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ABSTRACT

Dynamical Systems Theory (DST) serves as a means to understand and describe the changes

that occur over time in physical systems. It involves a detailed analysis of a model based on

the particular laws governing its change. These laws are in turn derived from suitable theory:

Newtonian mechanics, Lagrangian and Hamiltonian mechanics, fluid dynamics, etc. All these

models can be conceptually unified in the mathematical notion of a dynamical system.

Broadly, there are two approaches to study dynamical systems: a numerical approach and an

analytic approach. A numerical approach involves the propagation of the dynamical equations of

motion, usually a set of ordinary or partial differential equations that govern the evolution of each

state of the dynamical system. Analytic approaches, in contrast, results in a closed-form solution

of the dynamical system that maps the states at a particular time to those at another time. With in-

creasing complexity of physical systems, numerical computations become increasingly expensive,

and analytical solutions seldom exist. DST then provides us with tools to analyze such complex

behaviors by emphasizing geometric interpretations over purely numeric solutions. Leveraging in-

ternal symmetries and examining trajectory bundles in the phase volume help us decipher qualita-

tive dynamical behavior. To emphasize the importance of such methods, two particular dynamical

systems are treated in this dissertation. The attitude motion of a rigid body in Keplerian orbit is a

dynamical system where the nature of motions has a strong parametric dependence. The restricted

three-body problem is another dynamical system that exhibits a wide range of complex motions.

Both these systems are studied, and new techniques, metrics, and insights are obtained through the

use of DST and analytical averaging techniques.

We show that the use of Classical Rodrigues Parameters for the attitude motion of the rigid

body subject to gravity-gradient torques enables us to characterize the equilibria associated with

the rotational motion about its mass center. A parametric study of the stability of equilibria shows

that large oscillations are induced due to the energy exchange between the pitch and roll-yaw mo-

tions, specifically near the 2:1 resonant commensurability regions. A visualization tool is devel-

ii



oped to study these pitch oscillations and gain insight into the rigid body motion near the internal

resonance conditions. A measure of coupling between the pitching and roll-yaw motions is de-

veloped to quantify the energy exchange utilizing information from the state transition matrix.

Poincaré surface of sections, bifurcation diagrams and phase-plane plots are used to examine the

attitude motion of a rigid body under various conditions. Further, an analytic treatment of the rigid

body dynamics in the Serret-Andoyer variables is carried out for a fast-rotating rigid body assump-

tion. The case for a slow-rotating rigid body is also examined, and the validity of the dynamical

model is tested by developing a theory for Lunar free librations.

It becomes evident that both numerical and analytic methods rely heavily on the manner in

which they are described: i.e., the coordinate system used. Consequently, a judicious choice of

the coordinate system dramatically simplifies the problem at hand. Through the use of Hamilton-

Jacobi theory and recent advances in approximation theory, this work presents a systematic pro-

cedure to mathematically obtain the best choice of coordinates that simplify the evolution of a

dynamical system through rectification. Pursuit of such techniques has culminated in the devel-

opment of a novel semi-analytic method to treat general dynamical systems. Several examples

demonstrate the efficacy of the proposed method in obtaining a functional form of the solution of

the dynamical system. Applications to the main problem in artificial satellite theory, treatment of

non-conservative dynamical systems and the two-point boundary value problem are investigated.

Agreement with classical solutions establish closure with analytical methods and provides strong

evidence in support of the methodology developed.

iii



DEDICATION

The scientist does not study nature because it is useful; he studies it because he delights

in it, and he delights in it because it is beautiful.

Henri Poincaré

This dissertation is dedicated to my late grandfather, Thomas Eapen

Thank you for your endless love, support, sacrifices, prayers, and encouragement
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1. INTRODUCTION

Challenges in dynamical systems have fascinated physical scientists, mathematicians, and en-

gineers for thousands of years. Notable among such endeavors are those of celestial mechanics,

especially the study of the motions of the bodies in the solar system. Attempts to understand and

model their observed motions incorporated Kepler’s laws (for orbital motion), Cassini’s laws (for

attitude motion), and led to the development of Newtonian mechanics. This marks the beginning

of the study of dynamical problems using differential equations, and the birth of dynamical astron-

omy [16]. The distinguished elegance and simplicity of such equations have engaged the minds

of the greatest mechanicians and mathematicians of the eighteenth and nineteenth century, partic-

ularly due to its inherent difficulty, and continues to do so even today. Problems in astrodynamics

have set the stage for impressive implementations and breakthroughs in the study of dynamical sys-

tems to apply the principles of mechanics to the determination of the motion of objects in space.

Spacecraft trajectories (launch through re-entry), orbits of astronomical bodies, including planets,

asteroids and comets, attitude motion and control of spacecrafts, rotational dynamics of celestial

bodies, all lie within the realm of astrodynamics.

In a broader sense, Dynamical Systems Theory (DST) attempts to understand and describe

the changes that occur over time in physical systems. It involves a detailed analysis of a model

based on specific laws governing its change, and are derived from strict physical and mathematical

framework. All of these models can be conceptually unified in the mathematical notion of a dy-

namical system, which consists of two main components: the phase-space and the dynamics. The

phase-space is a collection of all possible states of the dynamical system in question. Each state

represents a snapshot of the dynamical system at a particular instant in time. The dynamics is a

deterministic rule for how a state evolves. In various settings, intricate behavior is observed, even

though the equations themselves are not involved. Thus, a simple algebraic form of the equation

does not imply that the dynamical behavior is simple.

Broadly speaking, there are two approaches to study dynamical systems: a numerical approach
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and an analytical approach. A numerical approach entails the propagation of the dynamical equa-

tions of motion, usually a set of ordinary or partial differential equations that govern the evolution

of each state of the dynamical system. The numerical approach works in a way that maps the states

at a particular initial time (also called epoch) to another instant in time (in the future) that is close to

the epoch. This process is then continued to obtain the time history of all states between the epoch

and the final time. Analytical approaches, conversely, lead to a closed-form solution of the dynam-

ical system that maps the states at an epoch to those at a final time. While a complete analytical

theory exists for linear ordinary differential equations, nonlinear systems are largely inaccessible,

apart from successful applications of perturbations methods to weakly nonlinear problems. Sev-

eral notable exceptions exist to this lack of analytical solutions: the famous two-body problem of

orbital motions and the planar pitch attitude motion of rigid bodies in orbit.

Analysis has remained the preferred tool for studying dynamical systems. Even prior to the

arrival of the space-age, perturbation methods were widely used in celestial mechanics applica-

tions for determining the motion of heavenly bodies. Poincaré ’s work in the late-nineteenth cen-

tury showed that perturbation methods might not yield correct results. He then married analysis

and geometry in his development of a qualitative approach to the study of dynamical systems

[17]. The Modern methods of qualitative analysis of dynamical systems emerges in the work of

Poincaré [18, 19, 20], Birkhoff [21], Lyapunov, Andronov, and Arnold[22, 23]. In the last half

century, there has been an explosion of research utilizing the qualitative tools laid out by these gi-

ants (Poincaré , Birkhoff, Andronov, Arnold, Smale [24, 25, 21, 22], and others) to understand the

behavior of dynamical systems through geometric and topological properties of solutions of differ-

ential equations and iterated maps. These methods help develop a qualitative understanding of the

properties of the dynamical system, thereby facilitating advances in their analytical formulation.

The focus of this work is to employ various tools of DST to understand the underlying physics

at work for dynamical systems of significance to space applications. A major portion of this disser-

tation is dedicated to justifying, developing, and evaluating analytical and semi-analytical methods

for notable astrodynamics problems. One of the key astrodynamics problems considered in this
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dissertation is the attitude motion of a rigid body under the influence of gravity-gradient torques.

This problem and its variations serve as a bench-test for the proposed developments in DST. In

addition, semi-analytical methods are also developed to treat the main problem in artificial satellite

theory and its variants. This work is organized into three parts. The first part is dedicated to the

study of various qualitative tools of DST and its application to the treatment of the attitude motion

of a rigid body in the presence of gravity-gradient torques. The intuitive information obtained from

these methods is utilized in the second part of this work to analytically study the attitude motion

of a rigid body. The third part of this work integrates the two approaches discussed previously to

develop semi-analytical architectures for the treatment of a general dynamical system. In the sub-

sequent sections, each of the three challenges is discussed in detail, providing a literature survey of

existing methodologies, preliminaries for the formulation of the problem, and novel developments

in each of the research topics. This document is organized as follows:

• Chapter 2: Qualitative treatment of dynamical systems

The two dynamical systems studied in this investigation are the attitude motion of a rigid

body in Keplerian orbit and the planar circular restricted three-body problem. The deriva-

tion of the equations of motion for the attitude problem is presented and several features

of this dynamical model are highlighted, including equilibrium points and their associated

stability, integrals of motion, parametric bifurcations, regular and chaotic solutions, and long

term evolution. Extension to a higher fidelity dynamical model is also presented. Following

this, the Earth-Moon-satellite restricted three-body problem is discussed. The scope of this

chapter is to present the reader with qualitative analysis tools to study the dynamical behav-

ior of the aforementioned dynamical systems. To this end, visualization tools, topological

transformations, and quantitative metrics are developed to characterize various nonlinear

phenomena such as energy exchange in resonance regions, parametric bifurcations, and in-

variant manifold behaviors. The methodologies developed are applied to problems in space

applications, particularly to studying long-term evolution of the attitude motion of orbiting

satellites and identifying transport opportunities in cislunar space. The qualitative nature of
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the results are primarily dependent on the choice of coordinates used to describe the dynami-

cal system and is limited in the qualitative information one can obtain because of this choice.

Another limitation is the extensive computational requirement for simulating a large set of

initial conditions to accurately capture the qualitative behavior.

• Chapter 3: Analytic treatment of dynamical systems

The attitude motion of a rigid body is studied exclusively from an analytical point of view

in this chapter. Some of the limitations outlined in the previous chapter are addressed by

resorting to the Hamiltonian formulation for the attitude motion and leveraging the internal

symmetries of the problem. The attitude motion is treated from two perspectives: a fast-

rotating rigid body, with applications to long-term behavior of artificial satellites and debris,

and a slow-rotating rigid body, with applications to natural rotational motion of planetary

bodies. The scope of this chapter is to present the reader with the formulation of the dynam-

ical model and to present techniques for partial and complete reduction of the dynamical

system through symplectic transformations, and Hamilton-Jacobi theory. One of the limita-

tions of analytical methods is that a complete reduction is possible only for integrable dy-

namical systems. The complexity in the dynamical systems considered in this investigation

renders them non-integrable. One must resort to combining the analytic methodologies with

qualitative insights from the previous chapter to describing different dynamical behaviors.

• Chapter 4: Semi-analytic treatment of dynamical systems

The full dynamical model of the attitude motion of a rigid body is non-integrable and no

closed-form solutions exist, except under extensively simplifying assumptions. The limita-

tions described in the outline of the previous chapter are addressed by marrying the analytical

insights from Hamilton-Jacobi theory and recent numerical advancements in approximation

theory. The scope of this chapter is to develop a systematic procedure to treat complex dy-

namical systems such as the ones described in this investigation. As opposed to choosing the

coordinate system for qualitative studies and analytic reductions, the technique developed
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seeks to find a judicious set of coordinates that simplify the motion of the dynamical system

through the process of rectification. This method can be applied to treat both Hamiltonian

and non-Hamiltonian dynamical systems by discretizing the phase-volume and establishing

local integrability within this domain. Application to optimal control and two-point bound-

ary value problems are also presented.

• Chapter 5: Concluding remarks

A summary of the results presented in preceding chapters is provided along with recommen-

dations for future work.
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2. QUALITATIVE TREATMENT OF DYNAMICAL SYSTEMS

Dynamics is an interdisciplinary subject today. Originally a branch of physics, it began with

Newton in the 1600s with the discovery of laws of motion and universal gravitation, and the ex-

planation of Kepler’s laws of planetary motion. Specifically, Newton solved the problem of two

bodies, i.e. the problem of calculating the motion of planets around the sun with the inverse square

law of gravitational attraction. Subsequent generations of mathematicians, physicists, and engi-

neers have striven to extend Newton’s analytical methods to the three-body problem (e.g., sun,

Earth and moon). Finally, it was realized that the problem of three bodies was impossible to solve

in the sense of explicit formulas for the movement of three bodies [26, 27].

The breakthrough came with the work of Poincaré in the late 1800s. He introduced a new point

of view, one that emphasized qualitative, rather than quantitative questions. He developed a power-

ful geometric approach to analyzing such questions, and the approach has flowered into the modern

subject of Dynamical Systems Theory, with applications reaching far beyond celestial mechanics

[26, 28]. To motivate discussions for the remainder of this dissertation, certain terminologies and

definitions are introduced.

2.1 A mathematical description of dynamics

To introduce the logical structure of dynamics, certain terminologies are introduced and dis-

tinctions are made. There are broadly two types of dynamical systems: differential equations and

iterated maps (also known as difference equations). Differential equations describe the evolution

of systems in a continuous time, whereas iterated maps arise in problems where time is discrete.

Differential equations are widely used throughout this dissertation to describe the dynamical sys-

tem. Therefore, focusing attention on them, the main distinction is between ordinary and partial

differential equations.

Ordinary differential equations contain ordinary derivatives, i.e., there is only one independent

variable (usually, time). Partial differential equations, in contrast, impose relations between various
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partial derivatives of a multivariate function. A very general framework for ordinary differential

equations is provided by the system of equations as follows:

ẋ1 = f1(x1, · · · , xn)

...

ẋn = fn(x1, · · · , xn)

(2.1)

Here, the over-dots denote differentiation with respect to time, t, i.e., ẋi = dxi/dt. The solu-

tion to the system of equations can be obtained numerically by specifying initial and/or boundary

conditions for the states. For example, the simple harmonic oscillator given by the differential

equation: ẍ = −kx. This system can be written in the form of Eq. (2.1) by defining x1 = x and

x2 = ẋ.

ẋ1 = x2

ẋ2 = −kx1

The above description is called the state-space representation, and the variables x1 and x2 are

the states of the system. The initial conditions for this system are given as: x1(t0) = x10 , and

x2(t0) = x20 . The system is linear, because all the xi on the right-hand side appear to first power

only. Further, the principle of superposition applies to linear systems wherein by superimposing

two different initial conditions, the resulting motion is the algebraic sum of the individual motions

[22]. Contrastingly, nonlinear systems have nonlinear terms on the right-hand side, e.g., trigono-

metric terms, exponential terms, logarithmic terms, polynomials of degree two or higher, etc. For

example, consider the swinging of a pendulum governed by the equation, ẍ+ g
L

sinx = 0. Here, x

is the angle of the pendulum from vertical, g is the acceleration due to gravity, and L is the length

of the pendulum. The motion of the pendulum can be described in state-space form as a set of

nonlinear ordinary differential equations, with the state space variables being x1 = x and x2 = ẋ
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[26, 28].

ẋ1 = x2 (2.2)

ẋ2 = − g
L

sinx1 (2.3)

with initial conditions as described before. The non-linearity makes the pendulum equation dif-

ficult to solve analytically. The equation can be solved in terms of elliptic functions, however,

elliptic functions can be generally difficult to evaluate. The motion of the simple pendulum, har-

monic oscillator, etc. are quite simple to explain qualitatively. At low energy, it swings back and

forth, and at high energy, it whirls over the top and wraps around in circular motion. These mo-

tions are called librations and circulations, respectively. Using geometric methods, there are ways

to extract this information from the differential equations of the dynamical system. The first part of

this dissertation is focused on developing and utilizing such qualitative methods to treat dynamical

systems. To ascertain this, divide Eq. (2.1) by Eq. (2.2) and attempt to solve it.

dx1

dx2

=
x2

− g
L

sinx1

(2.4)

− g
L

sinx1 dx1 = x2 dx2 (2.5)

x2
2

2
− g

L
cosx1 = C (2.6)

where, C is a constant of integration. For different values of C, one can plot this implicit equation

in Eq. (2.6) to obtain a graphical view of the motion of the simple pendulum. This is shown in Fig.

2.1.
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Figure 2.1: Phase portrait of the simple pendulum. The curves in red show circulatory motion
while those in blue are librations. The black curve denotes the separatrix.

Figure 2.1 illustrates the behavior of the pendulum. The low energy libration and high energy

circulations are shown in blue and red, respectively. The curve that divides the two types of motion

(shown in black) is called the separatrix, and it has some important properties. These curves

(in red and black) are called trajectories, and the space of x1 − x2 is called the phase-space for

the system. The phase-space for the general system in Eq. (2.1) is the space with coordinates

x1, · · · , xn. Because this space is n−dimensional, the system is referred to as an n−dimensional

system, and n represents the dimension of the phase-space. For autonomous systems, i.e., systems

with no explicit time dependence, n is usually even.

Equation (2.1) is not general enough, since it does not include explicit time dependence. The

dynamical systems with explicit time dependence are called nonautonomous dynamical systems.

For example, consider the forced harmonic oscillator given the governing equations: ẍ + kx =

F cos t. The equations of motion in state space form can now be written following previous meth-

ods discussed, or one can introduce an additional variable x3 = t. Then, ẋ3 = 1. Thus, the system
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of equations take the form

ẋ1 = x2

ẋ2 = −kx1 + F cosx3

ẋ3 = 1

(2.7)

This is an example of a (n+1) dimensional system [26]. The terminologies and definitions outlined

in this section are carried forward throughout the dissertation. To motivate the discussion of the

different tools in DST that enable qualitative and geometric analysis, two particular dynamical

systems are studied as a test problem: (a) the attitude motion of a rigid body in Keplerian orbit;

(b) the Planar Circular Restricted Three-body Problem (PCR3BP). The preliminaries for attitude

dynamics are presented in the next section.

2.2 Attitude motion preliminaries

The attitude (or orientation) of a rigid body is described using attitude parameters that com-

pletely describe the orientation of the rigid body relative to some frame of reference. Thr attitude

parameterizations are non-unique and various sets of parameterizations have been used in this anal-

ysis. Each set has its strengths and weaknesses. The following four sets of truths about attitude

coordinates are generally accepted [29, 30, 31]

1. A minimum of three coordinates is required to describe the relative angular displacement

between two reference frames F1 and F2.

2. Any minimal set of three attitude coordinates will contain at least one geometrical orientation

where the coordinates are singular, namely at least two coordinates are undefined or not

unique.

3. At or near such a geometric singularity, the corresponding kinematic differential equations

are also singular.

4. The geometric singularities and associated numerical difficulties can be avoided altogether
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through a regularization. Redundant sets of four or more coordinates exist, which are uni-

versally determined and contain no geometric singularities.

In this dissertation, two primary sets of attitude parameters are used to describe the attitude

motion of a rigid body in Keplerian orbit: the Euler angles, and the Classical Rodrigues Parameters.

Their description and kinematic relations are now given.

2.2.1 The Euler angles

Euler angles are the most commonly used attitude parameters, particularly because of their

ease in relating to physical representation of the orientation of a rigid body. They describe the

orientation of a reference frame B{b̂1, b̂2, b̂3} to the frame N{n̂1, n̂2, n̂3} through three successive

rotations about sequentially displaced body-fixed axes (b̂). The direction cosine matrix (DCM)

can be parameterized in terms of Euler angles, utilizing successive rotations about each of the

body axes through three single-axis rotation matrices that are a function of a single parameter.

M1(θ) =


1 0 0

0 cos θ sin θ

0 − sin θ cos θ



M2(θ) =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ



M3(θ) =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1



(2.8)

Utilizing these expressions and noting that a general orientation has three degrees of freedom,
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the orientation can be described using three angles. One example is the following.

[C1−2−3(α, β, γ)] = [C3(γ)][C2(β)][C1(α)] (2.9)

In using such a description of the orientation, the second angle in the sequence is restricted to be

different from the first and third. Consequently, there are twelve Euler angle orientation sets: six

symmetric and six asymmetric.

symmetric : (1− 2− 1), (1− 3− 1),(2− 1− 2), (2− 3− 2),(3− 1− 3), (3− 2− 3)

asymmetric : (1− 2− 3), (1− 3− 2),(2− 1− 3), (2− 3− 1),(3− 1− 2), (3− 2− 1)

The Euler angles of any sequence are global in that they are defined everywhere. However, certain

orientations give non-unique parameter values. For the symmetric orientations, the middle angles

of zero or ±π result in only the sum of first and third angles as unique, while the individual

angles are non-unique. A similar situation occurs for asymmetric sets when the second angle

equals ±π/2. For this reason, the asymmetric sets are useful in describing small departures from a

nominal orientation to avoid singularities. While the Euler angles provide a physical interpretation

of the orientation, the resulting equations are transcendental. The following section describes

another set of attitude parameters, the Classical Rodrigues Parameters (CRPs), that result in purely

algebraic expressions. The CRP parameterization is utilized throughout this chapter.

2.2.2 The classical Rodrigues parameters

The CRPs are a three component vector q also called the Gibbs vector. The CRPs can be

obtained conveniently using Euler’s principal rotation theorem, which states: A rigid body or co-

ordinate reference frame can be brought from an arbitrary initial orientation to an arbitrary final

orientation by a single rigid rotation through a principal angle φ about the principal axis ê; the

principal axis being a judicious axis fixed in both the initial and final orientation. [29, 32] To

further elucidate this, a skew-symmetric matrix is defined using the components of a vector. For a
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given vector z = [z1, z2, z3]T , the skew-symmetric matrix is defined as z̃ where the entries of the

matrix are composed of the elements of the vector z: z1 = z̃32 = −z̃23, z2 = z̃13 = −z̃31, and

z1 = z̃21 = −z̃12. [29]

The direction cosine matrix as a function of the Euler principal axis and angle is then given

as[33, 29]:

[C(ê, φ)] = [1]− sinφ[˜̂e] + (1− cosφ)[˜̂e][˜̂e] (2.10)

where [1] = I3×3 is the identity matrix of dimension, three. Using this as a starting point, one can

define many different three-parameter sets for describing the rigid body attitude by considering

q = f(φ)ê. Choosing f(φ) = tan(φ/2) gives the CRPs, q. The attitude matrix for the CRPs is

given as:

[C] = [1]− 2

1 + qTq
q̃ +

2

1 + qTq
q̃q̃ (2.11)

These parameters can also be obtained using the Cayley transform as [29, 32]:

[C] = ([1] + q̃)−1([1]− q̃) = ([1]− q̃)([1] + q̃)−1 (2.12)

The inverse Cayley transform gives the direction cosine matrix from the CRPs as:

q̃ = ([1] + [C])−1([1]− [C]) = ([1]− [C])([1] + [C])−1 (2.13)

Using these relations for the CRPs, the following sections develop the kinematic and dynamic

equations for attitude motion.

2.2.3 Attitude kinematics

Suppose the direction cosine matrix, [C], relates the parameterization of a vector in frames A,

and B: uB = [C]uA. To study the rotational kinematics, differentiating the relation [C][C]T = [1],

we obtain the following.

[0] =
d

dt
([C])[C]T + [C]

d

dt
([C]T ) =

d

dt
([C])[C]T + (

d

dt
([C])[C]T )T (2.14)

13



with d[C]
dt

indicating the time derivative of the individual elements of [C]. The last expression

generates a skew-symmetric matrix between A and B.

[Λ] = − d

dt
([C])[C]T (2.15)

Rearranging the above equation results in a matrix differential equation that governs the evolution

of [C].
d

dt
[C] = −[Λ][C] (2.16)

The elements of [Λ] can be written as follows.

Λij = − d

dt
([Ci1, Ci2, Ci3])[Cj1, Cj2, Cj3]T (2.17)

Now, since [C] can be written as a function of any of the attitude parameters: [C] = [C(u1, u)2, · · ·]

(such as in Eq. (2.9), Eq. (2.12)), Eq. (2.17) can be written as follows.

Λij = −
[∂Cik
∂u1

Cjk,
∂Cik
∂u2

Cjk, · · ·
]
[u̇1, u̇2, · · ·]T (2.18)

Now, noting that Λ is the skew-symmetric matrix of angular velocities, one can arrive at the fol-

lowing expression.

[ω1, ω2, ω3]T = [B][u̇1, u̇2, · · ·]T (2.19)

The matrix [B] has dimensions 3 × np, where np is the number of attitude parameters, and it

relates the elements of the angular velocity in the body frame to the time-derivative of the attitude

parameters. The inverse relationship is fairly straightforward for a three-parameter set such as

CRPs or Euler angles.

[u̇1, u̇2, · · ·]T = [A][ω1, ω2, ω3]T (2.20)

with [A] = [B]−1.
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Particularly for the CRPs the [A] and [B] matrices are given as follows.

[B] =
2

1 + qTq
([1]− q̃) [A] =

1 + qTq
4

([1] + [C]T ) (2.21)

The kinematic relations expressed in this section aids in describing the orientation of a rigid

body with respect to a frame of reference. In order to determine the motion of such a rigid body,

the dynamic relations are introduced in the following section.

2.3 Attitude dynamics of a rigid body

A rigid body can be considered a continuum of differential mass elements, dm. Newton’s

equations of motion can be applied to the differential mass element as:

df =
d2

dt2
(r)dm = r̈dm (2.22)

where, r is the inertial position vector of dm and depends on coordinates and time, r = r(x, t).

This vector may be written as a combination of two vectors r(x, t) = rc(t)+ρ(x, t), where rc is the

inertial position of the center of mass, and ρ is the position of dm relative to the mass center. The

vector df represents the sum of impressed forces acting on dm i.e. the sum of externally applied

forces and internally applied forces: df = dfex+ dfin. Now, Euler noted that "a rigid body does not

spontaneously assume any motion in virtue of any internal forces there may be within it, and these

internal forces do not contribute to any of its motion as a whole" [34] implying that
∫

dfin = 0.

Therefore, integrating over the complete continuum gives the translational equations of motion of

a rigid body [35]:
d2

dt2

∫
rdm =

∫
d2r
dt2

dm =

∫
r̈dm =

∫
df = f (2.23)

thus,

f =
d2

dt2

∫
rdm = mr̈c (2.24)

Like translational motion by Newton, Euler’s principle for rotational motion of a finite contin-
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uum is the statement: lo = ḣo, where o is a fixed point, and ho =
∫

r × ṙdm. Here, lo is a vector

of external moments. Considering the fixed point as the center of mass (i.e. [?]o = [?]c) and using

the transport theorem, Euler’s equations are expressed as:

ḣc =
Bd

dt
(hc) + ω × hc = lc (2.25)

where hc is the angular momentum about the center of mass. This can be defined as

hc =

∫
B

r× (ω × r)dm =
(∫
B
−[r̃][r̃]dm

)
ω (2.26)

Carrying out the triple cross-product and identifying that

(∫
B
−[r̃][r̃]

)
dm = B[Ic]

where [Ic] is the inertia matrix defined about the center of mass. Since ω does not vary inside the

continuum, it can be taken outside the integral. The angular momentum vector of a rigid body

about its center of mass can then be written as:

hc = [Ic]ω (2.27)

Equation (2.25) can then be written as:

Bd

dt
hc =

Bd

dt
Icω + Ic

Bd

dt
ω = Iω̇ (2.28)

Noting that the derivative of angular velocity is the same as seen in B and the N frame,

ω̇ =
Nd

dt
ω =

Bd

dt
ω + ω × ω =

Bd

dt
ω (2.29)
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Therefore, we get the famous Euler’s rotational equations of motions as:

Icω̇ = −ω̃Icω + lc (2.30)

By choosing a body-fixed coordinate system aligned to the principal body axes, the inertia matrix

Ic = diag[I1, I2, I3] will be diagonal. The equations of motion reduce to the following form:

I1ω̇1 + (I3 − I2)ω2ω3 = l1

I2ω̇2 + (I1 − I3)ω1ω3 = l2

I3ω̇3 + (I2 − I1)ω1ω2 = l3

(2.31)

With Euler’s equations of motion given above, the motion of a rigid body under the influence

of gravity-gradient torque can be obtained. To do so, the next section outlines the derivation of

gravity-gradient torque.

2.3.1 Gravity-gradient torque formulation

Consider the motion of a rigid body in a central force field of a particle P ′ with mass m′. This

is illustrated in Fig 2.2.

Figure 2.2: Gravity-gradient torque set-up. dm is a differential mass element, B∗ is the center of
mass, and the central body is located at rc from the rigid body.

In Fig. 2.2, r denotes the vector locating the differential mass element dm from the center

of mass, B∗. rc is the position vector of the center of mass B∗ from the central body P ′, and
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rc + r = ρ. dm = νdτ is the differential mass element given in terms of the density ν and the

differential volume element, dτ . The gravitational force acting on the differential mass element

can be expressed using Newton’s universal law of gravitation as:

F = −Gm′
∫
ρ(ρ · ρ)−3/2νdτ (2.32)

= −Gm′
∫

(rc + r)
[
(rc + r) · (rc + r)

]−3/2

νdτ (2.33)

= −Gm′
∫

rc[
rc
rc

+
r
rc

]
1

r3
c

[r2
c

r2
c

+
2rc · r
r2
c

+
r2

r2
c

]−3/2

νdτ (for |r|<< |rc|) (2.34)

For simplicity, denote rc

rc
= â1 and r

rc
= a. Thus, the external gravity force is rewritten as:

F = −Gm
′

r2
c

∫
(â1 + a)(1 + 2â1 · a + a · a)−3/2νdτ (2.35)

Now, using the expansion

(1 + x)m = 1 +mx+
m(m− 1)

2!
x2 +

m(m− 1)(m− 2)

3!
x3 + · · ·

and keeping terms up to second order,

F =
−Gm′

r2
c

∫
(â1 + a)

[
1− 3

2
(2â1 · a + q2) + q2 +

15

8
((4â1 · a)2 + 4â1 · aq2 + q4) + · · · ]νdτ

(2.36)

=
−Gm′

r2
c

∫
â1[1− 3

2
(2â1 · a + q2) +

15

2
(â1 · aa)] + a[1− 3â1 · a]νdτ (2.37)

The following observations are made:

1.
∫

aνdτ = 0 because
∫ r

rc
νdτ = 0 since r is measured from the center of mass

2.
∫

â1 · aνdτ = 0 for reasons same as above.

3.
∫

â1νdτ = â1

∫
dm = M â1
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The external gravity force takes the following form after some mathematical simplifications:

F = −Gm
′

r2
c

M â1 +
3

2

Gm′

r2
c

[
â1

∫
(
r

rc
)2dm− 5â1(â1 ·

r
rc

)dm+ 2

∫
(

r
rc

)â1 ·
r
rc

dm
]

(2.38)

Expanding and simplifying, we obtain the expression for the gravity force acting on the differential

mass element.

F = −GMm′

r2
c

â1 +
3

2

Gm′

r4
c

[
â1

∫
r2dm− 5â1â1

∫
rrdm · â1 + 2

∫
rrdm · â1

]
(2.39)

Noting that all of the three integrals given above are related to the inertia tensor of the body about

its center of mass, IB. Specifically,

trace(IB) = 2

∫
r2νdτ (2.40)∫

rrνdτ =
[1]trace(IB)

2
− IB (2.41)

Substituting these in the expression for gravity force, the following is obtained.

F = −Gm
′M

r2
c

[â1 +
∞∑
i=2

f(i)] (2.42)

with f(2) =
1

mr2
c

[3

2
[tr(IB)− 5â1 · IB · â1]

]
â1 + 3IB · â1 (2.43)

Note that â1 is the unit vector along the radial direction in the orbit frame and IB is the inertial

tensor in the body frame. The gravity gradient torque is then simply obtained as lc = −rc × F

which can be expanded and simplified as

lc =
3Gm′

r3
c

â1 × IB · â1 (2.44)

Expressing the body frame and the orbit frame through a direction cosine matrix is the attitude

parameters (like Euler angles or CRPs), the final expression for the gravity-gradient torque is
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obtained as follows.

lc =
3Gm′

r3
c

[
C13C12(I3 − I2)b̂1 + C11C13(I1 − I3)b̂2 + C11C12(I2 − I1)b̂3

]
(2.45)

Thus, the rigid body equations of motion under the influence of gravity-gradient torques can be

written in their complete form as:

I1ω̇1 + (I3 − I2)ω2ω3 = 3Ω2(I3 − I2)C12C13

I2ω̇2 + (I1 − I3)ω1ω3 = 3Ω2(I1 − I3)C11C13

I3ω̇3 + (I2 − I1)ω2ω1 = 3Ω2(I2 − I1)C12C11

(2.46)

with Ω =
√
Gm′/r3

c . At this stage, three sets of inertia parameters are defined as follows:

K1 =
I2 − I3

I1

K2 =
I3 − I1

I2

K3 =
I1 − I2

I3

The equations of motion are then rewritten in terms of the inertia parameters as:

ω̇1 −K1ω2ω3 = −3Ω2K1C12C13

ω̇2 −K2ω1ω3 = −3Ω2K2C11C13

ω̇3 −K3ω2ω1 = −3Ω2K3C12C11

(2.47)

From a numerical analysis perspective, the dynamic equations are simulated along with the

kinematic relations to obtain the time history of the evolution of the attitude parameters. Before

diving into the characterization of motion, the inertia parameters are explained in detail.
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2.3.2 Transformations between inertia parameters and the inertia tensor

Recall that the inertia parameters had the following relationship to the inertia tensor:

K1 =
I2 − I3

I1

K2 =
I3 − I1

I2

K3 =
I1 − I2

I3

(2.48)

The three inertia parameters are not mutually independent. The following relation exists be-

tween K3 and K1, K2:

K3 = − K1 +K2

1 +K2K2

(2.49)

Due to this relation, extracting the true inertia tensor elements from the inertia parameters is im-

possible, because the inertia parameters map to infinite combination of the inertia tensor elements.

With respect to an arbitrary scaling parameter, in the values of I1, I2 and I3, the following relations

are obtained and tabulated in Tab. 2.1. The scaling parameters are α, β, and γ applied to I1, I2, and

I3, respectively.

Table 2.1: Transformations between inertia parameters and inertia tensor elements

I1 α β 1−K2

1+K1
γ 1−K2

1+K1K2

I2 αK1+1
1−K2

β γ 1+K1

1+K1K2

I3 α 1+K1K2

1−K2
β 1+K−1K2

1+K1
γ

The mass distribution of the rigid body can therefore be described using only two inertia pa-

rameters: K1 and K2. For parametric studies of the motion of the rigid body, the space of K1−K2

shall be used to qualitatively ascertain the nature of attitude motion. A complete description of

the attitude motion required the combination of the attitude kinematics and the attitude dynamics

equations. From previous sections, it is known that the dynamic and kinematic counterparts can be
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combined to obtain the governing equations of motion for a rigid body. In the following section,

the governing equation of a rigid body in Keplerian motion is derived and subjected to qualitative

analysis.

2.4 Rigid body in Keplerian motion

The attitude dynamics of a rigid body in Keplerian motion is an important problem in astrody-

namics [2, 36, 37, 38, 39, 40, 41, 42, 43, 44]. There are a great many practical situations such as

communications, remote sensing, environmental monitoring, weather forecasting, etc., where it is

required to maintain the satellite in a preferred orientation with respect to the Earth. Understand-

ing the realm of possible orientations and the nature of deviations from them as a function of the

satellites’ mass distribution and orbital parameters is of utmost importance to achieve these goals.

The main component of attitude motion pertaining to these goals is the analysis of the pitch DOF:

i.e., the attitude motion of the rigid body about the nominal body-fixed axis aligned with the orbit

normal, and its perturbations resulting from the inverse-square gravitational force.

There is extensive literature on the study of attitude motion [36, 45, 38, 44, 46, 40, 42, 47, 43,

48]. DeBra and Delp [36] carried out early parametric studies of the stability of attitude motion of

a rigid body in the presence of gravitational torque. They studied the attitude dynamics of a rigid

body in a circular orbit and discovered the regions of stable and unstable attitude motions about

the origin in the inertia parameter space. Two regions in the parameter space were identified in

this work: a Lagrange region, which is shown to be statically stable under linear analysis, and the

DeBra-Delp [36] region, which is found to be linearly stable due to the gyroscopic terms. Euler

angles were used to parameterize the attitude of the rigid body orbiting around the primary in a

circular orbit. Kane [2] further extended this analysis to show that the stability of the equilibrium

point does not depend on the inertia parameters alone but also on the amplitude of pitch oscilla-

tion. Both analyses rely on linearizing the attitude motions with the assumptions of small angular

deviations from the equilibrium positions. Furthermore, small-angle approximations were made to

obtain strong starting solutions to the coupled transcendental equations governing the equilibria.

The study of the stability of the equilibria of the attitude motions of a rigid body and its libra-
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tions about them can be broadly classified into two techniques: Numerical and Analytical. Numer-

ical techniques were employed to investigate the stability of the equilibrium point corresponding

to the planar pitch degree of freedom [45, 38, 42, 47, 49]. These investigations revealed natural

properties of the pitch dynamics about the origin as a function of the design parameters. Kane’s

[2] original observation that the pitch motion can be decoupled from the roll–yaw motion forms a

basis for these studies. The existence of periodic motions and prediction of the onset of chaos were

investigated for such motions [45, 38, 50, 42, 47]. Numerical approaches such as Poincaré surfaces

were used by Karasopoulos and Richardson [38] and Tong and Rimrott [43] to identify regions of

periodic, quasi-periodic and chaotic motions in the phase-space associated with the pitch degree-

of-freedom. Lyapunov exponents [38] were used to numerically quantify the rate of divergence of

neighboring trajectories as a measure of chaos. The quantitative measures thus obtained formed a

basis to indicate chaotic behavior exhibited in the attitude dynamics of a rigid body in Keplerian

motion. Floquet theory [2], chaos diagrams, and the Melnikov method [48] have also been used to

study the planar pitch motion of a rigid body.

Literature documents extensive analytical studies on the spinning motion of rigid bodies in a

Keplerian orbit [51, 44, 46, 52, 41, 40, 53]. These have led to the discovery of resonant com-

mensurabilities in the natural frequency of motion of the rigid bodies [53, 41] and explained the

physics behind some attitude phenomenon observed during numerical simulations which a linear

analysis fails to accomplish. While these analytical studies are insightful in describing certain qual-

itative behavior of the motion, they fail to provide a complete understanding of the problem with

the full nonlinear dynamics furnished by numerical techniques. Thus, there exists a gap between

the analytical and numerical contributions to appreciate the physics of attitude motion of orbiting

rigid bodies. This chapter develops analytical and semi-analytical approaches to bridge this gap,

quantify the nature of attitude motion of an orbiting rigid body and reconcile the two approaches.

Such techniques will be particularly useful in the study of long-term dynamics of uncontrolled

space objects such as orbital debris where the attitude motion influence on the orbital dynamics is

significant [54, 55, 56]. Also, the results and methodologies developed in the paper by Eapen et
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al. [1, 57] can be applied to studying spacecraft mass distributions and its sensitivities to attitude

motion for future space missions.

The present research focuses on the gravity-gradient perturbations that affect the rotational dy-

namics of a rigid body. Potential sources of external disturbance that cause undesirable pitching

oscillations for certain values of the inertia parameter space are identified. In the first part of the

chapter, the governing equations of motion are developed using the Classical Rodrigues Param-

eters (CRPs) to represent the orientation of the rigid body with respect to the orbital frame of

reference. The assumption of an inverse-squared central force environment is shown to result in a

one-way coupling between the pitch and roll–yaw attitude motions thereby allowing for the study

of pitching motion exclusively. Parametric investigation in the eccentricity-inertia space is used to

identify regions of libratory and circulatory behavior in the pitch oscillations for a rigid body in an

eccentric orbit. The limiting case of zero eccentricity has some interesting dynamical properties.

The conservative nature of the gravity-gradient torques permits certain simplifications allowing its

treatment in an analytical fashion. An integral of motion is obtained in algebraic form resulting in a

reduced dimension analysis of the pitch dynamics. An analytical limit for the separatrix is obtained

as a function of the inertia parameter delineating the boundary between libratory and circulatory

behaviors. To motivate the discussion for the attitude motion of a rigid body in a Keplerian orbit,

the geometrical set-up of the problem is discussed.

2.4.1 The geometry of the problem

Three reference frames are used to describe the orientation of the rigid body with respect to

the central body. They are illustrated in Fig. 2.30. The Inertial reference frame (N{n1,n2,n3})

has its origin at the center of the Earth with the n̂1 axis along the vernal equinox, n̂3 axis towards

the north pole and the n̂2 axis completing the dextral orthonormal set. The Orbital reference frame

(A{a1, a2, a3}) has its origin at the center of mass of the rigid body with the â1 axis directed towards

the radial direction, â3 axis along the orbit normal and â2 completing the set. This coordinate frame

is obtained by a 3-1-3 rotation through the angles: Ω (right ascension of the ascending node), i

(inclination) and u, (argument of latitude (ω + f)). The Body frame (B{b1,b2,b3}) has its origin
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at the center of mass of the rigid body with its axes directed along the directions of the principal

moments of inertia.

Figure 2.3: Rigid body set-up: The rigid body is orbiting a primary in a Keplerian orbit with
n̂i representing the inertial coordinate frame, âi the orbit frame and b̂i the body-fixed coordinate
frame.

The general case of Keplerian motion with the semimajor axis (a) and eccentricity (e) is stud-

ied. The kinematics of attitude motion is described with the aid of Classical Rodrigues Parameters

(CRP): q = [q1, q2, q3]T . The CRPs are related to the principal axis (ei) of rotation of the rigid

body and the principal angle (φ) and through the relation qi = ei tan φ
2

[29]. Therefore, the singu-

larity condition in the CRPs occurs when the principal angle is 180 deg. The kinematic relations

are then given by [32, 29]

q̇ = AωB/A where, A =
1

2
(I3×3 + [q̃] + qqT ) and [q̃] =


0 −q3 q2

q3 0 −q1

−q2 q1 0

 (2.50)
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ωB/A = Bq̇ where, B =
2

1 + qTq
(I3×3 − [q̃]) (2.51)

The direction cosine matrix is given by [32, 29]:

[C] = [I3×3]− 2

1 + qTq
[q̃] +

2

1 + qTq
[q̃][q̃] (2.52)

The CRPs are a favorable set of parameters to use because they are a symmetric stereographic

set which exhibit uniqueness [58]. Furthermore, the use of CRPs enables us to obtain purely alge-

braic expressions for the governing equations of motion as opposed to transcendental expressions

when using Euler angles. The domain of linearization is also quite large as compared to the Euler

angle parametrization [58]. The conversion from CRPs to the direction cosine matrix is also easily

performed using the Cayley transform identity [32, 29].

C(q) = ([I3×3]− [q̃])([I3×3] + [q̃])−1

It is noted that the direction cosine matrix transforms the vectors in the body frame to the orbital

frame. Thus, the angular velocity of the rigid body relative to the orbital frame is ωB/A = Bq̇.

The angular velocity of the orbital frame relative to the inertial is given by ωA/N = df
dt
â3, where

f is the true anomaly. To obtain a more physical representation, let us consider three Euler angles

(θ1, θ2, θ3) to be the yaw, roll and pitch angles, respectively. The pitch motion is defined as the

motion in the orbital plane, i.e., about the orbit normal. The yaw and roll motions are described as

about the first and second axes, respectively.

In setting up the problem, the transformation from the orbital frame to the body frame is done

by performing a 1-2-3 Euler angle sequence rotation by angles θ1, θ2, and θ3, respectively. Utilizing

the DCM described using the CRP attitude parameters, the governing equations of motion are

obtained in the following subsection.
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2.4.2 Governing equations of motion

The attitude dynamics of a rigid body subjected to gravity-gradients is a well-studied problem

[37, 45, 38, 42, 53, 48, 43]. The expression for gravity-gradient torque is given as follows [59, 29,

32, 60]:

M =
3µ

r3
(â1 × IB · â1) (2.53)

Here, µ is the gravitational parameter, r is the distance from the center of the earth to the center

of mass of the rigid body (r = p/(1 + e cos f)), p is the semi-parameter (p = a(1 − e2)), e is the

eccentricity of the orbit, IB is the inertia tensor expressed in the body frame about the center of

mass of the rigid body and â1 is the unit vector along the radial direction.

