performance
when
compared
with MAE or
MSE and

Epanechnikov
function led to

the best
performance
when

Not able to
identify any
pattern with
changes in
traffic
intensity

Entropy  of
NIS equal to
0 and MI
involving
NIS is equal
to the entropy
of the input

Entropy  of
travel  time
deterministic
equal to 0 and
MI involving
travel  time
deterministic
is equal to the
entropy  of
the output

The
performance
when
compared
with SAE or
SSE
increases
with the
increase  in
the number
of k-nearest
neighbors
and it is
constant over
the value of

Not able to
identify any
pattern with
changes in
traffic
intensity
Entropy  of
NIS equal to
0 and MI
involving
NIS is equal
to the entropy
of the input
Entropy  of
travel  time

deterministic
equal to 0 and
MI involving
travel  time
deterministic
is equal to the
entropy of the
output

The
performance
when
compared
with SAE or
SSE
increases
with the
increase  in
the number of
fuzzy subsets
and it is
constant over
the value of
bandwidth

Not able to
identify any
pattern with

changes in traffic
intensity

Constant entropy
and MI for NIS,
which tend to go
to 0 as number of
bins increase

Constant entropy
and MI for travel
time
detertministic,
which tend to go
to 0 as number of
bins increase

Not investigated
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compared compared bandwidth when
with MAE or with SAE (or when compared
MSE SSE) compared with MAE or
with MAE or MSE
MSE
In general, it In general, it ;?]Og:leggral, It In general, it
Ml showed better showed better better showed better
performance performance  performance performance
performance . .
compared to when when when when Not investigated
measures  of compared compared compared
. . . . compared . .
dependence with distance with distance T with distance
- - with distance :
correlation correlation - correlation
correlation

3.5. Concluding remarks

This section was an extension of section 2 where Shannon’s entropy and mutual
information calculated using different estimators were investigated as potential measures
to quantify uncertainty in simulation models. In section 2, histogram-based method was
the only estimator considered. In this section, the following estimators were considered:
kernel, KNN, and fuzzy-histogram.

In this section, the challenges encountered while applying entropy measures for
continuous variables and the issues of interpretability faced when using the method
proposed by Jaynes (1962) have been discussed more in depth. Based on the issues, an
alternative for the function m(x) was proposed, which was used to calculate the entropy
and MI measures throughout this section of dissertation. The issue of calculating MI when
using kernel estimator due to the multivariate interaction among bandwidths was also
discussed. Similarly, a solution for this issue was proposed and applied when using the

kernel method as an estimator for the entropy and MI measures.
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In sections 3.4.3, 3.4.4, and 3.4.5, the impact of different bandwidths, different k-
nearest neighbors, and different number of fuzzy subsets on the entropy and MI measures
was discussed. In those sections, it was showed why the bandwidth in the kernel method
had different impact on the entropy and MI measures than the binwidth in the histogram-
based method. How this relates to the number of k-nearest neighbors and number of fuzzy
subsets was also discussed.

In section 3.4.6, the impact of different traffic intensities, different seeds, different
parameter values, and different systems on the entropy and MI measures was investigated.
Some important observations from this section were that regardless of the method chosen
and the number of bins used: (i) the entropy measure was able to correctly identify that X,
have the same information/uncertainty among the different traffic intensity experiments;
and (ii) the entropy measures indicate differences in information/uncertainty based on
different seeds, different traffic intensities, and different parameter values. All the methods
showed up as good alternatives to investigate the quality of a seed in simulation models.
Nevertheless, the main observations of section 3.4.6 involved the CONWIP and
deterministic travel time systems. Regarding those systems, all the methods were able to
somehow capture the deterministic behavior of the input (or output). However, not all the
methods were able to appropriately quantify the deterministic behavior or to capture the
lack of impact of the input on the output (or vice-versa). While the KNN and the fuzzy-
histogram methods were able to appropriately quantify the deterministic behavior of the
input (or the output) through the entropy measure, the kernel method was only able to

somehow capture the deterministic behavior. All three methods were not able to fully
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capture the lack of impact of the input on the output through the MI. With that said, the
entropy and MI measures appeared to have the best results in capturing the characteristics
of the CONWIP or deterministic travel time systems when estimated using the histogram-
based method with discrete empirical distribution. Using this latter method, both the
entropy and the MI measures were able to fully capture and quantify the deterministic
behavior of the CONWIP and the travel time systems.

In section 3.4.8, the results of the entropy measures were compared to SAE, SSE,
MAE, and MSE, and the results of the MI measures were compared to distance correlation,
Pearson correlation, and R?,4; to identify whether the measures agreed with other
methods from the literature. Important conclusions from this section are: (i) the results of
each method compared to SAE were always identical to the results compared to SSE, (ii)
the results compared to MAE or MSE were constant over the different values of
bandwidth, different number k-nearest neighbors, or different number of fuzzy subsets,
and, (iii) all the methods showed better performance when compared to distance
correlation, which was expected but different than what was found in section 2. It is
important to highlight that the comparison with the different measures of error and
different measures of dependence is not intended to give a rank on the best method to use
or not. Rather, these comparisons are intended to give some information with respect to:
(i) which factors/variables are more important for each method, (ii) a potential good choice
of bandwidth, number of k-nearest neighbors, or number of fuzzy subsets for each method,
and, (iii) a general idea of how the method performs in comparison with other methods
available in the literature.
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As the main limitations of this section, there are: (i) only a queue-system was used
as an example to run the experiments; (ii) although the method was compared with other
well-known measures of the scientific community, the method was not validated
theoretically; and, (iii) a quantitative way to rank the methods among themselves was not
developed. As future research, it is recommended: (i) to run similar experiments in
different systems and to investigate how the responses would change (e.g., flow system,
infection-transmission system, etc.), (ii) to propose a framework to validate the work
theoretically, and, (iii) to apply the entropy and MI measures in a simulation model to
estimate uncertainty and investigate its usability for simulation modelers.

Based on the results discussed, the recommendation while using the method is to
calculate the entropy and MI measures using the histogram-based method with discrete
empirical distribution, which although is not the correct estimator given the continuous
nature of the variables, it was the estimator that showed the best results in detecting the
uncertainty in the simulation models and it did not exhibit challenges for its estimation. If
one decides to not follow this recommendation, the next recommendation is to follow the
approach proposed by Jaynes (1962) but to use m(x) = f (x)(l +f (x)) as proposed in
this section. Then, calculate entropy and MI measures using either the KNN or fuzzy-
histogram, as these are the methods that showed the best quality overall results in

quantifying uncertainty in simulation models.
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4. APPLICATIONS OF ENTROPY MEASURES AS METHOD FOR INPUT
PARAMETER SELECTION AND EXPERIMENT PLANNING IN SIMULATION

MODELS

4.1. Introduction

The concept of entropy was coined in the physical sciences in the 19™ century,
more specifically in the area of thermodynamics (Greven, Keller, & Warnecke, 2014,
Lacasa & Just, 2017). The term was introduced to describe energy dispersion, equilibria,
and disorder of thermodynamic systems. Boltzmann later introduced the view of entropy
as a measure of disorder of molecules in gas-related system. Thermodynamic systems
share a number of common characteristics with complex systems and, consequently, have
inspired the application of entropy theory for complex analysis (Mu & Hu, 2018).

In the past, real-world systems were thought to be accurately represented by linear
cause-effect relationships. However, many of these real-world systems, such as
epidemiological systems, the human immune system, the stock market, and aviation,
exhibit complex dynamics that are difficult to quantify and cannot be represented by linear
relations (Rickles, Hawe, & Shiell, 2007). The recognition of these complex systems has
promoted research in developing measures and methods to quantify the uncertainty and
complexity of many physical, biological, physiological, and socio-economic real-world
systems (Xiong et al., 2017). Among the methods developed to quantify complexity,

uncertainty, and the amount of information present in real-world systems, entropy measure
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has become one of the most common methods (Amigo, Keller, & Unakafova, 2015;
Lacasa & Just, 2017; Xiong et al., 2017).

In information theory, a branch of probability theory, entropy is also referred as
information entropy to not be confused with thermodynamics entropy and it is interpreted
as a measure of predictability, uncertainty, complexity, surprise, and information (or
ignorance) (Tuan D. Pham, 2016; Rhea et al., 2011). Entropy as an information
measurement method was first proposed by Shannon in a paper in 1948 (Shannon, 1948).
This paper was later reprinted with corrections in 2001 (Shannon, 2001). According to
Shannon (2001), the main problem of communication systems is to exactly or
approximately reproduce at one point a message selected at another point considering that
the actual message was selected from a set of possible messages. This problem can be
reapplied to different contexts and fields.

Although information entropy measures have been initially applied as a measure
of uncertainty and production rate of new information in the field of communication
systems, over the past few decades many other information entropy measures have been
proposed and applied in a wide range of fields (Xu, Ning, Chen, & Wang, 2004).
According to Attaran and Zwick (1987) and Mousavian, Kavousi, and Masoudi-Nejad
(2016), information theory has expanded to different research areas including: computer
science, statistics, physics, management, marketing, finance, accounting, economics,
neurobiology, bioinformatics, and systems biology. As examples of application fields,

Xiong et al. (2017) cite: cerebrovascular dynamics, electroencephalography, heart rate
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variability, financial time series analysis, gait and posture, earth sciences, imaging, cellular
automata, feature classification, and others.

Despite its broad field of applications, the practical application of entropy
measures is challenging, especially with respect to the performance evaluation of these
measures and their correct interpretation. Among the main challenges are: (i) the variety
of existing entropy measures and estimators, whose specificities are usually not
completely understood by the users; (ii) the computation of information entropy is often
non-trivial and the estimation approaches developed to approximate the probability
density function utilized in the computation differ in their assumptions, which can make
their performance assessment subjective; (iii) the difficulty in accurately estimating the
probability function from the data without biasing the results; (iv) the difficulties in
computing entropy measures for continuous variables; (v) the entropy measures can be
affected by process-specific parameters and the complexity of the data, which can vary
among different entropy measures and different estimators; (vi) the number of data points
used in the calculation of entropy measures has been shown to affect the measures and for
time-series data, the frequency at which the data is sampled is also relevant; (vii) the
measures of entropy are also differently affected by noise; (viii) the entropy measures can
be affected by how the data is partitioned and for entropy calculation, data usually has to
be divided into bins or clusters and the number of possible bins approaches is large; (ix)
the fact that many of the entropy measures proposed after Shannon’s developments do not
measure the same characteristics and they may violate some of the essential properties

required from a measure of uncertainty; and, (x) the difficulty in comparing entropy

283



among different variables and among different studies because of large variability and lack
of standards (Amigo et al., 2015; Dionisio et al., 2004; Estévez et al., 2009; Kapur, 1983;
Kinney & Atwal, 2014; Mousavian et al., 2016; Rhea et al., 2011; Strehl & Ghosh, 2002;
Tesmer & Estévez, 2004; Xiong et al., 2017). These challenges raises the following
questions in the field of entropy: (i) is there a potential optimum partition (i.e., number of
bins)?; and, (ii) is there a potential optimum number of data points to be used?

Rhea et al. (2011) highlighted that although challenging, entropy measures have
shown to be a very useful tool for quantifying uncertainty and complexity. What is
required is that researchers understand the underlying challenges and limitations of the
measures and be aware of how the measures are affected by the different factors.
Nevertheless, these challenges are likely some of the reasons why, to the best of our
knowledge, entropy measures have not been extensively explored in the simulation field
yet.

Simulation modeling is a suitable tool to investigate the dynamics of complex
systems (Cicirelli, Furfaro, & Nigro, 2011; Honggiao, Xihua, Fei, & Weizi, 2009;
Venkatramanan et al., 2018; Xie et al., 2014a). For simulation models, a common goal is
to answer “what-if” questions, i.e., to run a number of different scenarios and investigate
how the response changes in each of them. The ultimate goal of any simulation modeler
is to characterize the system performance to infer something about the real system and to
optimize one or more of the system’s responses (Dean & Lewis, 2006). In order to do so,
simulation modelers need to first make assumptions about the real system and define the

boundaries of the model. That is, simulation modelers must define what will be the scope
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of the analysis and what will be left out. At this step, the input parameters that will be
included in the simulation model and the responses or output parameters of interest are
defined.

With the advances of technology and the increase of data availability, a challenge
that arises is determining, among the many available data and input parameters, which are
the most important to be included in the model (Ankenman & Nelson, 2012; Reshef et al.,
2011). Adding data or parameters that are irrelevant and/or inaccurate to the simulation
model is not only insignificant but most likely harmful for the results. This can increase
the uncertainty of the model and lead to incorrect decision-making. There should be a
balance between information loss and the computational resources needed (Haverkamp,
Srinivasan, Frede, & Santhi, 2002). Even if the added data is correct, adding parameters
to a model leads to increased resource needs. As highlighted by Oberkampf et al. (2002),
a simpler model, with limited but known applicability, is more useful than a complete
model with unknown applicability.

Due to real system abstraction and variability and in order to investigate different
scenarios, running experiments is always necessary in studies using simulation models. In
order to improve the use of computational resources and minimize the cost and time
required for experimentation, simulation modelers must plan their computer experiments
appropriately. This involves determining the run-length of the simulation model, the
number of replications, and/or the number of scenarios to run and their configurations. A
simulation model is inevitably uncertain and, therefore, a careful choice of the input

parameters to be included in the model and the experimental plan can avoid waste of time

285



and resources and improve the accuracy of its results. For this, methods of uncertainty and
information quantification, such as entropy measures, can prove useful.

In this section, Shannon’s entropy and mutual information are proposed as
measures of simulation uncertainty to support parameter selection and experiment
planning in simulation models. Therefore, based on the context discussed, the main
research question is: can entropy measures quantify the uncertainty present in simulation
models and help to understand the input parameters and experiment settings, such as
number of replications, number of bins, and seed, that contribute more to uncertainty in
simulation models? In other words, can entropy and mutual information measures be
applied to support the choice of input parameters and experiment settings for simulation
models?

This section is intended to be a continuation of the previous sections of this
dissertation.

The central contribution of this section of the dissertation is that although
information theory has been widely recognized for its importance in the area of uncertainty
and information quantification, the theory has not been extensively applied in the
simulation field yet. In this work, the ability of entropy measures to quantify uncertainty
in simulation models is investigated through a series of applications of the measures for
input parameter selection and experiment planning. These applications involve calculating
Shannon’s entropy and mutual information for different queue simulation model
experiments using stationary univariate distributions. The entropy measures are estimated

using histogram-based method with probability density function and the entropy
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normalization method proposed in section 3.4, as well as using histogram-based method
with empirical discrete distribution. Regression analysis and ANOVA are also used to
support the choice of experiment settings. Using Tukey-Kramer multiple comparison test
and contingency analysis, the results of the entropy measures are compared to other
methods such as standard error of the mean and ANOVA.

The rest of this work is organized as follows: section 4.2 provides a quick overview
on some of the different existing entropy measures from the literature and different
applications. Section 4.3 discusses the method used to investigate the potential of entropy
measures to support the choice of input parameters and experiment settings. Results and
analyses are reported in section 4.4. Concluding remarks and future research directions
are presented in section 4.5.

4.2. Background
4.2.1. Entropy measures

Shannon defined entropy to be a statistical parameter that measures on average the
information produced for each letter in a language (Shannon, 1951). Based on this, it is
possible to investigate the predictability of a language when the preceding N letters are
known. A representation of a general communication system is given in Figure 72, adapted
from Shannon (2001) and Stone (2015). The information source issues a message (or
sequence of messages). The transmitter encodes the message in some way to produce a
signal suitable for transmission over the channel. The channel is the medium where the

message is transmitted. The receiver decodes the message for the intended destination or
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recipient. During the transmission process, the signal may be perturbed by noise. Hence,

the received signal may not be exactly the same as the issued signal.

Information
source

data /
| message s

Destination

1 data/
message

Encoder / . . . Decoder /
. signal / received signal / .
transmitter Tput* outpt receiver
x =g(s) y=x-te

Figure 72. Representation of a general communication system.
Source: Adapted from Shannon (2001) and Stone (2015).

More generally, Shannon defined the information content of a random variable X
as h(x) = —logp(x) and the entropy as the average information gained by knowing the
outcome of the random variable X, which is equal to the average uncertainty removed
(Amigo et al., 2015; Kapur, 1983; Mousavian et al., 2016; Xiong et al., 2017). For a
discrete random variable, we have: H(X) = —)Y p(x)logp(x). According to this
definition we have: (i) low information content for highly probable outcomes; and, (ii)
high information content for unlikely outcomes (Xiong et al., 2017). Entropy is slightly
more complicated to understand because it takes the average of the information content.
Therefore, common outcomes contribute more to the entropy than rare outcomes, but they
have less information content. In a succinct way, if there is no uncertainty, entropy is zero.
On the other hand, entropy is maximum when all the outcomes are equally likely to occur
(Telesca et al., 2008). He and Kolovos (2018) restated this in a more applicable approach:
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the higher the probability that a model predicts an outcome, the less informative the model
is. In other words, according to Shannon’s entropy, a model that accounts for all possible
outcomes and has no uncertainty, will predict the process correctly, yet it will provide no
valuable information about the process itself. Figure 73 illustrates this idea by showing
Shannon’s entropy versus the bias of a coin. One can see that when the coin is fair
(p(heads) = p(tails) = 0.5), the entropy is maximum and when the p(heads) = 1 or

p(heads) = 0, the entropy is minimum.

Shannon's Entropy for a biased coin
1.00-

0.00 025 050 0.7 1.00

Probability of head P (coin bias)

Figure 73. Shannon’s entropy for a biased coin.
Source: Adapted from Stone (2015).

The Shannon’s measure of information and uncertainty possesses many properties,
such as: (i) symmetry - it should not change if py,p,,...,pm are interchanged; (ii)
continuity - it should be a continuous function of p;, p,, ..., pm; (iii) maximality - it should
be maximum when all the probabilities are equal; (iv) additivity — it should be the sum of
the entropies of two independent probability distributions; among others (Amigo et al.,
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2015; Kapur, 1983). Without any formal mathematical derivation, Shannon proposed the
entropy of a continuous random variable, called differential entropy, as: H(X) =
— [ p(x) log p(x) dx (Xiong et al., 2017). The entropy of a discrete random variable X is
a function of the distribution of the random variable and it depends only on the number of
outcomes and the probabilities of the outcomes but not on the values of the outcomes taken
by X (Mousavian et al., 2016; Stone, 2015). However, this is not true for the continuous
random variable and its entropy depends on the range of values, which is one of the
difficulties in defining entropy for continuous variables.

For the case of the noisy channel represented in Figure 72, Shannon (2001) listed

a number of entropies that could be calculated:

e H(X)=-Yxpkx)logp(x): the entropy of the input of the channel or the
average information per issued signal;

e H(Y)=-Yyp®)logp(y): the entropy of the output of the channel or the
average information per received signal;

e HX,)Y)= —YxYyp(x,y)logp(x,y): the joint entropy of input and output
or the average information of the communication system associated to pairs of
transmitted and received symbols;

o HX|Y) =—-Xyp() Zxp(xly)logp(xly) = =Xy Xxp(x,y)logp(x|y):
the conditional entropy of the input when the output is known or the average
information measurement of the source given that Y was received. The entropy

of X conditioned to the occurrence of a particular symbol y is given by:

H(X|y) = — Xxp(x|y) logp(x|y); and,
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e H(YIX)=-YxXypr(x,y)logp(y|x): the conditional entropy of the output
when the input is known or the average information measurement of the received
signal given that X was transmitted (i.e., the average uncertainty of Y that cannot
be attributed to X or the noise entropy).

Shannon (2001) has also shown the following important inequality H(X) >
H(X|Y) and defined rate of transmission or, as it is more commonly called, mutual
information. Mutual information is another important information measure and it
measures how much of the entropy in the output reflects information in the input and how
much is noise or what is the average reduction in uncertainty about the value of Y provided
by the value of X and vice-versa (Mousavian et al., 2016; Stone, 2015; Vinh, Epps, &
Bailey, 2010). In other words, MI measures the amount of information contained in a
variable in order to predict the dependent one and it is a measure of the dependence and
nonlinear relationship between the variables (Estévez et al., 2009; Fraser & Swinney,
1986; Kinney & Atwal, 2014; Rossi, Lendasse, Francois, Wertz, & Verleysen, 2006;
Schreiber, 2000).

The MI I(X; Y) can be calculated using Equation 73 (Dionisio et al., 2004).

1Y) =HX) +HY) —HX,Y) = HY) — H(Y|X)

Equation 73
= H(X) — H(X|Y)
For the noisy channel, we have:
Y=X+¢ Equation 74

If the value of X is known, the uncertainty in X is zero and, consequently, the

entropy H(X) is zero. Therefore:
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I(X;Y)=H(Y)—-H(X +€]|X) Equation 75

According to Stone (2015), because the uncertainty in X is zero, it makes no
contribution to the conditional entropy, which yields:

I(X;Y) =H(Y)—H(g|X) Equation 76

But the value of the noise € is independent of the value of X, which shows that
H(Y|X) is the noise entropy:

H(Y|X) = H(e|X) = H(g) Equation 77

From Equation 73 and because H(X) = H(X|Y), we know that I(X;Y) = 0, with
equality only when X and Y are strictly independent (Dionisio et al., 2004; Kraskov et al.,
2004). From Equation 73, one can also see that the MI of a random variable with itself as
givenby I(X;X) =HX)+HX) —H(X,X) = HX) — H(X|X) = H(X) is equal to the
entropy of the variable and it is also known as self-mutual information (Mousavian et al.,
2016).

The five aforementioned entropies and the MI can be calculated using knowledge
of logarithm functions and probability theory, such as: marginal distribution, conditional
distribution, joint distribution, and Bayes’ rule. Using Bayes’ rule, one can calculate the
jointentropy by H(X,Y) = H(X|Y) + H(Y) = H(Y|X) + H(X) and the marginal entropy
by H(X) = I(X;Y) + H(X|Y). Figure 74 shows the relationships between Shannon’s

entropy measures and M1, as well as the use of MI as a measure of dependence.
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H(X,Y) |
HIX) |

H(X) H(V)

| H(Y) | 1Y) = 1 1) =0
[ Hxiv H(Y[X) |
1(X.Y)
106GY) = sy / N, =0
HXY) H{X.Y) |
H(X) H(X) | X and Y are fully dependent X and Y are independent
H(X Y)
H(Y) H(Y)
1(X;Y) | HIXIY) | HIYIX)

X and Y are fully dependent X and Y are independent

Figure 74. Representation of the relations between Shannon’s entropy measures and
mutual information and their application as a measure of dependence.
Source: Adapted from Bao-Gang and Yong (2008) [left-side], and Tesmer and Estévez
(2004) and Stone (2015) [right-side].

From Figure 74, it is easy to see that Ml is bounded below by 0 and bounded above
by the minimum of the entropies yielding 0 < I(X;Y) < min (H(X), H(Y)). Because the
entropy of variables can vary significantly, a normalized version of Ml is desirable for
easier interpretation and comparisons (Strehl & Ghosh, 2002). Equation 78, proposed by
McDaid, Greene, and Hurley (2011) and Vinh et al. (2010), provides a series of upper

bound relations for Ml.

1(Y; X) <min (HX),H(Y)) < JHXH(Y) < 1(H(x) +H(Y))
2 Equation 78

< max (HX),H(Y)) < H(X,Y)
Several normalizations of MI are possible based on Equation 6. These
normalizations include using the arithmetic or geometric mean of H(X)and H(Y).
Different authors favor different normalizations. Strehl and Ghosh (2002)

preferred to use the geometric mean as normalization because of the analogy with a
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1(xy) 1(X;Y)
JHXOHY)  JIXKX)I(Y;Y)

normalized inner product NMlgeo mean = McDaid et al. (2011)

argued that the most intuitive normalization would be to use NMI,, ., =

1(X;Y)
max (max (H(X)),max (H(Y)))’

1(X;Y)
HEXY)

Principe et al. (2000) opted to use NMljy;p; = NMlIjoine

is also known as information quality ratio (IQRt) (Wijaya et al., 2017). According to

Wijaya et al. (2017), by considering the total uncertainty one has a ratio that gives a fairer

comparison. Bao-Gang and Yong (2008) argued that the following normalizations

1(X;Y)
H(X)

and NMI, = % are not as rigorous because they produce unequal

NMIy =

values due to the asymmetric property in their definition. So, the authors suggest the use

1(X;Y)

of NMIgeo mean Of NMIarith mean — 2H(X)+H(Y)'

NMI,rith mean Was also suggested by

1(X;Y)
min (H(X),H(Y))

Ghosh (2002). Estévez et al. (2009) proposed the use of NMI,,;, = All

these NMI are bounded in [0,1], where 0 means the two variables are independent and do
not share any information about each other, and 1 means the two variables are identical
and by knowing one variable, the next variable can be perfectly predicted (McDaid et al.,
2011).

The mutual information index (MIIl) method was proposed by Critchfield and
Willard (1986) based on the concept of mutual information. Critchfield and Willard (1986)
used the MII to quantify the impact of uncertainty in the values chosen for the probabilities
and utilities in a decision tree example. The MII provided insight about the contribution
of the join effects of all tree variables to the decision tree under investigation. The measure

can be calculated and compared for different inputs to determine which inputs provide
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useful information about the output, but calculation of the MII suffers from computational

complexity and the MII is easier computed for dichotomous responses (Frey & Patil,

2002). The MII is given by MIIX‘yz%X 100%. I(Y,Y) is the self-mutual

information, which is equal to H(Y). One can easily see that MII is just a normalization
of the MI based on the self-mutual information of the output, as discussed in Bao-Gang
and Yong (2008). According to Critchfield and Willard (1986), MII measures the
percentage of the average mutual information contributing to the decision indicator
variable Y that can be assigned to the tree variable X.

Reshef et al. (2011) presented the maximal information coefficient (MIC) as a
measure of dependence for two-variable relationships. The idea is that if a relationship
exists between two variables, either linear or non-linear, then the MIC can be calculated

on the grid drawn on the scatterplot of the two variables. The MIC of the x-by-y grid

1(X;Y)

applied to the data is given by MICyy = HCOAT))

(Z. Zhang, Sun, Yi, Wu, & Ding,

2015). All grids are explored up to a maximal grid resolution and, for every pair (x,y),
the largest possible mutual information achievable is computed. MIC is between 0 and 1,
symmetric, and robust to outliers (Reshef et al., 2011; Z. Zhang et al., 2015). Similar to
the MII, MIC is just a normalization of the M1 as discussed in Estévez et al. (2009). Kinney
and Atwal (2014) highlighted that M1 is a more natural and practical measure to equitably
quantify associations in large datasets and that MIC is completely insensitive to noise.
After Shannon’s developments, many other entropy-like quantity measures of
information have been proposed (Wehrl, 1978). These other mathematical entropies do

not measure the same characteristic and their definitions have been motivated by quite
295



different considerations (Kapur, 1983). According to Amigo et al. (2015) these measures
have been developed as an attempt to generalize the axioms proposed by Shannon and due
to the generalization, Kapur (1983) highlighted that they may violate some of the essential
properties required (or expected) from a measure of uncertainty or information. Such
generalized entropies, include information entropy measures introduced by Rényi (1961),
Havrda and Charvat (1967), and Tsallis (1988).

Xiong et al. (2017) classified entropy measures into two groups: (i) static and (ii)
dynamic. Static entropy measures do not take any temporal information into account when
measuring an observed probability distribution and dynamic entropy measures study the
information content of a stochastic process evolving in time. Shannon’s entropy is a static
measure that does not take any temporal information into account. Between 1950 and
1960, Kolmogorov and Sinai, formalized the concept of information theory for dynamic
systems (Wehrl, 1978; Xiong et al., 2017). The Kolmogorov-Sinai entropy (KS), also
known as conditional entropy, measure-theoretic entropy, or metric entropy, was
developed to quantify the new information contained in the present but not in the past or
the average rate of newly created information in dynamical systems through a sequence
of observations (Amigo et al., 2015; Xiong et al., 2017). As a result, KS is widely used as
a measure of randomness and predictability in dynamical systems (Amigo et al., 2015;
Xiong et al., 2017). Katok (2007) provides a historical overview of the KS in the field of
dynamics.

In practical terms, it is not possible to calculate the KS entropy for N, — oo because

the measure diverges to infinity when the signal is contaminated by the slightest noise

296



(Orozco-Arroyave, Arias-Londono, Vargas-Bonilla, & No6th, 2013). Therefore, Pincus
(1991) proposed an estimation method for measuring the average conditional information
generated by diverging points on a trajectory in state space. The method is called
approximate entropy (ApEn). ApEn describes the production rate of new information or
the repeatability and predictability of a time series by measuring the likelihood that a
pattern with length (N) and criterion of similarity (r) at time delay (t) will repeat in the
time series (Rhea et al., 2011; Yentes et al., 2013). As a result, frequent appearance of
similar wave segments leads to lower values of ApEn. ApEn has the capability to identify
changing complexity in quickly changing signals (Xu et al., 2004).

The ApEn depends on the signal length due to the self-comparison of points in the
attractor (Orozco-Arroyave et al., 2013). That is, the ApEn algorithm counts each
sequence as matching itself, which leads to bias (Bravi, Longtin, & Seely, 2011; Richman
& Moorman, 2000). Sample entropy (SampEn) was designed by Richman and Moorman
(2000) as an estimation method to overcome this limitation. SampEn, similar to ApEn,
quantifies the change in the relative frequencies of length m time-delay vectors, but
SampEn excludes the counts where the vector is compared with itself, which avoids the
bias that self-matches introduce in the estimation (Amigo et al., 2015; Bravi et al., 2011).
Besides eliminating self-matches, SampEn is also simpler to calculate than ApEn
(Richman & Moorman, 2000).

Similar to Shannon’s entropy, the original definition of mutual information does
not contain dynamical nor directional information about the systems. Schreiber (2000)

stated that one could incorporate dynamical structure in the mutual information by
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introducing transition probabilities in place of static probabilities in the entropy and a
somewhat ad hoc directional structure by introducing a time lag in one of the variables of
the mutual information (Schreiber, 2000).

When the mutual information reflects the amount of information shared between
the present and the past observations of a stochastic process, it is known as information
storage (Xiong et al., 2017). The information storage measures the amount of information
preserved in a time-evolving system or how much of the uncertainty about the present can
be resolved by knowing the past. Similar to KS, the information storage can also be used
to predict the future dynamics of the system. However, somewhat different than KS,
information storage uses the past information for that and as a result, if the process is fully
random, the past gives no knowledge about the present and the information storage is zero;
on the contrary, if the process is fully predictable, the present can be fully predicted from
the past, which results in maximum information storage. Finally, if the process is
stationary, the information shared between the present and the past is constant (Xiong et
al., 2017). In the context of dynamical systems, the entropy measures the information
contained in the present state; the conditional entropy measures the new information that
cannot be inferred from the past; and the information storage measures the information
that can be explained by the past.

Abasolo, Escudero, Hornero, Gomez, and Espino (2008) presented the definition
of auto-mutual information (AMI) and cross-mutual information (CMI). Auto-mutual
information is the time-delayed self-mutual information of a signal and it quantifies, on

average, the degree to which x(t + 7) can be predicted from x(t). AMI is given by
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PXXt [x(t)!x(t+T)] }

PxR(D1Px X(t+D)] Cross-mutual

I(X; X))t = Yxo) x(e+0) Pxx [x (), x(t + )] X 108{

information is the time-delayed mutual information of two different signals.

In the context of statistical inference, Kullback and Leibler (1951) proposed a
measure of distance or divergence between two probability distributions, which measures
the average number of extra bits needed to construct an optimal encoding if a different
distribution g; is used (Sahin, 2017; Schreiber, 2000). The Kullback-Leibler divergence
(KL) is also known as relative entropy or information for discrimination (Mousavian et
al., 2016).

The first term of the KL is called cross-entropy (Hopper, 2021). The KL calculates
the relative entropy between two probability distribution and the cross-entropy calculates
the total entropy between two probability distributions. Both KL and cross-entropy are
non-symmetrical. Considering two distributions P and @, where P represents the
measured or “true” theoretical data and Q represents the approximated P data through a
model, the KL divergence is the average difference of the number of bits required for
encoding samples of P using a code optimized for Q. That is, the relative entropy of P
with respect to Q. The cross-entropy is used to quantify the discrimination information
between two probability distributions for a given random variable or set of events and it
measures the average number of total bits needed to identify an object from a set of
possibilities if a different coding scheme Q is used instead of the original source coding

scheme P (Sahin, 2017). There are many situations where cross-entropy needs to be
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measured but P is unknown. An estimate of cross-entropy can be calculated by: H(P, Q) =
— % ~10g2Q(X).

