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 ABSTRACT 

This dissertation explored an uncharted research territory, fusion of 

nonmotorized traffic data for estimating reliable nonmotorized demand measures. The 

research was divided into three sequential stages. The first stage involved developing 

and applying a guideline to process and homogenize available nonmotorized data 

sources to estimate demand within a specified scope. Multiple data sources were utilized 

to develop five bike demand models to estimate annual average daily bike volume at 

intersections in Austin. Following an in-depth discussion of both nonmotorized traffic 

data and fusion characteristics, the second stage proposed a decision fusion framework 

divided into two broad categories: fusion without benchmark data and fusion with 

benchmark data. Under the first category, four fusion algorithms, including a novel 

approach, were investigated. Under the second category, a robust state-of-the-art 

statistical tool, the Dempster Shafer (DST) method, was endorsed. Dempster Shafer with 

credibility context, proposed by this study, offered a unique way to incorporate 

subjective judgment of the experts in the mathematical fusion formulation. The third 

stage was focused on applying the fusion framework on both actual and simulated data 

to demonstrate the efficacy of the fusion algorithms. The findings illustrated that the 

novel weighted voting fusion generated a fused estimate of comparable accuracy to the 

best source estimate when applied to four demand sources. However, when five source 

fusion was conducted, the accuracy decreased. When applied to simulated data of 

multiple scenarios, the DST method outperformed the individual source estimate in most 

cases. Based on the data, categorization and discounts, the change in accuracy varied 
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from -10% to 7%. Therefore, fusion exhibited the risk of obtaining worse-off results. 

Moreover, the proposed DST approach outperformed the traditional approach in most 

cases (above 80%), underscoring the merit of incorporating subjective judgment. The 

fusion considering knowledge and context is expected to contribute to the field of 

decision fusion. While the framework offered an additional option of analysis, it is up to 

the analyst or practitioner to consider and decide the course of option in adopting fusion 

endeavors given the trade-off between effort and the change in confidence, coverage, 

and accuracy of the outcomes. 
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1. INTRODUCTION AND MOTIVATION  

 Background & Motivation 

Recognizing the wide range of social, environmental, economic, health, and road 

safety-related benefits of increased nonmotorized mode share, researchers, policy 

makers, and health advocates worldwide are working to create bicycling- and walking-

friendly communities and reduce automobile dependency. Despite many efforts aimed at 

promoting bike and walk activity in the United States to create healthy, sustainable, and 

equitable communities, the quest to reach the envisioned nonmotorized mode share is 

still an uphill battle in many cities. Statistics based on the 2017 National Household 

Travel Survey (NHTS) showed that only around 12% of the total daily trips are made by 

walking and about 1% by biking (Buehler, 2019). Compared with other countries, 

especially European countries where nonmotorized mode share is as high as 40%, U.S. 

cities seeking to promote walking and bicycling activity still have a long way to go 

(Handy, 2019). Nonetheless, pedestrians and bicyclists account for a disproportionate 

share of the total fatal and serious injury crashes. In the United States, these two modes 

accounted for around 19% of the total US traffic fatalities in 2019 (The National 

Highway Traffic Safety Administration [NHTSA], 2020).  

Acknowledging the exigency of the issue, safety advocates in multiple areas are 

persistent in their efforts to develop evidence-based, data-driven strategies to reduce 

nonmotorized crashes. Although the literature is replete with studies evaluating various 
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aspects of nonmotorized safety, the majority suffer from a major limitation—the absence 

of nonmotorized demand or exposure data (Turner et al., 2017). The incorporation of 

robust and reliable exposure estimates is instrumental to the orchestration of an 

efficacious crash analysis for nonmotorized traffic (Fitzpatrick et al., 2018; Turner et al., 

2017). Besides safety analysis, the lack of reliable and robust exposure or demand data 

also limits the planner’s ability to fully comprehend as well as advocate the enormous 

potential of building/improving infrastructures within the community (Gosse and 

Clarens, 2014).  

The existing approaches of estimating demand or exposure, be it through 

observed counts, models, or crowdsourced data, exhibit limitations in terms of spatial, 

temporal, or population representation, or often overall reliability. The observed volume 

most often falls short in terms of spatial and temporal coverage issues. On the other 

hand, selecting a modeling approach often warrants a tradeoff consideration in terms of 

complexity or resource requirement (time, budget, staff, data, etc.) and accuracy or 

reliability of estimation (Turner et al., 2017). Over the last few years, researchers and 

transport planners have steered their attention towards nonmotorized activity data from 

emerging technology-based methods such as GPS-enabled smartphone apps, wearable 

techs, interactive websites, bike share systems etc., owing to the ubiquitous 

advancements in technology. These crowdsourced or big data sources, characterized by 

their volume, velocity, variety, value and veracity (Zhang et al., 2017), offer great 

https://www.sciencedirect.com/science/article/pii/S0001457519317968?dgcid=rss_sd_all#bib0155
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potential to understand the detailed spatiotemporal travel pattern of nonmotorized traffic 

on an unprecedented level of detail (Misra et al., 2014). However, they are often blamed 

for lacking quality assurance and representativeness (Goodchild & Li, 2012; Jackson et 

al., 2013) and are considered inadequate without validation from an actual location count 

(Jestico et al., 2016). Therefore, rather than recognizing these activity data as a reliable 

exposure measure, researchers have sidelined the sources as a potential proxy solution 

(Saha et al., 2018) to provide complementary information regarding nonmotorized 

activity in an area. 

The fact that no individual data source or model is sufficiently adequate drives 

the research question of whether combining or integrating multiple data sources, or in 

simple terms creating a data fusion, can produce a better estimate of nonmotorized 

demand or exposure. Researchers in the motorized traffic domain, recognizing that no 

single data source can provide enough comprehensive and rich information to develop 

good transport models (Picornell and Willumsen, 2016), are rapidly progressing their 

utilization of the fusion method. However, despite the suggested efficacy of fusion for 

motorized traffic flow or demand (Antoniou et al., 2011; Guo et al., 2018), the fusion of 

nonmotorized traffic data is still uncharted territory. A fusion-based technique, which 

offers multiple benefits, including increased reliability, robustness, completeness, 

coverage, and often cost-effectiveness (Bachmann et al., 2013, Ince et al., 2012), when 
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rightly adapted, may prove to be an effective tool for nonmotorized volume/exposure 

estimation.   

 

 Fusion, Nonmotorized Traffic Data and Context  

The concept of data fusion is well-established and researchers across myriad 

disciplines have acknowledged its advantages to obtain comprehensive and rich 

information over individual data sources (Wu et al., 2015; Lu et al., 2015, Meng et al., 

2017).  The application of fusion is still an emergent field in transportation system 

research. It has been applied in Intelligent Transportation Systems (Dailey et al., 1996), 

travel time estimation (Martí, 2016), accident analysis (Sohn and Lee 2003), origin-

destination estimation (Zhu et al., 2016), etc. The ultimate objective of fusion is to 

increase the quality and decrease the estimation error rate compared to the individual 

sources. The above discussion of existing approaches of nonmotorized demand 

estimation along with their limitations underscored the promising potential of the fusion 

approach, which, when rightly adapted, can combine strengths and decrease 

uncertainties associated with individual sources in order to provide a better 

understanding of the trend and pattern of nonmotorized activity 

There is an abundance of research investigating numerous frameworks of data 

combination or fusion. However, the first and foremost step of selecting an appropriate 

fusion method is to discern the inherent characteristics and attributes associated with the 
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data and information. Undoubtedly, the selection, customization, and application of 

fusion methods for combining nonmotorized data sources requires a profound 

understanding of the inherent characteristics of the data sources and situations. The 

process also necessitates comprehending the characterization and application of the 

existing fusion mechanisms. Even though fusion algorithms are being applied in 

multiple transportation areas, the discussion of aspects or taxonomies of fusion, 

especially from the transportation data perspective, is yet to be fully addressed. The 

characteristics of nonmotorized traffic data and commonly used fusion techniques would 

be carefully examined in the literature review (Chapter 2 and 3) in order to seek a 

generalizable fusion solution for nonmotorized demand computation.  In the following 

sections, only a brief discussion on the features of nonmotorized data and fusion was 

outlined to provide a rationale for the research design.  

The first issue pertinent to nonmotorized traffic data sources is they are seldom at 

the same resolution (spatial, temporal, or population) and are most often generated in 

different data formats. For example, bike-sharing data only represent the bike activity of 

the system users and are generated in an origin-destination (OD) matrix (station to 

station) format. Thus, to obtain intersection-level volume from this source, the raw data 

must go through trip assignment steps in addition to adjustments for population-level 

representation. This requirement warrants processing of individual sources to reach a 

homogenized representation before any fusion effort. The processing steps and 
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complexity depend on the format of the raw data and the scope of analysis. Another 

issue of traditional nonmotorized activity data stems from the limited sample size. Data 

collection effort (both household survey and sensor-based location data) requires 

resources (budget and time). It is only possible to collect data for a limited number of 

locations, unlike motorized traffic data. These key issues, together with some other 

characteristics (discussed in Chapter 2), are likely to dictate the process of selecting a 

fusion framework for nonmotorized data. For example, the limited data availability is 

likely to inhibit the choice of some mechanisms such as artificial intelligence, machine 

learning, ensemble and deep learning, which are sensitive to sample size. These issues 

called for eliciting appropriate fusion methods that can adapt and accommodate the 

characteristics of the nonmotorized traffic data sources considering the constraints and 

add value to practical application. 

