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ABSTRACT 

This dissertation explores the use of Shannon’s entropy and mutual information to 

quantify uncertainty and to support experimental planning and parameter selection in 

simulation models. The implications of uncertainty in the results of simulation models are 

highlighted through an illustrative example where a queue system is modeled using 

stationary univariate distributions. 

In section 2, entropy measures are estimated using histogram-based method with 

probability density function and discrete empirical distribution. Different number of bins 

and different normalization methods are investigated. Challenges of working with entropy 

measures for continuous variables are identified and solutions to these challenges are 

developed.  

In section 3, entropy measures are estimated using kernel-based method, k-nearest 

neighbors, and fuzzy-histogram-based methods. Different parameters of each method, 

such as bandwidth, number of k-nearest neighbors, and number of bins, are investigated. 

This section is an extension of section 2. A different solution to handle the challenges of 

calculating entropy measures for continuous variables is proposed, which has the 

advantage of being independent of the choice of the number of bins. 

In section 4, entropy measures are applied to investigate the measures’ ability to 

support input parameter selection and experiment planning in simulation models. By using 

statistical methods, such as regression analysis and contingency analysis, and by 

comparing the results of the entropy measures with the results from the standard error of 
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the mean and ANOVA, there is empirical evidence that entropy measures can support the 

identification of the number of replications that leads to the largest uncertainty and the 

selection of the most important parameters. With respect to the group of seeds, entropy 

measures can identify differences among the groups consistently with the standard error 

of the mean, but not the group of seed that leads to the largest uncertainty.  

Overall, the experimental results indicate that entropy measures when estimated 

using the histogram-based method with discrete empirical distribution appear to be 

capable to support uncertainty quantification, experimental planning, and parameter 

selection in simulation models. However, there are still open questions about this topic 

and directions for further research on this area are articulated at the end of this dissertation.  
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1. INTRODUCTION  

 

1.1. Background 

Simulation models are developed to mimic real systems. Despite the increased 

details that can be added to simulation models, modelers and researchers acknowledge 

that a model can seldom precisely reconstruct the real system under investigation due to 

the system complexity, the large number of variables involved, the dependencies among 

the variables, the system variability over time, among other factors.  

Simulation models are mostly used to represent complex systems and to support 

critical decisions in terms of economic or social aspects. These models usually show 

spatial, temporal, and multi-variate dependence that affect the quality and accuracy of their 

results (Schefzik, Thorarinsdottir, & Gneiting, 2013). Ignoring these dependencies and the 

consequent uncertainties can lead to over- or under-confidence in the model results 

(Barton, Nelson, & Xie, 2010).  

According to Xie, Nelson, and Barton (2014b), the random input variables are 

widely modeled as independent univariate distributions in simulation models. However, 

these input variables may depend on each other or may exhibit a pattern throughout time. 

Lack of fidelity in the random input models can lead to an inaccurate representation of the 

system and poor simulation estimates.  

Hanson and Hemez (2003) declared that simulation models are also naturally 

dependent on the modeler’s understanding of the system. This idea was reinforced by 
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Christley et al. (2013) in their paper entitled “‘Wrong, but useful’: negotiating uncertainty 

in infectious disease modelling”. According to these authors, epidemiological models, as 

any simulation model, are surrounded by assumptions, approximations, and human 

influence.  

As highlighted by Oberkampf, DeLand, Rutherford, Diegert, and Alvin (2002), a 

simulation model is always a simplified representation of the reality and any complex 

system, or even simple ones, contains details that are not represented in the model. 

Besides, if a system is driven by inputs with randomness, uncertainty will always be 

present in the model (Biller & Gunes, 2010). Consequently, simulation models are always 

subject to errors and uncertainty (Marelli & Sudret, 2014).  

DeVolder et al. (2002) argued that the more complex the system is, the harder it is 

to get a precise solution from the model because the uncertainties are also greater. These 

authors also mentioned that this is somewhat ironic, because models, especially simulation 

models, are mostly needed to represent complex systems.  

To emphasize the trade-off between model complexity and model uncertainty, the 

Council for Regulatory Environmental Modeling (CREM) showed that the total 

uncertainty is depicted as a sum of the model framework uncertainty and the data 

uncertainty. As illustrated in Figure 1, increasingly complex models reduce model 

uncertainty as more details and, consequently, better understanding are incorporated into 

the model (Council for Regulatory Environmental Modeling, 2009). On the other hand, 

more details increase data uncertainty as more input variables and data are required. 
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Therefore, a trade-off decision must be made between model complexity and uncertainty 

and there is an appropriate level of complexity that will lead to the minimum total 

uncertainty.   

 

 

Figure 1. The trade-off between model complexity and uncertainty. 

Source: Council for Regulatory Environmental Modeling (2009). 

 

Model uncertainties may not only lead to social or economic losses, but they can 

also hinder society’s trust in using models as a decision support tool (Kitching, Hutber, & 

Thrusfield, 2005). The usefulness of simulation models depends, then, on controlling their 

error and uncertainty (Barton, Nelson, & Xie, 2014). However, calibration tools and some 

other practices may not resolve the issue of model uncertainty. By calibrating some 

parameters, modelers could be actually ignoring or altering the uncertainty inherent to the 
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system and, consequently, the uncertainty and errors of the model results could be larger. 

Roy and Oberkampf (2011) agree that model calibration may not always be the best 

technique to deal with model inaccuracy. According to these authors, sometimes it may 

be better to simply account for the mismatch when reporting the results. Barton et al. 

(2014) added that input-uncertainty error can be aggravated by some practices adopted to 

control simulation-estimation error. The conclusion to be made is that model uncertainty 

cannot be eliminated if one wants to correctly represent the system under investigation 

(Biller & Nelson, 2002).  

Although models are inevitably uncertain, the consensus in the academic field is 

that based on model uncertainty identification and quantification and given the appropriate 

reflection about this uncertainty, models can still effectively support decision-making. 

According to Oberkampf et al. (2002), a model with limited, but known applicability, is 

more useful than a very detailed or complex model with unknown uncertainty. The 

appropriate reflection on model uncertainty involves informing decision-makers about 

how uncertain the model results may be, and where, when, and under which conditions 

the model results are applicable.  

Considering the importance of uncertainty for simulation results, DeVolder et al. 

(2002) claimed that an algorithm or a systematic method was needed to quantify 

uncertainty in simulation models. These authors believed that to be an effective decision-

support tool, simulation models must provide estimates about their level of accuracy and 
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level of applicability so that decision-makers could determine the appropriate level of 

confidence to be placed on the results.  

Nevertheless, estimating or quantifying uncertainty is not an easy task. Christley 

et al. (2013) reasoned that only a few uncertainties can be quantified, and even this 

quantification is most likely uncertain.  

With the advances in communication systems, sensors, and computer technology, 

a large amount of data has become available to the modelers. The increase in data has 

stimulated modelers to consider larger number of parameters in their studies, even though 

this data may be sometimes inaccurate or irrelevant.  

Two other reasons for modelers to consider more parameters in their studies 

include: an attempt to better mimic the reality and the limited knowledge about the system 

under investigation. This last reason implies a larger number of parameters to be tested. 

Consequently, computer models are usually high-dimensional with respect to the input 

parameters and, sometimes, even with respect to the responses of interest (outputs).  

The increase in the number of parameters in simulation models may lead to a better 

approximation of the real system, but it can also increase uncertainty. Moreover, an 

increased number of parameters also means increased resource needs.  

To extract meaningful results from a simulation model, a modeler needs to input 

(accurate) data into the model and run it for an adequate time period, known as run-length, 

and for an adequate independent number of times, known as replications. Each of these 

replications is known as an experiment unit. A group of replications with identical settings, 
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also known as treatment, is called scenarios. The study in which one or more treatments 

are applied to experimental units is called experiment. 

With a large number of parameters, a great deal of experimentation is required 

(Callao, 2014). The simulation outputs are affected by the numerous input parameters. A 

larger number of replications is needed to determine whether a parameter has significant 

influence on the output or how a specific scenario significantly differs from another 

scenario. 

Computer time, as well as modeler time, can be expensive. Besides the costs 

incurred by increased time requirements, time itself is also a constraint. That is, a 

modeler’s time is limited and the simulation model must provide information in a timely 

manner in order to be appropriately used for decision-making. In order to minimize the 

cost and time required for experimentation, either the run-length, or the number of 

replications, and/or the number of experiments itself must be reduced.  

Despite the large number of parameters used in simulation models, the Pareto 

principle frequently applies (Box & Meyer, 1986a). According to the Pareto principle, a 

large proportion of changes or effects in the system can be explained by only a small 

proportion of the input parameters (Box & Meyer, 1986b). The existence of only a few 

important parameters is referred to as factor sparsity. This means that appropriately 

selecting the parameters from which to construct the model is of critical importance not 

only to provide accurate responses, as highlighted by Elizabeth G. Ryan, Drovandi, 

Thompson, and Pettitt (2014), but also to improve utilization of resources. Eliminating 
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unimportant parameters at an early stage allows experiments to be run more quickly, with 

fewer resources, and usually with increased accuracy/reduced uncertainty in the results.  

Determining the optimum number of replications to be run is also of critical 

importance, as running too few replications may not give enough information about the 

system, but running too many replications may not bring any marginal information to the 

system as stated by the law of diminishing returns. In this thesis, marginal information 

refers to the increment in information resulting from a unit replication increment to the 

total number of replications used in the experiment.  

Therefore, to use the resources efficiently, simulation modelers must carefully 

select the parameters to include in the simulation model, design the experiments that will 

be run, and plan the configuration of the experiments. The complexity in planning and 

designing the simulation experiments increases when there is more than one response of 

interest, because input parameters that are not important for one response of interest, may 

be critical for another one. A similar challenge occurs when dealing with different 

estimators: parameters that may affect a measure of dispersion, may not have the same 

effect on a measure of central tendency and vice versa. Therefore, the choice regarding 

the appropriate model design and the appropriate experiment design and configuration 

may also depend on what the modeler is expecting to obtain (Clyde, 2001).  

The aforementioned context can be summarized by the following trade-off 

discussion. Modelers want to incorporate more details (i.e., parameters) into simulation 

models in order to better approximate the models to reality and, consequently, help 
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decision-makers better understand the system dynamics. The ultimate goal is to increase 

the accuracy of the model results. Ideally, modelers would like to include as many 

parameters as possible. However, knowledge, data, computational power, and time are 

limited. The available data can also be inaccurate. Therefore, by including more 

parameters one can, possibly, introduce more uncertainty and errors in the model and, 

hence, reduce its accuracy. Ignoring the model uncertainty can have negative impacts, 

such as: over- or under-confidence in the model results, economic losses, accidents, 

fatalities, and so on. Unfortunately, model uncertainty cannot be eliminated if one wants 

to correctly represent the system under investigation. Nevertheless, simulation models can 

still be useful in supporting decision-making, as long as the decision-makers are informed 

about the uncertainty in the model results. To quantify the simulation model uncertainty, 

one has to run experiments. Due to limited budget and time, it is important to efficiently 

plan and design the simulation experiments in order to be as informative as possible, while 

accounting for uncertainties in the model and for any available prior information while 

choosing the design of the model. To acknowledge uncertainties in the model results will 

not only lead to better-informed decisions, but also to a better understanding of the system 

being modeled.  

In this context of increased complexity and uncertainty, limited budget, limited 

time, and different usability, smart use of the available resources is essential (Clyde, 

2001). Clearly, a methodology is required for quantifying uncertainty in simulation 

models and for understanding the experiment settings that contribute to uncertainty. The 
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management of uncertainty is essential when the number of replications is limited and the 

simulation model involves a large number of parameters (Dean & Lewis, 2006). This 

trade-off discussion is summarized in Figure 2. 

 

 

Figure 2. The need for a methodology for uncertainty quantification in simulation 

models. 

 

The remainder of this dissertation is organized as follows. Section 1.2. discusses 

simulation experiments that show the relevance of this dissertation topic by exemplifying 

the implications of uncertainty in the results of a queue simulation model. Section 1.3. 

provides a brief overview of the topics of this dissertation and their contributions. Section 

2 discusses the use of histogram-based entropy measures as a method for uncertainty 

quantification in simulation models with stationary univariate distributions. Kernel, k-

nearest neighbors, and fuzzy-histogram-based entropy measures are discussed in Section 
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3 as a method for uncertainty quantification in simulation models. In Section 4 different 

applications of entropy measures in combination with other methods such as regression 

analysis and Tukey-Kramer multiple comparison test are presented to understand the input 

parameters and experiment settings (i.e., number of replications and seed) that most 

contribute to uncertainty in simulation models. Finally, conclusions and future research 

directions are provided in Section 5. 

1.2. Relevance of the Topic: Implications of Uncertainty in the Results of a 

Simulation Model 

As mentioned earlier, there is a trade-off between model complexity and model 

uncertainty. In general, the more complex the simulation model is, the larger the number 

of replications one will have to run in order to be able to reach statistically significant 

conclusions. With the increase in the number of replications, a larger amount of data is 

obtained about the system. This, in turn, is expected to reduce the uncertainty about the 

system being investigated. However, one must be careful with this statement. By running 

more replications, data uncertainty is in fact reduced. Nevertheless, the model uncertainty 

remains the same and so does the confidence level in making statements about the output 

of interest. As it is well known, the confidence interval (CI) either contains or does not 

contain the point estimate of interest. Simply running more replications does not affect the 

confidence level of the conclusions obtained from the simulation results. This means that 

by running more replications and, consequently, consuming more resources, one may miss 

the true estimate about the system, while a scenario with fewer replications and, 
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consequently, with larger data uncertainty may contain the true estimate. In this context, 

it is also important to assess if running more replications is economically and 

computationally attractive. That is, it is important to evaluate whether the additional 

replications bring substantial marginal information (i.e., increase in information per unit 

of replication) to justify the additional use of resources. From this discussion, one can see 

that the implications of uncertainty in the results of simulation models is complex and 

deserves further attention.  

To investigate the implications of uncertainty in the results of simulation models a 

simple queue model was built using Simio® University Enterprise Edition v 10.165. The 

model consists of a single source of arrivals, a single queue, and 𝑠 servers providing the 

same service. After being served, customers leave the system. Balking and reneging were 

not considered in the model. Two input parameters were considered in the model, namely 

inter-arrival time (1/𝜆) and service time (1/𝜇), and two output responses were considered, 

namely average number of customers in the system (𝐿 or 𝑁𝐼𝑆) and average time spent in 

the system (𝑊 or 𝑇𝐼𝑆).  

The queue model was chosen because it has closed-form theoretical solutions for 

some distributions of the input parameters and it also has good approximations for more 

general distributions. The notation used in this dissertation follows the 𝐴/𝑆/𝑠 Kendall’s 

notation, where: 𝐴 represents the arrival process, 𝑆 the service time, and 𝑠 the number of 

servers. 𝑀 is used for memoryless distributions and 𝐺 for more general distributions.  



12 

 

 

Several scenarios were run with different number of replications, different traffic 

intensities, different number of servers, different variances, different distributions (𝑀 = 

exponential, and 𝐺 = normal), different parameter values, and different seeds. The run 

length of each scenario was 1,825 days, which included 365 days of warm-up. The 

specified warm-up period was enough for the system to reach steady-state for all the 

experiments.  

The equations used to calculate the exact theoretical values of the two output 

responses, namely 𝐿 and 𝑊,  were taken from Gautam (2012) and are given below. 

𝑀/𝑀/𝑠 systems have the following exact solution: 

𝐿 =
𝜆

𝜇
+

𝑝0(𝜆 𝜇⁄ )
𝑠𝜆

𝑠! 𝑠𝜇[1 − 𝜆 (𝑠𝜇)⁄ ]2
 Equation 1 

𝑊 =
1

𝜇
+

𝑝0(𝜆 𝜇⁄ )
𝑠

𝑠! 𝑠𝜇[1 − 𝜆 (𝑠𝜇)⁄ ]2
 Equation 2 

where: 

𝑝0 = [∑ {
1

𝑛!
(
𝜆

𝜇
)

𝑛

}

𝑠−1

𝑛=0

+
(𝜆 𝜇⁄ )𝑠

𝑠!

1

1 − 𝜆 (𝑠𝜇)⁄
]

−1

 Equation 3 

𝑀/𝐺/1 systems have the following exact solution: 

𝐿 = 𝜌 +
𝜆2

2

(𝜎2 + 1 𝜇2⁄ )

1 − 𝜌
 Equation 4 

𝑊 =
1

𝜇
+
𝜆

2

(𝜎2 + 1 𝜇2⁄ )

1 − 𝜌
 Equation 5 
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where 𝜌 = 𝜆 (𝑠𝜇)⁄  and 𝜎2 is the variance of the service time. Equation 5 is known 

as the Pollaczek-Khintchine equation. 

Due to the simplicity of the aforementioned system, one would expect to obtain 

accurate results in the simulation model even when the simulation model is driven by only 

a few input parameters (i.e., arrival time and service time). As acknowledged by 

simulation stakeholders, because the input parameters themselves are usually unknown 

and contain randomness, adding more parameters to the simulation model does not always 

reduce uncertainty.  

To verify the accuracy of the simulation results, response values computed for 𝐿 

and 𝑊 using the simulation model were compared with the theoretical true steady-state 

values of the corresponding responses. A summary of this comparison is presented in 

Table 1. As discussed in the previous paragraph, a simulation model representing a simple 

real system like this (queue system) should have low uncertainty in terms of both the 

extrinsic input-uncertainty and the intrinsic output-uncertainty and, consequently, the 

theoretical steady-state values of the real system should be within the simulated CI. 

However, the results in Table 1 indicate that this is not always true. Interesting 

contradictions are highlighted below. 

 

Table 1. Percentage of scenarios with theoretical values within simulated values.  
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Model /  

Number of 

Replications 

Number 

of 

Scenarios 

Number of 

theoretical 

𝑾 values 

within the 

simulated 

𝑾 CI 

% of 

scenarios 

that 

contain 

theoretical 

𝑾 

Number of 

theoretical 

L values 

within the 

simulated 

𝑳 CI 

% of 

scenarios 

that 

contain 

theoretical 

𝑳 

Average 

of 

smallest 

absolute 

error of 

𝑾  

Average 

of 

smallest 

absolute 

error of 

𝑳  

M/M/1 150 120 80.0% 122 81.3% 0.053% 0.072% 

10 15 15 100.0% 15 100.0% N/A N/A 

20 15 15 100.0% 15 100.0% N/A N/A 

50 15 15 100.0% 15 100.0% N/A N/A 

100 15 15 100.0% 15 100.0% N/A N/A 

200 15 15 100.0% 15 100.0% N/A N/A 

400 15 2 13.3% 2 13.3% 0.092% 0.099% 

600 15 7 46.7% 8 53.3% 0.062% 0.073% 

800 15 11 73.3% 11 73.3% 0.057% 0.058% 

1000 15 11 73.3% 11 73.3% 0.054% 0.056% 

1500 15 14 93.3% 15 100.0% 0.002% N/A 

M/M/3 150 132 88.0% 133 88.7% 0.022% 0.023% 

10 15 15 100.0% 15 100.0% N/A N/A 

20 15 15 100.0% 15 100.0% N/A N/A 

50 15 15 100.0% 15 100.0% N/A N/A 

100 15 15 100.0% 15 100.0% N/A N/A 

200 15 15 100.0% 15 100.0% N/A N/A 

400 15 3 20.0% 3 20.0% 0.028% 0.032% 

600 15 11 73.3% 10 66.7% 0.016% 0.014% 

800 15 15 100.0% 15 100.0% N/A N/A 

1000 15 15 100.0% 15 100.0% N/A N/A 

1500 15 15 100.0% 15 100.0% N/A N/A 

M/M/10 150 131 87.3% 136 90.7% 0.011% 0.014% 

10 15 15 100.0% 15 100.0% N/A N/A 

20 15 15 100.0% 15 100.0% N/A N/A 

50 15 15 100.0% 15 100.0% N/A N/A 

100 15 15 100.0% 15 100.0% N/A N/A 

200 15 15 100.0% 15 100.0% N/A N/A 

400 15 2 13.3% 6 40.0% 0.010% 0.018% 

600 15 11 73.3% 12 80.0% 0.009% 0.014% 

800 15 14 93.3% 14 93.3% 0.014% 0.013% 

1000 15 14 93.3% 14 93.3% 0.013% 0.012% 

1500 15 15 100.0% 15 100.0% N/A N/A 

M/G/1 140 15 10.7% 27 19.3% 0.875% 0.939% 

10 14 2 14.3% 3 21.4% 0.882% 0.918% 

20 14 2 14.3% 3 21.4% 0.864% 0.893% 

50 14 2 14.3% 3 21.4% 0.917% 0.973% 

100 14 2 14.3% 3 21.4% 0.891% 0.935% 

200 14 2 14.3% 3 21.4% 0.898% 0.946% 

400 14 1 7.1% 2 14.3% 0.830% 0.867% 

600 14 1 7.1% 3 21.4% 0.851% 0.981% 

800 14 1 7.1% 3 21.4% 0.863% 1.001% 

1000 14 1 7.1% 2 14.3% 0.868% 0.926% 

1500 14 1 7.1% 2 14.3% 0.885% 0.951% 

Total 590 398 67.5% 418 70.8% 0.240% 0.262% 
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The smallest absolute error of 𝑊 or 𝐿 was calculated using Equation 6. 

𝑆𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 𝑜𝑓 𝑌

= 𝑚𝑖𝑛 

(

 
 
|
𝑌𝑡ℎ𝑒𝑜𝑟𝑦 − 𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 𝐶𝐼𝑌

𝑌𝑡ℎ𝑒𝑜𝑟𝑦
| ,

|
𝑌𝑡ℎ𝑒𝑜𝑟𝑦 − 𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 𝐶𝐼𝑌

𝑌𝑡ℎ𝑒𝑜𝑟𝑦
|
)

 
 

 

Equation 6 

where:  

𝑌 is the variable under investigation (𝑊 or 𝐿); 

𝑌𝑡ℎ𝑒𝑜𝑟𝑦 is the theoretical true value of 𝑊 or 𝐿; 

𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 𝐶𝐼𝑌  is the lower bound of the simulated confidence interval of the 

variable 𝑌; and, 

𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 𝐶𝐼𝑌 is the upper bound of the simulated confidence interval of the 

variable 𝑌. 

As the results shown in Table 1 indicate, the simulation model performed well, but 

it was not 100% accurate in representing the queue system under the different scenarios 

investigated. About 85.1% of the simulated confidence intervals (CIs) contained the true 

𝑊 value of the 𝑀/𝑀/𝑠 system and 86.9% of the simulated CIs contained the true 𝐿 value. 

However, only 10.7% of the simulated CIs contained the true 𝑊 value of the 𝑀/𝐺/1 

system and only 19.3% of the simulated CIs contained the true 𝐿 value. The average 

absolute errors (including or excluding zeros) of 𝑊 and 𝐿 did not exceed 1% in any of the 

scenarios investigated. The individual absolute error of 𝑊 and 𝐿 did not exceed 0.5% in 
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any of the 𝑀/𝑀/𝑠 scenarios investigated and it did not exceed 3.5% in any of the 𝑀/𝐺/1 

scenarios investigated.  

Interestingly, for 𝑀/𝑀/𝑠 systems, the highest individual absolute error was 

always observed for 400 replications, regardless of the configuration. These results are 

surprising for two reasons. First, 𝑀/𝑀/1 queue systems have exact theoretical solutions 

and, hence, the error is not due to the numerical solution. Second, with a higher number 

of replications, the intrinsic output-uncertainty tends to decrease due to the increase in the 

sample size. Consequently, a few possible explanations for these contradicting results are: 

(1) the pseudorandom number generator of the software is not appropriate, (2) the warm-

up period is not long enough, (3) the extrinsic input-uncertainty is present and significant 

in the model, and/or (4) the intrinsic output-uncertainty is not monotonically decreasing 

with the increase in the number of replications. The first explanation is not adequate 

because Simio® uses the Mersenne Twister pseudorandom number generator that has an 

extremely long period and has been extensively tested for uniformity and independence. 

The second explanation can also be eliminated because the effect of the warm-up period 

was investigated for all the scenarios and the warm-up period used in the experiments was 

considered satisfactory in all the scenarios. Moreover, if the warm-up period was the issue, 

the effect should be even higher for scenarios with identical configuration and a larger 

number of replications. As one can see from Table 1, the error tends to reduce again with 

a higher number of replications. Therefore, the third and fourth explanations are the only 

ones remaining unexplained and indicate the impacts that uncertainty may have on the 
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simulation results. Figure 3 and Figure 4 show the boxplot of six different experiments, 

with identical 𝑀/𝑀/1 configuration but with different numbers of replications for the 

simulation responses time in the system and number in the system, respectively. 

Experiments are numbered from the lowest to the highest number of replications, where 

experiment 376 is the 𝑀/𝑀/1 system replicated 400 times. As can be seen in Figure 3 

and Figure 4, experiment 376 is the experiment with the largest error between the 

simulation responses and the theoretical responses among the experiments shown.  

For 𝑀/𝐺/1 systems, the largest individual errors were obtained in the scenarios 

with the largest number of replications. Another interesting observation is that despite the 

fact that the 𝐿 response had a larger number of true values contained within the simulated 

CIs, the highest absolute errors observed referred to this response and not to the W 

response. This was observed for the majority of the scenarios under investigation.  
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Figure 3. Boxplot of simulation response time in the system. 

  

 

Figure 4. Boxplot of simulation response number in the system.  
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Although this is a simple example, the situation can be actually worse, because the 

uncertainty level in more complex systems may be much higher than the ones observed 

here. For instance, a realistic simulation model usually mimics a complex system that has 

tens or hundreds of input parameters and at least a handful of responses of interest. In such 

complex systems, extrinsic input-uncertainty, as well as intrinsic-output uncertainty, are 

more likely to be higher due to the greater number of assumptions and approximations, 

higher chances of data measurement errors, greater inherent variability, and so on. 

Moreover, in more complex systems, there is also a higher probability that the responses 

of interest will be a correlated nonlinear function of the inputs. Therefore, this illustrative 

example shows the need for an uncertainty quantification analysis and careful use of the 

simulation results.  

Law (2007) emphasized throughout his book that simulation models are driven by 

random inputs and, consequently, will produce random output. He argued that appropriate 

analysis of the output is critical if the results are to be properly interpreted and used. Barton 

et al. (2014) highlighted that not only corporate profitability may depend on the decisions 

informed by simulation results, but also human lives. Therefore, simulation modelers 

should search for systematic ways of improving the model results accuracy and estimating 

the uncertainty level of the results in order to appropriately inform the simulation 

stakeholders.  

In this context, it is important to reinforce the fact that simulation results contain 

uncertainty does not mean the results cannot support decision-making or have no use. 
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What is important is that the decision-makers and simulation stakeholders are adequately 

informed of these uncertainties and the consequent risks involved in their decisions. As 

the quote says: “something is better than nothing”. A partially informed decision has 

higher chances of success than a simple blind guess. 

1.3. Research Topics and Contributions 

Based on the trade-off between model complexity and uncertainty in simulation 

models, this dissertation investigates the use of Shannon’s entropy and mutual information 

as measures of uncertainty quantification in simulation models. The main research 

question of this work is whether entropy and mutual information measures can quantify 

the uncertainty and, consequently, the information present in simulation models and help 

to understand the input parameters and experiment settings that contribute more to 

uncertainty in simulation models. The work is divided into three topics. The first part 

addresses the case where the simulation models are driven by stationary univariate 

distributions and the entropy measures are calculated using the histogram-based method 

with and without normalization. The second part is an extension of the first part, where 

kernel-based method, k-nearest neighbors, and fuzzy-histogram method are used as the 

entropy estimators. Finally, in the third part, the entropy measures are applied to identify 

the input parameters and the experiment settings, such as number of replications and seed, 

that contribute more to uncertainty.  The contributions of each topic are detailed below. 

Under topics one and two, Shannon’s entropy and mutual information, from the 

information theory field, are used to quantify how uncertain is(are) the simulation 
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outcome(s) and how much of this uncertainty can be attributed to each of the inputs. The 

topic of uncertainty quantification has been widely investigated by researchers and 

according to Barton et al. (2014), because there are robust methods for controlling and 

measuring simulation-estimation error, one might be tempted to say that the problem of 

estimating uncertainty has already been solved. Recent studies have concentrated on 

estimating the input-uncertainty and providing confidence intervals that account for both 

the simulation-estimation error as well as the uncertainty about the input models. In the 

case of parametric distributions, input model uncertainty is reduced to input parameter 

uncertainty (Song, Nelson, & Pegden, 2014). Barton and Schruben (1993) used uniform 

and bootstrap resampling to estimate simulation output-uncertainty due to the uncertainty 

in the empirical distribution used as input to drive the simulation. Barton et al. (2010) and 

Barton et al. (2014) used metamodel-assisted bootstrapping to provide a confidence 

interval that included the input-uncertainty from independent parametric input models and 

the simulation-estimation uncertainty. Xie, Nelson, and Barton (2014a) introduced a 

Bayesian framework to provide credible intervals for the mean that accounted for the 

input-parameter uncertainty and the simulation-estimation uncertainty. The uncertainty 

about the input parameters was represented via a posterior distribution conditional on the 

real-world data and the uncertainty about the mean simulation response via a posterior 

distribution conditional on a designed simulation experiment. Xie et al. (2014b) used 

metamodel-assisted bootstrapping to provide a confidence interval that included the input-
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uncertainty from dependent Normal to Anything (NORTA) input models and the 

simulation-estimation uncertainty.  

In contrast, this dissertation investigates entropy measures as a method to estimate 

the total uncertainty in simulation models and to quantify the amount of uncertainty in the 

simulation response that can be attributed to each one of the inputs. The goal is to provide 

a method for estimating the uncertainty on simulation responses that requires no additional 

simulation effort and that is simple enough to be understood and implemented by the 

majority of simulation stakeholders.  

According to Song et al. (2014), decomposing the uncertainty, also known as 

measures of contribution, is difficult and it is an area of active research. Song et al. (2014) 

discussed what is called sample-size sensitivity. This technique quantifies how much the 

estimator variance would be reduced by observing one more real-world sample data from 

an input process 𝑥, given that one already has 𝑚 observations. The input distributions with 

the largest sensitivities would be targeted for more real-world data. However, Song et al. 

(2014) highlighted that sample-size sensitivities are only local-gradients and, hence, not 

ideal for budget allocation. Ankenman and Nelson (2012) presented a bootstrap method 

to assess the input uncertainty relative to the simulation sampling variability and they 

proposed a follow-up experiment using sequential bifurcation to identify the largest 

sources of input uncertainty. Song and Nelson (2013) build on Ankeman and Nelson’s 

(2012) work. Song and Nelson (2013) used bootstrap and variance decomposition to 

estimate the relative contributions of each input model and to identify the input data 
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sources from which collecting more data would lead to the most reduction in input 

uncertainty. However, in contrast to the work of Ankenman and Nelson (2012), Song and 

Nelson (2013) provided a new follow-up analysis in which no additional simulation 

experiments were required. Table 2 lists some of the important works in the field of 

uncertainty quantification and the methods used by them.  

 

Table 2. Some of the important work in the field of simulation uncertainty 

quantification. 
Paper Method Assumptions 
Barton and Schruben 
(1993) 

Uniform and bootstrap 
resampling 

Independent univariate 
empirical distributions. 

Barton et al. (2010) Meta-model-assisted 
bootstrapping (stochastic 
kriging meta-model), direct 
bootstrap, Bayesian bootstrap, 
conditional confidence 
interval, and Bayesian 
credible interval.  

Independent univariate 
parametric distributions with 
known families (exponential) 
and unknown parameters. 

Song and Nelson 
(2013) 

Bootstrap and variance 
decomposition 

Independent univariate 
parametric distributions with 
known parametric families 
and unknown parameters. 

Barton et al. (2014)  Meta-model-assisted 
bootstrapping (stochastic 
kriging meta-model) 

Independent univariate 
parametric distributions with 
known parametric families 
and unknown parameters, and 
meta-model uncertainty can 
be ignored. 

Xie et al. (2014a) Bayesian credible interval 
assisted by meta-model 
(Gaussian process) 

Independent univariate 
parametric distributions with 
known families and unknown 
parameters. 

Xie et al. (2014b) Meta-model-assisted 
bootstrapping (stochastic 
kriging meta-model) and 
Spearman’s rank correlation 

NORmal To Anything 
(NORTA) distribution 
[multivariate parametric 
distribution], which means 
unknown dependent inputs 
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(unknown multivariate 
distribution), but known 
marginal distributions. 

 

 

Table 3 shows a classification of the work discussed on Table 2 based on the 

assumptions made in them.  

 

Table 3. Classification of work on simulation uncertainty quantification based on 

assumptions. 
Type Description Work 
Type A Independent non-parametric 

distribution (empirical 
distribution) 

Barton and Schruben (1993) 

Type B Independent parametric 
distributions (stationary 
univariate case) 

Barton et al. (2010), Song and 
Nelson (2013), Barton et al. 
(2014), and Xie et al. (2014a)  

Type C Dependent parametric 
distributions (stationary 
multivariate case) 

Xie et al. (2014b) 

Type D Time-varying independent 
parametric distributions (non-
stationary univariate case) 

None available to the best of 
our knowledge 

Type E Time-varying dependent 
parametric distributions (non-
stationary multivariate case) 

None available to the best of 
our knowledge  

 

 

Under topic three, Shannon’s entropy and mutual information are applied in 

conjunction with other methods such as contingency analysis, Tukey-Kramer multiple 

comparison test, and regression analysis for identifying the input parameters and 

understanding the experiment settings that contribute the most to the uncertainty in 
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simulation models. The results are compared to the results of the standard error of the 

mean and analysis of variance (ANOVA).  

A general contribution of this dissertation is that although information theory has 

been widely recognized for its importance in the area of uncertainty and information 

quantification and feature classification, the theory has not been extensively applied in the 

simulation field yet. This dissertation investigates entropy measures as potential measures 

of uncertainty quantification in the simulation field and presents different potential 

applications of the measures for input parameter selection and for experiment planning.  

Uncertainty quantification in simulation models is a well-studied topic through the 

use of meta-models, calibration techniques, and variance reduction techniques. This 

dissertation contributes to the body of knowledge of uncertainty quantification in the 

following manners: (i) by providing an empirical example to inform simulation 

stakeholders about the implications of uncertainty in the results of simulation results; (ii) 

by providing a method of uncertainty quantification in simulation models as a complement 

to the existing methods in the literature and which can be easily understood by the majority 

of the simulation stakeholders; and (iii) by being, to the best of our knowledge, the first 

work to provide applications of entropy measures for uncertainty quantification and 

experiment planning in the context of simulation models. 
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2. AN INVESTIGATION OF INFORMATION THEORY AS A METHOD FOR 

UNCERTAINTY QUANTIFICATION IN SIMULATION MODELS USING THE 

HISTOGRAM-BASED METHOD WITH STATIONARY UNIVARIATE 

DISTRIBUTIONS 

 

2.1. Introduction 

Decision-making is a part of everyday life. Examples include decisions about 

what, when, and from which supplier to buy a product, when to travel, which route to take, 

how much food to buy, and so on. These decisions made by both organizations and 

individuals usually involve different responses of interest that may or may not be related 

to each other. Although each of these decisions is likely different, there is a common 

concern among all of them: how uncertain is the available information and, consequently, 

what are the risks related to the decisions made?  

When the system from which a decision needs to be made is composed of simple 

relationships, it may be possible to use mathematical methods to support the decision-

making. However, when the relationships are too complex, which is the case of most real-

world systems, the decision-making must be supported by approaches, such as simulation 

models (Law, 2007). Simulation is useful in supporting decision-making in different ways, 

such as: (i) by allowing the investigation of potential benefits brought by changes that are 

too costly to make in the real-world systems; (ii) by allowing the investigation of potential 

benefits and costs brought by proposed new systems; (iii) by allowing the investigation of 
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potential risks of scenarios that can be too dangerous for the system or society; (iv) by 

allowing the investigation of system bottlenecks; and so on.  

Simulation model is, thus, a tool commonly used to support decision-making of 

complex systems. The ultimate goal of simulation models is to reduce the uncertainty in 

the decision-making process by providing more and reliable information about those 

complex systems. Despite being used to minimize uncertainties in the decision-making 

process, simulation models are driven by stochastic inputs and, hence, simulation-based 

estimates contain input estimation uncertainty as well as simulation estimation uncertainty 

(Xie et al., 2014a).  

There are two main sources of uncertainty in simulation models: the input-

uncertainty, due to fitting input distributions based on finite samples of real-world data; 

and the simulation-estimation error (or the simulation-sampling error), due to a finite 

amount of simulation effort (Xie et al., 2014a). Despite their uncertainties, simulation 

models can still effectively support decision-making and promote system improvements 

as long as simulation uncertainties are acknowledged (Christley et al., 2013).   

In order to inform simulation stakeholders about the uncertainties present in 

simulation models, one needs to first quantify the uncertainty. The goal of uncertainty 

quantification is to identify and quantify the sources of error in simulation models and to 

assess their net and overall impact on the simulation results (DeVolder et al., 2002). Yet, 

an important question remains: how can one estimate uncertainty in simulation models? 

Within this context, one can see that the use and development of methods for uncertainty 
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quantification in simulation models are very important. The simulation uncertainty is 

commonly characterized by confidence intervals, and other methods have been developed 

in an attempt to quantify both the input and the simulation uncertainty. There is still more 

work to be done in this area. There are some unanswered questions, such as: (1) how 

uncertain are each one of the simulation inputs and outputs?, and (2) how much of the 

information in the simulation output reflects valid information from the input, and how 

much is noise?  

In this dissertation, Shannon’s entropy and mutual information are proposed as 

measures of simulation uncertainty. The main research question is: can entropy and mutual 

information measures quantify the uncertainty and, consequently, the information present 

in simulation models?  

The analysis is restricted to simulation models using stationary univariate 

distributions. This restriction is justified based on the fact that: (i) stationary univariate 

distributions are the most common inputs in simulation models; and, (ii) this will give a 

good illustrative example for which closed-form solutions are available for assessment of 

the results.  

The central contribution of this section is that it provides an analysis of Shannon’s 

entropy and mutual information as measures of information and uncertainty in simulation 

models when using histogram-based method.  

In Scheidegger, Banerjee, and Pereira (2018), the authors have proposed a 

framework for uncertainty quantification in simulation models, where they discussed the 
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sources and nature of uncertainty in simulation models, as well as the steps that should be 

followed to analyze and quantify uncertainty in simulation models. The authors also 

presented an application where mutual information was used as a measure of uncertainty 

in a mosquito-borne infectious disease simulation model using system dynamics. As the 

authors have highlighted in their conclusions, their work involved a simple application, 

which was a good starting point to show the potential of information theory for uncertainty 

quantification in simulation models. However, further investigation is needed to address 

some of the application’s drawbacks and, as the authors have suggested, to explore future 

topics of investigation. Some of the drawbacks of Scheidegger et al. (2018) are: (i) the 

work used discrete empirical histogram estimate and Shannon’s entropy for discrete 

variables, although their model was driven by continuous variables; (ii) the data was 

arbitrarily clustered into two bins with different sizes and the effect of number of bins and 

binwidth was not assessed; (iii) the potential of the measures as an uncertainty 

quantification method in simulation model was not discussed; and (iv) the authors only 

explored mutual information, but did not explore entropy measures. 

This section is intended to be a continuation of Scheidegger et al. (2018), exploring 

some of the topics that were suggested for future work and addressing some of the 

drawbacks. There are six goals for this section of the dissertation: (1) discuss the 

challenges of computing entropy measures for continuous variables; (2) discuss the 

dependence of entropy on the binwidth; (3) investigate the entropy and mutual information 

as measure of uncertainty for different values of binwidth (fixed number of bins and 
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optimum number of bins); (4) investigate the measures for different normalization 

methods, different parameter values, and different contexts (different seeds for generating 

random numbers, constant work-in-progress (CONWIP), and addition of a third input -- 

travel time); (5) assess the potential of the measures as an uncertainty quantification 

method in simulation model; and, (6) compare the method when using histogram density 

estimate and discrete empirical histogram estimate. For a detailed list of the experiments 

performed and their configurations, please see Table 66 of the Appendix. 

The rest of this section is organized as follows: section 2.2 provides a quick 

overview of studies in uncertainty quantification in simulation models and a discussion of 

entropy and mutual information, their challenges in the continuous case, and their 

dependence on the binwidth. Section 2.3 discusses the proposed application of entropy 

measures for uncertainty quantification in simulation models. Results and analyses are 

reported in section 2.4. Concluding remarks and future research directions are presented 

in section 2.5. 

2.2. Background 

2.2.1. Uncertainty quantification 

Since the beginning of the 21st century, the topic of uncertainty quantification and 

propagation has been attracting the attention of simulation modelers from a wide variety 

of domains. Due to the increased importance of the topic, researchers now classify it as 

model verification, validation, and uncertainty quantification (VV&UQ), instead of the 
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previously well-known model verification and validation (V&V) paradigm (Roy & 

Oberkampf, 2011). 

Every uncertainty analysis problem can be decomposed into input, model, and 

output uncertainty analysis (Marelli & Sudret, 2014). The input and output uncertainties 

are also known as extrinsic input-uncertainty and intrinsic output-uncertainty, 

respectively. 

According to Song et al. (2014), the extrinsic input-uncertainty depends mainly on 

two factors: the amount of real-data available from which the input distribution parameters 

are estimated and the sensitivity of the response to those parameters. In other words, the 

input-uncertainty depends on (1) how accurately the input was modeled, and (2) how 

sensitive is the system response to the input model. Barton et al. (2010) mentioned that 

estimating the input-uncertainty may lead to a better balance between decision-making 

confidence and model results, and can also provide information about how much data must 

be collected to obtain model results at a desired level of accuracy. 

The most common methods used in input-uncertainty propagation and 

quantification are: sampling-based methods, Bayesian methods, approximation methods, 

and meta-models or surrogate models (Barton, 2012; Baudin, Dutfoy, Iooss, & Popelin, 

2015). Among the sampling-based methods, the most common ones are: minimum energy 

design, stratified sampling, direct resampling, bootstrap resampling, and meta-model 

assisted bootstrap (Barton, 2012). Approximation methods include first-order reliability 

method, second-order reliability method, and δ-methods (Marelli & Sudret, 2014). 
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Commonly used meta-models or surrogate models are: polynomial chaos expansion (also 

known as Wiener chaos expansion) and kriging (also known as Gaussian process 

regression). For a review of some of these methods, see Barton (2012). Graphical 

techniques and sensitivity analysis are also used for input-uncertainty propagation and 

quantification (Baudin et al., 2015; P. Chen, Quarteroni, & Rozza, 2013).  

Regarding the intrinsic output-uncertainty, this uncertainty comes from the finite 

run length and the finite number of replications (Barton et al., 2010). The intrinsic output-

uncertainty is already measured by all simulation software and it is characterized by 

confidence intervals on the performance measures (Barton et al., 2014; Song & Nelson, 

2013). As in any sampling experiment, increasing the number of replications in a 

simulation project reduces the variance of the sample mean (Nelson, 1987a). However, 

increasing the number of replications may be too costly or not feasible due to time and 

computational resource constraints. Several techniques, such as antithetic variates (AV), 

control variates (CV), and common random numbers (CRN), have been developed to 

reduce the variance of simulation estimators without increasing the computational effort 

(Nelson, 1987b). Variance reduction techniques (VRTs) had their origins in Monte Carlo 

estimation and survey sampling around 1965 and 1975, respectively (Nelson, 1987a). 

Many simulation software offer built-in features that facilitate the execution of AV and 

CRN, but CV usually requires some additional software support (Nelson, 1987b).  

There were not many methods found in the literature for model uncertainty 

analysis beyond model verification and validation. 
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Although there have been many methods applied to uncertainty quantification in a 

wide range of applications, there is no consolidated method so far (P. Chen et al., 2013). 

Besides, in general, the aforementioned methods focused on input-uncertainty 

quantification due to limited real-world data or interval quantification rather than total 

uncertainty quantification, and they require advanced mathematical and statistical 

knowledge that are not always possessed by every simulation stakeholder.  

2.2.2. Entropy measures and mutual information 

In 1948, Claude Shannon introduced the concept of entropy as a measure of 

information and uncertainty (Shannon, 1948). Shannon’s theory accurately measures how 

much information can be transferred between different elements of a system and how 

uncertain is(are) the outcome(s) of the system (Stone, 2015). Shannon asked three main 

questions: (1) whether one could quantify the information produced by an information 

source or not; (2) the amount of choice involved in the message selection; and (3) how 

uncertain one would be about the outcome. In the context of uncertainty quantification in 

simulation models, Shannon’s questions can be interpreted as: (1) how to quantify the 

information produced by simulation models?; (2) how to select the simulation model?; 

and, (3) how uncertain is(are) the simulation outcome(s)? 

Related to Shannon’s entropy measure, Stone (2015) asked another key question: 

how much of the entropy in the output reflects information in the input and how much is 

noise? This can be measured by the mutual information between 𝑋 and 𝑌, which is the 

average reduction in uncertainty about the value of 𝑋 provided by the value of 𝑌, and vice 
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versa. The mutual information (MI) measures the amount of information contained in a 

variable (or a group of variables) that helps to predict the system response. That is, MI is 

a symmetric measure that quantifies the statistical information shared between two 

variables (Ghosh, 2002). According to Dionisio, Menezes, and Mendes (2004), Kinney 

and Atwal (2014), and Haeri and Ebadzadeh (2014), MI is also a measure of linear and 

non-linear dependence among two variables. Despite the advantages of MI for quantifying 

information and the relationships between variables, its application, especially for 

continuous data, is not straightforward. MI requires an estimate of the probability 

distribution of the underlying data. How to compute this estimate in a way that does not 

bias the resulting MI remains an open problem (Kinney & Atwal, 2014).  

In his work, Shannon discussed that if such a measure of information and 

uncertainty existed, it would require the following properties (Reza, 1961):  

(i) Continuity: if the event probability is slightly changed, the associated measure 

of uncertainty or information should change accordingly in a continuous 

manner.  

(ii) Symmetry: the measure must be functionally symmetric in relation to the 

probability set, i.e., the amount of information associated with a sequence of 

outcomes does not depend on the order in which those outcomes occur. 

(iii) Extremal property: the maximum entropy is obtained when all the events are 

equiprobable. 
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(iv) Additivity: because entropy is nonnegative, partitioning the system into 

subevents cannot decrease the entropy of the system or the information 

associated with a set of outcomes is obtained by adding the information of 

individual outcomes.  

 Based on these properties, Shannon established that the only measure satisfying 

all the assumptions is represented by Equation 7, where 𝑘 is a positive constant that only 

refers to the choice of the unit of measure and 𝑝𝑖 is the probability of the 𝑖𝑡ℎ event. 

𝐻(𝑋) = −𝑘 ∑ 𝑝(𝑥𝑖)
𝑛

𝑖=1
log 𝑝(𝑥𝑖) Equation 7 

In an analogous manner, but without any proof, Shannon defined in his paper that 

the entropy of a continuous variable with probability density function 𝑓(𝑥), known as 

differential entropy, is given by Equation 8. 

𝐻(𝑋) = − ∫ 𝑓(𝑥)
∞

𝑥=−∞

log 𝑓(𝑥) 𝑑𝑥 Equation 8 

The above definition of differential entropy presents three main issues (Jaynes, 

1968; Kittaneh, Khan, Akbar, & Bayoud, 2016): (i) it may be negative, while Shannon’s 

entropy in the discrete case is always positive; (ii) it is not invariant under linear 

transformation; and, (iii) it is not a limit of Shannon’s entropy of discrete approximations, 

which means that one is unlikely to estimate the differential entropy using the entropy of 

empirical distributions. Reza (1961) also added that the maximum entropy for a 

continuous variable does not occur when events are equiprobable anymore, as it was in 

the discrete case. 
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It is easy to show why the differential entropy may be negative. In the discrete 

case, the probability mass function is 0 ≤ 𝑝(𝑥𝑖) ≤ 1 and ∑ 𝑝(𝑥𝑖)
𝑛
𝑖=1 = 1, which implies 

that log 𝑝(𝑥𝑖)  < 0 or undefined when 𝑝(𝑥𝑖) = 0 in which case log 𝑝(𝑥𝑖) is considered to 

be equal to 0 in information theory. Because entropy is expressed as 

−∑ 𝑝(𝑥𝑖)
𝑚
𝑖=1 log 𝑝(𝑥𝑖), entropy is always positive. On the other hand, in the continuous 

case the probability density function is 𝑓(𝑥) ≥ 0 ∀ 𝑥 and ∫ 𝑓(𝑥)
∞

−∞
𝑑𝑥 = 1. Because 𝑓(𝑥) 

can be greater than 1, log 𝑓(𝑥) can be positive, in which case depending on the values of 

all 𝑥, the entropy may be negative.  

Regarding the lack of invariance issue, Reza (1961) considered a new variable 𝑌 

whose density function 𝜌(𝑦) was given in Equation 9. 

𝜌(𝑦) = 𝑓(𝑥) |
𝑑𝑥

𝑑𝑦
| Equation 9 

The entropy associated with 𝑌 can be calculated using Equation 10.  

𝐻(𝑌) = −∫ 𝜌(𝑦)
∞

−∞

log 𝜌(𝑦)

= −∫ [𝑓(𝑥) |
𝑑𝑥

𝑑𝑦
|]

∞

−∞

log [𝑓(𝑥) |
𝑑𝑥

𝑑𝑦
|] 𝑑𝑦

= 𝐻(𝑋) + ∫ 𝑓(𝑥)
∞

−∞

log |
𝑑𝑥

𝑑𝑦
| 𝑑𝑥 

Equation 10 

The linear transformation of the variable is represented by Equation 11. 

𝑌 = 𝐴𝑋 + 𝐵 Equation 11 
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From Equation 10, it is possible to observe that the entropy of the continuous 

random variable 𝑌 will be changed by a constant 𝑙𝑜𝑔|𝐴| as shown in Equation 12.  

𝐻(𝑌) = 𝐻(𝑋) + log|𝐴| Equation 12 

According to Stone (2015) and Reza (1961), when the entropy of a continuous 

variable is discretized, that is, approximated by a discrete scheme, the entropy tends to 

infinity as the discretization is made finer and finer. Stone (2015) showed that by 

discretizing a continuous variable using a histogram in which each bin has a width equal 

to ∆𝑥 and where the height of the histogram 𝑝(𝑥𝑖) = 𝑃𝑖/∆𝑥 was interpreted as a 

probability density. This discretization leads to Equation 13. 

𝐻(𝑋∆) = −∑ 𝑃𝑖
𝑚

𝑖=1
log 𝑃𝑖 =∑ 𝑝(𝑥𝑖)

𝑚

𝑖=1
∆𝑥 log

1

𝑝(𝑥𝑖)∆𝑥

=∑ 𝑝(𝑥𝑖)
𝑚

𝑖=1
∆𝑥 [log

1

𝑝(𝑥𝑖)
+ log

1

∆𝑥
]

=∑ 𝑝(𝑥𝑖)
𝑚

𝑖=1
∆𝑥 log

1

𝑝(𝑥𝑖)
+∑ 𝑃𝑖

𝑚

𝑖=1
log

1

∆𝑥

=∑ 𝑝(𝑥𝑖)
𝑚

𝑖=1
∆𝑥 log

1

𝑝(𝑥𝑖)
+ log

1

∆𝑥
 

Equation 13 

Therefore, as the binwidth approaches zero, the first term on the right side of 

Equation 13 becomes an integral and the second term approaches infinity. 

𝐻(𝑋) = ∫ 𝑝(𝑥)
∞

𝑥=−∞

log
1

𝑝(𝑥)
𝑑𝑥 +∞ Equation 14 

Stone (2015) argued that if all continuous variables had the same infinite entropy, 

this would not be useful. Although, in principle, each continuous variable can convey an 
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infinite amount of information, this is limited by the current capacity of the system and 

accuracy of measurement devices. In fact, the noise of measurement devices transforms 

continuous variables into discrete variables with 𝑚 discriminable values, where 𝑚 

decreases as the noise increases (Stone, 2015). Therefore, researchers in the field of 

information theory agreed that the differential entropy of a continuous variable was the 

portion of Equation 14 that ignored the infinity and only included the “important” part, 

which agrees with the equation proposed by Shannon. However, important concerns 

remained in the field of information theory related to how to fix the issues presented in the 

differential entropy.  

Methods and/or corrections have been proposed in the past to extend Shannon’s 

entropy to continuous variables. Among the methods and corrections, three can be cited: 

(i) the cumulative residual entropy proposed in (Rao, Chen, Vemuri, & Wang, 2004); (ii) 

the estimation from a discrete approximation using histogram-based method and binwidth 

adjustment (Stone, 2015); and, (iii) passing to the limit from a discrete distribution and 

using an invariant measure (Jaynes, 1957, 1968). 

In the correction mentioned in Stone (2015), when using the histogram-based 

method and equal binwidth, the differential entropy can be estimated using Equation 15. 

By using this method, entropy can be finitely estimated using a discrete scheme. However, 

the issues of the negativity and invariance still persist. 
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𝐻𝑑𝑖𝑓(𝑋
∆) ≈∑𝑝(𝑥𝑖)

𝑖

∆𝑥 log
1

𝑝(𝑥𝑖)
=∑𝑃𝑖

𝑖

log
∆𝑥

𝑃𝑖

=∑𝑃𝑖
𝑖

log
1

𝑃𝑖
+∑𝑃𝑖

𝑖

log ∆𝑥 =

= [∑𝑃𝑖
𝑖

log
1

𝑃𝑖
] − log

1

∆𝑥
= 𝐻(𝑋∆) − log

1

∆𝑥
 

Equation 15 

When the entropy is discretized, it is known that its maximum value is achieved 

when all signals (or datapoints) are equally likely. That is, 𝐻𝑀𝑎𝑥(𝑋) = 𝑙𝑜𝑔2 𝑛. When the 

binwidth is calculated based on the number of bins, we have: ∆𝑥 =
max(𝑥𝑖)−min(𝑥𝑖)

𝑛
. When 

the data is normalized between 0 and 1, we have: max(𝑥𝑖) = 1, min(𝑥𝑖) = 0, and, 

consequently, ∆𝑥 =
1

𝑛
. Therefore, 𝐻𝑑𝑖𝑓(𝑋

∆)  ≈  𝐻(𝑋∆) − log
1

∆𝑥
 ≤ 𝐻𝑀𝑎𝑥(𝑋) − 𝑙𝑜𝑔2 𝑛 ≤

0, when the binwidth is based on the number of bins. 

Jaynes (1957) proposed as a correction to the continuous case to pass it to the limit 

from a discrete distribution by using Equation 16. 

𝐻(𝑋) = −∫𝑝(𝑥) log [
𝑝(𝑥)

𝑚(𝑥)
] 𝑑𝑥 Equation 16 

where 𝑚(𝑥) is an invariant measure proportional to the limiting density of discrete 

points.  

A question remains regarding what the measure 𝑚(𝑥) should be. As pointed out 

in Jaynes (1968), if the parameter space is not the result of any limiting process, the 

conclusions will depend on the measure chosen. The measure 𝑚(𝑥) also has an impact in 
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the maximum entropy principle, which in the discrete case occurred when all the events 

were equiprobable.  

Reza (1961) mentioned that due to the difficulties in the continuous case, entropies 

have no direct interpretation with respect to the information or uncertainty. However, the 

author highlighted that the mutual information preserves its properties and, therefore, its 

relevance. The mutual information is nonnegative, invariant under linear transformation, 

and the problem of infinity disappears as the measure involves the difference between two 

entropies (Reza, 1961; Stone, 2015). More specifically, mutual information is bounded 

(Egnal & Daniilidis, 2000).   

Reza (1961) and Egnal and Daniilidis (2000) mentioned that just as the definition 

of random variables could be extended from one-dimension to two-dimension, the 

definition of entropy could also be extended for joint and conditional entropy. The 

conditional entropy 𝐻(𝑌|𝑋) reflects the uncertainty of 𝑌 when 𝑋 is known or the noise 

and is given by Equation 17 (Stone, 2015). In other words, the more 𝑌 depends on 𝑋, the 

lower the conditional entropy. The joint entropy 𝐻(𝑋, 𝑌) reflects the average information 

of the system associated with the pair 𝑋 and 𝑌 and is given by Equation 18 (Egnal & 

Daniilidis, 2000; Stone, 2015). The mutual information is given by Equation 19 (Stone, 

2015).  

𝐻(𝑌|𝑋) = − ∑∑𝑝(𝑥𝑖, 𝑦𝑗)

𝑚𝑦

𝑗=1

𝑚𝑥

𝑖=1

𝑙𝑜𝑔 𝑝(𝑦𝑗|𝑥𝑖) Equation 17 
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𝐻(𝑋, 𝑌) = − ∑ ∑ 𝑝(𝑥𝑖 , 𝑦𝑗)
𝑚𝑦

𝑗=1

𝑚𝑥

𝑖=1
log 𝑝(𝑥𝑖, 𝑦𝑗)

= 𝐻(𝑋) + 𝐻(𝑌|𝑋) 

Equation 18 

𝐼(𝑋; 𝑌) = 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌) = 𝐻(𝑌) − 𝐻(𝑌|𝑋) Equation 19 

As the entropy of variables can vary significantly, a normalized mutual 

information (NMI) is desirable for easier interpretation and comparisons (Estévez, 

Tesmer, Perez, & Zurada, 2009; Strehl & Ghosh, 2002). Another reason for normalizing 

is that MI is biased towards multi-binned variables, which means that MI increases with 

the increase in the number of bins used to calculate the entropy of the variables (Estévez 

et al., 2009; Strehl & Ghosh, 2002). Different normalization methods have been suggested 

in the literature: (1) 𝑁𝑀𝐼𝑎𝑟𝑖𝑡ℎ = 2
𝐼(𝑋;𝑌)

𝐻(𝑋)+𝐻(𝑌)
; (2) 𝑁𝑀𝐼𝑔𝑒𝑜𝑚 =

𝐼(𝑋;𝑌)

√𝐻(𝑋)×𝐻(𝑌)
; (3) 𝑁𝑀𝐼𝑗𝑜𝑖𝑛𝑡 =

𝐼𝑄𝑅 =
𝐼(𝑋;𝑌)

H(X,Y)
; and, (4) 𝑁𝑀𝐼𝑡ℎ𝑒𝑜𝑟 = 𝑁𝑀𝐼𝑙𝑜𝑔 =

𝐼(𝑋;𝑌)

max (max (H(X)),max (H(Y)))
=

𝐼(𝑋;𝑌)

max (log𝑛𝑋,log𝑛𝑌)
. These methods are discussed in Ghosh (2002), Hill, Batchelor, Holden, 

and Hawkes (2001), Principe, Xu, Zhao, and Fisher (2000), and Strehl and Ghosh (2002). 

Another difficulty during the calculation of entropy measures in the continuous 

case is that the evaluation of the integral in Equation 8 requires numerical integration and 

it is computationally inefficient (Beirlant, Dudewicz, Györfi, & Van der Meulen, 1997). 

To overcome this difficulty, the following approximations are given in Xiong, Faes, and 

Ivanov (2017) and Steuer, Kurths, Daub, Weise, and Selbig (2002): (1) �̂�(𝑋) =
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 −
1

𝑛
∑ log 𝑓(𝑋𝑖)
𝑛
𝑖=1 ; (2) �̂�(𝑋, 𝑌) =  −

1

𝑛
∑ log 𝑓(𝑋𝑖, 𝑌𝑖)
𝑛
𝑖=1 ; (3)�̂�(𝑋|𝑌) =

 −
1

𝑛
∑ log [

�̂�(𝑋𝑖,Y𝑖)

�̂�(𝑌𝑖)
]𝑛

𝑖=1 ; and, (4) 𝐼(𝑋; 𝑌) =
1

𝑛
∑ log [

�̂�(𝑋𝑖,Y𝑖)

�̂�(𝑋𝑖)�̂�(𝑌𝑖)
]𝑛

𝑖=1 .  

2.2.3. Histogram-based method and binwidth selection 

Despite the advantages of information theory for quantifying information and the 

relationships between variables, its application is not simple, especially for continuous 

data. Entropy measures and MI require an estimate of the probability distribution of the 

underlying data. How to compute this estimate in a way that does not bias the resulting 

measures remains an open problem (Kinney & Atwal, 2014). There are three main non-

parametric approaches discussed in the literature: the histogram-based method, the kernel-

based method, and the k-nearest neighbors (KNN) distance method (Xiong et al., 2017). 

Legg, Rosin, Marshall, and Morgan (2013) mentioned that the histogram-based method is 

the most commonly used method for density estimation.  

In the histogram-based method, the probability functions are approximated by 

means of histograms where the data is divided into bins and the number of elements in 

each bin is counted (Dionisio et al., 2004).  

For equally spaced bins, the empirical distribution function is given by Equation 

20 (Castro, 2015; Koshkin, 2014; Waterman & Whiteman, 1978). 

�̂�𝑗(𝑥) =
1

𝑛
∑𝐈{𝑥𝑖 ∈ [𝑡𝑗 , 𝑡𝑗+1)}

𝑛

𝑖=1

 𝑓𝑜𝑟 𝑥𝑗 ∈ 𝐵𝑗, 𝑗 = 1, … , 𝑘 Equation 20 
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where 𝐵𝑗 = [𝑡𝑗 , 𝑡𝑗+1) denotes the 𝑗𝑡ℎ bin of a total of 𝑘 bins, and 𝐈(. ) is the 

indicator function which is 1 if 𝑥𝑖 ∈ [𝑡𝑗 , 𝑡𝑗+1), and 0 otherwise. 

�̂�𝑗(𝑥) converges in probability to 𝑝𝑗(𝑥) as 𝑛 → ∞ and its mean estimator is 

unbiased; however, �̂�𝑗(𝑥) is not continuous but a staircase function, which is a 

disadvantage if one wants to use it to approximate a continuous random variable (Castro, 

2015; Koshkin, 2014). For the statistic �̂�𝑗(𝑥) to be meaningful when the random variable 

is continuous, a probability density estimator must be used (Foutz, 1980).  

In the histogram density estimation, the distribution is estimated by counting the 

number of data points that are in each bin and assigning to that bin a probability equal to 

the number of points it contains divided by the total number of data points and the 

binwidth. When equally spaced bins are used, the histogram density can be estimated 

using Equation 21 (Pace, 1995).  

𝑓ℎ𝑖𝑠𝑡
𝑗
(𝑥) =

1

𝑛ℎ
∑𝐈{𝑥𝑖 ∈ [𝑡𝑗 , 𝑡𝑗+1)}

𝑛

𝑖=1

 𝑓𝑜𝑟 𝑥𝑗 ∈ 𝐵𝑗, 𝑗 = 1,… , 𝑘 Equation 21 

where ℎ is the binwidth, 𝐵𝑗 = [𝑡𝑗 , 𝑡𝑗+1) denotes the 𝑗𝑡ℎ bin of a total of 𝑘 bins, and 

𝐈(. ) is the indicator function which is 1 if 𝑥𝑖 ∈ [𝑡𝑗 , 𝑡𝑗+1), and 0 otherwise. 

Equation 21 can be extended to the multivariate case; however, Silverman (1986) 

recommended that as in any other multivariate procedure, one should normalize the data 

to avoid extreme differences of spread in various directions.  

A drawback of the histogram-based method is that it is not a continuous function 

and it is not differentiable at the boundaries of the bins, which is undesirable to estimate a 
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continuous probability density function. On the other hand, the histogram-based method 

is very simple, easy to understand, computationally very efficient, and it makes few 

assumptions about the probability function it is trying to estimate (Egnal & Daniilidis, 

2000). MI estimates based on this method are often called naïve estimates as they may 

overestimate or underestimate 𝐼(𝑋;  𝑌), the mutual information between 𝑋 and 𝑌 (Dionisio 

et al., 2004; Kinney & Atwal, 2014). Moreover, selecting the bin size (or length) is the 

main source of error. Kinney and Atwal (2014) argued that this is not a problem in the 

large data limit, because the probabilities can be determined to arbitrary accuracy as 𝑛 →

∞. 

As seen from Equation 21, the histogram method is dependent on the choice of the 

binwidth and also of the choice of the origin of the bin (or the start point of the bin) 

(Härdle, Müller, Sperlich, & Werwatz, 2012; Kanazawa, 1993; Xiong et al., 2017). As a 

result, a common question when constructing a histogram is the size of the binwidth. 

Selecting the bin length (or binwidth) is the main source of error on entropy measures 

using the histogram-based method. Legg et al. (2013) stated that the binwidth choice is 

also critical in the effectiveness of the mutual information.  

According to Egnal and Daniilidis (2000), Wand (1997), and Kanazawa (1993), 

selecting the binwidth parameter is the most important choice in the histogram method 

because it controls the trade-off between bias and variance or oversmoothing and 

undersmoothing (Scott, 1979). If the number of bins is too large, the variance is high, but 

the bias is low. On the other hand, if the number of bins is low, the variance is low, but 
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the bias is high. Similarly, a small binwidth results in a rough, undersmoothed, histogram 

and a large binwidth results in a single block, oversmoothed histogram (Scott, 1979; 

Wand, 1997). Ideally, the binwidth should balance the variance and bias, and should be 

chosen so that the histogram displays the essential structure of the data, without giving too 

much weight to the dataset at hand (Egnal & Daniilidis, 2000; Scott, 1979; Wand, 1997). 

Wand (1997) mentioned that there are not many methods for choosing the starting 

point of the bins apart from looking at different shifted histograms with the same binwidth, 

but there are a number of proposed methods to theoretically determine the appropriate 

binwidth of equal length. Some methods take a look at the data at hand and based on the 

data decide the binwidth, while others try to predict the binwidth based on prior knowledge 

and assumptions, and others select a measure of discrepancy between the histogram and 

the density and, then, asymptotically minimize the expected value of the measure (Egnal 

& Daniilidis, 2000; Kanazawa, 1993). Legg et al. (2013) and Birgé and Rozenholc (2006) 

stated that although there are many methods, there is not a consensus on how to choose 

the binwidth because none of the methods have been completely proved to be better than 

the others. While rules of thumb are very simple and do not aim at any optimality property, 

more sophisticated rules are based on asymptotic estimates and, in general, do not warrant 

good performance for small sample size (Birgé & Rozenholc, 2006).  

For practical efficiency, the majority of the methods for binwidth selection is based 

on dividing the range of sampled data into 𝑘 equally sized bins. Optimizing the number of 

bins among regular partitions, or equally sized bins, is computationally easy and fast. 
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While the use of irregular partitions (or differently sized bins) reduce the bias, optimizing 

for irregular partitions increases the complexity of the selection problem significantly 

(Birgé & Rozenholc, 2006).  

A simple and probably the oldest rule of thumb for the number of bins was 

proposed by Sturges in 1926 and is given by Equation 22 (Legg et al., 2013; Scott, 2015; 

Sturges, 1926). The rule is based on the properties of the data and assumes the data is 

normal (Legg et al., 2013). The binwidth is calculated by dividing the data range by the 

total number of bins (Egnal & Daniilidis, 2000). Although simple, Sturges’ rule is shown 

to lead to oversmoothed histogram, especially for large samples (Legg et al., 2013; Wand, 

1997). 

𝑘 = 1 + 𝑙𝑜𝑔2𝑛 Equation 22 

where 𝑛 is the sample size and 𝑘 is the number of bins. 

In 1976, Doane proposed a variation of Sturges’ rule to allow for skewness, which 

is also known to lead to oversmoothed histograms (Hyndman, 1995; Wand, 1997). 

Another famous rule was proposed by Scott in 1979 (Scott, 1979). Scott used the mean 

integrated squared error (MISE) to obtain the asymptotically optimal binwidth for normal 

data (Kanazawa, 1993). Scott’s rule is given by Equation 23 (Scott, 2015; Wand, 1997). 

ℎ = 3.49𝜎𝑛−1/3 Equation 23 

where 𝜎 is the sample standard deviation. The rule proposed by Scott led to better 

large sample performance of the histogram, but is not consistent itself (Wand, 1997). Scott 
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also proposed a modification of his rule for varying degrees of skewness and kurtosis 

(Scott, 1979, 2015). 

Freedman and Diaconis’ (FD) rule given by Equation 24 uses the interquartile 

range (IQR) of the data instead of the standard deviation as Scott’s rule (Hyndman, 1995; 

Legg et al., 2013).  

ℎ = 2 𝐼𝑄𝑅 𝑛−1/3 Equation 24 

Other rules include: Devroye and Györfi’s rule, Taylor’s rule, and Hall’s rule 

(Kanazawa, 1993; Legg et al., 2013). Although there are many rules for binwidth 

selection, based on a literature review performed by Legg et al. (2013), there is little 

discussion regarding joint histogram binwidth selection and the impact of the binwidth on 

the MI has not been fully investigated in the literature so far.  

2.3. Material and methods 

One of the main goals of a simulation model is to support and improve decision-

making. In order to avoid backfiring, the results of a simulation model must be as accurate 

as possible and the uncertainty of the results must be acknowledged. In this context, there 

are two questions to be answered regarding simulation models: how can one quantify the 

uncertainty of the results and, consequently, the information produced by simulation 

models?; and, how uncertain is(are) the simulation outcome(s)? The use of information-

based measures, namely Shannon’s entropy and mutual information, is proposed to 

quantify uncertainty and information in simulation models. The main goal is to determine 
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whether these entropy measures are adequate for the purpose of quantifying uncertainty 

and information in simulation models.  

For simplification, the analysis is focused on measuring the total uncertainty of 

each output and determining the extent of this uncertainty that can be attributed to each of 

the simulation generated inputs. In other words, how much of this uncertainty can be 

attributed to the inputs that are actually generated by the simulation software; e.g., the 

pseudo-random numbers. The reason for this choice is that, if simulation modelers have 

to choose, they should be more worried about the uncertainty of the simulation model 

responses than any other uncertainty and how the inputs impact this uncertainty. 

According to Song et al. (2014), the input uncertainty depends not only on the amount of 

real-data available from which the input distribution parameters are estimated but also on 

the sensitivity of the response to those parameters. In an analogous way, it is possible to 

say that the output uncertainty depends not only on the finite amount of simulation effort, 

but also on the sensitivity of the simulation response to the inputs, which justifies 

investigating how much of the output uncertainty can be attributed to the simulation 

generated inputs. Therefore, identifying the inputs that have a greater impact on the 

outputs can provide information about where one should spend more effort in reducing 

the uncertainty in order to reduce the total output uncertainty and to obtain the desired 

level of simulation output accuracy.  

Entropy measures are used to quantify the aforementioned idea. Figure 5 shows a 

schematic of the proposed use of entropy measures to quantify uncertainty in simulation 
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models. As can be seen in Figure 5, the simulation outputs are impacted by different 

sources of noise (or uncertainty), namely: system noise, input modeling noise, and 

simulation noise. The system noise is an inherent source of uncertainty and can never be 

eliminated. As such, system noise will also be part of the total uncertainty of the simulation 

output results as uncertainty is propagated throughout the system. The assumption is that 

the values of the real system inputs and outputs are unknown (shown as dashed arrow). 

This is the most common situation in the real world, especially with respect to the outputs. 

Therefore, entropy measures are applied to quantify the total uncertainty of the simulation 

outputs (𝐻(𝑌)), the uncertainty of the simulation generated inputs (𝐻(𝑋)), and how much 

of the simulation output uncertainty can be attributed to each of the simulation generated 

inputs (𝐼(𝑋; 𝑌)). According to Wijaya, Sarno, and Zulaika (2017), the greater the mutual 

information between two variables, the greater the impact these variables have on each 

other.  
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Figure 5. Schematic of the use of entropy measures to quantify uncertainty in simulation 

models. 

 

There are many types of input models that can be used in simulation models, such 

as: univariate input distributions, time-dependent (non-stationary) inputs, and multivariate 

input distributions. Here, the focus is on investigating the application of entropy measures 

in simulation models that consist of 𝑙 independent stationary univariate input processes 

and the average estimate of 𝑝 outputs of interest. Specifically, the adequacy of the 

proposed method is investigated through an 𝑀/𝑀/𝑠 illustrative example with two 

simulation generated input processes and two outputs of interest, namely: �⃗� =

[𝑋1: 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑝𝑟𝑜𝑐𝑒𝑠𝑠, 𝑋2 − 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠] and �⃗⃗̂� =

[�̂�1: 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚,

�̂�2: 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚]. Experiments on 𝑀/𝐺/1 and 𝐺/𝐺/𝑠 systems are run 

to investigate how the entropy measures behave in different systems. However, only 

𝑀/𝑀/𝑠 and 𝑀/𝐺/1 systems are used to investigate the potential of the measures as an 

uncertainty quantification method due to the availability of their exact closed-form 

solutions.  

The experiments are run using Simio® University Enterprise Edition v 10.165. 

The experiments include different traffic intensities and several number of replications. 

The model consists of a single source of arrivals, single queue, and 𝑠 servers providing 

the same service. After being served, entities leave the system. Balking and reneging were 
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not considered in the model. The notation follows the 𝐴/𝑆/𝑠 Kendall’s notation, where: 

𝐴 represents the arrival process, 𝑆 the service time, and 𝑠 the number of servers. 𝑀 is used 

for memoryless distributions.  

There are a few challenges when applying entropy measures for continuous 

variables. Taking these challenges and important points into consideration, entropy and 

mutual information measures are investigated as potential and adequate measures for 

uncertainty quantification in simulation models by: (i) investigating the entropy and MI 

as measures of uncertainty for different values of binwidth; (ii) investigating the mutual 

information measure for different normalization methods; (iii) investigating the entropy 

and MI measures for different parameter values and different systems; (iv) assessing the 

potential of the measures as an uncertainty quantification method for 𝑀/𝑀/𝑠 and 𝑀/𝐺/1 

systems for which exact closed-form solutions are available; and, (v) comparing the 

method when using histogram density estimate and discrete empirical histogram estimate. 

Each one of these goals are discussed in detail below.  

The entropy measures are calculated using the histogram-based method, where the 

probability density functions are approximated by means of histograms by dividing the 

continuous data into bins and by counting the number of elements in each bin as given by 

Equation 21. The histogram-based method was chosen due to its computational efficiency 

and for being commonly used and wider acceptance in academia. After computing the 

probability density function, entropy and mutual information measures are then calculated 

using approximations, instead of using numerical integration. However, applying entropy 
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measures to continuous variables brings a difficulty of interpretability due to the 

challenges previously discussed. In this case, a solution is needed to overcome the issue. 

A few solution approaches have been proposed in the literature. Some issues still arise 

when applying these solutions to continuous variables and, as a result, a new solution is 

proposed.  

In order to apply Equation 21 to estimate the probability density function using the 

histogram-method, one needs to define the number of bins to be used and the binwidth. 

Here, the binwidth is determined in two different ways: (1) fixed number of bins; and (2) 

optimum number of bins, which uses formulas proposed in the literature to determine the 

binwidth. For fixed number of bins, the following number of bins are investigated: 2; 5; 

10; 25; 50; 100; 200; 500; 1,000; and, 2,000. These values were chosen in order to 

investigate a large range for number of bins, which, in turn, leads to large and small 

binwidths. The binwidth is calculated by taking the data range and dividing it by the 

number of bins, as given by Equation 25. The start position of the first bin is given by the 

minimum of the data range (Equation 26) and, based on that, all the remaining bins are 

determined, as given by Equation 27. Following this calculation procedure, the end of the 

last bin must coincide with the maximum of the data range (Equation 28). For optimum 

number of bins, three different formulas are investigated: Sturges’ rule, Scott’s rule, and 

FD’s rule.  

ℎ =
max (x𝑖) − 𝑚𝑖𝑛 (x𝑖)

𝑘
;  𝑖 = 1,… , 𝑛 Equation 25 
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𝑡1 = min (x𝑖);  𝑖 = 1,… , 𝑛 Equation 26 

𝑡𝑗 = 𝑡𝑗−1 + ℎ;  𝑗 = 2,… , 𝑘 Equation 27 

𝑡𝑘+1 = max (x𝑖);  𝑖 = 1,… , 𝑛; Equation 28 

where ℎ is the binwidth, 𝑛 is the sample size, 𝑘 is the number of bins, 𝑡1 is the start 

of the 1𝑠𝑡 bin, 𝑡𝑗 is the start of the 𝑗𝑡ℎ bin, and 𝑡𝑘+1 is the end of the 𝑘𝑡ℎ bin. 

Four normalization methods of mutual information are investigated: (1) 𝑁𝑀𝐼𝑎𝑟𝑖𝑡ℎ, 

(2) 𝑁𝑀𝐼𝑔𝑒𝑜𝑚, (3) 𝑁𝑀𝐼𝑗𝑜𝑖𝑛𝑡 , and, (4) 𝑁𝑀𝐼𝑡ℎ𝑒𝑜𝑟. 

 

𝐻(𝑋) is the average uncertainty of variable 𝑋, and 𝐼(𝑋; 𝑌), the mutual information 

between 𝑋 and 𝑌, is the average reduction in uncertainty of the value of 𝑌 provided by the 

value of 𝑋 or the amount of information shared between these variables, their dependence. 

Considering these definitions, different approaches are used to assess the potential of the 

measures as a method of uncertainty quantification in a simulation model. The potential 

of the entropy are assessed by comparing the entropy results with the sum of absolute error 

(SAE), sum of squares error (SSE), mean absolute error (MAE), and mean squared error 

(MSE) of the inputs and the outputs of the system. SSE and SAE can be calculated given 

that the inputs were defined by the user and here they are assumed to be correct, and the 

theoretical outputs can be calculated using results from queueing system theory. SSE and 

SAE were chosen because these measures of error and uncertainty are widely accepted in 

the literature. The potential of the mutual information are assessed by comparing the 

mutual information results with three different measures of dependence between variables: 
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distance correlation (Székely & Rizzo, 2009; Székely, Rizzo, & Bakirov, 2007), Pearson 

correlation, and 𝑅2𝑎𝑑𝑗 (or adjusted coefficient of determination). Distance correlation was 

chosen because it is a measure of dependence between two random variables that is able 

to capture both linear and non-linear association (Székely et al., 2007). Pearson correlation 

and 𝑅2𝑎𝑑𝑗 were chosen for being widely accepted in the literature. The downside of these 

latter measures is that they only capture the linear association between the random 

variables.  

Finally, the last analysis performed is a comparison of the results when using 

histogram density estimate, as given by Equation 21 and discrete empirical function, as 

given by Equation 20, which is a gross approximation of the simulation inputs and outputs 

as it considers the inputs and outputs as discrete variables. 

2.4. Results and discussion 

2.4.1. Challenges encountered while applying entropy measures for continuous 

variables and method proposed to overcome the issues 

The solutions proposed in the literature were used to overcome the challenges 

faced while applying entropy measures to continuous variables. The first solution chosen 

was the one provided in Equation 15, where the differential entropy is approximated by 

calculating the discretized entropy and by adjusting with a correction dependent on the 

binwidth. According to Stone (2015), this approximation eliminates the problem of 

infinity. However, this method does not eliminate the issue of negative values, which leads 

to a difficulty in interpretability and for performing comparison.  
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It is known that for the discrete case, Shannon’s entropy is maximum when all the 

𝑛 events are equiprobable, which is given by Equation 29 . 

𝑀𝑎𝑥[𝐻(𝑋∆)] = −log2𝑝 = −log2
1

𝑛
= log2𝑛  Equation 29 

Equation 15 can be rewritten as Equation 30 when binwidth is calculated based on 

a fixed number of bins.  

𝐻𝑑𝑖𝑓(𝑋
∆) = 𝐻(𝑋∆) + log2

max(𝑥𝑖) − min(𝑥𝑖)

𝑛

= 𝐻(𝑋∆) + log2[max(𝑥𝑖) − min(𝑥𝑖)] − log2 𝑛 

Equation 30 

From Equation 29, one can see that the maximum value 𝐻(𝑋∆) is log2𝑛. 

Therefore, from Equation 30 it is easy to see that depending on the value of the data range 

and depending on the actual value of the entropy, which will be at most log2𝑛, the entropy 

may be negative and the difficulty in interpretability remains. As recommended by 

Silverman (1986), when the data is normalized between 0 and 1 before calculating the 

entropy, we have 𝐻𝑑𝑖𝑓(𝑋
∆) = 𝐻(𝑋∆) + log2[1] − log2 𝑛 ≤ 𝑀𝑎𝑥[𝐻(𝑋

∆)] − log2 𝑛 ≤ 0. 

Next, the solution proposed by Jaynes (1957) and shown in Equation 16 was 

investigated. In this method, it is important to define the invariant function 𝑚(𝑥). While 

Jaynes has not provided any suggestion for the function, there are a few suggestions made 

in the literature: 𝑚(𝑥) = 𝑠𝑢𝑝[𝑓(𝑥)] and 𝑚(𝑥) = 𝐸[𝑓(𝑥)] (Awad & Alawneh, 1987; 

Kittaneh et al., 2016).  
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One can immediately see that 𝑚(𝑥) = 𝐸[𝑓(𝑥)] is not a good choice as 𝑓(𝑥) may 

be greater than 𝐸[𝑓(𝑥)]. In this case, 
�̂�(𝑥)

𝑚(𝑥)
> 1⇒ 𝑙𝑜𝑔2

�̂�(𝑥)

𝑚(𝑥)
> 0 and, hence, entropy is 

negative.  

The suggestion to use 𝑚(𝑥) = 𝑠𝑢𝑝[𝑓(𝑥)] does not have this issue. For 𝑚(𝑥) =

𝑠𝑢𝑝[𝑓(𝑥)], 𝑓(𝑥) is never greater than 𝑚(𝑥). In this case, 0 ≤
�̂�(𝑥)

𝑚(𝑥)
≤ 1⇒ 𝑙𝑜𝑔2

�̂�(𝑥)

𝑚(𝑥)
≤ 0 

and, hence, entropy is always positive. However, there remain some issues of 

interpretability when compared to the discrete case as shown in Table 4 below.  

 

Table 4. Issues of interpretability of entropy in the continuous case when using 𝒎(𝒙) =
𝒔𝒖𝒑[𝒇(𝒙)].  

Scenario 

Discrete 

case result 

(Shannon’s 

definition) 

Continuous case result  

(using 𝒎(𝒙) = 𝒔𝒖𝒑[𝒇(𝒙)]) 

Interpretability 

issue? 

Events are all 

equiprobable (or all 

probability density 

function values are 

equal) 

Maximum 

entropy 
 𝑓(𝑥) = m(x) ⇒

�̂�(𝑥)

𝑚(𝑥)
= 1

⇒ 𝑙𝑜𝑔
2

�̂�(𝑥)

𝑚(𝑥)
= 0 

⇒  𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = 0 

Yes 

Events are either 

equiprobable or surely 

will not 

occur/impossible 

(probability density 

function values are 

equal or are 0)  

Maximum 

entropy 
𝑓(𝑥) = m(x) ⇒

𝑓(𝑥)

𝑚(𝑥)
= 1 

⇒ 𝑙𝑜𝑔2
�̂�(𝑥)

𝑚(𝑥)
= 0 

⇒  𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = 0 

Yes 

All events will surely 

not occur/impossible 

Entropy is 

equal to 0 

Entropy is equal to 0 No 
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(probability density 

function values are 0) 

Event will surely occur 

(certainty) 

Entropy is 

equal to 0 

How to represent certainty 

in the nonparametric 

continuous case?   

If 𝑓𝑖(𝑥) = sup𝑓(𝑥) and 

𝑓𝑗(𝑥) = 0; 𝑗 ≠ 𝑖, should this 

be considered the certainty 

case? 

If yes: 

𝑓(𝑥) = m(x) ⇒
𝑓(𝑥)

𝑚(𝑥)
= 1 

⇒ 𝑙𝑜𝑔2
�̂�(𝑥)

𝑚(𝑥)
= 0 

⇒  𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = 0 

However, one could 

interpret that certainty does 

not exist in the continuous 

case as one can never be 

sure about an event 

occurring in the continuous 

case (𝑃(𝑋 = 𝑥) = 0).  

Maybe 

 

As shown in Table 4, when using Jaynes’ method and 𝑚(𝑥) = 𝑠𝑢𝑝[𝑓(𝑥)], there 

are still difficulties in interpreting the entropy results from the discrete case to the 

continuous case. This may not be an issue depending on the application. However, here, 

the goal is to quantify uncertainty in simulation models and to be able to identify the inputs 

that contribute the most to the uncertainty and the simulation response that users should 

be most careful while making decisions due to its uncertainty. To achieve this goal, it is 
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important to be able to compare entropy and MI measures among themselves, which is 

difficult to perform when entropy measures do not have a lower bound and can be negative 

and/or do not have an upper bound and can be infinite.  

Observing this challenge and recalling what Silverman (1986) suggested to do 

when one is working with multivariate estimates, the following solution was proposed to 

work with entropy in the continuous case. Silverman (1986) recommended that data 

should be normalized to avoid extreme differences of spread in the variables. So, the 

solution here involves normalizing the data in a way that does not only avoid the 

differences of spread, but also guarantees that 0 ≤ 𝑓𝑖(𝑥) < 1, ∀𝑖.  

The binwidth for fixed number of bins is calculated using Equation 31. 

𝑏𝑖𝑛𝑤𝑖𝑑𝑡ℎ𝑏 = ℎ𝑏 =
max(𝑥𝑖) − min(𝑥𝑖)

𝑘𝑏
; 𝑏 = 1,… ,𝑚 Equation 31 

𝑓ℎ𝑖𝑠𝑡
𝑗
(𝑥)𝑏 =

1

𝑛ℎ𝑏
∑𝐈{𝑥𝑖 ∈ [𝑡𝑗 , 𝑡𝑗+1)}

𝑛

𝑖=1

=
1

𝑛ℎ𝑏
 ;  𝑗 = 1,… , 𝑘𝑏 Equation 32 

0 ≤
1

𝑛ℎ𝑏
< 1 ⇒  0 ≤  

𝑘𝑏
𝑛[max(𝑥𝑖) − min(𝑥𝑖)]

< 1, 𝑏 = 1,… ,𝑚 Equation 33 

𝑓ℎ𝑖𝑠𝑡
𝑗
(𝑥)𝑏 =

𝑛

𝑛ℎ𝑏
=
1

ℎ𝑏
;   𝑗 = 1,… , 𝑘𝑏 Equation 34 

0 ≤
1

ℎ𝑏
< 1 

⇒ 
 0 ≤  

𝑘𝑏
max(𝑥𝑖) − min(𝑥𝑖)

< 1;  𝑏 = 1,… ,𝑚 Equation 35 

where 𝑏 is the number of different number of bins that are investigated, ℎ𝑏 is the 

binwidth of the 𝑏𝑡ℎ number of bin being investigated, 𝑘𝑏 is the total number of bins of the 

𝑏𝑡ℎ number of bin being investigated, and 𝑛 is the number of data points.  
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Equation 31 is derived from Equation 25. Equation 21 shows how to estimate the 

probability density function based on the histogram-method. One extreme case is to have 

only one data point in the bin and the other extreme is to have all the 𝑛 data points in the 

bin, which from Equation 21 leads to Equation 32 and Equation 34, respectively. 

Replacing Equation 31 in both Equation 32 and Equation 34 leads to Equation 33 and 

Equation 35. Because Equation 35 is more restrictive, as long as Equation 35 is satisfied, 

Equation 33 is also satisfied (max(𝑥𝑖) − min(𝑥𝑖) > 0, 𝑛 > 0, and 𝑘𝑏 > 0).  

Therefore, the data normalization is determined by finding the data range that 

satisfies Equation 35 for all 𝑏 different number of bins simultaneously. Obviously, there 

will be multiple solutions, but any solution can be picked. Now, all the probability density 

function values are between 0 and less than 1. This enables calculation of entropy 

measures in a similar way as the discrete case and similar interpretation can be made. It is 

worth noting that different from the discrete case the interval excludes 1, because 

whenever the probability mass function is equal to 1 all the other values are 0 and the 

entropy is 0. However, in the continuous case, the probability density function may be 

equal to 1 with other values different than 0. In this case, the entropy should not be 0, as 

there is some uncertainty in the system regarding the events. To avoid this issue of the 

extreme case equal to 1 (𝑙𝑜𝑔21 = 0), 1 was excluded from the interval. 

By using the aforementioned alternative, the issues discussed in Table 4 are now 

minimized to the scenario where the event will surely occur and to the fact that the entropy 
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will not be maximum when the density functions are equal anymore, but it will at least not 

be null, as shown in Table 5. 

 

Table 5. Issues of interpretability of entropy in the continuous case when using proposed 

data normalization method. 

Scenario 

Discrete 

case result 

(Shannon’s 

definition) 

Continuous case result  

(using proposed 

normalization alternative) 

Interpretability 

issue? 

Events are all 

equiprobable (or all 

probability density 

function values are 

equal) 

Maximum 

entropy 
 0 < �̂�(𝑥) < 1 ⇒  𝑒𝑛𝑡𝑟𝑜𝑝𝑦 ≠

0 

Not the same 

result from 

discrete 

variable, but 

entropy is not 0 

which allows for 

comparison with 

entropy results 

of other 

variables or 

experiments. 

Events are either 

equiprobable or surely 

will not 

occur/impossible 

(probability density 

function values are 

equal or are 0)  

Maximum 

entropy 
 0 < 𝑓(𝑥) < 1 ⇒  𝑒𝑛𝑡𝑟𝑜𝑝𝑦 ≠

0 

Entropy will only be equal 

to 0 if all the probability 

density function values are 

equal to 0, which in this case 

the result will match the 

discrete variable result. 

Not the same 

result from 

discrete 

variable, but 

entropy is not 0 

which allows for 

comparison with 

entropy results 

of other 

variables or 

experiments. 

All events will surely 

not occur/impossible 

Entropy is 

equal to 0 

Entropy is equal to 0 No 
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(probability density 

function values are 0) 

Event will surely occur 

(certainty) 

Entropy is 

equal to 0 

How to represent certainty 

in the nonparametric 

continuous case?   

If 𝑓𝑖(𝑥) = sup𝑓(𝑥) and 

𝑓𝑗(𝑥) = 0; 𝑗 ≠ 𝑖, should this 

be considered the certainty 

case? 

If yes, there is an issue, as 

this case will not lead to 

entropy equal to 0. In fact, 

there will never be entropy 

equal to 0, except when all 

probability density function 

values are equal to 0.  

However, one could think 

that certainty does not exist 

in the continuous case as one 

can never be sure about an 

event occurring in the 

continuous case (𝑃(𝑋 =

𝑥) = 0).  

Maybe 

 

As can be seen, the procedure described above can be implemented when using 

fixed number of bins, but, in general, it cannot be implemented when using formulas that 

calculate the optimum number of bins or binwidth, because the binwidth is not a function 

of the data range. This is an advantage of the fixed number of bins over the latter.  
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Lemma 1. When using fixed number of bins, changing the data normalization does 

not change the placement of data into bins because the binwidth is recalculated 

accordingly. 

It is possible to calculate the binwidth and start- and end-points of the bins as given 

by Equation 36 to Equation 39. 

ℎ𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 =
max𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 − 𝑚𝑖𝑛𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎

𝑘
  Equation 36 

𝑡1𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 = 𝑚𝑖𝑛𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎;  Equation 37 

𝑡𝑗𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 = 𝑡𝑗−1 + ℎ;  𝑗 = 2,… , 𝑘 Equation 38 

𝑡𝑘+1𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 = max𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 Equation 39 

where ℎ is the binwidth, 𝑘 is the number of bins, 𝑡𝑗 is the start of the 𝑗𝑡ℎ bin, 𝑡𝑘+1 

is the end of the 𝑘𝑡ℎ bin, and 𝐵𝑗 = [𝑡𝑗 , 𝑡𝑗+1) denotes the 𝑗𝑡ℎ bin of a total of 𝑘 bins. 

The data normalization is performed using the approach shown in Equation 40. 

𝑥𝑛𝑒𝑤 =
𝑥𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 − 𝑚𝑖𝑛𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 

𝑚𝑎𝑥𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 − 𝑚𝑖𝑛𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 

× (𝑚𝑎𝑥𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝑚𝑖𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑) + 𝑚𝑖𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑 

Equation 40 

Now, suppose there is a data point 𝑥1 that is contained in the first bin, as given by 

Equation 41. 
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𝑥1𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 ∈ 𝐵1 = [𝑡1, 𝑡2)

= [𝑚𝑖𝑛𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 , 𝑚𝑖𝑛𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 + ℎ)

= [𝑚𝑖𝑛𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎, 𝑚𝑖𝑛𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎

+
𝑚𝑎𝑥𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 − 𝑚𝑖𝑛𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎

𝑘
)

= [𝑚𝑖𝑛𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 ,
𝑚𝑎𝑥𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 +(𝑘 − 1) 𝑚𝑖𝑛𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎

𝑘
) 

Equation 41 

𝑥1𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 can be normalized using Equation 40. Let us now consider the 

extremes. If 𝑥1𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 = 𝑚𝑖𝑛𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎, we have: 

𝑥𝑛𝑒𝑤 =
𝑚𝑖𝑛𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 − 𝑚𝑖𝑛𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 

𝑚𝑎𝑥𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 − 𝑚𝑖𝑛𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 

× (𝑚𝑎𝑥𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝑚𝑖𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑) + 𝑚𝑖𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑

= 𝑚𝑖𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑 

Equation 42 

Now, if the other extreme is considered 𝑥1𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 =

𝑚𝑎𝑥𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 +(𝑘−1) 𝑚𝑖𝑛𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎

𝑘
, we have: 
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𝑥𝑛𝑒𝑤

=

𝑚𝑎𝑥𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 +(𝑘 − 1) 𝑚𝑖𝑛𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎
𝑘

 − 𝑚𝑖𝑛𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 

𝑚𝑎𝑥𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 − 𝑚𝑖𝑛𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 

× (𝑚𝑎𝑥𝑑𝑒𝑠𝑖𝑟𝑒𝑑− 𝑚𝑖𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑) + 𝑚𝑖𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑

=

𝑚𝑎𝑥𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 − 𝑚𝑖𝑛𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎
𝑘

𝑚𝑎𝑥𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 − 𝑚𝑖𝑛𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎

× (𝑚𝑎𝑥𝑑𝑒𝑠𝑖𝑟𝑒𝑑− 𝑚𝑖𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑) + 𝑚𝑖𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑

=
𝑚𝑎𝑥𝑑𝑒𝑠𝑖𝑟𝑒𝑑− 𝑚𝑖𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑

𝑘
+𝑚𝑖𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑 

Equation 43 

Therefore, it is possible to see that 𝑥𝑛𝑒𝑤 ∈ 𝐵1𝑛𝑒𝑤 =

[𝑚𝑖𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑,
𝑚𝑎𝑥𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝑚𝑖𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑

𝑘
+𝑚𝑖𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑) = [𝑚𝑖𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑, h + 𝑚𝑖𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑) =

[𝑡1𝑛𝑒𝑤, 𝑡2𝑛𝑒𝑤) and the normalization did not change the placement of data into bins 

because the binwidth was recalculated accordingly using the data range. 

2.4.2. The impact of different binwidths and different normalization methods on 

entropy and mutual information measures 

The discussion in this and the following sections are based on the results of the 

experiments, which were detailed in section 2.3 and listed in Table 66 of the Appendix. 

For simplification, the experiments are referred by their numbers.   

It is worth mentioning again that entropy and MI measures are calculated in three 

different ways: (1) using the histogram-based method with fixed number of bins and 

probability density function based on the data normalization approach; (2) using the 
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histogram-based method with optimum number of bins and probability density function; 

and, (3) using the histogram-based method with fixed number of bins and discrete 

empirical distribution function (discrete assumption). The third case was performed for 

comparison as it was the method adopted in Scheidegger et al. (2018).  

The analysis of Figure 6 shows that in the histogram-based method with fixed 

number of bins and probability density function based on data normalization, the entropy 

and MI measures tend to decrease with the increase in the number of bins (or decrease in 

the binwidth) for the same number of replications. This is an important observation, as 

this contradicts what is mentioned in the literature. The exception is when the number of 

bins is small, between 2 and 10. In this range, there is no clear pattern and sometimes the 

entropy and MI measures increase with the increase in the number of bins. The reason for 

the observation here to be different from what has been found in the literature is that, 

although entropy and MI measures are very useful in many fields, in the majority of 

applications the measures have been applied for discrete variables only or considering that 

continuous variables can be approximated using discrete probability functions and, hence, 

binwidth is not taken into account in the histogram estimate. This will be discussed in 

more detail later in this section.  

From Figure 6, one can also see that the entropy and MI measures tend to increase 

with the increase in the number of replications for the same number of bins (or binwidth). 

The amplitude of the increase is higher for number of bins that are not too large nor too 

small. When the number of bins is very large or very small, the amplitude of the increase 
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becomes smaller. The exception is when the number of bins is equal to 2. In this case, the 

entropy and MI measures do not increase or decrease considerably with the increase in the 

number of the replications.  

The number of bins used to calculate the entropy measures can be considered as 

the level of accuracy one wants to obtain or one is interested in (i.e., number of bins = 

1/targeted accuracy). This idea is similar to the indifference zone concept, where two 

response values separated by less than the specified indifference zone value are considered 

to be statistically equivalent. In a low number of bins scenario, the number of bins data 

can be interpreted as: “the stakeholder is not concerned about a high level of accuracy”. 