Minimizing the cross-entropy is known as principle of minimum cross-entropy
(MinxEnt) and minimizing KL is known as principle of minimum discrimination. In
summary, the principles state that, given a priori distribution Q, one has to choose the
distribution P with the minimum cross-entropy (or KL) from the ones that satisfy all the
constraints (X. Chen, Kar, & Ralescu, 2012; Kapur & Kesavan, 1990). Both methods can
be used as loss functions in machine learning and classification models (Brownlee, 2019).
When used as loss function for optimizing a classification predictive model, the entropy
of the class label should be zero and, consequently, both cross-entropy and KL calculate
the same quantity (Brownlee, 2019). Because of that, the terms KL and cross-entropy as
well as principle of minimum cross-entropy and principle of minimum discrimination are
sometimes used interchangeably, as they are in De Boer, Kroese, Mannor, and Rubinstein
(2005) and Shore and Johnson (1981). It is worth pointing out that when Q is compared
against a fixed reference distribution P, cross-entropy and KL are identical up to an
additive constant.

Still in the context of statistical inference, Jaynes (1957) proposed the maximum
entropy principle (MaxEnt) as a method for estimating probability distributions from data
when one does not have complete knowledge (Nigam, Lafferty, & McCallum, 1999). The
principle states that when one makes inferences based on partial information, one must
use the probability distribution that has the maximum entropy subject to whatever is

known (Jaynes, 1957). In other words, one wants to find a target probability distribution
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of maximum entropy subject to a set of constraints that represents the incomplete
knowledge about the target distribution (Phillips, Anderson, & Schapire, 2006). If nothing
is known, the distribution should be as uniform as possible which gives the maximal
entropy (Amigo et al., 2015; X. Chen et al., 2012; Nigam et al., 1999; Phillips, Dudik, &
Schapire, 2004). By using a distribution with higher entropy, one is less constrained or has
more choices, which means that the decision agrees with everything that is known, but
carefully avoids assuming anything that is not known (Berger, Della Pietra, & Della Pietra,
1996; Phillips et al., 2006). If Q, in MinxEnt is the uniform distribution, the principle
reduces to the maximum entropy principle (Kapur & Kesavan, 1990). Berger et al. (1996)
highlighted that in simple cases one could find the solution to the MaxEnt constraint
programming analytically, but in general a more direct approach is needed.

MaxEnt and MinxEnt involve finding the maximum (or minimum) entropy when
the constraints and a priori probability distribution are given. Kapur and Kesavan (1990)
discussed the inverse problem, when a probability distribution is given and one has to find
either: (i) the constraints, or (ii) the measure of entropy, or (iii) the priori probability
distribution, so that the given probability distribution is a MaxEnt or MinxEnt.

Another entropy approach worth discussing is the Bayesian maximum entropy
(BME). In the BME approach, two types of data are differentiated: hard data, whose
observations are considered to be deterministic, and soft data, whose observations
represent observed data that carry uncertainty. Instead of a single measure of information,
BME is actually a knowledge-centered approach to integrate information from different

sources to obtain improved prediction. BME is a model-free approach that combines
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maximum entropy theory with Bayesian statistics to handle different types of information
and uncertain input (He & Kolovos, 2018). The BME is applied in three phases: meta-
prior stage, prior stage, and posterior stage. The advantage of BME is that it can be applied
for spatial and spatiotemporal information, as well as univariate and multivariate cases.

The BME approach is based on Bayes’ theory and the maximum entropy principle.
Therefore, the BME approach says that based on a set of trial or prior probability
distributions the prior distribution with the maximum entropy should be chosen. This prior
is then used to update the current information and obtain the posterior distribution,
following the Bayesian scheme. A little counter-intuitive is the fact that based on BME,
the higher the probability that a model predicts a process, the less informative the model.
The logic is that a model that predicts a process correctly, provides no valuable
information about the process itself because no behavior is implied to explain the process
(He & Kolovos, 2018). The measure of information commonly used in the context of
Bayesian statistics is the KL of the posterior from the prior (Walsh, Wildey, & Jakeman,
2018).

In 1956, Lindley (1956) introduced the concept of the measure of the information
provided by an experiment. Lindley’s measure was derived from Shannon (1948) and
expressed the knowledge prior to performing the experiment in terms of the prior
probability distribution. In Shannon’s work, by considering the information in x and y one
can measure the rate of transmission of information along the channel. Hence, Lindley
(1956) proposed an analogous description in the context of experimental design, where x

represents the knowledge of the system prior to the experiment (prior), and y is the
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knowledge after the experiment (posterior). The comparison of the knowledge before and
after the experiment yields the amount of information provided by the experiment.
Lindley’s experimentation approach was to perform the experiment for which the
expected gain in information was the largest and to continue this process until the desired
amount of information about the system was achieved. Lindley (1956) used the measure
to solve some experimental design problems where the goal was to gain knowledge about
the system.

When one applies the Bayesian approach to find an experimental design that is
optimum according to the modeler’s goals, such as parameter inference, prediction, or
model selection, the approach is known as optimal experimental design (Clyde, 2001).
Optimal experimental designs aim at maximizing the value of each experiment and
minimizing the uncertainties to achieve the experimental goals more rapidly and with
lower costs (Elizabeth G. Ryan et al., 2014; van Den Berg, Curtis, & Trampert, 2003;
Walsh et al., 2018).

The first studies on Bayesian optimal experimental designs followed the work of
Lindley (1956) and suggested using the expected gain in information given by an
experiment as a utility function (Chaloner & Verdinelli, 1995). The goal was then to
maximize this utility function. According to Huan and Marzouk (2014) and Bisetti, Kim,
Knio, Long, and Tempone (2016), a useful utility function for Bayesian parameter
inference is the KL from posterior to prior. Huan and Marzouk (2014) highlighted that
other utility functions may be used depending on the goal of the experiment, but the KL

is a general-purpose function to maximize understanding about the system and,
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consequently, it yields good results in a variety of experiments. For other utility functions,
please refer to Chaloner and Verdinelli (1995) and Elizabeth G Ryan (2014).

Although useful, the computations of the KL utility function and the integration
problem (posterior calculation) are not trivial (Bisetti et al., 2016; Huan & Marzouk,
2014). Unless the likelihood and the priors are appropriately chosen, such as the use of
conjugate priors, or the problem is restricted to special cases, such as linear Gaussian
models, usually one cannot find a closed form solution to the problem (Elizabeth G Ryan,
2014; Walsh et al., 2018). Therefore, the functions must be solved using numerical
approximation methods or stochastic solution methods. Elizabeth G Ryan (2014) also
highlighted the need to check the solution for sensitivity to the prior distribution.

In the context of feature selection in images, mutual information is used to measure
the level of similarity or redundancy between pixels and the relevance of the features for
the task classification. At least four mutual information measures were cited by Tapia and
Perez (2013) and Estévez et al. (2009) for feature selection: (i) minimum redundancy and
maximal relevance (MRMR), (ii) normalized mutual information feature selection
(NMIFS), (iii) conditional mutual information feature selection (CMIFS), and (iv)

conditional mutual information maximization (CMIM). mRMR combines relevance and
redundancy into a single criterion: f™RMR(X)) =I(C;ﬁ)—|—;l2fiesl(ﬁ;]§), where
I(C; f;) measures the relevance of the feature to be added for the output class and

él (fi; fs) estimates the redundancy of the f;. feature with respect to the subset of

previously selected features S. NMIFS is a normalized version of mMRMR where the
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mutual information I(f;; f;) is normalized by the minimum entropy of both features. Thus,

1

we have: fYMIPS(X) = 1(C; f) — 5

I(fifs)
Zfiesm' In CMIFS, the subset of

features S is built step by step by adding one feature at a time. Let S be the set of already-
selected features and N the set of candidate features, such as S N N = @. The next feature
in N to be selected is the one that maximizes: I(C; f;) — [I(fi; X5) — I(fi; X5|C)], where
fi € N. Finally, CMIM considers the MI between the candidate feature variable f; and the
task classification class C given each of the variables in the set S separately, this allows
CMIM to consider a feature f; relevant only if it provides large amount of information

about the class C and this information is not contained in any of the features already

argmaxs e p{(fi; C)} for S =0
argmaxs e p/siming e s 1(fi; C/f;)} for S # @’

selected. For this, we have: CMIM = {
where F is the initial set of n features for the empty set S.

In the context of model selection, the Akaike information criterion (AIC) was
designed as an estimate of the expected Kullback-Leibler divergence between the model
generating the data and a fitted candidate model (Cavanaugh, 1997). The KL is just one
kind of loss function. The AIC is an estimate of the quality of the model and, consequently,
it is used as a regression model selection criterion. Because the true model is unknown,
the absolute divergence between a candidate model and the true model is also unknown,
but the relative differences between models can be used to rank order models according
to their expected KL. The candidate model with the lowest AIC has also the lowest

expected KL, even though the actual KL is unknown. In other words, the AIC tells nothing

about the quality of the model, but only about the quality relative to other models. If all
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models fit poorly, AIC will not capture that. This explains why the KL is explicitly defined
for two models and the AIC only for one and why the AIC is only a consistent estimator
of KL if the true model is among the models under consideration (Vrieze, 2012). The AIC
asymptotically selects the model that minimizes the mean squared error of prediction
(Vrieze, 2012). If the number of data points is small, some correction is usually necessary
(Cavanaugh, 1997). Wand (1997) classified AIC, MinxEnt, and MaxEnt in a category
called information-based criteria.

Some of these proposed entropy and mutual information measures discussed above
and a few other ones are summarized in Table 55. However, many information measures
have been mentioned in the literature, such as: (¢, t)-entropy (Amigo et al., 2015); Kapur’s
entropy (Kapur, 1983); fuzzy cross-entropy (Sahin, 2017); recurrence quantification
analysis entropy (Rhea et al., 2011); corrected conditional entropy, fuzzy entropy,
compression entropy, permutation entropy, distribution entropy, and multiscale entropy
(Bravi et al., 2011; Xiong et al., 2017); diffusion entropy (Bravi et al., 2011); spectral
entropy (Garner & Ling, 2014); and, compression entropy (Baumert et al., 2004; Bravi et
al., 2011; Truebner et al., 2006; Xiong et al., 2017). For more discussion on most of the

measures discussed in this section, please refer to Kapur (1983) and Bravi et al. (2011).

Table 55. Some entropy and mutual information measures proposed in the literature.
Entropy
measure

Definition Characteristics Source
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Renyi’s
entropy

Havrda and
Charvat’s
entropy

Tsallis’
entropy

Kolmogorov-
Sinai entropy
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Ho((X) =
ﬁlogzxem p(x)* , where

x> 0, x# 1 is the order of
the entropy.

1

H*(P) = = [1 —
1], where oc# 1 is the
order of the entropy.
Ho(P) = 5 (1 -
™ p%), where oc 1 is the
order of the entropy.

Hygs =

o 1
limlim lim — (HN — HO)
70 £-0 Ng—oo N¢T ¢

is the average K-S entropy,
where Hy, is the Shannon
entropy calculated at time N,
given by Hy, =
—k Z?’z‘lpi logp;, N; is the
number of time steps, 7 is the
length of time, and ¢ is the
bin or cell size. For discrete
systems, t is set to 1 and the
lrliré is dropped out.

Generalize Shannon’s entropy for
the case of generalized distributions,
where Y. emp() < 1. Hy(X) =
log |I'| is called the Hartley entropy
and H,(X) = —logY,emp(x)* is
called the collision or quadratic
entropy.

Replaced the recursive property of
Shannon’s entropy. This measure is
not additive.

This entropy differs from Havrda
and Charvat’s entropy only in a
factor that depends on «.

The KS is also a measure of the
information needed to predict which
part of the space the dynamics will
visit at a time t+ 1, given the
trajectories up to time t. Hyg iS zero
for a deterministic system because it
does not produce any new
information, some positive constant
for a chaotic or stationary system
because the system produces new
information at a constant rate, and
infinite for a fully random process as
it produces information at the
maximum rate. KS is based on three
key characteristics: (i) modeling of
sequential probabilities, (ii) entropy
rate, and (iii) limiting conditions.

Rényi (1961),
Kapur  (1983),
Principe et al.
(2000),
Kannathal, Choo,
Acharya, and
Sadasivan

(2005), and

Amigo et al
(2015)

Kapur (1983)

Tsallis  (1988)
and Amigo et al.
(2015)

Bravi et al
(2011), Orozco-
Arroyave et al.
(2013), Tuan D

Pham (2013),
Tuan D. Pham
(2016), and
Xiong et al.
(2017)



Approximate
entropy

Sample
entropy

Approximate
entropy with
Gaussian
kernel

Mode
entropy
(ModEn)
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AE(mv r, N) =

I\l]im [@™t1(r) — @™ ()] =
1 —

Nom1 IiV:1m+1 log C"(r) —

mﬂv:]m log €™ (1),

where dM(r) =
1 —

Nl §V=1m+110g (),

where  C*(r) is the

dimension:

correlation
() =

N(I:—l) i 6Cr — || —

x;|]), where N is the number
of points in the state space, 6
is the Heaviside function and
. |lis a norm.

SE (ml 7") =
Fm+1(r)

I\l]l_r)l(‘)lo —log e |

The Heaviside function in
the ApEn is replaced by:
dG(xi,xj) =

=[lxi=2x;ll,
xp 1072 '

ModEn(m,r,N) =

o™ 1(r) — @™ (1), form >
1, m and r are commonly
referred to as embedding
dimension and  radius,
respectively.

Given N points, the family of
statistics Ag(m,r,N) is
approximately equal to the negative
average logarithm of the conditional
probability that two sequences that
are similar for m points remain
similar within a tolerance r at the
next point. Consequently, a low
value of ApEn reflects a high degree
of regularity or less complexity. N is
the data size, r is the criterion of
similarity, and m is the length of the
data segment being compared.

Sg(m,r) is precisely the negative
logarithm of the conditional
probability that two sequences
similar for m points remain similar
at the next point, where self-matches
are not included in calculating the
probability. Therefore, a lower value
of SampEn also indicates more self-
similarity in the time series.

The Gaussian kernel is used to give
greater weight to nearby points by
replacing the Heaviside function.

Different than ApEn that compares
the element of the first vector with
that of the second vector, ModEn
compares the increment of each
element of the first vector with that
of the second vector in determining
whether two vectors are
approximate. With this method the
case where approximate vectors are
too few would not occur even if the
fluctuation of wave were slow and
large, which makes it more adequate
for time series of short-term signals
with broad amplitude and slow
fluctuation.

Pincus  (1991),
Richman and
Moorman (2000),
Xu et al. (2004),
Kannathal et al.
(2005), (Rhea et
al., 2011),
Orozco-Arroyave
et al. (2013), and
Yentes et al
(2013)

Richman and
Moorman (2000),
Bravi et al

(2011), Orozco-
Arroyave et al.
(2013), and

Amigo et al
(2015)

Orozco-Arroyave
etal. (2013)

Xu et al. (2004)



Information

storage

Transfe
entropy

r

Directional

entropy
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SX) = I(Kn.XE)f
p(xX1,.0Xn

E [log p(xl.---.xn-l)p(xn)]'
According to Xiong et al.
(2017), Shannon’s entropy,
K-S entropy, and
information  storage are
related to each other by:
S(X) = H(X,) — C(Xy),

where  C(X,) is the
conditional entropy
H(X,1X5).

The transfer entropy is given
T =
by .
P(ins, i)
. (k) .
Z log p(ln+1|l1g )']T(l )>'

p(in+1|i1sk))

The n-dimensional entropy

function is given by
hyn(T,V) =

supg hyn(T,V,a). Where V
is an n-dimensional

subspace of R4, 1 < n <
d, and T a measure-
preserving Z¢ action on a
Lebesgue probability space
Q,B,u), and a a finite
partition of Q.

It quantifies the amount of
information carried by the present
that can be explained by the past. In
other words, it reveals the degree to
which information is preserved in a
time-evolving system. If the system
is fully predictable, the present can
be predicted by the past and the

information  storage is  the
maximum; if the system is fully
random, the past gives no

information about the present and
the information storage is zero; if the
system is stationary, the information
shared between the present and the
past is constant.

Transfer entropy was introduced by
Schreiber (2000) to measure the rate
of information exchange between
two signals in both directions
separately in the context of time
series analysis. By conditioning on
transitioning  probabilities,  the
transfer entropy is able to
appropriately exclude exchanged
information due to common history
and input signals when desirable.

Directional entropy was introduced
by Milnor (1988) as a n-dimensional
entropy function that measures the
density of information in very large
finite sets to describe the distribution
and flow of information throughout
(n + 1)-dimensional lattice in the
context of cellular automata. A
directional version of mutual
information was introduced by
Massey (1990) to capture the
directed information flow from a
random sequence X™ to a random

sequence Y™ The directional
version of mutual information is
given by 1<X” - Y”) =

N LYY,

Xiong et al.
(2017)

Schreiber (2000)

Milnor (1988)



Kullback-
Leibler
divergence

Cross-
entropy

Cressi-Read
measure
(CR)

Jensen-
Shannon
divergence
(JS)

The Kullback-Leibler
entropy of two distributions
P and Q defined on the same
probability space i is given
by ' Dk, (PlIQ) =
ibi IOgZ_Z =

Y —pilogq; + p;logp; =
Sipilog -~ H(P).

The first term of the KL
divergence is the cross
entropy  between two
distributions P and Q:

H(P;Q) = Sipilog

The CR is given by
Der(P; Q5y) =

() 1]

y(y+1) qai

where y is a parameter that
indexes members of the CR
family, q; are the reference
probabilities, and p; are the
subject probabilities.

The JS is given by
Dis(P11Q) =

1

EDKL(PHM) +

2D, (QIIM), where M =
1

~(P+Q).

KL is always non-negative and is
zero if, and only if, p = g According
to Schreiber (2000), when one
assumes two processes X and Y are
independent, the KL gives the
mutual  information I(X;Y) =
Dy, (P(X, V)IP(X)P(Y)) =

Yy P(x,Y) 08 o5 ecause

the Kullback-Leibler divergence is
difficult to estimate
nonparametrically in high
dimensional spaces, Principe et al.
(2000) have  proposed  two
approximations to it based on
quadratic distances: the first is based
on Cauchy-Schwartz inequality and
the second is based on Euclidean
distance.

The cross entropy is an efficient
method for rare event simulation and
for solving NP-hard optimization
problems, such as the travelling
salesman  problem (Rubinstein,
2001). The method was motivated
by an adaptive algorithm for
estimating rare event probabilities in
complex stochastic network, which
involves variance minimization (De
Boer et al., 2005).

The Cressie—Read is an extension of
KL divergence and it provides an
objective assessment of how much
information a given probability
distribution contains relative to a
second. Over defined ranges of the
divergence measures, the CR and
Renyi’s and Tsallis’ entropies are
equivalent.

The Jensen-Shannon divergence is a
smoothed and symmetrical version
of the KL and it provides another
way to quantify the difference

between two probability
distributions.  Because JS s
symmetrical, D;s(P]1Q) =
D;s(Q11P).

Schreiber (2000)
and Mousavian et
al. (2016)

Hopper (2021)

Kowalski,
Martin, Plastino,
and Judge (2012)

Fuglede and
Topsoe (2004)

310



4.2.2. Applications of entropy measures

According to Amigo et al. (2015), entropy is a concept that appears in different
contexts with different meanings. Entropy as a measure of information, uncertainty,
surprise, compression, disorder, irregularity, complexity, or homogeneity has been applied
in many different fields (Attaran & Zwick, 1987; Lotfi & Fallahnejad, 2010). Although
information entropy was initially developed to address problems of data storage and data
transmission in the field of communications, in recent decades the practical applications
of entropy in fields such as marketing, management, finance, accounting, mathematics,
natural sciences, social sciences, physics, computer science, chemistry, biology,
bioinformatics, economics, behavioral sciences, and geophysics have become
unparalleled (Amigo et al., 2015; Attaran & Zwick, 1987; Mousavian et al., 2016; Xiong
etal., 2017).

In the marketing field, entropy has been used as a measure of uncertainty to
represent consumers’ preferences for brands (Attaran & Zwick, 1987).

In management, entropy has been applied as a measure of industry competitiveness
by comparing industrial diversity either among regions or for a particular region over time
(Attaran & Zwick, 1987). Entropy was also applied to identify the geographical allocation
of different types of industries through hypothesis testing (Attaran & Zwick, 1987).

In the financial context, entropy has been applied for portfolio selection in two
different ways: (i) as a measure of the uncertainty of portfolio returns by applying the
MaxEnt to find the most unbiased probability distribution of future security returns for

investors given limited information (Huang, 2012); and (ii) as a measure of securities
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portfolio risk, whose components yield stochastic returns, by replacing the traditional
mean-variance models with the divergence measure of portfolio asset diversification
(Attaran & Zwick, 1987; Huang, 2012; Qin, Li, & Ji, 2009). W. Zhang and Wang (2017)
used KS and other descriptive statistics to analyze the statistical behaviors of an agent-
based financial price model. The authors applied KS to understand the complexity
properties of the proposed model that attempted to reproduce the nonlinear behavior of
financial markets. Within the financial field, mutual information has been applied as a
measure of dependence in financial time series, such as stock market indexes (Dionisio et
al., 2004). The authors used MI to show that the rate of returns of the financial market
were not independent and identically distributed.

In the accounting field, entropy has been used as a measure of the loss of
information from aggregating items on financial reports, such as the balance sheet (Attaran
& Zwick, 1987).

In urban planning, more specifically in water resources planning, entropy was used
as a measure of the loss of information from aggregating spatial data, either through the
number of subwatersheds or the number of raingauges, in complex hydrologic models
designed to simulate larger watersheds or the total runoff in a watershed (Haverkamp et
al., 2002; Hernandez, Lane, Stone, Martinez, & Kidwell, 1997).

In conservation biology, Phillips et al. (2004) used the MaxEnt, which turned out
to be the same as minimizing the KL, to investigate the geographic distributions of bird
species, a critical problem in the field. In their work, the environmental variables were the

given set of features, the occurrence localities served as sample points, and the
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geographical regions were the space on which the distribution was defined. Phillips et al.
(2006) used the MaxEnt for modeling and prediction of the geographic distribution of a
species of sloth and a species of a small montane rodent.

In the context of food processing and quality, Wijaya et al. (2017) used information
quality ratio to determine the best mother wavelet for electronic noise that generates
signals from gas sensors for beef quality classification. The measure led to the selection
of the wavelet that was able to better reconstruct the noise signal by keeping essential
information from the original signal and reducing the noise level.

In the context of experimental design, Malakar and Knuth (2011) presented an
entropy-based search algorithm for efficient experimental design to select the most
informative experiment from a set of potential experiments described by many parameters.
According to the authors, the algorithm was capable to select the highly relevant
experiments and it was also more efficient than brutal force search.

In the statistical inference context, entropy measures have been used to test for
stochastic independence and determinism of time series, for detecting association and
discrimination between random variables and distributions, for assessing the probability
distribution estimation from time series data, among other applications. Amigo et al.
(2015) used permutation entropy to test the null hypothesis that the noisy data were
outcomes of an independent and identically distributed random process and the alternative
was that the noisy data were outcomes of determinism. Reshef et al. (2011) used
normalized mutual information to detect greatest associations between pairs of variables

in large data sets. Sahin (2017) proposed a cross-entropy measure using interval
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neutrosophic information to determine the information measure for discrimination
between two interval neutrosophic sets in the field of fuzzy sets. Kowalski et al. (2012)
used CR divergence measures to assess the probability density function estimation from
time series data using two different methodologies, namely histogram and Bandt and
Pompe’s methodologies. The authors confirmed the superiority of Bandt and Pompe’s
methodology. Approximate entropy and sample entropy were used to measure the
complexity of finite time series and the underlying dynamical systems by quantifying the
change in relative frequencies of length k time-delay vectors (Amigo et al., 2015).

In the context of time series analysis, entropy is mainly used to quantify the
complexity of both data and systems. Shannon’s entropy, approximate entropy, sample
entropy, permutation entropy, and other generalized entropies, such as Tsallis’ entropy
and Renyi’s entropy, have been applied to physiological data analysis (Amigo et al.,
2015).

For cardio-physiological data, entropy measures have been applied to investigate
fetal abnormal heart-rate, to discriminate between healthy patients and patients with
congestive heart failure, to evaluate heart rate in patients with dilated cardiomyopathy,
and to detect ventricular tachycardia by analyzing heart-rate variability from
electrocardiograms (ECGs) (Amigo et al., 2015; Bravi et al., 2011). Xu et al. (2004)
introduced ModEn to identify myocardium infarction in the high frequency
electrocardiogram data of an animal model. Silva, Silva Filho, Crescéncio, and Gallo
(2012) used KS, autoregressive integrated moving-average model (ARIMA), and the

largest Lyapunov exponents to identify the anaerobic threshold in the heart rate time series
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of a group of healthy men in rest and dynamic exercise in a seated position. According to
these authors, physical exercise is a complex system involving physiological processes,
movements of body segments, and other processes not well-known. The authors
concluded that there was a strong correlation among the three methods in detecting the
anaerobic threshold. Xiong et al. (2017) investigated the ability of entropy, conditional
entropy, and information storage in detecting changes in the static and dynamical
properties of heart rate variability in individual in different physiological states (awake
and sleepy state) and clinical conditions (healthy and congestive heart failure subject). The
entropy measures were calculated using linear, kernel, and nearest-neighbor estimators
and the analyses were performed under three types of data preprocessing procedure.
According to these authors, the entropy measures could only identify changes in cardiac
dynamics in specific cases. Next, the authors recommended which measures to use
depending on the purpose of the analysis and highlighted the need for appropriate data
preprocessing and careful interpretation of the results based on the properties of the
specific chosen entropy measure and estimator.

For brain-physiological data, entropy measures have been applied to distinguish
between healthy patients and patients with Alzheimer’s disease, to detect epileptic
seizures, to identify sleep stages, and to quantify the effects of anesthetic drugs on brain
activity by analyzing brain activity from electroencephalograms (EEGs) and/or
magnetoencephalograms (MEGS) (Abasolo et al., 2008; Amigo et al., 2015). Kannathal et
al. (2005) used Shannon’s entropy, Renyi’s entropy, Kolmogorov-Sinai entropy and

approximate entropy to investigate normal and epileptic signals in EEGs. Z. Zhang et al.
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(2015) used maximal information coefficient to measure brain functional connectivity.
According to the authors, when compared with other measures of brain functional
connectivity, such as correlation coefficient and coherence, MIC performed the best in
terms of consistency and robustness.

Other physiological studies involving entropy measures include the investigation
of gait and postural complexity in individuals and the use of speech signals. Yentes et al.
(2013) explored the effects of changing the input parameters m, r, and N on the robustness
of ApEn and SampEn. According to the authors, the results were very sensitive to the
parameters, especially for small data sets. They applied the methods to investigate gait in
young and older adults. Rhea et al. (2011) studied how noise, sampling frequency, and
time series length affected approximate entropy, sample entropy, and recurrence
quantification analysis entropy measures when the measures were applied to human center
of pressure data as a measure of human postural control complexity. Orozco-Arroyave et
al. (2013) applied four different entropy measures, namely approximate entropy,
approximate entropy with Gaussian kernel, sample entropy, and sample entropy with
Gaussian kernel, to detect Parkinson’s disease in people through the use of speech signals.
The authors also used six other nonlinear dynamic measures, such as Lyapunov exponent
and Hurst exponent, to classify speech signals of people with Parkinson’s disease from the
control set.

In systems biology, entropy was used to find subnetwork markers in classification
of cancer samples and determining optimal gradient sensing strategies in chemotaxing

cells (Mousavian et al., 2016). Compression entropy was used by Baumert et al. (2004)
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and Truebner et al. (2006) for forecasting life-threatening tachycardia in patients. Entropy
measures have also been used to estimate complexity in hormonal patterns, blood pressure,
and human postural control as a result of aging, disease, and/or disorder (Rhea et al.,
2011).

In physics, Blanco, Casini, Hung, and Myers (2013) discussed potential uses of
relative entropy between two states for vacuum state tomography.

In machine learning, entropy has been used for training, redundancy reduction, and
prediction through entropy minimization, and mutual information has been used for
independent component analysis, blind source separation, feature extraction, feature
selection, classification, and information filtering (Principe et al., 2000). For an
explanation of the difference between feature extraction and feature selection, please refer
to Estévez et al. (2009). Wang and Hu (2009) added that information entropy measures
have also been applied to model evaluation directly. Principe et al. (2000) used Renyi’s
quadratic entropy and two approximations to KL based on quadratic distances to train
linear and nonlinear mappers in the context of unsupervised and supervised machine
learning. The authors presented an algorithm to train learning machines to maximize (or
minimize) mutual information between their input and output, which can be estimated
through KL. The authors showed two different applications of the algorithm: one for
feature extraction for classification (supervised learning) of vehicles in synthetic aperture
radar imagery and the other for blind source separation (unsupervised learning), which is
a linear mixture of independent source signals from which no further information about

their sources is available.
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In a similar way, Wang and Hu (2009) used normalized mutual information in the
field of pattern recognition to assess the performance of classifiers. Instead of using the
measure for feature extraction, the authors applied it for model evaluation directly. For
that, the authors used the maximum normalized information criterion.

Maximum entropy principle was used in various natural language tasks, such as
text segmentation, text classification, part-of-speech tagging, and language modeling
(Nigam et al., 1999). Berger et al. (1996) presented an approach consisting of two tasks
for natural language prediction using the principle of maximum entropy. The first task
involved determining a set of features that captures the behavior of the random process
(e.g., speech translation), and the second task involved selecting the most accurate model
that encompasses these features to predict the output of the process (e.g., word
pronunciation).

Tapia and Perez (2013) investigated four different mutual information measures,
namely mRMR, NMIFS, CMIFS, and CMIM, in the context of feature selection to
improve gender classification of face images.

Tuan D Pham (2013) used KS to investigate the spatial content of images and as a
multidimensional feature for pattern classification. According to the author, the method
was effective in detecting spatial characteristics of different scenes and spatial objects.
Tuan D. Pham (2016) used KS entropy in the setting of image texture analysis and
classification by quantifying uncertainty of pixel distributions in images.

Within feature selection algorithms, cluster analysis is needed in order to find the

number of clusters that is associated with the optimum number of features (Wijaya et al.,
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2017). In the context of cluster analysis, entropy has been used as a measure of diversity
or dissimilarity (Amigo et al., 2015). Strehl and Ghosh (2002) used mutual information as
a measure of the shared information between a pair of clusters. Based on a mutual
information objective function, the authors evaluated the quality of different clusterings
and the algorithm was able to select the best solution. In the field of clusters comparison,
Vinh et al. (2010) proposed four different mutual information measures adjusted for
chance and five distance measures that involved manipulation of entropy and mutual
information measures as measures of comparison between clusters. According to the
authors, the adjustment for chance is needed for the expected value of a similarity measure
between pairs of independent clusters sampled independently at random to be constant.
The distance measures were proposed as metric properties for the cluster comparisons.
However, the authors did not discuss what is the specific motivation of each one of the
distance measures.

Entropy, through the principle of maximum entropy and the principle of minimum
cross-entropy, has been applied to decision trees and optimization models (X. Chen et al.,
2012). In decision tree, fuzzy entropy was used to minimize the loss of information in a
decision tree (X. Chen et al., 2012). Chandrasekaran and Shah (2017) studied relative
entropy programs, which are optimization problems where the objective and the
constraints are specified in terms of linear and relative entropy inequalities.

In multi-attribute decision making (MADM), Shannon’s entropy has been used to
find the weight of different criteria (Lotfi & Fallahnejad, 2010). In the MADM context,

the greater the entropy value of an attribute, the smaller the attribute’s weight, which
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implies that the attribute has less discriminate power in the decision-making process. Asl,
Khalilzadeh, Youshanlouei, and Mood (2012) used Shannon’s entropy to rank different
criteria, such as cost, software quality, vendor, and software capability, for selection of
enterprise resource planning (ERP) systems within organizations.

Other applications of entropy through MaxEnt and MinxEnt include: buffer
allocation, queueing models of telecommunication systems, scheduling, DNA sequence
alignment, reinforcement learning, network reliability, astronomy, and signal processing
(De Boer et al., 2005; Phillips et al., 2006; Shore & Johnson, 1981).

4.3. Material and methods

In this work, it is proposed to use entropy measures as a method for input parameter
selection and experiment planning in simulation models. The ultimate goal is to answer
the following research questions: (i) can entropy measures support the identification of the
group of seeds that leads to the largest uncertainty, if any?; (ii) can entropy measures
support the identification of the number of replications that leads to the largest
uncertainty?; and, (iii) can entropy measures support the selection of the most important
parameters?.

A 5-step procedure is followed to investigate the research questions of this work,

as shown in Figure 75. Each step is described in detailed below.

320



1. Build the simulation .| 2. Define the design of .| 3. Runthe simulation

A
A

model experiments experiments
5. Investigate the P 4. Calculate the entropy
research questions measures

Figure 75. 5-step procedure to investigate the research questions.