Differentiating Eq. (2.98) and substituting into Euler’s equations of motion, we obtain the

differential equation governing the attitude motion of the rigid body in a Keplerian orbit. We have

ωB/A = Bq̇ (2.54)

ωA/N =
df

dt
â3 =

h

r2
â3 (2.55)

˙ωA/N =
d

dt

( h
r2
â3

)
=
−2h2

r4

e sin f

1 + e cos f
â3 (2.56)

˙ωB/N = KM (2.57)

ωB/N = ωB/A + ωA/N (2.58)

˙ωB/A = Bq̈ + Ḃq̇ (2.59)

q̈ = B−1( ˙ωB/A − Ḃq̇)

= A( ˙ωB/A − Ḃq̇)

= A( ˙ωB/N − ˙ωA/N − ωA/N × ωB/A)

= A
(
KM + 2

h2

r4

e sin f

1 + e cos f
â3 −

h

r2
â3 × Bq̇

)
(2.60)
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The following regularization is considered to change the independent variable to the true

anomaly [50, 61]:

d()

dt
=

h

r2

d()

df
(2.61)

dr

dt
=
hp

r2

e sin f

(1 + e cos f)2
(2.62)

d2()

dt2
=
h2

r4

d2()

df 2
− 2h

r3

hpe sin f

r2(1 + e cos f)2

d()

df
(2.63)

where h is the specific orbital angular momentum and is given by the relation: h =
√
µp and f is

the true anomaly. The equations governing the attitude motion of the rigid body is then obtained

using true anomaly as the independent variable.

q′′ =A
(
KM +

2e sin f

1 + e cos f
(â3 + q′)− B′q′ − â3 × Bq′

)
(2.64)

where ()′ = d()
df

, A is given in Eq. (2.50), K = diag[K1, K2, K3] is a diagonal matrix with

inertia parameters such that K1 = I3−I2
I1

, K2 = I1−I3
I2

, K3 = I2−I1
I3

, M is the expression for

ω̇B/N obtained from Euler’s equations of rotational motion and the expression for B′ is obtained

by differentiating Eq. (2.98). They are delineated in Eq. (2.65) below:

M1 = −2 (q1 + q′2 + q2 q3 + q1 q′3 − q3 q′1) (−q1
2 − 2 q′2 q1 − q2

2 + 2 q′1 q2 + q3
2 + 2 q′3 + 1)

(q1
2 + q2

2 + q3
2 + 1)2

− 3 (2 q2 + 2 q1 q3) (2 q3 − 2 q1 q2)

(e cos (f) + 1) (q1
2 + q2

2 + q3
2 + 1)2

(2.65a)

M2 =
3 (2 q2 + 2 q1 q3) (q1

2 − q2
2 − q3

2 + 1)

(e cos (f) + 1) (q1
2 + q2

2 + q3
2 + 1)2

− 2 (q′1 − q2 + q1 q3 − q2 q′3 + q3 q′2) (−q1
2 − 2 q′2 q1 − q2

2 + 2 q′1 q2 + q3
2 + 2 q′3 + 1)

(q1
2 + q2

2 + q3
2 + 1)2

(2.65b)
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(2.65c)
M3 = −4 (q1 + q′2 + q2 q3 + q1 q′3 − q3 q′1) (q′1 − q2 + q1 q3 − q2 q′3 + q3 q′2)

(q1
2 + q2

2 + q3
2 + 1)2

− 3 (2 q3 − 2 q1 q2) (q1
2 − q2

2 − q3
2 + 1)

(e cos (f) + 1) (q1
2 + q2

2 + q3
2 + 1)2

Since the gravity-gradient torque is conservative, we can develop the expression for the con-

served total energy. The total energy of the rigid body can be computed by summing up the kinetic

and potential energies associated with both translational and rotational motion of the body. For an

object in Keplerian orbit, the translational energy is given by

Et = Kt + Vt (2.66)

=
1

2
|v|2−µ

r
=

1

2

(2µ

r
− µ

a

)
− µ

r
= − µ

2a
(2.67)

The rotational kinetic energy of the rigid body is given by:

Tr =
1

2
ωTB/NIBωB/N (2.68)

where ωB/N = ωB/A + ωA/N The rotational potential energy of the rigid body is given by:

Vr =
µ

2r3
(3âT1 IBâ1 − trace(IB)) (2.69)

Landau & Lifshitz [62] provide the expression that relates the energies in an inertial reference

frame and a non-inertial reference frame as:

29



E = Einertial + ∆E = Einertial − L · ωA/N (2.70)

E = Et + Er −
h

r2
âT3 IBωB/N = constant (2.71)

where Er = Tr + Vr. Here, Et is the energy associated with the two-body motion, Er is that

associated with the rotational motion and L is the specific angular momentum of the rigid body.

The two-body energy is much larger than its rotational counterpart. This measure of energy (E) is

used for parametric investigations into the nature of attitude motion.

Qualitative analysis of the attitude motion of a rigid body is hierarchically developed in the

following subsections. These investigations are classified into the following four categories:

1. Pitch attitude dynamics of a rigid body in circular orbit.

2. Pitch attitude dynamics of a rigid body in eccentric orbit

3. Full 3-DOF roll-pitch-yaw dynamics in circular orbit

4. Full 3-DOF roll-pitch-yaw dynamics in eccentric orbit

Kane’s [2] observation that the pitch motion decouples from the roll-yaw motion is the premise

for the development of the first two categories mentioned above. This one-way decoupling enables

us to obtain multiple geometric insight into the planar pitch motion of a rigid body. Examining this

pitch motion is detrimental to maintain a desirable pointing accuracy of satellites in many appli-

cations such as communications, remote sensing, environmental monitoring, weather forecasting,

etc.

2.4.3 Planar pitch dynamics of a rigid body in circular orbit

The case of a rigid body in a circular orbit (eccentricity e = 0) is examined. The rigid body is

assumed to be of arbitrary shape and is defined using the inertia parameters K1, K2 and K3. The

equilibrium points for this system are identified, and the stability of oscillations about it is studied.
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To obtain the equations of motion for the circular orbit case, we set the eccentricity (e = 0) in Eq.

(2.64). For a circular orbit, we note df
dt

= constant, i.e., the independent variable (true anomaly, f )

can be switched to time (t) without loss of information. Thus, Eq. (2.64) becomes

q̈ =
1

2
(I3×3 + q̃ + qqT )K3G +

2qT q̇
1 + qTq

q̇ (2.72)

Eq. (2.82) gives us the complete nonlinear dynamics of a rigid body under the influence of

gravity-gradient torques. The following section describes in detail the circumstances under which

the pitch motion decouples from the roll and yaw motions.

2.4.3.1 The one way decoupling of pitch and roll-yaw motion

The expressions for q̈1 and q̈2 are identically zero when we set the initial conditions: [q1, q2, q̇1, q̇2]

= [0, 0, 0, 0]. This implies that the pitch dynamics can be studied with investigation of the roll-yaw

motions for the initial condition [q1, q2, q3, q̇1, q̇2, q̇3] = [0, 0, q300, 0, q̇30 ]. It is to be noted here that

we are not in any way implying that the pitch motion does not affect roll and yaw motion and nei-

ther that the roll-yaw motion affects the pitch motion. This special circumstance due to the initial

condition selection allows us to investigate pitch motion exclusively. Throughout this work, the

one-way decoupling phenomenon mentioned is exactly that due to initial condition selection. One

must not forget that due to energy conservation, there is coupling between the roll-pitch-yaw mo-

tions. Roll and yaw are linearly coupled and decoupled from pitch. But they are always nonlinearly

coupled.

Based on this discussion, the governing equation for the pitch dynamics admits a one-way

coupling between the pitch and roll-yaw motion. The pitch equation of motion can them be given

by:

q̈3 =
3Ω2K3q3(q2

3 − 1) + 2q3q̇
2
3

1 + q2
3

(2.73)

where Ω =
√

µ
r3 and K3 is the asphericity parameter and is given by K3 = I2−I1

I3
. The first integral
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is then obtained as:

F 2 =
q̇2

3 + 3Ω2K3q
2
3

(1 + q2
3)2

= constant (2.74)

From a dynamical systems point of view, this constant of motion gives global information

about the solutions of the system. Fixing this constant allows us to obtain a co-dimension one

sub-manifold of the phase-space. Thus, we can rewrite the equation of motion by reducing one

degree of freedom as in Eq. (2.75). Then, an initial condition with this integral constant will stay

on that integral manifold for all time.

q̇2
3 = F 2(1− q2

3)− 3Ω2K3q
2
3 (2.75)

Redefining the constant of integration in a different way helps gain some insight into the one-

dimensional system in Eq. (2.75). The constant of motion is written in terms of a new variable (λ)

and is defined as follows:

F 2 = 3K3Ω2λ2 (2.76)

Equation (2.75) can then be written as:

q̇2
3 = F 2

(
(1− q2

3)2 − 1

λ2
q2

3

)
(2.77)

The study of the variable λ gives insight into the pitching motion of a gravity-gradient satellite

in circular orbit. From analysis of the eigenvalues of the system, the pitching motion is libratory

for values of λ > 1
2

and tumbling for λ < 1
2
. Motion along a separatrix would occur in the limit as

λ → 1
2
, but this type of motion would require an infinite period and is physically impossible. The

constant of motion for the separatrix curve is then given as a pure function of the inertia parameter:

F =
√

3KΩ
4

Eq. (2.74) is a constant of pitching motion with a phase portrait representing a simple pen-

dulum. For a given value of the constant and one phase-space variable, the other can be com-
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puted analytically. Thus, the complete phase portrait can be obtained given the initial condi-

tions for the motion. Due to energy conservation, the extremities of the phase-space trajectory

([q3max , q3min],[q̇3max , q̇3max]) can be computed as well. It is worthwhile to note that the first integral

is not a transcendental function, as one would obtain if one were to use Euler angles to write the

governing equations. This expression was obtained by Modi and Brereton [42] in transcendental

form. The separatrix curves for different values of the inertia parameter are as shown in Fig. 2.4

Figure 2.4: Phase-plane plot of separatrix curves for inertia parameters: K3 = [0, 1]

Now, while the equations of pitching motion are expressed in CRP attitude parameters, the con-

version to Euler angles is straightforward. Recalling that the CRPs are obtained by q = tan(φ/2)ê,
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the Euler angle and angle rate associated with the pitch motion is given as

θ = 2 tan−1 q3 (2.78)

θ̇ =
2q̇3

1 + q2
3

(2.79)

which reduces the pitch equation of motion in terms of the Euler angles as:

θ̈ +
3

2
K3 sin 2θ = 0 (2.80)

which is the differential equation for the simple pendulum as expected. In the following section,

the analysis of pitch attitude dynamics is examined in the general case of arbitrary eccentric orbit.

2.4.4 Pitch attitude dynamics of a rigid body in eccentric orbit

The case of a rigid body in an eccentric orbit (eccentricity e = (0, 1]) is examined. The rigid

body is assumed to be of arbitrary shape and is defined using the inertia parameters K1, K2 and

K3. The orbit-attitude plane geometry can be described with reference to Fig. 2.5.

Figure 2.5: Orbit-Attitude geometry. The pitch motion is defined as the motion in the orbital plane,
i.e., about the orbit normal.

In Fig. 2.5, the êr is the radial direction, θ is the pitching angle, and f is the true-anomaly. Uti-

lizing the regularization considered in Equations (2.61-2.63), the equations of motion are expanded

34



using true-anomaly as the independent variable in Eq. (2.64). Eq. (2.64) gives the complete non-

linear dynamics of a rigid body under the influence of gravity-gradient torques. The expressions

for q′′1 and q′′2 are identically zero when we set the initial conditions: [q1, q2, q
′
1, q
′
2] = [0, 0, 0, 0].

The governing equation for the pitch dynamics admits a one-way coupling between the pitch and

roll-yaw motion. The pitch equation of motion is then obtained in the same way as in the circular

orbit case, and is as follows.

q′′3 =
1

1 + q2
3

(
2q3q

′
3

2
+

e sin f

1 + e cos f
(1 + q′3)− 1

1 + e cos f
3K3q3(1− q2

3)
)

(2.81)

Eq. 2.81 allows for study of pitch motion exclusively. Recall here that K3 = I2−I1
I3

is the

inertia parameter, e is the eccentricity of the orbit, and f is the true anomaly of the rigid body in

the orbit. While the motions in roll-yaw result in a change in pitch motion, the pitch dynamics

do not excite roll-yaw modes. There exists a one-way coupling between the pitch and roll-yaw

motion resulting from the zero initial conditions in the state-space components associated with roll

and yaw. Eq. 2.81 is a second-order ordinary differential equation with periodic coefficients and

external forcing through the eccentricity variable. The behavior of the rigid body can be classified

as librations or circulations. Librations occur physically when the true motion about the pitch axis

is bounded in the neighborhood of the pitch equilibrium. Circulation, however, results when the

pitch angle cycles through all possible values: [0,2π], i.e. a windup in the pitch angle. These types

of motions can be visualized from the well-known topology of the phase portrait of the pendulum

[63]. The distinction is made using the separatrix trajectory: motions lying inside the separatrix

curve exhibit librations, while trajectories lying in the exterior exhibit circulation. The CRPs are

particularly useful in investigating these motions, since the transition from libratory motions to

circulation occurs at the singularity condition.

These regions of circulation and librations are a function of the parameters of the dynamical

system, i.e., the eccentricity and the inertia parameter. To obtain regions of libratory and circulatory

motion, the eccentricity-inertia (e − K3) parameter space is studied. It is observed that there are
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certain regions in the e−K3 space where arbitrarily small initial conditions will result in bounded

oscillatory behavior of the pitch motion, while others result in a circulatory motion of the rigid

body. This is investigated for initial conditions of the order of 1e− 2 and for 200 revs of the rigid

body around the earth. A parametric diagram identifying regions of libration and circulation is

provided in Fig. 2.6

Figure 2.6: K3 − e parameter space: Regions in white have bounded motions while those in black
result in an unbounded circulatory motion. Initial conditions are [q3, q̇3] = [0, 0]. ©2020 Springer:
Celest Mech Dyn Astr. Reprinted, with permission, from [1]

Figure 2.6 shows the regions of bounded motions for a small initial condition in [q3,q̇3]. It is ob-

served that the planar pitch motion for a rigid body in circular orbit is always stable when K3 > 0.

At higher eccentricities, we also obtain regions of bounded behavior when K3 < 0. These regions

are deemed unstable by linear analysis for a circular orbit. Zlatoustov [47] also obtained a simi-

lar result by investigating stability by the method of periodic coefficients. However, he obtained
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regions beyond e = 0.3 to also be stable, which we did not obtain in the full numerical analy-

sis of the equations of planar pitch motion. While numerical simulations and parametric analysis

provide information about the boundedness of solutions, they may fail to identify certain internal

symmetries of the existence of periodic, quasi-periodic and chaotic motions. DST provides us

with certain geometric analysis tools that provide insight into the different dynamical phenomena

in the pitch attitude motion of a rigid body. Particularly, we shall utilize two such techniques: the

Poincaré surface of sections and the parametric bifurcation diagram.

2.4.4.1 Poincaré Surface of Sections (PSS)

The Poincaré map is defined in the state space. It serves as a map that transforms a continuous

time flow into a discrete map of a dynamical system governed by a set of ordinary differential

equations into. The Poincaré map is the intersection of a trajectory, which moves periodically,

quasi-periodically, or chaotically, in an n-dimensional phase-space, with a surface transversal to

the phase-space whose dimension is n − 1. The transversal condition implies that the normal of

the hypersurface is not orthogonal to the tangent of the trajectory at the intersection point. More

precisely, one considers a trajectory with initial conditions on the hyperplane and records the point

at which this trajectory returns to the hyperplane. The PSS refers to the hyperplane, and the

Poincaré map refers to the map of points in the hyperplane induced by the intersections.

A stroboscopic map contrasts the Poincaré map, which is that the hyper plane is defined in

terms of the independent variable of the governing ordinary differential equations, i.e. time (t)

or the true-anomaly (f ). For periodically forced dynamical systems, including the pitch motion

of a rigid body in Keplerian motion, the stroboscopic map often reveals hidden structures in the

topology of the motion. The pitch dynamics are studied using a stroboscopic map of (fmod2π)

in the phase plane q − q′. Both regular and chaotic motions are observed in the Poincaré maps.

Periodic motion is characterized as fixed points on the map, quasi-periodic motions exhibit closed

structures, and chaotic motions appear as non-ordered scattering points, which would completely

fill an area of the PSS as the number of points, N →∞. Figure 2.7 presents 16 Poincaré maps for
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eccentricities e = 0.01, 0.05, 0.075, 0.15 and the inertia parameter values K3 = [0.2, 0.5, 0.7, 0.9].

Figure 2.7: PSS for inertia and eccentricity parameter

In accordance with nonlinear dynamics theory, the general trend of the sequence of Poincaré maps

is that with an increase in eccentricity, the area of the phase-space with regular motion shrinks,

while chaotic motion expands [38]. Furthermore, from KAM theory [64, 65], the quasi-periodic

motions are perceived to exist around periodic motions. Therefore, at the center of each closed

curve, there exists a periodic orbit. The advantage of Poincaré maps is that the type of motion

can be determined for an entire region of initial conditions in the phase-space. Figure 2.7 is ob-

tained by propagating multiple initial conditions in the q3 − q′3 phase-space for 250 revolutions
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of the rigid body about the central body. For example, one may deduce from the Poincaré map

of [K, e] = [0.5, 0.01] that a periodic orbit is obtained with an initial condition of [q30 , q
′
30

] =

[0, 0.019891]. Similarly, another periodic orbit exists at [q30 , q
′
30

] = [0,−0.474312]. A disadvan-

tage of Poincaré sections is that meticulous and lengthy sequences must be constructed to accu-

rately estimate the parameter values at which a transition to chaos occurs for a particular initial

state. While the initial condition response gives significant insight into the nature of motion, the

effects of parameter variations on the motion of the rigid body (or any dynamical system in general)

can be studied using bifurcation diagrams.

2.4.4.2 Bifurcation diagrams

Bifurcation diagrams are obtained using the same procedure as that of the Poincaré maps i.e.

a system state is periodically sampled. However, rather than viewing the results in the phase-

plane, the occurrence of states are recorded as a function of a parameter. Figure 2.9 illustrates the

pitch angle bifurcation as a function of varying eccentricity for a fixed inertia parameter value of

K3 = 1. While the equations of motion are propagated using the CRP attitude parameterization,

for physical intuition, the pitch Euler angle is plotted. The initial condition for the simulation

is always taken to be [q3, q
′
3] = [0, 0] to ensure that the behavior of motions is only due to the

eccentricity forcing. Multiple period bifurcations can be observed in the bifurcation diagrams.

Noting that the stroboscopic map records the states ([θ, θ′]) at the perigee as a function of the

eccentricity, a one period solution results in the pitch axis returning back to the same configuration

after one orbit. Similarly, a three period solution results in the pitch axis returning back to the same

configuration after three orbital periods. A schematic of n-period solutions and bifurcation points

is shown below.
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Figure 2.8: Schematic of n−period solutions and bifurcation points based on the eccentricity pa-
rameter

In Fig. 2.9, regions of regular and chaotic motions can be identified. A quick inference from

the figure is that the onset of chaos occurs at eccentricities near 0.3. A particularly interesting

structure is observed in the bifurcation diagram shown around eccentricity 0.25.

Figure 2.9: Pitch angle bifurcation diagram for K3 = 1. Initial conditions are [q3, q̇3] = [0, 0].
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Investigation of the bifurcation diagrams reveal certain interesting dynamical structure. Mag-

nification of this region of the parameter space (Fig. 2.10) reveals these quasi-periodic motions.

Period three solution of θ and period two solution of θ′ exist here.

Figure 2.10: Pitch angle bifurcation diagram for K3 = 1. Zoomed in on e = [0.22,0.301]

For smaller eccentricities, the motions are regular, i.e., periodic (at e = 0) and quasi-periodic

(e > 0). This is illustrated in Fig. 2.11
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Figure 2.11: Pitch angle bifurcation diagram for K3 = 1. Zoomed in on e = [0,0.05]

Furthermore, a magnification of the regions near eccentricity 0.3, (Fig. 2.12 ) reveals a com-

plex mixture of regular and chaotic motions. Period five solutions of θ and period four solutions

of θ′ exist at e = 0.313, chaos occurs near e = 0.312 and quasi-periodic motions dominate at

eccentricities between these values.

Figure 2.12: Pitch angle bifurcation diagram for K3 = 1. Zoomed in on e = [0.31,0.316]

Figures 2.13 and 2.14 illustrate the bifurcation near e = 0.312. Areas of chaotic motion, quasi-
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periodic motion, and even periodic motion appear and then disappear as eccentricity increases,

apparently until a global onset of chaos is reached, somewhere about e = 0.3145. Period five and

period three solutions are obtained at e = 0.303, as observed in Fig. 2.13. Note the rapid change

in the nature of motions from Fig. 2.13 to Fig. 2.14. This structure is repeated again and again in

further magnifications of the area near the onset of global chaos.

Figure 2.13: Pitch angle bifurcation diagram for K3 = 1. Zoomed in on e = [0.301,0.3055]
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Figure 2.14: Pitch angle bifurcation diagram for K3 = 1. Zoomed in on e = [0.3115,0.3121]

The bifurcation of the pitch angle and angle rate is complex even for the regular motions which

are far from chaos revealing a fine, interwoven structure of smooth threads which form odd corners

near e = 0.304. Note that the above analysis has been done for the inertia parameter value ofK3 =

1 i.e. a satellite representing a dumbbell shape. Both Poincaré maps and bifurcation diagrams may

be constructed for a variety of realistic values of the rigid body inertia parameter, eccentricity

and the initial states which serves in a useful capacity as an engineering tool in satellite or orbit

design. For instance, the Poincaré sections identifies the existence of periodic orbits. From the

Poincaré sections, one can discern that the initial condition in θ′ to obtain a periodic orbit drifts

with eccentricity. This drift is captured in Fig. 2.15 below.
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Figure 2.15: θ′ initial condition drift for periodic solutions of the attitude motion. θ = 0.

Such plots may be used to study the effect of varying system parameters (e and K3) on the

motion of a gravity-gradient satellite. We note here however, that discerning global behavior from

local trends can be difficult, and additional methodologies must be pursued. In the following sec-

tion, the effects of the roll and yaw motions and its influence on the pitch dynamics are examined,

with an emphasis on circular as well as elliptical orbits.

2.4.5 Full 3-DOF roll-pitch-yaw dynamics in circular orbit

The case of a rigid body in a circular orbit (eccentricity e = 0) is considered next. The rigid

body is assumed to be of arbitrary shape and is defined by the inertia parameters K1 = I3−I2
I1

,

K2 = I1−I3
I2

and K3 = I2−I1
I3

. The equilibrium points for this system are identified and the stability

of oscillations about it is studied.

To obtain the equations of motion for the circular orbit case, we set the eccentricity (e = 0)

in Eq. (2.64). For a circular orbit, we note that df
dt

= constant, i.e., the independent variable (true

anomaly, f ) can be switched to time (t) without loss of information.

Thus, Eq. (2.64) becomes
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q̈ =
1

2
(I3×3 + q̃ + qqT )K3G +

2qT q̇
1 + qTq

q̇ (2.82)

Eq. (2.82) gives us the complete nonlinear dynamics of a rigid body under the influence of

gravity-gradient torques. It is therefore of interest to examine the stability of different types of

motion exhibited by the rigid body.

2.4.5.1 Stability of oscillations

Kane[2] shows that the stability of equilibria is evaluated with respect to the parameters of the

dynamical system, i.e. inertia parameters and the amplitude of pitch oscillations. Defining the

angle φ as the angle between the body b̂3 and the orbit normal â3, the oscillations were deemed

unstable when the value of φ
φ0

exceeded a predefined upper limit. That is, a small roll-yaw motion

was seen to grow when excited by existing pitch motion until it reached a maximum amplitude

whose value could not be made arbitrarily small by decreasing the initial conditions of the roll-

yaw motion. An initial estimate of this unstable nature was made using Floquet theory [66] and

linear models of the roll and yaw motions. Fig. 2.16 illustrates regions of stable and unstable

motion in the inertia parameter space based on the definition of Kane[2]. This figure has been

obtained using initial conditions exhibiting a maximum pitching amplitude of 5 deg for the entire

inertia parameter space.
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Figure 2.16: K1 −K2 parameter space: The figure is obtained for a 5 deg maximum amplitude of
pitching motion. Regions in blue exhibit stable nature of oscillations and those in yellow exhibit
unstable nature as defined by Kane[2] ©2020 Springer: Celest Mech Dyn Astr. Reprinted, with
permission, from [1]

In this section, an alternate method based on energy transfer between the pitch and the roll-yaw

motions is developed to study the stability of oscillations. Utilizing information from the constant

total energy and the one-way coupling between the pitch and roll-yaw motions, the following

procedure (Fig. 2.17) is employed to quantify the energy exchange between the pitch and roll-yaw

motions.

Linear analysis [36] shows that the Lagrange region is statically stable. Furthermore, it can be

shown that the Hamiltonian in the Lagrange region is positive definite and hence can be used as a

Lyapunov function to study stability (see Malkin[67] for example). Implementing the procedure
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Figure 2.17: Procedure for the method of energy exchange employed to qualitatively assess the
inertia parameter space ©2020 Springer: Celest Mech Dyn Astr. Reprinted, with permission, from
[1].

48



above we obtain regions of energy transfer in the K1 − K2 inertia parameter space thus demon-

strating that the apparent instability observed by Kane[2] is merely an energy transfer between the

pitch and roll-yaw systems. In the DeBra-Delp region too, linear analysis shows the stability of

the origin. However, the Hamiltonian is indefinite here and any energy dissipation will lead to

instability[53].

The reason we can show energy transfer is because of the knowledge that the pitching motion

is decoupled from the roll and yaw motion. However, the converse is not true. For certain values of

the parameter space, the small roll-yaw motions are seen to grow when excited by an existing pitch

motion, thus indicative of energy exchange. Let us consider a particular region of the inertia space:

K1 = 0.5 and −0.82 ≤ K2 ≤ −0.91. Solving our system of nonlinear equations we obtain the

following illustration of energy exchange (Fig. 2.18). It is observed here that this energy transfer

does not occur at isolated points in the parameter space, but, the energy pumping increases and

then decreases over a range of values (note the energy magnitudes on the y-axis scale).

Selecting isolated points in the Lagrange region, we can observe the same phenomenon Kane

[2] observed regarding the pitch and roll-yaw angles: Roll-yaw oscillations increase in amplitude

over time when excited by a small pitch motion. Figs. 2.19a, 2.19b and 2.19c demonstrate clearly

how the roll-yaw angle is excited by the pitching motion for the given values of inertia. The dip in

pitch amplitude accompanying the increase in roll-yaw motion is an indication of energy transfer.

However, Kane [2] was unable to notice this phenomenon because of the application of Floquet

theory [66] to the linearized periodic dynamical model. The unstable solutions from Floquet theory

then suggests an exponential growth. A similar conclusion cannot be drawn for the DeBra-Delp

region where linear stability is achieved through gyroscopic terms.
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Figure 2.18: Energy pumping: The difference in total energy and that due to pitch is plotted for
200 revs for the inertia parameters [K1,K2]=[0.5,-0.87–0.91]. The magnitude of energy difference
is shown to increase and decrease implying a continuous phenomenon rather than discrete points
of stable and unstable oscillations. ©2020 Springer: Celest Mech Dyn Astr. Reprinted, with
permission, from [1].

(a) K1,2 = [0.5,−0.9] (b) K1,2 = [0.4,−0.75] (c) K1,2 = [0.3,−0.6]

Figure 2.19: Magnitude of oscillations: The roll-yaw oscillations (blue) increase in amplitude
over time accompanied by a corresponding dip in pitch oscillation (red) amplitude suggestive of
energy exchange between the pitch and roll-yaw oscillations©2020 Springer: Celest Mech Dyn
Astr. Reprinted, with permission, from [1].
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The stable attitude motion coupled with large energy exchanges observed in Fig. 2.19 is indica-

tive of resonance. One would expect this phenomenon to occur when the natural frequencies of

pitch and roll-yaw are commensurable. Using linear analysis, the natural frequencies are obtained

as a function of the inertia space variables.

ω1,2 =
Ω√
2

[
1−K1K2 ∓

√
16K1K2 + (3K2 +K1K2 − 1)2 − 3K2

] 1
2

(2.83)

ω3 = Ω
√

3(K1 +K2)/(1 +K1K2) (2.84)

The linear analyses are valid for small oscillations about the equilibrium and the differential

equations are linear with constant coefficients. Unstable solutions resulting from the linear system

of equations then suggest an exponential growth, however, actual motion resulting from nonlinear

equations are bounded. This information is lost in the linearization. Performing the energy-based

stability analysis for the entire K1 − K2 space within the Lagrange and DeBra-Delp region, we

see the prominent regions where these energy exchanges occur coincide with the curves of 2:1

(ω3 = 2ω1) resonance and 1:1 (ω3 = ω1) resonance. A slight change in energy transfer is also

observed along the internal resonance condition of ω3 = ω2 − ω1. As suspected, we observe

that the dominant energy exchange happens in the 2:1 resonant commensurability. This energy

exchange is given by

dE =
1

T

∫ T

0

(E − Ep)dt (2.85)

where, E is the total energy and Ep is the energy associated with the pitch motion.
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Figure 2.20: K1 − K2 parameter space: Shows regions of energy exchange in the Lagrange and
Debra-Delp regions of the inertia parameter space. Three curves corresponding to the internal
resonances ω3 = 2ω1, ω3 = ω1 and ω3 = ω2−ω1 are identified as reasons for the energy exchange.
The colors denote the value of log dE from Eq. 2.85 ©2020 Springer: Celest Mech Dyn Astr.
Reprinted, with permission, from [1].

On comparing Fig. 2.16 with Fig. 2.20, it is observed that the regions of instability pointed out

by Kane [2] actually correspond to regions where the energy exchange between pitch and roll-yaw

motion is predominant. We note that energy transfer is more dominant where there is frequency

commensurability between the natural frequencies of pitch and roll-yaw. We also observe that the

magnitude of energy exchanges are not as dominant near the ω3 = ω2 − ω1 resonant curve or the

1:1 resonant curve.
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2.4.5.2 Maximum pitch angle sensitivity

The effect of the maximum pitch amplitude on the amount of energy exchange, particularly

in the neighborhood of the ω3 = 2ω1 commensurability curve is investigated in more detail. It is

observed that an increase in the maximum pitch amplitude is accompanied with an increase in the

magnitude of energy exchanged. This implies that the region exhibiting undesirable oscillations in

the pitch and roll-yaw motions cover a larger part of the K1 −K2 parameter space. This effect of

the influence of the maximum pitch amplitude is illustrated in Fig. 2.21

Figure 2.21: Effect of maximum pitch amplitude: The resonance region near the ω3 = 2ω1

commensurability is investigated as a function of the maximum pitch angle. Sections θ3max =
4 deg, 5 deg, 6 deg are shown to indicate that high energy exchange regions can span a larger part
of the inertia parameter space depending on the maximum amplitude of pitching oscillations. Color
information is the same as that in Fig. 2.20 ©2020 Springer: Celest Mech Dyn Astr. Reprinted,
with permission, from [1].

It is noted here that the stability analysis and the equations of motion were derived keeping the

expression for the gravity torque truncated to second order. This is done practically because the
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size of the rigid body under consideration is much smaller than the primary body. Fig. 2.21 demon-

strates that regions of high energy exchange and therefore larger amplitude of pitching oscillations

can span a large region of the inertia parameter space depending on the maximum amplitude of

pitching motion. This is an important criterion in the design of space vehicles to avoid undesirable

oscillations in pitch and roll-yaw motions. Furthermore, the parametric investigations into the at-

titude motions are useful in understanding its influence on long-term orbit propagation. Since no

main-axis attitude motion can be assumed for non-controlled space objects such as spent rocket

bodies [68, 54], the shape and inertia knowledge becomes useful in using the analyses presented

here to assess the long term orbital evolution.

2.4.5.3 Energy-based approach for attitude motion visualization

The previous section shows how energy transfer between pitch and roll-yaw motions provides

insights into the nature of the oscillations. In classical mechanics, when we consider the problem

of the rapid motion of a non-symmetric rigid body about its center of mass, we normally use

the Euler-Poinsot motion as a generating motion with zero external torques. The motions are

considered rapid if the moment of external forces about a fixed point is small compared with the

value of the kinetic energy of rotation [69]. Now, while the analytic solution for the general free

motion of a rigid body is rather involved, polhodes serve as a geometrical way of qualitatively

analyzing the motion due to Poinsot.

Poinsot’s geometric interpretation of the torque-free motion of a rigid body uses a tri-axial

ellipsoid of rotational kinematic energy intersecting with a sphere of magnitude of angular mo-

mentum. In this setup, the locus of angular velocity vector traces a space curve called the polhode.

When the angular momentum vector is expressed in the inertial frame, this is known as the her-

polhode. The point of contact then determines the space-fixed and body-fixed system [31]. To

facilitate the Poinsot construction, consider the two constants of motion, the kinetic energy (T )

and the magnitude of the angular momentum (|L|). Each of these define an ellipsoid in ω space

(the energy and momentum ellipsoid, respectively). The motion of ω is constrained to lie on the

intersection of the two ellipsoids given as follows:
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3 = 1 (2.86)

I1ω
2
1 + I2ω

2
2 + I3ω

2
3 = L2 (2.87)

In this section, we attempt to extend this qualitative reasoning to the case of a rigid body in

orbit acted upon by gravity-gradient torques. Without loss of generality, we can write the total

energy of this system as:

E = T + V (2.88)

=
1

2
(I1ω

2
1 + I2ω

2
2 + I3ω

2
3) + V (2.89)

Therefore, we can obtain a reduced energy, E0 as:

E0 = E − V =
1

2
I1ω

2
1 +

1

2
I2ω

2
2 +

1

2
I3ω

2
3 (2.90)

Comparing with Eq. (2.86)

I1

2E0

ω2
1 +

I2

2E0

ω2
2 +

I3

2E0

ω2
3 = 1 (2.91)

Note that the reduced energy, E0, is not a constant as E. However, inspired by the method of

Poincaré sections, instantaneous intersections of the angular velocityω with the reference ellipsoid

can be obtained. This reference ellipsoid is chosen based on the initial conditions of the nonlinear

differential equations governing the motion of the rigid body in orbit. Equation 2.91 can be mod-

ified to obtain an ellipsoid which is a surface of constant energy in the momentum coordinates (a
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space where the coordinates are the projections of the angular momentum along the body’s princi-

ple moments of inertia) called the Binet ellipsoid [70, 27]. We define this osculating polhode as a

Binet-Poincaré surface of section.

The interpretations of the visualizations are similar to that of the torque-free polhode: for exam-

ple, pure spin motions are stationary points. However, unlike Binet’s construction, the osculating

polhode curves need not be closed as they indicate how the angular momentum, L, enters and

exits a reference Binet ellipsoid. The magnitude of departure from a pure spin condition is an

indicator of the amplitude of oscillations about that axis. This makes it easy to verify the nature of

oscillations with varying initial conditions. Multiple insights can be obtained from the osculating

polhode such as changes in the behavior of the angular momentum vector as a function of the in-

ertia parameters and the quasi-periodic motions of the angular momentum vector at the resonance

conditions. The remainder of this section will demonstrate the above-mentioned characteristics of

motion in detail.

2.4.5.4 Osculating polhode construction: The Binet-Poincaré section

To motivate the discussion on the construction of the Binet-Poincaré’ Section, we rewrite Eq.

2.91 as:

L2
1

2E0I1

ω2
1 +

L2
2

2E0I2

+
L2

3

2E0I3

= 1 (2.92)

where L1, L2 and L3 are the components of the angular momentum, L. Eq. 2.92 defines the Binet

ellipsoid on which the osculating polhode curves are plotted. First, it is verified in Fig. 2.22 that

the equilibrium points, i.e. points of pure spin about the major, minor and intermediate moments

of inertia exists for a near-symmetrical rigid body. This figure is obtained for inertia parameter

values: [K1, K2] = [0.01, 0.01]. From the inertia parameters given, this is an asymmetric rigid

body and so the pure spin only occurs at the Equilibrium points i.e. spin about the axes of inertia.
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Figure 2.22: Equilibrium Points: The osculating polhode for a near-symmetrical rigid body
([K1, K2] = [0.01, 0.01]) with initial conditions resulting in pure spin about the three principal
axes of inertia suggestive of equilibrium points like in the torque-free case ©2020 Springer: Celest
Mech Dyn Astr. Reprinted, with permission, from [1].

In the previous sections, the decoupling of the roll-yaw motion from the pitch motion was

demonstrated. To visualize this, we begin with a zero initial condition in roll-yaw and their rates.

For an axisymmetric body, the osculating polhodes are similar in structure to the torque-free case

as the motion departs from pure spin motion. This is illustrated in Fig. 2.23. This figure is obtained

for inertia parameter values: [K1, K2] = [0.98, 0.98] i.e. I1 = I2 > I3.
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Figure 2.23: Osculating polhodes for the axisymmetric rigid body (I1 = I2 > I3): The rigid body
([K1, K2] = [0.98, 0.98]) shows similar behavior as the polhodes for the torque-free case ©2020
Springer: Celest Mech Dyn Astr. Reprinted, with permission, from [1].

We note here that the concentric circular structures in Fig. 2.23 are a measure of the ampli-

tude of oscillations about the spin axis (in this case, I3). Fig. 2.24 depicts how the full angular

momentum vector behaves. This figure is obtained using the initial conditions from Fig. 2.23. It

enters and exits the energy ellipsoid multiple times portraying the short-period oscillations about

the pitch axis.
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(a) Angular Momentum Vector (b) (a) Zoomed in

Figure 2.24: Angular momentum trajectory: Fig. 2.24a shows how the angular momentum vector
intersects the energy ellipsoid. The red points are the intersection points which is the osculating
polhode. Fig. 2.24b shows a zoomed-in portion of Fig. 2.24a for better visualization ©2020
Springer: Celest Mech Dyn Astr. Reprinted, with permission, from [1].

A visualization tool is thus developed to qualitatively analyse the nature of oscillations. This

can be utilized to gain valuable insight into the behavior of the angular momentum vector, partic-

ularly at the resonance conditions discussed in the previous sections.

2.4.5.5 Energy transfer and angular momentum behaviour for the inertia parameter space

Having developed a visualization tool for the energy and momentum ellipsoid, the qualitative

analysis of rigid body motion is extended to the remainder of the inertia parameter space. The

observation in the previous sections that ‘small roll-yaw motion is seen to grow when excited

by existing pitch motion until it reaches a maximum amplitude whose value could not be made

arbitrarily small by decreasing the initial conditions of the roll-yaw motion.’ is validated. Fig.

2.25 shows the osculating polhode obtained for the inertia parameter pair: [K1,K2] = [0.5, -0.9].

This is a pair lying close to the 2:1 commensurability curve and is indicative of energy exchange

between the pitch and roll-yaw motions. three sets of initial conditions in roll-yaw are analysed:

θ1 = 0.001, 0.01, 0.1 and θ̇3 = 0.13.
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Figure 2.25: Initial condition response: The osculating polhodes are plotted for different initial
conditions in θ1 = 0.1(yellow) ,0.01(red), 0.001(blue) to demonstrate that the amplitude of oscil-
lations remains bounded with arbitrary change in initial conditions ©2020 Springer: Celest Mech
Dyn Astr. Reprinted, with permission, from [1].

It is observed here that the maximum amplitude of pitch oscillation (i.e. the upper and lower

bound on the L1 and L2 directions remain the same even when the roll-yaw initial condition is

arbitrarily small. Closed islands on the osculating polhode are indicative of the bounded nature of

the angular momentum vector. The separation between the islands is dependent on the magnitude

of the initial conditions.

It is noted here that the osculating polhode plotted in Fig. 2.25 only records the instances that

the angular momentum vector exits the Binet ellipsoid. The reason for doing so is to assess the

motion of the angular momentum vector across a large region of the inertia parameter space. To

understand this further, let us consider a set of inertia parameter pairs and view the Binet-Poincaré

Section on the L1 − L2 plane. This is illustrated in Fig. 2.26.
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(a) [K1,K2] = [0.5,-0.75] (b) [K1,K2] = [0.5,-0.76] (c) [K1,K2] = [0.5,-0.77]

(d) [K1,K2] = [0.5,-0.78] (e) [K1,K2] = [0.5,-0.79] (f) [K1,K2] = [0.5,-0.80]

(g) [K1,K2] = [0.5,-0.81] (h) [K1,K2] = [0.5,-0.82] (i) [K1,K2] = [0.5,-0.83]

(j) [K1,K2] = [0.5,-0.84] (k) [K1,K2] = [0.5,-0.85] (l) [K1,K2] = [0.5,-0.86]
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(m) [K1,K2] = [0.5,-0.87] (n) [K1,K2] = [0.5,-0.88] (o) [K1,K2] = [0.5,-0.89]

(p) [K1,K2] = [0.5,-0.90] (q) [K1,K2] = [0.5,-0.91] (r) [K1,K2] = [0.5,-0.92]

(s) [K1,K2] = [0.5,-0.93] (t) [K1,K2] = [0.5,-0.94] (u) [K1,K2] = [0.5,-0.95]

Figure 2.26: Binet-Poincaré’ Sections: Projections of the osculating polhode onto the L1 − L2

axes. Figs. 2.26a to 2.26k are associated with the inertia parameters above the ω3 = 2ω1 resonance
curve and Figs. 2.26l to 2.26u are below. Figs. 2.26j to 2.26q correspond to the inertial parameters
lying close to the resonant curve and thus exhibiting high magnitude of energy exchange ©2020
Springer: Celest Mech Dyn Astr. Reprinted, with permission, from [1].
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There are many interesting observations in Fig. 2.26. As shown, the figure is split into two sets

of figures (red and blue). Figs. 2.26a to 2.26k are associated with the inertia parameters above the

ω3 = 2ω1 resonance curve and Figs. 2.26l to 2.26u are below. Figs. 2.26j to 2.26q correspond

to the inertial parameters lying close to the resonant curve and thus exhibits a high magnitude of

energy exchange. The following observations are made from the Fig. 2.26.

1. The two-lobe island structures in the osculating polhode arise because the inertia parameter

pairs are close to the 2:1 commensurability curve.

2. The structures in the beginning of the red region (Figs. 2.26a to 2.26d) arise because the

inertia parameter pairs are close to the ω3 = ω2 − ω1 internal resonance curve. This indi-

cates that the motions are quasi-periodic in the internal resonance regions. However, these

motions do not cause the pitch oscillation amplitude to increase as in the case of the 2:1

commensurability (Figs. 2.26j to 2.26q).

3. The inertia pairs that are not near any commensurability curve result in a single island struc-

ture (Figs. 2.26f, 2.26h, 2.26i, 2.26r, 2.26s, 2.26t, 2.26u). This can also be observed in the

axisymmetric case explained earlier since axisymmetric rigid bodies do not lie near internal

resonant regions.

4. As mentioned previously, the osculating polhode is obtained by recording the instances the

angular momentum vector exits the energy ellipsoid. Given this knowledge, it is seen that

there is a monotonic change in the phase of the angular momentum vector upon crossing the

commensurability curve. The regions (quadrants in the L1 − L2 space) where the angular

momentum exited the energy ellipsoid are now regions where it enters. This behavior is

consistent over all the inertia parameter pairs.

63



Figure 2.27: Binet-Poincaré Sections across the 2:1 resonant curve: The osculating polhodes
demonstrate the monotonically changing phase of the angular momentum vector orientation. Dis-
tinct changes are seen in the regions above and below the resonant curve ([K2] = [-0.85,-0.88]
-also characterized by large amplitude of oscillations) The sections close to regions of internal res-
onance of ω3 = ω2 − ω1 are also shown ©2020 Springer: Celest Mech Dyn Astr. Reprinted, with
permission, from [1].

Fig. 2.27 illustrates the phenomenon explained above. It can be easily visualized that even

though the complete motion of the angular momentum is similar for the red and blue regions near

commensurability, the Binet-Poincaré’ sections help gain insight into the direction of motion of the

angular momentum. This is a very interesting behavior in that the direction of motion of the angular

momentum shifts based on the inertia parameter pair and on crossing the 2:1 commensurability

curve. The quadrants of entry and exit are interchanged in the L1 − L2 coordinate space.

Thus, the Binet-Poincaré’ sections provide valuable insight into the coupled nature of the pitch

and roll-yaw motions for a rigid body in Keplerian orbit. In the next section, a quantitative measure

for this coupling is developed utilizing the information from the state transition matrix.
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2.4.5.6 A quantitative measure of pitch and roll-yaw coupling using the state transition matrix

The state transition matrix (STM), by definition, is the sensitivity of the current state with

respect to its initial state. By its construction, the dependencies of the pitch motion on the roll-yaw

motion and vice versa are obtained. This is a very useful tool in quantifying the coupling between

different degrees of freedom in the problem. For a general n-degree of freedom problem, there are

2n variables: [qi, q̇i], i = 1, · · · , n. The STM can be formulated to measure the sensitivities of a

particular set of degree of freedom as follows:

Φ(t, t0) =

Φ11 Φ12

Φ21 Φ22

 (2.93)

where Φ11 =
∂(qj, q̇j)

∂(qj0, q̇j0)

Φ12 =
∂(qj, q̇j)

∂(qk0, q̇k0)

Φ21 =
∂(qk, q̇k)

∂(qi0, q̇i0)

Φ22 =
∂(qk, q̇k)

∂(qk0, q̇k0)

where, j ∈ n are the degrees of freedom of interest and k ∈ (n − j) are the others. The STM

also satisfies the differential equation

Φ̇ = FΦ (2.94)

where F =
∂f(q)

∂q
is the Jacobian with q̇ = f(q) the state space equations

Φt0,t0 = In×n
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and the following relations:

Φ−1(t, t0) = Φ(t0, t), ΦTJΦ = J
( 0n In

−In 0n

) (2.95)

For the problem of rigid body attitude motion, the sensitivities of the pitch degree of freedom

are investigated as a function of roll-yaw degrees of freedom. Here, j = [3] and k = [1, 2]. For

the analysis presented in this section, the largest singular value (induced 2-norm) of the cross-

correlation STM (Φ12) is used as a measure of coupling between the pitch and roll-yaw motions

normalized by the auto-correlation part (Φ22). Because the measure is made non-dimensional by

normalization, any other measure could also be used such as the 2-norm, trace or determinant of

the sub-STMs.