Therefore, running the first few replications should bring a great amount of information 

about the inputs and outputs, and consequently, a great reduction in the uncertainty of the 

output provided by the input (𝐼(𝑋; 𝑌)), because initially, the stakeholder had no 

information about the system. The next set of replications should still bring valuable 

information about the system, if one does not have all the information. However, because 

the stakeholder is not interested in a high level of accuracy, all the information about the 

system should be gathered faster than when compared to a larger number of bins, which 

means that the curve should stabilize faster (smaller slope of the curve) and at some point 

running more replications would not yield any significant reduction in the uncertainty than 

what was already provided during the initial number of replications. On the other extreme, 

when the stakeholder is interested in very high level of accuracy, the initial replications 

may not yield enough information or reduce the uncertainty, but more replications would 
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result in a greater reduction of the uncertainty or more information would be available 

until stability is reached. This stability will be reached at a later point than for lower 

number of bins (lower accuracy). This could be seen as oversmoothing and 

undersmoothing, respectively. Of course, in between the extremes, there are mid-range 

values of the number of bins where the initial number of replications would provide great 

reduction in uncertainty. This corresponds to a steep slope at first, and then as more 

replications are run less information is obtained, and running more replications would not 

be economically efficient anymore. The fact that the entropy and MI decrease with the 

increase in the number of bins is expected from a measure of information and uncertainty. 

When there is an emphasis on a greater level of detail or accuracy, the same number of 

replications (or the same amount of the data) should be able to provide less information or 

less reduction in uncertainty.  

 

 



68 

 

 

Figure 6. Average of entropy and MI measures per number of bins using histogram-

based method with fixed number of bins and probability density function (experiments 

#1 to #350). 

 

There are three rules that are considered for obtaining the optimum number of bins: 

Sturges’, Scott’s, and FD’s rules. These rules take the amount of data available and/or the 

data characteristics, such as data dispersion, to calculate the optimum number of bins or 

binwidth. For the experiments in this study, this resulted in low number of bins (or larger 

binwidth) in all the cases. Figure 7 shows the impact of the binwidth on the entropy and 

MI measures based on the optimum number of bins rules. The conclusions are similar to 

the ones obtained from Figure 6 for low number of bins (i.e., between 5 and 10): there is 

a tendency for the entropy and MI measures to increase with the increase in the number 

of replications; however, this tendency is not as prominent as in Figure 6 anymore because 

the number of bins parameter in Figure 7 is not fixed as it was in Figure 6. 
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Figure 7. Average of entropy and MI measures per number of bins using histogram-

based method with optimum number of bins and probability density function 

(experiments #1 to #350). 

 

Figure 8 shows the entropy and MI measures per number of bins when the 

histogram-based method is used with discrete empirical distribution function. From Figure 

8, one can see that as mentioned in the literature, the entropy and MI measures tend to 

increase with the increase in the number of bins (or decrease in the binwidth) for the same 

number of replications. This is different than what was observed for the histogram-based 

method with probability density function. In the literature it is acknowledged that the 

number of bins have an impact in the entropy and MI measures and, consequently, should 

be taken into account. The difference between the histogram-based method with 

probability density function and the histogram-based method with discrete empirical 

distribution appears to be due to the binwidth being taken into account in the histogram 

estimate of the first method, but not in the latter. This goes in agreement with what Stone 

(2015) has stated in his book about the estimated entropy of a discretized continuous 

variable increasing with the decrease of the binwidth. With respect to the number of 

replications, the entropy and MI measures present a similar behavior to what was observed 

in the histogram-based method with probability density function. However, here, for low 

number of bins, the entropy and MI measures tend to be nearly constant or decrease with 

the increase in the number of replications, while when using probability density function 

the entropy and MI tend to be nearly constant or increase. For larger number of bins, the 
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entropy and MI measures first increase, when the number of replications is not too large. 

When the number of replications become too large, the entropy and MI measures stop 

increasing and stabilize. Different than the probability density function, the amplitude of 

the increase is greater for larger number of bins. 

 

 
Figure 8. Average of entropy and MI measures per number of bins using histogram-

based method with fixed number of bins and discrete empirical distribution (experiments 

#1 to #350). 

 

As suggested in the literature, entropy and MI measures should be normalized to 

eliminate the impact of the bins on the measures. The entropy was normalized by its 

maximum: 𝑁𝐻(𝑋) =
𝐻(𝑋)

max (𝐻(𝑋))
 or 𝑁𝐻(𝑌) =

𝐻(𝑌)

max (𝐻(𝑌))
. The MI was normalized using the 

four different normalization formulas discussed in section 2.3. Figure 9 shows the results 

of the normalized entropy and MI measures per number of bins when the histogram-based 
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method is used with discrete empirical distribution function. From Figure 9, one can see 

that after normalization the entropy and 𝑁𝑀𝐼𝑡ℎ𝑒𝑜𝑟 measures present a behavior similar to 

the observations in Figure 6. That is, the measures tend to decrease with the increase in 

the number of bins, with exceptions when the number of bins is between 2 and 25 and a 

clear pattern is not observed. The measures also tend to increase with the increase in the 

number of replications. The exception again occurs when the number of bins is smaller 

and between 2 and 25. This exception did not occur in the results shown in Figure 6. Based 

on the other three normalization methods (𝑁𝑀𝐼𝑎𝑟𝑖𝑡ℎ, 𝑁𝑀𝐼𝑔𝑒𝑜𝑚, 𝑁𝑀𝐼𝑗𝑜𝑖𝑛𝑡), the MI 

measures still tend to increase with the increase in the number of bins as they did before 

normalization. However, after normalization using these three methods (arith, geom, and 

joint) the MI measures tend to decrease with the increase in the number of replications. 

There are a few important points to highlight. First, the normalized entropy and 

the 𝑁𝑀𝐼𝑡ℎ𝑒𝑜𝑟 measures present a behavior similar to the entropy and the MI measures 

calculated using the histogram-based method with probability density function and fixed 

bins. Second, the difference in the behavior between the 𝑁𝑀𝐼𝑡ℎ𝑒𝑜𝑟 and the 

𝑁𝑀𝐼𝑎𝑟𝑖𝑡ℎ, 𝑁𝑀𝐼𝑔𝑒𝑜𝑚 𝑎𝑛𝑑 𝑁𝑀𝐼𝑗𝑜𝑖𝑛𝑡 can be explained by the normalization method 

adopted. 𝑁𝑀𝐼𝑡ℎ𝑒𝑜𝑟 was normalized using the theoretical maximum value of the entropy 

measures, which is fixed regardless of the number of replications and changes with 

number of bins. 𝑁𝑀𝐼𝑎𝑟𝑖𝑡ℎ , 𝑁𝑀𝐼𝑔𝑒𝑜𝑚 𝑎𝑛𝑑 𝑁𝑀𝐼𝑗𝑜𝑖𝑛𝑡 were normalized using the real 

maximum value (from the data) of the entropy measures, which varies based on the 

number of replications and number of bins. The entropy measures increase with the 
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increase in the number of replications and number of bins as observed in the results shown 

in Figure 8.  

It is also important noting that the results of the MI normalization methods appear 

very similar but are not identical, as shown in Figure 9. This is due to the fact that the 

same number of bins were used to calculate the entropy of all the inputs and outputs, and 

therefore the maximum value of each of the inputs and the outputs is the same. The 

recommendation is to use the same number of bins for all inputs and outputs whenever 

using entropy measures as a method for uncertainty quantification in simulation models. 

The idea comes from blocking in the design of experiments. By using the same number of 

bins, the effect of the bins on the entropy values and, hence, on the uncertainty value is 

being minimized. 
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Figure 9. Average of normalized entropy and MI measures per number of bins using 

histogram-based method with fixed number of bins and discrete empirical distribution 

(experiments #1 to #350). 

 

Figure 10 shows the entropy and MI measures using the histogram-based method 

with probability density function per queue model. Figure 10 is similar to Figure 6, but it 

allows to see that the values of the entropy and MI measures are not identical among 

themselves and vary based on the input and output, as well as queue model and other 

factors. However, when the average over all the experiments is considered as in Figure 6, 

the entropy and MI measures appear to be almost identical.  

 

 
Figure 10. Average of entropy and MI measures per number of bins per queue model 

using histogram-based method with fixed number of bins and probability density 

function (experiments #1 to #350). 
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2.4.3. The impact of different traffic intensities, different seeds, different parameter 

values, and different systems on entropy and mutual information measures 

It is important to evaluate the appropriateness of entropy and MI as measures of 

uncertainty quantification in simulation models. The role of different traffic intensities, 

different seeds, different parameter values, and different systems impacting the measures 

are investigated here. 

In the queue example used in this study, it is known that the uncertainty of the 

input 𝑋1 must be equal among the different traffic intensities because the same input model 

and fixed seed were used in the simulation model. Based on the results obtained for the 

histogram-based method using probability density function, which can be seen in Figure 

11, the entropy of 𝑋1 was equal among the different traffic intensities which indicates that 

the entropy measure is possibly accurately measuring the information or uncertainty of 

𝑋1.   
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Figure 11. Entropy measures per queue model per traffic-intensity using histogram-

based method with fixed number of bins and probability density function (experiments 

#1 to #90). 

 

Although a fixed seed was also used for input 𝑋2, it is not appropriate to expect 

that 𝑋2 should also have equal entropy among different traffic intensities. The impacts of 

𝑋2 depend on how the system was modeled. In the approach adopted in this dissertation, 

changes in traffic intensities were modeled by changing the capacity of the only existing 

server, instead of adding or eliminating servers. By doing so, even though the seed of the 

service time input, 𝑋2, is fixed, the generated inputs 𝑋2 changed and, thus, its entropy 

should not remain the same among the different traffic intensities. Reviewing Figure 11, 

it is possible to observe that the entropy of 𝑋2 was able to capture some of the differences 

among the different traffic intensities, which also indicates that the entropy measure is 

correctly measuring the information or uncertainty of the simulation generated input 𝑋2.  
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Similar results as the ones obtained for the histogram-based method with 

probability density function and fixed number of bins were obtained for histogram-based 

method with probability density function and optimum number of bins, and also for the 

histogram-based method with discrete empirical distribution function and fixed number 

of bins. This is shown in Figure 12.  

 

 
Figure 12. Entropy measures per queue model per traffic-intensity (experiments #1 to 

#90) using histogram-based method with: (a) optimum number of bins with probability 

density function (left-side) and (b) fixed number of bins with discrete empirical 

distribution (right-side). 

 

Another point is that one could expect the reduction in uncertainty in the output 

provided by the input to be different in a high traffic intensity system than in a low traffic 

intensity system. That is, the reduction in uncertainty of the average time in system (�̂�2) 
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provided by the input service time (𝑋2), or the mutual information 𝐼(𝑋2; 𝑌2), is expected 

to be different among the different traffic intensities. In systems that are headed towards 

an unstable state, it is natural to expect the service time to have a different impact on the 

average time in the system than in more stable systems. As shown in Figure 13, this was 

indeed observed in the MI measures. Similar results were obtained when using optimum 

number of bins or discrete empirical distribution.  

 

 
Figure 13. MI measures per queue model per traffic-intensity using histogram-based 

method with fixed number of bins and probability density function (experiments #1 to 

#90). 

 

As mentioned earlier, experiments with different seeds were run to investigate the 

appropriateness of entropy and MI as measures of uncertainty quantification. As shown in 

Table 66, experiments #351 to #460 and #461 to #470 correspond to the initial 
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experiments numbered #1 to #110 and #271 to #280, respectively, but with a different 

group of seeds (here, named group “seed 2”, the specific seed numbers used are shown in 

Table 66). That is, the same experiment configuration was kept: same interarrival time, 

same service time, same number of servers, but different groups of seeds were used for 

the parameters. Similarly, experiments #471 to #580 and #581 to #590 correspond to the 

initial experiments numbered #1 to #110 and #271 to #280, respectively, but with another 

seed (here, named group “seed 3”). 

As shown in Figure 14 and Figure 15, the entropy measures and mutual 

information vary based on the group of seeds used. Although one may initially not expect 

this to occur because the seeds are fixed, a good measure of uncertainty should indeed 

vary based on the seeds being used. Entropy is a measure of the information or uncertainty 

of the inputs and outputs. For different seeds, there are different uncertainties. Although 

these differences should not be large because the same input model (or distribution) is 

being used, the values cannot be identical either; otherwise, it would mean that exactly the 

same information was observed, which is unlikely when using different seeds for 

generating pseudo-random numbers. Therefore, by using a different group of seeds, one 

should expect different entropy values for the inputs, different entropy values for the 

outputs, and, consequently, different MI values as the results in Figure 14 and Figure 15 

show. From Figure 14, one can also see that regardless of the group of seeds, the entropy 

of 𝑋1 is equal among the different traffic intensities. Although it is not shown here, similar 

results were obtained for the entropy and MI measures calculated using the histogram-
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based method with optimum number of bins and the histogram-based method with fixed 

number of bins and discrete empirical distribution.  

 

 
Figure 14. Entropy and MI measures per queue model per traffic-intensity per seed 

using histogram-based method with fixed number of bins and probability density 

function. 

 

From Figure 16 it is possible to make another interesting observation about the 

impact of the group of seeds on the entropy and MI measures. As shown in Figure 16, 

“seed 3” had a different impact in the entropy of �̂�1 and �̂�2 when compared to both the 

original group of seeds and “seed 2”, and “seed 3” had a similar impact in the entropy of 

𝑋1 and 𝑋2 when compared to both the original group of seeds and “seed 2”. When 

analyzing the MI, the impact of “seed 3” occurred in every MI measure, however the 

impact appeared to be greater in 𝐼(𝑋1; 𝑌1) and 𝐼(𝑋2; 𝑌1) than in 𝐼(𝑋1; 𝑌2) and 𝐼(𝑋2; 𝑌2), 

when compared to the original group of seeds and “seed 2”. This is also observed in the 
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results shown in Figure 17. From Figure 17, one can also see that entropy and MI measures 

may be used to investigate the adequacy of seeds when running simulation models. While 

one expects to observe some differences in the uncertainty values for using different 

groups of seeds (different data), one does not expect a large difference as the input models 

are the same and in the long-run the data should be similar. Therefore, if the difference is 

large, as it is for group “seed 3” and especially for larger traffic intensity, this may possibly 

indicate an issue with the group of seeds. 

 

 

Figure 15. Entropy and MI measures per queue model per seed using histogram-based 

method with fixed number of bins and probability density function. 
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Figure 16. Entropy and MI measures per replication per number of bins using 

histogram-based method with fixed number of bins and probability density function. 

 

  
Figure 17. Entropy and MI measures per traffic-intensity per model using histogram-

based method with fixed number of bins and probability density function. 
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To investigate the appropriateness of entropy and MI as measures of uncertainty 

quantification, experiments with different parameter values were also run. Experiments 

#591 to #700 and #701 to #710 correspond to the initial experiments numbered #1 to #110 

and #271 to #280, respectively, but with different parameter values (here, named “number 

2”, the specific parameter values used in the experiments are given in Table 66). 

Experiments #711 to #820 and #821 to #830 correspond to the initial experiments 

numbered #1 to #110 and #271 to #280, respectively, but with different parameter values 

(here, named “number 3”).  

From Figure 18 one can see that even though different values of inputs 𝑋1 and 𝑋2 

were used, the entropy of 𝑋1 was different among the different experiments: “original”, 

“number 2”, and “number 3”, but it was still equal among the different traffic intensities 

within each group of experiments as expected for a fixed seed. Also, from Figure 18, one 

can see that the traffic intensity appears to not have a clear relation to the uncertainty of 

the outputs, as the uncertainty either increases or decreases based on the queue model and 

that changes in the system configurations led to different values of uncertainty. Similar 

results were obtained for the entropy and MI measures calculated using the histogram-

based method with optimum number of bins and the histogram-based method with fixed 

number of bins and discrete empirical distribution, as shown in Figure 19 and Figure 20. 
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Figure 18. Entropy and MI measures per queue model per traffic-intensity per parameter 

value experiment using histogram-based method with fixed number of bins and 

probability density function. 

 

 
Figure 19. Entropy and MI measures per queue model per traffic-intensity per parameter 

value experiment using histogram-based method with optimum number of bins and 

probability density function. 
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Figure 20. Normalized entropy and 𝑵𝑴𝑰𝒕𝒉𝒆𝒐𝒓 measures per queue model per traffic-

intensity per parameter value using histogram-based method with fixed number of bins 

and discrete empirical distribution. 

 

Finally, a last group of experiments was run to investigate whether the entropy and 

MI measures would be able to capture the uncertainty of different systems. It was decided 

to investigate two additional systems: a CONWIP system and the addition of a third input 

parameter, namely travel time, in the queue system.  

A total of 100 CONWIP experiments were run. Experiments #831 to #930 in Table 

66 correspond to the initial experiments numbered #1 to #100, with same service time but 

constant work in progress. CONWIP systems are systems where the number of items is 

kept constant. Here, the number of customers (or entities) is kept constant, which means 

that the next customer will only arrive when the current customer’s service is completed. 

Because the number of customers is kept constant, the CONWIP system is expected to 
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have no uncertainty regarding 𝑌1̂ and, hence, the inputs 𝑋1 and 𝑋2 should have no impact 

on 𝑌1̂. Moreover, the customer’s time in system is determined by how long it takes to be 

serviced plus time spent in the queue, if any. The goal of using the CONWIP system is to 

investigate the effectiveness of the entropy measures in capturing these known 

characteristics. Here, different from the previous experiments, the arrival process is 

determined by the service completion process.  

Based on the aforementioned characteristics, one should expect the entropy of the 

average number of entities in the system, 𝑌1̂, to be zero. One would expect the entropy of 

the arrival process, 𝑋1, the service time, 𝑋2, and the average time in the system, 𝑌2̂ to be 

equal, as the arrival process and the time in system are dictated by the service time. 

However, in a simulation model two events, e.g., an arrival and service completion, cannot 

occur exactly at the same time. Therefore, some small differences should be expected in 

this case. Moreover, knowing that the output uncertainty may not be only comprised by 

the input uncertainty but also by some other uncertainties of the system (for instance, the 

computational limitation just previously mentioned), some small differences between 𝑋2 

and 𝑌2̂ are also expected.  

From Figure 21, it is possible to observe that the entropy of 𝑌1̂ is only equal to zero 

for larger number of bins, i.e., number of bins greater than or equal to 1,000. For number 

of bins greater than or equal to 25, the entropy of 𝑌1̂ is close to 0, however it is not 0. For 

number of bins smaller than 25, the entropy of 𝑌1̂ is constant over the number of 

replications but not equal to 0, which means that regardless of the amount of data of the 
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simulation generated inputs 𝑋1 and 𝑋2 and the amount of data of the output 𝑌1̂, the 

measured uncertainty by the entropy method was the same but not null. This can be 

explained based on how the probability density is estimated using the histogram method. 

According to the histogram-based method, the probability density is estimated using 

𝑓ℎ𝑖𝑠𝑡
𝑗
(𝑥) =

1

𝑛ℎ
∑ 𝐈{𝑥𝑖 ∈ [𝑡𝑗 , 𝑡𝑗+1)}
𝑛
𝑖=1 𝑓𝑜𝑟 𝑥𝑗 ∈ 𝐵𝑗 , 𝑗 = 1,… , 𝑘. Because in the CONWIP 

system the NIS is constant, all the 𝑌1̂ are equal and, hence, all 𝑌1̂ belong to the same 𝑗 

resulting in 𝑓ℎ𝑖𝑠𝑡
𝑗
(𝑥) =

𝑛

𝑛ℎ
. If ℎ did not exist, then 𝑓ℎ𝑖𝑠𝑡

𝑗
(𝑥) =

𝑛

𝑛
= 1 and 

𝑙𝑜𝑔 (𝑓ℎ𝑖𝑠𝑡
𝑗
(𝑥)) = 0. However, since ℎ is fixed, 𝑙𝑜𝑔 (𝑓ℎ𝑖𝑠𝑡

𝑗
(𝑥)) is constant. The smaller 

the binwidth (or the larger the number of bins), the value of  𝑙𝑜𝑔 (𝑓ℎ𝑖𝑠𝑡
𝑗
(𝑥)) will be closer 

to 0. Similar analysis can be made for the mutual information. One would expect that the 

inputs 𝑋1 and 𝑋2 should have no impact on 𝑌1̂ and, hence, 𝐼(𝑋1; 𝑌1) and 𝐼(𝑋2; 𝑌1) should 

be equal to 0. However, from Figure 21 one can see that the MI is constant but not 0, 

despite being close to or equal to 0 for larger number of bins. The reason for this is that 

MI can be calculated by 𝐼(𝑋1; 𝑌1) = 𝐻(𝑋1) + 𝐻(𝑌1) − 𝐻(𝑋1, 𝑌1). In this case, 

𝐻(𝑋1, 𝑌1) = 𝐻(𝑋1). Hence, 𝐼(𝑋1; 𝑌1) = 𝐻(𝑌1). 

From Figure 22 one can see that the entropy of 𝑋2 and 𝑌2̂ are equal for number of 

bins equal to 2 and same number of replications, but they start to differ with the increase 

in the number of bins. The entropy of 𝑋1 differs from the entropy of 𝑋2 and 𝑌2̂ in every 

number of bins investigated.  
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Figure 21. Entropy and MI measures per queue model per number of bins using 

histogram-based method with fixed number of bins and probability density function 

(CONWIP vs original experiments). 

 

  
Figure 22. Entropy and MI measures per number of bins per replication using 

histogram-based method with fixed number of bins and probability density function for 

CONWIP systems. 
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Using the histogram-based method with fixed number of bins and discrete 

empirical distribution, the normalized entropy of 𝑌1̂, the 𝑁𝑀𝐼𝑡ℎ𝑒𝑜𝑟 between 𝑌1̂ and 𝑋1, and 

the 𝑁𝑀𝐼𝑡ℎ𝑒𝑜𝑟 between 𝑌1̂ and 𝑋2 are equal to zero regardless of the number of bins chosen, 

as shown in Figure 23. Similarly, using the histogram-based method with probability 

density function, the normalized entropy of 𝑋1, 𝑋2 and 𝑌2̂ are not equal regardless of the 

number of bins, which leads to similar results for the mutual information. 

 

  
Figure 23. Normalized entropy and 𝑵𝑴𝑰𝒕𝒉𝒆𝒐𝒓 measures per queue model per number of 

bins using histogram-based method with fixed number of bins and discrete empirical 

distribution (CONWIP vs original experiments). 

 

The 𝑁𝑀𝐼𝑎𝑟𝑖𝑡ℎ, 𝑁𝑀𝐼𝑔𝑒𝑜𝑚, and 𝑁𝑀𝐼𝑗𝑜𝑖𝑛𝑡 between 𝑌1̂ and 𝑋1 and between 𝑌1̂ and 𝑋2 

are also equal to zero regardless of the number of bins chosen when using the histogram-
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based method with fixed number of bins and discrete empirical distribution, as shown in 

Figure 24 and Figure 25. However, as already discussed, these normalized measures do 

not present a behavior similar to the measures calculated using the histogram-based 

method with fixed number of bins and probability density function. Instead, in this case 

the measures, when not equal to zero, tend to decrease with the increase in the number of 

replications. Because of that, 𝑁𝑀𝐼𝑡ℎ𝑒𝑜𝑟 appears to be a better normalization method 

overall. 

 

  
Figure 24. 𝑵𝑴𝑰𝒂𝒓𝒊𝒕𝒉 and 𝑵𝑴𝑰𝒈𝒆𝒐𝒎 measures per queue model per number of bins 

using histogram-based method with fixed number of bins and discrete empirical 

distribution (CONWIP vs original experiments). 
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Figure 25. 𝑵𝑴𝑰𝒋𝒐𝒊𝒏𝒕 measures per queue model per number of bins using histogram-

based method with fixed number of bins and discrete empirical distribution (CONWIP 

vs original experiments). 

 

Next, a third input parameter 𝑋3, namely travel time, was added to the M/M/s 

system. A total of 200 experiments with the third input was run. Experiments #931 to 

#1030 in Table 66 correspond to the initial experiments numbered #1 to #100, with the 

added third input as deterministic travel time of 10 minutes. Experiments #1031 to #1130 

in Table 66 correspond to the initial experiments #1 to #100, with the added third input as 

stochastic travel time exponentially distributed with a mean of 10 minutes and using a 

fixed seed. 

For the deterministic travel time input, one would expect the entropy of 𝑋3 to be 

zero, as there is no uncertainty associated with the input. Similarly, one would expect this 

input to bring no reduction in the average uncertainty of the simulation outputs 𝑌1̂ and 𝑌2̂, 

which means that one would expect I(𝑋3; 𝑌1) and I(𝑋3; 𝑌2) to be equal to 0. For the 
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stochastic case, there is uncertainty associated with the travel time input and the entropy 

should capture it. 

Using the histogram-based method with fixed number of bins and probability 

density function, the results obtained for the deterministic travel time are similar to the 

ones obtained for the average number in system in the CONWIP system using the same 

method. As shown in Figure 26, the entropy of 𝑋3 is only equal to zero for larger number 

of bins, i.e., number of bins greater than or equal to 1,000. For number of bins greater than 

or equal to 25, the entropy of 𝑋3 tends to go to 0, however it is not 0. For number of bins 

smaller than 25, the entropy of 𝑋3 is constant over the number of replications but not equal 

to 0, which means that regardless of the amount of data of the simulation input 𝑋3, the 

measured uncertainty by the entropy method was the same but not null. From Figure 26, 

a similar analysis can be done for I(𝑋3; 𝑌1) and I(𝑋3; 𝑌2). For the stochastic case, the 

entropy method captured the uncertainty of 𝑋3 in a similar way that it did for the 

simulation generated inputs 𝑋1 and 𝑋2 and the simulation outputs 𝑌1̂ and 𝑌2̂.  
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Figure 26. Entropy and MI measures per queue model per number of bins using 

histogram-based method with fixed number of bins and probability density function 

(deterministic travel time vs stochastic travel time). 

 

Using the histogram-based method with fixed bins and discrete empirical 

distribution, the results for the deterministic travel time are also similar to the ones 

obtained for the average number in system in the CONWIP system using the same method. 

For the deterministic case, Figure 27 shows that the entropy of 𝑋3 is equal to zero, as 

expected, because there is no information or uncertainty added into the system by 𝑋3. 

Although the travel time is deterministic, the travel time input will still impact the output 

average number of entities in the system, �̂�1, and average time in the system, �̂�2. However, 

running experiments and getting information about 𝑋3 does not provide any extra 

information about �̂�1 or �̂�2 nor reduce the uncertainty of these outputs, because running 

more experiments does not provide more information about 𝑋3 than what was already 

known before running the experiments. Therefore, 𝑋3 should impact the values of �̂�1 and 
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�̂�2, but the mutual information between 𝑋3 and 𝑌1 and between 𝑋3 and 𝑌2 are expected to 

be equal to zero and these are the results obtained, as shown in Figure 27.  For the 

stochastic case, the entropy method captured the uncertainty of 𝑋3 in a similar way that it 

did for the simulation generated inputs 𝑋1 and 𝑋2 and the simulation outputs 𝑌1̂ and 𝑌2̂.  

 

 
Figure 27. Normalized entropy and 𝑵𝑴𝑰𝒕𝒉𝒆𝒐𝒓 measures per queue model per number of 

bins using histogram-based method with fixed number of bins and discrete empirical 

distribution (deterministic travel time vs stochastic travel time). 

 

2.4.4. Analysis of entropy and MI as a measure of uncertainty quantification in 

simulation models 

Although the definition of uncertainty quantification is simple, developing a 

systematic method to quantify uncertainty and validating or assessing the potential of the 

proposed method is not an easy task. A queue model for which closed-form solutions are 

available was adopted in this dissertation as an attempt to assess the potential of the 
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measures as a method of uncertainty quantification in simulation models. As known in the 

simulation field, with the increase in the number of replications, one expects to reduce the 

intrinsic output-uncertainty. However, care must be taken because the extrinsic input-

uncertainty may outweigh the intrinsic output-uncertainty and the total uncertainty may, 

thus, increase. But in general, one can say that the total uncertainty decreases with the 

increase in the number of replications.  

The mutual information is the average reduction of the uncertainty of the output 

provided by the input and the entropy measure is the average information or uncertainty 

per input or output. These measures are typically measured in bits, alternatively called 

natural units (nats) or sometimes Shannons. The simulation generated outputs are usually 

measured in different units and in different magnitude of scale. For this reason, the 

Shannons unit cannot be directly compared to the simulation generated outputs or the 

theoretical outputs, which hinders the validation or the assessment of the potential of the 

proposed method.  

Therefore, in order to investigate the potential of the entropy and MI as a method 

of uncertainty quantification in simulation model, the measures results were compared 

against results of methods commonly applied in the scientific community. For the entropy 

measures, the following comparisons were performed:  

(i) The entropy measure (or average entropy measure) detects an increase or 

decrease in uncertainty with the increase in the number of replications that is 

in agreement with the detection by the error method being compared to. 
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(ii) The entropy measure (or average entropy measure) detects the experiment that 

leads to the maximum uncertainty in agreement with the detection by the error 

method being compared to.  

For the comparisons, four error methods were considered: SAE, SSE, MAE, and 

MSE. For consistency in the comparison, the average entropy measure was considered 

instead of entropy measure when MAE or MSE was the error comparison method. This 

led to a total of eight comparisons per input or output per method used to calculate the 

entropy measures. 

The reasons to perform the above comparisons are: (i) to understand whether the 

entropy measure agrees with other uncertainty methods of the literature; and, (ii) identify 

the experiment configuration with the highest uncertainty with respect to one of the inputs 

or outputs. This can help assessing the potential of the entropy measures as a method of 

uncertainty quantification in simulation models and determining the binwidth to use to 

investigate the impacts of input uncertainty on the outputs.    

The methods SAE and SSE were calculated in R using Equation 44 and Equation 

45, respectively. 

𝑆𝐴𝐸 =∑ |𝑦𝑖 − �̂�𝑖|
𝑛

𝑖=1
 Equation 44 

where 𝑦𝑖 is the observed value and �̂�𝑖 is the predicted value. In this case, 𝑦𝑖 and �̂�𝑖 

can refer to either the inputs 𝑋1, 𝑋2 or 𝑋3 or to the outputs 𝑌1 or 𝑌2. The predicted value is 

the value calculated through the 𝑀/𝑀/𝑠 or 𝑀/𝐺/1 queue system exact solution and the 

observed value is the value resulting from the simulation experiment.  
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𝑆𝑆𝐸 =∑ (𝑦𝑖 − �̂�𝑖)
2

𝑛

𝑖=1
 Equation 45 

Average entropy is the entropy measure divided by the number of replications 𝑛 

and MAE and MSE are the SAE and SSE divided by the number of replications, 

respectively. 

JMP® and Tableau® software were used to perform the comparisons and analysis. 

Each comparison was performed for the entropy measures calculated using: (1) the 

histogram-based method with fixed number of bins and probability density function; (2) 

the histogram-based method with optimum number of bins and probability density 

function; (3) the histogram-based method with fixed number of bins and discrete empirical 

distribution; and, (4) the histogram-based method with fixed number of bins, discrete 

empirical distribution and normalization of the entropy measure.  

To calculate the increase or decrease in uncertainty with the increase in the number 

of replications, the entropy of one experiment was compared with another one with the 

same configuration and smaller number of replications, as given by Equation 46.  

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦𝑗+1 = H(Z𝑖)𝑗+1 − H(Z𝑖)𝑗 ; 𝑗 = 1,… ,9 Equation 46 

where Z𝑖 is either the input 𝑋1, 𝑋2 or 𝑋3 or the ouput 𝑌1 or 𝑌2 and j is the 

experiment. The experiments are divided into groups with equal configurations but 

different number of replications, which leads to groups of 10 experiments.  

As shown in Table 6, considering the comparison to detect an increase or decrease 

in uncertainty the entropy measure calculated using fixed number of bins and probability 



97 

 

 

density function does not appear to have results in agreement with the SAE or SSE method 

for a low number of bins. This implies that, in general, less than 50% of the time the results 

of the entropy method matched the results of the SAE or SSE method for a number of bins 

with a value of 2. Interestingly, for lower number of bins, the entropy method shows better 

results with the outputs than the inputs. However, with the increase in the number of bins, 

the entropy measures for the inputs slightly outperform the entropy measures for the 

outputs. The results of the entropy method improve with an increase in the number of bins. 

From number of bins with a value of 50 or higher, one can see that the entropy method is 

in agreement with the SAE or SSE method more than 90% of the time. In fact, it is worth 

noting that for any of the methods used to calculate the entropy measures, the comparisons 

performed between the entropy measures and the SAE method led to exactly the same 

results as of the comparisons performed between the entropy measures and the SSE 

method.  

Entropy measures are measures of total information of uncertainty in a system, 

similar to the SAE or SSE. It is clear that the entropy measures compared to SAE and SSE 

give better results than the average entropy measures compared to MAE and MSE. 

However, a possible issue with that comparison is that both methods (entropy measures 

for larger number of bins or SAE and SSE) have a tendency to increase with the increase 

in the number of replications, i.e., the amount of data. Hence, a better comparison that 

eliminates this possible bias towards the number of replications is to consider the MAE, 

MSE, and average entropy.   
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The average of the entropy measures calculated using histogram-based method, 

fixed number of bins, and probability density function was compared to MAE and MSE. 

In this case, it is observed that the performance of the method also improves with the 

increase in the number of bins. However, after reaching a point, the performance appears 

to reach its maxima and subsequently starts decreasing. For all, except for one comparison 

against MAE or MSE, the best performance of the entropy measure was obtained when 

the number of bins was 1,000, which indicates that this could potentially be a good number 

of bins to be chosen for this object of study (queue system). Even in the case where the 

number of bins equal to 1,000 did not give the best performance, it was able to give a 

performance very close to the best. Although the entropy measures when compared 

against the MAE or MSE perform poorer than when compared against SAE or SSE, if 

appropriate number of bins is chosen, the method can still achieve a performance of at 

least 60%.  

Similar observations can be made in terms of the entropy measures performance 

to detect the experiment that leads to the maximum uncertainty. As shown in Table 7, the 

ability of the entropy measures in comparison to the SAE and SSE method increases with 

the increase in the number of bins. Similar behavior also occurs when the average entropy 

measures are compared to MAE or MSE. However, in the latter the performance decreases 

beyond a certain number of bins.   

When the entropy measures are compared to SAE or SSE, there are, in general, 

different number of bins (e.g., from 500 to 2,000) for which the entropy measures show 
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the same performance. However, when the average entropy measures are compared to 

MAE or MSE it was observed that 1,000 bins usually lead to the maximum performance. 

 

Table 6. Results from histogram-based method using fixed number of bins and 

probability density function for detecting an increase or decrease in uncertainty with the 

increase in the number of replications. 

Entropy 
Number 

of bins 

Mean of 

comparison 

entropy vs. 

SAE 

Mean of 

comparison 

entropy vs. SSE 

Mean of 

comparison 

average entropy 

vs. MAE 

Mean of 

comparison 

average entropy 

vs. MSE 

𝐻(𝑋1) 

2 35.67% 35.67% 44.30% 54.68% 

5 66.67% 66.67% 44.30% 54.68% 

10 80.99% 80.99% 44.30% 54.68% 

25 89.77% 89.77% 44.59% 54.97% 

50 95.32% 95.32% 50.15% 60.53% 

100 97.37% 97.37% 51.75% 62.43% 

200 97.37% 97.37% 43.42% 54.09% 

500 99.27% 99.27% 52.92% 62.72% 

1000 100.00% 100.00% 61.55% 71.05% 

2000 100.00% 100.00% 60.53% 60.67% 

𝐻(𝑋2) 

2 40.94% 40.94% 45.39% 52.05% 

5 67.54% 67.54% 45.39% 52.05% 

10 77.78% 77.78% 45.39% 52.05% 

25 87.65% 87.65% 45.39% 52.05% 

50 96.13% 96.13% 49.34% 56.29% 

100 96.71% 96.71% 53.80% 61.33% 

200 98.98% 98.98% 47.30% 55.12% 

500 100.00% 100.00% 54.82% 63.82% 

1000 100.00% 100.00% 63.60% 72.88% 

2000 100.00% 100.00% 59.36% 65.42% 

𝐻(𝑋3) 

2 75.00% 75.00% 19.44% 24.44% 

5 87.78% 87.78% 19.44% 24.44% 

10 88.89% 88.89% 19.44% 24.44% 

25 94.44% 94.44% 20.00% 25.00% 

50 99.44% 99.44% 21.67% 26.67% 

100 98.33% 98.33% 25.00% 30.00% 
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200 98.33% 98.33% 21.67% 26.67% 

500 100.00% 100.00% 26.67% 31.67% 

1000 100.00% 100.00% 80.56% 83.33% 

2000 100.00% 100.00% 81.11% 81.67% 

𝐻(𝑌1) 

2 56.29% 56.29% 49.20% 54.90% 

5 74.93% 74.93% 48.76% 54.46% 

10 84.21% 84.21% 48.76% 54.46% 

25 87.87% 87.87% 48.90% 54.61% 

50 94.08% 94.08% 52.34% 57.89% 

100 95.91% 95.91% 56.43% 61.99% 

200 97.15% 97.15% 48.76% 55.19% 

500 99.12% 99.12% 54.24% 61.70% 

1000 99.56% 99.56% 61.92% 68.49% 

2000 99.56% 99.56% 56.51% 59.87% 

𝐻(𝑌2) 

2 53.87% 53.87% 48.10% 53.44% 

5 73.68% 73.68% 47.81% 53.14% 

10 82.53% 82.53% 47.81% 53.14% 

25 89.40% 89.40% 47.81% 53.14% 

50 95.32% 95.32% 51.68% 57.31% 

100 96.93% 96.93% 55.41% 61.77% 

200 97.73% 97.73% 49.12% 55.48% 

500 99.42% 99.42% 54.39% 61.62% 

1000 99.71% 99.71% 61.99% 68.93% 

2000 99.71% 99.71% 55.92% 61.11% 

 

Table 7. Results from histogram-based method using fixed number of bins and 

probability density function for detecting the experiment that leads to the maximum 

uncertainty. 

Entropy 
Number 

of bins 

Mean of 

comparison 

entropy vs. SAE 

Mean of 

comparison 

entropy vs. SSE 

Mean of 

comparison 

average entropy 

vs. MAE 

Mean of 

comparison 

average entropy 

vs. MSE 

𝐻(𝑋1) 

2 0.00% 0.00% 10.53% 10.53% 

5 53.95% 53.95% 10.53% 10.53% 

10 85.53% 85.53% 10.53% 10.53% 

25 94.74% 94.74% 10.53% 10.53% 

50 100.00% 100.00% 9.21% 9.21% 

100 94.74% 94.74% 0.00% 0.00% 
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200 98.68% 98.68% 0.00% 0.00% 

500 100.00% 100.00% 0.00% 0.00% 

1000 100.00% 100.00% 75.00% 75.00% 

2000 100.00% 100.00% 3.95% 3.95% 

𝐻(𝑋2) 

2 3.95% 3.95% 2.63% 0.00% 

5 80.26% 80.26% 2.63% 0.00% 

10 85.53% 85.53% 2.63% 0.00% 

25 88.16% 88.16% 2.63% 0.00% 

50 94.08% 94.08% 0.00% 0.00% 

100 93.42% 93.42% 0.00% 0.00% 

200 97.37% 97.37% 3.95% 0.00% 

500 100.00% 100.00% 6.58% 10.53% 

1000 100.00% 100.00% 69.08% 69.74% 

2000 100.00% 100.00% 15.79% 15.13% 

𝐻(𝑋3) 

2 50.00% 50.00% 50.00% 50.00% 

5 95.00% 95.00% 50.00% 50.00% 

10 90.00% 90.00% 50.00% 50.00% 

25 100.00% 100.00% 55.00% 50.00% 

50 100.00% 100.00% 55.00% 50.00% 

100 85.00% 85.00% 55.00% 50.00% 

200 85.00% 85.00% 50.00% 50.00% 

500 50.00% 50.00% 50.00% 55.00% 

1000 100.00% 100.00% 75.00% 75.00% 

2000 100.00% 100.00% 50.00% 50.00% 

𝐻(𝑌1) 

2 39.47% 39.47% 11.84% 9.87% 

5 76.32% 76.32% 11.84% 9.87% 

10 84.21% 84.21% 11.84% 9.87% 

25 71.71% 71.71% 11.84% 9.87% 

50 81.58% 81.58% 7.24% 9.21% 

100 88.16% 88.16% 3.29% 7.24% 

200 94.08% 94.08% 0.00% 1.32% 

500 96.05% 96.05% 2.63% 2.63% 

1000 96.05% 96.05% 65.13% 61.84% 

2000 96.05% 96.05% 11.84% 11.84% 

𝐻(𝑌2) 

2 28.95% 28.95% 9.21% 4.61% 

5 84.21% 84.21% 9.21% 4.61% 

10 84.21% 84.21% 9.21% 4.61% 

25 80.92% 80.92% 9.21% 4.61% 

50 92.76% 92.76% 8.55% 5.26% 
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100 89.47% 89.47% 1.97% 6.58% 

200 94.74% 94.74% 2.63% 1.32% 

500 97.37% 97.37% 5.26% 10.53% 

1000 97.37% 97.37% 57.89% 60.53% 

2000 98.68% 98.68% 14.47% 13.16% 

 

For the histogram-based method using optimum number of bins, the entropy 

measures did not show good results in comparison to the SSE, SAE, MAE, and MSE 

methods for either detecting an increase or decrease in uncertainty with the increase in the 

number of replications or for detecting the experiment that leads to the maximum 

uncertainty, as shown in Table 8 and Table 9, respectively. Based on the results discussed 

for the histogram-based method using fixed number of bins, these poor results were 

expected because for the experiments in this study the number of bins turned out to be 

small when using the optimum number of bins rules (e.g., ≈ 10 𝑡𝑜 20). Therefore, the 

results for the optimum number of bins are in accordance with the previous results for the 

fixed number of bins.  

With the exception of the travel time input for detecting an increase or decrease in 

the uncertainty with the increase in the number of replications, the different optimum 

number of bins rules led to same results of performance among themselves when 

compared to MAE or MSE. When compared to SAE or SSE, Sturges’ rule led to better 

performance for both detecting an increase or decrease in uncertainty and for detecting the 

experiment that leads to the maximum uncertainty. The only exception was again the 

travel input for detecting an increase or decrease in the uncertainty with the increase in the 
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number of replications. In this case, FD had a better performance. This is due to the fact 

that the travel input involved both stochastic and deterministic parameters, which affected 

how the number of bins were calculated for Scott’s and FD’s rules. The sample standard 

deviation and the interquartile range are taken into consideration in Scott’s and FD’s rules, 

respectively. When the data is deterministic, this would lead to an optimum binwidth of 

0. To overcome this issue, only Sturges’ rule was considered for the deterministic travel 

time input in this work. Table 10 shows that when one considers only the stochastic travel 

time, this input is not an exception anymore. The entropy measures calculated using the 

histogram-based method and optimum number of bins showed better performance when 

compared to SAE and SSE than when compared to MAE and MSE, similar to what was 

observed with fixed number of bins. 

  

Table 8. Results from histogram-based method using optimum number of bins and 

probability density function for detecting an increase or decrease in uncertainty with the 

increase in the number of replications. 

Entropy 

Optimum 

number of 

bins rule 

Mean of 

comparison 

entropy vs. 

SAE 

Mean of 

comparison 

entropy vs. 

SSE 

Mean of 

comparison 

average entropy 

vs. MAE 

Mean of 

comparison 

average entropy 

vs. MSE 

𝐻(𝑋1) 

FD 59.06% 59.06% 44.30% 54.68% 

Scott 59.94% 59.94% 44.30% 54.68% 

Sturges 73.10% 73.10% 44.30% 54.68% 

𝐻(𝑋2) 

FD 56.36% 56.36% 45.39% 52.05% 

Scott 61.99% 61.99% 45.39% 52.05% 

Sturges 75.00% 75.00% 45.39% 52.05% 

𝐻(𝑋3) 

FD 42.22% 42.22% 19.44% 24.44% 

Scott 28.44% 28.44% 7.41% 8.33% 

Sturges 22.22% 22.22% 0.00% 0.00% 

𝐻(𝑌1) FD 56.65% 56.65% 48.76% 54.46% 
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Scott 62.57% 62.57% 48.76% 54.46% 

Sturges 74.85% 74.85% 48.76% 54.46% 

𝐻(𝑌2) 

FD 56.94% 56.94% 47.81% 53.14% 

Scott 63.45% 63.45% 47.81% 53.14% 

Sturges 75.44% 75.44% 47.81% 53.14% 

 

Table 9. Results from histogram-based method using optimum number of bins and 

probability density function for detecting the experiment that leads to the maximum 

uncertainty. 

Entropy 

Optimum 

number of 

bins rule 

Mean of 

comparison 

entropy vs. 

SAE 

Mean of 

comparison 

entropy vs. 

SSE 

Mean of 

comparison 

average entropy 

vs. MAE 

Mean of 

comparison 

average entropy 

vs. MSE 

𝐻(𝑋1) 

FD 42.11% 42.11% 10.53% 10.53% 

Scott 44.74% 44.74% 10.53% 10.53% 

Sturges 69.74% 69.74% 10.53% 10.53% 

𝐻(𝑋2) 

FD 30.26% 30.26% 2.63% 0.00% 

Scott 46.71% 46.71% 2.63% 0.00% 

Sturges 85.53% 85.53% 2.63% 0.00% 

𝐻(𝑋3) 

FD 75.00% 75.00% 50.00% 50.00% 

Scott 50.00% 50.00% 50.00% 50.00% 

Sturges 90.00% 90.00% 50.00% 50.00% 

𝐻(𝑌1) 

FD 26.32% 26.32% 11.84% 9.87% 

Scott 39.47% 39.47% 11.84% 9.87% 

Sturges 75.66% 75.66% 11.84% 9.87% 

𝐻(𝑌2) 

FD 32.89% 32.89% 9.21% 4.61% 

Scott 37.50% 37.50% 9.21% 4.61% 

Sturges 80.26% 80.26% 9.21% 4.61% 

 

Table 10. Results for stochastic travel time only from histogram-based method using 

optimum number of bins and probability density function for detecting an increase or 

decrease in uncertainty with the increase in the number of replications. 

Entropy 

Optimu

m 

number 

of bins 

rule 

Mean of 

comparison 

entropy vs. 

SAE 

Mean of 

comparison 

entropy vs. 

SSE 

Mean of 

comparison 

average entropy 

vs. MAE 

Mean of 

comparison 

average entropy 

vs. MSE 

FD 62.22% 62.22% 38.89% 48.89% 
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H(X3) – 

TT 

(stochastic) 

Scott 44.44% 44.44% 38.89% 48.89% 

Sturge 74.44% 74.44% 38.89% 48.89% 

 

Finally, for the histogram-based method using fixed number of bins and discrete 

empirical distribution, observations similar to the histogram-based method with fixed 

number of bins and probability density function can be made for the comparison to SAE 

and SSE methods, as shown in Table 11 and  

 

Table 12. The ability of the entropy measures in detecting an increase or decrease 

in uncertainty with the increase in the number of replications or in detecting the 

experiment that leads to the maximum uncertainty increases with the increase in the 

number of bins. The ability of the entropy measures appears to be greater for detecting the 

change in uncertainty than for detecting the scenario with the maximum uncertainty, as 

shown in Table 11 and  

 

Table 12.  

While the histogram-based method with probability density function detected 

change in uncertainty in agreement with the SAE or SSE method at least 90% of the time 

when number of bins is 50 or higher. For the histogram-based method with discrete 

empirical distribution this only occurs when number of bins is 200 or higher. The number 

of bins that led to performance greater than 90% in detecting the experiment with the 
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maximum uncertainty is also higher for the histogram-based method with discrete 

empirical distribution than for the histogram-based method with probability density 

function. As previously highlighted, the comparisons performed between the entropy 

measures and the SAE method led to exactly the same results as of the comparisons 

performed between the entropy measures and the SSE method. 

In general, the entropy measures calculated using histogram-based method with 

fixed number of bins and discrete empirical distribution appear to have a better 

performance with the number of bins between 1,000 and 2,000. The entropy measures 

calculated using the histogram-based method, fixed number of bins and discrete empirical 

distribution show better performance when compared to SAE and SSE than when 

compared to MAE and MSE. When compared to MAE or MSE, the measures appear to 

perform worse than the entropy measures calculated using probability density function. 

From Table 11 and  

 

Table 12 one can see that the number of bins has no impact on the performance of 

the average entropy measures when they are compared to MAE or MSE, different than the 

histogram-method with probability density function where this was only observed for 

lower number of bins. The average entropy measure calculated by the histogram-based 

method with discrete empirical distribution is monotonically increasing with the number 

of bins while the MAE or MSE are constant. Hence, the performance in detecting an 

increase or decrease in uncertainty or the maximum uncertainty becomes constant. 
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Results of the normalized entropy measures using the histogram-based method 

with fixed number of bins and discrete empirical distribution are not shown here because 

they are identical to the non-normalized results.  

Figure 28 shows the results of the comparison for detecting an increase or decrease 

in uncertainty with the increase in the number of replications for 𝐻(𝑋1) using the 

histogram-based method with fixed number of bins. From Figure 28, it is possible to 

compare the results from the histogram-based method with probability density function 

against the results from the histogram-based method with discrete empirical distribution. 

 

Table 11. Results from histogram-based method using fixed number of bins and discrete 

empirical distribution for detecting an increase or decrease in uncertainty with the 

increase in the number of replications. 

Entropy 
Number 

of bins 

Mean of 

comparison 

entropy vs. SAE 

Mean of 

comparison 

entropy vs. SSE 

Mean of 

comparison 

average entropy 

vs. MAE 

Mean of 

comparison 

average entropy 

vs. MSE 

𝐻(𝑋1) 

2 59.21% 59.21% 44.30% 54.68% 

5 36.26% 36.26% 44.30% 54.68% 

10 34.50% 34.50% 44.30% 54.68% 

25 53.36% 53.36% 44.30% 54.68% 

50 63.01% 63.01% 44.30% 54.68% 

100 79.09% 79.09% 44.30% 54.68% 

200 96.05% 96.05% 44.30% 54.68% 

500 99.27% 99.27% 44.30% 54.68% 

1000 99.56% 99.56% 44.30% 54.68% 

2000 100.00% 100.00% 44.30% 54.68% 

𝐻(𝑋2) 

2 54.75% 54.75% 45.39% 52.05% 

5 33.55% 33.55% 45.39% 52.05% 

10 38.52% 38.52% 45.39% 52.05% 

25 50.80% 50.80% 45.39% 52.05% 

50 65.42% 65.42% 45.39% 52.05% 
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100 81.65% 81.65% 45.39% 52.05% 

200 95.39% 95.39% 45.39% 52.05% 

500 99.27% 99.27% 45.39% 52.05% 

1000 100.00% 100.00% 45.39% 52.05% 

2000 100.00% 100.00% 45.39% 52.05% 

𝐻(𝑋3) 

2 74.44% 74.44% 69.44% 74.44% 

5 66.11% 66.11% 69.44% 74.44% 

10 71.11% 71.11% 69.44% 74.44% 

25 76.67% 76.67% 69.44% 74.44% 

50 85.00% 85.00% 69.44% 74.44% 

100 90.00% 90.00% 69.44% 74.44% 

200 98.33% 98.33% 69.44% 74.44% 

500 98.33% 98.33% 69.44% 74.44% 

1000 100.00% 100.00% 69.44% 74.44% 

2000 100.00% 100.00% 69.44% 74.44% 

𝐻(𝑌1) 

2 39.33% 39.33% 48.76% 54.46% 

5 24.93% 24.93% 48.76% 54.46% 

10 33.55% 33.55% 48.76% 54.46% 

25 49.12% 49.12% 48.76% 54.46% 

50 66.15% 66.15% 48.76% 54.46% 

100 76.17% 76.17% 48.76% 54.46% 

200 92.91% 92.91% 48.76% 54.46% 

500 97.51% 97.51% 48.76% 54.46% 

1000 98.68% 98.68% 48.76% 54.46% 

2000 98.68% 98.68% 48.76% 54.46% 

𝐻(𝑌2) 

2 40.94% 40.94% 47.81% 53.14% 

5 25.58% 25.58% 47.81% 53.14% 

10 32.38% 32.38% 47.81% 53.14% 

25 48.54% 48.54% 47.81% 53.14% 

50 65.06% 65.06% 47.81% 53.14% 

100 79.61% 79.61% 47.81% 53.14% 

200 94.74% 94.74% 47.81% 53.14% 

500 98.68% 98.68% 47.81% 53.14% 

1000 99.42% 99.42% 47.81% 53.14% 

2000 99.42% 99.42% 47.81% 53.14% 
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Table 12. Results from histogram-based method using fixed number of bins and discrete 

empirical distribution for detecting the experiment that leads to the maximum 

uncertainty. 

Entropy 
Number 

of bins 

Mean of 

comparison 

entropy vs. SAE 

Mean of 

comparison 

entropy vs. SSE 

Mean of 

comparison 

average entropy 

vs. MAE 

Mean of 

comparison 

average entropy 

vs. MSE 

𝐻(𝑋1) 

2 7.89% 7.89% 10.53% 10.53% 

5 0.00% 0.00% 10.53% 10.53% 

10 0.00% 0.00% 10.53% 10.53% 

25 0.00% 0.00% 10.53% 10.53% 

50 1.32% 1.32% 10.53% 10.53% 

100 7.89% 7.89% 10.53% 10.53% 

200 84.21% 84.21% 10.53% 10.53% 

500 100.00% 100.00% 10.53% 10.53% 

1000 100.00% 100.00% 10.53% 10.53% 

2000 100.00% 100.00% 10.53% 10.53% 

𝐻(𝑋2) 

2 7.89% 7.89% 2.63% 0.00% 

5 0.00% 0.00% 2.63% 0.00% 

10 0.00% 0.00% 2.63% 0.00% 

25 0.00% 0.00% 2.63% 0.00% 

50 3.95% 3.95% 2.63% 0.00% 

100 26.32% 26.32% 2.63% 0.00% 

200 79.61% 79.61% 2.63% 0.00% 

500 98.68% 98.68% 2.63% 0.00% 

1000 100.00% 100.00% 2.63% 0.00% 

2000 100.00% 100.00% 2.63% 0.00% 

𝐻(𝑋3) 

2 50.00% 50.00% 50.00% 50.00% 

5 50.00% 50.00% 50.00% 50.00% 

10 50.00% 50.00% 50.00% 50.00% 

25 50.00% 50.00% 50.00% 50.00% 

50 55.00% 55.00% 50.00% 50.00% 

100 60.00% 60.00% 50.00% 50.00% 

200 85.00% 85.00% 50.00% 50.00% 

500 85.00% 85.00% 50.00% 50.00% 

1000 100.00% 100.00% 50.00% 50.00% 

2000 100.00% 100.00% 50.00% 50.00% 

𝐻(𝑌1) 

2 0.00% 0.00% 11.84% 9.87% 

5 0.00% 0.00% 11.84% 9.87% 

10 0.00% 0.00% 11.84% 9.87% 

25 0.00% 0.00% 11.84% 9.87% 
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50 1.32% 1.32% 11.84% 9.87% 

100 13.16% 13.16% 11.84% 9.87% 

200 68.42% 68.42% 11.84% 9.87% 

500 94.74% 94.74% 11.84% 9.87% 

1000 96.05% 96.05% 11.84% 9.87% 

2000 96.05% 96.05% 11.84% 9.87% 

𝐻(𝑌2) 

2 1.32% 1.32% 9.21% 4.61% 

5 0.00% 0.00% 9.21% 4.61% 

10 0.00% 0.00% 9.21% 4.61% 

25 0.00% 0.00% 9.21% 4.61% 

50 1.32% 1.32% 9.21% 4.61% 

100 19.74% 19.74% 9.21% 4.61% 

200 73.68% 73.68% 9.21% 4.61% 

500 93.42% 93.42% 9.21% 4.61% 

1000 97.37% 97.37% 9.21% 4.61% 

2000 97.37% 97.37% 9.21% 4.61% 
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Figure 28. Results for detecting an increase or decrease in uncertainty with the increase 

in the number of replications for 𝑯(𝑿𝟏) using the histogram-based method with fixed 

number of bins. 

 

A final analysis performed in terms of the entropy measures was to compare the 

results from the histogram-based method with fixed number of bins and probability 

density function versus the results from the histogram-based method with fixed number 

of bins and discrete empirical distribution. The first is the theoretically correct approach 

but it brings challenges in its application. The second has practical benefits in terms of 

calculations and it is frequently used by practitioners, but it may not yield real benefits in 
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terms of applications. To compare the two methods, 𝜒2 test at an α-level of 0.05 was 

applied using JMP®, where the null hypothesis 𝐻0 was that there is no difference between 

the results with the histogram-based method with probability density function and the 

results with the histogram-based method with discrete empirical distribution. 

The results of the 𝜒2 test are shown in Table 13 to Table 18. As the results in Table 

6, Table 7, Table 11, and Table 12 already indicated, Table 13 to Table 18 show that except 

for large number of bins, the results of the methods are actually statistically significantly 

different and, overall, the histogram-based method with probability density function 

shows better results than the histogram-based method with discrete empirical distribution 

for both detecting change in uncertainty and for detecting the experiment that leads to the 

maximum uncertainty in agreement with the SSE method (or the SAE method). 

When the 𝜒2 test was performed on the average entropy measures in comparison 

to the MAE or MSE methods, the results were slightly different. The histogram-based 

method with probability density function was statistically significantly better than the 

histogram-based method with discrete empirical distribution only for higher number of 

bins (between 1,000 and 2,000). For a few cases where the number of bins was lower than 

1,000, the histogram-based method with discrete empirical distribution was statistically 

significantly better than the histogram-based method with probability density function for 

detecting the experiment that leads to the maximum uncertainty. 

Although there is not a consistency in the results, one can see that, in general, when 

the methods are statistically significantly different, the histogram-based method with 
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probability density function shows better results than the histogram-based method with 

discrete empirical distribution. However, this difference varies based on the methods the 

measures are being compared to and also on the number of bins used to calculate the 

measures. 

 

Table 13. 𝝌𝟐 test comparing the results of the histogram-based method using fixed 

number of bins and probability density function versus the results of the histogram-based 

method using fixed number of bins and discrete empirical distribution with respect to 

their capability of detecting an increase or decrease in uncertainty with the increase in 

the number of replications in agreement with the SSE method. 

Proportion difference per number of bins 

Entropy 2 5 10 25 50 100 200 500 1,000 2,000 

           

𝐻(𝑋1) -0.225 0.318 0.473 0.367 0.321 0.181 0.013 0.000 0.004 0.000 

𝐻(𝑋2) -0.182 0.352 0.404 0.372 0.343 0.181 0.035 0.007 0.000 0.000 

𝐻(𝑋3) 0.006 0.217 0.178 0.036 0.144 0.083 0.000 0.017 0.000 0.000 

𝐻(𝑌1) 0.163 0.481 0.487 0.373 0.269 0.190 0.041 0.016 0.008 0.008 

𝐻(𝑌2) 0.126 0.488 0.509 0.410 0.301 0.171 0.029 0.007 0.003 0.003 

P-value per number of bins 

Entropy 2 5 10 25 50 100 200 500 1,000 2,000 

𝐻(𝑋1) 
<0.000

1 

<0.000

1 

<0.000

1 

<0.000

1 

<0.000

1 

<0.000

1 
0.1616 

1.000

0 

0.083

0 

1.000

0 

𝐻(𝑋2) 
<0.000

1 

<0.000

1 

<0.000

1 

<0.000

1 

<0.000

1 

<0.000

1 

<0.000

1 

0.025

1 

1.000

0 

1.000

0 

𝐻(𝑋3) 0.9038 
<0.000

1 

<0.000

1 

<0.000

1 

<0.000

1 
0.0007 1.0000 

0.083

3 

1.000

0 

1.000

0 

𝐻(𝑌1) 
<0.000

1 

<0.000

1 

<0.000

1 

<0.000

1 

<0.000

1 

<0.000

1 
0.0003 

0.019

4 

0.041

1 

0.041

1 

𝐻(𝑌2) 
<0.000

1 

<0.000

1 

<0.000

1 

<0.000

1 

<0.000

1 

<0.000

1 
0.0030 

0.163

8 

0.413

6 

0.413

6 

 

Table 14. 𝝌𝟐 test comparing the results of the histogram-based method using fixed 

number of bins and probability density function versus the results of the histogram-based 

method using fixed number of bins and discrete empirical distribution with respect to 
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their capability of detecting the experiment that leads to the maximum uncertainty in 

agreement with the SSE method. 

Proportion difference per number of bins 

Entropy 2 5 10 25 50 100 200 500 1,000 2,000 

𝐻(𝑋1) 
-

0.076 
0.544 0.861 0.942 0.984 0.839 0.139 0.000 0.000 0.000 

𝐻(𝑋2) 
-

0.038 
0.786 0.861 0.879 0.902 0.649 0.171 0.013 0.000 0.000 

𝐻(𝑋3) 0.000 0.450 0.400 0.500 0.450 0.250 0.000 -0.350 0.000 0.000 

𝐻(𝑌1) 0.380 0.734 0.810 0.690 0.772 0.722 0.247 -0.025 0.000 0.000 

𝐻(𝑌2) 0.266 0.824 0.848 0.809 0.915 0.674 0.202 0.038 0.000 0.013 

P-value per number of bins 

Entropy 2 5 10 25 50 100 200 500 1,000 2,000 

𝐻(𝑋1) 
0.013

4 

<0.000

1 

<0.000

1 

<0.000

1 

<0.000

1 

<0.000

1 
0.0015 

1.000

0 

1.000

0 

1.000

0 

𝐻(𝑋2) 
0.306

2 

<0.000

1 

<0.000

1 

<0.000

1 

<0.000

1 

<0.000

1 
0.0006 

0.318

9 

1.000

0 

1.000

0 

𝐻(𝑋3) 
1.000

0 
0.0013 0.0054 0.0003 0.0009 0.0809 1.0000 

0.018

1 

1.000

0 

1.000

0 

𝐻(𝑌1) 
<0.00

01 

<0.000

1 

<0.000

1 

<0.000

1 

<0.000

1 

<0.000

1 

<0.000

1 

0.516

5 

1.000

0 

1.000

0 

𝐻(𝑌2) 
<0.00

01 

<0.000

1 

<0.000

1 

<0.000

1 

<0.000

1 

<0.000

1 
0.0004 

0.249

2 

1.000

0 

0.563

0 

 

Table 15. 𝝌𝟐 test comparing the results of the histogram-based method using fixed 

number of bins and probability density function versus the results of the histogram-based 

method using fixed number of bins and discrete empirical distribution with respect to 

their capability of detecting an increase or decrease in uncertainty with the increase in 

the number of replications in agreement with the MAE method. 

Proportion difference per number of bins 

Entropy 2 5 10 25 50 100 200 500 1,000 2,000 

𝐻(𝑋1) 0.000 0.000 0.000 0.003 0.058 0.075 0.009 0.086 0.173 0.162 

𝐻(𝑋2) 0.000 0.000 0.000 0.000 0.039 0.084 0.019 0.094 0.182 0.140 

𝐻(𝑋3) 0.500 0.500 0.500 0.494 0.478 0.444 0.478 0.428 0.111 0.117 

𝐻(𝑌1) 0.004 0.000 0.000 0.001 0.036 0.077 0.000 0.055 0.132 0.077 

𝐻(𝑌2) 0.003 0.000 0.000 0.000 0.039 0.076 0.013 0.066 0.142 0.081 

P-value per number of bins 

Entropy 2 5 10 25 50 100 200 500 1,000 2,000 

𝐻(𝑋1) 
1.000

0 
1.0000 1.0000 0.9134 0.0303 0.0058 0.7440 0.0014 

<0.000

1 

<0.000

1 

𝐻(𝑋2) 
1.000

0 
1.0000 1.0000 1.0000 0.1425 0.0018 0.4796 0.0004 

<0.000

1 

<0.000

1 
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𝐻(𝑋3) 
<0.00

01 

<0.000

1 

<0.000

1 

<0.000

1 

<0.000

1 

<0.000

1 

<0.000

1 

<0.000

1 
0.0149 0.0102 

𝐻(𝑌1) 
0.871

1 
1.0000 1.0000 0.9569 0.1850 0.0044 1.0000 0.0423 

<0.000

1 
0.0041 

𝐻(𝑌2) 
0.913

9 
1.0000 1.0000 1.0000 0.1519 0.0048 0.6266 0.0148 

<0.000

1 
0.0026 

 

Table 16. 𝝌𝟐 test comparing the results of the histogram-based method using fixed 

number of bins and probability density function versus the results of the histogram-based 

method using fixed number of bins and discrete empirical distribution with respect to 

their capability of detecting an increase or decrease in uncertainty with the increase in 

the number of replications in agreement with the MSE method. 

Proportion difference per number of bins 

Entropy 2 5 10 25 50 100 200 500 1,000 2,000 

𝐻(𝑋1) 0.000 0.000 0.000 0.003 0.058 0.077 0.006 0.080 0.164 0.060 

𝐻(𝑋2) 0.000 0.000 0.000 0.000 0.042 0.093 0.031 0.118 0.208 0.134 

𝐻(𝑋3) 0.500 0.500 0.500 0.494 0.478 0.444 0.478 0.428 0.089 0.072 

𝐻(𝑌1) 0.004 0.000 0.000 0.001 0.034 0.075 0.007 0.072 0.140 0.054 

𝐻(𝑌2) 0.003 0.000 0.000 0.000 0.042 0.086 0.023 0.085 0.158 0.080 

P-value per number of bins 

Entropy 2 5 10 25 50 100 200 500 1,000 2,000 

𝐻(𝑋1) 
1.000

0 
1.0000 1.0000 0.9136 0.0286 0.0036 0.8283 0.0025 

<0.000

1 
0.0249 

𝐻(𝑋2) 
1.000

0 
1.0000 1.0000 1.0000 0.1152 0.0005 0.2545 

<0.000

1 

<0.000

1 

<0.000

1 

𝐻(𝑋3) 
<0.00

01 

<0.000

1 

<0.000

1 

<0.000

1 

<0.000

1 

<0.000

1 

<0.000

1 

<0.000

1 
0.0389 0.0984 

𝐻(𝑌1) 
0.870

4 
1.0000 1.0000 0.9566 0.1995 0.0046 0.7856 0.0065 

<0.000

1 
0.0428 

𝐻(𝑌2) 
0.913

7 
1.0000 1.0000 1.0000 0.1213 0.0012 0.3852 0.0015 

<0.000

1 
0.0028 

 

Table 17. 𝝌𝟐 test comparing the results of the histogram-based method using fixed 

number of bins and probability density function versus the results of the histogram-based 

method using fixed number of bins and discrete empirical distribution with respect to 

their capability of detecting the experiment that leads to the maximum uncertainty in 

agreement with the MAE method. 

Proportion difference per number of bins 

Entropy 2 5 10 25 50 100 200 500 1,000 2,000 

𝐻(𝑋1) 0.000 0.000 0.000 0.000 -0.013 -0.105 -0.105 -0.105 0.645 -0.066 
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𝐻(𝑋2) 0.000 0.000 0.000 0.000 -0.026 -0.026 0.013 0.039 0.664 0.132 

𝐻(𝑋3) 0.000 0.000 0.000 0.050 0.050 0.050 0.000 0.000 0.250 0.000 

𝐻(𝑌1) 0.000 0.000 0.000 0.000 -0.046 -0.086 -0.118 -0.092 0.533 0.000 

𝐻(𝑌2) 0.000 0.000 0.000 0.000 -0.007 -0.072 -0.066 -0.039 0.487 0.053 

P-value per number of bins 

Entropy 2 5 10 25 50 100 200 500 1,000 2,000 

𝐻(𝑋1) 1.0000 1.0000 1.0000 1.0000 0.7873 0.0035 0.0035 0.0035 <0.0001 0.1191 

𝐻(𝑋2) 1.0000 1.0000 1.0000 1.0000 0.1566 0.1566 0.6519 0.2485 <0.0001 0.0040 

𝐻(𝑋3) 1.0000 1.0000 1.0000 0.7590 0.7590 0.7590 1.0000 1.0000 0.1077 1.0000 

𝐻(𝑌1) 1.0000 1.0000 1.0000 1.0000 0.3324 0.0440 0.0018 0.0285 <0.0001 1.0000 

𝐻(𝑌2) 1.0000 1.0000 1.0000 1.0000 0.8864 0.0490 0.0868 0.3509 <0.0001 0.3185 

 

Table 18. 𝝌𝟐 test comparing the results of the histogram-based method using fixed 

number of bins and probability density function versus the results of the histogram-based 

method using fixed number of bins and discrete empirical distribution with respect to 

their capability of detecting the experiment that leads to the maximum uncertainty in 

agreement with the MSE method. 

Proportion difference per number of bins 

Entropy 2 5 10 25 50 100 200 500 1,000 2,000 

𝐻(𝑋1) 0.000 0.000 0.000 0.000 -0.013 -0.105 -0.105 -0.105 0.645 -0.066 

𝐻(𝑋2) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.105 0.697 0.151 

𝐻(𝑋3) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.500 0.250 0.000 

𝐻(𝑌1) 0.000 0.000 0.000 0.000 -0.007 -0.026 -0.086 -0.072 0.520 0.020 

𝐻(𝑌2) 0.000 0.000 0.000 0.000 0.007 0.020 -0.033 0.059 0.559 0.086 

P-value per number of bins 

Entropy 2 5 10 25 50 100 200 500 1,000 2,000 

𝐻(𝑋1) 1.0000 1.0000 1.0000 1.0000 0.7873 0.0035 0.0035 0.0035 <0.0001 0.1191 

𝐻(𝑋2) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0035 <0.0001 0.0003 

𝐻(𝑋3) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.7590 0.1077 1.0000 

𝐻(𝑌1) 1.0000 1.0000 1.0000 1.0000 0.8879 0.5565 0.0196 0.0622 <0.0001 0.6956 

𝐻(𝑌2) 1.0000 1.0000 1.0000 1.0000 0.8500 0.5811 0.2206 0.1646 <0.0001 0.0618 

 

In information theory, the mutual information between 𝑋 and 𝑌 is the average 

reduction in uncertainty in the value of 𝑌 provided by the value of 𝑋 and vice-versa. 
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Mutual information is also a measure of the dependence or association between the 

variables 𝑋 and 𝑌. Therefore, in order to investigate the potential of the MI as a method 

of uncertainty quantification in simulation model, the MI results were compared to the 

results of three other measures of dependence between variables: distance correlation, 

Pearson correlation, and 𝑅2𝑎𝑑𝑗. To assess the results, the following analyses were 

performed: 

(i) The MI is capable of identifying the input 𝑋𝑖 that has the greatest impact on 

the uncertainty of the output 𝑌𝑗 in agreement with the measure of dependence. 

(ii) The MI is capable of identifying the input 𝑋𝑖 that has the least impact on the 

uncertainty of the output 𝑌𝑗 in agreement with the measure of dependence. 

where 𝑖 = 1,2 or 𝑖 = 1,2,3 depending on the scenario being evaluated, and 𝑗 =

1,2. 

Distance correlation was proposed by Székely et al. (2007) as a measure of 

dependence between two random variables that is able to capture both linear and non-

linear association. The distance correlation of the inputs and outputs were calculated using 

the package “energy” in the software R. Pearson correlation and 𝑅2𝑎𝑑𝑗 were also 

calculated in R. The latter was calculated using Equation 47. 

𝑅2𝑎𝑑𝑗 = 1 − (1 − 𝑅
2)

𝑛 − 1

𝑛 − 𝑝 − 1
 Equation 47 

where 𝑛 is the sample size and 𝑝 is the total number of independent variables.  
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In order to compare the MI with the measures of dependence, an analysis 

procedure was developed because there could be experiments where either the MI or the 

measures of dependence would identify more than one input as the one with the greatest 

impact on the output. Similarly, there could be experiments where the MI or the measures 

of dependence would identify more than one input as the one with the least impact on the 

output. For the experiments that could have more than one input selected by the measures, 

a procedure was needed to identify whether the MI and the measure of dependence results 

were consistent.  

For experiments that involved 3 inputs, that is, where arrival time, service time, 

and travel time were involved, the following procedure was followed: 

1. If the MI identified 3 inputs as having the greatest (or the least) impact on the 

output, it means that none of the inputs are different than the other in terms of 

the uncertainty impact on the output. In this case, if the measure of dependence 

identified less than 3 inputs as having the greatest (or the least) impact on the 

output, then the MI and the measure of dependence did not agree among 

themselves. That is, the results were not consistent. Similarly, if the measure of 

dependence identified 3 inputs as having the greatest (or the least) impact on the 

output and the MI identified less than 3 inputs as having the greatest (or the least) 

impact on the output, then the MI and the measure of dependence did not agree 

among themselves. 
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2. If the MI identified 3 inputs as having the greatest (or the least) impact on the 

output and the measure of dependence identified 3 inputs as having the greatest 

(on the least) impact on the output, then the MI and the measure of dependence 

strongly agree among themselves, as all the choices among them were exactly 

the same. 

3. If the MI identified 𝑖 inputs as having the greatest (or the least) impact on the 

output and the measure of dependence identified 𝑖 inputs as having the greatest 

(or the least) impact on the output, where 𝑖 = 1,2, then: 

a. If all the inputs identified by the MI are the same as the ones identified by 

the measure of dependence, then the measures strongly agree.  

b. If at least one input identified by the measures is the same, then there is a 

weak agreement between the measures (this case is not possible for 𝑖 = 1).  

c. Otherwise, the measures do not agree.   

4. If the MI identified 𝑖 inputs as having the greatest (or the least) impact on the 

output and the measure of dependence identified 𝑖 − 1 inputs as having the 

greatest (or the least) impact on the output, where 𝑖 = 2,3, then: 

a. If at least one input identified by the measures is the same, then there is a 

weak agreement between the measures. 

b. Otherwise, the measures do not agree.  

The procedure is summarized on Table 19. A similar procedure was implemented 

for experiments that involved only 2 inputs (arrival time and service time).  
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Table 19. Procedure to identify whether the MI and the measure of dependence agree or 

not. 
Method / Number of 

inputs with impact on 

output 

Measure of dependence 

3 2 1 

MI 

3 Strongly agree Do not agree Do not agree 

2 Do not agree 

If: 

- all inputs are equal: 

strongly agree 

- at least one input is 

equal: weakly agree 

If: 

- at least one input is 

equal: weakly agree 

- otherwise: do not 

agree 

1 Do not agree 

If: 

- at least one input is 

equal: weakly agree 

- otherwise: do not 

agree 

If: 

- input is equal: strongly 

agree 

- otherwise: do not 

agree 

 

The results of the comparisons of the MI versus the distance correlation, the 

Pearson correlation, and the 𝑅2𝑎𝑑𝑗 methods are shown in Table 67 to Table 76 of the 

Appendix. Table 67 and Table 68 show the results when the MI is calculated using the 

histogram-based method with fixed number of bins and probability density function.  

Table 69 and Table 70 show the results when the MI is calculated using the 

histogram-based method with optimum number of bins and probability density function.  

Table 71 to Table 76 show the results when the MI is calculated using the 

histogram-based method with fixed number of bins and discrete empirical distribution. 

For the results shown in Table 67 to Table 76, either a weak or strong agreement, as 

defined in the aforementioned procedure, were considered an agreement among the 

measures.  
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First, logistic regression with two-factor interaction effect was performed using 

JMP® to investigate which factors affected the performance of the MI when compared 

against the different measures of dependence. Next, 𝜒2 test was performed using JMP® 

to investigate whether the performance of MI was statistically significantly different based 

on the method used to calculate the MI, the dependence measure to which the MI was 

being compared to, or the output that was being investigated.  

Logistic regression was performed on the results of MI compared with each 

measure of dependence (distance correlation, Pearson correlation, and 𝑅2𝑎𝑑𝑗), from each 

calculation method (fixed bins with probability density function, fixed bins with discrete 

empirical distribution, and optimum number of bins with probability density function), 

and from each combination of greatest or least impact on the simulation output (input with 

the greatest impact on the NIS, input with the least impact on the NIS, input with the 

greatest impact on the TIS, and input with the least impact on the TIS). For the logistic 

regression, the following factors were considered as possible dependent variables that 

could affect the performance of the MI (the independent variable): (i) the number of bins 

(2, 5, 10, 25, 50, 100, 200, 500, 1000, 2000), (ii) the number of replications (10, 20, 50, 

100, 200, 400, 600, 800, 1000, 1500), and (iii) the normalization method (non-

normalization, arith, joint, geom, and theor). The normalization method was only 

considered as a factor when the calculation method was the discrete empirical distribution, 

as it was the only method where normalization between 0 and 1 was possible and also 
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where normalization was recommended by the literature due to the impact of the number 

of bins.  

Based on the whole model test, which compares the whole-model fit to the model 

that omits all the logistic regression parameters except the intercepts, the model considered 

here was statistically a better fit than the intercepts (p-value less than 0.0001 at α-level of 

0.05). This test is analogous to the ANOVA for continuous responses. The null hypothesis 

is that the model fits no better than the model that includes only the intercepts, while the 

alternative hypothesis is that the model fits better than the model that includes only the 

intercepts. Table 20 shows the misclassification rate of the logistic model by method of 

calculation, measure of dependence, and impact on simulation output. Considering only 

the aforementioned factors as variables that impact the performance of the MI led to an 

average misclassification rate of 36.8%.  

 

Table 20. Misclassification rate of the logistic regression model by method of 

calculation, measure of dependence, and impact on simulation output.  

Method of calculation 
Measure of 

dependence 

Impact on 

simulation output 

Misclassification 

rate 

Fixed bins - probability density 

function 
Distance correlation 

Greatest impact on 

NIS 
0.3691 

Fixed bins - probability density 

function 
Distance correlation Least impact on NIS 0.3996 

Fixed bins - probability density 

function 
Distance correlation 

Greatest impact on 

TIS 
0.3701 

Fixed bins - probability density 

function 
Distance correlation Least impact on TIS 0.3999 

Fixed bins - probability density 

function 
Pearson correlation 

Greatest impact on 

NIS 
0.3647 
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Fixed bins - probability density 

function 
Pearson correlation Least impact on NIS 0.3738 

Fixed bins - probability density 

function 
Pearson correlation 

Greatest impact on 

TIS 
0.3715 

Fixed bins - probability density 

function 
Pearson correlation Least impact on TIS 0.3910 

Fixed bins - probability density 

function 
𝑅2𝑎𝑑𝑗  

Greatest impact on 

NIS 
0.3586 

Fixed bins - probability density 

function 
𝑅2𝑎𝑑𝑗  Least impact on NIS 0.3689 

Fixed bins - probability density 

function 
𝑅2𝑎𝑑𝑗  

Greatest impact on 

TIS 
0.3684 

Fixed bins - probability density 

function 
𝑅2𝑎𝑑𝑗  Least impact on TIS 0.3796 

Optimum number of bins - 

probability density function 
Distance correlation 

Greatest impact on 

NIS 
0.4413 

Optimum number of bins - 

probability density function 
Distance correlation Least impact on NIS 0.4363 

Optimum number of bins - 

probability density function 
Distance correlation 

Greatest impact on 

TIS 
0.3605 

Optimum number of bins - 

probability density function 
Distance correlation Least impact on TIS 0.3265 

Optimum number of bins - 

probability density function 
Pearson correlation 

Greatest impact on 

NIS 
0.4024 

Optimum number of bins - 

probability density function 
Pearson correlation Least impact on NIS 0.3820 

Optimum number of bins - 

probability density function 
Pearson correlation 

Greatest impact on 

TIS 
0.3336 

Optimum number of bins - 

probability density function 
Pearson correlation Least impact on TIS 0.2994 

Optimum number of bins - 

probability density function 
𝑅2𝑎𝑑𝑗  

Greatest impact on 

NIS 
0.4006 

Optimum number of bins - 

probability density function 
𝑅2𝑎𝑑𝑗  Least impact on NIS 0.3870 

Optimum number of bins - 

probability density function 
𝑅2𝑎𝑑𝑗  

Greatest impact on 

TIS 
0.3342 

Optimum number of bins - 

probability density function 
𝑅2𝑎𝑑𝑗  Least impact on TIS 0.3000 

Fixed bins - discrete empirical 

distribution 
Distance correlation 

Greatest impact on 

NIS 
0.4051 
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Fixed bins - discrete empirical 

distribution 
Distance correlation Least impact on NIS 0.3991 

Fixed bins - discrete empirical 

distribution 
Distance correlation 

Greatest impact on 

TIS 
0.3752 

Fixed bins - discrete empirical 

distribution 
Distance correlation Least impact on TIS 0.3460 

Fixed bins - discrete empirical 

distribution 
Pearson correlation 

Greatest impact on 

NIS 
0.3837 

Fixed bins - discrete empirical 

distribution 
Pearson correlation Least impact on NIS 0.3430 

Fixed bins - discrete empirical 

distribution 
Pearson correlation 

Greatest impact on 

TIS 
0.3598 

Fixed bins - discrete empirical 

distribution 
Pearson correlation Least impact on TIS 0.3248 

Fixed bins - discrete empirical 

distribution 
𝑅2𝑎𝑑𝑗  

Greatest impact on 

NIS 
0.3799 

Fixed bins - discrete empirical 

distribution 
𝑅2𝑎𝑑𝑗  Least impact on NIS 0.3453 

Fixed bins - discrete empirical 

distribution 
𝑅2𝑎𝑑𝑗  

Greatest impact on 

TIS 
0.3578 

Fixed bins - discrete empirical 

distribution 
𝑅2𝑎𝑑𝑗  Least impact on TIS 0.3197 

 

Table 21 shows the p-value and order of importance for the factors and effects in 

the logistic regression model for an α-level of 0.05. As shown in Table 21, number of 

replications appears to be the most important factor. With a few exceptions when using 

the optimum number of bins rule, the number of replications was the first factor in order 

of importance regardless of the method of calculation. With a few exceptions also when 

using the optimum number of bins rule, number of bins was the third factor in order of 

importance regardless of the method of calculation. Despite being the third factor in order 

of importance in the model, number of bins was still statistically significantly important 
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for the model in the majority of the cases. The normalization method and its interaction 

effects were not statistically significantly for the model when using the discrete empirical 

distribution, with the exception when considering the greatest impact on NIS. However, 

for the normalization method, care must be taken. As showed in Figure 9, the different 

normalized versions of the MI have different behaviors. Therefore, it is possible that if 

only two methods were being investigated, the results would be different. 

 

Table 21. P-value and order of importance of factors on logistic regression model.  

Method of 

calculation 

Measure of 

dependence 

Factor / P-value (order of 

importance) 

Greatest 

impact 

on NIS 

Least 

impact 

on NIS 

Greatest 

impact 

on TIS 

Least 

impact 

on TIS 

Fixed 

number of 

bins - 

probability 

density 

function 

Distance 

correlation 

Number of replications 
0.0000 

(1) 

0.0000 

(1) 

0.0000 

(1) 

0.0000 

(1) 

Number of bins 
0.0725 

(3) 

0.0122 

(3) 

0.0001 

(3) 

0.0000 

(3) 

Number of replications x 

number of bins 

0.0000 

(2) 

0.0000 

(2) 

0.0000 

(2) 

0.0000 

(2) 

Pearson 

correlation 

Number of replications 
0.0000 

(1) 

0.0000 

(1) 

0.0000 

(1) 

0.0000 

(1) 

Number of bins 
0.0019 

(3) 

0.0000 

(3) 

0.0000 

(3) 

0.0000 

(3) 

Number of replications x 

number of bins 

0.0000 

(2) 

0.0000 

(2) 

0.0000 

(2) 

0.0000 

(2) 

𝑅2𝑎𝑑𝑗  

Number of replications 
0.0000 

(1) 

0.0000 

(1) 

0.0000 

(1) 

0.0000 

(1) 

Number of bins 
0.0034 

(3) 

0.0000 

(3) 

0.0000 

(3) 

0.0000 

(3) 

Number of replications x 

number of bins 

0.0000 

(2) 

0.0000 

(2) 

0.0000 

(2) 

0.0000 

(2) 

Optimum 

number of 

bins - 

probability 

density 

function 

Distance 

correlation 

Number of replications 
0.0000 

(2) 

0.0000 

(2) 

0.0000 

(1) 

0.0000 

(1) 

Number of bins 
0.0469 

(3) 

0.7034 

(3) 

0.0000 

(3) 

0.0040

(3) 

Number of replications x 

number of bins 

0.0000 

(1) 

0.0000 

(1) 

0.0000 

(2) 

0.0000 

(2) 

Pearson 

correlation 

Number of replications 
0.0000 

(3) 

0.0000 

(1) 

0.0000 

(1) 

0.0000 

(1) 

Number of bins 
0.0000 

(2) 

0.0000 

(3) 

0.0000 

(2) 

0.0002

(3) 
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Number of replications x 

number of bins 

0.0000 

(1) 

0.0000 

(2) 

0.0000 

(3) 

0.0000 

(2) 

𝑅2𝑎𝑑𝑗  

Number of replications 
0.0000 

(2) 

0.0000 

(1) 

0.0000 

(1) 

0.0000 

(1) 

Number of bins 
0.0000 

(3) 

0.0000 

(3) 

0.0000 

(2) 

0.0000

(3) 

Number of replications x 

number of bins 

0.0000 

(1) 

0.0000 

(2) 

0.0000 

(3) 

0.0000 

(2) 

Fixed 

number of 

bins - 

discrete 

empirical 

distribution 

Distance 

correlation 

Number of replications 
0.0000 

(1) 

0.0000 

(1) 

0.0000 

(1) 

0.0000 

(1) 

Number of bins 
0.0000 

(3) 

0.0000 

(3) 

0.0000 

(3) 

0.0000 

(3) 

Normalization method 
0.9681 

(4) 

0.6725 

(4) 

0.9987 

(4) 

0.9981 

(4) 

Number of replications x 

number of bins 

0.0000 

(2) 

0.0000 

(2) 

0.0000 

(2) 

0.0000 

(2) 

Number of replications x 

normalization method 

1.0000 

(5) 

1.0000 

(5) 

0.9995 

(5) 

0.9997 

(5) 

Number of bins x 

normalization method 

1.0000 

(6) 

1.0000 

(6) 

1.0000 

(6) 

1.0000 

(6) 

Pearson 

correlation 

Number of replications 
0.0000 

(1) 

0.0000 

(1) 

0.0000 

(1) 

0.0000 

(1) 

Number of bins 
0.0000 

(3) 

0.0000 

(3) 

0.0000 

(3) 

0.0000 

(3) 

Normalization method 
0.0248 

(4) 

0.1421 

(4) 

0.9241 

(4) 

0.9880 

(4) 

Number of replications x 

number of bins 

0.0000 

(2) 

0.0000 

(2) 

0.0000 

(2) 

0.0000 

(2) 

Number of replications x 

normalization method 

0.9996 

(5) 

0.9989 

(5) 

0.9929 

(5) 

0.9966 

(5) 

Number of bins x 

normalization method 

0.9999 

(6) 

0.9999 

(6) 

1.0000 

(6) 

1.0000 

(6) 

𝑅2𝑎𝑑𝑗  

Number of replications 
0.0000 

(1) 

0.0000 

(1) 

0.0000 

(1) 

0.0000 

(1) 

Number of bins 
0.0000 

(3) 

0.0000 

(3) 

0.0000 

(3) 

0.0000 

(3) 

Normalization method 
0.0444 

(4) 

0.1502 

(4) 

0.9440 

(4) 

0.9988 

(5) 

Number of replications x 

number of bins 

0.0000 

(2) 

0.0000 

(2) 

0.0000 

(2) 

0.0000 

(2) 

Number of replications x 

normalization method 

0.9993 

(5) 

0.9992 

(5) 

0.9922 

(5) 

0.9957 

(4) 

Number of bins x 

normalization method 

0.9999 

(6) 

0.9999 

(6) 

1.0000 

(6) 

1.0000 

(6) 
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Table 67 to Table 76 of the Appendix show the results of the comparison in a 

granulated level, which makes it harder to perform the comparison among the different 

methods and different measures of dependence. Table 22 shows the results summarized 

by calculation method, normalization method, measure of dependence, and impact on the 

output, where the green color represents the highest value per group, yellow the median, 

and red the lowest value per group. Overall, distance correlation is the measure of 

dependence that leads to the best performance when compared to the MI calculated using 

fixed number of bins with probability density function, while 𝑅2𝑎𝑑𝑗 is the measure of 

dependence that leads to the worst performance. For MI calculated using optimum number 

of bins rule and using fixed number of bins with discrete empirical distribution, Pearson 

correlation is the measure of dependence that leads to the best performance, while distance 

correlation is the measure of dependence that leads to the worst performance. However, it 

is important noting that there is no consistency in these results as this varies based on the 

number of bins used to calculate the MI. Whenever fixed number of bins is used to 

calculate the MI with either probability density function or discrete empirical distribution, 

depending on the number of bins used, either Pearson or distance correlation can lead to 

the best performance of the measure. Also, these differences may not be statistically 

significantly different as it will be investigated in the 𝜒2 test later in this section. The 

results of the 𝜒2 test are shown in Table 26. 

An interesting observation that can also be made from Table 22 is that the results 

of the MI and the 𝑁𝑀𝐼𝑡ℎ𝑒𝑜𝑟 are very similar, with differences only in the decimals, which 
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is another indication that 𝑁𝑀𝐼𝑡ℎ𝑒𝑜𝑟 is the best normalization method for the mutual 

information.  

 

Table 22. Results from the comparison of the measures of dependence versus the MI 

summarized by calculation method, normalization method, measure of dependence, and 

impact on the output.  

Calculation 

method 

Normalization 

method 

Measure of 

dependence 

Greatest 

impact 

on NIS 

[%] 

Least 

impact 

on NIS 

[%] 

Greatest 

impact 

on TIS 

[%] 

Least 

impact 

on TIS 

[%] 

Total 

[%] 

Probability 

density 

function 

Non-

normalization 

Distance 

correlation 
37.82 42.75 37.75 43.96 40.57 

Pearson 

correlation 
37.48 40.42 37.95 43.16 39.75 

𝑅2𝑎𝑑𝑗  36.87 39.70 37.63 42.03 39.06 

Optimum 

number of 

bins rule 

Non-

normalization 

Distance 

correlation 
49.03 55.40 56.71 61.90 55.76 

Pearson 

correlation 
56.37 61.35 60.08 64.68 60.62 

𝑅2𝑎𝑑𝑗  56.03 60.55 59.75 63.54 59.97 

Discrete 

empirical 

distribution 

Non-

normalization 

Distance 

correlation 
44.28 49.71 52.96 56.43 50.84 

Pearson 

correlation 
49.71 53.58 54.65 57.14 53.77 

𝑅2𝑎𝑑𝑗  48.94 52.81 54.34 56.00 53.02 

Arith 

Distance 

correlation 
44.59 50.48 52.68 56.16 50.98 

Pearson 

correlation 
47.81 51.97 54.08 56.75 52.65 

𝑅2𝑎𝑑𝑗  47.09 51.20 53.78 55.61 51.92 

Joint 

Distance 

correlation 
44.58 50.48 52.68 56.16 50.98 

Pearson 

correlation 
47.81 51.97 54.09 56.75 52.66 

𝑅2𝑎𝑑𝑗  47.08 51.20 53.80 55.61 51.92 

Geom 

Distance 

correlation 
44.61 50.48 52.65 56.15 50.97 

Pearson 

correlation 
47.82 51.97 54.00 56.68 52.62 

𝑅2𝑎𝑑𝑗  47.10 51.20 53.71 55.54 51.89 

Theor 
Distance 

correlation 
44.24 49.67 52.95 56.42 50.82 
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Pearson 

correlation 
49.68 53.56 54.65 57.14 53.76 

𝑅2𝑎𝑑𝑗  48.91 52.78 54.34 56.00 53.01 

 

Table 23 shows the results summarized by calculation method, number of bins, 

measure of dependence, and impact on the output, where the green color represents the 

highest value per measure of dependence within calculation method and red represents the 

lowest values per measure of dependence within calculation method. When the MI is 

calculated using fixed number of bins with probability density function there is not a clear 

conclusion regarding the impact of the number of bins on the performance of the MI. 

When NIS is the output being considered, 2 is the number of bins that leads to the worst 

performance; and 10, for distance correlation, or 50, for either 𝑅2𝑎𝑑𝑗 or Pearson 

correlation, are the number of bins that lead to the best performance. When TIS is the 

output being considered, 2 is still the number of bins that leads to the worst performance 

when distance correlation is the measure of dependence being compared to. However, 

values of 1000 or 2000 are the number of bins that lead to worst performance when 𝑅2𝑎𝑑𝑗 

or Pearson correlation are the measures of dependence considered. For best performance, 

the numbers of bins are 5 or 25 for 𝑅2𝑎𝑑𝑗 or Pearson correlation and 50 or 100 for distance 

correlation. Results are found to be more consistent when the MI is calculated using fixed 

number of bins with discrete empirical distribution. Overall, 2 is the number of bins that 

leads to the worst performance regardless of the measure of dependence and the output 

and 5 is the number of bins that leads to the best performance. Although there is a lack of 
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consistency when using probability density function, by comparing the results with the 

discrete empirical distribution, one can see that it appears that either larger number of bins 

(between 1000 and 2000) or very low number of bins (around 2) leads to worst 

performance in terms of MI, while mid-range (between 10 to 100) leads to best 

performance. However, it is important noting that as the results of Table 21 show, there is 

a interaction between the number of replications and number of bins and, in general, the 

interaction was shown to be more important than the number of bins alone. Therefore, 

ideally one should not evaluate the MI performance by looking at the number of bins 

alone, which could justify the lack of consistency. 

When the MI is calculated using the optimum number of bins rule, it is interesting 

to note that regardless of the measure of dependence and the output, Sturges’ rule appears 

to be the one that leads to the worst performance, while Scott’s rule leads to best 

performance. FD’s rule leads to the best performance when compared to Pearson 

correlation or 𝑅2𝑎𝑑𝑗 when considering the least impact on the NIS, but even in those cases 

Scott’s rule performance is very close to FD’s rule. 

 

Table 23. Results from the comparison of the measures of dependence versus the MI 

summarized by calculation method, number of bins, measure of dependence, and impact 

on the output considering non-normalized version only.  

Calculation 

method 
Number of bins 

Measure of 

dependence 

Greatest 

impact 

on NIS  

[%] 

Least 

impact 

on NIS 

[%] 

Greates

t 

impact 

on TIS 

[%] 

Least 

impact 

on TIS 

[%] 

2 Distance correlation 33.42 37.85 31.90 38.73 
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Probability 

density 

function 

Pearson correlation 32.66 34.81 34.18 39.49 

𝑅2𝑎𝑑𝑗  32.15 34.05 33.80 38.35 

2 Total 32.74 35.57 33.29 38.86 

5 

Distance correlation 36.08 42.66 38.73 44.05 

Pearson correlation 36.20 40.13 41.52 46.84 

𝑅2𝑎𝑑𝑗  35.32 39.37 41.27 45.70 

5 Total 35.86 40.72 40.51 45.53 

10 

Distance correlation 40.76 46.71 39.75 45.95 

Pearson correlation 37.34 40.89 40.00 45.44 

𝑅2𝑎𝑑𝑗  36.71 40.25 39.62 44.30 

10 Total 38.27 42.62 39.79 45.23 

25 

Distance correlation 38.48 43.67 38.61 42.53 

Pearson correlation 39.75 43.16 42.15 45.06 

𝑅2𝑎𝑑𝑗  39.37 42.53 41.90 43.92 

25 Total 39.20 43.12 40.89 43.84 

50 

Distance correlation 39.24 44.81 40.51 47.85 

Pearson correlation 42.53 46.46 40.76 46.58 

𝑅2𝑎𝑑𝑗  41.90 45.82 40.63 45.44 

50 Total 41.22 45.70 40.63 46.62 

100 

Distance correlation 38.35 42.41 41.01 47.22 

Pearson correlation 38.99 42.41 39.62 44.68 

𝑅2𝑎𝑑𝑗  38.35 41.65 39.37 43.54 

100 Total 38.57 42.15 40.00 45.15 

200 

Distance correlation 40.38 44.68 40.63 46.84 

Pearson correlation 41.27 43.92 40.25 45.44 

𝑅2𝑎𝑑𝑗  40.51 43.16 39.87 44.30 

200 Total 40.72 43.92 40.25 45.53 

500 

Distance correlation 37.09 41.14 38.61 45.44 

Pearson correlation 36.84 39.37 34.56 41.01 

𝑅2𝑎𝑑𝑗  36.08 38.61 34.18 39.87 

500 Total 36.67 39.70 35.78 42.11 

1000 

Distance correlation 36.33 42.03 34.05 41.65 

Pearson correlation 34.56 37.59 33.16 39.87 

𝑅2𝑎𝑑𝑗  34.43 36.84 32.78 38.73 

1000 Total 35.11 38.82 33.33 40.08 

2000 

Distance correlation 38.10 41.52 33.67 39.37 

Pearson correlation 34.68 35.44 33.29 37.22 

𝑅2𝑎𝑑𝑗  33.92 34.68 32.91 36.08 

2000 Total 35.57 37.22 33.29 37.55 

FD Distance correlation 48.86 55.32 56.58 62.28 
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Optimum 

number of 

bins rule 

Pearson correlation 60.63 65.19 60.89 65.32 

𝑅2𝑎𝑑𝑗  59.62 64.30 60.51 64.18 

FD's Total 54.10 56.37 61.60 59.32 

Scott 

Distance correlation 52.03 55.70 61.52 64.05 

Pearson correlation 62.53 64.94 65.44 67.47 

𝑅2𝑎𝑑𝑗  62.53 64.18 65.19 66.33 

Scott's Total 55.37 59.03 61.60 64.05 

Sturges 

Distance correlation 46.20 55.19 52.03 59.37 

Pearson correlation 45.95 53.92 53.92 61.27 

𝑅2𝑎𝑑𝑗  45.95 53.16 53.54 60.13 

Sturges' Total 45.78 46.03 54.09 53.16 

Discrete 

empirical 

distribution 

2 

Distance correlation 46.08 53.92 58.10 62.66 

Pearson correlation 60.76 67.09 68.10 71.65 

𝑅2𝑎𝑑𝑗  59.37 66.20 67.85 70.51 

2 Total 55.40 62.41 64.68 68.27 

5 

Distance correlation 49.87 56.96 62.91 68.48 

Pearson correlation 63.04 68.35 70.00 73.92 

𝑅2𝑎𝑑𝑗  62.28 67.59 69.62 72.78 

5 Total 58.40 64.30 67.51 71.73 

10 

Distance correlation 49.62 57.59 62.15 65.44 

Pearson correlation 48.35 55.70 63.42 66.71 

𝑅2𝑎𝑑𝑗  47.09 54.81 63.16 65.57 

10 Total 48.35 56.03 62.91 65.91 

25 

Distance correlation 48.10 55.70 57.59 60.38 

Pearson correlation 47.09 52.53 57.09 58.35 

𝑅2𝑎𝑑𝑗  46.71 51.77 56.84 57.22 

25 Total 47.30 53.33 57.17 58.65 

50 

Distance correlation 42.91 47.85 49.87 53.54 

Pearson correlation 45.82 49.62 51.39 53.80 

𝑅2𝑎𝑑𝑗  46.08 48.99 51.27 52.66 

50 Total 44.94 48.82 50.84 53.33 

100 

Distance correlation 42.66 47.72 48.48 51.52 

Pearson correlation 50.25 54.56 47.97 50.13 

𝑅2𝑎𝑑𝑗  49.62 53.80 47.72 48.99 

100 Total 47.51 52.03 48.06 50.21 

200 

Distance correlation 44.94 47.97 47.22 49.87 

Pearson correlation 49.62 51.01 46.08 48.61 

𝑅2𝑎𝑑𝑗  48.73 50.25 45.70 47.47 

200 Total 47.76 49.75 46.33 48.65 

500 Distance correlation 38.99 43.29 50.51 52.91 



133 

 

 

Pearson correlation 45.32 47.34 50.13 51.52 

𝑅2𝑎𝑑𝑗  44.43 46.58 49.75 50.38 

500 Total 42.91 45.74 50.13 51.60 

1000 

Distance correlation 40.63 43.67 47.22 50.89 

Pearson correlation 45.32 45.82 46.96 49.62 

𝑅2𝑎𝑑𝑗  44.43 45.06 46.58 48.48 

1000 Total 43.46 44.85 46.92 49.66 

2000 

Distance correlation 38.99 42.41 45.57 48.61 

Pearson correlation 41.52 43.80 45.32 47.09 

R2adj 40.63 43.04 44.94 45.95 

2000 Total 40.38 43.08 45.27 47.22 

 

Table 24 shows the results summarized by calculation method, number of 

replications, measure of dependence, and impact on the output, where the green color 

represents the highest value per measure of dependence within calculation method and red 

represents the lowest values per measure of dependence within calculation method. 