The concept of context-aware fusion has been introduced within the perspective 

of sensor fusion, mainly in the computer science research domain, acknowledging the 

need for sensing and managing contextual information to improve fusion outcomes (Wu, 

2003). A wide range of methods had been applied to handle context in fusion, where the 

contexts were interpreted from various standpoints. Dey and Abowd defined context as 

“any information that can be used to characterize the situation of an entity. An entity is a 

person, place, or object that is considered relevant to the interaction between a user and 

an application, including the user and application themselves” (Dey and Abowd, 2000). 
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Dey also noted that “while most people tacitly understand what context is, they find it 

hard to elucidate” (Dey, 2001). The process of discerning context for traditional context-

aware research can be based on automatically acquired information or be done manually. 

In real-world applications, context detection or sensing mostly relies on manual input 

(rather than an automated process) and requires a profound understanding of the data 

dynamics and inherent situations (Dey and Abowd, 2000). 

The unique characteristics of nonmotorized activities drive the research question 

of whether consideration of context, derived from subjective judgment, can further 

improve the performance of the fusion algorithm for nonmotorized traffic data. For 

example, walk and bike activity are extremely sensitive to time of day, day of week or 

month of year, in short temporal differences, and vary significantly with geographic 

locations. The Traffic Monitoring Guide by the Federal Highway Administration (2016) 

noted that the spatiotemporal variation of nonmotorized traffic is very location-specific 

which cannot be generalized. This issue unveiled the potential of incorporating 

knowledge about the situational context for nonmotorized volume information to 

enhance and improve the fusion approach. However, to the author's knowledge, no 

research within the decision fusion domain has incorporated situational knowledge or 

context (such as place or time), obtained from a subjective judgment, for refining the 

fusion algorithm.    
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 Research Scope and Objectives 

In light of this uncharted research territory, this dissertation endeavored to 

develop a fusion-based technique to combine multiple nonmotorized demand data. The 

objective was to explore, select, and customize fusion mechanisms that can 

accommodate the distinctive nature of the nonmotorized traffic activity data and/or 

model output, with an end goal of generating a better-quality demand estimate. To attain 

the objectives, the research was divided into three sequential stages.  

In the first stage, the available data sources representing nonmotorized activity 

were investigated due to two main issues: i) The spatial and temporal scale of the data 

sources vary widely ii) the crowdsourced data do not represent the actual nonmotorized 

activity in an area. Considering these issues, the research acknowledged the need for 

preprocessing or modeling individual sources to represent the nonmotorized activity in a 

homogeneous and policy-relevant estimate in terms of spatial, temporal and population 

scale. As a case study, available and relevant data sources for bicycle traffic for the city 

of Austin were investigated and processed. Discussing the plausible scope of analysis 

and recognizing the practical implication, this research had chosen annual average daily 

volume of nonmotorized traffic at the intersection level as the unit of demand.       

The second stage intended to develop a framework to fuse or combine estimates 

obtained from the first stage. Following an in-depth discussion of both nonmotorized 

traffic data and fusion characteristics, the dissertation proposed a decision fusion 
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framework that accounted for data availability conditions. The fusion algorithms of the 

framework were divided into two broad categories: fusion without benchmark data and 

fusion with benchmark data. Under the first category, four fusion algorithms, including a 

novel approach, were investigated. The algorithms were unanimity voting, plurality 

voting, simple majority voting and weighted voting based on interaction.  The last 

algorithm, a proposed approach, considered the pairwise interaction of the data sources 

to assign weightage on each decision before fusion -which boils down to the framework 

of weighted majority voting but without the ground truth information 

In an endeavor to develop a robust state-of-the-art statistical tool, the Dempster 

Shafer method was selected as a fusion algorithm when benchmark data is available. The 

method is a well-known generalization of the Bayesian framework, which can handle 

ignorance, conflict and inconsistency and was deemed suited for nonmotorized traffic 

data fusion. In addition to the basic Dempster Shafer method, the dissertation sought to 

explore if any corrections of extensions can be incorporated to improve the accuracy of 

the fusion task at hand.  In the process of creating a comprehensive understanding of the 

unique characteristics of the nonmotorized data, the researchers acknowledged that the 

nonmotorized traffic data are more likely to be highly conflicted and the accuracy of 

each data source or model may vary with locations. Contemplating the later 

characteristic as context, the dissertation proposed an approach, Dempster-Shafer fusion 

with context credibility, which can handle the spatial variability of individual estimates 
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(utilizing grey relation theory) to further improve the fusion outcome. The Dempster-

Shafer method was selected for this purpose considering to its ability to incorporate 

human subjectivity with mathematical probability for fusion.  

The third stage illustrated the application of the fusion framework for actual and 

simulated data. The application of the framework application on the simulated data was 

deemed specifically relevant as it intended to formulate the answer to the question of 

under what scenario the fusion methods are appropriate for the application. The 

numerical outcomes, comparing the performance of different algorithms, were expected 

to furnish a more intuitive explanation regarding how the fusion algorithm performs 

under different scenarios or circumstances. 

 Dissertation Organization 

The dissertation was organized into seven chapters under four broad parts: 

Introduction, Review of Literature, From Information to Knowledge and Application & 

Conclusion. The chapters under these parts are  

• Introduction,  

o Chapter 1 outlined the motivation and objectives of this dissertation 

• Review of Literature, 

o Chapter 2 discussed elements, characteristics, and application of the 

nonmotorized traffic data along with the characterization of demand 

estimation process.  
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o Chapter 3 explained the aspects and characterization of fusion, leading to the 

selection of the fusion framework for this dissertation 

• From Information to Knowledge 

o Chapter 4 illustrated the design of a guideline for homogenizing multiple data 

sources under various scopes of estimation and then discussed the mechanism 

of processing or modeling multiple bike activity-related data to estimate 

demand in the study area 

o Chapter 5 presented the mathematical formulation of the algorithms utilized 

in this dissertation   

• Application & Conclusion 

o Section 6 demonstrated the application of the fusion framework for both 

actual and simulated data under different scenarios 

o Chapter 7 discussed the contribution of the research, highlighting the role of 

the fused estimates in the safety analysis. The limitations and future scopes of 

the study were also discussed 
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2. LITERATURE REVIEW: NONMOTORIZED TRAFFIC DATA 

The literature review was divided into two main parts. The first part (chapter 2) 

discussed the elements, characteristics, and application of the nonmotorized traffic data. 

In order to keep the review in focus, it concentrated on nonmotorized traffic 

demand/exposure analysis in the later parts (chapter 3).    

More specifically, this chapter reviewed literature focusing on four aspects of 

nonmotorized transportation. The first section discussed the absence of and need for reliable 

exposure or demand data highlighting the most frequently used exposure measures and their 

limitations. The second section explored the features and application of different 

nonmotorized data sources under two broad categorizations. The third section presented the 

characterization of nonmotorized data sources from a demand analysis perspective. The 

section highlighted how nonmotorized traffic activity and model and monitoring processes 

are unique, elucidating the scopes of demand estimation.      

 Nonmotorized Demand or Exposure: A Missing Piece of Puzzle  

Theoretically, exposure can be defined as potential opportunities for crash 

occurrence (Turner et al., 2017). According to Greene-Roesel et al. (2007) exposure can 

be defined as “contact or amount of contact with potentially harmful situation.”. 

However, in practice, a wide array of exposure measures has been used for crash 

analysis such as Pedestrian or bicyclist volume, sum of entering nonmotorized flows at 
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intersection, total travel distance, in person-miles of travel etc. (Turner et al., 2017). This 

research focused on nonmotorized demand at intersection as exposure measure.  

Data on bicycle and pedestrian demand or exposure are of utmost value to 

promote bicycling- and walking-friendly policies, evaluate the related efforts and discern 

any crash patterns. Without such data, it is difficult to provide a reliable answer to the 

critical questions of how many people actually use current pedestrian or bicycle facilities 

and how many will potentially use a new or improved facility if one is built. Safety 

professionals need location-based volume data to accurately discern the trend in crash 

rates, identify high-risk locations, and understand the crash causation. The lack of 

reliable and robust exposure data limits the planners' ability to fully comprehend as well 

as advocate the enormous potential of building/improving infrastructures and measure 

pedestrian and bicyclist risks (Gosse and Clarens, 2014). However, information related 

to demand or exposure is most often missing or available in limited settings.   

An ideal exposure measure for crash analysis would be pedestrian or bike 

activity count at all facility locations across the study area, which is not feasible given 

the resource constraints. Only a few studies have utilized bicycle and pedestrian count 

data, obtained from both signalized and unsignalized intersections, as crash exposure 

measures (Heydari et al., 2017; Strauss et al., 2014). Besides, Wang and Kockelman 

(2013) used walk-miles traveled as an exposure measure, estimated using household 

travel survey data and least squares regression. Vehicle miles traveled was another 
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exposure measure used by studies for nonmotorized crash analysis (Nashad et al., 2016; 

Cai et al., 2017). Since it is often difficult to quantify the number of pedestrian/bicyclist 

miles of travel and motorized vehicle miles of travel at a zonal level, researchers 

focusing on the nonmotorized crash have often relied on proxy variables or surrogate 

measures such as population density (LaScala et al., 2000; Narayanamoorthy et al., 

2013), income (Loukaitou-Sideris et al., 2007), activity intensity characteristics (Mitra 

and Washington, 2012), road network length (Kamel et al., 2019), and so forth. Recent 

studies have also noted that Strava data (a fitness tracking app monitoring walking and 

biking activity of individuals) can be a reasonable proxy of the total bicycle volume in 

certain circumstances (Sanders et al., 2017; Jestico et al., 2016). Most of these studies 

have emphasized the inadequacy of proxy variables to represent nonmotorized activity, 

highlighting the need for reliable exposure measures.  