Σ =
||Φ12||2
||Φ22||2

(2.96)

Σ is a quantifiable measure of the coupling and therefore the energy exchange among the pitch

and roll-yaw oscillations. For the initial condition based response, Fig. 2.28 demonstrates that

the maximum amplitude of pitch oscillation is captured by Σ. For the near-resonant inertia pair,

[0.5,-0.9], The maximum amplitude of pitching oscillations do not increase with the increase in

initial amplitude. For each of the simulations, θ̇3 = 0.13. We also obtain the decoupling between

the pitch and roll-yaw oscillations when θ1 = 0.
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Figure 2.28: Σ coupling factor for an initial condition response in [K1, K2] = [0.5,-0.9]: Shows
that the amplitude of oscillations do not change with arbitrary changes in the initial conditions.
Also, the decoupling of pitch and roll-yaw is demonstrated when θ1 = 0 (imperceptible flat line)
©2020 Springer: Celest Mech Dyn Astr. Reprinted, with permission, from [1].

Using this quantifiable measure facilitates the inertia parameter space analysis just as before.

By doing so, the expected increase in the coupling strengths of pitch and roll-yaw motions are

obtained near to the 2:1 resonant commensurability curve. This is illustrated in Fig. 2.29
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Figure 2.29: Σ coupling factor for resonant region inertia parameters: Shows the amplitude of
oscillations increase as the inertia parameter set is closer to the 2:1 resonant commensurability
curve ©2020 Springer: Celest Mech Dyn Astr. Reprinted, with permission, from [1].

This new measure gives a numerical value for the coupling between the state variables for any

dynamical system. Its utility has been demonstrated by evaluating it for the problem of the rigid

body in Keplerian orbit. As can be expected, the advantages of having an autonomous dynamical

system go away when the effects of eccentricity is introduced. In the following section, the 3-

DOF roll-yaw-pitch motion of a rigid body in Keplerian motion is considered. To facilitate the

discussion for analytical treatment of dynamical systems, the equations of attitude motion for the

rigid body are reintroduced using Serret-Andoyer variables. Numerical simulations and tools of

dynamical systems theory are used to infer the nature of motion of the rigid body.

2.4.6 Full 3-DOF roll-pitch-yaw dynamics in eccentric orbit

The Euler-Poinsot problem is one of the classical problems of mechanics and describes the

torque-free motion of a rigid body. The solution of any classical problem has broadly two steps:

First: Kinematics, used to describe the orientation of the rigid body in relation to a spatial inertial

frame. Second: Dynamics, represented by differential equations for the angular rates and the

angular velocity rates. Both descriptions are discussed in the introduction of this chapter. The
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analysis of these descriptions eventually led to taking advantage of the internal symmetries to

reduce the Euler-Poinsot problem to a one degree of freedom problem, and using a perturbation

method to obtain a solution [71]. The Hamiltonian form is effective in performing this reduction, as

perturbed Hamiltonian systems can be solved analytically to any order through many methods, like

the one used by Deprit [3]. Deprit & Elipe [71] has offered the full reduction of the Euler-Poinsot

problem. To perform this reduction, one must resort to solving the Hamilton-Jacobi equation to

obtain a generating function responsible for the canonical transformation from the action-angle

variables to the Serret-Andoyer variables. These constants became the attitude-dynamics analogs

of the Delaunay variables in the theory of orbits. Now, while Serret [72] had come up with a full

reduction of the problem, Andoyer [73] suggested a partial reduction. Much later, the study by

Andoyer was amended by Deprit, and it was shown canonicity can be proven by using differential

forms, without explicitly finding a generating function [74].

The case of the torque-free rigid body can be extended to the study of the motion of a rigid body

under the influence of gravity-gradient torques. In this section, we shall examine this extension as

applied to the motion of a rigid body in an eccentric orbit by revisiting the formulation of the rigid

body motion in the variables, as described by Serret and Andoyer. We begin with a transformation

from the inertial frame to the body frame, using an intermediate coordinate system associated with

the invariable frame. The invariable plane forms the invariable frame defined in the Euler-Poinsot

problem with the normal to the plane in the direction of the rotational angular momentum.

2.4.6.1 Problem reformulation

Consider the motion of a rigid body about its mass center. The body frame, B, is a Cartesian

dextral orthogonal frame defined by the unit vectors b̂ = [b1, b2, b3]T . The attitude of B is studied

with respect to an inertial frame I defined by the unit vectors ŝ = [s1, s2, s3]T . We will start

with a transformation from the inertial to the body frame, using an intermediate coordinate system

associated with the invariable plane. Our attention is focused on the case where the rigid body is

in a central inverse squared force field, and the only torques acting on it are due to the force field.

In formulating the problem statement, we make the following assumptions: a) The rigid body is in
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Keplerian motion, b) the rigid body is a triaxial ellipsoid withA,B andC as the principal moments

of inertia, and c) the attitude motion does not affect the orbital motion.

Before we introduce the invariable plane to describe the orientation, we can represent it using

the classical Eulerian description of a three-angle body-fixed rotation sequence. The orientation of

this frame is given by a 3− 1− 3 rotation through the angles as : R = R(ψ, b3)R(θ, i1)R(φ, s3) as

illustrated in figure 2.30.

Figure 2.30: 3− 1− 3 Eulerian description for attitude representation. n̂ is the inertial frame, b̂ is
the body frame.

To write the kinematic equations, recall that the angular velocity can be expressed in the body

frame as:

ω =


0

0

ψ̇

+RT (ψ, b̂3)


θ̇

0

0

+RT (ψ, b̂3)RT (θ, î1)


0

0

φ̇

 (2.97)
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The Lagrangian for the torque-free case is then written as:

L(φ, θ, ψ, φ̇, θ̇, ψ̇) = T − V =
1

2
ωT Iω (2.98)

where I is the inertia tensor whose elements (A,B and C) are the principal moments of inertia

along the diagonals. This is obtained by assuming that the body axes coincide with the principal

axes of inertia. Using the expression from equation 2.98 for the Lagrangian, we obtain that the

new generalized coordinates are the 3 − 1 − 3 Euler angles. The conjugate momenta can then be

written using the familiar expressions:

pΦ =
∂L
∂φ̇

, pΘ =
∂L
∂θ̇
, pΨ =

∂L
∂ψ̇

(2.99)

We then obtain the Hamiltonian for the torque-free motion in terms of these action-angle vari-

ables through the Legendre transformation: H = pT q̇−L, where, q is the generalized coordinates,

[φ, θ, ψ], and, p is its conjugate momenta, [pΦ, pΘ, pΨ].

H(q,p) =
1

2

(s2
ψ

A
+
c2
ψ

B

)(pΦ − pΨcθ
sθ

)2

+
p2

Ψ

2C
+

1

2

(c2
ψ

A
+
s2
ψ

B

)
p2

Θ

+
( 1

A
− 1

B

)(pΦ − pΨcθ
sθ

)
pΘsψcψ

(2.100)

We note here that throughout the text, s? = sin(?) and c? = cos(?). Hamilton’s equations of

motion are then written as:

d

dt

q

p

 = J∇[q,p]H (2.101)

where J is the symplectic matrix

 0 I3×3

−I3×3 0

. In the above Hamiltonian, we can observe that

the coordinate φ is cyclic (since it does not appear in the Hamiltonian formulation) which renders

its conjugate momentum Φ an integral of motion because of the relation that dpΦ

dt
= −∂H

∂φ
= 0.

Physically, pΦ is the inertial third component of the rotational angular momentum vector. These
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variables, [φ, θ, ψ, pΦ, pΘ, pΨ], are called the action-angle variables. Andoyer’s [73] partial reduc-

tion and Deprit’s [3] geometrical approach further reduce this two-dimensional Hamiltonian to a

one-dimensional Hamiltonian through the construction of the invariable plane.

2.4.6.2 The Serret-Andoyer description

To understand the true essence of Andoyer’s and Deprit’s approach, consider the orientation of

the body frame with respect to an inertial frame written in terms of a coordinate frame aligned with

the invariable plane. Recall the invariable plane is a plane whose normal is in the direction of the

rotational angular momentum vector. This is illustrated in figure 2.31. The body frame is obtained

through a 3− 1− 3− 1− 3 rotation with respect to the inertial frame, as

b̂ = R3(ν)R1(J)R3(µ)R1(K)R3(λ) ŝ

where K denotes how the invariable plane is inclined with respect to the inertial frame, and J

denotes how the invariable plane is inclined with respect to the inertial frame. We can observe

from Fig. 2.31 that K is the angle between the rotational angular momentum vector M and its

inertial third component, L. Similarly, J is the angle between the rotational angular momentum

vector M and its body-fixed third component, N .
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Figure 2.31: Body frame representation using the invariable frame [3, 4]. [λ, µ, ν] are the coordi-
nates and their corresponding momenta are [L,M,N ].

Deprit [3] observed that when the Hamiltonian lacks specific time dependence, a sufficient

condition for the transformation to be canonical is:

pΦdφ+ pΘdθ + pΨdψ = Ndν +Mdµ+ Ldλ (2.102)

Here, the momenta conjugate to the newly transformed coordinates (λ, ν, µ) are (L,N ,M ),

respectively. Then, the transition from the Euler coordinates (φ, θ, ψ) to the coordinates (λ, µ, ν)

becomes a canonical transformation if we choose the momenta (L,M,N) conjugate to (λ, µ, ν) as

L = pΦ,M = |G|, N = pΨ, correspondingly, given that G is the rotational angular momentum.
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From geometry, we can relate the angles K and J to the conjugate momenta as follows:

cosK =
L

M
cos J =

N

M

The relationship between the Euler angles and the Serret-Andoyer variables can be obtained

by equating the rotation matrices and extracting one from the other. We note here that the Euler

angles are a function of both the coordinates and momenta of the Serret-Andoyer variables through

the inclusion of the inclinations K and J .

R(ψ, b3)R(θ, i1)R(φ, s3) = R3(ν)R1(J)R3(µ)R1(K)R3(λ) (2.103)

Given these relations, the torque-free Hamiltonian can be rewritten in terms of the Serret-

Andoyer variables from equation 2.100 as:

H =
1

2

(s2
ν

A
+
c2
ν

B

)
(M2 −N2) +

N2

2C
(2.104)

The Hamiltonian does not depend on µ and λ explicitly. Therefore, the corresponding gener-

alized momenta, M and L are constants. Then Eq. (2.104) is simplified into the Hamiltonian of a

two-dimensional system with a single independent co-ordinate ν. Hamilton’s canonical equations

with variables N and ν can be derived as

ν̇ =
∂H
∂N

= N
( 1

C
− sin2 ν

A
− sin2 ν

B

)
(2.105)

Ṅ = −∂H
∂ν

=
1

2
(M2 −N2)

( 1

B
− 1

A

)
sin 2ν (2.106)

where ν̇ is the spin velocity of the rigid body about b̂3. Dividing each side of Eq. (2.105) with Eq.

(2.106) to eliminate the independent variable, t, a first order autonomous system is obtained as:
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dN

dν
=

C(A−B)(M2 −N2) sin 2ν

N [AB − C(A cos2 ν +B sin2 ν)]
(2.107)

Equation (2.107) determines a set of trajectories in the phase plane (ν,N ). From Eq. (2.107)

above, one can notice that there is a singularity at N = 0, i.e. the angle J = π
2
. Therefore, the two

pairs of values of ν = [0, π] and ν = [π
2
, 3π

2
] correspond to rotations of the rigid body about the b̂2

and b̂3 axes, respectively. Let these singularities be denoted as:

S1 : ν = 0 or π, and L = 0

S2 : ν =
π

2
or

3π

2
, and L = 0

(2.108)

then, the nature of the singularity can be obtained through simple linear analysis. Using Eqs.

(2.105 and 2.106), the eigenvalues of the linearized dynamical system can be obtained to be:

e1 = ±
G
√

(A−B)(B − C)

B
√
AC

for S1 (2.109)

e2 = ±
G
√

(B − A)(A− C)

A
√
BC

for S2 (2.110)

Therefore, without loss of generality, assuming A > B > C or A < B < C, one can obtain

S1 is a saddle point and S2 is a center. Thus, a rotation about maximal or minimal moment of

inertia is stable, and rotation about the intermediate moment of inertia is unstable. This result is

corroborated from the previous section result on the torque-free Poinsot construction. The Serret-

Andoyer variables are employed to simplify the Hamiltonian formulation of a rigid body in an

elliptic orbit in the following section.

2.4.6.3 Rigid body in an elliptic orbit

The assumption of Keplerian motion allows the rigid body’s orbit to lie on the x − y plane of

the inertial frame without loss of dynamical information. Aligning s1 with the direction of perigee,

s2 with the semi-latus rectum direction and s3 along the orbital angular momentum, the orbital

reference frame is related to the body frame through the direction cosine matrix employing the
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following rotations:

b̂ = R3(ν)R1(J)R3(µ)R1(K)R3(λ− f)ô (2.111)

where f is the true anomaly. McCullagh’s approximation [59] gives the gravity-gradient potential.

This gives the second order external potential of a body with principal moments of inertia, A, B

and C.

Vggt = −k
2

r

(
1 +

tr(I)− 3r̂T Ir̂

2r2

)
(2.112)

here k2 is the gravitational parameter, and r = p
1+e cos f

is the magnitude of the position vector of

the rigid body from the center of mass of the central body. r̂ is the unit vector in the direction of r

and is given by:

r̂ = R3(ν)R1(J)R3(µ)R1(K)R3(λ)


cos f

sin f

0

 =


r1

r2

r3

 (2.113)

Expanding out tr(I)− 3r̂T Ir̂, and using the relation that r2
1 + r2

2 + r2
3 = 1, we get

tr(I)− 3r̂T Ir̂ = (C −B)(1− 3r2
3)− (B − A)(1− 3r2

1) (2.114)

The potential now becomes:

Vggt = −k
2

r

(
1 +

(C −B)(1− 3r2
3)− (B − A)(1− 3r2

1)

2r2

)
(2.115)

The complete Hamiltonian can then be written ignoring the orbital energies, since they are always

constant due to the assumption that the attitude motion does not affect the orbit. This Hamiltonian

is the sum of the torque-free Hamiltonian from equation 2.104 and the gravity-gradient potential.

H =
1

2

(s2
ν

A
+
c2
ν

B

)
(M2 −N2) +

N2

2C
− k2

2r3

(
(C −B)(1− 3r2

3)− (B − A)(1− 3r2
1)
)

(2.116)

76



To bring this expression to a form that can enable the use of perturbation theory, Eq. (2.116)

is modified as follows. First, we rearrange the Hamiltonian of the torque-free case as follows.

H0 =
(sin2 ν

A
+

cos2 ν

B

)(M2 −N2

2

)
+
N2

2C
(2.117)

=
M2

2C

[
1 +

(sin2 ν

A/C
+

cos2 ν

B/C
− 1
)

sin2 J
]

(2.118)

The gravity-gradient potential is rewritten as:

Vggt = −k
2

r

((C −B)(1− 3r2
3)− (B − A)(1− 3r2

1)

2r2

)
(2.119)

= [C][−n
2

2
]
(1 + e cos f)3

(1− e2)3

[
(1− B

C
)(1− 3r2

3)− (
B

C
− A

C
)(1− 3r2

1)
)]

(2.120)

= −M
2

2C

( n

M/C

)2 (1 + e cos f)3

(1− e2)3

[
(1− B

C
)(1− 3r2

3)− (
B

C
− A

C
)(1− 3r2

1)
)]

(2.121)

where n is the constant orbital mean motion, and the eccentricity (e) and true anomaly (f ) enter

through the expansion of the radius vector r = a(1−e2)
1+e cos f

. Utilizing expressions for r1 and r2

from Eq. (2.113) , we can expand the above expression. Further, we note from the torque free

Hamiltonian that for an axisymmetric body (A = B), ν is cyclic. Therefore, we can split the total

Hamiltonian into an axisymmetric part (independent of ν) and a symmetric part (containing ν).

Vggt = −M
2

2C

( n

M/C

)2 (1 + e cos f)3

(1− e2)3

1

16

((
2− B

C
− A

C

)
Vaxi +

3

2

(B
C
− A

C

)
Vasy

)
(2.122)

where Vaxi corresponds to the axisymmetric part, and Vasy corresponds to the asymmetric part.

Their expressions are given as follows:
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(2.123)Vaxi =



12 cos (J) sin (J) sin (K) (cos (K)− 1)

12 cos (J) sin (J) sin (K) (cos (K) + 1)

6 sin (J)2 sin (K)2

−6 sin (K)2 (3 sin (J)2 − 2
)

−3 (cos (K)− 1)2 (cos (J)2 − 1
)

−3 (cos (K) + 1)2 (cos (J)2 − 1
)

−24 cos (J) cos (K) sin (J) sin (K)

2
(
3 sin (J)2 − 2

) (
3 sin (K)2 − 2

)



T 

cos (µ− 2φ)

cos (µ+ 2φ)

cos (2µ)

cos (2φ)

cos (2µ− 2φ)

cos (2µ+ 2φ)

cos (µ)

1



Vasy =



−4 sin (J) sin (K) (cos (J)− 1) (cos (K)− 1)

(cos (J)− 1)2 (cos (K)− 1)2

(cos (J)− 1)2 (cos (K) + 1)2

(cos (J) + 1)2 (cos (K)− 1)2

(cos (J) + 1)2 (cos (K) + 1)2

−4 sin (J)2 (3 sin (K)2 − 2
)

−2 (cos (J)− 1)2 (cos (K)2 − 1
)

−2 (cos (J) + 1)2 (cos (K)2 − 1
)

6 sin (J)2 sin (K)2

6 sin (J)2 sin (K)2

−4 sin (J) sin (K) (cos (J)− 1) (cos (K) + 1)

−4 sin (J) sin (K) (cos (J) + 1) (cos (K)− 1)

−4 sin (J) sin (K) (cos (J) + 1) (cos (K) + 1)

8 cos (K) sin (J) sin (K) (cos (J)− 1)

8 cos (K) sin (J) sin (K) (cos (J) + 1)



T 

cos (2 ν − µ+ 2φ)

cos (2 ν − 2µ+ 2φ)

cos (2µ− 2 ν + 2φ)

cos (2µ+ 2 ν − 2φ)

cos (2µ+ 2 ν + 2φ)

cos (2 ν)

cos (2µ− 2 ν)

cos (2µ+ 2 ν)

cos (2 ν − 2φ)

cos (2 ν + 2φ)

cos (µ− 2 ν + 2φ)

cos (µ+ 2 ν − 2φ)

cos (µ+ 2 ν + 2φ)

cos (µ− 2 ν)

cos (µ+ 2 ν)


(2.124)

with φ = λ− f , cos J = N
M

and cosK = L
M

are pure functions of the conjugate momenta. Notice

a secular term in Eq. (2.123) . This secular drift in the momenta goes to zero at specific values of
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J and K:

J = ± cos−1

√
1

3
K = ± cos−1

√
1

3
(2.125)

We note here that for a fast-rotating rigid body, the orbital frequency is usually orders of magnitude

smaller than the tumbling frequency. Thus, ( n
M/C

)2 is a small quantity, and the problem of a fast-

rotating rigid body can be studied using perturbation methods with the Hamiltonian of the form

H = H0 + εH1.

2.4.6.4 Simplification to a tumbling rigid body

A tumbling rigid body exhibits the rate of variation of µ to be faster than the other frequencies,

viz, the rate of variation of ν and the mean orbital motion. The disturbing function,H1 can be sim-

plified by neglecting the short-period variation of µ. This is done by averaging the axisymmetric

and asymmetric components of the gravity-gradient potential over µ as follows.

< Vaxi > =
1

2π

∫ 2π

0

Vaxi(µ)dµ (2.126)

< Vasy > =
1

2π

∫ 2π

0

Vasy(µ)dµ (2.127)

(2.128)
< Vaxi
>
= 2

(
3 sin (J)2 − 2

) (
3 sin (K)2 − 2

)
− 6 sin (K)2 (3 sin (J)2 − 2

) (
2 cos (φ)2 − 1

)
< Vasy
>
= 6 sin (J)2 sin (K)2 (2 cos (ν + φ)2 − 1

)
− 4 sin (J)2 (3 sin (K)2 − 2

) (
2 cos (ν)2 − 1

)
+ 6 sin (J)2 sin (K)2 (2 cos (ν − φ)2 − 1

)
(2.129)

Utilizing this form of the disturbing function, one can qualitatively analyze the rigid body tum-

bling motion using phase-space analysis of the J − ν space. The influence of the small parameter

is shown below for the inertia ratios of B/C = 0.844207 and A/C = 0.260936, which are the

inertia ratios of the PEGASUS-A satellite [75].
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Figure 2.32: Phase-space analysis of tumbling rigid body for B/C = 0.84 and A/C = 0.26

Furthermore, one can examine the phase-space for different inertia ratios to discern the location

of the equilibria as determined analytically in the previous section.

Figure 2.33: Phase-space analysis of tumbling rigid body for e = 0.1 and ε = 0.1
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Note that for the axisymmetric configuration (A/C = B/C), J is also a constant, implying that

the direction of the angular momentum vector in the body-frame is constant. For B/C > A/C,

the equilibria is at ν = π
2

(and 3π
2

) and for B/C < A/C, the equilibria is at ν = 0 (and π) as

established by Eq. (2.108) . It is evident that the Hamiltonian formulation provides significant

insight into the motion of rigid bodies due to its conservative nature and internal symmetries.

Such formulations can also be extended to other dynamical systems. The Hamiltonian formulation

coupled with perturbation methods will be examined in future chapters dealing with analytical

treatment of dynamical systems.

In the past sections, an extensive study of the stability and behavior of motions was studied

under the influence of gravity-gradient torques. The expression for the gravity gradient torque was

however truncated to second order. This approximation is sufficient because of the assumption that

the mass of the rigid body under consideration is much smaller than the primary body, and therefore

does not affect the motion of the primary. Meirovitch [37], pointed out that if the rigid body were

such that the second order moments of inertia were identical, the effect of gravity-gradient torque

would cease to exist. In this context, the higher order moments of inertia would play an important

role in the attitude motion or rigid bodies. Thus, it is worthwhile to investigate the cases when

the second order contribution to the gravity-gradient torque is zero. Such configurations shall be

henceforth termed as inertially symmetric rigid bodies. One particular case where the higher order

gravity-gradient torques become prominent is in the study of the cube as a rigid body. In the

following section, the disturbing potential for higher-order gravity gradient torque is derived and

studied for cuboidal configurations.

2.5 Higher-order gravity-gradient torque formulation

For a rigid body orbiting about a central primary, the potential energy, V , can be written as

the sum of all higher order terms of the Taylor expansion of central force field potential. With

reference to Fig. 2.34, consider the infinitesimal mass element dm located at a distance D from the

center of mass B∗ of the rigid body B.
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Figure 2.34: Rigid body in a central force field of a primary. B∗ is the center of mass of the rigid
body, D is the distance from the center of mass to a differential mass element, dm, R locates the
rigid body with respect to the primary, P

The potential of the mass element can be written in terms of the gravitational parameter µ and

the distance of the mass element from the center of mass of the primary as follows.

dV = − µ

|ρ|
dm = − µ

|R + D|
dm (2.130)

The gravitational potential of the rigid body is then formulated by the following integral over B.

V =

∫
B

dV (2.131)

Utilizing |R + D|2= R2 +D2 + 2R · D, one can write |R + D| as:

|R + D|= R
(

1 + 2
R̂ · D
R

+
D2

R2

)1/2

(2.132)

where, R̂ is the unit vector along R. |R + D| can be written in the form of a series using Taylor

expansion and truncation of appropriate order using the expression in Eq. (2.132) . Up to fourth
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order, the disturbing potential due to gravity is then written as follows.

(2.133)
|R + D|−1 =

1

R
− R̂ · D

R2
+

[
3

2

(R̂ · D)2

R3
− 1

2

D2

R3

]
−

[
5

2

(R̂ · D)3

R4
− 3

2

D2(R̂ · D)

R4

]

+

[
3

8

D4

R5
+

35

8

(R̂ · D)4

R5
− 15

4

D2(R̂ · D)2

R5

]
+O(R−6)

Using Eq. (2.133) , the leading terms of dV are written as

dV (0) = − µ
R

dm(D) (2.134)

dV (1) = µ
R̂ · D
R2

dm(D) (2.135)

dV (2) = −µ

[
3

2

(R̂ · D)2

R3
− 1

2

D2

R3

]
dm(D) (2.136)

dV (3) = µ

[
5

2

(R̂ · D)3

R4
− 3

2

D2(R̂ · D)

R4

]
dm(D) (2.137)

dV (4) = −µ

[
3

8

D4

R5
+

35

8

(R̂ · D)4

R5
− 15

4

D2(R̂ · D)2

R5

]
dm(D) (2.138)

Substituting the equations above into Eq. (2.131) gives the leading terms of the gravitational

potential V up to fourth order. The zeroth-order gravitational potential is given by

V (0) =

∫
B

− µ
R

dm(D) = −µm
R

(2.139)

where m is the mass of the rigid body. Since D is measured from the center of mass (Fig. 2.34),

the first-order contribution is zero.

V (1) =

∫
B

µ
R̂ · D
R2

dm(D) =

∫
B

µ
R̂
R2
· Ddm(D) = 0 (2.140)

For higher-order contributions, the inertia integrals of the rigid body can be defined as.

Jx · · ·x︸ ︷︷ ︸
p times

y · · · y︸ ︷︷ ︸
q times

z · · · z︸ ︷︷ ︸
r times

=

∫
B

(Dx)p(Dy)q(Dz)rdm(D) (2.141)
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where Dx, Dy, Dz are components of the D vector: D2 = Dx2
+ Dy2

+ Dz2 and R̂ · D =

RxDx +RyDy +RzDz. The higher-order gravity potentials can then be written as follows.

V (2) = − µ

2R3

[
(1− 3(Rx)2)Ixx + (1− 3(Ry)2)Iyy + (1− 3(Rz)2)Izz

]
(2.142)

where, Ixx = Jyy + Jzz, Iyy = Jxx + Jzz, and Izz = Jyy + Jxx. On simplification and using

(Rx)2 + (Ry)2 + (Rz)2 = 1, Eq. (2.142) reduces to Eq. (2.113) as expected. Here, it is assumed

that the rigid body reference frame is aligned with the direction of principal moments of inertia.

At order three,

(2.143)V (3) =
µ

2R4



5 Rx3 − 3 Rx

5 Ry3 − 3 Ry

5 Rz3 − 3 Rz

3 Ry
(
5 Rx2 − 1

)
3 Rx

(
5 Ry2 − 1

)
3 Rx

(
5 Rz2 − 1

)
3 Rz

(
5 Rx2 − 1

)
3 Rz

(
5 Ry2 − 1

)
3 Ry

(
5 Rz2 − 1

)
30 Rx Ry Rz



T 

Jxxx

Jyyy

Jzzz

Jxxy

Jxyy

Jxzz

Jxxz

Jyyz

Jyzz

Jxyz


with (Rx), (Ry), (Rz) being the components of ˆ̂R. The fourth-order term in the expansion of the

gravity-gradient potential is expressed as follows.

84



(2.144)V (4) =
µ

8R5



−35 Rx4 + 30 Rx2 − 3

−35 Ry4 + 30 Ry2 − 3

−20 Rx Rz
(
7 Rz2 − 3

)
−20 Ry Rz

(
7 Ry2 − 3

)
−20 Ry Rz

(
7 Rz2 − 3

)
−35 Rz4 + 30 Rz2 − 3

−20 Rx Ry
(
7 Ry2 − 3

)
−20 Rx Rz

(
7 Rx2 − 3

)
−210 Rx2 Ry2 + 30 Rx2 + 30 Ry2 − 6

−20 Rx Ry
(
7 Rx2 − 3

)
−210 Rx2 Rz2 + 30 Rx2 + 30 Rz2 − 6

−210 Ry2 Rz2 + 30 Ry2 + 30 Rz2 − 6

−60 Ry Rz
(
7 Rx2 − 1

)
−60 Rx Rz

(
7 Ry2 − 1

)
−60 Rx Ry

(
7 Rz2 − 1

)



T 

Jxxxx

Jyyyy

Jxzzz

Jyyyz

Jyzzz

Jzzzz

Jxyyy

Jxxxz

Jxxyy

Jxxxy

Jxxzz

Jyyzz

Jxxyz

Jxyyz

Jxyzz


Given the explicit expressions for the fourth-order gravity potential expansion, the gravity-

gradient torque can be found as follows.

L = R× F = R×
[
−∂V
∂R

]
= R̂×

[
−∂V
∂R̂

]
(2.145)

where V = V (0) + V (1) + V (2) + V (3) + V (4). Substituting them into the equations of attitude

motion in terms of the CRPs, one can perform additional qualitative analysis on the behavior of

the motions and the stability of equilibria. The expressions above simplify to a considerable extent

when the rigid body under consideration is inertially symmetric. In the following section, the

attitude behavior is explored for the inertially symmetric cube configuration.
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2.5.1 A rigid cube

In this section, we consider specifically a unit cube with the principal directions emanating

from the centers of the three mutually perpendicular faces. The origin of the body frame is at the

center of mass of the cube. Because of the symmetric nature of the cube, the second-order moment

of inertia is identical.

Jxx =
M

a3

∫ a/2

−a/2

∫ a/2

−a/2

∫ a/2

−a/2
x2dxdydz =

M

12
a2

Jyy =
M

a3

∫ a/2

−a/2

∫ a/2

−a/2

∫ a/2

−a/2
y2dxdydz =

M

12
a2

Jzz =
M

a3

∫ a/2

−a/2

∫ a/2

−a/2

∫ a/2

−a/2
z2dxdydz =

M

12
a2

Thus, Ixx + Iyy + Izz = M
6
a2, where a is the length of the side of the cube and M is its mass.

Due to this symmetry, our original formulation of the gravity-gradient torque with a truncation of

terms at second order results in a torque-free case of attitude motion of the rigid body for which we

have analytical solutions: ω1(t) = ω10 , ω2(t) = ω20 , and ω3(t) = ω30 . Therefore, the higher-order

moments of inertia become significant in determining the motion.

Taking into account the higher-order moments of inertia for the cube, one can show that there

exists only certain non-zero terms in the inertia expansion of Eq. (2.141) [57]. Specifically:

Jx · · ·x︸ ︷︷ ︸
p times

y · · · y︸ ︷︷ ︸
q times

z · · · z︸ ︷︷ ︸
r times


= 0 if p or q or r are odd

6= 0 otherwise
(2.146)
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These moments of inertia are denoted as follows:

Ixx = Iyy = Izz = I =
M

6
a2 (2.147)

Jxxxx = Jyyyy = Jzzzz = J1 =
M

80
a4 (2.148)

Jxxyy = Jyyzz = Jxxzz = J2 =
M

144
a4 (2.149)

The equations of motion can then be obtained using the same procedure as in previous sections.

Utilizing Eq. (2.64) , we observe that for a general rigid body, the origin is not an equilibrium point

anymore since

(2.150)ẋ =



0

0

0

0

Ω2 (15 Jxyyz−20 Jxxxz+15 Jxzzz−12 Jxxz a+3 Jyzz a+3 Jzzz a)
4 a2

−Ω2 (15 Jxyyy−20 Jxxxy+15 Jxyzz−12 Jxyy a+3 Jyyz a+3 Jzzz a)
4 a2


6= 0

for [q, q̇] = 0 and with Ω =
√

µ
a3 . Note however, the origin is an equilibrium point for a cuboidal

configuration. To evaluate the stability of the origin, the Jacobian is obtained a follows

J =

 0 I3×3

−K −C

 (2.151)

where,

(2.152)K =


0 0 0

0 −35 Ω2 (J1−3 J2)
2 I a2 0

0 0 −35 Ω2 (J1−3 J2)
2 I a2
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and

(2.153)C =


0 −Ω 0

Ω 0 0

0 0 0


It is noted here that there may be additional equilibria due to the contribution of the fourth-order

gravity-gradient torques. Utilizing the CRPs formulates the attitude motion equations in algebraic

form, thereby facilitating the identification of these equilibria through numerical computer-algebra

packages. The following equilibria are identified and their linear stability is obtained. A total of

49 equilibrium points are obtained. They are listed along with their linear stability in Tab. 2.2.

Table 2.2: Isolated equilibria for cuboidal configuration and stability

q1 q2 q3 Stability
0 0 0 center
±1 ±(

√
3± 1) 0 unstable

±1 ±(
√

2) 0 unstable
±1 0 ±(

√
3± 1) unstable

±1 0 ±(
√

2) unstable
0 ±(1±

√
2) 0 center

0 ±1 0 center
0 ±(

√
3

2
± 1

2
) ±(

√
3

2
± 1

2
) unstable

0 ±
√

2/2 ±
√

2/2 unstable
0 0 ±1 center
0 0 ±(1±

√
2) unstable

It is noted that each of the above configurations correspond to three particular orientations of

the rigid body:

• E1 The radial vector passing through the center of two opposite faces

• E2 The radial vector passing through the center of diagonally opposite edges

• E3 The radial vector passing through diagonally opposite corners
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Through linear analysis, the first two equilibrium configurations can be shown to be unstable and

the third of center type. These configurations are shown in the figure below.

Figure 2.35: Equilibrium configurations for a cube. Configuration 1: The radial vector passes
through the center of two opposite faces. Configuration 2: The radial vector passes through the
center of diagonally opposite edges. Configuration 3: The radial vector passes through diagonally
opposite vertices. The radial vector is shown in red.

2.5.2 Lyapunov stability of equilibrium configurations

One can further analyze Eq. (2.151) for stability. Noting the structure of Eq. (2.152) , one can

note that the presence of 0s in the term corresponding to q1 contribution leads to the conclusion that

the Hamiltonian has q1 as an ignorable coordinate and therefore is cyclic. Additionally, due to the

absence of damping terms, asymptotic stability is out of the question. According to Lyapunov’s

direct method, the motion in the neighborhood of an equilibrium configuration is stable if there

exists for the system a Lyapunov function, which is positive definite in that neighborhood and

whose time derivative is zero. Noting that the kinetic energy will always be a positive definite

quantity due to quadratic terms in the angular velocity, it is sufficient to test the potential of the

problem alone. Particularly, since we know that the second-order terms in the potential lead to
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stable motions (since I1 = I2 = I3), only the higher-order potential terms are required to ascertain

stability. The equilibrium configurations can therefore also be obtained by solving the following

two algebraic equations:
∂U

∂qi
= 0 i = 2, 3 (2.154)

where U is the gravity-gradient potential contribution from the third and fourth-order. Note that

only two equations determine the complete set of equilibrium configurations. Therefore, to test

for stability, the Hessian matrix can be examined for positive definiteness. The Hessian matrix is

defined as:

H =

[
∂2U

∂qi∂qj

]
i = 2, 3 (2.155)

For the three configurations, the Hessian matrices are given as:

HE1 = K

−70 0

0 −70

 (2.156)

HE2 = K

1.5012 0

0 −1.5012
2

 (2.157)

HE3 = K

1.042 0

0 1.042

 (2.158)

where, K = Ω2(3J2 − J1)/R2.

These Hessian matrices can be checked for positive definiteness using the Sylvester criterion.

If K > 0, the method of Lyapunov leads to the conclusion that only the equilibrium position E3

is stable. Alternatively, if K < 0 is stable, which agrees with Tab. 2.2 for K > 0 up to a linear

analysis.

Therefore, the higher order gravity gradient torques are significant in that they can alter the

stability of the equilibrium compared to the second order approximation. Furthermore, the higher-
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order gravity gradient approximation may cause the creation or destruction of isolated equilibria,

which may not be straightforward through the approximate model used in previous sections. Par-

ticularly, when the three principal moments of inertia are equal, terms in the second order inertia

integrals cancel out, and higher order integrals are dominant. Also, when the principal moments of

inertia are nearly equal, the corresponding terms in the gravitational potential may become com-

parable in magnitude with the terms in higher-order inertia integrals.

2.6 Qualitative analysis of the planar cirular restricted three body problem

The Global Exploration Roadmap [76, 77, 78, 79] has inspired international interest in a new

era of human exploration of the solar system. From among several different efforts, NASA is

currently focused on positioning and maintaining an inhabited facility in a long-term and relatively

stable orbit in the lunar vicinity. The Earth-Moon libration points offer many options for both

storage of propellant and supplies for lunar missions, as well as potential locations for a space-

based facility to support future crewed and robotic translunar missions [78, 79]. Beyond the near-

vicinity of the Moon, applications are being pursued throughout an expanded Earth neighborhood

within lunar orbit. To this end, characterizing the behavior of trajectories in the domain of the

relevant phase-volume and identifying dynamical structures existing in the circular restricted three-

body problem is of paramount importance for mission design applications.

The pioneering work by Conley [80] on the existence of transit trajectories in the Planar Circu-

lar Restricted Three-Body Problem (PCR3BP) led to much attention being devoted to leveraging

the collinear points for space missions [81, 82, 83, 84, 85, 86, 87]. Previous research [81, 82, 88]

has shown the existence of low-energy transfer trajectories that exploit the natural dynamics from

the presence of a fourth body (such as the Sun’s gravity). Such ballistic transfers, while very fuel

efficient, require a large transfer duration. It is therefore of interest to identify transport opportu-

nities utilizing short duration direct transfers from the Earth to cislunar space. Many such types of

transfers exist, and an extensive survey of short-duration transfers can be obtained in Parker and

Born [82]. Qualitative analysis tools from dynamical systems theory are often used to identify,

generate and categorize transfers in the cislunar space [89, 90, 91, 92, 83, 93, 87, 94].
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This section of the dissertation seeks to address two primary challenges:

• Obtain a better understanding of the natural dynamics of a particle under the influence of

the gravity field of the Earth and the Moon within the framework of the PCR3BP. The in-

variant manifolds associated with the planar periodic orbits about the collinear equilibrium

points dictate the flow of such particles into and through these orbits in the neighborhood

of the equilibria. Understanding this flow will then assist in the characterization of transfers

to these periodic orbits. Through qualitative analysis techniques discussed in previous sec-

tions, this work seeks to identify key dynamical structures that influence the evolution of the

invariant manifolds in the phase-space, and utilize such structures to obtain short-duration

direct transfer opportunities to planar periodic orbits.

• Develop a catalog of orbital transfers in the Earth-Moon system identifying the different

types of transport opportunities to libration point orbits that can serve in a practical capacity

for future mission design applications. This road-map of trajectories can then be used to

perform simple geometric analysis to extrapolate the catalog information to identify effective

transfer opportunities to other periodic orbits.

The remainder of this section is organized as follows. First, we provide a brief introduction of

the PCR3BP and develop the groundwork for describing the zero-momentum surface of section,

a special type of Poincaré surface of section developed in this research. Next, the structure of the

zero-momentum maps is discussed in detail to explain the flow in the neighborhood of the primary

bodies. A new topology is introduced that enables the visualization of the dynamical structure in

the phase-space and examines the geometry of the motions obtained. The information from this

construction is utilized to find short-duration transfers to the periodic orbits about the libration

points. Particularly, the zero-momentum maps provide an upper-bound on the thrust direction for

tangential transfers to these orbits. A continuation process is introduced through which multiple

families of transfers are identified. Finally, a geometric approach is developed utilizing information

from tangential transfers to identify non-tangential transfer opportunities.
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2.6.1 PCR3BP and the definition of zero-momentum points

The motion of a particle subjected to the gravitational attraction of two bodies (referred to as

primaries) is studied [95, 96, 97]. The underlying assumption that the particle’s mass is negligible

compared to the primaries allows the treatment of the three-body problem, as restricted in the sense

that the primaries are assumed to move on Keplerian orbits around their common barycenter. In

this work, a special case of the restricted three-body problem is considered, wherein the primaries

move in circular orbits, and the motion of the third body is confined to the plane containing the

two primaries. This model is known as the PCR3BP. It is described below.

2.6.1.1 The planar circular restricted three-body model

A rotating reference frame centered at the barycenter of the primaries rotating with the angular

velocity of the primaries is considered. The x̂-axis is directed from the barycenter to the less-

massive primary, and the ẑ-axis is in the direction of the angular momentum vector of the system.

The units of measure are normalized, such that the gravitational constant and the sum of masses

of the primaries are unity, and the period of rotation of the primaries is 2π. Denoting µ = m2

m1+m2

as the mass parameter, the more massive primary (with mass m1) is located at (−µ, 0, 0) and the

other (with mass m2) at (1− µ, 0, 0). The set-up of the problem is illustrated in Fig. 2.36.

Figure 2.36: The geometry of the planar circular restricted three body problem
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The equations of motion for the PCR3BP in the rotating frame can be written in vector form

as:

q̈ + 2ω × q̇ =
∂Ω

∂q
(2.159)

where ω = [0, 0, 1]T and q = [x, y]T . Ω = 1
2
(x2 + y2) + 1−µ

r1
+ µ

r2
is the PCR3BP pseudo-

potential obtained by augmenting the inertial potential with the potential of the rotating frame.

r1 = ((x+ µ)2 + y2)1/2 and r2 = ((x− 1 + µ)2 + y2)1/2 locates the third body with respect to the

first and second primary, respectively. The autonomous and conservative nature of the Hamiltonian

admits a constant of motion (the Jacobi constant) as C = −2H = −|q̇|2+2Ω which is commonly

used as a measure of energy in the PCR3BP.

Equation (2.159) admits five equilibrium points: the so-called collinear (L1, L2, L3) and tri-

angular (L4, L5) points based on its location in the rotating frame [95]. The triangular points are

linearly stable for a mass parameterµ less than a critical value (µc = 0.0385) and the collinear

points are always linearly unstable. The curves of zero-velocity (obtained from the expression for

the Jacobi constant for a particular value of µ) denote regions of the phase-space where a parti-

cle arrives with zero velocity and therefore cannot penetrate these curves [95]. They partition the

phase-space into the regions of motion and the forbidden region. Fig. 2.37 illustrates the libration

points and the zero-velocity curves associated with different energy levels.

Figure 2.37: Equilibria and
Zero-Velocity Curves

Figure 2.38: Stable and unstable manifolds
of a periodic orbit at L1 (C = 3.1853).
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The equilibrium points host a variety of periodic orbits in their vicinity, and dynamical systems

tools can be employed to construct them. In the PCR3BP, the periodic orbits about the collinear

equilibrium points are called Lyapunov orbits. An initial Lyapunov orbit is obtained using the

linearized dynamics about the equilibrium point and using the method of differential corrections

to ensure closure of the orbit [91, 84, 96]. A continuation process can then be used to obtain

other Lyapunov orbits at different energy values[98]. Each periodic orbit can be identified using

its time-period (T ) and the Jacobi constant (C). Thus, a periodic orbit is represented as Γ(T,C).

Any specific point on the periodic orbit can be represented using a parameter τ ∈ [0, T ) where τ

is the time elapsed from an initial condition that generates the periodic orbit. Due to periodicity,

Γ(τ + T ) = Γ(τ).

Similar to an equilibrium point, which are fixed points of a flow, a point on the periodic orbit is

represented as a fixed point on a stroboscopic map [85]. The linearized dynamics about this fixed

point are obtained from the monodromy matrixM which is the state transition matrix at one time,

and provides insights into the flow near the periodic orbit. The eigenvalues ofM are used to define

the stability of the periodic orbit. The Lyapunov orbits about the collinear points are known to be

of the type saddle × center, whose eigenvectors span the saddle and center subspace. The general-

ization of these eigenspaces are the invariant manifolds. The saddle subspace is then represented

by the stable (W S±) and unstable (WU±) manifolds. These stable and unstable manifolds act as

separatrices to the periodic orbit. Figure 4.3 illustrates the stable and unstable manifold branches

of a Lyapunov orbit of Jacobi Constant C = 3.1853.

2.6.1.2 The Poincaré map and the zero-momentum surface

Poincaré maps in general refer to the intersection of a flow in the phase-space with a lower-

dimensional transverse subspace, called the Poincaré section. It admits a reduction of the dimen-

sionality of the system by at least one. If there exists an integral of motion (as is the case in the

PCR3BP), the dimensionality can be further reduced by one. Although Poincaré maps are gener-

ally applied to periodic solutions to study the structure of flow in their vicinity, by definition, it

only requires the specification of a subspace transversal to the flow in the phase-space [99, 83]. In
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this research, we leverage this advantage to generate a Poincaré map that represents points in the

phase-space where the specific momentum of the third body is zero. Certain intuitions are obtained

by computing a Poincaré map that records the intersections of the flow with a subspace on which

the magnitude of the momentum is zero. Such a dynamical construction will provide valuable

insights to describe transport in cislunar space.