Regardless of the method used to calculate the MI, the measure of dependence to which 

the MI is being compared to, or the output that is being investigated, 10 is the number of 

replications that leads to the worst performance of the MI. This is expected, as with 10 

replications there is less information in the simulation generated inputs and, therefore, the 

reduction in uncertainty of the output provided by the inputs is also lower and, 

consequently, the ability of the MI to accurately detect the input with the greatest or least 

impact on the output. With an increase in the number of replications, the performance 

improves but it also depends on the number of bins, as there is an interaction between 

number of bins and number of replications as shown in Table 21. When the MI is 

calculated using fixed number of bins with probability density function, overall, 800 and 
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1000 are the numbers of replications that lead to the best performance of the MI. When 

the MI is calculated using fixed number of bins with discrete empirical distribution, 100 

and 200 are the numbers of replications that lead to the best performance of the MI. When 

optimum number of bins rule is used, the number of replications that leads to the best 

performance of the MI varies between 50 and 200 for the output NIS and is 50 for the 

output TIS. Although the values are lower when compared to the other methods, it is 

important to remember that there is an interaction between number of bins and number of 

replications. When only a lower number of bins (between 2 and 10) is considered for the 

fixed number of bins method, either with probability density function or discrete empirical 

distribution, the number of replications that leads to the best performance is also lower.  

For the first, the number of replications is between 100 and 400, and for the second it is 

between 20 and 100. In general, the performance of the MI when compared to 𝑅2𝑎𝑑𝑗 or 

Pearson correlation is more similar than when compared to distance correlation, which is 

expected as 𝑅2𝑎𝑑𝑗 is a function of 𝑅2 that is equal to the square of the Pearson 

correlation between the observed 𝑦 and the predicted values of 𝑦. It is worth noting that 

there are a few differences in terms of the number of replications that leads to the best 

performance among the different outputs. This is important to highlight because this 

indicates that depending on the output of interest, the optimum number of replications to 

be run to reduce the uncertainty on the simulation output can be different.  
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Table 24. Results from the comparison of the measures of dependence versus the MI 

summarized by calculation method, number of replications, measure of dependence, and 

impact on the output considering non-normalized version only. 

Calculation 

method 

Number of 

replications 

Measure of 

dependence  

Greatest 

impact 

on NIS 

[%] 

Least 

impact 

on NIS 

[%] 

Greatest 

impact 

on TIS 

[%] 

Least 

impact 

on TIS 

[%] 

Probability 

density 

function 

10 

Distance correlation 14.68 17.22 15.32 18.10 

Pearson correlation 13.42 5.70 14.94 11.77 

𝑅2𝑎𝑑𝑗  11.14 6.08 11.77 5.44 

10 Total 13.08 9.66 14.01 11.77 

20 

Distance correlation 23.04 27.34 23.42 28.99 

Pearson correlation 23.16 17.85 23.92 24.81 

𝑅2𝑎𝑑𝑗  19.37 16.58 23.92 19.75 

20 Total 21.86 20.59 23.76 24.51 

50 

Distance correlation 35.82 40.25 39.11 43.16 

Pearson correlation 35.70 40.13 40.00 44.18 

𝑅2𝑎𝑑𝑗  35.70 36.33 40.00 44.18 

50 Total 35.74 38.90 39.70 43.84 

100 

Distance correlation 47.72 51.01 41.77 47.47 

Pearson correlation 42.66 46.58 40.25 47.72 

𝑅2𝑎𝑑𝑗  42.66 44.05 40.25 47.72 

100 Total 44.35 47.22 40.76 47.64 

200 

Distance correlation 42.66 48.10 40.38 47.97 

Pearson correlation 42.03 47.47 42.66 49.37 

𝑅2𝑎𝑑𝑗  42.03 47.47 42.66 49.37 

200 Total 42.24 47.68 41.90 48.90 

400 

Distance correlation 42.03 47.47 41.77 48.73 

Pearson correlation 41.77 47.47 41.77 48.48 

𝑅2𝑎𝑑𝑗  41.77 47.47 41.77 48.48 

400 Total 41.86 47.47 41.77 48.57 

600 

Distance correlation 41.27 47.85 43.04 50.25 

Pearson correlation 42.53 48.35 43.42 50.25 

𝑅2𝑎𝑑𝑗  42.53 48.35 43.42 50.25 

600 Total 42.11 48.19 43.29 50.25 

800 

Distance correlation 45.44 51.65 44.56 52.03 

Pearson correlation 45.70 51.52 44.56 52.53 

𝑅2𝑎𝑑𝑗  45.70 51.52 44.56 52.53 

800 Total 45.61 51.56 44.56 52.36 

1000 
Distance correlation 43.92 49.75 45.32 52.41 

Pearson correlation 45.70 51.27 45.70 53.16 
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𝑅2𝑎𝑑𝑗  45.70 51.27 45.70 53.16 

1000 Total 45.11 50.76 45.57 52.91 

1500 

Distance correlation 41.65 46.84 42.78 50.51 

Pearson correlation 42.15 47.85 42.28 49.37 

𝑅2𝑎𝑑𝑗  42.15 47.85 42.28 49.37 

1500 Total 41.98 47.51 42.45 49.75 

Optimum 

number of 

bins rule 

10 

Distance correlation 33.33 41.77 37.97 41.77 

Pearson correlation 40.51 33.76 42.62 37.55 

𝑅2𝑎𝑑𝑗  37.13 33.33 39.24 31.22 

10 Total 36.68 36.99 36.29 39.94 

20 

Distance correlation 52.74 63.71 56.54 68.78 

Pearson correlation 57.38 61.60 58.65 67.51 

𝑅2𝑎𝑑𝑗  57.38 60.34 58.65 62.45 

20 Total 53.00 55.84 61.88 57.95 

50 

Distance correlation 56.96 64.14 65.40 70.46 

Pearson correlation 62.45 68.78 69.20 74.68 

𝑅2𝑎𝑑𝑗  62.45 64.98 69.20 74.68 

50 Total 55.95 60.62 65.96 67.93 

100 

Distance correlation 56.12 60.34 59.49 64.56 

Pearson correlation 63.29 69.62 63.29 70.04 

𝑅2𝑎𝑑𝑗  63.29 67.09 63.29 70.04 

100 Total 58.70 60.90 65.68 62.03 

200 

Distance correlation 48.10 54.01 56.96 62.03 

Pearson correlation 65.40 73.00 64.56 71.73 

𝑅2𝑎𝑑𝑗  65.40 73.00 64.56 71.73 

200 Total 56.83 59.63 66.67 62.03 

400 

Distance correlation 43.46 48.52 59.07 64.14 

Pearson correlation 62.03 68.78 65.40 70.89 

𝑅2𝑎𝑑𝑗  62.03 68.78 65.40 70.89 

400 Total 51.03 55.84 62.03 63.29 

600 

Distance correlation 45.99 53.59 56.12 62.45 

Pearson correlation 57.38 65.40 63.29 69.20 

𝑅2𝑎𝑑𝑗  57.38 65.40 63.29 69.20 

600 Total 52.31 53.59 61.46 60.90 

800 

Distance correlation 51.48 57.38 58.65 63.29 

Pearson correlation 54.85 61.18 60.34 65.40 

𝑅2𝑎𝑑𝑗  54.85 61.18 60.34 65.40 

800 Total 51.72 53.73 59.92 59.77 

1000 
Distance correlation 50.21 54.01 59.07 61.60 

Pearson correlation 48.95 55.27 58.65 61.60 
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𝑅2𝑎𝑑𝑗  48.95 55.27 58.65 61.60 

1000 Total 49.75 49.37 54.85 58.79 

1500 

Distance correlation 51.90 56.54 57.81 59.92 

Pearson correlation 51.48 56.12 54.85 58.23 

𝑅2𝑎𝑑𝑗  51.48 56.12 54.85 58.23 

1500 Total 51.52 51.62 56.26 55.84 

Discrete 

empirical 

distribution 

10 

Distance correlation 16.33 20.89 20.38 22.91 

Pearson correlation 16.08 9.11 20.89 16.71 

𝑅2𝑎𝑑𝑗  13.29 8.99 17.85 10.38 

10 Total 15.23 13.00 19.70 16.67 

20 

Distance correlation 37.85 41.52 40.38 42.91 

Pearson correlation 39.24 33.29 41.01 38.99 

𝑅2𝑎𝑑𝑗  34.30 32.03 41.01 33.92 

20 Total 37.13 35.61 40.80 38.61 

50 

Distance correlation 50.00 53.42 54.81 58.35 

Pearson correlation 50.76 53.80 56.08 59.62 

𝑅2𝑎𝑑𝑗  50.76 50.00 56.08 59.62 

50 Total 50.51 52.41 55.65 59.20 

100 

Distance correlation 54.43 58.10 62.78 64.81 

Pearson correlation 60.76 65.32 64.05 67.09 

𝑅2𝑎𝑑𝑗  60.76 62.78 64.05 67.09 

100 Total 58.65 62.07 63.63 66.33 

200 

Distance correlation 50.00 54.81 60.76 63.92 

Pearson correlation 58.73 63.16 64.18 67.47 

𝑅2𝑎𝑑𝑗  58.73 63.16 64.18 67.47 

200 Total 55.82 60.38 63.04 66.29 

400 

Distance correlation 46.96 52.53 56.46 59.37 

Pearson correlation 54.56 60.00 62.03 65.57 

𝑅2𝑎𝑑𝑗  54.56 60.00 62.03 65.57 

400 Total 52.03 57.51 60.17 63.50 

600 

Distance correlation 43.80 51.01 57.72 61.77 

Pearson correlation 51.90 59.62 58.35 62.91 

𝑅2𝑎𝑑𝑗  51.90 59.62 58.35 62.91 

600 Total 49.20 56.75 58.14 62.53 

800 

Distance correlation 44.81 54.30 57.97 64.30 

Pearson correlation 53.67 64.56 58.23 64.56 

𝑅2𝑎𝑑𝑗  53.67 64.56 58.23 64.56 

800 Total 50.72 61.14 58.14 64.47 

1000 
Distance correlation 48.35 54.18 59.37 63.54 

Pearson correlation 56.46 64.18 61.27 64.56 
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𝑅2𝑎𝑑𝑗  56.46 64.18 61.27 64.56 

1000 Total 53.76 60.84 60.63 64.22 

1500 

Distance correlation 50.25 56.33 58.99 62.41 

Pearson correlation 54.94 62.78 60.38 63.92 

𝑅2𝑎𝑑𝑗  54.94 62.78 60.38 63.92 

1500 Total 53.38 60.63 59.92 63.42 

 

Table 25 shows the results summarized by calculation method, measure of 

dependence, and impact on the output, where the green color represents the highest value 

per impact on the output within calculation method and red represents the lowest values 

per impact on the output within calculation method. As shown in Table 25, overall, 

regardless of the method used to calculate the MI and the measure of dependence to which 

the MI is being compared to, the MI appears to have worst performance in detecting the 

input that has the greatest impact on the NIS and best performance in detecting the input 

that has the least impact on the TIS. In general, the simulation modeler should be more 

interested in knowing the input that has the greatest impact on the output than the input 

that has the least impact on the output, as this will allow the simulation modeler to better 

plan the limited resources for data collection and for running the experiments in order to 

reduce uncertainty in the simulation model. On the other hand, knowing the input that has 

the least impact on the output allows the simulation modeler to eliminate inputs that are 

not as valuable in case of limited resources.  

Among the outputs considered, MI showed better performance in detecting the 

input with either the least or the greatest impact on the TIS than on the NIS. Considering 
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only fixed number of bins, this difference is more evident when using discrete empirical 

distribution than probability density function. There is a possible explanation for the 

difference. NIS is a simulation output that is an average over time and TIS is an average 

over a number of entities that represent the customers in the system. When using the 

histogram-based method, whether using the discrete empirical distribution or the 

probability density function, information is lost by “binning”. Therefore, the discontinuity 

of the histogram may explain the better performance for the output that has a discrete 

behavior. The difference could also have different explanations: more replications are 

needed in order to improve the performance for the NIS or the inputs in the system being 

studied have a stronger relationship with TIS than with NIS, which makes it easier to 

detect their relationship in either the low or high level. 

 

Table 25. Results from the comparison of the measures of dependence versus the MI 

summarized by calculation method, measure of dependence, and impact on the output 

considering non-normalized version only.  

Impact on the output Calculation method 

Distance 

correlation 

[%] 

Pearson 

correlation 

[%] 

𝑹𝟐𝒂𝒅𝒋 

[%] 

Total 

[%] 

Greatest impact on NIS 

Discrete empirical distribution 44.28 49.71 48.94 47.64 

Probability density function 37.82 37.48 36.87 37.39 

Optimum number of bins rule 49.03 56.37 56.03 53.81 

Greatest impact on NIS Total 41.94 42.09 45.26 44.62 

Least impact on NIS 

Discrete empirical distribution 49.71 53.58 52.81 52.03 

Probability density function 42.75 40.42 39.70 40.95 

Optimum number of bins rule 56.71 60.08 59.75 58.85 

Least impact on NIS Total 47.02 46.84 48.10 47.78 

Greatest impact on TIS 

Discrete empirical distribution 52.96 54.65 54.34 53.98 

Probability density function 37.75 37.95 37.63 37.78 

Optimum number of bins rule 55.40 61.35 60.55 59.10 
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Greatest impact on TIS Total 47.43 47.42 48.87 48.12 

Least impact on TIS 

Discrete empirical distribution 56.43 57.14 56.00 56.52 

Probability density function 43.96 43.16 42.03 43.05 

Optimum number of bins rule 61.90 64.68 63.54 63.38 

Least impact on TIS Total 52.13 51.72 52.05 50.91 

 

Finally, 𝜒2 test at an α-level of 0.05 was performed to investigate whether the 

performance of the MI was statistically significantly different based on the method used 

to calculate the MI, the dependence measure to which the MI was being compared to, and 

the output that was being investigated, as shown in Table 26, Table 27, and Table 28, 

respectively.  

Table 26 shows the 𝜒2 test results whether the performance of the MI is statistically 

significantly different based on the calculation method. For this test, only the non-

normalized version of the MI is considered. The null hypothesis is that the MI performance 

based on the two calculation methods are not different and the alternative hypothesis is 

that the MI performance based on the two calculation methods are different. When the MI 

is calculated using fixed bins with discrete empirical distribution or optimum number of 

bins rule, the measure shows statistically significantly better performance than when it is 

calculated using fixed bins with probability density function, regardless of the impact on 

the output. The optimum number of bins rule is the method that led to the overall best 

performance of the MI measure regardless of the impact on the output and the measure of 

dependence to which the MI was being compared to. This unexpected better performance 

of the optimum number of bins rule method, different than what was observed for the 
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entropy measures, can be possibly explained due to the fact that the MI performance is 

better for lower values of bins. In this work the optimum number of bins rule method 

contains only lower number of bins, consequently its results are better.  

 

Table 26. 𝝌𝟐 test results whether the performance of the MI is statistically significantly 

different based on the calculation method. 

Measure of dependence Impact on output Proportion difference P-value 

Distance correlation 

Greatest impact on NIS 0.0646 (DED1-PDF2) <0.0001 

Least impact on NIS 0.0696 (DED-PDF) <0.0001 

Greatest impact on TIS 0.1522 (DED-PDF) <0.0001 

Least impact on TIS 0.1247 (DED-PDF) <0.0001 

Pearson correlation 

Greatest impact on NIS 0.1223 (DED-PDF) <0.0001 

Least impact on NIS 0.1316 (DED-PDF) <0.0001 

Greatest impact on TIS 0.1670 (DED-PDF) <0.0001 

Least impact on TIS 0.1397 (DED-PDF) <0.0001 

𝑅2𝑎𝑑𝑗 

Greatest impact on NIS 0.1206 (DED-PDF) <0.0001 

Least impact on NIS 0.1311 (DED-PDF) <0.0001 

Greatest impact on TIS 0.1671 (DED-PDF) <0.0001 

Least impact on TIS 0.1397 (DED-PDF) <0.0001 

Distance correlation 

Greatest impact on NIS 0.1121 (OPT3-PDF) <0.0001 

Least impact on NIS 0.1265 (OPT-PDF) <0.0001 

Greatest impact on TIS 0.1896 (OPT-PDF) <0.0001 

Least impact on TIS 0.1794 (OPT-PDF) <0.0001 

Pearson correlation 

Greatest impact on NIS 0.1889 (OPT-PDF) <0.0001 

Least impact on NIS 0.2093 (OPT-PDF) <0.0001 

Greatest impact on TIS 0.2214 (OPT-PDF) <0.0001 

Least impact on TIS 0.2152 (OPT-PDF) <0.0001 

𝑅2𝑎𝑑𝑗 

Greatest impact on NIS 0.1916 (OPT-PDF) <0.0001 

Least impact on NIS 0.2085 (OPT-PDF) <0.0001 

Greatest impact on TIS 0.2211 (OPT-PDF) <0.0001 

Least impact on TIS 0.2152 (OPT-PDF) <0.0001 

Distance correlation 

Greatest impact on NIS -0.0475 (DED-OPT) <0.0001 

Least impact on NIS -0.0569 (DED-OPT) <0.0001 

Greatest impact on TIS -0.0375 (DED-OPT) 0.0013 

Least impact on TIS -0.0547 (DED-OPT) <0.0001 



142 

 

 

Pearson correlation 

Greatest impact on NIS -0.0666 (DED-OPT) <0.0001 

Least impact on NIS -0.0777 (DED-OPT) <0.0001 

Greatest impact on TIS -0.0544 (DED-OPT) <0.0001 

Least impact on TIS -0.0754 (DED-OPT) <0.0001 

𝑅2𝑎𝑑𝑗 

Greatest impact on NIS -0.0710 (DED-OPT) <0.0001 

Least impact on NIS -0.0774 (DED-OPT) <0.0001 

Greatest impact on TIS -0.0541 (DED-OPT) <0.0001 

Least impact on TIS -0.0754 (DED-OPT) <0.0001 

1DED is the fixed bins with discrete empirical distribution method 

2PDF is the fixed bins with probability density function method 

3OPT is the optimum number of bins rule with probability density function method 

 

Table 27 shows the 𝜒2 test results whether the performance of the MI is statistically 

significantly different based on the measure of dependence. The null hypothesis is that 

there is no difference in the MI performance among the two measures of dependence and 

the alternative hypothesis is that the two measures of dependence lead to differences in 

MI performance. Regardless of the calculation method, there is no evidence of difference 

in the results of the MI performance when MI is being compared to Pearson correlation 

versus when MI is compared to 𝑅2𝑎𝑑𝑗. When optimum number of bins rule is the method 

used to calculate the MI, the 𝜒2 test shows that the MI is statistically significantly better 

when compared to Pearson correlation and 𝑅2𝑎𝑑𝑗 than when compared to distance 

correlation. When fixed number of bins with probability density function is the method 

used to calculate the MI, the 𝜒2 test only shows statistically significantly difference in the 

MI performance to detect the input with the least impact on the NIS or the TIS. In these 

cases, MI showed better performance when compared to distance correlation than when 
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compared to Pearson correlation or 𝑅2𝑎𝑑𝑗. When fixed number of bins with discrete 

empirical distribution is the method used to calculate the MI, the 𝜒2 test results are slightly 

different based on the normalization used. If no normalization is considered the 𝜒2 test 

shows statistically significantly difference in the MI performance to detect the input with 

the least or the greatest impact on the NIS. When normalization is considered (except 

𝑁𝑀𝐼𝑡ℎ𝑒𝑜𝑟), the statistically significantly difference in performance only occurs for 

detecting the input with the greatest impact on the NIS. In these cases, MI showed better 

performance when compared to Pearson correlation or 𝑅2𝑎𝑑𝑗 than when compared to 

distance correlation, which is the opposite to what was observed when using probability 

density function. A possible explanation for the difference in the 𝜒2 test results when using 

the probability density function and the discrete empirical distribution is that when using 

probability density function the possible non-linear relation of the inputs and outputs has 

been better captured than when using discrete empirical distribution and, hence, this first 

calculation method has a better performance when compared to distance correlation than 

when compared to Pearson or 𝑅2𝑎𝑑𝑗.  

 

Table 27. 𝝌𝟐 test results whether the performance of MI is statistically significantly 

different based on the measure of dependence. 
Method of 

calculation 

Normalization 

method 
Impact on output Proportion difference P-value 

Probability 

density 

function 

Non-

normalization 

Greatest impact on NIS 
0.0034 (distance correlation - 

Pearson1) 
0.6575 

Least impact on NIS 
0.0233 (distance correlation - 

Pearson) 
0.0030 
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Greatest impact on TIS 
-0.0020 (distance correlation - 

Pearson) 
0.7930 

Least impact on TIS 
0.0080 (distance correlation - 

Pearson) 
0.3121 

Greatest impact on NIS 
0.0095 (distance correlation - 

𝑅2𝑎𝑑𝑗) 
0.2174 

Least impact on NIS 
0.0305 (distance correlation - 

𝑅2𝑎𝑑𝑗) 
<0.0001 

Greatest impact on TIS 
0.0011 (distance correlation - 

𝑅2𝑎𝑑𝑗) 
0.8825 

Least impact on TIS 
0.0194 (distance correlation - 

𝑅2𝑎𝑑𝑗) 
0.0139 

Greatest impact on NIS 0.0061 (Pearson - 𝑅2𝑎𝑑𝑗) 0.4294 

Least impact on NIS 0.0072 (Pearson - 𝑅2𝑎𝑑𝑗) 0.3547 

Greatest impact on TIS 0.0032 (Pearson - 𝑅2𝑎𝑑𝑗) 0.6817 

Least impact on TIS 0.0114 (Pearson - 𝑅2𝑎𝑑𝑗) 0.1476 

Optimum 

number of 

bins rule 

Non-

normalization 

Greatest impact on NIS 
-0.0734 (distance correlation - 

Pearson) 
<0.0001 

Least impact on NIS 
-0.0595 (distance correlation - 

Pearson) 
<0.0001 

Greatest impact on TIS 
-0.0338 (distance correlation - 

Pearson) 
0.0184 

Least impact on TIS 
-0.0278 (distance correlation - 

Pearson) 
0.0467 

Greatest impact on NIS 
-0.0700 (distance correlation - 

𝑅2𝑎𝑑𝑗) 
<0.0001 

Least impact on NIS 
-0.0515 (distance correlation - 

𝑅2𝑎𝑑𝑗) 
0.0003 

Greatest impact on TIS 
-0.0304 (distance correlation - 

𝑅2𝑎𝑑𝑗) 
0.0340 

Least impact on TIS 
-0.0165 (distance correlation - 

𝑅2𝑎𝑑𝑗) 
0.2416 

Greatest impact on NIS 0.0034 (Pearson - 𝑅2𝑎𝑑𝑗) 0.8149 

Least impact on NIS 0.0080 (Pearson - 𝑅2𝑎𝑑𝑗) 0.5718 

Greatest impact on TIS 0.0034 (Pearson - 𝑅2𝑎𝑑𝑗) 0.8127 

Least impact on TIS 0.0114 (Pearson - 𝑅2𝑎𝑑𝑗) 0.4138 

Discrete 

empirical 

distribution 

Non-

normalization 

Greatest impact on NIS 
-0.0543 (distance correlation - 

Pearson) 
<0.0001 

Least impact on NIS 
-0.0387 (distance correlation - 

Pearson) 
<0.0001 

Greatest impact on TIS 
-0.0168 (distance correlation - 

Pearson) 
0.0338 

Least impact on TIS 
-0.0071 (distance correlation - 

Pearson) 
0.3685 

Arith Greatest impact on NIS 
-0.0322 (distance correlation - 

Pearson) 
<0.0001 
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Least impact on NIS 
-0.0149 (distance correlation - 

Pearson) 
0.0604 

Greatest impact on TIS 
-0.0139 (distance correlation - 

Pearson) 
0.0794 

Least impact on TIS 
-0.0058 (distance correlation - 

Pearson) 
0.4605 

Joint 

Greatest impact on NIS 
-0.0323 (distance correlation - 

Pearson) 
<0.0001 

Least impact on NIS 
-0.0149 (distance correlation - 

Pearson) 
0.0604 

Greatest impact on TIS 
-0.0141 (distance correlation - 

Pearson) 
0.0767 

Least impact on TIS 
-0.0058 (distance correlation - 

Pearson) 
0.4605 

Geom 

Greatest impact on NIS 
-0.0322 (distance correlation - 

Pearson) 
<0.0001 

Least impact on NIS 
-0.0149 (distance correlation - 

Pearson) 
0.0604 

Greatest impact on TIS 
-0.0135 (distance correlation - 

Pearson) 
0.0880 

Least impact on TIS 
-0.0053 (distance correlation - 

Pearson) 
0.5004 

Theor 

Greatest impact on NIS 
-0.0544 (distance correlation - 

Pearson) 
<0.0001 

Least impact on NIS 
-0.0389 (distance correlation - 

Pearson) 
<0.0001 

Greatest impact on TIS 
-0.0170 (distance correlation - 

Pearson) 
0.0325 

Least impact on TIS 
-0.0072 (distance correlation - 

Pearson) 
0.3600 

Non-

normalization 

Greatest impact on NIS 
-0.0466 (distance correlation - 

𝑅2𝑎𝑑𝑗) 
<0.0001 

Least impact on NIS 
-0.0310 (distance correlation - 

𝑅2𝑎𝑑𝑗) 
<0.0001 

Greatest impact on TIS 
-0.0138 (distance correlation - 

𝑅2𝑎𝑑𝑗) 
0.0820 

Least impact on TIS 
0.0043 (distance correlation - 

𝑅2𝑎𝑑𝑗) 
0.5856 

Arith 

Greatest impact on NIS 
-0.0249 (distance correlation - 

𝑅2𝑎𝑑𝑗) 
0.0017 

Least impact on NIS 
-0.0072 (distance correlation - 

𝑅2𝑎𝑑𝑗) 
0.3644 

Greatest impact on TIS 
-0.0110 (distance correlation - 

𝑅2𝑎𝑑𝑗) 
0.1654 

Least impact on TIS 
0.0056 (distance correlation - 

𝑅2𝑎𝑑𝑗) 
0.4808 

Joint Greatest impact on NIS 
-0.0249 (distance correlation - 

𝑅2𝑎𝑑𝑗) 
0.0017 
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Least impact on NIS 
-0.0072 (distance correlation - 

𝑅2𝑎𝑑𝑗) 
0.3644 

Greatest impact on TIS 
-0.0111 (distance correlation - 

𝑅2𝑎𝑑𝑗) 
0.1606 

Least impact on TIS 
0.0056 (distance correlation - 

𝑅2𝑎𝑑𝑗) 
0.4808 

Geom 

Greatest impact on NIS 
-0.0249 (distance correlation - 

𝑅2𝑎𝑑𝑗) 
0.0017 

Least impact on NIS 
-0.0072 (distance correlation - 

𝑅2𝑎𝑑𝑗) 
0.3644 

Greatest impact on TIS 
-0.0106 (distance correlation - 

𝑅2𝑎𝑑𝑗) 
0.1805 

Least impact on TIS 
0.0061 (distance correlation - 

𝑅2𝑎𝑑𝑗) 
0.4419 

Theor 

Greatest impact on NIS 
-0.0467 (distance correlation - 

𝑅2𝑎𝑑𝑗) 
<0.0001 

Least impact on NIS 
-0.0311 (distance correlation - 

𝑅2𝑎𝑑𝑗) 
<0.0001 

Greatest impact on TIS 
-0.0139 (distance correlation - 

𝑅2𝑎𝑑𝑗) 
0.0793 

Least impact on TIS 
0.0042 (distance correlation - 

𝑅2𝑎𝑑𝑗) 
0.5967 

Non-

normalization 

Greatest impact on NIS 0.0077 (Pearson - 𝑅2𝑎𝑑𝑗) 0.3317 

Least impact on NIS 0.0077 (Pearson - 𝑅2𝑎𝑑𝑗) 0.3308 

Greatest impact on TIS 0.0030 (Pearson - 𝑅2𝑎𝑑𝑗) 0.7014 

Least impact on TIS 0.0114 (Pearson - 𝑅2𝑎𝑑𝑗) 0.1486 

Arith 

Greatest impact on NIS 0.0072 (Pearson - 𝑅2𝑎𝑑𝑗) 0.3638 

Least impact on NIS 0.0072 (Pearson - 𝑅2𝑎𝑑𝑗) 0.3315 

Greatest impact on TIS 0.0029 (Pearson - 𝑅2𝑎𝑑𝑗) 0.7136 

Least impact on TIS 0.0114 (Pearson - 𝑅2𝑎𝑑𝑗) 0.1490 

Joint 

Greatest impact on NIS 0.0073 (Pearson - 𝑅2𝑎𝑑𝑗) 0.3555 

Least impact on NIS 0.0072 (Pearson - 𝑅2𝑎𝑑𝑗) 0.3315 

Greatest impact on TIS 0.0029 (Pearson - 𝑅2𝑎𝑑𝑗) 0.7135 

Least impact on TIS 0.0114 (Pearson - 𝑅2𝑎𝑑𝑗) 0.1490 

Geom 

Greatest impact on NIS 0.0072 (Pearson - 𝑅2𝑎𝑑𝑗) 0.3638 

Least impact on NIS 0.0072 (Pearson - 𝑅2𝑎𝑑𝑗) 0.3315 

Greatest impact on TIS 0.0029 (Pearson - 𝑅2𝑎𝑑𝑗) 0.7136 

Least impact on TIS 0.0114 (Pearson - 𝑅2𝑎𝑑𝑗) 0.1491 

Theor 

Greatest impact on NIS 0.0072 (Pearson - 𝑅2𝑎𝑑𝑗) 0.3317 

Least impact on NIS 0.0072 (Pearson - 𝑅2𝑎𝑑𝑗) 0.3308 

Greatest impact on TIS 0.0030 (Pearson - 𝑅2𝑎𝑑𝑗) 0.7014 

Least impact on TIS 0.0114 (Pearson - 𝑅2𝑎𝑑𝑗) 0.1486 

1Pearson is the Pearson correlation measure of dependence. 
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Table 28 shows the 𝜒2 test results whether the performance of the MI is statistically 

significantly different based on the output being investigated. The null hypothesis is that 

there is no difference in the MI performance among the outputs being investigated and the 

alternative hypothesis is that the outputs being investigated lead to differences in MI 

performance.  

 As shown in Table 28, with one exception, regardless of the method used to 

calculate the MI, the normalization method, and the impact on the output, there is 

statistically significantly difference in the MI performance based on the output being 

investigated. The exception occurs when the MI is calculated using fixed number of bins 

with probability density function to detect the input with the greatest impact on the output. 

The MI has statistically significantly better performance in detecting the impact on the 

TIS than on the NIS. This has also been previously observed in the results shown in  Table 

25. 

 

Table 28. 𝝌𝟐 test results whether the performance of MI is statistically significantly 

different based on the output being investigated. 

Method of calculation 
Normalization 

method 

Impact on 

output 

Proportion 

difference 
P-value 

Probability density 

function 

Non-

normalization 

Greatest impact -0.0038 (NIS-TIS) 0.3881 

Least impact -0.0210 (NIS-TIS) <0.0001 

Optimum number of bins 

rule 

Non-

normalization 

Greatest impact -0.0504 (NIS-TIS) <0.0001 

Least impact -0.0428 (NIS-TIS) <0.0001 
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Discrete empirical 

distribution 

Non-

normalization 

Greatest impact -0.0634 (NIS-TIS) <0.0001 

Least impact -0.0449 (NIS-TIS) <0.0001 

Arith 
Greatest impact -0.0702 (NIS-TIS) <0.0001 

Least impact -0.0495 (NIS-TIS) <0.0001 

Joint 
Greatest impact -0.0703 (NIS-TIS) <0.0001 

Least impact -0.0495 (NIS-TIS) <0.0001 

Geom 
Greatest impact -0.0694 (NIS-TIS) <0.0001 

Least impact -0.0491 (NIS-TIS) <0.0001 

Theor 
Greatest impact -0.0637 (NIS-TIS) <0.0001 

Least impact -0.0452 (NIS-TIS) <0.0001 

 

Figure 29 shows the results of MI performance compared to the different measures 

of dependence, per different number of bins, per different number of replications, per 

method of calculation, and per output. Figure 29 shows some of the observations made in 

this section in a more visual way for easier comparison. For instance, with respect to the 

comparison between the MI performance among the discrete empirical distribution and 

the probability density function or among the different number of replications.  
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Figure 29. Results for MI vs. measure of dependence for detecting the input with the 

greatest impact on the output, per number of bins, number of replications, method of 

calculation, measure of dependence, and output. 

 

2.5. Concluding remarks 

 Although defining uncertainty quantification is simple, developing a systematic 

method is difficult and hard to validate. In this work, through a total of 1,130 experiments, 

Shannon’s entropy and MI calculated using the histogram-based method were investigated 
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as potential measures of uncertainty quantification in simulation model. The first 

contribution of this section of the dissertation was to discuss the challenges found while 

applying entropy measures for continuous variables and to identify a few issues of 

interpretability faced when using the method proposed by Jaynes (1957) with 𝑚(𝑥) =

𝑠𝑢𝑝[𝑓(𝑥)]. Based on the issues, it was showed that when using fixed number of bins, 

changing the data normalization does not change the placement of the data into bins and 

an alternative to calculate the entropy and the MI measures for continuous variables was 

proposed. This alternative involved normalizing the data in a way not only to avoid the 

differences of spread in the inputs and outputs, but also to guarantee that 0 ≤ 𝑓𝑖(𝑥) <

1, ∀𝑖 and, hence, to avoid the issues identified when 𝑚(𝑥) = 𝑠𝑢𝑝[𝑓(𝑥)]. However, it is 

important to note that with this alternative, there is still the issue that the entropy is not 

maximum when the 𝑓𝑖(𝑥) is equiprobable, as ∑ 𝑓𝑖(𝑥)𝑖  is not necessarily equal to 1 as it is 

in when the inputs and outputs are discrete. 

In section 2.4.2, the impact of different binwidths and different normalization 

methods on the entropy and MI measures was discussed. An important contribution of this 

section is that it was showed that when entropy and MI are calculated using histogram-

based method with probability density function, the measures tend to decrease with the 

increase in the number of bins; while when the measures are calculated using histogram-

based method with discrete empirical distribution, they tend to increase with the increase 

in the number of bins. This is important because while the latter is mentioned in the 

literature, the first was not found to be mentioned in the information theory literature even 
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after a comprehensive literature review. Due to the impact of the number of bins on the 

entropy measures, the literature recommends normalizing the entropy and mutual 

information. When the entropy and MI measures calculated using discrete empirical 

distribution are normalized by the theoretical maximum, the measures behave in a similar 

way to the measures calculated with probability density function. Nevertheless, if the MI 

is normalized by the real maximum, the measure still increases with the increase in the 

number of bins. For this reason and because the 𝑁𝑀𝐼𝑡ℎ𝑒𝑜𝑟 measures have similar results 

of performance to the non-normalized MI version when compared to other measures of 

dependence, the normalization using the theoretical maximum (𝑁𝑀𝐼𝑡ℎ𝑒𝑜𝑟) is the final 

recommendation on the basis of this work. Another recommendation is that normalization 

should be used only for the entropy measures calculated using the discrete empirical 

distribution, as the entropy measures calculated using the probability density function do 

not increase with the increase in the number of bins. Normalization when using probability 

density function is recommended for comparison of MI measures calculated using 

different number of bins rather than to eliminate the effect of the number of bins. 

For the case of the entropy and MI measures calculated using probability density 

function or the theoretical normalized version of the discrete empirical distribution, the 

number of bins could be interpreted as the level of accuracy one wants to obtain. This 

interpretation would explain why entropy and MI decrease with the increase of the number 

of bins: when someone cares about a greater level of accuracy, the same number of 

replications should be able to provide less information or less reduction in uncertainty. 
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Another important point is that the first few replications should bring more information 

about the system than any subsequent ones. This was observed when the entropy measures 

were calculated either using the probability density function of the theoretical normalizaed 

version of the discrete empirical distribution.  

From section 2.4.2, it was also possible to observe that when the entropy and MI 

measures were calculated using either the probability density function or the discrete 

empirical distribution after normalization, low number of bins (i.e. number of bins 

between 2 and 10) appeared to be inadequate as they led to results not consistent to results 

from higher number of bins. The results of the entropy and MI measures calculated using 

the optimum number of bins also leads to this conclusion, because most of these results 

were not consistent and they were calculated with a low number of bins. Therefore, a 

recommendation would be to use a number of bins of at least 25 to calculate the entropy 

and MI measures.  

In section 2.4.3, the impact of different traffic intensities, different seeds, different 

parameter values, and different systems on the entropy and MI measures was investigated. 

The main observations from this section were that regardless of the method chosen and 

the number of bins used: (i) the entropy measure was able to correctly identify that 𝑋1 has 

the same information/uncertainty among the different traffic intensity experiments; and 

(ii) the entropy measures indicate differences in information/uncertainty based on different 

seeds, different traffic intensities, and different parameter values. Although a consistency 

was not observed on these latter differences, it is important to highlight that the focus was 
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not to investigate the relationship among the entropy measures and the different seeds, 

traffic intensities, and parameter values. An interaction among these factors and the model 

type (𝑀/𝑀/1 and 𝑀/𝐺/1), for instance, could exist and it was not investigated in this 

work. Another important observation is that when the normalized entropy and 𝑁𝑀𝐼𝑡ℎ𝑒𝑜𝑟 

were calculated using discrete empirical distribution, the measures were able to 

appropriately point the null uncertainty in 𝑌1̂ in the CONWIP system and in 𝑋3 when the 

latter is deterministic, as well as their zero impact in the inputs and outputs, respectively. 

When the measures were calculated using probability density function, the null uncertainty 

and the zero impact were only pointed for larger number of bins (when number of bins 

was greater than or equal to 1,000). Although for lower number of bins, the entropy and 

MI measures were not able to capture zero uncertainty, they were still able to capture some 

deterministic behavior, as they were constant regardless of the number of replications 

used. Therefore, through the results of this section, one can see the potential of the entropy 

and MI as measures of uncertainty quantification in simulation models, as the measures 

were able to capture different and important characteristics in the simulation model. 

However, it is important to highlight that when the entropy and MI measures was 

calculated using the probability density function, they were only able to fully capture the 

deterministic behavior for number of bins greater than or equal to 1,000, which could 

either indicate an issue with the measure or just the fact that the number of bins must be 

well chosen for this method to work.  
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Another important conclusion from section 2.4.3 is that entropy and MI may be an 

alternative method to investigate the quality of a group of seeds in simulation models. As 

the results indicated, while the entropy and MI of the original group of seeds and group 

“seed 2” were similar among themselves, they were slightly different from group “seed 

3”, which could indicate an issue with this latter group of seeds. 

In section 2.4.4, the results of the entropy measures were compared to SAE, SSE, 

MAE, and MSE and the results of the MI measures were compared to distance correlation, 

Pearson correlation, and 𝑅2𝑎𝑑𝑗 to identify whether the measures agreed with other 

methods of the literature.  

With respect to the entropy measures, the following observation are worth 

highlighting: (i) when using fixed number of bins with probability density function, 

overall, the agreement of the entropy measures with SAE, SSE, MAE, and MSE increased 

with the increase in the number of bins and 1,000 was the number of bins that led to the 

best results; and, (ii) when using fixed number of bins with discrete empirical distribution, 

the percentage of the entropy measures that agreed with SAE and SSE increased with the 

increase in the number of bins, but was constant with MAE and MSE, and, in general, the 

number of bins between 1,000 and 2,000 led to the best results. Because comparing the 

measures with SAE and SSE may have an issue of bias, the comparison to MAE and MSE 

is preferred.  

As the 𝜒2 test showed, for the number of bins that led to the best performance, the 

probability density function method was statistically significantly better than the discrete 
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empirical distribution method. Other important conclusions from the entropy measures are 

that the optimum number of bins rules did not lead to good results compared to the other 

error measures (e.g., compared to MAE, the best results from this method ranged from 

2.6% to 50%, while for the fixed number of bins with probability density function they 

ranged from 57.9% to 81.1%). Another important observation is that the normalized 

version of the entropy measure calculated using the histogram-based method with fixed 

number of bins and discrete empirical distribution led to results identical to the non-

normalized version.  

With respect to the MI measures, a relevant conclusion made from the logistic 

regression model was that, overall, number of replications and interaction between number 

of replications and number of bins were the most important factors in the performance of 

the MI when compared to the other measures of dependence, regardless of the method 

used to calculate the MI.  

 Based on the comparison of the MI to the other measures of dependences, a few 

important observations could be made: (i) when using probability density function, low or 

high-range number of bins had the worst performance and mid-range values had the best 

performance, while using discrete empirical distribution, 2 had the worst performance and 

5 had the best performance; (ii) when using optimum number of bins rules, Sturges’ led 

to the worst performance, as expected, and Scott’s led to the best performance; and, (iii) 

when using probability density function, 800 and 1,000 were the number of replications 

that led to the best performance, while using discrete empirical distribution, 100 and 200 
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replications led to the best performance, and for optimum number of bins it was between 

50 and 200. Regarding the first observation about the number of bins, this result is different 

from the entropy measure, where in general 1,000 was the number of bins that led to the 

best results. However, it is important to note that there is an interaction between number 

of bins and number of replications, which could explain the differences. Other 

explanations for the differences are: (1) the fact that entropy and MI measures measure 

different concepts (i.e., uncertainty of the inputs and outputs vs. the impact of the input on 

the output and vice-versa), and, (2) the fact that the entropy and MI measures were 

compared to other measures of uncertainty and dependence that may not have been the 

most adequate comparison. For instance, distance correlation was the only measure 

capable of measuring non-linear dependence and according to the literature, MI is also 

capable of measuring non-linear dependence. Therefore, comparing MI with other 

measures that can only measure linear dependence may not be the most appropriate 

alternative.  

Regarding the differences in the number of replications, they can be possibly 

explained by the fact that the optimum number of bins comprises smaller number of bins 

experiments. In this case, if one thinks about number of bins as level of accuracy, one 

should be able to obtain the optimum amount of information about the system more 

quickly. Another possible explanation is that when using the discrete empirical 

distribution, one is approximating the continuous data with a discrete method. Therefore, 

one should also reach the maxima more quickly than when using the probability density 
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function, as it is just an approximation. It is also important highlighting that there are a 

few differences in terms of the number of replications that leads to the best performance 

among the different outputs. This is important to note because if one is using the MI 

measures as an alternate method to determine the number of replications to run to reduce 

the uncertainty on the simulation output, the optimum number of replications to be run 

could be different based on the output of interest.  

Different than what was observed for the entropy measures, the MI showed better 

performance when calculated using optimum number of bins rule, followed by the discrete 

empirical distribution and the probability density function with fixed number of bins, 

respectively. This result is again contrary to what was observed in the entropy measures, 

which is another indication that either the comparison of the MI with the measures of the 

dependence may not be the best alternative or the comparison of the entropy with the 

measures of error may not be adequate. 

Another valuable insight from section 2.4.4 is that, as expected, the results of the 

MI performance when MI was compared to Pearson were not statistically significantly 

different than when MI was compared to 𝑅2𝑎𝑑𝑗. This is expected as 𝑅2𝑎𝑑𝑗 is a function of 

𝑅2 that is equal to the square of the Pearson correlation between the observed 𝑦 and the 

predicted values of 𝑦. Overall, when the MI measures were calculated using the 

probability density function, they showed better performance when compared to the 

distance correlation measure. When the MI measures were calculated using optimum 

number of bins rule or discrete empirical distribution with normalization, the MI 
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performance was in general statistically significantly better when compared to Pearson 

correlation and 𝑅2𝑎𝑑𝑗 than when compared to distance correlation. This may indicate that 

when the MI measures are calculated using the discrete empirical distribution or low 

number of bins, the non-linear relation of the inputs and outputs is not being captured.  

As for the main limitations of this work, there are: (i) histogram-based method was 

the only method used to calculate the entropy and MI measures; and (ii) although the 

method was compared with other well-known measures of the scientific community, the 

method was not validated theoretically. Nevertheless, as showed in this work, despite the 

challenges encoutered in the application, entropy and mutual information measures 

present good and promising results in measuring uncertainty in simulation model.    

A recommendation for future research is to investigate how other methods, such 

as the kernel-based method and the k-nearest neighbors method would affect the results.  

A question one could ask is: “Given the challenges discussed and the lack of 

theoretical validity, why would someone choose to use the proposed entropy method for 

uncertainty quantification instead of simply using the well-known confidence intervals 

based on the standard error of the estimator?” First, confidence intervals do not quantify 

uncertainty. That is, confidence intervals do not provide information about uncertainty in 

a way that you can compare them, if you want, for instance, to identify which output have 

the greatest uncertainty. Second, through MI, the proposed method shows the impact of 

each input on each output. This can be further explored for determining the parameters for 

which it may be useful to collect more data for instance, or also as an input parameter 
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selection and model reduction method, for selecting the parameters that should be 

eliminated in case the simulation model must be simplified. Finally, for a fixed number of 

bins, the method also gives information about the additional benefit that the additional 

group of replications is providing in the reduction of the output uncertainty. This can be 

useful when computational power is limited and one wants to estimate the benefits/costs 

of running extra replications. Clearly, it is important to further investigate this to check 

whether there will be inflection points or not and whether a linear or quadratic function 

can be estimated. The proposed method is also different from Song and Nelson (2013) and 

Song and Nelson (2015), as their work focus on quantifying the input uncertainty when 

the input model are estimated from limited real-world data and how to appropriately adjust 

the confidence intervals due to this uncertainty. 

Meanwhile, based on the results, the recommendation when using the method is: 

(1) to use the histogram-based method with fixed number of bins and probability density 

function for which a method was proposed in this work to deal with the challenges found 

while applying entropy measures for continuous variables. The method proposed in this 

work is based on data normalization, which not only eliminates some of the challenges of 

working with continuous variables, but also allows for easy and fair comparison among 

the different entropy measures. When using the probability density function to calculate 

the entropy measures, the suggestion is to use number of bins around 1,000 as this was the 

number for which the entropy measures showed the best results and that was able to fully 

capture the deterministic behavior. Nevertheless, based on the MI, the recommendation 
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would be to use a number of bins around 25 or 50. The second suggestion would be to use 

the theoretical normalized entropy and MI measures calculated using the histogram-based 

method with fixed number of bins and discrete empirical distribution. The normalization 

of the entropy and MI measures is recommended to eliminate the effect of the bins on the 

measures. These measures present the best results in capturing the deterministic behavior 

and for number of bins around 200 or 500, they also present entropy performance results 

that are as good as the ones from the probability density function. Moreover, in this case, 

the recommendation of the number of bins based on the entropy and MI performance 

would match. 

As already mentioned, there are still many open questions about this topic and 

more experiments must be performed in different contexts in order to investigate the 

potential of entropy measures as a method of uncertainty quantification in simulation 

models. But as the results indicated, the method appears to be valuable as a method of 

uncertainty quantification and for identifying the inputs with the greatest impacts on the 

outputs. Future research in this area is invaluable and deemed necessary.



 

 

3. AN INVESTIGATION OF INFORMATION THEORY AS A METHOD FOR 

UNCERTAINTY QUANTIFICATION IN SIMULATION MODELS USING KERNEL 

METHOD, K-NEAREST NEIGHBORS, AND FUZZY-HISTOGRAM-BASED 

METHOD WITH STATIONARY UNIVARIATE DISTRIBUTIONS 

 

3.1. Introduction 

In 1948, Claude Shannon in his paper entitled “A Mathematical Theory of 

Communication” introduced the concept of entropy as a measure of information and 

uncertainty (Shannon, 1948). After Shannon’s initial concept of entropy, many other 

information entropy measures have been proposed, such as Renyi’s entropy, Kolmogorov-

Sinai entropy, approximate entropy, sample entropy, and several others. According to 

Kapur (1983), these other mathematical entropies do not measure the same characteristic 

and their definitions have been motivated by diverse considerations. These different 

measures have been developed as an attempt to generalize the axioms proposed by 

Shannon and due to the generalization, Kapur (1983) highlighted that they may violate 

some of the essential properties required (or expected) from a measure of information or 

the underlying uncertainty. 

The research studies on the area of entropy measures led to the development of the 

field of information theory. Since its first proposal, entropy measure has become one of 

the most common methods used to quantify complexity, uncertainty, and the amount of 

information present in real-world systems (Lacasa & Just, 2017; Xiong et al., 2017). 
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Despite the advantages of entropy measures for quantifying information and the 

relationships between variables, its practical application, especially for continuous data, is 

not simple due to the existing variety of entropy measures and estimators (Xiong et al., 

2017). Entropy measures also require an estimate of the probability distribution of the 

underlying data and the method to compute the estimate without the introduction of bias 

in the resulting measure remains an open problem (Kinney & Atwal, 2014). Moreover, the 

application of entropy measures to continuous variables is not a limit of Shannon’s entropy 

of discrete approximations and it brings some challenges and issues of interpretability as 

discussed earlier in section 2.4.1.  

There are three main estimators discussed in the literature: the histogram-based 

method, the kernel-based method, and the k-nearest neighbors method (Xiong et al., 

2017).  

In the histogram-based method, the probability density functions (PDF) are 

approximated using histograms where the continuous data is divided into bins and the 

number of elements in each bin is counted (Dionisio et al., 2004). Selecting the bin size 

(or binwidth) is the main source of error. Mutual information estimates based on this 

binning procedure are often called naïve estimates as they may be overestimated or 

underestimated 𝐼(𝑋; 𝑌) (Dionisio et al., 2004; Kinney & Atwal, 2014). The histogram-

based method is computationally very efficient. In the kernel-based method, kernels are 

used to approximate the PDF by combining basis functions. According to Estévez et al. 

(2009), the quality of this approach is high, but the computational load is also significant. 

It is also worth pointing out that similar to the bin size selection in the histogram-based 
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method, in the kernel-based method the smoothing parameter is called bandwith and, 

consequently, the choice of the bandwidth also has an impact in the final result of the 

kernel-based method, as well as the kernel function chosen. Finally, in the k-nearest 

neighbors method entropies are estimated from KNN distances (Haeri & Ebadzadeh, 

2014; Kraskov, Stögbauer, & Grassberger, 2004). Tesmer and Estévez (2004) argue that 

this method has an accuracy closer to the kernel-based method and it is as fast as the 

histogram-based method.  

Haeri and Ebadzadeh (2014) proposed an adaptation to the histogram-based 

method, where fuzzy partitioning was used for classifying the data. According to the 

authors, the fuzzy partitioning approach uses a general form of fuzzy membership 

functions, which includes the class of crisp membership functions as a special case. The 

authors also argued that the method showed an average absolute error less than that of the 

naïve histogram-based method. 

The main research question is: can entropy and mutual information measures 

quantify the uncertainty and, consequently, the information present in simulation models? 

In section 2, Shannon’s entropy and mutual information measures were calculated using 

the histogram-based method. Their potential as measures of uncertainty quantification in 

simulation models were investigated through different binwidths, different normalization 

methods, different parameter values, and different systems. This section is also restricted 

to simulation models using stationary univariate distributions, because this gives a good 

illustrative example for which closed-form solutions are available for validation of the 

results.  
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The central contribution of this section is to extend the work of section 2, by 

providing an analysis of Shannon’s entropy and mutual information as measures of 

information and uncertainty in simulation models using different estimators, namely 

kernel-based method, k-nearest neighbors, and fuzzy-histogram-based method. This 

analysis is done by: (1) continuing the discussion on the challenges of computing entropy 

measures for continuous variables; (2) investigating the entropy and mutual information 

as measures of uncertainty for different estimators and different estimators parameters 

(kernel function, bandwidth, fuzzy membership function, etc.); (3) investigating the 

measures for different normalization methods, different parameter values, and different 

contexts (different seeds for generating random numbers, CONWIP, and addition of travel 

time); (4) assessing the potential of the measures as an uncertainty quantification method 

in simulation model; and, (5) comparing the method when using these aforementioned 

different entropy estimators. 

The rest of this section is organized as follows: section 3.2 provides a brief 

theoretical background that is important for the study being conducted. Next, section 3.3 

provides an overview per entropy estimator on how entropy measures will be applied to 

quantify uncertainty in simulation models. Results are discussed in section 3.4, and 

concluding remarks and future research directions are presented in section 3.5. 

3.2. Background 

Shannon (1948) in his original work proposed information or uncertainty to be 

quantified by a new measure named entropy, as shown in Equation 48. 
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𝐻(𝑋) =  −∑𝑝(𝑥𝑖) log 𝑝(𝑥𝑖)

𝑛

𝑖=1

 Equation 48 

Shannon’s measure possesses many important properties, such as: non-negativity, 

it attains maximum value when the probabilities are equal, and it is consistent and additive 

(Kittaneh et al., 2016). 

Shannon (1948) assumed, without any derivation, that the analog expression of 

−∑ 𝑝(𝑥𝑖)
𝑛
𝑖=1 𝑙𝑜𝑔𝑝(𝑥𝑖) for the continuous case, known as differential entropy, was 

expressed as shown in Equation 49 (Awad & Alawneh, 1987; Jaynes, 1968). 

𝐻′(X) = −∫𝑓(𝑥) 𝑙𝑜𝑔 𝑓(𝑥) 𝑑𝑥 Equation 49 

This assumption without mathematical derivation resulted in the following main 

issues: (1) differential entropy may result in negative values, and (2) lack of invariance 

under linear change of variables 𝑥 → 𝑦(𝑥) (Jaynes, 1968; Kittaneh et al., 2016). 

According to Awad and Alawneh (1987), in Shannon’s applications the issues were not 

significant and did not affect the final results. However, the use of 𝐻′(𝑋) leads to results 

that depend heavily on the choice of variables. To resolve the issues, Jaynes (1962) 

proposed the use of Equation 50: 

𝐻′(𝑋) = −∫𝑓(𝑥) 𝑙𝑜𝑔 
𝑓(𝑥)

𝑚(𝑥)
 𝑑𝑥 Equation 50 

where 𝑚(𝑥) is a well-behaved continuous invariant measure function. In his 

works, Jaynes never specified an explicit form for 𝑚(𝑥) (Jaynes, 1957, 1962, 1968). Awad 

and Alawneh (1987) proposed the use of 𝑚(𝑥) = 𝑠𝑢𝑝𝑥∈𝑅𝑥𝑓(𝑥), while Kittaneh et al. 
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(2016) proposed the use of 𝑚(𝑥) = 𝐸[𝑓(𝑥)]. By using 𝑚(𝑥) = 𝑠𝑢𝑝𝑥∈𝑅𝑥𝑓(𝑥), the 

differential entropy becomes positive and consistent (Kittaneh et al., 2016).  

Another solution for the differential entropy was proposed by Rao et al. (2004) and 

it was named cumulative residual entropy (CRE). The CRE involved using the cumulative 

distribution of the random variable X, instead of the probability density function. 

However, the difficulty is that the joint CRE in this case is not defined as a natural 

extension of the CRE. The CRE is given by Equation 51: 

𝐶𝑅𝐸(𝑋) = ∫(1 − 𝐹(𝑥))𝑙𝑜𝑔(1 − 𝐹(𝑥)) 𝑑𝑥 Equation 51 

The computation of these information-theoretic measures from real-world data is 

challenging as it involves a two-step process, where: first, the probability mass function 

or the probability density function has to be estimated, and, thereafter, the entropy or 

mutual information can be calculated. 

Several probability estimators have been proposed in the literature to address the 

first task and they differ in the approach used to approximate the probability function 

utilized in the computation of the entropy measures. The estimators are typically classified 

into two different groups: model-based estimators (parametric) or model-free estimators 

(non-parametric) (Xiong et al., 2017). Model-based estimators involve entropy measures 

that are calculated using functions of the parameters of the known parametric probability 

distribution. Model-free estimators have no fixed structure and involve entropy measures 

that are calculated by approximating the probability distribution directly from the data. 

According to Pace (1995) and Xiong et al. (2017), histogram-based method, linear 



167 

 

estimator, kernel estimator, and k-nearest neighbors estimator are the most common 

methods used for calculating entropy measures. 

There are two histogram methods: the equidistant histogram method and the 

equiprobable histogram method. In the most common histogram method, the equidistant 

method, the probability estimate 𝑓ℎ𝑖𝑠𝑡(𝑥) is calculated by dividing the range of sampled 

data into 𝑛 equally sized bins. The probability density function is estimated by counting 

the number of data points that fall into each bin and assigning to that bin a probability 

equal to the number of points it contains divided by the total number of data points and 

the binwidth, as shown in Equation 52 (Pace, 1995). To estimate the probability mass 

function, the number of data points that fall into each bin is counted and divided by the 

total number of data points. There is also the equiprobable histogram method, where rather 

than forming bins of equal width, one forms bins of equal mass (equal number of points 

in each bin) (Bonnlander & Weigend, 1994). In this case, the probability associated with 

each bin is given by the number of points, which is roughly equal, divided by the size of 

the bin. 

𝑓ℎ𝑖𝑠𝑡
𝑗
(𝑥) =

1

𝑛ℎ
∑𝑰{𝑥𝑖 ∈ [𝑡𝑗 , 𝑡𝑗+1)}

𝑛

𝑖=1

 𝑓𝑜𝑟 𝑥 ∈ 𝐵𝑗, 𝑗 = 1,… , 𝑘 Equation 52 

where ℎ is the binwidth, 𝐵𝑗 = [𝑡𝑗 , 𝑡𝑗+1) denotes the 𝑗𝑡ℎ bin of a total of 𝑘 bins, and 

𝑰(. ) is the indicator function which is 1 if 𝑥𝑖 ∈ [𝑡𝑗 , 𝑡𝑗+1) and 0 otherwise. 

As seen from Equation 52, the histogram method is highly dependent on the choice 

of the binwidth and also on the choice of the origin of the bin (or the start point of the bin) 

(Härdle et al., 2012; Xiong et al., 2017). Another drawback of the histogram method is 
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that it is not a continuous function and it is not differentiable at the boundaries of the bins, 

which is undesirable to estimate a continuous probability density function. 

The problem of choosing the start point of the bin can be alleviated by using the 

kernel estimate method (Härdle et al., 2012). The kernel estimate method removes the 

dependence on the start point of the bins by centering each of the bins at each data point 

rather than fixing the start point of the bins. So, one can see the procedure as counting the 

number of data points that fall into the interval around 𝑥. However, the issue of the 

binwidth has an equivalent in this method: a dependence on the choice of the bandwidth. 

Similar to the histogram estimate method, where the smoothing parameter was called 

binwidth, in the kernel estimate method the smoothing parameter is a non-negative funtion 

called bandwidth. Changing the bandwidth changes the shape of the kernel. A lower 

bandwidth means that only points close to the data are given any weight, while a larger 

bandwidth means that distant points also contribute to the estimate. Therefore, the 

resulting kernel method estimates are strongly influenced by the choice of the bandwidth: 

a too small bandwidth may lead to an undersmoothed kernel-density estimate (low bias, 

but high variance), while a too large bandwidth may lead to an oversmoothed estimate 

(low variance, but high bias). Hence, there is a trade-off between reducing the bias and 

variance of the estimator. According to Scott (2015) and Li and Racine (2007), the quality 

of the kernel-density estimate has been recognized to be considerably determined by the 

choice of the bandwidth and relatively insensitive to the choice of the kernel function. The 

kernel-density estimate is shown in Equation 53. 
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𝑓𝐾𝑒𝑟𝑛𝑒𝑙(𝑥) =
1

𝑛ℎ
∑𝐾(

𝑥 − 𝑥𝑖
ℎ
)

𝑛

𝑖=1

 Equation 53 

The kernel weighs information differently depending on how far they are from the 

value point 𝑥. 𝐾(. ) is the chosen kernel (weight) function and ℎ is the bandwidth. 

For the multivariate case, different approaches can be taken: (i) the use of the 

product kernel as in Equation 54, or (ii) pre-whitening the data by linearly transforming 

the data to have unit covariance matrix, estimating the density using a radial symmetric 

kernel, and, then, transforming it back (Scott, 2015; Silverman, 1986). According to Scott 

(2015), product kernels are, in practice, recommended. Silverman (1986) mentioned that 

by normalizing the data there is, in general, no need to consider more complicated forms 

of multivariate kernel density estimate.  

𝑓𝐾𝑒𝑟𝑛𝑒𝑙(𝒙) =
1

𝑛ℎ1…ℎ𝑑
∑(∏𝐾(

𝑥 − 𝑥𝑖
ℎ𝑗

)
𝑗

𝑑

𝑗=1

)

𝑛

𝑖=1

 Equation 54 

The Epanechikov kernel function is frequently used in non-parametric estimation 

because it has the lowest asymptotic mean square error, but there are several other kernel 

functions such as Gaussian, triangular, and uniform (Scott, 2015). According to Scott 

(2015), well-known functions, like the Gaussian kernel, for instance, may not be the first 

recommendation as a kernel function due to computational overhead for computing its 

exponentials, its relatively inefficiency, and its infinite support. 

Regarding the choice of the bandwidth, the optimal choice is the one that 

minimizes the  MISE. This can be calculated using the Silverman’s rule of thumb. For the 

Gaussian kernel estimator, Silverman’s rule of thumb is obtained as shown in Equation 55 



170 

 

(Moon, Rajagopalan, & Lall, 1995; Scott, 2015). The equivalent kernel rescaling function 

proposed by Scott (2015) can be used to calculate the optimal bandwidth for the 

Epanechnikov kernel estimator. The equivalent rescaling function is shown in Equation 

56. 

ℎ∗ = (
4

𝑑 + 2
)

1
(𝑑+4)⁄

𝜎𝑛
−1 (𝑑+4)⁄

 Equation 55 

ℎ2
∗ =

ℎ1
∗

𝜎𝐾2
= √5 ℎ1

∗ ≈ 2.236 ℎ1
∗ Equation 56 

A drawback of the kernel-density estimate is its inability to deal with the tails of 

the distribution without oversmoothing the main part of the density  (Silverman, 1986). 

This is due to the fixed smoothing parameter ℎ that is constant and unrelated to 𝑥. When 

𝑓(𝑥) is large at 𝑥 more data points fall inside the interval [𝑥 − ℎ, 𝑥 + ℎ], than when 𝑓(𝑥) 

is small. A possible alternative for that is the KNN estimate, which automatically adapts 

to the amount of local information that is available (Li & Racine, 2007). 

In the KNN method, the number of observations used to estimate the density is 

fixed by using a bandwidth that may vary with 𝑥 (Li & Racine, 2007). More specifically, 

only the 𝑘 observations nearest to 𝑥 are used to estimate 𝑓(𝑥) and the greater the amount 

of local information, the smaller the range in which smoothing occurs. The estimate is 

obtained as shown in Equation 57.  

𝑓𝐾𝑁𝑁(𝑥) =
𝑘

𝑛𝑉𝑘(𝑥)
=

𝑘

𝑛𝑐𝑑𝑟𝑘
𝑑(𝑥)

 Equation 57 

where 𝑐𝑑 is the volume of the unit sphere with radius 𝑟𝑘
𝑑(𝑥) in 𝑑 dimensions, which 

can be calculated using Equation 58, so that 𝑐1 = 2, 𝑐2 = 𝜋, and 𝑐3 = 4𝜋/3. 
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𝑐𝑑 = 
𝜋𝑑/2

ℾ (
𝑑 + 2
2 )

 Equation 58 

ℾ(. ) is the ℾ function defined by ℾ(∝) = ∫ 𝑡∝−1𝑒−𝑡𝑑𝑡
∞

0
. 

Equation 57 can be rewritten as Equation 59: 

𝑓𝐾𝑁𝑁(𝑥) =
1

𝑛𝑅𝑘
𝑑(𝑥)

∑(
1

𝑐𝑑
) 𝑰 (

‖𝑥 − 𝑥𝑖‖

𝑅𝑘
𝑑(𝑥)

≤ 1)

𝑁

𝑖=1

=
𝑘

𝑐𝑑𝑛𝑅𝑘
𝑑 Equation 59 

where: 𝑅𝑘
𝑑(𝑥) = 𝑅𝑘

𝑑 denotes the Euclidean distance between 𝑥 and the 𝑘𝑡ℎ nearest 

neighbor of 𝑥 among the 𝑥𝑖′𝑠. ‖. ‖ denotes the Euclidean norm, i.e., ‖𝑥 − 𝑥𝑖‖ =

√(𝑥1 − 𝑥1𝑖)
2
+⋯+ (𝑥𝑑 − 𝑥𝑑𝑖)2. Other distance metrics, such as Chebyshev could also 

be used. 𝑰(. ) is the indicator function that ensures that only the 𝑘 observations nearest to 

𝑥 are used to estimate 𝑓(𝑥). 𝑘/𝑛 plays a role similar to the bandwidth ℎ for the kernel 

method.  

A disadvantage of KNN is that it treats all the variables symmetrically, and hence, 

lacks the ability to smooth out irrelevant variables (Li & Racine, 2007). The method is 

prone to local noise and because 𝑅𝑘
𝑑(𝑥) is not differentiable, the density estimate may have 

discontinuities. The method is also susceptible to the curse of dimensionality. One 

difference between the KNN and the kernel method is that the bandwidth in the first is 

now stochastic and, hence, the asymptotic analysis of the KNN estimator is more complex 

(Li & Racine, 2007). 
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In both kernel and KNN methods, when working with multiple variables data 

should be normalized before estimating the density to avoid extreme differences in the 

spread of the data (Li & Racine, 2007; Silverman, 1986).  

According to Loquin and Strauss (2006), a modification of the traditional 

histogram-based method, called fuzzy-histogram method, appeared to be more robust than 

the histogram density estimator method. The fuzzy-histogram based method was also 

discussed by Arefi, Viertl, and Taheri (2012), Fajardo (2014), and Haeri and Ebadzadeh 

(2014). According to this method, the datapoints of 𝑋 define the universe and the universe 

is partitioned into 𝑘 fuzzy subsets 𝐴𝑘 (𝑘 = 1,2, … , 𝑝) based on a specific fuzzy 

membership function. For each subset 𝐴𝑘, there is a membership function 𝜇𝐴𝑘(𝑥) that 

defines the degree of truth of 𝑥 ∈  𝐴𝑘. The fuzzy-histogram density estimate is obtained 

as shown in Equation 60 (Loquin & Strauss, 2008).  

𝑓𝑓𝑢𝑧𝑧𝑦(𝑥) =
∑ 𝜇𝐴𝑘(𝑥)
𝑛
𝑖=1

𝑛ℎ
 Equation 60 

According to Loquin and Strauss (2006), an interpolant, similar to the kernel 

method, can be used to estimate the fuzzy-histogram density as shown in Equation 61. 

𝑓𝑓𝑢𝑧𝑧𝑦(𝑥) =
∑ 𝜇𝐴𝑘 [∑ 𝐾 (

𝑥 − 𝑚𝑘
ℎ

)𝑝
𝑘=1 ]𝑛

𝑖=1

𝑛ℎ
 Equation 61 

where 𝑚𝑘 is the 𝑘𝑡ℎ node of the universe.  

Similarly, for the multivariate case, Equation 62 can be used (Haeri & Ebadzadeh, 

2014). 

𝑓𝑓𝑢𝑧𝑧𝑦(𝑥, 𝑦) =
∑ 𝜇𝐴𝑘×𝐵𝑘(𝑥, 𝑦)
𝑛
𝑖=1

𝑛ℎ
 Equation 62 
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where 𝜇𝐴𝑘×𝐵𝑘(𝑥, 𝑦) is the joint membership function of 𝑥 and 𝑦. Based on the 

cardinality of fuzzy sets, we know that 𝜇𝐴𝑘×𝐵𝑘(𝑥, 𝑦) = min (𝜇𝐴𝑘(𝑥), 𝜇𝐵𝑘(𝑦)) (Cheng & 

Chen, 1999). 

There are different choices for the membership function, such as the generalized 

normal function, the triangular membership function, crisp partition, and cosine partition 

(Haeri & Ebadzadeh, 2014). Table 29 shows the membership functions for the crisp, 

triangular, and cosine strong uniform fuzzy partition of the universe. For the definition of 

strong uniform fuzzy partition, please refer to Loquin and Strauss (2006), but the main 

conditions for strength and uniformity include: (i) for all 𝑥 ∈ Ω = [𝑎, 𝑏], the universe, 

∑ 𝜇𝐴𝑘
𝑝
𝑘=1 = 1, and, (ii) for 𝑘 ≠ 𝑝, ℎ𝑘 = 𝑚𝑘+1 −𝑚𝑘 = ℎ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, so 𝑚𝑘 = 𝑎 +

(𝑘 − 1)/ℎ. 

 

Table 29. Membership functions of crisp, triangular, and cosine strong uniform partition 

of the universe. 
Membership 

function 
Crisp partition Triangular Cosine 

𝜇𝐴1(𝑥) 
𝑰
[𝑚1,𝑚1+

ℎ
2
]
(𝑥) (𝑚2 − 𝑥)

ℎ
𝑰[𝑚1,𝑚2](𝑥) 

1

2
(cos (

𝜋(𝑥 − 𝑚1)

ℎ
) + 1) 𝑰[𝑚1,𝑚2](𝑥) 

𝜇𝐴𝑘(𝑥) 
𝑰
[𝑚𝑘−

ℎ
2
,𝑚𝑘+

ℎ
2
]
(𝑥) 

(𝑥 − 𝑚𝑘−1)

ℎ
𝑰[𝑚𝑘−1,𝑚𝑘](𝑥)

+
(𝑚𝑘+1 − 𝑥)

ℎ
𝑰[𝑚𝑘,𝑚𝑘+1](𝑥) 

1

2
(cos (

𝜋(𝑥 − 𝑚𝑘)

ℎ
)

+ 1) 𝑰[𝑚𝑘−1,𝑚𝑘+1](𝑥) 

𝜇𝐴𝑝(𝑥) 
𝑰
[𝑚𝑝−

ℎ
2
,𝑚𝑝]
(𝑥) (𝑥 − 𝑚𝑝−1)

ℎ
𝑰[𝑚𝑝−1,𝑚𝑝](𝑥) 

1

2
(cos (

𝜋(𝑥 − 𝑚𝑝)

ℎ
)

+ 1) 𝑰[𝑚𝑝−1,𝑚𝑝](𝑥) 

𝜇𝐾(𝑥) 
𝑰
[−
1
2
,
1
2
]
(𝑥) (1 − |𝑥|)𝑰[−1,1](𝑥) 

1

2
(cos(𝜋𝑥) + 1)𝑰[−1,1](𝑥) 

Source: Loquin and Strauss (2006). 
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After the probability density function or the probability mass function has been 

estimated, the entropy and mutual information measures can be finally computed. For the 

calculation of the entropy measures, the evaluation of the integral in Equation 49 requires 

numerical integration and it is computationally inefficient, especially if 𝑓(𝑥) is a kernel 

density estimator (Beirlant et al., 1997; Moddemeijer, 1989). To minimize the 

computational burden, different estimates are available: the resubstitution estimate, the 

splitting data estimate, the cross-validation estimate or leave-one-out density estimate, and 

the sample-spacings estimates (Beirlant et al., 1997). The resubstitution estimates are 

shown in Equation 63 to Equation 66, where Equation 63 refers to the entropy of 𝑋, 

Equation 64 refers to the joint entropy of 𝑋 and 𝑌, Equation 65 refers to the conditional 

entropy of 𝑋 given 𝑌, and Equation 66 refers to the mutual information of 𝑋 and 𝑌 (Steuer 

et al., 2002; Xiong et al., 2017). 

�̂�(𝑋) =  −
1

𝑛
∑log 𝑓(𝑋𝑖)

𝑛

𝑖=1

 Equation 63 

�̂�(𝑋, 𝑌) =  −
1

𝑛
∑log 𝑓(𝑋𝑖 , 𝑌𝑖)

𝑛

𝑖=1

 Equation 64 

�̂�(𝑋|𝑌) =  −
1

𝑛
∑log [

𝑓(𝑋𝑖, Y𝑖)

𝑓(𝑌𝑖)
]

𝑛

𝑖=1

 Equation 65 

𝐼(𝑋; 𝑌) =
1

𝑛
∑log [

𝑓(𝑋𝑖, Y𝑖)

𝑓(𝑋𝑖)𝑓(𝑌𝑖)
]

𝑛

𝑖=1

 Equation 66 

3.3. Material and methods 
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In this section of the dissertation, the entropy measures will be applied to quantify 

the total uncertainty of the simulation outputs (𝐻(𝑌)), the uncertainty of the simulation 

generated inputs (𝐻(𝑋)), and the extent of the simulation output uncertainty that can be 

attributed to each of the simulation generated inputs (𝐼(𝑋; 𝑌)). Entropy measures will be 

calculated using the kernel method, the KNN method, and the fuzzy-histogram based 

method. 

The experiments are run in Simio® University Enterprise Edition v 10.165 and 

include different system configurations by: (1) varying the traffic intensities, the number 

of servers, the seeds for generating random numbers, and the number of replications; (2) 

adding a third input (i.e., travel time); and, (3) fixing the number of customers in the 

system (constant work-in-progress). The model consists of a single source of arrivals, 

single queue, and 𝑠 servers providing the same service. After being served, customers 

leave the system. Balking and reneging are not considered in the model. Specifically, the 

adequacy of the proposed method will be investigated through an 𝑀/𝑀/𝑠 and 𝑀/𝐺/1 

illustrative example with two simulation generated input processes and two outputs of 

interest, namely: �⃗� = [𝑋1 − 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑝𝑟𝑜𝑐𝑒𝑠𝑠, 𝑋2 − 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠] and �⃗⃗̂� = [�̂�1 −

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚, �̂�2 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚]. 

The notation used in this section of the dissertation follows the 𝐴/𝑆/𝑠 Kendall’s notation, 

where: 𝐴 represents the arrival process, 𝑆 the service time, and 𝑠 the number of servers. 

𝑀 is used for memoryless distributions and G for general distributions. 

3.3.1. The kernel method 
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For the kernel-based method, two different aspects are investigated: (1) different 

kernel functions, and (2) different bandwidths (different values and Silverman’s rule of 

thumb). 

Two kernel functions are investigated in this work: the Gaussian function and the 

Epanechnikov function. The latter is known to be the optimal kernel in the mean integrated 

square error sense (Silverman, 1986). The Gaussian kernel function 𝐾(. ) is shown in 

Equation 67 and the Epanechnikov kernel function is shown in Equation 68 (Li & Racine, 

2007). 

𝐾(𝑣) =
1

√2𝜋
𝑒−
1
2
𝑣2 , −∞ ≤ 𝑣 ≤ ∞ Equation 67 

𝐾(𝑣) = {

3

4√5
(1 −

1

5
𝑣2) , 𝑖𝑓 |𝑣| < √5

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 Equation 68 

where: 𝑣 =
𝑥𝑖−𝑥 

ℎ
. 

The kernel estimator of a univariate density function can be expressed as shown in 

Equation 69: 

𝑓(𝑥) =
1

𝑛ℎ
∑𝐾(𝑣)

𝑛

𝑖=1

 Equation 69 

where ℎ is a smoothing parameter called bandwidth.  

For the mutual information calculation, there is a need to resort to the 

multidimensional case. Multivariate kernel estimators can be based on the product of 

univariate kernel functions or on the general multivariate kernel estimator. Here, product 

kernel is the adopted approach, which can be estimated using Equation 54 where the same 
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univariate kernel is used in each dimension but with a different smoothing parameter for 

each dimension.  

While nonparametrical kernel estimation has been recognized as fairly insensitive 

to the choice of kernel function, it is known that different bandwidths can lead to very 

different impressions of the underlying distribution (Li & Racine, 2007). Therefore, 

investigating the impact of different values of bandwidths on the entropy measures and on 

quantifying uncertainty in simulation models is important to analyze the robustness of the 

theory. It is known that a too small bandwidth reduces bias, but may lead to an 

undersmoothed kernel density estimate and increased variance. On the other hand, a too 

large bandwidth reduces variance, but may lead to an oversmoothed kernel density 

estimate and increased bias. First, different values of bandwidth ranging from values close 

to 0 to large values are used: 0.0001, 0.001, 0.01, 0.5, 0.2, 0.1, 1, 1.5, 5, 10, 100, 1000. 

Next, Silverman’s rule of thumb is applied to calculate the optimal bandwidth to be used 

on the Gaussian kernel estimator, as shown in Equation 70 (Moon et al., 1995; Scott, 

2015). According to Silverman’s rule of thumb, the optimal choice of bandwidth is the 

one that minimizes the mean integrated square error. The equivalent kernel rescaling 

function proposed by Scott (2015) can be used to calculate the optimal bandwidth for the 

Epanechnikov kernel estimator. This rescaling function is shown in Equation 71. 

ℎ∗ = (
4

𝑑 + 2
)

1
(𝑑+4)⁄

𝜎𝑛
−1 (𝑑+4)⁄

 Equation 70 

ℎ2
∗ =

ℎ1
∗

𝜎𝐾2
= √5 ℎ1

∗ ≈ 2.236 ℎ1
∗ Equation 71 

According to Silverman (1986), p. 77, as in many multivariate statistical 

procedures to avoid extreme differences in the spread of the data it is recommended to 
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pre-scale the data before attempting to estimate the kernel density. All the data is 

normalized prior to estimating the kernel density, as well as the KNN and the fuzzy-

histogram density estimators. 

3.3.2. The k-nearest neighbors method 

For the k-nearest neighbors method, one aspect is investigated: (1) different values 

of k-nearest neighbors are used to estimate the probability density, similar to the 

bandwidth concept. Equation 59 is used to calculate the estimates, where 𝑘 determines the 

number of observations that are used to estimate 𝑓(𝑥). Here, 𝑘 is varied based on the 

number of observations available in each experiment. For the analysis of the impact of the 

different number of k-nearest neighbors on entropy and MI, the goal is to have different 

values of 𝑘 that corresponds to low, medium, and high values in comparison with the 

amount of data available in each experiment. Table 30 shows the values of  𝑘 used for this 

corresponding to the amount of data available. However, a different set of values of 𝑘 

(𝑘 = 1,2,3,4,5,6,7,8,9) will be used to compare the entropy with other measures of error, 

namely SAE, SSE, MAE, and MSE, in section 3.4.8 

 

Table 30. Values of 𝒌 used to estimate the probability density function based on the 

number of datapoints available. 

Number of datapoints available Different values of 𝒌 investigated 

10 [1, 2, 3, 4, 5, 6, 7, 8, 9] 

20 [1, 3, 5, 7, 9, 11, 13, 15, 17, 19] 

50 [1, 3, 5, 7, 9, 13, 19, 25, 35, 49] 

100 [1, 3, 5, 7, 9, 13, 19, 25, 49, 99] 

200 [1, 3, 7, 9, 19, 25, 49, 99, 150, 199] 

400 [1, 3, 9, 19, 25, 49, 99, 150, 199, 399] 

600 [1, 3, 9, 25, 49, 99, 150, 199, 399, 599] 
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800 [1, 3, 9, 25, 49, 99, 199, 399, 599, 799] 

1,000 [1, 3, 9, 25, 49, 99, 199, 399, 599, 999] 

1,500 [1, 3, 9, 25, 49, 99, 199, 599, 999, 1499] 

 

3.3.3. The fuzzy-histogram based method 

For the fuzzy-histogram based method, two different aspects are investigated: (1) 

different fuzzy membership functions, and (2) different number of fuzzy subsets (similar 

to the concept of bins in the histogram method). 

Three membership functions are investigated in this work: the crisp function, the 

triangular function, and the cosine function. The assumption adopted in this section of the 

dissertation is of the strong uniform fuzzy partition as mentioned in section 3.2. The 

aforementioned functions are chosen for being commonly referred in the fuzzy literature. 

Regarding the number of fuzzy subsets, similar numbers adopted in the histogram-based 

method investigated in section 2 are being used in this section, which allows for 

comparison of the results. Therefore, the following different number of fuzzy partitions 

are investigated: 𝑙 =  [2, 5, 10, 25, 50, 100, 200, 500, 1000]. Because 𝑙 is the number of 

partitions, there is actually a total number of 𝑘 = 𝑙 + 1 fuzzy subsets, which satisfies the 

condition that 𝑘 ≥ 3 (Loquin & Strauss, 2006). The nodes of each fuzzy subset are defined 

such that: 𝑚1 = min (𝑥𝑛), 𝑚𝑝 = max (𝑥𝑛), and 𝑚𝑘 = 𝑚1 + (k − 1)h, for 𝑘 ≠ 1 and 

𝑘 ≠ 𝑝, where h =  
𝑚𝑝−𝑚1

𝑝−1
 . Equation 61 is used to estimate the fuzzy histogram probability 

density.  

3.4. Results and discussion 
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3.4.1. Challenges encountered while applying entropy measures for continuous 

variables and method proposed to overcome the issues 

In section 2.4.1, the challenges encountered while applying entropy measures for 

continuous variables were discussed. These challenges go beyond requiring an estimate 

of the probability distribution of the underlying data. 

The first solution proposed in the literature to tackle these challenges is to 

approximate the differential entropy by calculating the discretized entropy and adjusting 

it with a correction dependent on the binwidth. This solution eliminates the issue of 

entropy being infinity, but does not eliminate the issue of the entropy being a negative 

value.  

In section 2, the entropy was calculated based on the histogram-method and a data 

normalization method, that guaranteed the data was always between 0 and 1, was proposed 

to handle the challenges of calculating entropy for continuous variables. The procedure 

resulted in non-negative entropy values and also solved some issues of interpretability in 

the continuous case. However, the method could only be implemented when using fixed 

number of bins. When formulas that calculate optimum number of bins or entropy 

estimators that do not use number of bins are used, the method cannot be applied because 

the binwidth is not a function of the data range.  

Another approach commonly cited in the literature was proposed by Jaynes (1962). 

In Jaynes’ approach, differential entropy is calculated as 𝐻(𝑋) = −∫𝑝(𝑥) log [
𝑝(𝑥)

𝑚(𝑥)
] 𝑑𝑥 

and, hence, it is important to define the function 𝑚(𝑥). Some authors suggest to use 

𝑚(𝑥) = 𝑠𝑢𝑝[𝑓(𝑥)] or 𝑚(𝑥) = 𝐸[𝑓(𝑥)] (Awad & Alawneh, 1987; Kittaneh et al., 2016). 
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Clearly, 𝑚(𝑥) = 𝐸[𝑓(𝑥)] is not a good choice as 𝑓(𝑥) may be greater than 𝐸[𝑓(𝑥)]. In 

this case, 
�̂�(𝑥)

𝑚(𝑥)
> 1⇒ 𝑙𝑜𝑔2

�̂�(𝑥)

𝑚(𝑥)
> 0 and, 𝐻(𝑋) may be negative. Here, two other functions 

are proposed: 𝑚(𝑥) = 𝑓(𝑥)2(𝑓(𝑥) − 1)
−1

 and 𝑚(𝑥) = 𝑓(𝑥)(1 + 𝑓(𝑥)). Table 31 shows 

a discussion of the challenges and issues encountered when using each of these functions 

and Table 32 summarizes these issues per proposed 𝑚(𝑥). 

 

Table 31. Issues and challenges encountered when using the different proposed 𝒎(𝒙).  
𝒎(𝒙) Challenge or issue 

𝑚(𝑥) = 𝑠𝑢𝑝[𝑓(𝑥)] - When events are all equiprobable (or all probability 

density function values are equal) the differential entropy 

is 0, but the discrete entropy is maximum.  

- When there is a mix of events that are equiprobable and 

events that will surely not occur (the probability density 

function values are equal or 0, respectively) the 

differential entropy is 0, but the discrete entropy is 

maximum.   

- An event will surely occur (certainty): there is an open 

question regarding how to represent certainty in the 

nonparametric continuous case. If 𝑓𝑖(𝑥) = sup 𝑓(𝑥) is 

considered the certainty, the differential entropy is 0, same 

as the discrete entropy. However, one could interpret that 

certainty does not exist in the continuous case as 𝑃(𝑋 =
𝑥) = 0. 

𝑚(𝑥) =  

𝑓(𝑥)2(𝑓(𝑥) − 1)
−1

 

- When probability density function is between 0 and 1, 

the proposed solution will be negative and, hence, the 

logarithm does not exist.  

- An event will surely occur: similar to above, it is an open 

question. If one considers that certainty does not exist in 

the continuous, an issue does not exist. On the other hand, 

if certainty exists, what would be considered the certainty 

value for which the entropy should be equal to 0? 𝑓𝑖(𝑥) =

sup𝑓(𝑥)? 

𝑚(𝑥) = 𝑓(𝑥)(1 + 𝑓(𝑥)) - When probability density function is 0, the proposed 

solution is 1, which could be an issue for the scenarios 
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with events that will surely not occur. However, 

log2(1) = 0 and, hence, no issue exists.  

- An event will surely occur: similar to above, it is an open 

question. If one considers that certainty does not exist in 

the continuous, an issue does not exist. On the other hand, 

if certainty exists, what would be considered the certainty 

value for which the entropy should be equal to 0? 𝑓𝑖(𝑥) =

sup𝑓(𝑥)? 

 

Table 32. Summary of the challenges encountered per proposed 𝒎(𝒙).  

Challenge or issue / 𝒎(𝒙) = 𝒔𝒖𝒑[𝒇(𝒙)] �̂�(𝒙)𝟐(�̂�(𝒙) − 𝟏)
−𝟏

 �̂�(𝒙)(𝟏 + �̂�(𝒙)) 

Events equiprobable √ X X 

Events equiprobable + events 

will surely not occur 
√ X X 

All events will surely not occur X X X 

Event will surely occur 

(certainty) 
X * * 

Probability density function 

between 0 and 1 
X √ X 

Legend:  

√ challenge is encountered 

X challenge is not encountered 

* challenge may be encountered 

 

Based on the challenges discussed on Table 31 and Table 32, one can see that  

𝑚(𝑥) = 𝑓(𝑥)(1 + 𝑓(𝑥)) is the function that shows most potential to be used in Jaynes’ 

method and, therefore, it will be the function used here. The entropy measures will be 

calculated using the approach proposed by Jaynes (1962) in order to allow for the 

calculation of the measures regardless of the choice of the bin and the choice of the density 

estimation method.  

3.4.2. Challenge encountered when using the kernel method 
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Another challenge was encountered when using the kernel method in the 

multivariate case, that is, more specifically when calculating the MI information measures. 

From the experiments and based on the product kernel multivariate formula given by 

Equation 54, we know that 𝐾 (
𝑥−𝑥𝑖

ℎ𝑗
)
𝑗

≥ 0 ⇒ ∏ 𝐾 (
𝑥−𝑥𝑖

ℎ𝑗
)
𝑗

𝑑
𝑗=1 ≥ 0

⇒ ∑ (∏ 𝐾 (
𝑥−𝑥𝑖

ℎ𝑗
)
𝑗

𝑑
𝑗=1 ) ≥ 0𝑛

𝑖=1 . When ℎ1, … , ℎ𝑑  are very small, that is ℎj < 0,  the product 

ℎ1…ℎ𝑑 becomes very small. In this case, 
1

𝑛ℎ1…ℎ𝑑
 becomes very large and 𝑓𝐾𝑒𝑟𝑛𝑒𝑙(𝒙) also 

becomes very large. Given the normalization 𝑚(𝑥) adopted in this work, the resulting joint 

𝑓𝐾𝑒𝑟𝑛𝑒𝑙(𝒙) after normalization is very small.  

MI can be approximated as given by Equation 66. Because the kernel density 

estimates 𝑓(𝑋𝑖) and 𝑓(𝑌𝑖) were calculated using a single bandwidth, there was not an 

interaction among bandwidths. In this case, 𝑓(𝑋𝑖)𝑓(𝑌𝑖) > 𝑓(𝑋𝑖, Y𝑖) ⇒
�̂�(𝑋𝑖,Y𝑖)

�̂�(𝑋𝑖)�̂�(𝑌𝑖)
< 1

⇒ 𝑙𝑜𝑔 [
�̂�(𝑋𝑖,Y𝑖)

�̂�(𝑋𝑖)�̂�(𝑌𝑖)
] < 0 ⇒

1

𝑛
∑ log [

�̂�(𝑋𝑖,Y𝑖)

�̂�(𝑋𝑖)�̂�(𝑌𝑖)
]𝑛

𝑖=1 < 0, which is theoretically incorrect and 

indicates an issue. 

According to Silverman (1986), in certain circumstances it may be more 

appropriate to use a single smoothing parameter ℎ, a vector of smoothing parameters, or 

even a matrix of shrinking coefficients. The author reinforces that a matrix of smoothing 

coefficients may be more adequate when the spread in the data points is much greater in 

one of the coordinate directions than the others, while a single smoothing parameter is 

appropriate when each data point is scaled equally. The author also restates his 

recommendation of pre-scaling the data to avoid extreme differences in the spread of the 
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data in the various coordinate directions. Although Silverman (1986) mentioned about a 

single smoothing parameter, he still considered raising it to the power of the dimension of 

the data.  

All the data used in this dissertation is being pre-scaled to avoid differences in the 

spread of the data. Due to the issue encountered while calculating the MI using such data, 

a solution proposed here is to calculate the product kernel using Equation 72. This 

guarantees that the interaction among the smoothing parameters is not causing issues in 

the multivariate case and, consequently, in the MI calculations. 

𝑓𝐾𝑒𝑟𝑛𝑒𝑙(𝒙) =
1

𝑛√ℎ1…ℎ𝑑
𝑑

∑(∏𝐾(
𝑥𝑖 − 𝑥𝑖𝑗

ℎ𝑗
)

𝑑

𝑗=1

)

𝑛

𝑖=1

 Equation 72 

3.4.3. The impact of different kernel functions and different bandwidth values on 

entropy and mutual information measures calculated using kernel method 

The discussion in this and the following sections are based on the results of the 

experiments, which were detailed in section 3.3 and listed in Table 66 of the Appendix. 

For simplification, the experiments are referred by their numbers. In summary, the 

experiments consist of 𝑀/𝑀/𝑠, 𝑀/𝐺/1, and 𝐺/𝐺/𝑠  queue models with different traffic 

intensities and number of replications and where different seeds were used to generate the 

random numbers. An additional third input (i.e., travel time) and CONWIP configurations 

were also investigated. Based on the results of the experiments, entropy and MI measures 

were calculated in three different ways: (1) using the kernel method; (2) using the k-nearest 

neighbors method; and, (3) using the fuzzy histogram-based method.  
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For the kernel method, two different aspects are of interest: (1) the impact of 

different kernel functions, and (2) the impact of different bandwidths on the entropy and 

MI measures.  

The analysis of Figure 30 shows that, different from the histogram-based method 

with fixed number of bins and probability density function, the entropy and MI measures 

tend to increase with the decrease in the bandwidth for the same number of replications 

regardless of the kernel function being used. This behavior is similar to the observed 

results of the histogram-based method with fixed number of bins and discrete empirical 

distribution before normalization, but opposite to the one observed when histogram-based 

method with fixed number bins and probability density function method used to calculate 

the measures. If the bandwidth is interpreted as 
1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑛𝑠
 as it is the binwidth in the 

histogram-based method, this could indicate the need for normalization of the entropy and 

MI measures to eliminate the impact of the bins on the measures as suggested in the 

literature for the histogram-based method with discrete variables. By looking at the 

histogram-based method probability density estimator and the kernel method probability 

density estimator, one could expect the binwidth (or bandwidth) to have the same impact 

on the entropy and MI measures. That is, according to the histogram-based method the 

probability density is estimated by 𝑓ℎ𝑖𝑠𝑡
𝑗
(𝑥) =

1

𝑛ℎ
∑ 𝐈{𝑥𝑖 ∈ [𝑡𝑗 , 𝑡𝑗+1)}
𝑛
𝑖=1  𝑓𝑜𝑟 𝑥𝑗 ∈ 𝐵𝑗, 𝑗 =

1, … , 𝑘, and according to the kernel method the probability density is estimated by 

𝑓𝐾𝑒𝑟𝑛𝑒𝑙(𝑥) =
1

𝑛ℎ
∑ 𝐾 (

𝑥−𝑥𝑖

ℎ
)𝑛

𝑖=1 . Therefore, one can see that the binwidth (or bandwidth) 

ℎ is being considered as a similar divisor in both estimators, although ℎ also plays a role 
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within the kernel function in the kernel estimator. However, the first difference between 

these two estimators is that ∑ 𝐈{𝑥𝑖 ∈ [𝑡𝑗 , 𝑡𝑗+1)}
𝑛
𝑖=1  ∈ ℤ and ∑ 𝐾 (

𝑥−𝑥𝑖

ℎ
)𝑛

𝑖=1 ∈ ℝ[0,1]. This 

difference is not enough to explain why the results of the two estimators are different in 

terms of changes in the binwidth. The approach proposed in this section of the dissertation 

to calculate entropy and similarly to calculate MI is based on the work of Jaynes’ and also 

considers the entropy and MI approximation, which leads to: �̂�(𝑋) =

 −
1

𝑁
∑ log 𝑓(𝑋𝑗)
𝑁
𝑗=1 = −

1

𝑁
∑ log [

�̂�(𝑥)

𝑚(𝑥)
]𝑁

𝑗=1 , where 𝑚(𝑥) = 𝑓(𝑥)(1 + 𝑓(𝑥)). When 

histogram with fixed number of bins is the method being used 𝑁 is equal to the number of 

bins, which, in turn, determines the binwidth. When the kernel method is being considered, 

𝑁 = 𝑛 which is the number of datapoints. Therefore, one can see that although the 

binwidth may affect the histogram and kernel probability density estimators in the same 

way, it does not affect the entropy estimation likewise because with the increase in the 

number of bins (or decrease in the binwidth), the divisor of the entropy approximation in 

the histogram-based method is increasing and, hence, the entropy measure is decreasing, 

which is the opposite of what is observed in the kernel method.  

Based on the experiments performed and the range of bandwidths experimented, 

for low values of bandwidth (bandwidth less than or equal to 0.01 for the experiments 

performed in this study) the entropy and MI measures decrease with the increase of the 

number of replications. For mid-range values of bandwidth (bandwidth between 0.1 and 

0.5) the entropy and MI measures increase with the increase of the number of replications. 