4.3.1. Build the simulation model

The first step is to build the simulation model. Here, a single queue model was
chosen for its simplicity to be used as an illustrative example and for having closed-form
theoretical solutions for some distributions of the input parameters, as well as the output
parameters of interest. The model consists of a single source of arrivals, a single queue,
and s servers providing the same service. After being served, customers leave the system.
Balking and reneging were not considered in the model. Two input parameters were
considered in the model, namely inter-arrival time (1/A4) and service time (1/u), and two
output responses were considered, namely average number of customers in the system (L

or NIS) and average time spent in the system (W or T1S). The simulation generated input
processes is also referred as X= [X;: arrival process, X,: service process] and the output

process as Y = [Y,: average number of customers in the system, ¥,: average time in the
system]. The notation used here follows the A/S/s Kendall’s notation, where: A
represents the arrival process, S the service time, and s the number of servers. M is used
for memoryless distributions.

4.3.2. Define the design of experiments
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The challenge of this work is to validate the appropriateness of entropy measures
as a method of uncertainty quantification and, consequently, for identifying the
experiment settings that lead to the largest uncertainty. To this purpose, it is important to
use methods already exist and recognized in this field. Simulation uncertainty will be
considered in two different ways: (i) u; = standard deviation of the parameters of the
experiments; and, (ii) u, = number of parameter errors of the experiments, that is, number
of simulations experiments where the simulated parameters were not within the theoretical
confidence interval.

To be able to investigate whether different seeds, different number of replications,

and the different input processes X, full-factorial design was applied. Full-factorial was
chosen to be able to identify whether the factors, as well as their interactions, would
explain the variation in the simulation model. It is important to mention that seeds and
number of replications were investigated separately, as they were the computer
experiments replicates of each other. Three different seeds and three different values for
each input process were investigated. The different values of the input processes were
varied in a way that guaranteed that the highest traffic intensity of the queue model was
around 90% to avoid instability of the model. Table 56 shows the different values of seeds
and input processes considered in the experiments. Table 57 shows the full-factorial

design of experiments.

Table 56. Parameter values for simulation experiments.
Parameter Values
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Interarrival time AT, = 20, AT, = 36, AT; = 180

Service time ST, = 2, ST, = 10, ST, = 18.000018
Interarrival time seed ATs; = 4, ATs, = 8, ATs; = 20
Service time seed STsy =3,8Ts, =12,5Ts; = 15
r, =10,1r, = 20,13 =50,1, = 100,15 =
Number of replications 200, 4 = 400,17, = 600,15 = 800,19 =

1000, 1y, = 1500

Table 57. Full-factorial design of experiments. Each design was repeated for every
replication r; to ry.
Interarrival time Service time Interarrival time seed Service time seed

AT, ST, ATs, STs,
AT, ST, ATs; STs,
ATy STy ATs, STsq
AT, ST, ATs, STs,
ATy STy AT's, STs,
ATy STy ATs, STs,
AT1 S T1 ATs 3 STs 1
AT, ST, ATs; STs,
AT1 S T1 ATs 3 STs 3
AT, ST, ATs, STsq
ATy ST, ATs, STs,
ATy ST, ATs; ST
ATy ST, ATs, STs,
AT, ST, ATs, STs,
AT1 S Tz ATs 2 STs 3
AT, ST, ATs; STs,
ATy ST, ATs; STs,
AT1 S Tz ATS3 S T53
AT ST; ATsq STs,
ATy ST ATs, STs,
ATy ST ATs, STss
ATy ST ATs, STs,
AT, ST; ATs, STs,
ATy ST ATs, STss
AT, ST; ATs; STs,
ATy ST ATs; STs,
ATy ST ATs, STs,
AT, ST, ATs; STs,
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AT, STy ATs, STs,
AT, ST, AT's, STs;
AT, STy AT's, STs,
AT, ST, ATs, STs,
AT, STy AT's, STs,
AT, ST, ATs; STs,
AT, STy AT's3 STs,
AT, ST, ATs, STs;
AT, ST, ATs, STs;
AT, ST, ATs, STs,
AT, ST, AT's, STs,
AT, ST, ATs, STs,
AT, ST, ATs, STs,
AT, ST, ATs, STs,
AT, ST, AT s, STs,
AT, ST, AT's3 STs,
AT, ST, ATs, STs;
AT, ST; AT's, STs,
AT, ST; ATs, STs,
AT, ST3 ATs, STsq
AT, ST; ATs, STs,
ATZ S T3 ATs 2 STs 2
ATZ S T3 ATs 2 STs 3
ATZ S T3 ATs 3 STs 1
AT, ST; AT s, STs,
ATZ S T3 ATs 3 STs 3
AT, ST, ATs, STs,
AT, ST, ATs, STs,
AT, ST, AT's, STs;
AT, ST, ATs, STs,
AT, ST, ATs, STs,
AT, ST, ATs, STs;
AT; STy ATs; STs,
AT, ST, AT s, STs,
AT; STy ATs, STs,
AT; ST, ATs, STs,
AT ST, ATs, STs,
AT, ST, ATs, STs;
AT ST, ATs, STs;
AT, ST, ATs, STs,



AT ST, AT's, STs,

AT, ST, ATs3 STsq
AT3 S Tz ATs 3 STs 2
AT, ST, ATs4 STs3
AT; ST, ATs, STs,
AT, ST, ATs; STs,
AT ST3 ATs, STs,
AT ST ATs, STs,
AT; ST ATs, STs,
AT; ST, ATs, STs3
AT3 S T3 ATs 3 STs 1
AT; ST, ATs; STs,
AT ST ATs; STss

4.3.3. Run the simulation experiments

The third step was to run the simulation experiments. The experiments were run in
Simio® University Enterprise Edition v 12.205. The experiment was run for 1825 days,
including a warm-up period of 365 days. Two different queue systems were considered:
(1)) M/M/1,and (ii)) M/M /inf. As described in step 2, the experiments included different
system configurations by varying the parameter values and, consequently, the traffic
intensities, the seeds for generating random numbers, and the number of replications. This
led to a total of 1620 experiments.
4.3.4. Calculate the entropy measures

The next step is to apply entropy measures to quantify the uncertainty of the
simulation outputs (H(Y)) and the uncertainty of the simulation generated inputs (H (X)).
The entropy measures were calculated using two different approaches: (i) histogram

discrete empirical estimate, and (ii) histogram probability density estimate. The second is
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a theoretically correct approach but its application is challenging due to the difficulties
that arise when computing entropy measures for continuous variables. These difficulties
were discussed in section 2 and section 3. The first approach has practical benefits in terms
of calculations and it is frequently used by practitioners. The first and second approaches
were used in section 2 to investigate the potential of entropy measures as a measure of
uncertainty quantification in simulation models. As pointed out in section 2, despite not
being the theoretically correct approach, the entropy measures calculated using the
histogram discrete empirical estimate presented better results in capturing the
deterministic behavior of the system when compared to the histogram probability density
estimate. Therefore, using the approach here is justified.

In order to handle some of the challenges encountered while applying entropy
measures for continuous variables, the differential entropy measures in this work were
calculated using Equation 79, which was proposed by Jaynes (1962), and approximated

through Equation 80, given by Xiong et al. (2017) and Steuer et al. (2002).

HX) = —f p(x) log & dx Equation 79
m(x)
_ 1o, . .
A(X) = _HZ log £(X,) Equation 80

In Jaynes’ equation it is important to define the invariant measure m(x). Here,
m(x) = f(x)(1 + f(x)), based on what was proposed in section 3.

4.3.5. Investigate the research questions

326



The fifth step is to investigate the three research questions: (i) can entropy
measures support the identification of the group of seeds that leads to the largest
uncertainty, if any?; (ii) can entropy measures support the identification of the number of
replications that leads to the largest uncertainty?; and, (iii) can entropy measures support
the selection of the most important parameters?.

The queue model used in this work consists of two input parameters (i.e. X; —
interarrival time and X, — service time) and two output responses (i.e. ¥; - average number
of customers in the system and Y, - average time in the system). Consequently, to answer
question (i) it is important to investigate for each of the inputs and outputs whether there
are statistical significantly differences in the entropy measures based on the seeds used on
the experiments and whether these results are consistent with another measure of
uncertainty. Standard error of the mean (SEM) is used as the uncertainty measure for
comparison. SEM quantifies uncertainty by measuring how far the sample mean of the
data is likely to be from the true population mean (Altman & Bland, 2005; Barde & Barde,
2012). SEM is widely recognized in the academic community as a measure of uncertainty
or precision of the mean and is used as a means of calculating confidence intervals. To
identify the statistical differences, regression analysis and Tukey-Kramer multiple
comparison test using JMP® Pro 15 is used.

Question (ii) is answered in a similar way to question (i). Regression analysis and
Tukey-Kramer multiple comparison test is used to investigate for each of the inputs and

outputs whether there are statistical significantly differences in the entropy measures
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based on the number of replications used on the experiments and whether these results are
consistent with the results obtained from the standard error of the mean.

To answer question (iii), it is important to investigate what are the most important
parameters for the simulation model based on the entropy measures and whether these
results are consistent with another known method. As a known method in the scientific
community, ANOVA is used to identify what are the significant parameters for each of
the simulation responses. Mutual information measures is used to identify what are the
most important parameters for each simulation response. More specifically, in this work,
it is proposed to use an adaptation of the mutual information index for this purpose. As
discussed in section 2.1, the mutual information index is given by MIly. y =%=

[XyY)

ey The measure can be calculated and compared for different inputs to determine

which input provide useful information about the output. Contigency analysis is used to
test the significance of the results.

A limitation of Ml .y, is that in a model with only two input parameters X; and
Xy, Mlly, y, + Mlly, vy, does not add to 1. To overcome this limitation, it is proposed an
adaptation of the mutual information index. For the M /M /s models, it is known that the
inputs X; and X, are independent. Hence: I(Xy; X;) = H(X;) — H(X{1X,) = H(X;) —
H(X;) = 0. Because I(X;; X,) = 0, we can calculate the total mutual information of Y;
(T1(Y;)) using Equation 81:

TI(Y;) = 1(Y; X1) + 1(Y;; X2) Equation 81
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Now, the impact of input X; on output Y; (IIOXj;Yi) can be calculated using

Equation 82:

1(Y;; X;)

Equation 82
TI(Y,) |

IIOXJ';YL' =

[0y v, leads to same conclusions as My .y, with respect to the input that
provides more useful information about the output. However, 11 Ox v, has the advantage
that will add to 1. On the other hand, 10y ;,y, can only be applied when the inputs are

independent.

After the 10y ;,y, was calculated for each output of the simulation, it was identified

which input provided more useful information on each response. A value of 1 was used as
an indicator for this and O otherwise. For cases where there was a tie, both inputs received
1. Contingency analysis was performed in JMP® Prol5 to test whether one of the inputs
provided statistically significantly more useful information than the other. The results
obtained from the contingency analysis was compared to the ANOVA results.
Contingency analysis was also used to test whether the useful information provided by
each input to the output varied based on different factors, such as: seed used for the inputs,
number of replications, queue model, and traffic intensity.

As a final note on the methods, it is important to mention that validating the results
of the entropy measures is not a simple task, as other methods of uncertainty quantification
in simulation models have different goals and use different approaches that are difficult to
compare, such as the work of Xie et al. (2014a), which estimated the uncertainty of the

input models resulting from using limited real data. This uncertainty was used to update
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the Bayesian credible interval. Therefore, in an attempt to validate the results of this work
and minimize its limitations, the results obtained from the entropy measures were
compared with results from well-known methods in the literature that have a goal as
similar as possible.

4.4. Results and discussion

4.4.1. Regression model for the SEM of each input and output

To investigate whether the different random seeds used to generate the inputs of
the simulation model resulted in different uncertainty in the simulated inputs and outputs,
a second-order regression model for the SEM of each input and each output was built. The
following were considered as possible factors for the regression models of the SEM: (i)
seed used in the interarrival time input X, ; (ii) seed used in the service time input X5; (iii)
interarrival time mean value (X, ); (iv) service time mean value (X,); (v) queue model (i.e.,
M/M/1 or M/M/inf); (vi) traffic intensity; and, (vii) number of replications.

For each of the input and output, some of the factors were collinear or aliased (e.g.,
traffic intensity) and could not be estimated independently and others were not statistically
significant (e.g., queue model). After performing the analysis, a second-order linear
regression model with different independent factors was fitted to each dependent factor,
i.e., the SEM of each simulation input and output, using least squares approach. The
summary of fit of each model, as well as the independent factors included in the model
are shown in Table 58. Figure 76 and Figure 77 show the actual by predicted plot of the

models.
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Table 58. Summary of fit of SEM regression models and summary of effects included in
the models for a-level = 0.05.

Model SEM X, SEMX, SEMY, SEMY,
Model p-value <0.0001 <0.0001 <0.0001 <0.0001
R2 0.9978 0.9941 0.9907 0.9837
R?adj 0.9978 0.9941 0.9906 0.9836
Factor p-value p-value p-value p-value
Seed interarrival time 0.0000 N/A 0.0000 0.0000
Interarrival time mean value 0.0000 0.0000 N/A N/A
Seed service time N/A 0.0025 0.0182 0.0275
Service time mean value N/A 0.0000 N/A N/A
Number of replications 0.0000 0.0000 0.0000 0.0000
Traffic intensity N/A N/A 0.0000 0.0000
g . . * . .

Seed interarrival time Interarrival time 0.0000 N/A N/A N/A
mean value

: . . *
Seeq |_nterarr|val time Number of 0.0000 N/A N/A 0.0452
replications

. . .
Interarr!val time mean value * Number of 0.0000 0.0000 N/A N/A
replications

. . . .
![?r'ferarrlval time mean value * Seed service N/A 0.0000 N/A N/A

. . * L
Interarrival time mean value * Service time N/A 0.0000 N/A N/A
mean value
Seed service time * Service time mean value N/A N/A N/A N/A
Seed service time * Number of replications N/A 0.0000 N/A N/A

1 1 *

Serv_lce_ time mean value Number of N/A 0.0000 N/A N/A
replications
Seed interarrival time * Seed service time N/A N/A 0.0481 0.0494
Number of replications * Traffic intensity N/A N/A 0.0000 0.0000
Seed interarrival time * Traffic intensity N/A N/A 0.0000 0.0000
Seed service time * Traffic intensity N/A N/A 0.0000 0.0000
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Figure 76. Actual by predicted plot of the standard error of the mean of the inputs. Left-
side: X, - interarrival time. Right-side: X, - service time.
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Figure 77. Actual by predicted plot of the standard error of the mean of the outputs.
Left-side: ¥, — average number in system. Right-side: ¥, — average time in system.

4.4.2. Regression model for the entropy measures of each input and output

Next, a second-order regression model for the entropy of each input and each
output was built. This was done for the entropy calculated by each of the two different
approaches: (a) histogram discrete empirical estimate, and (b) histogram probability

density estimate. Therefore, a total of 8 regression models were fitted: 2 approaches x (2
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simulation inputs + 2 simulation outputs) = 8. For the entropy model, an extra independent
factor was also considered: number of bins. Consequently, the following different factors
were considered as possible factors for the regression models: (i) seed used in the
interarrival time input X;; (ii) seed used in the service time input X,; (iii) interarrival time
mean value (X;); (iv) service time mean value (X,); (v) queue model (i.e. M/M/1 or
M /M /inf); (vi) traffic intensity; (vii) number of replications; and, (viii) number of bins.

In all the regression models, some of the factors were also aliased and could not
be estimated independently or they were not statistically significant and, consequently,
were not included in the model. After performing the analysis, a linear regression model
with different independent factors was fitted to each dependent factor, i.e., the entropy of
each simulation input and output, using least squares approach. The summary of fit of
each model, as well as the independent factors included in the model is shown next.

(a) Entropy measures calculated using the histogram discrete empirical estimate:

The summary of fit of each model and the independent factors included in the
model for both the entropy measures and the normalized entropy measures calculated
using the histogram discrete empirical estimate are shown in Table 59. Figure 78 and
Figure 79 show the actual by predicted plot of the models of the entropy measures as an

example.

Table 59. Summary of fit of the regression models for the entropy measures calculated
using the histogram discrete empirical estimate and summary of effects included in the
models for a-level = 0. 05.

Model H(X) HX,) HY,) HY,) }'}'Z’;’I‘) }'}'Z’;’:‘) I';"(’;S I’L\II(();S
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Model p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
R? 0.9993 0.9987 0.9982 0.9983 0.9848 0.9535 0.9482 0.9452
R?adj 0.9992 0.9986 0.9981 0.9983 0.9847 0.9530 0.9474 0.9443
Factor p-value p-value p-value p-value p-value p-value p-value p-value
(’;:ﬂggg’resr of 70000 00000 00000 00000 00000 00000 0.0000 0.0000
ﬁfneg nterarrival 6000 N/A 00000 00000 00000 N/A 00000  0.0000
Interarrival time 4 5500 0000 00000 00000 00000 0.0000 0.0000  0.0000
mean value

ﬁfneg SEIVICE  N/A 00000 0.0000 00000 N/A 00000 0.000 0.0000
Service —time N/A 00021 0.0000  N/A N/A  0.0000  0.0000
mean value

N“”?bef of 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
replications

Traffic intensity N/A N/A N/A N/A N/A N/A N/A N/A
Number of bins

* Seed 0.0000 N/A 0.0000 N/A 0.0000 N/A 0.0000 N/A
interarrival time

Number of bins

* Interarrival  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
time mean value

Number of bins

* Seed service N/A 0.0000 0.0000 0.0000 N/A 0.0000 0.0000 0.0000
time

Number of bins

* Service time N/A N/A N/A N/A N/A N/A 0.0000  0.0000
mean value

Number of bins

* Number of 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
replications

Seed interarrival

time . .* 0.0000 N/A 0.0000 0.0000 0.0000 N/A 0.0000 0.0052
Interarrival time

mean value

Seed interarrival

time * Seed N/A N/A 0.0000 0.0000 N/A N/A 0.0000 0.0001
service time

Seed interarrival

time * Service N/A N/A 0.0000 0.0000 N/A N/A 0.0018 0.0003

time mean value
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Seed interarrival
time * Number
of replications

Seed interarrival
time * Traffic
intensity

Interarrival time
mean value *
Seed service
time

Interarrival time
mean value *
Seed service
time

Interarrival time
mean value *
Service time
mean value

Interarrival time
mean value *
Number of
replications

Seed service
time * Service
time mean value

Seed service
time * Number
of replications

Service time
mean value *
Number of
replications

Seed service
time * Traffic
intensity

Number of
replications  *
Traffic intensity

0.0000

N/A

N/A

N/A

N/A

0.0000

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

0.0000

N/A

0.0000

N/A

0.0000

N/A

N/A

N/A

0.0000

N/A

0.0000

N/A

0.0000

0.0000

0.0004

0.0000

N/A

N/A

N/A

0.0000

N/A

0.0000

N/A

0.0000

0.0000

0.0003

0.0000

0.0000

N/A

N/A

0.0000

N/A

N/A

N/A

N/A

0.0000

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

0.0000

N/A

0.0000

N/A

0.0000

N/A

N/A

N/A

0.0000

N/A

0.0000

N/A

0.0000

0.0000

N/A

0.0000

N/A

N/A

N/A

0.0087

N/A

N/A

0.0000

0.0000

0.0000

N/A

0.0000

0.0000

N/A

N/A
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Figure 78. Actual by predicted plot of the entropy measures of the inputs calculated
using the histogram discrete empirical estimate. Left: H(X) — entropy of interarrival
time. Right: H(X5) — entropy of service time.
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Figure 79. Actual by predicted plot of the entropy measures of the outputs calculated
using the histogram discrete empirical estimate. Left-side: H(Y ;) — entropy of number in
system. Right-side: H(Y,) — entropy of time in system.

(b) Entropy measures calculated using the histogram probability density estimate:
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The summary of fit of each model and the independent factors included in the
model for both the entropy measures and the normalized entropy measures calculated

using the histogram probability density estimate are shown in Table 70.

Table 60. Summary of fit of the regression models for the entropy measures calculated
using the histogram probability density estimate and summary of effects included in the

models for a-level = 0. 05.
Norm Norm Norm Norm

Model H(X;) H(X,) HY, HY, HX) H(X,) HYy H(Y,)
Model p-value  <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
R? 0.9974 0.9952 0.9933 0.9939 0.9998 0.9992 0.9991 0.9991
R?adj 0.9974 0.9951 0.9932 0.9938 0.9998 0.9992 0.9991 0.9991
Factor p-value p-value p-value p-value p-value p-value p-value p-value

Number of bins ~ 0.0000  0.0000  0.0000 0.0000 0.0000 0.0000 0.0000  0.0000

Seed interarrival

time 0.0000 N/A 0.0000  0.0000  0.0000 N/A 0.0000  0.0000

Interarrival time

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
mean value

Seed service

time N/A 0.0000 0.0000  0.0000 N/A 0.0000 0.0000  0.0000

Service time

N/A N/A 0.0006  0.0000 N/A N/A 0.0000 0.0000
mean value

Number of
replications

Traffic intensity N/A N/A N/A N/A N/A N/A N/A N/A

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Number of bins
* Seed 0.0000 N/A 0.0000 N/A 0.0000 N/A 0.0000 N/A
interarrival time

Number of bins
*  Interarrival 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
time mean value

Number of bins
* Seed service N/A 0.0000 0.0000 0.0000 N/A 0.0000 0.0000 0.0000
time

Number of bins
* Service time N/A N/A N/A N/A N/A N/A 0.0000  0.0000
mean value
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Number of bins
* Number of
replications

Seed interarrival
time *
Interarrival time
mean value

Seed interarrival
time * Seed
service time

Seed interarrival
time * Service
time mean value

Seed interarrival
time * Number
of replications

Seed interarrival
time * Traffic
intensity

Interarrival time
mean value *
Seed service
time

Interarrival time
mean value *
Seed service
time

Interarrival time
mean value *
Service time
mean value

Interarrival time
mean value *
Number of
replications

Seed service
time * Service
time mean value

Seed service
time * Number
of replications

Service time
mean value *
Number of
replications
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0.0000

0.0000

N/A

N/A

0.0000

N/A

N/A

N/A

N/A

0.0000

N/A

N/A

N/A

0.0000

N/A

N/A

N/A

N/A

N/A

N/A

0.0000

N/A

0.0000

N/A

0.0000

N/A

0.0000

0.0000

0.0000

0.0000

0.0000

N/A

0.0000

N/A

0.0000

0.0000

0.0003

0.0000

N/A

0.0000

0.0000

0.0000

0.0000

0.0000

N/A

0.0000

N/A

0.0000

0.0000

0.0007

0.0000

0.0000

0.0000

0.0000

N/A

N/A

0.0000

N/A

N/A

N/A

N/A

0.0000

N/A

N/A

N/A

0.0000

N/A

N/A

N/A

N/A

N/A

N/A

0.0000

N/A

0.0000

N/A

0.0000

N/A

0.0000

0.0000

0.0000

0.0028

0.0000

N/A

0.0000

N/A

0.0000

0.0000

N/A

0.0000

N/A

0.0000

0.0066

0.0010

0.0007

0.0384

N/A

N/A

0.0000

0.0000

0.0000

N/A

0.0000

0.0000



Seed service
time * Traffic N/A N/A N/A N/A N/A N/A N/A N/A
intensity

Number of
replications * N/A N/A N/A N/A N/A N/A N/A N/A
Traffic intensity

4.4.3. Can entropy measures support the identification of the group of seeds that
leads to the largest uncertainty, if any?

To answer whether entropy can support the identification of the group of seeds that
leads to the largest uncertainty, first, it is important to understand whether different seeds
lead to statistically significantly different uncertainty in the model according to a baseline
measure of uncertainty. In this work, the baseline measure of uncertainty is the standard
error of the mean. For this, the linear regression model of the SEM of each input and
output discussed in section 4.4.1 was used together with Tukey-Kramer multiple
comparison test. Next, it is important to investigate whether different seeds lead to
statistically significantly different values of entropy. For this, the linear regression model
of the entropy measures of the inputs and outputs, from section 4.4.2, together with Tukey-
Kramer multiple comparison test were used. The final step is to compare the results to
understand whether the results from the entropy measures are consistent with the results
from the standard error of the mean or not. Table 71 shows the results of the Tukey-Kramer
multiple comparison test for the linear regression model of the SEM and the entropy
measures. The results are shown as a connecting letter report, where any levels that share

a letter do not have a statistically significant difference.
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First, the results in Table 68, Table 69, and Table 70 show that seed is a statistically

significantly factor for both the SEM and the entropy measures of all the inputs and

outputs. Next, Tukey-Kramer multiple comparison test was used to understand the

difference among the seeds. The following important observations can be made from

Table 71:

1.
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With respect to the statistical differences between the seeds, in general, the
results from the entropy measures are similar to the results of the SEM.
When the results are different, the entropy measures appear to be more
sensitive to differences and are able to capture statistically significant
differences more frequently than the SEM.

Although the discrete empirical distribution estimate is not the theoretically
correct approach, as previously discussed, the estimate presented better
results in capturing the deterministic behavior of the simulated queue
system. However, with a few exceptions, with respect to identifying
statistical differences between the seeds, the discrete empirical distribution
estimate showed results very similar to the probability density estimate
method. This is an indicator that the discrete empirical distribution estimate
could be, in fact, a potential estimate for measuring uncertainty in
simulation models.

The results from the normalized and non-normalized version of the entropy

measures are also similar, except for a few cases. This indicates that when
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the goal is to identify the group of seeds that lead to the largest uncertainty,
normalization may not be necessary.

According to the entropy measures, NIS appears to be more sensitive to the
seeds than the TIS, as there were more statistically significant differences
for the former than the latter.

To identify the seed that leads to the largest uncertainty, the least square
mean of each measure was ordered from the smallest to the largest, as
shown in Table 71. At first, the entropy measures do not appear to show
good results. The entropy measures results are not consistent with the
results of the SEM. To investigate the results in more detail, it was decided
to compare the results of the entropy measures and the SEM with the
confidence interval of the inputs and outputs from the simulated queue
model. For every simulated scenario, if the theoretical values of the inputs
and outputs were within their respective confidence interval, it was not
considered an error. If the theoretical values were not within the confidence
interval, it was considered as an error. Figure 80, Figure 81, and Figure 82
show the graphs of the total number of errors per seed for each input and
output. When one compares the results of Table 71 with the results in
Figure 80, Figure 81, and Figure 82, it is possible to see that neither
methods, that is, nor the entropy measures, nor the SEM, are able to
identify the seed that leads to the largest uncertainty consistently with the

seed that leads to the highest number of errors. It is important to highlight
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that as shown in Table 69 and Table 70, there are interactions among the
seed and other parameters, such as number of replications, number of bins,
interarrival time, etc. Despite these interactions, one would expect that
overall, the methods would be consistent. However, for the entropy
measures it is known that the number of bins has a great impact on the
entropy measures values and it can be seen as an overfitting or underfitting
parameter. When specific parameter values were selected, for instance,
number of replications = 50, interarrival time = 180 min, and number of
bins = 1000, the entropy measure was able to consistently detect the seed
that led to the largest number of errors, as shown in Figure 83. This
highlights the importance of adequately selecting the proper number of bins
for the entropy measures. As a future work in this area, one could explore
optimization models to search for the optimum number of bins, where the
objective function would be to have the greatest consistency between the
seed identified by the entropy measures and the seed identified by the
largest number of errors. Another suggestion in this area is to use the
conditional entropy, instead of the entropy as the measure of the
uncertainty. The entropy is the average total uncertainty of the input or
output, but it also contains the amount of information contained in the input
that helps predict the output (or vice-versa). Therefore, a correlation is
expected with measures of error, but not necessarily a match. The

conditional entropy could be a better measure for these cases where one



wants to eliminate the amount of information provided by other variables,

as shown in Figure 84.

Table 61. Tukey-Kramer multiple comparison test results for seed parameter for a-level

= 0.05.

Input or
Output

Seed

Method Measure

Connecting letter report

Seed1

Seed?
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Figure 80. Total number of errors of the inputs interarrival time and service time per
seed. Left-side: Total number of errors in interarrival time per seed used. Right-side:
Total number of errors in service time per seed used.
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Figure 81. Total number of errors of the output number in system per seed. Left-side:
Total number of errors in number in system per interarrival time seed used. Right-side:
Total number of errors in number in system per service time seed used.
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Figure 82. Total number of errors of the output time system per seed. Left-side: Total
number of errors in time in system per interarrival time seed used. Right-side: Total
number of errors in time in system per service time seed used.

o

seedl

0

3

Error AT
SeedAT
seed2

0
Error AT

1

o

1

Error AT

(== b}

Figure 83. Total number of errors of the input interarrival time per seed for number of
replications = 50 and interarrival time = 180 minutes.
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Figure 84. Conditional entropy H(X;|Y;,Y;).

4.4.4. Can entropy measures support the identification of the number of
replications that leads to the largest uncertainty?

To answer whether entropy can support the identification of the number of
replications that leads to the largest uncertainty, first, it is important to understand whether
different replications lead to statistically significantly different uncertainty in the model
according to a baseline measure of uncertainty. For this, the linear regression model of the
SEM of each input and output discussed in section 4.4.1 was used together with Tukey-
Kramer multiple comparison test. Next, it is important to investigate whether different
number of replications lead to statistically significantly different values of entropy. For
this, the linear regression model of the entropy measures of the inputs and outputs, from
section 4.4.3, together with Tukey-Kramer multiple comparison test were used. The final
step is to compare the results to understand whether the results from the entropy measures

are consistent with the results from the standard error of the mean or not. Table 72 shows
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the results of the Tukey-Kramer multiple comparison test for the linear regression model

of the SEM and the entropy measures. The results are shown as a connecting letter report,

where any levels that share a letter do not have a statistically significant difference.

First, the results in Table 68, Table 69, and Table 70 show that number of

replications is a statistically significant factor for both the SEM and the entropy measures

of all the inputs and outputs. Next, Tukey-Kramer multiple comparison test was used to

understand the difference among the number of replications. The following important

observations can be made from Table 72:

1.

347

With respect to the statistical differences between the replications, in
general, the results from the entropy measures are similar to the results of
the SEM. If one considers the results of the non-normalized version of the
entropy measures, the entropy measures appear to be more sensitive to
differences among the replications and be able to capture statistically
significant differences more frequently than the SEM. When one considers
the normalized version, the results of the entropy measures and SEM are
very similar. The exception is for the entropy of interarrival time, where
the entropy measure appeared to be less sensitive than the SEM. However,
in this case, the normalized version appears to be a better measure because
it places all the entropy measures within the same range between 0 and 1,
which makes the comparison among themselves more adequate. Without
the normalization, the entropy measures would have different range values

depending on the number of bins used to calculate the entropy.
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Considering the normalized measures, all three methods showed results
very similar to each other. Especially, with respect to the number of
replications equal to 800 and 1,000, all three methods were not able to
identify any statistical significance between them, which indicates that
running 1,000 replications may potentially not be worth it if one is
constrained by computer resources and/or time. For entropy of interarrival
time, the entropy measures were not able to identify statistically significant
differences not even between 400 replications and 800 replications.
According to the entropy measures, the inputs appear to be more sensitive
to the replications than the outputs, as there were more statistically
significant differences for the first group than the latter.

As the results in Table 72 show, while the SEM decreases with the increase
in the number of replications, the entropy increases. At first, one could
think that this would indicate that the entropy measures results are not
consistent with the results of the SEM. However, this is not the case. The
SEM is a measure divided by the number of samples, in this case the
number of replications. Therefore, it is expected that as the number of
replications increase, SEM should decrease. Entropy, on the other hand, is
the average total uncertainty or information content. Intuitively, as the
number of replications increase, it is expected that the total uncertainty or
information content will also increase. A more technical explanation is that

entropy is a function that decreases as the probability of an event increases.



In general, with more replications, more events may be observed and the
probability of an event may in fact decrease. Therefore, if one wants to
choose the best number of replications, one cannot simply use the total
entropy, but a suggestion would be to calculate the entropy per replication
or to calculate the gain in entropy per replication, which can be calculated

from a set number of replications to another number of replications, such

as H(Xsetz) - H(Xsetl)/(nrepssetz - nrepssetl)-

Table 62. Tukey-Kramer multiple comparison test results for number of replications
parameter for a-level = 0.05.

Input Number of replications connecting letter report
or Method Measure
Output 10 20 50 100 200 400 600 800 1000 1500
SEM A B C D E F G H H I
. J I H G F E D c B A
Discrete
AT NoomH G F E D C AB B A B AB
PDF H I H G F E D c B B A
NoomH G F E D C AB B A B AB
SEM A B C D E F G GH H.l I
. J I H G F E D c B A
Discrete
ST NormH I H G F E D c B AB A
PDF H J I H G F E D c B A
NoomH | H G F E D C B AB A
SEM A B C D E F F.G FG F.G G
. J I H G F E D C B A
Discrete
NIS NormH H G F E D C B AB A A
PDE H J I H G F E D C B A
NormH H G F E D C B AB AB A
SEM A B C D E F F.G FG F.G G
. J I H G F E D C B A
Discrete
TIS NormH H G F E D C B A A A
PDE H J I H G F E D C B A
NormH H G F E D C B A A A
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4.4.5. Can entropy measures support the selection of the most important
parameters?