The magnitude of the specific momentum of the third-body is given by its component along

the angular momentum of the primaries, i.e., Lz = q × q̇ = xẏ − yẋ = ±rv sin θ (the plus sign

being associated with direct motion and the minus sign with retrograde motion). Consequently, a

zero-momentum Poincaré surface of section is defined using the condition [100]:

q× q̇ = 0 (2.160)

The expression q× q̈ determines regions of direct and retrograde motions in the phase-space. This

expression can be simplified as:

q× q̈ = y
µ(1− µ)

r3
1r

3
2

[r3
2 − r3

1]− 2(q · q̇) (2.161)

In general, the Poincaré surface of section is defined as:

Σ = {(q, q̇) : (x− a)ẏ − yẋ = 0} (2.162)

where a = 0 represents the barycenter, a = −µ represents the more massive primary, a = 1 − µ

represents the smaller primary. The intersection of the flow with this zero-momentum surface

therefore identifies regions in the phase-space where the trajectories twist and change direction

with respect to the barycenter or either of the primaries depending on the value of a. These maps

are particularly useful in identifying the behavior of flows in the phase-space, especially in the

vicinity of the invariant manifolds.

While the insights obtained in this work are valid for any three-body system, the Earth-Moon
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system is considered, and the Poincaré map is referred to as a barycentric momentum map for a =

0, geocentric momentum map for a = −µ, and selenocentric momentum map for a = 1−µ. Also,

for notational purposes, the Earth neighborhood is defined as the region in the phase-space that

contains the Earth at the Jacobi energy level of the L1 Lagrange point. The Moon neighborhood

is the region in the phase-space that contains the Moon for the Jacobi energy levels between the

L1 and L2 Lagrange points. Transforming from the rotating frame to inertial frame components is

straightforward and is given as:

Lz = xẏ − yẋ = XẎ − Y Ẋ − (X2 + Y 2) (2.163)

LzInertial = XẎ − Y Ẋ = xẏ − yẋ+ (x2 + y2) (2.164)

with Q = [X, Y ]T denoting the inertial coordinates and q = [x, y]T denoting the rotating frame

coordinates. Defining q1 = x−a and q2 = y, the zero-momentum condition is given as q1ẏ−q2ẋ =

0. Further, if the velocity components are written as

ẋ = v cos θ (2.165)

ẏ = v sin θ (2.166)

the zero-momentum condition is obtained as:

q1v sin θ − q2v cos θ = 0⇒ θ = arctan(q2, q1) (2.167)

where, v is the velocity magnitude and is obtained as a function of position coordinates directly as:

v = ±
√

2Ω− C with Ω as the pseudo-potential. Equation (2.167) is very useful because it states

that at the momentum map points, the velocity vector is either towards or away from [q1, q2]T ,

i.e., the barycenter or either of the primaries. The decision on whether it is towards or away can be

obtained by looking at the condition q×q̈. A procedure to construct momentum maps constraining

the Jacobi energy is as follows:
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1. Initial conditions in position (x, y) are chosen in the desired neighborhood on a grid.

2. Initial velocity conditions associated with these positions are chosen so that the zero-momentum

condition is satisfied.

3. The trajectories are allowed to evolve under the natural dynamics governed by the PCR3BP,

and points of zero-momentum are recorded. (Since each initial condition is already a point

on the momentum map, this point is omitted for visualization purposes)

Next, the dynamical structure of these zero momentum Poincaré maps in the Earth and Moon

neighborhood is investigated.

2.6.2 Dynamical structure in the Earth-Moon neighborhood

The points on the momentum map denote regions of the phase-space where the flow changes

its behavior qualitatively, i.e. exhibits direct and retrograde motions. Many physical insights can

be obtained by studying the nature of these momentum maps in the Earth and Moon neighborhood.

Particularly, the nature of motion in the vicinity of the invariant manifolds is investigated next.

2.6.2.1 Barycentric momentum maps in the Earth neighborhood

The barycentric momentum maps in the Earth neighborhood are constructed. To begin, the

invariant manifold intersections with the zero-momentum surface are obtained. The barycentric

momentum map is as shown in Fig. 2.39.
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Figure 2.39: Manifold intersections with the zero-momentum surface in the Earth neighborhood.
C = 3.1802

Figure 2.39 displays the L1 gateway which is situated at the neck region of the zero-velocity

curves. From Fig. 2.39 and through numerical investigation, it is observed that the invariant mani-

folds occupy the entire L1 gateway in the four dimensional space. This is a noteworthy observation

because, as shown by Swenson et al.,[101] the observation that the invariant manifolds completely

occupy the gateway suggests that only transit trajectories are possible through the periodic orbit lo-

cated at the gateway. This inference that the invariant manifolds only consist of transit trajectories

within them serves as a qualitative validation of that obtained by Swenson et al. [101].

Another observation from Fig. 4.9 is that the invariant manifold intersections with the zero-

momentum surface in the Earth neighborhood are located near the zero-velocity curves. This

observation implies that the transitions from direct to retrograde motion occur near the boundary

of the forbidden region. Following the procedure outlined in the previous section, the complete

barycentric momentum map in the Earth neighborhood is obtained. For visualization purposes,

each initial condition propagated is color-coded differently to distinguish different trajectories in

the map. Prior to this, the inside-out topology is introduced to visualize the dynamical structure in
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the vicinity of the invariant manifolds.

2.6.2.2 Inside-out topology:

Motivated by the observation (Fig. 4.9) that the manifold intersections are close to the zero-

velocity curves, the following change of coordinates is suggested [100].

x =
v

r
cos θ (2.168)

y =
v

r
sin θ (2.169)

Recall that since the angle θ = arctan(y, x) can be used to obtain both the position and velocity

components on the momentum map, an inverse transform is fairly simple to obtain utilizing the

expression for the Jacobi constant. This transformation collapses the zero-velocity curves onto the

origin and takes points at the origin to infinity. Therefore, through the inside-out topology, one can

visualize how the map appears near the zero-velocity curves. If the invariant manifold momentum

map is super-imposed on the momentum map for all trajectories in the Earth neighborhood, it

is observed that the manifold momentum map points (in black) lie in the regions surrounded by

quasi-periodic motions.
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Figure 2.40: Invariant Manifold occupying the spaces between the quasi-periodic regions. C =
3.1802. Left: Momentum maps in the configuration space, Right: Momentum maps through the
inside-out topology.

In Fig. 2.40, the stable manifold intersections are overlaid on the momentum map in the config-

uration space (left). While certain evidence of the behavior of the manifolds is observed, one can

infer that the inside-out transformation provides better insight (right). It is observed that the man-

ifolds occupy spaces between the quasi-periodic motions. Furthermore, all dynamical structures

observed in the position space are captured in the new-coordinate space, albeit with better resolu-

tion. Because of the construction of the zero-momentum surface, each point on the map reflects the

velocity components of the third-body scaled by the distance to the barycenter. Moreover, informa-

tion from the color suggests that there are regions in the phase space, which are themselves closed

off to many of the trajectories. For example, observe the two sets of quasi-periodic orbits that

bound the motion of the manifolds. The color depicted for these orbits in the Fig. 2.40 (i.e. blue,
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with three intersections in the phase-space and yellow, with four intersections in the phase-space)

indicate that no other set of trajectories approach these quasi-periodic orbits pass through these

regions again. Thus, the momentum maps are instrumental in providing a deeper understanding of

the nature of transport in the PCR3BP.

2.6.2.3 Barycentric momentum maps in the Moon neighborhood

The momentum maps in the Moon neighborhood are constructed following the procedure out-

lined in the previous section. The Moon neighborhood is important in the study of the invariant

manifold dynamics because of its influence on transfer trajectory design. The dynamical structure

in the Moon neighborhood is expected to be drastically different from that in the Earth neighbor-

hood, principally because of its proximity to the collinear equilibrium points and their associated

stable, unstable and center subspaces. Just as before, each initial condition propagated is color-

coded differently to distinguish different trajectories in the map. The barycentric momentum map

is as shown in Fig. 2.41

Figure 2.41: Barycentric momentum map in the Moon neighborhood. The expanded regions show
the existence of quasi-periodic orbits.
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In Fig. 2.41, the presence of quasi-periodic motions in the Moon neighborhood is observed.

Two specific sets of quasi-periodic orbits are identified and shown in the figure. Also, it is observed

that there are regions of densely populated points and sparsely populated points. One can infer that

the initial conditions that originated in these regions did not make it back at a future time. The color

associated with these trajectories is also consistent. These initial conditions are identified as those

that lie inside the invariant manifold, specifically the unstable manifold. This deduction is intuitive,

since the invariant manifold tubes act as separatrices and therefore do not intersect themselves. This

observation also validates that the invariant manifold tubes contain transit trajectories. Overlaying

the unstable manifold intersections with the zero-momentum surface provides additional insight to

this observation. Figure 2.42 illustrates this phenomenon.

Figure 2.42: Manifold intersections with the Momentum map in the Earth neighborhood. The
regions in blue are the momentum map points, while the closed curves in red are the unstable
manifold intersections with the zero-momentum surface.

In Fig. 2.42, the regions in blue are the momentum map points, while the closed curves in

red are the unstable manifold intersections with the zero-momentum surface. The first two inter-

sections of the unstable manifold are shown. Clearly, the regions in the momentum map give a

structure for the evolution of the unstable manifolds. Obtaining multiple intersections of the man-

ifold with the zero-momentum surface makes this structure clearer. The manifold intersections
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are observed to be confined to the spaces in between quasi-periodic motions. This is expected,

since fundamentally, the manifolds occupy the saddle subspace, while the quasi-periodic motions

occupy the center subspace, and the two subspaces do not intersect.

Having analyzed the behavior of the flow in the PCR3BP through the dynamical structure of

the momentum maps, the following section focuses on the application of these maps to identify

transfer opportunities to planar Lyapunov orbits.

2.6.3 Identification of transport opportunities in the PCR3BP

Direct transfers to Lyapunov orbits at the collinear libration points are investigated. Specif-

ically, the barycentric momentum map in the Moon neighborhood is utilized to find manifold

insertion points for the direct transfer. Recall that the points on the momentum map denote regions

of the phase-space where the flow twists and changes direction. Therefore, because of the con-

struction of the momentum maps, the direction of the velocity vector is either in the direction of

the barycenter or opposite to it. A schematic of such a configuration is shown in the figure below.

Figure 2.43: Manifold intersections with the Momentum map and directions of velocity. The
velocity vector points in the direction of (or away from) the origin.
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For the points on the map where the velocity vector is directed away from the position coordi-

nates, a very high delta-v tangential transfer will result in the particle shooting towards the origin

(barycenter for a barycentric momentum map and that of the primaries for the Geo/selenocentric

momentum map). This information can be leveraged to obtain an upper bound on the possible

tangential transfers from an Earth parking orbit (EPO) to the stable manifolds. The procedure to

obtain direct tangential transfers to an L2 Lyapunov orbit using stable manifold intersections with

the zero-momentum surface is described next.

2.6.3.1 Direct transfers to Lyapunov orbits

1. Choose the Lyapunov orbit based on mission design parameters. Selecting the target orbit

essentially implies fixing the Jacobi constant for the orbit insertion.

2. Generate the stable manifold segments and compute its intersection with the zero-momentum

surface. The final state of the propagated stable manifold is the state that a spacecraft would

need to obtain in order to inject onto the manifold segment.

3. The transfer trajectory is constructed such that it is tangential to the manifold, and a ∆v is

applied for manifold insertion. This maneuver is constructed by splitting the initial condition

for the transfer into r and v components. Keeping the initial position (r) the same, a ∆v is

found, such that the initial condition on the transfer trajectory is xtransfer = [rT ∆vvT

|v| ]
T

4. The transfer trajectory is computed backwards in time, and the state to target is an EPO of

desired radius.

A schematic for the transfer trajectory design (to L1 Lyapunov orbit) is as shown in the Fig.

2.44. This figure illustrates the two maneuvers (trans-lunar injection and manifold injection maneu-

vers). The black closed curves are the intersections of the stable manifold with the zero-momentum

surface. The manifold insertion angle φ is also shown.

105



Figure 2.44: Direct transfer design schematic. The red curve shown the translunar segment, the
dashed orange curve is the trajectory along the stable manifold (shown in blue). The closed black
curves are the intersections of the momentum map with the stable manifold.

Note that since the transfer trajectory must be tangent to the manifold, not all the values of the

manifold insertion angle φ can be utilized at any time instant as a manifold insertion point. In fact,

there exists an upper bound on φ given a preference for a particular manifold branch. The points

give these bounds on the momentum map. By construction of the barycentric momentum map, the

barycenter of the Earth-Moon system lies on the tangent to each of the points in the map. To reach

an EPO (in backwards time), one would have to use very high ∆v at this momentum map point.

A manifold insertion point selected downstream of the flow would then require a lower ∆v to

accomplish the direct transfer. Also note that any point on the manifold branch occurring upstream

to the momentum map point does not result in a tangential transfer trajectory that reaches the

EPO. These phenomena are demonstrated using the first three intersections of the manifold with

the zero-momentum surface for an L2 Lyapunov orbit. These three intersections are shown in Fig.

2.45 parameterized using r (computed with respect to the Moon) and φ (the manifold insertion

angle) for a transfer to an L2 Lyapunov orbit.
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Figure 2.45: Stable manifold intersections with zero-momentum surface and direct transfers to a
L2 Lyapunov orbit.

The manifold insertion angle may be a design parameter for the mission depending on the ge-

ometry and time of a stable manifold injection maneuver. Additionally, mission design constraints

may dictate the need for multiple revolutions around the Moon before reaching the periodic orbit.

Each of these constraints limit the range of the manifold insertion angle, φ, that can be used for

manifold injection. The upper limit of the bounds of φ denotes the maximum possible manifold

insertion angle for a tangential transfer. For example, if φ = 110 deg, the only possible manifold

insertion would be at the first intersection. Similarly, at φ = 90 deg, the manifold intersection can

be chosen, such that the second and first intersection points of the momentum map can be used.

As a particular case, consider the third intersection with a manifold insertion angle of φ =

56 deg. The manifold branch chosen and the direct transfer trajectories are shown in Fig. 2.45.

The delta-v usage for each of the transfer arcs considered, and the corresponding manifold inser-

tion angle is also shown. Notice here that at φ = 56 deg, i.e. the zero-momentum point for the

manifold branch, the ∆v required is the highest, and the trajectory is nearly a straight line. How-
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ever, reducing the manifold insertion angle φ under 56 deg, results in lower ∆v, as the third-body

takes advantage of the natural dynamics of the PCR3BP. It is noted here that the time of transfer is

the total time spent on the transfer trajectory, and does not include the time spent on the manifold

to reach the periodic orbit. Also, the ∆v value is that of the manifold injection maneuver. Since the

trans-lunar injection maneuver δv is generally provided by the upper stage of the launch vehicle,

this value is not included in the ∆v shown in Fig. 2.45. It is worthwhile to note that the dynamical

structure of the stable manifold intersects with the zero-momentum surface for a range of Jacobi

constant values [100]. This is illustrated in Fig. 2.46.

Figure 2.46: Dynamical structure of manifold intersections with zero-momentum surface for a
range of Jacobi energies.

In Fig. 2.46, r is the distance of the momentum map point from the less-massive primary

(Moon). It is observed that as the Jacobi energy is decreased, the structure of the intersections

expands, occupying a larger portion of the phase-space. This behavior is expected because the L1

gateway opens further, allowing the natural dynamics to extend to larger regions. The topological

structure in the configuration space (Fig. 2.46-left) is very interesting. Noting that these are inter-

sections of the invariant manifold, these structures contain within them the trajectories that transit

through the L1 gateway and therefore form a part of the saddle subspace. The regions surrounding
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these structures are then the center subspace where quasi-periodic motions exist. Figure 2.46 gives

a glimpse of the center and saddle subspace of the PCR3BP for a small range of Jacobi energy.

It is evident from the discussion that the momentum map plays a vital role in identifying direct

transfer opportunities to periodic orbits. In the following sections, transfers to L1 Lyapunov orbits

are studied. The momentum map serves as an initial guess for the manifold insertion state, and

a continuation process can be used to identify all types of transfers to the periodic orbit. This

continuation scheme is presented in the following section to identify the structure of transfers to

L1 Lyapunov orbits. It is noted here that the methodology can be adapted for obtaining transfers to

any planar periodic orbit, and the momentum maps serve as a starting point for the classification

of these transfers.

2.6.4 Classification of direct transfers to L1 Lyapunov orbit

The momentum maps have demonstrated their utility to find transfer opportunities in the PCR3BP.

As established in the previous sections, the momentum map points serve as a starting point for em-

ploying a continuation process to categorically construct transfers with lower ∆vs. In this continu-

ation process, the stepping parameter is the propagation time along the stable manifold. Thus, the

momentum map points are used as the manifold insertion points to initialize the continuation pro-

cess. A schematic for the continuation process employed and a converged set of transfers appear

in Fig. 2.47.
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Figure 2.47: Continuation process schematic and direct transfers from a 200 km Earth parking
orbit. The curves in blue go from Earth to the Moon and that in red are return transfers.

In the schematic above, the continuation process is initialized at the momentum map point. At

this state, the direction of the velocity vector is towards the barycenter of the Earth-Moon system.

Therefore, direct transfers can be obtained (in backwards time) from this manifold insertion point

to an EPO. The continuation process terminates at the next intersection of the stable manifold with

the zero-momentum surface, i.e. when the third-body transitions from direct to retrograde motion.

Consequently, the continuation process yields return transfer opportunities near the terminal con-

tinuation point. These forward (blue) and return (red) transfers are shown in Fig. 2.47, respectively.

Depending on the step size for continuation, multiple families of forward transfers are obtained.

Families with similar characteristics are also obtained for return types of transfers [100]. It is noted

here that each of the transfers obtained in this work is obtained using a multiple shooting method,

which has been extensively discussed in literature [102, 93, 98, 103].

There are no unique parameters that are viable for the description of transfers in the three-

body framework. Since the PCR3BP admits only a single constant of the motion (the Jacobi

energy), alternative quantities must be introduced to capture significant features of transfers within

the PCR3BP to fundamentally assess the realization of the mission requirements. A summary of
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such parameters is reported in Table 2.3 along with sample applications.

Table 2.3: Parameters for classifying transfers

Parameter Sample application
∆v Transfer cost estimation

Time of transfer Manifold injection maneuvers
Jacobi constant Target Periodic orbit determination

Manifold insertion angle (φ) Geometric constraint on maneuvers

2.6.5 Family of direct transfers to L1 Lyapunov orbit

The continuation process is utilized to obtain a family of direct transfers from an EPO to a

Lyapunov orbit at the L1 libration point. Each transfer trajectory can be classified using the pa-

rameters recorded in Table 2.3. Broadly, the types of direct transfer trajectories can be classified

using the number of revolutions about the more-massive primary (the Earth) along the trans-lunar

segment of the transfer trajectory and the departure direction from the Earth. Particularly, the ∆v

and the time-of-transfer are used as an indicator of the type of direct transfer trajectory. Seven

types of transfer trajectories are observed to exist between two consecutive momentum map points

on the stable manifold for the third-body direct motion. It is noted here that such transfers may

exist for third-body retrograde motions as well, but those are not investigated in this investigation.

The geometry of these transfers is shown in Fig. 2.48.
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Figure 2.48: Geometry of family of direct transfers and their categories.

For the purposes of this work, these families of direct transfers are named using the convention:

Type C/AC-#. For example, a zero revolution, clockwise departure transfer is named Type C-

0 and a two revolution anti-clockwise departure is named Type AC-2. Another common family

of transfers observed are those of the resonant type. The structure of the resonant type of direct

transfers is illustrated in Fig. 2.49. These transfers also exhibit both clockwise and anti-clockwise

departure directions as shown.
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Figure 2.49: Geometry of resonant type transfers

Each family of transfers has a characteristic ∆v and a time-of-transfer to enable its identifica-

tion. An average value for the ∆v and a time-of-transfer for each of the families is given in Tab.

2.4:

Table 2.4: Characteristic ∆v and time for the family of transfers

Family Type Mean ∆v [km/s] Mean Transfer Time [days]
Type C-0 1.1 4.56
Type C-1 0.97 7.62
Type C-2 0.95 18.4

Type AC-0 0.69 4.335
Type AC-1 0.57 13.85
Type AC-2 0.62 22.05

Resonant Type 1.82 15.85

It is observed that the ∆v for clockwise and anti-clockwise transfers are quite distinct, while

the number of revolutions aids in the differentiation of the different families of transfers. It is

also noted here that convergence to these transfers is highly dependent on the multiple shooting

algorithm and the initial guess supplied. Based on these quantities, there may be additional family
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of transfers with as many as five to eight revolutions. These are not particularly studied since

the goal is to identify short-duration transfers. Also, note that only the first intersection of the

momentum map is used to initialize the continuation process, since higher intersections would

imply a longer time spent on the manifold, thereby increasing the duration of the transfers.

Now, having identified the different transport opportunities in the PCR3BP, the continuation

methodology, in conjunction with the information from the momentum map, is used to quantify

transfers to periodic orbits at different Jacobi energies in the following section.

2.6.6 A roadmap for cislunar transport in PCR3BP

Classification of direct transfers serves as a valuable road-map for cislunar transport (∆v,

transfer-time, etc.) in the Earth-Moon PCR3BP. The work done here aids in creating such a cata-

log for orbital transfers for use in mission design. This work attempts to identify transfers to L1

Lyapunov orbits over a small range of Jacobi energies. The Jacobi energies chosen such that only

the L1 gateway is open. These transfers are quantified using (a) target Jacobi energy of the periodic

orbit, (b) ∆v for the transfer and (c) Transfer time. The three quantities are represented using a

two-dimensional chart with a color map providing information on the third quantity. The catalog

of transfers is presented in Fig. 2.50.
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Figure 2.50: Catalog of transfers and an approximate distinction between the family of transfers.

Figure 2.50 gives a look-up table for numerous transfers from an EPO to the L1 Lyapunov

orbit. Additionally, each type of transfer can be identified using the ∆v and the transfer time. For

example, consider the particular energy level of 3.1833. A close-up of this energy level from the

catalog of transfers exhibits the different families (Fig. 2.51).
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Figure 2.51: Catalog of transfers at C = 3.1833

The identification and cataloging of these transfers presents a guide to identifying potential

transport opportunities to target periodic orbits at a particular Jacobi energy. This section presents

a robust methodology for computing these transfers without manual analysis of Poincaré maps.

This process of obtaining the family of direct transfers can be automated for any target Jacobi

energy orbit, and the catalog provides a list of transfers to choose from based on mission require-

ments. This extension to arbitrary Jacobi energy orbits is demonstrated through the use of velocity

surfaces, and an example of this application is discussed next.

2.6.7 Application of momentum maps to identifying transport opportunities

To motivate the discussion for this section, recall that the barycentric momentum maps serve

as an initial guess for finding suitable manifold insertion points along the stable manifold. The

difference in the Jacobi constants between the transfer trajectory and the target periodic provides

an estimate of the minimum cost required for the transfer; particularly, those transfers that result

from a change in the velocity magnitude and the direction. In the previous sections, only tangen-

tial transfers emanating from the first intersection of the momentum map have been considered.

However, there may exist non-tangential transfers that result in better ∆v savings.
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While the difference in Jacobi constant provides an estimate of the transfer cost, an alternate

method to visualize the transfers is presented in this section. Here, the velocity is utilized to

accomplish this goal. The surface of velocity is defined as:

v = ±
√

2Ω− C (2.170)

with Ω = 1
2
(x2 +y2)+ µ1

r1
+ µ2

r2
and C is the Jacobi constant. Consider only the positive counterpart

of the velocity surface. Note here that the velocity surface contains all trajectories at a particular

energy level, and therefore the points of zero momentum of any trajectory also lie on this surface.

Therefore, one can use these velocity surfaces to define transfers from one energy level to another.

The impulse maneuvers will transfer the trajectories from one velocity surface to another. A simple

illustration is as follows:

Figure 2.52: Tangential Transfer between two Energy levels: A velocity surface schematic.

The above illustration shows a direct transfer between two energy levels (C1 and C2). Note

that the position component of the trajectories are the same, and therefore, the height difference

between the two points is equal to the ∆v.
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2.6.7.1 The geometry of velocity surfaces

The topology of the velocity surface at a particular energy is as shown in Fig. 2.53. These

surfaces are parameterized using polar coordinates with respect to the Moon.

Figure 2.53: Geometry of the velocity surfaces and suitable locations for impulse maneuvers

In the polar coordinates, the L1 and L2 gateway are located at 0 deg and 180 deg, respectively.

Also, note the difference in the velocity surfaces for target periodic orbits and for potential transfer

trajectories that reach the EPO. This large difference suggests that periodic orbits with Jacobi

energies (between C1 and C3) lie on velocity surfaces that are close to each other. The ∆v required

for a sample transfer to a periodic orbit near C = C1 and C = C2 would therefore be very close.

This rationale can be utilized when looking up transfer opportunities from the catalog designed in

the previous section.

Additionally, this topological visualization technique also enables a geometric analysis of the

various transfers in the catalog to determine tangential and non-tangential transport opportunities

to periodic orbits. An example of such an application is given below.
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2.6.7.2 Identification of non-tangential transport opportunities

An application of the geometric visualization technique described above in combination with

the catalog of transfers generated in the previous section is developed. Consider the problem of

obtaining a transfer to an L1 Lyapunov orbit at Jacobi constant, C = 3.17. Note that at this energy

level, the L2 gateway is open, and the catalog does not contain any transfers to this target energy.

Also consider that the ∆v budget for the transfer is constrained as: ∆v ≤ 0.7. Additionally, the

maximum velocity direction change allowed during the manifold injection maneuver is 12 deg.

The procedure for finding such a transfer is outlined below:

1. From the catalog, extract transfers that have the ∆v within out budget (There are 3785 such

transfers in the catalog with ∆v ≤ 0.7).

2. Compute the stable manifolds of the target periodic orbit.

3. Compute intersections of the candidate transfers with the manifolds, such that the positions

coordinates match up and the velocity vectors are near-tangential (α = 12 deg). Here, near-

tangential is defined by setting a tolerance for the allowed change in velocity direction.

The procedure described above does not require any computational effort due to its purely

topological dependence. Each of the above steps is illustrated in Fig. 2.54.
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Figure 2.54: Solution procedure for computing transfers to L1 Lyapunov orbit

The solution procedure described above is completely geometric and can be used as a quick

analysis tool to identify possible non-tangential transfers with significant ∆v savings. A sample

trajectory obtained from the above procedure is as shown in Fig. 2.55

Figure 2.55: Sample transfer obtained from geometric analysis. C = 3.180
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A quick analysis with varying maximum change in velocity direction during manifold injection

maneuver showed the possibility of finding non-tangential transfers with significant ∆v savings.

The results of this analysis are shown in Fig. 2.56.

Figure 2.56: Non-tangential transfers to L1 Lyapunov orbit with α = [1, 12] deg
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2.7 Summary

This chapter of the dissertation focuses primarily on various qualitative methods for treating

dynamical systems. The tools of dynamical systems theory have been used to obtain geomet-

ric insight into the evolution and behavior of the dynamical systems corresponding to the Planar

Circular Restricted Three-Body Problem (PCR3BP) and the attitude motion of a rigid body in

Keplerian orbit.

The identification and characterization of the dynamical structures within the PCR3BP facil-

itates comprehensive exploration of the motion of particles in multi-body regimes. The concept

of momentum maps in the Earth-Moon system is introduced and explored to offer a deeper un-

derstanding of the qualitative properties of the PCR3BP and give a direct physical insight into the

global dynamics of the problem. The momentum maps are very intuitive in describing the flow of

a particle inside and around the invariant manifolds. Through the use of the inside-out topology,

the structure of the invariant manifolds is examined in the Earth neighborhood. The utility of the

momentum maps is demonstrated by developing a methodology to construct direct transfers to

Lyapunov orbits in the Earth-Moon system. This methodology is employed to generate a catalog

of transfers, thereby facilitating the identification of several families of transfers in the PCR3BP.

While not requiring more sophisticated mathematics than the study of the velocity surface, a visu-

alization technique is developed that enables the identification of transport opportunities with little

computational effort and geometrical analysis. This study then provides an effective approach to

analyzing transfers to planar Lyapunov orbits in cislunar space.

The attitude motion of a rigid body in Keplerian orbit is another complex dynamical system that

is examined via qualitative methods in this dissertation. This dynamical system serves as a classical

example of dynamical behavior being influenced by parametric terms. An alternative method to

study the attitude motion of rigid bodies in a Keplerian is introduced. In developing the equations

of motion, the parameterization in the Classical Rodrigues Parameters (CRP) is employed. This

parameterization provides an advantage in that the equations of motion are in pure algebraic form.

The governing equations for attitude dynamics for a general rigid body in a Keplerian orbit are
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developed. In the absence of roll-yaw motions, the pitch motion is exclusively studied due to the

equations of motion. The analysis of attitude motion is addressed using four specific cases, each

developed incrementally, adding complexity to the dynamical system. They are: the planar pitch

dynamics of a rigid body in circular orbit, planar pitch dynamics in eccentric orbit, and the three

degree-of-freedom dynamics in circular orbit and eccentric orbit, respectively.

The planar pitch motion in circular orbit is completely reduced by obtaining an integral of

motion in algebraic form, as a result of using the CRP parameterization. The existence of an

integral of motion results in a co-dimension one sub-manifold of the phase space. Eigenvalue

analysis gives the analytical limit for motion along the separatrix, thus furnishing the bounding

trajectory between libratory and circulatory motions. The planar pitch motion in an eccentric

orbit is studied through the use of bifurcation diagrams depending on the eccentricity parameter.

Stroboscopic maps are also utilized to discern fascinating dynamical behavior. Many interesting

motions are identified, including periodic orbits, quasi-periodic orbits and chaotic pitch motions.

Using the equations of motion, tools to investigate the stability of oscillations about an equilib-

rium point are developed in the three degree-of-freedom case. Linear analysis of the attitude mo-

tion suggests unstable solutions lead to exponential growth. However, the actual motion resulting

from nonlinear equations is bounded, and this information is lost in the linearization. Leveraging

the conservation principles of gravity-gradient torques, a method of energy balance is used to de-

termine the regions of high energy exchange in the inertia parameter space for a rigid body in a

circular orbit. It is shown that these regions (in the parameter space) of high energy exchanges cor-

respond to those near commensurable frequencies in the pitch and roll-yaw motions, specifically at

the internal resonance of 2:1 (ω3 = ω1). The apparent instability observed in the Lagrange region

of the inertia parameter space is shown to be an exchange of energy between the pitch and roll-yaw

motions. This analysis is further extended by investigating the effect of maximum pitch angle on

the stability of oscillations. It is shown that an increase in the maximum pitch amplitude is accom-

panied by an increase in the energy exchange. Thus, the effect of resonant commensurability is

shown to envelop a large part of the inertia parameter space.
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A method of visualizing the rigid body motion is also developed. The Binet-Poincaré sections

developed in this work trace the intersections of the locus of angular momentum vector in the body

frame with a reference ellipsoid, resulting in the construction of an osculating polhode. Using this

osculating polhode, certain peculiar structures arising from the motion of the angular momentum

are observed. It is found that the high energy exchange regions are exclusively due to the 2:1

resonant frequencies. There is no energy pumping, for instance, in the weaker internal resonance

condition (ω3 = ω2 − ω1). We also observe a monotonous phase shift in the motion of the angular

momentum vector about the pitch axis upon crossing the 2:1 commensurability curve. This shift

is found to be a function of the inertia properties of the rigid body. A new metric to quantify the

coupling between the state variables by utilizing the information in the State Transition Matrix

(STM) has been developed. By using the induced two-norm of the sub-matrices in the STM, a

quantitative measure of the coupling is obtained. While this metric can be applied to any dynamical

system, for the case of a rigid body, this coupling is directly linked to the energy exchange between

the pitch and roll-yaw motions.

Noting that the gravity-gradient torque developed for the analysis of rigid body motion is an

approximation to second order in the moment of inertia, a higher order gravity-gradient potential

is developed. Certain cases are identified where the higher-order gravity-gradient terms become

more significant than those at second-order. Relative equilibria and Lyapunov stability analysis

are carried out for the special case of the cube as a rigid body. Forty nine equilibrium conditions

are found that are identified as conforming to three specific configurations of the cube. Lyapunov

stability analysis confirms that only one of the three equilibrium configurations is stable.

The roll-pitch-yaw rigid body motion in an eccentric orbit is investigated from the point of

view of the Serret-Andoyer variables. Certain simplifications are introduced that aid in the reduc-

tion of the problem and the identification of equilibrium configurations for a triaxial rigid body.

Particularly, the long-term behavior of a general triaxial rigid body is investigated utilizing tools

of dynamical systems theory, specifically, the phase-plane analysis. This analysis using Serret-

Andoyer variables also sets up the preliminaries for the next chapter, where the rigid body attitude
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motion is investigated from an analytic perspective.
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3. ANALYTIC TREATMENT OF DYNAMICAL SYSTEMS

The name Analytical Dynamics is given to that branch of knowledge in which the motions

of material bodies, considered as due to the mutual interaction of the bodies, are discussed by

the aid of mathematical analysis [31]. Analytical dynamics has been the subject of intense ef-

fort over the past two centuries. The modern developments in analytical methods remain in close

continuity with classical treatments. Classical mechanics had its roots in the works of Newton,

Euler, Lagrange, Gauss, Gibbs, Hamilton, and Jacobi et al., all of whom sought to establish the

methodology and understand the behavior of natural dynamical systems under the influence of

forces arising in nature. This has evolved to studying artificial and man-made systems under the

influence of natural and artificial external forces [29]. Another important aspect is adjusting the

analytical methodologies to accommodate the advancement in computational methods and math-

ematical treatment of a complex class of problems that pose difficulty to applied mathematicians,

physicists, and engineers. Such complex dynamical systems preclude the exactness of their solu-

tions. In such situations, an approximation is usually sought. Foremost among the approximation

techniques is the systematic method of perturbations (or asymptotic expansions) in terms of a small

or a large parameter or coordinate. The solution of the full problem can then be represented by

the first few terms of a perturbation expansion. Such methods are proven to be more useful for

qualitative as well as quantitative representation of the solutions [104, 105].

Just as in previous chapters, the outline of this chapter will begin with an introduction to dif-

ferent classical analytical techniques and perturbation methods. Again, a bench-test problem is

the attitude motion of a rigid body in Keplerian orbit. This problem has been formulated in the

previous section but will now garner a more analytical and perturbative approach to its solution.

Such a method is extended to include the effects of both orbit on attitude as well as the attitude on

orbit. The formulation of the problem itself will bring to light many internal symmetries, and their

relation to physical phenomena. Another problem whose solution will be sought is the two-body

problem with J2 geo-potential using the familiar Delaunay variables. The hope of this chapter is
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to utilize the information from previous chapters about the geometric insight into the motion of

dynamical systems and formulate an analytical solution. Such analytical formulation will form

the basis of the next chapter on semi-analytical methods for complex dynamical systems. Start-

ing from the reality that analytical approaches allow for a deeper insight into nonlinear dynamical

phenomena, this chapter of the dissertation focuses on emphasizing the recent developments in the

analytical investigation of dynamical systems governed by nonlinear differential equations.

3.1 Fundamentals of analytical mechanics

The evolution of analytical mechanics is closely tied to the developments in calculus of vari-

ation. The principal developers of variational calculus (Euler, Lagrange, Hamilton, Jacobi, and

others) were actively motivated by variational problems arising naturally in analytical mechanics

[29]. In this chapter, we begin by outlining the basic concept from variational calculus and move

on to Hamilton’s principal function, and eventually to the Hamilton-Jacobi theory for canonical

transformations. Another aspect that is explored in this chapter is the method of perturbations,

specifically the Hori-Lie-Deprit Series method.

3.1.1 Variational calculus fundamentals

The fundamental problem of variational calculus is to determine a space-time trajectory or path

x(t) ∈ Rn that causes a given functional J (x(t), t0, tf ) to achieve a local extremum [30, 29]. If J

is expressed as a path integral:

J = J (x(t), t0, tf ) =

∫ tf

t0

F(x(t), ẋ(t), t)dt (3.1)

with x(t) = [x1(t), · · · , xn(t)]T . It is assumed that both F and x are functions of class C2 i.e.

continuous and twice differentiable with respect to all arguments [30]. Suppose that x(t) is the

extremizing path with t0 and tf as extremizing initial and final times. Let [x̃(t), t̃0, t̃f ] represent

any differentially neighbouring path and initial/final times which also belong to class C2. The first

path variation is then given as

δx(t) = x̃(t)− x(t) (3.2)
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is of differential magnitude and class C2. Since ẋ = d/dt(x(t)) and ˙̃x = d/dt(x̃(t)),

δẋ(t) = ˙̃x(t)− ẋ(t) =
d

dt
(δx) (3.3)

Thus, the δ() and d/dt() operations are interchangeable. These variations are introduced for the

sake of analysis. Such analysis will lead to the necessary conditions for extremizing the functional

mentioned above. The path integral evaluated along the varied path is

J̃ = J (x̃(t), t̃0, t̃f ) =

∫ t̃f

t̃0

F(x(t) + δx(t), ẋ(t) + δẋ(t), t)dt (3.4)

Defining the variation J as

δJ = J̃ − J (3.5)

=

∫ tf+δtf

t0+δt0

F(x(t) + δx(t), ẋ(t) + δẋ(t), t)dt−
∫ tf

t0

F(x(t), ẋ(t), t)dt (3.6)

Expansion in Taylor series and retaining the first order terms results in a cancellation with the

second term leaving the form:

δJ =

∫ tf

t0

[[
∂F
∂x(t)

]T
δx(t) +

[
∂F
∂ẋ(t)

]]
dt+ F( , tf )δtf −F( , t0)δt0 (3.7)

After some mathematical manipulation and integrating by parts, the final form of the functional J

can be written as:

δJ =

[[
∂F
∂x

]T
− d

dt

[
∂F
∂ẋ

]T]
δx(t)dt+

[
∂F
∂ẋ(tf

]T
δx(tf )−

[
∂F
∂ẋ(t0

]T
δx(t0)+F( , tf )δtf−F( , t0)δt0

(3.8)

The final four boundary terms are referred to as transversality conditions. We draw out atten-
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tion, particularly to the first term. This term gives us the Euler-Lagrange equations:

[
∂F
∂x

]
− d

dt

[
∂F
∂ẋ

]
= 0 (3.9)

Notice here that the Euler-Lagrange equations look very similar and are identical to Lagrange’s

equations:
d

dt

[
∂L
∂q̇j

]
− ∂L
∂qj

= 0 (3.10)

Since Eq. (3.9) is the necessary condition for

J =

∫ tf

t0

Fdt

to be an extremum, it can be inferred that

S =

∫ tf

t0

Ldt (3.11)

is an extremum for a large class of dynamical systems. For these class of systems, δS = 0. The

scalar S is known as Hamilton’s principal function and δS = 0 is the most simple version of

Hamilton’s principle. The reader is referred to the following extensive texts for further reading on

the topic [29, 27, 51, 106, 70, 99]. In the following section, we shall take a look at the Hamiltonian

function and derive the basics for the Hamilton-Jacobi theory.

3.1.2 The Hamiltonian function

The Hamiltonian function is closely related to the Lagrangian (L) and is defined in terms of

the Lagrangian as follows:

H =
n∑
i=1

∂L
∂q̇

q̇− L = H(q, q̇, t) (3.12)

The first term in the above equation can be used to define the generalized (or conjugate) momenta

pi as:

pi ≡
∂L
∂q̇

(3.13)
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Thus, the Hamiltonian can be written as follows in terms of the coordinates (qi) and their conjugate

momenta (pi) as:

H =
n∑
i=1

piq̇i − L = pT q̇− L (3.14)

Because of the definition of the Lagrangian (L ≡ T − V ), it has a quadratic dependence on

q̇. This leads to a familiar kinematic form of the above equation, and elucidates the fact that

[p, q̇] are alternative velocity (or momentum) descriptions of the dynamical system’s motion [51,

28]. Differentiating the Hamiltonian and collecting terms give us the conditions under which the

Hamiltonian is a constant of motion.

dH
dt

=
n∑
i=1

[
d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

]
q̇i −

∂L
∂t

(3.15)

The term in the bracket is Lagrange’s equations which vanish for conservative external forces.

Thus, the conditions under which the Hamiltonian is a constant of motion are: (a) External forces

are conservative, and (b) The Lagrangian is not an explicit function of time. It is noted here that

the second condition may be satisfied for systems with explicit time dependence by rewriting the

dynamical equations in an extended phase-space. One such example will be discussed in the fol-

lowing sections and the description of the extended phase-space will be provided then. Therefore,

in Hamiltonian dynamics, the variables are the canonical coordinates, usually q, and the canonical

momenta, p. The paths of these variables are governed by the Hamiltonian,H. These paths render

a certain functional stationary[27, 51]:

δ

∫
p · dq−Hdt = 0 (3.16)

Using the calculus of variations and expanding Eq. (3.16) , we obtain Hamilton’s equations of

motion.

q̇ =
∂H
∂p

, ṗ = −∂H
∂q

(3.17)
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Introducing the canonical state-vector:

x ≡


q

· · ·

p

 , ∂H
∂x
≡


∂H
∂q

· · ·
∂H
∂p

 (3.18)

Thus, Hamilton’s canonical equations assume the symplectic form:

ẋ = −[J ]
∂H
∂x

= −[J ]∇xH (3.19)

with J =

 0 −In×n

In×n 0

 and In×n being a n−dimensional identity matrix. The following section

extends these developments to formally introduce the Hamilton-Jacobi theory.

3.1.3 Hamilton-Jacobi theory

The Hamilton-Jacobi theory plays a crucial role in the development of mathematical physics.

It serves as a bridge between classical mechanics and other branches of dynamical systems theory

in understanding the evolution of a system, particularly in the presence of internal symmetries and

conserved quantities. This relation between topology and motion represents the culmination of

Lagrangian and Hamiltonian mechanics [27, 107, 24, 106]. These action functions are the solutions

of a nonlinear, first-order, hyperbolic partial differential equation (PDE), called the Hamilton-

Jacobi equation (HJE). The characteristic equations of this differential equation are the extended

Hamilton’s equations. The potential of the HJE arises from the fact that the solution of mechanics

problems is thus reduced to the solution of a single partial differential equation. It serves as a map

from the original (nonlinear) equation into another equation that is more tractable. The beauty

of HJE is to uncover the canonical transformations leading to a simplified, more manageable set

of equations for dynamical systems. In the words of Arnold[22], “The technique of generating

functions for canonical transformations, developed by Hamilton and Jacobi, is the most powerful

method available for integrating the differential equations of dynamics."
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From Eq. (3.16) , the addition of a path-independent term to p · dq̇ −Hdt does not affect the

dynamics. If one were to introduce new coordinates and momenta (Q,P) which are expressed in

terms of the old coordinates and momenta: (q,p).

Qi = Qi(q,p, t) Pi = Pi(q,p, t) (3.20)

Equation (3.20) ensures that there exists a function K(Q,P, t) for which the new equations of

motion are given by

Q̇i =
∂

∂Pi
K(Q,P, t) (3.21)

Ṗi = − ∂

∂Qi

K(Q,P, t) (3.22)

where, K is known as the new Hamiltonian or ‘Kamiltonian’. Transformations (Eq. (3.20) ) for

which these equations hold are called canonical transformations. These Hamilton’s equations lead

to the conditions[108]:

δ

∫ t2

t1

[ n∑
i=1

piq̇i −H(q,p, t)
]
dt = 0 (3.23)

δ

∫ t2

t1

[ n∑
i=1

PiQ̇i −K(Q,P, t)
]
dt = 0 (3.24)

Thus, given Eq. (3.23) , there exists an arbitrary function S such that

n∑
i=1

piq̇i −H(q,p, t) =
n∑
i=1

PiQ̇i −K(Q,P, t) +
dS

dt
(3.25)

is satisfied in order for Eq. (3.24) to hold. For a different set of variables (P,Q) and a different

Hamiltonian,K, the dynamics is same if the integrand differs by a path independent term, dS, such

that

pT q̇−H(q,p, t) = PT Q̇−K(Q,P, t) +
dS
dt

(3.26)
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Equation (3.26) gives a functional form of the perfect differential criterion that leads to [Q,P]

satisfying the canonical differential equations of Hamilton. The variable changes that preserve∮
p ·dq also preserve dynamics (with appropriately modified Hamiltonian). Such variable changes

are known as canonical transformations [22, 109]. One can leverage this freedom to add path-

independent terms (of type S) to specify canonical transformations that simplify the motion of

dynamical systems and bring out the inherent symmetries of the system. Since S generates a

transformation from the old variable space (q,p) to the new variable space (Q,P), it is called the

generating function and is written as a function of mixed variables. Arnold [110] has shown that

there are 2n possible forms of the generating function of which the four possible forms of the

generating function are of interest:

S = S1(q,Q, t) S = S2(q,P, t) S = S3(p,Q, t) S = S4(p,P, t)

Taking S = S1(q,Q, t) as an example and expanding the total time derivative of S in Eq.