Finally, for large values of bandwidth (bandwidth greater than or equal to 1), the entropy 
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and MI measures are approximately constant with the increase of the number of 

replications. This may reflect the impact of the bandwidth in undersmoothing or 

oversmoothing the density estimation. With larger bandwidths, there is an increased risk 

of oversmoothing, which is potentially being captured by the entropy and MI measures as 

the measures become approximately equal and close to 0 regardless of the number of 

replications used. This can be explained by how the probability density is estimated using 

the kernel method. Using the kernel method, the probability density is estimated using 

𝑓(𝑥) =
1

𝑛ℎ
∑ 𝐾(𝑣)𝑛
𝑖=1 . For the experiments considered in this section of the dissertation, 𝑛 

varied from 10 to 1500. More specifically, 𝑛 =

10, 20, 50,100,200,400,600,800,1000,1500. Based on the approach proposed in this 

dissertation, we have: �̂�(𝑋) =  −
1

𝑛
∑ log [

�̂�(𝑥)

�̂�(𝑥)(1+�̂�(𝑥))
]𝑛

𝑗=1 = −
1

𝑛
∑ log [

1

(1+�̂�(𝑥))
]𝑛

𝑗=1 =

−
1

𝑛
∑ log [

1

(1+
1

𝑛ℎ
∑ 𝐾(𝑣)𝑛
𝑖=1 )

]𝑛
𝑗=1 . When ℎ is very small (ℎ = 0.0001, 0.001, 0.01), for the 

experiments under investigation 
1

𝑛ℎ
∑ 𝐾(𝑣)𝑛
𝑖=1  will be large, 

1

(1+
1

𝑛ℎ
∑ 𝐾(𝑣)𝑛
𝑖=1 )

 will be a small 

decimal number and, hence, log [
1

(1+
1

𝑛ℎ
∑ 𝐾(𝑣)𝑛
𝑖=1 )

] will be a greater negative number. 

However, for larger number of replications, 
1

𝑛ℎ
∑ 𝐾(𝑣)𝑛
𝑖=1  will be smaller, because 𝑛ℎ is 

larger and, hence, 
1

(1+
1

𝑛ℎ
∑ 𝐾(𝑣)𝑛
𝑖=1 )

 will be a larger decimal number and log [
1

(1+
1

𝑛ℎ
∑ 𝐾(𝑣)𝑛
𝑖=1 )

] 

a smaller negative number. Consequently, for small number of replications, the entropy 

will be larger than for large number of replications. It is worth noting that another 
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important explanation and condition for this to happen is the fact that with low values of 

bandwidth, only the own datapoint being evaluated (or datapoints very close to it in value) 

end up being inside the band of the kernel function and, consequently, adding any 

information to the calculation. Therefore, only one or few data points are adding the same 

(or close) amount of information in every calculation. Because this information is being 

averaged by 𝑛, which depends on the number of replications, when 𝑛 is larger the entropy 

will be smaller. On the other hand, for mid-range values of bandwidth, in general, all the 

datapoints will be adding information. Because of that, ∑ 𝐾(𝑣)𝑛
𝑖=1  will be larger for larger 

number of replications than for smaller number of replications and this will tend to 

compensate the fact that 𝑛ℎ also increases with the increase in the number of replications. 

This way, for mid-range values of bandwidth, 
1

𝑛ℎ
∑ 𝐾(𝑣)𝑛
𝑖=1  will tend to be larger for larger 

number of replications and, hence, log [
1

(1+
1

𝑛ℎ
∑ 𝐾(𝑣)𝑛
𝑖=1 )

] will be a greater negative number 

and the entropy will be larger for larger number of replications than for smaller number of 

replications. It is important noting that this is considering the data of the experiments 

performed here and also the fact that all the data was normalized between 0 and 1. Finally, 

the other extreme is to consider large values of bandwidth (e.g., ℎ = 10, 100, 1000). With 

large values of bandwidth two different things occur: (i) first, 𝑛ℎ becomes so large that 

1

𝑛ℎ
∑ 𝐾(𝑣)𝑛
𝑖=1  will tend to go to 0 and, hence, entropy will tend to go to 0 too, (ii) second, 

before 𝑛ℎ becomes so large, one can already see that when ℎ is equal to 1 or 1.5, the 

entropy is already constant over the number of replications. The reason is that when ℎ is 

large all datapoints are inside the band of the kernel function and, consequently, 
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contributing with information. However, the information each datapoint contributes is 

exactly the same. Because the information is the same, regardless of the number of 

replications, the final average information will be the same. In other words, with large 

values of bandwidth, 𝐾(𝑣) tend to be equal among the different 𝑖. Therefore, 
1

𝑛ℎ
∑ 𝐾(𝑣)𝑛
𝑖=1  

will be equal (or approximately equal) regardless of the number of replications and, hence, 

the entropy will be constant over the number of replications.  

Figure 31 shows the same results as Figure 30 but only for bandwidths greater than 

or equal to 0.1. In Figure 31 it is possible to better perceive the observations just described. 

Another important observation is that the amplitude of the change is higher for lower 

values of the bandwidth. When the bandwidth increases the amplitude of the change 

becomes smaller until there is almost no change as already mentioned. Similar 

observations can be made whether the normal or the Epanechnikov kernel functions were 

used, which goes in direction with the literature that recognizes the kernel estimation is 

fairly insensitive to the choice of the kernel function but not to different bandwidths. 

When Silverman’s rule of thumb was used to calculate the bandwidth, the 

bandwidth is dependent on the data and, hence, varied based on that. In this case, plotting 

the entropy and MI measures per Silverman’s bandwidth would not be very useful. 

Therefore, the average entropy and MI measures over all the experiments was plotted, 

instead per Silverman’s bandwidth, as shown in Figure 32. From Figure 32 it is not 

possible to observe how the entropy and MI measures behave for the different Silverman’s 

bandwidths. However, it is still possible to observe that when using Silverman’s rule of 

thumb, the entropy and MI measures still tend to increase with the increase in the number 
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of replications, as they did when calculated using the histogram-based method or when 

using the kernel method with mid-range values of bandwidth.  

 

 
Figure 30. Average of entropy and MI measures per different bandwidths using kernel 

method with different kernel functions (experiments #1 to #350). 
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Figure 31. Average of entropy and MI measures per different bandwidths (bandwidth 

greater than or equal to 0.1) using kernel method with different kernel functions 

(experiments #1 to #350). 

 

 
Figure 32. Average of entropy and MI measures using kernel method and Silverman’s 

rule of thumb with different kernel functions (experiments #1 to #350). 

 

3.4.4. The impact of different number of k-nearest neighbors (k) on entropy and 

mutual information measures calculated using KNN method 

As mentioned by Gutierrez-Osuna (2020), the general expression for non-

parametric density estimation is given by 𝑝(𝑥) ≅ 𝑘 𝑛𝑉⁄ , where 𝑘 is the number of examples 

inside the volume 𝑉, where 𝑉 is the volume surrounding the data vector 𝑥, and 𝑛 is the total 

number of examples. 𝑉 is simply the binwidth or bandwidth ℎ. In the KNN method, 𝑘 is 

fixed and 𝑉 is determined from the data. So, for the KNN method, there is one aspect of 
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interest: (1) the impact of different values of k-nearest neighbors on the entropy and MI 

measures. 

The analysis of Figure 33 shows that the entropy and MI measures tend to decrease 

with the increase in the number of k-nearest neighbors used to calculate the measures. By 

increasing the number of k-nearest neighbors used to calculate the measures, one is using 

more data in the volume surrounding the data point to estimate the probability density, which 

is translated in the method by using a larger ordered value to estimate the probability density. 

In the KNN method, the probability density is estimated by 𝑓𝐾𝑁𝑁(𝑥) =
𝑘

𝑛𝑉𝑘(𝑥)
. Because 𝑘 

is larger, 𝑓(𝑥) is larger, 
1

(1+�̂�(𝑥))
 is smaller, and entropy will be larger. Therefore, the fact 

that the entropy and MI measures tend to decrease with the increase in the number of 𝑘 

agrees with the fact that the entropy and MI measures tend to decrease with the decrease in 

the binwidth (or increase in the number of bins) when using the histogram-based method 

with fixed number of bins and probability density function or the histogram-based method 

with fixed number of bins and discrete empirical distribution after normalization, although 

for different reasons. 

Based on the experiments performed and the different values of 𝑘 experimented, the 

entropy and MI measures increase with the increase of the number of replications for the 

same value of 𝑘. The exception occurs for very low values of 𝑘 (when 𝑘 is less than or equal 

to 3, as can be seen in Figure 33 and Figure 34). The increase of the entropy and MI measures 

with the increase in the number of the replications was also observed in the histogram-based 

method with probability density function and for most of the cases when using the 
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histogram-based method with discrete empirical distribution regardless or not normalization 

was applied.  

 

 
Figure 33. Average of entropy and MI measures per different values of k-nearest 

neighbors using KNN method (experiments #1 to #350). 

 

  
Figure 34. Average of entropy and MI measures per low values of k-nearest neighbors 

(𝒌 =  𝟏, 𝟐, and 𝟑) using KNN method (experiments #1 to #350). 
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3.4.5. The impact of different fuzzy membership functions and different number of 

fuzzy subsets on entropy and mutual information measures calculated using fuzzy 

histogram method 

For the fuzzy-histogram based method, there are two different aspects of interest: 

(1) the impact of different fuzzy membership functions, and (2) the impact of different 

number of fuzzy subsets on the entropy and MI measures. 

Figure 35 shows that, similar to the histogram-based method with fixed number of 

bins and probability density function, the entropy and MI measures tend to decrease with 

the increase in the number of fuzzy subsets for the same number of replications regardless 

of the fuzzy membership function. This occurs especially for the entropy measures rather 

than the MI measures and when larger number of fuzzy subsets are considered. The fact 

that the entropy and MI measures tend to decrease with the increase in the number of fuzzy 

subsets is similar to the results from the histogram-based method with fixed number of 

bins and probability density function and also the histogram-based method with fixed 

number of bins and discrete empirical distribution after normalization. The number of 

fuzzy subsets can be seen as the number of bins in the histogram-based method and this is 

why the behavior is similar to the one observed in the histogram-based method, because 

in the entropy approximation the number of fuzzy subsets is used as divisor to approximate 

the entropy as it is the number of bins in the histogram-based method.  

Based on the experiments performed and the different number of fuzzy subsets 

considered, one can see that the entropy and MI measures tend to increase with the 
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increase in the number of replications for number of fuzzy subsets greater than or equal to 

25. This behavior was also observed from other methods such as the KNN and the 

histogram-based method with probability density function.  

 

 
Figure 35. Average of entropy and MI measures per different values of fuzzy subsets 

and fuzzy membership functions using fuzzy-histogram based method (experiments #1 

to #350). 

 

3.4.6. The impact of different traffic intensities, different seeds, different parameter 

values, and different systems on entropy and mutual information measures based 

on the method used 

As it was done when entropy and MI measures were calculated using the 

histogram-based method, the appropriateness of the measures as an uncertainty 

quantification method in simulation models will be investigated by discussing the impacts 
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of different traffic intensities, different seeds, different parameter values, and different 

systems on the measures. 

In the queue example used in this study, it is known that the uncertainty of the 

input 𝑋1 must be equal among the different traffic intensities because the same input model 

and fixed seed were used in the simulation model. For all the methods used (kernel method 

with different values of bandwidth or with Silverman bandwidth, KNN method, or fuzzy-

histogram based method with different membership functions), the entropy of 𝑋1 was 

equal among the different traffic intensities which indicates that the entropy measure is 

possibly accurately measuring the information or uncertainty of 𝑋1. This result can be seen 

in Figure 36 to Figure 41.   

Although a fixed seed was also used for the input 𝑋2, it is not correct to expect that 

𝑋2 should also have equal entropy among different traffic intensities because changes in 

traffic intensities were modeled by changing the capacity of the only existing server, 

instead of creating or eliminating servers. Therefore, even though the seed of the service 

time input, 𝑋2, is fixed, the generated input 𝑋2 are different and, thus, its entropy should 

not remain the same among the different traffic intensities. Reviewing Figure 36 to Figure 

41, one can observe that the entropy of 𝑋2 was also able to capture some differences among 

the different traffic intensities for all the methods considered.  

Finally, one would also expect the reduction in uncertainty in the output provided 

by the input to be different in a high traffic intensity than in a low traffic intensity system. 

That is, the MI measures should be able to capture differences among the different traffic 
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intensities as it did in Figure 36 to Figure 41, which indicates that the MI measure is 

correctly measuring the information or uncertainty of the simulation generated inputs.  

 

 
Figure 36. Entropy and MI measures per queue model per traffic-intensity using kernel 

method with different values of bandwidth (experiments #1 to #90). 

 

 
Figure 37. Entropy and MI measures per queue model per traffic-intensity using kernel 

method with Silverman bandwidth (experiments #1 to #90). 
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Figure 38. Entropy and MI measures per queue model per traffic-intensity using KNN 

method with different values of k-nearest neighbors (experiments #1 to #90). 

 

 
Figure 39. Entropy and MI measures per queue model per traffic-intensity using fuzzy-

histogram based method with different values of fuzzy subsets and cosine fuzzy 

membership function (experiments #1 to #90). 
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Figure 40. Entropy and MI measures per queue model per traffic-intensity using fuzzy-

histogram based method with different values of fuzzy subsets and crisp fuzzy 

membership function (experiments #1 to #90). 

 

 
Figure 41. Entropy and MI measures per queue model per traffic-intensity using fuzzy-

histogram based method with different values of fuzzy subsets and triangular fuzzy 

membership function (experiments #1 to #90). 
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Another aspect investigated was how using different seeds would impact the 

entropy and MI as measures of uncertainty quantification. As shown in Table 66, 

experiments #351 to #440 correspond to the initial experiments numbered #1 to #90, but 

with a different seed (here, named “seed 2”, the specific seed number used is shown in 

Table 66). That is, the same experiment configuration was kept: same interarrival time, 

same service time, same number of servers, but different seeds were used for the 

parameters. Similarly, experiments #471 to #560 correspond to the initial experiments 

numbered #1 to #90 but with another seed (here, named “seed 3”). 

As shown in Figure 42 to Figure 48, the entropy measures and mutual information 

vary based on the seed used. For different seeds, there are different uncertainties. 

Therefore, one should expect different entropy values for the inputs, different entropy 

values for the outputs, and hence different MI values as the results in Figure 42 to Figure 

48 show. From Figure 42 to Figure 48 one can also see that regardless of the seed and the 

method used to calculate the entropy measure, the entropy of 𝑋1 is equal among the 

different traffic intensities as expected.  

Another interesting observation that can be made from Figure 43 to Figure 48 and 

that is also similar from the results observed with the histogram-based method with fixed 

number of bins and probability density function is that when using “seed 3” the entropy 

of �̂�1 and �̂�2 present the greatest variability among the experiments and, a few times, even 

the highest values. This can be used as an indication that the seeds used as “seed 3” are 

likely not a good combination to be used in the experiments as they are resulting in output 

uncertainties that are somehow more different than the ones observed with the other seeds. 
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This is possibly due to some interaction between the seeds used for the simulation 

generated inputs 𝑋1 and 𝑋2 and it shows that entropy can be used to identify the adequacy 

of seeds in simulation studies. The same observation cannot be made from Figure 42 

because the graph shows the average of the results for all the values of bandwidth 

experimented. As previously discussed, for larger values of bandwidth, the entropy 

measures tend to go to 0 and, hence, the observation being discussed here cannot be made. 

However, when only lower values of bandwidth are considered (e.g., bandwidth equal to 

0.0001, 0.001, and 0.01), as shown in Figure 43, the same observation regarding the 

impact of “seed 3” on the entropy of �̂�1 and �̂�2 can be made for the kernel method with 

different values of bandwidth. 

 

 
Figure 42. Entropy and MI measures per queue model per traffic-intensity per seed 

using kernel method with different values of bandwidth. 
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Figure 43. Entropy and MI measures per queue model per traffic-intensity per seed 

using kernel method values of bandwidth equal to 0.0001, 0.001, and 0.01. 

 

 
Figure 44. Entropy and MI measures per queue model per traffic-intensity per seed 

using kernel method with Silverman bandwidth. 
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Figure 45. Entropy and MI measures per queue model per traffic-intensity per seed 

using KNN method with different number of k-nearest neighbors. 

 

 
Figure 46. Entropy and MI measures per queue model per traffic-intensity per seed 

using fuzzy-histogram based method with different values of fuzzy subsets and cosine 

fuzzy membership function. 
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Figure 47. Entropy and MI measures per queue model per traffic-intensity per seed 

using fuzzy-histogram based method with different values of fuzzy subsets and crisp 

fuzzy membership function. 

 

 
Figure 48. Entropy and MI measures per queue model per traffic-intensity per seed 

using fuzzy-histogram based method with different values of fuzzy subsets and 

triangular fuzzy membership function. 

 



205 

 

Another aspect investigated was how different parameter values would impact the 

appropriateness of entropy and MI as measures of uncertainty quantification. Experiments 

#591 to #680 correspond to the initial experiments numbered #1 to #90, but with different 

parameter values (here, named “number 2”, the specific parameter values used in the 

experiments are given in Table 66). Experiments #711 to #800 correspond to the initial 

experiments numbered #1 to #90, but with different parameter values (here, named 

“number 3”).  

From Figure 49 to Figure 54 one can see that because different values of inputs 𝑋1 

and 𝑋2 were used, the entropy of 𝑋1 and 𝑋2 were different among the different 

experiments: “original”, “number 2”, and “number 3”. However, as expected for a fixed 

seed, the entropy of  𝑋1 was still equal among the different traffic intensities within each 

group of experiments. Similar to the observations made when using the histogram-based 

method, from Figure 49 to Figure 54 one can see that regardless of the method being used 

to calculate the entropy or MI measures, the traffic intensity does not appear to have a 

clear relation to the uncertainty of the outputs, as the uncertainty either increases or 

decreases based on the queue model and changes in the system configurations led to 

different values of uncertainty without a clear pattern.  
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Figure 49. Entropy and MI measures per queue model per traffic-intensity per parameter 

value experiment using kernel method with different values of bandwidth. 

 

 
Figure 50. Entropy and MI measures per queue model per traffic-intensity per parameter 

value experiment using kernel method with Silverman bandwidth. 
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Figure 51. Entropy and MI measures per queue model per traffic-intensity per parameter 

value experiment using KNN method with different values of k-nearest neighbors. 

 

 
Figure 52. Entropy and MI measures per queue model per traffic-intensity per parameter 

value experiment using fuzzy-histogram based method with different number of fuzzy 

subsets and cosine membership function. 
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Figure 53. Entropy and MI measures per queue model per traffic-intensity per parameter 

value experiment using fuzzy-histogram based method with different number of fuzzy 

subsets and crisp membership function. 

 

 
Figure 54. Entropy and MI measures per queue model per traffic-intensity per parameter 

value experiment using fuzzy-histogram based method with different number of fuzzy 

subsets and triangular membership function. 
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Finally, the last aspect used to investigate the appropriateness of entropy and MI 

as measures of uncertainty quantification was whether or not the measures would be able 

to capture the uncertainty of different systems. For that, two last groups of experiments 

were run: a CONWIP system and the addition of a third input parameter, namely travel 

time.  

A total of 100 CONWIP experiments were run. Experiments #831 to #930 in Table 

66 correspond to the initial experiments numbered #1 to #100, with same service time but 

constant work in progress. CONWIP systems are systems where the number of items, here 

the number of customers, is kept constant. Because the number of customers is kept 

constant, the CONWIP system is expected to have no uncertainty regarding 𝑌1̂ and, hence, 

the inputs 𝑋1 and 𝑋2 should have no impact on 𝑌1̂. Moreover, the customer’s time in 

system is determined by how long it takes to be serviced plus time spent in the queue, if 

any. The goal of using the CONWIP system is to investigate the effectiveness of the 

entropy measures in capturing these known characteristics. Here, different from the 

previous experiments, the arrival process is determined by the service process.  

Based on the aforementioned characteristics, one should expect the entropy of the 

average number of entities in the system, 𝑌1̂, to be zero. One could expect the entropy of 

the arrival process, 𝑋1, the service time, 𝑋2, and the average time in the system, 𝑌2̂ to be 

equal, as the arrival process and the time in system are dictated by the service time. 

However, in a simulation model two events, e.g., an arrival and service, cannot occur 

exactly at the same time. Moreover, the output uncertainty is not only comprised by the 

input uncertainty but also by some other uncertainties of the system (for instance, the 
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computational limitation), and, hence, some small differences between 𝑋2 and 𝑌2̂ are also 

expected.  

From Figure 55, one can observe that when using the kernel method with different 

values of bandwidth the entropy of 𝑌1̂ is constant over the different number of replications 

and it approximates 0 for larger values of bandwidth (bandwidth = 100 or 1,000). 

However, the entropy of 𝑋1, 𝑋2, and 𝑌2̂ are also constant and approximate 0 for larger 

values of bandwidth. The reason for the entropy to approximate 0 has already been 

discussed in section 3.4.3 and can be an indication of oversmoothing. It is important to 

discuss why the entropy of 𝑌1̂ is constant even for lower values of bandwidth. The reason 

is that in the kernel method the probability density is estimated by 𝑓(𝑦𝑗) =
1

𝑛ℎ
∑ 𝐾(𝑣)𝑛
𝑖=1  

where 𝑣 =
𝑦𝑗−𝑦𝑖

ℎ
. In the CONWIP system, 𝑦 ∀ 𝑖 are equal, which means 𝑣 = 0, 𝐾(𝑣)∀𝑖 

are equal, and because 𝑛 and ℎ are the same ∀𝑗, 𝑓(𝑦𝑗) are equal ∀ 𝑗. Because entropy is 

approximated using �̂�(𝑋) =  −
1

𝑛
∑ log 𝑓(𝑋𝑗)
𝑛
𝑗=1 , regarding of the number of replications, 

�̂�(𝑋) will be the same for the same value of bandwidth.  

One would expect that the inputs 𝑋1 and 𝑋2 should have no impact on 𝑌1̂ and, 

hence, 𝐼(𝑋1; 𝑌1) and 𝐼(𝑋2; 𝑌1) should be equal to 0. However, from Figure 55 one can see 

that the MI is not 0 and it slightly varies over the different number of replications for lower 

values of bandwidth. The reason for this is that MI can be calculated by 𝐼(𝑋1; 𝑌1) =

𝐻(𝑋1) + 𝐻(𝑌1) − 𝐻(𝑋1, 𝑌1). As it was just discussed, in the CONWIP system 𝐻(𝑌1) is 

constant regardless of the value of the bandwidth. In the kernel method, 𝑓𝐾𝑒𝑟𝑛𝑒𝑙(𝑥1, 𝑦1) =
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1

𝑛ℎ𝑥1ℎ𝑦1
∑ (𝐾 (

𝑥1−𝑥1𝑖

ℎ𝑥1
)𝐾 (

𝑦1−𝑦1𝑖

ℎ𝑦1
))𝑛

𝑖=1 . Because 𝐾(𝑣) ∈ [0,1], we know that 

𝐾 (
𝑥1−𝑥1𝑖

ℎ𝑥1
)𝐾 (

𝑦1−𝑦1𝑖

ℎ𝑦1
) ≤  𝐾 (

𝑥1−𝑥1𝑖

ℎ𝑥1
), 𝐾 (

𝑥1−𝑥1𝑖

ℎ𝑥1
)𝐾 (

𝑦1−𝑦1𝑖

ℎ𝑦1
) ≤  𝐾 (

𝑦1−𝑦1𝑖

ℎ𝑦1
), and if 

𝐾 (
𝑥1−𝑥1𝑖

ℎ𝑥1
) = 0, 𝐾 (

𝑥1−𝑥1𝑖

ℎ𝑥1
)𝐾 (

𝑦1−𝑦1𝑖

ℎ𝑦1
) = 0. For lower values of bandwidth ℎ𝑥1ℎ𝑦1 ≤ ℎ𝑥1 

and ℎ𝑥1ℎ𝑦1 ≤ ℎ𝑦1 . Therefore, in this case there is a high chance that 𝐻(𝑋1, 𝑌1) ≠ 𝐻(𝑋1). 

More precisely, because 𝐾 (
𝑥1−𝑥1𝑖

ℎ𝑥1
)𝐾 (

𝑦1−𝑦1𝑖

ℎ𝑦1
) ≤  𝐾 (

𝑥1−𝑥1𝑖

ℎ𝑥1
),  𝑓(𝑥, 𝑦) tend to be smaller 

than 𝑓(𝑥), even though there is also a decrease in the divisor ℎ𝑥1ℎ𝑦1. The joint entropy is 

approximated by �̂�(𝑋1, 𝑌1) =  −
1

𝑛
∑ log [

1

1+�̂�(𝑥,𝑦)
]𝑛

𝑗=1 . Hence, with the decrease in 

𝑓(𝑥, 𝑦), 
1

1+�̂�(𝑥,𝑦)
 increases and the joint entropy decreases. Hence, for lower values of 

bandwidth, 𝐻(𝑋1, 𝑌1) tend to be smaller than 𝐻(𝑋1) and 𝐼(𝑋1; 𝑌1) = 𝐻(𝑋1) + 𝐻(𝑌1) −

𝐻(𝑋1, 𝑌1) will not be constant over the number of replications. As the value of the 

bandwidth increases, all entropy measures tend to be constant over the number of 

replications and, consequently, the MI will also tend to be constant. 

From Figure 56, one can see that, when using lower values of bandwidth, the 

entropy of 𝑋1, 𝑋2, and 𝑌2̂ are equal for low number of replications (number of replications 

= 10 or 20). As the number of replications increases, the differences between the entropy 

of 𝑋1, 𝑋2, and 𝑌2̂ also increase. This result is similar to what was observed with the 

histogram-based method. There appears to be an interaction between the binwidth (or 

bandwidth) and the number of replications used. When using the kernel method, the 

differences between 𝑋1, 𝑋2, and 𝑌2̂ increases with changes in the number of replications, 
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while when using the histogram-based method with probability density function the 

difference increases with changes in the number of bins (binwidth). Differences due to 

number of bins may indicate that the specific bin is not adequate to estimate the 

probability. On the other hand, differences due to number of replications may indicate that 

as the data increases there are more uncertainties in the model and the differences between 

the inputs and output increase. However, one can argue that if this was the case, this should 

occur for every probability estimation method used to calculate the entropy measures.  

 

 
Figure 55. Entropy and MI measures per queue model per number of bins using kernel 

method with different values of bandwidth (CONWIP vs original experiments). 
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Figure 56. Entropy and MI measures per different values of bandwidth per replication 

using kernel method for CONWIP systems. 

 

When using the KNN method to calculate the entropy and MI measures, one can 

observe from Figure 57 that the entropy of 𝑌1̂ is equal to 0 regardless of the number of k-

nearest neighbors used to calculate the measure. Similar behavior is not observed for the 

entropy of  𝑋1, 𝑋2, and 𝑌2̂, which is an indication that when using the KNN method the 

entropy is able to appropriately capture the characteristics of the CONWIP system. 

However, when analyzing the MI, one can see that although I(𝑋1; 𝑌1) and I(𝑋2; 𝑌1) are 

closer to 0 than I(𝑋1; 𝑌2) and I(𝑋2; 𝑌2), the I(𝑋1; 𝑌1) and I(𝑋2; 𝑌1) are not equal to 0 as 

expected in the CONWIP system and, hence, the MI is not appropriately representing the 

average reduction in uncertainty about the value of 𝑋 provided by the value of 𝑌. The 

reason for the MI to not be able to appropriately represent the average reduction in 

uncertainty comes from how the method is estimated in the multivariate case. For 
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calculating the entropy, the probability density was estimated using 𝑓𝐾𝑁𝑁(𝑦) =

𝑘

𝑛2√(𝑦1−𝑦1𝑘)
2
 and for calculating the MI, the probability density was estimated using 

𝑓𝐾𝑁𝑁(𝑥; 𝑦) =
𝑘

𝑛𝜋√(𝑥1−𝑥1𝑘)
2
+(𝑦1−𝑦1𝑘)

2
. In the CONWIP system, when 𝑦1 is the NIS input, 

(𝑦1 − 𝑦1𝑘)
2
 is equal to 0 because 𝑦1 is always constant. The MI can be calculated by 

I(𝑋1; 𝑌1) = H(𝑋1) + 𝐻(𝑌1) − 𝐻(𝑋1, 𝑌1). Because we have, H(𝑌1) = 0, I(𝑋1; 𝑌1) =

H(𝑋1) − 𝐻(𝑋1, 𝑌1). However, 
𝑘

𝑛2√(𝑥1−𝑥1𝑘)
2
>

𝑘

𝑛𝜋√(𝑥1−𝑥1𝑘)
2
+(𝑦1−𝑦1𝑘)

2
 and, hence, 

I(𝑋1; 𝑌1) > 0. Because H(𝑌1) = 0, I(𝑋1; 𝑌1) is usually smaller in the CONWIP system 

than in the other systems. Similar analysis can be done for I(𝑋2; 𝑌1). 

When using the KNN method the entropy of 𝑋1, 𝑋2, and 𝑌2̂ are different regardless 

of the number of replications and the number of k-nearest neighbors used. Nevertheless, 

these differences are not large, which could still be explained due to the computational 

limitation of the simulation model of generating events simultaneously.  
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Figure 57. Entropy and MI measures per queue model per number of bins using KNN 

method with different values k-nearest neighbors (CONWIP vs original experiments). 

 

When using the fuzzy-histogram based method to calculate the entropy and MI 

measures, one can observe from Figure 58 to Figure 60 that, regardless of the fuzzy 

membership function considered, the entropy of 𝑌1̂ is equal to 0. This result is similar to 

what was observed from the KNN method. The reason for the entropy of 𝑌1̂ be equal to 0 

is due to how the probability density is estimated by the method. The issue here is that 

because 𝑌1̂ is constant, the universe is 𝑦 = Ω = 𝑎 instead of 𝑦 ∈ Ω = [𝑎, 𝑏], and, 

consequently, it is not possible to define 𝑝 fixed nodes of the universe 𝑚1 < 𝑚2 < ⋯ <

𝑚𝑝. For the universe 𝑦 ∈ Ω = [𝑎, 𝑏], ℎ𝑘 = 𝑚𝑘+1 −𝑚𝑘 = ℎ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 would be 

determined by ℎ =
𝑏−𝑎

𝑝−1
. When 𝑌1̂ is constant, this would lead to ℎ = 0. Because the 

probability density is estimated by 𝑓𝑓𝑢𝑧𝑧𝑦(𝑦) =
∑ 𝜇𝐵𝑘(𝑦)
𝑛
𝑖=1

𝑛ℎ
, this would result in 



216 

 

indeterminations in the calculation. On the other hand, we know by definition that if 𝑦 ∉

[𝑚𝑘, 𝑚𝑘+1], then 𝜇𝐵𝑘(𝑦) = 0. Based on that, it was considered that when 𝑌1̂ is constant, 

𝜇𝐵𝑘(𝑦) = 0. Because �̂�(𝑌1) =  −
1

𝑛
∑ log [

1

1+�̂�(𝑦)
]𝑛

𝑗=1 , when 𝑓(𝑦) = 0, �̂�(𝑌1) = 0. 

When analyzing the MI, one can see that I(𝑋1; 𝑌1) and I(𝑋2; 𝑌1) are not equal to 0 

as expected in the CONWIP system and, hence, the MI is not appropriately representing 

the average reduction in uncertainty about the value of 𝑋 provided by the value of 𝑌. The 

reason again is due to how the probability densities are estimated by the method. The MI 

can be calculated by 𝐼(𝑋1; 𝑌1) = 𝐻(𝑋1) + 𝐻(𝑌1) − 𝐻(𝑋1, 𝑌1) and �̂�(𝑋1, 𝑌1) =

 −
1

𝑛
∑ log [

1

1+�̂�(𝑥,𝑦)
]𝑛

𝑗=1 . In the fuzzy-histogram based method, 𝑓𝑓𝑢𝑧𝑧𝑦(𝑥, 𝑦) =

∑ 𝜇𝐴𝑘×𝐵𝑘
(𝑥,𝑦)𝑛

𝑖=1

𝑛ℎ
, where 𝜇𝐴𝑘×𝐵𝑘(𝑥, 𝑦) = min (𝜇𝐴𝑘(𝑥), 𝜇𝐵𝑘(𝑦)) is the joint membership 

function of 𝑥 and 𝑦. Based on that and the fact that 𝜇𝐵𝑘(𝑦) = 0, we have 𝜇𝐴𝑘×𝐵𝑘(𝑥, 𝑦) =

0, 𝑓(𝑥1, 𝑦1) = 0, and 𝐻(𝑋1, 𝑌1) = 0. Therefore, 𝐼(𝑋1; 𝑌1) = 𝐻(𝑋1) and not equal to 0. 

When using the fuzzy-histogram based method the entropy of 𝑋1, 𝑋2, and 𝑌2̂ are 

different regardless of the number of replications and the number of fuzzy subsets used. 

The exception occurs when crisp membership function is used and 10 replications is 

considered. In this case, the entropy of 𝑋1, 𝑋2, and 𝑌2̂ are equal regardless of the number 

of fuzzy subsets used.  
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Figure 58. Entropy and MI measures per queue model per number of bins using fuzzy-

histogram based method with cosine fuzzy membership function (CONWIP vs original 

experiments). 

 

  
Figure 59. Entropy and MI measures per queue model per number of bins using fuzzy-

histogram based method with crisp fuzzy membership function (CONWIP vs original 

experiments). 
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Figure 60. Entropy and MI measures per queue model per number of bins using fuzzy-

histogram based method with triangular fuzzy membership function (CONWIP vs 

original experiments). 

 

In the last group of experiment, a third input parameter 𝑋3 representing the travel 

time was added to the 𝑀/𝑀/𝑠 system. A total of 200 experiments with this third input 

was run: 100 experiments with the added third input as deterministic travel time of 10 

minutes and 100 experiments with the added third input as stochastic travel time 

exponentially distributed with a mean of 10 minutes and fixed seed. 

When using the deterministic travel time input, the entropy of 𝑋3 should be zero, 

as there is no uncertainty associated with the input. Similarly, the input 𝑋3 should bring 

no reduction in the average uncertainty of the simulation outputs 𝑌1̂ and 𝑌2̂, which means 

that I(𝑋3; 𝑌1) and I(𝑋3; 𝑌2) should be equal to 0. For the stochastic case, there is 

uncertainty associated with the travel time input and the entropy and MI should capture it. 
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The observations that can be made when adding the third input deterministic are 

identical to the ones made from the CONWIP system, as can be seen from Figure 61 to 

Figure 65.  

When using the kernel method with different values of bandwidth the entropy of 

X3 is constant over the different number of replications and it approximates 0 for larger 

values of bandwidth (bandwidth = 1,000) but it is not equal to 0. With respect to the MI, 

as it was discussed in the CONWIP system, the MI will not be constant over the number 

of replications because 𝐻(𝑋3, 𝑌1) tends to be smaller than 𝐻(𝑌1) and 𝐼(𝑋3; 𝑌1) = 𝐻(𝑋3) +

𝐻(𝑌1) − 𝐻(𝑋3, 𝑌1). The same explanation can be applied to I(𝑋3; 𝑌2). Both I(𝑋3; 𝑌1) and 

I(𝑋3; 𝑌2) will tend to become constant over the different number of replications and to 

approximate 0 as the value of the bandwidth becomes large (bandwidth = 1,000). These 

results of the entropy and MI indicate that the measures are somehow capturing the 

deterministic behavior of the input X3, but are not appropriately capturing the lack of 

uncertainty of this input nor the lack of impact of this input on the outputs, as can be seen 

in Figure 61.  

When using the KNN method, it is possible to observe from Figure 62 that the 

entropy of X3 is equal to 0 regardless of the number of k-nearest neighbors used to 

calculate the measure, but I(𝑋3; 𝑌1) and I(𝑋3; 𝑌2) are not equal to 0, although these MI 

measures are closer to 0 than the other MI measures. 

Finally, when using the fuzzy-histogram based method, one can observe from 

Figure 63 to Figure 65 that the entropy of X3 is equal to 0 regardless of the fuzzy 

membership function and/or the number of fuzzy subsets used to calculate the measure, 
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but I(𝑋3; 𝑌1) and I(𝑋3; 𝑌2) are not equal to 0. The KNN method and fuzzy-histogram based 

method present similar results in detecting the uncertainty of the deterministic inputs and 

the impact of this input on the outputs. The difference is that in the KNN method the MI 

is given by I(𝑋3; 𝑌1) = H(𝑌1) − 𝐻(𝑋3, 𝑌1), because 𝐻(𝑋3, 𝑌1) ≠ 0, while in the fuzzy-

histogram based method 𝐻(𝑋3, 𝑌1) = 0 and hence,  I(𝑋3; 𝑌1) = H(𝑌1). 

 

 
Figure 61. Entropy and MI measures per queue model per number of bins using kernel 

method with different values of bandwidth (deterministic travel time vs stochastic travel 

time). 

 



221 

 

 
Figure 62. Entropy and MI measures per queue model per number of bins using KNN 

method with different values of k-nearest neighbors (deterministic travel time vs 

stochastic travel time). 

 

 
Figure 63. Entropy and MI measures per queue model per number of bins using fuzzy-

histogram based method with different number of fuzzy subsets and cosine fuzzy 

membership function (deterministic travel time vs stochastic travel time). 
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Figure 64. Entropy and MI measures per queue model per number of bins using fuzzy-

histogram based method with different number of fuzzy subsets and crisp fuzzy 

membership function (deterministic travel time vs stochastic travel time). 

 

 
Figure 65. Entropy and MI measures per queue model per number of bins using fuzzy-

histogram based method with different number of fuzzy subsets and triangular fuzzy 

membership function (deterministic travel time vs stochastic travel time). 

 

3.4.7. The histogram-based method 
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In section 2, the entropy and MI measures were calculated using the histogram-

based method. In that section, the use of a data normalization method was proposed to 

overcome the challenges encountered when entropy is applied to continuous variables. 

The issue with the data normalization method is that it could only be applied when fixed 

number of bins was used. 

In section 3, a different approach is being proposed based on Jaynes’ work. This 

approach can be applied regardless of method and the number of bins being used. In this 

section, the impact of different number of bins, different traffic intensities, different seeds, 

different parameter values, and different systems on the entropy and mutual information 

measures calculated using the histogram-based method with the approach based on 

Jaynes’ work will be discussed. 

From Figure 66 one can see that the entropy and MI measures calculated using the 

histogram-based method with the approach built on Jaynes’ method lead to results similar 

to the entropy and MI measures calculated using the histogram-based method based on 

data normalization in terms of behavior of the measures over the number of bins and 

number of replications. That is, the entropy and MI measures tend to decrease with the 

increase in the number of bins (or decrease in the binwidth) for the same number of 

replications and the entropy and MI measures tend to increase with the increase in the 

number of replications for the same number of bins (or binwidth). The exception is when 

the number of bins is low (number of bins less than or equal to 25). For low number of 

bins, the results among the different approaches are somehow different. In the approach 

based on Jaynes’ method, the entropy and MI measures tend to, in fact, decrease with the 
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increase of the number of replications, while in the data normalization approach the 

entropy is either constant or increases.  

Another big difference among the approaches is that with the approach based on 

Jaynes’ method, the entropy and MI measures are always between 0 and 1, while this is 

not true for the method based on the data normalization. The reason that entropy is always 

between 0 and 1 in the approach based on Jaynes’ method is that 𝑓ℎ𝑖𝑠𝑡
𝑗
(𝑥) =

1

𝑛ℎ
∑ 𝐈{𝑥𝑖 ∈ [𝑡𝑗 , 𝑡𝑗+1)}
𝑛
𝑖=1  ≥ 0 and, consequently, 0 ≤

1

1+�̂�(𝑥)
≤ 1, which leads to 0 ≤

�̂�(𝑋1) =  −
1

𝑛
∑ log [

1

1+�̂�(𝑥)
]𝑛

𝑗=1 ≤ 1. 

 

 
Figure 66. Average of entropy and MI measures per different bandwidths using 

histogram-based method with different number of bins (experiments #1 to #350). 
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As it occurred with all the other methods (kernel, KNN, and fuzzy-histogram 

based) using the approach based on Jaynes’ work and also with the histogram-based 

method with data normalization, the entropy of 𝑋1 was equal among the different traffic 

intensities when the entropy measure was calculated using the histogram-based method, 

which indicates that the entropy measure is possibly accurately measuring the information 

or uncertainty of 𝑋1, as can be seen in Figure 67. Although a fixed seed was also used for 

the input 𝑋2, it is not correct to expect that 𝑋2 should also have equal entropy among 

different traffic intensities, as it has already been discussed. As Figure 67 shows, the 

entropy of 𝑋2 was also able to capture some differences among the different traffic 

intensities, as expected. 

  

 
Figure 67. Entropy and MI measures per queue model per traffic-intensity using 

histogram-based method with different number of bins (experiments #1 to #90). 
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Figure 68 and Figure 69 show how using different seeds and different parameter 

values would impact the entropy and MI as measures of uncertainty quantification. As 

shown in Figure 68, the entropy measures and mutual information vary based on the seed 

used. For different seeds, there are different uncertainties, as expected. Similar from the 

results observed with the other methods, when using “seed 3” the entropy of �̂�1 and �̂�2 

present the greatest variability among the experiments, which can be potentially used as 

an indication that the seeds used as “seed 3” are likely not a good combination to be used 

in the experiments.  

From Figure 69 one can see that because different values of inputs 𝑋1 and 𝑋2 were 

used, the entropy of 𝑋1 and 𝑋2 were different among the different experiments: “original”, 

“number 2”, and “number 3”. However, as expected for a fixed seed, the entropy of  𝑋1 

was still equal among the different traffic intensities within each group of experiments. 

Similar to the observations made from the other methods, it was not possible to identify a 

clear relation between the traffic intensity and the uncertainty of the outputs, as the 

uncertainty either increases or decreases based on the queue model without a clear pattern.  
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Figure 68. Entropy and MI measures per queue model per traffic-intensity per seed 

using histogram-based method with different number of bins. 

 

 
Figure 69. Entropy and MI measures per queue model per traffic-intensity per parameter 

value experiment using histogram-based method with different number of bins. 
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The final aspect investigated was whether or not the measures would be able to 

capture the uncertainty of different systems. More specifically, the CONWIP system and 

the addition of a third input parameter, namely travel time. Again, the results obtained 

were very similar to the ones obtained with the histogram-based method with probability 

density function, fixed number of bins, and data normalization. As can be seen in Figure 

70 and Figure 71, when the input or output is deterministic, the entropy is constant over 

the number of replications and it approximates 0 as the number of bins increases. The MI 

presents identical behavior to the entropy measures for reasons already discussed. This 

indicates that similar to the kernel, KNN, and fuzzy-histogram method, the measures 

calculated using the histogram-based method are somehow capturing the deterministic 

behavior of the output Y1 (or input X3), but are not appropriately capturing the lack of 

uncertainty of this output (or input) nor the lack of impact of this output (or input) on the 

inputs (or outputs), as can be seen in Figure 70 and Figure 71.  
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Figure 70. Entropy and MI measures per queue model per number of bins using 

histogram-based method with different number of bins (CONWIP vs original 

experiments). 

 

 
Figure 71. Entropy and MI measures per queue model per number of bins using 

histogram-based method with different number of bins (deterministic travel time vs 

stochastic travel time). 
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3.4.8. Analysis of entropy and MI as a measure of uncertainty quantification in 

simulation models 

In order to assess the potential of entropy and MI as measures of uncertainty 

quantification in simulation model, the same procedure used in section 2.4.4 was adopted 

here, where the measures were calculated using the histogram-based method. The 

procedure consists of comparing the entropy and MI measures results against results of 

methods commonly applied in the scientific community. 

For the entropy measures, the following comparisons were performed:  

• The entropy measure (or average entropy measure) detects an increase or 

decrease in uncertainty with the increase in the number of replications that is 

in agreement with the detection by the error method being compared to. 

• The entropy measure (or average entropy measure) detects the experiment that 

leads to the maximum uncertainty in agreement with the detection by the error 

method being compared to.  

For the comparisons, four error methods were considered: SAE, SSE, MAE, and 

MSE. For consistency in the comparison, the average entropy measure was considered 

instead of entropy measure when MAE or MSE was the error comparison method. This 

led to a total of eight comparisons per input or output per method used to calculate the 

entropy measures. 

For details about the reasons for the above choice, please refer to section 2.4.4. 

JMP® and Tableau® software were used to perform the comparisons and analysis. Each 

comparison was performed for the entropy measures calculated using: (1) the kernel 
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method with different number of bandwidths; (2) the kernel method with Silverman 

bandwidth; (3) the KNN method; (4) the fuzzy-histogram based method with cosine fuzzy 

membership function; (5) the fuzzy-histogram based method with crisp fuzzy membership 

function; and, (6) the fuzzy-histogram based method with triangular fuzzy membership 

function.  

For the MI measure, the MI results were compared to the results of three other 

measures of dependence between variables: distance correlation, Pearson correlation, and 

𝑅2𝑎𝑑𝑗. To assess the results, the following analyses were performed: 

• The MI is capable of identifying the input 𝑋𝑖 that has the greatest impact on 

the uncertainty of the output 𝑌𝑗 in agreement with the measure of dependence. 

• The MI is capable of identifying the input 𝑋𝑖 that has the least impact on the 

uncertainty of the output 𝑌𝑗 in agreement with the measure of dependence. 

where 𝑖 = 1,2 or 𝑖 = 1,2,3 depending on the scenario being evaluated and 𝑗 = 1,2. 

To compare the MI with the measures of dependence an analysis procedure had to 

be developed because there could be experiments where more than one input would be 

identified as the one with the greatest impact on the output by either the MI or the other 

measures of dependence. Similarly, there could be experiments where more than one input 

would be identified as the one with the least impact on the output by the MI or the other 

measures of dependence. In these cases, where more than one input would be identified, 

a procedure to identify whether the MI and the measure of dependence were in agreement 

was important. This procedure was also described in detailed in section 2.4.4, so it is 

skipped here. 
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Table 33 to Table 41 show the results of the comparison between the entropy 

measures and the SAE, SSE, MAE, and MSE for each of the density estimation methods 

considered in this section of the dissertation (kernel method, KNN method, and fuzzy-

histogram based method).  

As shown in Table 33, considering the comparison to detect an increase or decrease 

in uncertainty the entropy measures calculated using kernel method with different values 

of bandwidth and different kernel functions do not appear to have results in agreement 

with the SAE or SSE method for low values of bandwidth (considering the values of the 

bandwidth experimented – i.e., 0.0001, 0.001, and 0.001). This implies, for instance, that 

only 2.39% of the time the results of 𝐻(𝑋1) matched the results of the SAE or SSE method 

for a value of bandwidth of 0.001 when using either the normal or the Epanechnikov kernel 

functions. The agreement between the entropy measures and the SAE or SSE methods 

increases as the bandwidth value increases until it reaches its maximum. It is worth noting 

that the comparisons performed between the entropy measures and the SAE method led 

to exactly the same results as of the comparisons performed between the entropy measures 

and the SSE method.  

The average of the entropy measures calculated using the kernel method with 

different values of bandwidth and different kernel functions was compared to MAE and 

MSE. In this case, it is observed that the performance of the method is, in general, constant 

over the different values of bandwidth or for the outputs it shows slightly improvement in 

performance with the increase of the value of the bandwidth. Although the entropy 

measures when compared against the MAE or MSE perform poorer than when compared 
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against SAE or SSE, the method can still achieve a performance of about 45% to 55%, 

with the exception of when considering 𝐻(𝑋3).  

Similar observations can be made in terms of the entropy measures performance 

to detect the experiment that leads to the maximum uncertainty. As shown in Table 34, 

the ability of the entropy measures in comparison to the SAE and SSE method increases 

with the increase of the value of the bandwidth until it reaches its maximum and the 

performance of the average entropy measures when compared to MAE or MSE are 

constant over the different values of bandwidth. Analogous to what was observed from 

the results of the entropy measures calculated using the histogram-based method with 

fixed number of bins and probability density function, the performance of the entropy 

measures to detect the experiment that leads to the maximum uncertainty is poor when 

compared to MAE or MSE. 

By observing all the results, one can see that a potential good choice for the 

bandwidth for the queue system under investigation would be a value between 0.2 and 0.5. 

These values of bandwidth led to close to the best performance, if not the best 

performance, and could also minimize the risks of oversmoothing that one may encounter 

when choosing a large value of bandwidth such as 1,000 or even 5.  

The results obtained with the kernel method are very similar to the ones obtained 

with the histogram-based method using fixed number of bins and probability density 

function in terms of behavior. The difference is that, overall, the kernel method appears to 

have worse performance when compared to the SAE, SSE, MAE, and MSE than the 

histogram-based method using fixed number of bins and probability density function. 
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Another difference is that the performance of the entropy measure calculated using the 

kernel method when compared with the MAE or MSE is in general constant over the 

different values of bandwidth, while the performance of the entropy measure calculated 

using the histogram-based method and probability density function is only constant for 

lower number of bins. However, when histogram-based method and discrete empirical 

distribution is considered, the performance of the entropy measure when compared with 

the MAE or MSE is also constant over the different number of bins.   

 

Table 33. Results from kernel method using different values of bandwidth and different 

kernel functions for detecting an increase or decrease in uncertainty with the increase in 

the number of replications. 

Entropy 
Function 

type 

Bandwidth 

value 

Mean of 

comparison 

entropy vs. 

SAE 

Mean of 

comparison 

entropy vs. 

SSE 

Mean of 

comparison 

average 

entropy vs. 

MAE 

Mean of 

comparison 

average 

entropy vs. 

MSE 

𝐻(𝑋1) 

Epanechnikov 

0.0001 0.00% 0.00% 44.30% 54.71% 

0.001 2.39% 2.39% 44.30% 54.71% 

0.01 44.30% 44.30% 44.30% 54.71% 

0.1 79.32% 79.32% 44.30% 54.71% 

0.2 87.34% 87.34% 44.30% 54.71% 

0.5 90.86% 90.86% 44.30% 54.71% 

1 90.86% 90.86% 44.30% 54.71% 

1.5 90.86% 90.86% 44.30% 54.71% 

5 90.86% 90.86% 44.30% 54.71% 

10 90.86% 90.86% 44.30% 54.71% 

100 90.86% 90.86% 44.30% 54.71% 

1000 90.86% 90.86% 44.30% 54.71% 

Normal 

0.0001 0.00% 0.00% 44.30% 54.71% 

0.001 2.39% 2.39% 44.30% 54.71% 

0.01 41.49% 41.49% 44.30% 54.71% 

0.1 78.90% 78.90% 44.30% 54.71% 

0.2 84.53% 84.53% 44.30% 54.71% 

0.5 90.44% 90.44% 44.30% 54.71% 
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1 90.86% 90.86% 44.30% 54.71% 

1.5 90.86% 90.86% 44.30% 54.71% 

5 90.86% 90.86% 44.30% 54.71% 

10 90.86% 90.86% 44.30% 54.71% 

100 90.86% 90.86% 44.30% 54.71% 

1000 90.86% 90.86% 44.30% 54.71% 

𝐻(𝑋2) 

Epanechnikov 

0.0001 0.00% 0.00% 45.43% 52.18% 

0.001 1.69% 1.69% 45.43% 52.18% 

0.01 46.41% 46.41% 45.43% 52.18% 

0.1 80.03% 80.03% 45.43% 52.18% 

0.2 86.92% 86.92% 45.43% 52.18% 

0.5 88.19% 88.19% 45.43% 52.18% 

1 88.19% 88.19% 45.43% 52.18% 

1.5 88.19% 88.19% 45.43% 52.18% 

5 88.19% 88.19% 45.43% 52.18% 

10 88.19% 88.19% 45.43% 52.18% 

100 88.19% 88.19% 45.43% 52.18% 

1000 88.19% 88.19% 45.43% 52.18% 

Normal 

0.0001 0.00% 0.00% 45.43% 52.18% 

0.001 1.13% 1.13% 45.43% 52.18% 

0.01 41.21% 41.21% 45.43% 52.18% 

0.1 79.61% 79.61% 45.43% 52.18% 

0.2 83.83% 83.83% 45.43% 52.18% 

0.5 87.48% 87.48% 45.43% 52.18% 

1 88.05% 88.05% 45.43% 52.18% 

1.5 88.19% 88.19% 45.43% 52.18% 

5 88.19% 88.19% 45.43% 52.18% 

10 88.19% 88.19% 45.43% 52.18% 

100 88.19% 88.19% 45.43% 52.18% 

1000 88.19% 88.19% 45.43% 52.18% 

𝐻(𝑋3) Epanechnikov 

0.0001 33.33% 33.33% 19.44% 24.44% 

0.001 12.78% 12.78% 19.44% 24.44% 

0.01 32.78% 32.78% 19.44% 24.44% 

0.1 61.11% 61.11% 19.44% 24.44% 

0.2 61.11% 61.11% 19.44% 24.44% 

0.5 57.22% 57.22% 19.44% 24.44% 

1 56.11% 56.11% 19.44% 24.44% 

1.5 50.56% 50.56% 19.44% 24.44% 

5 61.67% 61.67% 19.44% 24.44% 

10 67.22% 67.22% 19.44% 24.44% 
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100 89.44% 89.44% 19.44% 24.44% 

1000 89.44% 89.44% 19.44% 24.44% 

Normal 

0.0001 27.78% 27.78% 19.44% 24.44% 

0.001 7.22% 7.22% 19.44% 24.44% 

0.01 37.22% 37.22% 19.44% 24.44% 

0.1 50.00% 50.00% 19.44% 24.44% 

0.2 72.22% 72.22% 19.44% 24.44% 

0.5 56.11% 56.11% 19.44% 24.44% 

1 56.11% 56.11% 19.44% 24.44% 

1.5 56.11% 56.11% 19.44% 24.44% 

5 72.78% 72.78% 19.44% 24.44% 

10 78.33% 78.33% 19.44% 24.44% 

100 89.44% 89.44% 19.44% 24.44% 

1000 89.44% 89.44% 19.44% 24.44% 

𝐻(𝑌1) 

Epanechnikov 

0.0001 0.98% 0.98% 49.37% 54.85% 

0.001 3.52% 3.52% 49.37% 54.85% 

0.01 45.99% 45.99% 49.37% 54.85% 

0.1 83.40% 83.40% 49.37% 54.85% 

0.2 89.45% 89.45% 48.95% 54.43% 

0.5 90.44% 90.44% 48.95% 54.43% 

1 90.30% 90.30% 48.95% 54.43% 

1.5 90.30% 90.30% 48.95% 54.43% 

5 90.30% 90.30% 48.95% 54.43% 

10 90.30% 90.30% 48.95% 54.43% 

100 90.30% 90.30% 48.95% 54.43% 

1000 90.15% 90.15% 48.95% 54.43% 

Normal 

0.0001 0.98% 0.98% 49.37% 54.85% 

0.001 2.95% 2.95% 49.37% 54.85% 

0.01 41.07% 41.07% 49.37% 54.85% 

0.1 82.28% 82.28% 49.37% 54.85% 

0.2 87.48% 87.48% 49.09% 54.57% 

0.5 90.01% 90.01% 48.95% 54.43% 

1 90.30% 90.30% 48.95% 54.43% 

1.5 90.15% 90.15% 48.95% 54.43% 

5 90.30% 90.30% 48.95% 54.43% 

10 90.30% 90.30% 48.95% 54.43% 

100 90.30% 90.30% 48.95% 54.43% 

1000 90.30% 90.30% 48.95% 54.43% 

𝐻(𝑌2) Epanechnikov 
0.0001 0.56% 0.56% 48.24% 53.45% 

0.001 2.53% 2.53% 48.38% 53.59% 
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0.01 46.84% 46.84% 48.38% 53.59% 

0.1 83.26% 83.26% 48.38% 53.59% 

0.2 87.62% 87.62% 48.10% 53.31% 

0.5 89.17% 89.17% 48.10% 53.31% 

1 88.75% 88.75% 48.10% 53.31% 

1.5 88.75% 88.75% 48.10% 53.31% 

5 88.75% 88.75% 48.10% 53.31% 

10 88.75% 88.75% 48.10% 53.31% 

100 88.75% 88.75% 48.10% 53.31% 

1000 88.61% 88.61% 48.10% 53.31% 

Normal 

0.0001 0.56% 0.56% 48.24% 53.45% 

0.001 1.83% 1.83% 48.38% 53.59% 

0.01 42.76% 42.76% 48.38% 53.59% 

0.1 81.86% 81.86% 48.38% 53.59% 

0.2 87.20% 87.20% 48.10% 53.31% 

0.5 88.33% 88.33% 48.10% 53.31% 

1 88.61% 88.61% 48.10% 53.31% 

1.5 88.75% 88.75% 48.10% 53.31% 

5 88.75% 88.75% 48.10% 53.31% 

10 88.75% 88.75% 48.10% 53.31% 

100 88.75% 88.75% 48.10% 53.31% 

1000 88.75% 88.75% 48.10% 53.31% 

 

Table 34. Results from kernel method using different values of bandwidth and different 

kernel functions for detecting the experiment that leads to the maximum uncertainty. 

Entropy 
Function 

type 

Bandwidth 

value 

Mean of 

comparison 

entropy vs. 

SAE 

Mean of 

comparison 

entropy vs. 

SSE 

Mean of 

comparison 

average 

entropy vs. 

MAE 

Mean of 

comparison 

average 

entropy vs. 

MSE 

𝐻(𝑋1) Epanechnikov 

0.0001 0.00% 0.00% 10.13% 10.13% 

0.001 0.00% 0.00% 10.13% 10.13% 

0.01 0.00% 0.00% 10.13% 10.13% 

0.1 87.34% 87.34% 10.13% 10.13% 

0.2 87.34% 87.34% 10.13% 10.13% 

0.5 87.34% 87.34% 10.13% 10.13% 

1 87.34% 87.34% 10.13% 10.13% 

1.5 87.34% 87.34% 10.13% 10.13% 

5 87.34% 87.34% 10.13% 10.13% 

10 87.34% 87.34% 10.13% 10.13% 
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100 87.34% 87.34% 10.13% 10.13% 

1000 87.34% 87.34% 10.13% 10.13% 

Normal 

0.0001 0.00% 0.00% 10.13% 10.13% 

0.001 0.00% 0.00% 10.13% 10.13% 

0.01 0.00% 0.00% 10.13% 10.13% 

0.1 87.34% 87.34% 10.13% 10.13% 

0.2 87.34% 87.34% 10.13% 10.13% 

0.5 87.34% 87.34% 10.13% 10.13% 

1 87.34% 87.34% 10.13% 10.13% 

1.5 87.34% 87.34% 10.13% 10.13% 

5 87.34% 87.34% 10.13% 10.13% 

10 87.34% 87.34% 10.13% 10.13% 

100 87.34% 87.34% 10.13% 10.13% 

1000 87.34% 87.34% 10.13% 10.13% 

𝐻(𝑋2) 

Epanechnikov 

0.0001 0.00% 0.00% 2.53% 0.00% 

0.001 0.00% 0.00% 2.53% 0.00% 

0.01 0.00% 0.00% 2.53% 0.00% 

0.1 89.87% 89.87% 2.53% 0.00% 

0.2 89.87% 89.87% 2.53% 0.00% 

0.5 92.41% 92.41% 2.53% 0.00% 

1 92.41% 92.41% 2.53% 0.00% 

1.5 92.41% 92.41% 2.53% 0.00% 

5 92.41% 92.41% 2.53% 0.00% 

10 92.41% 92.41% 2.53% 0.00% 

100 92.41% 92.41% 2.53% 0.00% 

1000 92.41% 92.41% 2.53% 0.00% 

Normal 

0.0001 0.00% 0.00% 2.53% 0.00% 

0.001 0.00% 0.00% 2.53% 0.00% 

0.01 0.00% 0.00% 2.53% 0.00% 

0.1 89.87% 89.87% 2.53% 0.00% 

0.2 89.87% 89.87% 2.53% 0.00% 

0.5 89.87% 89.87% 2.53% 0.00% 

1 91.14% 91.14% 2.53% 0.00% 

1.5 92.41% 92.41% 2.53% 0.00% 

5 92.41% 92.41% 2.53% 0.00% 

10 92.41% 92.41% 2.53% 0.00% 

100 92.41% 92.41% 2.53% 0.00% 

1000 92.41% 92.41% 2.53% 0.00% 

𝐻(𝑋3) Epanechnikov 
0.0001 0.00% 0.00% 50.00% 50.00% 

0.001 0.00% 0.00% 50.00% 50.00% 
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0.01 0.00% 0.00% 50.00% 50.00% 

0.1 45.00% 45.00% 50.00% 50.00% 

0.2 45.00% 45.00% 50.00% 50.00% 

0.5 45.00% 45.00% 50.00% 50.00% 

1 45.00% 45.00% 50.00% 50.00% 

1.5 45.00% 45.00% 50.00% 50.00% 

5 95.00% 95.00% 50.00% 50.00% 

10 45.00% 45.00% 50.00% 50.00% 

100 95.00% 95.00% 50.00% 50.00% 

1000 95.00% 95.00% 50.00% 50.00% 

Normal 

0.0001 0.00% 0.00% 50.00% 50.00% 

0.001 0.00% 0.00% 50.00% 50.00% 

0.01 0.00% 0.00% 50.00% 50.00% 

0.1 45.00% 45.00% 50.00% 50.00% 

0.2 95.00% 95.00% 50.00% 50.00% 

0.5 45.00% 45.00% 50.00% 50.00% 

1 45.00% 45.00% 50.00% 50.00% 

1.5 45.00% 45.00% 50.00% 50.00% 

5 45.00% 45.00% 50.00% 50.00% 

10 45.00% 45.00% 50.00% 50.00% 

100 95.00% 95.00% 50.00% 50.00% 

1000 95.00% 95.00% 50.00% 50.00% 

𝐻(𝑌1) 

Epanechnikov 

0.0001 1.27% 1.27% 13.92% 11.39% 

0.001 2.53% 2.53% 13.92% 11.39% 

0.01 3.80% 3.80% 13.92% 11.39% 

0.1 89.87% 89.87% 13.92% 11.39% 

0.2 91.14% 91.14% 13.92% 11.39% 

0.5 91.14% 91.14% 13.92% 11.39% 

1 91.14% 91.14% 13.92% 11.39% 

1.5 91.14% 91.14% 13.92% 11.39% 

5 91.14% 91.14% 13.92% 11.39% 

10 91.14% 91.14% 13.92% 11.39% 

100 91.14% 91.14% 13.92% 11.39% 

1000 91.14% 91.14% 13.92% 11.39% 

Normal 

0.0001 1.27% 1.27% 13.92% 11.39% 

0.001 2.53% 2.53% 13.92% 11.39% 

0.01 3.80% 3.80% 13.92% 11.39% 

0.1 89.87% 89.87% 13.92% 11.39% 

0.2 91.14% 91.14% 13.92% 11.39% 

0.5 89.87% 89.87% 13.92% 11.39% 
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1 91.14% 91.14% 13.92% 11.39% 

1.5 91.14% 91.14% 13.92% 11.39% 

5 91.14% 91.14% 13.92% 11.39% 

10 91.14% 91.14% 13.92% 11.39% 

100 91.14% 91.14% 13.92% 11.39% 

1000 91.14% 91.14% 13.92% 11.39% 

𝐻(𝑌2) 

Epanechnikov 

0.0001 1.27% 1.27% 12.66% 6.33% 

0.001 1.27% 1.27% 12.66% 6.33% 

0.01 2.53% 2.53% 12.66% 6.33% 

0.1 94.94% 94.94% 12.66% 6.33% 

0.2 96.20% 96.20% 12.66% 6.33% 

0.5 93.67% 93.67% 12.66% 6.33% 

1 93.67% 93.67% 12.66% 6.33% 

1.5 93.67% 93.67% 12.66% 6.33% 

5 93.67% 93.67% 12.66% 6.33% 

10 93.67% 93.67% 12.66% 6.33% 

100 93.67% 93.67% 12.66% 6.33% 

1000 93.67% 93.67% 12.66% 6.33% 

Normal 

0.0001 1.27% 1.27% 12.66% 6.33% 

0.001 1.27% 1.27% 12.66% 6.33% 

0.01 1.27% 1.27% 12.66% 6.33% 

0.1 94.94% 94.94% 12.66% 6.33% 

0.2 94.94% 94.94% 12.66% 6.33% 

0.5 94.94% 94.94% 12.66% 6.33% 

1 93.67% 93.67% 12.66% 6.33% 

1.5 93.67% 93.67% 12.66% 6.33% 

5 93.67% 93.67% 12.66% 6.33% 

10 93.67% 93.67% 12.66% 6.33% 

100 93.67% 93.67% 12.66% 6.33% 

1000 93.67% 93.67% 12.66% 6.33% 

 

The entropy measures calculated using the kernel method and Silverman 

bandwidth showed similar or better results than the entropy measures calculated using the 

kernel method with different values of bandwidth and different kernel functions for either 

detecting an increase or decrease in uncertainty with the increase in the number of 
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replications or for detecting the experiment that leads to the maximum uncertainty, as 

shown in Table 35 and Table 36, respectively. In general, when the entropy measures 

calculated using the kernel method and Silverman bandwidth were compared to MAE and 

MSE, the results were identical to the results when the entropy measures were calculated 

using the kernel method with different values of bandwidth and different kernel functions. 

When the comparison was against SAE and SSE, the entropy measures calculated using 

the kernel method and Silverman bandwidth outperformed the entropy measures 

calculated using the kernel method with different values of bandwidth when 

Epanechnikov kernel function is used. The only exception was when travel time input was 

considered. A possible explanation for the better performance of the kernel method using 

Silverman bandwidth and Epanechnikov kernel function than the kernel method with 

different values of bandwidth is that the Silverman’s rule of thumb is a choice of the 

bandwidth that minimizes the mean integrated squared error and the Epanechnikov kernel 

function leads to the lowest asymptotic MSE.  

 

Table 35. Results from kernel method using Silverman bandwidth and different kernel 

functions for detecting an increase or decrease in uncertainty with the increase in the 

number of replications. 

Entropy 
Kernel 

function 

Mean of 

comparison 

entropy vs. 

SAE 

Mean of 

comparison 

entropy vs. SSE 

Mean of 

comparison 

average 

entropy vs. 

MAE 

Mean of 

comparison 

average 

entropy vs. 

MSE 

𝐻(𝑋1) 
Epanechnikov 94.80% 94.80% 44.30% 54.71% 

Normal 86.92% 86.92% 44.30% 54.71% 

𝐻(𝑋2) 
Epanechnikov 93.67% 93.67% 45.43% 52.18% 

Normal 88.19% 88.19% 45.43% 52.18% 

𝐻(𝑋3) Epanechnikov 43.33% 43.33% 19.44% 24.44% 
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Normal 40.00% 40.00% 19.44% 24.44% 

𝐻(𝑌1) 
Epanechnikov 96.06% 96.06% 49.37% 54.85% 

Normal 90.72% 90.72% 49.37% 54.85% 

𝐻(𝑌2) 
Epanechnikov 95.64% 95.64% 48.38% 53.59% 

Normal 89.03% 89.03% 48.38% 53.59% 

 

Table 36. Results from kernel method using Silverman bandwidth and different kernel 

functions for detecting the experiment that leads to the maximum uncertainty. 

Entropy 
Function 

type 

Mean of 

comparison 

entropy vs. 

SAE 

Mean of 

comparison 

entropy vs. SSE 

Mean of 

comparison 

average 

entropy vs. 

MAE 

Mean of 

comparison 

average 

entropy vs. 

MSE 

𝐻(𝑋1) 
Epanechnikov 98.73% 98.73% 10.13% 10.13% 

Normal 88.61% 88.61% 10.13% 10.13% 

𝐻(𝑋2) 
Epanechnikov 100.00% 100.00% 2.53% 0.00% 

Normal 89.87% 89.87% 2.53% 0.00% 

𝐻(𝑋3) 
Epanechnikov 50.00% 50.00% 50.00% 50.00% 

Normal 45.00% 45.00% 50.00% 50.00% 

𝐻(𝑌1) 
Epanechnikov 100.00% 100.00% 13.92% 11.39% 

Normal 91.14% 91.14% 13.92% 11.39% 

𝐻(𝑌2) 
Epanechnikov 100.00% 100.00% 12.66% 6.33% 

Normal 96.20% 96.20% 12.66% 6.33% 

 

For the KNN method, in order to assess whether the entropy measures detect an 

increase or decrease in uncertainty with the increase in the number of replications that is 

in agreement with the detection by the error method being compared to, the same number 

of k-nearest neighbors should be used by each experiment, which was not what was 

initially proposed in section 3.3.2. In section 3.4.4, the goal was to have different values 

of 𝑘 that would correspond to low, medium, and high values in comparison with the 

amount of data available in each experiment to assess the direct impact of 𝑘 on the entropy 
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and MI measures. In this section, because the same value of 𝑘 is necessary, the following 

values were considered 𝑘 = 1,2,3,4,5,6,7,8,9.  

From Table 37, Table 39, Table 40, and Table 41 one can see that both the KNN 

and the fuzzy-histogram-based methods led to results similar to the kernel method for 

detecting an increase or decrease in uncertainty with the increase in the number of 

replications and for detecting the experiment that leads to the maximum uncertainty.  

As shown in Table 37, considering the comparison to detect an increase or decrease 

in uncertainty, the entropy measures calculated using the KNN method with different 

values of k-nearest neighbors appears to have better results in agreement with the SAE or 

SSE method  for low values of k-nearest neighbors than for low values of bandwidth in 

the kernel method. The fuzzy-histogram based method also showed slightly better results 

in agreement with the SAE and SSE method for low values of number of fuzzy subsets 

than for low values of bandwidth in the kernel method, as one can see in Table 40. The 

agreement between the entropy measures and the SAE or SSE methods increases as the 

number of k-nearest neighbors or number of fuzzy subsets increases. Similar to the kernel 

method, the comparisons performed between the entropy measures and the SAE method 

led to exactly the same results as of the comparisons performed between the entropy 

measures and the SSE method when using either the KNN or the fuzzy-histogram based 

method.  

The average of the entropy measures calculated using the KNN and the fuzzy-

histogram based methods was compared to MAE and MSE. In this case, it is observed that 

the performance of the method is, with a few exceptions, constant over the different values 
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of k-nearest neighbors and fuzzy subsets. Similar to the kernel method, the entropy 

measures when compared against the MAE or MSE also perform poorer than when 

compared against SAE or SSE, but the method can still achieve a performance of about 

45% to 50%. The only exception is when 𝐻(𝑋3) is considered, in which case the 

performance is actually about 70%.  

Similar observations can be made in terms of the entropy measures performance 

to detect the experiment that leads to the maximum uncertainty. As shown in Table 39 and 

Table 41, the ability of the entropy measures in comparison to the SAE and SSE method 

increases with the increase in the number of k-nearest neighbors or the number of fuzzy 

subsets, with the exception of 𝐻(𝑋1) when using the KNN method, and the performance 

of the average entropy measures when compared to MAE or MSE are constant over the 

different number of k-nearest neighbors or number of fuzzy subsets. Analogous to what 

was observed from the results of the entropy measures calculated using the histogram-

based method with fixed number of bins and probability density function or from the 

kernel method, the performance of the entropy measures to detect the experiment that 

leads to the maximum uncertainty is poor when compared to MAE or MSE. More 

precisely, the performance is between 0 to 14%, with the exception of 𝐻(𝑋3). 

By observing all the results, one can see that a potential good choice for the k-

nearest neighbors for the queue system under investigation would be a value of 9 and a 

potential good choice for the number of fuzzy subsets would be a value of 1000. However, 

for the KNN method, it is important noting that when more datapoints are available, one 

can choose to use a larger value of k-nearest neighbors. As the results of Table 38 show, 
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the performance of the KNN method for detecting an increase or decrease in uncertainty 

with the increase in the number of replications varies considerably based on the number 

of k-nearest neighbors used and also on the number of replications used, behavior that is 

not observed from the other methods. In this case, a good choice for k-nearest neighbors 

appears to be dependent on the number of replications being considered. Nevertheless, it 

appears that a mid-range value of k-nearest neighbors (something around 50% of the data 

available) is a good rule of thumb of be used.  

 

Table 37. Results from KNN method using different number of neighbors (k) for 

detecting an increase or decrease in uncertainty with the increase in the number of 

replications. 

Entropy 
k 

neighbors 

Mean of 

comparison 

entropy vs. SAE 

Mean of 

comparison 

entropy vs. SSE 

Mean of 

comparison 

average entropy 

vs. MAE 

Mean of 

comparison 

average entropy 

vs. MSE 

𝐻(𝑋1) 

1 32.35% 32.35% 44.16% 54.57% 

2 46.55% 46.55% 44.30% 54.71% 

3 63.15% 63.15% 44.30% 54.71% 

4 73.00% 73.00% 44.30% 54.71% 

5 81.58% 81.58% 44.30% 54.71% 

6 80.45% 80.45% 44.30% 54.71% 

7 80.17% 80.17% 44.30% 54.71% 

8 78.76% 78.76% 44.30% 54.71% 

9 79.47% 79.47% 44.30% 54.71% 

𝐻(𝑋2) 

1 32.63% 32.63% 45.43% 52.18% 

2 47.12% 47.12% 45.43% 52.18% 

3 64.84% 64.84% 45.43% 52.18% 

4 73.42% 73.42% 45.43% 52.18% 

5 79.75% 79.75% 45.43% 52.18% 

6 78.34% 78.34% 45.43% 52.18% 

7 77.64% 77.64% 45.43% 52.18% 

8 78.90% 78.90% 45.43% 52.18% 

9 79.61% 79.61% 45.43% 52.18% 

𝐻(𝑋3) 1 68.33% 68.33% 69.44% 74.44% 
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2 74.44% 74.44% 69.44% 74.44% 

3 81.67% 81.67% 69.44% 74.44% 

4 88.89% 88.89% 69.44% 74.44% 

5 91.67% 91.67% 69.44% 74.44% 

6 89.44% 89.44% 69.44% 74.44% 

7 92.22% 92.22% 69.44% 74.44% 

8 92.78% 92.78% 69.44% 74.44% 

9 88.33% 88.33% 69.44% 74.44% 

𝐻(𝑌1) 

1 33.19% 33.19% 48.95% 54.43% 

2 48.66% 48.66% 48.95% 54.43% 

3 65.82% 65.82% 48.95% 54.43% 

4 77.22% 77.22% 48.95% 54.43% 

5 81.29% 81.29% 48.95% 54.43% 

6 78.76% 78.76% 49.09% 54.57% 

7 80.17% 80.17% 49.09% 54.57% 

8 80.45% 80.45% 49.09% 54.57% 

9 82.14% 82.14% 49.09% 54.57% 

𝐻(𝑌2) 

1 32.49% 32.49% 48.10% 53.31% 

2 47.26% 47.26% 48.10% 53.31% 

3 65.26% 65.26% 48.24% 53.45% 

4 73.56% 73.56% 48.24% 53.45% 

5 78.34% 78.34% 48.24% 53.45% 

6 77.78% 77.78% 48.24% 53.45% 

7 78.06% 78.06% 48.24% 53.45% 

8 78.76% 78.76% 48.24% 53.45% 

9 81.15% 81.15% 48.24% 53.45% 

 

Table 38. 𝑯(𝑿𝟏) results from KNN method using different number of neighbors (k) per 

different number of replications for detecting an increase or decrease in uncertainty with 

the increase in the number of replications. 

Entropy 
Number of 

replications 

k 

neighbors 

Mean of 

comparison 

entropy vs. 

SAE 

Mean of 

comparison 

entropy vs. 

SSE 

Mean of 

comparison 

average 

entropy vs. 

MAE 

Mean of 

comparison 

average 

entropy vs. 

MSE 

𝐻(𝑋1) 20 

1 97.47% 97.47% 10.13% 8.86% 

3 100.00% 100.00% 11.39% 10.13% 

5 100.00% 100.00% 11.39% 10.13% 

7 100.00% 100.00% 11.39% 10.13% 

9 100.00% 100.00% 11.39% 10.13% 
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11 93.67% 93.67% 11.39% 10.13% 

13 100.00% 100.00% 11.39% 10.13% 

15 100.00% 100.00% 11.39% 10.13% 

17 100.00% 100.00% 11.39% 10.13% 

19 100.00% 100.00% 11.39% 10.13% 

50 

1 100.00% 100.00% 93.67% 93.67% 

3 73.42% 73.42% 93.67% 93.67% 

5 100.00% 100.00% 93.67% 93.67% 

7 100.00% 100.00% 93.67% 93.67% 

9 100.00% 100.00% 93.67% 93.67% 

13 100.00% 100.00% 93.67% 93.67% 

19 100.00% 100.00% 93.67% 93.67% 

25 100.00% 100.00% 93.67% 93.67% 

35 100.00% 100.00% 93.67% 93.67% 

49 100.00% 100.00% 93.67% 93.67% 

100 

1 88.61% 88.61% 5.06% 2.53% 

3 93.67% 93.67% 5.06% 2.53% 

5 94.94% 94.94% 5.06% 2.53% 

7 94.94% 94.94% 5.06% 2.53% 

9 100.00% 100.00% 5.06% 2.53% 

13 94.94% 94.94% 5.06% 2.53% 

19 93.67% 93.67% 5.06% 2.53% 

25 94.94% 94.94% 5.06% 2.53% 

49 100.00% 100.00% 5.06% 2.53% 

99 93.67% 93.67% 5.06% 2.53% 

200 

1 5.06% 5.06% 8.86% 16.46% 

3 89.87% 89.87% 8.86% 16.46% 

7 91.14% 91.14% 8.86% 16.46% 

9 88.61% 88.61% 8.86% 16.46% 

19 93.67% 93.67% 8.86% 16.46% 

25 94.94% 94.94% 8.86% 16.46% 

49 84.81% 84.81% 8.86% 16.46% 

99 53.16% 53.16% 8.86% 16.46% 

150 2.53% 2.53% 8.86% 16.46% 

199 89.87% 89.87% 8.86% 16.46% 

400 

1 0.00% 0.00% 81.01% 92.41% 

3 88.61% 88.61% 81.01% 92.41% 

9 88.61% 88.61% 81.01% 92.41% 

19 84.81% 84.81% 81.01% 92.41% 

25 88.61% 88.61% 81.01% 92.41% 
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49 89.87% 89.87% 81.01% 92.41% 

99 94.94% 94.94% 81.01% 92.41% 

150 98.73% 98.73% 81.01% 92.41% 

199 100.00% 100.00% 81.01% 92.41% 

399 87.34% 87.34% 81.01% 92.41% 

600 

1 0.00% 0.00% 0.00% 81.01% 

3 13.92% 13.92% 0.00% 81.01% 

9 15.19% 15.19% 0.00% 81.01% 

25 10.13% 10.13% 0.00% 81.01% 

49 2.53% 2.53% 0.00% 81.01% 

99 10.13% 10.13% 0.00% 81.01% 

150 67.09% 67.09% 0.00% 81.01% 

199 2.53% 2.53% 0.00% 81.01% 

399 1.27% 1.27% 0.00% 81.01% 

599 17.72% 17.72% 0.00% 81.01% 

800 

1 0.00% 0.00% 0.00% 0.00% 

3 45.57% 45.57% 0.00% 0.00% 

9 77.22% 77.22% 0.00% 0.00% 

25 54.43% 54.43% 0.00% 0.00% 

49 44.30% 44.30% 0.00% 0.00% 

99 54.43% 54.43% 0.00% 0.00% 

199 54.43% 54.43% 0.00% 0.00% 

399 25.32% 25.32% 0.00% 0.00% 

599 24.05% 24.05% 0.00% 0.00% 

799 67.09% 67.09% 0.00% 0.00% 

1000 

1 0.00% 0.00% 100.00% 100.00% 

3 63.29% 63.29% 100.00% 100.00% 

9 91.14% 91.14% 100.00% 100.00% 

25 97.47% 97.47% 100.00% 100.00% 

49 97.47% 97.47% 100.00% 100.00% 

99 98.73% 98.73% 100.00% 100.00% 

199 98.73% 98.73% 100.00% 100.00% 

399 100.00% 100.00% 100.00% 100.00% 

599 100.00% 100.00% 100.00% 100.00% 

999 98.73% 98.73% 100.00% 100.00% 

1500 

1 0.00% 0.00% 98.73% 96.20% 

3 0.00% 0.00% 98.73% 96.20% 

9 43.04% 43.04% 98.73% 96.20% 

25 93.67% 93.67% 98.73% 96.20% 

49 89.87% 89.87% 98.73% 96.20% 
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99 94.94% 94.94% 98.73% 96.20% 

199 94.94% 94.94% 98.73% 96.20% 

599 98.73% 98.73% 98.73% 96.20% 

999 13.92% 13.92% 98.73% 96.20% 

1499 96.20% 96.20% 98.73% 96.20% 

 

Table 39. Results from KNN method using different number of neighbors (k) for 

detecting the experiment that leads to the maximum uncertainty. 

Entropy 
k 

neighbors 

Mean of 

comparison 

entropy vs. SAE 

Mean of 

comparison 

entropy vs. SSE 

Mean of 

comparison 

average entropy 

vs. MAE 

Mean of 

comparison 

average entropy 

vs. MSE 

𝐻(𝑋1) 

1 0.00% 0.00% 8.86% 8.86% 

2 0.00% 0.00% 10.13% 10.13% 

3 0.00% 0.00% 10.13% 10.13% 

4 7.59% 7.59% 10.13% 10.13% 

5 34.18% 34.18% 10.13% 10.13% 

6 45.57% 45.57% 10.13% 10.13% 

7 59.49% 59.49% 10.13% 10.13% 

8 26.58% 26.58% 10.13% 10.13% 

9 36.71% 36.71% 10.13% 10.13% 

𝐻(𝑋2) 

1 0.00% 0.00% 2.53% 0.00% 

2 0.00% 0.00% 2.53% 0.00% 

3 0.00% 0.00% 2.53% 0.00% 

4 15.19% 15.19% 2.53% 0.00% 

5 35.44% 35.44% 2.53% 0.00% 

6 31.65% 31.65% 2.53% 0.00% 

7 36.71% 36.71% 2.53% 0.00% 

8 40.51% 40.51% 2.53% 0.00% 

9 41.77% 41.77% 2.53% 0.00% 

𝐻(𝑋3) 

1 50.00% 50.00% 50.00% 50.00% 

2 50.00% 50.00% 50.00% 50.00% 

3 50.00% 50.00% 50.00% 50.00% 

4 70.00% 70.00% 50.00% 50.00% 

5 95.00% 95.00% 50.00% 50.00% 

6 85.00% 85.00% 50.00% 50.00% 

7 95.00% 95.00% 50.00% 50.00% 

8 95.00% 95.00% 50.00% 50.00% 

9 95.00% 95.00% 50.00% 50.00% 
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𝐻(𝑌1) 

1 0.00% 0.00% 13.92% 11.39% 

2 0.00% 0.00% 13.92% 11.39% 

3 1.27% 1.27% 13.92% 11.39% 

4 29.11% 29.11% 13.92% 11.39% 

5 45.57% 45.57% 13.92% 11.39% 

6 43.04% 43.04% 13.92% 11.39% 

7 51.90% 51.90% 13.92% 11.39% 

8 49.37% 49.37% 13.92% 11.39% 

9 55.70% 55.70% 13.92% 11.39% 

𝐻(𝑌2) 

1 0.00% 0.00% 12.66% 6.33% 

2 0.00% 0.00% 12.66% 6.33% 

3 0.00% 0.00% 12.66% 6.33% 

4 17.72% 17.72% 12.66% 6.33% 

5 39.24% 39.24% 12.66% 6.33% 

6 37.97% 37.97% 12.66% 6.33% 

7 44.30% 44.30% 12.66% 6.33% 

8 46.84% 46.84% 12.66% 6.33% 

9 51.90% 51.90% 12.66% 6.33% 

 

Table 40. Results from fuzzy-histogram based method with different number of fuzzy 

subsets and different fuzzy membership functions for detecting an increase or decrease 

in uncertainty with the increase in the number of replications. 

Entropy 

Fuzzy 

membership 

function 

Number 

of fuzzy 

subsets 

Mean of 

comparison 

entropy vs. 

SAE 

Mean of 

comparison 

entropy vs. 

SSE 

Mean of 

comparison 

average 

entropy vs. 

MAE 

Mean of 

comparison 

average 

entropy vs. 

MSE 

𝐻(𝑋1) 

cosine 

2 12.38% 12.38% 44.30% 54.71% 

5 17.58% 17.58% 44.30% 54.71% 

10 31.79% 31.79% 44.30% 54.71% 

25 46.55% 46.55% 44.30% 54.71% 

50 57.10% 57.10% 44.30% 54.71% 

100 71.31% 71.31% 44.30% 54.71% 

200 87.20% 87.20% 44.30% 54.71% 

500 97.61% 97.61% 44.30% 54.71% 

1000 99.30% 99.30% 44.30% 54.71% 

crisp 

2 12.24% 12.24% 44.30% 54.71% 

5 21.80% 21.80% 44.30% 54.71% 

10 31.79% 31.79% 44.30% 54.71% 

25 47.96% 47.96% 44.30% 54.71% 
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50 58.23% 58.23% 44.30% 54.71% 

100 75.11% 75.11% 44.30% 54.71% 

200 93.81% 93.81% 44.30% 54.71% 

500 98.59% 98.59% 44.30% 54.71% 

1000 100.00% 100.00% 44.30% 54.71% 

triangular 

2 17.86% 17.86% 44.30% 54.71% 

5 16.32% 16.32% 44.30% 54.71% 

10 31.36% 31.36% 44.30% 54.71% 

25 45.71% 45.71% 44.30% 54.71% 

50 54.71% 54.71% 44.30% 54.71% 

100 70.32% 70.32% 44.30% 54.71% 

200 81.01% 81.01% 44.30% 54.71% 

500 97.61% 97.61% 44.30% 54.71% 

1000 99.30% 99.30% 44.30% 54.71% 

𝐻(𝑋2) 

cosine 

2 16.46% 16.46% 45.43% 52.18% 

5 18.00% 18.00% 45.43% 52.18% 

10 28.13% 28.13% 45.43% 52.18% 

25 46.84% 46.84% 45.43% 52.18% 

50 56.12% 56.12% 45.43% 52.18% 

100 72.71% 72.71% 45.43% 52.18% 

200 90.01% 90.01% 45.43% 52.18% 

500 98.03% 98.03% 45.43% 52.18% 

1000 100.00% 100.00% 45.71% 52.46% 

crisp 

2 14.21% 14.21% 45.43% 52.18% 

5 24.75% 24.75% 45.43% 52.18% 

10 28.97% 28.97% 45.43% 52.18% 

25 50.91% 50.91% 45.43% 52.18% 

50 65.54% 65.54% 45.43% 52.18% 

100 78.06% 78.06% 45.43% 52.18% 

200 95.78% 95.78% 45.43% 52.18% 

500 99.02% 99.02% 45.43% 52.18% 

1000 100.00% 100.00% 45.43% 52.18% 

triangular 

2 18.14% 18.14% 45.43% 52.18% 

5 13.50% 13.50% 45.43% 52.18% 

10 28.27% 28.27% 45.43% 52.18% 

25 45.29% 45.29% 45.43% 52.18% 

50 54.29% 54.29% 45.43% 52.18% 

100 71.03% 71.03% 45.43% 52.18% 

200 86.08% 86.08% 45.43% 52.18% 

500 98.03% 98.03% 45.43% 52.18% 
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1000 99.86% 99.86% 45.43% 52.18% 

𝐻(𝑋3) 

cosine 

2 60.00% 60.00% 69.44% 74.44% 

5 59.44% 59.44% 69.44% 74.44% 

10 66.11% 66.11% 69.44% 74.44% 

25 75.00% 75.00% 69.44% 74.44% 

50 79.44% 79.44% 69.44% 74.44% 

100 87.78% 87.78% 69.44% 74.44% 

200 92.22% 92.22% 69.44% 74.44% 

500 98.33% 98.33% 69.44% 74.44% 

1000 100.00% 100.00% 69.44% 74.44% 

crisp 

2 61.11% 61.11% 69.44% 74.44% 

5 63.33% 63.33% 69.44% 74.44% 

10 67.22% 67.22% 69.44% 74.44% 

25 75.00% 75.00% 69.44% 74.44% 

50 83.89% 83.89% 69.44% 74.44% 

100 90.56% 90.56% 69.44% 74.44% 

200 96.11% 96.11% 69.44% 74.44% 

500 99.44% 99.44% 69.44% 74.44% 

1000 100.00% 100.00% 69.44% 74.44% 

triangular 

2 62.78% 62.78% 69.44% 74.44% 

5 59.44% 59.44% 69.44% 74.44% 

10 65.56% 65.56% 69.44% 74.44% 

25 74.44% 74.44% 69.44% 74.44% 

50 79.44% 79.44% 69.44% 74.44% 

100 86.67% 86.67% 69.44% 74.44% 

200 92.22% 92.22% 69.44% 74.44% 

500 98.33% 98.33% 69.44% 74.44% 

1000 100.00% 100.00% 69.44% 74.44% 

𝐻(𝑌1) 

cosine 

2 16.32% 16.32% 48.95% 54.43% 

5 20.82% 20.82% 48.95% 54.43% 

10 25.32% 25.32% 48.95% 54.43% 

25 43.60% 43.60% 48.95% 54.43% 

50 57.10% 57.10% 48.95% 54.43% 

100 69.76% 69.76% 48.95% 54.43% 

200 84.67% 84.67% 48.95% 54.43% 

500 96.77% 96.77% 48.95% 54.43% 

1000 98.31% 98.31% 48.95% 54.43% 

crisp 

2 17.86% 17.86% 48.95% 54.43% 

5 24.75% 24.75% 48.95% 54.43% 

10 28.27% 28.27% 48.95% 54.43% 
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25 46.55% 46.55% 48.95% 54.43% 

50 64.28% 64.28% 48.95% 54.43% 

100 73.70% 73.70% 48.95% 54.43% 

200 91.98% 91.98% 48.95% 54.43% 

500 97.47% 97.47% 48.95% 54.43% 

1000 98.59% 98.59% 48.95% 54.43% 

triangular 

2 15.61% 15.61% 48.95% 54.43% 

5 14.77% 14.77% 48.95% 54.43% 

10 25.32% 25.32% 48.95% 54.43% 

25 42.33% 42.33% 48.95% 54.43% 

50 54.29% 54.29% 48.95% 54.43% 

100 67.93% 67.93% 48.95% 54.43% 

200 81.43% 81.43% 48.95% 54.43% 

500 95.92% 95.92% 48.95% 54.43% 

1000 98.31% 98.31% 48.95% 54.43% 

𝐻(𝑌2) 

cosine 

2 15.61% 15.61% 48.10% 53.31% 

5 18.71% 18.71% 48.10% 53.31% 

10 24.33% 24.33% 48.10% 53.31% 

25 42.48% 42.48% 48.10% 53.31% 

50 54.99% 54.99% 48.10% 53.31% 

100 70.18% 70.18% 48.10% 53.31% 

200 86.78% 86.78% 48.10% 53.31% 

500 97.75% 97.75% 48.10% 53.31% 

1000 99.30% 99.30% 48.24% 53.45% 

crisp 

2 15.89% 15.89% 48.10% 53.31% 

5 24.05% 24.05% 48.10% 53.31% 

10 27.99% 27.99% 48.10% 53.31% 

25 46.69% 46.69% 48.10% 53.31% 

50 61.88% 61.88% 48.10% 53.31% 

100 74.12% 74.12% 48.10% 53.31% 

200 93.95% 93.95% 48.10% 53.31% 

500 98.59% 98.59% 48.10% 53.31% 

1000 99.44% 99.44% 48.10% 53.31% 

triangular 

2 16.60% 16.60% 48.10% 53.31% 

5 14.77% 14.77% 48.10% 53.31% 

10 24.19% 24.19% 48.10% 53.31% 

25 40.23% 40.23% 48.10% 53.31% 

50 52.04% 52.04% 48.10% 53.31% 

100 68.35% 68.35% 48.10% 53.31% 

200 82.98% 82.98% 48.10% 53.31% 
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500 97.61% 97.61% 48.10% 53.31% 

1000 99.02% 99.02% 48.10% 53.31% 

 

Table 41. Results from fuzzy-histogram based method with different number of fuzzy 

subsets and different fuzzy membership functions for detecting the experiment that leads 

to the maximum uncertainty. 

Entropy 

Fuzzy 

membership 

function 

Number 

of fuzzy 

subsets 

Mean of 

comparison 

entropy vs. 

SAE 

Mean of 

comparison 

entropy vs. 

SSE 

Mean of 

comparison 

average 

entropy vs. 

MAE 

Mean of 

comparison 

average 

entropy vs. 

MSE 

𝐻(𝑋1) 

cosine 

2 0.00% 0.00% 10.13% 10.13% 

5 0.00% 0.00% 10.13% 10.13% 

10 0.00% 0.00% 10.13% 10.13% 

25 0.00% 0.00% 10.13% 10.13% 

50 0.00% 0.00% 10.13% 10.13% 

100 5.06% 5.06% 10.13% 10.13% 

200 34.18% 34.18% 10.13% 10.13% 

500 93.67% 93.67% 10.13% 10.13% 

1000 100.00% 100.00% 10.13% 10.13% 

crisp 

2 0.00% 0.00% 10.13% 10.13% 

5 0.00% 0.00% 10.13% 10.13% 

10 0.00% 0.00% 10.13% 10.13% 

25 0.00% 0.00% 10.13% 10.13% 

50 0.00% 0.00% 10.13% 10.13% 

100 5.06% 5.06% 10.13% 10.13% 

200 73.42% 73.42% 10.13% 10.13% 

500 100.00% 100.00% 10.13% 10.13% 

1000 100.00% 100.00% 10.13% 10.13% 

triangular 

2 0.00% 0.00% 10.13% 10.13% 

5 0.00% 0.00% 10.13% 10.13% 

10 0.00% 0.00% 10.13% 10.13% 

25 0.00% 0.00% 10.13% 10.13% 

50 0.00% 0.00% 10.13% 10.13% 

100 2.53% 2.53% 10.13% 10.13% 

200 24.05% 24.05% 10.13% 10.13% 

500 93.67% 93.67% 10.13% 10.13% 

1000 100.00% 100.00% 10.13% 10.13% 

𝐻(𝑋2) cosine 
2 0.00% 0.00% 2.53% 0.00% 

5 0.00% 0.00% 2.53% 0.00% 
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10 0.00% 0.00% 2.53% 0.00% 

25 0.00% 0.00% 2.53% 0.00% 

50 1.27% 1.27% 2.53% 0.00% 

100 1.27% 1.27% 2.53% 0.00% 

200 55.70% 55.70% 2.53% 0.00% 

500 88.61% 88.61% 2.53% 0.00% 

1000 100.00% 100.00% 2.53% 0.00% 

crisp 

2 0.00% 0.00% 2.53% 0.00% 

5 0.00% 0.00% 2.53% 0.00% 

10 0.00% 0.00% 2.53% 0.00% 

25 0.00% 0.00% 2.53% 0.00% 

50 1.27% 1.27% 2.53% 0.00% 

100 12.66% 12.66% 2.53% 0.00% 

200 78.48% 78.48% 2.53% 0.00% 

500 97.47% 97.47% 2.53% 0.00% 

1000 100.00% 100.00% 2.53% 0.00% 

triangular 

2 0.00% 0.00% 2.53% 0.00% 

5 0.00% 0.00% 2.53% 0.00% 

10 0.00% 0.00% 2.53% 0.00% 

25 0.00% 0.00% 2.53% 0.00% 

50 1.27% 1.27% 2.53% 0.00% 

100 1.27% 1.27% 2.53% 0.00% 

200 39.24% 39.24% 2.53% 0.00% 

500 88.61% 88.61% 2.53% 0.00% 

1000 98.73% 98.73% 2.53% 0.00% 

𝐻(𝑋3) 

cosine 

2 50.00% 50.00% 50.00% 50.00% 

5 50.00% 50.00% 50.00% 50.00% 

10 50.00% 50.00% 50.00% 50.00% 

25 50.00% 50.00% 50.00% 50.00% 

50 50.00% 50.00% 50.00% 50.00% 

100 55.00% 55.00% 50.00% 50.00% 

200 60.00% 60.00% 50.00% 50.00% 

500 85.00% 85.00% 50.00% 50.00% 

1000 100.00% 100.00% 50.00% 50.00% 

crisp 

2 50.00% 50.00% 50.00% 50.00% 

5 50.00% 50.00% 50.00% 50.00% 

10 50.00% 50.00% 50.00% 50.00% 

25 50.00% 50.00% 50.00% 50.00% 

50 50.00% 50.00% 50.00% 50.00% 

100 60.00% 60.00% 50.00% 50.00% 
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200 70.00% 70.00% 50.00% 50.00% 

500 95.00% 95.00% 50.00% 50.00% 

1000 100.00% 100.00% 50.00% 50.00% 

triangular 

2 50.00% 50.00% 50.00% 50.00% 

5 50.00% 50.00% 50.00% 50.00% 

10 50.00% 50.00% 50.00% 50.00% 

25 50.00% 50.00% 50.00% 50.00% 

50 50.00% 50.00% 50.00% 50.00% 

100 55.00% 55.00% 50.00% 50.00% 

200 60.00% 60.00% 50.00% 50.00% 

500 85.00% 85.00% 50.00% 50.00% 

1000 100.00% 100.00% 50.00% 50.00% 

𝐻(𝑌1) 

cosine 

2 0.00% 0.00% 13.92% 11.39% 

5 0.00% 0.00% 13.92% 11.39% 

10 0.00% 0.00% 13.92% 11.39% 

25 0.00% 0.00% 13.92% 11.39% 

50 0.00% 0.00% 13.92% 11.39% 

100 1.27% 1.27% 13.92% 11.39% 

200 27.85% 27.85% 13.92% 11.39% 

500 89.87% 89.87% 13.92% 11.39% 

1000 96.20% 96.20% 13.92% 11.39% 

crisp 

2 0.00% 0.00% 13.92% 11.39% 

5 0.00% 0.00% 13.92% 11.39% 

10 0.00% 0.00% 13.92% 11.39% 

25 0.00% 0.00% 13.92% 11.39% 

50 0.00% 0.00% 13.92% 11.39% 

100 6.33% 6.33% 13.92% 11.39% 

200 60.76% 60.76% 13.92% 11.39% 

500 94.94% 94.94% 13.92% 11.39% 

1000 96.20% 96.20% 13.92% 11.39% 

triangular 

2 0.00% 0.00% 13.92% 11.39% 

5 0.00% 0.00% 13.92% 11.39% 

10 0.00% 0.00% 13.92% 11.39% 

25 0.00% 0.00% 13.92% 11.39% 

50 0.00% 0.00% 13.92% 11.39% 

100 1.27% 1.27% 13.92% 11.39% 

200 20.25% 20.25% 13.92% 11.39% 

500 83.54% 83.54% 13.92% 11.39% 

1000 96.20% 96.20% 13.92% 11.39% 

𝐻(𝑌2) cosine 2 0.00% 0.00% 12.66% 6.33% 
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5 0.00% 0.00% 12.66% 6.33% 

10 0.00% 0.00% 12.66% 6.33% 

25 0.00% 0.00% 12.66% 6.33% 

50 0.00% 0.00% 12.66% 6.33% 

100 5.06% 5.06% 12.66% 6.33% 

200 50.63% 50.63% 12.66% 6.33% 

500 89.87% 89.87% 12.66% 6.33% 

1000 97.47% 97.47% 12.66% 6.33% 

crisp 

2 0.00% 0.00% 12.66% 6.33% 

5 0.00% 0.00% 12.66% 6.33% 

10 0.00% 0.00% 12.66% 6.33% 

25 0.00% 0.00% 12.66% 6.33% 

50 1.27% 1.27% 12.66% 6.33% 

100 7.59% 7.59% 12.66% 6.33% 

200 72.15% 72.15% 12.66% 6.33% 

500 94.94% 94.94% 12.66% 6.33% 

1000 97.47% 97.47% 12.66% 6.33% 

triangular 

2 0.00% 0.00% 12.66% 6.33% 

5 0.00% 0.00% 12.66% 6.33% 

10 0.00% 0.00% 12.66% 6.33% 

25 0.00% 0.00% 12.66% 6.33% 

50 0.00% 0.00% 12.66% 6.33% 

100 3.80% 3.80% 12.66% 6.33% 

200 31.65% 31.65% 12.66% 6.33% 

500 89.87% 89.87% 12.66% 6.33% 

1000 96.20% 96.20% 12.66% 6.33% 

 

A final analysis performed in terms of entropy measures involved using 𝜒2 test to 

investigate whether the performance of each one the methods used to calculate the entropy 

measures was statistically significantly different than the other method. The performance 

referred here is in comparison to the measures of error SAE, SSE, MAE, and MSE. The 

𝜒2 test was performed using JMP® at an α-level of 0.05, where the null hypothesis 𝐻0 

means that there is no difference between the performance of the methods. 
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The results of the 𝜒2 test are shown in Table 42 to Table 47. As one would expect 

from the results of each method presented in Table 33 to  

Table 41, the methods are statistically significantly different from each other when 

they are compared against the SSE or SAE measure of error. However, when the methods 

are compared against either the MAE or MSE measure of error, the 𝜒2 test did not have 

enough evidence that one of the methods was statistically significant different than the 

other. A possible explanation for the lack of evidence to reject 𝐻0 is that the results of the 

methods when compared to the MAE and MSE measures of error did not vary 

considerably.  