To answer the guestion whether entropy measures can support the selection of the
most important input parameters in a simulation model, first it is important to investigate
what are the significant parameters for the simulation model according to a known method
in the literature. In this work, ANOVA is used to identify the significant parameters for
each simulation response. Next, it is important to investigate what are the most important
parameters based on the mutual information measures. For this, the mutual information
index, as described in section 4.3.5, is used. The results obtained from the mutual
information index was tested using contingency analysis. Finally, the results from the
mutual information index were compared to the results of ANOVA.

For the ANOVA, the following different factors were considered: (i) interarrival
time mean value (X,); (ii) service time mean value (X,); (iii) seed interarrival time; (iv)
seed service time; (v) traffic intensity; and, (vii) number of replications. The results of
ANOVA are shown in Table 63. Figure 85 shows the actual by predicted plot of the models
of the simulation responses. From the results in Table 63, one can see that both the
interarrival time and the service time are considered statistically significant factors for the

simulation responses NIS and TIS.

Table 63. ANOVA results for simulation responses for a-level = 0.05.

Model NIS TIS
Model p-value <0.0001 <0.0001
R? 0.9999 0.9999
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R?adj 0.9999 0.9999
Factor p-value p-value
Seed interarrival time 0.0003 0.0012
Interarrival time mean value 0.0000 0.0066
Seed service time N/A N/A
Service time mean value 0.0000 0.0000
Number of replications 0.0017 0.0001
Traffic intensity 0.0000 0.0000
Seed interarrival time * Interarrival time mean value 0.0000 0.0000
Seed interarrival time * Seed service time N/A N/A
Seed interarrival time * Service time mean value 0.0000 0.0000
Seed interarrival time * Number of replications 0.0004 0.0040
Seed interarrival time * Traffic intensity N/A N/A
Interarrival time mean value * Seed service time N/A N/A
Interarrival time mean value * Seed service time N/A N/A
Interarrival time mean value * Service time mean value 0.0000 N/A
Interarrival time mean value * Number of replications 0.0017 0.0011
Seed service time * Service time mean value N/A N/A
Seed service time * Number of replications N/A N/A
Service time mean value * Number of replications 0.0002 0.0001
Seed service time * Traffic intensity N/A N/A
Number of replications * Traffic intensity N/A N/A
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8 160
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&0
&0
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/ 20

0
o 1 2 3 4 5 6 7 & 9
Sim_Y¥1 - NIS Predicted RMSE=0.0205 R5g=0.9999
Pvalue=<,0001

==l

- MIS Actual

Sim_¥2 - TIS Actual

Sim_¥1
[ L N %= R S W B = 1

0

el

20 40 60 30 100 120 140 180 180

Sim_Y2 - TIS Predicted RMSE=0.3936

R5q=0.99991 PValue=<.0001

Figure 85. Actual by predicted plot of the simulation responses. Left-side: ¥4 - NIS.
Right-side: ¥, - TIS.
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Contingency analysis was performed in JMP® Prol5 to test whether one of the

inputs (e.g., interarrival time) provided statistically significantly more information than

the other (e.g., service time). The results from the contingency analysis are summarized

in Table 64 and shown in Figure 86 and Figure 87. Figure 86 and Figure 87 show the

results for the non-normalized MI only. Contingency analysis was also used to test

whether the useful information provided by each input to the output varied based on

different factors, such as: seed used for the inputs, number of replications, queue model,

and traffic intensity. These results are summarized in Table 65.

The following important observations can be made from Table 64 with respect to

the importance of the inputs to the outputs:

1.
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The normalization does not appear to have an impact on the importance of
the inputs to the outputs. The results were the same regardless of using
normalization or not. Similar observation can be made from Table 65.

The results from the MI estimation method were consistent for the output
NIS, but differed for the output TIS. Based on these results, it is difficulty
to validate whether one method is better than the other or whether one
method is correctly estimating the most significant input at all. According
to Law (2007), time in system appears to be more impacted by service time
than by arrival time. Assuming this is correct, the discrete empirical
estimate is leading to better results than PDF, which matches the results
from section 2.4. This also highlights the importance of choosing the

responses of interest when modeling a system. The most significant



parameters in a model may be different depending on the response of
interest. When a modeler is constrained by time and resources, knowing
the responses of interest is important to adequately choose the inputs to
include in the model and from which to collect data.

3. Based on the ANOVA method, AT and ST was found to be significant
parameters to the outputs of the model. By using mutual information index,
the MI measure allows the modelers to go one step further by calculating
the proportion of importance of the parameters to the outputs of the model.

To investigate the results more in depth, it was also analyzed how the results of

the contingency analysis would change based on the number of bins. Although the
proportion of importance of the inputs slightly change based on the number of bins, the
conclusion about the most important input did not change for every response of interest
and every MI estimation method being investigated. Therefore, in this case, number of
bins does not appear to impact the results about which input provides significantly more
information to the output. The importance of AT and ST to NIS and TIS does vary based

on the number of bins.

Table 64. Results of the contingency analysis to test whether one input provides
significantly more information to the output than the other for a-level = 0.05.

With or without . NIS . TIS
Method N Most important Most important
normalization . p-value . p-value
input input
Without
Discrete  normalization AT <0.0001 ST <0.0001
With normalization AT <0.0001 ST <0.0001
PDF Withou_t _
normalization AT <0.0001 AT <0.0001
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With normalization AT <0.0001 AT <0.0001
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Figure 86. Mosaic plot of importance of inputs for the outputs using discrete empirical
distribution to calculate the mutual information measures. Left-side: Importance of
inputs for the output ¥, - NIS. Right-side: Importance of inputs for the output ¥, - TIS.
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Figure 87. Mosaic plot of importance of inputs for the outputs using probability density
distribution to calculate the mutual information measures. Left-side: Importance of
inputs for the output ¥, - NIS. Right-side: Importance of inputs for the output ¥, - TIS.

From Table 65, one can see that in general the seed, number of replications, queue
model, and traffic intensity impact the importance of the inputs to the outputs. An

exception is the factor queue model for the importance of AT and ST to the output NIS
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when using discrete empirical distribution. Again, when comparing these results with the

ANOVA results, the discrete empirical distribution appears to have better results.

According to the ANOVA, seed of interarrival time, traffic intensity, and number of

replications were among the factors that were significant for the responses NIS and TIS.

Queue model and seed service time were not found to be significant.

Table 65. Results of the contingency analysis to test whether the useful information
provided by the input varies based on different factors for a-level = 0.05.

NIS TIS
With or Importance Importance Importance Importance
Method W|th_out_ Factors of AT of ST of AT of ST
normalization
p-value p-value p-value p-value
Seed
interarrival
time <0.0001 <0.0001 <0.0001 <0.0001
Seed service
. time <0.0001 0.0029 0.0401 0.0764
Without
normalization N“”ﬁbef of
replications <0.0001 <0.0001 <0.0001 <0.0001
Queue
model 0.3350 0.2780 <0.0001 <0.0001
Traffic
. intensity <0.0001 <0.0001 <0.0001 <0.0001
Discrete
Seed
interarrival
time <0.0001 <0.0001 <0.0001 <0.0001
Seed service
. time <0.0001 0.0029 0.0401 0.0764
With
normalization N“”ﬁbef of
replications <0.0001 <0.0001 <0.0001 <0.0001
Queue
model 0.3350 0.2780 <0.0001 <0.0001
Traffic
intensity <0.0001 <0.0001 <0.0001 <0.0001
Seed
interarrival
. time <0.0001 <0.0001 <0.0001 <0.0001
Without .
PDF normalization Seed service
time <0.0001 <0.0001 <0.0001 <0.0001
Number of
replications <0.0001 <0.0001 <0.0001 <0.0001
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Queue

model 0.0021 <0.0001 0.0302 <0.0001
Traffic
intensity <0.0001 <0.0001 <0.0001 <0.0001
Seed
interarrival
time <0.0001 <0.0001 <0.0001 <0.0001
Seed service

. time <0.0001 <0.0001 <0.0001 <0.0001

With

normalization Number of

replications <0.0001 <0.0001 <0.0001 <0.0001
Queue
model 0.0021 <0.0001 0.0302 <0.0001
Traffic
intensity <0.0001 <0.0001 <0.0001 <0.0001

4.5. Concluding remarks

In this work, three different applications of entropy measures and mutual
information were investigated to support experiment planning and input parameter
selection in simulation models. For this, a total of 1620 experiments were run in Simio®
University Enterprise Edition v 12.205 with different experiment configurations.

In section 4.4.3, entropy measures were used to support the identification of the
seed that leads to the largest uncertainty, if any, in simulation models. For that, regression
analysis and Tukey-Kramer multiple comparison test were used. As the results indicate,
the entropy measures were able to detect similar statistical differences among the seeds as
the SEM, but sometimes the entropy measures were more sensitive and detected more
statistical differences than the SEM. However, the entropy measures were not consistent
with the SEM method in detecting the seed that led to the largest uncertainty. In this case,
there are three different hypotheses: (i) the entropy measure is not accurate, (ii) the SEM

IS not accurate, or (iii) none of the methods are accurate. When the entropy measures and
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the SEM were investigated to detect the seed that led to the largest number of errors, based
on the confidence interval resulting from the simulation model and the theoretical value
of the input or output, none of the methods appeared to be consistent. However, depending
on the parameter values selected, the entropy measure was able to consistently detect the
seed that led to the largest number of errors. This highlighted the impact of number of bins
on the results of entropy measures.

In section 4.4.4, entropy measures were used to support the identification of the
number of replications that leads to the largest uncertainty in simulation models. Similar
to section 4.4.3, regression analysis and Tukey-Kramer multiple comparison test was used
for this purpose. Considering the normalized entropy measures, the entropy measures
estimated either using discrete empirical distribution or probability density distribution
showed results similar to the SEM. More specifically, it appears that if one is constrained
by time or computer resources, 800 replications is a better choice than 1,000 replications.

In section 4.4.5, mutual information was used to identify the most important
parameters to the models based on the response of interest. For that, ANOVA, contingency
analysis, and an adaptation of mutual information index were used. The adaptation of
mutual information index was proposed so that the measure would add to 1. As the results
indicate, the measure appears to be capable to detect the importance of the inputs to the
different outputs. However, the results were different based on the estimator being used
(discrete vs. PDF). Based on results from section 2.4, section 4.4.3, and also based on the
fact that according to Law (2007), time in system appears to be more impacted by service

time than by arrival time, it is believed that the discrete empirical distribution is a better
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estimate for entropy measures in the context of uncertainty quantification in simulation

models. These results also indicate the importance of choosing the responses of interest

when modeling a system, as the most significant parameters in a model may be different

depending on the response of interest.

According to the experimental results, a few important observations can be made:

1.
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In general, entropy measures and mutual information are able to detect
statistical differences in the groups of seeds used, number of replications,
or input parameters similar to other well-known methods in the literature,
but the measures are not always able to detect the group that leads to the
largest uncertainty consistently with other methods.

Normalization of entropy measures is suggested in the literature to
minimize the effect of the number of bins in calculating entropy measures.
However, as the experimental results suggest, this is more beneficial when
the entropy measures calculated with different number of bins are being
compared among themselves. Normalization is also required when entropy
measures are being used to identify the number of replications that leads to
the largest uncertainty. In other situations, normalization may not be
required as the results with or without normalization are the same.
Although the discrete empirical distribution estimate is not the theoretically
correct approach, the estimate appeared to have better results in capturing
the deterministic behavior of the simulated queue system and the

uncertainty of simulation models overall.



4.

The NIS response appears to be more sensitive to seeds than the TIS and
the inputs appear to be more sensitive to the number of replications than

the outputs.

As future research, it is suggested:

1.
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To investigate the use of conditional entropy, instead of entropy, as a better
measure of uncertainty for simulation models to identify the group of seeds
and the number of replications that leads to the largest uncertainty. As
previously discussed, the entropy is the average total uncertainty of the
input or output, but it also contains the amount of information contained in
the input that helps predict the output (or vice-versa). Therefore, a
correlation is expected with measures of error, but not necessarily a match.
The conditional entropy could be a better measure for these cases where
one wants to eliminate the amount of information provided by other
variables.

To investigate the use of entropy per replication or gain in entropy per
replication, (H(Xet2) — H(Xger1)/(MrepSgers — Nrepsger1)), as a better
measure to identify the number of replications that leads to the largest
uncertainty.

To investigate the optimum number of bins to be used to calculate entropy
measures in the context of simulation models. For this, one could explore
optimization models to search for the optimum number of bins, where the

objective function is to have the greatest consistency (or minimize the



difference) between the seed that leads to the largest uncertainty identified
by the entropy measures and the seed identified by the largest number of
errors, such as shown in Equation 83.

minz (if seed H, = seed E},, = 0, otherwise 1)

i

bij=1or0,i=12..10
Z bi =1
i
Where b; is i*" number of clusters.
4. To further explore the optimum number of replications to be used in

simulation models with the support of entropy measures by using
optimization models. In this case, one can maximize the Ml provided by

the inputs to the outputs, such as shown in Equation 84.

max ) (X3 ¥) + 1053 Y))
j

subject to Equation 84
r = lor0,j=12..,10

S
j
Where 7; is j** number of replications.
As previously highlighted, entropy measures are dependent on the number of bins
used to calculate the measures. Therefore, adequately defining the number of bins should
be a topic of further investigation.

The fact that the method was not validated theoretically is the main limitation of

this work. However, in an attempt to mitigate this limitation, the method was compared
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with results from other well-known methods from the literature. There are still many open
questions about this topic and a vast area of research for further investigation. From the
experimental results, although more work needs to be done, the method appears to be

capable to support experimental planning and parameter selection in simulation models.
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5. CONCLUSIONS

Through empirical results from different simulation experiments on a queue
system, this dissertation provided insights about the implications of uncertainty in the
results of simulation models and it investigated entropy measures as a method for
uncertainty quantification in simulation models.

The first contribution of this dissertation was to discuss the trade-off between
model uncertainty and data uncertainty and to show the implications of uncertainty in the
results of simulation models through an illustrative queue example. In section 1.1.2,
simulation experiments revealed that the accuracy of the model does not necessarily
increase with the increase in the number of replications. Using this result, the importance
of assessing whether running more replications is economically and computationally
attractive was discussed.

In section 2, Shannon’s entropy and mutual information measures were
investigated as measures of uncertainty in simulation models when using histogram-based
method with varying number of bins and normalization methods. The first contribution of
this section was to discuss the challenges encountered when computing entropy measures
for continuous variables. It was shown that using the existing discrete scheme of correction
for continuous variables while estimating entropy measures can still lead to negative
values. A similar issue occurs when one adopts m(x) = E[f(x)] in the solution proposed
by Jaynes (1957). To overcome these challenges, a data normalization procedure was

proposed that minimizes the issues of interpretability of entropy in the continuous case.



The proposed procedure can be implemented when using fixed number of bins, but it
cannot be implemented when using formulas that calculate the optimum number of bins.
In section 2, it was also shown that when entropy and MI measures were estimated using
the histogram-based method with probability density function, the measures tended to
decrease with the increase in the number of bins (or decrease in the binwidth) for the same
number of replications, which contradicts what is mentioned in the literature. When the
measures were estimated using the histogram-based method with discrete empirical
distribution, the measures tended to increase with the increase in the number of bins. This
led to the hypothesis that in the literature, researchers have been using the discrete
empirical distribution to estimate the measures even though the variables may be
continuous. To eliminate the effect of the bins on the MI, different normalization methods
were assessed and the theoretical normalization of the M1 was the method that showed the
best results for not altering the behavior of the MI with respect to the number of
replications. As it was later shown in section 2, either the probability density function or
the discrete empirical distribution was able to capture the uncertainty in the simulation
models with respect to different traffic intensities, different seeds, and different parameters
values. However, only the discrete empirical distribution was able to adequately capture
the deterministic behavior of systems or input parameters like CONWIP or travel time
regardless of the number of bins. Using the probability density function, the entropy and
MI measures were only able to capture the deterministic behavior for number of bins

exceeding 1,000.
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Section 3 was an extension of section 2, where Shannon’s entropy and mutual
information were investigated as measures of uncertainty in simulation models using
different estimators, namely kernel-based method, k-nearest neighbors, and fuzzy-
histogram-based method. The first contribution of section 3 was to propose a function
m(x) = f(x)(1 + f(x)) to be used in the approach proposed by Jaynes (1957) to handle
the challenges in calculating entropy measures for continuous variables. The function
allowed for the calculation of the entropy measures regardless of the choice of the bin and
the choice of the density estimation method. Next, a challenge encountered when
calculating M1 using the product kernel multivariate formula was discussed and a solution
was proposed based on discussions found in Silverman (1986). Similar to section 2, the
results showed that entropy and MI measures estimated using the kernel-based method, k-
nearest neighbors, and fuzzy-histogram-based method were able to capture the uncertainty
in the simulation models with respect to different traffic intensities, different seeds, and
different parameters values, but were not able to adequately capture the deterministic
behavior of systems or input parameters like CONWIP or travel time regardless of the
parameter used (such as bandwidth, k-nearest neighbors, or number of bins). The reasons
for the estimators not being able to adequately capture the deterministic behavior were
discussed in the chapter, which can be used in future research to propose adaptation of the
methods to capture the deterministic behavior. For the KNN method and the fuzzy-
histogram based method, the entropy was able to capture the deterministic behavior
regardless of the choice of the k-nearest neighbors or number of bins. Nevertheless, the
MI was not able to capture the deterministic behavior in any of the methods, that is, when
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estimated either using the kernel-based method, the KNN method, or the fuzzy-histogram
based method. For the kernel-based method, the entropy measures also had issues in
capturing the deterministic behavior. In section 3.4.9, an overall comparison in terms of
characteristics and results of all estimators was provided.

Finally, section 4 was a continuation of section 2 and section 3, where the ability
of entropy measures to quantify uncertainty in simulation models was investigated through
a series of applications of the measures for input parameter selection and experiment
planning. These applications involved calculating Shannon’s entropy and mutual
information for full-factorial queue simulation model experiments using stationary
univariate distributions. The entropy measures were estimated using histogram-based
method with probability density function and the entropy normalization method proposed
in section 3.4, as well as using histogram-based method with empirical discrete
distribution. Standard error of the mean, regression analysis, and Tukey-Kramer multiple
comparison test were used to investigate whether entropy measures could support the
identification of the number of replications and the seed that led to the largest uncertainty
in the simulation model. ANOVA and contingency analysis were used to investigate
whether MI measures could support the identification of the most important input
parameters for the simulation model. An adaptation of the mutual information index was
proposed to identify the most important input parameters of the simulation model. As the
results indicated, the entropy measures were able to detect similar statistical differences
among the seeds as the SEM but were not consistent with the SEM method in detecting

the seed that led to the largest uncertainty and only the normalized entropy measures
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showed results similar to the SEM for identifying the number of replications that leads to
the largest uncertainty in simulation models. With respect to detecting the importance of
the inputs to the different outputs, the results were different based on the estimator being
used (discrete vs. PDF). Based on results from section 2.4, section 4.4.3, and also found
by Law (2007), time in system appears to be more impacted by service time than by arrival
time, it was experimentally found that the discrete empirical distribution is a better
estimate for entropy measures in the context of uncertainty quantification in simulation
models. These results also indicated the importance of choosing the response parameters
of interest when modeling a system, as the most significant parameters in a model may be
different depending on the response parameters of interest. The advantage of the mutual
information index over ANOVA is that while ANOVA only allows to indicate whether
the input parameter is statistically significant or not for the output, the proposed adaptation
of the mutual information index allows to quantify which input parameter is more
significant than the other by measuring the importance in terms of percentage.

The main limitations of this dissertation are: (i) only a queue-system was used as
an example to run the experiments; (ii) although the entropy and MI measures were
compared with other well-known measures reported in the scientific community, the
method was not validated theoretically; and (iii) a quantitative way to rank the entropy
estimators among themselves was not developed.

As future research, it is recommended: (i) to run similar experiments in different
type of systems and to investigate how the responses would change (e.g., flow system,

infection-transmission system, etc.); (ii) to propose a framework to validate the work
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theoretically; (iii) to propose adaptations for the entropy estimators to adequately measure
deterministic behavior; (iv) to investigate the use of conditional entropy, instead of
entropy, as a better measure of uncertainty for simulation models to identify the group of
seeds and the number of replications that lead to the largest uncertainty; (v) to investigate
the use of entropy per replication or gain in entropy per replication as a better measure to
identify the number of replications that leads to the largest uncertainty; (vi) to investigate
the optimum number of bins to be used to calculate entropy measures in the context of
simulation models through optimization models; and, (vii) to investigate the optimum
number of replications to be used in simulation models through entropy measures and
optimization models. There are a number of open questions about this topic and a vast
area of research questions for further investigation. From the experimental results shown
in this dissertation, the method appears to be capable of supporting uncertainty
quantification, experimental planning, and parameter selection in simulation models.
Based on the results, the recommendation while using the method is to calculate
the entropy and MI measures using the histogram-based method with discrete empirical
distribution, which although is not the correct estimator given the continuous nature of the
variables. This was the estimator that showed the most promising results in detecting the
uncertainty in the simulation models and also identifying the most important input
parameters to impact the outputs. Moreover, the histogram-based method with discrete
empirical distribution estimator did not exhibit challenges with respect to its calculation.

If one decides to consider other options, the next recommendation is to follow the
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approach proposed by Jaynes (1962) but to use m(x) = f(x)(1 + f(x)) as proposed in
section 3.4.1.

As final recommendations of this work, there are a few suggestions on how entropy
measures can be applied by simulation modelers and other practitioners of the field.
Entropy and mutual information measures have the advantage of providing a single
number or score for comparison among different scenarios, models, inputs, etc., which is
an advantage to be explored in future applications.

Based on Figure 5, it is known that a simulation model contains multiple sources
of uncertainty, such as: parameter uncertainty, experimental or output uncertainty,
simulation generated inputs, and so on. Therefore, entropy measures can be applied in
different contexts to measure each one of these sources, as discussed below. Some possible
fields of applications are also discussed.

With respect to parameter uncertainty, mutual information measures can be used
to quantify the impact of the inputs on the outputs and to identify from a large number of
parameters which ones are the most relevant to be included in the model. Such an
application was discussed in section 4. Entropy of the input and conditional entropy of the
input given the output can also be used to quantify the uncertainty of the collected data
and the uncertainty of the simulation generated data. With respect to the collected data,
one can compare the data among themselves and their uncertainty to assess which inputs
would bring more uncertainty into the system. With respect to the simulation generated
data, one can also use entropy measures to investigate the quality of the seeds of the pseudo
random number generator, as discussed in section 4.
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With respect to experimental or output uncertainty, one can use the entropy of the
output or conditional entropy of the output given the input to quantify the uncertainty of
the outputs and determine the best number of replications to run based on the responses of
interest and the available computational resources, similar to one of the applications
discussed in section 4. Another important application of entropy is as an extension of
model verification and validation. As a single measure value, one can also use entropy: (i)
to compare multiple models with different input parameters among themselves, for
instance, and choose the one that has the lowest uncertainty; and (ii) to validate a model
by comparing the uncertainty of the model with the uncertainty of the historical collected
data.

Entropy measures can only be calculated after some data is either collected in the
real-world or generated in the simulation model. However, after some data is collected
and the entropy is calculated, it is possible to aggregate the entropy measures in real-time
to the simulation models reports or to the visualization charts. These reports or
visualizations can be used for different comparisons as previously discussed in this
section. Bootstrap techniques can be used to generate confidence intervals of the entropy
measures as well, instead of using a single point estimate.

In terms of field of applications, entropy measures can be applied to a range of
simulation models and with different goals, such as: to quantify the variability in the
performance of manufacturing design or manufacturing processes; to quantify predictive
uncertainty in hydrological models or to improve weather forecasting models like

hurricane models; to quantify uncertainty and decision risk in environmental crisis
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management models; to quantify risk in financial models, sport models, and medical
diagnoses; to select models in image detection or natural language processing; and several
other applications in different domains.

As examples of how entropy measures can be used by practitioners in their real-
world applications, it is possible to cite: (i) public heatlh practitioners can potentially use
mutual information in infectious disease spread models to rank the importance of input
parameters such as, periodic (such as daily) vector to human infect rate, periodic human
to vector infect rate, periodic human latent rate, periodic human recovery rate, periodic
vector mortality rate, percentage of asymptotic cases, periodic transmission rate, among
others, on output parameters, such as total duration of the epidemic, number of epidemic
waves, total number of exposed individuals, total number of infected individuals, total
number of recovered individuals; (ii) public health practitioners can potentially use
entropy measures to create a dashboard for analysis and comparison of the different
uncertainty values resulting from input parameters collected in different regions, such as
daily transmission rate in one country or region versus daily transmission rate in another
country or region, or parameters that are difficult to quantify (quantified subjectively),
such as the probability that individuals in a population that adhere to control measures;
(iii) emergency responders can potentially use entropy measures to evaluate the risks of a
wildfire spread given the evolving conditions (e.g., specific wind conditions, weather,
number of firefighters dispatched, equipment usage, etc.); (iv) emergency responders can
potentially use mutual information to assess how temporal weather data, topographic data,

and real spatial fuels data impact the wildfire spread outcome; (v) emergency response
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planners can potentially use entropy measures as a single value measure for comparison
of the risks involved in the different possible human behaviors displayed during a disaster
and, subsequently use mutual information to classify these different human behaviors in
different categories, such as low risk, medium risk, and high risk, based on the expected
number of total casualties resulting from disaster evacuation simulations; (vi) emergency
response planners can potentially use mutual information in hurricane simulations to
calculate the impact of air-sea temperatures, mileposts, and terrain on storm intensity, size,
and speed, and as these numbers are updated and the storm evolves, dashboards can be
developed to show to the user how the uncertainty and the risk of the storm changes from
the initial formation until the moment the storm makes landfall; and, (vii) manufacturing
and reliability engineers can use reliability system simulation to quantify the uncertainty
of producing good parts and equipment breakdown, which, in turn, translates to the risk

of producing defective parts and process disruptions respectively.
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APPENDIX A

CONFIGURATION OF EXPERIMENTS AND RESULTS

Table 66. Experiments to assess the quality of entropy and mutual information as
measures of uncertainty quantification in simulation models.
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APPENDIX B

RESULTS OF SECTION 2

Table 67. Results from the comparison of the measures of dependence versus the Ml
calculated using the histogram-based method with fixed number of bins and probability
density function for detecting the input with the greatest impact on the output, per
number of bins and number of replications.

. o Distance correlation Pearson correlation Rzadi
Bins Number of replications
NIS TIS NIS TIS NIS TIS
10 12.70%  12.70%  11.40%  15.20% 10.10% 11.40%
20 25.30%  19.00%  22.80%  21.50% 19.00% 21.50%
50 29.10%  29.10%  31.60% 31.60% 31.60% 31.60%
100 35.40%  34.20% 34.20%  38.00% 34.20% 38.00%
) 200 34.20%  43.00%  38.00%  44.30% 38.00% 44.30%
400 40.50%  34.20%  35.40%  32.90% 35.40% 32.90%
600 31.60%  29.10%  27.80%  27.80% 27.80% 27.80%
800 43.00%  41.80% 41.80% 46.80% 41.80% 46.80%
1000 41.80%  44.30%  44.30% 50.60% 44.30% 50.60%
1500 40.50%  31.60%  39.20%  32.90% 39.20% 32.90%
2 Total 33.40%  31.90% 32.70%  34.20% 32.20% 33.80%
10 26.60%  36.70%  29.10%  38.00% 24.10% 35.40%
20 36.70%  38.00% 36.70%  40.50% 32.90% 40.50%
50 19.00%  26.60%  21.50%  27.80% 21.50% 27.80%
100 40.50%  45.60%  41.80% 46.80% 41.80% 46.80%
: 200 41.80%  40.50%  39.20%  39.20% 39.20% 39.20%
400 43.00%  38.00%  38.00% 39.20% 38.00% 39.20%
600 4560%  38.00%  40.50%  45.60% 40.50% 45.60%
800 36.70%  40.50%  38.00%  45.60% 38.00% 45.60%
1000 32.90%  40.50%  34.20%  43.00% 34.20% 43.00%
1500 38.00%  43.00%  43.00%  49.40% 43.00% 49.40%
5 Total 36.10%  38.70%  36.20% 41.50% 35.30% 41.30%
10 20.30%  19.00%  20.30% 16.50% 16.50% 12.70%
20 35.40%  40.50%  41.80%  40.50% 39.20% 40.50%
10 50 35.40%  46.80%  39.20%  46.80% 39.20% 46.80%
100 59.50%  54.40% 54.40% 51.90% 54.40% 51.90%
200 43.00%  34.20%  41.80% 43.00% 41.80% 43.00%
400 44.30%  38.00% 34.20% 39.20% 34.20% 39.20%
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600 48.10%  43.00%  38.00%  46.80% 38.00% 46.80%

800 43.00%  41.80% 34.20%  39.20% 34.20% 39.20%

1000 40.50%  38.00%  30.40%  34.20% 30.40% 34.20%

1500 38.00%  41.80%  39.20%  41.80% 39.20% 41.80%

10 Total 40.80%  39.70%  37.30%  40.00% 36.70% 39.60%

10 16.50%  13.90%  12.70%  12.70% 12.70% 10.10%

20 30.40%  31.60%  30.40%  32.90% 26.60% 32.90%

50 45.60%  40.50%  43.00%  44.30% 43.00% 44.30%

100 53.20%  45.60%  40.50%  43.00% 40.50% 43.00%

25 200 49.40%  49.40%  53.20%  55.70% 53.20% 55.70%
400 3420%  36.70%  38.00%  39.20% 38.00% 39.20%

600 38.00%  44.30%  43.00%  49.40% 43.00% 49.40%

800 43.00%  44.30%  48.10%  50.60% 48.10% 50.60%

1000 38.00%  41.80%  46.80%  48.10% 46.80% 48.10%

1500 36.70%  38.00%  41.80%  45.60% 41.80% 45.60%

25 Total 38.50%  38.60%  39.70%  42.20% 39.40% 41.90%

10 7.60% 6.30% 5.10% 3.80% 3.80%  2.50%

20 29.10%  30.40%  31.60% 29.10% 26.60% 29.10%

50 53.20%  43.00%  51.90%  44.30% 51.90% 44.30%

100 46.80%  44.30%  44.30%  44.30% 44.30% 44.30%

50 200 40.50%  34.20%  39.20%  35.40% 39.20% 35.40%
400 3420%  41.80%  51.90%  46.80% 51.90% 46.80%

600 32.90%  44.30%  43.00% 41.80% 43.00% 41.80%

800 48.10%  49.40%  51.90% 51.90% 51.90% 51.90%

1000 48.10%  50.60%  51.90%  54.40% 51.90% 54.40%

1500 51.90%  60.80%  54.40%  55.70% 54.40% 55.70%

50 Total 39.20%  40.50%  42.50%  40.80% 41.90% 40.60%

10 11.40%  12.70% 8.90% 11.40% 7.60%  8.90%

20 2410%  26.60%  21.50%  26.60% 16.50% 26.60%

50 39.20%  50.60%  39.20%  48.10% 39.20% 48.10%

100 4430%  32.90%  40.50%  31.60% 40.50% 31.60%

100 200 38.00%  36.70%  40.50%  35.40% 40.50% 35.40%
400 45.60%  38.00%  45.60%  36.70% 45.60% 36.70%

600 4430%  54.40%  46.80%  54.40% 46.80% 54.40%

800 4430%  49.40%  48.10%  50.60% 48.10% 50.60%

1000 50.60%  58.20%  59.50%  57.00% 59.50% 57.00%

1500 41.80%  50.60%  39.20%  44.30% 39.20% 44.30%

100 Total 38.40%  41.00%  39.00%  39.60% 38.40% 39.40%

200 10 13.90%  13.90%  12.70%  13.90% 10.10% 10.10%
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20 17.70%  15.20%  16.50%  15.20% 11.40% 15.20%

50 40.50%  44.30%  40.50%  45.60% 40.50% 45.60%

100 50.60%  46.80%  50.60%  39.20% 50.60% 39.20%

200 54.40%  41.80%  45.60%  46.80% 45.60% 46.80%

400 41.80%  49.40%  50.60%  44.30% 50.60% 44.30%

600 3420%  53.20%  45.60%  48.10% 45.60% 48.10%

800 51.90%  4430%  50.60%  51.90% 50.60% 51.90%

1000 51.90%  51.90%  55.70%  53.20% 55.70% 53.20%

1500 46.80%  45.60%  44.30%  44.30% 44.30% 44.30%

200 Total 40.40%  40.60%  41.30%  40.30% 40.50% 39.90%
10 12.70%  12.70%  11.40%  12.70% 8.90%  8.90%

20 12.70%  13.90%  12.70%  13.90%  7.60% 13.90%

50 40.50%  43.00%  36.70%  40.50% 36.70% 40.50%

100 57.00%  46.80%  51.90%  38.00% 51.90% 38.00%

500 200 45.60%  49.40%  43.00%  46.80% 43.00% 46.80%
400 46.80%  51.90%  46.80%  49.40% 46.80% 49.40%