(3.17) ,

(p− ∂S1

∂q
)T q̇−H = (P +

∂S1

∂Q
)T Q̇−K +

∂S1

∂t
(3.27)

Since the old and new coordinates are independent, Eq. (3.27) can only hold if each coefficient

of q̇ and Q̇ is zero. This enables us to obtain a relation for the old and new momenta as:

p =
∂S1

∂q
, P = −∂S1

∂Q
(3.28)

and
∂S1

∂t
+H = K (3.29)
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Similarly, we can obtain the relations for S2, S3, and S4 as follows:

S2 :
∂S2

∂t
+H = K, p =

∂S2

∂q
, Q =

∂S2

∂P
(3.30)

S3 :
∂S3

∂t
+H = K, q = −∂S3

∂p
, P = −∂S3

∂Q
(3.31)

S4 :
∂S4

∂t
+H = K, q = −∂S4

∂p
, Q =

∂S4

∂P
(3.32)

When a canonical transformation ensues such that the new Hamiltonian,K, is a constant, which

without loss of generality can be taken as zero, we obtain the Hamilton-Jacobi equation [27].

H(q,p) +
∂S
∂t

= 0 (3.33)

Now, let us assume that S = S2(q,P). Taking the time derivative of S, we get:

dS
dt

=
∂S
∂qi

q̇i +
∂S
∂Pi

Ṗi +
∂S
∂t

(3.34)

Using expressions in Eq. (3.30) , Ṗi = 0, and using Hamilton-Jacobi equation, we get:

dS
dt

= piq̇i −H (3.35)

However, note that the right hand side of the above equation is the Lagrangian. Thus,

Ṡ = L ⇒ S =

∫
L (3.36)

Thus, the generating function is actually Hamilton’s principal function. We see that Hamilton’s

principal function, S, is the generator of canonical transformations of constant (Q,P), and provides

a method of obtaining solutions to classical mechanics problems by way of finding a transforma-

tion. Classical examples of canonical set of variables are the Delaunay variables for the two-body

problem, phase and amplitude variables for the simple harmonic oscillator, and the Serret-Andoyer
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variables for the torque-free attitude motion of a rigid body. Certain situations require finding ap-

propriate transformations and then checking for canonicity. In such situations, the Poisson bracket

of the new and old variables serves as a useful tool in establishing canonicity. A brief description

of Poisson brackets and the symplectic condition is given below.

3.1.4 Poisson brackets and the symplectic condition

In classical mechanics, the Poisson brackets are defined as:

{u, v}q,p =
∑
i

(
∂u

∂qi

∂v

∂pi
− ∂v

∂qi

∂u

∂pi

)
(3.37)

The following fundamental properties of Poisson brackets are listed:

{qi, qj}q,p = {pi, pj}q,p = 0 (3.38)

{qi, pj}q,p = δij (3.39)

{u, v} = 0 (3.40)

{u, v} = −{v, u} (3.41)

{au+ bv, w} = a{u,w}+ b{u,w} (3.42)

{uv, w} = u{v, w}+ {u,w}v (3.43)

{u{v, w}}+ {v{w, u}}+ {w{u, v}} = 0 (3.44)

Utilizing the above formulae, we can prove the statement:

Theorem. A transformation Qj = Qj(p, q, t) and Pj = Pj(q, p, t) is canonical if and only if

{Qi, Qj}q,p = {Pi, Pj}q,p = 0 and {Qi, Pj}q,p = δij
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Let the canonical state vectors be given by:

x = [qi, pi]
T i = 1, · · ·n (3.45)

y = [Qi, Pi]
T i = 1, · · ·n (3.46)

We know that Hamilton’s equations of motion give us: ẋ = [J ]∂H
∂x . Also, one can write y = y(x).

Now, consider the derivative of y

dy
dt

=
∂yi
∂xi

ẋi ⇒ ẏ = M ẋ where, Mij =
∂yi
∂xj

(3.47)

Expanding the equation above, we obtain:

ẏi =
∂yi
∂xj

ẋj =
∂yi
∂xj

Jjk
∂H
∂xk

=
∂yi
∂xj

Jjk
∂yl
∂xk

∂H
∂yl
⇒ ẏi = MJMT ∂H

∂y
(3.48)

for anyH. This is known as the symplectic condition. Furthermore,

MJ = J(MT )−1 and J2 = −I (3.49)

we can the write

J(MJ)J = −JM = J(J(MT )−1)J = −(MT )−1J ⇒MJMT = J ⇒MTJM = J (3.50)

Now, from the fundamental Poisson brackets:

{xi, xj}x = Jij (3.51)

Therefore,

{yi, yj}x =

(
∂yi
∂xj

)T
J

(
∂yi
∂xj

)
= (MTJM)ij (3.52)

Equation 3.52 is the same as Eq. (3.50) . Thus, the new variables satisfy the Poisson brackets
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relationship if and only if

MTJM = J

which is only true if the transformation: y = y(x) is canonical. Thus, the statement of the theorem

is proved. Two important facts arise from this theorem:

1. Poisson brackets are canonical invariants

{u, v}x = {u, v}y = {u, v} (3.53)

2. The phase volume elements are preserved by canonical transformations.

det(MTJM) = det(J) = det(M2) det(J)⇒ |det(M)|= 1 (3.54)

This property of the Poisson brackets becomes very useful when a transformation is obtained and

its canonicity has to be checked. The Poisson brackets can be used in place of finding an explicit

generating function for the transformation. A simple example is the set of canonical variables in-

troduced by Fukushima [111] for both orbit and attitude motions : T : (x, y,X, Y )⇒ (u, v, U, V ).

The transformations are given as:

U = X

V =
√
X2 − Y 2 sin y

u = x+ tan−1

(
Y

X
tan y

)
v = tan−1

(√
X2 − Y 2

Y
cos y

)
(3.55)

While a generating function of any kind for the above transformation cannot be found explicitly,

the Poisson brackets are used to test for canonicity. Thus

{U, u} = {V, v} = 1 {U, v} = {U, V } = {V, u} = {u, v} = 0
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The transformation above is therefore canonical and are used to replace (L, l, G, g) and (G, g,H, h)

in the Delaunay variables for a new non-singular canonical set for orbital mechanics problems,

and similarly for attitude dynamics problems as well. More often than not, under the effect of

perturbations, many dynamical systems exhibit non-integrability. In such cases, a perturbation

solution is sought out depending on a small parameter, and a chain of Poisson brackets. In the

following section, one such method is highlighted.

3.1.5 Perturbation theory based on Lie transforms

In the presence of a perturbation, many dynamical systems exhibits non-integrability. Non-

integrable systems do not exhibit a canonical set of variables that completely satisfy the Hamilton-

Jacobi Theory. Perhaps, this is why the HJ theory is seldom used for solving dynamical systems

since most problems can be treated by the Lagrangian and Hamiltonian approach. Felix Klein [112]

quotes: “the HJ method does not bring anything to the engineer and very little to the physicist".

However, while a complete solution cannot be obtained, many of the qualitative properties of the

dynamical system can be discerned using a perturbations method that depend on a small parameter.

Specifically, canonical transformations are obtained by seeking a generating function that depends

explicitly on the small parameter. Lie transforms define naturally a class of canonical mappings in

the form of a power series in the small parameter [74]. Perturbation theories based on this method

of Lie series provide a significant advantage in that they yield the transformation of state variables

in explicit form; in a function of the original variables, the substitution of the new variables consists

simply of an iterative process involving explicit chains of Poisson brackets [113, 114, 74, 104].

Consider the dynamical system with vector differential equations as:

q̇ = Hp, ṗ = Hq (3.56)

derived from the Hamiltonian

H(q,p; t; ε) = H0(q,p; t) + εH1(q,p; t) +
1

2!
ε2H2(q,p; t) + · · · (3.57)
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The essence of the technique is in constructing a canonical transformation (q,p, t, ε) → (Q,P)

analytic in ε at ε = 0 so as to achieve in the transformed Hamiltonian

K(Q,P; t; ε) = K0(Q,P; t) + εK1(Q,P; t) +
1

2!
ε2K2(Q,P; t) + · · · (3.58)

satisfies specific requirements: suppression of periodic terms of assigned type, elimination of some

or all angle coordinates, normalization, etc. The difference from von Zeipel’s method[105] is to

build the mapping explicitly in the form of a power series in the new variables.

q = Q + εQ(1)(Q,P; t) +
1

2!
Q(2)(Q,P; t) + · · ·

p = P + εP(1)(Q,P; t) +
1

2!
P(2)(Q,P; t) + · · ·

(3.59)

together with its inverse:

Q = q + εq(1)(q,p; t) +
1

2!
q(2)(q,p; t) + · · ·

P = p + εp(1)(q,p; t) +
1

2!
p(2)(q,p; t) + · · ·

(3.60)

and its remainder function

R(Q,P; t) = εR(1)(Q,P; t) +
1

2!
R(2)(Q,P; t) + · · · (3.61)

The scheme is recursive in that it is based on the principle that with respect to the transformation

in Eq. (3.59) , the canonical system in Eq. (3.56) is equivalent to the system

Q̇ = KP, Ṗ = KQ (3.62)

derived from the Hamiltonian

K(Q,P; t; ε) = H(q(Q,P; t; ε),p(Q,P; t; ε); t; ε) +R(Q,P; t) (3.63)
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Thus, the problem of finding a canonical transformation is reduced to finding the generating func-

tion S and the Hamiltonian K to satisfy the prescribed requirements in Eq. (3.62) . The recursion

is entered by putting

K0(Q,P, t) = H0(Q,P, t) (3.64)

The operations at higher orders is accomplished using a Lie triangle which is shown in Fig. 3.1

[115, 74]

Figure 3.1: The Lie triangle: Recursive transformation of the Hamiltonian under a Lie transform.

To use the Lie triangle, one starts at a vertex, goes one step to the right, and then steps up and
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performs the Ln operator on the quantity at each step as one moves up top. To illustrate this:

f (1) = f1 + L1f0 (3.65)

f
(1)
1 = f2 + L1f1 + L2f0 (3.66)

f (2) = f
(1)
1 + L1f

(1) (3.67)

= f2 + L1f1 + L2f0 + L1f
(1) (3.68)

= f2 + L1f1 + L2f0 + L1(f1 + L1f0) (3.69)

= f2 + 2L1f1 + L2f0 + L1(L1f0) (3.70)

f
(1)
2 = f3 + L1f2 + L2f1 + L3f0 (3.71)

... (3.72)

where Lnf is a linear operator called the Lie derivative generated byWn and is the Poisson bracket

given by

Lnf = {f,Wn} =
∂f

∂(q,p)

∂Wn

∂(Q,P)
− ∂f

∂(Q,P)

∂Wn

∂(q,p)
(3.73)

A recursive formula exists forH(k)
n as:

H(k)
n (q,p, t) = H(k−1)

n+1 +
∑

0≤m≤n

Cn
mLm+1H(k−1)

n−m (3.74)

Utilizing this recursive formulation, one can obtain to arbitrary order, the perturbation solution of

a dynamical system. The key point to note here is that the problem of finding the transformation

has now been reduced to the problem of finding a generating function that serves our purpose. As

an example, the Duffing oscillator is considered next and a fourth-order Lie series perturbation

solution is found by averaging over the periodic variable to fourth-order.
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3.1.5.1 Lie series solution of a nonlinear oscillator

The differential equation governing the Duffing oscillator is:

z̈ + z + εz3 = 0 (3.75)

The Hamiltonian for the nonlinear oscillator can therefore be written as the sum of kinetic energy

and the potential in the nonlinear spring as:

H =
1

2
ż2 +

1

2
z2 +

1

4
εz4 = H0 + εH1 (3.76)

First, a simple canonical transformation is made as follows. It can be checked using Poisson

brackets that the transformation preserves canonicity.

z =
√

2X sinx, Z =
√

2X cosx (3.77)

In the new variables, (x,X), the Hamiltonian is rewritten as:

K = K0 + εK1 = X + ε
X2

8
(3− 4 cos 2x+ cos 4x) (3.78)

On averaging up to fourth-order, we obtain the following expression for the Hamiltonian:

K = −10689X5 ε4

16384
+

375X4 ε3

1024
− 17X3 ε2

64
+

3X2 ε

8
+X (3.79)
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The generating function that results in the averaged Hamiltonian is:

W1 = −
X2

(
4 sin (2X)− sin(4X)

2

)
16

(3.80)

W2 =
X3 sin (2X)

(
−8 sin (X)4 + 26 sin (X)2 + 39

)
96

(3.81)

W3 = −
X4 cos (X) sin (X)

(
368 cos (X)6 − 2088 cos (X)4 + 1598 cos (X)2 + 2333

)
512

(3.82)

W4 =
3X5 cos (X) sin (X)

1024
(3.83)(

640 cos (X)8 + 1768 cos (X)6 − 18124 cos (X)4 + 19710 cos (X)2 + 9017
)

1024
(3.84)

Noting that the resulting averaged Hamiltonian is only a function of the momenta X , Hamil-

ton’s equation gives the evolution of X to be constant for all time (Ẋ = −∂K
∂x

). The original

solution for z, Z can be obtained straightforwardly from literature [104, 74, 114, 70]. Also, note

here that the Lie series procedure is used to obtain a canonical transformation. The canonical trans-

formation that we desire is to have the Hamiltonian be a function of only the momenta. Therefore,

the angle is eliminated by averaging. On the other hand, if one wanted to solve the Hamilton-

Jacobi equation exactly, we could ask the question of what the generating function should be to

obtain the new Hamiltonian as zero. Of course, one may not be able to obtain an analytic form for

the integral for the generating function to achieve this. All in all, note that the Lie series procedure

results in a transformation of variables

(x,X)→ (x′, X ′)

where the Hamiltonian expressed in the primed variables are a function of only the momenta. The

equations above are all in primed variables and the prime is dropped for simplicity.

In the following sections, we shall specifically address the case of the attitude motion of a

rigid body from the point of view of Hamiltonian formulations and averaging techniques using

perturbation methods discussed above. The dynamical model will be built up hierarchically starting
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from a simple axisymmetric rigid body in a torque-free environment to a slow rotating triaxial rigid

body in Keplerian orbit.

3.2 Hamiltonian formulation of the free motion of a rigid body

The Euler-Poinsot problem is one of the classical problems of mechanics and describes the

torque-free motion of a rigid body. The solution of any classical problem has broadly two steps:

First: Kinematics, which is used to describe the orientation of the rigid body with respect to a

spatial inertial frame. Second: Dynamics, which is represented by differential equations for the

angular rates and the angular velocity rates. The study of this classical problem has led to and

facilitated the use of various analytic methods. The description of the dynamics through the use of

space and body cones, the observation that the polhode rolls without slipping on the herpolhode that

lies on the invariable plane [31, 70, 69] are all methods developed by dynamicists to gain a deeper

understanding of the Euler-Poinsot problem. The study of these analytic techniques eventually led

to taking advantage of the internal symmetries to reduce the Euler-Poinsot problem to a one degree

of freedom problem and using a perturbation method to obtain a solution [71]. While this method

is used by most engineers, astronomical scholars prefer a formulation that takes advantage of the

internal symmetries that reduce the Euler-Poinsot problem to a one degree of freedom problem and

use a perturbations method to solve the problem [71].

The Hamiltonian form is useful in performing this reduction since perturbed Hamiltonian sys-

tems can be solved analytically to any order through many methods such as the one used by Deprit

[3], and discussed above. The full reduction of the Euler-Poinsot problem has been offered by De-

prit & Elipe [71]. To perform this reduction, one must resort to solving the Hamilton-Jacobi equa-

tion to obtain a generating function responsible for the canonical transformation from the action-

angle variables to the Serret-Andoyer variables. These constants became the attitude-dynamics

analogs of the Delaunay variables in the theory of orbits. Now, while Serret [72] had come up with

a full reduction of the problem, Andoyer [73] suggested a partial reduction. Much later, the study

by Andoyer was amended by Deprit and it was shown that canonicity may be proven by using

differential forms and without resorting to explicitly finding a generating function [3, 4].
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In this section, the free motion of a rigid body is discussed and the Hamiltonian is formulated.

Note that the Hamiltonian formulation of the motion of a rigid body has been addressed in Sec.

2.4.6.2 using the Serret-Andoyer variable description. This description is briefly recalled here.

3.2.1 Serret-Andoyer description

Consider the orientation of the body frame with respect to an inertial frame written in terms

of a coordinate frame aligned with the invariable plane [4]. An invariable plane is a plane whose

normal is in the direction of the rotational angular momentum vector. This is illustrated in figure

3.2. The body frame is obtained through a 3 − 1 − 3 − 1 − 3 rotation with respect to the inertial

frame as

b̂ = R3(ν)R1(J)R3(µ)R1(K)R3(λ) ŝ

where K denotes how the invariable plane is inclined with respect to the inertial frame and J

denotes how the invariable plane is inclined with respect to the body frame. We can observe from

Fig. 3.2 that K is the angle between the rotational angular momentum vector M and its inertial

third component, L. Similarly, J is the angle between the rotational angular momentum vector M

and its body-fixed third component, N .

Figure 3.2: Body frame representation using the invariable frame [3, 4]
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Here, the momenta conjugate to the coordinates (λ, ν, µ) are (L,N ,M ), respectively. From

geometry, we can relate the angles K and J to the conjugate momenta as follows:

cosK =
L

M
cos J =

N

M
(3.85)

Given these relations, the torque-free Hamiltonian can be rewritten in terms of the Serret-

Andoyer variables as:

H =
1

2

(s2
ν

A
+
c2
ν

B

)
(M2 −N2) +

N2

2C
(3.86)

where, A,B, and C are the moments of inertia of the rigid body. The Hamiltonian does not explic-

itly depend on µ and λ. Then Eq. (3.86) is simplified into the Hamiltonian of a two-dimensional

system with a single independent coordinate ν. Since the number of degrees of freedom of the

torque-free motion is reduced to one, the motion is solved by quadrature with the use of elliptic

functions. Many [116, 117, 31] have given analytical expressions of the solution with the use of

action-angle variables. Deprit [3] discussed the global and quantitative features of the torque-free

motion with the use of the isoenergetic curves without using the analytical solution.

3.2.2 Axisymmetric rigid body simplification

As observed from Eq. (3.86) , if A = B, i.e. the body is axisymmetric, the explicit depen-

dence on ν is also eliminated. Thus, the torque-free motion of an axisymmetric rigid body can

be completely reduced and solved using the method of quadrature [4, 75, 118, 3]. The resulting

Hamiltonian is:

H =
1

2A
(M2 −N2) +

N2

2C
(3.87)
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Hamilton’s equations of motion the gives:

dλ

dt
= 0

dL

dt
= 0 (3.88)

dµ

dt
=
M

A

dM

dt
= 0 (3.89)

dν

dt
=
N

C
− N

A

dN

dt
= 0 (3.90)

the solutions for which are very straightforward. The solution for a triaxial rigid body in torque-

free environment is given next.

3.2.3 Free motion of a triaxial rigid body

The kinetic energy can be expressed explicitly in terms of the Serret-Andoyer variables as done

previously. (Eq. (3.86) ). Hamilton’s equations of motion then give:

dλ

dt
= 0 (3.91)

dµ

dt
= 2M

(
cos (ν)2

2B
+

sin (ν)2

2A

)
(3.92)

dν

dt
=
N

C
− 2N

(
cos (ν)2

2B
+

sin (ν)2

2A

)
(3.93)

dL

dt
= 0 (3.94)

dM

dt
= 0 (3.95)

dN

dt
= −

(
M2 −N2

) (cos (ν) sin (ν)

A
− cos (ν) sin (ν)

B

)
(3.96)

The torque-free solution for a tri-axial rigid body has been obtained in closed form by Kinoshita.

[119, 120, 121] and is expressed here for completeness. The new variables are describes as follows.
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N = N0dn(u, k) (3.97)

M = M0 (3.98)

L = L0 (3.99)

ν = tan−1

(
cn(u, k)

γsn(u, k)

)
(3.100)

µ = µ0 +
M0

C
(t− t0) +

M0γ

L0

Π(am(u, k), α2, k) (3.101)

λ = λ0 (3.102)

where

γ =

√
a

b
, u =

N0

C

√
ab(t− t0), k =

√
γ2 − 1

√
M2

0 −N2
0

N0

(3.103)

α2 = 1− γ2, a =
C

A
− 1, b =

C

B
− 1 (3.104)

and L0,M0, N0, λ0, µ0, ν0 are the six integration constants of the torque-free motion and are the

initial values of the state-space variables at the epoch t0 defined as the instant l = π/2. Here

the functions am (amplitude), sn (sine-amplitude), dn (delta-amplitude), cn (cosine amplitude) are

Jacobi’s elliptic functions with the argument u and modulus k. Also,

Π(ψ, α2, k) =

∫ ψ

0

1

(1− α2 sin2 θ)
√

1− k2 sin2 θ
dθ (3.105)

is the incomplete elliptic integral of the third kind with the argument ψ, the modulus k, and the

parameter α2 [122, 123] (see [111, 120] for details). There are additional sets of variables such as

the ones introduced by Lara and Ferrer [75, 124, 125, 121], that offer a complete reduction of the

torque-free Hamiltonian and expresses it in terms of momenta variables only. This is left to the

reader to verify and study. In the following sections, the influence of gravity gradient torques is

studied for an axisymmetric rigid body in Keplerian orbit.
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3.3 Hamiltonian formulation of the motion of a fast-rotating rigid body in Keplerian orbit

The torque-free rotation of artificial satellites may be perturbed by a variety of effects such as

gravity, solar radiation pressure, drag, magnetic field effects, etc. [126]. Due to the complexity

of the force models, the problem of attitude perturbation is most commonly approached using

numerical and qualitative methods as described in the previous chapter. Nevertheless, the problem

can also be approached analytically using perturbation methods as discussed previously. This

analytical alternative takes the Euler-Poinsot problem as the unperturbed part, and the other effects

are added as perturbations to the torque-free motion [127, 121, 128]. The gravity-gradient torque

can be identified as one of the most important perturbing torques affecting the motion of the rigid

body [129, 130]. This model of rigid body motion therefore is treated as a basic, nonintegrable

dynamical system used in the study of attitude motion of artificial satellites. Furthermore, the

utility of this model is not restricted to the case of artificial satellites but can also be extended to fit

the description of rotational motion of celestial bodies [120, 117].

In the remainder of this section, we shall treat two specific cases of rigid body motion: a

fast-rotating/ tumbling rigid body and a slow rotating rigid body. Each case can be individually

attributed to the motion of artificial satellites and that of celestial bodies, respectively. While

interesting dynamics exist in the consideration of triaxial rigid bodies, of particular interest is that

of an axisymmetric rigid body when specifically applied to the natural motion of celestial objects

due to symmetry or near-symmetry rotations exhibited by them.

3.3.1 The Hamiltonian formulation : problem set-up

The Hamiltonian of the rigid body rotation in the presence of conservative gravity-gradient

torques is

H = T + V (3.106)

where T is the kinetic energy of rigid body motion about its center of mass and V is the potential

due to gravity. The Hamiltonian formulation of the rigid body in Keplerian orbit has been discussed

previously in Sec. 2.4.6.3. We shall borrow the preliminary results from there. The complete
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Hamiltonian can be written ignoring the orbital energies since they are always constant because of

the assumption that the attitude motion does not affect the orbit. This Hamiltonian is the sum of

the torque-free Hamiltonian from equation 2.104 and the gravity-gradient potential.

H =
1

2

(s2
ν

A
+
c2
ν

B

)
(M2 −N2) +

N2

2C
− k2

2r3

(
(C −B)(1− 3r2

3)− (B − A)(1− 3r2
1)
)

(3.107)

where k2 is the gravitational parameter. To bring this expression to a form that can enable the use

of perturbation theory, Eq. (3.107) is modified as follows. First, we rearrange the Hamiltonian of

the torque-free case as follows.

H0 =
(sin2 ν

A
+

cos2 ν

B

)(M2 −N2

2

)
+
N2

2C
(3.108)

=
M2

2C

[
1 +

(sin2 ν

A/C
+

cos2 ν

B/C
− 1
)

sin2 J
]

(3.109)

where, sin2 J = M2−N2

M2 . The gravity-gradient potential is rewritten as:

Vggt = −M
2

2C

( n

M/C

)2 (1 + e cos f)3

(1− e2)3

[
(1− B

C
)(1− 3r2

3)− (
B

C
− A

C
)(1− 3r2

1)
)]

(3.110)

where n is the constant orbital mean motion, and the eccentricity (e) and true anomaly (f ) enter

through the expansion of the radius vector r = a(1−e2)
1+e cos f

. Utilizing expressions for r1 and r3

from Eq. (2.113) , we can expand the above expression. Further, we note from the torque-free

Hamiltonian that for an axisymmetric body (A = B), ν is cyclic. Therefore, we can split the total

Hamiltonian into an axisymmetric part (independent of ν) and a symmetric part (containing ν).

Vggt = −M
2

2C

( n

M/C

)2 (1 + e cos f)3

(1− e2)3

1

16

((
2− B

C
− A

C

)
Vaxi +

3

2

(B
C
− A

C

)
Vasy

)
(3.111)
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where, the expressions for Vaxi and Vasy are given in Eq. (2.123) and Eq. (2.124) , respectively. A

simplification to the above expression of the potential is possible if we consider an axisymmetric

rigid body, i.e. A = B.

3.3.2 Axisymmetric rigid body simplification

Equation 3.112 gives the complete expression of the gravity-gradient potential for a triaxial

rigid body. After application of the axisymmetric assumption, the expression for the potential

becomes:

Vggt = −M
2

2C

( n

M/C

)2 (1 + e cos f)3

(1− e2)3

1

16

((
2− B

C
− A

C

)
Vaxi

)
(3.112)

The total Hamiltonian is then given as

H =
M2

2C

[
1 +

1

A/C

(
1− A

C

)
M2 −N2

M2

]
− εM

2

2C

[
1

8

(a
r

)3
(

1− A

C

)]
Vaxi (3.113)

where ε =
(

n
M/C

)2

. The representation of the Hamiltonian in Eq. (3.113) is non-autonomous

because of the explicit time-like variable, the true anomaly through expressions in Vaxi and explicit

dependence on r. The following discussion, therefore, aims to alleviate this undesirability by

introducing the mechanics through which the true anomaly is added into the extended phase-space

thus rendering the Hamiltonian autonomous.

3.3.3 Extended phase-space mechanics

The following discussion is inspired from Alfriend et. al [131, 132]. With the introduction of

the true anomaly in the expression for the gravity-gradient potential, we now have a system with

the Hamiltonian in the form:

H = H(q,p, f) (3.114)

where q = [λ, µ, ν]T and p = [L,M,N ]T are the coordinates and their conjugate momenta, re-

spectively. Let, q0, be the coordinate that coincides with the true anomaly f , and p0 be its conjugate
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momenta.

H = H(q0,q,p) + p0 (3.115)

The solution of the system governed by Eq. (3.115) must coincide with the one governed by Eq.

(3.114) . This is accomplished by prescribing the following conditions at t = 0:

q0(0) = 0; p0(0) = −H|t=0 (3.116)

Now, recall that the expression for Vaxi has the true anomaly appearing explicitly through the angle

φ = λ − f . This is done because of the construction of a rotating frame moving at the same rate

as that of the orbital motion. Let us, therefore, introduce a new variable, l = λ − f as a new

coordinate, and its conjugate momenta can remain L. The torque-free Hamiltonian is then written

as

HTF = H0 + L
df

dt
(3.117)

This follows form the fact that:

dl

dt
=
dλ

dt
− df

dt
=
∂H0

∂L
(3.118)

=
∂

∂L

(
H0 + L

df

dt

)
(3.119)

dL

dt
= −∂H0

∂l
= 0 (3.120)

Now, to set q0 = f , another term has to be added to the Hamiltonian. The complete Hamiltonian

is written as follows:

H = H0 + L
h

r2
+ Vggt + p0

h

r2
(3.121)

where h is the orbital angular momentum. The relation df
dt

= h
r2 is also utilized [50]. Using this,

we also obtain that the value of p0 at t = 0 must be

p0(t = 0) = −(H0 + L
h

r2
+ Vggt)

r2

h
(3.122)
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Using this value, we have the Hamiltonian at the initial time to be zero. In the extended phase-

space, the Hamiltonian is constant (= 0) for all time. Note here the usefulness of the extended

phase space. The extended phase-space is utilized to include the independent variable of time as a

dependent variable. For the independent variable that is a function of time (g = α(t))), the addition

to the extended phase-space is done by adding a dummy momenta scaled by dg
dt

. We also note here

that the extended phase-space is not limited to the dynamical model under consideration, i.e. the

axisymmetric rigid body. However, the extended phase-space can be used for any non-autonomous

dynamical system to remove explicit time dependence.

Note here that there are two ways to remove the true anomaly dependence: (a) Moving into the

extended phase-space, and (b) Defining the new variable (l = λ− f). Both these methods will re-

sult in the Hamiltonian being autonomous. Using method (a), the state-space is eight-dimensional

while using method (b) the state-space is only six-dimensional. However, using method (b) re-

quires solving Kepler’s relation for the true anomaly at every time instant. This can be avoided by

adding one additional differential equation for the evolution of the true anomaly. In the remainder

of this chapter, the extended phase-space methodology is used.

3.3.4 Higher-order Lie series averaging

For the axisymmetric case, we rewrite the components of the Hamiltonian as follows:

H0 =
M2

2C

[
sin2 J

A/C
+ cos2 J

]
(3.123)

H1 =
M

C

[a
r

]2√
1− e2 p0 (3.124)

H2 = −M
2

C

[a
r

]3
(

1− A

C

)
(1− 3r2

3) (3.125)

The total Hamiltonian is then given as:

H = H0 + εH1 +
ε2

2!
H2 (3.126)
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with ε = n
M/C

where n is the mean motion. Note here that the coefficient of p0 in H1 is simply

df
dt

= h
r2 . Similarly, we have already expanded (1 − A/C)(1 − 3r2

3) in previous sections. It is

expressed as follows:

(1− A/C)(1− 3r2
3) =



−3 cos(J) sin(J) sin(K) (cos(K)−1) (A−C)
2C

−3 cos(J) sin(J) sin(K) (cos(K)+1) (A−C)
2C

− sin(J)2 sin(K)2 (3A−3C)
4C

sin(K)2 (3A−3C) (3 sin(J)2−2)
4C

−3 sin(J)2 (cos(K)−1)2 (A−C)
8C

−3 sin(J)2 (cos(K)+1)2 (A−C)
8C

3 cos(J) cos(K) sin(J) sin(K) (A−C)
C

− (A−C) (3 sin(J)2−2) (3 sin(K)2−2)
4C



T 

cos (2 f − 2λ+ µ)

cos (2λ− 2 f + µ)

cos (2µ)

cos (2 f − 2λ)

cos (2 f − 2λ+ 2µ)

cos (2λ− 2 f + 2µ)

cos (µ)

1


(3.127)

Also note that the secular terms come in at the second order. The two critical inclinations are:

J = cos−1±
√

1

3
K = cos−1±

√
1

3
(3.128)

The secular terms reveal special configurations (the critical inclinations) of the satellite in which the

satellite’s attitude under gravity-gradient torque evolves, on average, as in the torque-free state, but

with a slightly modified angular momentum. Now, a fast-rotating rigid body has the rate of change

of the angle µ much higher than the rate of change of the true anomaly. With this information,

we can use a perturbations method to obtain an approximate solution in the powers of the small

parameter, ε. Using this approach and averaging over the fast angle µ, we obtain the averaged

Hamiltonian up to fourth-order as follows. Certain qualitative insights are also provided.
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1. At first order:

H0,1 = H1,0

< H0,1 > =
1

2π

∫ 2π

0

H0,1 =
M

C

[a
r

]2√
1− e2 p0 = H1,0

W1 =

∫
(H0,1− < H0,1 >)dµ = 0

(3.129)

This is not a surprise since H0,1 arises due to the use of the extended phase-space. The

homological equation using standard Lie-Deprit solution procedure is:

H0,1 = H1,0 −
∂V1

∂t

Since the use of the extended phase-space removes any explicit dependence on the time-like

variable, ∂V1

∂t
= 0. In addition, H0,0 is purely a function of the Momenta and completely re-

duced. Because of these reasons, L1H0,0 reduces to zero. So,H0,1 = H1,0 and the generating

function, W1 = 0.

2. At second order

H1,1 =H2,0 + L1(H1,0) + L2(H0,0)

H2,0 =H1,1 + L1(H0,1)

< H0,2 >=
1

2π

∫ 2π

0

H0,2 =
M2

2C

(
1− A

C

)(a
r

)3 (
3 sin2 J − 2

)
(
1− 3 sin2K sin2 φ

)
(3.130)

with φ = f − λ. Note here the secular term corresponding to (3 sin2 J − 2). Thus, one can

obtain the critical inclination at which the secular drift of the coordinates is zero. In fact,

at this critical inclination, the second-order contribution to the Hamiltonian itself vanishes.
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This critical inclination is obtained as:

J = ± cos−1

(
1√
3

)
(3.131)

Therefore, at the critical inclination, the first-order averaged attitude motion of the rigid

body under the influence of gravity-gradient torques (up to second-order moment of inertia

approximation) behaves like that of the free motion of the rigid body (torque-free motion).

3. At third-order

H2,1 = H3,0 + L1(H2,0) + L2(H1,0) + L3(H0,0)

H1,2 = H2,1 + L1(H1,1) + L2(H0,1)

H0,3 = H1,2 + L1(H0,2)

< H0,3 > =
1

2π

∫ 2π

0

H0,3 = 0

(3.132)

4. At fourth-order

H0,4 = M2−9A(A− C)2

64C4

[a
r

]6
(

3(4 cos 2φ+ cos 4φ+ 3)

+ (4 cos 2φ− cos 4φ− 3) cos4K

+ 85(4 cos 2φ− cos 4φ− 3) cos4K cos4 J

+ (−4 cos 2φ− 17 cos 4φ+ 16) cos4 J

+ 2(−4 cos 2φ− 9 cos 4φ+ 5) cos2 J

+ 4(16 cos 2φ− 9 cos 4φ− 7) cos2K cos2 J

+ 54(−4 cos 2φ+ cos 4φ+ 3) cos4K cos2 J

+ 6(−32 cos 2φ+ 17 cos 4φ+ 15) cos2K cos4 J

+ 2(1− cos 4φ) cos2K

)

(3.133)
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with φ = f − λ . One can observe that the critical inclinations are only valid for a second-

order approximation. In the fourth-order, the critical inclinations do not exist anymore. It is

to be noted here that the variables in the above expressions are averaged variables i.e. the

Lie series process results in a canonical transformation from

(λ, µ, ν, fL,M,N, F )→ (λ′, µ′, ν ′, f ′, L′,M ′, N ′, F ′)

where the Hamiltonian expressed in the primed variables have the structure

K = K(λ′,∼,∼, f ′, L′,M ′, N ′, F ′) (3.134)

The Kamiltonian is in the primed variables with the coordinate µ′ has been eliminated. Ad-

ditionally, one can notice that the coordinate ν ′ is also cyclic due to the assumption of an

axisymmetric rigid body.

This method of averaging is very useful for a fast-rotating rigid body. However, for slow

rotations of the rigid body, the rate of change of the attitude angle, µ, is of the same order as that

of the orbital variables, the mean anomaly. The following section presents the methodology for

treating the motion of slow-rotating rigid bodies.

3.4 Hamiltonian formulation of the motion of a slow-rotating rigid body in Keplerian orbit

The rigid body motion is formulated in the Serret-Andoyer variables: (λ, µ, ν, L,M,N ) [4].

Recall that they are defined as:

1. M is the magnitude of the rotational angular momentum

2. N is the component of the rotational angular momentum projected onto the z-axis of a

coordinate frame fixed to the rigid body and aligned with the principal moments of inertia.

3. L is the component of the rotational angular momentum projected on to the z-axis of a

coordinate frame fixed to the central body, also termed as the inertial frame.
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4. λ is the angle measured from the inertial x-axis along the xy plane up to a node (N) de-

fined by the intersection of the xy plane and the invariable plane (plane perpendicular to the

rotational angular momentum vector).

5. µ is the angle measured from the node N along the invariable plane up to another node

(M) defined by the intersection of the invariable plane with the xy plane of the body-fixed

coordinate system.

6. ν is the angle measured from the node M along the xy plane of the body-fixed frame up to

the x-axis.

The auxiliary angles J and K are also defined as in Eq. (3.85) .

cosK =
L

M
cos J =

N

M

Although the Serret-Andoyer variables are suitable for studies of general rotational motion, they

have some of the same deficits as that of the Delaunay variables in orbital motion: in the limit,

N → M , the angles ν and µ cannot be defined definitely. Similarly, in the limit, L → M , the

angles λ and µ cannot be defined definitely. Such an analogous condition occurs in the Delaunay

variables for small eccentricities and inclinations of the orbit. Note that at these auxiliary angles,

J = 0 and K = 0, while the angles are not well defined, their sum: λ + µ + ν is well defined.

This leads to the definition of the modified Serret-Andoyer variables. The transformation from the

Serret-Andoyer variables to its modified variant can be obtained through a generating function of

the second kind. Let us define this generating function as follows:

S(λ, µ, ν,Λ1,Λ2,Λ3) = Λ1(λ+ µ+ ν) + Λ2(−ν) + Λ3(−λ) (3.135)

where, S, a generating function of the second type is expressed in terms of the old coordinates
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(λ, µ, ν) and new momenta (Λ1,Λ2,Λ3). The new coordinates can then be obtained as:

λ1 =
∂S
∂Λ1

= λ+ µ+ ν (3.136)

λ2 =
∂S
∂Λ2

= −ν (3.137)

λ3 =
∂S
∂Λ3

= −λ (3.138)

The relation between the old and new momenta can also be obtained using the expressions from

HJ theory as shown below :

L =
∂S
∂λ

= Λ1 − Λ3 (3.139)

M =
∂S
∂µ

= Λ1 (3.140)

N =
∂S
∂ν

= Λ1 − Λ2 (3.141)

which gives:

Λ1 = M (3.142)

Λ2 = M −N (3.143)

Λ3 = M − L (3.144)

These pair of coordinates (λ1, λ2, λ3) and conjugate momenta (Λ1,Λ2,Λ3) are canonical and the

Hamiltonian for the torque-free rigid body motion can be written as:

H0 =
1

2

(
sin2 λ2

A
+

cos2 λ2

B

)
(Λ2

1 − (Λ1 − Λ2)2) +
1

2C
(Λ2

1 − Λ2
3) (3.145)

which is rewritten as:

H0 =
Λ2

1

2C

[
1 +

(
sin2 λ2

A/C
+

cos2 λ2

B/C
− 1

)
sin2 J

]
(3.146)
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Having obtained the torque-free Hamiltonian, the gravity-gradient potential can be formulated.

Recall that this section deals with the attitude motion of a slow-rotating rigid body wherein the

rates of the attitude angles are commensurable to that of the orbital rates. Therefore, the gravity-

gradient potential is written in terms of both the attitude and orbital variables. The radius vector in

the body frame is expressed relative to the inertial frame as follows:


r1

r2

r3

 = R3(−λ2)R1(J)R3(λ1 + λ2 + λ3)R1(K)R3(−λ3)R3(−ho)R1(−io)R3(−go)


cos f

sin f

0


(3.147)

where, Ri are rotation matrices, where the subscript denotes the rotation axis. Here, note that the

first five rotations: R3(−λ2)R1(J)R3(λ1 +λ2 +λ3)R1(K)R3(−λ3) orients the body frame relative

to the inertial frame and the remaining transformation: R313(−ho,−io,−go) orients the inertial

frame relative to the orbit frame. ho is the Right Ascension of the Ascending Node (RAAN), io is

the orbital inclination and go is the Argument of Perigee (AOP). Thus, the expression for the radius

vector has dependence on both the orbital and attitude variables. The gravity-gradient torque is

given by:

Vggt = − µ

2r3

(
(C −B)(1− 3r2

3)− (B − A)(1− 3r2
1)
)

(3.148)

Equation 3.148 can be modified after some mathematical simplifications to the following form:

Vggt = − µ
a2

(a
r

)3
(

1

2

A+B − 2C

2
(2r2

3 − r2
1 − r2

2) + 3
B − A

4
(r2

1 − r2
2)

)
(3.149)

which is written in a form similar to Eq. (3.112) . Comparing to Eq. (3.112) , the axisymmetric

part (Vaxi) is given by (2r2
3−r2

1−r2
2) and the triaxial part (Vasy) is given by (r2

1−r2
2). One can note

that the coefficient of the axisymmetric term (Vaxi) can be written in terms of the J20 term for large

celestial bodies and the triaxial term (Vasy) can be written in terms of the C22 term [133, 134, 12]
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through the relations:

C0
2 =

2C − (A+B)

2
= −mJ2R

2
e

C2
2 =

A−B
4

= mC22R
2
e

(3.150)

with m as the mass of the rigid body and Re as the mean equatorial radius of the rigid body.

Therefore, Vggt takes the form:

Vggt = − µ
a2

(a
r

)3
(
C0

2

2
(2r2

3 − r2
1 − r2

2) + 3C2
2(r2

1 − r2
2)

)
(3.151)

in terms of the spherical harmonics of the rigid body.

Note that Eq. (3.148) and Eq. (3.149) are functions of the true anomaly. One can express the

true anomaly as a coordinate in the extended phase space. However, this adds an additional variable

to the combined attitude-orbit variables. Alternatively, if one were to express the true anomaly as

a function of the mean anomaly, the gravity-gradient potential can be written as a function of the

mean anomaly and its corresponding momenta from the Delaunay variables.

Using the developments in eccentricity [123] up to a required order of accuracy, we can write

the gravity-gradient potential as a function of the mean anomaly, semi-major axis and eccentricity

using the following expressions:

a

r
= 1 + 2

∞∑
v=1

Jv(ve) cos(vlo)

cos f =
2(1− e2)

e

∞∑
v=1

Jv(ve) cos(vlo)− e

sin f = 2
√

1− e2

∞∑
v=1

dJv(ve)

de

sin(vlo)

v

(3.152)

where, Jv are the Bessel functions of the first kind [35] with eccentricity as a parameter. Using

these equations in the expression for the potential function, we can eliminate the presence of true
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anomaly from the Hamiltonian expression. If we further require that the mean anomaly be a coor-

dinate, an additional term equivalent to the orbital energy is added to the torque-free Hamiltonian.

H = H0 + nLo (3.153)

where Lo is the momentum conjugate to the mean anomaly and dlo
dt

= n. If we choose Lo to be the

same as that of the Delaunay variable, i.e. Lo =
√
µa, then we have:

H = H0 −
µ2

2L2
o

(3.154)

3.4.1 Resonant Hamiltonian

To understand spin-orbit resonance, as a first approximation, ignore the shape of the rigid body

and consider the angular momentum vector to be aligned with the third principal axis of inertia,

i.e. Λ2 = 0 and J = 0, and that the orbital motion of the rigid body is Keplerian. Under such

approximations, the Hamiltonian is just the sum of the two-body Hamiltonian and the torque-free

Hamiltonian. This is a completely uncoupled problem with two degrees of freedom: (λ1, lo) and

(Λ1, Lo)

λ̇1 =
Λ1

C
(3.155)

l̇o =
µ2

L3
o

= no (3.156)

The frequencies above are associated with the orbital and rotational motions of the rigid body.

For a slow-rotating rigid body, these frequencies are of the same order. Now, one can relax the

previous assumption of J = 0 and introduce the complete Hamiltonian including the gravity-

gradient potential so as to couple both the orbital and attitude motions. To capture the essence

of the slow-rotation of a rigid body, the spin and orbital rates are expressed using the following

relation:

λ̇1 = κl̇o (3.157)
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What we have is two variables λ1 and lo moving at comparable rates given by the commensura-

bility, κ. Therefore, a new variable is introduced to combine the orbital and attitude variables.