The results of the methods compared to the SAE measure of error are not presented 

here because they are identical to the results of the methods compared to the SSE measure 

of error, as indicated on Table 42 and Table 45 below.  

 

Table 42. 𝝌𝟐 test comparing the performance of the methods with respect to their 

capability of detecting an increase or decrease in uncertainty with the increase in the 

number of replications in agreement with the SSE measure of error (or SAE measure of 

error). 

Entropy 

Proportion difference P-value 

Fuzzy vs 

KNN 

Kernel vs 

KNN 

Kernel vs 

Fuzzy 

Fuzzy vs 

KNN 

Kernel vs 

KNN 

Kernel vs 

Fuzzy 

𝐻(𝑋1) 0.1007 0.0369 0.1376 <0.0001 <0.0001 <0.0001 

𝐻(𝑋2) 0.0884 0.0261 0.1144 <0.0001 0.0004 <0.0001 

𝐻(𝑋3) 0.0479 0.2958 0.2479 0.0004 <0.0001 <0.0001 

𝐻(𝑌1) 0.1226 0.0289 0.1516 <0.0001 <0.0001 <0.0001 

𝐻(𝑌2) 0.1072 0.0354 0.1426 <0.0001 <0.0001 <0.0001 
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Table 43. 𝝌𝟐 test comparing the performance of the methods with respect to their 

capability of detecting an increase or decrease in uncertainty with the increase in the 

number of replications in agreement with the MAE measure of error. 

Entropy 
Proportion difference P-value 

Fuzzy vs 

KNN 

Kernel vs 

KNN 

Kernel vs 

Fuzzy 

Fuzzy vs 

KNN 

Kernel vs 

KNN 

Kernel vs 

Fuzzy 

𝐻(𝑋1) 0.0002 0.0002 0.0000 0.9997 0.9997 1.0000 

𝐻(𝑋2) 0.0001 0.0000 0.0001 0.9999 1.0000 0.9998 

𝐻(𝑋3) 0.0000 0.5000 0.5000 1.0000 <0.0001 <0.0001 

𝐻(𝑌1) 0.0006 0.0011 0.0017 0.9959 0.9885 0.9433 

𝐻(𝑌2) 0.0010 0.0001 0.0009 0.9886 0.9998 0.9825 

 

Table 44. 𝝌𝟐 test comparing the performance of the methods with respect to their 

capability of detecting an increase or decrease in uncertainty with the increase in the 

number of replications in agreement with the MSE measure of error. 

Entropy 
Proportion difference P-value 

Fuzzy vs 

KNN 

Kernel vs 

KNN 

Kernel vs 

Fuzzy 

Fuzzy vs 

KNN 

Kernel vs 

KNN 

Kernel vs 

Fuzzy 

𝐻(𝑋1) 0.0002 0.0002 0.0000 0.9997 0.9997 1.0000 

𝐻(𝑋2) 0.0001 0.0000 0.0001 0.9999 1.0000 0.9998 

𝐻(𝑋3) 0.0000 0.5000 0.5000 1.0000 <0.0001 <0.0001 

𝐻(𝑌1) 0.0006 0.0011 0.0017 0.9958 0.9884 0.9428 

𝐻(𝑌2) 0.0010 0.0001 0.0009 0.9885 0.9998 0.9824 

 

Table 45. 𝝌𝟐 test comparing the performance of the methods with respect to their 

capability of detecting the experiment that leads to the maximum uncertainty in 

agreement with the SSE measure of error (or SAE measure of error). 

Entropy 
Proportion difference P-value 

Fuzzy vs 

KNN 

Kernel vs 

KNN 

Kernel vs 

Fuzzy 

Fuzzy vs 

KNN 

Kernel vs 

KNN 

Kernel vs 

Fuzzy 

𝐻(𝑋1) 0.0375 0.4433 0.4057 0.1336 <0.0001 <0.0001 

𝐻(𝑋2) 0.0600 0.4838 0.4238 0.0056 <0.0001 <0.0001 

𝐻(𝑋3) 0.1407 0.2976 0.1569 0.0021 <0.0001 <0.0001 

𝐻(𝑌1) 0.0567 0.4022 0.4590 0.0094 <0.0001 <0.0001 

𝐻(𝑌2) 0.0089 0.4659 0.4570 0.8886 <0.0001 <0.0001 
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Table 46. 𝝌𝟐 test comparing the performance of the methods with respect to their 

capability of detecting the experiment that leads to the maximum uncertainty in 

agreement with the MAE measure of error. 

Entropy 
Proportion difference P-value 

Fuzzy vs 

KNN 

Kernel vs 

KNN 

Kernel vs 

Fuzzy 

Fuzzy vs 

KNN 

Kernel vs 

KNN 

Kernel vs 

Fuzzy 

𝐻(𝑋1) 0.0014 0.0014 0.0000 0.9936 0.9937 1.0000 

𝐻(𝑋2) 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 

𝐻(𝑋3) 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 

𝐻(𝑌1) 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 

𝐻(𝑌2) 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 

 

Table 47. 𝝌𝟐 test comparing the performance of the methods with respect to their 

capability of detecting the experiment that leads to the maximum uncertainty in 

agreement with the MSE measure of error. 

Entropy 
Proportion difference P-value 

Fuzzy vs 

KNN 

Kernel vs 

KNN 

Kernel vs 

Fuzzy 

Fuzzy vs 

KNN 

Kernel vs 

KNN 

Kernel vs 

Fuzzy 

𝐻(𝑋1) 0.0014 0.0014 0.0000 0.9936 0.9937 1.0000 

𝐻(𝑋2) 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 

𝐻(𝑋3) 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 

𝐻(𝑌1) 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 

𝐻(𝑌2) 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 

 

Mutual information quantifies the average reduction in uncertainty in the value of 

𝑌 provided by the value of 𝑋 and vice-versa and it is also a measure of dependence 

between 𝑋 and 𝑌. In order to investigate the potential of the MI as a method of uncertainty 

quantification in simulation model, the MI results were compared to the results of three 

other measures of dependence between variables, namely: distance correlation, Pearson 

correlation, and 𝑅2𝑎𝑑𝑗. To perform these comparisons the procedure described in section 

2.4.4 was followed and the results are shown in Table 77 to Table 82 of the Appendix. 

Table 77 and Table 78 show the results for the MI calculated using the kernel method. 
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Table 79 and Table 80 show the results for the MI calculated using the KNN method. 

Table 81 and Table 82 show the results for the MI calculated using the fuzzy-histogram 

based method.  

Table 77 to Table 82 of the Appendix show the results of the comparisons at a 

granular level. For an easier and more objective comparison, Table 48 shows the results 

summarized by calculation method, measure of dependence, and impact on the output. 

Table 49 also summarizes the results by calculation method, measure of dependence, and 

impact on the output, and it includes the function type (kernel function or fuzzy 

membership function) as well. As the results in Table 48 show, overall the calculation 

methods showed better performance when compared with the distance correlation measure 

than when compared with Pearson correlation or 𝑅2𝑎𝑑𝑗. This is expected as distance 

correlation is the measure of dependence that is able to capture both linear and non-linear 

relation between variables similarly to MI. Among the methods, the KNN method led to 

the best performance and the fuzzy-histogram method led to the worst performance. KNN 

was not the best method when considering the greatest impact on the TIS. In this case, the 

kernel method showed the best performance.  

Table 49 does not include results for the KNN method because this method does 

not use any function on its calculation. As can be seen in Table 49, the kernel function or 

fuzzy membership function used to calculate the MI measures does not appear to have a 

significant impact on the performance of the MI because the results do not vary 

considerably by function type. However, this need to be statistically verified and a logistic 

regression model was used for that, which is discussed next.  
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Table 48. Results from the comparison of the MI vs the measures of dependence 

summarized by calculation method, measure of dependence, and impact on the output. 

Calculation Method Measure of dependence 
Greatest impact on Least impact on 

NIS TIS NIS TIS 

Kernel Distance correlation 43.35% 43.99% 43.02% 43.45% 

Pearson correlation 36.07% 43.01% 36.38% 43.13% 

𝑅2𝑎𝑑𝑗  36.60% 43.28% 36.71% 43.50% 

KNN Distance correlation 45.90% 40.26% 50.82% 47.33% 

Pearson correlation 39.80% 38.84% 43.56% 45.39% 

𝑅2𝑎𝑑𝑗  39.91% 38.76% 43.08% 44.59% 

Fuzzy-histogram based Distance correlation 40.16% 25.38% 43.60% 31.91% 

Pearson correlation 34.26% 19.26% 37.03% 25.30% 

𝑅2𝑎𝑑𝑗  34.29% 19.23% 36.52% 24.50% 

 

Table 49. Results from the comparison of the MI vs the measures of dependence 

summarized by calculation method, measure of dependence, function, and impact on the 

output. 

Calculation 

Method 
Measure of dependence 

Function 

(kernel or 

membership 

function) 

Greatest impact on Least impact on 

NIS TIS NIS TIS 

Kernel 

Distance correlation 
Epanechnikov 43.06% 43.68% 42.74% 43.14% 

Normal 43.64% 44.30% 43.30% 43.77% 

Pearson correlation 
Epanechnikov 35.81% 42.72% 36.15% 42.85% 

Normal 36.32% 43.31% 36.61% 43.42% 

𝑅2𝑎𝑑𝑗  
Epanechnikov 36.34% 42.98% 36.49% 43.24% 

Normal 36.85% 43.57% 36.92% 43.76% 

Fuzzy-

histogram 

based 

Distance correlation 

Cosine 40.02% 25.57% 43.41% 32.06% 

Crisp 40.79% 25.32% 44.21% 31.88% 

Triangular 39.69% 25.24% 43.19% 31.80% 

Pearson correlation 

Cosine 34.13% 19.22% 36.85% 25.24% 

Crisp 35.34% 20.01% 38.10% 26.04% 

Triangular 33.31% 18.53% 36.15% 24.62% 

𝑅2𝑎𝑑𝑗  

Cosine 34.12% 19.20% 36.34% 24.44% 

Crisp 35.44% 19.97% 37.58% 25.24% 

Triangular 33.31% 18.52% 35.62% 23.82% 
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Logistic regression with two-factor interaction effect was performed in JMP® to 

investigate which factors affected the performance of the MI when compared against the 

different measures of dependence. Next, 𝜒2 test was performed in JMP® to investigate 

whether the performance of MI was statistically significantly different based on the 

method used to calculate the MI.  

Logistic regression was performed on the results of MI compared with each 

measure of dependence (distance correlation, Pearson correlation, and 𝑅2𝑎𝑑𝑗), from each 

calculation method (kernel, KNN, and fuzzy-histogram based method), and from each 

combination of greatest or least impact on the simulation output (input with the greatest 

impact on the NIS, input with the least impact on the NIS, input with the greatest impact 

on the TIS, and input with the least impact on the TIS). For the logistic regression, the 

following factors were considered as possible dependent variables that could affect the 

performance of the MI (the independent variable): (i) the value of bandwidth, the number 

of k-nearest neighbors, or the number of fuzzy subsets for the kernel, KNN, or fuzzy-

histogram based method, respectively, (ii) the number of replications (10, 20, 50, 100, 

200, 400, 600, 800, 1000, 1500), and (iii) the function type. The function type was only 

considered for the kernel and fuzzy-histogram based methods. In the kernel method, the 

function type was the kernel function, which was either normal or Epanechnikov. For the 

fuzzy-histogram based method, the function type was the fuzzy membership function, 

which was either cosine, crisp, or triangular. It is also important to mention that when 

Silverman bandwidth was used, the bandwidth value was not a factor to be considered as 

a possible dependent variable because there was only one sample in this case.  
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Based on the whole model test, which compares the whole-model fit to the model 

that omits all the logistic regression parameters except the intercepts, the model considered 

here was statistically a better fit than the intercepts (p-value less than 0.0001 at α-level of 

0.05) for each one of the results of Table 50. The null hypothesis is that the model fits no 

better than the model that includes only the intercepts. Table 50 shows the 

misclassification rate of the logistic model by method of calculation, measure of 

dependence, and impact on the simulation output. Considering only the aforementioned 

factors as variables that impact the performance of the MI the following average 

misclassification rate was obtained: 41.04% for the kernel method, 43.05% for the KNN 

method, and 30.95% for the fuzzy-histogram based method. 

 

Table 50. Misclassification rate of the logistic regression model by method of 

calculation, measure of dependence, and impact on simulation output.  

Method of 

calculation 
Measure of dependence 

Impact on 

simulation 

output 

Misclassification 

rate 

Kernel Distance correlation 
Greatest impact 

on NIS 
0.4335 

Kernel Distance correlation 
Least impact on 

NIS 
0.4302 

Kernel Distance correlation 
Greatest impact 

on TIS 
0.4399 

Kernel Distance correlation 
Least impact on 

TIS 
0.4345 

Kernel Pearson correlation 
Greatest impact 

on NIS 
0.3607 

Kernel Pearson correlation 
Least impact on 

NIS 
0.3638 

Kernel Pearson correlation 
Greatest impact 

on TIS 
0.4301 

Kernel Pearson correlation 
Least impact on 

TIS 
0.4313 

Kernel 
𝑅2𝑎𝑑𝑗  

𝑅2𝑎𝑑𝑗 
 

Greatest impact 

on NIS 
0.3660 
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Kernel 𝑅2𝑎𝑑𝑗 
Least impact on 

NIS 
0.3671 

Kernel 𝑅2𝑎𝑑𝑗 
Greatest impact 

on TIS 
0.4328 

Kernel 𝑅2𝑎𝑑𝑗 
Least impact on 

TIS 
0.4350 

KNN Distance correlation 
Greatest impact 

on NIS 
0.4590 

KNN Distance correlation 
Least impact on 

NIS 
0.4918 

KNN Distance correlation 
Greatest impact 

on TIS 
0.4026 

KNN Distance correlation 
Least impact on 

TIS 
0.4733 

KNN Pearson correlation 
Greatest impact 

on NIS 
0.3980 

KNN Pearson correlation 
Least impact on 

NIS 
0.4356 

KNN Pearson correlation 
Greatest impact 

on TIS 
0.3884 

KNN Pearson correlation 
Least impact on 

TIS 
0.4539 

KNN 
𝑅2𝑎𝑑𝑗  

𝑅2𝑎𝑑𝑗 
 

Greatest impact 

on NIS 
0.3991 

KNN 𝑅2𝑎𝑑𝑗 
Least impact on 

NIS 
0.4308 

KNN 𝑅2𝑎𝑑𝑗 
Greatest impact 

on TIS 
0.3876 

KNN 𝑅2𝑎𝑑𝑗 
Least impact on 

TIS 
0.4459 

Fuzzy-

histogram 
Distance correlation 

Greatest impact 

on NIS 
0.4016 

Fuzzy-

histogram 
Distance correlation 

Least impact on 

NIS 
0.4360 

Fuzzy-

histogram 
Distance correlation 

Greatest impact 

on TIS 
0.2538 

Fuzzy-

histogram 
Distance correlation 

Least impact on 

TIS 
0.3191 

Fuzzy-

histogram 
Pearson correlation 

Greatest impact 

on NIS 
0.3426 

Fuzzy-

histogram 
Pearson correlation 

Least impact on 

NIS 
0.3703 

Fuzzy-

histogram 
Pearson correlation 

Greatest impact 

on TIS 
0.1926 

Fuzzy-

histogram 
Pearson correlation 

Least impact on 

TIS 
0.2530 

Fuzzy-

histogram 

𝑅2𝑎𝑑𝑗  

𝑅2𝑎𝑑𝑗 
 

Greatest impact 

on NIS 
0.3429 

Fuzzy-

histogram 
𝑅2𝑎𝑑𝑗 

Least impact on 

NIS 
0.3652 
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Fuzzy-

histogram 
𝑅2𝑎𝑑𝑗 

Greatest impact 

on TIS 
0.1923 

Fuzzy-

histogram 
𝑅2𝑎𝑑𝑗 

Least impact on 

TIS 
0.2450 

 

Table 51 shows the p-value and order of importance for the factors and effects in 

the logistic regression model for an α-level of 0.05. As shown in Table 51, in general 

number of replications appears to be the most important factor in every method. Overall, 

number of replications and bandwidth value (or number of k-nearest neighbors or number 

of fuzzy subsets), and the interaction among these factors were the most important factors 

in the logistic model. In the fuzzy-histogram based model, the fuzzy membership function 

also appeared to be important in a few cases, especially when the MI was compared against 

the Pearson correlation or the 𝑅2𝑎𝑑𝑗. These results come to an agreement with the 

observations initially made from Table 49. 

 

Table 51. P-value and order of importance of factors on logistic regression model.  

Method of 

calculation 

Bandwidth 

type 

Measure of 

dependence 

Factor / P-

value (order 

of 

importance) 

Greatest 

impact 

on NIS 

Least 

impact 

on 

NIS 

Greatest 

impact 

on TIS 

Least 

impact 

on TIS 

Kernel 
Silverman 

bandwidth 

Distance 

correlation 

Number of 

replications 

0.0034 

(1) 

0.0012 

(1) 

0.2788 

(1) 

0.0353 

(1) 

Function type 
0.9961 

(2) 

0.8279 

(2) 

0.9668 

(2) 

0.8669 

(2) 

Number of 

replications x 

function type 

0.9965 

(3) 

0.9987 

(3) 

0.9990 

(3) 

0.9988 

(3) 

Pearson 

correlation 

Number of 

replications 

0.0146 

(1) 

0.0001 

(1) 

0.0236 

(1) 

0.0004 

(1) 

Function type 
0.9808 

(2) 

0.8113 

(2) 

0.9951 

(2) 

0.9366 

(2) 

Number of 

replications x 

function type 

0.9978 

(3) 

0.9984 

(3) 

0.9992 

(3) 

0.9990 

(3) 
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𝑅2𝑎𝑑𝑗 

Number of 

replications 

0.0019 

(1) 

0.0000 

(1) 

0.0149 

(1) 

0.0001 

(1) 

Function type 
0.9769 

(2) 

0.8130 

(2) 

0.9948 

(2) 

0.8689 

(2) 

Number of 

replications x 

function type 

0.9979 

(3) 

0.9984 

(3) 

0.9992 

(3) 

0.9971 

(3) 

Different 

values of 

bandwidth 

Distance 

correlation 

Number of 

replications 

0.0000 

(1) 

0.0000 

(1) 

0.0000 

(3) 

0.0000 

(3) 

Value of 

bandwidth 

0.0000 

(3) 

0.0000 

(3) 

0.0000 

(1) 

0.0000 

(1) 

Function type 
0.1929 

(4) 

0.1891 

(4) 

0.1566 

(4) 

0.1411 

(4) 

Number of 

replications x 

value of 

bandwidth 

0.0000 

(2) 

0.0000 

(2) 

0.0000 

(2) 

0.0000 

(2) 

Number of 

replications x 

function type 

0.8422 

(6) 

0.8498 

(6) 

0.8824 

(6) 

0.8776 

(6) 

Value of 

bandwidth x 

function type 

0.8108 

(5) 

0.8261 

(5) 

0.7721 

(5) 

0.7013 

(5) 

Pearson 

correlation 

Number of 

replications 

0.0000 

(2) 

0.0000 

(2) 

0.0000 

(3) 

0.0000 

(3) 

Value of 

bandwidth 

0.0000 

(3) 

0.0000 

(3) 

0.0000 

(1) 

0.0000 

(1) 

Function type 
0.2691 

(4) 

0.3142 

(4) 

0.1816 

(4) 

0.2156 

(4) 

Number of 

replications x 

value of 

bandwidth 

0.0000 

(1) 

0.0000 

(1) 

0.0000 

(2) 

0.0000 

(2) 

Number of 

replications x 

function type 

0.9146 

(6) 

0.8150 

(6) 

0.9288 

(6) 

0.9370 

(6) 

Value of 

bandwidth x 

function type 

0.7246 

(5) 

0.9111 

(5) 

0.8254 

(5) 

0.8261 

(5) 

𝑅2𝑎𝑑𝑗 

Number of 

replications 

0.0000 

(2) 

0.0000 

(2) 

0.0000 

(3) 

0.0000 

(3) 

Value of 

bandwidth 

0.0000 

(3) 

0.0000 

(3) 

0.0000 

(1) 

0.0000 

(1) 

Function type 
0.2853 

(4) 

0.3476 

(4) 

0.1921 

(3) 

0.2504 

(4) 

Number of 

replications x 

value of 

bandwidth 

0.0000 

(1) 

0.0000 

(1) 

0.0000 

(2) 

0.0000 

(2) 

Number of 

replications x 

function type 

0.9260 

(6) 

0.9342 

(6) 

0.9402 

(6) 

0.9629 

(6) 
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Value of 

bandwidth x 

function type 

0.7443 

(5) 

0.8188 

(5) 

0.8378 

(5) 

0.8414 

(5) 

KNN 

Distance 

correlation 

Number of 

replications 

0.0000 

(1) 

0.0000 

(1) 

0.0000 

(1) 

0.0000 

(1) 

Number of k-

nearest 

neighbors 

0.9109 

(2) 

0.7124 

(2) 

0.0000 

(2) 

0.0001 

(2) 

Number of 

replications x 

number of k-

nearest 

neighbors 

0.9764 

(3) 

0.9885 

(3) 

0.0001 

(3) 

0.0067 

(3) 

Pearson 

correlation 

Number of 

replications 

0.0000 

(1) 

0.0000 

(1) 

0.0000 

(1) 

0.0000 

(1) 

Number of k-

nearest 

neighbors 

0.2501 

(2) 

0.5266 

(2) 

0.0022 

(3) 

0.0020 

(3) 

Number of 

replications x 

number of k-

nearest 

neighbors 

0.5973 

(3) 

0.8861 

(3) 

0.0001 

(2) 

0.0006 

(2) 

𝑅2𝑎𝑑𝑗 

Number of 

replications 

0.0000 

(1) 

0.0000 

(1) 

0.0000 

(1) 

0.0000 

(1) 

Number of k-

nearest 

neighbors 

0.2732 

(2) 

0.5809 

(2) 

0.0021 

(3) 

0.0020 

(3) 

Number of 

replications x 

number of k-

nearest 

neighbors 

0.6130 

(3) 

0.8690 

(3) 

0.0001 

(2) 

0.0006 

(2) 

Fuzzy-histogram based 
Distance 

correlation 

Number of 

replications 

0.0000 

(1) 

0.0000 

(1) 

0.0000 

(1) 

0.0000 

(1) 

Number of 

fuzzy subsets 

0.0000 

(2) 

0.5604 

(5) 

0.0000 

(2) 

0.0000 

(2) 

Membership 

function 

0.2955 

(5) 

0.3621 

(3) 

0.7181 

(4) 

0.8804 

(4) 

Number of 

replications x 

number of 

fuzzy subsets 

0.0331 

(4) 

0.3770 

(4) 

0.9968 

(6) 

0.3637 

(3) 

Number of 

replications x 

membership 

function 

0.9037 

(6) 

0.6378 

(6) 

0.0043 

(3) 

1.0000 

(6) 

Number of 

fuzzy subsets 

x 

Membership 

function 

0.0021 

(3) 

0.0079 

(2) 

0.9935 

(5) 

0.9999 

(5) 
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Pearson 

correlation 

Number of 

replications 

0.0000 

(2) 

0.0000 

(1) 

0.0000 

(2) 

0.0000 

(1) 

Number of 

fuzzy subsets 

0.0000 

(1) 

0.0000 

(2) 

0.0000 

(1) 

0.0000 

(2) 

Membership 

function 

0.0015 

(5) 

0.0094 

(4) 

0.0299 

(4) 

0.0838 

(3) 

Number of 

replications x 

number of 

fuzzy subsets 

0.0001 

(4) 

0.0271 

(5) 

0.0005 

(3) 

0.8736 

(4) 

Number of 

replications x 

membership 

function 

0.9895 

(6) 

0.9682 

(6) 

0.1988 

(5) 

0.9649 

(5) 

Number of 

fuzzy subsets 

x 

Membership 

function 

0.0000 

(3) 

0.0027 

(3) 

0.6140 

(6) 

0.9933 

(6) 

𝑅2𝑎𝑑𝑗 

Number of 

replications 

0.0000 

(2) 

0.0000 

(1) 

0.0000 

(2) 

0.0000 

(1) 

Number of 

fuzzy subsets 

0.0000 

(1) 

0.0000 

(2) 

0.0000 

(1) 

0.0000 

(2) 

Membership 

function 

0.0010 

(5) 

0.0087 

(4) 

0.0371 

(4) 

0.1221 

(3) 

Number of 

replications x 

number of 

fuzzy subsets 

0.0001 

(4) 

0.0341 

(5) 

0.0004 

(3) 

0.7573 

(4) 

Number of 

replications x 

membership 

function 

0.9971 

(6) 

0.9599 

(6) 

0.1472 

(5) 

0.9524 

(5) 

Number of 

fuzzy subsets 

x 

Membership 

function 

0.0001 

(3) 

0.0023 

(3) 

0.6127 

(6) 

0.9926 

(6) 

 

Finally, 𝜒2 test at an α-level of 0.05 was performed to investigate whether the 

performance of the MI was statistically significantly different based on the method used 

to calculate the MI, as shown in Table 52. The null hypothesis is that the MI performance 

based on two calculation methods are not different and the alternative hypothesis is that 

the MI performance based on two calculation methods are different. As can be seen from 
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Table 52, with three exceptions the methods are statistically significantly different than 

each other. The results of Table 52 also come to an agreement with the observations made 

from Table 48. KNN is statistically significantly better than the fuzzy-histogram method 

in every case and it is also statistically significantly better than the kernel in almost every 

case. The exception is when considering the greatest impact on the TIS.  In this case, the 

kernel method is either statistically significantly better than the KNN method or there is 

no evidence that the methods are different. In general, the kernel method is statistically 

significantly better than the fuzzy-histogram based method.  

 

Table 52. 𝝌𝟐 test results whether the performance of the MI is statistically significantly 

different based on the calculation method. 

Measure of dependence Impact on output Proportion difference P-value 

Distance correlation 

Greatest impact on NIS -0.0268 (Kernel-KNN) <0.0001 

Least impact on NIS -0.0797 (Kernel-KNN) <0.0001 

Greatest impact on TIS 0.0344 (Kernel-KNN) <0.0001 

Least impact on TIS -0.0418 (Kernel-KNN) <0.0001 

Pearson correlation 

Greatest impact on NIS -0.0385 (Kernel-KNN) <0.0001 

Least impact on NIS -0.0731 (Kernel-KNN) <0.0001 

Greatest impact on TIS 0.0391 (Kernel-KNN) 1.0000 

Least impact on TIS -0.0254 (Kernel-KNN) <0.0001 

  
𝑅2𝑎𝑑𝑗 

Greatest impact on NIS -0.0342 (Kernel-KNN) <0.0001 

Least impact on NIS -0.0651 (Kernel-KNN) <0.0001 

Greatest impact on TIS 0.0425 (Kernel-KNN) <0.0001 

Least impact on TIS -0.0137 (Kernel-KNN) 0.0090 

Distance correlation 

Greatest impact on NIS 0.0306 (Kernel-Fuzzy) <0.0001 

Least impact on NIS -0.0075 (Kernel-Fuzzy) 0.9655 

Greatest impact on TIS 0.1832 (Kernel-Fuzzy) <0.0001 

Least impact on TIS 0.1123 (Kernel-Fuzzy) <0.0001 

Pearson correlation 
Greatest impact on NIS 0.0170 (Kernel-Fuzzy) <0.0001 

Least impact on NIS -0.0078 (Kernel-Fuzzy) <0.0001 
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Greatest impact on TIS 0.2349 (Kernel-Fuzzy) <0.0001 

Least impact on TIS 0.1755 (Kernel-Fuzzy) <0.0001 

  
𝑅2𝑎𝑑𝑗 

Greatest impact on NIS 0.0220 (Kernel-Fuzzy) <0.0001 

Least impact on NIS 0.0006 (Kernel-Fuzzy) 0.4456 

Greatest impact on TIS 0.2378 (Kernel-Fuzzy) <0.0001 

Least impact on TIS 0.1872 (Kernel-Fuzzy) <0.0001 

Distance correlation 

Greatest impact on NIS -0.0574 (Fuzzy-KNN) <0.0001 

Least impact on NIS -0.0721 (Fuzzy-KNN) <0.0001 

Greatest impact on TIS -0.1488 (Fuzzy-KNN) <0.0001 

Least impact on TIS -0.1541 (Fuzzy-KNN) <0.0001 

Pearson correlation 

Greatest impact on NIS -0.0554 (Fuzzy-KNN) <0.0001 

Least impact on NIS -0.0653 (Fuzzy-KNN) <0.0001 

Greatest impact on TIS -0.1958 (Fuzzy-KNN) <0.0001 

Least impact on TIS -0.2009 (Fuzzy-KNN) <0.0001 

  
𝑅2𝑎𝑑𝑗 

Greatest impact on NIS -0.0562 (Fuzzy-KNN) <0.0001 

Least impact on NIS -0.0656 (Fuzzy-KNN) <0.0001 

Greatest impact on TIS -0.1953 (Fuzzy-KNN) <0.0001 

Least impact on TIS -0.2009 (Fuzzy-KNN) <0.0001 

 

3.4.9. Overall comparison 

For easy reference and comparison, the results of section 2, which are directly 

related to this section, are summarized in Table 53. Similarly, the results of this section 

are summarized next in Table 54.  

 

Table 53. Summary of results investigating information theory as a method for 

uncertainty quantification in simulation models using the histogram-based method and 

data normalization as solution for the challenge encountered while applying entropy for 

continuous variables. 

Method / 

Characteristics 

and results of 

the method 

Histogram-based 

with probability 

density function 

and fixed number 

of bins 

Histogram-based 

with probability 

density function 

and optimum 

number of bins 

Histogram-based 

with discrete 

empirical 

distribution and 

fixed bins 

Histogram-based 

with discrete 

empirical 

distribution, fixed 

bins, and entropy 
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and MI 

normalization 

Characteristics 

of the method 

investigated 

Number of bins 

Optimum number 

of bins rules 

(Sturges', Scott's, 

and FD's rules) 

Without 

normalization 

Normalization 

method for entropy 

and for MI (arith, 

geom, joint, theor) 

Number of 

bins or 

binwidth 

Entropy and MI 

decrease with 

decrease in 

binwidth (increase 

in number of bins) 

NA 

Entropy and MI 

increase with 

decrease in 

binwidth (increase 

in number of bins) 

Entropy and MI 

decrease with 

decrease in binwidth 

(increase in number 

of bins) for entropy 

and 𝑀𝐼𝑡ℎ𝑒𝑜𝑟 . For 

other MI 

normalizations, the 

MI increase with 

decrease in binwidth 

(increase in number 

of bins) 

Bandwidth 

value 
NA NA NA NA 

Number of k-

nearest 

neighbors 

NA NA NA NA 

Number of 

fuzzy subsets 
NA NA NA NA 

Number of 

replications 

Entropy and MI 

increase with 

increase in number 

of replications (for 

lower bins, the 

curve tends to 

stabilize quicker) 

Entropy and MI 

increase with 

increase in 

number of 

replications 

Entropy and MI 

increase with 

increase in number 

of replications (for 

lower bins, the 

curve tends to 

stabilize quicker) 

Entropy and MI 

increase with 

increase in number 

of replications (for 

lower bins, the curve 

tends to stabilize 

quicker) 

Different seeds 

used 

The method 

resulted in same 

entropy for 𝑋1 
when using 

different seeds and 

different entropy 

and MI for other 

inputs and outputs. 

The method 

pointed larger 

variability in 

entropy of 𝑌1 and 

𝑌2 when using 

"seed 3" 

The method 

resulted in same 

entropy for 𝑋1 
when using 

different seeds 

and different 

entropy and MI 

for other inputs 

and outputs. The 

method pointed 

larger variability 

in entropy of 𝑌1 

and 𝑌2 when using 

"seed 3" 

The method 

resulted in same 

entropy for 𝑋1 
when using 

different seeds and 

different entropy 

and MI for other 

inputs and outputs. 

The method 

pointed larger 

variability in 

entropy of 𝑌1 and 

𝑌2 when using 

"seed 3" 

The method resulted 

in same entropy for 

𝑋1 when using 

different seeds and 

different entropy 

and MI for other 

inputs and outputs. 

The method pointed 

larger variability in 

entropy of 𝑌1 and 𝑌2 

when using "seed 3" 

Different 

parameter 

values 

Different entropy 

and MI when using 

different 

parameter values 

Different entropy 

and MI when 

using different 

parameter values 

Different entropy 

and MI when using 

different parameter 

values 

Different entropy 

and MI when using 

different parameter 

values 
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Different 

traffic 

intensities 

Not able to 

identify any 

pattern with 

changes in traffic 

intensity 

Not able to 

identify any 

pattern with 

changes in traffic 

intensity 

Not able to identify 

any pattern with 

changes in traffic 

intensity 

Not able to identify 

any pattern with 

changes in traffic 

intensity 

CONWIP 

system 

Constant entropy 

and MI for NIS, 

which tend to go to 

0 as number of 

bins increase 

Entropy and MI of 

NIS slightly 

decrease with 

increase in 

number of 

replications 

Entropy and MI for 

NIS are equal to 0 

regardless of 

number of bins 

Entropy and MI for 

NIS are equal to 0 

regardless of 

number of bins. 

However, for 

𝑀𝐼𝑗𝑜𝑖𝑛𝑡, 𝑀𝐼𝑎𝑟𝑖𝑡ℎ, and 

𝑀𝐼𝑔𝑒𝑜𝑚, MI for TIS 

is equal or close to 1. 

Travel time 

deterministic 

Constant entropy 

and MI for travel 

time deterministic, 

which tend to go to 

0 as number of 

bins increase 

Entropy and MI of 

travel time 

deterministic 

slightly decrease 

with increase in 

number of 

replications 

Entropy and MI for 

travel time 

deterministic are 

equal to 0 

regardless of 

number of bins 

Entropy and MI for 

travel time 

deterministic are 

equal to 0 regardless 

of number of bins. 

However, for 

𝑀𝐼𝑗𝑜𝑖𝑛𝑡, 𝑀𝐼𝑎𝑟𝑖𝑡ℎ, and 

𝑀𝐼𝑔𝑒𝑜𝑚, MI for TIS 

is equal or close to 1. 

Entropy 

performance 

compared to 

measures of 

error 

The performance 

increases with the 

increase in the 

number of bins for 

all measures of 

errors. The best 

performance is 

found when 

compared with 

SAE (or SSE) 

The three different 

optimum rules led 

to the same 

performance 

when compared 

with MAE or 

MSE and Sturges' 

rule led to the best 

performance 

when compared 

with SAE (or 

SSE) 

The performance 

when compared 

with SAE or SSE 

increases with the 

increase in the 

number of bins and 

it is constant over 

the number of bins 

when compared 

with MAE or MSE 

The performance 

when compared 

with SAE or SSE 

increases with the 

increase in the 

number of bins and 

it is constant over 

the number of bins 

when compared 

with MAE or MSE 

MI 

performance 

compared to 

measures of 

dependence 

In general, it 

showed better 

performance when 

compared with 

distance 

correlation, 

followed by 

Pearson 

correlation 

In general, it 

showed better 

performance 

when compared 

with Pearson 

correlation, 

followed by 𝑅2𝑎𝑑𝑗 

In general, it 

showed better 

performance when 

compared with 

Pearson 

correlation, 

followed by 𝑅2𝑎𝑑𝑗 

In general, it showed 

better performance 

when compared 

with Pearson 

correlation, 

followed by 𝑅2𝑎𝑑𝑗 

Comments 

Number of bins 

appeared to be a 

significant factor 

for the 

performance of the 

method 

 

Number of bins 

appeared to be a 

significant factor 

for the 

performance of the 

method 

Normalization 

method did not 

appear to be a 

significant factor, 

however all 

normalization 

methods were 

analyzed together. If 

the methods were 
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investigated only 

two by two, the 

results could have 

been different.  

 

Table 54. Summary of results investigating information theory as a method for 

uncertainty quantification in simulation models using the kernel, KNN, fuzzy-histogram, 

and histogram-based methods, and Jayne’s based approach as solution for the challenge 

encountered while applying entropy for continuous variables. 

Method / 

Characteristics 

and results of 

the method 

Kernel with 

different 

values of 

bandwidth 

Kernel with 

Silverman 

bandwidth 

KNN 
Fuzzy-

histogram 

Histogram-based 

with probability 

density function 

and fixed 

number of bins 

Characteristics 

of the method 

investigated 

Kernel 

functions and 

bandwidth 

values 

Kernel 

functions and 

Silverman 

bandwidth 

rule of thumb 

Number of k-

nearest 

neighbors 

Fuzzy subsets 

and fuzzy 

membership 

functions  

Number of bins 

Number of bins 

or binwidth 
NA NA NA NA 

Entropy and MI 

decrease with 

decrease in 

binwidth 

(increase in 

number of bins) 

Bandwidth 

value 

Entropy and 

MI increase 

with decrease 

in bandwidth 

NA NA NA NA 

Number of k-

nearest 

neighbors 

NA NA 

Entropy and 

MI increase 

with decrease 

in the number 

of k-nearest 

neighbors 

NA NA 

Number of 

fuzzy subsets 
NA NA NA 

Entropy and 

MI decrease 

with increase 

in the number 

of fuzzy 

subsets 

NA 

Number of 

replications 

Entropy and 

MI increase 

with increase 

in number of 

replications 

for mid-range 

values of 

bandwidth. 

Entropy and 

MI increase 

with increase 

in number of 

replications  

Entropy and 

MI increase 

with increase 

in number of 

replications 

(for lower 

number of k-

nearest 

Entropy and 

MI increase 

with increase 

in number of 

replications 

(for lower 

number of 

fuzzy 

Entropy and MI 

increase with 

increase in 

number of 

replications (for 

lower bins, the 

entropy and MI 

tend to decrease 
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For low-

values of 

bandwidth, 

the entropy 

and MI 

decreases 

with the 

increase in the 

number of 

replications. 

For high 

values, the 

entropy and 

MI are 

constant. The 

slope of the 

curve 

becomes 

shallower for 

any value of 

bandwidth 

with the 

increase in the 

replications.   

neighbors, 

the curve 

tends to 

stabilize) 

subsets, the 

entropy and 

MI tend to be 

constant) 

with the increase 

in the number of 

replications) 

Different seeds 

used 

The method 

resulted in 

same entropy 

for 𝑋1 when 

using 

different 

seeds and 

different 

entropy and 

MI for other 

inputs and 

outputs. The 

method 

pointed larger 

variability in 

entropy of 𝑌1 

and 𝑌2 when 

using "seed 3" 

The method 

resulted in 

same entropy 

for 𝑋1 when 

using 

different 

seeds and 

different 

entropy and 

MI for other 

inputs and 

outputs. The 

method 

pointed larger 

variability in 

entropy of 𝑌1 

and 𝑌2 when 

using "seed 3" 

The method 

resulted in 

same entropy 

for 𝑋1 when 

using 

different 

seeds and 

different 

entropy and 

MI for other 

inputs and 

outputs. The 

method 

pointed 

larger 

variability in 

entropy of 𝑌1 

and 𝑌2 when 

using "seed 

3" 

The method 

resulted in 

same entropy 

for 𝑋1 when 

using 

different 

seeds and 

different 

entropy and 

MI for other 

inputs and 

outputs. The 

method 

pointed larger 

variability in 

entropy of 𝑌1 

and 𝑌2 when 

using "seed 

3" 

The method 

resulted in same 

entropy for 𝑋1 
when using 

different seeds 

and different 

entropy and MI 

for other inputs 

and outputs. The 

method pointed 

larger variability 

in entropy of 𝑌1 

and 𝑌2 when using 

"seed 3" 

Different 

parameter 

values 

Different 

entropy and 

MI when 

using 

different 

parameter 

values 

Different 

entropy and 

MI when 

using 

different 

parameter 

values 

Different 

entropy and 

MI when 

using 

different 

parameter 

values 

Different 

entropy and 

MI when 

using 

different 

parameter 

values 

Different entropy 

and MI when 

using different 

parameter values 
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Different 

traffic 

intensities 

Not able to 

identify any 

pattern with 

changes in 

traffic 

intensity 

Not able to 

identify any 

pattern with 

changes in 

traffic 

intensity 

Not able to 

identify any 

pattern with 

changes in 

traffic 

intensity 

Not able to 

identify any 

pattern with 

changes in 

traffic 

intensity 

Not able to 

identify any 

pattern with 

changes in traffic 

intensity 

CONWIP 

system 

Constant 

entropy that 

tends to go to 

0 as value of 

bandwidth 

increases and 

MI that 

slighltly 

decreases or 

increases for 

NIS. MI also 

tends to go to 

0 as value of 

bandwidth 

increases 

NA 

Entropy of 

NIS equal to 

0 and MI 

involving 

NIS is equal 

to the entropy 

of the input 

Entropy of 

NIS equal to 

0 and MI 

involving 

NIS is equal 

to the entropy 

of the input 

Constant entropy 

and MI for NIS, 

which tend to go 

to 0 as number of 

bins increase 

Travel time 

deterministic 

Constant 

entropy that 

tends to go to 

0 as value of 

bandwidth 

increases and 

MI that 

slighltly 

decreases or 

increases for 

travel time 

deterministic. 

MI also tends 

to go to 0 as 

value of 

bandwidth 

increases 

NA 

Entropy of 

travel time 

deterministic 

equal to 0 and 

MI involving 

travel time 

deterministic 

is equal to the 

entropy of 

the output 

Entropy of 

travel time 

deterministic 

equal to 0 and 

MI involving 

travel time 

deterministic 

is equal to the 

entropy of the 

output 

Constant entropy 

and MI for travel 

time 

detertministic, 

which tend to go 

to 0 as number of 

bins increase 

Entropy 

performance 

compared to 

measures of 

error 

The 

performance 

when 

compared 

with SAE or 

SSE increases 

with the 

increase in the 

value of 

bandwidth 

and it is 

constant over 

the value of 

bandwidth 

when 

The two 

different 

kernel 

functions led 

to the same 

performance 

when 

compared 

with MAE or 

MSE and 

Epanechnikov 

function led to 

the best 

performance 

when 

The 

performance 

when 

compared 

with SAE or 

SSE 

increases 

with the 

increase in 

the number 

of k-nearest 

neighbors 

and it is 

constant over 

the value of 

The 

performance 

when 

compared 

with SAE or 

SSE 

increases 

with the 

increase in 

the number of 

fuzzy subsets 

and it is 

constant over 

the value of 

bandwidth 

Not investigated 
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compared 

with MAE or 

MSE 

compared 

with SAE (or 

SSE) 

bandwidth 

when 

compared 

with MAE or 

MSE 

when 

compared 

with MAE or 

MSE 

MI 

performance 

compared to 

measures of 

dependence 

In general, it 

showed better 

performance 

when 

compared 

with distance 

correlation 

In general, it 

showed better 

performance 

when 

compared 

with distance 

correlation 

In general, it 

showed 

better 

performance 

when 

compared 

with distance 

correlation 

In general, it 

showed better 

performance 

when 

compared 

with distance 

correlation 

Not investigated 

 

3.5. Concluding remarks 

This section was an extension of section 2 where Shannon’s entropy and mutual 

information calculated using different estimators were investigated as potential measures 

to quantify uncertainty in simulation models. In section 2, histogram-based method was 

the only estimator considered. In this section, the following estimators were considered: 

kernel, KNN, and fuzzy-histogram. 

In this section, the challenges encountered while applying entropy measures for 

continuous variables and the issues of interpretability faced when using the method 

proposed by Jaynes (1962) have been discussed more in depth. Based on the issues, an 

alternative for the function 𝑚(𝑥) was proposed, which was used to calculate the entropy 

and MI measures throughout this section of dissertation. The issue of calculating MI when 

using kernel estimator due to the multivariate interaction among bandwidths was also 

discussed. Similarly, a solution for this issue was proposed and applied when using the 

kernel method as an estimator for the entropy and MI measures.  
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In sections 3.4.3, 3.4.4, and 3.4.5, the impact of different bandwidths, different k-

nearest neighbors, and different number of fuzzy subsets on the entropy and MI measures 

was discussed. In those sections, it was showed why the bandwidth in the kernel method 

had different impact on the entropy and MI measures than the binwidth in the histogram-

based method. How this relates to the number of k-nearest neighbors and number of fuzzy 

subsets was also discussed.  

In section 3.4.6, the impact of different traffic intensities, different seeds, different 

parameter values, and different systems on the entropy and MI measures was investigated. 

Some important observations from this section were that regardless of the method chosen 

and the number of bins used: (i) the entropy measure was able to correctly identify that 𝑋1 

have the same information/uncertainty among the different traffic intensity experiments; 

and (ii) the entropy measures indicate differences in information/uncertainty based on 

different seeds, different traffic intensities, and different parameter values. All the methods 

showed up as good alternatives to investigate the quality of a seed in simulation models. 

Nevertheless, the main observations of section 3.4.6 involved the CONWIP and 

deterministic travel time systems. Regarding those systems, all the methods were able to 

somehow capture the deterministic behavior of the input (or output). However, not all the 

methods were able to appropriately quantify the deterministic behavior or to capture the 

lack of impact of the input on the output (or vice-versa). While the KNN and the fuzzy-

histogram methods were able to appropriately quantify the deterministic behavior of the 

input (or the output) through the entropy measure, the kernel method was only able to 

somehow capture the deterministic behavior. All three methods were not able to fully 
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capture the lack of impact of the input on the output through the MI. With that said, the 

entropy and MI measures appeared to have the best results in capturing the characteristics 

of the CONWIP or deterministic travel time systems when estimated using the histogram-

based method with discrete empirical distribution. Using this latter method, both the 

entropy and the MI measures were able to fully capture and quantify the deterministic 

behavior of the CONWIP and the travel time systems.  

In section 3.4.8, the results of the entropy measures were compared to SAE, SSE, 

MAE, and MSE, and the results of the MI measures were compared to distance correlation, 

Pearson correlation, and 𝑅2𝑎𝑑𝑗 to identify whether the measures agreed with other 

methods from the literature. Important conclusions from this section are: (i) the results of 

each method compared to SAE were always identical to the results compared to SSE, (ii) 

the results compared to MAE or MSE were constant over the different values of 

bandwidth, different number k-nearest neighbors, or different number of fuzzy subsets, 

and, (iii) all the methods showed better performance when compared to distance 

correlation, which was expected but different than what was found in section 2. It is 

important to highlight that the comparison with the different measures of error and 

different measures of dependence is not intended to give a rank on the best method to use 

or not. Rather, these comparisons are intended to give some information with respect to: 

(i) which factors/variables are more important for each method, (ii) a potential good choice 

of bandwidth, number of k-nearest neighbors, or number of fuzzy subsets for each method, 

and, (iii) a general idea of how the method performs in comparison with other methods 

available in the literature.   
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As the main limitations of this section, there are: (i) only a queue-system was used 

as an example to run the experiments; (ii) although the method was compared with other 

well-known measures of the scientific community, the method was not validated 

theoretically; and, (iii) a quantitative way to rank the methods among themselves was not 

developed. As future research, it is recommended: (i) to run similar experiments in 

different systems and to investigate how the responses would change (e.g., flow system, 

infection-transmission system, etc.), (ii) to propose a framework to validate the work 

theoretically, and, (iii) to apply the entropy and MI measures in a simulation model to 

estimate uncertainty and investigate its usability for simulation modelers.  

Based on the results discussed, the recommendation while using the method is to 

calculate the entropy and MI measures using the histogram-based method with discrete 

empirical distribution, which although is not the correct estimator given the continuous 

nature of the variables, it was the estimator that showed the best results in detecting the 

uncertainty in the simulation models and it did not exhibit challenges for its estimation. If 

one decides to not follow this recommendation, the next recommendation is to follow the 

approach proposed by Jaynes (1962) but to use 𝑚(𝑥) = 𝑓(𝑥)(1 + 𝑓(𝑥)) as proposed in 

this section. Then, calculate entropy and MI measures using either the KNN or fuzzy-

histogram, as these are the methods that showed the best quality overall results in 

quantifying uncertainty in simulation models.  
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4. APPLICATIONS OF ENTROPY MEASURES AS METHOD FOR INPUT 

PARAMETER SELECTION AND EXPERIMENT PLANNING IN SIMULATION 

MODELS 

 

4.1. Introduction 

The concept of entropy was coined in the physical sciences in the 19th century, 

more specifically in the area of thermodynamics (Greven, Keller, & Warnecke, 2014; 

Lacasa & Just, 2017). The term was introduced to describe energy dispersion, equilibria, 

and disorder of thermodynamic systems. Boltzmann later introduced the view of entropy 

as a measure of disorder of molecules in gas-related system. Thermodynamic systems 

share a number of common characteristics with complex systems and, consequently, have 

inspired the application of entropy theory for complex analysis (Mu & Hu, 2018). 

In the past, real-world systems were thought to be accurately represented by linear 

cause-effect relationships. However, many of these real-world systems, such as 

epidemiological systems, the human immune system, the stock market, and aviation, 

exhibit complex dynamics that are difficult to quantify and cannot be represented by linear 

relations (Rickles, Hawe, & Shiell, 2007). The recognition of these complex systems has 

promoted research in developing measures and methods to quantify the uncertainty and 

complexity of many physical, biological, physiological, and socio-economic real-world 

systems (Xiong et al., 2017). Among the methods developed to quantify complexity, 

uncertainty, and the amount of information present in real-world systems, entropy measure 
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has become one of the most common methods (Amigo, Keller, & Unakafova, 2015; 

Lacasa & Just, 2017; Xiong et al., 2017).  

In information theory, a branch of probability theory, entropy is also referred as 

information entropy to not be confused with thermodynamics entropy and it is interpreted 

as a measure of predictability, uncertainty, complexity, surprise, and information (or 

ignorance) (Tuan D. Pham, 2016; Rhea et al., 2011). Entropy as an information 

measurement method was first proposed by Shannon in a paper in 1948 (Shannon, 1948). 

This paper was later reprinted with corrections in 2001 (Shannon, 2001). According to 

Shannon (2001), the main problem of communication systems is to exactly or 

approximately reproduce at one point a message selected at another point considering that 

the actual message was selected from a set of possible messages. This problem can be 

reapplied to different contexts and fields. 

Although information entropy measures have been initially applied as a measure 

of uncertainty and production rate of new information in the field of communication 

systems, over the past few decades many other information entropy measures have been 

proposed and applied in a wide range of fields (Xu, Ning, Chen, & Wang, 2004). 

According to Attaran and Zwick (1987) and Mousavian, Kavousi, and Masoudi-Nejad 

(2016), information theory has expanded to different research areas including: computer 

science, statistics, physics, management, marketing, finance, accounting, economics, 

neurobiology, bioinformatics, and systems biology. As examples of application fields, 

Xiong et al. (2017) cite: cerebrovascular dynamics, electroencephalography, heart rate 
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variability, financial time series analysis, gait and posture, earth sciences, imaging, cellular 

automata, feature classification, and others.  

Despite its broad field of applications, the practical application of entropy 

measures is challenging, especially with respect to the performance evaluation of these 

measures and their correct interpretation. Among the main challenges are: (i) the variety 

of existing entropy measures and estimators, whose specificities are usually not 

completely understood by the users; (ii) the computation of information entropy is often 

non-trivial and the estimation approaches developed to approximate the probability 

density function utilized in the computation differ in their assumptions, which can make 

their performance assessment subjective; (iii) the difficulty in accurately estimating the 

probability function from the data without biasing the results; (iv) the difficulties in 

computing entropy measures for continuous variables; (v) the entropy measures can be 

affected by process-specific parameters and the complexity of the data, which can vary 

among different entropy measures and different estimators; (vi) the number of data points 

used in the calculation of entropy measures has been shown to affect the measures and for 

time-series data, the frequency at which the data is sampled is also relevant; (vii) the 

measures of entropy are also differently affected by noise; (viii) the entropy measures can 

be affected by how the data is partitioned and for entropy calculation, data usually has to 

be divided into bins or clusters and the number of possible bins approaches is large; (ix) 

the fact that many of the entropy measures proposed after Shannon’s developments do not 

measure the same characteristics and they may violate some of the essential properties 

required from a measure of uncertainty; and, (x) the difficulty in comparing entropy 



284 

 

among different variables and among different studies because of large variability and lack 

of standards (Amigo et al., 2015; Dionisio et al., 2004; Estévez et al., 2009; Kapur, 1983; 

Kinney & Atwal, 2014; Mousavian et al., 2016; Rhea et al., 2011; Strehl & Ghosh, 2002; 

Tesmer & Estévez, 2004; Xiong et al., 2017). These challenges raises the following 

questions in the field of entropy: (i) is there a potential optimum partition (i.e., number of 

bins)?; and, (ii) is there a potential optimum number of data points to be used?  

Rhea et al. (2011) highlighted that although challenging, entropy measures have 

shown to be a very useful tool for quantifying uncertainty and complexity. What is 

required is that researchers understand the underlying challenges and limitations of the 

measures and be aware of how the measures are affected by the different factors. 

Nevertheless, these challenges are likely some of the reasons why, to the best of our 

knowledge, entropy measures have not been extensively explored in the simulation field 

yet. 

Simulation modeling is a suitable tool to investigate the dynamics of complex 

systems (Cicirelli, Furfaro, & Nigro, 2011; Hongqiao, Xihua, Fei, & Weizi, 2009; 

Venkatramanan et al., 2018; Xie et al., 2014a). For simulation models, a common goal is 

to answer “what-if” questions, i.e., to run a number of different scenarios and investigate 

how the response changes in each of them. The ultimate goal of any simulation modeler 

is to characterize the system performance to infer something about the real system and to 

optimize one or more of the system’s responses (Dean & Lewis, 2006). In order to do so, 

simulation modelers need to first make assumptions about the real system and define the 

boundaries of the model. That is, simulation modelers must define what will be the scope 
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of the analysis and what will be left out. At this step, the input parameters that will be 

included in the simulation model and the responses or output parameters of interest are 

defined.  

With the advances of technology and the increase of data availability, a challenge 

that arises is determining, among the many available data and input parameters, which are 

the most important to be included in the model (Ankenman & Nelson, 2012; Reshef et al., 

2011). Adding data or parameters that are irrelevant and/or inaccurate to the simulation 

model is not only insignificant but most likely harmful for the results. This can increase 

the uncertainty of the model and lead to incorrect decision-making. There should be a 

balance between information loss and the computational resources needed (Haverkamp, 

Srinivasan, Frede, & Santhi, 2002). Even if the added data is correct, adding parameters 

to a model leads to increased resource needs. As highlighted by Oberkampf et al. (2002), 

a simpler model, with limited but known applicability, is more useful than a complete 

model with unknown applicability.   

Due to real system abstraction and variability and in order to investigate different 

scenarios, running experiments is always necessary in studies using simulation models. In 

order to improve the use of computational resources and minimize the cost and time 

required for experimentation, simulation modelers must plan their computer experiments 

appropriately. This involves determining the run-length of the simulation model, the 

number of replications, and/or the number of scenarios to run and their configurations. A 

simulation model is inevitably uncertain and, therefore, a careful choice of the input 

parameters to be included in the model and the experimental plan can avoid waste of time 
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and resources and improve the accuracy of its results. For this, methods of uncertainty and 

information quantification, such as entropy measures, can prove useful.  

In this section, Shannon’s entropy and mutual information are proposed as 

measures of simulation uncertainty to support parameter selection and experiment 

planning in simulation models. Therefore, based on the context discussed, the main 

research question is: can entropy measures quantify the uncertainty present in simulation 

models and help to understand the input parameters and experiment settings, such as 

number of replications, number of bins, and seed, that contribute more to uncertainty in 

simulation models? In other words, can entropy and mutual information measures be 

applied to support the choice of input parameters and experiment settings for simulation 

models? 

This section is intended to be a continuation of the previous sections of this 

dissertation.  

The central contribution of this section of the dissertation is that although 

information theory has been widely recognized for its importance in the area of uncertainty 

and information quantification, the theory has not been extensively applied in the 

simulation field yet. In this work, the ability of entropy measures to quantify uncertainty 

in simulation models is investigated through a series of applications of the measures for 

input parameter selection and experiment planning. These applications involve calculating 

Shannon’s entropy and mutual information for different queue simulation model 

experiments using stationary univariate distributions. The entropy measures are estimated 

using histogram-based method with probability density function and the entropy 
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normalization method proposed in section 3.4, as well as using histogram-based method 

with empirical discrete distribution. Regression analysis and ANOVA are also used to 

support the choice of experiment settings. Using Tukey-Kramer multiple comparison test 

and contingency analysis, the results of the entropy measures are compared to other 

methods such as standard error of the mean and ANOVA. 

The rest of this work is organized as follows: section 4.2 provides a quick overview 

on some of the different existing entropy measures from the literature and different 

applications. Section 4.3 discusses the method used to investigate the potential of entropy 

measures to support the choice of input parameters and experiment settings. Results and 

analyses are reported in section 4.4. Concluding remarks and future research directions 

are presented in section 4.5. 

4.2. Background 

4.2.1. Entropy measures 

Shannon defined entropy to be a statistical parameter that measures on average the 

information produced for each letter in a language (Shannon, 1951). Based on this, it is 

possible to investigate the predictability of a language when the preceding 𝑁 letters are 

known. A representation of a general communication system is given in Figure 72, adapted 

from Shannon (2001) and Stone (2015). The information source issues a message (or 

sequence of messages). The transmitter encodes the message in some way to produce a 

signal suitable for transmission over the channel. The channel is the medium where the 

message is transmitted. The receiver decodes the message for the intended destination or 
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recipient. During the transmission process, the signal may be perturbed by noise. Hence, 

the received signal may not be exactly the same as the issued signal.  

 

  

Figure 72. Representation of a general communication system. 

Source: Adapted from Shannon (2001) and Stone (2015). 

 

More generally, Shannon defined the information content of a random variable 𝑋 

as ℎ(𝑥) = − log 𝑝(𝑥) and the entropy as the average information gained by knowing the 

outcome of the random variable 𝑋, which is equal to the average uncertainty removed 

(Amigo et al., 2015; Kapur, 1983; Mousavian et al., 2016; Xiong et al., 2017). For a 

discrete random variable, we have: 𝐻(𝑋) = −∑𝑝(𝑥) log 𝑝(𝑥). According to this 

definition we have: (i) low information content for highly probable outcomes; and, (ii) 

high information content for unlikely outcomes (Xiong et al., 2017). Entropy is slightly 

more complicated to understand because it takes the average of the information content. 

Therefore, common outcomes contribute more to the entropy than rare outcomes, but they 

have less information content. In a succinct way, if there is no uncertainty, entropy is zero. 

On the other hand, entropy is maximum when all the outcomes are equally likely to occur 

(Telesca et al., 2008). He and Kolovos (2018) restated this in a more applicable approach: 
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the higher the probability that a model predicts an outcome, the less informative the model 

is. In other words, according to Shannon’s entropy, a model that accounts for all possible 

outcomes and has no uncertainty, will predict the process correctly, yet it will provide no 

valuable information about the process itself. Figure 73 illustrates this idea by showing 

Shannon’s entropy versus the bias of a coin. One can see that when the coin is fair 

(𝑝(ℎ𝑒𝑎𝑑𝑠) = 𝑝(𝑡𝑎𝑖𝑙𝑠) = 0.5), the entropy is maximum and when the 𝑝(ℎ𝑒𝑎𝑑𝑠) = 1 or 

𝑝(ℎ𝑒𝑎𝑑𝑠) = 0, the entropy is minimum.  

 

 

Figure 73. Shannon’s entropy for a biased coin. 

Source: Adapted from Stone (2015). 

 

The Shannon’s measure of information and uncertainty possesses many properties, 

such as: (i) symmetry - it should not change if 𝑝1, 𝑝2, … , 𝑝𝑚 are interchanged; (ii) 

continuity - it should be a continuous function of 𝑝1, 𝑝2, … , 𝑝𝑚; (iii) maximality - it should 

be maximum when all the probabilities are equal; (iv) additivity – it should be the sum of 

the entropies of two independent probability distributions; among others (Amigo et al., 
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2015; Kapur, 1983). Without any formal mathematical derivation, Shannon proposed the 

entropy of a continuous random variable, called differential entropy, as: 𝐻(𝑋) =

−∫𝑝(𝑥) log 𝑝(𝑥) 𝑑𝑥 (Xiong et al., 2017). The entropy of a discrete random variable 𝑋 is 

a function of the distribution of the random variable and it depends only on the number of 

outcomes and the probabilities of the outcomes but not on the values of the outcomes taken 

by 𝑋 (Mousavian et al., 2016; Stone, 2015). However, this is not true for the continuous 

random variable and its entropy depends on the range of values, which is one of the 

difficulties in defining entropy for continuous variables. 

For the case of the noisy channel represented in Figure 72, Shannon (2001) listed 

a number of entropies that could be calculated: 

• 𝐻(𝑋) = −∑ 𝑝(𝑥) log 𝑝(𝑥)𝑋 : the entropy of the input of the channel or the 

average information per issued signal; 

• 𝐻(𝑌) = −∑ 𝑝(𝑦) log 𝑝(𝑦)𝑌 : the entropy of the output of the channel or the 

average information per received signal; 

• 𝐻(𝑋, 𝑌) =  −∑ ∑ 𝑝(𝑥, 𝑦) log 𝑝(𝑥, 𝑦)𝑌𝑋 : the joint entropy of input and output 

or the average information of the communication system associated to pairs of 

transmitted and received symbols; 

• 𝐻(𝑋|𝑌) = −∑ 𝑝(𝑦)𝑌 ∑ 𝑝(𝑥|𝑦) log 𝑝(𝑥|𝑦)𝑋 = −∑ ∑ 𝑝(𝑥, 𝑦) log 𝑝(𝑥|𝑦)𝑋𝑌 : 

the conditional entropy of the input when the output is known or the average 

information measurement of the source given that 𝑌 was received. The entropy 

of 𝑋 conditioned to the occurrence of a particular symbol 𝑦 is given by: 

𝐻(𝑋|𝑦) = −∑ 𝑝(𝑥|𝑦) log 𝑝(𝑥|𝑦)𝑋 ; and, 
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• 𝐻(𝑌|𝑋) = −∑ ∑ 𝑝(𝑥, 𝑦) log 𝑝(𝑦|𝑥)𝑌𝑋 : the conditional entropy of the output 

when the input is known or the average information measurement of the received 

signal given that 𝑋 was transmitted (i.e., the average uncertainty of 𝑌 that cannot 

be attributed to 𝑋 or the noise entropy). 

Shannon (2001) has also shown the following important inequality 𝐻(𝑋) ≥

𝐻(𝑋|𝑌) and defined rate of transmission or, as it is more commonly called, mutual 

information. Mutual information is another important information measure and it 

measures how much of the entropy in the output reflects information in the input and how 

much is noise or what is the average reduction in uncertainty about the value of 𝑌 provided 

by the value of 𝑋 and vice-versa (Mousavian et al., 2016; Stone, 2015; Vinh, Epps, & 

Bailey, 2010). In other words, MI measures the amount of information contained in a 

variable in order to predict the dependent one and it is a measure of the dependence and 

nonlinear relationship between the variables (Estévez et al., 2009; Fraser & Swinney, 

1986; Kinney & Atwal, 2014; Rossi, Lendasse, François, Wertz, & Verleysen, 2006; 

Schreiber, 2000). 

The MI 𝐼(𝑋;  𝑌) can be calculated using Equation 73 (Dionisio et al., 2004). 

𝐼(𝑋; 𝑌) = 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌) = 𝐻(𝑌) − 𝐻(𝑌|𝑋)

= 𝐻(𝑋) − 𝐻(𝑋|𝑌) 
Equation 73 

For the noisy channel, we have: 

Y = X + ɛ  Equation 74 

If the value of 𝑋 is known, the uncertainty in 𝑋 is zero and, consequently, the 

entropy 𝐻(𝑋) is zero. Therefore: 
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𝐼(𝑋; 𝑌) = 𝐻(𝑌) − 𝐻([𝑋 + ɛ]|𝑋) Equation 75 

According to Stone (2015), because the uncertainty in 𝑋 is zero, it makes no 

contribution to the conditional entropy, which yields: 

𝐼(𝑋; 𝑌) = 𝐻(𝑌) − 𝐻(ɛ|𝑋) Equation 76 

But the value of the noise ɛ is independent of the value of 𝑋, which shows that 

𝐻(𝑌|𝑋) is the noise entropy: 

𝐻(𝑌|𝑋) = 𝐻(ɛ|𝑋) = 𝐻(ɛ) Equation 77 

From Equation 73 and because 𝐻(𝑋) ≥ 𝐻(𝑋|𝑌), we know that 𝐼(𝑋; 𝑌) ≥ 0, with 

equality only when 𝑋 and 𝑌 are strictly independent (Dionisio et al., 2004; Kraskov et al., 

2004). From Equation 73, one can also see that the MI of a random variable with itself as 

given by 𝐼(𝑋; 𝑋) = 𝐻(𝑋) + 𝐻(𝑋) − 𝐻(𝑋, 𝑋) = 𝐻(𝑋) − 𝐻(𝑋|𝑋) = 𝐻(𝑋) is equal to the 

entropy of the variable and it is also known as self-mutual information (Mousavian et al., 

2016).  

The five aforementioned entropies and the MI can be calculated using knowledge 

of logarithm functions and probability theory, such as: marginal distribution, conditional 

distribution, joint distribution, and Bayes’ rule. Using Bayes’ rule, one can calculate the 

joint entropy by 𝐻(𝑋, 𝑌) = 𝐻(𝑋|𝑌) + 𝐻(𝑌) = 𝐻(𝑌|𝑋) + 𝐻(𝑋) and the marginal entropy 

by 𝐻(𝑋) = 𝐼(𝑋; 𝑌) + 𝐻(𝑋|𝑌). Figure 74 shows the relationships between Shannon’s 

entropy measures and MI, as well as the use of MI as a measure of dependence. 
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Figure 74. Representation of the relations between Shannon’s entropy measures and 

mutual information and their application as a measure of dependence. 

Source: Adapted from Bao-Gang and Yong (2008) [left-side], and Tesmer and Estévez 

(2004) and Stone (2015) [right-side]. 

 

 

From Figure 74, it is easy to see that MI is bounded below by 0 and bounded above 

by the minimum of the entropies yielding 0 ≤ 𝐼(𝑋; 𝑌) ≤ min (𝐻(𝑋),𝐻(𝑌)). Because the 

entropy of variables can vary significantly, a normalized version of MI is desirable for 

easier interpretation and comparisons (Strehl & Ghosh, 2002). Equation 78, proposed by 

McDaid, Greene, and Hurley (2011) and Vinh et al. (2010), provides a series of upper 

bound relations for MI.  

𝐼(𝑌; 𝑋) ≤ 𝑚𝑖𝑛 (𝐻(𝑋),𝐻(𝑌)) ≤ √𝐻(𝑋)𝐻(𝑌) ≤
1

2
(𝐻(𝑋) + 𝐻(𝑌))

≤ 𝑚𝑎𝑥 (𝐻(𝑋),𝐻(𝑌)) ≤ 𝐻(𝑋, 𝑌) 

Equation 78 

Several normalizations of MI are possible based on Equation 6. These 

normalizations include using the arithmetic or geometric mean of 𝐻(𝑋)and 𝐻(𝑌).  

Different authors favor different normalizations. Strehl and Ghosh (2002) 

preferred to use the geometric mean as normalization because of the analogy with a 
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normalized inner product 𝑁𝑀𝐼𝑔𝑒𝑜 𝑚𝑒𝑎𝑛 =
𝐼(𝑋;𝑌)

√𝐻(𝑋)𝐻(𝑌)
=

𝐼(𝑋;𝑌)

√𝐼(𝑋;𝑋)𝐼(𝑌;𝑌)
. McDaid et al. (2011) 

argued that the most intuitive normalization would be to use 𝑁𝑀𝐼𝑚𝑎𝑥 =

𝐼(𝑋;𝑌)

max (max (H(X)),max (H(Y)))
. Principe et al. (2000) opted to use 𝑁𝑀𝐼𝑗𝑜𝑖𝑛𝑡 =

𝐼(𝑋;𝑌)

H(X,Y)
. 𝑁𝑀𝐼𝑗𝑜𝑖𝑛𝑡 

is also known as information quality ratio (IQRt) (Wijaya et al., 2017). According to 

Wijaya et al. (2017), by considering the total uncertainty one has a ratio that gives a fairer 

comparison. Bao-Gang and Yong (2008) argued that the following normalizations 

𝑁𝑀𝐼𝑋 =
𝐼(𝑋;𝑌)

H(X)
  and 𝑁𝑀𝐼𝑌 =

𝐼(𝑋;𝑌)

H(Y)
 are not as rigorous because they produce unequal 

values due to the asymmetric property in their definition. So, the authors suggest the use 

of  𝑁𝑀𝐼𝑔𝑒𝑜 𝑚𝑒𝑎𝑛 or 𝑁𝑀𝐼𝑎𝑟𝑖𝑡ℎ 𝑚𝑒𝑎𝑛 = 2
𝐼(𝑋;𝑌)

𝐻(𝑋)+𝐻(𝑌)
. 𝑁𝑀𝐼𝑎𝑟𝑖𝑡ℎ 𝑚𝑒𝑎𝑛 was also suggested by 

Ghosh (2002). Estévez et al. (2009) proposed the use of 𝑁𝑀𝐼𝑚𝑖𝑛 =
𝐼(𝑋;𝑌)

min (𝐻(𝑋),𝐻(𝑌))
. All 

these NMI are bounded in [0,1], where 0 means the two variables are independent and do 

not share any information about each other, and 1 means the two variables are identical 

and by knowing one variable, the next variable can be perfectly predicted (McDaid et al., 

2011). 

The mutual information index (MII) method was proposed by Critchfield and 

Willard (1986) based on the concept of mutual information. Critchfield and Willard (1986) 

used the MII to quantify the impact of uncertainty in the values chosen for the probabilities 

and utilities in a decision tree example. The MII provided insight about the contribution 

of the join effects of all tree variables to the decision tree under investigation. The measure 

can be calculated and compared for different inputs to determine which inputs provide 
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useful information about the output, but calculation of the MII suffers from computational 

complexity and the MII is easier computed for dichotomous responses (Frey & Patil, 

2002). The MII is given by  𝑀𝐼𝐼𝑋,𝑌 =
𝐼(𝑋;𝑌)
𝐼(𝑌,𝑌)

×100%. 𝐼(𝑌, 𝑌) is the self-mutual 

information, which is equal to  𝐻(𝑌). One can easily see that MII is just a normalization 

of the MI based on the self-mutual information of the output, as discussed in Bao-Gang 

and Yong (2008). According to Critchfield and Willard (1986), MII measures the 

percentage of the average mutual information contributing to the decision indicator 

variable 𝑌 that can be assigned to the tree variable 𝑋.  

Reshef et al. (2011) presented the maximal information coefficient (MIC) as a 

measure of dependence for two-variable relationships. The idea is that if a relationship 

exists between two variables, either linear or non-linear, then the MIC can be calculated 

on the grid drawn on the scatterplot of the two variables. The MIC of the 𝑥-by-𝑦 grid 

applied to the data is given by 𝑀𝐼𝐶𝑋,𝑌 =
𝐼(𝑋;𝑌)

𝑚𝑖𝑛{𝐻(𝑋),𝐻(𝑌)}
 (Z. Zhang, Sun, Yi, Wu, & Ding, 

2015). All grids are explored up to a maximal grid resolution and, for every pair (𝑥, 𝑦), 

the largest possible mutual information achievable is computed. MIC is between 0 and 1, 

symmetric, and robust to outliers (Reshef et al., 2011; Z. Zhang et al., 2015). Similar to 

the MII, MIC is just a normalization of the MI as discussed in Estévez et al. (2009). Kinney 

and Atwal (2014) highlighted that MI is a more natural and practical measure to equitably 

quantify associations in large datasets and that MIC is completely insensitive to noise. 

After Shannon’s developments, many other entropy-like quantity measures of 

information have been proposed (Wehrl, 1978). These other mathematical entropies do 

not measure the same characteristic and their definitions have been motivated by quite 
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different considerations (Kapur, 1983). According to Amigo et al. (2015) these measures 

have been developed as an attempt to generalize the axioms proposed by Shannon and due 

to the generalization, Kapur (1983) highlighted that they may violate some of the essential 

properties required (or expected) from a measure of uncertainty or information. Such 

generalized entropies, include information entropy measures introduced by Rényi (1961), 

Havrda and Charvát (1967), and Tsallis (1988). 

Xiong et al. (2017) classified entropy measures into two groups: (i) static and (ii) 

dynamic. Static entropy measures do not take any temporal information into account when 

measuring an observed probability distribution and dynamic entropy measures study the 

information content of a stochastic process evolving in time. Shannon’s entropy is a static 

measure that does not take any temporal information into account. Between 1950 and 

1960, Kolmogorov and Sinai, formalized the concept of information theory for dynamic 

systems (Wehrl, 1978; Xiong et al., 2017). The Kolmogorov-Sinai entropy (KS), also 

known as conditional entropy, measure-theoretic entropy, or metric entropy, was 

developed to quantify the new information contained in the present but not in the past or 

the average rate of newly created information in dynamical systems through a sequence 

of observations (Amigo et al., 2015; Xiong et al., 2017). As a result, KS is widely used as 

a measure of randomness and predictability in dynamical systems (Amigo et al., 2015; 

Xiong et al., 2017). Katok (2007) provides a historical overview of the KS in the field of 

dynamics. 

In practical terms, it is not possible to calculate the KS entropy for 𝑁𝑡 → ∞ because 

the measure diverges to infinity when the signal is contaminated by the slightest noise 
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(Orozco-Arroyave, Arias-Londono, Vargas-Bonilla, & Nöth, 2013). Therefore, Pincus 

(1991) proposed an estimation method for measuring the average conditional information 

generated by diverging points on a trajectory in state space. The method is called 

approximate entropy (ApEn). ApEn describes the production rate of new information or 

the repeatability and predictability of a time series by measuring the likelihood that a 

pattern with length (N) and criterion of similarity (𝑟) at time delay (𝑡) will repeat in the 

time series (Rhea et al., 2011; Yentes et al., 2013). As a result, frequent appearance of 

similar wave segments leads to lower values of ApEn. ApEn has the capability to identify 

changing complexity in quickly changing signals (Xu et al., 2004). 

The ApEn depends on the signal length due to the self-comparison of points in the 

attractor (Orozco-Arroyave et al., 2013). That is, the ApEn algorithm counts each 

sequence as matching itself, which leads to bias (Bravi, Longtin, & Seely, 2011; Richman 

& Moorman, 2000). Sample entropy (SampEn) was designed by Richman and Moorman 

(2000) as an estimation method to overcome this limitation. SampEn, similar to ApEn, 

quantifies the change in the relative frequencies of length 𝑚 time-delay vectors, but 

SampEn excludes the counts where the vector is compared with itself, which avoids the 

bias that self-matches introduce in the estimation (Amigo et al., 2015; Bravi et al., 2011). 

Besides eliminating self-matches, SampEn is also simpler to calculate than ApEn 

(Richman & Moorman, 2000). 

Similar to Shannon’s entropy, the original definition of mutual information does 

not contain dynamical nor directional information about the systems. Schreiber (2000) 

stated that one could incorporate dynamical structure in the mutual information by 
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introducing transition probabilities in place of static probabilities in the entropy and a 

somewhat ad hoc directional structure by introducing a time lag in one of the variables of 

the mutual information (Schreiber, 2000). 

When the mutual information reflects the amount of information shared between 

the present and the past observations of a stochastic process, it is known as information 

storage (Xiong et al., 2017). The information storage measures the amount of information 

preserved in a time-evolving system or how much of the uncertainty about the present can 

be resolved by knowing the past. Similar to KS, the information storage can also be used 

to predict the future dynamics of the system. However, somewhat different than KS, 

information storage uses the past information for that and as a result, if the process is fully 

random, the past gives no knowledge about the present and the information storage is zero; 

on the contrary, if the process is fully predictable, the present can be fully predicted from 

the past, which results in maximum information storage. Finally, if the process is 

stationary, the information shared between the present and the past is constant (Xiong et 

al., 2017). In the context of dynamical systems, the entropy measures the information 

contained in the present state; the conditional entropy measures the new information that 

cannot be inferred from the past; and the information storage measures the information 

that can be explained by the past. 

Abásolo, Escudero, Hornero, Gómez, and Espino (2008) presented the definition 

of auto-mutual information (AMI) and cross-mutual information (CMI). Auto-mutual 

information is the time-delayed self-mutual information of a signal and it quantifies, on 

average, the degree to which 𝑥(𝑡 + 𝜏) can be predicted from 𝑥(𝑡). AMI is given by 
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𝐼(𝑋; 𝑋)𝑡 = ∑ 𝑃𝑋𝑋𝑡[𝑥(𝑡), 𝑥(𝑡 + 𝜏)] × log {
𝑃𝑋𝑋𝑡[𝑥(𝑡),𝑥(𝑡+𝜏)]

𝑃𝑋[𝑥(𝑡)]𝑃𝑋𝑡[𝑥(𝑡+𝜏)]
}𝑥(𝑡),𝑥(𝑡+𝜏) . Cross-mutual 

information is the time-delayed mutual information of two different signals.  

In the context of statistical inference, Kullback and Leibler (1951) proposed a 

measure of distance or divergence between two probability distributions, which measures 

the average number of extra bits needed to construct an optimal encoding if a different 

distribution 𝑞𝑖 is used (Şahin, 2017; Schreiber, 2000). The Kullback-Leibler divergence 

(KL) is also known as relative entropy or information for discrimination (Mousavian et 

al., 2016).  

The first term of the KL is called cross-entropy (Hopper, 2021). The KL calculates 

the relative entropy between two probability distribution and the cross-entropy calculates 

the total entropy between two probability distributions. Both KL and cross-entropy are 

non-symmetrical. Considering two distributions 𝑃 and 𝑄, where 𝑃 represents the 

measured or “true” theoretical data and 𝑄 represents the approximated 𝑃 data through a 

model, the KL divergence is the average difference of the number of bits required for 

encoding samples of 𝑃 using a code optimized for 𝑄. That is, the relative entropy of 𝑃 

with respect to 𝑄. The cross-entropy is used to quantify the discrimination information 

between two probability distributions for a given random variable or set of events and it 

measures the average number of total bits needed to identify an object from a set of 

possibilities if a different coding scheme 𝑄 is used instead of the original source coding 

scheme 𝑃 (Şahin, 2017). There are many situations where cross-entropy needs to be 
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measured but 𝑃 is unknown. An estimate of cross-entropy can be calculated by: 𝐻(𝑃, 𝑄) =

−∑
1

𝑁
𝑙𝑜𝑔2𝑄(𝑋)

𝑁
𝑖=1 .  

Minimizing the cross-entropy is known as principle of minimum cross-entropy 

(MinxEnt) and minimizing KL is known as principle of minimum discrimination. In 

summary, the principles state that, given a priori distribution 𝑄, one has to choose the 

distribution 𝑃 with the minimum cross-entropy (or KL) from the ones that satisfy all the 

constraints (X. Chen, Kar, & Ralescu, 2012; Kapur & Kesavan, 1990). Both methods can 

be used as loss functions in machine learning and classification models (Brownlee, 2019). 

When used as loss function for optimizing a classification predictive model, the entropy 

of the class label should be zero and, consequently, both cross-entropy and KL calculate 

the same quantity (Brownlee, 2019). Because of that, the terms KL and cross-entropy as 

well as principle of minimum cross-entropy and principle of minimum discrimination are 

sometimes used interchangeably, as they are in De Boer, Kroese, Mannor, and Rubinstein 

(2005) and Shore and Johnson (1981). It is worth pointing out that when 𝑄 is compared 

against a fixed reference distribution 𝑃, cross-entropy and KL are identical up to an 

additive constant.   

Still in the context of statistical inference, Jaynes (1957) proposed the maximum 

entropy principle (MaxEnt) as a method for estimating probability distributions from data 

when one does not have complete knowledge (Nigam, Lafferty, & McCallum, 1999). The 

principle states that when one makes inferences based on partial information, one must 

use the probability distribution that has the maximum entropy subject to whatever is 

known (Jaynes, 1957). In other words, one wants to find a target probability distribution 
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of maximum entropy subject to a set of constraints that represents the incomplete 

knowledge about the target distribution (Phillips, Anderson, & Schapire, 2006). If nothing 

is known, the distribution should be as uniform as possible which gives the maximal 

entropy (Amigo et al., 2015; X. Chen et al., 2012; Nigam et al., 1999; Phillips, Dudík, & 

Schapire, 2004). By using a distribution with higher entropy, one is less constrained or has 

more choices, which means that the decision agrees with everything that is known, but 

carefully avoids assuming anything that is not known (Berger, Della Pietra, & Della Pietra, 

1996; Phillips et al., 2006). If 𝑄, in MinxEnt is the uniform distribution, the principle 

reduces to the maximum entropy principle (Kapur & Kesavan, 1990). Berger et al. (1996) 

highlighted that in simple cases one could find the solution to the MaxEnt constraint 

programming analytically, but in general a more direct approach is needed. 

MaxEnt and MinxEnt involve finding the maximum (or minimum) entropy when 

the constraints and a priori probability distribution are given. Kapur and Kesavan (1990) 

discussed the inverse problem, when a probability distribution is given and one has to find 

either: (i) the constraints, or (ii) the measure of entropy, or (iii) the priori probability 

distribution, so that the given probability distribution is a MaxEnt or MinxEnt. 

Another entropy approach worth discussing is the Bayesian maximum entropy 

(BME). In the BME approach, two types of data are differentiated: hard data, whose 

observations are considered to be deterministic, and soft data, whose observations 

represent observed data that carry uncertainty. Instead of a single measure of information, 

BME is actually a knowledge-centered approach to integrate information from different 

sources to obtain improved prediction. BME is a model-free approach that combines 
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maximum entropy theory with Bayesian statistics to handle different types of information 

and uncertain input (He & Kolovos, 2018). The BME is applied in three phases: meta-

prior stage, prior stage, and posterior stage. The advantage of BME is that it can be applied 

for spatial and spatiotemporal information, as well as univariate and multivariate cases.  

The BME approach is based on Bayes’ theory and the maximum entropy principle. 

Therefore, the BME approach says that based on a set of trial or prior probability 

distributions the prior distribution with the maximum entropy should be chosen. This prior 

is then used to update the current information and obtain the posterior distribution, 

following the Bayesian scheme. A little counter-intuitive is the fact that based on BME, 

the higher the probability that a model predicts a process, the less informative the model. 

The logic is that a model that predicts a process correctly, provides no valuable 

information about the process itself because no behavior is implied to explain the process 

(He & Kolovos, 2018). The measure of information commonly used in the context of 

Bayesian statistics is the KL of the posterior from the prior (Walsh, Wildey, & Jakeman, 

2018). 

In 1956, Lindley (1956) introduced the concept of the measure of the information 

provided by an experiment. Lindley’s measure was derived from Shannon (1948) and 

expressed the knowledge prior to performing the experiment in terms of the prior 

probability distribution. In Shannon’s work, by considering the information in 𝑥 and 𝑦 one 

can measure the rate of transmission of information along the channel. Hence, Lindley 

(1956) proposed an analogous description in the context of experimental design, where 𝑥 

represents the knowledge of the system prior to the experiment (prior), and 𝑦 is the 
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knowledge after the experiment (posterior). The comparison of the knowledge before and 

after the experiment yields the amount of information provided by the experiment. 

Lindley’s experimentation approach was to perform the experiment for which the 

expected gain in information was the largest and to continue this process until the desired 

amount of information about the system was achieved. Lindley (1956) used the measure 

to solve some experimental design problems where the goal was to gain knowledge about 

the system.  

When one applies the Bayesian approach to find an experimental design that is 

optimum according to the modeler’s goals, such as parameter inference, prediction, or 

model selection, the approach is known as optimal experimental design (Clyde, 2001). 

Optimal experimental designs aim at maximizing the value of each experiment and 

minimizing the uncertainties to achieve the experimental goals more rapidly and with 

lower costs (Elizabeth G. Ryan et al., 2014; van Den Berg, Curtis, & Trampert, 2003; 

Walsh et al., 2018).  

The first studies on Bayesian optimal experimental designs followed the work of 

Lindley (1956) and suggested using the expected gain in information given by an 

experiment as a utility function (Chaloner & Verdinelli, 1995). The goal was then to 

maximize this utility function. According to Huan and Marzouk (2014) and Bisetti, Kim, 

Knio, Long, and Tempone (2016), a useful utility function for Bayesian parameter 

inference is the KL from posterior to prior. Huan and Marzouk (2014) highlighted that 

other utility functions may be used depending on the goal of the experiment, but the KL 

is a general-purpose function to maximize understanding about the system and, 
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consequently, it yields good results in a variety of experiments. For other utility functions, 

please refer to Chaloner and Verdinelli (1995) and Elizabeth G Ryan (2014).  

Although useful, the computations of the KL utility function and the integration 

problem (posterior calculation) are not trivial (Bisetti et al., 2016; Huan & Marzouk, 

2014). Unless the likelihood and the priors are appropriately chosen, such as the use of 

conjugate priors, or the problem is restricted to special cases, such as linear Gaussian 

models, usually one cannot find a closed form solution to the problem (Elizabeth G Ryan, 

2014; Walsh et al., 2018). Therefore, the functions must be solved using numerical 

approximation methods or stochastic solution methods. Elizabeth G Ryan (2014) also 

highlighted the need to check the solution for sensitivity to the prior distribution.  

In the context of feature selection in images, mutual information is used to measure 

the level of similarity or redundancy between pixels and the relevance of the features for 

the task classification. At least four mutual information measures were cited by Tapia and 

Perez (2013) and Estévez et al. (2009) for feature selection: (i) minimum redundancy and 

maximal relevance (mRMR), (ii) normalized mutual information feature selection 

(NMIFS), (iii) conditional mutual information feature selection (CMIFS), and (iv) 

conditional mutual information maximization (CMIM). mRMR combines relevance and 

redundancy into a single criterion: 𝑓𝑚𝑅𝑀𝑅(𝑋𝑖) = 𝐼(𝐶; 𝑓𝑖) −
1

|𝑆|
∑ 𝐼(𝑓𝑖; 𝑓𝑠)𝑓𝑖∈𝑆

, where 

𝐼(𝐶; 𝑓𝑖) measures the relevance of the feature to be added for the output class and 

1

|𝑆|
𝐼(𝑓𝑖; 𝑓𝑠) estimates the redundancy of the 𝑓𝑖𝑡ℎ feature with respect to the subset of 

previously selected features 𝑆. NMIFS is a normalized version of mRMR where the 
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mutual information 𝐼(𝑓𝑖; 𝑓𝑠) is normalized by the minimum entropy of both features. Thus, 

we have: 𝑓𝑁𝑀𝐼𝐹𝑆(𝑋𝑖) = 𝐼(𝐶; 𝑓𝑖) −
1

|𝑆|
∑

𝐼(𝑓𝑖;𝑓𝑠)

min (𝐻(𝑓𝑖),𝐻(𝑓𝑠))
𝑓𝑖∈𝑆

. In CMIFS, the subset of 

features 𝑆 is built step by step by adding one feature at a time. Let  𝑆 be the set of already-

selected features and 𝑁 the set of candidate features, such as 𝑆 ∩ 𝑁 = ∅. The next feature 

in 𝑁 to be selected is the one that maximizes: 𝐼(𝐶; 𝑓𝑖) − [𝐼(𝑓𝑖; 𝑋𝑠) − 𝐼(𝑓𝑖; 𝑋𝑠|𝐶)], where 

𝑓𝑖 ∈ 𝑁. Finally, CMIM considers the MI between the candidate feature variable 𝑓𝑖 and the 

task classification class 𝐶 given each of the variables in the set 𝑆 separately, this allows 

CMIM to consider a feature 𝑓𝑖 relevant only if it provides large amount of information 

about the class 𝐶 and this information is not contained in any of the features already 

selected. For this, we have: 𝐶𝑀𝐼𝑀 = {
𝑎𝑟𝑔𝑚𝑎𝑥𝑓𝑖∈ 𝐹{𝐼(𝑓𝑖; 𝐶)} 𝑓𝑜𝑟 𝑆 = ∅

𝑎𝑟𝑔𝑚𝑎𝑥𝑓𝑖∈ 𝐹/𝑆{𝑚𝑖𝑛𝑓𝑖∈ 𝑆 𝐼(𝑓𝑖; 𝐶/𝑓𝑗)} 𝑓𝑜𝑟 𝑆 ≠ ∅
, 

where 𝐹 is the initial set of 𝑛 features for the empty set 𝑆. 

In the context of model selection, the Akaike information criterion (AIC) was 

designed as an estimate of the expected Kullback-Leibler divergence between the model 

generating the data and a fitted candidate model (Cavanaugh, 1997). The KL is just one 

kind of loss function. The AIC is an estimate of the quality of the model and, consequently, 

it is used as a regression model selection criterion. Because the true model is unknown, 

the absolute divergence between a candidate model and the true model is also unknown, 

but the relative differences between models can be used to rank order models according 

to their expected KL. The candidate model with the lowest AIC has also the lowest 

expected KL, even though the actual KL is unknown. In other words, the AIC tells nothing 

about the quality of the model, but only about the quality relative to other models. If all 
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models fit poorly, AIC will not capture that. This explains why the KL is explicitly defined 

for two models and the AIC only for one and why the AIC is only a consistent estimator 

of KL if the true model is among the models under consideration (Vrieze, 2012). The AIC 

asymptotically selects the model that minimizes the mean squared error of prediction 

(Vrieze, 2012). If the number of data points is small, some correction is usually necessary 

(Cavanaugh, 1997). Wand (1997) classified AIC, MinxEnt, and MaxEnt in a category 

called information-based criteria. 

Some of these proposed entropy and mutual information measures discussed above 

and a few other ones are summarized in Table 55. However, many information measures 

have been mentioned in the literature, such as: (𝜀, 𝜏)-entropy (Amigo et al., 2015); Kapur’s 

entropy (Kapur, 1983); fuzzy cross-entropy (Şahin, 2017); recurrence quantification 

analysis entropy (Rhea et al., 2011); corrected conditional entropy, fuzzy entropy, 

compression entropy, permutation entropy, distribution entropy, and multiscale entropy 

(Bravi et al., 2011; Xiong et al., 2017); diffusion entropy (Bravi et al., 2011); spectral 

entropy (Garner & Ling, 2014); and, compression entropy (Baumert et al., 2004; Bravi et 

al., 2011; Truebner et al., 2006; Xiong et al., 2017). For more discussion on most of the 

measures discussed in this section, please refer to Kapur (1983) and Bravi et al. (2011). 

 

Table 55. Some entropy and mutual information measures proposed in the literature. 
Entropy 

measure 
Definition Characteristics Source 
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Renyi’s 

entropy 

𝐻∝(𝑋) =
1

1−∝
log∑ 𝑝(𝑥)∝𝑥∈𝑀  , where 

∝≥ 0, ∝≠ 1 is the order of 

the entropy. 

Generalize Shannon’s entropy for 

the case of generalized distributions, 

where ∑ 𝑝(𝑥)𝑥∈𝑀 ≤ 1. 𝐻0(𝑋) =
log |𝛤| is called the Hartley entropy 

and 𝐻2(𝑋) = −log∑ 𝑝(𝑥)2𝑥∈𝑀  is 

called the collision or quadratic 

entropy. 

Rényi (1961), 

Kapur (1983), 

Principe et al. 

(2000), 

Kannathal, Choo, 

Acharya, and 

Sadasivan 

(2005), and 

Amigo et al. 

(2015) 

Havrda and 

Charvat’s 

entropy 

𝐻∝(𝑃) =
1

1−𝑒1−∝
[1 −

∑ 𝑝𝑖
∝𝑚

𝑖=1 ], where ∝≠ 1 is the 

order of the entropy. 

Replaced the recursive property of 

Shannon’s entropy. This measure is 

not additive. 

Kapur (1983) 

Tsallis’ 

entropy 
𝐻∝(𝑃) =

𝑘

∝−1
(1 −

∑ 𝑝𝑖
∝𝑚

𝑖=1 ), where ∝≠ 1 is the 

order of the entropy. 

This entropy differs from Havrda 

and Charvat’s entropy only in a 

factor that depends on ∝. 

Tsallis (1988) 

and Amigo et al. 

(2015) 

Kolmogorov-

Sinai entropy 

𝐻𝐾𝑆 =

lim
𝜏→0
lim
𝜀→0

lim
𝑁𝑡→∞

1

𝑁𝑡𝜏
(𝐻𝑁𝑡 −𝐻0) 

is the average K-S entropy, 

where 𝐻𝑁𝑡 is the Shannon 

entropy calculated at time 𝑁𝑡 
given by 𝐻𝑁𝑡 =

−𝑘 ∑ 𝑝𝑖 log 𝑝𝑖
𝑁𝑡
𝑖=1 , 𝑁𝑡 is the 

number of time steps, 𝜏 is the 

length of time, and 𝜀 is the 

bin or cell size. For discrete 

systems, 𝜏 is set to 1 and the 

lim
𝜏→0

 is dropped out.  

The KS is also a measure of the 

information needed to predict which 

part of the space the dynamics will 

visit at a time 𝑡 + 1, given the 

trajectories up to time 𝑡. 𝐻𝐾𝑆 is zero 

for a deterministic system because it 

does not produce any new 

information, some positive constant 

for a chaotic or stationary system 

because the system produces new 

information at a constant rate, and 

infinite for a fully random process as 

it produces information at the 

maximum rate. KS is based on three 

key characteristics: (i) modeling of 

sequential probabilities, (ii) entropy 

rate, and (iii) limiting conditions. 