600 38.00%  45.60%  44.30%  41.80% 44.30% 41.80%

800 41.80%  46.80%  45.60%  35.40% 45.60% 35.40%

1000 39.20%  39.20%  41.80%  34.20% 41.80% 34.20%

1500 36.70%  36.70%  34.20%  32.90% 34.20% 32.90%

500 Total 37.10%  38.60%  36.80%  34.60% 36.10% 34.20%
10 12.70%  12.70%  11.40% 12.70% 8.90%  8.90%

20 6.30% 6.30% 5.10% 6.30% 6.30%  6.30%

50 38.00%  4430%  36.70%  45.60% 36.70% 45.60%

100 39.20%  34.20%  32.90%  31.60% 32.90% 31.60%

1000 200 41.80%  38.00%  40.50%  40.50% 40.50% 40.50%
400 41.80%  48.10%  39.20%  51.90% 39.20% 51.90%

600 43.00%  3540%  40.50%  35.40% 40.50% 35.40%

800 49.40%  39.20%  44.30%  35.40% 44.30% 35.40%

1000 50.60%  39.20% 51.90% 32.90% 51.90% 32.90%

1500 40.50%  43.00%  43.00%  39.20% 43.00% 39.20%

1000 Total 36.30%  34.10%  34.60% 33.20% 34.40% 32.80%
10 12.70%  12.70%  11.40%  12.70% 8.90%  8.90%

20 12.70%  12.70%  12.70%  12.70%  7.60% 12.70%

50 17.70%  22.80%  16.50%  25.30% 16.50% 25.30%

2000 100 50.60%  32.90%  35.40%  38.00% 35.40% 38.00%
200 38.00%  36.70%  39.20%  39.20% 39.20% 39.20%

400 48.10%  41.80%  38.00%  38.00% 38.00% 38.00%

600 57.00%  43.00%  55.70%  43.00% 55.70% 43.00%
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800 53.20%  48.10%  54.40%  38.00% 54.40% 38.00%
1000 45.60%  49.40%  40.50%  49.40% 40.50% 49.40%
1500 45.60%  36.70%  43.00%  36.70% 43.00% 36.70%
2000 Total 38.10%  33.70%  34.70%  33.30% 33.90% 32.90%

Table 68. Results from the comparison of the measures of dependence versus the Ml
calculated using the histogram-based method with fixed number of bins and probability
density function for detecting the input with the least impact on the output, per number

of bins and number of replications.

i L Distance correlation Pearson correlation Rzadj
Bins Number of replications
NIS TIS NIS TIS NIS TIS
10 12.70%  15.20% 1.30% 8.90% 1.30% 2.50%
20 3290%  29.10%  21.50%  26.60% 20.30% 21.50%
50 31.60%  35.40% 35.40% 36.70% 31.60% 36.70%
100 39.20%  41.80%  38.00%  49.40% 35.40% 49.40%
) 200 40.50%  44.30%  43.00% 45.60% 43.00% 45.60%
400 46.80%  41.80%  40.50%  39.20% 40.50% 39.20%
600 39.20%  35.40%  35.40%  35.40% 35.40% 35.40%
800 49.40%  51.90%  48.10% 57.00% 48.10% 57.00%
1000 46.80%  51.90%  48.10% 57.00% 48.10% 57.00%
1500 39.20%  40.50%  36.70%  39.20% 36.70% 39.20%
2 Total 37.80%  38.70% 34.80% 39.50% 34.10% 38.40%
10 36.70%  40.50%  25.30%  38.00% 25.30% 31.60%
20 43.00%  45.60% 32.90% 44.30% 31.60% 39.20%
50 27.80%  31.60% 27.80% 32.90% 24.10% 32.90%
100 4560%  51.90%  46.80% 55.70% 44.30% 55.70%
: 200 49.40%  51.90%  46.80% 50.60% 46.80% 50.60%
400 51.90%  46.80%  46.80% 46.80% 46.80% 46.80%
600 51.90%  41.80%  48.10% 50.60% 48.10% 50.60%
800 43.00%  43.00%  43.00%  49.40% 43.00% 49.40%
1000 36.70%  43.00%  38.00%  48.10% 38.00% 48.10%
1500 40.50%  44.30%  45.60% 51.90% 45.60% 51.90%
5 Total 42.70%  44.10%  40.10%  46.80% 39.40% 45.70%
10 22.80%  25.30%  11.40% 15.20% 12.70% 8.90%
20 44.30%  48.10%  39.20%  43.00% 38.00% 38.00%
10 50 43.00%  50.60%  44.30%  48.10% 40.50% 48.10%
100 59.50%  59.50%  55.70%  59.50% 53.20% 59.50%
200 53.20%  46.80% 51.90% 57.00% 51.90% 57.00%
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400 49.40%  44.30%  39.20%  46.80% 39.20% 46.80%

600 55.70%  48.10%  45.60%  51.90% 45.60% 51.90%

800 48.10%  44.30%  39.20%  43.00% 39.20% 43.00%

1000 46.80%  43.00%  36.70%  40.50% 36.70% 40.50%

1500 4430%  49.40%  45.60%  49.40% 45.60% 49.40%

10 Total 46.70%  45.90%  40.90%  45.40% 40.30% 44.30%
10 19.00%  17.70% 6.30% 11.40% 7.60%  5.10%

20 40.50%  38.00%  29.10%  32.90% 27.80% 27.80%

50 49.40%  40.50%  48.10%  45.60% 44.30% 45.60%

100 55.70%  49.40%  43.00%  46.80% 40.50% 46.80%

25 200 51.90%  48.10%  58.20%  55.70% 58.20% 55.70%
400 34.20%  38.00%  38.00%  40.50% 38.00% 40.50%

600 46.80%  50.60%  49.40%  53.20% 49.40% 53.20%

800 49.40%  49.40%  54.40%  57.00% 54.40% 57.00%

1000 45.60%  50.60%  54.40%  57.00% 54.40% 57.00%

1500 4430%  43.00%  50.60%  50.60% 50.60% 50.60%

25 Total 43.70%  4250%  43.20%  45.10% 42.50% 43.90%
10 12.70%  13.90% 1.30% 7.60% 2.50% 1.30%

20 34.20%  40.50%  25.30%  32.90% 24.10% 27.80%

50 55.70%  49.40%  55.70%  50.60% 51.90% 50.60%

100 49.40%  50.60%  46.80%  53.20% 44.30% 53.20%

50 200 48.10%  43.00%  44.30%  43.00% 44.30% 43.00%
400 39.20%  50.60%  58.20%  53.20% 58.20% 53.20%

600 41.80%  53.20%  51.90%  49.40% 51.90% 49.40%

800 57.00%  55.70%  62.00% 57.00% 62.00% 57.00%

1000 57.00%  58.20%  62.00%  62.00% 62.00% 62.00%

1500 53.20%  63.30%  57.00%  57.00% 57.00% 57.00%

50 Total 44.80%  47.80%  46.50%  46.60% 45.80% 45.40%
10 15.20%  15.20% 3.80% 8.90% 3.80%  2.50%

20 22.80%  30.40%  11.40%  25.30% 10.10% 20.30%

50 4430%  57.00%  45.60%  54.40% 41.80% 54.40%

100 46.80%  36.70%  45.60%  35.40% 43.00% 35.40%

100 200 45.60%  43.00%  46.80%  41.80% 46.80% 41.80%
400 46.80%  46.80%  48.10%  46.80% 48.10% 46.80%

600 45.60%  59.50%  49.40%  59.50% 49.40% 59.50%

800 53.20%  58.20%  58.20%  58.20% 58.20% 58.20%

1000 53.20%  64.60% 64.60% 63.30% 64.60% 63.30%

1500 50.60%  60.80%  50.60%  53.20% 50.60% 53.20%

100 Total 42.40%  47.20%  42.40%  44.70% 41.60% 43.50%
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10 15.20%  15.20% 3.80% 8.90% 3.80%  2.50%

20 17.70%  19.00% 7.60% 15.20%  6.30% 10.10%

50 45.60%  53.20%  44.30% 51.90% 40.50% 51.90%

100 54.40%  51.90%  54.40%  48.10% 51.90% 48.10%

200 200 58.20%  49.40%  51.90%  53.20% 51.90% 53.20%
400 49.40%  51.90%  57.00%  49.40% 57.00% 49.40%

600 43.00%  55.70%  53.20%  50.60% 53.20% 50.60%

800 58.20%  54.40%  58.20%  62.00% 58.20% 62.00%

1000 53.20%  62.00%  58.20%  62.00% 58.20% 62.00%

1500 51.90%  55.70%  50.60%  53.20% 50.60% 53.20%

200 Total 44.70%  46.80%  43.90%  45.40% 43.20% 44.30%

10 12.70%  12.70% 1.30% 6.30% 1.30%  0.00%

20 12.70%  12.70% 3.80% 8.90% 2.50%  3.80%

50 43.00%  44.30%  39.20%  44.30% 35.40% 44.30%

100 58.20%  50.60%  54.40%  40.50% 51.90% 40.50%

500 200 48.10%  58.20%  46.80%  54.40% 46.80% 54.40%
400 51.90%  62.00%  54.40%  58.20% 54.40% 58.20%

600 4430%  55.70%  50.60%  53.20% 50.60% 53.20%

800 46.80%  59.50%  49.40%  50.60% 49.40% 50.60%

1000 48.10%  49.40%  49.40%  46.80% 49.40% 46.80%

1500 45.60%  49.40%  44.30%  46.80% 44.30% 46.80%

500 Total 41.10%  45.40%  39.40%  41.00% 38.60% 39.90%

10 12.70%  12.70% 1.30% 6.30% 1.30%  0.00%

20 12.70%  13.90% 3.80% 10.10%  2.50%  5.10%

50 43.00%  48.10%  41.80% 51.90% 38.00% 51.90%

100 45.60%  43.00%  39.20%  44.30% 36.70% 44.30%

1000 200 4430%  48.10%  41.80%  45.60% 41.80% 45.60%
400 49.40%  55.70%  45.60%  59.50% 45.60% 59.50%

600 50.60%  45.60%  45.60%  44.30% 45.60% 44.30%

800 58.20%  46.80%  50.60%  44.30% 50.60% 44.30%

1000 55.70%  48.10%  55.70%  43.00% 55.70% 43.00%

1500 48.10%  54.40%  50.60%  49.40% 50.60% 49.40%
1000 Total 42.00%  41.60% 37.60% 39.90% 36.80% 38.70%

10 12.70%  12.70% 1.30% 6.30% 1.30% 0.00%

20 12.70%  12.70% 3.80% 8.90% 2.50%  3.80%
2000 50 19.00%  21.50%  19.00%  25.30% 15.20% 25.30%
100 55.70%  39.20%  41.80% 44.30% 39.20% 44.30%
200 41.80%  46.80%  43.00%  46.80% 43.00% 46.80%
400 55.70%  49.40%  46.80%  44.30% 46.80% 44.30%
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600 59.50%  57.00%  54.40%  54.40% 54.40% 54.40%
800 53.20%  57.00%  51.90%  46.80% 51.90% 46.80%
1000 54.40%  53.20%  45.60%  51.90% 45.60% 51.90%
1500 50.60%  44.30%  46.80%  43.00% 46.80% 43.00%
2000 Total 41.50%  39.40%  35.40%  37.20% 34.70% 36.10%

Table 69. Results from the comparison of the measures of dependence versus the Ml
calculated using the histogram-based method with optimum number of bins and
probability density function for detecting the input with the greatest impact on the

output, per number of bins and number of replications.

Bins Number of Distance correlation Pearson correlation Rzadj
rule replications NIS TIS NIS TIS NIS TIS
10 32.90% 44.30% 44.30% 51.90% 36.70% 48.10%
20 57.00% 59.50% 58.20%  60.80% 55.70% 60.80%
50 44.30% 53.20% 48.10%  57.00% 48.10% 57.00%
100 60.80% 55.70%  67.10% 62.00% 67.10% 62.00%
FD 200 45.60% 58.20% 73.40% 68.40% 73.40% 68.40%
400 40.50% 51.90% 59.50%  59.50% 59.50% 59.50%
600 46.80% 55.70% 69.60% 63.30% 69.60% 63.30%
800 49.40%  60.80% 63.30% 64.60% 63.30% 64.60%
1000 54.40%  62.00% 62.00% 65.80% 62.00% 65.80%
1500 57.00% 64.60% 60.80%  55.70% 60.80% 55.70%
FD Total 48.90% 56.60% 60.60% 60.90% 59.60% 60.50%
10 60.80% 59.50% 70.90% 64.60% 69.60% 62.00%
20 51.90% 60.80% 58.20%  64.60% 59.50% 64.60%
50 69.60%  74.70%  75.90% 81.00% 75.90% 81.00%
100 55.70% 64.60% 62.00%  65.80% 62.00% 65.80%
Scott 200 54.40% 57.00% 63.30% 60.80% 63.30% 60.80%
400 41.80%  59.50%  68.40% 67.10% 68.40% 67.10%
600 41.80%  57.00% 59.50%  62.00% 59.50% 62.00%
800 49.40%  63.30% 64.60% 70.90% 64.60% 70.90%
1000 44.30% 62.00% 50.60%  62.00% 50.60% 62.00%
1500 50.60% 57.00% 51.90%  55.70% 51.90% 55.70%
Scott Total 52.00% 61.50% 62.50% 65.40% 62.50% 65.20%
10 6.30% 10.10% 6.30% 11.40% 5.10%  7.60%
Sturges 20 49.40% 49.40% 55.70%  50.60% 57.00% 50.60%
50 57.00% 68.40% 63.30% 69.60% 63.30% 69.60%
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100 51.90%  58.20%  60.80%  62.00% 60.80% 62.00%
200 4430%  55.70%  59.50%  64.60% 59.50% 64.60%
400 48.10%  65.80%  58.20%  69.60% 58.20% 69.60%
600 49.40%  55.70%  43.00%  64.60% 43.00% 64.60%
800 55.70%  51.90%  36.70%  45.60% 36.70% 45.60%
1000 51.90%  53.20%  34.20%  48.10% 34.20% 48.10%
1500 48.10%  51.90%  41.80%  53.20% 41.80% 53.20%
Sturges Total 46.20%  52.00%  4590%  53.90% 45.90% 53.50%

Table 70. Results from the comparison of the measures of dependence versus the Ml
calculated using the histogram-based method with optimum number of bins and
probability density function for detecting the input with the least impact on the output,
per number of bins and number of replications.

Bins Number of Distance correlation Pearson correlation Rzadj
rule replications NIS TIS NIS TIS NIS TIS
10 49.40% 48.10% 41.80%  45.60% 40.50% 39.20%
20 67.10% 72.20% 62.00% 70.90% 60.80% 65.80%
50 55.70% 62.00% 57.00%  64.60% 54.40% 65.80%
100 63.30% 62.00% 70.90% 68.40% 64.60% 72.20%
D 200 53.20% 67.10% 82.30% 78.50% 81.00% 84.80%
400 46.80%  59.50%  67.10% 67.10% 65.80% 73.40%
600 48.10% 57.00% 72.20% 64.60% 70.90% 69.60%
800 55.70% 65.80% 69.60%  69.60% 67.10% 72.20%
1000 54.40% 64.60% 64.60% 67.10% 65.80% 65.80%
1500 59.50% 64.60% 64.60% 57.00% 65.80% 58.20%
FD Total 55.30% 62.30% 65.20%  65.30% 63.70% 66.70%
10 62.00% 62.00% 57.00%  58.20% 57.00% 51.90%
20 63.30% 68.40% 62.00%  69.60% 59.50% 65.80%
50 72.20%  75.90%  78.50% 83.50% 72.20% 84.80%
100 58.20%  64.60% 67.10% 68.40% 62.00% 70.90%
Scott 200 55.70% 58.20% 67.10% 64.60% 67.10% 64.60%
400 45.60% 62.00% 73.40% 69.60% 72.20% 72.20%
600 51.90% 64.60% 67.10% 67.10% 64.60% 67.10%
800 50.60%  64.60% 68.40% 73.40% 60.80% 74.70%
1000 4560%  62.00% 55.70% 62.00% 54.40% 65.80%
1500 51.90% 58.20% 53.20%  58.20% 49.40% 55.70%
Scott Total 55.70% 64.10% 64.90% 67.50% 61.90% 67.30%
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10 13.90%  15.20% 2.50% 8.90% 2.50%  2.50%

20 60.80%  65.80%  60.80%  62.00% 67.10% 63.30%

50 64.60%  73.40%  70.90%  75.90% 68.40% 75.90%

100 59.50%  67.10%  70.90% 73.40% 68.40% 77.20%

Sturges 200 53.20%  60.80% 69.60% 72.20% 70.90% 72.20%
400 53.20%  70.90% 65.80%  75.90% 65.80% 74.70%

600 60.80%  65.80% 57.00% = 75.90% 57.00% 74.70%

800 65.80%  59.50%  45.60%  53.20% 44.30% 55.70%

1000 62.00%  58.20%  45.60%  55.70% 43.00% 57.00%

1500 58.20%  57.00%  50.60%  59.50% 49.40% 59.50%

Sturges Total 55.20%  59.40%  53.90% 61.30% 53.70% 61.30%

Table 71. Results from the comparison of the distance correlation versus the Ml
calculated using the histogram-based method with fixed number of bins and discrete
empirical distribution for detecting the input with the greatest impact on the output, per

number of bins, number of replications, and normalization method.

Bins  Number of MI[%]  NMlgyp [%] NMlgeo, [%] NMljoi [%]  NMI o, [%0]
replications NIS TIS NIS TIS NIS TIS NIS TIS NIS TIS

10 1.3 101 1.3 10.1 1.3 10.1 1.3 10.1 1.3 10.1

20 67.1 684 67.1 68.4 67.1 68.4 67.1 68.4 67.1 68.4

50 60.8 65.8 60.8 65.8 60.8 65.8 60.8 65.8 60.8 65.8

100 50.6 65.8 532 64.6 53.2 646 532 646 506 65.8

5 200 46.8 64.6 44.3 64.6 44.3 64.6 44.3 64.6 46.8 64.6
400 443 60.8 443 60.8 44.3 60.8 443 60.8 443 60.8

600 43.0 62.0 443 62.0 44.3 62.0 44.3 62.0 43.0 62.0

800 46.8 595 46.8 59.5 46.8 59.5 46.8 59.5 46.8 59.5

1000 494 60.8 494 6038 49.4 60.8 494 60.8 494 60.8

1500 50.6 63.3 50.6 63.3 50.6 63.3 50.6 63.3 50.6 63.3

2 Total 46.1 58.1 46.2 58.0 46.2 58.0 46.2 58.0 46.1 58.1

10 43.0 532 46.8 57.0 46.8 57.0 46.8 57.0 40.5 51.9

20 646 658 63.3 65.8 63.3 65.8 63.3 65.8 64.6 65.8

50 63.3 64.6 60.8 62.0 60.8 62.0 60.8 62.0 633 64.6

100 544 69.6 55.7 70.9 55.7 70.9 55.7 70.9 54.4 69.6

5 200 519 709 519 722 51.9 722 519 722 519 70.9
400 43.0 63.3 443 62.0 44.3 62.0 44.3 62.0 43.0 63.3

600 430 62.0 43.0 60.8 43.0 60.8 430 60.8 430 62.0

800 443 595 456 57.0 45.6 58.2 456 57.0 44.3 59.5

1000 46.8 595 481 59.5 48.1 59.5 48.1 595 46.8 59.5

395



1500 443 60.8 468 608 468 620 468 608 443 6038

5 Total 499 629 506 628 506 63.0 506 628 496 62.8

10 316 494 316 506 316 506 316 506 316 494

20 582 722 608 709 608 709 608 709 582 722

50 532 658 519 671 519 671 519 671 532 658

100 59.5 646 544 608 544 608 544 608 595 64.6

10 200 443 557 443 532 443 519 443 532 443 557
400 456 658 456 646 456 646 456 646 456 6538

600 443 633 405 60.8 405 608 405 60.8 443 633

800 519 620 544 633 557 633 544 633 519 620

1000 544 620 544 608 544 608 544 608 544 620

1500 532 608 532 620 532 620 532 620 532 60.8

10 Total 496 622 491 614 492 613 491 614 496 622

10 152 177 165 190 165 19.0 152 177 152 177

20 63.3 646 595 646 595 646 595 646 633 64.6

50 570 684 570 709 570 709 570 709 570 684

100 519 646 494 595 494 595 494 595 519 64.6

25 200 481 582 481 570 494 570 481 57.0 481 582
400 570 570 570 608 570 608 57.0 608 57.0 57.0

600 544 570 544 570 544 570 544 57.0 544 570

800 40.5 595 443 595 443 595 443 595 405 595

1000 430 658 494 646 494 646 494 646 430 6538

1500 506 633 544 620 544 620 544 620 506 633

25 Total 48.1 576 490 575 491 575 489 573 481 576

10 89 89 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9

20 36.7 405 392 582 392 582 392 582 367 405

50 519 557 519 646 519 646 519 646 519 557

100 532 633 519 608 519 608 519 608 532 633

200 519 557 532 557 532 557 532 557 519 557

>0 400 519 481 532 519 532 519 532 519 519 481
600 519 570 544 544 544 544 544 544 519 570

800 36.7 544 430 506 418 506 430 506 367 544

1000 39.2 595 443 582 443 582 443 582 392 595

1500 46.8 55.7 494 532 494 532 494 532 468 557

50 Total 429 499 449 516 448 516 449 516 429 499

10 114 127 114 127 114 127 114 127 114 127

20 354 354 392 392 392 392 392 392 354 354

100 50 494 532 430 57.0 430 570 430 57.0 494 532
100 50.6 620 443 557 443 557 443 557 50.6 62.0
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200 43.0 595 443 595 443 595 443 595 43.0 595

400 443 494 506 481 519 481 506 481 443 494

600 405 532 506 506 506 494 506 506 405 532

800 481 544 481 519 481 519 481 519 481 544

1000 55.7 532 557 544 557 532 557 544 557 532

1500 481 519 456 481 456 481 456 481 481 519

100 Total 42,7 485 433 477 434 475 433 477 427 485
10 139 139 139 139 139 139 139 139 139 139

20 165 165 165 165 165 165 165 165 165 165

50 544 468 519 519 519 519 519 532 544  46.8

100 53.2 608 468 633 456 633 468 633 532 608

200 50.6 570 50.6 481 506 481 506 481 50.6 57.0

200 400 494 557 671 519 671 519 671 519 494 557
600 456 544 544 620 544 620 544 620 456 544

800 544 532 519 582 519 582 519 582 544 532

1000 544 57.0 468 456 468 456 468 456 544 570

1500 57.0 570 481 532 481 532 481 532 57.0 57.0

200 Total 449 472 448 465 447 465 448 46.6 449 472
10 127 127 127 127 127 127 127 127 127 127

20 127 139 127 139 127 139 127 139 127 139

50 405 519 494 608 494 608 494 60.8 405 519

100 62.0 633 544 671 544 671 544 671 620 633

500 200 456 646 481 620 481 620 481 620 456 64.6
400 43.0 57.0 456 582 456 582 456 582 43.0 570

600 342 582 430 608 430 60.8 43.0 608 342 582

800 405 633 418 557 418 557 418 557 405 633

1000 46.8 582 392 494 392 481 392 494 468 582

1500 519 62.0 481 595 481 595 481 595 519 620

500 Total 39.0 505 395 50.0 395 499 395 50.0 39.0 505
10 12,7 127 127 127 127 127 127 127 127 127

20 127 139 127 139 127 139 127 139 127 139

50 39.2 430 443 506 443 506 443 506 392 430

100 544 608 544 595 544 595 544 595 544 608

200 595 620 544 608 544 608 544 608 595 620

1000 400 456 519 405 481 405 481 405 481 456 519
600 405 557 443 570 443 570 443 570 405 557

800 443 557 443 519 443 519 443 519 443 557

1000 494 570 380 544 380 544 380 544 494 570

1500 48.1 595 506 633 506 633 506 633 481 595
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1000 Total 406 472 396 472 396 472 396 472 406 472

10 127 127 127 127 127 127 127 127 127 127

20 114 127 114 127 114 127 114 127 114 127

50 304 329 316 329 316 329 316 329 304 329

100 544 532 532 519 532 519 532 519 532 532

2000 200 582 595 570 570 570 57.0 57.0 570 582 595
400 456 557 443 50.6 443 506 443 50.6 456 557

600 405 544 392 557 392 557 392 557 405 544

800 405 582 481 582 481 57.0 481 582 405 582

1000 443 60.8 456 557 456 557 456 557 443 6038

1500 519 557 456 544 456 544 456 544 519 557

2000 Total 39.0 456 389 442 389 441 389 442 389 456

Table 72. Results from the comparison of the distance correlation versus the Ml
calculated using the histogram-based method with fixed number of bins and discrete
empirical distribution for detecting the input with the least impact on the output, per

number of bins, number of replications, and normalization method.

Number of MI [%] NMIarith [%] NMIgeom [%] NMIjoint [%] NMItheor [%]

Bins replications NIS TIS NIS TIS NIS TIS NIS TIS NIS TIS
10 152 139 152 139 152 139 152 139 152 139

20 722 747 722 747 722 747 722 747 722 747

50 633 671 633 671 633 671 633 671 633 67.1

100 595 747 620 734 620 734 620 734 595 747

, 200 570 709 557 709 557 709 557 709 57.0 709
400 506 63.3 494 633 494 633 494 633 506 633

600 519 646 519 646 519 646 519 646 519 64.6

800 570 658 570 658 570 658 570 658 57.0 658

1000 557 658 557 658 557 658 557 658 557 658

1500 570 658 57.0 658 570 658 570 658 57.0 658

2 Total 539 627 539 625 539 625 539 625 539 627
10 532 620 557 633 557 633 557 633 506 595

20 709 747 709 747 709 747 709 747 709 747

50 658 658 646 658 646 658 646 658 658 658

5 100 633 747 646 759 646 759 646 759 633 747
200 570 759 595 772 595 772 595 772 570 759

400 494 671 506 658 506 658 50.6 658 494 67.1

600 532 658 532 646 532 646 532 646 532 658

800 532 67.1 544 620 544 633 544 620 532 67.1
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1000 519 671 506 646 506 646 506 646 519 67.1

1500 519 646 532 633 532 646 532 633 519 646

5 Total 57.0 685 577 677 577 680 577 67.7 56.7 682

10 418 519 418 532 418 532 418 532 418 519

20 633 709 646 709 646 709 646 709 633 709

50 595 684 608 709 608 709 608 709 595 684

100 646 709 582 671 582 671 582 671 646 709

200 506 608 544 608 544 608 544 608 506 60.8

10 400 519 69.6 544 696 544 696 544 696 519 696
600 532 646 519 646 519 646 519 646 532 64.6

800 608 658 646 684 658 684 646 684 60.8 658

1000 646 671 646 646 646 646 646 646 646 67.1

1500 658 646 658 646 658 646 658 646 658 64.6

10 Total 576 654 581 654 582 654 581 654 576 654

10 1r7 203 177 203 177 203 177 203 177 203

20 696 671 671 709 671 709 671 709 69.6 67.1

50 658 696 658 709 658 709 658 709 658 69.6

100 582 646 532 633 532 633 532 633 582 646

25 200 57.0 582 557 595 570 595 557 595 57.0 582
400 63.3 595 658 646 658 646 658 646 633 595

600 633 633 658 633 658 633 658 633 633 633

800 532 684 570 658 570 658 570 658 532 684

1000 532 684 582 671 582 671 582 671 532 684

1500 55.7 646 582 633 582 633 582 633 557 64.6

25 Total 55.7 604 565 609 566 609 565 609 557 604

10 12.7 127 127 127 127 127 127 127 127 127

20 430 468 468 658 468 658 468 658 43.0 46.8

50 608 646 570 734 570 734 570 734 608 64.6

100 55.7 633 57.0 582 570 570 570 582 557 633

200 532 582 570 570 570 570 570 570 532 582

>0 400 532 506 544 532 544 532 544 532 532 506
600 53.2 557 557 57.0 557 570 557 57.0 532 557

800 494 608 544 582 532 582 544 582 494 6038

1000 46.8 620 532 608 532 608 532 608 468 620

1500 506 60.8 557 582 557 582 557 582 506 60.8

50 Total 478 535 504 554 503 553 504 554 478 535

10 152 152 152 152 152 152 152 152 152 152

100 20 380 380 418 418 418 418 418 418 380 380
50 544 557 481 582 481 582 481 582 544 557
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100 519 608 456 557 456 557 456 557 519 60.8

200 494 620 519 646 519 646 519 646 494 620

400 519 544 570 532 570 532 570 532 519 544

600 46.8 608 570 582 570 582 570 582 468 60.8

800 57.0 582 608 582 608 582 608 582 57.0 582

1000 57.0 557 595 595 595 582 595 595 57.0 557

1500 55.7 544 570 570 570 570 570 57.0 557 544

100 Total 477 515 494 522 494 520 494 522 477 515
10 152 152 152 152 152 152 152 152 152 152

20 203 190 203 190 203 190 203 190 203 19.0

50 519 50.6 519 557 519 57.0 519 557 519 50.6

100 55.7 620 50.6 658 494 658 506 658 557 62.0

200 532 57.0 544 532 544 532 544 532 532 570

200 400 532 582 684 544 684 544 684 544 532 582
600 519 582 608 658 608 658 608 658 519 582

800 60.8 595 595 620 595 620 595 620 60.8 59.5

1000 532 595 544 494 544 494 544 494 532 595

1500 646 595 582 557 582 557 582 557 646 595

200 Total 48.0 499 494 496 492 497 494 496 48.0 499
10 12,7 127 127 127 127 127 127 127 127 127

20 12,7 127 127 127 127 127 127 127 127 127

50 418 570 519 633 519 633 519 633 418 570

100 620 633 570 658 570 658 57.0 658 620 633

200 494 671 519 671 519 671 519 671 494 671

200 400 519 570 506 582 506 582 506 582 519 570
600 418 60.8 506 620 506 620 506 620 418 6038

800 494 684 481 658 481 658 481 658 494 684

1000 55.7 658 456 582 456 57.0 456 582 557 658

1500 55.7 646 544 658 544 658 544 658 557 64.6

500 Total 433 529 435 532 435 53.0 435 532 433 529
10 127 127 127 127 127 127 127 127 127 127

20 127 127 127 127 127 127 127 127 127 127

50 418 532 468 57.0 468 57.0 468 57.0 418 532

100 55.7 608 544 57.0 544 570 544 57.0 557 60.8

1000 200 595 633 557 595 557 595 557 595 595 633
400 51.9 557 494 494 494 494 494 494 519 557

600 468 608 506 608 506 608 506 60.8 468 60.8

800 519 646 544 557 544 557 544 557 519 64.6

1000 532 608 43.0 595 430 595 430 595 532 60.8
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1500 506 646 557 633 557 633 557 633 50.6 64.6

1000 Total 43.7 509 435 487 435 487 435 487 437 509

10 127 127 127 127 127 127 127 127 127 127

20 127 127 127 127 127 127 127 127 127 127

50 291 316 304 304 304 304 304 304 291 316

100 544 532 532 519 532 519 532 519 532 532

2000 200 62.0 658 633 646 633 646 633 646 620 67.1

400 481 582 468 519 468 519 468 519 481  58.2
600 481 633 456 595 456 595 456 595 481 633
800 506 646 544 582 544 570 544 582 506 64.6
1000 506 633 544 582 544 582 544 582 50.6 633
1500 55.7 608 50.6 595 506 595 506 595 557 60.8

2000 Total 424 486 424 459 424 458 424 459 423 487

Table 73. Results from the comparison of the Pearson correlation versus the Ml
calculated using the histogram-based method with fixed number of bins and discrete
empirical distribution for detecting the input with the greatest impact on the output, per
number of bins, number of replications, and normalization method.