 A fairly recent study conducted by FHWA (Turner et al., 2018) had discussed 

some modeling-based methodologies to evaluate or forecast demand at both facility level 

(intersection or street segment) or zonal (TAZ, Block group, etc.) level. Examples of 

such models are direct (facility) demand models, regional travel demand models (e.g., 

trip-based models and activity-based models), trip generation and flow models, 

geographical information system (GIS)–based models, etc. (Turner et al., 2018). Among 

these models, the direct (facility) demand model is the most widely utilized modeling 

approach in the area of pedestrian/bicyclist safety, especially when resources are limited 
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(e.g., input data requirements, technical complexity, budget considerations due to costly 

model development and maintenance). The particular modeling approach has been used 

to estimate exposure for all intersections in the study area for both pedestrian and bicycle 

crash analysis (Munira et al., 2020; Hasani et al., 2019). However, as noted by the 

researchers, although the approach makes great use of available count data at limited 

locations and of their surrounding features to estimate volume at locations without 

counts, it is limited in terms of capturing the underlying behaviors and travel patterns 

(Munira et al., 2020) 

Although not particularly used for developing crash exposure measures, 

nonmotorized activity models have been developed within the settings of a four-step 

modeling framework (Clifton et al., 2008; Kuzmyak et al., 2014). However, as indicated 

by the studies, given the coarse level of spatial analysis structure in the first three steps, 

the trip-based models exhibit limitations in capturing nonmotorized volume at the fine-

grained unit (such as intersection) (Schneider et al. 2009; Griswold et al., 2011). Turner 

et al. (2017) have also noted that the selection of a modeling approach often demands a 

tradeoff consideration in terms of complexity or resource requirement (time, budget, 

staff, data, etc.) and accuracy or reliability of estimation.   

 

 Nonmotorized Data Sources 
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Methods for estimating nonmotorized demand call for a comprehensive 

discussion of the data sources, used directly in computing volume or facilitating demand 

models, including their characteristics, strength and limitation. For ease of discussion, 

sources were divided into two broad categories: traditional and emerging data sources. 

While the applications of the data sources were briefly outlined here, more detail on the 

processing methods for demand analysis was reported in section 2.3.2 under a broader 

categorization.      

 Traditional data sources 

The discussion on traditional data for nonmotorized traffic focused on on-site 

data collection efforts, such as short and continuous count, and household surveys, 

including National Household Travel Survey and American Community Survey. 

The most traditional approach for collecting bicycle and pedestrian data is 

counting traffic at selected locations (intersection, mid-block and trails) in a 

transportation network. Traditional on-site data collection efforts can be categorized into 

two types: short count (such as peak/off-peak, 12 hours, 48 hours, 7 days, and so forth) 

and continuous count. Often, transportation agencies quantify nonmotorized activity 

through manual short counts performed by staff and volunteers at sites. In recent times, 

pedestrian and bicyclist data are mostly collected using automated counting technologies 

such as pneumatic tubes, inductive loops, thermal cameras, infrared sensors 

(active/passive), magnetometers, piezoelectric devices, radar sensors, and video imaging 
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(Levinson et al., 2016; Nordback et al., 2016; Ryus et al., 2014). A recent study (Hasani 

et al., 2019) adopted advanced video processing algorithms to automatically count 

pedestrians and bicyclists in the San Diego area. 

Generally, the short count data collection method is designed to collect data 

during typical weekdays for a minimum of 24 hours period of time in the selected 

locations. The duration of short-term observation may vary (such as peak/off peak, 12 

hours, 48 hours, 7 days) based on the study objective and their available resources. For 

example, Tabeshian and Kattan (2014) gathered bicycle and pedestrian counts for three 

different durations (7 a.m. to 9 a.m., 11 a.m. to 1 p.m., and 4 p.m. to 6 p.m.) in different 

months. However, the short-period count data are affected by duration, time of week, 

time of day, month, and season (Hankey et al., 2014; Nordback et al., 2013). Even in the 

same region, nonmotorized activity may vary dramatically by location, time, and 

weather conditions. Thus, most often, nonmotorized activity in a location is represented 

using an annual average estimate which accounts for daily, weekly, and seasonal 

variation. The temporal variation can be measured using data from the continuous 

counter installed in a limited number of locations. For example, Munira and Sener 

(2020) utilized continuous count data at 11 locations for computing adjustment factors 

which were used to scale 24-hour short count data to estimate annual average daily 

bicycle (AADB) traffic. Hankey et al. (2017) collected continuous count data for 1 year 

at four sites and 1-week count data at 97 sites to estimate annual average daily volume. 
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The Federal Highway Administration’s (2016) Traffic Monitoring Guide guides 

systematic monitoring of nonmotorized traffic using a combination of permanent and 

short-duration count sites. 

The key limitation of the onsite count data is limited temporal and spatial 

coverages. Given nonmotorized traffic exhibit extensive spatial and temporal variation 

(discussed in section 2.3.1), count from one location at a given time is not representative 

of the count at other, even nearby, location. However, it is not cost-effective to install 

automatic sensors at every location in a city to monitor continuous pedestrian and 

bicycle volume data. Apart from the limited spatial and temporal coverages, the 

limitation of the onsite count data also stems from the traffic monitoring technologies 

devices. Benz et al. (2013) have highlighted the technological challenges associated with 

the nonmotorized traffic monitoring process. The fact that pedestrians and bicyclists are 

less confined to fixed lanes or paths affects the accuracy of the sensor. Moreover, when 

they (pedestrians and bicyclists) travel in closely-spaced groups, sensors are often unable 

to differentiate the activity type.  

 Household surveys are another way to obtain nonmotorized activity-related data.  

The national-level survey such as the National Household Transportation Survey 

(NHTS) and the American Community Survey (ACS) provide insights into 

nonmotorized travel activity at the individual and zonal level. While ACS focuses on 
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work-related transportation activity (i.e., walking and biking), NHTS gathers activity 

data for all types of trips.  

The NHTS survey data provides a large national sample to illustrate individual 

walking and biking travel behavior and variations by demographic and regional factors, 

including age, gender, race, income, geographical region of the respondents (Santos et 

al., 2011). It is an excellent source for understanding how, why, and what modes of 

individual travel activity in the United States. Moreover, the NHTS Add-on Program 

provides geocoded O-D data for all trips and modes, including transit, walk, and bike. 

However, the survey involving travel diaries are expensive to administer and often 

suffers from the issue of relatively small sample sizes (National Household Travel 

Survey, 2018) 

On the other hand, the ACS data provides annual, publicly available information 

on walk and bike work trips along with social, economic, housing, and demographic 

characteristics of America’s communities at an aggregated geographic level. The survey 

data is a great source to evaluate changes in work-related walking and biking at various 

geographic units (Whitfield et al., 2020).  

Both NHTS and ACS, representative of national estimates, involve systematic 

data collection efforts geared to be used in travel demand models for performance 

measures, project prioritization etc. These data allow demand analysts to understand 

human travel behavior along with their motivations, choice, and attitudes, where big data 
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sources fall short (Clifton et al., 2004, Whitfield et al., 2020). Data from NHTS can be 

used in computing various parameters of the demand model such as trip-making 

characteristics, mode choices, vehicle ownership, trip lengths by purpose etc. The survey 

data can also be utilized to calibrate and validate travel demand models (National 

Household Travel Survey, 2018). On the other hand, the census data can be used to 

support multiple components of travel demand models, such as trip generation, trip 

distribution, mode choice, traffic assignment, demographic and auto ownership models, 

etc. (National Academies of Sciences, Engineering, and Medicine, 2007).  

However, both of these data collection efforts require significant resources (time, 

budget, staff). Moreover, although both NHTS and ACS data are useful in understanding 

active travel trends and facilitating relevant models, the use of these data for a 

comprehensive evaluation of walk and bike activity is limited, meaning the data cannot 

be directly and individually used to estimate nonmotorized travel demand at a specific 

location.  

 Emerging data sources  

The limitations of traditional data collection methodologies have steered the 

attention of the researchers and transport planners towards emerging technology-based 

methods (or big data) such as GPS-enabled smartphone apps, wearable techs, interactive 

websites, bike share systems etc. These emerging data sources bring great promises to 

illuminate human activities and transportation behaviors that were previously poorly 
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understood (Dill, 2009). To take advantage of the massive crowdsourced data generated 

daily from these sources, researchers endeavored to collect, manage and analyze data to 

understand patterns and monitor changes in nonmotorized activity. The use of high-

resolution crowdsourced data in transportation is expected to create a data-rich 

environment for nonmotorized researches in the future. The following section briefly 

discussed the four key sources: fitness apps data focusing on Strava data, bicycle sharing 

system data, GPS data from cellphones or other sophisticated devices data and Web 2.0 

application.  

Fitness phone apps, most often connected with wearable devices, record and sync 

physical activity-related data from which various aspects of the nonmotorized activity, 

both at individuals or regional level, can be derived. Given the prolific use of the fitness 

apps, researchers are acknowledging the promising potential of the app gleaned data to 

analyze walking and bicycle activity. In a study, Nielsen (2014) reported that around 

one-third of smartphone users use fitness apps, aided in part by wearable technologies 

such as smart watches and fitness bands. Among many crowdsourced data sources, 

Strava has been creating a huge dataset, gleaning user data from both pedestrians and 

bicyclists. Strava is one of the largest cycling fitness apps, having reported distance data 

of 8 billion miles from 48 million users across 195 countries in 2019 (Strava, 2019). 