Bravi et al. 

(2011), Orozco-

Arroyave et al. 

(2013), Tuan D 

Pham (2013), 

Tuan D. Pham 

(2016), and 

Xiong et al. 

(2017) 
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Approximate 

entropy 

𝐴𝐸(𝑚, 𝑟, 𝑁) =
lim
𝑁→∞

[𝛷𝑚+1(𝑟) − 𝛷𝑚(𝑟)] =
1

𝑁−𝑚+1
∑ log 𝐶𝑖

𝑚(𝑟)𝑁−𝑚+1
𝑖=1 −

1

𝑁−𝑚
∑ log 𝐶𝑖

𝑚+1(𝑟)𝑁−𝑚
𝑖=1 , 

where 𝛷𝑚(𝑟) =
1

𝑁−𝑚+1
∑ log 𝐶𝑖

𝑚(𝑟)𝑁−𝑚+1
𝑖=1 , 

where 𝐶𝑖
𝑚(𝑟) is the 

correlation dimension: 

𝐶𝑖
𝑚(𝑟) =
2

𝑁(𝑁−1)
∑ 𝜃(𝑟 − ‖𝑥𝑖 −
𝑁
𝑗=𝑖+1

𝑥𝑗‖), where N is the number 

of points in the state space, 𝜃 

is the Heaviside function and 
‖. ‖is a norm. 

Given 𝑁 points, the family of 

statistics 𝐴𝐸(𝑚, 𝑟, 𝑁) is 

approximately equal to the negative 

average logarithm of the conditional 

probability that two sequences that 

are similar for 𝑚 points remain 

similar within a tolerance 𝑟 at the 

next point. Consequently, a low 

value of ApEn reflects a high degree 

of regularity or less complexity. 𝑁 is 

the data size, 𝑟 is the criterion of 

similarity, and 𝑚 is the length of the 

data segment being compared. 

Pincus (1991), 

Richman and 

Moorman (2000), 

Xu et al. (2004), 

Kannathal et al. 

(2005), (Rhea et 

al., 2011), 

Orozco-Arroyave 

et al. (2013), and 

Yentes et al. 

(2013) 

Sample 

entropy 

𝑆𝐸(𝑚, 𝑟) =

lim
𝑁→∞

[− log
Г𝑚+1(𝑟)

Г𝑚(𝑟)
]. 

𝑆𝐸(𝑚, 𝑟) is precisely the negative 

logarithm of the conditional 

probability that two sequences 

similar for 𝑚 points remain similar 

at the next point, where self-matches 

are not included in calculating the 

probability. Therefore, a lower value 

of SampEn also indicates more self-

similarity in the time series. 

Richman and 

Moorman (2000), 

Bravi et al. 

(2011), Orozco-

Arroyave et al. 

(2013), and 

Amigo et al. 

(2015) 

Approximate 

entropy with 

Gaussian 

kernel 

The Heaviside function in 

the ApEn is replaced by: 

𝑑𝐺(𝑥𝑖 , 𝑥𝑗) =

𝑒𝑥𝑝 (
−‖𝑥𝑖−𝑥𝑗‖1

10𝑟2
). 

The Gaussian kernel is used to give 

greater weight to nearby points by 

replacing the Heaviside function. 

Orozco-Arroyave 

et al. (2013) 

Mode 

entropy 

(ModEn) 

𝑀𝑜𝑑𝐸𝑛(𝑚, 𝑟, 𝑁) =
𝛷𝑚−1(𝑟) − 𝛷𝑚(𝑟), for 𝑚 ≥
1, 𝑚 and 𝑟 are commonly 

referred to as embedding 

dimension and radius, 

respectively. 

Different than ApEn that compares 

the element of the first vector with 

that of the second vector, ModEn 

compares the increment of each 

element of the first vector with that 

of the second vector in determining 

whether two vectors are 

approximate. With this method the 

case where approximate vectors are 

too few would not occur even if the 

fluctuation of wave were slow and 

large, which makes it more adequate 

for time series of short-term signals 

with broad amplitude and slow 

fluctuation. 

Xu et al. (2004) 
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Information 

storage 

𝑆(𝑋) = 𝐼(𝑋𝑛, 𝑋𝑛
−) =

𝐸 [log
𝑝(𝑥1,…,𝑥𝑛)

𝑝(𝑥1,…,𝑥𝑛−1)𝑝(𝑥𝑛)
]. 

According to Xiong et al. 

(2017), Shannon’s entropy, 

K-S entropy, and 

information storage are 

related to each other by:  

𝑆(𝑋) = 𝐻(𝑋𝑛) − 𝐶(𝑋𝑛), 
where 𝐶(𝑋𝑛) is the 

conditional entropy 

𝐻(𝑋𝑛|𝑋𝑛
−). 

It quantifies the amount of 

information carried by the present 

that can be explained by the past. In 

other words, it reveals the degree to 

which information is preserved in a 

time-evolving system. If the system 

is fully predictable, the present can 

be predicted by the past and the 

information storage is the 

maximum; if the system is fully 

random, the past gives no 

information about the present and 

the information storage is zero; if the 

system is stationary, the information 

shared between the present and the 

past is constant. 

Xiong et al. 

(2017) 

Transfer 

entropy 

The transfer entropy is given 

by 𝑇
𝐽→𝐼
=

∑

𝑝(𝑖𝑛+1, 𝑖𝑛
(𝑘), 𝑗𝑛

(𝑙)) 

log
𝑝(𝑖𝑛+1|𝑖𝑛

(𝑘)
, 𝑗𝑛
(𝑙)
)

𝑝(𝑖𝑛+1|𝑖𝑛
(𝑘)
)

. 

 

Transfer entropy was introduced by 

Schreiber (2000) to measure the rate 

of information exchange between 

two signals in both directions 

separately in the context of time 

series analysis. By conditioning on 

transitioning probabilities, the 

transfer entropy is able to 

appropriately exclude exchanged 

information due to common history 

and input signals when desirable. 

Schreiber (2000) 

Directional 

entropy 

The 𝑛-dimensional entropy 

function is given by 

ℎ𝜇,𝑛(𝑇, 𝑉) =

𝑠𝑢𝑝𝛼 ℎ𝜇,𝑛(𝑇, 𝑉, 𝛼). Where 𝑉 

is an 𝑛-dimensional 

subspace of ℝ𝑑, 1 ≤  𝑛 <
 𝑑, and T a measure-

preserving ℤ𝑑 action on a 

Lebesgue probability space 

(Ω, 𝛽, 𝜇), and 𝛼 a finite 

partition of Ω.   

Directional entropy was introduced 

by Milnor (1988) as a 𝑛-dimensional 

entropy function that measures the 

density of information in very large 

finite sets to describe the distribution 

and flow of information throughout 

(𝑛 + 1)-dimensional lattice in the 

context of cellular automata. A 

directional version of mutual 

information was introduced by 

Massey (1990) to capture the 

directed information flow from a 

random sequence 𝑋𝑛 to a random 

sequence 𝑌𝑛. The directional 

version of mutual information is 

given by 𝐼 (𝑋𝑛 → 𝑌𝑛) =

∑ 𝐼(𝑋𝑛; 𝑌𝑛|𝑌𝑛−1)𝑁
𝑛=1 .  

Milnor (1988) 
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Kullback-

Leibler 

divergence 

The Kullback-Leibler 

entropy of two distributions 

𝑃 and 𝑄 defined on the same 

probability space 𝑖 is given 

by 𝐷𝐾𝐿(𝑃||𝑄) =

∑ 𝑝𝑖 log
𝑝𝑖

𝑞𝑖
𝑖 =

∑ −𝑝𝑖 log 𝑞𝑖 + 𝑝𝑖 log 𝑝𝑖𝑖 =

∑ 𝑝𝑖 log
1

𝑞𝑖
−𝐻(𝑃)𝑖 . 

KL is always non-negative and is 

zero if, and only if, 𝑝 = 𝑞 According 

to Schreiber (2000), when one 

assumes two processes 𝑋 and 𝑌 are 

independent, the KL gives the 

mutual information 𝐼(𝑋; 𝑌) =
𝐷𝐾𝐿(𝑃(𝑋, 𝑌)||𝑃(𝑋)𝑃(𝑌)) =

∑ 𝑝(𝑥, 𝑦) log
𝑝(𝑥)

𝑝(𝑥)𝑝(𝑦)𝑥,𝑦 . Because 

the Kullback-Leibler divergence is 

difficult to estimate 

nonparametrically in high 

dimensional spaces, Principe et al. 

(2000) have proposed two 

approximations to it based on 

quadratic distances: the first is based 

on Cauchy-Schwartz inequality and 

the second is based on Euclidean 

distance. 

Schreiber (2000) 

and Mousavian et 

al. (2016) 

Cross-

entropy 

The first term of the KL 

divergence is the cross 

entropy between two 

distributions 𝑃 and 𝑄: 

𝐻(𝑃; 𝑄) = ∑ 𝑝𝑖 log
1

𝑞𝑖
𝑖 . 

The cross entropy is an efficient 

method for rare event simulation and 

for solving NP-hard optimization 

problems, such as the travelling 

salesman problem (Rubinstein, 

2001). The method was motivated 

by an adaptive algorithm for 

estimating rare event probabilities in 

complex stochastic network, which 

involves variance minimization (De 

Boer et al., 2005).  

Hopper (2021) 

Cressi-Read 

measure 

(CR) 

The CR is given by 

𝐷𝐶𝑅(𝑃; 𝑄; 𝛾) =
1

𝛾(𝛾+1)
∑ 𝑝𝑖 [(

𝑝𝑖

𝑞𝑖
)
𝛾

− 1]𝑖 , 

where 𝛾 is a parameter that 

indexes members of the CR 

family, 𝑞𝑖 are the reference 

probabilities, and 𝑝𝑖  are the 

subject probabilities. 

The Cressie–Read is an extension of 

KL divergence and it provides an 

objective assessment of how much 

information a given probability 

distribution contains relative to a 

second. Over defined ranges of the 

divergence measures, the CR and 

Renyi’s and Tsallis’ entropies are 

equivalent. 

Kowalski, 

Martin, Plastino, 

and Judge (2012) 

Jensen-

Shannon 

divergence 

(JS) 

The JS is given by 

𝐷𝐽𝑆(𝑃||𝑄) =
1

2
𝐷𝐾𝐿(𝑃||𝑀) +

1

2
𝐷𝐾𝐿(𝑄||𝑀), where 𝑀 =

1

2
(𝑃 + 𝑄). 

The Jensen-Shannon divergence is a 

smoothed and symmetrical version 

of the KL and it provides another 

way to quantify the difference 

between two probability 

distributions. Because JS is 

symmetrical, 𝐷𝐽𝑆(𝑃||𝑄) =

𝐷𝐽𝑆(𝑄||𝑃). 

Fuglede and 

Topsoe (2004) 
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4.2.2. Applications of entropy measures 

According to Amigo et al. (2015), entropy is a concept that appears in different 

contexts with different meanings. Entropy as a measure of information, uncertainty, 

surprise, compression, disorder, irregularity, complexity, or homogeneity has been applied 

in many different fields (Attaran & Zwick, 1987; Lotfi & Fallahnejad, 2010). Although 

information entropy was initially developed to address problems of data storage and data 

transmission in the field of communications, in recent decades the practical applications 

of entropy in fields such as marketing, management, finance, accounting, mathematics, 

natural sciences, social sciences, physics, computer science, chemistry, biology, 

bioinformatics, economics, behavioral sciences, and geophysics have become 

unparalleled (Amigo et al., 2015; Attaran & Zwick, 1987; Mousavian et al., 2016; Xiong 

et al., 2017).  

In the marketing field, entropy has been used as a measure of uncertainty to 

represent consumers’ preferences for brands (Attaran & Zwick, 1987).  

In management, entropy has been applied as a measure of industry competitiveness 

by comparing industrial diversity either among regions or for a particular region over time 

(Attaran & Zwick, 1987). Entropy was also applied to identify the geographical allocation 

of different types of industries through hypothesis testing (Attaran & Zwick, 1987). 

In the financial context, entropy has been applied for portfolio selection in two 

different ways: (i) as a measure of the uncertainty of portfolio returns by applying the 

MaxEnt to find the most unbiased probability distribution of future security returns for 

investors given limited information (Huang, 2012); and (ii) as a measure of securities 



312 

 

portfolio risk, whose components yield stochastic returns, by replacing the traditional 

mean-variance models with the divergence measure of portfolio asset diversification 

(Attaran & Zwick, 1987; Huang, 2012; Qin, Li, & Ji, 2009). W. Zhang and Wang (2017) 

used KS and other descriptive statistics to analyze the statistical behaviors of an agent-

based financial price model. The authors applied KS to understand the complexity 

properties of the proposed model that attempted to reproduce the nonlinear behavior of 

financial markets. Within the financial field, mutual information has been applied as a 

measure of dependence in financial time series, such as stock market indexes (Dionisio et 

al., 2004). The authors used MI to show that the rate of returns of the financial market 

were not independent and identically distributed.  

In the accounting field, entropy has been used as a measure of the loss of 

information from aggregating items on financial reports, such as the balance sheet (Attaran 

& Zwick, 1987).   

In urban planning, more specifically in water resources planning, entropy was used 

as a measure of the loss of information from aggregating spatial data, either through the 

number of subwatersheds or the number of raingauges, in complex hydrologic models 

designed to simulate larger watersheds or the total runoff in a watershed (Haverkamp et 

al., 2002; Hernandez, Lane, Stone, Martinez, & Kidwell, 1997).  

In conservation biology, Phillips et al. (2004) used the MaxEnt, which turned out 

to be the same as minimizing the KL, to investigate the geographic distributions of bird 

species, a critical problem in the field. In their work, the environmental variables were the 

given set of features, the occurrence localities served as sample points, and the 
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geographical regions were the space on which the distribution was defined. Phillips et al. 

(2006) used the MaxEnt for modeling and prediction of the geographic distribution of a 

species of sloth and a species of a small montane rodent.  

In the context of food processing and quality, Wijaya et al. (2017) used information 

quality ratio to determine the best mother wavelet for electronic noise that generates 

signals from gas sensors for beef quality classification. The measure led to the selection 

of the wavelet that was able to better reconstruct the noise signal by keeping essential 

information from the original signal and reducing the noise level. 

In the context of experimental design, Malakar and Knuth (2011) presented an 

entropy-based search algorithm for efficient experimental design to select the most 

informative experiment from a set of potential experiments described by many parameters. 

According to the authors, the algorithm was capable to select the highly relevant 

experiments and it was also more efficient than brutal force search. 

In the statistical inference context, entropy measures have been used to test for 

stochastic independence and determinism of time series, for detecting association and 

discrimination between random variables and distributions, for assessing the probability 

distribution estimation from time series data, among other applications. Amigo et al. 

(2015) used permutation entropy to test the null hypothesis that the noisy data were 

outcomes of an independent and identically distributed random process and the alternative 

was that the noisy data were outcomes of determinism. Reshef et al. (2011) used 

normalized mutual information to detect greatest associations between pairs of variables 

in large data sets. Şahin (2017) proposed a cross-entropy measure using interval 
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neutrosophic information to determine the information measure for discrimination 

between two interval neutrosophic sets in the field of fuzzy sets. Kowalski et al. (2012) 

used CR divergence measures to assess the probability density function estimation from 

time series data using two different methodologies, namely histogram and Bandt and 

Pompe’s methodologies. The authors confirmed the superiority of Bandt and Pompe’s 

methodology. Approximate entropy and sample entropy were used to measure the 

complexity of finite time series and the underlying dynamical systems by quantifying the 

change in relative frequencies of length 𝑘 time-delay vectors (Amigo et al., 2015).  

In the context of time series analysis, entropy is mainly used to quantify the 

complexity of both data and systems. Shannon’s entropy, approximate entropy, sample 

entropy, permutation entropy, and other generalized entropies, such as Tsallis’ entropy 

and Renyi’s entropy, have been applied to physiological data analysis (Amigo et al., 

2015).  

For cardio-physiological data, entropy measures have been applied to investigate 

fetal abnormal heart-rate, to discriminate between healthy patients and patients with 

congestive heart failure, to evaluate heart rate in patients with dilated cardiomyopathy, 

and to detect ventricular tachycardia by analyzing heart-rate variability from 

electrocardiograms (ECGs) (Amigo et al., 2015; Bravi et al., 2011). Xu et al. (2004) 

introduced ModEn to identify myocardium infarction in the high frequency 

electrocardiogram data of an animal model. Silva, Silva Filho, Crescêncio, and Gallo 

(2012) used KS, autoregressive integrated moving-average model (ARIMA), and the 

largest Lyapunov exponents to identify the anaerobic threshold in the heart rate time series 
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of a group of healthy men in rest and dynamic exercise in a seated position. According to 

these authors, physical exercise is a complex system involving physiological processes, 

movements of body segments, and other processes not well-known. The authors 

concluded that there was a strong correlation among the three methods in detecting the 

anaerobic threshold. Xiong et al. (2017) investigated the ability of entropy, conditional 

entropy, and information storage in detecting changes in the static and dynamical 

properties of heart rate variability in individual in different physiological states (awake 

and sleepy state) and clinical conditions (healthy and congestive heart failure subject). The 

entropy measures were calculated using linear, kernel, and nearest-neighbor estimators 

and the analyses were performed under three types of data preprocessing procedure. 

According to these authors, the entropy measures could only identify changes in cardiac 

dynamics in specific cases. Next, the authors recommended which measures to use 

depending on the purpose of the analysis and highlighted the need for appropriate data 

preprocessing and careful interpretation of the results based on the properties of the 

specific chosen entropy measure and estimator. 

For brain-physiological data, entropy measures have been applied to distinguish 

between healthy patients and patients with Alzheimer’s disease, to detect epileptic 

seizures, to identify sleep stages, and to quantify the effects of anesthetic drugs on brain 

activity by analyzing brain activity from electroencephalograms (EEGs) and/or 

magnetoencephalograms (MEGs) (Abásolo et al., 2008; Amigo et al., 2015). Kannathal et 

al. (2005) used Shannon’s entropy, Renyi’s entropy, Kolmogorov-Sinai entropy and 

approximate entropy to investigate normal and epileptic signals in EEGs. Z. Zhang et al. 
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(2015) used maximal information coefficient to measure brain functional connectivity. 

According to the authors, when compared with other measures of brain functional 

connectivity, such as correlation coefficient and coherence, MIC performed the best in 

terms of consistency and robustness.  

Other physiological studies involving entropy measures include the investigation 

of gait and postural complexity in individuals and the use of speech signals. Yentes et al. 

(2013) explored the effects of changing the input parameters 𝑚, 𝑟, and 𝑁 on the robustness 

of ApEn and SampEn. According to the authors, the results were very sensitive to the 

parameters, especially for small data sets. They applied the methods to investigate gait in 

young and older adults. Rhea et al. (2011) studied how noise, sampling frequency, and 

time series length affected approximate entropy, sample entropy, and recurrence 

quantification analysis entropy measures when the measures were applied to human center 

of pressure data as a measure of human postural control complexity. Orozco-Arroyave et 

al. (2013) applied four different entropy measures, namely approximate entropy, 

approximate entropy with Gaussian kernel, sample entropy, and sample entropy with 

Gaussian kernel, to detect Parkinson’s disease in people through the use of speech signals. 

The authors also used six other nonlinear dynamic measures, such as Lyapunov exponent 

and Hurst exponent, to classify speech signals of people with Parkinson’s disease from the 

control set. 

In systems biology, entropy was used to find subnetwork markers in classification 

of cancer samples and determining optimal gradient sensing strategies in chemotaxing 

cells (Mousavian et al., 2016). Compression entropy was used by Baumert et al. (2004) 
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and Truebner et al. (2006) for forecasting life-threatening tachycardia in patients.  Entropy 

measures have also been used to estimate complexity in hormonal patterns, blood pressure, 

and human postural control as a result of aging, disease, and/or disorder (Rhea et al., 

2011). 

In physics, Blanco, Casini, Hung, and Myers (2013) discussed potential uses of 

relative entropy between two states for vacuum state tomography.  

In machine learning, entropy has been used for training, redundancy reduction, and 

prediction through entropy minimization, and mutual information has been used for 

independent component analysis, blind source separation, feature extraction, feature 

selection, classification, and information filtering (Principe et al., 2000). For an 

explanation of the difference between feature extraction and feature selection, please refer 

to Estévez et al. (2009). Wang and Hu (2009) added that information entropy measures 

have also been applied to model evaluation directly. Principe et al. (2000) used Renyi’s 

quadratic entropy and two approximations to KL based on quadratic distances to train 

linear and nonlinear mappers in the context of unsupervised and supervised machine 

learning. The authors presented an algorithm to train learning machines to maximize (or 

minimize) mutual information between their input and output, which can be estimated 

through KL. The authors showed two different applications of the algorithm: one for 

feature extraction for classification (supervised learning) of vehicles in synthetic aperture 

radar imagery and the other for blind source separation (unsupervised learning), which is 

a linear mixture of independent source signals from which no further information about 

their sources is available.  
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In a similar way, Wang and Hu (2009) used normalized mutual information in the 

field of pattern recognition to assess the performance of classifiers. Instead of using the 

measure for feature extraction, the authors applied it for model evaluation directly. For 

that, the authors used the maximum normalized information criterion.  

Maximum entropy principle was used in various natural language tasks, such as 

text segmentation, text classification, part-of-speech tagging, and language modeling 

(Nigam et al., 1999). Berger et al. (1996) presented an approach consisting of two tasks 

for natural language prediction using the principle of maximum entropy. The first task 

involved determining a set of features that captures the behavior of the random process 

(e.g., speech translation), and the second task involved selecting the most accurate model 

that encompasses these features to predict the output of the process (e.g., word 

pronunciation).  

Tapia and Perez (2013) investigated four different mutual information measures, 

namely mRMR, NMIFS, CMIFS, and CMIM, in the context of feature selection to 

improve gender classification of face images.   

Tuan D Pham (2013) used KS to investigate the spatial content of images and as a 

multidimensional feature for pattern classification. According to the author, the method 

was effective in detecting spatial characteristics of different scenes and spatial objects. 

Tuan D. Pham (2016) used KS entropy in the setting of image texture analysis and 

classification by quantifying uncertainty of pixel distributions in images.  

Within feature selection algorithms, cluster analysis is needed in order to find the 

number of clusters that is associated with the optimum number of features (Wijaya et al., 
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2017). In the context of cluster analysis, entropy has been used as a measure of diversity 

or dissimilarity (Amigo et al., 2015). Strehl and Ghosh (2002) used mutual information as 

a measure of the shared information between a pair of clusters. Based on a mutual 

information objective function, the authors evaluated the quality of different clusterings 

and the algorithm was able to select the best solution. In the field of clusters comparison, 

Vinh et al. (2010) proposed four different mutual information measures adjusted for 

chance and five distance measures that involved manipulation of entropy and mutual 

information measures as measures of comparison between clusters. According to the 

authors, the adjustment for chance is needed for the expected value of a similarity measure 

between pairs of independent clusters sampled independently at random to be constant. 

The distance measures were proposed as metric properties for the cluster comparisons. 

However, the authors did not discuss what is the specific motivation of each one of the 

distance measures. 

Entropy, through the principle of maximum entropy and the principle of minimum 

cross-entropy, has been applied to decision trees and optimization models (X. Chen et al., 

2012). In decision tree, fuzzy entropy was used to minimize the loss of information in a 

decision tree (X. Chen et al., 2012). Chandrasekaran and Shah (2017) studied relative 

entropy programs, which are optimization problems where the objective and the 

constraints are specified in terms of linear and relative entropy inequalities.  

In multi-attribute decision making (MADM), Shannon’s entropy has been used to 

find the weight of different criteria (Lotfi & Fallahnejad, 2010). In the MADM context, 

the greater the entropy value of an attribute, the smaller the attribute’s weight, which 
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implies that the attribute has less discriminate power in the decision-making process. Asl, 

Khalilzadeh, Youshanlouei, and Mood (2012) used Shannon’s entropy to rank different 

criteria, such as cost, software quality, vendor, and software capability, for selection of 

enterprise resource planning (ERP) systems within organizations.  

Other applications of entropy through MaxEnt and MinxEnt include: buffer 

allocation, queueing models of telecommunication systems, scheduling, DNA sequence 

alignment, reinforcement learning, network reliability, astronomy, and signal processing 

(De Boer et al., 2005; Phillips et al., 2006; Shore & Johnson, 1981). 

4.3. Material and methods 

In this work, it is proposed to use entropy measures as a method for input parameter 

selection and experiment planning in simulation models. The ultimate goal is to answer 

the following research questions: (i) can entropy measures support the identification of the 

group of seeds that leads to the largest uncertainty, if any?; (ii) can entropy measures 

support the identification of the number of replications that leads to the largest 

uncertainty?; and, (iii) can entropy measures support the selection of the most important 

parameters?. 

A 5-step procedure is followed to investigate the research questions of this work, 

as shown in Figure 75. Each step is described in detailed below. 
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Figure 75. 5-step procedure to investigate the research questions. 

 

4.3.1. Build the simulation model 

The first step is to build the simulation model. Here, a single queue model was 

chosen for its simplicity to be used as an illustrative example and for having closed-form 

theoretical solutions for some distributions of the input parameters, as well as the output 

parameters of interest. The model consists of a single source of arrivals, a single queue, 

and 𝑠 servers providing the same service. After being served, customers leave the system. 

Balking and reneging were not considered in the model. Two input parameters were 

considered in the model, namely inter-arrival time (1 𝜆⁄ ) and service time (1 𝜇⁄ ), and two 

output responses were considered, namely average number of customers in the system (𝐿 

or 𝑁𝐼𝑆) and average time spent in the system (𝑊 or 𝑇𝐼𝑆). The simulation generated input 

processes is also referred as �⃗� = [𝑋1: arrival process, 𝑋2: service process] and the output 

process as �⃗⃗� = [�̂�1: average number of customers in the system, �̂�2: average time in the 

system]. The notation used here follows the 𝐴/𝑆/𝑠 Kendall’s notation, where: 𝐴 

represents the arrival process, 𝑆 the service time, and 𝑠 the number of servers. 𝑀 is used 

for memoryless distributions. 

4.3.2. Define the design of experiments 
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The challenge of this work is to validate the appropriateness of entropy measures 

as a method of uncertainty quantification and, consequently, for identifying the 

experiment settings that lead to the largest uncertainty. To this purpose, it is important to 

use methods already exist and recognized in this field. Simulation uncertainty will be 

considered in two different ways: (i) 𝑢1 = standard deviation of the parameters of the 

experiments; and, (ii) 𝑢2 = number of parameter errors of the experiments, that is, number 

of simulations experiments where the simulated parameters were not within the theoretical 

confidence interval.  

To be able to investigate whether different seeds, different number of replications, 

and the different input processes �⃗�, full-factorial design was applied. Full-factorial was 

chosen to be able to identify whether the factors, as well as their interactions, would 

explain the variation in the simulation model. It is important to mention that seeds and 

number of replications were investigated separately, as they were the computer 

experiments replicates of each other. Three different seeds and three different values for 

each input process were investigated. The different values of the input processes were 

varied in a way that guaranteed that the highest traffic intensity of the queue model was 

around 90% to avoid instability of the model. Table 56 shows the different values of seeds 

and input processes considered in the experiments. Table 57 shows the full-factorial 

design of experiments. 

 

Table 56. Parameter values for simulation experiments. 

Parameter Values 
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Interarrival time 𝐴𝑇1 = 20, 𝐴𝑇2 = 36, 𝐴𝑇3 = 180 

Service time 𝑆𝑇1 = 2, 𝑆𝑇2 = 10, 𝑆𝑇3 = 18.000018 

Interarrival time seed 𝐴𝑇𝑠1 = 4, 𝐴𝑇𝑠2 = 8, 𝐴𝑇𝑠3 = 20 

Service time seed 𝑆𝑇𝑠1 = 3, 𝑆𝑇𝑠2 = 12, 𝑆𝑇𝑠3 = 15 

Number of replications 

𝑟1 = 10, 𝑟2 = 20, 𝑟3 = 50, 𝑟4 = 100, 𝑟5 =
200, 𝑟6 = 400, 𝑟7 = 600, 𝑟8 = 800, 𝑟9 =

1000, 𝑟10 = 1500 

 

Table 57. Full-factorial design of experiments. Each design was repeated for every 

replication 𝒓𝟏 to 𝒓𝟗.  

Interarrival time Service time Interarrival time seed Service time seed 

𝐴𝑇1 𝑆𝑇1 𝐴𝑇𝑠1 𝑆𝑇𝑠1 
𝐴𝑇1 𝑆𝑇1 𝐴𝑇𝑠1 𝑆𝑇𝑠2 
𝐴𝑇1 𝑆𝑇1 𝐴𝑇𝑠1 𝑆𝑇𝑠3 
𝐴𝑇1 𝑆𝑇1 𝐴𝑇𝑠2 𝑆𝑇𝑠1 
𝐴𝑇1 𝑆𝑇1 𝐴𝑇𝑠2 𝑆𝑇𝑠2 
𝐴𝑇1 𝑆𝑇1 𝐴𝑇𝑠2 𝑆𝑇𝑠3 
𝐴𝑇1 𝑆𝑇1 𝐴𝑇𝑠3 𝑆𝑇𝑠1 
𝐴𝑇1 𝑆𝑇1 𝐴𝑇𝑠3 𝑆𝑇𝑠2 
𝐴𝑇1 𝑆𝑇1 𝐴𝑇𝑠3 𝑆𝑇𝑠3 
𝐴𝑇1 𝑆𝑇2 𝐴𝑇𝑠1 𝑆𝑇𝑠1 
𝐴𝑇1 𝑆𝑇2 𝐴𝑇𝑠1 𝑆𝑇𝑠2 
𝐴𝑇1 𝑆𝑇2 𝐴𝑇𝑠1 𝑆𝑇𝑠3 
𝐴𝑇1 𝑆𝑇2 𝐴𝑇𝑠2 𝑆𝑇𝑠1 
𝐴𝑇1 𝑆𝑇2 𝐴𝑇𝑠2 𝑆𝑇𝑠2 
𝐴𝑇1 𝑆𝑇2 𝐴𝑇𝑠2 𝑆𝑇𝑠3 
𝐴𝑇1 𝑆𝑇2 𝐴𝑇𝑠3 𝑆𝑇𝑠1 
𝐴𝑇1 𝑆𝑇2 𝐴𝑇𝑠3 𝑆𝑇𝑠2 
𝐴𝑇1 𝑆𝑇2 𝐴𝑇𝑠3 𝑆𝑇𝑠3 
𝐴𝑇1 𝑆𝑇3 𝐴𝑇𝑠1 𝑆𝑇𝑠1 
𝐴𝑇1 𝑆𝑇3 𝐴𝑇𝑠1 𝑆𝑇𝑠2 
𝐴𝑇1 𝑆𝑇3 𝐴𝑇𝑠1 𝑆𝑇𝑠3 
𝐴𝑇1 𝑆𝑇3 𝐴𝑇𝑠2 𝑆𝑇𝑠1 
𝐴𝑇1 𝑆𝑇3 𝐴𝑇𝑠2 𝑆𝑇𝑠2 
𝐴𝑇1 𝑆𝑇3 𝐴𝑇𝑠2 𝑆𝑇𝑠3 
𝐴𝑇1 𝑆𝑇3 𝐴𝑇𝑠3 𝑆𝑇𝑠1 
𝐴𝑇1 𝑆𝑇3 𝐴𝑇𝑠3 𝑆𝑇𝑠2 
𝐴𝑇1 𝑆𝑇3 𝐴𝑇𝑠3 𝑆𝑇𝑠3 

𝐴𝑇2 𝑆𝑇1 𝐴𝑇𝑠1 𝑆𝑇𝑠1 
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𝐴𝑇2 𝑆𝑇1 𝐴𝑇𝑠1 𝑆𝑇𝑠2 
𝐴𝑇2 𝑆𝑇1 𝐴𝑇𝑠1 𝑆𝑇𝑠3 
𝐴𝑇2 𝑆𝑇1 𝐴𝑇𝑠2 𝑆𝑇𝑠1 
𝐴𝑇2 𝑆𝑇1 𝐴𝑇𝑠2 𝑆𝑇𝑠2 
𝐴𝑇2 𝑆𝑇1 𝐴𝑇𝑠2 𝑆𝑇𝑠3 
𝐴𝑇2 𝑆𝑇1 𝐴𝑇𝑠3 𝑆𝑇𝑠1 
𝐴𝑇2 𝑆𝑇1 𝐴𝑇𝑠3 𝑆𝑇𝑠2 
𝐴𝑇2 𝑆𝑇1 𝐴𝑇𝑠3 𝑆𝑇𝑠3 
𝐴𝑇2 𝑆𝑇2 𝐴𝑇𝑠1 𝑆𝑇𝑠1 
𝐴𝑇2 𝑆𝑇2 𝐴𝑇𝑠1 𝑆𝑇𝑠2 
𝐴𝑇2 𝑆𝑇2 𝐴𝑇𝑠1 𝑆𝑇𝑠3 
𝐴𝑇2 𝑆𝑇2 𝐴𝑇𝑠2 𝑆𝑇𝑠1 
𝐴𝑇2 𝑆𝑇2 𝐴𝑇𝑠2 𝑆𝑇𝑠2 
𝐴𝑇2 𝑆𝑇2 𝐴𝑇𝑠2 𝑆𝑇𝑠3 
𝐴𝑇2 𝑆𝑇2 𝐴𝑇𝑠3 𝑆𝑇𝑠1 
𝐴𝑇2 𝑆𝑇2 𝐴𝑇𝑠3 𝑆𝑇𝑠2 
𝐴𝑇2 𝑆𝑇2 𝐴𝑇𝑠3 𝑆𝑇𝑠3 
𝐴𝑇2 𝑆𝑇3 𝐴𝑇𝑠1 𝑆𝑇𝑠1 
𝐴𝑇2 𝑆𝑇3 𝐴𝑇𝑠1 𝑆𝑇𝑠2 
𝐴𝑇2 𝑆𝑇3 𝐴𝑇𝑠1 𝑆𝑇𝑠3 
𝐴𝑇2 𝑆𝑇3 𝐴𝑇𝑠2 𝑆𝑇𝑠1 
𝐴𝑇2 𝑆𝑇3 𝐴𝑇𝑠2 𝑆𝑇𝑠2 
𝐴𝑇2 𝑆𝑇3 𝐴𝑇𝑠2 𝑆𝑇𝑠3 
𝐴𝑇2 𝑆𝑇3 𝐴𝑇𝑠3 𝑆𝑇𝑠1 
𝐴𝑇2 𝑆𝑇3 𝐴𝑇𝑠3 𝑆𝑇𝑠2 
𝐴𝑇2 𝑆𝑇3 𝐴𝑇𝑠3 𝑆𝑇𝑠3 

𝐴𝑇3 𝑆𝑇1 𝐴𝑇𝑠1 𝑆𝑇𝑠1 
𝐴𝑇3 𝑆𝑇1 𝐴𝑇𝑠1 𝑆𝑇𝑠2 
𝐴𝑇3 𝑆𝑇1 𝐴𝑇𝑠1 𝑆𝑇𝑠3 
𝐴𝑇3 𝑆𝑇1 𝐴𝑇𝑠2 𝑆𝑇𝑠1 
𝐴𝑇3 𝑆𝑇1 𝐴𝑇𝑠2 𝑆𝑇𝑠2 
𝐴𝑇3 𝑆𝑇1 𝐴𝑇𝑠2 𝑆𝑇𝑠3 
𝐴𝑇3 𝑆𝑇1 𝐴𝑇𝑠3 𝑆𝑇𝑠1 
𝐴𝑇3 𝑆𝑇1 𝐴𝑇𝑠3 𝑆𝑇𝑠2 
𝐴𝑇3 𝑆𝑇1 𝐴𝑇𝑠3 𝑆𝑇𝑠3 
𝐴𝑇3 𝑆𝑇2 𝐴𝑇𝑠1 𝑆𝑇𝑠1 
𝐴𝑇3 𝑆𝑇2 𝐴𝑇𝑠1 𝑆𝑇𝑠2 
𝐴𝑇3 𝑆𝑇2 𝐴𝑇𝑠1 𝑆𝑇𝑠3 
𝐴𝑇3 𝑆𝑇2 𝐴𝑇𝑠2 𝑆𝑇𝑠1 
𝐴𝑇3 𝑆𝑇2 𝐴𝑇𝑠2 𝑆𝑇𝑠2 
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𝐴𝑇3 𝑆𝑇2 𝐴𝑇𝑠2 𝑆𝑇𝑠3 
𝐴𝑇3 𝑆𝑇2 𝐴𝑇𝑠3 𝑆𝑇𝑠1 
𝐴𝑇3 𝑆𝑇2 𝐴𝑇𝑠3 𝑆𝑇𝑠2 
𝐴𝑇3 𝑆𝑇2 𝐴𝑇𝑠3 𝑆𝑇𝑠3 
𝐴𝑇3 𝑆𝑇3 𝐴𝑇𝑠1 𝑆𝑇𝑠1 
𝐴𝑇3 𝑆𝑇3 𝐴𝑇𝑠1 𝑆𝑇𝑠2 
𝐴𝑇3 𝑆𝑇3 𝐴𝑇𝑠1 𝑆𝑇𝑠3 
𝐴𝑇3 𝑆𝑇3 𝐴𝑇𝑠2 𝑆𝑇𝑠1 
𝐴𝑇3 𝑆𝑇3 𝐴𝑇𝑠2 𝑆𝑇𝑠2 
𝐴𝑇3 𝑆𝑇3 𝐴𝑇𝑠2 𝑆𝑇𝑠3 
𝐴𝑇3 𝑆𝑇3 𝐴𝑇𝑠3 𝑆𝑇𝑠1 
𝐴𝑇3 𝑆𝑇3 𝐴𝑇𝑠3 𝑆𝑇𝑠2 
𝐴𝑇3 𝑆𝑇3 𝐴𝑇𝑠3 𝑆𝑇𝑠3 

 

4.3.3. Run the simulation experiments 

The third step was to run the simulation experiments. The experiments were run in 

Simio® University Enterprise Edition v 12.205. The experiment was run for 1825 days, 

including a warm-up period of 365 days. Two different queue systems were considered: 

(i) 𝑀/𝑀/1, and (ii) 𝑀/𝑀/𝑖𝑛𝑓. As described in step 2, the experiments included different 

system configurations by varying the parameter values and, consequently, the traffic 

intensities, the seeds for generating random numbers, and the number of replications. This 

led to a total of 1620 experiments. 

4.3.4. Calculate the entropy measures 

The next step is to apply entropy measures to quantify the uncertainty of the 

simulation outputs (𝐻(𝑌)) and the uncertainty of the simulation generated inputs (𝐻(𝑋)). 

The entropy measures were calculated using two different approaches: (i) histogram 

discrete empirical estimate, and (ii) histogram probability density estimate. The second is 
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a theoretically correct approach but its application is challenging due to the difficulties 

that arise when computing entropy measures for continuous variables. These difficulties 

were discussed in section 2 and section 3. The first approach has practical benefits in terms 

of calculations and it is frequently used by practitioners. The first and second approaches 

were used in section 2 to investigate the potential of entropy measures as a measure of 

uncertainty quantification in simulation models. As pointed out in section 2, despite not 

being the theoretically correct approach, the entropy measures calculated using the 

histogram discrete empirical estimate presented better results in capturing the 

deterministic behavior of the system when compared to the histogram probability density 

estimate. Therefore, using the approach here is justified. 

In order to handle some of the challenges encountered while applying entropy 

measures for continuous variables, the differential entropy measures in this work were 

calculated using Equation 79, which was proposed by Jaynes (1962), and approximated 

through Equation 80, given by Xiong et al. (2017) and Steuer et al. (2002). 

H(X) = −∫p(x) log [
p(x)

m(x)
] dx Equation 79 

  

Ĥ(X) = −
1

n
∑log f̂(Xi)

n

i=1

 Equation 80 

In Jaynes’ equation it is important to define the invariant measure 𝑚(𝑥). Here, 

𝑚(𝑥) = 𝑓(𝑥)(1 + 𝑓(𝑥)), based on what was proposed in section 3. 

4.3.5. Investigate the research questions 
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The fifth step is to investigate the three research questions: (i) can entropy 

measures support the identification of the group of seeds that leads to the largest 

uncertainty, if any?; (ii) can entropy measures support the identification of the number of 

replications that leads to the largest uncertainty?; and, (iii) can entropy measures support 

the selection of the most important parameters?.  

The queue model used in this work consists of two input parameters (i.e. 𝑋1 – 

interarrival time and 𝑋2 – service time) and two output responses (i.e. �̂�1 - average number 

of customers in the system and �̂�2 - average time in the system). Consequently, to answer 

question (i) it is important to investigate for each of the inputs and outputs whether there 

are statistical significantly differences in the entropy measures based on the seeds used on 

the experiments and whether these results are consistent with another measure of 

uncertainty. Standard error of the mean (SEM) is used as the uncertainty measure for 

comparison. SEM quantifies uncertainty by measuring how far the sample mean of the 

data is likely to be from the true population mean (Altman & Bland, 2005; Barde & Barde, 

2012). SEM is widely recognized in the academic community as a measure of uncertainty 

or precision of the mean and is used as a means of calculating confidence intervals. To 

identify the statistical differences, regression analysis and Tukey-Kramer multiple 

comparison test using JMP® Pro 15 is used. 

Question (ii) is answered in a similar way to question (i). Regression analysis and 

Tukey-Kramer multiple comparison test is used to investigate for each of the inputs and 

outputs whether there are statistical significantly differences in the entropy measures 



328 

 

based on the number of replications used on the experiments and whether these results are 

consistent with the results obtained from the standard error of the mean. 

To answer question (iii), it is important to investigate what are the most important 

parameters for the simulation model based on the entropy measures and whether these 

results are consistent with another known method. As a known method in the scientific 

community, ANOVA is used to identify what are the significant parameters for each of 

the simulation responses. Mutual information measures is used to identify what are the 

most important parameters for each simulation response. More specifically, in this work, 

it is proposed to use an adaptation of the mutual information index for this purpose. As 

discussed in section 2.1, the mutual information index is given by 𝑀𝐼𝐼𝑋1,𝑌 =
𝐼(𝑋1;𝑌)
𝐼(𝑌,𝑌)

=

𝐼(𝑋1;𝑌)
𝐻(𝑌)

. The measure can be calculated and compared for different inputs to determine 

which input provide useful information about the output. Contigency analysis is used to 

test the significance of the results. 

A limitation of 𝑀𝐼𝐼𝑋𝑗;𝑌𝑖 is that in a model with only two input parameters 𝑋1 and 

𝑋2, 𝑀𝐼𝐼𝑋1,𝑌𝑖 +𝑀𝐼𝐼𝑋1,𝑌𝑖 does not add to 1. To overcome this limitation, it is proposed an 

adaptation of the mutual information index. For the 𝑀/𝑀/𝑠 models, it is known that the 

inputs 𝑋1 and 𝑋2 are independent. Hence: 𝐼(𝑋1; 𝑋2) = 𝐻(𝑋1) − 𝐻(𝑋1|𝑋2) = 𝐻(𝑋1) −

𝐻(𝑋1) = 0. Because 𝐼(𝑋1; 𝑋2) = 0, we can calculate the total mutual information of 𝑌i 

(𝑇𝐼(𝑌i)) using Equation 81: 

𝑇𝐼(𝑌𝑖) = 𝐼(𝑌𝑖; 𝑋1) + 𝐼(𝑌𝑖; 𝑋2) Equation 81 
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Now, the impact of input 𝑋𝑗 on output 𝑌i (𝐼𝐼𝑂𝑋𝑗;𝑌𝑖) can be calculated using 

Equation 82: 

𝐼𝐼𝑂𝑋𝑗;𝑌𝑖 =
𝐼(𝑌𝑖; 𝑋𝑗)

𝑇𝐼(𝑌𝑖)
 Equation 82 

𝐼𝐼𝑂𝑋𝑗;𝑌𝑖 leads to same conclusions as 𝑀𝐼𝐼𝑋𝑗;𝑌𝑖 with respect to the input that 

provides more useful information about the output. However, 𝐼𝐼𝑂𝑋𝑗;𝑌𝑖 has the advantage 

that will add to 1. On the other hand, 𝐼𝐼𝑂𝑋𝑗;𝑌𝑖 can only be applied when the inputs are 

independent. 

After the 𝐼𝐼𝑂𝑋𝑗;𝑌𝑖 was calculated for each output of the simulation, it was identified 

which input provided more useful information on each response. A value of 1 was used as 

an indicator for this and 0 otherwise. For cases where there was a tie, both inputs received 

1. Contingency analysis was performed in JMP® Pro15 to test whether one of the inputs 

provided statistically significantly more useful information than the other. The results 

obtained from the contingency analysis was compared to the ANOVA results. 

Contingency analysis was also used to test whether the useful information provided by 

each input to the output varied based on different factors, such as: seed used for the inputs, 

number of replications, queue model, and traffic intensity.  

As a final note on the methods, it is important to mention that validating the results 

of the entropy measures is not a simple task, as other methods of uncertainty quantification 

in simulation models have different goals and use different approaches that are difficult to 

compare, such as the work of Xie et al. (2014a), which estimated the uncertainty of the 

input models resulting from using limited real data. This uncertainty was used to update 
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the Bayesian credible interval. Therefore, in an attempt to validate the results of this work 

and minimize its limitations, the results obtained from the entropy measures were 

compared with results from well-known methods in the literature that have a goal as 

similar as possible. 

4.4. Results and discussion 

4.4.1. Regression model for the SEM of each input and output 

To investigate whether the different random seeds used to generate the inputs of 

the simulation model resulted in different uncertainty in the simulated inputs and outputs, 

a second-order regression model for the SEM of each input and each output was built. The 

following were considered as possible factors for the regression models of the SEM: (i) 

seed used in the interarrival time input 𝑋1; (ii) seed used in the service time input 𝑋2; (iii) 

interarrival time mean value (𝑋1); (iv) service time mean value (𝑋2); (v) queue model (i.e., 

M/M/1 or M/M/inf); (vi) traffic intensity; and, (vii) number of replications. 

For each of the input and output, some of the factors were collinear or aliased (e.g., 

traffic intensity) and could not be estimated independently and others were not statistically 

significant (e.g., queue model). After performing the analysis, a second-order linear 

regression model with different independent factors was fitted to each dependent factor, 

i.e., the SEM of each simulation input and output, using least squares approach. The 

summary of fit of each model, as well as the independent factors included in the model 

are shown in Table 58. Figure 76 and Figure 77 show the actual by predicted plot of the 

models. 
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Table 58. Summary of fit of SEM regression models and summary of effects included in 

the models for α-level = 𝟎. 𝟎𝟓. 

Model SEM 𝑿𝟏 SEM 𝑿𝟐 SEM �̂�𝟏 SEM �̂�𝟐 

Model p-value <0.0001 <0.0001 <0.0001 <0.0001 

𝑅2  0.9978 0.9941 0.9907 0.9837 

𝑅2𝑎𝑑𝑗  0.9978 0.9941 0.9906 0.9836 

Factor p-value p-value p-value p-value 

Seed interarrival time 0.0000 N/A 0.0000 0.0000 

Interarrival time mean value 0.0000 0.0000 N/A N/A 

Seed service time N/A 0.0025 0.0182 0.0275 

Service time mean value N/A 0.0000 N/A N/A 

Number of replications 0.0000 0.0000 0.0000 0.0000 

Traffic intensity N/A N/A 0.0000 0.0000 

Seed interarrival time * Interarrival time 

mean value 
0.0000 N/A N/A N/A 

Seed interarrival time * Number of 

replications 
0.0000 N/A N/A 0.0452 

Interarrival time mean value * Number of 

replications 
0.0000 0.0000 N/A N/A 

Interarrival time mean value * Seed service 

time 
N/A 0.0000 N/A N/A 

Interarrival time mean value * Service time 

mean value 
N/A 0.0000 N/A N/A 

Seed service time * Service time mean value N/A N/A N/A N/A 

Seed service time * Number of replications N/A 0.0000 N/A N/A 

Service time mean value * Number of 

replications 
N/A 0.0000 N/A N/A 

Seed interarrival time * Seed service time N/A N/A 0.0481 0.0494 

Number of replications * Traffic intensity N/A N/A 0.0000 0.0000 

Seed interarrival time * Traffic intensity N/A N/A 0.0000 0.0000 

Seed service time * Traffic intensity N/A N/A 0.0000 0.0000 
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Figure 76. Actual by predicted plot of the standard error of the mean of the inputs. Left-

side: 𝑿𝟏 - interarrival time. Right-side: 𝑿𝟐 - service time. 

 

  
Figure 77. Actual by predicted plot of the standard error of the mean of the outputs. 

Left-side: �̂�𝟏 – average number in system. Right-side: �̂�𝟐 – average time in system.   

 

4.4.2. Regression model for the entropy measures of each input and output 

Next, a second-order regression model for the entropy of each input and each 

output was built. This was done for the entropy calculated by each of the two different 

approaches: (a) histogram discrete empirical estimate, and (b) histogram probability 

density estimate. Therefore, a total of 8 regression models were fitted: 2 approaches x (2 
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simulation inputs + 2 simulation outputs) = 8. For the entropy model, an extra independent 

factor was also considered: number of bins. Consequently, the following different factors 

were considered as possible factors for the regression models: (i) seed used in the 

interarrival time input 𝑋1; (ii) seed used in the service time input 𝑋2; (iii) interarrival time 

mean value (𝑋1); (iv) service time mean value (𝑋2); (v) queue model (i.e. 𝑀/𝑀/1 or 

𝑀/𝑀/𝑖𝑛𝑓); (vi) traffic intensity; (vii) number of replications; and, (viii) number of bins.  

In all the regression models, some of the factors were also aliased and could not 

be estimated independently or they were not statistically significant and, consequently, 

were not included in the model. After performing the analysis, a linear regression model 

with different independent factors was fitted to each dependent factor, i.e., the entropy of 

each simulation input and output, using least squares approach. The summary of fit of 

each model, as well as the independent factors included in the model is shown next.   

(a) Entropy measures calculated using the histogram discrete empirical estimate: 

The summary of fit of each model and the independent factors included in the 

model for both the entropy measures and the normalized entropy measures calculated 

using the histogram discrete empirical estimate are shown in Table 59. Figure 78 and 

Figure 79 show the actual by predicted plot of the models of the entropy measures as an 

example.   

 

Table 59. Summary of fit of the regression models for the entropy measures calculated 

using the histogram discrete empirical estimate and summary of effects included in the 

models for α-level = 𝟎. 𝟎𝟓. 

Model 𝑯(𝑿𝟏) 𝑯(𝑿𝟐) 𝑯(𝒀𝟏) 𝑯(𝒀𝟐) 
Norm 

𝑯(𝑿𝟏) 
Norm 

𝑯(𝑿𝟐) 
Norm 

𝑯(𝒀𝟏) 
Norm 

𝑯(𝒀𝟐) 
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Model p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

𝑅2  0.9993 0.9987 0.9982 0.9983 0.9848 0.9535 0.9482 0.9452 

𝑅2𝑎𝑑𝑗  0.9992 0.9986 0.9981 0.9983 0.9847 0.9530 0.9474 0.9443 

Factor p-value p-value p-value p-value p-value p-value p-value p-value 

Number of 

clusters 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Seed interarrival 

time 
0.0000 N/A 0.0000 0.0000 0.0000 N/A 0.0000 0.0000 

Interarrival time 

mean value 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Seed service 

time 
N/A 0.0000 0.0000 0.0000 N/A 0.0000 0.0000 0.0000 

Service time 

mean value 
N/A N/A 0.0021 0.0000 N/A N/A 0.0000 0.0000 

Number of 

replications 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Traffic intensity N/A N/A N/A N/A N/A N/A N/A N/A 

Number of bins 

* Seed 

interarrival time 

0.0000 N/A 0.0000 N/A 0.0000 N/A 0.0000 N/A 

Number of bins 

* Interarrival 

time mean value 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Number of bins 

* Seed service 

time 

N/A 0.0000 0.0000 0.0000 N/A 0.0000 0.0000 0.0000 

Number of bins 

* Service time 

mean value 

N/A N/A N/A N/A N/A N/A 0.0000 0.0000 

Number of bins 

* Number of 

replications 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Seed interarrival 

time * 

Interarrival time 

mean value 

0.0000 N/A 0.0000 0.0000 0.0000 N/A 0.0000 0.0052 

Seed interarrival 

time * Seed 

service time 

N/A N/A 0.0000 0.0000 N/A N/A 0.0000 0.0001 

Seed interarrival 

time * Service 

time mean value 

N/A N/A 0.0000 0.0000 N/A N/A 0.0018 0.0003 
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Seed interarrival 

time * Number 

of replications 

0.0000 N/A 0.0000 0.0000 0.0000 N/A 0.0000 0.0087 

Seed interarrival 

time * Traffic 

intensity 

N/A N/A N/A N/A N/A N/A N/A N/A 

Interarrival time 

mean value * 

Seed service 

time 

N/A N/A 0.0000 0.0000 N/A N/A 0.0000 N/A 

Interarrival time 

mean value * 

Seed service 

time 

N/A 0.0000 N/A N/A N/A 0.0000 N/A 0.0000 

Interarrival time 

mean value * 

Service time 

mean value 

N/A N/A 0.0000 0.0000 N/A N/A 0.0000 0.0000 

Interarrival time 

mean value * 

Number of 

replications 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Seed service 

time * Service 

time mean value 

N/A N/A 0.0004 0.0003 N/A N/A N/A N/A 

Seed service 

time * Number 

of replications 

N/A 0.0000 0.0000 0.0000 N/A 0.0000 0.0000 0.0000 

Service time 

mean value * 

Number of 

replications 

N/A N/A N/A 0.0000 N/A N/A N/A 0.0000 

Seed service 

time * Traffic 

intensity 

N/A N/A N/A N/A N/A N/A N/A N/A 

Number of 

replications * 

Traffic intensity 

N/A N/A N/A N/A N/A N/A N/A N/A 
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Figure 78. Actual by predicted plot of the entropy measures of the inputs calculated 

using the histogram discrete empirical estimate. Left: 𝑯(𝑿𝟏) – entropy of interarrival 

time. Right: 𝑯(𝑿𝟐) – entropy of service time.  

 

  
Figure 79. Actual by predicted plot of the entropy measures of the outputs calculated 

using the histogram discrete empirical estimate. Left-side: 𝑯(𝒀𝟏) – entropy of number in 

system. Right-side: 𝑯(𝒀𝟐) – entropy of time in system.    

 

(b) Entropy measures calculated using the histogram probability density estimate: 
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The summary of fit of each model and the independent factors included in the 

model for both the entropy measures and the normalized entropy measures calculated 

using the histogram probability density estimate are shown in Table 70. 

 

Table 60. Summary of fit of the regression models for the entropy measures calculated 

using the histogram probability density estimate and summary of effects included in the 

models for α-level = 𝟎. 𝟎𝟓. 

Model 𝑯(𝑿𝟏) 𝑯(𝑿𝟐) 𝑯(𝒀𝟏) 𝑯(𝒀𝟐) 
Norm 

𝑯(𝑿𝟏) 
Norm 

𝑯(𝑿𝟐) 
Norm 

𝑯(𝒀𝟏) 
Norm 

𝑯(𝒀𝟐) 

Model p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

𝑅2  0.9974 0.9952 0.9933 0.9939 0.9998 0.9992 0.9991 0.9991 

𝑅2𝑎𝑑𝑗  0.9974 0.9951 0.9932 0.9938 0.9998 0.9992 0.9991 0.9991 

Factor p-value p-value p-value p-value p-value p-value p-value p-value 

Number of bins 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Seed interarrival 

time 
0.0000 N/A 0.0000 0.0000 0.0000 N/A 0.0000 0.0000 

Interarrival time 

mean value 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Seed service 

time 
N/A 0.0000 0.0000 0.0000 N/A 0.0000 0.0000 0.0000 

Service time 

mean value 
N/A N/A 0.0006 0.0000 N/A N/A 0.0000 0.0000 

Number of 

replications 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Traffic intensity N/A N/A N/A N/A N/A N/A N/A N/A 

Number of bins 

* Seed 

interarrival time 

0.0000 N/A 0.0000 N/A 0.0000 N/A 0.0000 N/A 

Number of bins 

* Interarrival 

time mean value 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Number of bins 

* Seed service 

time 

N/A 0.0000 0.0000 0.0000 N/A 0.0000 0.0000 0.0000 

Number of bins 

* Service time 

mean value 

N/A N/A N/A N/A N/A N/A 0.0000 0.0000 
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Number of bins 

* Number of 

replications 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Seed interarrival 

time * 

Interarrival time 

mean value 

0.0000 N/A 0.0000 0.0000 0.0000 N/A 0.0000 0.0066 

Seed interarrival 

time * Seed 

service time 

N/A N/A 0.0000 0.0000 N/A N/A 0.0000 0.0010 

Seed interarrival 

time * Service 

time mean value 

N/A N/A 0.0000 0.0000 N/A N/A 0.0028 0.0007 

Seed interarrival 

time * Number 

of replications 

0.0000 N/A 0.0000 0.0000 0.0000 N/A 0.0000 0.0384 

Seed interarrival 

time * Traffic 

intensity 

N/A N/A N/A N/A N/A N/A N/A N/A 

Interarrival time 

mean value * 

Seed service 

time 

N/A N/A 0.0000 0.0000 N/A N/A 0.0000 N/A 

Interarrival time 

mean value * 

Seed service 

time 

N/A 0.0000 N/A N/A N/A 0.0000 N/A 0.0000 

Interarrival time 

mean value * 

Service time 

mean value 

N/A N/A 0.0000 0.0000 N/A N/A 0.0000 0.0000 

Interarrival time 

mean value * 

Number of 

replications 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Seed service 

time * Service 

time mean value 

N/A N/A 0.0003 0.0007 N/A N/A N/A N/A 

Seed service 

time * Number 

of replications 

N/A 0.0000 0.0000 0.0000 N/A 0.0000 0.0000 0.0000 

Service time 

mean value * 

Number of 

replications 

N/A N/A N/A 0.0000 N/A N/A N/A 0.0000 
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Seed service 

time * Traffic 

intensity 

N/A N/A N/A N/A N/A N/A N/A N/A 

Number of 

replications * 

Traffic intensity 

N/A N/A N/A N/A N/A N/A N/A N/A 

 

4.4.3. Can entropy measures support the identification of the group of seeds that 

leads to the largest uncertainty, if any? 

To answer whether entropy can support the identification of the group of seeds that 

leads to the largest uncertainty, first, it is important to understand whether different seeds 

lead to statistically significantly different uncertainty in the model according to a baseline 

measure of uncertainty. In this work, the baseline measure of uncertainty is the standard 

error of the mean. For this, the linear regression model of the SEM of each input and 

output discussed in section 4.4.1 was used together with Tukey-Kramer multiple 

comparison test. Next, it is important to investigate whether different seeds lead to 

statistically significantly different values of entropy. For this, the linear regression model 

of the entropy measures of the inputs and outputs, from section 4.4.2, together with Tukey-

Kramer multiple comparison test were used. The final step is to compare the results to 

understand whether the results from the entropy measures are consistent with the results 

from the standard error of the mean or not. Table 71 shows the results of the Tukey-Kramer 

multiple comparison test for the linear regression model of the SEM and the entropy 

measures. The results are shown as a connecting letter report, where any levels that share 

a letter do not have a statistically significant difference. 
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First, the results in Table 68, Table 69, and Table 70 show that seed is a statistically 

significantly factor for both the SEM and the entropy measures of all the inputs and 

outputs. Next, Tukey-Kramer multiple comparison test was used to understand the 

difference among the seeds. The following important observations can be made from 

Table 71: 

1. With respect to the statistical differences between the seeds, in general, the 

results from the entropy measures are similar to the results of the SEM. 

When the results are different, the entropy measures appear to be more 

sensitive to differences and are able to capture statistically significant 

differences more frequently than the SEM. 

2. Although the discrete empirical distribution estimate is not the theoretically 

correct approach, as previously discussed, the estimate presented better 

results in capturing the deterministic behavior of the simulated queue 

system. However, with a few exceptions, with respect to identifying 

statistical differences between the seeds, the discrete empirical distribution 

estimate showed results very similar to the probability density estimate 

method. This is an indicator that the discrete empirical distribution estimate 

could be, in fact, a potential estimate for measuring uncertainty in 

simulation models. 

3. The results from the normalized and non-normalized version of the entropy 

measures are also similar, except for a few cases. This indicates that when 
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the goal is to identify the group of seeds that lead to the largest uncertainty, 

normalization may not be necessary.  

4. According to the entropy measures, NIS appears to be more sensitive to the 

seeds than the TIS, as there were more statistically significant differences 

for the former than the latter.  

5. To identify the seed that leads to the largest uncertainty, the least square 

mean of each measure was ordered from the smallest to the largest, as 

shown in Table 71. At first, the entropy measures do not appear to show 

good results. The entropy measures results are not consistent with the 

results of the SEM. To investigate the results in more detail, it was decided 

to compare the results of the entropy measures and the SEM with the 

confidence interval of the inputs and outputs from the simulated queue 

model. For every simulated scenario, if the theoretical values of the inputs 

and outputs were within their respective confidence interval, it was not 

considered an error. If the theoretical values were not within the confidence 

interval, it was considered as an error. Figure 80, Figure 81, and Figure 82 

show the graphs of the total number of errors per seed for each input and 

output. When one compares the results of Table 71 with the results in 

Figure 80, Figure 81, and Figure 82, it is possible to see that neither 

methods, that is, nor the entropy measures, nor the SEM, are able to 

identify the seed that leads to the largest uncertainty consistently with the 

seed that leads to the highest number of errors. It is important to highlight 
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that as shown in Table 69 and Table 70, there are interactions among the 

seed and other parameters, such as number of replications, number of bins, 

interarrival time, etc. Despite these interactions, one would expect that 

overall, the methods would be consistent. However, for the entropy 

measures it is known that the number of bins has a great impact on the 

entropy measures values and it can be seen as an overfitting or underfitting 

parameter. When specific parameter values were selected, for instance, 

number of replications = 50, interarrival time = 180 min, and number of 

bins = 1000, the entropy measure was able to consistently detect the seed 

that led to the largest number of errors, as shown in Figure 83. This 

highlights the importance of adequately selecting the proper number of bins 

for the entropy measures. As a future work in this area, one could explore 

optimization models to search for the optimum number of bins, where the 

objective function would be to have the greatest consistency between the 

seed identified by the entropy measures and the seed identified by the 

largest number of errors. Another suggestion in this area is to use the 

conditional entropy, instead of the entropy as the measure of the 

uncertainty. The entropy is the average total uncertainty of the input or 

output, but it also contains the amount of information contained in the input 

that helps predict the output (or vice-versa). Therefore, a correlation is 

expected with measures of error, but not necessarily a match. The 

conditional entropy could be a better measure for these cases where one 
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wants to eliminate the amount of information provided by other variables, 

as shown in Figure 84. 

 

Table 61. Tukey-Kramer multiple comparison test results for seed parameter for α-level 

= 𝟎. 𝟎𝟓. 

Input or 

Output 
Seed Method Measure 

Connecting letter report Least Square Mean order 

Seed1 Seed2 Seed3 Seed1 Seed2 Seed3 

AT Seed AT 

SEM A A B 1 2 3 

Discrete 
H A C B 1 3 2 

Norm H A C B 1 3 2 

PDF 
H A C B 1 3 2 

Norm H A C B 1 3 2 

ST Seed ST 

SEM A A,B B 3 2 1 

Discrete 
H A C B 3 1 2 

Norm H A C B 3 1 2 

PDF 
H A C B 3 1 2 

Norm H A C B 3 1 2 

NIS 

Seed AT 

SEM A A B 2 3 1 

Discrete 
H A C B 1 3 2 

Norm H A C B 1 3 2 

PDF 
H A C B 1 3 2 

Norm H A C B 1 3 2 

Seed ST 

SEM A B A,B 3 1 2 

Discrete 
H A B C 1 3 2 

Norm H A B C 1 3 2 

PDF 
H A B A 1 3 2 

Norm H A B C 1 3 2 

TIS 

Seed AT 

SEM A A B 2 3 1 

Discrete 
H A B B 1 2 3 

Norm H A B B 1 2 3 

PDF 
H A C B 1 2 3 

Norm H A B B 1 2 3 

Seed ST 

SEM A B A,B 3 1 2 

Discrete 
H A B B 3 1 2 

Norm H A B B 3 1 2 

PDF 
H A B B 3 1 2 

Norm H A B B 3 1 2 
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Figure 80. Total number of errors of the inputs interarrival time and service time per 

seed. Left-side: Total number of errors in interarrival time per seed used. Right-side: 

Total number of errors in service time per seed used. 

 

 
Figure 81. Total number of errors of the output number in system per seed. Left-side: 

Total number of errors in number in system per interarrival time seed used. Right-side: 

Total number of errors in number in system per service time seed used. 
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Figure 82. Total number of errors of the output time system per seed. Left-side: Total 

number of errors in time in system per interarrival time seed used. Right-side: Total 

number of errors in time in system per service time seed used. 

 

 
Figure 83. Total number of errors of the input interarrival time per seed for number of 

replications = 50 and interarrival time = 180 minutes. 
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Figure 84. Conditional entropy 𝑯(𝑿𝒊|𝒀𝒊, 𝒀𝒋). 

 

4.4.4. Can entropy measures support the identification of the number of 

replications that leads to the largest uncertainty? 

To answer whether entropy can support the identification of the number of 

replications that leads to the largest uncertainty, first, it is important to understand whether 

different replications lead to statistically significantly different uncertainty in the model 

according to a baseline measure of uncertainty. For this, the linear regression model of the 

SEM of each input and output discussed in section 4.4.1 was used together with Tukey-

Kramer multiple comparison test. Next, it is important to investigate whether different 

number of replications lead to statistically significantly different values of entropy. For 

this, the linear regression model of the entropy measures of the inputs and outputs, from 

section 4.4.3, together with Tukey-Kramer multiple comparison test were used. The final 

step is to compare the results to understand whether the results from the entropy measures 

are consistent with the results from the standard error of the mean or not. Table 72 shows 
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the results of the Tukey-Kramer multiple comparison test for the linear regression model 

of the SEM and the entropy measures. The results are shown as a connecting letter report, 

where any levels that share a letter do not have a statistically significant difference. 

First, the results in Table 68, Table 69, and Table 70 show that number of 

replications is a statistically significant factor for both the SEM and the entropy measures 

of all the inputs and outputs. Next, Tukey-Kramer multiple comparison test was used to 

understand the difference among the number of replications. The following important 

observations can be made from Table 72: 

1. With respect to the statistical differences between the replications, in 

general, the results from the entropy measures are similar to the results of 

the SEM. If one considers the results of the non-normalized version of the 

entropy measures, the entropy measures appear to be more sensitive to 

differences among the replications and be able to capture statistically 

significant differences more frequently than the SEM. When one considers 

the normalized version, the results of the entropy measures and SEM are 

very similar. The exception is for the entropy of interarrival time, where 

the entropy measure appeared to be less sensitive than the SEM. However, 

in this case, the normalized version appears to be a better measure because 

it places all the entropy measures within the same range between 0 and 1, 

which makes the comparison among themselves more adequate. Without 

the normalization, the entropy measures would have different range values 

depending on the number of bins used to calculate the entropy.  
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2. Considering the normalized measures, all three methods showed results 

very similar to each other. Especially, with respect to the number of 

replications equal to 800 and 1,000, all three methods were not able to 

identify any statistical significance between them, which indicates that 

running 1,000 replications may potentially not be worth it if one is 

constrained by computer resources and/or time. For entropy of interarrival 

time, the entropy measures were not able to identify statistically significant 

differences not even between 400 replications and 800 replications.  

3. According to the entropy measures, the inputs appear to be more sensitive 

to the replications than the outputs, as there were more statistically 

significant differences for the first group than the latter.  

4. As the results in Table 72 show, while the SEM decreases with the increase 

in the number of replications, the entropy increases. At first, one could 

think that this would indicate that the entropy measures results are not 

consistent with the results of the SEM. However, this is not the case. The 

SEM is a measure divided by the number of samples, in this case the 

number of replications. Therefore, it is expected that as the number of 

replications increase, SEM should decrease. Entropy, on the other hand, is 

the average total uncertainty or information content. Intuitively, as the 

number of replications increase, it is expected that the total uncertainty or 

information content will also increase. A more technical explanation is that 

entropy is a function that decreases as the probability of an event increases. 
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In general, with more replications, more events may be observed and the 

probability of an event may in fact decrease. Therefore, if one wants to 

choose the best number of replications, one cannot simply use the total 

entropy, but a suggestion would be to calculate the entropy per replication 

or to calculate the gain in entropy per replication, which can be calculated 

from a set number of replications to another number of replications, such 

as 𝐻(𝑋𝑠𝑒𝑡2) − 𝐻(𝑋𝑠𝑒𝑡1) (𝑛𝑟𝑒𝑝𝑠𝑠𝑒𝑡2 − 𝑛𝑟𝑒𝑝𝑠𝑠𝑒𝑡1)⁄ . 

 

Table 62. Tukey-Kramer multiple comparison test results for number of replications 

parameter for α-level = 𝟎. 𝟎𝟓. 
Input 

or 

Output 

Method Measure 
Number of replications connecting letter report 

10 20 50 100 200 400 600 800 1000 1500 

AT 

SEM A B C D E F G H H I 

Discrete 
H J I H G F E D C B A 

Norm H G F E D C A,B B A B A,B 

PDF 
H I H G F E D C B B A 

Norm H G F E D C A,B B A B A,B 

ST 

SEM A B C D E F G G,H H,I I 

Discrete 
H J I H G F E D C B A 

Norm H I H G F E D C B A,B A 

PDF 
H J I H G F E D C B A 

Norm H I H G F E D C B A,B A 

NIS 

SEM A B C D E F F,G F,G F,G G 

Discrete 
H J I H G F E D C B A 

Norm H H G F E D C B A,B A A 

PDF 
H J I H G F E D C B A 

Norm H H G F E D C B A,B A,B A 

TIS 

SEM A B C D E F F,G F,G F,G G 

Discrete 
H J I H G F E D C B A 

Norm H H G F E D C B A A A 

PDF 
H J I H G F E D C B A 

Norm H H G F E D C B A A A 
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4.4.5. Can entropy measures support the selection of the most important 

parameters? 

To answer the question whether entropy measures can support the selection of the 

most important input parameters in a simulation model, first it is important to investigate 

what are the significant parameters for the simulation model according to a known method 

in the literature. In this work, ANOVA is used to identify the significant parameters for 

each simulation response. Next, it is important to investigate what are the most important 

parameters based on the mutual information measures. For this, the mutual information 

index, as described in section 4.3.5, is used. The results obtained from the mutual 

information index was tested using contingency analysis. Finally, the results from the 

mutual information index were compared to the results of ANOVA. 

For the ANOVA, the following different factors were considered: (i) interarrival 

time mean value (𝑋1); (ii) service time mean value (𝑋2); (iii) seed interarrival time; (iv) 

seed service time; (v) traffic intensity; and, (vii) number of replications. The results of 

ANOVA are shown in Table 63. Figure 85 shows the actual by predicted plot of the models 

of the simulation responses. From the results in Table 63, one can see that both the 

interarrival time and the service time are considered statistically significant factors for the 

simulation responses NIS and TIS. 

 

Table 63. ANOVA results for simulation responses for α-level = 𝟎. 𝟎𝟓. 

Model NIS TIS 

Model p-value <0.0001 <0.0001 

𝑅2  0.9999 0.9999 
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𝑅2𝑎𝑑𝑗  0.9999 0.9999 

Factor p-value p-value 

Seed interarrival time 0.0003 0.0012 

Interarrival time mean value 0.0000 0.0066 

Seed service time N/A N/A 

Service time mean value 0.0000 0.0000 

Number of replications 0.0017 0.0001 

Traffic intensity 0.0000 0.0000 

Seed interarrival time * Interarrival time mean value 0.0000 0.0000 

Seed interarrival time * Seed service time N/A N/A 

Seed interarrival time * Service time mean value 0.0000 0.0000 

Seed interarrival time * Number of replications 0.0004 0.0040 

Seed interarrival time * Traffic intensity N/A N/A 

Interarrival time mean value * Seed service time N/A N/A 

Interarrival time mean value * Seed service time N/A N/A 

Interarrival time mean value * Service time mean value 0.0000 N/A 

Interarrival time mean value * Number of replications 0.0017 0.0011 

Seed service time * Service time mean value N/A N/A 

Seed service time * Number of replications N/A N/A 

Service time mean value * Number of replications 0.0002 0.0001 

Seed service time * Traffic intensity N/A N/A 

Number of replications * Traffic intensity N/A N/A 

 

 

Figure 85. Actual by predicted plot of the simulation responses. Left-side: �̂�𝟏 - NIS. 

Right-side: �̂�𝟐 - TIS.   

 



352 

 

Contingency analysis was performed in JMP® Pro15 to test whether one of the 

inputs (e.g., interarrival time) provided statistically significantly more information than 

the other (e.g., service time). The results from the contingency analysis are summarized 

in Table 64 and shown in Figure 86 and Figure 87. Figure 86 and Figure 87 show the 

results for the non-normalized MI only. Contingency analysis was also used to test 

whether the useful information provided by each input to the output varied based on 

different factors, such as: seed used for the inputs, number of replications, queue model, 

and traffic intensity. These results are summarized in Table 65. 

The following important observations can be made from Table 64 with respect to 

the importance of the inputs to the outputs: 

1. The normalization does not appear to have an impact on the importance of 

the inputs to the outputs. The results were the same regardless of using 

normalization or not. Similar observation can be made from Table 65. 

2. The results from the MI estimation method were consistent for the output 

NIS, but differed for the output TIS. Based on these results, it is difficulty 

to validate whether one method is better than the other or whether one 

method is correctly estimating the most significant input at all. According 

to Law (2007), time in system appears to be more impacted by service time 

than by arrival time. Assuming this is correct, the discrete empirical 

estimate is leading to better results than PDF, which matches the results 

from section 2.4. This also highlights the importance of choosing the 

responses of interest when modeling a system. The most significant 
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parameters in a model may be different depending on the response of 

interest. When a modeler is constrained by time and resources, knowing 

the responses of interest is important to adequately choose the inputs to 

include in the model and from which to collect data. 

3. Based on the ANOVA method, AT and ST was found to be significant 

parameters to the outputs of the model. By using mutual information index, 

the MI measure allows the modelers to go one step further by calculating 

the proportion of importance of the parameters to the outputs of the model.   

To investigate the results more in depth, it was also analyzed how the results of 

the contingency analysis would change based on the number of bins. Although the 

proportion of importance of the inputs slightly change based on the number of bins, the 

conclusion about the most important input did not change for every response of interest 

and every MI estimation method being investigated. Therefore, in this case, number of 

bins does not appear to impact the results about which input provides significantly more 

information to the output. The importance of AT and ST to NIS and TIS does vary based 

on the number of bins. 

 

Table 64. Results of the contingency analysis to test whether one input provides 

significantly more information to the output than the other for α-level = 𝟎. 𝟎𝟓. 

Method 
With or without 

normalization 

NIS TIS 

Most important 

input 
p-value 

Most important 

input 
p-value 

Discrete 

Without 

normalization AT <0.0001 ST <0.0001 

With normalization AT <0.0001 ST <0.0001 

PDF 
Without 

normalization AT <0.0001 AT <0.0001 
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With normalization AT <0.0001 AT <0.0001 

 

 
Figure 86. Mosaic plot of importance of inputs for the outputs using discrete empirical 

distribution to calculate the mutual information measures. Left-side: Importance of 

inputs for the output �̂�𝟏 - NIS. Right-side: Importance of inputs for the output �̂�𝟐 - TIS. 

 

 
Figure 87. Mosaic plot of importance of inputs for the outputs using probability density 

distribution to calculate the mutual information measures. Left-side: Importance of 

inputs for the output �̂�𝟏 - NIS. Right-side: Importance of inputs for the output �̂�𝟐 - TIS. 

 

From Table 65, one can see that in general the seed, number of replications, queue 

model, and traffic intensity impact the importance of the inputs to the outputs. An 

exception is the factor queue model for the importance of AT and ST to the output NIS 
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when using discrete empirical distribution. Again, when comparing these results with the 

ANOVA results, the discrete empirical distribution appears to have better results. 

According to the ANOVA, seed of interarrival time, traffic intensity, and number of 

replications were among the factors that were significant for the responses NIS and TIS. 

Queue model and seed service time were not found to be significant. 

 

Table 65. Results of the contingency analysis to test whether the useful information 

provided by the input varies based on different factors for α-level = 𝟎. 𝟎𝟓. 

Method 

With or 

without 

normalization 

Factors 

NIS TIS 

Importance 

of AT 

Importance 

of ST 

Importance 

of AT 

Importance 

of ST 

p-value p-value p-value p-value 

Discrete 

Without 

normalization 

Seed 

interarrival 

time <0.0001 <0.0001 <0.0001 <0.0001 

Seed service 

time <0.0001 0.0029 0.0401 0.0764 

Number of 

replications <0.0001 <0.0001 <0.0001 <0.0001 

Queue 

model 0.3350 0.2780 <0.0001 <0.0001 

Traffic 

intensity <0.0001 <0.0001 <0.0001 <0.0001 

With 

normalization 

Seed 

interarrival 

time <0.0001 <0.0001 <0.0001 <0.0001 

Seed service 

time <0.0001 0.0029 0.0401 0.0764 

Number of 

replications <0.0001 <0.0001 <0.0001 <0.0001 

Queue 

model 0.3350 0.2780 <0.0001 <0.0001 

Traffic 

intensity <0.0001 <0.0001 <0.0001 <0.0001 

PDF 
Without 

normalization 

Seed 

interarrival 

time <0.0001 <0.0001 <0.0001 <0.0001 

Seed service 

time <0.0001 <0.0001 <0.0001 <0.0001 

Number of 

replications <0.0001 <0.0001 <0.0001 <0.0001 
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Queue 

model 0.0021 <0.0001 0.0302 <0.0001 

Traffic 

intensity <0.0001 <0.0001 <0.0001 <0.0001 

With 

normalization 

Seed 

interarrival 

time <0.0001 <0.0001 <0.0001 <0.0001 

Seed service 

time <0.0001 <0.0001 <0.0001 <0.0001 

Number of 

replications <0.0001 <0.0001 <0.0001 <0.0001 

Queue 

model 0.0021 <0.0001 0.0302 <0.0001 

Traffic 

intensity <0.0001 <0.0001 <0.0001 <0.0001 

 

4.5. Concluding remarks 

In this work, three different applications of entropy measures and mutual 

information were investigated to support experiment planning and input parameter 

selection in simulation models. For this, a total of 1620 experiments were run in Simio® 

University Enterprise Edition v 12.205 with different experiment configurations. 

In section 4.4.3, entropy measures were used to support the identification of the 

seed that leads to the largest uncertainty, if any, in simulation models. For that, regression 

analysis and Tukey-Kramer multiple comparison test were used. As the results indicate, 

the entropy measures were able to detect similar statistical differences among the seeds as 

the SEM, but sometimes the entropy measures were more sensitive and detected more 

statistical differences than the SEM. However, the entropy measures were not consistent 

with the SEM method in detecting the seed that led to the largest uncertainty. In this case, 

there are three different hypotheses: (i) the entropy measure is not accurate, (ii) the SEM 

is not accurate, or (iii) none of the methods are accurate. When the entropy measures and 
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the SEM were investigated to detect the seed that led to the largest number of errors, based 

on the confidence interval resulting from the simulation model and the theoretical value 

of the input or output, none of the methods appeared to be consistent. However, depending 

on the parameter values selected, the entropy measure was able to consistently detect the 

seed that led to the largest number of errors. This highlighted the impact of number of bins 

on the results of entropy measures. 

In section 4.4.4, entropy measures were used to support the identification of the 

number of replications that leads to the largest uncertainty in simulation models. Similar 

to section 4.4.3, regression analysis and Tukey-Kramer multiple comparison test was used 

for this purpose. Considering the normalized entropy measures, the entropy measures 

estimated either using discrete empirical distribution or probability density distribution 

showed results similar to the SEM. More specifically, it appears that if one is constrained 

by time or computer resources, 800 replications is a better choice than 1,000 replications.  

In section 4.4.5, mutual information was used to identify the most important 

parameters to the models based on the response of interest. For that, ANOVA, contingency 

analysis, and an adaptation of mutual information index were used. The adaptation of 

mutual information index was proposed so that the measure would add to 1. As the results 

indicate, the measure appears to be capable to detect the importance of the inputs to the 

different outputs. However, the results were different based on the estimator being used 

(discrete vs. PDF). Based on results from section 2.4, section 4.4.3, and also based on the 

fact that according to Law (2007), time in system appears to be more impacted by service 

time than by arrival time, it is believed that the discrete empirical distribution is a better 
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estimate for entropy measures in the context of uncertainty quantification in simulation 

models. These results also indicate the importance of choosing the responses of interest 

when modeling a system, as the most significant parameters in a model may be different 

depending on the response of interest. 

According to the experimental results, a few important observations can be made:  

1. In general, entropy measures and mutual information are able to detect 

statistical differences in the groups of seeds used, number of replications, 

or input parameters similar to other well-known methods in the literature, 

but the measures are not always able to detect the group that leads to the 

largest uncertainty consistently with other methods.  

2. Normalization of entropy measures is suggested in the literature to 

minimize the effect of the number of bins in calculating entropy measures. 

However, as the experimental results suggest, this is more beneficial when 

the entropy measures calculated with different number of bins are being 

compared among themselves. Normalization is also required when entropy 

measures are being used to identify the number of replications that leads to 

the largest uncertainty. In other situations, normalization may not be 

required as the results with or without normalization are the same. 

3. Although the discrete empirical distribution estimate is not the theoretically 

correct approach, the estimate appeared to have better results in capturing 

the deterministic behavior of the simulated queue system and the 

uncertainty of simulation models overall. 
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4. The NIS response appears to be more sensitive to seeds than the TIS and 

the inputs appear to be more sensitive to the number of replications than 

the outputs. 

As future research, it is suggested:  

1. To investigate the use of conditional entropy, instead of entropy, as a better 

measure of uncertainty for simulation models to identify the group of seeds 

and the number of replications that leads to the largest uncertainty. As 

previously discussed, the entropy is the average total uncertainty of the 

input or output, but it also contains the amount of information contained in 

the input that helps predict the output (or vice-versa). Therefore, a 

correlation is expected with measures of error, but not necessarily a match. 

The conditional entropy could be a better measure for these cases where 

one wants to eliminate the amount of information provided by other 

variables.  

2. To investigate the use of entropy per replication or gain in entropy per 

replication, (𝐻(𝑋𝑠𝑒𝑡2) − 𝐻(𝑋𝑠𝑒𝑡1) (𝑛𝑟𝑒𝑝𝑠𝑠𝑒𝑡2 − 𝑛𝑟𝑒𝑝𝑠𝑠𝑒𝑡1)⁄ ), as a better 

measure to identify the number of replications that leads to the largest 

uncertainty.  

3. To investigate the optimum number of bins to be used to calculate entropy 

measures in the context of simulation models. For this, one could explore 

optimization models to search for the optimum number of bins, where the 

objective function is to have the greatest consistency (or minimize the 
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difference) between the seed that leads to the largest uncertainty identified 

by the entropy measures and the seed identified by the largest number of 

errors, such as shown in Equation 83. 

𝑚𝑖𝑛∑(𝑖𝑓 𝑠𝑒𝑒𝑑 𝐻𝑏𝑖 = 𝑠𝑒𝑒𝑑 𝐸𝑏𝑖 ⇒ 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  1)

𝑖

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 
𝑏𝑖 = 1 𝑜𝑟 0 , 𝑖 = 1,2, … ,10

∑𝑏𝑖
𝑖

= 1

 
Equation 83 

Where 𝑏𝑖 is 𝑖𝑡ℎ number of clusters. 

4. To further explore the optimum number of replications to be used in 

simulation models with the support of entropy measures by using 

optimization models. In this case, one can maximize the MI provided by 

the inputs to the outputs, such as shown in Equation 84.   

𝑚𝑎𝑥∑(𝐼(𝑋1; 𝑌) + 𝐼(𝑋2; 𝑌))

𝑗

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 
𝑟𝑗 = 1 𝑜𝑟 0 , 𝑗 = 1,2, … ,10

∑𝑟𝑗
𝑗

= 1

 
Equation 84 

Where 𝑟𝑗 is 𝑗𝑡ℎ number of replications. 

As previously highlighted, entropy measures are dependent on the number of bins 

used to calculate the measures. Therefore, adequately defining the number of bins should 

be a topic of further investigation. 

The fact that the method was not validated theoretically is the main limitation of 

this work. However, in an attempt to mitigate this limitation, the method was compared 
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with results from other well-known methods from the literature. There are still many open 

questions about this topic and a vast area of research for further investigation. From the 

experimental results, although more work needs to be done, the method appears to be 

capable to support experimental planning and parameter selection in simulation models. 



 

 

5. CONCLUSIONS 

 

Through empirical results from different simulation experiments on a queue 

system, this dissertation provided insights about the implications of uncertainty in the 

results of simulation models and it investigated entropy measures as a method for 

uncertainty quantification in simulation models.  

The first contribution of this dissertation was to discuss the trade-off between 

model uncertainty and data uncertainty and to show the implications of uncertainty in the 

results of simulation models through an illustrative queue example. In section 1.1.2, 

simulation experiments revealed that the accuracy of the model does not necessarily 

increase with the increase in the number of replications. Using this result, the importance 

of assessing whether running more replications is economically and computationally 

attractive was discussed. 

In section 2, Shannon’s entropy and mutual information measures were 

investigated as measures of uncertainty in simulation models when using histogram-based 

method with varying number of bins and normalization methods. The first contribution of 

this section was to discuss the challenges encountered when computing entropy measures 

for continuous variables. It was shown that using the existing discrete scheme of correction 

for continuous variables while estimating entropy measures can still lead to negative 

values. A similar issue occurs when one adopts 𝑚(𝑥) = 𝐸[𝑓(𝑥)] in the solution proposed 

by Jaynes (1957). To overcome these challenges, a data normalization procedure was 

proposed that minimizes the issues of interpretability of entropy in the continuous case. 
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The proposed procedure can be implemented when using fixed number of bins, but it 

cannot be implemented when using formulas that calculate the optimum number of bins. 

In section 2, it was also shown that when entropy and MI measures were estimated using 

the histogram-based method with probability density function, the measures tended to 

decrease with the increase in the number of bins (or decrease in the binwidth) for the same 

number of replications, which contradicts what is mentioned in the literature. When the 

measures were estimated using the histogram-based method with discrete empirical 

distribution, the measures tended to increase with the increase in the number of bins. This 

led to the hypothesis that in the literature, researchers have been using the discrete 

empirical distribution to estimate the measures even though the variables may be 

continuous. To eliminate the effect of the bins on the MI, different normalization methods 

were assessed and the theoretical normalization of the MI was the method that showed the 

best results for not altering the behavior of the MI with respect to the number of 

replications. As it was later shown in section 2, either the probability density function or 

the discrete empirical distribution was able to capture the uncertainty in the simulation 

models with respect to different traffic intensities, different seeds, and different parameters 

values. However, only the discrete empirical distribution was able to adequately capture 

the deterministic behavior of systems or input parameters like CONWIP or travel time 

regardless of the number of bins. Using the probability density function, the entropy and 

MI measures were only able to capture the deterministic behavior for number of bins 

exceeding 1,000.  
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Section 3 was an extension of section 2, where Shannon’s entropy and mutual 

information were investigated as measures of uncertainty in simulation models using 

different estimators, namely kernel-based method, k-nearest neighbors, and fuzzy-

histogram-based method. The first contribution of section 3 was to propose a function 

𝑚(𝑥) = 𝑓(𝑥)(1 + 𝑓(𝑥)) to be used in the approach proposed by Jaynes (1957) to handle 

the challenges in calculating entropy measures for continuous variables. The function 

allowed for the calculation of the entropy measures regardless of the choice of the bin and 

the choice of the density estimation method. Next, a challenge encountered when 

calculating MI using the product kernel multivariate formula was discussed and a solution 

was proposed based on discussions found in Silverman (1986). Similar to section 2, the 

results showed that entropy and MI measures estimated using the kernel-based method, k-

nearest neighbors, and fuzzy-histogram-based method were able to capture the uncertainty 

in the simulation models with respect to different traffic intensities, different seeds, and 

different parameters values, but were not able to adequately capture the deterministic 

behavior of systems or input parameters like CONWIP or travel time regardless of the 

parameter used (such as bandwidth, k-nearest neighbors, or number of bins). The reasons 

for the estimators not being able to adequately capture the deterministic behavior were 

discussed in the chapter, which can be used in future research to propose adaptation of the 

methods to capture the deterministic behavior. For the KNN method and the fuzzy-

histogram based method, the entropy was able to capture the deterministic behavior 

regardless of the choice of the k-nearest neighbors or number of bins. Nevertheless, the 

MI was not able to capture the deterministic behavior in any of the methods, that is, when 
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estimated either using the kernel-based method, the KNN method, or the fuzzy-histogram 

based method. For the kernel-based method, the entropy measures also had issues in 

capturing the deterministic behavior. In section 3.4.9, an overall comparison in terms of 

characteristics and results of all estimators was provided.  

 Finally, section 4 was a continuation of section 2 and section 3, where the ability 

of entropy measures to quantify uncertainty in simulation models was investigated through 

a series of applications of the measures for input parameter selection and experiment 

planning. These applications involved calculating Shannon’s entropy and mutual 

information for full-factorial queue simulation model experiments using stationary 

univariate distributions. The entropy measures were estimated using histogram-based 

method with probability density function and the entropy normalization method proposed 

in section 3.4, as well as using histogram-based method with empirical discrete 

distribution. Standard error of the mean, regression analysis, and Tukey-Kramer multiple 

comparison test were used to investigate whether entropy measures could support the 

identification of the number of replications and the seed that led to the largest uncertainty 

in the simulation model. ANOVA and contingency analysis were used to investigate 

whether MI measures could support the identification of the most important input 

parameters for the simulation model. An adaptation of the mutual information index was 

proposed to identify the most important input parameters of the simulation model. As the 

results indicated, the entropy measures were able to detect similar statistical differences 

among the seeds as the SEM but were not consistent with the SEM method in detecting 

the seed that led to the largest uncertainty and only the normalized entropy measures 
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showed results similar to the SEM for identifying the number of replications that leads to 

the largest uncertainty in simulation models. With respect to detecting the importance of 

the inputs to the different outputs, the results were different based on the estimator being 

used (discrete vs. PDF). Based on results from section 2.4, section 4.4.3, and also found 

by Law (2007), time in system appears to be more impacted by service time than by arrival 

time, it was experimentally found that the discrete empirical distribution is a better 

estimate for entropy measures in the context of uncertainty quantification in simulation 

models. These results also indicated the importance of choosing the response parameters 

of interest when modeling a system, as the most significant parameters in a model may be 

different depending on the response parameters of interest. The advantage of the mutual 

information index over ANOVA is that while ANOVA only allows to indicate whether 

the input parameter is statistically significant or not for the output, the proposed adaptation 

of the mutual information index allows to quantify which input parameter is more 

significant than the other by measuring the importance in terms of percentage.  

The main limitations of this dissertation are: (i) only a queue-system was used as 

an example to run the experiments; (ii) although the entropy and MI measures were 

compared with other well-known measures reported in the scientific community, the 

method was not validated theoretically; and (iii) a quantitative way to rank the entropy 

estimators among themselves was not developed.  

As future research, it is recommended: (i) to run similar experiments in different 

type of systems and to investigate how the responses would change (e.g., flow system, 

infection-transmission system, etc.); (ii) to propose a framework to validate the work 
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theoretically; (iii) to propose adaptations for the entropy estimators to adequately measure 

deterministic behavior; (iv) to investigate the use of conditional entropy, instead of 

entropy, as a better measure of uncertainty for simulation models to identify the group of 

seeds and the number of replications that lead to the largest uncertainty; (v) to investigate 

the use of entropy per replication or gain in entropy per replication as a better measure to 

identify the number of replications that leads to the largest uncertainty; (vi) to investigate 

the optimum number of bins to be used to calculate entropy measures in the context of 

simulation models through optimization models; and, (vii) to investigate the optimum 

number of replications to be used in simulation models through entropy measures and 

optimization models. There are a number of open questions about this topic and a vast 

area of research questions for further investigation. From the experimental results shown 

in this dissertation, the method appears to be capable of supporting uncertainty 

quantification, experimental planning, and parameter selection in simulation models. 

Based on the results, the recommendation while using the method is to calculate 

the entropy and MI measures using the histogram-based method with discrete empirical 

distribution, which although is not the correct estimator given the continuous nature of the 

variables. This was the estimator that showed the most promising results in detecting the 

uncertainty in the simulation models and also identifying the most important input 

parameters to impact the outputs. Moreover, the histogram-based method with discrete 

empirical distribution estimator did not exhibit challenges with respect to its calculation. 

If one decides to consider other options, the next recommendation is to follow the 
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approach proposed by Jaynes (1962) but to use 𝑚(𝑥) = 𝑓(𝑥)(1 + 𝑓(𝑥)) as proposed in 

section 3.4.1.  

As final recommendations of this work, there are a few suggestions on how entropy 

measures can be applied by simulation modelers and other practitioners of the field. 

Entropy and mutual information measures have the advantage of providing a single 

number or score for comparison among different scenarios, models, inputs, etc., which is 

an advantage to be explored in future applications. 

Based on Figure 5, it is known that a simulation model contains multiple sources 

of uncertainty, such as: parameter uncertainty, experimental or output uncertainty, 

simulation generated inputs, and so on. Therefore, entropy measures can be applied in 

different contexts to measure each one of these sources, as discussed below. Some possible 

fields of applications are also discussed.  

With respect to parameter uncertainty, mutual information measures can be used 

to quantify the impact of the inputs on the outputs and to identify from a large number of 

parameters which ones are the most relevant to be included in the model. Such an 

application was discussed in section 4. Entropy of the input and conditional entropy of the 

input given the output can also be used to quantify the uncertainty of the collected data 

and the uncertainty of the simulation generated data. With respect to the collected data, 

one can compare the data among themselves and their uncertainty to assess which inputs 

would bring more uncertainty into the system. With respect to the simulation generated 

data, one can also use entropy measures to investigate the quality of the seeds of the pseudo 

random number generator, as discussed in section 4. 
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With respect to experimental or output uncertainty, one can use the entropy of the 

output or conditional entropy of the output given the input to quantify the uncertainty of 

the outputs and determine the best number of replications to run based on the responses of 

interest and the available computational resources, similar to one of the applications 

discussed in section 4. Another important application of entropy is as an extension of 

model verification and validation. As a single measure value, one can also use entropy: (i) 

to compare multiple models with different input parameters among themselves, for 

instance, and choose the one that has the lowest uncertainty; and (ii) to validate a model 

by comparing the uncertainty of the model with the uncertainty of the historical collected 

data.  

Entropy measures can only be calculated after some data is either collected in the 

real-world or generated in the simulation model. However, after some data is collected 

and the entropy is calculated, it is possible to aggregate the entropy measures in real-time 

to the simulation models reports or to the visualization charts. These reports or 

visualizations can be used for different comparisons as previously discussed in this 

section. Bootstrap techniques can be used to generate confidence intervals of the entropy 

measures as well, instead of using a single point estimate.  

In terms of field of applications, entropy measures can be applied to a range of 

simulation models and with different goals, such as: to quantify the variability in the 

performance of manufacturing design or manufacturing processes; to quantify predictive 

uncertainty in hydrological models or to improve weather forecasting models like 

hurricane models; to quantify uncertainty and decision risk in environmental crisis 
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management models; to quantify risk in financial models, sport models, and medical 

diagnoses; to select models in image detection or natural language processing; and several 

other applications in different domains.  

As examples of how entropy measures can be used by practitioners in their real-

world applications, it is possible to cite: (i) public heatlh practitioners can potentially use 

mutual information in infectious disease spread models to rank the importance of input 

parameters such as, periodic (such as daily) vector to human infect rate, periodic human 

to vector infect rate, periodic human latent rate, periodic human recovery rate, periodic 

vector mortality rate, percentage of asymptotic cases, periodic transmission rate, among 

others, on output parameters, such as total duration of the epidemic, number of epidemic 

waves, total number of exposed individuals, total number of infected individuals, total 

number of recovered individuals; (ii) public health practitioners can potentially use 

entropy measures to create a dashboard for analysis and comparison of the different 

uncertainty values resulting from input parameters collected in different regions, such as 

daily transmission rate in one country or region versus daily transmission rate in another 

country or region, or parameters that are difficult to quantify (quantified subjectively), 

such as the probability that individuals in a population that adhere to control measures; 

(iii) emergency responders can potentially use entropy measures to evaluate the risks of a 

wildfire spread given the evolving conditions (e.g., specific wind conditions, weather, 

number of firefighters dispatched, equipment usage, etc.); (iv)  emergency responders can 

potentially use mutual information to assess how temporal weather data, topographic data, 

and real spatial fuels data impact the wildfire spread outcome; (v) emergency response 
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planners can potentially use entropy measures as a single value measure for comparison 

of the risks involved in the different possible human behaviors displayed during a disaster 

and, subsequently use mutual information to classify these different human behaviors in 

different categories, such as low risk, medium risk, and high risk, based on the expected 

number of total casualties resulting from disaster evacuation simulations; (vi) emergency 

response planners can potentially use mutual information in hurricane simulations to 

calculate the impact of air-sea temperatures, mileposts, and terrain on storm intensity, size, 

and speed, and as these numbers are updated and the storm evolves, dashboards can be 

developed to show to the user how the uncertainty and the risk of the storm changes from 

the initial formation until the moment the storm makes landfall; and, (vii) manufacturing 

and reliability engineers can use reliability system simulation to quantify the uncertainty 

of producing good parts and equipment breakdown, which, in turn, translates to the risk 

of producing defective parts and process disruptions respectively. 
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APPENDIX A 

CONFIGURATION OF EXPERIMENTS AND RESULTS 

 

Table 66. Experiments to assess the quality of entropy and mutual information as 

measures of uncertainty quantification in simulation models.  