Number of Mi [%] NMIarith [%] NMIgeom [%] NMIjoint [%] NMItheor [%]

Bins replications NIS TIS NIS TIS NIS TIS NIS TIS NIS TIS
10 89 139 89 139 89 139 89 139 89 139

20 67.1 671 671 671 671 671 671 671 671 67.1

50 684 709 684 709 684 709 684 709 684 709

100 759 823 785 810 785 810 785 810 759 823

) 200 722 797 696 797 69.6 797 696 797 722 797
400 582 759 582 759 582 759 582 759 582 759

600 58.2 747 595 747 595 747 595 747 582 747

800 633 709 633 709 633 709 633 709 633 709

1000 67.1 709 671 709 671 709 671 709 671 709

1500 684 747 684 747 684 747 684 747 684 747

2 Total 608 681 609 680 609 680 609 680 608 681
10 468 570 532 608 532 608 532 608 456 57.0

20 734 696 722 696 722 696 722 696 734 69.6

50 696 671 696 646 696 646 696 646 696 67.1

5 100 722 772 709 759 709 759 709 759 722 772
200 69.6 759 671 747 671 747 671 747 696 759

400 570 734 557 722 557 722 557 722 570 734

600 557 722 557 709 557 709 557 709 557 722

401



800 633 709 646 709 646 696 646 709 633 709

1000 646 69.6 658 722 658 722 658 722 646 69.6

1500 582 671 608 671 608 658 608 671 582 67.1

5 Total 630 700 635 699 635 696 635 699 629 700

10 36.7 50.6 36.7 519 367 519 367 519 36.7 50.6

20 620 747 646 747 646 747 646 747 620 747

50 570 671 557 684 557 684 557 684 570 67.1

100 55.7 658 557 620 557 620 557 620 557 65.8

200 46.8 64.6 443 595 443 582 443 595 468 64.6

10 400 443 633 443 620 443 620 443 620 443 633
600 443 633 405 60.8 405 608 405 60.8 443 633

800 456 582 430 595 443 595 430 595 456 582

1000 46.8 62.0 443 582 443 582 443 582 468 620

1500 443 646 418 633 418 633 418 633 443 646

10 Total 484 634 471 620 472 619 471 620 484 634

10 114 177 114 165 114 165 114 165 114 177

20 62.0 671 582 671 582 671 582 671 620 67.1

50 55.7 747 557 772 557 (7.2 557 772 557 747

100 46.8 57.0 443 544 443 544 443 544 468 57.0

200 55.7 620 532 608 519 608 532 608 557 62.0

2 400 494 582 468 544 468 544 468 544 494 582
600 48.1 50.6 456 506 456 506 456 506 481 50.6

800 456 57.0 443 544 443 544 443 544 456 570

1000 443 658 456 620 456 620 456 620 443 6538

1500 519 608 50.6 595 506 595 506 595 519 60.8

25 Total 471 571 456 557 454 557 456 557 471 571

10 1.3 6.3 13 6.3 13 6.3 1.3 6.3 1.3 6.3

20 342 380 392 557 392 557 392 557 342 380

50 48.1 544 481 633 481 633 481 633 481 544

100 620 620 532 595 532 595 532 595 620 620

200 646 658 557 658 557 658 557 658 646 658

>0 400 58.2 582 570 595 570 595 570 595 582 582
600 595 595 570 570 570 57.0 57.0 570 595 595

800 405 532 443 519 430 519 443 519 405 532

1000 456 608 456 595 456 595 456 595 456 60.8

1500 443 557 46.8 557 468 557 468 557 443 557

50 Total 458 514 448 534 447 534 448 534 458 514

10 89 114 89 11.4 8.9 11.4 8.9 11.4 8.9 114

100 20 36.7 36.7 405 405 405 405 405 405 36.7 36.7
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50 494 519 468 55.7 468 557 46.8 55.7 494 519

100 646 658 519 595 519 608 519 595 646 658

200 595 570 557 595 557 595 557 595 595 57.0

400 53.2 50.6 494 468 506 468 494 468 532 50.6

600 55.7 494 506 468 506 456 506 46.8 557 494

800 532 532 519 506 519 506 519 506 532 532

1000 62.0 519 582 50.6 582 494 582 506 620 519

1500 59.5 519 570 456 570 456 57.0 456 595 519

100 Total 50.3 48.0 47.1 467 472 46,6 471 467 503  48.0
10 127 139 127 139 127 139 127 139 127 139

20 165 165 165 165 165 165 165 165 165 165

50 57.0 456 55.7 481 557 481 557 494 57.0 456

100 57.0 544 468 557 481 557 46.8 557 57.0 544

200 55.7 582 532 519 532 519 532 519 557 58.2

200 400 55.7 557 532 519 532 519 532 519 557 557
600 532 544 494 570 494 57.0 494 570 532 544

800 60.8 519 481 519 481 519 481 519 608 519

1000 646 570 519 506 519 506 519 506 646 57.0

1500 63.3 532 544 519 544 519 544 519 633 532

200 Total 49.6 46.1 442 449 443 449 442 451 496 461
10 114 127 114 127 114 127 114 127 114 127

20 139 139 139 139 139 139 139 139 139 139

50 354 506 456 595 456 595 456 595 354 506

100 62.0 658 468 646 468 646 468 646 620 658

200 55.7 595 532 494 532 494 532 494 557 595

200 400 544 646 468 633 468 633 468 633 544 64.6
600 46.8 60.8 405 608 405 608 405 608 468 60.8

800 595 570 582 570 582 570 582 570 595 570

1000 59.5 557 494 494 494 481 494 494 595 557

1500 544 608 443 582 443 582 443 582 544 608

500 Total 453 501 410 489 410 487 410 489 453 501
10 114 127 114 127 114 127 114 127 114 127

20 139 139 139 139 139 139 139 139 139 139

50 354 443 392 506 392 506 392 506 354 443

100 519 570 494 582 494 582 494 582 519 570

1000 200 57.0 570 570 532 570 532 570 532 57.0 57.0
400 595 582 595 494 595 494 595 494 595 582

600 55.7 532 57.0 544 570 544 570 544 557 532

800 55.7 557 557 57.0 557 570 557 57.0 557 557
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1000 59.5 595 506 532 506 532 506 532 595 595
1500 532 582 481 646 481 646 481 646 532 582

1000 Total 453 47.0 442 46,7 442 467 442 467 453 470

10 114 127 114 127 114 127 114 127 114 127

20 127 127 127 127 127 127 127 127 127 127

50 316 342 329 342 329 342 329 342 316 342

100 595 532 582 570 582 570 582 57.0 582 532

2000 200 506 620 418 570 418 57.0 418 570 50.6 620
400 55.7 620 519 506 519 50.6 519 506 55.7 620

600 418 456 405 506 405 506 405 506 418 456
800 494 544 519 595 519 582 519 595 494 544
1000 50.6 595 494 557 494 557 494 557 50.6 59.5
1500 519 57.0 46.8 557 468 557 46.8 557 519 57.0

2000 Total 415 453 39.7 446 397 444 397 446 414 453

Table 74. Results from the comparison of the Pearson correlation versus the Ml
calculated using the histogram-based method with fixed number of bins and discrete
empirical distribution for detecting the input with the least impact on the output, per

number of bins, number of replications, and normalization method.

Number of MI [%] NMIarith [%] NMIgeom [%] NMIjoint [%] NMItheor [%]

Bins replications NIS TIS NIS TIS NIS TIS NIS TIS NIS TIS
10 38 76 38 76 38 76 38 76 38 7.6

20 633 684 633 684 633 684 633 684 633 684

50 722 722 722 722 722 722 722 722 722 722

100 86.1 937 886 924 886 924 886 924 861 937

, 200 835 873 823 873 823 873 823 873 835 873
400 658 785 646 785 646 785 646 785 658 785

600 684 772 684 772 684 772 684 772 684 7712

800 747 772 747 712 747 772 747 712 747 71712

1000 759 759 759 759 759 759 759 759 759 759

1500 772 785 772 785 772 785 772 785 772 7185

2 Total 671 716 671 715 671 715 671 715 671 716
10 405 557 456 595 456 595 456 595 392 54.4

20 709 734 709 734 709 734 709 734 709 734

50 722 709 734 709 734 709 734 709 722 709

> 100 797 810 785 797 785 797 785 797 797 810
200 759 823 759 810 759 810 759 810 759 823

400 646 772 633 759 633 759 633 759 646 77.2
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600 671 759 671 747 671 747 671 747 671 759

800 734 785 747 759 747 747 747 759 734 785

1000 722 747 709 747 709 747 709 747 722 747

1500 671 696 684 709 684 696 684 709 671 696

5 Total 684 739 689 737 689 734 689 737 682 738

10 304 468 304 481 304 481 304 481 304 468

20 55.7 671 595 696 595 69.6 595 696 557 67.1

50 633 709 646 734 646 734 646 734 633 709

100 633 747 620 709 620 709 620 709 633 747

10 200 544 722 557 684 557 684 557 684 544 722
400 544 696 570 696 570 69.6 57.0 696 544 696

600 57.0 671 557 671 557 671 557 671 57.0 67.1

800 582 646 570 671 582 671 570 671 582 64.6

1000 620 671 595 646 595 646 595 646 620 67.1

1500 58.2 671 557 671 557 671 557 671 582 67.1

10 Total 55.7 66.7 557 666 558 66.6 557 66.6 557 66.7

10 38 139 338 13.9 3.8 13.9 3.8 13.9 3.8 13.9

20 59.5 658 570 696 570 696 57.0 696 595 658

50 620 747 620 759 620 759 620 759 620 747

100 544 570 494 582 494 582 494 582 544 57.0

. 200 608 620 595 633 582 633 595 633 608 620
400 55.7 595 532 570 532 570 532 57.0 557 595

600 57.0 557 544 557 544 557 544 557 57.0 557

800 582 646 57.0 595 570 595 570 595 582 64.6

1000 55.7 684 557 646 557 646 557 646 557 684

1500 582 620 557 608 557 60.8 557 608 582 620

25 Total 525 584 508 578 506 578 508 578 525 584

10 1.3 6.3 1.3 6.3 1.3 6.3 1.3 6.3 1.3 6.3

20 316 392 380 582 380 582 380 582 316 392

50 544 620 506 709 506 709 506 709 544 620

100 658 646 582 595 582 582 582 595 658 64.6

200 671 671 608 646 608 646 608 646 671 67.1

>0 400 582 608 570 608 570 608 570 608 582 608
600 595 582 570 595 570 595 570 595 595 582

800 532 570 557 570 544 570 557 570 532 570

1000 55.7 620 570 608 570 608 570 60.8 557 62.0

1500 494 608 519 608 519 608 519 608 494 6038

50 Total 496 538 487 558 486 557 487 558 496 5338
100 10 38 89 3.8 8.9 3.8 8.9 3.8 8.9 3.8 8.9
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20 304 342 354 380 354 380 354 380 304 342

50 544 544 519 570 519 570 519 57.0 544 544

100 671 671 532 620 532 620 532 620 671 67.1

200 67.1 582 646 608 646 608 646 608 67.1 582

400 60.8 57.0 557 519 557 519 557 519 608 57.0

600 620 570 570 544 570 544 570 544 620 570

800 646 570 633 544 633 544 633 544 646 57.0

1000 67.1 532 620 544 620 532 620 544 671 532

1500 684 544 646 544 646 544 646 544 684 544

100 Total 546 501 511 496 511 495 511 496 546 50.1
10 38 89 3.8 8.9 3.8 8.9 3.8 8.9 3.8 8.9

20 10.1 152 101 152 101 152 101 152 101 152

50 544 481 557 506 557 519 557 506 544 481

100 62.0 582 519 570 532 570 519 57.0 620 58.2

200 57.0 595 557 582 557 582 557 582 57.0 595

200 400 59.5 608 570 570 570 57.0 57.0 570 595 60.8
600 595 608 582 633 582 633 582 633 595 60.8

800 684 582 570 557 570 557 57.0 557 684 582

1000 63.3 595 57.0 544 570 544 570 544 633 595

1500 722 570 633 557 633 557 633 557 722 570

200 Total 510 486 470 476 471 4777 470 476 510 486
10 1.3 6.3 13 6.3 13 6.3 1.3 6.3 1.3 6.3

20 38 89 3.8 8.9 3.8 8.9 3.8 8.9 3.8 8.9

50 36.7 544 481 608 481 608 481 608 36.7 544

100 60.8 658 481 633 481 633 481 633 608 658

200 58.2 633 582 557 582 557 582 557 582 633

200 400 595 633 506 620 506 620 506 620 595 633
600 544 633 481 620 481 620 481 620 544 633

800 69.6 620 646 671 646 671 646 671 696 620

1000 684 633 557 582 557 57.0 557 582 684 633

1500 60.8 646 494 658 494 658 494 658 60.8 64.6

500 Total 473 515 428 510 428 509 428 51.0 473 515
10 13 6.3 1.3 6.3 1.3 6.3 1.3 6.3 1.3 6.3

20 38 89 3.8 8.9 3.8 8.9 3.8 8.9 3.8 8.9

50 380 544 418 557 418 557 418 557 380 544

1000 100 532 557 506 544 506 544 506 544 532 557
200 544 582 557 544 557 544 557 544 544 582

400 62.0 633 658 519 658 519 658 519 620 633

600 595 582 608 608 608 608 608 608 595 582
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800 646 658 696 620 696 620 696 620 646 658
1000 63.3 608 582 595 582 595 582 595 633 60.8
1500 582 646 532 658 532 658 532 658 582 64.6

1000 Total 458 49.6 46.1 48.0 46.1 48.0 46.1 48.0 458 496

10 1.3 6.3 13 6.3 13 6.3 1.3 6.3 1.3 6.3

20 38 89 3.8 8.9 3.8 8.9 3.8 8.9 3.8 8.9

50 304 342 316 329 316 329 316 329 304 342

100 608 532 595 570 595 57.0 595 570 595 532

2000 200 532 646 468 620 468 620 468 620 532 658
400 595 658 57.0 544 570 544 570 544 595 658

600 519 557 494 570 494 570 494 570 519 557

800 60.8 608 595 595 595 582 595 595 60.8 60.8

1000 582 608 570 582 570 582 57.0 582 582 60.8
1500 58.2 608 50.6 620 506 620 506 620 582 60.8

2000 Total 438 471 416 458 416 457 416 458 437 472

Table 75. Results from the comparison of the Rzad]- versus the M1 calculated using the
histogram-based method with fixed number of bins and discrete empirical distribution
for detecting the input with the greatest impact on the output, per number of bins,
number of replications, and normalization method.

Number of MI [%] NMIarith [%] NMIgeom [%] NMI]'oint [%] NMItheor [%]

Bins replications NIS TIS NIS TIS NIS TIS NIS TIS NIS TIS
10 1.3 114 13 114 13 114 1.3 114 13 114

20 608 671 608 671 608 671 608 671 608 67.1

50 684 709 684 709 684 709 684 709 684 709

100 759 823 785 810 785 810 785 810 759 823

200 722 797 696 797 69.6 797 696 797 722 797

2 400 582 759 582 759 582 759 582 759 582 759
600 58.2 747 595 747 595 747 595 747 582 747

800 633 709 633 709 633 709 633 709 633 709

1000 671 709 671 709 671 709 671 709 671 709

1500 684 747 684 TAT 684 TAT 684 T4T 684 TAT

2 Total 594 67.8 595 677 595 67.7 595 677 594 67.8
10 418 532 481 57.0 481 57.0 481 570 405 532

20 709 696 696 696 696 696 696 696 709 69.6

> 50 69.6 67.1 696 646 696 646 696 646 696 67.1
100 722 772 709 759 709 759 709 759 722 772
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200 69.6 759 671 747 671 747 671 747 696 759

400 570 734 557 722 557 722 557 722 570 734

600 55.7 722 557 709 557 709 557 709 557 722

800 633 709 646 709 646 696 646 709 633 709

1000 646 696 658 722 658 722 658 722 646 69.6

1500 582 671 608 671 608 658 608 671 582 67.1

5 Total 623 696 628 695 628 69.2 628 695 622 69.6
10 304 481 304 494 304 494 304 494 304 481

20 55.7 747 582 747 582 747 582 747 557 747

50 570 671 557 684 557 684 557 684 570 67.1

100 55.7 658 557 620 557 620 557 620 557 658

200 468 64.6 443 595 443 582 443 595 468 64.6

10 400 443 633 443 620 443 620 443 620 443 633
600 443 633 405 608 405 60.8 405 608 443 633

800 456 582 43.0 595 443 595 430 595 456 58.2

1000 468 62.0 443 582 443 582 443 582 468 62.0

1500 443 646 418 633 418 633 418 633 443 646

10 Total 471 632 458 618 459 616 458 618 471 632
10 10.1 152 114 152 114 152 101 152 101 152

20 595 671 582 671 582 671 582 671 595 67.1

50 55.7 747 557 772 557 772 557 772 557 747

100 46.8 57.0 443 544 443 544 443 544 468 57.0

. 200 55.7 620 532 608 519 608 532 608 557 620
400 494 582 468 544 468 544 468 544 494 582

600 48.1 506 456 506 456 506 456 506 481 50.6

800 456 570 443 544 443 544 443 544 456 570

1000 443 658 456 620 456 620 456 620 443 658

1500 519 608 506 595 506 595 506 595 519 60.8

25 Total 46.7 56.8 456 556 454 556 454 556 46.7 56.8
10 51 51 5.1 5.1 5.1 5.1 51 5.1 5.1 5.1

20 329 380 380 557 380 557 380 557 329 380

50 481 544 481 633 481 633 481 633 481 544

100 620 620 532 595 532 595 532 595 620 620

200 646 658 557 658 557 658 557 658 646 658

>0 400 582 582 570 595 570 595 570 595 582 582
600 595 595 570 570 570 570 570 570 595 595

800 405 532 443 519 430 519 443 519 405 532

1000 456 608 456 595 456 595 456 595 456 608

1500 443 557 46.8 557 46.8 557 468 557 443 557
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50 Total 46.1 513 451 533 449 533 451 533 461 513

10 76 89 7.6 8.9 7.6 8.9 7.6 8.9 7.6 8.9

20 316 36.7 367 405 36.7 405 36.7 405 316 36.7

50 49.4 519 46.8 557 468 557 46.8 557 494 519

100 646 658 519 595 519 608 519 595 646 658

100 200 595 57.0 557 595 557 595 557 595 595 57.0
400 532 50.6 494 468 50.6 468 494 468 532 50.6

600 557 494 506 468 50.6 456 506 468 557 494

800 532 532 519 506 519 506 519 506 532 532

1000 62.0 519 582 506 582 494 582 506 620 519

1500 595 519 570 456 57.0 456 570 456 595 519

100 Total 496 47.7 466 465 46.7 463 46.6 465 496 477

10 10.1 101 101 101 101 101 101 101 101 101

20 10.1 165 101 165 10.1 165 101 165 101 165

50 57.0 456 557 481 557 481 557 494 570 456

100 570 544 468 557 481 557 468 557 57.0 544

200 55,7 582 532 519 532 519 532 519 557 582

200 400 55.7 557 532 519 532 519 532 519 557 557
600 532 544 494 570 494 570 494 570 532 544

800 60.8 519 481 519 481 519 481 519 608 519

1000 646 570 519 506 519 506 519 506 646 57.0

1500 63.3 532 544 519 544 519 544 519 633 532

200 Total 48.7 457 433 446 434 446 433 447 4877 457

10 89 89 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9

20 76 139 76 13.9 7.6 13.9 7.6 13.9 7.6 13.9

50 354 506 456 595 456 595 456 595 354 50.6

100 62.0 658 468 646 468 646 468 646 620 658

500 200 55.7 595 532 494 532 494 532 494 557 595
400 544 646 468 633 468 633 468 633 544 64.6

600 46.8 608 405 608 405 60.8 405 608 468 60.8

800 595 570 582 570 582 570 582 570 595 57.0

1000 595 557 494 494 494 481 494 494 595 557

1500 544 608 443 582 443 582 443 582 544 608

500 Total 444 497 401 485 40.1 484 401 485 444 497

10 89 89 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9

20 76 139 76 13.9 7.6 13.9 7.6 13.9 7.6 13.9

1000 50 354 443 392 506 392 506 392 506 354 443
100 519 570 494 582 494 582 494 582 519 570

200 570 570 570 532 570 532 570 532 570 57.0
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400 595 582 595 494 595 494 595 494 595 582
600 55,7 532 570 544 570 544 570 544 557 532
800 55,7 55.7 557 570 557 570 557 570 557 557
1000 595 595 506 532 50.6 532 506 532 595 595
1500 532 582 481 646 481 646 481 646 532 582

1000 Total 444 466 433 463 433 463 433 463 444 466

10 89 89 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9

20 6.3 127 6.3 12.7 6.3 12.7 6.3 12.7 6.3 12.7

50 316 342 329 342 329 342 329 342 316 342

100 595 532 582 570 582 570 582 570 582 532

200 506 620 418 570 418 570 418 570 506 62.0

2000 400 557 620 519 506 519 506 519 506 557 62.0
600 418 456 405 506 405 50.6 405 506 418 456

800 494 544 519 595 519 582 519 595 494 544

1000 50.6 595 494 557 494 557 494 557 506 595
1500 519 570 468 557 468 557 468 557 519 57.0
2000 Total 40.6 449 389 442 389 441 389 442 405 449

Table 76. Results from the comparison of the Rzad,- versus the M1 calculated using the
histogram-based method with fixed number of bins and discrete empirical distribution
for detecting the input with the least impact on the output, per number of bins, number of

replications, and normalization method.
Number of MI [%] NMIarith [%] NMIgeom [%] NMIjoint [%] NMItheor [%]

Bins replications NIS TIS NIS TIS NIS TIS NIS TIS NIS TIS
10 25 13 25 13 25 13 25 13 25 1.3

20 620 633 620 633 620 633 620 633 620 633

50 684 722 684 722 684 722 684 722 684 722

100 835 937 861 924 861 924 861 924 835 937

) 200 835 873 823 873 823 873 823 873 835 873
400 658 785 646 785 646 785 646 785 658 785

600 684 772 684 772 684 772 684 772 684 7712

800 747 772 7A7 712 747 712 747 772 747 712

1000 759 759 759 759 759 759 759 759 759 759

1500 772 785 772 785 772 785 772 785 772 7185

2 Total 662 705 662 704 662 704 662 704 662 705

5 10 405 494 456 532 456 532 456 532 392 481
20 69.6 684 696 684 696 684 696 684 696 684
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50 684 709 696 709 696 709 696 709 684 709

100 772 810 759 797 759 797 759 797 772 810

200 759 823 759 810 759 810 759 810 759 823

400 646 772 633 759 633 759 633 759 646 772

600 671 759 671 747 671 747 671 747 671 759

800 734 785 747 759 747 747 747 759 734 785

1000 722 747 709 747 709 747 709 747 722 747

1500 671 696 684 709 684 696 684 709 671 696

5 Total 676 728 681 725 681 723 681 725 675 727
10 291 405 291 418 291 418 291 418 291 405

20 544 620 582 646 582 646 582 646 544 620

50 595 709 608 734 608 734 608 734 595 709

100 60.8 747 595 709 595 709 595 709 608 747

10 200 544 722 557 684 557 684 557 684 544 722
400 544 696 570 696 570 696 570 69.6 544 69.6

600 570 671 557 671 557 671 557 671 570 67.1

800 582 646 570 671 582 671 570 671 582 64.6

1000 620 671 595 646 595 646 595 646 620 67.1

1500 582 671 557 671 557 671 557 671 582 67.1

10 Total 548 656 548 654 549 654 548 654 548 65.6
10 38 7.6 3.8 7.6 3.8 7.6 3.8 7.6 3.8 7.6

20 58.2 608 557 646 557 646 557 646 582 60.8

50 582 747 582 759 582 759 582 759 582 747

100 519 570 468 582 468 582 468 582 519 57.0

200 60.8 620 595 633 582 633 595 633 608 620

2 400 55.7 595 532 570 532 57.0 532 570 557 595
600 57.0 557 544 557 544 557 544 557 57.0 557

800 582 646 570 595 570 595 57.0 595 582 64.6

1000 55.7 684 557 646 557 646 557 646 557 684

1500 582 620 557 608 557 60.8 557 608 582 620

25 Total 518 572 500 567 499 56.7 50.0 56.7 518 572
10 25 0.0 25 0.0 25 0.0 2.5 0.0 2.5 0.0

20 304 342 367 532 367 532 367 532 304 342

50 506 620 468 709 468 709 468 709 506 62.0

50 100 633 646 557 595 557 582 557 595 633 646
200 671 671 608 646 608 646 608 646 671 67.1

400 58.2 608 570 608 570 608 570 608 582 60.8

600 595 582 570 595 570 595 570 595 595 582

800 532 570 557 57.0 544 570 557 57.0 532 57.0
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1000 55.7 620 570 608 570 60.8 57.0 608 557 620

1500 494 608 519 608 519 608 519 608 494 6038

50 Total 49.0 527 481 547 480 546 481 547 49.0 527

10 38 25 3.8 2.5 3.8 2.5 3.8 2.5 3.8 2.5

20 291 291 342 329 342 329 342 329 291 291

50 506 544 481 570 481 57.0 481 570 50.6 544

100 646 671 506 620 506 620 506 620 646 67.1

200 67.1 582 646 608 646 608 646 608 67.1 582

100 400 60.8 57.0 557 519 557 519 557 519 608 57.0
600 62.0 570 57.0 544 570 544 570 544 620 57.0

800 646 570 633 544 633 544 633 544 646 570

1000 67.1 532 620 544 620 532 620 544 671 532

1500 684 544 646 544 646 544 646 544 684 544

100 Total 53.8 490 504 485 504 484 504 485 538 49.0

10 38 25 3.8 2.5 3.8 25 3.8 25 3.8 2.5

20 89 101 89 10.1 8.9 10.1 8.9 10.1 8.9 10.1

50 506 481 519 506 519 519 519 506 50.6 48.1

100 59.5 582 494 570 506 57.0 494 570 595 582

200 57.0 595 557 582 557 582 557 582 57.0 595

200 400 59.5 608 570 570 570 57.0 57.0 570 595 60.8
600 59.5 608 582 633 582 633 582 633 595 608

800 684 582 57.0 557 570 557 570 557 684 582

1000 633 595 570 544 570 544 570 544 633 595

1500 722 570 633 557 633 557 633 557 722 57.0

200 Total 50.3 475 46.2 465 463 46,6 462 465 503 475

10 1.3 0.0 13 0.0 13 0.0 1.3 0.0 1.3 0.0

20 25 38 25 3.8 25 3.8 2.5 3.8 2.5 3.8

50 329 544 443 608 443 60.8 443 608 329 544

100 58.2 658 456 633 456 633 456 633 582 658

200 582 633 582 557 582 557 582 557 582 633

200 400 595 633 506 620 506 620 506 620 595 633
600 544 633 481 620 481 620 481 620 544 633

800 69.6 620 646 671 646 671 646 671 69.6 620

1000 684 633 557 582 557 570 557 582 684 633

1500 608 646 494 658 494 658 494 658 608 64.6

500 Total 46.6 504 420 499 420 497 420 499 466 504

10 1.3 0.0 1.3 0.0 1.3 0.0 1.3 0.0 1.3 0.0

1000 20 25 38 25 3.8 25 3.8 2.5 3.8 2.5 3.8
50 342 544 380 557 380 557 380 557 342 544
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100 50.6 55.7 48.1 544 481 544 481 544 50.6 557

200 544 582 557 544 557 544 557 544 544 582

400 620 633 658 519 658 519 658 519 620 633

600 59.5 582 608 608 608 60.8 60.8 608 595 582

800 646 658 696 620 696 620 696 620 646 658

1000 633 60.8 582 595 582 595 582 595 633 608

1500 582 646 532 658 532 658 532 658 582 646

1000 Total 451 485 453 468 453 468 453 468 451 485
10 1.3 0.0 1.3 0.0 1.3 0.0 1.3 0.0 1.3 0.0

20 25 3.8 25 3.8 25 3.8 2.5 3.8 2.5 3.8

50 266 342 278 329 278 329 278 329 266 342

100 58.2 532 570 570 570 570 570 57.0 57.0 53.2

200 53.2 646 468 620 468 620 468 620 532 658

2000 400 595 658 57.0 544 570 544 570 544 595 658
600 519 557 494 570 494 570 494 570 519 557

800 60.8 60.8 595 595 595 582 595 595 60.8 60.8

1000 58.2 608 57.0 582 570 582 570 582 582 60.8

1500 582 608 506 620 506 620 506 620 582 60.8

2000 Total 43.0 459 409 447 409 446 409 447 429 461
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APPENDIX C

RESULTS OF SECTION 3

Table 77. Results from the comparison of the measures of dependence versus the Ml
calculated using the kernel method for detecting the input with the greatest impact on the
output per kernel function, per bandwidth value, and per number of replications.

Number Distance Pearson

Bandwid Kernel Bandwid of correlation correlation Rzadi

th type function thvalue replicatio NIS TIS NIS TIS NIS TIS
ns % % % % % %

10 5221 5221 4867 4956 50.44 52.21

20 4159 46.90 40.71 46.90 4425 46.90

50 38.94 4779 38.05 47.79 38.05 47.79

100 40.71 4248 3274 3894 3274 38.94

Epanechnik 200 4336 4159 2920 3628 2920 36.28

ov 400 51.33 5221 39.82 4867 39.82 48.67

600 53.98 5221 40.71 5398 40.71 53.98

800 4425 4690 3274 4690 32.74 46.90

1000 4159 46.02 3451 46.02 3451 46.02

Silverma 1500 4159 46.90 36.28 46.90 36.28 46.90

n 10 47.79 4867 46.02 46.02 47.79 48.67

20 38.05 44.25 37.17 4513 40.71 45.13

50 39.82 46.02 37.17 46.02 37.17 46.02

100 39.82 4071 31.86 37.17 31.86 37.17

Normal NA 200 48.67 46.02 3451 40.71 3451 40.71

400 53.98 53.98 4248 50.44 4248 50.44

600 53.98 53.10 40.71 54.87 40.71 54.87

800 4425 4779 3274 4779 3274 47.79

1000 4159 46.90 3451 4690 3451 46.90

1500 4159 4690 36.28 46.90 36.28 46.90

10 39.82 4159 4071 3894 4248 4159

20 38.94 44.25 4336 46.02 46.90 46.02

50 37.17 46.02 36.28 46.02 36.28 46.02

Triag | Epanechnik o 100 39.82 3982 31.86 36.28 31.86 36.28

ov 200 4425 4336 31.86 38.05 31.86 38.05

400 5221 53.10 40.71 4956 40.71 49.56

600 53.98 53.10 40.71 54.87 40.71 54.87

800 4513 46.90 31.86 4690 31.86 46.90
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1000

4248 46.02 33.63 4602 33.63 46.02
1500 4159 4690 36.28 46.90 36.28 46.90

10 38.94 43.36 4248 40.71 4425 4336

20 39.82 4425 3894 4336 4248 4336

50 38.05 46.90 37.17 46.90 37.17 46.90

100 4159 4159 31.86 3805 31.86 38.05

02 200 4425 4336 31.86 38.05 31.86 38.05
400 51.33 5221 39.82 4867 39.82 48.67

600 53.10 52.21 39.82 5398 39.82 53.98

800 4513 4690 31.86 46.90 31.86 46.90

1000 4248 46.02 3363 46.02 3363 46.02

1500 4159 4779 36.28 47.79 36.28 47.79

10 5044 5221 46.90 4956 4867 52.21

20 40.71 46.02 39.82 46.02 4336 46.02

50 38.94 47.79 38.05 47.79 38.05 47.79

100 4159 4248 31.86 3894 31.86 38.94

05 200 4425 4336 31.86 38.05 31.86 38.05
400 53.10 53.10 4159 4956 4159 49.56

600 54.87 53.98 4159 5575 4159 5575

800 4159 4425 2832 4248 2832 42.48

1000 4159 4425 30.09 42.48 30.09 42.48

1500 4248 4779 3717 4779 3717 47.79

10 796 088 885 088 1062 354

20 4336 38.05 40.71 39.82 4425 39.82

50 3717 4513 4071 5044 4071 50.44

100 38.05 38.94 30.09 3363 30.09 33.63

001 200 46.02 4159 30.09 3451 30.09 34.51
400 54.87 53.10 4159 4956 4159 49.56

600 55.75 54.87 42.48 56.64 42.48 56.64

800 46.02 37.17 3274 3717 3274 37.17

1000 4425 3717 3274 3717 3274 3717

1500 4248 3628 37.17 3628 37.17 36.28

10 531 000 619 000 7.96 265

20 442 088 442 088 796 0.88

50 39.82 4336 38.94 4159 3894 41.59

0.001 100 50.44 46.02 38.94 47.79 3894 47.79
200 4779 3451 4336 3894 4336 38.94

400 50.44 39.82 37.17 3628 37.17 36.28

600 5221 36.28 38.94 3805 3894 38.05
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800