Given the large number of users, a handful of researchers have investigated the use of 

Strava data sources to examine various issues of nonmotorized travel, including the 
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impact of the built environment and socio-demographic features on cycling behavior 

(Munira & Sener, 2020; Griffin & Jiao, 2015; Hochmair et al., 2019; Sun et al., 2017), 

accident risk (Saha et al., 2018; Sanders et al., 2017). A recent study utilized Strava data 

to estimate AADB in Texas (Dadashova et al., 2020). 

Bike share refers to a service that provides short-term access to bicycles for 

public use, often operating as part of the public transport system of a region (Macioszek 

et al., 2020). Shared bikes, including e-bikes, and scooters, have become an 

indispensable part of the transport system in many US cities. In 2019 alone, 136 million 

trips were made (National Association of City Transportation Officials, 2020). Over the 

past couple of years, several studies have investigated the bicycle-sharing flow and 

usage data and explored function, use, issues and capacity (Faghih-Imani et al., 2017; 

DeMaio, 2009; Frade & Ribeiro, 2015; Lin & Yang, 2011); optimization (Raviv et al., 

2013; Raviv, & Kolka, 2013); system prediction (Li & Zheng, 2019); association with 

demographic and built environment characteristics (Faghih-Imani et al., 2014; Rixey, 

2013; Krykewycz et al., 2010; Wang et al., 2012) etc. A recent study (Pogodzinska et al., 

2020) estimated the daily volume of bicycles using data from automatic counter loops 

bike-sharing systems in a city in Poland. The study indicated that the share of bike-

sharing users varies significantly among locations. The study concluded that in order to 

estimate bicycle volume using these sources, it is essential to perform control 

measurements to verify models and their potential applications in other areas.  
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Another source of nonmotorized activity data, especially bike, is GPS tracking 

smartphone apps which often use recruited volunteers for data collection. Such data has 

been used in an array of nonmotorized researches, including to explore route choice and 

length (Jackson et al., 2014; Shen et al., 2014; Hood et al., 2011), speed and travel time 

analysis (Strauss and Miranda-Moreno, 2017), riding experience (Blanc and Figliozzi, 

2016), inputs of estimating AADB (Strauss et al., 2015), etc.  

Owing to the rise of Location-Based Services (LBS) that logs data from variety 

sources including GPS, WiFi proximity, aGPS, Bluetooth proximity, and cellular 

triangulation for smart phones (StreeLight, 2017), different mobility analytic company, 

such as StreetLight, AirSage, started collecting traffic and travel-related data. Recently, 

StreetLight started to incorporate biking and walking activity data to get an 

understanding of the nonmotorized activity on streets, bikeways and other routes 

(StreetLight, 2019). The activity measure, known as StreetLight Index, represents a 

sample of bike or walk trips starting in, passing through, or ending in defined zones 

(Turner, 2020). Although the LBS data is expected to have more coverage than 

traditional crowdsourced data, including in rural areas (StreeLight, 2017), the strength 

and applicability of this dataset are yet to be fully discovered. A recent study compared 

bicyclist counts from 32 locations in eight cities in Texas with StreetLight data and 

reported promising correlations (Turner et al., 2020) 

https://www.streetlightdata.com/cellular-data-vs.-location-based-services-data-spatial-precision
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Web 2.0-based technology is another form of crowdsourced data that allows 

community-based input and collaboration to make them become a part of the pedestrian 

and bicycle planning decisions. Three key types of Web 2.0 applications, identified by 

Nash (2009), are: i) wikis, such as StreetsWiki and the ITE Pedestrian and Bicycle 

Committee wiki (only for ITE members), ii) personal information sharing such as blogs, 

YouTube or Twitter, and iii) mash-ups that allows combining information from several 

sources, such as Walkscore. The data gleaned from Web 2.0 application have been used 

in multiple areas including to improve area-wide bikeability scoring (Krykewycz et al., 

2011); explore people’s opinion on nonmotorized project alternatives (Misra et al., 

2014), investigate reported collisions, near misses, hazards and thefts related to walk and 

bike activity (Nelson et al., 2015), increase community awareness regarding biking and 

walking issue (Town of Blacksburg, 2015) etc. 

While the above discussion highlights the strength and use of the big or 

crowdsourced datasets, it is important to note that the data are not generated specifically 

for travel demand models or travel behavior analysis. These data have often been blamed 

for lacking quality assurance and representativeness (Goodchild & Li, 2012; Jackson et 

al., 2013) and are considered inadequate without validation from an actual location count 

(Jestico et al., 2016; Romanillos et al., 2016). For example, while the GPS-enabled 

fitness apps such as Strava mainly represent users who are oriented towards workout and 

fitness while bike share data provides insights into the overall shared bicycle demand 
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within a city. Despite the extensive coverage, Strava represents a small percentage of 

nonmotorized users. For example, 3%–9% of bicyclists on trails in Austin were found to 

use Strava (Griffin and Jiao, 2015). The proportion of Strava users vary by location, land 

use, nonmotorized facility type, etc. (Jestico et al., 2016; Munira & Sener, 2020). 

 

 The Journey from Data to Demand Estimation 

The previous section outlined the existing data sources representing 

nonmotorized traffic activity, highlighting that the data comes in different forms and for 

different purposes. It is clear that not all data can be used to compute facility-level 

demand or exposure. Moreover, some of them have to go through more processing steps 

than the others. Therefore, this section unfolded the journey from the data to the demand 

estimation, clarifying the unique characteristics of nonmotorized traffic data.  

 

 What Makes Nonmotorized Data Unique? 

The literature review regarding the application of fusion in the transportation 

domain (presented in section 3.7) would reveal numerous existing research utilizing 

multiple fusion approaches to combine heterogeneous traffic-related data. Hence, before 

embarking upon the research objectives, the first question was, why can’t we apply the 

motorized data fusion approaches for nonmotorized traffic? The answer would be that 

motorized traffic data is different from nonmotorized traffic data, which exhibits unique 
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characteristics. For instance, traffic flow theory, speed and travel time distribution play 

an important role in motorized traffic demand modeling tasks, which is not the case for 

nonmotorized traffic. Both walking and biking trips tend to be of short length and most 

often influenced by the immediate surrounding environment. Moreover, the route choice 

model or traffic assignment for bicycles is much more complex when compared with 

motorized vehicles as the bicycle route choice decision is associated with many factors 

(Ryu et al., 2017; Raith, 2009). The four key characteristics associated with 

nonmotorized traffic activity and data were discussed below. The first and third 

characteristics are generally associated with traditional and crowdsourced data, 

respectively.  

 Limited sample size 

One of the main differences between nonmotorized and motorized traffic activity 

monitoring is the scale of data collection (FHWA, 2016). Nonmotorized activity data, 

particularly the traditional ones, suffer from a limited sample size as agencies most often 

collect data from a small number of locations due to resource constraints. The temporal 

resolution of motorized traffic data also tends to be finer compared to nonmotorized 

traffic. For example, motorized traffic flow or demand analysis models often deal with 

continuous count data for a large number of locations, updated every few seconds to 

minutes (Bae, 2017). Whereas, number of locations for which actual on-site data are 

available for nonmotorized demand analysis is generally between 30 to 100 (Hasani et 
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al. (2019); Munira and Sener (2021); Chen et al. (2017) etc. Continuous count data are 

available in a more limited setting. A few fairly recent studies in the US have gathered 

nonmotorized data on a large scale for a region; for example, Griswold et al. (2019) 

gathered data for 1270 intersections in California and Hankey and Lindsey (2016) 

utilized data for 471 street segments in Minneapolis.  

In addition to on-site data, the sample size of nonmotorized transport users in the 

household surveys is also limited. For example, while building nonmotorized 

accessibility model for Arlington (Washington region) using regional travel survey data, 

researchers acknowledged the limited sample size for bike mode (69 bike trips) 

(Kuzmyak et al., 2014). The NHTS mode share also confirmed the sample size issue as 

according to the 2017 National Household Travel Survey, only around 12% of daily trips 

were made by walking, and about 1% were made by biking (Buehler, 2019). While 

conducting location-wise analysis, the sample size for biking or walking maybe even 

smaller than the national statistics.  The small sample size inhibits the choice of 

modeling approaches that demand a large amount of training data. It also puts 

constraints on the modeling process in multiple ways and negatively affects modeling 

results and conclusions (Munira and Sener, 2021).  

 Geographic and Temporal Variation 

Nonmotorized activity is associated with spatial and temporal variability.  Unlike 

motorized traffic, nonmotorized traffic demand depends greatly on rain, temperature, 
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sunshine, wind speed, time of day, day of week and month of the year (Aultman-Hall et 

al., 2009; Tin et al., 2012). Comprehensive understanding of the variability is often 

constrained by the limited availability of continuous count data (FHWA, 2016). A study 

in Seattle (WSDOT, 2014), provided an example of the temporal variation of bike traffic 

showing how bike traffic varies notably with the time of the day, day of week and 

season. Other studies have also asserted that the temporal pattern of nonmotorized traffic 

is somewhat different from car and truck traffic patterns (FHWA, 2016). 