Let,

σ = λ1 − κlo (3.158)

Note that for the above expression, for a particular value of κ such that λ̇1 = κl̇o, σ̇ is zero and near

to this commensurability, σ varies very slowly. This is an important development because, through

σ, the orbital and attitude motions are linked. Thus, change in attitude motion due to change in

the orbital variable is captured nicely. However, in order to see this effect, the transformation

must be made canonical. This is reflected by a change in the Hamiltonian structure. Consider the

generating function of the second type as follows:

S = Λ1(λ1 − κlo) + Λ2(λ2) + Λ3(λ3) + Λolo (3.159)

This ensures that the momenta Λ1 remains associated to the new variable σ. However, pi = ∂S
∂qi

gives:

Lo = Λo − κΛ1 (3.160)

To make this transformation canonical, we have to reassign the momenta conjugate to the mean

anomaly to be:

Λo = Lo + κΛ1

We can then write the complete Hamiltonian as:

H = HTF −
µ2

2(Λo − κΛ1)2
+ Vggt (3.161)

where,

Vggt = −1

2

µ4

(Λo − κΛ1)6

[a
r

]3 (
(C −B)(1− 3r2

3)− (B − A)(1− 3r2
1)
)
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and µ is the gravitational parameter. The Hamiltonian formulation above is that of the resonant con-

dition i.e. H = H(σ1, λ2, λ3, lo,Λ1,Λ2,Λ3,Λo). Note that the non-resonant Hamiltonian is simply:

H = Ho +HTF + Vggt where Ho is the orbital energy, HTF is the torque-free Hamiltonian of the

rigid body and Vggt is the gravity-gradient potential with H = H(λ1, λ2, λ3, lo,Λ1,Λ2,Λ3, Lo).

Having formulated the Hamiltonian for slow-rotating rigid bodies, we shall now look at some

simplifications to better understand the dynamics at play.

3.4.2 A simplification and averaging

The case of a fast-rotating rigid body was simplified under the assumption of an axisymmetric

rigid body. While it is prudent to use the same simplification for slow-rotating rigid bodies, since

most celestial bodies can be approximated as oblate spheroids, we shall retain the triaxial nature

of the mass distribution. We can once again use the method of averaging to obtain an approximate

solution. However, because of the slow-rotating rigid body assumption, we average over the mean

anomaly. The averaged Hamiltonian is obtained as follows:

< H >= Ho +HTF+ < Vggt > (3.162)

Since there are over a thousand terms in the expansion of < Vggt >, they are not mentioned in this

dissertation. The symbolic code in MATLAB is used to generate these terms.

3.4.2.1 Resonant commensurabilities and relative equilibria

Having obtained the averaged form of the gravity-gradient potential, one can identify all the

resonant commensurabilities in the dynamical model. The resonant commensurabilities are iden-

tified at the value of κ that results in a zero divisor, i.e. at these values of κ, < Vggt >= ∞.

By truncating the approximation of cos f , sin f and a
r

at the third power of eccentricity (from

Eq. (3.152) ), we obtain the following commensurabilities at which the averaged dynamics are in

resonance[135].

κ =
1

2
,

1

1
,

3

2
,

2

1
,

5

2
at order O(e3) (3.163)
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The following resonant commensurabilities were obtained by truncating the expansion of the true

anomaly terms at the third order of eccentricity. However, truncating at different orders identifies

different resonant commensurabilities. It is very important to note the role of orbital eccentricity in

higher-order resonances. However, its effects could be relegated for lower-order resonances such

as that of Earth-Moon 1:1 spin-orbit resonance for which the first approximation of the orbital

motion could be a circular orbit. For completeness, the resonant commensurabilities identified at

lower orders are:

κ =
1

2
,

1

1
,

3

2
,

2

1
at order O(e2) (3.164)

κ =
1

2
,

1

1
,

3

2
at order O(e1) (3.165)

κ =
1

1
, at order O(e0) (3.166)

These resonances are quite easily obtained from the pitch equation of motion studied in Eq.

(2.81) . Rewriting Eq. (2.81) in terms of Euler angles and expanding the true anomaly in terms of

eccentricity and the mean anomaly:

θ̈ = −K3
µ

r3
cos 2(θ − f) (3.167)

= −K3n
2

[
sin 2(θ − nt)− 1

2
e (sin(2θ − nt)− 7 sin(2θ − 3nt)) +O(e2)

]
(3.168)

with K3 = 3(B−A)
2C

. At the first-order in eccentricity, we can confirm that there are two new terms

corresponding to the 1 : 2 and 3 : 2 spin-orbit resonances. Note that since we averaged over

the mean anomaly lo, in the resonant Hamiltonian, < H >, lo is cyclic. Thus, from Hamilton’s

equations, Λo is a constant of (averaged) motion. Let us further consider a simplified motion of

J = 0. For the free motion of an axisymmetric rigid body, J = 0 is an equilibrium. Furthermore,

this assumption is very close to reality for many celestial bodies (eg. Mercury [136, 137] and the

Moon [138, 139]). Physically, this means that the rotational angular momentum vector is aligned

with the third principal axis of inertia. Within this framework, we now have Λ2 = 0 The torque-free
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Hamiltonian is completely reduced to the form:

HTF =
Λ2

1

2C
(3.169)

For the gravity-gradient torque formulation, the coordinate change becomes:


r1

r2

r3

 = R3(λ1 + λ3)R1(K)R3(−λ3)R3(−ho)R1(−io)R3(−go)


cos f

sin f

0

 (3.170)

Observe the absence of λ2 in the expression for the gravity-gradient potential. λ2 is now a cyclic

quantity which makes the momenta associated with it, Λ2(= 0) an integral of motion rendering the

Hamiltonian two-dimensional. We can now obtain the relative equilibria for this system from

Hamilton’s equations of motion as follows:

dq
dt

=
∂ < H >

∂p
= 0

dp
dt

= −∂ < H >

∂q
= 0 (3.171)

with, q = [σ, λ3] and p = [Λ1,Λ3]. Specifically, the equations of motion lead to

σ̇1 =
∂< H >

∂Λ1

+
∂< H >

∂(cosK)

∂(cosK)

∂Λ1

(3.172)

λ̇3 =
∂< H >

∂Λ3

+
∂< H >

∂(cosK)

∂(cosK)

∂Λ3

(3.173)

Λ̇1 = −∂< H >

∂σ1

(3.174)

Λ̇3 = −∂< H >

∂λ3

(3.175)

The first two equations lead to

∂< H >

∂Λ1

= 0 (3.176)

∂< H >

∂(cosK)
= 0 (3.177)
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The remaining two equations lead to the following equilibrium states in the angles. These are given

by:

(σ1, λ3) = (0, 0), (π/2, 0), (0, π), (π/2, π) (3.178)

The last two configurations are the same as the first two. For each of these equilibrium configu-

rations, the value of ecliptic obliquity (K) can be found. The value of the ecliptic obliquity for

different resonant conditions is obtained and is given in Tab. 3.1.

Table 3.1: Relative equilibria and ecliptic obliquity

Resonant Commensurability Equilibrium Configuration Ecliptic Obliquity
3 : 2 (0, 0), (π/2, 0), (0, π), (π/2, π) ±io, cos−1 α3:2

1 : 1 (0, 0), (π/2, 0), (0, π), (π/2, π) ±io, cos−1 α1:1

1 : 2 (0, 0), (π/2, 0), (0, π), (π/2, π) ±io, cos−1 α1:2

2 : 1 (0, 0), (π/2, 0), (0, π), (π/2, π) ±io, cos−1 α2:1

5 : 2 (0, 0), (π/2, 0), (0, π), (π/2, π) ±io, cos−1 α5:2

where,

α3:2 =
C2

2e(253e2 − 168)√
1− e2(C0

2(120e2 + 48)± C2
2(359e3 − 168e))

(3.179)

α1:1 =
2C2

2(2e2 − 1)√
1− e2(C0

2(5e2 + 2)± C2
2(12e2 − 2))

(3.180)

α1:2 =
C2

2e(5e
2 + 12)√

1− e2(C0
2(60e2 + 24)± C2

2(179e3 + 84e))
(3.181)

α2:1 =
17C2

2e
2

√
1− e2(C0

2(5e2 + 2)± 17C2
2e

2)
(3.182)

α5:2 =
239C2

2e
3

√
1− e2(C0

2(40e2 + 16)± 239C2
2e

3)
(3.183)

Note here the principal moments of inertia [A,B,C] are expressed through functions of the spher-

ical harmonics of the rigid body, C0
2 and C2

2 (Eq. (3.150) ) and are valid for expressions of the

gravity-gradient potential truncated at the third power of eccentricity. The value for Λ1 is a con-

stant and is a function of the inertia parameters, orbit parameters, and the commensurability, κ.

167



The values of K = io and K = 180 − io can be interpreted physically as the configuration when

the orbit normal is aligned along the rotational angular momentum vector. We further observe that

these equilibria are of stability type center and the separatrix occurs atK = 2io andK = 180−2io,

respectively, for the pair of equilibrium configurations. This is illustrated in the figure below.

(a) Relative equilibria for (σ, λ3) = (0,0) and (π,0) (b) Relative equilibria for (σ, λ3) = (0,π) and (π,π)

Figure 3.3: Relative equilibria and isoenergetic curves of the averaged motion in the K − λ3

phase-space

The periodic motions exhibited about the equilibria show how the body librates as the orbital

angular momentum is no longer aligned with the rotational angular momentum. Beyond the sep-

aratrix, the body performs circulatory motions. The angle (K − io) and (180 − (K − io)) can be

interpreted as analogues to the ecliptic obliquity of a planetary body.

3.4.3 Another canonical transformation combining the attitude and orbital variables

The angle J can be reintroduced into the expansion of the Vggt thereby reintroducing the angle

λ2. This results in the following form of the Hamiltonian.
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H = Ho(Λo,Λ1) +HTF (λ2,Λ1,Λ2) + Vggt(σ, λ2, λ3,Λ1,Λ2,Λ3, lo, go, ho,Λo, Go, Ho) (3.184)

To get rid of the short-period terms, we can average over the mean anomaly (lo) in Vggt. We have

performed this before and after the averaging process, the Hamiltonian can be written as:

H = Ho(Λo,Λ1) +HTF (λ2,Λ1,Λ2) + Vggt(σ, λ2, λ3,Λ1,Λ2,Λ3,∼, go, ho,Λo, Go, Ho) (3.185)

We know from our previous discussion that the ecliptic obliquity depends on the inclination

of the rigid body in orbit. So we attempt to perform a canonical transformation that couples

the orbital variables and the attitude variables. Specifically, we are looking for combinations of

(σ1, λ2, λ3, go, ho) variables. On expanding Eq. (3.147) , we find that certain combinations of

the orbit and attitude angles can be isolated. These combinations are used to define a canonical

transformation whose generating function (of type 2) is given by:

S = Σ1(σ1 − go − ho) + Σ2(λ2) + Σ3(λ3 + ho) + Σhho + Σggo (3.186)

The new coordinates and their conjugate momenta are:

σ1 = σ1 − go − ho Σ1 = Λ1 (3.187)

σ2 = λ2 Σ2 = Λ2 (3.188)

σ3 = λ3 + ho Σ3 = Λ3 (3.189)

σg = go Σg = Go − Λ1 (3.190)

σh = ho Σh = Ho + Λ3 − Λ1 (3.191)

Since we are considering Keplerian motion, the Hamiltonian is not an explicit function of Σg and

Σh thereby resulting in ḣo = 0 and ġo = 0. However, with the formulation above, one could
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introduce a constant precession of the ascending node and precession of the pericenter quite easily.

3.4.3.1 Precession of the ascending node and pericenter

To introduce a constant precession of the ascending node and pericenter, let us define the fol-

lowing:

ḣo = σ̇h = η1 (3.192)

ġo = σ̇g = η2 (3.193)

The Hamiltonian is then simplify modified as:

Hη = H + η1Σh + η2Σg = H + η1Ho + η2Go − (η1 + η2)Λ1 + η1Λ3 + η2Λ2 (3.194)

Note that we are still working in averaged variables i.e. the Hamiltonian is not an explicit func-

tion of lo. Utilizing the following form of the Hamiltonian, we can now investigate the nature of

equilibria and the effects of precession on the equilibria for various slow-rotating rigid bodies.

3.4.3.2 Evolution of the relative equilibria

Using the Hamiltonian formulation above and the process used in the previous section, the

equilibrium configurations can now be found. It is found that specifically, the angle equilibria

remain the same, i.e.:

(σ1, σ3) = (0, 0) (0, π) (π/2, 0) (π/2, π) (3.195)

At each of the equilibrium conditions, the obliquity (K) and Σ1 are computed so as to equate

the right hand side of Hamilton’s equations of motion to zero. These can be classified as those

that depend on the inclination of the rigid body and those that depend on the principal moments of

inertia (or C2
2 and C0

2 ) of the rigid body as seen before. The nodal precession results in a drift in the

equilibrium obliquity. The following results are obtained for the rigid body with inertia parameters:
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K1 = 1/3, and K2 = 1/5 inertia parameters or equivalently: A = 300, B = 400, C = 500. The

orbital parameters are taken as: io = 7 deg, go = 0 deg, ho = 0 deg, a = 13, 000 km. The rigid

body is considered to be in 1 : 1 spin-orbit resonance. The units of nodal precession are radians

per seconds. The figure below (Fig. 3.4) shows increments of 10−5 [rad/s] in nodal precession, µ1

i.e. approximately 1.8 deg/hr.

Figure 3.4: Variation in the equilibrium obliquity due to eccentricity and nodal precession for 1 : 1
spin-orbit resonance equilibrium: (σ1, σ3) = (0,0).

A similar result is documented for the 3 : 2 spin-orbit resonance keeping the same parameters

describing the rigid body and the orbit. This is illustrated in Fig. 3.5
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Figure 3.5: Variation in the equilibrium obliquity due to eccentricity and nodal precession for 3 : 2
spin-orbit resonance equilibrium: (σ1, σ3) = (0,0).

As seen from the problem formulation, there are many parameters to track such as eccentricity,

inclination, moments of inertia, precession rates, etc. An extensive study can be performed using

these parameters with the Hamiltonian formulation presented in this section. We shall reserve that

for future work. The main application of the Hamiltonian formulation of the slow-rotating rigid

body is to apply it towards studying planetary body librations. As a first step, we shall verify that

the Hamiltonian formulation holds for planetary bodies as well.

3.5 Validation of Hamiltonian formulation for planetary bodies

The Hamiltonian formulation for planetary bodies is very similar to that of artificial satellites.

The primary difference is that now the mass of the rigid body becomes significant as compared to

the primary. The Hamiltonian is only slightly modified, specifically in the Hamiltonian contribu-

tion from orbital mechanicsHo and the coefficient of gravity-gradient potential. They are as shown

below
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Ho =
−m3µ2

2 (Λo − κΛ1)2 (3.196)

Vggt = − µ4

2 (Λo − κΛ1)6

(
(C −B)(1− 3r2

3) + (B − A)(1− 3r2
1)
)

(3.197)

where G is the gravitational constant, m is the mass of the planetary rigid body, M is the mass of

the primary body, and µ = G(M + m). A,B and C are the moments of inertia of the planetary

rigid body which can be expressed as a function of the spherical harmonics (C2
2 and C0

2 ). The

gravity-gradient potential then takes the form

Vggt = −GMm6µ3R2
e

(Λo − κΛ1)6

(
C0

2

2
(2r2

3 − r2
1 − r2

2) + 3C2
2(r2

1 − r2
3)

)
(3.198)

In order to validate this model, we have attempted to study the motion of Mercury around the

Sun. Mercury is observed in a stable state, close to a 3:2 spin-orbit resonance. It is considered

as a rigid body in this framework. Using the Hamiltonian formalism, the long-term behavior of

the spin of Mercury is examined. For validation, we compare our formulation of the Hamiltonian

with that of [140, 10, 141, 137]. It is observed that our formulation gives a reasonably close value

of the final equilibrium state that is obtained by D’Hoedt et al.[134, 140]. The discrepancy in the

value obtained is due to the truncation of the eccentricity terms and the possible use of different

constants of orbital and attitude motion. We begin by outlining the orbital and rotational parameters

of Mercury in the table below.
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Table 3.2: The numerical values of the parameters for the Hamiltonian formulation. The gravity
coefficients is taken from [6]. The value of Mercury’s radius Re was borrowed from [7]. The
values of both the semimajor axis a and the eccentricity, are derived from the secular planetary
theory of [8]

Parameter Numerical Value
Semimajor axis (ao) 5.791 ×107 km

Eccentricity (eo) 0.206
Inclination (io) 7 deg

Radius of Mercury (Re) 2440 km
C20 = −J2 −5.031× 10−5

C22 8.088× 10−6

Mercury is located at the equilibrium (σ1, σ2, σ3) = (0, 0, 0) with K = io. Utilizing these

parameters, the equilibrium value for Σ1 is obtained to be:

Σ1 = 13.5475 mR2
e/year (3.199)

Contrastingly, the value obtained by D’Hoedt et al. [136, 10] was Σ1 = 13.303 mR2
e/year. Using

Hamilton’s equations of motion, we can study the evolution of the state-space variables. They are

as shown below.
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Figure 3.6: Evolution of the state-space variables for slightly off equilibrium configuration.

Figure 3.7: Evolution of the state-space variables for slightly off equilibrium configuration for
simulation period of 150 and 30000 years, respectively
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The slightly off equilibrium configuration is obtained by using a low integration tolerance and

thereby introducing (on purpose) numerical errors in the states that cause it to move away from

equilibrium. We can observe from Fig. 3.7 that the simulation results in constant values up to

10−7 which was the tolerance of integration set. Using spectral analysis, the frequency of σ1 and

σ3 can be obtained thereby giving its periodicity. The period of σ1 is obtained to be T1 = 16.6

years which is close to the value obtained by [142, 10] of 15.857 years. Similarly, through spectral

analysis, the frequency of σ3 is also obtained. It is observed that the spectrum of σ3 has multiple

frequencies. The second strongest one corresponding to a time period of T3 = 1034.4 years. This

value is also close to the one obtained by [142, 10] of 1065.05 years.

Having validated the Hamiltonian formulation for planetary rotational dynamics, we move to

examine the librations exhibited by the Moon in the next section.

3.6 Application to examining the free librations of the Moon

The resonant motion of the moon was one of the earliest optical discoveries. Cassini devel-

oped an elegant description of the motion of the Moon in 1693 through his observation that the

telescopic observations of the librations are in fact the sum of two uniform motions moving syn-

chronously with the orbital period and precession of the orbit ([143, 144, 9]). Fundamentally, there

are three modes of free libration: The dynamical mode of the Moon in spin-orbit resonance when

the spin is displaced from its dynamical equilibrium, the longitudinal mode (optical measurements

resulting in seeing more of the east side than the west sometimes and other times seeing the west

more than the east side of the Moon first observed by Hevelius) and the latitudinal mode (optical

measurements resulting in seeing more of the north side than the south sometimes and other times

seeing the south more than the north side of the Moon first observed by Galileo). The libration in

longitude results because while the orbital motion of the Moon is variable, the rotation is uniform

and the latitude librations result because the lunar equator has a small inclination with respect to the

lunar orbit i.e. the obliquity (K) [9]. The table below provides a brief history of the development

of lunar theory and the approaches taken to obtain the free-librations of the Moon.
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Table 3.3: Brief history of lunar libration theories [9, 10, 11, 12, 13, 14]

Contributor Contribution
Cassini’s Laws (1721) Based on observations and theory of superposition:

Moon’s rotations which govern its librations as the
sum of two uniform motions which are synchronized
with the period and precession of its orbit.

Tobias Mayer (1750) Observational proof of Cassini’s Laws.
Lagrange (1780) Dynamical explanation of Cassini’s rules.
Hayn (1902) Lunar libration theory based on Hansen’s lunar theory

of orbital motion. Semi-analytic based on Fourier se-
ries expansions of the lunar coordinates within frame-
work of linear approximation of Euler’s equations of
motion.

Keziel (1948) Lunar libration theory based on Brown’s lunar theory
of orbital motion Semi-analytic based on Fourier se-
ries expansions of the lunar coordinates within frame-
work of linear approximation of Euler’s equations of
motion.

Williams (1977) and Cap-
pallo et al.

Direct approach based on numerical simulations from
lunar laser ranging.

Eckhardt (1981), Moons
(1982), Williams et al.
(2001), Varadi et al. (2005)

Linear first order theory from Euler’s equations of
motion.

Chapront et al. (1999),
Newhall and Williams (1997)

Compared analytical representation to Euler angles in
JPL ephemeris through data fitting.

An elegant yet simple descriptive explanation of the librations is given by Donald Eckhardt [9]

which is concisely paraphrased as follows. Under the assumption of a uniform triaxial ellipsoid

and moments of inertia A < B < C for the Moon, to keep one of its axes constantly facing the

Earth and in a stable manner, this axis must be the axis of minimum moment of inertia (A) and

the rotation axis must be the that of greatest (or least, but this axis is pointing towards the Earth)

principal moment of inertia to maintain stability. The axis of rotation of the Moon cannot be in

the direction of orbit normal because then the Earth would always be in the plane of the lunar

equator and could not torque it so as to maintain the precession of the rotation axis. For small

inclination and nearly similar principal moments of inertia, the rotation axis will precess at the

same rate as the orbit if it is oriented at the same value of the inclination of the lunar orbit i.e. the
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obliquity K = io. This was shown to be the case for the 1 : 1 commensurability discussed in the

previous section. Lunar ranging and differential VLBI have been providing observations for lunar

librations. These have been confirmed by the numerical simulation of the lunar motion to extract

the libration frequencies ([145, 146]). In this section, the Hamiltonian formulation of the 1 : 1

spin-orbit resonance condition of the rigid body (developed previously) will be used to examine

lunar free librations.

Let us recall the reference frames used in the Serret-Andoyer representation. Figure 3.8 il-

lustrates the coordinate and momenta for the Serret-Andoyer variables as well as the Euler 3-1-3

minimal representation.

Figure 3.8: Body frame representation using the invariable frame [3, 4]. [λ, µ, ν] are the coordi-
nates and their corresponding momenta are [L,M,N ].

178



Cassini described the laws [144, 143] that govern spin-orbit resonant motions. While he pre-

sented the laws for the motion of the Moon, it was found later that these laws hold valid for any

rigid body with near axial symmetry. In the literature, Cassini’s laws are taken as a nominal mo-

tion and the physical librations imply the departure of the rotational motion from that defined by

Cassini’s laws. Cassini’s laws for the Moon’s rotational motion is described below:[143]

1. The Moon rotates uniformly about its polar axis with a rotational period equal to the mean

sidereal period of its orbit about the earth.

2. The inclination of the Moon’s equator to the ecliptic is a constant angle.

3. The ascending node of the lunar orbit on the ecliptic coincides with the descending node of

the lunar equator on the ecliptic.

One can interpret these laws using the Serret-Andoyer formulation from Fig. 3.8. With reference

to Fig. 3.8, let b1 be the axis coinciding with the minimum principal moment of inertia, A. b3

coincides with the maximum principal moment of inertia, C. In Fig. 3.8, let θ be the inclination of

the lunar equator to the ecliptic, φ is the longitude of ascending node and ψ is the angle between

the ascending node and b3. Let us decipher each of these laws with respect to the equilibrium con-

figurations that we obtained in the previous sections. To have an exact coincidence with Cassini’s

laws, one must have:

θ = K, φ = ho, φ+ ψ = π + (ho + go + lo) (3.200)

with ho being the longitude of the ascending node, go the argument of periapse, lo the mean

anomaly. This is then traced back to the Serret-Andoyer formulation. Recall that the coordinates
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and momenta derived in the previous section are as follows:

σ1 = λ+ µ+ ν − lo − go − ho Σ1 = M (3.201)

σ2 = −ν Σ2 = M −N (3.202)

σ3 = −λ+ ho Σ3 = M − L (3.203)

σ4 = lo Σ4 = Lo + Σ1 (3.204)

σ5 = go Σ5 = Go + Σ1 (3.205)

σ6 = h0 Σ6 = Ho + Σ1 − Σ3 (3.206)

with Lo, Go, Ho are the Delaunay variables momenta conjugate to lo, go, ho. We can now relate the

Serret-Andoyer variables to the Cassini laws as follows:

1.

θ = K ⇒ J = 0⇒ λ = φ⇒ µ+ ν = ψ ⇒ K = io

2.

φ = ho ⇒ λ = ho ⇒ σ3 = 0

3.

φ+ ψ = π + (lo + go + ho)⇒ σ1 = φ+ ψ − (φ+ ψ − π)⇒ σ1 = π

Thus, Cassini’s laws give us the following equilibrium condition for the Serret-Andoyer variables.

σ1 = π σ3 = 0 K = io (3.207)

Since Cassini’s laws are not exact, one can assume the above equilibrium to be the nominal motion

and therefore we can proceed to investigate perturbations about this nominal orientation. Our main

hypothesis is introduced as follows: The Moon is assumed to move on a fixed elliptic orbit with

the orbital and rotational parameters as follows (NASA Fact sheet):
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Table 3.4: The numerical values of the parameters for the Hamiltonian formulation. The gravity
coefficients are taken from Williams et. al [12, 15]

Parameter Numerical Value
Semimajor axis (ao) 384400 km

Eccentricity (eo) 0.0549
Inclination to ecliptic (io) 5.145 deg

Obliquity to the orbit 6.68 deg
Equatorial radius (Re) 1738.1 km

C20 = −J2 −203.21568× 10−6

C22 22.38184× 10−6

The mass of the Moon is 7.3463× 1022 kg and the obliquity to the orbit is 6.68 deg. giving us

the inclination of the lunar equator to the ecliptic as 1.5350 deg. The principal moments of inertia

for the Moon are obtained using the un-normalized coefficients J2 and C22 along with the relations

of the inertia parameters from Eq. (2.48) and relations from Eq. (3.150) using expressions from

Williams et. al [12, 15].

In this approach, the simple resonant model constructed in previous sections is used to evaluate

the frequency of free librations of the Moon. The assumptions are listed below.

1. A simplified Hamiltonian model is considered. To avoid the uncertainty associated with the

Laplace plane (mean or reference plane about whose axis the instantaneous orbital plane of

that satellite precesses), the averaged Hamiltonian is considered.

2. The wobble motion of the Moon (optical libration) is neglected i.e. the maximum axis

of inertia is considered as the axis of rotation. Thus, J is set to zero and the torque-free

Hamiltonian is reduced to

HTF =
Σ2

1

2C
(3.208)

3. The effect of the rotation of the Moon on its orbital motion is neglected, i.e. the phase-space

under consideration is only two dimensional: (σ1, σ3). This also implies that the orbital

parameters are constants and known quantities.
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4. Next, the short period effects are neglected. Thus, the potential is averaged over the mean

anomaly as:

< Vggt >=
1

2π

∫ 2π

0

Vggt(σ1, σ3,Σ1,Σ3)dlo (3.209)

Because of such averaging, the potential becomes independent of the mean anomaly, lo (or

σ4). Thus, Σ4 is a constant of motion which leads to the semimajor axis (function of the

momenta conjugate to lo) being a constant. Note that this averaging procedure is the first

step of the Lie-series averaging that was discussed in the previous sections. Since we are

interested in the dynamical evolution of the averaged variables, we do not need the generating

function that averaged the motion but only the averaged potential.

Under such assumptions, we can now examine the averaged dynamical system. We already know

the equilibria for σ1, σ3 and K as

(σ1, σ3, K) = (π, 0, io)

using these quantities, the equilibria for Σ1 can be obtained by finding its value that results in the

right-hand side of Hamilton’s equations to go to zero. For the sake of simplicity, the numerical

values are scaled so that the equatorial radius of the Moon (Re), the mass of the Moon (M ), and

the terrestrial year are chosen as units of length, mass, and time. The value of Σ1 is obtained to be

Σ1 = 33.0327
MR2

e

year
(3.210)

Assuming the above model, variation of the coordinates and momenta of the reduced phase-space

is shown to be as follows.
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Figure 3.9: Long-term evolution of coordinates and momenta
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Figure 3.10: σ3 −K phase-space for the Moon
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It is known that there are three modes for free libration of the Moon. They correspond to the

dynamical normal modes of the Moon in spin-orbit resonance when its spin is displaced from its

dynamical equilibrium position. The period of the free rotational modes of the solid Moon can

be calculated in linear first-order theory (see works by Eckhardt [9], Moons [139], Williams et al.

[146], Varadi et al. [13]). They are listed as follows [146]:

1. In longitude with the rotation parallel to the equatorial plane of the Moon, and has a period

of 2.9 years. Recall from Fig. 3.8, for J = 0, this angle corresponds to φ i.e. rotation about

the angular momentum vector Σ1.

2. In the latitude mode, the axis normal to the lunar equatorial plane traces out a small cone.

That motion in space is retrograde with a period near 81 years. This denotes the period of

evolution of the obliquity, K.

3. The third mode of free libration is related to the motion of the axis of figure 1 As seen from

the reference frame, the axis of figure traces out an elliptical path with a period of around 75

years. This axis then corresponds to Σ3, the inertial component of the angular momentum

vector.

If we are to do a spectral analysis of the data in Fig. 3.9, i.e. take the Fourier transform of

the interested variables, we can then extract all the different frequencies of the dynamical system.

A note on the sampling and simulation of the dynamical system is given next and the dynamical

model simulation results are discussed after.

3.6.1 A note on sampling

In order to ascertain the frequencies of free libration, the dynamical system governed by the

Hamiltonian discussed in the previous sections is propagated using initial conditions of the equilib-

rium state of the Moon and noting that the Moon performs small librations about the equilibrium

configuration by a value equal to the difference between the inclination to the ecliptic and the

1The term "axis of figure" is adopted from the Russian translation of E. P. Bullard’s monograph - Theory of Earth’s
rotation about its center of mass. It is also referred to as the inertial axis [147]
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obliquity to the orbit. During the propagation tests performed as a part of this work, it is found

that to obtain an accurate estimate of the frequency, the sampling of the time-domain evolution of

the reduced phase-space variables is crucial. The results obtained below correspond to a sampling

interval of one orbital period of the Moon (27 days) and sampling time of 5000 years. It is also

found that propagating for longer time periods results in the accumulation of numerical error, and

propagation for shorter time periods precludes the state-space variables to evolve sufficiently.

3.6.2 Frequencies associated with the longitudinal mode

The Fourier transform of Σ1 is shown below. We can see that there are two particular frequen-

cies that stand out.

Figure 3.11: Spectral analysis of Σ1 frequencies

The time period corresponding to these frequencies are 2.89184 years and 80.64529 years.

Note that these correspond to the free libration in longitude and the latitude mode. Next, the

spectral decomposition of the obliquity K is performed.
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3.6.3 Frequencies associated with the latitudinal mode

The Fourier transform of K is shown below. We can see that there are multiple frequencies

that stand out.

Figure 3.12: Spectral analysis of the obliquity evolution K = cos−1
(

1− Σ3

Σ1

)
frequencies

The time period corresponding to the most dominant frequency (i.e. the one with the largest

amplitude) is 80.64529 years. Note that this corresponds to the free libration in the latitude mode.

Next, the spectral decomposition of Σ3 is performed.

3.6.4 Frequencies associated with the wobble mode

The Fourier transform of Σ1 is shown below. We can see that there are two particular frequen-

cies that stand out. They are not as discernible in the amplitude plot and hence, the information is

extracted from the phase plot.
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Figure 3.13: Spectral analysis of Σ3 frequencies

The first frequency is the familiar libration in the latitude mode. The second one has a time

period of 76.4526 years. This corresponds to the free libration in the motion of the axis of figure

about the rotational axis. Therefore, the Hamiltonian formulation of the slow-rotating rigid body

is utilized to discern the frequency of modes of free libration of the Moon. The simple dynamical

model captures information on all the three main modes of libration. Additionally, other modes of

libration are also captured. As emphasized in Bois [14], the free librations at 2.9 and 81 years are

the result of the spin-orbit resonance problem of the Moon around the Earth and do not correspond

to the free Eulerian modes of rotation of a body alone in space. While the periods of the free modes

can be calculated analytically, the determination of their amplitudes requires data analysis. How-

ever, using the spectral decomposition of the evolution of the angles, one can obtain a reasonable

starting guess to match data to a dynamical model.

3.7 Summary

This chapter of the dissertation explores the various analytic methods for treating dynamical

systems. The attitude motion of a rigid body is exclusively studied from an analytic perspective.
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Two broad cases for the rigid body motion are considered: the case of a fast-rotating rigid body,

and that of a slow-rotating rigid body. The former case ensues the development of a dynamical

system targeted at studying the long-term dynamics of a rigid body and is comparable to that of

the motion of artificial satellites. The latter case is studied specifically to treat the attitude motion

of large celestial bodies that rotate slowly as compared to artificial satellites.

In this work, the Hamiltonian formulation of the attitude motion of a rigid body in a Keplerian

orbit has been developed. This formulation has been done in the Serret-Andoyer variables. A

Lie-series perturbation approach is used to average out the short-period terms and the averaged

Hamiltonian up to fourth-order is obtained. The short-period terms for the fast-rotating rigid body

dynamical system are associated with the coordinate corresponding with the angular momentum

conjugate momenta, and that for the slow-rotating rigid body dynamical system is associated with

the orbital mean anomaly. Physical insights are obtained into the attitude motion of the rigid

body such as relative equilibria, and critical inclinations. Certain simplifying assumptions (such

as axisymmetric oblate rigid body assumption) enable us to reduce the dynamical system so as to

allow its treatment from an analytic viewpoint.

It is noticed that the averaged motions of a rigid body in a circular orbit may behave as if

they were in a torque-free motion at the critical inclinations. These effects of critical inclinations,

however, vanish at fourth-order. For eccentric orbits, only the second-order terms of the averaged

Hamiltonian vanish at the critical inclinations. The extended phase-space mechanics is introduced

to preserve the constant nature of the Hamiltonian and treat the external periodic forcing introduced

due to the eccentricity. This averaged Hamiltonian is then used to obtain an analytical model of

the attitude motion of a fast-rotating rigid body.

A systematic procedure to treat slow-rotating rigid bodies in eccentric orbits has also been pre-

sented. The slow-rotating case arises from the coupling between the orbital and attitude variables

of the dynamical system. Several interesting insights have been discussed such as the development

of the resonant Hamiltonian, the existence of resonant commensurabilities, and relative equilibria

for commensurable frequencies of spin-orbit coupling. The effects of the precession of the ascend-
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ing node and that of the precession of the pericenter and introduced in the Hamiltonian to facilitate

a one-way coupling between the orbital and attitude variables. Thus, under this development, only

the orbital variables are allowed to affect the attitude of the rigid body while the orbital motion is

assumed to be a known constant. The dynamical system developed is legitimized by investigating

the 3:2 spin-orbit coupling of Mercury and the frequency of librations are found to match those in

literature. A major contribution of this work is the development of a theory for lunar librations un-

der the framework of the simplified Hamiltonian developed in this dissertation. The three primary

modes of lunar librations of the moon: The longitudinal mode (with a frequency of 2.9 years), lat-

itudinal mode (with a frequency of 81 years), and the wobble mode (with a frequency of 75 years)

are studied and their frequencies are obtained with very close agreements with experimental data

thereby bridging the gap between analytic and experimental results.
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4. SEMI-ANALYTIC TREATMENT OF DYNAMICAL SYSTEMS

Mathematical modeling of physical phenomena in all branches of science often results in solv-

ing a set of nonlinear differential equations. For most phenomena occurring in nature, these dif-

ferential equations do not admit a closed-form solution. Evidence of such situations has been

explored in the previous chapters, where the dynamical system is treated using qualitative or an-

alytical techniques to simplify them to a more tractable form, so as to extract information about

the physical phenomena from them. Primarily, the treatment of dynamical systems in the previ-

ous chapters has involved the following approaches: (a) mathematical modeling of the dynamical

system using physically interpretive quantities (such as Euler angles for attitude description, and

position-velocity for spatial description), (b) simplification of mathematical models using internal

symmetry and derived quantities (such as the Serret-Andoyer description for the attitude, inside

-out topology for description of the PCR3BP, phase and amplitude description for oscillators), (c)

qualitative insights from employing a bundle of trajectories in the relevant phase volume (such

as tools and techniques from DST or Monte Carlo methods), and (d) analytical insights from ex-

amining the structure of the resulting differential equations. These approaches have been used

separately and together to provide valuable information in understanding the underlying physics

at work. Numerical methods are strictly approximate solutions, and therefore can be used to as-

certain the qualitative behavior of the dynamical system. They involve reformulating the problem

such that their solutions can be approximated with arithmetic operations whose error can be es-

timated [148, 149]. Analytical solutions are more symbolic in nature, thereby allowing symbolic

manipulation to extract information. The primary difference between a numerical solution and

an analytical solution is that an analytical solution can provide complete information about the

behavior of all trajectories in the dynamical system, while a numerical solution can only provide

information on a particular trajectory because of its dependence on initial conditions. Therefore,

equivalence between numerical and analytical solutions is only obtained in the limit as the number

of initial conditions simulated using numerical methods approaches infinity.
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For practical implementations, most dynamical systems do not admit a closed-form analytical

solution, and numerical methods to decipher its complete behavior may prove computationally ex-

pensive. In order to overcome the limitation of numerical and analytical techniques, semi-analytic

approaches have been developed. In a semi-analytic framework, the knowledge of the system

under analysis is exploited to reduce the computational load and complexity that numerical sim-

ulations would require. In this way, the strengths of both analytical and numerical methods are

effectively combined. Semi-analytic techniques are a powerful tool for the analysis of complex

systems [148]. Among such methods are the variational iteration method [150], the homotopy

perturbation method [150], the homotopy analysis method [151], the Adomian decomposition

method [152], and the differential transformation method [153]. These methods have been ex-

tensively used in recent years, and several texts and articles have been devoted to investigating

their application to solve differential equations in numerous engineering applications from diverse

fields including astrodynamics, solid mechanics, heat transfer, fluid mechanics, and biomedicine

[154, 11, 155, 154, 156]. The advantages of many of these semi-analytical approaches over numer-

ical methods are their direct application to both linear and nonlinear equations without requiring

linearization, discretization, or perturbation [157]. Additionally, they can be used to prove the ex-

istence of solutions. A potential efficient and accurate alternative to semi-analytical and traditional

numerical methods for treating dynamical systems is the method of variation of parameters (VPM)

(Section 3.1). Lagrange developed this method to solve linear, non-homogeneous ordinary dif-

ferential equations [158, 27]. However, it can also be implemented to solve nonlinear differential

equations in which the nonlinearity is found in the inhomogeneity [159, 160, 149, 161].

This chapter of the dissertation is devoted to developing a semi-analytical approach to treating

dynamical systems of all classes. Contrasting to existing techniques, the methodology developed

to produce the solution in symbolic or functional form. This methodology combines the power of

the VPM, insights from the analytical structure of equations, and different numerical approaches to

decipher physical phenomena in a wide variety of engineering problems. The fundamental differ-

ence between the methodology developed in this chapter and those discussed in previous chapters
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is that previous chapters developed methods that use numerical simulations on a simplified and/or

reduced analytical form of the dynamical system to extract information, while the current chap-

ter utilizes numerical simulations to provide an analytical form of the solution of the dynamical

system. Another difference is that while previous chapters focused on extracting and examining

particular behavior of trajectories (or particular solutions), the current chapter will focus on meth-

ods to capture the complete dynamical behavior. This process is accomplished by finding solutions

to the Hamilton-Jacobi (HJ) equation. The HJ theory is briefly discussed in the context of obtain-

ing canonical transformations in Sec. 3.1.3. In the following section, the HJ theory is discussed in

greater detail.

4.1 Fundamentals of the HJ Theory

The HJ theory is the culmination of classical mechanics, serving as a bridge to other branches

of dynamical systems theory by introducing relevant topological structure for the description of

motion [162]. The deepest problems of classical mechanics can be investigated by HJ theory and it

has led to the formulation of multiple methods of treating dynamical systems, such as the perturba-

tion theory, KAM theorem, action-angle variables, and the theory of adiabatic invariants [163]. The

mechanics is reduced to action functions that encode all the possible trajectories of a mechanical

system satisfying conservation principle [164, 70, 51]. These action functions are the solutions of

a nonlinear, first-order, hyperbolic partial differential equation (PDE), called the HJ equation. The

characteristic equations of this differential equation are the extended Hamilton’s equations. The

power of the HJ equations arises from the fact that the solution of a class of mechanics problems is

thus reduced to the solution of a single partial differential equation. The use of the HJ equation is

not guaranteed to lead to a solution. It serves as a map from the original (nonlinear) equation into

another equation, linear or nonlinear, which is more tractable. This method consists of obtaining

a suitable canonical transformation, which leads to equilibrium [28, 62, 27, 70, 165], and is given

by its generating function. This function is the so-called HJ equation. Section 3.1.3 provides the

derivation of the HJ equation and introduces the different types of generating functions. To recall,

the HJ equation is given as follows:
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∂S
∂t

+H
(
∂S
∂qi

, qi, t

)
= 0 (4.1)

where, qi are the generalized coordinates and pi = ∂S
∂qi

are the generalized momenta of the dynam-

ical system, S is the generating function, and H is the Hamiltonian. To obtain a feel for what the

generating function means physically, consider the general form of the HJ equation and that the

generating function is separable

a∗
(
∂S
∂qi

)2

+ b∗
(
∂S
∂qi

)
+ V (q, t) +

∂S
∂t

= 0 (4.2)

where, V is the potential. Taking b∗ = 0 (which is valid for a large class of dynamical systems),

and a∗ = 1 the HJ equation can be written as:

∂S
∂t

= −(∇S)2 − V (4.3)

Noting that S is a function of time, and of the coordinates x, y, z, a real solution for S may exist

only over part of the space. This implies that the real solution of S exists over a region, and not

just at a single point. Contrast this with a single moving particle, which only exists at one point.

Therefore, S must be associated with many paths, not just one [166]. Since each of the particles is

moving in the same potential, the momentum of the particles is given by a function of the position

and time by:

p = ∇S (4.4)

Equation (4.3) tells us how S changes with time at a given point in space. The rate of change of S

with time is given by:
dS
dt

= L = T − V = (∇S)2 − V (4.5)

By using either Eq. (4.3) or Eq. (4.5) , one can follow the change of S with time. At each

instant, ∇S gives the momentum distribution in space. Knowing S as a function of the position
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and time then gives us the possible set of paths that can be taken by a particle. Then, based

on the initial condition of the particle itself, the true path of the particle can be obtained. Thus,

the generating function is actually Hamilton’s principal function. We recognize that Hamilton’s

principal function S is the generator of canonical transformations of constant coordinates and

momenta, and provides a method of obtaining solutions to classical mechanics problems by way

of finding a transformation. These constants are obtained from the initial conditions at time t = t0.

While the HJ equation is generally difficult to solve, and often no closed-form solution can be

found, numerical techniques can be employed within a domain of interest to solve the HJ equation

to a reasonable tolerance. In the 1980s, Crandall and Lions [167, 168] obtained existence and/or

uniqueness results for the HJ equation. These results were extended to HJ equation stemming from

optimal control problems [169]. Beard et.al [170] studied the convergence of Galerkin approxima-

tion methods applied to the generalized Hamilton-Jacobi-Bellman (GHJB) equations. Sakamoto

and van der Schaft [171] obtained an approximate stabilizing solution of the HJE using symplectic

geometry and the Hamiltonian perturbation technique for feedback infinite time optimal control

problems. Many numerical techniques exist to solve the HJB equation, in particular [172, 173]; to

solve the PDE directly, Graijne [174] proposed an adaptive finite-difference method to solve the

discrete HJB equation. Apart from finite difference methods, Finite Element Methods [172] can

also be used to approximate the solution to the GHJB equation. Recently, sparse approximation

techniques were employed to find solutions to the GHJB solutions applied to optimal control prob-

lems [175]. In this dissertation, we focus specifically on perturbed Hamiltonian systems, for which

the unperturbed Hamiltonian already admits a canonical set of constant coordinates and momenta

that then renders the Hamiltonian zero. Utilizing such a formulation allows for the use of VPM

approach to solve the HJ equation. This is discussed in the following section.

4.2 Perturbations-based approach to solving the HJ equation

The existence of action-angles which admit solutions of the form P(t) = constant (constant

momenta) and Q(t) = constant (constant coordinate) are only valid for integrable systems as de-

fined by Liouville-Arnold theorem [28, 176, 177]. Integrable systems are rare, and therefore only
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a few dynamical systems have analytical solutions for the HJ equation and admit constant action-

angle variables. Examples of such systems include the simple harmonic oscillator (with phase and

amplitude being the action-angle variables) and the two-body problem (with the Delaunay vari-

ables being the action-angle pair). The methodology proposed in this chapter utilizes the dominant

physics, i.e. HJ solutions to the unperturbed Hamiltonian, to simplify the dynamics of nearby

Hamiltonians. To see this, let us consider the formulation of the Hamiltonian using the dominant

term (H0) and a perturbation (∆H).