4425 3009 30.97 3009 30.97 30.09
1000 39.82 28.32 2920 2832 2920 28.32

1500 38.94 27.43 33.63 29.20 33.63 29.20

10 531 000 619 000 796 265

20 531 000 531 000 885 0.0

50 1150 1150 973 1150 9.73 11.50

100 39.82 37.17 4513 4690 4513 46.90

0.0001 200 4336 33.63 4513 3894 4513 38.94
400 4248 3894 4336 37.17 4336 37.17

600 4159 4071 4248 4248 4248 42.48

800 4159 32.74 35.40 3274 3540 32.74

1000 37.17 3097 3451 30.09 3451 30.09

1500 43.36 3451 39.82 3363 39.82 33.63

10 50.44 5221 46.90 4956 48.67 52.21

20 40.71 46.02 39.82 46.02 4336 46.02

50 38.94 4779 38.05 47.79 38.05 47.79

100 4159 4159 31.86 38.05 31.86 38.05

) 200 4425 4336 31.86 3805 31.86 38.05
400 53.10 53.10 4159 4956 4159 49.56

600 54.87 53.98 4159 5575 4159 55.75

800 4248 4513 2920 4513 29.20 45.13

1000 4336 4690 33.63 46.90 33.63 46.90

1500 4248 48.67 37.17 4867 37.17 48.67

10 50.44 5221 46.90 4956 4867 52.21

20 4071 46.02 39.82 46.02 43.36 46.02

50 38.94 4779 38.05 47.79 38.05 47.79

100 4159 4159 31.86 3805 31.86 38.05

Ls 200 4425 4336 31.86 3805 31.86 38.05
400 53.10 53.10 4159 4956 4159 49.56

600 54.87 53.98 4159 5575 4159 55.75

800 4248 4513 2920 4513 29.20 45.13

1000 4336 46.90 33.63 4690 3363 46.90

1500 4248 48.67 37.17 4867 37.17 48.67

10 5044 5221 46.90 4956 4867 5221

20 4071 46.02 39.82 46.02 43.36 46.02

. 50 38.94 4779 38.05 47.79 38.05 47.79
100 4159 4159 31.86 3805 31.86 38.05

200 4425 4336 31.86 38.05 31.86 38.05

400 53.10 53.10 41.59 4956 4159 49.56
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600

54.87 5398 4159 5575 4159 5575
800 4336 46.02 28.32 46.02 2832 46.02

1000 4336 4690 33.63 46.90 33.63 46.90

1500 4248 48.67 37.17 4867 37.17 48.67

10 50.44 5221 46.90 4956 48.67 52.21

20 4071 46.02 39.82 46.02 4336 46.02

50 38.94 47.79 38.05 47.79 38.05 47.79

100 4159 4159 31.86 3805 31.86 38.05

10 200 4425 4336 31.86 3805 31.86 38.05
400 53.10 53.10 4159 4956 4159 49.56

600 54.87 53.98 4159 5575 4159 55.75

800 4336 46.02 28.32 46.02 2832 46.02

1000 4336 46.90 33.63 4690 3363 46.90

1500 4248 4867 37.17 4867 37.17 48.67

10 5044 5221 46.90 4956 4867 5221

20 4071 46.02 39.82 46.02 4336 46.02

50 38.94 4779 38.05 47.79 38.05 47.79

100 4159 4159 31.86 3805 31.86 38.05

100 200 4425 4336 31.86 38.05 31.86 38.05
400 53.10 53.10 4159 4956 4159 49.56

600 54.87 53.98 4159 5575 4159 55.75

800 4336 46.02 28.32 46.02 28.32 46.02

1000 4336 46.90 33.63 4690 33.63 46.90

1500 4248 4867 37.17 4867 37.17 48.67

10 5044 5221 46.90 4956 4867 52.21

20 40.71 46.02 39.82 46.02 4336 46.02

50 38.94 47.79 38.05 47.79 38.05 47.79

100 46.02 4425 36.28 40.71 36.28 40.71

1000 200 46.90 40.71 3363 3540 3363 35.40
400 56.64 53.10 4513 4956 4513 49.56

600 56.64 53.10 44.25 54.87 4425 54.87

800 4159 4425 2832 4425 2832 44.25

1000 4248 4690 32.74 4690 3274 46.90

1500 4248 4690 37.17 46.90 37.17 46.90

10 3451 3540 3540 3451 37.17 37.17

20 39.82 4071 4071 4159 4425 4159

Normal 01 50 39.82 4690 33.63 43.36 3363 43.36
100 40.71 4071 30.97 37.17 3097 37.17

200 46.90 46.02 3451 40.71 3451 40.71
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400

5221 5310 4071 4956 40.71 49.56
600 53.98 53.10 40.71 54.87 40.71 54.87

800 4513 4690 31.86 46.90 31.86 46.90

1000 4248 4690 3363 4690 3363 46.90

1500 4159 46.90 36.28 46.90 36.28 46.90

10 38.05 44.25 4159 39.82 4336 4248

20 39.82 4513 38.94 4425 4248 44.25

50 37.17 46.02 36.28 46.02 36.28 46.02

100 4071 4159 3097 38.05 30.97 38.05

02 200 4248 4159 30.09 3628 30.09 36.28
400 51.33 5221 39.82 4867 39.82 48.67

600 53.98 53.10 40.71 54.87 40.71 54.87

800 4513 46.90 31.86 4690 31.86 46.90

1000 4248 46.02 3363 46.02 3363 46.02

1500 4159 46.90 36.28 46.90 36.28 46.90

10 4956 51.33 46.02 4867 47.79 51.33

20 40.71 46.02 39.82 46.02 4336 46.02

50 3805 46.90 37.17 4690 37.17 46.90

100 4159 4159 31.86 38.05 31.86 38.05

05 200 4425 4336 31.86 3805 31.86 38.05
400 5221 5221 4071 48.67 40.71 48.67

600 53.98 5310 40.71 54.87 40.71 54.87

800 4425 4602 2920 46.02 29.20 46.02

1000 4159 4513 3274 4513 3274 4513

1500 4248 48.67 37.17 4867 37.17 48.67

10 50.44 46.02 47.79 43.36 4956 46.02

20 4159 3628 37.17 37.17 40.71 37.17

50 37.17 4513 38.94 4867 3894 4867

100 3540 38.94 29.20 3540 29.20 35.40

001 200 46.02 4159 30.09 3451 30.09 3451
400 54.87 53.10 4159 4956 4159 49.56

600 54.87 53.98 43.36 5575 43.36 55.75

800 4513 38.94 3363 3894 3363 38.94

1000 4425 39.82 3274 39.82 3274 39.82

1500 4336 40.71 38.05 40.71 38.05 40.71

10 531 000 619 000 796 265

0.001 20 2478 2035 2655 1858 30.09 1858
50 38.94 43.36 4159 4336 4159 4336

100 53.10 4248 39.82 4425 39.82 44.25
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200

4779 3451 4336 3540 4336 35.40
400 51.33 4159 38.05 38.05 38.05 38.05

600 51.33 37.17 39.82 38.94 39.82 38.94

800 4159 29.20 30.09 30.97 30.09 30.97

1000 39.82 29.20 30.97 29.20 30.97 29.20

1500 38.94 28.32 3540 30.09 35.40 30.09

10 531 000 619 000 796 265

20 531 000 531 000 885 0.0

50 38.05 30.09 3540 28.32 3540 28.32

100 4159 3540 4513 4336 4513 4336

0.0001 200 4071 3274 4513 3805 4513 38.05
400 4248 3628 4159 36.28 4159 36.28

600 4336 38.94 4248 4248 4248 42.48

800 4336 3274 37.17 3274 3717 32.74

1000 39.82 3097 33.63 31.86 3363 31.86

1500 4159 33.63 39.82 3274 39.82 32.74

10 50.44 5221 46.90 4956 48.67 52.21

20 4071 46.02 39.82 46.02 4336 46.02

50 38.94 4779 38.05 47.79 38.05 47.79

100 4159 4159 31.86 3805 31.86 38.05

. 200 4425 4336 31.86 3805 31.86 38.05
400 53.10 53.10 41.59 4956 4159 49.56

600 54.87 53.98 4159 5575 4159 55.75

800 4336 46.02 2832 46.02 2832 46.02

1000 4336 46.90 33.63 4690 3363 46.90

1500 4248 4867 37.17 48.67 37.17 48.67

10 5044 5221 46.90 4956 4867 5221

20 4071 46.02 39.82 46.02 4336 46.02

50 38.94 4779 38.05 47.79 38.05 47.79

100 4159 4159 31.86 3805 31.86 38.05

T 200 4425 4336 31.86 38.05 31.86 38.05
400 53.10 53.10 4159 4956 4159 49.56

600 54.87 53.98 4159 5575 4159 55.75

800 4336 46.02 28.32 46.02 2832 46.02

1000 4336 46.90 33.63 4690 33.63 46.90

1500 4248 4867 37.17 4867 37.17 48.67

10 5044 5221 46.90 4956 4867 52.21

5 20 40.71 46.02 39.82 46.02 4336 46.02
50 38.94 47.79 38.05 47.79 38.05 47.79

419



100

4159 4159 31.86 38.05 31.86 38.05
200 4425 4336 31.86 38.05 31.86 38.05

400 53.10 53.10 4159 4956 4159 49.56

600 54.87 53.98 4159 5575 4159 55.75

800 4336 46.02 28.32 46.02 2832 46.02

1000 4336 46.90 33.63 4690 3363 46.90

1500 4248 4867 37.17 4867 37.17 48.67

10 5044 5221 46.90 4956 4867 5221

20 4071 46.02 39.82 46.02 43.36 46.02

50 38.94 47.79 38.05 47.79 38.05 47.79

100 4159 4159 31.86 3805 31.86 38.05

10 200 4425 4336 31.86 38.05 31.86 38.05
400 53.10 53.10 4159 4956 4159 49.56

600 54.87 53.98 4159 5575 4159 5575

800 4336 46.02 28.32 46.02 28.32 46.02

1000 4336 46.90 33.63 4690 3363 46.90

1500 4248 4867 37.17 4867 37.17 48.67

10 5044 5221 46.90 4956 4867 52.21

20 40.71 46.02 39.82 46.02 4336 46.02

50 38.94 47.79 38.05 47.79 3805 47.79

100 4159 4159 31.86 3805 31.86 38.05

100 200 4425 4336 31.86 3805 31.86 38.05
400 53.10 53.10 4159 4956 4159 49.56

600 54.87 53.98 4159 5575 4159 5575

800 4336 46.02 28.32 46.02 2832 46.02

1000 4336 46.90 3363 4690 3363 46.90

1500 4248 48,67 37.17 48.67 37.17 48.67

10 5044 5221 46.90 4956 4867 5221

20 40.71 46.02 39.82 46.02 4336 46.02

50 38.94 47.79 38.05 47.79 3805 47.79

100 4248 4159 32.74 3805 3274 38.05

1000 200 4425 4336 31.86 3805 31.86 38.05
400 53.10 53.10 4159 4956 4159 49.56

600 53.98 5398 4159 5575 4159 5575

800 4336 46.02 28.32 46.02 2832 46.02

1000 4248 4690 3363 46.90 33.63 46.90

1500 4248 48.67 37.17 4867 37.17 48.67
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Table 78. Results from the comparison of the measures of dependence versus the Ml
calculated using the kernel method for detecting the input with the least impact on the
output per kernel function, per bandwidth value, and per number of replications.

Number

Distance

Pearson

Bandwid Kernel Bandwid of correlation correlation RZ“‘U
th type function thvalue replicatio  NIS TIS NIS TIS NIS TIS
ns % % % % % %
10 5221 53.98 5310 5398 54.87 57.52
20 4248 4690 4248 46.02 43.36 46.02
50 39.82 4956 38.94 4867 38.94 4867
100 39.82 4071 31.86 38.05 32.74 38.05
Epanechnik NA 200 4248 3894 2832 3451 2832 3451
ov 400 5221 5221 4071 4956 40.71 49.56
600 54.87 5221 4159 54.87 4159 54.87
800 4513 46.90 33.63 47.79 33.63 47.79
1000 4159 4513 3451 46.02 3451 46.02
Silverma 1500 4248 4690 37.17 46.90 37.17 46.90
n 10 47.79 50.44 50.44 5044 5221 52.21
20 38.94 4513 38.05 46.02 38.94 46.02
50 38.94 46.02 36.28 4513 36.28 45.13
100 38.05 38.05 30.09 3540 30.97 35.40
Normal NA igg 46.02 4248 31.86 3805 31.86 38.05
54.87 5398 43.36 51.33 4336 51.33
600 5487 53.10 4159 5575 4159 55.75
800 4513 47.79 3363 48.67 33.63 48.67
1000 4159 46.02 3451 4690 3451 46.90
1500 4248 46.90 37.17 4690 37.17 46.90
10 38.05 4159 4248 3894 46.02 39.82
20 38.94 4513 4336 47.79 4513 47.79
50 36.28 46.02 3540 4513 3540 45.13
100 38.05 37.17 30.09 3451 30.97 3451
01 200 4159 38.94 2920 3451 2920 3451
_ 400 53.10 53.10 4159 50.44 4159 50.44
. Epanechnik
Trial ov 600 54.87 5310 4159 5575 4159 5575
800 46.02 4690 32.74 4779 3274 47.79
1000 4248 4513 3363 46.02 3363 46.02
1500 40.71 46.02 35.40 46.02 35.40 46.02
10 38.04 4513 46.02 4248 47.79 4336
0.2 20 39.82 4425 39.82 4336 40.71 43.36
50 39.82 4956 38.94 4867 38.94 4867
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100

4071 39.82 30.97 37.17 31.86 37.17
200 4248 4071 30.09 36.28 30.09 36.28

400 5221 5221 40.71 4956 40.71 49.56

600 53.98 5221 40.71 54.87 40.71 54.87

800 4513 46.02 31.86 46.90 31.86 46.90

1000 4248 4513 3363 46.02 3363 46.02

1500 4248 4779 3717 47.79 37.17 47.79

10 50.44 53.98 51.33 5398 5221 57.52

20 4159 46.02 42.48 46.02 4336 46.02

50 38.94 4867 38.05 47.79 3805 47.79

100 38.94 4071 30.09 38.05 30.97 38.05

05 200 4336 4159 3097 37.17 3097 37.17
400 5221 5221 4071 4956 40.71 49.56

600 53.98 5221 40.71 54.87 40.71 54.87

800 40.71 4159 27.43 4071 27.43 40.71

1000 39.82 4159 29.20 40.71 29.20 40.71

1500 4248 4779 3717 47.79 37.17 47.79

10 619 088 1327 531 885 7.08

20 4248 3717 4071 38.05 4336 38.94

50 36.28 44.25 4071 50.44 40.71 50.44

100 38.05 39.82 30.09 3363 31.86 33.63

001 200 4513 39.82 29.20 33.63 29.20 33.63
400 5487 53.10 4159 50.44 4159 50.44

600 55.75 53.98 42.48 56.64 42.48 56.64

800 46.02 36.28 32.74 37.17 3274 37.17

1000 4336 3628 32.74 3717 3274 37.17

1500 4248 3540 37.17 3540 37.17 35.40

10 531 000 13.27 442 1327 8.85

20 531 177 531 177 796 354

50 39.82 4513 38.94 4248 3894 4248

100 51.33 4867 39.82 51.33 4159 51.33
0.001 200 46.02 31.86 43.36 38.05 43.36 38.05
400 5044 38.94 37.17 36.28 37.17 36.28

600 53.10 35.40 38.94 38.05 3894 38.05

800 4425 2920 30.97 2920 30.97 29.20

1000 30.82 2743 2920 2832 2920 28.32

1500 38.94 2743 33.63 29.20 33.63 29.20
0.0001 ;g 531 000 1327 4.42 1327 885
531 000 7.08 088 973 354
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50

1150 1150 973 1150 9.73 11.50
100 39.82 36.28 44.25 46.90 44.25 46.90

200 4336 3451 4513 3982 4513 39.82

400 4336 4248 4425 3894 4425 38.94

600 4336 4248 4425 4425 4425 44.25

800 4248 3540 3628 3540 3628 35.40

1000 38.05 3451 3540 3363 3540 33.63

1500 40.71 33.63 38.05 33.63 38.05 33.63

10 5044 53.98 51.33 5398 53.10 57.52

20 4159 46.02 4248 46.02 4336 46.02

50 38.94 48.67 38.05 47.79 38.05 47.79

100 40.71 39.82 3097 37.17 3186 37.17

) 200 4336 4159 3097 37.17 30.97 37.17
400 5221 5221 4071 4956 40.71 49.56

600 53.98 5221 40.71 54.87 40.71 54.87

800 4159 4248 2832 4336 2832 43.36

1000 4159 4425 3274 4513 3274 4513

1500 4248 48.67 37.17 4867 37.17 48.67

10 5044 53.98 51.33 5398 53.10 57.52

20 4159 46.02 42.48 46.02 4336 46.90

50 38.94 48.67 38.05 47.79 38.05 47.79

100 4071 39.82 3097 37.17 3186 37.17

Ls 200 4336 4159 3097 37.17 3097 37.17
400 5221 5221 4071 4956 40.71 49.56

600 53.98 5221 40.71 54.87 40.71 54.87

800 4159 4248 2832 4336 2832 43.36

1000 4159 4425 3274 4513 3274 4513

1500 4248 48.67 37.17 4867 37.17 48.67

10 50.44 53.98 51.33 5398 53.10 57.52

20 4159 46.02 4159 46.02 4248 46.90

50 38.94 48.67 38.05 47.79 38.05 47.79

100 4071 39.82 30.97 37.17 31.86 37.17

. 200 4336 4159 3097 37.17 3097 37.17
400 5221 5221 40.71 4956 40.71 49.56

600 53.98 5221 40.71 54.87 40.71 54.87

800 4248 4336 27.43 4425 2743 44.25

1000 4159 4425 32.74 4513 32.74 4513

1500 4248 4867 37.17 48.67 37.17 48.67

10 10 5044 5398 51.33 53.98 5310 57.52
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20

4159 46.02 4159 46.02 4248 46.90
50 38.94 4867 38.05 47.79 38.05 47.79

100 4071 39.82 3097 37.17 31.86 37.17

200 4336 4159 3097 37.17 30.97 37.17

400 5221 5221 4071 4956 40.71 49.56

600 53.98 5221 40.71 54.87 40.71 54.87

800 4248 4336 27.43 4425 2743 44.25

1000 4159 4425 3274 4513 3274 4513

1500 4248 48.67 37.17 4867 37.17 48.67

10 5044 5398 51.33 53.98 5310 57.52

20 4159 46.02 4159 46.02 4248 46.90

50 38.94 48.67 38.05 47.79 38.05 47.79

100 4071 39.82 30.97 37.17 31.86 37.17

100 200 4336 4159 3097 37.17 3097 37.17
400 5221 5221 40.71 4956 40.71 49.56

600 53.98 5221 40.71 54.87 40.71 54.87

800 4248 4336 27.43 4425 2743 44.25

1000 4159 4425 32.74 4513 32.74 4513

1500 4248 4867 37.17 4867 37.17 48.67

10 5044 53.98 51.33 5398 53.10 57.52

20 4159 46.02 4159 46.02 4248 46.90

50 38.94 4867 38.05 47.79 3805 47.79

100 4513 4248 3540 39.82 3628 30.82

1000 200 46.02 38.94 3274 3451 3274 3451
400 5575 52.21 4425 4956 4425 49.56

600 55.75 51.33 43.36 53.98 4336 53.98

800 4071 4159 27.43 4248 27.43 4248

1000 4071 4425 31.86 4513 31.86 45.13

1500 4248 4690 37.17 4690 37.17 46.90

10 33.63 3540 38.94 3451 39.82 35.40

20 39.82 4071 40.71 4159 4248 4159

50 38.94 46.90 32.74 4248 32.74 4248

100 38.94 38.05 29.20 3540 30.09 35.40

Normal 01 jgg 4425 4159 3186 37.17 3186 37.17
53.10 53.10 41.59 50.44 4159 50.44

600 54.87 5310 4159 5575 4159 5575

800 46.02 46.90 32.74 47.79 32.74 47.79

1000 4248 4602 3363 46.90 33.63 46.90

1500 40.71 46.02 35.40 46.02 35.40 46.02
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10

3717 4513 4513 4248 4690 43.36
20 39.82 4513 38.94 4425 39.82 44.25

50 3628 46.02 3540 4513 35.40 45.13

100 39.82 39.82 30.09 37.17 3097 37.17

02 200 39.82 38.05 27.43 3363 27.43 3363
400 5221 5221 4071 4956 40.71 49.56

600 5487 53.10 4159 5575 4159 5575

800 46.02 46.90 32.74 4779 32.74 47.79

1000 4248 4513 3363 46.02 3363 46.02

1500 4248 46.02 37.17 46.02 37.17 46.02

10 4956 5221 5044 5221 51.33 53.98

20 4159 46.02 4248 4513 4336 45.13

50 39.82 4956 38.94 48.67 3894 48.67

100 39.82 39.82 30.09 37.17 3097 37.17

05 200 4336 4159 30.97 37.17 30.97 37.17
400 5221 5221 4071 4956 40.71 49.56

600 53.98 5221 40.71 54.87 40.71 54.87

800 4336 43.36 28.32 4425 2832 44.25

1000 4159 4425 3274 4513 3274 4513

1500 4248 48.67 37.17 4867 37.17 48.67

10 4956 47.79 5398 47.79 4956 49.56

20 4071 36.28 37.17 37.17 39.82 38.05

50 3628 4425 38.94 4867 3894 48.67

100 3540 39.82 29.20 3540 30.97 35.40

001 200 4513 39.82 29.20 33.63 29.20 33.63
400 54.87 53.10 4159 5044 4159 50.44

600 54.87 5310 43.36 5575 43.36 55.75

800 4513 38.05 3363 3894 3363 38.94

1000 4336 38.94 3274 39.82 3274 39.82

1500 4336 39.82 38.05 39.82 38.05 30.82

10 531 000 1327 354 1239 7.08

20 2301 2212 2478 2124 27.43 2301

50 38.94 4425 4159 4336 4159 4336

100 53.10 4513 38.05 46.02 38.94 46.02

0.001 200 46.02 32.74 4336 3540 4336 35.40
400 50.44 4071 37.17 37.17 37.17 37.17

600 51.33 37.17 39.82 38.94 39.82 38.94

800 4248 2832 30.09 30.09 30.09 30.09

1000 39.82 2832 3097 2920 30.97 29.20

425



1500

38.94 28.32 3540 30.09 35.40 30.09
10 531 000 1327 442 1327 885

20 531 000 7.08 088 973 354

50 37.17 3097 3540 29.20 35.40 29.20

100 4159 3363 4425 4248 4425 42.48

0.0001 200 39.82 3274 4336 38.05 4336 38.05
400 4425 3894 4336 37.17 4336 37.17

600 4513 4071 4425 4248 4425 4248

800 4425 3628 38.05 3628 38.05 36.28

1000 4159 3451 3451 3540 3451 35.40

1500 38.94 3274 38.05 32.74 38.05 32.74

10 5044 53.98 51.33 5398 53.10 57.52

20 4159 46.02 42.48 46.02 4336 46.02

50 39.82 4956 38.94 4867 38.94 4867

100 4071 39.82 3097 37.17 31.86 37.17

) 200 4336 4159 3097 37.17 30.97 37.17
400 5221 5221 4071 4956 40.71 49.56

600 53.98 5221 40.71 54.87 40.71 54.87

800 4248 4336 27.43 4425 2743 44.25

1000 4159 4425 32.74 4513 32.74 4513

1500 4248 48.67 37.17 4867 37.17 48.67

10 5044 5398 51.33 53.98 5310 57.52

20 4159 46.02 42.48 46.02 4336 46.02

50 39.82 4956 38.94 4867 38.94 4867

100 4071 39.82 30.97 37.17 31.86 37.17

L5 200 4336 4159 3097 37.17 3097 37.17
400 5221 5221 40.71 4956 40.71 49.56

600 53.98 5221 40.71 54.87 40.71 54.87

800 4248 4336 27.43 4425 2743 44.25

1000 4159 4425 32.74 4513 32.74 4513

1500 4248 4867 37.17 4867 37.17 48.67

10 5044 53.98 51.33 5398 53.10 57.52

20 4159 46.02 4159 46.02 4248 46.90

50 38.94 4867 38.05 47.79 3805 47.79

5 100 4071 39.82 30.97 37.17 31.86 37.17
200 4336 4159 3097 37.17 30.97 37.17

400 5221 5221 4071 4956 40.71 49.56

600 53.98 5221 40.71 54.87 40.71 54.87

800 4248 4336 27.43 4425 2743 44.25
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1000 4159 4425 3274 4513 32.74 4513

1500 4248 4867 37.17 4867 37.17 48.67
10 5044 5398 51.33 53.98 5310 57.52
20 4159 46.02 4159 46.02 4248 46.90
50 38.94 4867 38.05 47.79 38.05 47.79
100 4071 39.82 3097 37.17 31.86 37.17
10 200 4336 4159 3097 37.17 3097 37.17
400 5221 5221 4071 4956 40.71 49.56
600 53.98 52221 40.71 54.87 40.71 54.87
800 4248 4336 27.43 4425 27.43 44.25
1000 4159 4425 3274 4513 32.74 4513
1500 4248 4867 37.17 4867 37.17 48.67
10 5044 53.98 51.33 5398 53.10 57.52
20 4159 46.02 4159 46.02 4248 46.90
50 38.94 4867 38.05 47.79 3805 47.79
100 4071 39.82 30.97 37.17 31.86 37.17
100 200 4336 4159 3097 37.17 3097 37.17
400 5221 5221 4071 4956 40.71 49.56
600 53.98 5221 40.71 54.87 40.71 54.87
800 4248 4336 27.43 4425 2743 4425
1000 4159 4425 32.74 4513 32.74 4513
1500 4248 48,67 37.17 48.67 37.17 48.67
10 5044 53.98 51.33 5398 53.10 57.52
20 4159 46.02 4159 46.02 42.48 46.90
50 38.94 48.67 38.05 47.79 38.05 47.79
100 4159 3982 31.86 37.17 3274 37.17
1000 200 4336 4159 30.97 37.17 30.97 37.17
400 5221 5221 4071 4956 40.71 49.56
600 53.10 5221 40.71 54.87 40.71 54.87
800 4248 4336 27.43 4425 2743 4425
1000 40.71 4425 3274 4513 3274 4513
1500 4248 4867 37.17 4867 37.17 48.67

Table 79. Results from the comparison of the measures of dependence versus the Ml
calculated using the KNN method for detecting the input with the greatest impact on the
output per number of k-nearest neighbors and per number of replications.

Number k-nearest Number of Distance Pearson R2
neighbors replications correlation correlation adj
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NIS% TIS% NIS% TIS% NIS% TIS%

10 39.82 4336 3982 39.82 39.82  38.94
20 39.82 3540 3805 3540 3894  35.40
50 4159 3628  46.02 3805  46.02  38.05
100 53.10 4071 4513 3717 4513  37.17
) 200 48.67 4513 53.98 4513 5398  45.13
400 4779 4248 39.82 3540 39.82 3540
600 4336 4779 38.94 4071  38.94  40.71
800 4159 4956 4513 4513 4513  45.13
1000 46.90 6106 4425 5575 4425 5575
1500 4779 5841  46.02 5841  46.02  58.41
10 38.94 4071 3628 3894 3628  38.05
20 46.02 4248 4248 4336 4336  43.36
50 37.17 4425 4071 4779 4071 47.79
100 4159 3363 31.86 30.09 31.86  30.09
) 200 46.02 3540 4071 3363 4071  33.63
400 55.75 4425 37.17 3894  37.17  38.94
600 4336 3540 38.05 3451  38.05 3451
800 4248 3717 3894 3628 3894  36.28
1000 4336 3451 3540 3097 3540  30.97
1500 5133  38.05 4690 3451 4690 3451
10 48.67 4956  46.02 4425  46.02  43.36
20 38.05 4513 4336  46.02 4425  46.02
50 4336 4425 4425 4248 4425  42.48
100 4425 3982 39.82 3805 39.82  38.05
3 200 46.90 3540 3628 3540 36.28  35.40
400 53.98  33.63 4248 31.86 4248  31.86
600 5487 2832 4690 31.86 4690  31.86
800 4248 2655 2920 2655 2920  26.55
1000 36.28 2655 3097 2566 3097  25.66
1500 39.82  28.32 3628 2920  36.28  29.20
10 46.02 4779 4248 4425 4248  43.36
20 4071  38.05 4071 3717 4159  37.17
50 4513 4690 4425 5044 4425  50.44
A 100 51.33 4513 4336 39.82 4336  39.82
200 46.90 38.05 38.05 3451 3805 3451
400 5752  39.82 4425 3628 4425  36.28
600 5221 3451  46.02 3982  46.02  39.82
800 4248 3274 3097 3274 3097 32.74
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1000

4248 2743 3451 2566 3451  25.66
1500 4159 3097 3628 2832 3628  28.32
10 46.90 4956 5044 4956 5044  48.67
20 38.05 3805 3805 39.82 3894 39.82
50 39.82 4690 4248  48.67 4248  48.67
100 4513  39.82 3717 3451 3717 3451
. 200 53.10 39.82 4071 3628 4071  36.28
400 5841 4336 4690 39.82 4690  39.82
600 5044 3628 4071 3805 4071  38.05
800 4602 3363 3097 31.86 3097  31.86
1000 39.82 2832 3009 2832 3009 2832
1500 4071 2832 3186 2743 3186  27.43
10 4602 5133 4690 46.02 4690  45.13
20 4336 4248 4159 4071 4248  40.71
50 3540  46.02 3894 4956 3894  49.56
100 4248 4425 3451 3717 3451  37.17
6 200 4336 3628  32.74 3097 3274  30.97
400 5841 4690 4513  43.36 4513  43.36
600 56.64 43.36 4690  46.90  46.90  46.90
800 4513 3097 31.86 3097 31.86  30.97
1000 4159 2743 2920 2743 2920  27.43
1500 4336 30.09 3628 31.86 3628  31.86
10 5310 5310 51.33 5133 5133  50.44
20 46.02  46.02  46.02 4779 4690  47.79
50 4071 4779 4071 4779 4071  47.79
100 4425 4336 3805 39.82 3805  39.82
. 200 4956 4248 3717 3717 3717  37.17
400 56.64 4690 4513 4513 4513  45.13
600 5841  39.82 4690 4159 4690  41.59
800 4425 3451 3451 3274 3451  32.74
1000 38.94 3009 2832 2832 2832 2832
1500 4071 2743 3540 2920  35.40  29.20
10 5575 53.98 5398 5221 5221  51.33
20 4336 4513 4159 5044 4248  50.44
50 4248 4071 4513 4248 4513  42.48
8 100 4336 4248 3540 3717 3540  37.17
200 4779 4071 3717 3363 3717  33.63
400 5752 4867  46.02 4690  46.02  46.90
600 5575 5044 4425 5398 4425  53.98
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800 4425 3451 3097 3274 3097 3274

1000 4159 3097 2920 3097 2920  30.97
1500 3805 30.09 3451 31.86 3451  31.86
10 46.90 5310 4513 5133 4867  51.33
20 4159 5310 39.82 51.33 4071  51.33
50 38.94 4159 4071 3805 4071  38.05
100 46.02 4336 3274 3628 3274  36.28
9 200 4779 3805 3540 3097 3540  30.97
400 5752 5044  47.79  48.67  47.79  48.67
600 59.29 5044  46.02 5221 4602 5221
800 4336 3540 30.09 31.86  30.09  31.86
1000 40.71 3009 31.86 3009 31.86  30.09
1500 4071  30.09 3540 31.86 3540  31.86

Table 80. Results from the comparison of the measures of dependence versus the Ml
calculated using the KNN method for detecting the input with the least impact on the
output per number of k-nearest neighbors and per number of replications.