Besides, the temporal pattern may not be even similar when bike and pedestrian 

activity are compared. In Minnesota, a study (Lindsey et al., 2013) comparing pedestrian 

and bicycle traffic patterns for 43 locations reported the notable variation to suggest that 

bike and walk traffic data should be separately gathered and modeled.   

Similar to temporal variation, the geographic variation of walk and bike activity 

is also noteworthy. Bike and walking activity vary significantly by location, street and 

path type (Aultman-Hall et al., 2009). Two adjacent locations in a region may have 

extremely different nonmotorized activity patterns. One example can be seen from a 

study by McBain & Caulfield (2018), who illustrated the frequency of trip origin for 

each bike-sharing station in Dublin showing that even at the closely located stations, the 

frequency of trips may vary dramatically.  

Drawing attention to the difference between motorized and nonmotorized traffic 

activity, in terms of spatio-temporal pattern, was necessary to underline the fact that the 
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traditional method of spatio-temporal interpolation, for estimating motorized traffic at 

locations with little or no traffic counts, cannot be directly applied to the nonmotorized 

context. For example, spatial interpolation for motorized traffic relies on the assumption 

that annual average daily traffic (AADT) at a location is a function of AADT at the 

surrounding sites (Bartier and Keller, 1996; Wang and Kockelman, 2009). Typically, the 

spatio-temporal interpolation method uses two types of neighboring data: temporal-

neighboring (data gathered from the same source and in the same time period but 

neighboring days) and pattern-neighboring (data gathered from the same source and in 

the same time period but in other days with similar daily flow variation patterns) (Shang 

et al., 2018). The typical neighboring mechanisms include average or weighted average 

method, historical average model, the K-Nearest Neighbor (KNN) model etc. (Shang et 

al., 2018). However, these methods are not practiced for nonmotorized traffic activity 

prediction, probably due to their geographic and temporal variability across the network 

in a region. One study (El Esawey, 2018) had addressed the unreliability of long-term 

counters, subjected to periodic malfunction, and attempted to impute missing data 

utilizing two approaches: using historical averages and incorporating weather and time-

specific variables. The study suggested the inappropriateness of using historical average 

data to compensate for missing counts and concluded the superiority of location-specific 

regression count models incorporating weather conditions in estimating bike traffic 

counts.  
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 Spatial variation of Deviation 

This characteristic is associated with crowdsourced data, which only represent a 

subpopulation of the total nonmotorized activity. In addition to representing only a part 

of total activity, crowdsourced data may also exhibit sampling bias by oversampling a 

certain population group. For example, fitness app-based data, such as Strava, tend to 

oversample male and fitness riders and undersample female, low incomes, older riders 

and novice bicyclists (Boss et al. 2018; Jestico et al. 2016; Blanc et al. 2016). In a study 

in Australia, Lieske et al. (2017) compared app-generated data with Bicycle Journey to 

Work (JTW) census data. They found that the app-generated data were more 

representative in urban areas than in rural areas, resulting in a strong urban bias. 

Moreover, Munira and Sener (2020) showed that even divergence of Strava 

volume from the actual volume varied with space. The study compared variations 

between Strava and actual volume data for 43 intersections in Austin. The comparison 

was performed using three key statistics—average percent deviation (APD), average of 

the absolute percent difference (AAPD), and Pearson's correlation coefficient—

following guidelines from the Transportation Research Board's Guidebook on Pedestrian 

and Bicycle Volume Data Collection (Ryus et al. 2014). The APD represents the overall 

divergence from the actual volume data. The AAPD is a measure of the source's 

consistency. Pearson's correlation coefficient is a measure of linear correlation between 

the actual bike volume and Strava cyclist volumes. 
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The research showed a fairly high APD of −89%. The AAPD was 89%, 

indicating that the Strava volume was less than the actual volume in all locations. The 

research also showed that the percentage deviation varied from −43% to −97%, across 

geographic locations. It was suggested that the differences may be due to the 

demographic characteristics and trip purpose distribution in different areas.  

The research also reported a strong linear association between the volume data 

from the two sources (Pearson's correlation coefficient r = 0.63, p < 0.0001). When 

compared with other studies (Hochmair et al., 2019; Turner et al., 2019), the association 

was found to be stronger. For instance, comparing Strava and actual volume data in 

Austin, Turner et al. (2019) reported a Pearson's of r = 0.59 and an AAPD of 92.49%.  

 

 Traffic Assignment for Nonmotorized Traffic is More Complex than 

Motorized traffic 

In order to estimate nonmotorized traffic demand at a facility level (street 

segment or intersection) from an origin-destination matrix (for example, bike sharing 

data, trip table data from metropolitan planning organizations), it is necessary to perform 

traffic assignment task. Traffic assignment and route choice for bicyclists and 

pedestrians are significantly different from that of motorized vehicles. Private vehicles 

are affected by network congestion which means the travel time is not proportional to 

https://www.sciencedirect.com/science/article/pii/S096669232030942X?via%3Dihub#bb0165
https://www.sciencedirect.com/science/article/pii/S096669232030942X?via%3Dihub#bb0340
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road length. But bicyclists are generally not affected by congestion, and they also do not 

contribute to it. The route choice model or traffic assignment for bicycles is much more 

complex when compared with the motorized vehicles as the bicycle route choice 

decision is associated with many factors (Ryu et al., 2017a, 2017b; Raith, 2009) such as 

travel time or journey length (Stinson and Bhat, 2003; Broach et al., 2011), safety (Akar 

and Clifton, 2009; Dill and Carr, 2003; Lowry et al., 2012), stress (Mekuria et al. 2012; 

Sener et al., 2009) etc. Studies have also acknowledged that bicyclist are sensitive to 

elevation gain, accident-prone route, turn frequency, junction control, noise, pollution, 

scenery, route with green space and traffic volumes (Ryu et al., 2017b; Broach et al., 

2012; Winters et al., 2011) 

Often the bicycle forecasting models assign traffic by assuming that cyclists 

select the minimum-distance path without considering the network attributes. However, 

nonmotorized traffic is likely to be combinedly affected by multiple attributes. For 

example, a shared bike path, although the shortest path, with high volume motorized 

traffic are likely to discourage bicyclists (Klobucar and Fricker, 2007). Hence studies 

have used multi-criteria approach for traffic assignment (Su et al., 2010; Turverey et al., 

2010; Corne et al., 2003; Ryu et al., 2017). For more details about the nonmotorized 

traffic assignment process and models, readers are referred to Ryu et al., 2017a, 2017b. 

 Nonmotorized Data sources from Demand Analysis Perspective 



 

33 

 

 

 

 In light of the discussion in the previous sections, it is clear that several 

traditional and emerging data sources are available to depict multiple aspects of 

nonmotorized traffic activity. However, their structure, objectives, scope, or use in the 

analysis are rarely the same. In order to facilitate understanding of data's value and 

features, especially within the research context, Table 2.1 tabulated the key 

characteristics of the commonly available nonmotorized data sources. 

The breakdown of the characterization of the individual source will be vital in 

interpreting and further processing the data to extract volume-related information.  

 

TABLE 2.1. Characterization of Nonmotorized Data Sources 

Data Sources  Temporal 

Coverage or 

Frequency of 

data collection 

Spatial 

Coverage  

Population 

Resolution 

Data Output  

Short 

Duration 

count (i.e., 

Manual, 

Video image 

etc.)  

15 minutes to 

24 hours for 

multiple days or 

week 

limited number 

of locations 

(intersection or 

mid-block) 

Total 

Population 

Aggregated volume in a road 

segment or intersection for a 

specific time period  

Permanent 

Count (i.e., 

Inductance 

Loop, 

Magnetometer 

etc.)  

Constant count 

for at least one 

year 

A few locations 

(intersection or 

mid-block) 

Total 

Population 

Aggregated volume in a road 

segment or intersection 
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Data Sources  Temporal 

Coverage or 

Frequency of 

data collection 

Spatial 

Coverage  

Population 

Resolution 

Data Output  

American 

Community 

Survey 

1-year, 3-year, 

and 5-year 

estimates 

Area level 

estimate for all 

geographies 

down to the 

block group 

level 

Total 

population 

Represent commute, social, 

economic, demographic, and 

housing characteristics of the 

U.S. population 

 

National 

Household 

Travel Survey 

(NHTS) 

Every 5 to 7 

years 

Down to CBSA 

level in the 

USA 

Total 

population 

Individual travel data for all 

trips, modes, purposes, trip 

lengths, etc. 

National 

Household 

Travel Survey 

(NHTS) Add 

on program 

Every 5 to 7 

years for Add 

on partners 

Smaller and 

more precise 

level of 

geography 

compared to 

NHTS data  

Total 

population 

Additional data includes 

origin and destination 

locations of each trip 

Fitness App 

(i.e., Strava)  

Continuous data 

collection 

Entire USA 

(based on users)   

Only Strava 

users 

Origin-destination and 

node/street level volume  

Bike Sharing 

Data  

 

 

Continuous data 

collection 

Depends on the 

coverage of the 

stations 

Only system 

users 

Origin-destination of the trips 
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Data Sources  Temporal 

Coverage or 

Frequency of 

data collection 

Spatial 

Coverage  

Population 

Resolution 

Data Output  

StreetLight 

Data 

Continuous data 

collection 

Entire USA 

(based on users)   

A sample of the 

total trips 

Node/street level volume 

 

 Table 2.1 depicts that none of the nonmotorized data sources can furnish with 

activity data for full spatial, temporal or population level resolution. For example, 

permanent sensor data can provide data for all hours, seasons across the year but only for 

the location, they have been installed. Data from wearable tech only provides data for 

the people using the apps.  