H = H0 + ∆H (4.6)

Assuming the integrability of the unperturbed system, the Hamiltonian at first order reduces to

exactly the perturbation. This is seen as follows:

HJE : K(Q,P, t) = H0 + ∆H +
∂S

∂t
= H0 +

∂S

∂t
+ ∆H = ∆H (4.7)

sinceH0+ ∂S
∂t

= 0 from the HJ solution of the dominant term. We then seek to find a transformation

from the (Q,P) space to a new space, say (X,Y) such that in the new state-space variables, the new

Hamiltonian, K̃(X, Y ) is zero through the HJ equation

∂S̃

∂t
+K = 0 (4.8)

In general, for a generating function of type 2, the solution to Eq. 4.8 can be written as

S̃ = S̃2(Q,α, t) (4.9)

where α ∈ <n is a column vector, whose elements are constants of integration. Without loss of

generality, we can take α to be the momenta (P) of the unperturbed problem, which are constants.

Since the following relations

P =
∂S2

∂Q
X =

∂S2

∂Y
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hold for all time,

Y = P(t0) =
∂S2(Q,P0, t)

∂Q

∣∣∣
t=t0

(4.10)

which gives us S2(Q,P0, t) = PT0 Q Also we have,

X(t0) =
∂S2(Q,P0, t)

∂P0

∣∣∣
t=t0

=
∂PT0 Q0

∂P0

= Q0 (4.11)

Thus, the new variables in the canonical transformation are simply the coordinates and momenta of

the unperturbed Hamiltonian (which are constant, provided the unperturbed Hamiltonian is zero).

Another consequence of the formulation above is the addition of multiple perturbations. Since

we are finding complete solutions (and not averaging), the perturbations can be added in any order

and also solved separately, with the difference being the addition of new canonical transformations

at every step. Each canonical transformation stems from the previously solved HJ equation. Since

the new action-angle variables are always initial conditions of the unperturbed problem, they can

be solved independently (and in parallel, from a computational standpoint).

H(1) = H(1)
0 + ε1H(1)

1 + ε2H(1)
2 + ε3H(1)

3 + · · ·+ εkH(1)
k (4.12)

H(2) = H(2)
0 + ε2H(1)

2 + ε3H(1)
3 + · · ·+ εkH(1)

k (4.13)

H(3) = H(3)
0 + ε3H(1)

3 + · · ·+ εkH(1)
k (4.14)

... (4.15)

H(k) = H(k)
0 + εkH(1)

k (4.16)

Here, H(2)
0 is the Hamiltonian resulting from solving the HJE: ∂S1

∂t
+ ε1H(1)

1 = 0 and H(3)
0 is

the Hamiltonian resulting from solving the HJE: ∂S2

∂t
+ ε2H(1)

2 = 0, and so on. Since the new

canonical variables are always constants, and the resulting new Hamiltonian is zero (i.e. H(i)
0 =

0, i = 1, · · · , k), the HJE results in a separate PDE independent of any previous or upcoming

HJE solutions. The only care to be taken in this formulation is the transformation of coordinates
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between each HJ solution.

(Q(0),P(0))→ (Q(1),P(1))→ (Q(2),P(2))→ · · · → (Q(k),P(k)) (4.17)

Such perturbed dynamical systems do not generally admit analytical solutions for the generating

functions (S). Thus, the search for the solution of the dynamical system has been decomposed to

two steps:

1. Formulating the problem using VPM coupled with a perturbation-based approach

2. Solving a nonlinear, first-order, hyperbolic partial differential equation with initial conditions

P0 and Q0, which are known quantities from the dominant physics.

It is important to note that these known quantities, P0 and Q0, need not be numerical values and

can retain their symbolic or functional form. By doing so, the solution to the HJ PDE is obtained

in functional form and is therefore valid for a region of the phase-space, and not just for a single

trajectory. Since (1) above involves using analytic techniques and (2) utilizes numerical methods,

the methodology is termed semi-analytic. In the next section, we will specifically address the

methodology used in solving the HJ equation.

4.3 Numerical approaches for solving the HJ equation

There are multiple methods in literature to solve the HJ equation, both numerically and analyt-

ically. Since the primary purpose of solving the HJ equation is to facilitate a canonical transfor-

mation, the formulation of the problem can be achieved using methods like von Zeipel [104] and

that of Lie Series [178, 113, 74]. Both of these methods are examples of perturbation-based ap-

proaches in the literature. Other methods to solve the HJ equation stem from numerical approaches,

including using finite difference methods and finite element methods [172, 174, 173], collocation,

Galerkin methods [170, 5, 179], and others. Often, PDE collocation methods are solved on regular

grids. While this is feasible when the dimensionality d of the problem is low, regular grids suffer

from the curse of dimensionality. In this work, we shall use the Galerkin approximation method in
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conjunction with sparse collocation techniques. Sparse grids are very useful when such methods

prove inadequate. The use of a Galerkin approximation is motivated by the non-autonomous nature

of the HJ equation. The overall lack of global solution for the generating function S in Eq. (4.1)

makes it necessary to define a “weak” solution for the HJ equation, that is, a solution S which

may not satisfy the PDE in Eq. (4.1) point-wise at every point. Before diving into the solution

procedure, a brief outline on the numerical discretization procedure based on sparse grids is given.

4.3.1 Numerical descretization based on sparse grids

Sparse grids are a numerical discretization technique used to speed up the solution formulation

of PDEs. They defeat the curse of dimensionality at the cost of slightly deteriorated errors [180,

181]. The main idea of sparse grids is to evaluate a scalar valued function u, which maps some

parameters x to an output value u(x). u is usually a computationally expensive function, and it is

therefore replaced with another function f : [a, b]d → R that approximates u well and is cheaper

to evaluate. f is constructed by evaluating u at a small number of points xk, and these u(xk) are

used to define f . These points xk are the sparse grids points. We begin with the definition of full

grids as:

σn := xn,i|i = 0, · · · , 2n, xn,i := ihn, hn := 2−n (4.18)

where n is the level of the grid, xn,i are the grid points of index i and hn is the grid spacing. For

example, the 1D grid σ1 = 0, 0.5, 1 with h1 = 0.5. In higher dimensions, the tensor product of

grid points through all dimensions is used to construct the grid points. Thus, σn consists of all

combinations of σn.

σn := σn1 ⊗ · · · ⊗ σnd
(4.19)

It is evident that the size of σn grows exponentially with dimension, and evaluations of u on these

grids are expensive and will exhaust the available memory even on large computers. Thus, sparse

grids aim to reduce the number of grid points to perform function evaluations on. One such exam-

ple of sparse grids are those arising from Clenshaw-Curtis quadrature, where the 1D grid points

are nested in the sense that σn−1 is contained in σn. For each level, only the odd-indexed grid
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points are new. It is also noted that the Clenshaw-Curtis quadrature also used Chebyshev node

points, which are not equally spaced like the full grids. Extension to higher dimension is achieved

by tensor product of 1D grids. Fig. 2.37 illustrates the decomposition of 1D grid of level 3.

Figure 4.1: Sparse grid decomposition: 1D grid of level n = 3 [5]

Specifically, for two-dimensions, the sparse grids are computed and illustrated in the figure

below.
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Figure 4.2: Sparse grid points for two-dimensional phase-space for different levels n = 1, 3, 5, 7.

The sparse grids are computed based on the Smolyak rule for sparse-grid method [180]. The

number of points in a Smolyak grid grows polynomially with dimensionality d, meaning that the

Smolyak method is not subject to the curse of dimensionality. This becomes particularly helpful

when dealing with large dynamical systems of dimensions d ≥ 4.

4.3.1.1 The basis function space

With the sparse grid defined above, the generating function (S) is approximated as a linear

combination of basis functions evaluated at each grid point. In 1D, these are defined as:

S̃ :=
m∑
i=0

ciφi(x), ci ∈ R (4.20)
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where m is the number of basis functions, and S̃ is the approximate generating function. The

simplest choice of basis functions are monomials of a certain degree, i.e φi = xi. Extension to

higher dimensions is given by the tensor product of basis functions in each dimension. There are

other choices of basis functions, like the Legendre polynomials, Chebyshev polynomials, b-splines,

radial basis functions and so on. Since the HJ equation stems from the Hamiltonian definition, there

are always 2N dimensions, and therefore the minimum dimensionality for any dynamical system

is two.

Now, while the tensor product spans the entire space, not all basis functions are required to

characterize the dynamical system. Also, the exhaustive use of all tensor products may result in a

large number of basis functions that may cause additional computational expenses and even lead

to Gibbs phenomenon [182] . To alleviate this burden, we define a basis function space defined

by certain rules as a function of the highest degree of basis function used. For an N-dimensional

problem, the approximate value function is defined as:

f :=
∑

g(α1,···,α2N )≤L

ciβα1(x1) · · · βα2N
(x2N) (4.21)

where βαz(x1) denotes the basis function corresponding to the x1 variable, and L is the degree of

basis functions required for truncation. These βs could be monomials: β2(x1) = x2
1, or Legendre

Polynomials: β3(x1) = P3(x1), or Chebychev polynomials of the first kind: β1(x1) = T1(x1), or

any other basis function. The rules for truncating the approximation are listed as follows:

1. Total Degree: g(α1, · · · , α2N) = α1 + · · ·+ α2N

2. Maximum Degree: g(α1, · · · , α2N) = max(α1, · · · , α2N)

3. Hyperbolic Cross: g(α1, · · · , α2N) = α1 × · · · × α2N

4. Hybrid: Specifically selected choice of basis from the basis function space.

The basis function space for a 2D scenario can be visualized as in Fig. 4.3. We can immedi-

ately perceive the utility of using different rules for characterizing the basis functions along each
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Figure 4.3: Basis Function Space for 2D representation. The figure shows a geometric representa-
tion of the rules defining the generating function approximation.

dimension. The maximum degree chooses the entire basis function space, while the total degree

rule utilizes less. The hyperbolic cross rule results in basis functions that combine high-low degree

(β6(x1)β1(x2) and β6(x2)β1(x1)) along each dimension instead of lower degree combinations. The

use of these rules becomes significant when one dimension becomes more important than the other.

A simple example would be

u(x) = sin(0.2x1) cos(200x2)

where the second dimension is more important than the first, since it is highly oscillating. There-

fore, to resolve the fast oscillating terms, one may need more basis functions along the second

dimension than the first. The Hybrid rule in Fig. 4.3 comes in handy here. In the case of the

HJ equation, we know that the generating function subspace is composed of some old variables

and some new variables. Noting that the new variables are constants for a particular problem, one
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might consider assigning more basis functions to old variable dimensions, since they vary under

the effect of the perturbing Hamiltonian.

In the following section, a systematic procedure is formulated to solve the HJE for a dynamical

system, using tools developed in the previous sections. For the purposes of demonstration, we

limit ourselves to considering a two-dimensional Hamiltonian system. It is however noted that the

method can also be extended to non-Hamiltonian systems in a way similar to that shown by Kamel

[115].

4.3.2 Formulation and solution procedure for rectifying dynamical systems

The objective of this research is to present a systematic procedure to determine the motion of

a complex dynamical system by viewing it from the perspective of a canonical set of coordinates

obtained by solving the HJ equation. Consider a dynamical system whose motion is governed

by a Hamiltonian H(qi, pi, t), i = 1, · · · , d. The solution of the HJ equation (Eq. (4.1) ) is a

generating function that facilitates a canonical transformation to a set of coordinates and momenta

that display the most simplest dynamical structure (constant or linear time evolution). This process

of transforming the state-space variables so as to ensure constant or linear time evolution is termed

as Rectification. This is done by specifying a generating function of type-2: S̃(Q,Y, t), such that

the other variables hold the relation:

Xi =
∂S̃
∂Yi

(4.22)

Pi =
∂S̃
∂Qi

(4.23)

Recall that the resulting dynamics would remain the same under this change of variables if the HJ

equation is

K̃(X,Y, t) = 0 = K(Q,P, t) +
∂S̃
∂t

(4.24)

The problem then reduces to finding the generating function S̃ that satisfies the HJE in Eq.

4.24. Now, while the HJE may not admit closed-form solutions for the generating function, within
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a domain of interest, a sparse collocation based approach along with a Galerkin-like approximation

can be employed to obtain an approximate analytic form of the generating function. Next, the

solution procedure for a two-dimensional dynamical system is outlined. Extension to higher-order

dimensional system is straight-forward.

4.3.3 Solution procedure for a 2D dynamical system

Consider a two-dimensional dynamical system with coordinate Q and conjugate momenta P .

The aim is to solve the HJ equation given by:

H(Q,P ) +
∂S
∂t

= 0

Let us assume that the generating function is of type 2, i.e. S = S2(Q, Y, t), where Y is the conju-

gate momenta of the coordinate X of the canonically transformed variables (Q,P ). Following the

definition of the approximate generating function, the solution to the HJ equation is assumed to be

of the form:

S̃(Q, Y, t) =
m∑
i=1

ci(t)φi(Q, Y ) (4.25)

The basis functions Φk(Q, Y ) = [φ1, · · · , φm], k = 1, · · · , N are assumed to have at least con-

tinuous first-order derivatives. Note here that since the Kamiltonian, K̃ is non-autonomous, the

approximate value function is written in a way that the basis functions are in the spatial variables,

and its coefficients are temporal. It is noted here that alternatively, the basis functions could also be

expressed in the temporal variable, leaving ci to be constants for all time. However, assuming sep-

arability in the temporal and spatial variables enables us to use a Galerkin-like method to convert

the HJ PDE to a set of ODE in the coefficients of the basis function. Because of this separability,

we have
∂ S̃
∂t

=
m∑
i=1

ci(t)

dt
φi(Q, Y ) (4.26)

205



On evaluating Eq. (4.26) at the sparse grid points, the HJ PDE is converted to a set of coupled

ODE as follows:

Φċ =


φ

(1)
1 . . . φ

(1)
m

... . . . ...

φ
(N)
1 . . . φ

(N)
m



ċ1

...

ċm

 =


b1

...

bN

 = b (4.27)

where b = [b1, ..., bN ]T are expressions for −K from Eq. 4.24 evaluated at the N sparse grid

points. The L2-norm error is reduced in Eq. 4.27 to obtain m-coupled ODEs ċ = (ΦTΦ)−1ΦTb

The Galerkin-like approximation is effective because it reduces the addition of the temporal

dimension in the sparse grid collocation. Also, the coefficients of the basis functions capture all

information about the evolution of the variables, i.e. periodic and secular behavior. This eliminates

the need for using a large number of basis functions in the generating function phase-space. Recall

that at the initial time, both the old and new variables are exactly the same. This implies that the

contact transformation at initial time between old and new variables is completely separable and

they take the form:

S̃(Q,Y, t0) = QTY (4.28)

for arbitrary dimensional problem giving the initial conditions for the ODEs. This reduces to

S̃ = QY for the two-dimensional case. Note that these conditions do not depend on the boundary

conditions of a specific problem. Therefore, the ODE in Eq. (4.27) must be propagated only

once to obtain the time-varying coefficients of the basis functions, and a functional form of the

generating function can be achieved.
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Figure 4.4: Mapping to the old (Q,P) and new (X,Y) space from the generating function space
(Q,Y)

One can then obtain an analytical expression for a time-varying generating function from a

numerically propagated ODE for the coefficients. Thus, a semi-analytic representation of the time-

varying generating function is obtained. Once such a functional is obtained, transformation to the

old coordinates is straightforward from HJ theory [164, 62, 183, 108] and is illustrated in Fig. 4.9.

The only condition on S̃ to ensure an inverse transformation exists is that

∂2S̃
∂Q∂Y

6= 0 (4.29)

Note that this condition is motivated from geometry [184]. At an initial epoch, the canonical

transformation is identity, and the variables are exactly separable [185, 183, 186]. However, as

these variables evolve with time, Eq. (4.29) prevents the inverse transformation from becoming

degenerate, and the mapping between the old and new coordinates is bijective. In the following

section, we demonstrate the methodology through the example of the Duffing oscillator.

4.4 Semi analytical solution to the Duffing oscillator

It is seen from the HJ theory that a transformation can be carried out on the Hamiltonian,

which leaves Hamilton’s equations of motion in canonical form. The equations of motion after the

transform become

Q̇i =
∂K

∂Pi
, Ṗi = − ∂K

∂Qi

, K = H +
∂S
∂t

(4.30)
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where Qi and Pi are the new variables, K is the new Hamiltonian, and S is the generating function,

which is a function of the old and new variables [27]. If the approach is to transform the canonical

coordinates at time t to that at t0, the transformation equations are the desired solution to the

problem.

q = q(q0, p0, t) and p = p(q0, p0, t)

Such a procedure applies to both autonomous and non-autonomous systems and corresponds to the

method of Hamilton-Jacobi. Selecting the constant at a fixed time renders the canonical equations

of motion as Q̇ = 0, Ṗ = 0 and the new Hamiltonian, K, a constant which can be set to zero

without loss of generality. The Duffing oscillator is a two-dimensional dynamical system obtained

by adding a perturbative nonlinear spring to the simple harmonic oscillator. The Hamiltonian is

given as:

H =
1

2
p2 +

1

2
kq2 +

1

4
εq4 (4.31)

where p is the momenta conjugate to q and is physically equal to the velocity of the particle (q̇).

We can write the Hamiltonian of the the Duffing oscillator as [187]

H = H0 + εH1 =

(
1

2
p2 +

1

2
kq2

)
+ ε

(
1

4
q4

)
(4.32)

whereH0 is identified as the Hamiltonian of the simple harmonic oscillator. As per the methodol-

ogy discussed in the previous sections, let us first treat the dynamical system corresponding to the

dominant term, i.e. the simple harmonic oscillator. Using a generating function of type-2, the HJ

equation for the simple harmonic oscillator is given as:

1

2

(
∂S
∂q

)2

+
1

2
kq2 +

∂S
∂t

= 0 (4.33)
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where S = S(q, α, t and α is the new constant momenta. At this stage, we can assume separability

in the spatial and temporal variables in the generating function and can write them as

S(q, α, t) = W (α, q) + V (α, t) (4.34)

Knowing that the Hamiltonian is conservative gives a simple form for V as

V = −αt

Therefore, the HJ equation can now be written as

1

2

(
dW

dq

)2

+
1

2
kq2 = αt (4.35)

which is simplified as
dW

dq
=
√

2α− kq2 =
√

2α

(√
1− kq2

2α

)
(4.36)

Thus, the generating function can be obtained as

W =
√

2α

∫ (√
1− kq2

2α

)
dq (4.37)

Now, from the relations of the generating function of type-2 we know that

β =
∂S
∂α

=
dW

dα
− t⇒ dW

dα
= β + t (4.38)

Therefore, taking the derivative before the integral, we obtain

β + t =
1√
2α

∫
1√

1− kq2

2α

dq (4.39)
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We can therefore obtain the coordinate q as:

q =

√
2α

k
sin
(√

k(β + t)
)

(4.40)

The momenta is then obtained as:

p =
∂S
∂q

=
√

2α cos
(√

k(β + t)
)

(4.41)

Thus, we have solved the HJ equation for the simple harmonic oscillator completely to obtain the

new variables, α and β, which are functions of the phase and amplitude of the simple harmonic

oscillator. Let us denote these new variables as (α, β) = (P,Q) to keep up with the notations.

Thus, for the simple Harmonic oscillator, P and Q are constants for all time. Now, since we have

found the solution of the dynamical system, i.e. we have solved the HJ equations completely, let

us look at tEq. (4.30) for the Duffing oscillator

1

2

(
∂S
∂q

)2

+
1

2
kq2 +

1

4
εq4 +

∂S
∂t

= K (4.42)

If S is taken as the generating function that treats the simple harmonic oscillator, then

K =
1

4
εq4 =

1

k2
εP 2 sin4

(√
k(β + t)

)
(4.43)

since 1
2

(
∂S
∂q

)2

+ 1
2
kq2 + ∂S

∂t
= 0 from the HJ solution of the simple harmonic oscillator. Then,

the evolution of the phase and amplitude variables P and Q for the Duffing oscillator are given by

Hamilton’s equations of motion as:

Q̇ =
∂K
∂P

=
2P ε sin

(√
k (Q+ t)

)4

k2
(4.44)

Ṗ = −∂K
∂Q

= −
4P 2 ε cos

(√
k (Q+ t)

)
sin
(√

k (Q+ t)
)3

k3/2
(4.45)
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where P = 1
2
p2

0 + 1
2
q2

0 and Q = 1√
k

tan−1
(√

k q0
p0

)
− t0, q0, p0, t0 are the initial position, velocity

and time for the simple harmonic oscillator. Now, in order to treat the Duffing oscillator dynamical

system, we hope to find a canonical transformation from the old space (Q,P ) to a new space (say

(X, Y )), such that in these new canonical coordinates, the resultant Hamiltonian is zero. We do so

by numerically solving the HJ equation. We again choose the generating function of type-2, i.e. old

coordinate and new momenta: S = S(Q, Y, t). For the sake of demonstration, we approximate the

generating function using monomials as the basis functions. The total degree of the approximate

generating function is taken as two. This corresponds to the minimal set of basis functions that is

required to avoid degeneracy and ensure a one-to-one transformation from the generating function

space to the old and new space following Eq. (4.29) . Using the total degree rule, there are six

basis functions, and the generating function is given by:

S̃ = c1 + c2Q+ c3Y + c4Q
2 + c5QY + c6Y

2 (4.46)

From the relations of type-2 generating function, we know that

P =
∂ S̃
∂Q

= c2 + 2c4Q+ c5Y ⇒ Y =
1

c5

(P − c2 − 2c4Q) = f(P,Q)

X =
∂ S̃
∂Y

= c3 + c5Q+ 2c6Y = c3 + c5Q+ 2
c6

c5

(P − c2 − 2c4Q) = f(P,Q)

(4.47)

We can check for canonicity using the Poisson brackets as:

{X, Y } =
∂X

∂Q

∂Y

∂P
− ∂X

∂P

∂Y

∂Q
= 1 (4.48)
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with

∂X

∂Q
= c5 −

4c4c6

c5

∂X

∂P
=

2c6

c5

(4.49)

∂Y

∂Q
= −−2c4

c5

∂Y

∂P
=

1

c5

(4.50)

(4.51)

Therefore, following the procedure in the previous section, we can find the ODE for evaluating the

coefficients as:

Φċ =


φ

(1)
1 . . . φ

(1)
m

... . . . ...

φ
(N)
1 . . . φ

(N)
m



ċ1

...

ċm

 =


b1

...

bN

 = b (4.52)

with the initial condition on the ODE being c5 = 1. Here, Φ are the basis functions evaluated on

the sparse grid and bi is given by

b = − 1

k2
ε

(
∂ S̃
∂Q

)2

sin4
(√

k(β + t)
)

(4.53)

evaluated at the sparse grid points. Note here the dependence of b on time, which is still a symbolic

variable. Thus, the ODE for the coefficients is non-autonomous. The coefficients are obtained by

solving the ODEs. They are shown below for the following values: k = 1, ε = 0.1.
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Figure 4.5: Coefficients for the Generating function approximation for the Duffing equation.

Note that the only coefficient with a secular drift is in c6. Therefore, from Eq. (4.47) and with

constant X and Y , the only variable with a secular drift is Q. This is not surprising since we know

that the phase exhibits a secular drift for the Duffing Oscillator. The periodic behavior of the other

coefficients suggests that the amplitude of the Duffing oscillator is periodic. After obtaining the

generating function in functional form, the phase and amplitude can be extracted through regular

algebra as:

1. Q is obtained by setting

X − ∂ S̃
∂Y

= 0 (4.54)

and solving for Q, and X = Q0, Y = P0
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2. P is then obtained using the converged value of Q using

P =
∂ S̃
∂Q

(4.55)

with X = Q0, Y = P0

Note that because of the quadratic nature of the approximating function, the equations for Q and

P are linear polynomials. For a general approximate generating function, the equations for Q and

P will be of degree N − 1 where N is the degree of the approximate generating function. The

solutions for Q and P are found to be as follows.

Figure 4.6: Comparison between numerical and semi-analytical solution for the Duffing equation.
ε = 0.1
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The methodology is therefore very useful in both approximating the solution of a dynamical

system and obtaining qualitative information on the evolution of the variables from the evolution

of the coefficients. One can also consider using the Lie series perturbation method developed in

the previous chapter. It is observed that the Lie series formulation results in the same HJ equation

for the generating function, albeit in new variables.

4.4.1 Relation to Lie series solution

It is important to note here that using the method of Lie series, one arrives at the exact same

step as the HJ equation for the perturbation. To see this, note that

H0 = 0 (4.56)

H1 = ε
1

k2
P 2 sin4(

√
k(Q+ t)) (4.57)

We are interested in finding the generating function that solves the HJ equation i.e. we require

H(1)
0 = H(1) = 0. Therefore at first order, the generating function is given using the Lie triangle

relations as [74]:

H(1) = 0 = H1 + L1H0 = H1 +

(
∂H0

∂Q

∂W1

∂P
− ∂H0

∂P

∂W1

∂Q

)
+
∂W1

∂t
(4.58)

Thus, we are left with the HJ equation (relating W1 to S):

∂W1

∂t
+H1 = 0 (4.59)

However, noting that H1 is in terms of new variables (X, Y ), which are constants, the generating

function at first order can be obtained exactly as:

W1 = −
∫
ε

1

k2
Y 2 sin4(

√
k(X + t)) (4.60)

= −ε Y 2

32k5/2

(
sin(4

√
k(X + t))− 8 sin(2

√
k(X + t)) + 12

√
kt
)

+ W̃1 (4.61)
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where W̃1 is a constant of integration which is determined from the initial conditions. Notice the

first order secular term coefficient is 3/8 which is the same as we obtained in the averaging of the

Duffing oscillator in Eq. (3.79) . The transformation of coordinates to the old variables are directly

given as:

Q(t) = Q0 −
∂W1

∂Y
(4.62)

P (t) = P0 +
∂W1

∂X
(4.63)

and the errors are of the order of O(ε2). The difference between using Lie series and our current

approach is that the solution obtained using the Lie series perturbation method is a series solution

in powers of ε and our methodology attempts to find the generating function that solves the HJ

equation directly. The errors in our approach are primarily due to the domain of discretization and

the basis function (or lack thereof) used in the generating function. Some of the sources of the

error in the numerical solution of the HJ equations is discussed below.

4.4.2 Sources of error in the numerical solution of the HJ equation

The error in the semi-analytical solution is of the order of 1e − 4. Some of the sources of the

errors are the size of the domain of discretization and the basis functions used. The errors can be

computed exactly because the HJ equation has to be exactly satisfied. Thus, the error in the semi-

analytical solution is of the same order as that in the generating function. Because the coefficients

are a function of time, the errors are also functions of time. The section below discusses the

different sources of error in the HJ solution.

4.4.2.1 Error sources: Discretization domain

The major source of error is observed to be the domain size. For reference, the figure below

illustrates the error in the generating function space (Q, Y ) at different time intervals for different

domain sizes. The size of the domain can be extracted from the abscissa and ordinate of the plots.
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Figure 4.7: Error in the HJ equation solution for different domain sizes expressed in the generating
function space for the Duffing oscillator. Since the coefficients are time-varying, the error is shown
at different time instances.

Recall that the new variables X and Y capture the variation in the old variables Q and P ,

respectively. Therefore, depending on the value of ε, the domain size need not be large. Further,

note that since Y is a constant, the domain of Y corresponds to different initial conditions of the

dominant term in the Hamiltonian, i.e. the simple harmonic oscillator. Note how the trajectories

of the Duffing oscillator move in the generating function phase-space.
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Figure 4.8: Mapping of trajectory to the old (Q,P) and new (X,Y) space from the generating
function space (Q,Y). IN the old space, the phase (Q) and amplitude (P) have secular and periodic
variations. In the new space, the motion is rectified and the new variables (X,Y) are constants for
all time.

Thus, shrinking the domain of discretization down to the exact region of the generating func-

tion phase-space results in a better approximation of the trajectory. The errors in the state-space

variables are observed to decrease only by an order of magnitude of one. This domain-shrinking

is however not the goal of the methodology, since we are interested in finding the solution of all

trajectories in the phase-volume. Next, the effect of adding additional basis functions is discussed.

4.4.2.2 Error sources: Total degree of approximating polynomial

The total degree of the approximating polynomial has a significant effect on the error in the HJ

solution. It is observed that the magnitude of the error is proportional to the degree of the poly-

nomial used. One can obtain up to machine precision if the degree of the approximate generating

function is high enough. This would also constitute a higher computational time in finding the

coefficients, such as stiff ODE equations for the coefficients. The figure below illustrates how the

total degree of the approximate generating function affects the error in the approximation of the

HJ solution.
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Figure 4.9: Error in the HJ equation solution for different degree approximations of the generating
function of the Duffing oscillator.

This method proves very useful in investigating the effect of variation of coordinates in a per-

turbed dynamical system, particularly from a numerical standpoint. Another advantage of having

a semi-analytical solution is that once the error grows significantly, the problem can be reinitial-

ized to continue the process. Insight from the qualitative analysis of the dynamical system can be

utilized to design the domain of discretization. Furthermore, the semi-analytic formulation leads

to the development of the semi-analytic State Transition Matrix. This is discussed next.
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4.4.3 Semi-analytical state transition matrix

The perturbations approach results in a transformation of coordinates from the unperturbed

action-angle set (Q,P) to constant action-angle variables (X,Y) of the perturbed problem. These

variables are the initial conditions of a specific problem under consideration. Once we determine

the functional form of the generating function following the procedure in the previous section, we

can obtain the inverse relations as:

Q = Q(X,Y, t) = Q(Q0,P0, t) (4.64)

P = P(X,Y, t) = P(Q0,P0, t) (4.65)

Also, from the HJ solution of the unperturbed problem, we can write the position and velocity

variables and their inverse relations as:

q0 = q0(Q0,P0, t0) and Q0 = Q0(q0,p0, t0) (4.66)

p0 = p0(Q0,P0, t0) and P0 = P0(q0,p0, t0) (4.67)

Using Eqs. 4.64 and 4.65, we get:

q = q(Q,P, t) = q(Q0,P0, t) = q(q0,p0, t) (4.68)

p = p(Q,P, t) = p(Q0,P0, t) = p(q0,p0, t) (4.69)

Therefore, given the forward and inverse canonical transformations, we can formulate a semi-

analytical form of the state transition matrix as:

Φ(t, to) =

 ∂q
∂q0

∂q
∂p0

∂p
∂q0

∂p
∂p0

 (4.70)

Such form of the State Transition matrix has immense utility for many applications involving
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sensitivity studies, stable, unstable, and center manifold detection, etc. Many of such applications

have been discussed in the previous chapters. Therefore, the methodology developed for a semi-

analytical solution to dynamical systems holds water under both numerical and analytical scrutiny.

The primary use of such a methodology is to examine larger dynamical systems exhibiting complex

motions. To this effect, the Main problem in artificial satellite theory is treated next. The following

section provides the formulation and solution of the problem.

4.5 Hamilton-Jacobi formalism for the main problem in artificial satellite theory

The late 50s and early 60s witnessed an enormous rise in analytic orbit theories for estimating

orbits of space objects [188, 189, 190, 191]. Brouwer [188] used von Zeipel’s method to obtain

a perturbation solution to the artificial satellite problem by incorporating zonal harmonics from

J2 to J5 of the geopotential. The main problem in artificial satellite theory is the perturbed two-

body problem with inclusion of only the J2 geopotential. We begin our discussion by considering

the unperturbed two-body problem using the Hamiltonian formalism. The Hamiltonian for the

two-body problem is given in Eq. 4.71.

H =
1

2
p− µ

r
(4.71)

To represent the action-angle variables, one can associate an action with each of the spherical polar

coordinates. In terms of the orbital elements, they are:

Pφ =
√
µa(1− e2) cos I (4.72)

Pθ + Pφ =
√
µa(1− e2) (4.73)

Pr + Pθ + Pφ =
√
µa (4.74)

and the Hamiltonian in terms of these actions is:

H = − 1

2(Pr + Pθ + Pφ)2
(4.75)
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The Hamiltonian can be written in terms of the Delaunay variables which are associated with the

action variables in spherical polar coordinates as:

P1 = L = Pr + Pθ + Pφ l = M (mean anomaly) (4.76)

P2 = G = Pθ + Pφ g = ω (argument of perigee) (4.77)

P3 = H = Pφ h = Ω (right ascension) (4.78)

H = − µ2

2L2
(4.79)

From Hamilton’s equations of motion, we see that the two angles, g, and h, are cyclic, and

therefore, their corresponding momenta are constants of motion. Physically, they are the magnitude

of the angular momentum vector and the z-component of the angular momentum in the inertial

frame. The angle l varies with time, and its rate is given by the mean motion. We can perform

another canonical transformation to a new set of variables, so that the two-body Hamiltonian is

zero. In these new variables, the mean anomaly is replaced with the initial mean anomaly given by

the relation:

l0 = l − n(t− t0)

The Hamiltonian with J2 geopotential is written in terms of the Delaunay variables as follows:

H = H0 + ∆H (4.80)

H0 = 0 (4.81)

∆H = J2

(µ4R2
e

4

)(1 + e cos f

G2

)3[(
1− 3

H2

G2

)
− 3
(

1− H2

G2

)
cos(2f + 2g)

]
(4.82)

where f is the true anomaly and an approximation in terms of the initial mean anomaly l0 is used

as [50, 123]:

(4.83)
f = l +

(
2e− 1

4
e3 +

5

96
e5
)

sin l +
(5

4
e2 − 11

24
e4 +

17

192
e6
)

sin 2l +
(13

12
e3

− 43

64
e5
)

sin 3l +
(103

96
e4 − 451

480
e6
)

sin 4l +
(1097

960
e5
)

sin 5l +
(1223

960
e6
)

sin 6l
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where l = l0 + n(t − t0). The eccentricity and mean notion is written in terms of the De-

launay variables as e =
√

1−G2/L2 and n = µ2/L3. We now look for a transformation

(l, g, h, L,G,H) → (x, y, z,X, Y, Z) to a new set of variables such that in these variables, the

resulting Hamiltonian is zero. The HJ equation is given as:

∂S
∂t

+K = 0 (4.84)

where S = S(x, y, z, L,G,H) is a generating function of type-3. The reason for choosing type-3

is to take advantage of the fact that the angle h is cyclic and one can avoid complex equations

arising from the H2

G2 and G2

L2 terms which for a type-2 generating function would result in

H2

G2
=

(
∂S
∂h

)2

(
∂S
∂g

)2

G2

L2
=

(
∂S
∂g

)2

(
∂S
∂l0

)2

A further simplification can be made if one notes that since h is cyclic, H is a constant of

motion. Therefore, the generating function admits a separability in the variables (h,H). The

generating function can be approximated as

S = S1(x, y, L,G) + S2(z,H) (4.85)

The solution procedure remains same as before. The six-dimensional space is discretized into sub-

domains based on the orbital parameters. For the purposes of demonstration, we choose three such

domains:

1. A near circular Low Earth Orbit (LEO) at near equatorial inclination

2. A Molniya orbit: highly elliptical Medium Earth Orbit (MEO) at critical inclination

3. A Geostationary Earth orbit (GEO)

The discretization of the domain is crucial to avoid large errors in the approximation of the gen-
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erating function. For the main problem, the phase space is normalized, such that the gravitational

parameter (µ) and the Earth equatorial radius (Re) are taken as unity. Using this normalization,

the perturbation is taken to be of the order of 1e − 4 and is given by ε = J2
µ4R2

e

4
. The generating

function is approximated using Legendre polynomials and monomials using the "total degree" rule

for the basis functions space in the discretized phase volume. The effect of domain size, basis

functions and sparse-grids is conducted for each case of LEO, MEO, and GEO.

We restrict ourselves to using the minimal degree for approximating the generating function,

i.e. total degree of two. As evidenced from the previous discussion on the duffing oscillator, adding

a higher degree basis functions gives us additional order of accuracy. Note that the generating

function phase volume is divided into two phase volumes, i.e. one belonging to S1(x, y, L,G)

and the other belonging to S2(z,H). One can see the advantage in leveraging this separability by

looking at the number of basis functions in the approximating polynomial. The total number of

basis functions of degree d in n variables is given by:

N = 1 +
d∑

D=1

(
n+D − 1

n− 1

)
(4.86)

Thus, for d = 2 and six variables, we would have 28 basis functions, while for d = 2 and (4+2)

variables we would have 20 basis functions. Having this advantage reduces the computational

time, as well as the number of ODE to solve for the coefficients. The following sections outline

the results for each case. The orbital parameters chosen are as follows:

Table 4.1: Orbital parameters for LEO, MEO, and GEO cases

Orbit a e i Ω ω lo
LEO 8000 km 0.05 3.665 deg 46.95 deg 7.85 deg 24
MEO 26554 km 0.72 63.4 deg 12 deg 270 deg 20
GEO 42000 km 0.1 15 deg 35 deg 12 deg 95
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4.5.1 Case 1: Low Earth orbit example

The orbital elements phase volume is discretized as shown in the table below. The time period

for propagation is taken to be 25 reference orbits i.e. 25× 2π where the reference orbit is an orbit

with the normalizing parameters.

Table 4.2: Orbital elements phase-volume discretization

Cases a e i Ω ω l0
1 100 km 0.05 7 deg 5 deg 5 deg 6 deg
2 200 km 0.1 20 deg 20 deg 20 deg 10 deg

The error in the approximate generating function is obtained as follows for monomial basis

functions on a sparse-grid with depth two. It is noted here that the units of L,G,H are normalized

while those of x, y, z are the same as l0, g, h, i.e., in radians.

Figure 4.10: LEO: Error in the approximate generating function for the phase-volume.
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The error is of the order of ε2, as anticipated. The same order of error was obtained for basis

functions with Legendre polynomials and with sparse-grid of depth three. Therefore, these plots

are not shown here. The size of the domain chosen seems to have a bigger effect on the error

characterization. For the domain discussed above, a representative trajectory is propagated and

compared with a numerical solution. This is as shown below.

Figure 4.11: Representative trajectory for LEO.

Note that the secular drift in the variables are captured quite nicely. Similarly, the periodic

variations are also captured. The errors in the approximated trajectory is found to be of the order

of ε2 in the conjugate momenta and ε in the angles. This is as shown in the figure below.
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Figure 4.12: Error in the representative trajectory for LEO for case 1 domain discretization

When a larger domain size is chosen, the errors are found to be larger. This is shown as:

Figure 4.13: Error in the representative trajectory for LEO for case 2 domain discretization
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4.5.2 Case 2: Molniya orbit example

The orbital elements phase volume is discretized as shown in the table below. The time period

for propagation is taken to be 25 reference orbits i.e. 25× 2π where the reference orbit is an orbit

with the normalizing parameters.

Table 4.3: Orbital elements phase-volume discretization

Cases a e i Ω ω l0
1 100 km 0.1 10 deg 10 deg 10 deg 10 deg
2 300 km 0.2 30 deg 30 deg 30 deg 20 deg

The error in the approximate generating function is obtained as follows for monomial basis

functions on a sparse-grid with depth two.

Figure 4.14: MEO: Error in the approximate generating function for the phase-volume
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The error is of the order of ε2, as seen. The same order of error was obtained for basis func-

tions with Legendre polynomials and with sparse-grid of depth three. Therefore, these plots are

not shown here. The size of the domain chosen seems to have a bigger effect on the error charac-

terization. For the domain discussed above, a representative trajectory is propagated and compared

with a numerical solution. This is as shown below.

Figure 4.15: Representative trajectory for Molniya orbit

Note that the secular drift in the variables is captured quite nicely. Similarly, the periodic

variations are also captured. The errors in the approximated trajectory are found to be of the order

of ε2 in the conjugate momenta and ε in the angles. This is as shown in the figure below.
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Figure 4.16: Error in the representative trajectory for MEO for case 1 domain discretization

When a larger domain size is chosen, the errors are found to be larger. This is shown as:

Figure 4.17: Error in the representative trajectory for MEO for case 2 domain discretization
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4.5.3 Case 3: Geostationary Earth orbit example

The orbital elements phase volume is discretized as shown in the table below. The time period

for propagation is taken to be 25 reference orbits i.e. 25× 2π where the reference orbit is an orbit

with the normalizing parameters.

Table 4.4: Orbital elements phase-volume discretization

Cases a e i Ω ω l0
1 200 km 0.1 20 deg 20 deg 20 deg 10 deg
2 400 km 0.4 40 deg 40 deg 40 deg 20 deg

The error in the approximate generating function is obtained as follows for monomial basis

functions on a sparse-grid with depth two.

Figure 4.18: GEO: Error in the approximate generating function for the phase-volume
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The error is of the order of ε2, as expected. The same order of error was obtained for basis

functions with Legendre polynomials and with sparse-grid of depth three. Therefore, these plots

are not shown here. The size of the domain chosen seems to have a bigger effect on the error

characterization. For the domain discussed above, a representative trajectory is propagated and

compared with a numerical solution. This is as shown below.

Figure 4.19: Representative trajectory for GEO

Note that the secular drift in the variables is captured quite nicely. Similarly, the periodic

variations are also captured. The errors in the approximated trajectory are found to be of the order

of ε2 in the conjugate momenta and ε in the angles. This is as shown in the figure below.
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Figure 4.20: Error in the representative trajectory for GEO for case 1 domain discretization

When a larger domain size is chosen, the errors are found to be larger. This is shown as:

Figure 4.21: Error in the representative trajectory for GEO for case 2 domain discretization

One can notice how the error in the generating function approximation reduces as the orbit

semi-major axis increases. This is due to the fact that for LEO, MEO, and GEO orbits considered
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here, the time for propagation was the same, i.e. 25 revolutions of the reference orbit. While 25 rev-

olutions of the reference orbit may correspond to 18, 3 and 1.5 revolutions of the LEO, MEO, and

GEO orbit, respectively. Errors corresponding to 1.5 revolutions of the LEO and MEO orbit would

also result in lower errors, as that observed in GEO. The error in the generating function builds

up with time. This is possibly due to the accumulation of numerical error in the solution of the

ODE, as well as insufficient basis functions. However, despite these drawbacks, a semi-analytical

solution to the Main problem in artificial satellite theory is obtained to close correspondence with

a fully numerical solution.

In this investigation, a systematic procedure is described to study conservative systems. In

the following sections, this method is extended to develop a canonical perturbation method for

non-conservative dynamical systems. We have briefly glimpsed this procedure in Sec. 3.3.3 when

the non-conservative Hamiltonian was modified to a conservative Hamiltonian using the extended

phase space mechanics. While the extended phase space was utilized to take care of the non-

autonomous nature of the Hamiltonian, general non-conservative dynamical systems can also be

treated using this approach. The extension is obtained by embedding the n−dimensional non-

conservative dynamical system in a 2n−dimensional phase-space to render the coordinates and

momenta canonical [115, 192].

4.6 The extended canonical perturbation method for non-conservative dynamical systems

In this section, the methodology developed in the previous sections is extended to treat non-

conservative Hamiltonian systems. This methodology is inspired by the works of Kamel [115],

and Choi and Tapley [192]. Consider the problem of describing the motion of a dynamical system

as

ẋ = f(x) (4.87)

where x = [x1, · · · , xn]T and f(x) = [fi(x), · · · , fn(x)]T . It the dynamical system is non-autonomous,

one can follow the procedure described in Sec. 3.3.3 to make the dynamics follow xn+1 = t and

adding an associated dummy momenta to make the equations canonical. Or, in non-canonical co-
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ordinates, this is done by expressing ẋn+1 = 1 and xn+1(0) = 0. Now, introducing a set of adjoint

variables y which satisfy the differential equation:

ẏ = −∂f(x)

∂x
y (4.88)

where, y = [y1, · · · , yn]T . The Hamiltonian then takes the form

H(x, y) = yTf(x) (4.89)

Note that in this formulation, the adjoint variables (y) act like conjugate dummy momenta to x.

Hamilton’s equations of motion can then be written as:

dx
dt

=
∂H
∂y

dy
dt

= −∂H
∂x

(4.90)

In this formulation, the solution of the n−dimensional dynamical system is embedded into the

solution of a 2n−dimensional canonical differential equations. Once the problem is formulated

in this manner, the procedure to treat the dynamical system follows that developed in previous

sections. For demonstrating the formulation and solution of the methodology developed, we shall

look at two examples: (a) The simple harmonic oscillator with cubic damping, and (b) the van der

Pol oscillator. Let us take a look at the simple harmonic oscillator with cubic damping.

4.6.1 The simple harmonic oscillator with cubic damping

Consider the dynamical system of the simple harmonic oscillator with cubic damping. The

differential equations governing the motion is given as follows:

ẍ+ x+ εẋ3 = 0 (4.91)
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We can write this as a set of first order ordinary differential equations using x1 = x and x2 = ẋ as

ẋ1 = x2 (4.92)

ẋ2 = −x1 − εx3
2 (4.93)

Note that the dynamical system cannot be written in a Hamiltonian form with canonical variables

in its current coordinate representation. The energy is not conservative due to the presence of the

velocity-dependent perturbation. However, for ε = 0, the dominant physics is due to the simple

harmonic oscillator, which has a complete reduction in terms of its phase and amplitude variables.