Distance Pearson

Number k-nearest Number of correlation correlation Rzadj
neighbors replications

NIS% TIS% NIS% TIS% NIS% TIS %

10 4602 4956 3805 4159 3717  37.17

20 4513 4336 3805 39.82 3717  36.28

50 4956 4425 5398 4513 5133 4513

100 58.41  47.79 4867 4159 4690  41.59

L 200 5221 5310 5575 5044 5575  50.44
400 50.44  46.02 4425 39.82 4425  39.82

600 4425 5133 4071 4425 4071 4425

800 46.02 5929 5133 5575 5133 5575

1000 48.67 6372 4779 5929  47.79  59.29

1500 4956 6195 4867 6195 4867 6195

10 4336 4425 3363 3805 3451 3363

20 50.44 4867 4071 4690  39.82  43.36

50 4336 5310 47.79 5752 4513 5752

) 100 46.02 4071 3628 3628 3451  36.28
200 54.87 4513 4956 4248 4956  42.48

400 64.60 4956 4513 4513 4513  45.13

600 4956 4513 4336 4425 4336 4425

800 4779 4425 4513 4336 4513  43.36
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1000

4779 4071 4071 3628 4071  36.28
1500 53.10 4513  47.79 4159  47.79 4159
10 4779 5398 3894 4425 3982  39.82
20 4513 5221 4425 5044 4336  46.90
50 4779 5044  46.90  47.79 4425  47.79
100 46.90 4779 4248 4513 4071 4513
3 200 51.33 4071 4071 4159 4071 4159
400 60.18 4336  47.79 4159  47.79  41.59
600 61.95 3717 5310 4071 5310  40.71
800 4690 3363 3363 3451 3363 3451
1000 4159 3363 3628 3274 3628 3274
1500 43.36 3363 39.82 33.63 39.82  33.63
10 4867 53.98 3805 4779 3894 4336
20 46.90 4425 4071 4071  39.82  37.17
50 5044 5310 4956  55.75  46.90  55.75
100 5221 4867 4513 4425 4336  44.25
A 200 4956 4248 4159  39.82 4159  39.82
400 60.18 4690  46.90 43.36 4690  43.36
600 5752 4513 5133 5044 51.33  50.44
800 4779 3982 3540 39.82 3540  39.82
1000 4867 3451 3982 3363 3982 3363
1500 4425 3717 3894 3540 3894  35.40
10 4867 5310 46.02 5044 4690  46.02
20 47.79 4867 4159 4690 4071 4336
50 4779 5575 4867  56.64  46.02  56.64
100 4779  46.02 39.82 4071 3805 4071
. 200 54.87 4513 4336 4248 4336  42.48
400 61.95 50.44  50.44 4690  50.44  46.90
600 56.64  46.90  46.90  48.67 4690  48.67
800 51.33 39.82 3540 3805 3540  38.05
1000 4779 3628 3717 3717 3717  37.17
1500 4513 3540 3628 3540 3628  35.40
10 4956 5752 4248 4779 4248  43.36
20 4779 4690 4071 4336 39.82  39.82
50 4336  53.98 47.79 5841 4513 5841
6 100 47.79 5310 39.82 4513 3805 4513
200 48.67 4425 3894 3805 3894  38.05
400 61.06 5487 4779 5133  47.79  51.33
600 6283 51.33 5310 5487 5310  54.87
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800 5133  38.94 3717 3894 3717  38.94

1000 4867 3540 3628 3628 3628  36.28
1500 5044  38.05  43.36  39.82  43.36  39.82
10 54.87 5752 4690 53.10 4690  48.67
20 5044 5310 4513 5310 4425  49.56
50 4779 5487 4867 5575 4602 5575
100 46.90 51.33 4071  46.90 3894  46.90
. 200 53.10  47.79 4159 4336 4159  43.36
400 5841 53.98 4690 5221 4690  52.21
600 61.06 4690 5044 4956  50.44  49.56
800 51.33 4248 4159 4071 4159  40.71
1000 46.90 3805 3628 3717 3628  37.17
1500 4779 3717 4248  38.94 4248  38.94
10 60.18  60.18 5044 5575 5133  51.33
20 53.10 5575  46.02 57.52 4513  53.98
50 5044 4956 5398 51.33 5133  51.33
100 4513 4867 3717 4425 3540  44.25
o 200 51.33 4690 4159 4071 4159  40.71
400 61.95 5575 5044 5398  50.44  53.98
600 61.95 5752 5044  61.95 5044  61.95
800 50.44 4159 3717  39.82 3717  39.82
1000 4867 3982 3717 4071 3717  40.71
1500 4513  38.05 4159 39.82 4159  39.82
10 46.90 56.64 4336 5310 4425 4867
20 4779  61.06 4071 5752 3982  53.98
50 4867 51.33 5044 4779 4779 47.79
100 50.44 5310 37.17 4513 3540 4513
o 200 51.33 4425 39.82 3805 39.82  38.05
400 61.06 5841 51.33 5664 5133  56.64
600 6549 5841 5221  61.06 5221  61.06
800 50.44 4336  37.17 3982 3717  39.82
1000 46.02 3717 3805 3805 3805 38.05
1500 46.90 3717 4159 3894 4159  38.94

Table 81. Results from the comparison of the measures of dependence versus the Ml
calculated using the fuzzy-histogram based method for detecting the input with the
greatest impact on the output per membership function, per number of fuzzy subsets, and
per number of replications.
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Distance

Pearson

Membership Nugj?;; of Number of correlation correlation R ag)
function subsets  "ePNCAONS s on TIS96 NIS% TIS% NIS% TIS %
10 2655 17.70 1062 7.08 1416 7.8
20 2389 1504 1858 885 1047 885
50 2920 1327 2124 796 2124 7.9
100 36.28 21.24 1947 1062 1947  10.62
) 200 3717 2124 1947 885 1947 885
400 4425 2389 3097 1327 3097 13.27
600 4159 2478 2832 1239 2832 1239
800 4248 2832 2566 1770 2566  17.70
1000 4336 2920 2566 1858 2566  18.58
1500 38.05 2920 2566 1858 25.66  18.58
10 3009 19.47 1416 1239 17.70 1239
20 2301 1239 1947 796 2035  7.96
50 33.63 1239 2743 885 2743 885
100 3363 2035 1681 973 1681  9.73
. 200 3805 2124 2212 1062 2212 10.62
400 4336 2478 3009 1239 30.09 12.39
600 39.82 2478 2832 1239 2832 1239
Cosine iggo 4248 2920 2743 1858 27.43 1858
4513 2920 2743 1858 27.43  18.58
1500 39.82 2920 2566 1858 25.66  18.58
10 3097 2035 1504 1327 1858 1327
20 2212 1504 1858 885 1947 885
50 35.40 1327 2743 796 2743 796
100 3628 2301 1947 1062 1947 10.62
10 200 4336 2124 2743 1062 2743  10.62
400 4513 2478 31.86 12.39 31.86  12.39
600 3894 2566 2920 1327 29.20 1327
800 4336 2832 2655 17.70 2655  17.70
1000 4513 2832 2566 17.70 2566  17.70
1500 4248 2920 2832 1858 28.32  18.58
10 2301 2212 973 1504 1062 15.04
20 2920 19047 2743 1327 2478 1327
- 50 33.63 1327 2920 973 2920 973
100 39.82 20.35 2478 1327 2478 1327
200 4248 2212 30.09 1150 30.09  11.50
400 46.90 2389 3894 1327 3894  13.27
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600

4159 2478 3540 14.16 3540 14.16
800 46.02 2832 3097 17.70 3097 17.70
1000 4779 2832 3009 1770 30.09  17.70
1500 4425 2920 33.63 2035 33.63 20.35
10 26,55 1593 1150 7.08 1416  7.08
20 3009 1858 3009 1416 2655 14.16
50 38.94 1858 3097 1504 3097 15.04
100 3628 19.47 3097 1858 30.97 1858
50 200 4336 2212 3451 2212 3451 2212
400 4956 2124 4336 14.16 4336 14.16
600 4336 2212 3717 1327 3717  13.27
800 4159 2920 4071 1858 40.71  18.58
1000 4513 3097 4159 2035 4159 20.35
1500 46.90 31.86 4513 2301 4513 23.01
10 2301 1770 1239 1062 1416 10.62
20 3805 2212 3451 17.70 30.09 17.70
50 4159 2035 3540 1858 3540 1858
100 3628 25.66 38.05 2478 38.05 24.78
100 200 4336 2743 4425 2743 4425  27.43
400 4425 2478 4336 2301 4336 2301
600 4336 2389 4071 2035 4071 20.35
800 38.94 3000 4248 2389 4248  23.89
1000 38.94 3097 43.36 2478 43.36 24.78
1500 4248 31.86 4071 2655 40.71 2655
10 3540 2566 28.32 1858 30.09 17.70
20 3540 2035 3717 1770 3451 17.70
50 4425 2035 39.82 1681 39.82 16.81
100 4071 2655 4248 2743 4248 2743
200 200 4336 31.86 4248 30.09 4248  30.09
400 4425 2920 4779 2920 47.79  29.20
600 40.71 2832 4425 2389 4425 23.89
800 4159 3451 4867 2832 4867 28.32
1000 4513 3451 4956 2920 4956  29.20
1500 46.02 3274 4956  28.32 4956  28.32
10 4248 2920 3717 1858 38.05 18.58
20 39.82 2832 3982 2301 3628 23.01
500 50 51.33 2301 4779 1947 4779  19.47
100 3805 30.09 4513 3274 4513 3274
200 46.90 30.09 4336 30.09 4336 30.09
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400

4336 3097 47.79 3097  47.79  30.97
600 4159 2920 4956 27.43 4956  27.43

800 46.02 33.63 4956 27.43 4956  27.43

1000 4956 3451 5221 3009 5221  30.09

1500 48.67 3451 5221 3186 5221 3186

10 4159 3097 37.17 2389 3628 2301

20 3805 30.09 39.82 2743 3540 27.43

50 46.90 2389 3805 1858 38.05 18.58

100 46.90 3451 4867 3540 4867 3540

1000 200 46.02 31.86 3540 30.09 3540 30.09
400 4159 31.86 4336 2920 4336 29.20

600 39.82  30.09 4690 2920 46.90 29.20

800 4425 3363 5044 3009 50.44  30.09

1000 4513 3805 56.64 37.17 56.64 37.17

1500 4513 3540 54.87 3274 5487 32.74

10 1150 265 619 177 973 177

20 3009 1416 2389 1062 23.89  10.62

50 3186 17.70 23.89 1239 23.89  12.39

100 4513 2301 3097 1416 3097 14.16

) 200 46.90 2212 30.09 1239 30.09 12.39
400 46.90 2212 3363 14.16 3363 14.16

600 4690 2389 31.86 12.39 31.86  12.39

800 51.33 30.09 3274 19047 3274 1047

1000 4956 3097 3097 2212 3097 22.12

1500 4513  30.09 30.09 2124 30.09 21.24

10 38.94 1770 2832 1681 3186 1681

tCrisp 28 3009 1327 2832 1150 2920 1150
3628 14.16 3009 1239 3009  12.39

100 3894 2035 1947 796 1047 7.9

5 200 4513 2124 2566 1150 25.66  11.50
400 46.02 2566 33.63 14.16 3363 14.16

600 46.90 2566 3451 1504 3451  15.04

800 4513 31.86 30.09 2124 30.09 21.24

1000 4779 3186 2920 2124 2920 21.24

1500 4248 3097 2389 2212 2389 22.12

10 3274 1593 2301 1327 2566 12.39

10 20 3274 1770 2832 1239 2743 1239
50 3805 1681 31.86 973 318 973

100 4159 2389 2389 1327 2389 1327
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200

4956 2124 3097 1150 30.97  11.50
400 4779 2566 3451 1593 3451 1593
600 46.02 2478 3628 1327 3628 13.27
800 46.90 3009 31.86 1770 3186 17.70
1000 46.02 2920 2655 1681 2655 16.81
1500 46.02  30.09 2832 1947 2832 1947
10 28.32 1504 2035 1150 23.01 1150
20 36.28 1947 33.63 17.70 3451 17.70
50 3717 1770 3186 1416 31.86 14.16
100 3747 2301 2389 1504 2389 15.04
- 200 4159 2035 3363 1593 3363 15.93
400 4779 2124 3982 1593 39.82 1593
600 4513 2212 3540 1327 3540 13.27
800 4336 3097 33.63 2212 3363 2212
1000 4425 31.86 3540 1947 3540  19.47
1500 4425 3097 3894 2212 3894 22.12
10 3009 1681 1858 973 1047 973
20 3274 1947 3451 1504 3097 15.04
50 4248 1770 3363 1416 33.63 14.16
100 39.82 2301 3805 2389 38.05 23.89
50 200 4071 2478 3451 2301 3451 2301
400 48.67 2301 4602 1593 46.02 15.93
600 4513 2478 4071 1593 4071  15.93
800 4159 2920 4071 2212 4071 22.12
1000 4425 3009 4071 2301 4071 23.01
1500 46.90 33.63 4336 2478 4336 24.78
10 3009 1770 17.70 1239 1947 1150
20 3894 2212 3717 1858 33.63 1858
50 46.90 2124 4690 2124 4690 21.24
100 36.28 27.43 4159 2655 4159 2655
100 200 4159 2566 3894 27.43 3894  27.43
400 4336 2920 4425 2743 4425 2743
600 4248 2743 4513 2389 4513  23.89
800 4071 3097 4248 2478 4248 2478
1000 4159 31.86 4425 2655 4425 2655
1500 4159 3274 4336 2832 4336  28.32
10 2920 1327 1858 619 2035  6.19
200 20 2478 1770 2566 1327 23.89 1327
50 4513 2212 3982 1858 39.82  18.58
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100

4071 2832 3894 2743 3894 2743
200 4248 3097 4690 3363 4690 33.63

400 46.02 2832 4779 2832 47.79 2832

600 4336 30.09 4513 2832 4513 28.32

800 4513 3451 4867 2832 4867  28.32

1000 46.02 3628 48.67 3097 4867 30.97

1500 4513 3363 5044 29.20 50.44  29.20

10 2035 1416 1504 885 1593  7.96

20 2212 1327 2124 1150 2035 1150

50 4956 2301 48.67 2212 4867 22.12

100 4248 3628 4336 3274 4336 32.74

500 200 46.90 31.86 3451 2655 3451 2655
400 4248 2920 4690 3097 4690 30.97

600 3805 2920 4690 2655 46.90 2655

800 4602 33.63 4513 28.32 4513 28.32

1000 4779 3540 5221 3274 5221 32.74

1500 4956 3540 5133 3274 5133 32.74

10 1681 1239 1150 7.08  12.39  6.19

20 1858 1327 19.47 1062 1858  10.62

50 4159 3097 3540 2566 3540 25.66

100 4425 3805 4690 3628 4690 36.28

1000 200 4779 3363 4867 3628 4867 36.28
400 4336 30.09 5044 3097 50.44  30.97

600 4159 3097 4690 30.09 4690  30.09

800 4425 3451 5221 2920 5221  29.20

1000 4513 3805 5398 3628 5398 36.28

1500 4248 3363  46.90 3097 46.90  30.97

10 2655 17.70 1062 885 1416 885

20 2301 1327 1770 7.08 1858  7.08

50 2920 1327 2301 796 2301  7.96

100 3451 2212 1593 973 1593 973

) 200 3805 2035 1858 7.96 1858  7.96
Triangular ;‘gg 3805 2389 2655 1150 2655 1150
3894 2478 2566 1239 2566  12.39

800 4336 2743 2655 1681 2655 16.81

1000 4425 2832 2655 17.70 2655  17.70

1500 38.05 2832 2566 17.70 2566 17.70

. 10 2566 1858 973 1150 13.27 1150
20 2124 1416 1770 796 1858 7.9
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50

3274 1327 2478 796 2478  7.96
100 31.86 21.24 1681 1062 1681 10.62
200 3805 2124 2212 1062 2212 1062
400 4336 2389 30.09 1327 30.09 13.27
600 39.82 2478 2832 1239 2832 1239
800 4159 2832 2655 1770 2655  17.70
1000 4425 2920 2478 1858 2478  18.58
1500 38.94 2920 2478 1858 24.78 1858
10 2301 1858 7.08 1150 10.62 1150
20 2301 1593 1947 973 2035 973
50 37.17 1327 2920 796 2920  7.96
100 36.28 2212 1947 1150 19.47 1150
10 200 4248 2124 2655 1062 2655  10.62
400 4425 2478 3097 1239 3097 1239
600 38.94 2743 2920 1504 2920 15.04
800 4248 2832 2743 1770 2743 17.70
1000 4513 2832 2566 17.70 2566  17.70
1500 4248 2920 2832 1858 28.32  18.58
10 2301 1770 973  10.62 1062 10.62
20 2743 1681 2389 1239 2124 1239
50 3451 1416 2832 885 2832 885
100 4071 2212 2566 1327 2566  13.27
- 200 4336 2301 3097 1239 3097 12.39
400 4513 2389 3894 1327 3894 1327
600 4159 2566 3540 1504 3540  15.04
800 46.02 2832 3097 17.70 3097 17.70
1000 4779 2832 2832 17.70 2832 17.70
1500 46.02 2920 33.63 2035 33.63  20.35
10 26,55 17.70 1150 885 1416 885
20 3097 1858 2920 1593 2566 15.93
50 3717 1593 2920 1239 2920 12.39
100 3717 2124 2655 1681 2655 16.81
50 200 4336 2301 3628 2124 3628 21.24
400 4779 2124 4159 1416 4159 14.16
600 4248 2301 3805 1239 3805 12.39
800 4248 3097 3805 2035 3805 20.35
1000 4513 3009 39.82 1770 39.82 17.70
1500 46.02  30.97 4248 2212 4248  22.12
100 10 2566 1681 1150 7.96 1327 7.9
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20

3451 1947 3274 1681 29.20 16.81
50 4336 19.47 3717 17.70 37.17  17.70
100 38.94 2478 3540 2212 3540 2212
200 4248 2655 39.82 2655 39.82 26,55
400 4513 23.89 4425 19047 4425 1947
600 4336 2389 4071 17.70 4071  17.70
800 40.71 3097 4159 2301 4159 2301
1000 4159 3097 4336 2478 4336 2478
1500 43.36 3097 4159 2566 4159  25.66
10 3097 2478 2389 17.70 2566 16.81
20 3540 2212 3717 1947 3451 1947
50 4336 19.47 3894 17.70 3894 17.70
100 3894 2655 3894 2566 38.94 2566
200 200 4336 31.86 4071 30.09 4071  30.09
400 4513 3009 4690 28.32 4690 28.32
600 39.82 2832 43.36 2389 43.36 23.89
800 4248  33.63 47.79 2743 4779  27.43
1000 4248 3451 4690 2920 4690 29.20
1500 4425 3274  46.02 2832  46.02  28.32
10 3982 2566 3540 1504 3628 15.04
20 39.82 2655 39.82 2124 3628 21.24
50 5044 2035 43.36 1681 43.36 16.81
100 39.82 2920 4690 30.09 46.90  30.09
500 200 48.67 3097 4513 2920 4513 29.20
400 4425 3009 4690 30.09 46.90 30.09
600 4248 2832 5044 2655 5044  26.55
800 4425 3274 4956 2655 4956  26.55
1000 5044 3451 5221 3009 5221  30.09
1500 47.79 3540 5133 3097 5133  30.97
10 3628 27.43 33.63 2035 3274 1047
20 38.94 2743 3894 2478 3451 2478
50 4779 2478 4248 1947 4248 1947
100 48.67 3097 5221 3009 5221  30.09
1000 200 46.02 3274 3717 2920 37.17  29.20
400 4071 31.86 4248 30.09 4248  30.09
600 4159 3097 46.90 2832 4690 28.32
800 4425 3363 5044 3009 50.44  30.09
1000 4867 36.28 5487 3363 5487 33.63
1500 4425 3540 54.87 3274 5487 32.74
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Table 82. Results from the comparison of the measures of dependence versus the Ml
calculated using the fuzzy-histogram based method for detecting the input with the least
impact on the output per membership function, per number of fuzzy subsets, and per
number of replications.

Number of Distance Pearson

Membership fuzzy Number of correlation correlation R aay
function subsets  "EPNICAUIONS o0 T1S96 NIS% NIS% TIS% NIS%
10 3009 2389 1150 1150 1150  7.08
20 31.86 2389 2124 1504 2035 11.50
50 3717 2124 3009 1593 2743  15.93
100 4071 3009 2478 2035 23.01 20.35
) 200 4248 3009 2566 17.70 2566  17.70
400 47.79 3274 3540 2301 3540 23.01
600 46.90 33.63 3451 2212 3451 2212
800 4779 3628 31.86 2655 31.86  26.55
1000 48.67 3717 31.86 2743 31.86 27.43
1500 4425 3717 3274 2655 32.74  26.55
10 3363 2655 1504 1593 1504  11.50
20 3097 2212 2212 1504 2124 1150
50 3805 2035 3274 1681 30.09 16.81
100 4071 30.09 2478 1947 2301  19.47
Cosine 5 jgg 4336 2920 2832 1858 28.32  18.58
46.90 3274 3451 2124 3451 2124
600 4425 3363 3363 2212 3363 2212
800 47.79 3717 3363 2743 3363 27.43
1000 5044 37.17 33.63 2743 3363  27.43
1500 46.02 3717 3274 2655 32.74  26.55
10 3363 2655 1593 1593 1593  11.50
20 3009 2301 21.24 1416 2035  10.62
50 39.82 2212 3274 1681 3009 16.81
100 4071 3186 2478 1947 2301  19.47
10 200 4513 2920 30.09 1858  30.09  18.58
400 4867 3363 3628 2212 3628 2212
600 4336 3451 3451 2301 3451 2301
800 4779 3628 31.86 2655 31.86  26.55
1000 4956 3628 30.97 2655 30.97  26.55
1500 46.02 3717 3274 2655 3274  26.55

440



10

2832 2920 973 1858 973  14.16
20 3540 2566 2655 16.81 2566  13.27
50 3805 2301 3451 1047 3186  19.47
100 4159 2743 2743 2124 2566 21.24
- 200 4336 2920 31.86 1858 31.86  18.58
400 5044 3274 4336 2301 4336 23.01
600 46.02 3363 4071 2389 4071  23.89
800 5044 3628 36.28 2655 3628  26.55
1000 5221 3628 3540 2655 3540  26.55
1500 4779 3717 3805 28.32 38.05 28.32
10 3097 2212 1239 1150 1327  7.08
20 3451 2301 2743 1593 2655  12.39
50 4336 2566 3628 2212 3363 2212
100 39.82 2743 3451 2566 3274 2566
50 200 4336 2920 3540 2920 3540  29.20
400 53.10 29.20 47.79 2301 47.79  23.01
600 47.79  30.09 4248 2212 4248 22.12
800 46.02 3628 46.02 2655 46.02  26.55
1000 46.90 37.17 4425 2743 4425  27.43
1500 46.02 3805 4513 29.20 4513  29.20
10 2743 2478 1239 1416 1239  9.73
20 4159 2566 30.97 1858 3009 1504
50 4336 2478 3805 2301 3540 23.01
100 38.05 3097 4071 2920 3894  29.20
100 200 4159 31.86 4248 31.86 4248  31.86
400 47.79 3186 47.79 2920 47.79  29.20
600 4690 30.97 4513 2655 4513  26.55
800 4425 3628 4690 30.09 46.90  30.09
1000 4159 3628 4513 3009 4513  30.09
1500 4425 3717 4248 31.86 4248  31.86
10 38.05 3363 2566 2212 2566 17.70
20 4071 2655 3540 2124 3451 17.70
50 4425 2566 4071 2212 38.05 22.12
100 4159 31.86 4425 3274 4248 32.74
200 200 4248 3540 4159 33.63 4159  33.63
400 4867 3451 5221 3363 5221  33.63
600 46.02 3540 4956 30.97 4956  30.97
800 4513 3894 5044 3274 5044 32.74
1000 4602 38.05 48.67 31.86 4867  31.86
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1500

4779 3805 5044 3274 50.44  32.74
10 4513 3540 3540 2301 36.28 18.58

20 4336 3274 3717 2566 3628 22.12

50 4956 2920 46.02 2566 43.36  25.66

100 38.94 3274 4690 3628 4513  36.28

500 200 4336 3186 4071 31.86 4071 31.86
400 4690 3451 5044 3363 5044  33.63

600 4248 3451 4956 31.86 4956  31.86

800 48.67 3982 5221 33.63 5221 33.63

1000 5044 4071 51.33 3451 51.33 3451

1500 4956 38.05 5398 3451 53.98 3451

10 4956 3628 3628 2566 3628 21.24

20 4071 3363 3628 2832 3540 24.78

50 4690 2566 3805 2035 3540 20.35

100 48.67 3274 50.44 3451 4867 3451

1000 200 46.02 3451 3628 3274 3628 32.74
400 46.02 3540 4867 3274 48.67 32.74

600 4336 3540 5221 3451 5221 3451

800 4867 4071 5398 3628 53.98  36.28

1000 4513 4159 5487 3894 5487 3894

1500 46.02 3982 5752 36.28 5752  36.28

10 1416 885 619 442 619 0.0

20 36.28 2035 2478 1416 2389  10.62

50 39.82 2389 3274 1858 30.09  18.58

100 48.67 3009 3451 2212 3274 2212

) 200 5221 31.86 3451 2124 3451 21.24
400 51.33 3097 3894 2301 3894 2301

600 5044 3274 3628 2124 3628 21.24

800 5487 3805 36.28 28.32 3628  28.32

Crisp 1000 53.10 38.05 33.63 30.09 3363  30.09
1500 4956 3717 3451 2832 3451 28.32

10 4071 2301 2920 19.47 2920 15.04

20 3805 2389 3097 1858 30.09  15.04

50 4071 2212 3540 2035 32.74  20.35

5 100 4513 2832 2655 16.81 2478 16.81
200 50.44  29.20 30.97 19.47 3097 19.47

400 4956 33.63 3805 2301 38.05 23.01

600 5221 3451 4071 2478 4071  24.78

800 5044 39.82 3628 30.09 3628  30.09
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1000

53.98 39.82 36.28 30.09 3628  30.09
1500 5044 3894 31.86 30.09 31.86  30.09
10 3540 1858 2212 1416 2212  9.73
20 39.82 2301 2832 1593 2743  12.39
50 4513 2478 39.82 17.70 3717  17.70
100 4513 3186 2832 2212 2655 22.12
10 200 50.44  29.20 3274 1947 3274 1947
400 5221 3363 39.82 2478 39.82  24.78
600 5044 3363 4159 2301 4159 23.01
800 51.33 3805 37.17 2655 3717  26.55
1000 5044 37.17 31.86 2566 31.86  25.66
1500 4956  38.05 3274 2743 3274  27.43
10 3274 2301 2124 1770 2124  13.27
20 4248 2566 3451 2124 3363 17.70
50 4248 2655 3805 2301 3540 23.01
100 4159 3097 2832 2301 2655 23.01
- 200 4336 2743 3628 2301 3628 23.01
400 5044 30.09 43.36 2566 4336  25.66
600 4956 3097 4071 2301 4071 23.01
800 48.67 3894 39.82 3097 39.82  30.97
1000 4779 3982 39.82 2832 39.82 28.32
1500 46.02 3894 4159  30.09 4159  30.09
10 3274 2655 16.81 1593 1681  11.50
20 3451 2301 2920 1593 2832  12.39
50 4779 2478 39.82 2124 3717 21.24
100 4336 3097 4248 31.86 4071 31.86
50 200 4248 3097 3628 2920 3628  29.20
400 51.33 30.09 4956 23.89 4956  23.89
600 4956 31.86 46.02 2389 46.02  23.89
800 46.02 3540 46.02 29.20 46.02  29.20
1000 4513 35.40 4248 2920 4248  29.20
1500 46.90 38.94 4425 30.09 4425  30.09
10 3274 2743 1593 1858 1681  14.16
20 4336 30.09 3451 2301 3363 19.47
50 4425 2566 4513 2566 4248  25.66
100 100 38.05 3363 4425 31.86 4248 31.86
200 4159 2920 3894 30.97 38.94  30.97
400 4779 3451 4956 31.86 4956  31.86
600 4602 33.63 4956 2920 4956  29.20
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800

46.02 3628 46.02 30.09 46.02  30.09
1000 4513 3628 46.02 3009 46.02  30.09

1500 4513 3628  46.02 30.97 46.02  30.97

10 33.63 2478 1858 1593 1858  11.50

20 30.97 2743 2478 1947 2389 1593

50 46.90 28.32 4159 2478 3894  24.78

100 4248 3540 4159 3451 39.82 3451

200 200 4248 3451 4779 3628  47.79  36.28
400 5044 3451 5221 33.63 5221 33.63

600 4779 3451 4956 31.86 4956  31.86

800 48.67 3805 50.44 31.86 50.44  31.86

1000 47.79 3894 5044 3274 5044 32.74

1500 4779 3805 5221 3274 5221 32.74

10 23.89 2655 1416 1858 1416  14.16

20 2478 2478 1858 1947 17.70  15.93

50 5221 2743 51.33 2743 4867  27.43

100 4336 3628 4513 3363 43.36 33.63

500 200 4425 3363 3274 2832 3274  28.32
400 4513 3451 4867 3540 48.67 3540

600 4071 3363 51.33 3097 5133 30.97

800 5044 38.94 48.67 3274 4867 32.74

1000 4867 4159 5133 37.17 5133 37.17

1500 5133 3894 53.98 3540 5398  35.40

10 1947 1947 973 1062 973  6.19

20 2124 2124 1681 1593 1593  12.39

50 4336 3628 3805 3009 3540  30.09

100 46.02 38.94 4956 3894 47.79 38.94

1000 200 48.67 3894 4956 4071 4956  40.71
400 4425 3274 5221 3363 5221  33.63

600 46.02 3805 5221 3717 5221 37.17

800 48.67 3894 5575 3274 5575 32.74

1000 4602 3982 5398 37.17 5398 37.17

1500 4425 3717 50.44 33.63 50.44  33.63

10 2920 2389 1150 13.27 1150  8.85

20 3097 2301 2035 1416 1947  10.62

Triangular 2 igo 36.28 2124 3097 1593 2832  15.93
39.82 3009 2212 1858 20.35 18.58

200 4425 2920 2566 1681 2566  16.81

400 4336 3274 3274 2124 3274 2124
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600

4425 3363 31.86 2212 31.86 22.12
800 4867 3540 3274 2566 3274  25.66
1000 4956  36.28 32.74 2655 3274  26.55
1500 4425 3628 3274 2566 32.74  25.66
10 28.32 2566 1062 1504 10.62 10.62
20 2920 2389 2035 1504 1947  11.50
50 38.94 2124 3186 1593 2920 15.93
100 38.05 30.09 23.89 1947 2212  19.47
. 200 4336 2920 2832 1858 28.32  18.58
400 46.90 3274 3451 2301 3451 23.01
600 4425 3363 3363 2212 3363 2212
800 46.90 3628 3274 2655 3274  26.55
1000 4956 37.17 30.97 27.43 3097  27.43
1500 4513 3717 31.86 2655 31.86  26.55
10 25.66 2478 796 1416 796  9.73
20 3009 2389 21.24 1504 2035 11.50
50 4159 2212 3451 1681 31.86 16.81
100 4071 3097 2478 2035 2301 20.35
10 200 4513 2920 3009 1858 30.09  18.58
400 4779 3363 3540 2212 3540 22.12
600 4336 3628 3451 2478 3451  24.78
800 4690 36.28 32.74 2655 3274  26.55
1000 4956 3628 30.97 2655 30.97  26.55
1500 46.02 3717 3274 2655 3274  26.55
10 2832 2478 973 1416 973  9.73
20 33.63 2301 2301 1593 2212  12.39
50 3894 2301 3363 17.70 3097 17.70
100 4248 3009 2832 2124 2655 21.24
- 200 4425 30.09 3274 1947 3274  19.47
400 48.67 3274 4336 2301 4336 23.01
600 46.02 3451 4071 2478 4071  24.78
800 5044 3628 36.28 2655 3628  26.55
1000 5221 3628 33.63 2655 3363  26.55
1500 4956 37.17 38.05 28.32 38.05  28.32
10 3009 2389 1239 13.27 1327  8.85
20 3540 2301 2655 17.70 2566  14.16
50 50 4159 2389 3451 2035 31.86  20.35
100 4159 2920 30.97 23.89 2920  23.89
200 4336 2920 3717 2743 3717  27.43
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400

51.33 2920 46.02 2301 46.02 23.01
600 46.90 3097 4336 2124 4336 2124
800 46.02 38.05 4248 2832 4248 28.32
1000 46.90 37.17 4248 2566 4248  25.66
1500 46.02  38.05 4336 2920 43.36  29.20
10 3009 2301 1150 12.39 1150  7.96
20 38.94 2389 30.09 1858 2920  15.04
50 46.90 2389 4159 2212 3894 2212
100 4071 3097 3805 27.43 3628  27.43
100 200 4248 3186 39.82 31.86 39.82 31.86
400 48.67 3097 4867 2655 48.67  26.55
600 4779 3186 46.02 2566 46.02  25.66
800 4513 3717 46.02 2920 46.02  29.20
1000 4336 3628 4513 30.09 4513  30.09
1500 4425 3628 4248 3097 4248  30.97
10 3540 3274 2212 2124 2212 16.81
20 40.71 27.43 3540 2212 3451 1858
50 4513 2389 4159 2212 3894 2212
100 40.71 3274 4159 3186 39.82  31.86
200 200 4159 3540 3894 33.63 38.94 33.63
400 4956 3628 51.33 33.63 51.33 33.63
600 4425 3540 47.79 3097 47.79  30.97
800 46.02 3805 4956 31.86 4956  31.86
1000 4425 3805 4690 31.86 4690 31.86
1500 46.02 3717 4690 31.86 46.90  31.86
10 4425 3274 3451 2035 3451 1593
20 4336 30.09 37.17 2301 3628 19.47
50 5044 2478 43.36 2124 4071 21.24
100 40.71 31.86 4867 33.63 4690 33.63
500 200 46.02 3274 4336 3097 4336  30.97
400 47.79 3451 4956 33.63 4956  33.63
600 4425 3451 5133 31.86 51.33 31.86
800 46.90 3717 5221 3097 5221 30.97
1000 51.33  40.71 5221 3451 5221 3451
1500 48.67 3894 5310 33.63 53.10  33.63
10 4425 3363 3274 2301 3274 1858
1000 20 4071 3097 3451 2566 33.63 22.12
50 46.90 2655 4159 2124 3894 21.24
100 4779 3186 5133 3097 4956  30.97
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200
400
600
800
1000
1500

44.25
46.90
45.13
48.67
48.67
46.02

34,51
36.28
36.28
38.94
41.59
39.82

36.28
48.67
52.21
53.98
53.10
55.75

30.97
33.63
33.63
34,51
37.17
36.28

36.28
48.67
52.21
53.98
53.10
55.75

30.97
33.63
33.63
34,51
37.17
36.28
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