Therefore, to compute activity-related information, each dataset has to be 

adjusted, scaled or modeled. The application of the data sources, either as direct input of 

demand models or as parameters or aids of the model building process, also varies 

widely. The modeling process to compute demand is divided into three types for ease of 

discussion. Table 2.2 presented the plausible application of different data sources from a 

demand anlaysis perspective      

TABLE 2.2: Data Processing for Demand Estimation   

Data Source Type Example Processing Outcome 

On-Site location 

data 

Short and 

Continuous Count 

data 

• Estimating flow patterns and annual 

average or peak/offpeak hour volume 

• Computing adjustment factor for scaling 

short-duration count 
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• Developing direct demand model 

 

Survey Data NHTS, ACS, 

NHTS-Addon 
• Estimating parameters for demand 

models 

• Developing mode choice model 

Crowdsourced data 

(at node/zone 

level) 

Strava, Streetlight, 

Bike-sharing data 
• Estimating system user volume 

• Estimating total volume 

 

 Processing On-site Location Data 

The onsite location data refers to the short and continuous counting methods. 

Processing methods of these data to estimate nonmotorized demand can be categorized 

into two types: 

i. Spatial extrapolation  

ii. Temporal extrapolation 

The temporal adjustment generally refers to adjustment due to the variation of 

time of day, day of the week, season etc. Temporal adjustment factors can be calculated 

for a particular location or computed from knowledge obtained from a different location. 

For example, due to the unavailability adjustment factors for a study area, Bellingham, 

WA, Lowry et al. (2015) consulted four sources which were i) National Bicycle and 

Pedestrian Documentation Project (NBPD) provided with adjustment factors for three 

climatic zones and two facility types, 2) A previous research conducted in Colorado 

(Nordback et al.,2013) provided adjustment factors for recreational trails, suburban 

streets, and urban streets, iii) US DOT’s Traffic Monitoring Guide (Federal Highway 
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Administration, 2013) for Minneapolis, Minnesota and iv) a study by Miranda-Moreno 

et al., (2013) that included adjustment factors for five North American cities for three 

facility types.  

Lindsey et al. (2013) investigated data from six off-street trails to estimate daily 

and monthly adjustment factors in Minnesota for estimating the average annual count. 

The study also highlighted that the findings are not transferable to other geographic 

locations with different weather conditions. El Esawey (2014) analyzed one-year data in 

Vancouver to investigate the estimation accuracy of using daily and monthly adjustment 

factors to estimate AADB and found that the accuracy of AADB is more accurate when 

monthly adjustment factor is used compared to daily adjustment factors. Ryan et al. 

(2014) developed a simple method to estimate average daily bicycle volume in the San 

Diego using average PM peak percentage. The study suggested that PM peak percentage 

along with the PM peak period manual counts can be used to extrapolate daily bicycle 

volumes within a network.  

On the other hand, nonmotorized traffic volume data, collected at a limited 

number of locations, can be utilized to estimate network-wide volumes by modeling 

approach. The direct demand model is an example of such modeling approach that 

relates bicycle travel demand directly to mode, trip, and traveler attributes using 

different forms of regression analysis (Munira and Sener, 2017). The resulting models 

can be used to predict travel activity at similar locations without counts. The models are 
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widely used due to their simplicity in understanding and application. The modeling 

approach utilizes a wide array of explanatory variables based on locations. A literature 

review of the determinants of bike and walking activity is beyond the scope of this 

study. For more details, users are referred to Munira and Sener (2017)  

Space Syntax is another example of analyzing nonmotorized movement and 

predicting volume (Raford and Ragland, 2004). The method generates “movement 

potentials,” for nonmotorized traffic by evaluating the layout and connectivity of urban 

street grids. The movement potential is compared with sampled volume and land-use 

indicators at locations. The resulting model can be extrapolated to estimate 

nonmotorized volumes on street levels for an entire area (Raford and Ragland, 2004). 

 

 Processing Survey Data 

The travel-related surveys, including NHTS and ACS are gathered from a 

representative sample, particularly for travel forecasting models. Hence the data from 

these surveys serve numerous purposes in demand analysis. The survey data plays a 

crucial role in formulating various assumptions for travel demand models, including the 

percentage of mode share of bike and walk trips, temporal variation, trip distribution by 

purpose, trip distribution by location type etc. For example, Barnes and Krizek (2005) 

combined NHTS and ACS data to build a relationship between the percentage of the 

adult population who bike in a day and bicycle commute share percentage for both 
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Metropolitan Statistical Areas and state level. The basic assumption of their analysis was 

that a large proportion of the total biking population is contributed by a small proportion 

of cyclists who bike frequently.  

The data can also facilitate the trip generation and trip distribution steps of travel 

demand models. Although the vehicular trip generation model can be developed from 

ITE (Institute of Transportation Engineers) trip generation rates, the handbook doesn’t 

include transit or bicycle and pedestrian facilities (Handy et al., 2013). Hence, trip 

generation rates for nonmotorized traffic can be estimated using factor methods and 

sketch planning techniques utilizing data from census or surveys (Aoun et al., 2015). 

Moreover, sometimes agencies build their own trip generation matrices. For example, 

The Delaware Valley Regional Planning Commission (DVRPC) developed a travel 

demand model where whey developed the person trip generation rates for nonmotorized 

trips of the three-person trip purposes (DVRPC, 2011). The nonmotorized trip rates per 

household, developed by Milwaukee, are segmented by household size, vehicle 

availability, and area type for all purposes (Singleton and Clifton, 2013). Benz et al., 

(2013) estimated bicycle demand for the Houston area using  H-GAC regional 

transportation study 2008 household survey. Here, the authors developed stratified trip 

rates from the estimated number of trips and number of households for each trip purpose 

by worker stratification and then summed for each traffic analysis zone.  
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Moreover, with geographic coordinates (such as NHTS add-on), the survey data 

can also be used to develop a mode choice model for nonmotorized traffic (Kuzmyak et 

al., 2014). Clifton et al. (2008) developed a pedestrian model using NHTS add-on data 

where the authors estimated walk trips per household to estimate the total walk trips in 

the trip generation step and then went through trip distribution and traffic assignment to 

estimate pedestrian traffic at road segment.  

 Processing Crowdsourced data 

The process of analyzing crowdsourced data to estimate demand at a traffic 

network depends on the structure or format of the data. For example, Strava data can be 

obtained in three formats: streets, origin-destination, and nodes (Munira and Sener, 

2020). Hence the activity from crowdsourced data can be modeled to expanded to 

population-level, at a particular intersection or street, by estimating its relationship with 

the actual volume and socio-demographic and land use information within the buffer 

zone. Sanders et al., (2017) estimated the annual average daily traffic from the Strava 

count where the explanatory variables were the number of bike lanes on the street 

segment and proximity to a university. Jestico et al., (2016) used Strava data to find its 

relationship with manual count and other explanatory variables. The built model was 

then used to predict categories of ridership (low, medium, and high) for all roadways in 

Victoria with a predictive accuracy of 62%. The significant explanatory variable of the 

model was crowdsourced cyclist volume, segment slope, posted speed limit, month and 
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if the road had on-street parking. Strauss et al. (2015) utilized GPS records from a 

regional bike-tracking app, in conjunction with actual observation, to compute annual 

average daily bike (AADB) volumes. The study reported that the correlation (R-squared 

values) between GPS data and count data varied from of 0.7 for signalized intersections 

and 0.58 for non-signalized intersections. Dadashova et al. (2020) modeled AADB from 

actual observation where Strava observation, reporting 29% prediction error, along with 

other explanatory variables, were used as predictors. Strava data have also been as proxy 

exposure in crash models without the validation of actual count where (Saha et al., 2018; 

Sener et al., 2019).  

On the other hand, bike-sharing data generally comes in the origin-destination 

format with stations as the zones. When the bike-sharing data comes with a GPS trace, 

the volume at each location can be estimated based on its relationship with actual 

volume, as done by Pogodzinska et al. (2020) in Poland. However, in the US, the 

publicly available data doesn’t contain GPS trace, making the demand estimation 

process time-consuming and challenging. No studies have addressed the limited bike-

sharing data to estimate actual volume at the location level, to the author's knowledge.   

 Scope of Nonmotorized Demand Estimation 

As mentioned in the previous sections, there are multiple modeling approaches, 

with varying input data requirements, complexity, usability and reliability, to estimate 

nonmotorized demand. The data sources outlined in the previous sections, either 

https://www.sciencedirect.com/science/article/pii/S2590198220300063#bb0320
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individually or in conjunction with other data, can be utilized to understand 

nonmotorized activity at varying resolutions. From the perspective of demand or volume 

analysis, some data need more processing steps than others. Hence, one of the key 

questions that entail processing individual data for demand analysis is the scope, 

objective, or resolution of estimation. Such scopes can be divided into three types 

i. Spatial scope  

ii. Temporal scope 

iii. Population-level scope 

The description of the scopes is provided below. The detailed understanding of 

the scopes also facilitates the data alignment or processing steps in section 4. 

 Spatial Scope  

Under the broad category of geographic scale, the demand models can be 

categorized into multi-city and single-city models, the latter being the most frequently 

used approach. Recently, owing to the availability of pedestrian and bicycle count data 

across 20 U.S. metropolitan statistical areas (MSAs), Le et al. (2018) developed a 

national-level direct-demand model for bicycle and pedestrian traffic. Dadashova et al., 

2020 estimated AADB for 155 locations across 12 cities in Texas. 