Experiment 

number 
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model 

(Kendall’s 

notation) 

Numbe

r of 

servers 

s 

Inter-

arrival time 

𝟏/𝝀 

[minutes] 

Inter-

arrival 

time 

seed 

Service 

time 𝟏/𝝁 

[minutes] 

Service 

time 

seed 

Travel 

time 

[minutes

] 

Traffic 

intensi

ty 𝝆 

Number of 

replications 

1 to 10 

M/M/1 1 20 4 

2 

6 

not 

applicabl

e 

0.10 
10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 

11 to 20 10 0.50 

21 to 30 
18.00001

8 
0.90 

31 to 40 

M/M/3 3 6.666667 4 

2 

6 

not 

applicabl

e 

0.10 
10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 

41 to 50 10 0.50 

51 to 60 
18.00001

8 
0.90 

61 to 70 

M/M/10 10 2 4 

2 

6 

not 

applicabl
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0.10 
10, 20, 50, 100, 200, 

400, 600, 800, 1000, 
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71 to 80 10 0.50 

81 to 90 
18.00001

8 
0.90 

91 to 100 

M/G/1 1 

20 

4 

2 

𝜎2

= .01
1

𝜇
 

6 

not 

applicabl
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0.10 
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400, 600, 800, 1000, 

1500 

101 to 110 4 0.50 

111 to 120 2.222222 0.90 

121 to 130 

M/G/1 1 

20 

4 

2 

𝜎2

= .25
1

𝜇
 

6 

not 

applicabl

e 

0.10 
10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 

131 to 140 4 0.50 

141 to 150 2.222222 0.90 

151 to 160 

G/G/1 1 

20 

𝜎2 = .01
1

𝜆
 

4 

2 

𝜎2

= .01
1

𝜇
 

6 

not 

applicabl

e 

0.10 

10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 

161 to 170 

10 

𝜎2

= .01
1

𝜇
 

0.50 

171 to 180 

18.00001

8 

𝜎2

= .01
1

𝜇
 

0.90 

181 to 190 

G/G/1 1 

20 

𝜎2 = .25
1

𝜆
 

4 

2 

𝜎2

= .01
1

𝜇
 

6 

not 

applicabl

e 

0.10 

10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 
191 to 200 

10 

𝜎2

= .01
1

𝜇
 

 

201 to 210  

18.00001

8𝜎2 =

.01
1

𝜇
 

 

211 to 220 

G/G/1 1 
20 

𝜎2 = .01
1

𝜆
 

4 

2 

𝜎2

= .25
1

𝜇
 

6 

not 

applicabl

e 

0.10 

10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 

221 to 230 

10 

𝜎2

= .25
1

𝜇
 

0.50 
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231 to 240 

18.00001

8 

𝜎2

= .25
1

𝜇
 

0.90 

241 to 250 

G/G/1 1 
20 

𝜎2 = .25
1

𝜆
 

4 

2 

𝜎2

= .25
1

𝜇
 

6 

not 

applicabl

e 

0.10 

10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 

251 to 260 

10 

𝜎2

= .25
1

𝜇
 

0.50 

261 to 270 

18.00001

8 

𝜎2

= .25
1

𝜇
 

0.90 

271 to 280 G/G/3 3 
6.666667 

𝜎2 = .01
1

𝜆
 

4 

18.00001

8 

𝜎2

= .01
1

𝜇
 

6 

not 

applicabl

e 

0.90 

10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 

281 to 290 G/G/3 3 
6.666667 

𝜎2 = .25
1

𝜆
 

4 

18.00001

8 

𝜎2

= .01
1

𝜇
 

6 

not 

applicabl

e 

0.90 

10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 

291 to 300 G/G/3 3 
6.666667 

𝜎2 = .01
1

𝜆
 

4 

18.00001

8 

𝜎2

= .25
1

𝜇
 

6 

not 

applicabl

e 

0.90 

10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 

301 to 310 G/G/3 3 
6.666667 

𝜎2 = .25
1

𝜆
 

4 

18.00001

8 

𝜎2

= .25
1

𝜇
 

6 

not 

applicabl

e 

0.90 

10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 

311 to 320 G/G/10 10 
2 

𝜎2 = .01
1

𝜆
 

4 

18.00001

8 

𝜎2

= .01
1

𝜇
 

6 

not 

applicabl

e 

0.90 

10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 

321 to 330 G/G/10 10 
2 

𝜎2 = .25
1

𝜆
 

4 

18.00001

8 

𝜎2

= .01
1

𝜇
 

6 

not 

applicabl

e 

0.90 

10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 

331 to 340 G/G/10 10 
2 

𝜎2 = .01
1

𝜆
 

4 

18.00001

8 

𝜎2

= .25
1

𝜇
 

6 

not 

applicabl

e 

0.90 

10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 

341 to 350 G/G/10 10 
2 

𝜎2 = .25
1

𝜆
 

4 

18.00001

8 

𝜎2

= .25
1

𝜇
 

6 

not 

applicabl

e 

0.90 

10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 

351 to 360 

M/M/1 1 20 8 

2 

15 

not 

applicabl

e 

0.10 
10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 

361 to 370 10 0.50 

371 to 380 
18.00001

8 
0.90 

381 to 390 

M/M/3 3 6.666667 8 

2 

15 

not 

applicabl

e 

0.10 
10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 

391 to 400 10 0.50 

401 to 410 
18.00001

8 
0.90 

411 to 420 

M/M/10 10 2 8 

2 

15 

not 

applicabl

e 

0.10 
10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 

421 to 430 10 0.50 

431 to 440 
18.00001

8 
0.90 

441 to 450 M/G/1 1 20 8 2 15 0.10 
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451 to 460 4 

𝜎2

= .01
1

𝜇
 

not 

applicabl

e 

0.50 

10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 

461 to 470 G/G/3 3 
6.666667 

𝜎2 = .01
1

𝜆
 

8 

18.00001

8 

𝜎2

= .01
1

𝜇
 

15 

not 

applicabl

e 

0.90 

10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 

471 to 480 

M/M/1 1 20 20 

2 

5 

not 

applicabl

e 

0.10 

10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 

481 to 490 10 0.50 

491 to 500 
18.00001

8 
 0.90 

501 to 510 

M/M/3 3 6.666667 20 

2 

5 

not 

applicabl

e 

0.10 
10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 

511 to 520 10 0.50 

521 to 530 
18.00001

8 
0.90 

531 to 540 

M/M/10 10 2 20 

2 

5 

not 

applicabl

e 

0.10 
10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 

541 to 550 10 0.50 

551 to 560 
18.00001

8 
0.90 

561 to 570 

M/G/1 1 

20 

20 

2 

𝜎2

= .01
1

𝜇
 

5 

not 

applicabl

e 

0.10 
10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 
571 to 580 4 0.50 

581 to 590 G/G/3 3 

6.666667 

𝜎2 = .01
1

𝜆
 

20 

18.00001

8 

𝜎2

= .01
1

𝜇
 

5 

not 

applicabl

e 

0.90 

10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 

591 to 600 

M/M/1 1 45 4 

4.5 

6 

not 

applicabl

e 

0.10 
10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 

601 to 610 
25.50000

2 
0.50 

611 to 620 40.5 0.90 

621 to 630 

M/M/3 3 15 4 

45 

6 

not 

applicabl

e 

0.10 
10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 

631 to 640 
25.50000

2 
0.50 

641 to 650 40.5 0.90 

651 to 660 

M/M/10 10 4.5 4 

4.5 

6 

not 

applicabl

e 

0.10 
10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 

661 to 670 
25.50000

2 
0.50 

671 to 680 40.5 0.90 

681 to 690 

M/G/1 1 

45 

4 

4.5 

𝜎2

= .01
1

𝜇
 

6 

not 

applicabl

e 

0.10 
10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 
691 to 700 9 0.50 

701 to 710 G/G/3 3 

15 

𝜎2 = .01
1

𝜆
 

4 

40.5 

𝜎2

= .01
1

𝜇
 

6 

not 

applicabl

e 

0.90 

10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 

711 to 720 

M/M/1 1 180 4 

18 

6 

not 

applicabl

e 

0.10 10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 

721 to 730 90 0.50 

731 to 740 162 0.90 

741 to 750 

M/M/3 3 60 4 

18 

6 

not 

applicabl

e 

0.10 
10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 

751 to 760 90 0.50 

761 to 770 162  0.90 

771 to 780 

M/M/10 10 18 4 

18 

6 

not 

applicabl

e 

0.10 10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 

781 to 790 90 0.50 

791 to 800 162 0.90 

801 to 810 

M/G/1 1 

180 

4 

18 

𝜎2

= .01
1

𝜇
 

6 

not 

applicabl

e 

0.10 
10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 
811 to 820 36 0.50 

821 to 830 G/G/3 3 
60 

𝜎2 = .01
1

𝜆
 

4 

162 

𝜎2

= .01
1

𝜇
 

6 

not 

applicabl

e 

0.90 

10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 

831 to 840 

CONWIP 1 
not 

applicable 

not 

applicab

le 

2 

6 

not 

applicabl

e 

0.10 
10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 

841 to 850 10 0.50 

851 to 860 
18.00001

8 
0.90 
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861 to 870 

CONWIP 3 
not 

applicable 

not 

applicab

le 

2 

6 

not 

applicabl

e 

0.10 
10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 

871 to 880 10 0.50 

881 to 890 
18.00001

8 
0.90 

891 to 900 

CONWIP 10 
not 

applicable 

not 

applicab

le 

2 

6 

not 

applicabl

e 

0.10 
10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 

901 to 910 10 0.50 

911 to 920 
18.00001

8 
0.90 

921 to 930 CONWIP 1 
not 

applicable 

not 

applicab

le 

2 

𝜎2

= .01
1

𝜇
 

6 

not 

applicabl

e 

0.10 

10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 

931 to 940 

M/M/1 1 20 4 

2 

6 Det(10) 1 

0.10 
10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 

941 to 950 10 0.50 

951 to 960 
18.00001

8 
0.90 

961 to 970 

M/M/3 3 6.666667 4 

2 

6 Det(10) 1 

0.10 
10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 

971 to 980 10 0.50 

981 to 990 
18.00001

8 
0.90 

991 to 1,000 

M/M/10 10 2 4 

2 

6 Det(10) 1 

0.10 

10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 

1,001 to 

1,010 
10 0.50 

1,011 to 

1,020 

18.00001

8 
0.90 

1,021 to 

1,030 
M/G/1 1 20 4 

2 

𝜎2

= .01
1

𝜇
 

6 Det(10) 1 0.10 

10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 

1,031 to 

1,040 

M/M/1 1 20 4 

2 

6 
Exp(10,0

)2 

0.10 

10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 

1,041 to 

1,050 
10 0.50 

1,051 to 

1,060 

18.00001

8 
0.90 

1,061 to 

1,070 

M/M/3 3 6.666667 4 

2 

6 
Exp(10,0

) 2 

0.10 

10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 

1,071 to 

1,080 
10 0.50 

1,081 to 

1,090 

18.00001

8 
0.90 

1,091 to 

1,100 

M/M/10 10 2 4 

2 

6 
Exp(10,0

) 2 

0.10 

10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 

1,101 to 

1,110 
10 0.50 

1,111 to 

1,120 

18.00001

8 
0.90 

1,121 to 

1,130 
M/G/1 1 20 4 

2 

𝜎2

= .01
1

𝜇
 

6 
Exp(10,0

) 2 
0.10 

10, 20, 50, 100, 200, 

400, 600, 800, 1000, 

1500 

1 Deterministic 10 minutes. 
2 Exponential 10 minutes and seed equal to 0. 
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APPENDIX B 

RESULTS OF SECTION 2 

 

Table 67. Results from the comparison of the measures of dependence versus the MI 

calculated using the histogram-based method with fixed number of bins and probability 

density function for detecting the input with the greatest impact on the output, per 

number of bins and number of replications. 

Bins Number of replications 
Distance correlation Pearson correlation 𝑹𝟐𝒂𝒅𝒋 

NIS TIS NIS TIS NIS TIS 

2 

10 12.70% 12.70% 11.40% 15.20% 10.10% 11.40% 

20 25.30% 19.00% 22.80% 21.50% 19.00% 21.50% 

50 29.10% 29.10% 31.60% 31.60% 31.60% 31.60% 

100 35.40% 34.20% 34.20% 38.00% 34.20% 38.00% 

200 34.20% 43.00% 38.00% 44.30% 38.00% 44.30% 

400 40.50% 34.20% 35.40% 32.90% 35.40% 32.90% 

600 31.60% 29.10% 27.80% 27.80% 27.80% 27.80% 

800 43.00% 41.80% 41.80% 46.80% 41.80% 46.80% 

1000 41.80% 44.30% 44.30% 50.60% 44.30% 50.60% 

1500 40.50% 31.60% 39.20% 32.90% 39.20% 32.90% 

2 Total 33.40% 31.90% 32.70% 34.20% 32.20% 33.80% 

5 

10 26.60% 36.70% 29.10% 38.00% 24.10% 35.40% 

20 36.70% 38.00% 36.70% 40.50% 32.90% 40.50% 

50 19.00% 26.60% 21.50% 27.80% 21.50% 27.80% 

100 40.50% 45.60% 41.80% 46.80% 41.80% 46.80% 

200 41.80% 40.50% 39.20% 39.20% 39.20% 39.20% 

400 43.00% 38.00% 38.00% 39.20% 38.00% 39.20% 

600 45.60% 38.00% 40.50% 45.60% 40.50% 45.60% 

800 36.70% 40.50% 38.00% 45.60% 38.00% 45.60% 

1000 32.90% 40.50% 34.20% 43.00% 34.20% 43.00% 

1500 38.00% 43.00% 43.00% 49.40% 43.00% 49.40% 

5 Total 36.10% 38.70% 36.20% 41.50% 35.30% 41.30% 

10 

10 20.30% 19.00% 20.30% 16.50% 16.50% 12.70% 

20 35.40% 40.50% 41.80% 40.50% 39.20% 40.50% 

50 35.40% 46.80% 39.20% 46.80% 39.20% 46.80% 

100 59.50% 54.40% 54.40% 51.90% 54.40% 51.90% 

200 43.00% 34.20% 41.80% 43.00% 41.80% 43.00% 

400 44.30% 38.00% 34.20% 39.20% 34.20% 39.20% 
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600 48.10% 43.00% 38.00% 46.80% 38.00% 46.80% 

800 43.00% 41.80% 34.20% 39.20% 34.20% 39.20% 

1000 40.50% 38.00% 30.40% 34.20% 30.40% 34.20% 

1500 38.00% 41.80% 39.20% 41.80% 39.20% 41.80% 

10 Total 40.80% 39.70% 37.30% 40.00% 36.70% 39.60% 

25 

10 16.50% 13.90% 12.70% 12.70% 12.70% 10.10% 

20 30.40% 31.60% 30.40% 32.90% 26.60% 32.90% 

50 45.60% 40.50% 43.00% 44.30% 43.00% 44.30% 

100 53.20% 45.60% 40.50% 43.00% 40.50% 43.00% 

200 49.40% 49.40% 53.20% 55.70% 53.20% 55.70% 

400 34.20% 36.70% 38.00% 39.20% 38.00% 39.20% 

600 38.00% 44.30% 43.00% 49.40% 43.00% 49.40% 

800 43.00% 44.30% 48.10% 50.60% 48.10% 50.60% 

1000 38.00% 41.80% 46.80% 48.10% 46.80% 48.10% 

1500 36.70% 38.00% 41.80% 45.60% 41.80% 45.60% 

25 Total 38.50% 38.60% 39.70% 42.20% 39.40% 41.90% 

50 

10 7.60% 6.30% 5.10% 3.80% 3.80% 2.50% 

20 29.10% 30.40% 31.60% 29.10% 26.60% 29.10% 

50 53.20% 43.00% 51.90% 44.30% 51.90% 44.30% 

100 46.80% 44.30% 44.30% 44.30% 44.30% 44.30% 

200 40.50% 34.20% 39.20% 35.40% 39.20% 35.40% 

400 34.20% 41.80% 51.90% 46.80% 51.90% 46.80% 

600 32.90% 44.30% 43.00% 41.80% 43.00% 41.80% 

800 48.10% 49.40% 51.90% 51.90% 51.90% 51.90% 

1000 48.10% 50.60% 51.90% 54.40% 51.90% 54.40% 

1500 51.90% 60.80% 54.40% 55.70% 54.40% 55.70% 

50 Total 39.20% 40.50% 42.50% 40.80% 41.90% 40.60% 

100 

10 11.40% 12.70% 8.90% 11.40% 7.60% 8.90% 

20 24.10% 26.60% 21.50% 26.60% 16.50% 26.60% 

50 39.20% 50.60% 39.20% 48.10% 39.20% 48.10% 

100 44.30% 32.90% 40.50% 31.60% 40.50% 31.60% 

200 38.00% 36.70% 40.50% 35.40% 40.50% 35.40% 

400 45.60% 38.00% 45.60% 36.70% 45.60% 36.70% 

600 44.30% 54.40% 46.80% 54.40% 46.80% 54.40% 

800 44.30% 49.40% 48.10% 50.60% 48.10% 50.60% 

1000 50.60% 58.20% 59.50% 57.00% 59.50% 57.00% 

1500 41.80% 50.60% 39.20% 44.30% 39.20% 44.30% 

100 Total 38.40% 41.00% 39.00% 39.60% 38.40% 39.40% 

200 10 13.90% 13.90% 12.70% 13.90% 10.10% 10.10% 
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20 17.70% 15.20% 16.50% 15.20% 11.40% 15.20% 

50 40.50% 44.30% 40.50% 45.60% 40.50% 45.60% 

100 50.60% 46.80% 50.60% 39.20% 50.60% 39.20% 

200 54.40% 41.80% 45.60% 46.80% 45.60% 46.80% 

400 41.80% 49.40% 50.60% 44.30% 50.60% 44.30% 

600 34.20% 53.20% 45.60% 48.10% 45.60% 48.10% 

800 51.90% 44.30% 50.60% 51.90% 50.60% 51.90% 

1000 51.90% 51.90% 55.70% 53.20% 55.70% 53.20% 

1500 46.80% 45.60% 44.30% 44.30% 44.30% 44.30% 

200 Total 40.40% 40.60% 41.30% 40.30% 40.50% 39.90% 

500 

10 12.70% 12.70% 11.40% 12.70% 8.90% 8.90% 

20 12.70% 13.90% 12.70% 13.90% 7.60% 13.90% 

50 40.50% 43.00% 36.70% 40.50% 36.70% 40.50% 

100 57.00% 46.80% 51.90% 38.00% 51.90% 38.00% 

200 45.60% 49.40% 43.00% 46.80% 43.00% 46.80% 

400 46.80% 51.90% 46.80% 49.40% 46.80% 49.40% 

600 38.00% 45.60% 44.30% 41.80% 44.30% 41.80% 

800 41.80% 46.80% 45.60% 35.40% 45.60% 35.40% 

1000 39.20% 39.20% 41.80% 34.20% 41.80% 34.20% 

1500 36.70% 36.70% 34.20% 32.90% 34.20% 32.90% 

500 Total 37.10% 38.60% 36.80% 34.60% 36.10% 34.20% 

1000 

10 12.70% 12.70% 11.40% 12.70% 8.90% 8.90% 

20 6.30% 6.30% 5.10% 6.30% 6.30% 6.30% 

50 38.00% 44.30% 36.70% 45.60% 36.70% 45.60% 

100 39.20% 34.20% 32.90% 31.60% 32.90% 31.60% 

200 41.80% 38.00% 40.50% 40.50% 40.50% 40.50% 

400 41.80% 48.10% 39.20% 51.90% 39.20% 51.90% 

600 43.00% 35.40% 40.50% 35.40% 40.50% 35.40% 

800 49.40% 39.20% 44.30% 35.40% 44.30% 35.40% 

1000 50.60% 39.20% 51.90% 32.90% 51.90% 32.90% 

1500 40.50% 43.00% 43.00% 39.20% 43.00% 39.20% 

1000 Total 36.30% 34.10% 34.60% 33.20% 34.40% 32.80% 

2000 

10 12.70% 12.70% 11.40% 12.70% 8.90% 8.90% 

20 12.70% 12.70% 12.70% 12.70% 7.60% 12.70% 

50 17.70% 22.80% 16.50% 25.30% 16.50% 25.30% 

100 50.60% 32.90% 35.40% 38.00% 35.40% 38.00% 

200 38.00% 36.70% 39.20% 39.20% 39.20% 39.20% 

400 48.10% 41.80% 38.00% 38.00% 38.00% 38.00% 

600 57.00% 43.00% 55.70% 43.00% 55.70% 43.00% 
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800 53.20% 48.10% 54.40% 38.00% 54.40% 38.00% 

1000 45.60% 49.40% 40.50% 49.40% 40.50% 49.40% 

1500 45.60% 36.70% 43.00% 36.70% 43.00% 36.70% 

2000 Total 38.10% 33.70% 34.70% 33.30% 33.90% 32.90% 

 

Table 68. Results from the comparison of the measures of dependence versus the MI 

calculated using the histogram-based method with fixed number of bins and probability 

density function for detecting the input with the least impact on the output, per number 

of bins and number of replications. 

Bins Number of replications 
Distance correlation Pearson correlation 𝑹𝟐𝒂𝒅𝒋 

NIS TIS NIS TIS NIS TIS 

2 

10 12.70% 15.20% 1.30% 8.90% 1.30% 2.50% 

20 32.90% 29.10% 21.50% 26.60% 20.30% 21.50% 

50 31.60% 35.40% 35.40% 36.70% 31.60% 36.70% 

100 39.20% 41.80% 38.00% 49.40% 35.40% 49.40% 

200 40.50% 44.30% 43.00% 45.60% 43.00% 45.60% 

400 46.80% 41.80% 40.50% 39.20% 40.50% 39.20% 

600 39.20% 35.40% 35.40% 35.40% 35.40% 35.40% 

800 49.40% 51.90% 48.10% 57.00% 48.10% 57.00% 

1000 46.80% 51.90% 48.10% 57.00% 48.10% 57.00% 

1500 39.20% 40.50% 36.70% 39.20% 36.70% 39.20% 

2 Total 37.80% 38.70% 34.80% 39.50% 34.10% 38.40% 

5 

10 36.70% 40.50% 25.30% 38.00% 25.30% 31.60% 

20 43.00% 45.60% 32.90% 44.30% 31.60% 39.20% 

50 27.80% 31.60% 27.80% 32.90% 24.10% 32.90% 

100 45.60% 51.90% 46.80% 55.70% 44.30% 55.70% 

200 49.40% 51.90% 46.80% 50.60% 46.80% 50.60% 

400 51.90% 46.80% 46.80% 46.80% 46.80% 46.80% 

600 51.90% 41.80% 48.10% 50.60% 48.10% 50.60% 

800 43.00% 43.00% 43.00% 49.40% 43.00% 49.40% 

1000 36.70% 43.00% 38.00% 48.10% 38.00% 48.10% 

1500 40.50% 44.30% 45.60% 51.90% 45.60% 51.90% 

5 Total 42.70% 44.10% 40.10% 46.80% 39.40% 45.70% 

10 

10 22.80% 25.30% 11.40% 15.20% 12.70% 8.90% 

20 44.30% 48.10% 39.20% 43.00% 38.00% 38.00% 

50 43.00% 50.60% 44.30% 48.10% 40.50% 48.10% 

100 59.50% 59.50% 55.70% 59.50% 53.20% 59.50% 

200 53.20% 46.80% 51.90% 57.00% 51.90% 57.00% 
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400 49.40% 44.30% 39.20% 46.80% 39.20% 46.80% 

600 55.70% 48.10% 45.60% 51.90% 45.60% 51.90% 

800 48.10% 44.30% 39.20% 43.00% 39.20% 43.00% 

1000 46.80% 43.00% 36.70% 40.50% 36.70% 40.50% 

1500 44.30% 49.40% 45.60% 49.40% 45.60% 49.40% 

10 Total 46.70% 45.90% 40.90% 45.40% 40.30% 44.30% 

25 

10 19.00% 17.70% 6.30% 11.40% 7.60% 5.10% 

20 40.50% 38.00% 29.10% 32.90% 27.80% 27.80% 

50 49.40% 40.50% 48.10% 45.60% 44.30% 45.60% 

100 55.70% 49.40% 43.00% 46.80% 40.50% 46.80% 

200 51.90% 48.10% 58.20% 55.70% 58.20% 55.70% 

400 34.20% 38.00% 38.00% 40.50% 38.00% 40.50% 

600 46.80% 50.60% 49.40% 53.20% 49.40% 53.20% 

800 49.40% 49.40% 54.40% 57.00% 54.40% 57.00% 

1000 45.60% 50.60% 54.40% 57.00% 54.40% 57.00% 

1500 44.30% 43.00% 50.60% 50.60% 50.60% 50.60% 

25 Total 43.70% 42.50% 43.20% 45.10% 42.50% 43.90% 

50 

10 12.70% 13.90% 1.30% 7.60% 2.50% 1.30% 

20 34.20% 40.50% 25.30% 32.90% 24.10% 27.80% 

50 55.70% 49.40% 55.70% 50.60% 51.90% 50.60% 

100 49.40% 50.60% 46.80% 53.20% 44.30% 53.20% 

200 48.10% 43.00% 44.30% 43.00% 44.30% 43.00% 

400 39.20% 50.60% 58.20% 53.20% 58.20% 53.20% 

600 41.80% 53.20% 51.90% 49.40% 51.90% 49.40% 

800 57.00% 55.70% 62.00% 57.00% 62.00% 57.00% 

1000 57.00% 58.20% 62.00% 62.00% 62.00% 62.00% 

1500 53.20% 63.30% 57.00% 57.00% 57.00% 57.00% 

50 Total 44.80% 47.80% 46.50% 46.60% 45.80% 45.40% 

100 

10 15.20% 15.20% 3.80% 8.90% 3.80% 2.50% 

20 22.80% 30.40% 11.40% 25.30% 10.10% 20.30% 

50 44.30% 57.00% 45.60% 54.40% 41.80% 54.40% 

100 46.80% 36.70% 45.60% 35.40% 43.00% 35.40% 

200 45.60% 43.00% 46.80% 41.80% 46.80% 41.80% 

400 46.80% 46.80% 48.10% 46.80% 48.10% 46.80% 

600 45.60% 59.50% 49.40% 59.50% 49.40% 59.50% 

800 53.20% 58.20% 58.20% 58.20% 58.20% 58.20% 

1000 53.20% 64.60% 64.60% 63.30% 64.60% 63.30% 

1500 50.60% 60.80% 50.60% 53.20% 50.60% 53.20% 

100 Total 42.40% 47.20% 42.40% 44.70% 41.60% 43.50% 
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200 

10 15.20% 15.20% 3.80% 8.90% 3.80% 2.50% 

20 17.70% 19.00% 7.60% 15.20% 6.30% 10.10% 

50 45.60% 53.20% 44.30% 51.90% 40.50% 51.90% 

100 54.40% 51.90% 54.40% 48.10% 51.90% 48.10% 

200 58.20% 49.40% 51.90% 53.20% 51.90% 53.20% 

400 49.40% 51.90% 57.00% 49.40% 57.00% 49.40% 

600 43.00% 55.70% 53.20% 50.60% 53.20% 50.60% 

800 58.20% 54.40% 58.20% 62.00% 58.20% 62.00% 

1000 53.20% 62.00% 58.20% 62.00% 58.20% 62.00% 

1500 51.90% 55.70% 50.60% 53.20% 50.60% 53.20% 

200 Total 44.70% 46.80% 43.90% 45.40% 43.20% 44.30% 

500 

10 12.70% 12.70% 1.30% 6.30% 1.30% 0.00% 

20 12.70% 12.70% 3.80% 8.90% 2.50% 3.80% 

50 43.00% 44.30% 39.20% 44.30% 35.40% 44.30% 

100 58.20% 50.60% 54.40% 40.50% 51.90% 40.50% 

200 48.10% 58.20% 46.80% 54.40% 46.80% 54.40% 

400 51.90% 62.00% 54.40% 58.20% 54.40% 58.20% 

600 44.30% 55.70% 50.60% 53.20% 50.60% 53.20% 

800 46.80% 59.50% 49.40% 50.60% 49.40% 50.60% 

1000 48.10% 49.40% 49.40% 46.80% 49.40% 46.80% 

1500 45.60% 49.40% 44.30% 46.80% 44.30% 46.80% 

500 Total 41.10% 45.40% 39.40% 41.00% 38.60% 39.90% 

1000 

10 12.70% 12.70% 1.30% 6.30% 1.30% 0.00% 

20 12.70% 13.90% 3.80% 10.10% 2.50% 5.10% 

50 43.00% 48.10% 41.80% 51.90% 38.00% 51.90% 

100 45.60% 43.00% 39.20% 44.30% 36.70% 44.30% 

200 44.30% 48.10% 41.80% 45.60% 41.80% 45.60% 

400 49.40% 55.70% 45.60% 59.50% 45.60% 59.50% 

600 50.60% 45.60% 45.60% 44.30% 45.60% 44.30% 

800 58.20% 46.80% 50.60% 44.30% 50.60% 44.30% 

1000 55.70% 48.10% 55.70% 43.00% 55.70% 43.00% 

1500 48.10% 54.40% 50.60% 49.40% 50.60% 49.40% 

1000 Total 42.00% 41.60% 37.60% 39.90% 36.80% 38.70% 

2000 

10 12.70% 12.70% 1.30% 6.30% 1.30% 0.00% 

20 12.70% 12.70% 3.80% 8.90% 2.50% 3.80% 

50 19.00% 21.50% 19.00% 25.30% 15.20% 25.30% 

100 55.70% 39.20% 41.80% 44.30% 39.20% 44.30% 

200 41.80% 46.80% 43.00% 46.80% 43.00% 46.80% 

400 55.70% 49.40% 46.80% 44.30% 46.80% 44.30% 
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600 59.50% 57.00% 54.40% 54.40% 54.40% 54.40% 

800 53.20% 57.00% 51.90% 46.80% 51.90% 46.80% 

1000 54.40% 53.20% 45.60% 51.90% 45.60% 51.90% 

1500 50.60% 44.30% 46.80% 43.00% 46.80% 43.00% 

2000 Total 41.50% 39.40% 35.40% 37.20% 34.70% 36.10% 

 

Table 69. Results from the comparison of the measures of dependence versus the MI 

calculated using the histogram-based method with optimum number of bins and 

probability density function for detecting the input with the greatest impact on the 

output, per number of bins and number of replications. 

Bins 

rule 

Number of 

replications 

Distance correlation Pearson correlation 𝑹𝟐𝒂𝒅𝒋 

NIS TIS NIS TIS NIS TIS 

FD 

10 32.90% 44.30% 44.30% 51.90% 36.70% 48.10% 

20 57.00% 59.50% 58.20% 60.80% 55.70% 60.80% 

50 44.30% 53.20% 48.10% 57.00% 48.10% 57.00% 

100 60.80% 55.70% 67.10% 62.00% 67.10% 62.00% 

200 45.60% 58.20% 73.40% 68.40% 73.40% 68.40% 

400 40.50% 51.90% 59.50% 59.50% 59.50% 59.50% 

600 46.80% 55.70% 69.60% 63.30% 69.60% 63.30% 

800 49.40% 60.80% 63.30% 64.60% 63.30% 64.60% 

1000 54.40% 62.00% 62.00% 65.80% 62.00% 65.80% 

1500 57.00% 64.60% 60.80% 55.70% 60.80% 55.70% 

FD Total 48.90% 56.60% 60.60% 60.90% 59.60% 60.50% 

Scott 

10 60.80% 59.50% 70.90% 64.60% 69.60% 62.00% 

20 51.90% 60.80% 58.20% 64.60% 59.50% 64.60% 

50 69.60% 74.70% 75.90% 81.00% 75.90% 81.00% 

100 55.70% 64.60% 62.00% 65.80% 62.00% 65.80% 

200 54.40% 57.00% 63.30% 60.80% 63.30% 60.80% 

400 41.80% 59.50% 68.40% 67.10% 68.40% 67.10% 

600 41.80% 57.00% 59.50% 62.00% 59.50% 62.00% 

800 49.40% 63.30% 64.60% 70.90% 64.60% 70.90% 

1000 44.30% 62.00% 50.60% 62.00% 50.60% 62.00% 

1500 50.60% 57.00% 51.90% 55.70% 51.90% 55.70% 

Scott Total 52.00% 61.50% 62.50% 65.40% 62.50% 65.20% 

Sturges 

10 6.30% 10.10% 6.30% 11.40% 5.10% 7.60% 

20 49.40% 49.40% 55.70% 50.60% 57.00% 50.60% 

50 57.00% 68.40% 63.30% 69.60% 63.30% 69.60% 



394 

 

100 51.90% 58.20% 60.80% 62.00% 60.80% 62.00% 

200 44.30% 55.70% 59.50% 64.60% 59.50% 64.60% 

400 48.10% 65.80% 58.20% 69.60% 58.20% 69.60% 

600 49.40% 55.70% 43.00% 64.60% 43.00% 64.60% 

800 55.70% 51.90% 36.70% 45.60% 36.70% 45.60% 

1000 51.90% 53.20% 34.20% 48.10% 34.20% 48.10% 

1500 48.10% 51.90% 41.80% 53.20% 41.80% 53.20% 

Sturges Total 46.20% 52.00% 45.90% 53.90% 45.90% 53.50% 

 

Table 70. Results from the comparison of the measures of dependence versus the MI 

calculated using the histogram-based method with optimum number of bins and 

probability density function for detecting the input with the least impact on the output, 

per number of bins and number of replications. 

Bins 

rule 

Number of 

replications 

Distance correlation Pearson correlation 𝑹𝟐𝒂𝒅𝒋 

NIS TIS NIS TIS NIS TIS 

FD 

10 49.40% 48.10% 41.80% 45.60% 40.50% 39.20% 

20 67.10% 72.20% 62.00% 70.90% 60.80% 65.80% 

50 55.70% 62.00% 57.00% 64.60% 54.40% 65.80% 

100 63.30% 62.00% 70.90% 68.40% 64.60% 72.20% 

200 53.20% 67.10% 82.30% 78.50% 81.00% 84.80% 

400 46.80% 59.50% 67.10% 67.10% 65.80% 73.40% 

600 48.10% 57.00% 72.20% 64.60% 70.90% 69.60% 

800 55.70% 65.80% 69.60% 69.60% 67.10% 72.20% 

1000 54.40% 64.60% 64.60% 67.10% 65.80% 65.80% 

1500 59.50% 64.60% 64.60% 57.00% 65.80% 58.20% 

FD Total 55.30% 62.30% 65.20% 65.30% 63.70% 66.70% 

Scott 

10 62.00% 62.00% 57.00% 58.20% 57.00% 51.90% 

20 63.30% 68.40% 62.00% 69.60% 59.50% 65.80% 

50 72.20% 75.90% 78.50% 83.50% 72.20% 84.80% 

100 58.20% 64.60% 67.10% 68.40% 62.00% 70.90% 

200 55.70% 58.20% 67.10% 64.60% 67.10% 64.60% 

400 45.60% 62.00% 73.40% 69.60% 72.20% 72.20% 

600 51.90% 64.60% 67.10% 67.10% 64.60% 67.10% 

800 50.60% 64.60% 68.40% 73.40% 60.80% 74.70% 

1000 45.60% 62.00% 55.70% 62.00% 54.40% 65.80% 

1500 51.90% 58.20% 53.20% 58.20% 49.40% 55.70% 

Scott Total 55.70% 64.10% 64.90% 67.50% 61.90% 67.30% 
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Sturges 

10 13.90% 15.20% 2.50% 8.90% 2.50% 2.50% 

20 60.80% 65.80% 60.80% 62.00% 67.10% 63.30% 

50 64.60% 73.40% 70.90% 75.90% 68.40% 75.90% 

100 59.50% 67.10% 70.90% 73.40% 68.40% 77.20% 

200 53.20% 60.80% 69.60% 72.20% 70.90% 72.20% 

400 53.20% 70.90% 65.80% 75.90% 65.80% 74.70% 

600 60.80% 65.80% 57.00% 75.90% 57.00% 74.70% 

800 65.80% 59.50% 45.60% 53.20% 44.30% 55.70% 

1000 62.00% 58.20% 45.60% 55.70% 43.00% 57.00% 

1500 58.20% 57.00% 50.60% 59.50% 49.40% 59.50% 

Sturges Total 55.20% 59.40% 53.90% 61.30% 53.70% 61.30% 

 

Table 71. Results from the comparison of the distance correlation versus the MI 

calculated using the histogram-based method with fixed number of bins and discrete 

empirical distribution for detecting the input with the greatest impact on the output, per 

number of bins, number of replications, and normalization method. 

Bins 
Number of 

replications 

MI [%] 𝑵𝑴𝑰𝒂𝒓𝒊𝒕𝒉 [%] 𝑵𝑴𝑰𝒈𝒆𝒐𝒎 [%] 𝑵𝑴𝑰𝒋𝒐𝒊𝒏𝒕 [%] 𝑵𝑴𝑰𝒕𝒉𝒆𝒐𝒓 [%] 

NIS TIS NIS TIS NIS TIS NIS TIS NIS TIS 

2 

10 1.3 10.1 1.3 10.1 1.3 10.1 1.3 10.1 1.3 10.1 

20 67.1 68.4 67.1 68.4 67.1 68.4 67.1 68.4 67.1 68.4 

50 60.8 65.8 60.8 65.8 60.8 65.8 60.8 65.8 60.8 65.8 

100 50.6 65.8 53.2 64.6 53.2 64.6 53.2 64.6 50.6 65.8 

200 46.8 64.6 44.3 64.6 44.3 64.6 44.3 64.6 46.8 64.6 

400 44.3 60.8 44.3 60.8 44.3 60.8 44.3 60.8 44.3 60.8 

600 43.0 62.0 44.3 62.0 44.3 62.0 44.3 62.0 43.0 62.0 

800 46.8 59.5 46.8 59.5 46.8 59.5 46.8 59.5 46.8 59.5 

1000 49.4 60.8 49.4 60.8 49.4 60.8 49.4 60.8 49.4 60.8 

1500 50.6 63.3 50.6 63.3 50.6 63.3 50.6 63.3 50.6 63.3 

2 Total 46.1 58.1 46.2 58.0 46.2 58.0 46.2 58.0 46.1 58.1 

5 

10 43.0 53.2 46.8 57.0 46.8 57.0 46.8 57.0 40.5 51.9 

20 64.6 65.8 63.3 65.8 63.3 65.8 63.3 65.8 64.6 65.8 

50 63.3 64.6 60.8 62.0 60.8 62.0 60.8 62.0 63.3 64.6 

100 54.4 69.6 55.7 70.9 55.7 70.9 55.7 70.9 54.4 69.6 

200 51.9 70.9 51.9 72.2 51.9 72.2 51.9 72.2 51.9 70.9 

400 43.0 63.3 44.3 62.0 44.3 62.0 44.3 62.0 43.0 63.3 

600 43.0 62.0 43.0 60.8 43.0 60.8 43.0 60.8 43.0 62.0 

800 44.3 59.5 45.6 57.0 45.6 58.2 45.6 57.0 44.3 59.5 

1000 46.8 59.5 48.1 59.5 48.1 59.5 48.1 59.5 46.8 59.5 
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1500 44.3 60.8 46.8 60.8 46.8 62.0 46.8 60.8 44.3 60.8 

5 Total 49.9 62.9 50.6 62.8 50.6 63.0 50.6 62.8 49.6 62.8 

10 

10 31.6 49.4 31.6 50.6 31.6 50.6 31.6 50.6 31.6 49.4 

20 58.2 72.2 60.8 70.9 60.8 70.9 60.8 70.9 58.2 72.2 

50 53.2 65.8 51.9 67.1 51.9 67.1 51.9 67.1 53.2 65.8 

100 59.5 64.6 54.4 60.8 54.4 60.8 54.4 60.8 59.5 64.6 

200 44.3 55.7 44.3 53.2 44.3 51.9 44.3 53.2 44.3 55.7 

400 45.6 65.8 45.6 64.6 45.6 64.6 45.6 64.6 45.6 65.8 

600 44.3 63.3 40.5 60.8 40.5 60.8 40.5 60.8 44.3 63.3 

800 51.9 62.0 54.4 63.3 55.7 63.3 54.4 63.3 51.9 62.0 

1000 54.4 62.0 54.4 60.8 54.4 60.8 54.4 60.8 54.4 62.0 

1500 53.2 60.8 53.2 62.0 53.2 62.0 53.2 62.0 53.2 60.8 

10 Total 49.6 62.2 49.1 61.4 49.2 61.3 49.1 61.4 49.6 62.2 

25 

10 15.2 17.7 16.5 19.0 16.5 19.0 15.2 17.7 15.2 17.7 

20 63.3 64.6 59.5 64.6 59.5 64.6 59.5 64.6 63.3 64.6 

50 57.0 68.4 57.0 70.9 57.0 70.9 57.0 70.9 57.0 68.4 

100 51.9 64.6 49.4 59.5 49.4 59.5 49.4 59.5 51.9 64.6 

200 48.1 58.2 48.1 57.0 49.4 57.0 48.1 57.0 48.1 58.2 

400 57.0 57.0 57.0 60.8 57.0 60.8 57.0 60.8 57.0 57.0 

600 54.4 57.0 54.4 57.0 54.4 57.0 54.4 57.0 54.4 57.0 

800 40.5 59.5 44.3 59.5 44.3 59.5 44.3 59.5 40.5 59.5 

1000 43.0 65.8 49.4 64.6 49.4 64.6 49.4 64.6 43.0 65.8 

1500 50.6 63.3 54.4 62.0 54.4 62.0 54.4 62.0 50.6 63.3 

25 Total 48.1 57.6 49.0 57.5 49.1 57.5 48.9 57.3 48.1 57.6 

50 

10 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 

20 36.7 40.5 39.2 58.2 39.2 58.2 39.2 58.2 36.7 40.5 

50 51.9 55.7 51.9 64.6 51.9 64.6 51.9 64.6 51.9 55.7 

100 53.2 63.3 51.9 60.8 51.9 60.8 51.9 60.8 53.2 63.3 

200 51.9 55.7 53.2 55.7 53.2 55.7 53.2 55.7 51.9 55.7 

400 51.9 48.1 53.2 51.9 53.2 51.9 53.2 51.9 51.9 48.1 

600 51.9 57.0 54.4 54.4 54.4 54.4 54.4 54.4 51.9 57.0 

800 36.7 54.4 43.0 50.6 41.8 50.6 43.0 50.6 36.7 54.4 

1000 39.2 59.5 44.3 58.2 44.3 58.2 44.3 58.2 39.2 59.5 

1500 46.8 55.7 49.4 53.2 49.4 53.2 49.4 53.2 46.8 55.7 

50 Total 42.9 49.9 44.9 51.6 44.8 51.6 44.9 51.6 42.9 49.9 

100 

10 11.4 12.7 11.4 12.7 11.4 12.7 11.4 12.7 11.4 12.7 

20 35.4 35.4 39.2 39.2 39.2 39.2 39.2 39.2 35.4 35.4 

50 49.4 53.2 43.0 57.0 43.0 57.0 43.0 57.0 49.4 53.2 

100 50.6 62.0 44.3 55.7 44.3 55.7 44.3 55.7 50.6 62.0 
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200 43.0 59.5 44.3 59.5 44.3 59.5 44.3 59.5 43.0 59.5 

400 44.3 49.4 50.6 48.1 51.9 48.1 50.6 48.1 44.3 49.4 

600 40.5 53.2 50.6 50.6 50.6 49.4 50.6 50.6 40.5 53.2 

800 48.1 54.4 48.1 51.9 48.1 51.9 48.1 51.9 48.1 54.4 

1000 55.7 53.2 55.7 54.4 55.7 53.2 55.7 54.4 55.7 53.2 

1500 48.1 51.9 45.6 48.1 45.6 48.1 45.6 48.1 48.1 51.9 

100 Total 42.7 48.5 43.3 47.7 43.4 47.5 43.3 47.7 42.7 48.5 

200 

10 13.9 13.9 13.9 13.9 13.9 13.9 13.9 13.9 13.9 13.9 

20 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5 

50 54.4 46.8 51.9 51.9 51.9 51.9 51.9 53.2 54.4 46.8 

100 53.2 60.8 46.8 63.3 45.6 63.3 46.8 63.3 53.2 60.8 

200 50.6 57.0 50.6 48.1 50.6 48.1 50.6 48.1 50.6 57.0 

400 49.4 55.7 67.1 51.9 67.1 51.9 67.1 51.9 49.4 55.7 

600 45.6 54.4 54.4 62.0 54.4 62.0 54.4 62.0 45.6 54.4 

800 54.4 53.2 51.9 58.2 51.9 58.2 51.9 58.2 54.4 53.2 

1000 54.4 57.0 46.8 45.6 46.8 45.6 46.8 45.6 54.4 57.0 

1500 57.0 57.0 48.1 53.2 48.1 53.2 48.1 53.2 57.0 57.0 

200 Total 44.9 47.2 44.8 46.5 44.7 46.5 44.8 46.6 44.9 47.2 

500 

10 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 

20 12.7 13.9 12.7 13.9 12.7 13.9 12.7 13.9 12.7 13.9 

50 40.5 51.9 49.4 60.8 49.4 60.8 49.4 60.8 40.5 51.9 

100 62.0 63.3 54.4 67.1 54.4 67.1 54.4 67.1 62.0 63.3 

200 45.6 64.6 48.1 62.0 48.1 62.0 48.1 62.0 45.6 64.6 

400 43.0 57.0 45.6 58.2 45.6 58.2 45.6 58.2 43.0 57.0 

600 34.2 58.2 43.0 60.8 43.0 60.8 43.0 60.8 34.2 58.2 

800 40.5 63.3 41.8 55.7 41.8 55.7 41.8 55.7 40.5 63.3 

1000 46.8 58.2 39.2 49.4 39.2 48.1 39.2 49.4 46.8 58.2 

1500 51.9 62.0 48.1 59.5 48.1 59.5 48.1 59.5 51.9 62.0 

500 Total 39.0 50.5 39.5 50.0 39.5 49.9 39.5 50.0 39.0 50.5 

1000 

10 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 

20 12.7 13.9 12.7 13.9 12.7 13.9 12.7 13.9 12.7 13.9 

50 39.2 43.0 44.3 50.6 44.3 50.6 44.3 50.6 39.2 43.0 

100 54.4 60.8 54.4 59.5 54.4 59.5 54.4 59.5 54.4 60.8 

200 59.5 62.0 54.4 60.8 54.4 60.8 54.4 60.8 59.5 62.0 

400 45.6 51.9 40.5 48.1 40.5 48.1 40.5 48.1 45.6 51.9 

600 40.5 55.7 44.3 57.0 44.3 57.0 44.3 57.0 40.5 55.7 

800 44.3 55.7 44.3 51.9 44.3 51.9 44.3 51.9 44.3 55.7 

1000 49.4 57.0 38.0 54.4 38.0 54.4 38.0 54.4 49.4 57.0 

1500 48.1 59.5 50.6 63.3 50.6 63.3 50.6 63.3 48.1 59.5 
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1000 Total 40.6 47.2 39.6 47.2 39.6 47.2 39.6 47.2 40.6 47.2 

2000 

10 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 

20 11.4 12.7 11.4 12.7 11.4 12.7 11.4 12.7 11.4 12.7 

50 30.4 32.9 31.6 32.9 31.6 32.9 31.6 32.9 30.4 32.9 

100 54.4 53.2 53.2 51.9 53.2 51.9 53.2 51.9 53.2 53.2 

200 58.2 59.5 57.0 57.0 57.0 57.0 57.0 57.0 58.2 59.5 

400 45.6 55.7 44.3 50.6 44.3 50.6 44.3 50.6 45.6 55.7 

600 40.5 54.4 39.2 55.7 39.2 55.7 39.2 55.7 40.5 54.4 

800 40.5 58.2 48.1 58.2 48.1 57.0 48.1 58.2 40.5 58.2 

1000 44.3 60.8 45.6 55.7 45.6 55.7 45.6 55.7 44.3 60.8 

1500 51.9 55.7 45.6 54.4 45.6 54.4 45.6 54.4 51.9 55.7 

2000 Total 39.0 45.6 38.9 44.2 38.9 44.1 38.9 44.2 38.9 45.6 

 

Table 72. Results from the comparison of the distance correlation versus the MI 

calculated using the histogram-based method with fixed number of bins and discrete 

empirical distribution for detecting the input with the least impact on the output, per 

number of bins, number of replications, and normalization method. 

Bins 
Number of 

replications 

MI [%] 𝑵𝑴𝑰𝒂𝒓𝒊𝒕𝒉 [%] 𝑵𝑴𝑰𝒈𝒆𝒐𝒎 [%] 𝑵𝑴𝑰𝒋𝒐𝒊𝒏𝒕 [%] 𝑵𝑴𝑰𝒕𝒉𝒆𝒐𝒓 [%] 

NIS TIS NIS TIS NIS TIS NIS TIS NIS TIS 

2 

10 15.2 13.9 15.2 13.9 15.2 13.9 15.2 13.9 15.2 13.9 

20 72.2 74.7 72.2 74.7 72.2 74.7 72.2 74.7 72.2 74.7 

50 63.3 67.1 63.3 67.1 63.3 67.1 63.3 67.1 63.3 67.1 

100 59.5 74.7 62.0 73.4 62.0 73.4 62.0 73.4 59.5 74.7 

200 57.0 70.9 55.7 70.9 55.7 70.9 55.7 70.9 57.0 70.9 

400 50.6 63.3 49.4 63.3 49.4 63.3 49.4 63.3 50.6 63.3 

600 51.9 64.6 51.9 64.6 51.9 64.6 51.9 64.6 51.9 64.6 

800 57.0 65.8 57.0 65.8 57.0 65.8 57.0 65.8 57.0 65.8 

1000 55.7 65.8 55.7 65.8 55.7 65.8 55.7 65.8 55.7 65.8 

1500 57.0 65.8 57.0 65.8 57.0 65.8 57.0 65.8 57.0 65.8 

2 Total 53.9 62.7 53.9 62.5 53.9 62.5 53.9 62.5 53.9 62.7 

5 

10 53.2 62.0 55.7 63.3 55.7 63.3 55.7 63.3 50.6 59.5 

20 70.9 74.7 70.9 74.7 70.9 74.7 70.9 74.7 70.9 74.7 

50 65.8 65.8 64.6 65.8 64.6 65.8 64.6 65.8 65.8 65.8 

100 63.3 74.7 64.6 75.9 64.6 75.9 64.6 75.9 63.3 74.7 

200 57.0 75.9 59.5 77.2 59.5 77.2 59.5 77.2 57.0 75.9 

400 49.4 67.1 50.6 65.8 50.6 65.8 50.6 65.8 49.4 67.1 

600 53.2 65.8 53.2 64.6 53.2 64.6 53.2 64.6 53.2 65.8 

800 53.2 67.1 54.4 62.0 54.4 63.3 54.4 62.0 53.2 67.1 
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1000 51.9 67.1 50.6 64.6 50.6 64.6 50.6 64.6 51.9 67.1 

1500 51.9 64.6 53.2 63.3 53.2 64.6 53.2 63.3 51.9 64.6 

5 Total 57.0 68.5 57.7 67.7 57.7 68.0 57.7 67.7 56.7 68.2 

10 

10 41.8 51.9 41.8 53.2 41.8 53.2 41.8 53.2 41.8 51.9 

20 63.3 70.9 64.6 70.9 64.6 70.9 64.6 70.9 63.3 70.9 

50 59.5 68.4 60.8 70.9 60.8 70.9 60.8 70.9 59.5 68.4 

100 64.6 70.9 58.2 67.1 58.2 67.1 58.2 67.1 64.6 70.9 

200 50.6 60.8 54.4 60.8 54.4 60.8 54.4 60.8 50.6 60.8 

400 51.9 69.6 54.4 69.6 54.4 69.6 54.4 69.6 51.9 69.6 

600 53.2 64.6 51.9 64.6 51.9 64.6 51.9 64.6 53.2 64.6 

800 60.8 65.8 64.6 68.4 65.8 68.4 64.6 68.4 60.8 65.8 

1000 64.6 67.1 64.6 64.6 64.6 64.6 64.6 64.6 64.6 67.1 

1500 65.8 64.6 65.8 64.6 65.8 64.6 65.8 64.6 65.8 64.6 

10 Total 57.6 65.4 58.1 65.4 58.2 65.4 58.1 65.4 57.6 65.4 

25 

10 17.7 20.3 17.7 20.3 17.7 20.3 17.7 20.3 17.7 20.3 

20 69.6 67.1 67.1 70.9 67.1 70.9 67.1 70.9 69.6 67.1 

50 65.8 69.6 65.8 70.9 65.8 70.9 65.8 70.9 65.8 69.6 

100 58.2 64.6 53.2 63.3 53.2 63.3 53.2 63.3 58.2 64.6 

200 57.0 58.2 55.7 59.5 57.0 59.5 55.7 59.5 57.0 58.2 

400 63.3 59.5 65.8 64.6 65.8 64.6 65.8 64.6 63.3 59.5 

600 63.3 63.3 65.8 63.3 65.8 63.3 65.8 63.3 63.3 63.3 

800 53.2 68.4 57.0 65.8 57.0 65.8 57.0 65.8 53.2 68.4 

1000 53.2 68.4 58.2 67.1 58.2 67.1 58.2 67.1 53.2 68.4 

1500 55.7 64.6 58.2 63.3 58.2 63.3 58.2 63.3 55.7 64.6 

25 Total 55.7 60.4 56.5 60.9 56.6 60.9 56.5 60.9 55.7 60.4 

50 

10 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 

20 43.0 46.8 46.8 65.8 46.8 65.8 46.8 65.8 43.0 46.8 

50 60.8 64.6 57.0 73.4 57.0 73.4 57.0 73.4 60.8 64.6 

100 55.7 63.3 57.0 58.2 57.0 57.0 57.0 58.2 55.7 63.3 

200 53.2 58.2 57.0 57.0 57.0 57.0 57.0 57.0 53.2 58.2 

400 53.2 50.6 54.4 53.2 54.4 53.2 54.4 53.2 53.2 50.6 

600 53.2 55.7 55.7 57.0 55.7 57.0 55.7 57.0 53.2 55.7 

800 49.4 60.8 54.4 58.2 53.2 58.2 54.4 58.2 49.4 60.8 

1000 46.8 62.0 53.2 60.8 53.2 60.8 53.2 60.8 46.8 62.0 

1500 50.6 60.8 55.7 58.2 55.7 58.2 55.7 58.2 50.6 60.8 

50 Total 47.8 53.5 50.4 55.4 50.3 55.3 50.4 55.4 47.8 53.5 

100 

10 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 

20 38.0 38.0 41.8 41.8 41.8 41.8 41.8 41.8 38.0 38.0 

50 54.4 55.7 48.1 58.2 48.1 58.2 48.1 58.2 54.4 55.7 
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100 51.9 60.8 45.6 55.7 45.6 55.7 45.6 55.7 51.9 60.8 

200 49.4 62.0 51.9 64.6 51.9 64.6 51.9 64.6 49.4 62.0 

400 51.9 54.4 57.0 53.2 57.0 53.2 57.0 53.2 51.9 54.4 

600 46.8 60.8 57.0 58.2 57.0 58.2 57.0 58.2 46.8 60.8 

800 57.0 58.2 60.8 58.2 60.8 58.2 60.8 58.2 57.0 58.2 

1000 57.0 55.7 59.5 59.5 59.5 58.2 59.5 59.5 57.0 55.7 

1500 55.7 54.4 57.0 57.0 57.0 57.0 57.0 57.0 55.7 54.4 

100 Total 47.7 51.5 49.4 52.2 49.4 52.0 49.4 52.2 47.7 51.5 

200 

10 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 

20 20.3 19.0 20.3 19.0 20.3 19.0 20.3 19.0 20.3 19.0 

50 51.9 50.6 51.9 55.7 51.9 57.0 51.9 55.7 51.9 50.6 

100 55.7 62.0 50.6 65.8 49.4 65.8 50.6 65.8 55.7 62.0 

200 53.2 57.0 54.4 53.2 54.4 53.2 54.4 53.2 53.2 57.0 

400 53.2 58.2 68.4 54.4 68.4 54.4 68.4 54.4 53.2 58.2 

600 51.9 58.2 60.8 65.8 60.8 65.8 60.8 65.8 51.9 58.2 

800 60.8 59.5 59.5 62.0 59.5 62.0 59.5 62.0 60.8 59.5 

1000 53.2 59.5 54.4 49.4 54.4 49.4 54.4 49.4 53.2 59.5 

1500 64.6 59.5 58.2 55.7 58.2 55.7 58.2 55.7 64.6 59.5 

200 Total 48.0 49.9 49.4 49.6 49.2 49.7 49.4 49.6 48.0 49.9 

500 

10 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 

20 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 

50 41.8 57.0 51.9 63.3 51.9 63.3 51.9 63.3 41.8 57.0 

100 62.0 63.3 57.0 65.8 57.0 65.8 57.0 65.8 62.0 63.3 

200 49.4 67.1 51.9 67.1 51.9 67.1 51.9 67.1 49.4 67.1 

400 51.9 57.0 50.6 58.2 50.6 58.2 50.6 58.2 51.9 57.0 

600 41.8 60.8 50.6 62.0 50.6 62.0 50.6 62.0 41.8 60.8 

800 49.4 68.4 48.1 65.8 48.1 65.8 48.1 65.8 49.4 68.4 

1000 55.7 65.8 45.6 58.2 45.6 57.0 45.6 58.2 55.7 65.8 

1500 55.7 64.6 54.4 65.8 54.4 65.8 54.4 65.8 55.7 64.6 

500 Total 43.3 52.9 43.5 53.2 43.5 53.0 43.5 53.2 43.3 52.9 

1000 

10 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 

20 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 

50 41.8 53.2 46.8 57.0 46.8 57.0 46.8 57.0 41.8 53.2 

100 55.7 60.8 54.4 57.0 54.4 57.0 54.4 57.0 55.7 60.8 

200 59.5 63.3 55.7 59.5 55.7 59.5 55.7 59.5 59.5 63.3 

400 51.9 55.7 49.4 49.4 49.4 49.4 49.4 49.4 51.9 55.7 

600 46.8 60.8 50.6 60.8 50.6 60.8 50.6 60.8 46.8 60.8 

800 51.9 64.6 54.4 55.7 54.4 55.7 54.4 55.7 51.9 64.6 

1000 53.2 60.8 43.0 59.5 43.0 59.5 43.0 59.5 53.2 60.8 
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1500 50.6 64.6 55.7 63.3 55.7 63.3 55.7 63.3 50.6 64.6 

1000 Total 43.7 50.9 43.5 48.7 43.5 48.7 43.5 48.7 43.7 50.9 

2000 

10 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 

20 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 

50 29.1 31.6 30.4 30.4 30.4 30.4 30.4 30.4 29.1 31.6 

100 54.4 53.2 53.2 51.9 53.2 51.9 53.2 51.9 53.2 53.2 

200 62.0 65.8 63.3 64.6 63.3 64.6 63.3 64.6 62.0 67.1 

400 48.1 58.2 46.8 51.9 46.8 51.9 46.8 51.9 48.1 58.2 

600 48.1 63.3 45.6 59.5 45.6 59.5 45.6 59.5 48.1 63.3 

800 50.6 64.6 54.4 58.2 54.4 57.0 54.4 58.2 50.6 64.6 

1000 50.6 63.3 54.4 58.2 54.4 58.2 54.4 58.2 50.6 63.3 

1500 55.7 60.8 50.6 59.5 50.6 59.5 50.6 59.5 55.7 60.8 

2000 Total 42.4 48.6 42.4 45.9 42.4 45.8 42.4 45.9 42.3 48.7 

 

Table 73. Results from the comparison of the Pearson correlation versus the MI 

calculated using the histogram-based method with fixed number of bins and discrete 

empirical distribution for detecting the input with the greatest impact on the output, per 

number of bins, number of replications, and normalization method. 

Bins 
Number of 

replications 

MI [%] 𝑵𝑴𝑰𝒂𝒓𝒊𝒕𝒉 [%] 𝑵𝑴𝑰𝒈𝒆𝒐𝒎 [%] 𝑵𝑴𝑰𝒋𝒐𝒊𝒏𝒕 [%] 𝑵𝑴𝑰𝒕𝒉𝒆𝒐𝒓 [%] 

NIS TIS NIS TIS NIS TIS NIS TIS NIS TIS 

2 

10 8.9 13.9 8.9 13.9 8.9 13.9 8.9 13.9 8.9 13.9 

20 67.1 67.1 67.1 67.1 67.1 67.1 67.1 67.1 67.1 67.1 

50 68.4 70.9 68.4 70.9 68.4 70.9 68.4 70.9 68.4 70.9 

100 75.9 82.3 78.5 81.0 78.5 81.0 78.5 81.0 75.9 82.3 

200 72.2 79.7 69.6 79.7 69.6 79.7 69.6 79.7 72.2 79.7 

400 58.2 75.9 58.2 75.9 58.2 75.9 58.2 75.9 58.2 75.9 

600 58.2 74.7 59.5 74.7 59.5 74.7 59.5 74.7 58.2 74.7 

800 63.3 70.9 63.3 70.9 63.3 70.9 63.3 70.9 63.3 70.9 

1000 67.1 70.9 67.1 70.9 67.1 70.9 67.1 70.9 67.1 70.9 

1500 68.4 74.7 68.4 74.7 68.4 74.7 68.4 74.7 68.4 74.7 

2 Total 60.8 68.1 60.9 68.0 60.9 68.0 60.9 68.0 60.8 68.1 

5 

10 46.8 57.0 53.2 60.8 53.2 60.8 53.2 60.8 45.6 57.0 

20 73.4 69.6 72.2 69.6 72.2 69.6 72.2 69.6 73.4 69.6 

50 69.6 67.1 69.6 64.6 69.6 64.6 69.6 64.6 69.6 67.1 

100 72.2 77.2 70.9 75.9 70.9 75.9 70.9 75.9 72.2 77.2 

200 69.6 75.9 67.1 74.7 67.1 74.7 67.1 74.7 69.6 75.9 

400 57.0 73.4 55.7 72.2 55.7 72.2 55.7 72.2 57.0 73.4 

600 55.7 72.2 55.7 70.9 55.7 70.9 55.7 70.9 55.7 72.2 
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800 63.3 70.9 64.6 70.9 64.6 69.6 64.6 70.9 63.3 70.9 

1000 64.6 69.6 65.8 72.2 65.8 72.2 65.8 72.2 64.6 69.6 

1500 58.2 67.1 60.8 67.1 60.8 65.8 60.8 67.1 58.2 67.1 

5 Total 63.0 70.0 63.5 69.9 63.5 69.6 63.5 69.9 62.9 70.0 

10 

10 36.7 50.6 36.7 51.9 36.7 51.9 36.7 51.9 36.7 50.6 

20 62.0 74.7 64.6 74.7 64.6 74.7 64.6 74.7 62.0 74.7 

50 57.0 67.1 55.7 68.4 55.7 68.4 55.7 68.4 57.0 67.1 

100 55.7 65.8 55.7 62.0 55.7 62.0 55.7 62.0 55.7 65.8 

200 46.8 64.6 44.3 59.5 44.3 58.2 44.3 59.5 46.8 64.6 

400 44.3 63.3 44.3 62.0 44.3 62.0 44.3 62.0 44.3 63.3 

600 44.3 63.3 40.5 60.8 40.5 60.8 40.5 60.8 44.3 63.3 

800 45.6 58.2 43.0 59.5 44.3 59.5 43.0 59.5 45.6 58.2 

1000 46.8 62.0 44.3 58.2 44.3 58.2 44.3 58.2 46.8 62.0 

1500 44.3 64.6 41.8 63.3 41.8 63.3 41.8 63.3 44.3 64.6 

10 Total 48.4 63.4 47.1 62.0 47.2 61.9 47.1 62.0 48.4 63.4 

25 

10 11.4 17.7 11.4 16.5 11.4 16.5 11.4 16.5 11.4 17.7 

20 62.0 67.1 58.2 67.1 58.2 67.1 58.2 67.1 62.0 67.1 

50 55.7 74.7 55.7 77.2 55.7 77.2 55.7 77.2 55.7 74.7 

100 46.8 57.0 44.3 54.4 44.3 54.4 44.3 54.4 46.8 57.0 

200 55.7 62.0 53.2 60.8 51.9 60.8 53.2 60.8 55.7 62.0 

400 49.4 58.2 46.8 54.4 46.8 54.4 46.8 54.4 49.4 58.2 

600 48.1 50.6 45.6 50.6 45.6 50.6 45.6 50.6 48.1 50.6 

800 45.6 57.0 44.3 54.4 44.3 54.4 44.3 54.4 45.6 57.0 

1000 44.3 65.8 45.6 62.0 45.6 62.0 45.6 62.0 44.3 65.8 

1500 51.9 60.8 50.6 59.5 50.6 59.5 50.6 59.5 51.9 60.8 

25 Total 47.1 57.1 45.6 55.7 45.4 55.7 45.6 55.7 47.1 57.1 

50 

10 1.3 6.3 1.3 6.3 1.3 6.3 1.3 6.3 1.3 6.3 

20 34.2 38.0 39.2 55.7 39.2 55.7 39.2 55.7 34.2 38.0 

50 48.1 54.4 48.1 63.3 48.1 63.3 48.1 63.3 48.1 54.4 

100 62.0 62.0 53.2 59.5 53.2 59.5 53.2 59.5 62.0 62.0 

200 64.6 65.8 55.7 65.8 55.7 65.8 55.7 65.8 64.6 65.8 

400 58.2 58.2 57.0 59.5 57.0 59.5 57.0 59.5 58.2 58.2 

600 59.5 59.5 57.0 57.0 57.0 57.0 57.0 57.0 59.5 59.5 

800 40.5 53.2 44.3 51.9 43.0 51.9 44.3 51.9 40.5 53.2 

1000 45.6 60.8 45.6 59.5 45.6 59.5 45.6 59.5 45.6 60.8 

1500 44.3 55.7 46.8 55.7 46.8 55.7 46.8 55.7 44.3 55.7 

50 Total 45.8 51.4 44.8 53.4 44.7 53.4 44.8 53.4 45.8 51.4 

100 
10 8.9 11.4 8.9 11.4 8.9 11.4 8.9 11.4 8.9 11.4 

20 36.7 36.7 40.5 40.5 40.5 40.5 40.5 40.5 36.7 36.7 
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50 49.4 51.9 46.8 55.7 46.8 55.7 46.8 55.7 49.4 51.9 

100 64.6 65.8 51.9 59.5 51.9 60.8 51.9 59.5 64.6 65.8 

200 59.5 57.0 55.7 59.5 55.7 59.5 55.7 59.5 59.5 57.0 

400 53.2 50.6 49.4 46.8 50.6 46.8 49.4 46.8 53.2 50.6 

600 55.7 49.4 50.6 46.8 50.6 45.6 50.6 46.8 55.7 49.4 

800 53.2 53.2 51.9 50.6 51.9 50.6 51.9 50.6 53.2 53.2 

1000 62.0 51.9 58.2 50.6 58.2 49.4 58.2 50.6 62.0 51.9 

1500 59.5 51.9 57.0 45.6 57.0 45.6 57.0 45.6 59.5 51.9 

100 Total 50.3 48.0 47.1 46.7 47.2 46.6 47.1 46.7 50.3 48.0 

200 

10 12.7 13.9 12.7 13.9 12.7 13.9 12.7 13.9 12.7 13.9 

20 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5 

50 57.0 45.6 55.7 48.1 55.7 48.1 55.7 49.4 57.0 45.6 

100 57.0 54.4 46.8 55.7 48.1 55.7 46.8 55.7 57.0 54.4 

200 55.7 58.2 53.2 51.9 53.2 51.9 53.2 51.9 55.7 58.2 

400 55.7 55.7 53.2 51.9 53.2 51.9 53.2 51.9 55.7 55.7 

600 53.2 54.4 49.4 57.0 49.4 57.0 49.4 57.0 53.2 54.4 

800 60.8 51.9 48.1 51.9 48.1 51.9 48.1 51.9 60.8 51.9 

1000 64.6 57.0 51.9 50.6 51.9 50.6 51.9 50.6 64.6 57.0 

1500 63.3 53.2 54.4 51.9 54.4 51.9 54.4 51.9 63.3 53.2 

200 Total 49.6 46.1 44.2 44.9 44.3 44.9 44.2 45.1 49.6 46.1 

500 

10 11.4 12.7 11.4 12.7 11.4 12.7 11.4 12.7 11.4 12.7 

20 13.9 13.9 13.9 13.9 13.9 13.9 13.9 13.9 13.9 13.9 

50 35.4 50.6 45.6 59.5 45.6 59.5 45.6 59.5 35.4 50.6 

100 62.0 65.8 46.8 64.6 46.8 64.6 46.8 64.6 62.0 65.8 

200 55.7 59.5 53.2 49.4 53.2 49.4 53.2 49.4 55.7 59.5 

400 54.4 64.6 46.8 63.3 46.8 63.3 46.8 63.3 54.4 64.6 

600 46.8 60.8 40.5 60.8 40.5 60.8 40.5 60.8 46.8 60.8 

800 59.5 57.0 58.2 57.0 58.2 57.0 58.2 57.0 59.5 57.0 

1000 59.5 55.7 49.4 49.4 49.4 48.1 49.4 49.4 59.5 55.7 

1500 54.4 60.8 44.3 58.2 44.3 58.2 44.3 58.2 54.4 60.8 

500 Total 45.3 50.1 41.0 48.9 41.0 48.7 41.0 48.9 45.3 50.1 

1000 

10 11.4 12.7 11.4 12.7 11.4 12.7 11.4 12.7 11.4 12.7 

20 13.9 13.9 13.9 13.9 13.9 13.9 13.9 13.9 13.9 13.9 

50 35.4 44.3 39.2 50.6 39.2 50.6 39.2 50.6 35.4 44.3 

100 51.9 57.0 49.4 58.2 49.4 58.2 49.4 58.2 51.9 57.0 

200 57.0 57.0 57.0 53.2 57.0 53.2 57.0 53.2 57.0 57.0 

400 59.5 58.2 59.5 49.4 59.5 49.4 59.5 49.4 59.5 58.2 

600 55.7 53.2 57.0 54.4 57.0 54.4 57.0 54.4 55.7 53.2 

800 55.7 55.7 55.7 57.0 55.7 57.0 55.7 57.0 55.7 55.7 
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1000 59.5 59.5 50.6 53.2 50.6 53.2 50.6 53.2 59.5 59.5 

1500 53.2 58.2 48.1 64.6 48.1 64.6 48.1 64.6 53.2 58.2 

1000 Total 45.3 47.0 44.2 46.7 44.2 46.7 44.2 46.7 45.3 47.0 

2000 

10 11.4 12.7 11.4 12.7 11.4 12.7 11.4 12.7 11.4 12.7 

20 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 

50 31.6 34.2 32.9 34.2 32.9 34.2 32.9 34.2 31.6 34.2 

100 59.5 53.2 58.2 57.0 58.2 57.0 58.2 57.0 58.2 53.2 

200 50.6 62.0 41.8 57.0 41.8 57.0 41.8 57.0 50.6 62.0 

400 55.7 62.0 51.9 50.6 51.9 50.6 51.9 50.6 55.7 62.0 

600 41.8 45.6 40.5 50.6 40.5 50.6 40.5 50.6 41.8 45.6 

800 49.4 54.4 51.9 59.5 51.9 58.2 51.9 59.5 49.4 54.4 

1000 50.6 59.5 49.4 55.7 49.4 55.7 49.4 55.7 50.6 59.5 

1500 51.9 57.0 46.8 55.7 46.8 55.7 46.8 55.7 51.9 57.0 

2000 Total 41.5 45.3 39.7 44.6 39.7 44.4 39.7 44.6 41.4 45.3 

 

Table 74. Results from the comparison of the Pearson correlation versus the MI 

calculated using the histogram-based method with fixed number of bins and discrete 

empirical distribution for detecting the input with the least impact on the output, per 

number of bins, number of replications, and normalization method. 

Bins 
Number of 

replications 

MI [%] 𝑵𝑴𝑰𝒂𝒓𝒊𝒕𝒉 [%] 𝑵𝑴𝑰𝒈𝒆𝒐𝒎 [%] 𝑵𝑴𝑰𝒋𝒐𝒊𝒏𝒕 [%] 𝑵𝑴𝑰𝒕𝒉𝒆𝒐𝒓 [%] 

NIS TIS NIS TIS NIS TIS NIS TIS NIS TIS 

2 

10 3.8 7.6 3.8 7.6 3.8 7.6 3.8 7.6 3.8 7.6 

20 63.3 68.4 63.3 68.4 63.3 68.4 63.3 68.4 63.3 68.4 

50 72.2 72.2 72.2 72.2 72.2 72.2 72.2 72.2 72.2 72.2 

100 86.1 93.7 88.6 92.4 88.6 92.4 88.6 92.4 86.1 93.7 

200 83.5 87.3 82.3 87.3 82.3 87.3 82.3 87.3 83.5 87.3 

400 65.8 78.5 64.6 78.5 64.6 78.5 64.6 78.5 65.8 78.5 

600 68.4 77.2 68.4 77.2 68.4 77.2 68.4 77.2 68.4 77.2 

800 74.7 77.2 74.7 77.2 74.7 77.2 74.7 77.2 74.7 77.2 

1000 75.9 75.9 75.9 75.9 75.9 75.9 75.9 75.9 75.9 75.9 

1500 77.2 78.5 77.2 78.5 77.2 78.5 77.2 78.5 77.2 78.5 

2 Total 67.1 71.6 67.1 71.5 67.1 71.5 67.1 71.5 67.1 71.6 

5 

10 40.5 55.7 45.6 59.5 45.6 59.5 45.6 59.5 39.2 54.4 

20 70.9 73.4 70.9 73.4 70.9 73.4 70.9 73.4 70.9 73.4 

50 72.2 70.9 73.4 70.9 73.4 70.9 73.4 70.9 72.2 70.9 

100 79.7 81.0 78.5 79.7 78.5 79.7 78.5 79.7 79.7 81.0 

200 75.9 82.3 75.9 81.0 75.9 81.0 75.9 81.0 75.9 82.3 

400 64.6 77.2 63.3 75.9 63.3 75.9 63.3 75.9 64.6 77.2 
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600 67.1 75.9 67.1 74.7 67.1 74.7 67.1 74.7 67.1 75.9 

800 73.4 78.5 74.7 75.9 74.7 74.7 74.7 75.9 73.4 78.5 

1000 72.2 74.7 70.9 74.7 70.9 74.7 70.9 74.7 72.2 74.7 

1500 67.1 69.6 68.4 70.9 68.4 69.6 68.4 70.9 67.1 69.6 

5 Total 68.4 73.9 68.9 73.7 68.9 73.4 68.9 73.7 68.2 73.8 

10 

10 30.4 46.8 30.4 48.1 30.4 48.1 30.4 48.1 30.4 46.8 

20 55.7 67.1 59.5 69.6 59.5 69.6 59.5 69.6 55.7 67.1 

50 63.3 70.9 64.6 73.4 64.6 73.4 64.6 73.4 63.3 70.9 

100 63.3 74.7 62.0 70.9 62.0 70.9 62.0 70.9 63.3 74.7 

200 54.4 72.2 55.7 68.4 55.7 68.4 55.7 68.4 54.4 72.2 

400 54.4 69.6 57.0 69.6 57.0 69.6 57.0 69.6 54.4 69.6 

600 57.0 67.1 55.7 67.1 55.7 67.1 55.7 67.1 57.0 67.1 

800 58.2 64.6 57.0 67.1 58.2 67.1 57.0 67.1 58.2 64.6 

1000 62.0 67.1 59.5 64.6 59.5 64.6 59.5 64.6 62.0 67.1 

1500 58.2 67.1 55.7 67.1 55.7 67.1 55.7 67.1 58.2 67.1 

10 Total 55.7 66.7 55.7 66.6 55.8 66.6 55.7 66.6 55.7 66.7 

25 

10 3.8 13.9 3.8 13.9 3.8 13.9 3.8 13.9 3.8 13.9 

20 59.5 65.8 57.0 69.6 57.0 69.6 57.0 69.6 59.5 65.8 

50 62.0 74.7 62.0 75.9 62.0 75.9 62.0 75.9 62.0 74.7 

100 54.4 57.0 49.4 58.2 49.4 58.2 49.4 58.2 54.4 57.0 

200 60.8 62.0 59.5 63.3 58.2 63.3 59.5 63.3 60.8 62.0 

400 55.7 59.5 53.2 57.0 53.2 57.0 53.2 57.0 55.7 59.5 

600 57.0 55.7 54.4 55.7 54.4 55.7 54.4 55.7 57.0 55.7 

800 58.2 64.6 57.0 59.5 57.0 59.5 57.0 59.5 58.2 64.6 

1000 55.7 68.4 55.7 64.6 55.7 64.6 55.7 64.6 55.7 68.4 

1500 58.2 62.0 55.7 60.8 55.7 60.8 55.7 60.8 58.2 62.0 

25 Total 52.5 58.4 50.8 57.8 50.6 57.8 50.8 57.8 52.5 58.4 

50 

10 1.3 6.3 1.3 6.3 1.3 6.3 1.3 6.3 1.3 6.3 

20 31.6 39.2 38.0 58.2 38.0 58.2 38.0 58.2 31.6 39.2 

50 54.4 62.0 50.6 70.9 50.6 70.9 50.6 70.9 54.4 62.0 

100 65.8 64.6 58.2 59.5 58.2 58.2 58.2 59.5 65.8 64.6 

200 67.1 67.1 60.8 64.6 60.8 64.6 60.8 64.6 67.1 67.1 

400 58.2 60.8 57.0 60.8 57.0 60.8 57.0 60.8 58.2 60.8 

600 59.5 58.2 57.0 59.5 57.0 59.5 57.0 59.5 59.5 58.2 

800 53.2 57.0 55.7 57.0 54.4 57.0 55.7 57.0 53.2 57.0 

1000 55.7 62.0 57.0 60.8 57.0 60.8 57.0 60.8 55.7 62.0 

1500 49.4 60.8 51.9 60.8 51.9 60.8 51.9 60.8 49.4 60.8 

50 Total 49.6 53.8 48.7 55.8 48.6 55.7 48.7 55.8 49.6 53.8 

100 10 3.8 8.9 3.8 8.9 3.8 8.9 3.8 8.9 3.8 8.9 
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20 30.4 34.2 35.4 38.0 35.4 38.0 35.4 38.0 30.4 34.2 

50 54.4 54.4 51.9 57.0 51.9 57.0 51.9 57.0 54.4 54.4 

100 67.1 67.1 53.2 62.0 53.2 62.0 53.2 62.0 67.1 67.1 

200 67.1 58.2 64.6 60.8 64.6 60.8 64.6 60.8 67.1 58.2 

400 60.8 57.0 55.7 51.9 55.7 51.9 55.7 51.9 60.8 57.0 

600 62.0 57.0 57.0 54.4 57.0 54.4 57.0 54.4 62.0 57.0 

800 64.6 57.0 63.3 54.4 63.3 54.4 63.3 54.4 64.6 57.0 

1000 67.1 53.2 62.0 54.4 62.0 53.2 62.0 54.4 67.1 53.2 

1500 68.4 54.4 64.6 54.4 64.6 54.4 64.6 54.4 68.4 54.4 

100 Total 54.6 50.1 51.1 49.6 51.1 49.5 51.1 49.6 54.6 50.1 

200 

10 3.8 8.9 3.8 8.9 3.8 8.9 3.8 8.9 3.8 8.9 

20 10.1 15.2 10.1 15.2 10.1 15.2 10.1 15.2 10.1 15.2 

50 54.4 48.1 55.7 50.6 55.7 51.9 55.7 50.6 54.4 48.1 

100 62.0 58.2 51.9 57.0 53.2 57.0 51.9 57.0 62.0 58.2 

200 57.0 59.5 55.7 58.2 55.7 58.2 55.7 58.2 57.0 59.5 

400 59.5 60.8 57.0 57.0 57.0 57.0 57.0 57.0 59.5 60.8 

600 59.5 60.8 58.2 63.3 58.2 63.3 58.2 63.3 59.5 60.8 

800 68.4 58.2 57.0 55.7 57.0 55.7 57.0 55.7 68.4 58.2 

1000 63.3 59.5 57.0 54.4 57.0 54.4 57.0 54.4 63.3 59.5 

1500 72.2 57.0 63.3 55.7 63.3 55.7 63.3 55.7 72.2 57.0 

200 Total 51.0 48.6 47.0 47.6 47.1 47.7 47.0 47.6 51.0 48.6 

500 

10 1.3 6.3 1.3 6.3 1.3 6.3 1.3 6.3 1.3 6.3 

20 3.8 8.9 3.8 8.9 3.8 8.9 3.8 8.9 3.8 8.9 

50 36.7 54.4 48.1 60.8 48.1 60.8 48.1 60.8 36.7 54.4 

100 60.8 65.8 48.1 63.3 48.1 63.3 48.1 63.3 60.8 65.8 

200 58.2 63.3 58.2 55.7 58.2 55.7 58.2 55.7 58.2 63.3 

400 59.5 63.3 50.6 62.0 50.6 62.0 50.6 62.0 59.5 63.3 

600 54.4 63.3 48.1 62.0 48.1 62.0 48.1 62.0 54.4 63.3 

800 69.6 62.0 64.6 67.1 64.6 67.1 64.6 67.1 69.6 62.0 

1000 68.4 63.3 55.7 58.2 55.7 57.0 55.7 58.2 68.4 63.3 

1500 60.8 64.6 49.4 65.8 49.4 65.8 49.4 65.8 60.8 64.6 

500 Total 47.3 51.5 42.8 51.0 42.8 50.9 42.8 51.0 47.3 51.5 

1000 

10 1.3 6.3 1.3 6.3 1.3 6.3 1.3 6.3 1.3 6.3 

20 3.8 8.9 3.8 8.9 3.8 8.9 3.8 8.9 3.8 8.9 

50 38.0 54.4 41.8 55.7 41.8 55.7 41.8 55.7 38.0 54.4 

100 53.2 55.7 50.6 54.4 50.6 54.4 50.6 54.4 53.2 55.7 

200 54.4 58.2 55.7 54.4 55.7 54.4 55.7 54.4 54.4 58.2 

400 62.0 63.3 65.8 51.9 65.8 51.9 65.8 51.9 62.0 63.3 

600 59.5 58.2 60.8 60.8 60.8 60.8 60.8 60.8 59.5 58.2 
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800 64.6 65.8 69.6 62.0 69.6 62.0 69.6 62.0 64.6 65.8 

1000 63.3 60.8 58.2 59.5 58.2 59.5 58.2 59.5 63.3 60.8 

1500 58.2 64.6 53.2 65.8 53.2 65.8 53.2 65.8 58.2 64.6 

1000 Total 45.8 49.6 46.1 48.0 46.1 48.0 46.1 48.0 45.8 49.6 

2000 

10 1.3 6.3 1.3 6.3 1.3 6.3 1.3 6.3 1.3 6.3 

20 3.8 8.9 3.8 8.9 3.8 8.9 3.8 8.9 3.8 8.9 

50 30.4 34.2 31.6 32.9 31.6 32.9 31.6 32.9 30.4 34.2 

100 60.8 53.2 59.5 57.0 59.5 57.0 59.5 57.0 59.5 53.2 

200 53.2 64.6 46.8 62.0 46.8 62.0 46.8 62.0 53.2 65.8 

400 59.5 65.8 57.0 54.4 57.0 54.4 57.0 54.4 59.5 65.8 

600 51.9 55.7 49.4 57.0 49.4 57.0 49.4 57.0 51.9 55.7 

800 60.8 60.8 59.5 59.5 59.5 58.2 59.5 59.5 60.8 60.8 

1000 58.2 60.8 57.0 58.2 57.0 58.2 57.0 58.2 58.2 60.8 

1500 58.2 60.8 50.6 62.0 50.6 62.0 50.6 62.0 58.2 60.8 

2000 Total 43.8 47.1 41.6 45.8 41.6 45.7 41.6 45.8 43.7 47.2 

 

Table 75. Results from the comparison of the 𝑹𝟐𝒂𝒅𝒋 versus the MI calculated using the 

histogram-based method with fixed number of bins and discrete empirical distribution 

for detecting the input with the greatest impact on the output, per number of bins, 

number of replications, and normalization method. 

Bins 
Number of 

replications 

MI [%] 𝑵𝑴𝑰𝒂𝒓𝒊𝒕𝒉 [%] 𝑵𝑴𝑰𝒈𝒆𝒐𝒎 [%] 𝑵𝑴𝑰𝒋𝒐𝒊𝒏𝒕 [%] 𝑵𝑴𝑰𝒕𝒉𝒆𝒐𝒓 [%] 

NIS TIS NIS TIS NIS TIS NIS TIS NIS TIS 

2 

10 1.3 11.4 1.3 11.4 1.3 11.4 1.3 11.4 1.3 11.4 

20 60.8 67.1 60.8 67.1 60.8 67.1 60.8 67.1 60.8 67.1 

50 68.4 70.9 68.4 70.9 68.4 70.9 68.4 70.9 68.4 70.9 

100 75.9 82.3 78.5 81.0 78.5 81.0 78.5 81.0 75.9 82.3 

200 72.2 79.7 69.6 79.7 69.6 79.7 69.6 79.7 72.2 79.7 

400 58.2 75.9 58.2 75.9 58.2 75.9 58.2 75.9 58.2 75.9 

600 58.2 74.7 59.5 74.7 59.5 74.7 59.5 74.7 58.2 74.7 

800 63.3 70.9 63.3 70.9 63.3 70.9 63.3 70.9 63.3 70.9 

1000 67.1 70.9 67.1 70.9 67.1 70.9 67.1 70.9 67.1 70.9 

1500 68.4 74.7 68.4 74.7 68.4 74.7 68.4 74.7 68.4 74.7 

2 Total 59.4 67.8 59.5 67.7 59.5 67.7 59.5 67.7 59.4 67.8 

5 

10 41.8 53.2 48.1 57.0 48.1 57.0 48.1 57.0 40.5 53.2 

20 70.9 69.6 69.6 69.6 69.6 69.6 69.6 69.6 70.9 69.6 

50 69.6 67.1 69.6 64.6 69.6 64.6 69.6 64.6 69.6 67.1 

100 72.2 77.2 70.9 75.9 70.9 75.9 70.9 75.9 72.2 77.2 
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200 69.6 75.9 67.1 74.7 67.1 74.7 67.1 74.7 69.6 75.9 

400 57.0 73.4 55.7 72.2 55.7 72.2 55.7 72.2 57.0 73.4 

600 55.7 72.2 55.7 70.9 55.7 70.9 55.7 70.9 55.7 72.2 

800 63.3 70.9 64.6 70.9 64.6 69.6 64.6 70.9 63.3 70.9 

1000 64.6 69.6 65.8 72.2 65.8 72.2 65.8 72.2 64.6 69.6 

1500 58.2 67.1 60.8 67.1 60.8 65.8 60.8 67.1 58.2 67.1 

5 Total 62.3 69.6 62.8 69.5 62.8 69.2 62.8 69.5 62.2 69.6 

10 

10 30.4 48.1 30.4 49.4 30.4 49.4 30.4 49.4 30.4 48.1 

20 55.7 74.7 58.2 74.7 58.2 74.7 58.2 74.7 55.7 74.7 

50 57.0 67.1 55.7 68.4 55.7 68.4 55.7 68.4 57.0 67.1 

100 55.7 65.8 55.7 62.0 55.7 62.0 55.7 62.0 55.7 65.8 

200 46.8 64.6 44.3 59.5 44.3 58.2 44.3 59.5 46.8 64.6 

400 44.3 63.3 44.3 62.0 44.3 62.0 44.3 62.0 44.3 63.3 

600 44.3 63.3 40.5 60.8 40.5 60.8 40.5 60.8 44.3 63.3 

800 45.6 58.2 43.0 59.5 44.3 59.5 43.0 59.5 45.6 58.2 

1000 46.8 62.0 44.3 58.2 44.3 58.2 44.3 58.2 46.8 62.0 

1500 44.3 64.6 41.8 63.3 41.8 63.3 41.8 63.3 44.3 64.6 

10 Total 47.1 63.2 45.8 61.8 45.9 61.6 45.8 61.8 47.1 63.2 

25 

10 10.1 15.2 11.4 15.2 11.4 15.2 10.1 15.2 10.1 15.2 

20 59.5 67.1 58.2 67.1 58.2 67.1 58.2 67.1 59.5 67.1 

50 55.7 74.7 55.7 77.2 55.7 77.2 55.7 77.2 55.7 74.7 

100 46.8 57.0 44.3 54.4 44.3 54.4 44.3 54.4 46.8 57.0 

200 55.7 62.0 53.2 60.8 51.9 60.8 53.2 60.8 55.7 62.0 

400 49.4 58.2 46.8 54.4 46.8 54.4 46.8 54.4 49.4 58.2 

600 48.1 50.6 45.6 50.6 45.6 50.6 45.6 50.6 48.1 50.6 

800 45.6 57.0 44.3 54.4 44.3 54.4 44.3 54.4 45.6 57.0 

1000 44.3 65.8 45.6 62.0 45.6 62.0 45.6 62.0 44.3 65.8 

1500 51.9 60.8 50.6 59.5 50.6 59.5 50.6 59.5 51.9 60.8 

25 Total 46.7 56.8 45.6 55.6 45.4 55.6 45.4 55.6 46.7 56.8 

50 

10 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 

20 32.9 38.0 38.0 55.7 38.0 55.7 38.0 55.7 32.9 38.0 

50 48.1 54.4 48.1 63.3 48.1 63.3 48.1 63.3 48.1 54.4 

100 62.0 62.0 53.2 59.5 53.2 59.5 53.2 59.5 62.0 62.0 

200 64.6 65.8 55.7 65.8 55.7 65.8 55.7 65.8 64.6 65.8 

400 58.2 58.2 57.0 59.5 57.0 59.5 57.0 59.5 58.2 58.2 

600 59.5 59.5 57.0 57.0 57.0 57.0 57.0 57.0 59.5 59.5 

800 40.5 53.2 44.3 51.9 43.0 51.9 44.3 51.9 40.5 53.2 

1000 45.6 60.8 45.6 59.5 45.6 59.5 45.6 59.5 45.6 60.8 

1500 44.3 55.7 46.8 55.7 46.8 55.7 46.8 55.7 44.3 55.7 
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50 Total 46.1 51.3 45.1 53.3 44.9 53.3 45.1 53.3 46.1 51.3 

100 

10 7.6 8.9 7.6 8.9 7.6 8.9 7.6 8.9 7.6 8.9 

20 31.6 36.7 36.7 40.5 36.7 40.5 36.7 40.5 31.6 36.7 

50 49.4 51.9 46.8 55.7 46.8 55.7 46.8 55.7 49.4 51.9 

100 64.6 65.8 51.9 59.5 51.9 60.8 51.9 59.5 64.6 65.8 

200 59.5 57.0 55.7 59.5 55.7 59.5 55.7 59.5 59.5 57.0 

400 53.2 50.6 49.4 46.8 50.6 46.8 49.4 46.8 53.2 50.6 

600 55.7 49.4 50.6 46.8 50.6 45.6 50.6 46.8 55.7 49.4 

800 53.2 53.2 51.9 50.6 51.9 50.6 51.9 50.6 53.2 53.2 

1000 62.0 51.9 58.2 50.6 58.2 49.4 58.2 50.6 62.0 51.9 

1500 59.5 51.9 57.0 45.6 57.0 45.6 57.0 45.6 59.5 51.9 

100 Total 49.6 47.7 46.6 46.5 46.7 46.3 46.6 46.5 49.6 47.7 

200 

10 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 

20 10.1 16.5 10.1 16.5 10.1 16.5 10.1 16.5 10.1 16.5 

50 57.0 45.6 55.7 48.1 55.7 48.1 55.7 49.4 57.0 45.6 

100 57.0 54.4 46.8 55.7 48.1 55.7 46.8 55.7 57.0 54.4 

200 55.7 58.2 53.2 51.9 53.2 51.9 53.2 51.9 55.7 58.2 

400 55.7 55.7 53.2 51.9 53.2 51.9 53.2 51.9 55.7 55.7 

600 53.2 54.4 49.4 57.0 49.4 57.0 49.4 57.0 53.2 54.4 

800 60.8 51.9 48.1 51.9 48.1 51.9 48.1 51.9 60.8 51.9 

1000 64.6 57.0 51.9 50.6 51.9 50.6 51.9 50.6 64.6 57.0 

1500 63.3 53.2 54.4 51.9 54.4 51.9 54.4 51.9 63.3 53.2 

200 Total 48.7 45.7 43.3 44.6 43.4 44.6 43.3 44.7 48.7 45.7 

500 

10 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 

20 7.6 13.9 7.6 13.9 7.6 13.9 7.6 13.9 7.6 13.9 

50 35.4 50.6 45.6 59.5 45.6 59.5 45.6 59.5 35.4 50.6 

100 62.0 65.8 46.8 64.6 46.8 64.6 46.8 64.6 62.0 65.8 

200 55.7 59.5 53.2 49.4 53.2 49.4 53.2 49.4 55.7 59.5 

400 54.4 64.6 46.8 63.3 46.8 63.3 46.8 63.3 54.4 64.6 

600 46.8 60.8 40.5 60.8 40.5 60.8 40.5 60.8 46.8 60.8 

800 59.5 57.0 58.2 57.0 58.2 57.0 58.2 57.0 59.5 57.0 

1000 59.5 55.7 49.4 49.4 49.4 48.1 49.4 49.4 59.5 55.7 

1500 54.4 60.8 44.3 58.2 44.3 58.2 44.3 58.2 54.4 60.8 

500 Total 44.4 49.7 40.1 48.5 40.1 48.4 40.1 48.5 44.4 49.7 

1000 

10 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 

20 7.6 13.9 7.6 13.9 7.6 13.9 7.6 13.9 7.6 13.9 

50 35.4 44.3 39.2 50.6 39.2 50.6 39.2 50.6 35.4 44.3 

100 51.9 57.0 49.4 58.2 49.4 58.2 49.4 58.2 51.9 57.0 

200 57.0 57.0 57.0 53.2 57.0 53.2 57.0 53.2 57.0 57.0 
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400 59.5 58.2 59.5 49.4 59.5 49.4 59.5 49.4 59.5 58.2 

600 55.7 53.2 57.0 54.4 57.0 54.4 57.0 54.4 55.7 53.2 

800 55.7 55.7 55.7 57.0 55.7 57.0 55.7 57.0 55.7 55.7 

1000 59.5 59.5 50.6 53.2 50.6 53.2 50.6 53.2 59.5 59.5 

1500 53.2 58.2 48.1 64.6 48.1 64.6 48.1 64.6 53.2 58.2 

1000 Total 44.4 46.6 43.3 46.3 43.3 46.3 43.3 46.3 44.4 46.6 

2000 

10 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 

20 6.3 12.7 6.3 12.7 6.3 12.7 6.3 12.7 6.3 12.7 

50 31.6 34.2 32.9 34.2 32.9 34.2 32.9 34.2 31.6 34.2 

100 59.5 53.2 58.2 57.0 58.2 57.0 58.2 57.0 58.2 53.2 

200 50.6 62.0 41.8 57.0 41.8 57.0 41.8 57.0 50.6 62.0 

400 55.7 62.0 51.9 50.6 51.9 50.6 51.9 50.6 55.7 62.0 

600 41.8 45.6 40.5 50.6 40.5 50.6 40.5 50.6 41.8 45.6 

800 49.4 54.4 51.9 59.5 51.9 58.2 51.9 59.5 49.4 54.4 

1000 50.6 59.5 49.4 55.7 49.4 55.7 49.4 55.7 50.6 59.5 

1500 51.9 57.0 46.8 55.7 46.8 55.7 46.8 55.7 51.9 57.0 

2000 Total 40.6 44.9 38.9 44.2 38.9 44.1 38.9 44.2 40.5 44.9 

 

Table 76. Results from the comparison of the 𝑹𝟐𝒂𝒅𝒋 versus the MI calculated using the 

histogram-based method with fixed number of bins and discrete empirical distribution 

for detecting the input with the least impact on the output, per number of bins, number of 

replications, and normalization method. 