The simple harmonic oscillator with cubic damping has been treated in Choi and Tapley [192] using

the methods developed by Kamel [115]. In this work, we will use a slightly different methodology

to treat this non-Hamiltonian dynamical system. Recognizing that the simple harmonic oscillator

has canonical coordinates defined using the phase and amplitude variables as

q1 = a1 sin(b1 + t) (4.94)

q2 = a1 cos(b1 + t) (4.95)

with substituting (q1, q2) = (x1, x2) and (a1, b1) are the constants of motion for the simple har-

monic oscillator. We can obtain the variation of these constants under the influence of the pertur-

bation using variation of parameters methods as

ȧ1 = − ε
8
a3

1 (3 + cos 4(b1 + t) + 4 cos 2(b1 + t)) (4.96)

ḃ1 = − ε
8
a2

1 (sin 4(b1 + t) + 2 sin 2(b1 + t)) (4.97)
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At this stage, we introduce the adjoint variables (y1, y2) so that the Hamiltonian is written as:

H = y1

[
− ε

8
a3

1 (3 + cos 4(b1 + t) + 4 cos 2(b1 + t))
]
+y2

[
− ε

8
a2

1 (sin 4(b1 + t) + 2 sin 2(b1 + t))
]

(4.98)

These y can be considered as the dummy momenta conjugate to the coordinates (a1, b1). From

Hamilton’s equations of motion:

da1

dt
=
∂H
∂y1

= − ε
8
a3

1 (3 + cos 4(b1 + t) + 4 cos 2(b1 + t))

db1

dt
=
∂H
∂y2

= − ε
8
a2

1 (sin 4(b1 + t) + 2 sin 2(b1 + t))

dy1

dt
= −∂H

∂a1

= 3εa2
1y1 cos4(b1 + t)− 1

4
(a1εy2(2 sin 2(b1 + t) + sin 4(b1 + t)))

dy2

dt
= −∂H

∂b1

= −4a3
1εy1 cos3(b1 + t) sin(b1 + t)− 1

8

(
a2

1εy2(4 cos 2(b1 + t) + 4 cos 4(b1 + t))
)

(4.99)

By combining the variation of parameters method and the introduction of the dummy momenta,

we have the Hamiltonian as a pure function of the perturbation. Thus, the total Hamiltonian can be

written as:

H = H0 + εH1 (4.100)

H0 = 0 (4.101)

H1 = −1

8
a2

1 [a1y1 (3 + cos 4(b1 + t) + 4 cos 2(b1 + t)) + y2 (sin 4(b1 + t) + 2 sin 2(b1 + t))]

(4.102)

For simplicity and to maintain familiarity of notations, we rewrite the Hamiltonian in terms of the

familiar (q1, q2, p1, p2) coordinates and momenta as follows

H = −1

8
q2

1 [q1p1 (3 + cos 4(q2 + t) + 4 cos 2(q2 + t)) + p2 (sin 4(q2 + t) + 2 sin 2(q2 + t))]

(4.103)
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Certain patterns can be observed in the Hamiltonian, which gives insights into the structure of the

generating function. Since y was a linear multiplier to f(x) in the Hamiltonian, p is also a linear

multiplier in the new Hamiltonian and the generating function as well. Therefore, the complete

solutions for p(t) are not necessary to obtain the complete solutions for q(t). They are only of

interest as the conjugate solutions to q in the 4−dimensional topological space. This observation

is valid for any general 2n−dimensional Hamiltonian system formed using the procedure above.

The linear multiplier condition can be enforced (as done by Hori [113]) that p be a linear multiplier

by taking S = pTT (q) or its equivalent form (where T is an approximating generating function).

This form of the generating function will then ensure that solutions of p are not required for the

solutions of q.

At this point, we can revert back to our methodology of solving the HJ equation using an

approximate generating function. To recall, we are seeking a transformation from the old space of

(q1, q2, p1, p2) to a new space (Q1, Q2, P1, P2) through a generating function of mixed variables.

Assuming the generating function of type-2 is used, it takes the form: S = S(q1, q2, P1, P2). The

functional for S can be obtained by solving the HJ equation given by:

∂S
∂t

+K = 0 (4.104)

with

K = −ε ∂S
∂q1

q3
1 cos4(t+ q2) +

ε

8

∂S
∂q2

q2
1 (sin 4(q2 + t) + 2 sin 2(q2 + t)) (4.105)

The methodology for solving the HJ equation is similar to that in previous sections. Since P

appears only linearly, we limit the degree of P in the basis function approximation to 1. So, the

generating function is approximated using n basis functions as:

S = S(q1, q2, P1, P2) = c1 + c2q1P1 + c3q2P2 + c4q1P2 + c5q2P1 +
n∑
i=6

ciφi(q1, q2) (4.106)

The initial conditions for the set of ODE for the coefficients are given using c2 = 1, c3 = 1, and all
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other cj = 0. To demonstrate the accuracy of this method, an example simulation is shown below.

The evolution of the phase and amplitude variables under the influence of the perturbation and the

error in the semi-analytical solution is shown below.

Figure 4.22: Semi-analytical solution to the simple harmonic oscillator with cubic damping; ε =
0.1
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Figure 4.23: Semi-analytical solution to the simple harmonic oscillator with cubic damping; ε =
0.01

The errors are of the order of ε2 in the periodic coordinate i.e. q2. Because of the damping

nature of the coordinate q1, one cannot get away with a small domain for (q1, q2) as we could

for Hamiltonian systems. Nevertheless, the semi-analytical solution is found to conform to the
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expectations anticipated from Hamiltonian dynamical systems. Thus, this methodology aids in

the Hamiltonianization of non-Hamiltonian systems from a semi-analytical framework. From a

qualitative perspective, the secular and periodic variations are captured quite nicely. Since the

dummy momenta do not appear in the evaluation of q1 and q2, their domain doesn’t affect the

solution. Another application to the semi-analytical extended canonical perturbation method is to

the van der Pol oscillator. This is discussed next.

4.6.2 The van der Pol oscillator

Consider the dynamical system of the van der Pol oscillator. The differential equations govern-

ing the motion is given as follows:

ẍ+ x− ε(1− x2)ẋ = 0 (4.107)

We can write this as a set of first order ordinary differential equations using x1 = x and x2 = ẋ as

ẋ1 = x2 (4.108)

ẋ2 = −x1 + ε(1− x2
1)x2 (4.109)

Note that the dynamical system cannot be written in a Hamiltonian form with canonical variables

in its current coordinate representation. The energy is not conservative due to the presence of the

velocity-dependent perturbation. However, for ε = 0, the dominant physics is due to the simple

harmonic oscillator, which has a complete reduction in terms of its phase and amplitude variables.

q1 = a1 sin(b1 + t) (4.110)

q2 = a1 cos(b1 + t) (4.111)

with substituting (q1, q2) = (x1, x2) and (a1, b1) are the constants of motion for the simple har-

monic oscillator. We can obtain the variation of these constants under the influence of the pertur-
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bation, using variation of parameters methods as

ȧ1 = a1 ε
(
sin (b1 + t)2 − 1

) (
a1

2 sin (b1 + t)2 − 1
)

(4.112)

ḃ1 =
ε sin (2 b1 + 2 t)

(
a1

2 sin (b1 + t)2 − 1
)

2
(4.113)

At this stage, we introduce the adjoint variables (y1, y2) so that the Hamiltonian is written as:

H =y1

[
a1 ε

(
sin (b1 + t)2 − 1

) (
a1

2 sin (b1 + t)2 − 1
)]

(4.114)

+ y2

[
ε sin (2 b1 + 2 t)

(
a1

2 sin (b1 + t)2 − 1
)

2

]
(4.115)

These adjoint variables (y) can be considered as the dummy momenta conjugate to the coordinates

(a1, b1). From Hamilton’s equations of motion:

da1

dt
=
∂H
∂y1

= a1 ε
(
sin (b1 + t)2 − 1

) (
a1

2 sin (b1 + t)2 − 1
)

db1

dt
=
∂H
∂y2

=
ε sin (2 b1 + 2 t)

(
a1

2 sin (b1 + t)2 − 1
)

2

(4.116)

By utilizing VPM and the introduction of dummy momenta, we have the Hamiltonian as a pure

function of the perturbation. Thus, the total Hamiltonian can be written as:

H = H0 + εH1 (4.117)

For simplicity and to maintain familiarity of notations, we rewrite the Hamiltonian in terms of the

familiar (q1, q2, p1, p2) coordinates and momenta as follows

H =ε p1 q1 cos (q2 + t)2 (q1
2 cos (q2 + t)2 − q1

2 + 1
)

− ε p2 (4 sin (2 q2 + 2 t)− 2 q1
2 sin (2 q2 + 2 t) + q1

2 sin (4 q2 + 4 t))

8

(4.118)

242



Certain structure can be observed in the Hamiltonian, which gives insights into the structure of

the generating function. Since y was a linear multiplier to f(x) in the Hamiltonian, p is also

a linear multiplier in the new Hamiltonian and the generating function as well. Therefore, the

complete solutions for p(t) are not necessary to obtain the complete solutions for q(t). They are

only of interest as the conjugate solutions to q in the 4−dimensional topological space. We can

then revert back to our methodology of solving the HJ equation using an approximate generating

function. To recall, we are seeking a transformation from the old space of (q1, q2, p1, p2) to a new

space (Q1, Q2, P1, P2) through a generating function of mixed variables. Assuming the generating

function of type-2 is used, it takes the form: S = S(q1, q2, P1, P2). To functional for S can be

obtained by solving the HJ equation given by:

∂S
∂t

+K = 0 (4.119)

with K as the Hamiltonian having p1 = ∂S
∂q1

and p2 = ∂S
∂q2

. The methodology for solving the HJ

equation is similar to that in previous sections. Since P appears only linearly, we limit the degree

of P in the basis function approximation to 1. So, the generating function is approximated using n

basis functions as:

S = S(q1, q2, P1, P2) = c1 + c2q1P1 + c3q2P2 + c4q1P2 + c5q2P1 +
n∑
i=6

ciφi(q1, q2) (4.120)

The initial conditions for the set of ODE for the coefficients are given using c2 = 1, c3 = 1, and all

other cj = 0. To demonstrate the accuracy of this method, an example simulation is shown below.

The evolution of the phase and amplitude variables under the influence of the perturbation and the

error in the semi-analytical solution is as shown.
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Figure 4.24: Semi-analytical solution to the van der Pol equation; ε = 0.1
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Figure 4.25: Semi-analytical solution to the van der Pol equation; ε = 0.01
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Figure 4.26: Semi-analytical solution to the van der Pol equation; ε = 0.001

The errors are of the order of ε2 in the periodic coordinate, i.e. q2. Because of the phenomenon

of the limit cycle, one cannot get away with a small domain for (q1, q2) as we could for Hamiltonian

systems. The errors in the q1−q2 phase-space of the generating function phase volume are as shown

below, for different degrees of approximating polynomial is shown in the figures below.
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Figure 4.27: Error in q1 − q2 phase space for ε = 0.1 and approximate generating function of
degree 2 of the van der Pol oscillator.

Figure 4.28: Error in q1 − q2 phase space for ε = 0.1 and approximate generating function of
degree 3 of the van der Pol oscillator.
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Figure 4.29: Error in q1 − q2 phase space for ε = 0.1 and approximate generating function of
degree 4 of the van der Pol oscillator.

The semi-analytical solution is found to conform to the expectations anticipated from Hamil-

tonian dynamical systems. From a qualitative perspective, the secular and periodic variations are

captured quite nicely. Since the dummy momenta do not appear in the evaluation of q1 and q2, their

domain doesn’t affect the solution.

It is interesting to note that the Formulation of the problem using expressions from Eqs. (4.88-

4.90) is related in a direct manner to the equations which govern the optimal motion of a dynamical

system subjected to effects of an optimal control input [193, 194, 192, 185, 186, 195]. The adjoint

variables in Eq. (4.88) are analogous to the Lagrange multipliers (or costates) which are used to

define the optimal control. In such situations, the evolution of the adjoint variables also becomes

important, and therefore one cannot get away with an arbitrary domain for the adjoint variables.

The following section discusses this analogous behavior for optimal control problems.

4.7 Applications of semi-analytic HJ theory to optimal control problems

The formulation of the problem for solving the HJ equation for non-Hamiltonian dynamical

systems has a stark similarity to that of optimal control problems through the analogous nature of
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the adjoint variables and the Lagrange multipliers. In this section, the methodology of a Two-Point

Boundary Value Problem (TPBVP) is developed using canonical transformations to derive general

semi-analytic solutions. Since the generating function contains all the relevant information of the

dynamical system, simple manipulations of the generating function equations provide exact solu-

tions (provided the generating function is exact) to the control for arbitrary boundary conditions,

thereby giving a significant advantage over some classical methods. To motivate this discussion,

let us recall the TPBVP of a Hamiltonian system.

4.7.1 The two-point boundary value problem

Consider the minimization of a general performance index given by

J = φ(x(tf ), tf ) +

∫ tf

t0

L(x(t),u(t), t)dt (4.121)

subject to a dynamical system governed by

ẋ = f(x(t),u(t), t) (4.122)

satisfying the boundary conditions

x(t0) = x0

ψ(x(tf ), tf ) = 0
(4.123)

where x ∈ <n are the state space variables of the dynamical system, u ∈ <m the control, t ∈ <

is the time, t0 and tf are the initial and final times. The general procedure of solving the optimal

control problem is done by defining an augmented cost function of the Hamiltonian which is given

as

H(x,u,λ, t) = L(x(t),u(t), t) + λT f(x(t),u(t), t) (4.124)

By obtaining the variations of this cost function, one can obtain the necessary conditions for opti-
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mality as:

ẋ =
∂H
∂λ

(4.125)

λ̇ = −∂H
∂x

(4.126)

0 =
∂H
∂u

(4.127)

Evaluating the optimal trajectory requires solving the system of ODEs to satisfy the given bound-

ary conditions. Now, given a TPBVP, there are many methods to find the solution through standard

numerical techniques. However, it generally requires an iterative procedure with an initial guess

for the costates (λ), which do not have any physical meaning in general [186]. To alleviate this

problem, a solution methodology is developed that uses the semi-analytic solution of the HJ equa-

tion applied to the Hamiltonian of the optimal control problem. We seek to find a transformation

from the state space variables to that of its initial condition space, while maintaining the canonicity

of the equations. Thus, we seek to find a transformation between:

(q(t),λ(t))→ (q(t0),λ(t0)) (4.128)

for a given time span t ∈ [t0, tf ]. Assuming we have obtained a generating function (say of type

2), the solution to find the costates for a TPBVP is simply given by

λ =
∂S2

∂q
(4.129)

q0 =
∂S2

∂λ0

(4.130)

0 =
S2

t
+H

(
q,
∂S2

∂q
, t

)
(4.131)

If such a generating function is found, one can directly evaluate the initial and final costate form
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the associated relations of the generating functions by simple partial differentials

λf =
∂S2

∂q
|t=tf ,q=qf

(4.132)

λ0 =
∂S2

∂q0

|t=tf ,q=qf
(4.133)

To demonstrate the utility of such a solution methodology, let us look at a simple example of the

control of a simple harmonic oscillator.

4.7.2 Simple harmonic oscillator control

The optimal control problem for the simple harmonic oscillator is considered through the min-

imization of the total control energy through the performance index

J =
1

2

∫ tf

t0

u2dt (4.134)

subject to the dynamical equations of motion for the simple harmonic oscillator

ẋ1 = x2 (4.135)

ẋ2 = −x1 + u (4.136)

where u is the control, [x1, x2] are the state space variables corresponding to the position and

velocity of the harmonic oscillator. We consider a fixed final time problem: let tf = 5 sec and

t0 = 0 sec. The augmented cost function (or the Hamiltonian) is then written as

H = λ1x2 + λ2(−x1 + u) +
u2

2
(4.137)

with λ as the adjoint variables which are the conjugate momenta corresponding to the states (or

costates). From Hamilton’s equations of motion, the evolution of the costates is governed through
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the differential equations:

λ̇1 = λ2 (4.138)

λ̇2 = −λ1 (4.139)

The stationary condition gives the control that results in the minimization of the Hamiltonian as:

0 =
∂H
∂u

= u+ λ2 ⇒ u(t) = −λ2(t) (4.140)

The Hamiltonian can then be rewritten as:

H = λ1x2 − λ2(x1 + λ2) +
λ2

2

2
(4.141)

Now, using our methodology from the semi-analytic solution of the Hamilton-Jacobi equation,

we seek to find a canonical transformation from the old variable space, i.e. (x1, x2, λ1, λ2) to a

new set of variables that are the initial conditions of the trajectory, i.e. (x10, x20, λ10, λ20). It is

important to note here that any generating function can be used at all times, and the generating

function of any type can be transformed to another type through a Legendre transformation. Such

a transformation is possible, because all of the generating functions are the solution of the HJ

equation for the same Hamiltonian. In general, one cannot know if the generating functions will

be defined for all time. It can be proven, however, that they cannot all be singular simultaneously

[196, 185]. In fact, Arnold [23, 28] proves that one can define 2n generating functions, and that at

least one must be well-defined. In practice, among the four types of generating functions defined

previously, one is always non-singular[197, 185, 110]. Since global singularities correspond to

boundary value problems with multiple or infinite solutions, for the formulation of the TPBVP,

at initial time the generating function of type 1 and type 4 is singular. This is easily recognized

through their definitions, i.e. at time zero, the generating function of type 1 is a function of the

variables S1 = S1(x, x0) = S1x0, x0) which can have infinitely many solutions. A similar situation
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occurs for the generating function of type 4, but with the costates: S4 = S4(λ,λ0) = S4(λ0,λ0).

Therefore, let us assume a generating function of type 2, i.e. of old coordinate and new momenta

(costates). The HJ equation is then given by:

∂S2(x,λ0)

∂t
+H(x,

∂S2

∂x
, t) = 0 (4.142)

The methodology to solve this HJ equation is discussed in previous sections in detail, using

sparse grids and the combination of basis functions to approximate the generating function. One

important fact to note is that since the costates have no physical significance (for a general nonlin-

ear dynamical system), to find the domain of discretization of the costates, an open-loop control

is solved for the edge values of the domain of the states. One can note from Eq. (4.151) and

Eq. (4.152) , the costates also behave like the harmonic oscillator, i.e. their phase-volume is also

a torus, just like the simple harmonic oscillator. Utilizing the systematic procedure described in

previous sections, the HJ equation is solved using an approximate generating function. Using

monomials of total degree 2, the coefficients are obtained, as shown in the figure below.

Figure 4.30: Coefficients of the basis functions for the approximate generating function of the van
der Pol oscillator
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Utilizing these coefficients, a functional form of the generating function can be obtained. Now,

given the boundary conditions i.e. (xt0 , xtf ), the initial and final costates can be found directly

from the generating function, as using the relations in Eq. (4.132) and Eq. (4.133) . Utilizing

these relations, one can find closed form solutions for the costates given any boundary conditions.

For validation purposes of the problem above with 13 basis functions, the closed form expressions

for the initial and final costates are given below

λ1(t0) = −
2 c4 c15 − 2x10 c15 − c11

(
c5 − x20 + x1f c8 + x2f c10

)
+ 2x1f c7 c15 + 2x2f c9 c15

4 c14 c15 − c11
2

(4.143)

λ2(t0) = −
2 c5 c14 − 2x20 c14 − c11

(
c4 − x10 + x1f c7 + x2f c9

)
+ 2x1f c8 c14 + 2x2f c10 c14

4 c14 c15 − c11
2

(4.144)

λ1(tf ) =
x20c8 − c5c8 + 2c2c15 − x1f c8

2 − x2f c8c10 + 2x2f c6c15 + 4x1f c12c15

2c15

− (c8c11 − 2c7c15)

2c15 (4c14c15 − c11
2)(

2x10c15 − x20c11 + c5c11 − 2c4c15 + x1f c8c11 − 2x1f c7c15 + x2f c10c11 − 2x2f c9c15

)
2c15 (4c14c15 − c11

2)
(4.145)

λ2(tf ) =
x20c10 − c5c10 + 2c3c15 − x2f c10

2 − x1f c8c10 + 2x1f c6c15 + 4x2f c13c15

2c15

− (c10c11 − 2c9c15)

2c15 (4c14c15 − c11
2)(

2x10c15 − x20c11 + c5c11 − 2c4c15 + x1f c8c11 − 2x1f c7c15 + x2f c10c11 − 2x2f c9c15

)
2c15 (4c14c15 − c11

2)
(4.146)

The expressions for λ are in terms of the boundary conditions. Thus, the methodology provides

a way to solve the TPBVP for arbitrary boundary conditions within a domain of discretization. If

the final state required is the origin, one can represent the initial costates using the figure below.
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Figure 4.31: The initial condition for the costates for all solutions in the discretized domain of the
phase-space for [0,0] final state

The simple harmonic oscillator is a linear dynamical system. In the next section, the control of

the nonlinear dynamical system of the van der Pol equation is discussed.

4.7.3 Optimal control of the van der Pol equation

The optimal control problem for the va der Pol oscillator is considered through the minimiza-

tion of the total control energy through the performance index

J =
1

2

∫ tf

t0

u2dt (4.147)

subject to the dynamical equations of motion for the van der Pol equation

ẋ1 = x2 (4.148)

ẋ2 = −x1 + ε(1− x2
1)x2 + u (4.149)
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where u is the control, [x1, x2] are the state space variables corresponding to the position and

velocity of the oscillator. We consider a fixed final time problem: let tf = 7 sec and t0 = 0 sec.

The augmented cost function (or the Hamiltonian) is then written after eliminating the control in

terms of the costates to minimize the resulting Hamiltonian as

H = λ1x2 + λ2(−x1 + ε(1− x2
1)x2 − λ2) +

λ2
2

2
(4.150)

with λ as the adjoint variables which are the conjugate momenta corresponding to the states (or

costates). From Hamilton’s equations of motion, the evolution of the costates is governed through

the differential equations:

λ̇1 = λ2(1 + 2εx1x2) (4.151)

λ̇2 = −λ1 − ε(1− x2
1)λ2 (4.152)

Now, using our methodology from the semi-analytic solution of the Hamilton-Jacobi equation,

we seek to find a canonical transformation from the old variable space, i.e. (x1, x2, λ1, λ2) to a new

set of variables that are the initial conditions of the trajectory, i.e. (x10, x20, λ10, λ20). We assume a

generating function of type 2, i.e. of old coordinate and new momenta (costates). The HJ equation

is then given by:
∂S2(x,λ0)

∂t
+H(x,

∂S2

∂x
, t) = 0 (4.153)

The methodology to solve this HJ equation is discussed in previous sections in detail, using

sparse grids and the combination of basis functions to approximate the generating function. Also,

note that, just like in the procedure of Hamiltonianizing the non-Hamiltonian system, a perturba-

tion approach is used. Therefore, the value of ε must be at least one order of magnitude smaller

than the unperturbed problem. Utilizing the systematic procedure described in previous sections,

the HJ equation is solved using an approximate generating function. Using monomials of total

degree 2, the coefficients are obtained, as shown in the figure below.
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Figure 4.32: Coefficients of the basis functions for the approximate generating function of the van
der Pol equation with ε = 0.1

Utilizing these coefficients, a functional form of the generating function can be obtained. Now,

given the boundary conditions i.e. (xt0 , xtf ), the initial and final costates can be found directly from

the generating function, as using the relations in Eq. (4.132) and Eq. (4.133) . Utilizing these

relations, one can find closed form solutions for the costates given any boundary conditions. Since

we use the same functional form of the approximate generating function that we used to solve the

optimal control problem of the simple Harmonic oscillator, the expressions for the initial and final

costates are exactly the same (i.e. Eq. (4.143) - Eq. (4.146) ). Thus, all that is required is to vary

the coefficients. Of course, just as in the van der Pol equation case, the accuracy in the control is of

the order of O(ε2). To demonstrate its utility, 300 random initial conditions are chosen to target a

specific state within the domain of discretization. It can be seen that each of the TPBVP is solved
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to an accuracy of ε2.

(a) Target State [0,0] (b) Target State [-0.2,-0.2]

(c) Target State [-0.4,0.4] (d) Target State [0.3,-0.4]

Figure 4.33: Demonstration of optimal control of the van der Pol equation for random initial
conditions and a target final condition with parameters: t0 = 0, tf = 7 sec, ε = 0.1.

Note that each of the TPBVPs was solved directly, and the coefficients of the generating func-

tion approximation have to be computed only once. Therefore, we see that the semi-analytical

methodology developed can be applied directly to solving optimal control problems. In the next

section, the methodology is demonstrated for a higher-dimensional TPBVP of rigid body attitude

stabilization.
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4.7.4 Semi-analytical solutions to the rigid body attitude stabilization problem

The spin stabilization of a rigid body in a torque free environment is considered, wherein an

appropriate feedback control is obtained to suppress the rotational motion of a tumbling rigid body.

The optimal control problem is defined through the performance index that minimizes the control

energy

J =
1

2

∫ tf

t0

uTudt (4.154)

subject to Euler’s dynamical equations of motion:

ω̇1 = u1 +K1ω2ω3 (4.155)

ω̇2 = u2 +K2ω1ω3 (4.156)

ω̇3 = u3 +K3ω1ω2 (4.157)

where K1 = I2−I3
I1

K2 = I3−I1
I2

K1 = I1−I2
I3

are the inertia parameters, I1, I2, I3 are the principal

moments of inertia, u = [u1, u2, u3] is the control, and ω = [ω1, ω2, ω3] is the angular velocity of

the rigid body. The augmented cost function (or the Hamiltonian) can be written as:

H =
1

2
uTu + λ1(u1 +K1ω2ω3) + λ2(u2 +K2ω1ω3) + λ3(u3 +K3ω1ω2) (4.158)

The stationary condition given the relation between the control u and the costates λ through the

relation: 0 = ∂H
∂u . This gives: u1 = −λ1, u2 = −λ2, and u3 = −λ3. Hamilton’s equations of
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motion can then be written as:

ω̇1 = K1ω2ω3 − λ1 (4.159)

ω̇2 = K2ω1ω3 − λ2 (4.160)

ω̇3 = K3ω1ω2 − λ3 (4.161)

λ̇1 = −K2λ2ω3 −K3λ3ω2 (4.162)

λ̇2 = −K1λ1ω3 −K3λ3ω1 (4.163)

λ̇3 = −K1λ1ω2 −K2λ2ω1 (4.164)

We consider a domain of interest as a unit radius sphere of initial angular velocities. The gener-

ating function is approximated using monomials of total degree three, and a sparse grid collocation

scheme is used. In six dimensions, the number of basis functions is 84, and the total grid points are

85. To demonstrate the effectiveness of the method, three cases are checked. They are as described

in the table below.

Table 4.5: Test cases for attitude stabilization of rigid body

Case I1 I2 I3 t0
1 14 kg.m2 10 kg.m2 8 kg.m2 5 sec I1 > I2 > I3

2 7 kg.m2 10 kg.m2 12 kg.m2 7 sec I1 < I2 < I3

3 14 kg.m2 10 kg.m2 12 kg.m2 7 sec I1 > I3 > I2

4 10 kg.m2 11 kg.m2 6 kg.m2 5 sec I2 > I1 > I3

For each of the cases, 300 random initial conditions are chosen that lie in the domain of interest.

The initial costates are obtained from the approximated generating function, exactly as a function

of the time varying coefficients. The figures below show the time evolution of the angular velocity

under the action of the optimal control. It is seen that all of the initial conditions are brought to

zero (accurate to the order of the error in the approximated generating function) in the TPBVP,

thereby achieving a detumbling or stabilization of the attitude motion of the rigid body.
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Figure 4.34: Attitude stabilization for Case 1

Figure 4.35: Attitude stabilization for Case 2
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Figure 4.36: Attitude stabilization for Case 3

Figure 4.37: Attitude stabilization for Case 4

The figures: 4.34, 4.35, 4.36, and 4.37 show the state flow of the closed loop dynamical system

with a stabilizing feedback control. Again, note that for each of the cases, the coefficients are

found only once, by solving the HJ equation on the grid, to enable the transformation from the
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state-space variables to those of its initial conditions, i.e.

(ω,λ)→ (ω0,λ0)

Therefore, equating partials of the generating function at final time allows us to apply the boundary

conditions that give the initial and final costates. Note that one only needs to algebraically solve

for the initial costates from the associated relations of the generating function (Eq. (4.132) and

Eq. (4.133) ). Some further deliberations on the coefficients are done in the next section.

4.7.4.1 A note on the sparsity of the coefficients

We note here that certain insight can be obtained from the structure of the equations and the

Hamiltonian. These observations are summarized below:

1. The costates are linear in the Hamiltonian.

2. Each control input ui depends only on its corresponding costate λi.

3. The Hamiltonian is autonomous, thus the coefficients contributing to the HJ solution have

structure.

4. The control-free Hamiltonian is completely integrable

Because of the observations above, one can assume with a reasonable amount of certainty that the

generating function is separable. This allows us to seek a higher degree polynomial approximation

of the generating function, while keeping the number of the basis functions the same as before or

even less. For reference, one can note that the number of basis functions for a separable approxi-

mation of the generating function of degree four is 43, degree five is 61, degree six is 82, and so

on.

Furthermore, if we were to note the evolution of the coefficients for the higher order approxi-

mation, we observe that only six basis functions contribute to the true solution for the control. They

are the quadratic terms: ω1λ10, ω2λ20, ω3λ30, λ2
10, λ2

20, λ2
30. The remaining coefficients are
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zero and do not contribute to the solution. It is indeed remarkable that the proposed methodol-

ogy identifies the purely quadratic form without the cross terms from the oversized set of basis

functions. Therefore, one can then identify a linear feedback control law for the spin-stabilization

problem. This result agrees with the seminal solution established by Debs and Athans [198]. This

unique closure with an established analytical solution provides strong evidence in support of the

utility of the proposed approach.

4.8 Summary

In this chapter, a general method to obtain canonical transformations that rectifies the flow of

a dynamical system is proposed. By utilizing a family of trajectories in the domain of the relevant

phase volume, the sparse approximation problem for the coefficients of the generating function is

formulated and solved efficiently, for arbitrary choice of basis function sets. The uniqueness of

the solution is shown to be the realization of an analytical expression for the generating function

from the use of numerical approximation problem. Two numerical examples of a simple harmonic

oscillator and a Duffing oscillator are presented. Critical factors affecting the solution, such as the

choice of the basis functions, coverage of the phase-space of old and new variables, and switch in

the generating function to obtain a solution to the dynamical system, are presented. The sparsity of

the coefficients in approximating the solution of the dynamical system proves valuable in discern-

ing the final functional form for the evolution of the states. The method is refined to overcome the

deficiencies by utilizing the information from the dominant physics. A semi-analytical solution to

the time-dependent HJ equation is obtained by leveraging developments in sparse-approximation

techniques through a collocation based scheme. This solution rectifies the flow of the perturba-

tive part of the Hamiltonian. The utility of this method is demonstrated by solving the dynamical

system of the Duffing oscillator. It is shown that the HJ solution obtained accurately captures

the secular and periodic variations. Another advantage of the proposed method is that additional

perturbations can be added and their corresponding generating functions can be solved for indepen-

dently thus equipping us with the freedom to parallelize the process for computational efficiency.

The functional form of the generating function also admits the formulation of a semi-analytical
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state transition matrix.

The main problem in artificial satellite theory is considered as an example to demonstrate the

utility of the proposed method. It is shown through three different cases: geosynchronous orbit,

low Earth orbit and Medium Earth orbit at critical inclination that the Hamiltonian perturbations’

method performs well up to a certain tolerance. Because the error in the approximated generating

function is available, these errors are reduced by appropriately resizing the domain and through

the addition of basis functions. A semi-analytical formulation for the state transition matrix is also

given for the J2 perturbed two-body problem in terms of the coefficients of the basis functions.

Furthermore, this chapter also treats the case of a general dynamical system admitting a non-

conservative Hamiltonian. Utilizing the extended phase-space mechanics from previous chapters,

we propose a methodology to Hamiltonianize non-Hamiltonian dynamical systems. The method-

ology developed thus serves a variety of purposes, from obtaining semi-analytical solutions to a

dynamical system (Hamiltonian and non-Hamiltonian), and solving Two Point Boundary Value

Problems (TPBVP). Furthermore, the HJ theory serves as a single overarching principle to a mul-

titude of sub-disciplines, such as in optimal control and differential games through the Hamilton-

Jacobi-Bellman and Hamilton-Jacobi-Isaac equations, or in general relativity through Hamilton-

Jacobi-Einstein equations, or in light propagation and optics through the Eikonal equations, and

many more. Therefore, the systematic procedure developed in this dissertation proves to be an en-

couraging step towards solving the HJ equation for applications to different arrays of problems in

mechanics and engineering, specifically to treat a large class of dynamical systems. Our approach

throughout this chapter has been to solve the HJ equation locally so as to ensure that the resulting

form of the Hamiltonian in the transformed coordinates is zero, i.e.∂S
∂t

+H = K = 0. This process

then renders the new variables constant for all time, thereby allowing us to obtain simple solutions

to the dynamical system under consideration. Such transformations are termed rectification. The

procedure of rectification is valuable in treating all kinds of dynamical systems and offers sim-

ple algebraic (depending on the approximation of the HJ solution) transformations to the original

coordinates of interest. Advantages of such a rectification process are evident in obtaining the
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solution to the TPBVP. We admit that the solution procedure to solve the HJ equation through the

use of Galerkin type approximation may not be the best method, and other intensive methods can

be used to solve the PDE within our domain of interest to obtain a more accurate solution. How-

ever, we have shown that adding basis functions and adjusting the decomposition of the domain

allows us to reduce the error in the approximation, thereby empirically proving a convergence of

our methodology. This indicates that with sufficient computational power and efficient methods,

the HJ PDE can be solved to better accuracy. While this is a numerical issue, the fundamentals of

the HJ theory outlined in this dissertation can be utilized to its full potential to obtain approximate

semi-analytical solutions to a broad class of dynamical systems.
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5. CONCLUDING REMARKS

This dissertation represents a first step to understanding the geometry and dynamics of complex

motions. It encompasses a wide array of dynamical systems and their treatment through a broad

spectrum of qualitative, analytic and semi-analytic methods. This work investigates a modern ap-

proach to mechanics, to address questions concerning approximation, symmetry and reduction,

symplectic structure, relative equilibria, canonical transformations and rectification, bifurcations

and chaos, and associated nonlinear stability problems. The methodologies developed naturally

relate to problems of current and future interests, such as rigid body attitude motions, and multi-

body dynamical environments. The geometric, analytic, and semi-analytic framework adopted here

should help understand and explore some of the deep and exciting questions in astrodynamics. A

number of analysis tools are presented in this investigation, including the development of qual-

itative tools, including the Binet-Poincaré surface of sections, stroboscopic maps, energy-based

approaches to quantify internal resonances, momentum maps, velocity surfaces, etc., analytical

treatment of dynamical systems for slow and fast-rotating rigid bodies through averaging tech-

niques, semi-analytic tools for rectification of dynamical systems and their extensions to optimal

control problems. While this investigation represents only part of a larger, ongoing research effort,

it is intended to offer practical approaches and insightful results for an expansive treatment of gen-

eral dynamical systems. The results of this work are summarized and recommendations for future

work are suggested.

5.1 Investigation Summary

Qualitative treatment of dynamical systems: The qualitative treatment of dynamical systems

utilizes tools of dynamical systems theory to obtain geometric insights into the nature of motions

of a dynamical system. Particularly, two complex dynamical systems are considered: the attitude

motion of a rigid body and the planar circular restricted three-body problem. These dynamical sys-

tems exhibit an extensive range of dynamical behavior, such as periodic solutions, quasi-periodic
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solutions, parametric bifurcations, and chaotic motions.

A comprehensive exploration of the motions of particles under the framework of the planar

circular restricted three-body problem led to the identification and characterization of complex

dynamical structures in the Earth-Moon-Satellite multi-body system. The concept of momentum

maps is introduced to interpret global dynamics of flow in dynamical systems, particularly in the

vicinity of the invariant manifolds. Through the use of the inside-out topology introduced in this

work, the structure of the invariant manifolds is examined in the Earth and Moon neighborhood

in an effort to search for efficient direct transfers from the Earth to the Moon. The efficacy of the

momentum maps is demonstrated by developing a catalog of direct transfers in the Cislunar region.

A geometric analysis tool based on the velocity surfaces at different isoenergetic levels of the three-

body dynamical system is developed that enables the identification of transport opportunities to

Lyapunov orbits with little computational effort.

The attitude motion of a rigid body is considered under the framework of four variations of

the dynamical model: the planar pitch dynamics of a rigid body in circular orbit, the planar pitch

dynamics in a Keplerian orbit, the full (roll-pitch-yaw) motion of a rigid body in circular orbit,

and the full dynamics of a rigid body in an eccentric orbit. Parametric dependencies influence the

dynamical behavior, such as the moment of inertia and the eccentricity of the orbital motion. The

dynamical system is described using classical Rodrigues parameters to exploit the pure algebraic

form of the resulting equations of motion. The governing equations of roll and yaw vanish with

zero initial conditions. This is identified in this work as a one-way decoupling between the pitch

and roll-yaw motions. Such a decoupling allows for the study of pitch motions exclusively. The

planar pitch motion of a rigid body in a circular orbit is completely reduced by obtaining an integral

of motion. The existence of an integral of motion results in a co-dimension one sub-manifold of

the phase space, using which an Eigenvalue analysis gives the analytical limit for motion along the

separatrix, thus furnishing the boundary between oscillatory and tumbling motions. The inclusion

of eccentricity introduces an external forcing term, which is studied through the use of bifurcation

diagrams and stroboscopic maps depending on the eccentricity parameter. For the full dynamical
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system, the stability of oscillations about an equilibrium point is investigated. Leveraging the con-

servation principles of gravity-gradient torques, a method of energy balance is used to determine

the regions of high energy exchange in the inertia parameter space for a rigid body in a circular

orbit. The apparent instability observed in the Lagrange region of the inertia parameter space is

shown to be an exchange of energy between the pitch and roll-yaw motions. A method of visu-

alizing the rigid body motion in torqued environments is also developed through the construction

of an osculating polhode. A new metric to quantify the coupling between the state variables of

pitch and roll-yaw motions by utilizing the information in the state transition matrix is also de-

veloped. While this metric can be applied to any dynamical system, for the case of a rigid body,

this coupling is directly linked to the energy exchange between the pitch and roll-yaw motions.

Noting that the gravity-gradient torque developed for the analysis of rigid body motion is an ap-

proximation to second order in the moment of inertia, a higher order gravity-gradient potential is

developed and investigated for relative equilibria for a cuboidal configuration of the rigid body.

The roll-pitch-yaw rigid body motion in an eccentric orbit is investigated from the point of view

of the Serret-Andoyer variables. Certain simplifications are introduced that aid in the reduction of

the problem and the identification of equilibrium configurations for a triaxial rigid body.

Analytic treatment of dynamical systems: The attitude motion of a rigid body is exclusively

studied from an analytic perspective. Two broad cases for the rigid body motion are considered: the

case of a fast-rotating rigid body, and that of a slow-rotating rigid body. The former case follows the

development of a dynamical system targeted at studying the long-term dynamics of a rigid body,

and is comparable to that of the motion of artificial satellites. The latter case is studied specifically

to treat the attitude motion of large celestial bodies that rotate slowly as compared to artificial

satellites. Such rigid bodies exhibit an external resonant commensurability between the spin and

orbital motion. In this work, the Hamiltonian formulation of the attitude motion of a rigid body

in a Keplerian orbit has been developed. This formulation has been done in the Serret-Andoyer

variables. A Lie-series perturbation approach is used to average out the short period terms, and the

averaged Hamiltonian up to fourth-order is obtained. The short period terms for the fast-rotating
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rigid body dynamical system are associated with the coordinate corresponding with the angular

momentum conjugate momenta, and that for the slow-rotating rigid body dynamical system is

associated with the orbital mean anomaly. The extended phase-space mechanics is introduced to

preserve the constant nature of the Hamiltonian and treat the external periodic forcing introduced

due to the eccentricity.

Certain simplifying assumptions (like axisymmetric oblate rigid body assumption) enable us

to reduce the dynamical system so that it can be treated from an analytic viewpoint and obtain

physical insights into the long-term motions of the rigid body, such as relative equilibria, and

critical inclinations. It is noticed that the averaged motions of a rigid body in a circular orbit

may behave as if they were in a torque-free motion at the critical inclinations. These effects of

critical inclinations however, disappear at fourth-order. A systematic procedure to treat slow-

rotating rigid bodies in eccentric orbits has also been presented. Several interesting insights have

been discussed, including the development of the resonant Hamiltonian, the existence of resonant

commensurabilities and relative equilibria for commensurable frequencies of spin-orbit coupling.

The effects of the nodal and apsidal precession are introduced in the Hamiltonian to facilitate a one-

way coupling between the orbital and attitude variables. The evolution of the relative equilibria

under the influence of these precession terms is studied. A major contribution of this work is the

development of a theory for lunar librations under the framework of the simplified Hamiltonian

developed in this dissertation. The three primary modes of free lunar librations of the moon:

the longitudinal mode (with frequency of 2.9 years), the longitudinal mode (with frequency of

81 years), and the wobble mode (with frequency of 75 years) are studied. Their frequencies are

obtained with conscientious agreements with experimental data, thereby bridging the gap between

analytic and experimental results.

Semi-analytic treatment of dynamical systems: In this investigation, both numerical and

analytic methods are shown to rely heavily on the manner in which they are described: i.e., the

coordinate system used. Consequently, a judicious choice of the coordinate system dramatically

simplifies the problem at hand. Through the use of Hamilton-Jacobi theory and recent advances
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in approximation theory, this work presents a systematic procedure to mathematically obtain the

best choice of coordinates that simplify the evolution of a dynamical system through rectification.

The uniqueness of the solution is shown to be the realization of an analytical expression for the

generating function from the use of numerical approximation problem. Another advantage of the

proposed method is that additional perturbations can be added and their corresponding generating

functions can be solved for independently thus equipping us with the freedom to parallelize the

process for computational efficiency. The functional form of the generating function also admits

the formulation of a semi-analytical state transition matrix.

This work can be broadly divided into three objectives: the treatment of Hamiltonian dynamical

systems, treatment of non-conservative Hamiltonian systems, and applications to optimal control

and two-point boundary value solutions. The main problem in artificial satellite theory is consid-

ered as an example to demonstrate the utility of the proposed method for Hamiltonian systems. It

is shown through multiple cases that the canonical perturbations’ method developed in this work

performs well up to a certain tolerance. Because the error in the approximated generating function

is known exactly, these errors are reduced by appropriately resizing the domain and by expand-

ing the basis-function dictionary. Utilizing the extended phase-space mechanics from previous

chapters, a methodology to Hamiltonianize non-Hamiltonian dynamical systems is presented. It is

legitimized through the treatment of many dynamical systems, like the Duffing equation, the van

der Pol equation, the simple harmonic oscillator with cubic damping, and others. The rectification

methodology is then applied to solve the two-point boundary value problem for the van der Pol

equation and the attitude stabilization problem in finite time. The fundamentals of the Hamilton-

Jacobi theory outlined in this dissertation can be utilized to its full potential to obtain approximate

semi-analytical solutions to a broad class of dynamical systems.

5.2 Recommendations for future work

As is the case with many research endeavors, options for future work are numerous. A few

areas of interest that could serve to enhance and continue the investigation are as follows. The

development of dynamical models for the attitude motion of slow and fast rotating rigid bodies,

271



as well as multi-body dynamics, has applications in investigating the long-term evolution of space

debris in the earth and the cislunar environment. Of particular interest is to potentially use infor-

mation from Cassini’s states for synchronous motions, and to develop disposal strategies for spent

space objects.

Another interesting application of our work is towards the investigation of resonant motions of

celestial bodies exhibiting chaotic motions, such as the motion of Hyperion. Furthermore, the para-

metric study into the nature of oscillations for pre and post impact effects and momentum transfer

dynamics can be examined. This can be extensively used to study feasibility of the upcoming

Double Asteroid Redirection Test (DART) mission by NASA.

Finally, one could utilize the semi-analytic methodology developed in this work towards a mul-

titude of applications. Since the Hamilton-Jacobi theory serves as a single overarching principle

to many sub-disciplines, such as in optimal control and differential games through the Hamilton-

Jacobi-Bellman and Hamilton-Jacobi-Isaac equations, or in general relativity through Hamilton-

Jacobi-Einstein equations, or in light propagation and optics through the Eikonal equations, and

many more. Extension of the canonical perturbation methods developed in this work can be used

to treat large scale optimal control problems, evaluate optimality of neighboring solutions, ap-

plications to land, air, and space vehicles, self-driving mechanics, motion planning, fleet dynam-

ics, network delays, etc. Game theoretic applications can be investigated through the use of the

Hamilton-Jacobi Isaacs equation, with a particular focus on human-machine interactions, predic-

tion and mitigation strategies, etc. The semi-analytic methods for rectification and averaging de-

veloped in this paper are envisioned to enforce Arnold’s observation: The technique of generating

functions for canonical transformations, developed by Hamilton and Jacobi, is the most powerful

method available for integrating the differential equations of dynamics.
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