Even within a single region or city, the geographic coverage of demand 

estimation varies. For example, Hankey et al. (2017) developed a direct demand model 

in a smaller community (Blacksburg, Virginia), while Griswold et al. (2019) estimated 
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annual pedestrian crossing volumes at intersections across the whole of California State 

Highway System (California SHS). However, researchers (Hankey et al., 2017) have 

also suggested that developing a model for a small community allows gathering count 

data on a representative number of segments in the network 

Both these approaches (single-city and multi-city) can further be categorized into 

two subgroups:  

i. Road segment level 

ii. Zone or area level 

Road segment level demand analysis is a microscopic analysis where demands 

are estimated in the intersection (signalized or unsignalized) or street segment. The area 

or zone level estimation is more aggregated, hence macroscopic, than the street level 

estimation. Generally, within this category, the volume is estimated for a specific zone 

such as census block groups, traffic analysis zone (TAZ), core-based statistical area 

(CBSA) or even a city level. For example, Saha et al. (2018) estimated Strava bike 

activity at census block group level. The geographic scope mainly depends on the 

available data condition.   

 Temporal Scope 

In addition to spatial scale, the temporal resolution for estimating demand or 

activity also varies. Nonmotorized volumes are generally estimated for hourly, daily, 

annually during the peak period level. For instance, Hankey et al. (2012) estimated 12-
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hour daily volume, Pushkarev and Zupan (1971) estimated hourly flow rates, Schneider 

et al. (2009) extrapolated collected data to weekly counts, and Nordback (2012) 

estimated annual average daily bicycles. Annual average daily volume (AADB or 

AADP) is the most frequently used and policy-relevant unit of demand estimation 

(Nordback et al., 2013). The volume metrics is important as it can serve in the economic 

evaluation and project prioritization for nonmotorized traffic. Moreover, spatial 

distribution and temporal trends of nonmotorized demand, detected through the annual 

average daily volume, enables better planning and design of infrastructures and policies 

(El Esawey, 2018). This is also relevant to nonmotorized crash analysis given the fact 

that bike or pedestrian crashes are most often aggregated for 3 to 5 years (Fitzpatrick et 

al., 2018) 

Although the annual average daily volume is the most plausible unit for a 

regional demand model, researchers in the direct demand model domain have explored 

several temporal units for demand estimation. For example, researchers have directly 

used data for the specific collection period, such as peak-period counts (Fagnant & 

Kockelman, 2016), often because long-term data to estimate average pedestrian and 

bicycle traffic were not available. Besides, the hour- or day-specific (such as 

weekday/weekend) models are also useful to observe the temporal variability of 

nonmotorized activity and can be utilized to indicate exposures to hazards for a specific 

period (Lu et al., 2018). Often, the time-specific models add valuable insights into the 



 

45 

 

 

 

nonmotorized activity of the study area. For example, Griswold et al. (2011) developed 

models for 2-hour bicycle counts for weekdays and weekends, noting the variability of 

demand across the day of the week. Similarly, Miranda-Moreno and Fernandes (2011) 

developed four models for the a.m. peak period, noon period, p.m. peak period, and 

entire day to explain pedestrian activity in Montreal, Canada. Lu et al. (2018) developed 

hour-specific models (one model per hour of the day) for both bicycle and pedestrian 

traffic. On the other hand, Jestico et al. (2016) utilized a one-minute temporal resolution 

of Strava data for multiple road segments to estimate hourly, AM and PM peak period 

total bike ridership. Hence, the temporal resolution also depends on the resolution of 

collected data from different sources.  

 Population-level Scope 

Population-level representation has become an important consideration for 

nonmotorized data, especially because the data collection effort from emerging sources 

is not specifically designed to be used in demand analysis. Although researchers have 

used Crowdsourced data, such as Strava, as proxy exposure in crash models without the 

validation of actual count where (Saha et al., 2018), it is possible to estimate actual 

volume from crowdsourced data when actual count data is available. The scaling process 

may or may not involve additional explanatory variables (i.e., socio-demographic and 

land use information). The population-level modeling has already been discussed in 

section 2.3.2.3.  
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 Summary 

The above discussion made it apparent that nonmotorized activity can be 

computed at different spatial, temporal and even population levels. Generally, it is 

comparatively easier to transform source estimation to a lower spatial (such as zone) or 

temporal resolution (such as annual volume) than transforming it into higher resolution 

(such as hourly volume at intersections), which requires additional assumptions and 

understanding of the local condition. For example, suppose a source provides a daily 

estimation of bicycle flow. In that case, the estimation of hourly or peak hour flow using 

the data would require assumptions regarding the hourly distribution of bicycle volume. 

Similarly, a network volume can be estimated by aggregating link-specific volume 

within the network. However, when the data is available in an aggregated format, 

computation of site-specific volume requires assigning traffic to links, which is a 

computationally intensive process. Moreover, some of the data sources, especially 

emerging data sources, requires an understanding of the population bias.  

Moreover, given the varying format of different raw data sources, the model 

building monitoring process are unique for estimating nonmotorized volume are likely to 

involve multiple steps. It is also imperative to understand the representativeness and 

distribution of the data before incorporating it in volume or exposure analysis for 

nonmotorized transport. 
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3. LITERATURE REVIEW: BACKGROUND AND TYPES OF DATA FUSION 

This chapter reviewed the literature on seven aspects of data fusion. First, it 

provided an overview of the fusion approaches, discussing the definitions, benefits and 

challenges. The second section explained the characterization schemes, defined from 

different research perspectives, noting the prevalence of application. In the third section, 

the review revealed the absence of consensus in defining the fusion terms and presented 

the accepted definitions and their differences, bridging the terminologies and practices of 

the diverse fusion research community. Anticipating the need of the research, the focus 

of the discussion was steered towards the decision fusion approaches in the fourth 

section. The section discussed the major aspects of data and sources that need to be 

assessed for selecting a decision fusion framework. The discussion was formulated and 

adopted, pivoting the transportation data context in focus. Acknowledging that there is 

no perfect algorithm that is optimal under all conditions, the fifth section provided an 

overview of the most common decision fusion algorithms highlighting their strength, 

limitations and uses.  The sixth section underlined the need to consider the context in 

fusion which served as a backdrop for the novel approach proposed by this study. The 

discussion in the seventh section, on the application of fusion in the transportation 

domain, was particularly deemed important to underline that fusion mechanisms for 

motorized traffic data exhibit distinct characteristics and cannot be directly applied in the 

nonmotorized data context.  
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 Data Fusion: Background 

 Concepts and Definitions 

In general terms, fusion refers to the process of combining or integrating multiple 

data sources in order to obtain more accurate and less uncertain information than that 

provided by any individual source. The concept of data fusion, introduced in the1960s, 

was first implemented in the 1970s in the area of robotics and defense (Esteban et al., 

2005). Since then, a substantial body of literature has focused on the why's and how's of 

the process of combining – or fusing –multiple data sources to support informed decision 

making. One of the earliest definitions of fusion, proposed by Llinas (1988), is  

“Fusion can be defined as a process of integrating information from multiple 

sources to produce the most specific and comprehensive unified data about an entity, 

activity or event. This definition has some key operative words: specific, comprehensive, 

and entity. From an information–theoretic point of view, fusion, to be effective as an 

information processing function, must (at least ideally) increase the specificity and 

comprehensiveness of the understanding we have about a battlefield entity or else there 

would be no purpose in performing the function.” 

In the later years, the application of fusion spanned a wide range of areas, 

including robotics (Meurant, 1992), medical decision (Barillot et al., 1993), image 

processing (Piella, 2003), pattern recognition (Cruz et al., 2018; Awais et al., 2011), 

mine detection (Gunatilaka et al., 2001), aerospace systems (Schoess & Castore, 1988), 
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law enforcement (Pau, 1990), air traffic control (Olivier et al., 2009), remote sensing 

(Zhang, 2010), etc. Existing fusion-focused researches have contributed to both human 

decision-making process, guided by the underlying fusion mechanisms, and automated 

decision-making where no human intervention was necessary. The disparate application 

of the concept leads to the development of numerous definitions, some of which are 

customized to the field of application (Boström et al., 2007).  A more generalized 

definition of fusion, proposed by Gonsalves et al. (2000) is 

“The overall goal of data fusion is to combine data from multiple sources into 

information that has greater benefit than what would have been derived from each of the 

contributing parts.”  

Nevertheless, the core of the definitions, proposed by numerous researchers, is 

the notion of improved information in terms of quality and completeness that cannot be 

achieved with a single sensor or source. In the context of the transportation decision-

making process, the fusion or combination should support automated or semi-automated 

decisions, rather than being the goal or end result (El Faouzi and Klein, 2016). 

As noted by Dasarathy (1999), fusion mechanisms can play a vital role when  

• Multiple sources of similar data are available 

• Each of the data sources represents distinct inherent properties (i.e., specific 

subpopulation) 

• Sources can be combined to produce one or more unified information 



 

50 

 

 

 

Owing to numerous emerging applications of fusion approaches, in both research 

and commercial environments, the concept is yet to reach an equilibrium of 

uncontentious terminology and standard tools (Koks & Challa, 2003) and researchers 

often find it challenging to develop a clear and strict classification for fusion 

methodologies (Castanedo, 2013). For example, given its interdisciplinarity and growing 

popularity in various application domains, the terms sensor, multi-sensor, data and 

information fusion have been used in numerous research articles without much 

discrimination (Wu, 2003). Over the years, several attempts have been made to denote, 

interpret and classify various terms and techniques of fusion. Although the terms sensor 

fusion, evidence fusion, data fusion, information fusion, decision fusion, data 

combination, data aggregation etc., have been used interchangeably in the existing 

publications, in some scenarios, they indicate the difference of the fusion framework 

(Castanedo, 2013). The common terminologies associated with fusion are discussed in 

detail in section 3.3.  