Bins 
Number of 

replications 

MI [%] 𝑵𝑴𝑰𝒂𝒓𝒊𝒕𝒉 [%] 𝑵𝑴𝑰𝒈𝒆𝒐𝒎 [%] 𝑵𝑴𝑰𝒋𝒐𝒊𝒏𝒕 [%] 𝑵𝑴𝑰𝒕𝒉𝒆𝒐𝒓 [%] 

NIS TIS NIS TIS NIS TIS NIS TIS NIS TIS 

2 

10 2.5 1.3 2.5 1.3 2.5 1.3 2.5 1.3 2.5 1.3 

20 62.0 63.3 62.0 63.3 62.0 63.3 62.0 63.3 62.0 63.3 

50 68.4 72.2 68.4 72.2 68.4 72.2 68.4 72.2 68.4 72.2 

100 83.5 93.7 86.1 92.4 86.1 92.4 86.1 92.4 83.5 93.7 

200 83.5 87.3 82.3 87.3 82.3 87.3 82.3 87.3 83.5 87.3 

400 65.8 78.5 64.6 78.5 64.6 78.5 64.6 78.5 65.8 78.5 

600 68.4 77.2 68.4 77.2 68.4 77.2 68.4 77.2 68.4 77.2 

800 74.7 77.2 74.7 77.2 74.7 77.2 74.7 77.2 74.7 77.2 

1000 75.9 75.9 75.9 75.9 75.9 75.9 75.9 75.9 75.9 75.9 

1500 77.2 78.5 77.2 78.5 77.2 78.5 77.2 78.5 77.2 78.5 

2 Total 66.2 70.5 66.2 70.4 66.2 70.4 66.2 70.4 66.2 70.5 

5 
10 40.5 49.4 45.6 53.2 45.6 53.2 45.6 53.2 39.2 48.1 

20 69.6 68.4 69.6 68.4 69.6 68.4 69.6 68.4 69.6 68.4 
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50 68.4 70.9 69.6 70.9 69.6 70.9 69.6 70.9 68.4 70.9 

100 77.2 81.0 75.9 79.7 75.9 79.7 75.9 79.7 77.2 81.0 

200 75.9 82.3 75.9 81.0 75.9 81.0 75.9 81.0 75.9 82.3 

400 64.6 77.2 63.3 75.9 63.3 75.9 63.3 75.9 64.6 77.2 

600 67.1 75.9 67.1 74.7 67.1 74.7 67.1 74.7 67.1 75.9 

800 73.4 78.5 74.7 75.9 74.7 74.7 74.7 75.9 73.4 78.5 

1000 72.2 74.7 70.9 74.7 70.9 74.7 70.9 74.7 72.2 74.7 

1500 67.1 69.6 68.4 70.9 68.4 69.6 68.4 70.9 67.1 69.6 

5 Total 67.6 72.8 68.1 72.5 68.1 72.3 68.1 72.5 67.5 72.7 

10 

10 29.1 40.5 29.1 41.8 29.1 41.8 29.1 41.8 29.1 40.5 

20 54.4 62.0 58.2 64.6 58.2 64.6 58.2 64.6 54.4 62.0 

50 59.5 70.9 60.8 73.4 60.8 73.4 60.8 73.4 59.5 70.9 

100 60.8 74.7 59.5 70.9 59.5 70.9 59.5 70.9 60.8 74.7 

200 54.4 72.2 55.7 68.4 55.7 68.4 55.7 68.4 54.4 72.2 

400 54.4 69.6 57.0 69.6 57.0 69.6 57.0 69.6 54.4 69.6 

600 57.0 67.1 55.7 67.1 55.7 67.1 55.7 67.1 57.0 67.1 

800 58.2 64.6 57.0 67.1 58.2 67.1 57.0 67.1 58.2 64.6 

1000 62.0 67.1 59.5 64.6 59.5 64.6 59.5 64.6 62.0 67.1 

1500 58.2 67.1 55.7 67.1 55.7 67.1 55.7 67.1 58.2 67.1 

10 Total 54.8 65.6 54.8 65.4 54.9 65.4 54.8 65.4 54.8 65.6 

25 

10 3.8 7.6 3.8 7.6 3.8 7.6 3.8 7.6 3.8 7.6 

20 58.2 60.8 55.7 64.6 55.7 64.6 55.7 64.6 58.2 60.8 

50 58.2 74.7 58.2 75.9 58.2 75.9 58.2 75.9 58.2 74.7 

100 51.9 57.0 46.8 58.2 46.8 58.2 46.8 58.2 51.9 57.0 

200 60.8 62.0 59.5 63.3 58.2 63.3 59.5 63.3 60.8 62.0 

400 55.7 59.5 53.2 57.0 53.2 57.0 53.2 57.0 55.7 59.5 

600 57.0 55.7 54.4 55.7 54.4 55.7 54.4 55.7 57.0 55.7 

800 58.2 64.6 57.0 59.5 57.0 59.5 57.0 59.5 58.2 64.6 

1000 55.7 68.4 55.7 64.6 55.7 64.6 55.7 64.6 55.7 68.4 

1500 58.2 62.0 55.7 60.8 55.7 60.8 55.7 60.8 58.2 62.0 

25 Total 51.8 57.2 50.0 56.7 49.9 56.7 50.0 56.7 51.8 57.2 

50 

10 2.5 0.0 2.5 0.0 2.5 0.0 2.5 0.0 2.5 0.0 

20 30.4 34.2 36.7 53.2 36.7 53.2 36.7 53.2 30.4 34.2 

50 50.6 62.0 46.8 70.9 46.8 70.9 46.8 70.9 50.6 62.0 

100 63.3 64.6 55.7 59.5 55.7 58.2 55.7 59.5 63.3 64.6 

200 67.1 67.1 60.8 64.6 60.8 64.6 60.8 64.6 67.1 67.1 

400 58.2 60.8 57.0 60.8 57.0 60.8 57.0 60.8 58.2 60.8 

600 59.5 58.2 57.0 59.5 57.0 59.5 57.0 59.5 59.5 58.2 

800 53.2 57.0 55.7 57.0 54.4 57.0 55.7 57.0 53.2 57.0 
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1000 55.7 62.0 57.0 60.8 57.0 60.8 57.0 60.8 55.7 62.0 

1500 49.4 60.8 51.9 60.8 51.9 60.8 51.9 60.8 49.4 60.8 

50 Total 49.0 52.7 48.1 54.7 48.0 54.6 48.1 54.7 49.0 52.7 

100 

10 3.8 2.5 3.8 2.5 3.8 2.5 3.8 2.5 3.8 2.5 

20 29.1 29.1 34.2 32.9 34.2 32.9 34.2 32.9 29.1 29.1 

50 50.6 54.4 48.1 57.0 48.1 57.0 48.1 57.0 50.6 54.4 

100 64.6 67.1 50.6 62.0 50.6 62.0 50.6 62.0 64.6 67.1 

200 67.1 58.2 64.6 60.8 64.6 60.8 64.6 60.8 67.1 58.2 

400 60.8 57.0 55.7 51.9 55.7 51.9 55.7 51.9 60.8 57.0 

600 62.0 57.0 57.0 54.4 57.0 54.4 57.0 54.4 62.0 57.0 

800 64.6 57.0 63.3 54.4 63.3 54.4 63.3 54.4 64.6 57.0 

1000 67.1 53.2 62.0 54.4 62.0 53.2 62.0 54.4 67.1 53.2 

1500 68.4 54.4 64.6 54.4 64.6 54.4 64.6 54.4 68.4 54.4 

100 Total 53.8 49.0 50.4 48.5 50.4 48.4 50.4 48.5 53.8 49.0 

200 

10 3.8 2.5 3.8 2.5 3.8 2.5 3.8 2.5 3.8 2.5 

20 8.9 10.1 8.9 10.1 8.9 10.1 8.9 10.1 8.9 10.1 

50 50.6 48.1 51.9 50.6 51.9 51.9 51.9 50.6 50.6 48.1 

100 59.5 58.2 49.4 57.0 50.6 57.0 49.4 57.0 59.5 58.2 

200 57.0 59.5 55.7 58.2 55.7 58.2 55.7 58.2 57.0 59.5 

400 59.5 60.8 57.0 57.0 57.0 57.0 57.0 57.0 59.5 60.8 

600 59.5 60.8 58.2 63.3 58.2 63.3 58.2 63.3 59.5 60.8 

800 68.4 58.2 57.0 55.7 57.0 55.7 57.0 55.7 68.4 58.2 

1000 63.3 59.5 57.0 54.4 57.0 54.4 57.0 54.4 63.3 59.5 

1500 72.2 57.0 63.3 55.7 63.3 55.7 63.3 55.7 72.2 57.0 

200 Total 50.3 47.5 46.2 46.5 46.3 46.6 46.2 46.5 50.3 47.5 

500 

10 1.3 0.0 1.3 0.0 1.3 0.0 1.3 0.0 1.3 0.0 

20 2.5 3.8 2.5 3.8 2.5 3.8 2.5 3.8 2.5 3.8 

50 32.9 54.4 44.3 60.8 44.3 60.8 44.3 60.8 32.9 54.4 

100 58.2 65.8 45.6 63.3 45.6 63.3 45.6 63.3 58.2 65.8 

200 58.2 63.3 58.2 55.7 58.2 55.7 58.2 55.7 58.2 63.3 

400 59.5 63.3 50.6 62.0 50.6 62.0 50.6 62.0 59.5 63.3 

600 54.4 63.3 48.1 62.0 48.1 62.0 48.1 62.0 54.4 63.3 

800 69.6 62.0 64.6 67.1 64.6 67.1 64.6 67.1 69.6 62.0 

1000 68.4 63.3 55.7 58.2 55.7 57.0 55.7 58.2 68.4 63.3 

1500 60.8 64.6 49.4 65.8 49.4 65.8 49.4 65.8 60.8 64.6 

500 Total 46.6 50.4 42.0 49.9 42.0 49.7 42.0 49.9 46.6 50.4 

1000 

10 1.3 0.0 1.3 0.0 1.3 0.0 1.3 0.0 1.3 0.0 

20 2.5 3.8 2.5 3.8 2.5 3.8 2.5 3.8 2.5 3.8 

50 34.2 54.4 38.0 55.7 38.0 55.7 38.0 55.7 34.2 54.4 
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100 50.6 55.7 48.1 54.4 48.1 54.4 48.1 54.4 50.6 55.7 

200 54.4 58.2 55.7 54.4 55.7 54.4 55.7 54.4 54.4 58.2 

400 62.0 63.3 65.8 51.9 65.8 51.9 65.8 51.9 62.0 63.3 

600 59.5 58.2 60.8 60.8 60.8 60.8 60.8 60.8 59.5 58.2 

800 64.6 65.8 69.6 62.0 69.6 62.0 69.6 62.0 64.6 65.8 

1000 63.3 60.8 58.2 59.5 58.2 59.5 58.2 59.5 63.3 60.8 

1500 58.2 64.6 53.2 65.8 53.2 65.8 53.2 65.8 58.2 64.6 

1000 Total 45.1 48.5 45.3 46.8 45.3 46.8 45.3 46.8 45.1 48.5 

2000 

10 1.3 0.0 1.3 0.0 1.3 0.0 1.3 0.0 1.3 0.0 

20 2.5 3.8 2.5 3.8 2.5 3.8 2.5 3.8 2.5 3.8 

50 26.6 34.2 27.8 32.9 27.8 32.9 27.8 32.9 26.6 34.2 

100 58.2 53.2 57.0 57.0 57.0 57.0 57.0 57.0 57.0 53.2 

200 53.2 64.6 46.8 62.0 46.8 62.0 46.8 62.0 53.2 65.8 

400 59.5 65.8 57.0 54.4 57.0 54.4 57.0 54.4 59.5 65.8 

600 51.9 55.7 49.4 57.0 49.4 57.0 49.4 57.0 51.9 55.7 

800 60.8 60.8 59.5 59.5 59.5 58.2 59.5 59.5 60.8 60.8 

1000 58.2 60.8 57.0 58.2 57.0 58.2 57.0 58.2 58.2 60.8 

1500 58.2 60.8 50.6 62.0 50.6 62.0 50.6 62.0 58.2 60.8 

2000 Total 43.0 45.9 40.9 44.7 40.9 44.6 40.9 44.7 42.9 46.1 
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APPENDIX C 

RESULTS OF SECTION 3 

 

Table 77. Results from the comparison of the measures of dependence versus the MI 

calculated using the kernel method for detecting the input with the greatest impact on the 

output per kernel function, per bandwidth value, and per number of replications. 

Bandwid

th type 

Kernel 

function 

Bandwid

th value 

Number 

of 

replicatio

ns 

Distance 

correlation 

Pearson 

correlation 
𝑹𝟐𝒂𝒅𝒋 

NIS 

% 

TIS 

% 

NIS 

% 

TIS 

% 

NIS 

% 

TIS 

% 

Silverma

n 

Epanechnik

ov 
NA 

10 52.21 52.21 48.67 49.56 50.44 52.21 

20 41.59 46.90 40.71 46.90 44.25 46.90 

50 38.94 47.79 38.05 47.79 38.05 47.79 

100 40.71 42.48 32.74 38.94 32.74 38.94 

200 43.36 41.59 29.20 36.28 29.20 36.28 

400 51.33 52.21 39.82 48.67 39.82 48.67 

600 53.98 52.21 40.71 53.98 40.71 53.98 

800 44.25 46.90 32.74 46.90 32.74 46.90 

1000 41.59 46.02 34.51 46.02 34.51 46.02 

1500 41.59 46.90 36.28 46.90 36.28 46.90 

Normal NA 

10 47.79 48.67 46.02 46.02 47.79 48.67 

20 38.05 44.25 37.17 45.13 40.71 45.13 

50 39.82 46.02 37.17 46.02 37.17 46.02 

100 39.82 40.71 31.86 37.17 31.86 37.17 

200 48.67 46.02 34.51 40.71 34.51 40.71 

400 53.98 53.98 42.48 50.44 42.48 50.44 

600 53.98 53.10 40.71 54.87 40.71 54.87 

800 44.25 47.79 32.74 47.79 32.74 47.79 

1000 41.59 46.90 34.51 46.90 34.51 46.90 

1500 41.59 46.90 36.28 46.90 36.28 46.90 

Trial 
Epanechnik

ov 
0.1 

10 39.82 41.59 40.71 38.94 42.48 41.59 

20 38.94 44.25 43.36 46.02 46.90 46.02 

50 37.17 46.02 36.28 46.02 36.28 46.02 

100 39.82 39.82 31.86 36.28 31.86 36.28 

200 44.25 43.36 31.86 38.05 31.86 38.05 

400 52.21 53.10 40.71 49.56 40.71 49.56 

600 53.98 53.10 40.71 54.87 40.71 54.87 

800 45.13 46.90 31.86 46.90 31.86 46.90 
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1000 42.48 46.02 33.63 46.02 33.63 46.02 

1500 41.59 46.90 36.28 46.90 36.28 46.90 

0.2 

10 38.94 43.36 42.48 40.71 44.25 43.36 

20 39.82 44.25 38.94 43.36 42.48 43.36 

50 38.05 46.90 37.17 46.90 37.17 46.90 

100 41.59 41.59 31.86 38.05 31.86 38.05 

200 44.25 43.36 31.86 38.05 31.86 38.05 

400 51.33 52.21 39.82 48.67 39.82 48.67 

600 53.10 52.21 39.82 53.98 39.82 53.98 

800 45.13 46.90 31.86 46.90 31.86 46.90 

1000 42.48 46.02 33.63 46.02 33.63 46.02 

1500 41.59 47.79 36.28 47.79 36.28 47.79 

0.5 

10 50.44 52.21 46.90 49.56 48.67 52.21 

20 40.71 46.02 39.82 46.02 43.36 46.02 

50 38.94 47.79 38.05 47.79 38.05 47.79 

100 41.59 42.48 31.86 38.94 31.86 38.94 

200 44.25 43.36 31.86 38.05 31.86 38.05 

400 53.10 53.10 41.59 49.56 41.59 49.56 

600 54.87 53.98 41.59 55.75 41.59 55.75 

800 41.59 44.25 28.32 42.48 28.32 42.48 

1000 41.59 44.25 30.09 42.48 30.09 42.48 

1500 42.48 47.79 37.17 47.79 37.17 47.79 

0.01 

10 7.96 0.88 8.85 0.88 10.62 3.54 

20 43.36 38.05 40.71 39.82 44.25 39.82 

50 37.17 45.13 40.71 50.44 40.71 50.44 

100 38.05 38.94 30.09 33.63 30.09 33.63 

200 46.02 41.59 30.09 34.51 30.09 34.51 

400 54.87 53.10 41.59 49.56 41.59 49.56 

600 55.75 54.87 42.48 56.64 42.48 56.64 

800 46.02 37.17 32.74 37.17 32.74 37.17 

1000 44.25 37.17 32.74 37.17 32.74 37.17 

1500 42.48 36.28 37.17 36.28 37.17 36.28 

0.001 

10 5.31 0.00 6.19 0.00 7.96 2.65 

20 4.42 0.88 4.42 0.88 7.96 0.88 

50 39.82 43.36 38.94 41.59 38.94 41.59 

100 50.44 46.02 38.94 47.79 38.94 47.79 

200 47.79 34.51 43.36 38.94 43.36 38.94 

400 50.44 39.82 37.17 36.28 37.17 36.28 

600 52.21 36.28 38.94 38.05 38.94 38.05 
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800 44.25 30.09 30.97 30.09 30.97 30.09 

1000 39.82 28.32 29.20 28.32 29.20 28.32 

1500 38.94 27.43 33.63 29.20 33.63 29.20 

0.0001 

10 5.31 0.00 6.19 0.00 7.96 2.65 

20 5.31 0.00 5.31 0.00 8.85 0.00 

50 11.50 11.50 9.73 11.50 9.73 11.50 

100 39.82 37.17 45.13 46.90 45.13 46.90 

200 43.36 33.63 45.13 38.94 45.13 38.94 

400 42.48 38.94 43.36 37.17 43.36 37.17 

600 41.59 40.71 42.48 42.48 42.48 42.48 

800 41.59 32.74 35.40 32.74 35.40 32.74 

1000 37.17 30.97 34.51 30.09 34.51 30.09 

1500 43.36 34.51 39.82 33.63 39.82 33.63 

1 

10 50.44 52.21 46.90 49.56 48.67 52.21 

20 40.71 46.02 39.82 46.02 43.36 46.02 

50 38.94 47.79 38.05 47.79 38.05 47.79 

100 41.59 41.59 31.86 38.05 31.86 38.05 

200 44.25 43.36 31.86 38.05 31.86 38.05 

400 53.10 53.10 41.59 49.56 41.59 49.56 

600 54.87 53.98 41.59 55.75 41.59 55.75 

800 42.48 45.13 29.20 45.13 29.20 45.13 

1000 43.36 46.90 33.63 46.90 33.63 46.90 

1500 42.48 48.67 37.17 48.67 37.17 48.67 

1.5 

10 50.44 52.21 46.90 49.56 48.67 52.21 

20 40.71 46.02 39.82 46.02 43.36 46.02 

50 38.94 47.79 38.05 47.79 38.05 47.79 

100 41.59 41.59 31.86 38.05 31.86 38.05 

200 44.25 43.36 31.86 38.05 31.86 38.05 

400 53.10 53.10 41.59 49.56 41.59 49.56 

600 54.87 53.98 41.59 55.75 41.59 55.75 

800 42.48 45.13 29.20 45.13 29.20 45.13 

1000 43.36 46.90 33.63 46.90 33.63 46.90 

1500 42.48 48.67 37.17 48.67 37.17 48.67 

5 

10 50.44 52.21 46.90 49.56 48.67 52.21 

20 40.71 46.02 39.82 46.02 43.36 46.02 

50 38.94 47.79 38.05 47.79 38.05 47.79 

100 41.59 41.59 31.86 38.05 31.86 38.05 

200 44.25 43.36 31.86 38.05 31.86 38.05 

400 53.10 53.10 41.59 49.56 41.59 49.56 
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600 54.87 53.98 41.59 55.75 41.59 55.75 

800 43.36 46.02 28.32 46.02 28.32 46.02 

1000 43.36 46.90 33.63 46.90 33.63 46.90 

1500 42.48 48.67 37.17 48.67 37.17 48.67 

10 

10 50.44 52.21 46.90 49.56 48.67 52.21 

20 40.71 46.02 39.82 46.02 43.36 46.02 

50 38.94 47.79 38.05 47.79 38.05 47.79 

100 41.59 41.59 31.86 38.05 31.86 38.05 

200 44.25 43.36 31.86 38.05 31.86 38.05 

400 53.10 53.10 41.59 49.56 41.59 49.56 

600 54.87 53.98 41.59 55.75 41.59 55.75 

800 43.36 46.02 28.32 46.02 28.32 46.02 

1000 43.36 46.90 33.63 46.90 33.63 46.90 

1500 42.48 48.67 37.17 48.67 37.17 48.67 

100 

10 50.44 52.21 46.90 49.56 48.67 52.21 

20 40.71 46.02 39.82 46.02 43.36 46.02 

50 38.94 47.79 38.05 47.79 38.05 47.79 

100 41.59 41.59 31.86 38.05 31.86 38.05 

200 44.25 43.36 31.86 38.05 31.86 38.05 

400 53.10 53.10 41.59 49.56 41.59 49.56 

600 54.87 53.98 41.59 55.75 41.59 55.75 

800 43.36 46.02 28.32 46.02 28.32 46.02 

1000 43.36 46.90 33.63 46.90 33.63 46.90 

1500 42.48 48.67 37.17 48.67 37.17 48.67 

1000 

10 50.44 52.21 46.90 49.56 48.67 52.21 

20 40.71 46.02 39.82 46.02 43.36 46.02 

50 38.94 47.79 38.05 47.79 38.05 47.79 

100 46.02 44.25 36.28 40.71 36.28 40.71 

200 46.90 40.71 33.63 35.40 33.63 35.40 

400 56.64 53.10 45.13 49.56 45.13 49.56 

600 56.64 53.10 44.25 54.87 44.25 54.87 

800 41.59 44.25 28.32 44.25 28.32 44.25 

1000 42.48 46.90 32.74 46.90 32.74 46.90 

1500 42.48 46.90 37.17 46.90 37.17 46.90 

Normal 0.1 

10 34.51 35.40 35.40 34.51 37.17 37.17 

20 39.82 40.71 40.71 41.59 44.25 41.59 

50 39.82 46.90 33.63 43.36 33.63 43.36 

100 40.71 40.71 30.97 37.17 30.97 37.17 

200 46.90 46.02 34.51 40.71 34.51 40.71 
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400 52.21 53.10 40.71 49.56 40.71 49.56 

600 53.98 53.10 40.71 54.87 40.71 54.87 

800 45.13 46.90 31.86 46.90 31.86 46.90 

1000 42.48 46.90 33.63 46.90 33.63 46.90 

1500 41.59 46.90 36.28 46.90 36.28 46.90 

0.2 

10 38.05 44.25 41.59 39.82 43.36 42.48 

20 39.82 45.13 38.94 44.25 42.48 44.25 

50 37.17 46.02 36.28 46.02 36.28 46.02 

100 40.71 41.59 30.97 38.05 30.97 38.05 

200 42.48 41.59 30.09 36.28 30.09 36.28 

400 51.33 52.21 39.82 48.67 39.82 48.67 

600 53.98 53.10 40.71 54.87 40.71 54.87 

800 45.13 46.90 31.86 46.90 31.86 46.90 

1000 42.48 46.02 33.63 46.02 33.63 46.02 

1500 41.59 46.90 36.28 46.90 36.28 46.90 

0.5 

10 49.56 51.33 46.02 48.67 47.79 51.33 

20 40.71 46.02 39.82 46.02 43.36 46.02 

50 38.05 46.90 37.17 46.90 37.17 46.90 

100 41.59 41.59 31.86 38.05 31.86 38.05 

200 44.25 43.36 31.86 38.05 31.86 38.05 

400 52.21 52.21 40.71 48.67 40.71 48.67 

600 53.98 53.10 40.71 54.87 40.71 54.87 

800 44.25 46.02 29.20 46.02 29.20 46.02 

1000 41.59 45.13 32.74 45.13 32.74 45.13 

1500 42.48 48.67 37.17 48.67 37.17 48.67 

0.01 

10 50.44 46.02 47.79 43.36 49.56 46.02 

20 41.59 36.28 37.17 37.17 40.71 37.17 

50 37.17 45.13 38.94 48.67 38.94 48.67 

100 35.40 38.94 29.20 35.40 29.20 35.40 

200 46.02 41.59 30.09 34.51 30.09 34.51 

400 54.87 53.10 41.59 49.56 41.59 49.56 

600 54.87 53.98 43.36 55.75 43.36 55.75 

800 45.13 38.94 33.63 38.94 33.63 38.94 

1000 44.25 39.82 32.74 39.82 32.74 39.82 

1500 43.36 40.71 38.05 40.71 38.05 40.71 

0.001 

10 5.31 0.00 6.19 0.00 7.96 2.65 

20 24.78 20.35 26.55 18.58 30.09 18.58 

50 38.94 43.36 41.59 43.36 41.59 43.36 

100 53.10 42.48 39.82 44.25 39.82 44.25 
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200 47.79 34.51 43.36 35.40 43.36 35.40 

400 51.33 41.59 38.05 38.05 38.05 38.05 

600 51.33 37.17 39.82 38.94 39.82 38.94 

800 41.59 29.20 30.09 30.97 30.09 30.97 

1000 39.82 29.20 30.97 29.20 30.97 29.20 

1500 38.94 28.32 35.40 30.09 35.40 30.09 

0.0001 

10 5.31 0.00 6.19 0.00 7.96 2.65 

20 5.31 0.00 5.31 0.00 8.85 0.00 

50 38.05 30.09 35.40 28.32 35.40 28.32 

100 41.59 35.40 45.13 43.36 45.13 43.36 

200 40.71 32.74 45.13 38.05 45.13 38.05 

400 42.48 36.28 41.59 36.28 41.59 36.28 

600 43.36 38.94 42.48 42.48 42.48 42.48 

800 43.36 32.74 37.17 32.74 37.17 32.74 

1000 39.82 30.97 33.63 31.86 33.63 31.86 

1500 41.59 33.63 39.82 32.74 39.82 32.74 

1 

10 50.44 52.21 46.90 49.56 48.67 52.21 

20 40.71 46.02 39.82 46.02 43.36 46.02 

50 38.94 47.79 38.05 47.79 38.05 47.79 

100 41.59 41.59 31.86 38.05 31.86 38.05 

200 44.25 43.36 31.86 38.05 31.86 38.05 

400 53.10 53.10 41.59 49.56 41.59 49.56 

600 54.87 53.98 41.59 55.75 41.59 55.75 

800 43.36 46.02 28.32 46.02 28.32 46.02 

1000 43.36 46.90 33.63 46.90 33.63 46.90 

1500 42.48 48.67 37.17 48.67 37.17 48.67 

1.5 

10 50.44 52.21 46.90 49.56 48.67 52.21 

20 40.71 46.02 39.82 46.02 43.36 46.02 

50 38.94 47.79 38.05 47.79 38.05 47.79 

100 41.59 41.59 31.86 38.05 31.86 38.05 

200 44.25 43.36 31.86 38.05 31.86 38.05 

400 53.10 53.10 41.59 49.56 41.59 49.56 

600 54.87 53.98 41.59 55.75 41.59 55.75 

800 43.36 46.02 28.32 46.02 28.32 46.02 

1000 43.36 46.90 33.63 46.90 33.63 46.90 

1500 42.48 48.67 37.17 48.67 37.17 48.67 

5 

10 50.44 52.21 46.90 49.56 48.67 52.21 

20 40.71 46.02 39.82 46.02 43.36 46.02 

50 38.94 47.79 38.05 47.79 38.05 47.79 
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100 41.59 41.59 31.86 38.05 31.86 38.05 

200 44.25 43.36 31.86 38.05 31.86 38.05 

400 53.10 53.10 41.59 49.56 41.59 49.56 

600 54.87 53.98 41.59 55.75 41.59 55.75 

800 43.36 46.02 28.32 46.02 28.32 46.02 

1000 43.36 46.90 33.63 46.90 33.63 46.90 

1500 42.48 48.67 37.17 48.67 37.17 48.67 

10 

10 50.44 52.21 46.90 49.56 48.67 52.21 

20 40.71 46.02 39.82 46.02 43.36 46.02 

50 38.94 47.79 38.05 47.79 38.05 47.79 

100 41.59 41.59 31.86 38.05 31.86 38.05 

200 44.25 43.36 31.86 38.05 31.86 38.05 

400 53.10 53.10 41.59 49.56 41.59 49.56 

600 54.87 53.98 41.59 55.75 41.59 55.75 

800 43.36 46.02 28.32 46.02 28.32 46.02 

1000 43.36 46.90 33.63 46.90 33.63 46.90 

1500 42.48 48.67 37.17 48.67 37.17 48.67 

100 

10 50.44 52.21 46.90 49.56 48.67 52.21 

20 40.71 46.02 39.82 46.02 43.36 46.02 

50 38.94 47.79 38.05 47.79 38.05 47.79 

100 41.59 41.59 31.86 38.05 31.86 38.05 

200 44.25 43.36 31.86 38.05 31.86 38.05 

400 53.10 53.10 41.59 49.56 41.59 49.56 

600 54.87 53.98 41.59 55.75 41.59 55.75 

800 43.36 46.02 28.32 46.02 28.32 46.02 

1000 43.36 46.90 33.63 46.90 33.63 46.90 

1500 42.48 48.67 37.17 48.67 37.17 48.67 

1000 

10 50.44 52.21 46.90 49.56 48.67 52.21 

20 40.71 46.02 39.82 46.02 43.36 46.02 

50 38.94 47.79 38.05 47.79 38.05 47.79 

100 42.48 41.59 32.74 38.05 32.74 38.05 

200 44.25 43.36 31.86 38.05 31.86 38.05 

400 53.10 53.10 41.59 49.56 41.59 49.56 

600 53.98 53.98 41.59 55.75 41.59 55.75 

800 43.36 46.02 28.32 46.02 28.32 46.02 

1000 42.48 46.90 33.63 46.90 33.63 46.90 

1500 42.48 48.67 37.17 48.67 37.17 48.67 
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Table 78. Results from the comparison of the measures of dependence versus the MI 

calculated using the kernel method for detecting the input with the least impact on the 

output per kernel function, per bandwidth value, and per number of replications. 

Bandwid

th type 

Kernel 

function 

Bandwid

th value 

Number 

of 

replicatio

ns 

Distance 

correlation 

Pearson 

correlation 
𝑹𝟐𝒂𝒅𝒋 

NIS 

% 

TIS 

% 

NIS 

% 

TIS 

% 

NIS 

% 

TIS 

% 

Silverma

n 

Epanechnik

ov 
NA 

10 52.21 53.98 53.10 53.98 54.87 57.52 

20 42.48 46.90 42.48 46.02 43.36 46.02 

50 39.82 49.56 38.94 48.67 38.94 48.67 

100 39.82 40.71 31.86 38.05 32.74 38.05 

200 42.48 38.94 28.32 34.51 28.32 34.51 

400 52.21 52.21 40.71 49.56 40.71 49.56 

600 54.87 52.21 41.59 54.87 41.59 54.87 

800 45.13 46.90 33.63 47.79 33.63 47.79 

1000 41.59 45.13 34.51 46.02 34.51 46.02 

1500 42.48 46.90 37.17 46.90 37.17 46.90 

Normal NA 

10 47.79 50.44 50.44 50.44 52.21 52.21 

20 38.94 45.13 38.05 46.02 38.94 46.02 

50 38.94 46.02 36.28 45.13 36.28 45.13 

100 38.05 38.05 30.09 35.40 30.97 35.40 

200 46.02 42.48 31.86 38.05 31.86 38.05 

400 54.87 53.98 43.36 51.33 43.36 51.33 

600 54.87 53.10 41.59 55.75 41.59 55.75 

800 45.13 47.79 33.63 48.67 33.63 48.67 

1000 41.59 46.02 34.51 46.90 34.51 46.90 

1500 42.48 46.90 37.17 46.90 37.17 46.90 

Trial 
Epanechnik

ov 

0.1 

10 38.05 41.59 42.48 38.94 46.02 39.82 

20 38.94 45.13 43.36 47.79 45.13 47.79 

50 36.28 46.02 35.40 45.13 35.40 45.13 

100 38.05 37.17 30.09 34.51 30.97 34.51 

200 41.59 38.94 29.20 34.51 29.20 34.51 

400 53.10 53.10 41.59 50.44 41.59 50.44 

600 54.87 53.10 41.59 55.75 41.59 55.75 

800 46.02 46.90 32.74 47.79 32.74 47.79 

1000 42.48 45.13 33.63 46.02 33.63 46.02 

1500 40.71 46.02 35.40 46.02 35.40 46.02 

0.2 

10 38.94 45.13 46.02 42.48 47.79 43.36 

20 39.82 44.25 39.82 43.36 40.71 43.36 

50 39.82 49.56 38.94 48.67 38.94 48.67 
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100 40.71 39.82 30.97 37.17 31.86 37.17 

200 42.48 40.71 30.09 36.28 30.09 36.28 

400 52.21 52.21 40.71 49.56 40.71 49.56 

600 53.98 52.21 40.71 54.87 40.71 54.87 

800 45.13 46.02 31.86 46.90 31.86 46.90 

1000 42.48 45.13 33.63 46.02 33.63 46.02 

1500 42.48 47.79 37.17 47.79 37.17 47.79 

0.5 

10 50.44 53.98 51.33 53.98 52.21 57.52 

20 41.59 46.02 42.48 46.02 43.36 46.02 

50 38.94 48.67 38.05 47.79 38.05 47.79 

100 38.94 40.71 30.09 38.05 30.97 38.05 

200 43.36 41.59 30.97 37.17 30.97 37.17 

400 52.21 52.21 40.71 49.56 40.71 49.56 

600 53.98 52.21 40.71 54.87 40.71 54.87 

800 40.71 41.59 27.43 40.71 27.43 40.71 

1000 39.82 41.59 29.20 40.71 29.20 40.71 

1500 42.48 47.79 37.17 47.79 37.17 47.79 

0.01 

10 6.19 0.88 13.27 5.31 8.85 7.08 

20 42.48 37.17 40.71 38.05 43.36 38.94 

50 36.28 44.25 40.71 50.44 40.71 50.44 

100 38.05 39.82 30.09 33.63 31.86 33.63 

200 45.13 39.82 29.20 33.63 29.20 33.63 

400 54.87 53.10 41.59 50.44 41.59 50.44 

600 55.75 53.98 42.48 56.64 42.48 56.64 

800 46.02 36.28 32.74 37.17 32.74 37.17 

1000 43.36 36.28 32.74 37.17 32.74 37.17 

1500 42.48 35.40 37.17 35.40 37.17 35.40 

0.001 

10 5.31 0.00 13.27 4.42 13.27 8.85 

20 5.31 1.77 5.31 1.77 7.96 3.54 

50 39.82 45.13 38.94 42.48 38.94 42.48 

100 51.33 48.67 39.82 51.33 41.59 51.33 

200 46.02 31.86 43.36 38.05 43.36 38.05 

400 50.44 38.94 37.17 36.28 37.17 36.28 

600 53.10 35.40 38.94 38.05 38.94 38.05 

800 44.25 29.20 30.97 29.20 30.97 29.20 

1000 39.82 27.43 29.20 28.32 29.20 28.32 

1500 38.94 27.43 33.63 29.20 33.63 29.20 

0.0001 
10 5.31 0.00 13.27 4.42 13.27 8.85 

20 5.31 0.00 7.08 0.88 9.73 3.54 
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50 11.50 11.50 9.73 11.50 9.73 11.50 

100 39.82 36.28 44.25 46.90 44.25 46.90 

200 43.36 34.51 45.13 39.82 45.13 39.82 

400 43.36 42.48 44.25 38.94 44.25 38.94 

600 43.36 42.48 44.25 44.25 44.25 44.25 

800 42.48 35.40 36.28 35.40 36.28 35.40 

1000 38.05 34.51 35.40 33.63 35.40 33.63 

1500 40.71 33.63 38.05 33.63 38.05 33.63 

1 

10 50.44 53.98 51.33 53.98 53.10 57.52 

20 41.59 46.02 42.48 46.02 43.36 46.02 

50 38.94 48.67 38.05 47.79 38.05 47.79 

100 40.71 39.82 30.97 37.17 31.86 37.17 

200 43.36 41.59 30.97 37.17 30.97 37.17 

400 52.21 52.21 40.71 49.56 40.71 49.56 

600 53.98 52.21 40.71 54.87 40.71 54.87 

800 41.59 42.48 28.32 43.36 28.32 43.36 

1000 41.59 44.25 32.74 45.13 32.74 45.13 

1500 42.48 48.67 37.17 48.67 37.17 48.67 

1.5 

10 50.44 53.98 51.33 53.98 53.10 57.52 

20 41.59 46.02 42.48 46.02 43.36 46.90 

50 38.94 48.67 38.05 47.79 38.05 47.79 

100 40.71 39.82 30.97 37.17 31.86 37.17 

200 43.36 41.59 30.97 37.17 30.97 37.17 

400 52.21 52.21 40.71 49.56 40.71 49.56 

600 53.98 52.21 40.71 54.87 40.71 54.87 

800 41.59 42.48 28.32 43.36 28.32 43.36 

1000 41.59 44.25 32.74 45.13 32.74 45.13 

1500 42.48 48.67 37.17 48.67 37.17 48.67 

5 

10 50.44 53.98 51.33 53.98 53.10 57.52 

20 41.59 46.02 41.59 46.02 42.48 46.90 

50 38.94 48.67 38.05 47.79 38.05 47.79 

100 40.71 39.82 30.97 37.17 31.86 37.17 

200 43.36 41.59 30.97 37.17 30.97 37.17 

400 52.21 52.21 40.71 49.56 40.71 49.56 

600 53.98 52.21 40.71 54.87 40.71 54.87 

800 42.48 43.36 27.43 44.25 27.43 44.25 

1000 41.59 44.25 32.74 45.13 32.74 45.13 

1500 42.48 48.67 37.17 48.67 37.17 48.67 

10 10 50.44 53.98 51.33 53.98 53.10 57.52 
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20 41.59 46.02 41.59 46.02 42.48 46.90 

50 38.94 48.67 38.05 47.79 38.05 47.79 

100 40.71 39.82 30.97 37.17 31.86 37.17 

200 43.36 41.59 30.97 37.17 30.97 37.17 

400 52.21 52.21 40.71 49.56 40.71 49.56 

600 53.98 52.21 40.71 54.87 40.71 54.87 

800 42.48 43.36 27.43 44.25 27.43 44.25 

1000 41.59 44.25 32.74 45.13 32.74 45.13 

1500 42.48 48.67 37.17 48.67 37.17 48.67 

100 

10 50.44 53.98 51.33 53.98 53.10 57.52 

20 41.59 46.02 41.59 46.02 42.48 46.90 

50 38.94 48.67 38.05 47.79 38.05 47.79 

100 40.71 39.82 30.97 37.17 31.86 37.17 

200 43.36 41.59 30.97 37.17 30.97 37.17 

400 52.21 52.21 40.71 49.56 40.71 49.56 

600 53.98 52.21 40.71 54.87 40.71 54.87 

800 42.48 43.36 27.43 44.25 27.43 44.25 

1000 41.59 44.25 32.74 45.13 32.74 45.13 

1500 42.48 48.67 37.17 48.67 37.17 48.67 

1000 

10 50.44 53.98 51.33 53.98 53.10 57.52 

20 41.59 46.02 41.59 46.02 42.48 46.90 

50 38.94 48.67 38.05 47.79 38.05 47.79 

100 45.13 42.48 35.40 39.82 36.28 39.82 

200 46.02 38.94 32.74 34.51 32.74 34.51 

400 55.75 52.21 44.25 49.56 44.25 49.56 

600 55.75 51.33 43.36 53.98 43.36 53.98 

800 40.71 41.59 27.43 42.48 27.43 42.48 

1000 40.71 44.25 31.86 45.13 31.86 45.13 

1500 42.48 46.90 37.17 46.90 37.17 46.90 

Normal 0.1 

10 33.63 35.40 38.94 34.51 39.82 35.40 

20 39.82 40.71 40.71 41.59 42.48 41.59 

50 38.94 46.90 32.74 42.48 32.74 42.48 

100 38.94 38.05 29.20 35.40 30.09 35.40 

200 44.25 41.59 31.86 37.17 31.86 37.17 

400 53.10 53.10 41.59 50.44 41.59 50.44 

600 54.87 53.10 41.59 55.75 41.59 55.75 

800 46.02 46.90 32.74 47.79 32.74 47.79 

1000 42.48 46.02 33.63 46.90 33.63 46.90 

1500 40.71 46.02 35.40 46.02 35.40 46.02 
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0.2 

10 37.17 45.13 45.13 42.48 46.90 43.36 

20 39.82 45.13 38.94 44.25 39.82 44.25 

50 36.28 46.02 35.40 45.13 35.40 45.13 

100 39.82 39.82 30.09 37.17 30.97 37.17 

200 39.82 38.05 27.43 33.63 27.43 33.63 

400 52.21 52.21 40.71 49.56 40.71 49.56 

600 54.87 53.10 41.59 55.75 41.59 55.75 

800 46.02 46.90 32.74 47.79 32.74 47.79 

1000 42.48 45.13 33.63 46.02 33.63 46.02 

1500 42.48 46.02 37.17 46.02 37.17 46.02 

0.5 

10 49.56 52.21 50.44 52.21 51.33 53.98 

20 41.59 46.02 42.48 45.13 43.36 45.13 

50 39.82 49.56 38.94 48.67 38.94 48.67 

100 39.82 39.82 30.09 37.17 30.97 37.17 

200 43.36 41.59 30.97 37.17 30.97 37.17 

400 52.21 52.21 40.71 49.56 40.71 49.56 

600 53.98 52.21 40.71 54.87 40.71 54.87 

800 43.36 43.36 28.32 44.25 28.32 44.25 

1000 41.59 44.25 32.74 45.13 32.74 45.13 

1500 42.48 48.67 37.17 48.67 37.17 48.67 

0.01 

10 49.56 47.79 53.98 47.79 49.56 49.56 

20 40.71 36.28 37.17 37.17 39.82 38.05 

50 36.28 44.25 38.94 48.67 38.94 48.67 

100 35.40 39.82 29.20 35.40 30.97 35.40 

200 45.13 39.82 29.20 33.63 29.20 33.63 

400 54.87 53.10 41.59 50.44 41.59 50.44 

600 54.87 53.10 43.36 55.75 43.36 55.75 

800 45.13 38.05 33.63 38.94 33.63 38.94 

1000 43.36 38.94 32.74 39.82 32.74 39.82 

1500 43.36 39.82 38.05 39.82 38.05 39.82 

0.001 

10 5.31 0.00 13.27 3.54 12.39 7.08 

20 23.01 22.12 24.78 21.24 27.43 23.01 

50 38.94 44.25 41.59 43.36 41.59 43.36 

100 53.10 45.13 38.05 46.02 38.94 46.02 

200 46.02 32.74 43.36 35.40 43.36 35.40 

400 50.44 40.71 37.17 37.17 37.17 37.17 

600 51.33 37.17 39.82 38.94 39.82 38.94 

800 42.48 28.32 30.09 30.09 30.09 30.09 

1000 39.82 28.32 30.97 29.20 30.97 29.20 
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1500 38.94 28.32 35.40 30.09 35.40 30.09 

0.0001 

10 5.31 0.00 13.27 4.42 13.27 8.85 

20 5.31 0.00 7.08 0.88 9.73 3.54 

50 37.17 30.97 35.40 29.20 35.40 29.20 

100 41.59 33.63 44.25 42.48 44.25 42.48 

200 39.82 32.74 43.36 38.05 43.36 38.05 

400 44.25 38.94 43.36 37.17 43.36 37.17 

600 45.13 40.71 44.25 42.48 44.25 42.48 

800 44.25 36.28 38.05 36.28 38.05 36.28 

1000 41.59 34.51 34.51 35.40 34.51 35.40 

1500 38.94 32.74 38.05 32.74 38.05 32.74 

1 

10 50.44 53.98 51.33 53.98 53.10 57.52 

20 41.59 46.02 42.48 46.02 43.36 46.02 

50 39.82 49.56 38.94 48.67 38.94 48.67 

100 40.71 39.82 30.97 37.17 31.86 37.17 

200 43.36 41.59 30.97 37.17 30.97 37.17 

400 52.21 52.21 40.71 49.56 40.71 49.56 

600 53.98 52.21 40.71 54.87 40.71 54.87 

800 42.48 43.36 27.43 44.25 27.43 44.25 

1000 41.59 44.25 32.74 45.13 32.74 45.13 

1500 42.48 48.67 37.17 48.67 37.17 48.67 

1.5 

10 50.44 53.98 51.33 53.98 53.10 57.52 

20 41.59 46.02 42.48 46.02 43.36 46.02 

50 39.82 49.56 38.94 48.67 38.94 48.67 

100 40.71 39.82 30.97 37.17 31.86 37.17 

200 43.36 41.59 30.97 37.17 30.97 37.17 

400 52.21 52.21 40.71 49.56 40.71 49.56 

600 53.98 52.21 40.71 54.87 40.71 54.87 

800 42.48 43.36 27.43 44.25 27.43 44.25 

1000 41.59 44.25 32.74 45.13 32.74 45.13 

1500 42.48 48.67 37.17 48.67 37.17 48.67 

5 

10 50.44 53.98 51.33 53.98 53.10 57.52 

20 41.59 46.02 41.59 46.02 42.48 46.90 

50 38.94 48.67 38.05 47.79 38.05 47.79 

100 40.71 39.82 30.97 37.17 31.86 37.17 

200 43.36 41.59 30.97 37.17 30.97 37.17 

400 52.21 52.21 40.71 49.56 40.71 49.56 

600 53.98 52.21 40.71 54.87 40.71 54.87 

800 42.48 43.36 27.43 44.25 27.43 44.25 
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1000 41.59 44.25 32.74 45.13 32.74 45.13 

1500 42.48 48.67 37.17 48.67 37.17 48.67 

10 

10 50.44 53.98 51.33 53.98 53.10 57.52 

20 41.59 46.02 41.59 46.02 42.48 46.90 

50 38.94 48.67 38.05 47.79 38.05 47.79 

100 40.71 39.82 30.97 37.17 31.86 37.17 

200 43.36 41.59 30.97 37.17 30.97 37.17 

400 52.21 52.21 40.71 49.56 40.71 49.56 

600 53.98 52.21 40.71 54.87 40.71 54.87 

800 42.48 43.36 27.43 44.25 27.43 44.25 

1000 41.59 44.25 32.74 45.13 32.74 45.13 

1500 42.48 48.67 37.17 48.67 37.17 48.67 

100 

10 50.44 53.98 51.33 53.98 53.10 57.52 

20 41.59 46.02 41.59 46.02 42.48 46.90 

50 38.94 48.67 38.05 47.79 38.05 47.79 

100 40.71 39.82 30.97 37.17 31.86 37.17 

200 43.36 41.59 30.97 37.17 30.97 37.17 

400 52.21 52.21 40.71 49.56 40.71 49.56 

600 53.98 52.21 40.71 54.87 40.71 54.87 

800 42.48 43.36 27.43 44.25 27.43 44.25 

1000 41.59 44.25 32.74 45.13 32.74 45.13 

1500 42.48 48.67 37.17 48.67 37.17 48.67 

1000 

10 50.44 53.98 51.33 53.98 53.10 57.52 

20 41.59 46.02 41.59 46.02 42.48 46.90 

50 38.94 48.67 38.05 47.79 38.05 47.79 

100 41.59 39.82 31.86 37.17 32.74 37.17 

200 43.36 41.59 30.97 37.17 30.97 37.17 

400 52.21 52.21 40.71 49.56 40.71 49.56 

600 53.10 52.21 40.71 54.87 40.71 54.87 

800 42.48 43.36 27.43 44.25 27.43 44.25 

1000 40.71 44.25 32.74 45.13 32.74 45.13 

1500 42.48 48.67 37.17 48.67 37.17 48.67 

 

Table 79. Results from the comparison of the measures of dependence versus the MI 

calculated using the KNN method for detecting the input with the greatest impact on the 

output per number of k-nearest neighbors and per number of replications. 
Number k-nearest 

neighbors 

Number of 

replications 

Distance 

correlation 

Pearson 

correlation 
𝑹𝟐𝒂𝒅𝒋 
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NIS % TIS % NIS % TIS % NIS % TIS % 

1 

10 39.82 43.36 39.82 39.82 39.82 38.94 

20 39.82 35.40 38.05 35.40 38.94 35.40 

50 41.59 36.28 46.02 38.05 46.02 38.05 

100 53.10 40.71 45.13 37.17 45.13 37.17 

200 48.67 45.13 53.98 45.13 53.98 45.13 

400 47.79 42.48 39.82 35.40 39.82 35.40 

600 43.36 47.79 38.94 40.71 38.94 40.71 

800 41.59 49.56 45.13 45.13 45.13 45.13 

1000 46.90 61.06 44.25 55.75 44.25 55.75 

1500 47.79 58.41 46.02 58.41 46.02 58.41 

2 

10 38.94 40.71 36.28 38.94 36.28 38.05 

20 46.02 42.48 42.48 43.36 43.36 43.36 

50 37.17 44.25 40.71 47.79 40.71 47.79 

100 41.59 33.63 31.86 30.09 31.86 30.09 

200 46.02 35.40 40.71 33.63 40.71 33.63 

400 55.75 44.25 37.17 38.94 37.17 38.94 

600 43.36 35.40 38.05 34.51 38.05 34.51 

800 42.48 37.17 38.94 36.28 38.94 36.28 

1000 43.36 34.51 35.40 30.97 35.40 30.97 

1500 51.33 38.05 46.90 34.51 46.90 34.51 

3 

10 48.67 49.56 46.02 44.25 46.02 43.36 

20 38.05 45.13 43.36 46.02 44.25 46.02 

50 43.36 44.25 44.25 42.48 44.25 42.48 

100 44.25 39.82 39.82 38.05 39.82 38.05 

200 46.90 35.40 36.28 35.40 36.28 35.40 

400 53.98 33.63 42.48 31.86 42.48 31.86 

600 54.87 28.32 46.90 31.86 46.90 31.86 

800 42.48 26.55 29.20 26.55 29.20 26.55 

1000 36.28 26.55 30.97 25.66 30.97 25.66 

1500 39.82 28.32 36.28 29.20 36.28 29.20 

4 

10 46.02 47.79 42.48 44.25 42.48 43.36 

20 40.71 38.05 40.71 37.17 41.59 37.17 

50 45.13 46.90 44.25 50.44 44.25 50.44 

100 51.33 45.13 43.36 39.82 43.36 39.82 

200 46.90 38.05 38.05 34.51 38.05 34.51 

400 57.52 39.82 44.25 36.28 44.25 36.28 

600 52.21 34.51 46.02 39.82 46.02 39.82 

800 42.48 32.74 30.97 32.74 30.97 32.74 
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1000 42.48 27.43 34.51 25.66 34.51 25.66 

1500 41.59 30.97 36.28 28.32 36.28 28.32 

5 

10 46.90 49.56 50.44 49.56 50.44 48.67 

20 38.05 38.05 38.05 39.82 38.94 39.82 

50 39.82 46.90 42.48 48.67 42.48 48.67 

100 45.13 39.82 37.17 34.51 37.17 34.51 

200 53.10 39.82 40.71 36.28 40.71 36.28 

400 58.41 43.36 46.90 39.82 46.90 39.82 

600 50.44 36.28 40.71 38.05 40.71 38.05 

800 46.02 33.63 30.97 31.86 30.97 31.86 

1000 39.82 28.32 30.09 28.32 30.09 28.32 

1500 40.71 28.32 31.86 27.43 31.86 27.43 

6 

10 46.02 51.33 46.90 46.02 46.90 45.13 

20 43.36 42.48 41.59 40.71 42.48 40.71 

50 35.40 46.02 38.94 49.56 38.94 49.56 

100 42.48 44.25 34.51 37.17 34.51 37.17 

200 43.36 36.28 32.74 30.97 32.74 30.97 

400 58.41 46.90 45.13 43.36 45.13 43.36 

600 56.64 43.36 46.90 46.90 46.90 46.90 

800 45.13 30.97 31.86 30.97 31.86 30.97 

1000 41.59 27.43 29.20 27.43 29.20 27.43 

1500 43.36 30.09 36.28 31.86 36.28 31.86 

7 

10 53.10 53.10 51.33 51.33 51.33 50.44 

20 46.02 46.02 46.02 47.79 46.90 47.79 

50 40.71 47.79 40.71 47.79 40.71 47.79 

100 44.25 43.36 38.05 39.82 38.05 39.82 

200 49.56 42.48 37.17 37.17 37.17 37.17 

400 56.64 46.90 45.13 45.13 45.13 45.13 

600 58.41 39.82 46.90 41.59 46.90 41.59 

800 44.25 34.51 34.51 32.74 34.51 32.74 

1000 38.94 30.09 28.32 28.32 28.32 28.32 

1500 40.71 27.43 35.40 29.20 35.40 29.20 

8 

10 55.75 53.98 53.98 52.21 52.21 51.33 

20 43.36 45.13 41.59 50.44 42.48 50.44 

50 42.48 40.71 45.13 42.48 45.13 42.48 

100 43.36 42.48 35.40 37.17 35.40 37.17 

200 47.79 40.71 37.17 33.63 37.17 33.63 

400 57.52 48.67 46.02 46.90 46.02 46.90 

600 55.75 50.44 44.25 53.98 44.25 53.98 
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800 44.25 34.51 30.97 32.74 30.97 32.74 

1000 41.59 30.97 29.20 30.97 29.20 30.97 

1500 38.05 30.09 34.51 31.86 34.51 31.86 

9 

10 46.90 53.10 45.13 51.33 48.67 51.33 

20 41.59 53.10 39.82 51.33 40.71 51.33 

50 38.94 41.59 40.71 38.05 40.71 38.05 

100 46.02 43.36 32.74 36.28 32.74 36.28 

200 47.79 38.05 35.40 30.97 35.40 30.97 

400 57.52 50.44 47.79 48.67 47.79 48.67 

600 59.29 50.44 46.02 52.21 46.02 52.21 

800 43.36 35.40 30.09 31.86 30.09 31.86 

1000 40.71 30.09 31.86 30.09 31.86 30.09 

1500 40.71 30.09 35.40 31.86 35.40 31.86 

 

Table 80. Results from the comparison of the measures of dependence versus the MI 

calculated using the KNN method for detecting the input with the least impact on the 

output per number of k-nearest neighbors and per number of replications. 

Number k-nearest 

neighbors 

Number of 

replications 

Distance 

correlation 

Pearson 

correlation 
𝑹𝟐𝒂𝒅𝒋 

NIS % TIS % NIS % TIS % NIS % TIS % 

1 

10 46.02 49.56 38.05 41.59 37.17 37.17 

20 45.13 43.36 38.05 39.82 37.17 36.28 

50 49.56 44.25 53.98 45.13 51.33 45.13 

100 58.41 47.79 48.67 41.59 46.90 41.59 

200 52.21 53.10 55.75 50.44 55.75 50.44 

400 50.44 46.02 44.25 39.82 44.25 39.82 

600 44.25 51.33 40.71 44.25 40.71 44.25 

800 46.02 59.29 51.33 55.75 51.33 55.75 

1000 48.67 63.72 47.79 59.29 47.79 59.29 

1500 49.56 61.95 48.67 61.95 48.67 61.95 

2 

10 43.36 44.25 33.63 38.05 34.51 33.63 

20 50.44 48.67 40.71 46.90 39.82 43.36 

50 43.36 53.10 47.79 57.52 45.13 57.52 

100 46.02 40.71 36.28 36.28 34.51 36.28 

200 54.87 45.13 49.56 42.48 49.56 42.48 

400 64.60 49.56 45.13 45.13 45.13 45.13 

600 49.56 45.13 43.36 44.25 43.36 44.25 

800 47.79 44.25 45.13 43.36 45.13 43.36 
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1000 47.79 40.71 40.71 36.28 40.71 36.28 

1500 53.10 45.13 47.79 41.59 47.79 41.59 

3 

10 47.79 53.98 38.94 44.25 39.82 39.82 

20 45.13 52.21 44.25 50.44 43.36 46.90 

50 47.79 50.44 46.90 47.79 44.25 47.79 

100 46.90 47.79 42.48 45.13 40.71 45.13 

200 51.33 40.71 40.71 41.59 40.71 41.59 

400 60.18 43.36 47.79 41.59 47.79 41.59 

600 61.95 37.17 53.10 40.71 53.10 40.71 

800 46.90 33.63 33.63 34.51 33.63 34.51 

1000 41.59 33.63 36.28 32.74 36.28 32.74 

1500 43.36 33.63 39.82 33.63 39.82 33.63 

4 

10 48.67 53.98 38.05 47.79 38.94 43.36 

20 46.90 44.25 40.71 40.71 39.82 37.17 

50 50.44 53.10 49.56 55.75 46.90 55.75 

100 52.21 48.67 45.13 44.25 43.36 44.25 

200 49.56 42.48 41.59 39.82 41.59 39.82 

400 60.18 46.90 46.90 43.36 46.90 43.36 

600 57.52 45.13 51.33 50.44 51.33 50.44 

800 47.79 39.82 35.40 39.82 35.40 39.82 

1000 48.67 34.51 39.82 33.63 39.82 33.63 

1500 44.25 37.17 38.94 35.40 38.94 35.40 

5 

10 48.67 53.10 46.02 50.44 46.90 46.02 

20 47.79 48.67 41.59 46.90 40.71 43.36 

50 47.79 55.75 48.67 56.64 46.02 56.64 

100 47.79 46.02 39.82 40.71 38.05 40.71 

200 54.87 45.13 43.36 42.48 43.36 42.48 

400 61.95 50.44 50.44 46.90 50.44 46.90 

600 56.64 46.90 46.90 48.67 46.90 48.67 

800 51.33 39.82 35.40 38.05 35.40 38.05 

1000 47.79 36.28 37.17 37.17 37.17 37.17 

1500 45.13 35.40 36.28 35.40 36.28 35.40 

6 

10 49.56 57.52 42.48 47.79 42.48 43.36 

20 47.79 46.90 40.71 43.36 39.82 39.82 

50 43.36 53.98 47.79 58.41 45.13 58.41 

100 47.79 53.10 39.82 45.13 38.05 45.13 

200 48.67 44.25 38.94 38.05 38.94 38.05 

400 61.06 54.87 47.79 51.33 47.79 51.33 

600 62.83 51.33 53.10 54.87 53.10 54.87 



432 

 

800 51.33 38.94 37.17 38.94 37.17 38.94 

1000 48.67 35.40 36.28 36.28 36.28 36.28 

1500 50.44 38.05 43.36 39.82 43.36 39.82 

7 

10 54.87 57.52 46.90 53.10 46.90 48.67 

20 50.44 53.10 45.13 53.10 44.25 49.56 

50 47.79 54.87 48.67 55.75 46.02 55.75 

100 46.90 51.33 40.71 46.90 38.94 46.90 

200 53.10 47.79 41.59 43.36 41.59 43.36 

400 58.41 53.98 46.90 52.21 46.90 52.21 

600 61.06 46.90 50.44 49.56 50.44 49.56 

800 51.33 42.48 41.59 40.71 41.59 40.71 

1000 46.90 38.05 36.28 37.17 36.28 37.17 

1500 47.79 37.17 42.48 38.94 42.48 38.94 

8 

10 60.18 60.18 50.44 55.75 51.33 51.33 

20 53.10 55.75 46.02 57.52 45.13 53.98 

50 50.44 49.56 53.98 51.33 51.33 51.33 

100 45.13 48.67 37.17 44.25 35.40 44.25 

200 51.33 46.90 41.59 40.71 41.59 40.71 

400 61.95 55.75 50.44 53.98 50.44 53.98 

600 61.95 57.52 50.44 61.95 50.44 61.95 

800 50.44 41.59 37.17 39.82 37.17 39.82 

1000 48.67 39.82 37.17 40.71 37.17 40.71 

1500 45.13 38.05 41.59 39.82 41.59 39.82 

9 

10 46.90 56.64 43.36 53.10 44.25 48.67 

20 47.79 61.06 40.71 57.52 39.82 53.98 

50 48.67 51.33 50.44 47.79 47.79 47.79 

100 50.44 53.10 37.17 45.13 35.40 45.13 

200 51.33 44.25 39.82 38.05 39.82 38.05 

400 61.06 58.41 51.33 56.64 51.33 56.64 

600 65.49 58.41 52.21 61.06 52.21 61.06 

800 50.44 43.36 37.17 39.82 37.17 39.82 

1000 46.02 37.17 38.05 38.05 38.05 38.05 

1500 46.90 37.17 41.59 38.94 41.59 38.94 

 

Table 81. Results from the comparison of the measures of dependence versus the MI 

calculated using the fuzzy-histogram based method for detecting the input with the 

greatest impact on the output per membership function, per number of fuzzy subsets, and 

per number of replications. 
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Membership 

function 

Number of 

fuzzy 

subsets 

Number of 

replications 

Distance 

correlation 

Pearson 

correlation 
𝑹𝟐𝒂𝒅𝒋 

NIS % TIS % NIS % TIS % NIS % TIS % 

Cosine 

2 

10 26.55 17.70 10.62 7.08 14.16 7.08 

20 23.89 15.04 18.58 8.85 19.47 8.85 

50 29.20 13.27 21.24 7.96 21.24 7.96 

100 36.28 21.24 19.47 10.62 19.47 10.62 

200 37.17 21.24 19.47 8.85 19.47 8.85 

400 44.25 23.89 30.97 13.27 30.97 13.27 

600 41.59 24.78 28.32 12.39 28.32 12.39 

800 42.48 28.32 25.66 17.70 25.66 17.70 

1000 43.36 29.20 25.66 18.58 25.66 18.58 

1500 38.05 29.20 25.66 18.58 25.66 18.58 

5 

10 30.09 19.47 14.16 12.39 17.70 12.39 

20 23.01 12.39 19.47 7.96 20.35 7.96 

50 33.63 12.39 27.43 8.85 27.43 8.85 

100 33.63 20.35 16.81 9.73 16.81 9.73 

200 38.05 21.24 22.12 10.62 22.12 10.62 

400 43.36 24.78 30.09 12.39 30.09 12.39 

600 39.82 24.78 28.32 12.39 28.32 12.39 

800 42.48 29.20 27.43 18.58 27.43 18.58 

1000 45.13 29.20 27.43 18.58 27.43 18.58 

1500 39.82 29.20 25.66 18.58 25.66 18.58 

10 

10 30.97 20.35 15.04 13.27 18.58 13.27 

20 22.12 15.04 18.58 8.85 19.47 8.85 

50 35.40 13.27 27.43 7.96 27.43 7.96 

100 36.28 23.01 19.47 10.62 19.47 10.62 

200 43.36 21.24 27.43 10.62 27.43 10.62 

400 45.13 24.78 31.86 12.39 31.86 12.39 

600 38.94 25.66 29.20 13.27 29.20 13.27 

800 43.36 28.32 26.55 17.70 26.55 17.70 

1000 45.13 28.32 25.66 17.70 25.66 17.70 

1500 42.48 29.20 28.32 18.58 28.32 18.58 

25 

10 23.01 22.12 9.73 15.04 10.62 15.04 

20 29.20 19.47 27.43 13.27 24.78 13.27 

50 33.63 13.27 29.20 9.73 29.20 9.73 

100 39.82 20.35 24.78 13.27 24.78 13.27 

200 42.48 22.12 30.09 11.50 30.09 11.50 

400 46.90 23.89 38.94 13.27 38.94 13.27 
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600 41.59 24.78 35.40 14.16 35.40 14.16 

800 46.02 28.32 30.97 17.70 30.97 17.70 

1000 47.79 28.32 30.09 17.70 30.09 17.70 

1500 44.25 29.20 33.63 20.35 33.63 20.35 

50 

10 26.55 15.93 11.50 7.08 14.16 7.08 

20 30.09 18.58 30.09 14.16 26.55 14.16 

50 38.94 18.58 30.97 15.04 30.97 15.04 

100 36.28 19.47 30.97 18.58 30.97 18.58 

200 43.36 22.12 34.51 22.12 34.51 22.12 

400 49.56 21.24 43.36 14.16 43.36 14.16 

600 43.36 22.12 37.17 13.27 37.17 13.27 

800 41.59 29.20 40.71 18.58 40.71 18.58 

1000 45.13 30.97 41.59 20.35 41.59 20.35 

1500 46.90 31.86 45.13 23.01 45.13 23.01 

100 

10 23.01 17.70 12.39 10.62 14.16 10.62 

20 38.05 22.12 34.51 17.70 30.09 17.70 

50 41.59 20.35 35.40 18.58 35.40 18.58 

100 36.28 25.66 38.05 24.78 38.05 24.78 

200 43.36 27.43 44.25 27.43 44.25 27.43 

400 44.25 24.78 43.36 23.01 43.36 23.01 

600 43.36 23.89 40.71 20.35 40.71 20.35 

800 38.94 30.09 42.48 23.89 42.48 23.89 

1000 38.94 30.97 43.36 24.78 43.36 24.78 

1500 42.48 31.86 40.71 26.55 40.71 26.55 

200 

10 35.40 25.66 28.32 18.58 30.09 17.70 

20 35.40 20.35 37.17 17.70 34.51 17.70 

50 44.25 20.35 39.82 16.81 39.82 16.81 

100 40.71 26.55 42.48 27.43 42.48 27.43 

200 43.36 31.86 42.48 30.09 42.48 30.09 

400 44.25 29.20 47.79 29.20 47.79 29.20 

600 40.71 28.32 44.25 23.89 44.25 23.89 

800 41.59 34.51 48.67 28.32 48.67 28.32 

1000 45.13 34.51 49.56 29.20 49.56 29.20 

1500 46.02 32.74 49.56 28.32 49.56 28.32 

500 

10 42.48 29.20 37.17 18.58 38.05 18.58 

20 39.82 28.32 39.82 23.01 36.28 23.01 

50 51.33 23.01 47.79 19.47 47.79 19.47 

100 38.05 30.09 45.13 32.74 45.13 32.74 

200 46.90 30.09 43.36 30.09 43.36 30.09 
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400 43.36 30.97 47.79 30.97 47.79 30.97 

600 41.59 29.20 49.56 27.43 49.56 27.43 

800 46.02 33.63 49.56 27.43 49.56 27.43 

1000 49.56 34.51 52.21 30.09 52.21 30.09 

1500 48.67 34.51 52.21 31.86 52.21 31.86 

1000 

10 41.59 30.97 37.17 23.89 36.28 23.01 

20 38.05 30.09 39.82 27.43 35.40 27.43 

50 46.90 23.89 38.05 18.58 38.05 18.58 

100 46.90 34.51 48.67 35.40 48.67 35.40 

200 46.02 31.86 35.40 30.09 35.40 30.09 

400 41.59 31.86 43.36 29.20 43.36 29.20 

600 39.82 30.09 46.90 29.20 46.90 29.20 

800 44.25 33.63 50.44 30.09 50.44 30.09 

1000 45.13 38.05 56.64 37.17 56.64 37.17 

1500 45.13 35.40 54.87 32.74 54.87 32.74 

fCrisp 

2 

10 11.50 2.65 6.19 1.77 9.73 1.77 

20 30.09 14.16 23.89 10.62 23.89 10.62 

50 31.86 17.70 23.89 12.39 23.89 12.39 

100 45.13 23.01 30.97 14.16 30.97 14.16 

200 46.90 22.12 30.09 12.39 30.09 12.39 

400 46.90 22.12 33.63 14.16 33.63 14.16 

600 46.90 23.89 31.86 12.39 31.86 12.39 

800 51.33 30.09 32.74 19.47 32.74 19.47 

1000 49.56 30.97 30.97 22.12 30.97 22.12 

1500 45.13 30.09 30.09 21.24 30.09 21.24 

5 

10 38.94 17.70 28.32 16.81 31.86 16.81 

20 30.09 13.27 28.32 11.50 29.20 11.50 

50 36.28 14.16 30.09 12.39 30.09 12.39 

100 38.94 20.35 19.47 7.96 19.47 7.96 

200 45.13 21.24 25.66 11.50 25.66 11.50 

400 46.02 25.66 33.63 14.16 33.63 14.16 

600 46.90 25.66 34.51 15.04 34.51 15.04 

800 45.13 31.86 30.09 21.24 30.09 21.24 

1000 47.79 31.86 29.20 21.24 29.20 21.24 

1500 42.48 30.97 23.89 22.12 23.89 22.12 

10 

10 32.74 15.93 23.01 13.27 25.66 12.39 

20 32.74 17.70 28.32 12.39 27.43 12.39 

50 38.05 16.81 31.86 9.73 31.86 9.73 

100 41.59 23.89 23.89 13.27 23.89 13.27 
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200 49.56 21.24 30.97 11.50 30.97 11.50 

400 47.79 25.66 34.51 15.93 34.51 15.93 

600 46.02 24.78 36.28 13.27 36.28 13.27 

800 46.90 30.09 31.86 17.70 31.86 17.70 

1000 46.02 29.20 26.55 16.81 26.55 16.81 

1500 46.02 30.09 28.32 19.47 28.32 19.47 

25 

10 28.32 15.04 20.35 11.50 23.01 11.50 

20 36.28 19.47 33.63 17.70 34.51 17.70 

50 37.17 17.70 31.86 14.16 31.86 14.16 

100 37.17 23.01 23.89 15.04 23.89 15.04 

200 41.59 20.35 33.63 15.93 33.63 15.93 

400 47.79 21.24 39.82 15.93 39.82 15.93 

600 45.13 22.12 35.40 13.27 35.40 13.27 

800 43.36 30.97 33.63 22.12 33.63 22.12 

1000 44.25 31.86 35.40 19.47 35.40 19.47 

1500 44.25 30.97 38.94 22.12 38.94 22.12 

50 

10 30.09 16.81 18.58 9.73 19.47 9.73 

20 32.74 19.47 34.51 15.04 30.97 15.04 

50 42.48 17.70 33.63 14.16 33.63 14.16 

100 39.82 23.01 38.05 23.89 38.05 23.89 

200 40.71 24.78 34.51 23.01 34.51 23.01 

400 48.67 23.01 46.02 15.93 46.02 15.93 

600 45.13 24.78 40.71 15.93 40.71 15.93 

800 41.59 29.20 40.71 22.12 40.71 22.12 

1000 44.25 30.09 40.71 23.01 40.71 23.01 

1500 46.90 33.63 43.36 24.78 43.36 24.78 

100 

10 30.09 17.70 17.70 12.39 19.47 11.50 

20 38.94 22.12 37.17 18.58 33.63 18.58 

50 46.90 21.24 46.90 21.24 46.90 21.24 

100 36.28 27.43 41.59 26.55 41.59 26.55 

200 41.59 25.66 38.94 27.43 38.94 27.43 

400 43.36 29.20 44.25 27.43 44.25 27.43 

600 42.48 27.43 45.13 23.89 45.13 23.89 

800 40.71 30.97 42.48 24.78 42.48 24.78 

1000 41.59 31.86 44.25 26.55 44.25 26.55 

1500 41.59 32.74 43.36 28.32 43.36 28.32 

200 

10 29.20 13.27 18.58 6.19 20.35 6.19 

20 24.78 17.70 25.66 13.27 23.89 13.27 

50 45.13 22.12 39.82 18.58 39.82 18.58 
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100 40.71 28.32 38.94 27.43 38.94 27.43 

200 42.48 30.97 46.90 33.63 46.90 33.63 

400 46.02 28.32 47.79 28.32 47.79 28.32 

600 43.36 30.09 45.13 28.32 45.13 28.32 

800 45.13 34.51 48.67 28.32 48.67 28.32 

1000 46.02 36.28 48.67 30.97 48.67 30.97 

1500 45.13 33.63 50.44 29.20 50.44 29.20 

500 

10 20.35 14.16 15.04 8.85 15.93 7.96 

20 22.12 13.27 21.24 11.50 20.35 11.50 

50 49.56 23.01 48.67 22.12 48.67 22.12 

100 42.48 36.28 43.36 32.74 43.36 32.74 

200 46.90 31.86 34.51 26.55 34.51 26.55 

400 42.48 29.20 46.90 30.97 46.90 30.97 

600 38.05 29.20 46.90 26.55 46.90 26.55 

800 46.02 33.63 45.13 28.32 45.13 28.32 

1000 47.79 35.40 52.21 32.74 52.21 32.74 

1500 49.56 35.40 51.33 32.74 51.33 32.74 

1000 

10 16.81 12.39 11.50 7.08 12.39 6.19 

20 18.58 13.27 19.47 10.62 18.58 10.62 

50 41.59 30.97 35.40 25.66 35.40 25.66 

100 44.25 38.05 46.90 36.28 46.90 36.28 

200 47.79 33.63 48.67 36.28 48.67 36.28 

400 43.36 30.09 50.44 30.97 50.44 30.97 

600 41.59 30.97 46.90 30.09 46.90 30.09 

800 44.25 34.51 52.21 29.20 52.21 29.20 

1000 45.13 38.05 53.98 36.28 53.98 36.28 

1500 42.48 33.63 46.90 30.97 46.90 30.97 

Triangular 

2 

10 26.55 17.70 10.62 8.85 14.16 8.85 

20 23.01 13.27 17.70 7.08 18.58 7.08 

50 29.20 13.27 23.01 7.96 23.01 7.96 

100 34.51 22.12 15.93 9.73 15.93 9.73 

200 38.05 20.35 18.58 7.96 18.58 7.96 

400 38.05 23.89 26.55 11.50 26.55 11.50 

600 38.94 24.78 25.66 12.39 25.66 12.39 

800 43.36 27.43 26.55 16.81 26.55 16.81 

1000 44.25 28.32 26.55 17.70 26.55 17.70 

1500 38.05 28.32 25.66 17.70 25.66 17.70 

5 
10 25.66 18.58 9.73 11.50 13.27 11.50 

20 21.24 14.16 17.70 7.96 18.58 7.96 
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50 32.74 13.27 24.78 7.96 24.78 7.96 

100 31.86 21.24 16.81 10.62 16.81 10.62 

200 38.05 21.24 22.12 10.62 22.12 10.62 

400 43.36 23.89 30.09 13.27 30.09 13.27 

600 39.82 24.78 28.32 12.39 28.32 12.39 

800 41.59 28.32 26.55 17.70 26.55 17.70 

1000 44.25 29.20 24.78 18.58 24.78 18.58 

1500 38.94 29.20 24.78 18.58 24.78 18.58 

10 

10 23.01 18.58 7.08 11.50 10.62 11.50 

20 23.01 15.93 19.47 9.73 20.35 9.73 

50 37.17 13.27 29.20 7.96 29.20 7.96 

100 36.28 22.12 19.47 11.50 19.47 11.50 

200 42.48 21.24 26.55 10.62 26.55 10.62 

400 44.25 24.78 30.97 12.39 30.97 12.39 

600 38.94 27.43 29.20 15.04 29.20 15.04 

800 42.48 28.32 27.43 17.70 27.43 17.70 

1000 45.13 28.32 25.66 17.70 25.66 17.70 

1500 42.48 29.20 28.32 18.58 28.32 18.58 

25 

10 23.01 17.70 9.73 10.62 10.62 10.62 

20 27.43 16.81 23.89 12.39 21.24 12.39 

50 34.51 14.16 28.32 8.85 28.32 8.85 

100 40.71 22.12 25.66 13.27 25.66 13.27 

200 43.36 23.01 30.97 12.39 30.97 12.39 

400 45.13 23.89 38.94 13.27 38.94 13.27 

600 41.59 25.66 35.40 15.04 35.40 15.04 

800 46.02 28.32 30.97 17.70 30.97 17.70 

1000 47.79 28.32 28.32 17.70 28.32 17.70 

1500 46.02 29.20 33.63 20.35 33.63 20.35 

50 

10 26.55 17.70 11.50 8.85 14.16 8.85 

20 30.97 18.58 29.20 15.93 25.66 15.93 

50 37.17 15.93 29.20 12.39 29.20 12.39 

100 37.17 21.24 26.55 16.81 26.55 16.81 

200 43.36 23.01 36.28 21.24 36.28 21.24 

400 47.79 21.24 41.59 14.16 41.59 14.16 

600 42.48 23.01 38.05 12.39 38.05 12.39 

800 42.48 30.97 38.05 20.35 38.05 20.35 

1000 45.13 30.09 39.82 17.70 39.82 17.70 

1500 46.02 30.97 42.48 22.12 42.48 22.12 

100 10 25.66 16.81 11.50 7.96 13.27 7.96 
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20 34.51 19.47 32.74 16.81 29.20 16.81 

50 43.36 19.47 37.17 17.70 37.17 17.70 

100 38.94 24.78 35.40 22.12 35.40 22.12 

200 42.48 26.55 39.82 26.55 39.82 26.55 

400 45.13 23.89 44.25 19.47 44.25 19.47 

600 43.36 23.89 40.71 17.70 40.71 17.70 

800 40.71 30.97 41.59 23.01 41.59 23.01 

1000 41.59 30.97 43.36 24.78 43.36 24.78 

1500 43.36 30.97 41.59 25.66 41.59 25.66 

200 

10 30.97 24.78 23.89 17.70 25.66 16.81 

20 35.40 22.12 37.17 19.47 34.51 19.47 

50 43.36 19.47 38.94 17.70 38.94 17.70 

100 38.94 26.55 38.94 25.66 38.94 25.66 

200 43.36 31.86 40.71 30.09 40.71 30.09 

400 45.13 30.09 46.90 28.32 46.90 28.32 

600 39.82 28.32 43.36 23.89 43.36 23.89 

800 42.48 33.63 47.79 27.43 47.79 27.43 

1000 42.48 34.51 46.90 29.20 46.90 29.20 

1500 44.25 32.74 46.02 28.32 46.02 28.32 

500 

10 39.82 25.66 35.40 15.04 36.28 15.04 

20 39.82 26.55 39.82 21.24 36.28 21.24 

50 50.44 20.35 43.36 16.81 43.36 16.81 

100 39.82 29.20 46.90 30.09 46.90 30.09 

200 48.67 30.97 45.13 29.20 45.13 29.20 

400 44.25 30.09 46.90 30.09 46.90 30.09 

600 42.48 28.32 50.44 26.55 50.44 26.55 

800 44.25 32.74 49.56 26.55 49.56 26.55 

1000 50.44 34.51 52.21 30.09 52.21 30.09 

1500 47.79 35.40 51.33 30.97 51.33 30.97 

1000 

10 36.28 27.43 33.63 20.35 32.74 19.47 

20 38.94 27.43 38.94 24.78 34.51 24.78 

50 47.79 24.78 42.48 19.47 42.48 19.47 

100 48.67 30.97 52.21 30.09 52.21 30.09 

200 46.02 32.74 37.17 29.20 37.17 29.20 

400 40.71 31.86 42.48 30.09 42.48 30.09 

600 41.59 30.97 46.90 28.32 46.90 28.32 

800 44.25 33.63 50.44 30.09 50.44 30.09 

1000 48.67 36.28 54.87 33.63 54.87 33.63 

1500 44.25 35.40 54.87 32.74 54.87 32.74 
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Table 82. Results from the comparison of the measures of dependence versus the MI 

calculated using the fuzzy-histogram based method for detecting the input with the least 

impact on the output per membership function, per number of fuzzy subsets, and per 

number of replications. 

Membership 

function 

Number of 

fuzzy 

subsets 

Number of 

replications 

Distance 

correlation 

Pearson 

correlation 
𝑹𝟐𝒂𝒅𝒋 

NIS % TIS % NIS % NIS % TIS % NIS % 

Cosine 

2 

10 30.09 23.89 11.50 11.50 11.50 7.08 

20 31.86 23.89 21.24 15.04 20.35 11.50 

50 37.17 21.24 30.09 15.93 27.43 15.93 

100 40.71 30.09 24.78 20.35 23.01 20.35 

200 42.48 30.09 25.66 17.70 25.66 17.70 

400 47.79 32.74 35.40 23.01 35.40 23.01 

600 46.90 33.63 34.51 22.12 34.51 22.12 

800 47.79 36.28 31.86 26.55 31.86 26.55 

1000 48.67 37.17 31.86 27.43 31.86 27.43 

1500 44.25 37.17 32.74 26.55 32.74 26.55 

5 

10 33.63 26.55 15.04 15.93 15.04 11.50 

20 30.97 22.12 22.12 15.04 21.24 11.50 

50 38.05 20.35 32.74 16.81 30.09 16.81 

100 40.71 30.09 24.78 19.47 23.01 19.47 

200 43.36 29.20 28.32 18.58 28.32 18.58 

400 46.90 32.74 34.51 21.24 34.51 21.24 

600 44.25 33.63 33.63 22.12 33.63 22.12 

800 47.79 37.17 33.63 27.43 33.63 27.43 

1000 50.44 37.17 33.63 27.43 33.63 27.43 

1500 46.02 37.17 32.74 26.55 32.74 26.55 

10 

10 33.63 26.55 15.93 15.93 15.93 11.50 

20 30.09 23.01 21.24 14.16 20.35 10.62 

50 39.82 22.12 32.74 16.81 30.09 16.81 

100 40.71 31.86 24.78 19.47 23.01 19.47 

200 45.13 29.20 30.09 18.58 30.09 18.58 

400 48.67 33.63 36.28 22.12 36.28 22.12 

600 43.36 34.51 34.51 23.01 34.51 23.01 

800 47.79 36.28 31.86 26.55 31.86 26.55 

1000 49.56 36.28 30.97 26.55 30.97 26.55 

1500 46.02 37.17 32.74 26.55 32.74 26.55 
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25 

10 28.32 29.20 9.73 18.58 9.73 14.16 

20 35.40 25.66 26.55 16.81 25.66 13.27 

50 38.05 23.01 34.51 19.47 31.86 19.47 

100 41.59 27.43 27.43 21.24 25.66 21.24 

200 43.36 29.20 31.86 18.58 31.86 18.58 

400 50.44 32.74 43.36 23.01 43.36 23.01 

600 46.02 33.63 40.71 23.89 40.71 23.89 

800 50.44 36.28 36.28 26.55 36.28 26.55 

1000 52.21 36.28 35.40 26.55 35.40 26.55 

1500 47.79 37.17 38.05 28.32 38.05 28.32 

50 

10 30.97 22.12 12.39 11.50 13.27 7.08 

20 34.51 23.01 27.43 15.93 26.55 12.39 

50 43.36 25.66 36.28 22.12 33.63 22.12 

100 39.82 27.43 34.51 25.66 32.74 25.66 

200 43.36 29.20 35.40 29.20 35.40 29.20 

400 53.10 29.20 47.79 23.01 47.79 23.01 

600 47.79 30.09 42.48 22.12 42.48 22.12 

800 46.02 36.28 46.02 26.55 46.02 26.55 

1000 46.90 37.17 44.25 27.43 44.25 27.43 

1500 46.02 38.05 45.13 29.20 45.13 29.20 

100 

10 27.43 24.78 12.39 14.16 12.39 9.73 

20 41.59 25.66 30.97 18.58 30.09 15.04 

50 43.36 24.78 38.05 23.01 35.40 23.01 

100 38.05 30.97 40.71 29.20 38.94 29.20 

200 41.59 31.86 42.48 31.86 42.48 31.86 

400 47.79 31.86 47.79 29.20 47.79 29.20 

600 46.90 30.97 45.13 26.55 45.13 26.55 

800 44.25 36.28 46.90 30.09 46.90 30.09 

1000 41.59 36.28 45.13 30.09 45.13 30.09 

1500 44.25 37.17 42.48 31.86 42.48 31.86 

200 

10 38.05 33.63 25.66 22.12 25.66 17.70 

20 40.71 26.55 35.40 21.24 34.51 17.70 

50 44.25 25.66 40.71 22.12 38.05 22.12 

100 41.59 31.86 44.25 32.74 42.48 32.74 

200 42.48 35.40 41.59 33.63 41.59 33.63 

400 48.67 34.51 52.21 33.63 52.21 33.63 

600 46.02 35.40 49.56 30.97 49.56 30.97 

800 45.13 38.94 50.44 32.74 50.44 32.74 

1000 46.02 38.05 48.67 31.86 48.67 31.86 
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1500 47.79 38.05 50.44 32.74 50.44 32.74 

500 

10 45.13 35.40 35.40 23.01 36.28 18.58 

20 43.36 32.74 37.17 25.66 36.28 22.12 

50 49.56 29.20 46.02 25.66 43.36 25.66 

100 38.94 32.74 46.90 36.28 45.13 36.28 

200 43.36 31.86 40.71 31.86 40.71 31.86 

400 46.90 34.51 50.44 33.63 50.44 33.63 

600 42.48 34.51 49.56 31.86 49.56 31.86 

800 48.67 39.82 52.21 33.63 52.21 33.63 

1000 50.44 40.71 51.33 34.51 51.33 34.51 

1500 49.56 38.05 53.98 34.51 53.98 34.51 

1000 

10 49.56 36.28 36.28 25.66 36.28 21.24 

20 40.71 33.63 36.28 28.32 35.40 24.78 

50 46.90 25.66 38.05 20.35 35.40 20.35 

100 48.67 32.74 50.44 34.51 48.67 34.51 

200 46.02 34.51 36.28 32.74 36.28 32.74 

400 46.02 35.40 48.67 32.74 48.67 32.74 

600 43.36 35.40 52.21 34.51 52.21 34.51 

800 48.67 40.71 53.98 36.28 53.98 36.28 

1000 45.13 41.59 54.87 38.94 54.87 38.94 

1500 46.02 39.82 57.52 36.28 57.52 36.28 

Crisp 

2 

10 14.16 8.85 6.19 4.42 6.19 0.00 

20 36.28 20.35 24.78 14.16 23.89 10.62 

50 39.82 23.89 32.74 18.58 30.09 18.58 

100 48.67 30.09 34.51 22.12 32.74 22.12 

200 52.21 31.86 34.51 21.24 34.51 21.24 

400 51.33 30.97 38.94 23.01 38.94 23.01 

600 50.44 32.74 36.28 21.24 36.28 21.24 

800 54.87 38.05 36.28 28.32 36.28 28.32 

1000 53.10 38.05 33.63 30.09 33.63 30.09 

1500 49.56 37.17 34.51 28.32 34.51 28.32 

5 

10 40.71 23.01 29.20 19.47 29.20 15.04 

20 38.05 23.89 30.97 18.58 30.09 15.04 

50 40.71 22.12 35.40 20.35 32.74 20.35 

100 45.13 28.32 26.55 16.81 24.78 16.81 

200 50.44 29.20 30.97 19.47 30.97 19.47 

400 49.56 33.63 38.05 23.01 38.05 23.01 

600 52.21 34.51 40.71 24.78 40.71 24.78 

800 50.44 39.82 36.28 30.09 36.28 30.09 
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1000 53.98 39.82 36.28 30.09 36.28 30.09 

1500 50.44 38.94 31.86 30.09 31.86 30.09 

10 

10 35.40 18.58 22.12 14.16 22.12 9.73 

20 39.82 23.01 28.32 15.93 27.43 12.39 

50 45.13 24.78 39.82 17.70 37.17 17.70 

100 45.13 31.86 28.32 22.12 26.55 22.12 

200 50.44 29.20 32.74 19.47 32.74 19.47 

400 52.21 33.63 39.82 24.78 39.82 24.78 

600 50.44 33.63 41.59 23.01 41.59 23.01 

800 51.33 38.05 37.17 26.55 37.17 26.55 

1000 50.44 37.17 31.86 25.66 31.86 25.66 

1500 49.56 38.05 32.74 27.43 32.74 27.43 

25 

10 32.74 23.01 21.24 17.70 21.24 13.27 

20 42.48 25.66 34.51 21.24 33.63 17.70 

50 42.48 26.55 38.05 23.01 35.40 23.01 

100 41.59 30.97 28.32 23.01 26.55 23.01 

200 43.36 27.43 36.28 23.01 36.28 23.01 

400 50.44 30.09 43.36 25.66 43.36 25.66 

600 49.56 30.97 40.71 23.01 40.71 23.01 

800 48.67 38.94 39.82 30.97 39.82 30.97 

1000 47.79 39.82 39.82 28.32 39.82 28.32 

1500 46.02 38.94 41.59 30.09 41.59 30.09 

50 

10 32.74 26.55 16.81 15.93 16.81 11.50 

20 34.51 23.01 29.20 15.93 28.32 12.39 

50 47.79 24.78 39.82 21.24 37.17 21.24 

100 43.36 30.97 42.48 31.86 40.71 31.86 

200 42.48 30.97 36.28 29.20 36.28 29.20 

400 51.33 30.09 49.56 23.89 49.56 23.89 

600 49.56 31.86 46.02 23.89 46.02 23.89 

800 46.02 35.40 46.02 29.20 46.02 29.20 

1000 45.13 35.40 42.48 29.20 42.48 29.20 

1500 46.90 38.94 44.25 30.09 44.25 30.09 

100 

10 32.74 27.43 15.93 18.58 16.81 14.16 

20 43.36 30.09 34.51 23.01 33.63 19.47 

50 44.25 25.66 45.13 25.66 42.48 25.66 

100 38.05 33.63 44.25 31.86 42.48 31.86 

200 41.59 29.20 38.94 30.97 38.94 30.97 

400 47.79 34.51 49.56 31.86 49.56 31.86 

600 46.02 33.63 49.56 29.20 49.56 29.20 
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800 46.02 36.28 46.02 30.09 46.02 30.09 

1000 45.13 36.28 46.02 30.09 46.02 30.09 

1500 45.13 36.28 46.02 30.97 46.02 30.97 

200 

10 33.63 24.78 18.58 15.93 18.58 11.50 

20 30.97 27.43 24.78 19.47 23.89 15.93 

50 46.90 28.32 41.59 24.78 38.94 24.78 

100 42.48 35.40 41.59 34.51 39.82 34.51 

200 42.48 34.51 47.79 36.28 47.79 36.28 

400 50.44 34.51 52.21 33.63 52.21 33.63 

600 47.79 34.51 49.56 31.86 49.56 31.86 

800 48.67 38.05 50.44 31.86 50.44 31.86 

1000 47.79 38.94 50.44 32.74 50.44 32.74 

1500 47.79 38.05 52.21 32.74 52.21 32.74 

500 

10 23.89 26.55 14.16 18.58 14.16 14.16 

20 24.78 24.78 18.58 19.47 17.70 15.93 

50 52.21 27.43 51.33 27.43 48.67 27.43 

100 43.36 36.28 45.13 33.63 43.36 33.63 

200 44.25 33.63 32.74 28.32 32.74 28.32 

400 45.13 34.51 48.67 35.40 48.67 35.40 

600 40.71 33.63 51.33 30.97 51.33 30.97 

800 50.44 38.94 48.67 32.74 48.67 32.74 

1000 48.67 41.59 51.33 37.17 51.33 37.17 

1500 51.33 38.94 53.98 35.40 53.98 35.40 

1000 

10 19.47 19.47 9.73 10.62 9.73 6.19 

20 21.24 21.24 16.81 15.93 15.93 12.39 

50 43.36 36.28 38.05 30.09 35.40 30.09 

100 46.02 38.94 49.56 38.94 47.79 38.94 

200 48.67 38.94 49.56 40.71 49.56 40.71 

400 44.25 32.74 52.21 33.63 52.21 33.63 

600 46.02 38.05 52.21 37.17 52.21 37.17 

800 48.67 38.94 55.75 32.74 55.75 32.74 

1000 46.02 39.82 53.98 37.17 53.98 37.17 

1500 44.25 37.17 50.44 33.63 50.44 33.63 

Triangular 2 

10 29.20 23.89 11.50 13.27 11.50 8.85 

20 30.97 23.01 20.35 14.16 19.47 10.62 

50 36.28 21.24 30.97 15.93 28.32 15.93 

100 39.82 30.09 22.12 18.58 20.35 18.58 

200 44.25 29.20 25.66 16.81 25.66 16.81 

400 43.36 32.74 32.74 21.24 32.74 21.24 
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600 44.25 33.63 31.86 22.12 31.86 22.12 

800 48.67 35.40 32.74 25.66 32.74 25.66 

1000 49.56 36.28 32.74 26.55 32.74 26.55 

1500 44.25 36.28 32.74 25.66 32.74 25.66 

5 

10 28.32 25.66 10.62 15.04 10.62 10.62 

20 29.20 23.89 20.35 15.04 19.47 11.50 

50 38.94 21.24 31.86 15.93 29.20 15.93 

100 38.05 30.09 23.89 19.47 22.12 19.47 

200 43.36 29.20 28.32 18.58 28.32 18.58 

400 46.90 32.74 34.51 23.01 34.51 23.01 

600 44.25 33.63 33.63 22.12 33.63 22.12 

800 46.90 36.28 32.74 26.55 32.74 26.55 

1000 49.56 37.17 30.97 27.43 30.97 27.43 

1500 45.13 37.17 31.86 26.55 31.86 26.55 

10 

10 25.66 24.78 7.96 14.16 7.96 9.73 

20 30.09 23.89 21.24 15.04 20.35 11.50 

50 41.59 22.12 34.51 16.81 31.86 16.81 

100 40.71 30.97 24.78 20.35 23.01 20.35 

200 45.13 29.20 30.09 18.58 30.09 18.58 

400 47.79 33.63 35.40 22.12 35.40 22.12 

600 43.36 36.28 34.51 24.78 34.51 24.78 

800 46.90 36.28 32.74 26.55 32.74 26.55 

1000 49.56 36.28 30.97 26.55 30.97 26.55 

1500 46.02 37.17 32.74 26.55 32.74 26.55 

25 

10 28.32 24.78 9.73 14.16 9.73 9.73 

20 33.63 23.01 23.01 15.93 22.12 12.39 

50 38.94 23.01 33.63 17.70 30.97 17.70 

100 42.48 30.09 28.32 21.24 26.55 21.24 

200 44.25 30.09 32.74 19.47 32.74 19.47 

400 48.67 32.74 43.36 23.01 43.36 23.01 

600 46.02 34.51 40.71 24.78 40.71 24.78 

800 50.44 36.28 36.28 26.55 36.28 26.55 

1000 52.21 36.28 33.63 26.55 33.63 26.55 

1500 49.56 37.17 38.05 28.32 38.05 28.32 

50 

10 30.09 23.89 12.39 13.27 13.27 8.85 

20 35.40 23.01 26.55 17.70 25.66 14.16 

50 41.59 23.89 34.51 20.35 31.86 20.35 

100 41.59 29.20 30.97 23.89 29.20 23.89 

200 43.36 29.20 37.17 27.43 37.17 27.43 
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400 51.33 29.20 46.02 23.01 46.02 23.01 

600 46.90 30.97 43.36 21.24 43.36 21.24 

800 46.02 38.05 42.48 28.32 42.48 28.32 

1000 46.90 37.17 42.48 25.66 42.48 25.66 

1500 46.02 38.05 43.36 29.20 43.36 29.20 

100 

10 30.09 23.01 11.50 12.39 11.50 7.96 

20 38.94 23.89 30.09 18.58 29.20 15.04 

50 46.90 23.89 41.59 22.12 38.94 22.12 

100 40.71 30.97 38.05 27.43 36.28 27.43 

200 42.48 31.86 39.82 31.86 39.82 31.86 

400 48.67 30.97 48.67 26.55 48.67 26.55 

600 47.79 31.86 46.02 25.66 46.02 25.66 

800 45.13 37.17 46.02 29.20 46.02 29.20 

1000 43.36 36.28 45.13 30.09 45.13 30.09 

1500 44.25 36.28 42.48 30.97 42.48 30.97 

200 

10 35.40 32.74 22.12 21.24 22.12 16.81 

20 40.71 27.43 35.40 22.12 34.51 18.58 

50 45.13 23.89 41.59 22.12 38.94 22.12 

100 40.71 32.74 41.59 31.86 39.82 31.86 

200 41.59 35.40 38.94 33.63 38.94 33.63 

400 49.56 36.28 51.33 33.63 51.33 33.63 

600 44.25 35.40 47.79 30.97 47.79 30.97 

800 46.02 38.05 49.56 31.86 49.56 31.86 

1000 44.25 38.05 46.90 31.86 46.90 31.86 

1500 46.02 37.17 46.90 31.86 46.90 31.86 

500 

10 44.25 32.74 34.51 20.35 34.51 15.93 

20 43.36 30.09 37.17 23.01 36.28 19.47 

50 50.44 24.78 43.36 21.24 40.71 21.24 

100 40.71 31.86 48.67 33.63 46.90 33.63 

200 46.02 32.74 43.36 30.97 43.36 30.97 

400 47.79 34.51 49.56 33.63 49.56 33.63 

600 44.25 34.51 51.33 31.86 51.33 31.86 

800 46.90 37.17 52.21 30.97 52.21 30.97 

1000 51.33 40.71 52.21 34.51 52.21 34.51 

1500 48.67 38.94 53.10 33.63 53.10 33.63 

1000 

10 44.25 33.63 32.74 23.01 32.74 18.58 

20 40.71 30.97 34.51 25.66 33.63 22.12 

50 46.90 26.55 41.59 21.24 38.94 21.24 

100 47.79 31.86 51.33 30.97 49.56 30.97 
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200 44.25 34.51 36.28 30.97 36.28 30.97 

400 46.90 36.28 48.67 33.63 48.67 33.63 

600 45.13 36.28 52.21 33.63 52.21 33.63 

800 48.67 38.94 53.98 34.51 53.98 34.51 

1000 48.67 41.59 53.10 37.17 53.10 37.17 

1500 46.02 39.82 55.75 36.28 55.75 36.28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