 Benefits and Challenges 

The fusion of multiple source data may offer numerous benefits over single 

source estimates. A handful of studies have highlighted advantages of fusion-based 

techniques, including increased reliability, robustness, completeness, coverage, and often 

cost-effectiveness (Bachmann et al., 2013a, Brooks and Iyengar, 1998; Dailey et al., 
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1996; Ince et al., 2012; Luo & Kay, 1989). The key advantages of fusion, as discussed in 

studies, are briefly discussed below.  

• Increased completeness: if one source is unavailable, denied or lack coverage, 

other sources can facilitate by providing the missing information.  

• Increased confidence: When multiple sources measure the same object, incident 

or activity independently, the redundant information can reduce the overall uncertainty 

and enhance confidence on the measurement. 

•  Reduced ambiguity: the ambiguity of interpretation may be reduced as the 

multiple source information reduce the set of hypotheses about the measurement.  

• Enhanced spatial and temporal coverage: Some sources can detect events and 

activities at times and places where other sources would fail.  When combined, 

multisource data provide extended special and temporal coverage.  

However, along with many successes, there are still some challenges and 

limitations, both technical and institutional, associated with the fusion concept (Amey et 

al., 2009; Hall & Steinberg, 2001). The technical challenges arise from data collection, 

processing and computational issues and the institutional challenges refer to issues 

related to data ownership, privacy concerns etc.  The process of data fusion often adds 

cost and complexity due to the system requirement for any given application. Moreover, 

the fusion of multiple sources comes with a risk of actually producing a worse result 
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than the most reliable single source estimate if combined inaccurate data (Ince et al. 

2012).  

Therefore, both practitioners and researchers are needed to be aware of the 

problems and challenges associated with the fusion process before implementation. The 

key issues, discussed by Hall and Garga, 1999; Nahin and Pokoski, 1980 and Hall and 

Steinberg, 2001, relevant in the research context, are  

• Fusion is not a substitute for a good source: No amount of fusion of inaccurate 

sources can replace a single accurate source estimating the activity or phenomena in 

question. A fusion of multiple inaccurate sources is not likely to provide a more accurate 

estimate.  

• Fusion of multiple highly accurate sources may not be necessary: Fusion of 

multiple highly accurate sources may not necessarily further increase the accuracy of 

inference 

• The more may not be the merrier: Adding sources in the fusion process may add 

to the complexity of the process without adding any value to the process. Nahin and 

Pokoski (1980) indicated that the largest marginal improvement in sensor fusion could 

be observed for a moderate number of sensors (less than 7). For a large number of 

sensors (greater than 8 or 10), the addition of identical sensors may not necessarily 

increase the inference accuracy 
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• There is no magic or golden data fusion algorithm: There is no perfect or one-

size-fits-all algorithm that can be considered optimal under all conditions. The selection 

of the fusion algorithm must ensure that the input data satisfies the underlying 

mathematical assumptions upon which the algorithms are formulated. 

 Fusion Characterizations  

As discussed in the previous section, due to the versatile applications of the 

fusion concept, there is no one-fits-all framework or fusion mechanisms. Over the years, 

researchers have proposed several generic as well as customized platforms to 

accommodate the objective at hand. The task of designing and implementing a fusion 

framework is complex, associated with several critical issues, including fusion 

architecture and algorithm selection, software implementation, and validation etc. (Hall, 

2000). The development and adaptation of a framework depend on the objectives and the 

complexity of the target problem. 

Therefore, several attempts have been made to characterize and classify multiple 

aspects of fusion over the years. According to Durrant-Whyte (1990), fusion can be 

complementary, redundant and cooperative. In the complementary fusion, the input 

sources representing different aspects or components of a state or object are combined to 

obtain complete information of the state. In the redundant fusion, multiple input sources 

providing information about the same state or object are combined to increase 

confidence and completeness. In the cooperative method, the obtained information is 
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combined into new, more complex information. Several other researchers have also 

characterized fusion based on steps, level, architecture, algorithms etc.  A few notable 

characterization and classification of fusion are discussed below.  

 Fusion Steps or Levels  

Several studies have divided the fusion process into different steps or levels. One 

of the earliest, and still most influential, fusion tools is proposed by the US Joint 

Directors of Laboratories (JDL), in which five levels of data fusion were identified 

(White, 1991). The key steps of the process were source preprocessing, object 

refinement, situation assessment, impact assessment and process refinement (Llinas & 

Hall, 1998). These steps have been further developed or refined by multiple studies in 

later years (Kong et al., 2007; Ince et al., 2012; Blasch and Plano, 2003). For example, 

Blasch and Plano (2003) suggested including another level, “Human Refinement” to 

address the human interface issues. The five steps or levels can also be grouped into two 

types: low-level and high-level fusion comprising three key components: sources, 

human-computer interaction and database management system (Castanedo, 2013). The 

data fusion techniques, explored in transportation-related studies, mainly involve basic 

steps such as temporal and spatial alignment of input data, data association, and data 

mining for knowledge extraction (Faouzi and Klein, 2016) 
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 Fusion architecture & hierarchical levels 

One of the critical issues associated with data fusion is where the data fusion 

process will be performed. The design choice influences the quality of the fused data, the 

nature of algorithms and the complexity of processing logic (Ince et al., 2012). Although 

some studies have categorized the fusion architecture into two parts: centralized and 

distributed, Castanedo (2013) divided data fusion architecture into four types: 

centralized, decentralized, distributed and hierarchical. Faouzi & Klein (2016) 

categorized the architecture as sensor or decision-level, central-level or centralized, and 

hybrid. In the first category, the source detects, identifies, and produces state estimates 

of objects which enter the fusion processor. At the central level, data are minimally 

processed before entering the fusion processor, where features or attributes of the objects 

are assessed to produce the final output.  The hybrid fusion uses both approaches based 

on the nature of the outputs or resources. Studies focusing on fusion application within 

the intelligent transportation system context generally utilize the first two architectures 

(Faouzi & Klein, 2016). 

Furthermore, based on the output of the fusion studies (Luo and Kay 1992; Van 

Lint and Hoogendoorn, 2010) classified the fusion technique into three levels. Level 1 

involves the fusion of raw data, for example, speed/density estimation from raw data.  

Level 2 involves the fusion of attributes extracted from the raw data, for example, 

identifying queue locations and lengths from the speeds estimated from the raw data. 
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Level 3 refers to the fusion of objects or events inferred from the attributes of level 2, for 

example, incident detection.  

Dasarathy (1997) categorized fusion into three levels: data fusion, feature fusion, 

and classifier fusion (also known as decision fusion). They further expanded the 

classification based on the input/output data types, which are data in-data out (DAI-

DAO), data in-feature out (DAI-FEO, feature in-feature out (FEI-FEO), feature in-

decision out (FEI-DEO) and Decision In-Decision Out (DEI-DEO). The last category is 

known as decision fusion which combines input decisions to get better or new decisions 

(Castanedo, 2013). Similar categorization, although for the application in the biometric 

systems, was proposed by Ross & Jain (2003), where fusion can be conducted at the i) 

feature extraction level, ii) matching score level and iii) decision level. The decision 

fusion techniques, also the focus of this research, uses the classification decisions from 

different sources to decide the actual class/label of an object or activity to be detected.  

   Fusion algorithms  

Researchers have classified fusion algorithms into various types (Luo et al., 

2002; El Faouzi et al., 2011). Four broad categories of the existing algorithms are 

estimation methods, classification methods, inference methods and artificial intelligence 

methods. Estimation methods include non-recursive methods i.e., weighted average and 

least squares and recursive methods such as Kalman filtering and extended Kalman 

filtering. Kalman filtering methods are predominantly preferred for fusing low-level 
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real-time dynamic multi-sensor redundant data. It applies to provide an optimal 

statistical solution if the system can be described with a linear model. Classification 

methods are utilized to identify locations or grouping of a feature vector within a 

multidimensional feature space based on a similarity measure. Examples of this 

algorithm are parametric templates, cluster analysis, K-means clustering, Kohonen 

feature map, etc. Inference methods include Bayesian inference and the Dempster-Shafer 

method. Bayesian inference integrates multi-source information based on the rules of 

probability theory, where the probabilities of alternative hypotheses are updated 

depending on observational evidence. Dempster–Shafter evidential reasoning is an 

extension of the Bayesian inference, which can model the lack of information 

concerning a proposition's probability. Inference methods, due to their capacity of 

evidential reasoning, are often used for the high level of inferences, such as incident 

detection.  Examples of artificial intelligence methods include adaptive neural network, 

expert system, fuzzy logic etc. These techniques are generally used for high-level 

inferences that need human reasoning, such as pattern recognition, induction, deduction, 

etc. (Luo & Chang, 2010). 

 

 Explaining Terminologies: Data, Information, Sensor and Decision Fusion  

Multiple terminologies such as data fusion, sensor fusion, information fusion, 

evidence fusion, decision fusion, data combination, data aggregation etc., have been 
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used in the published literature to define the fusion concept. Although often used 

interchangeably, the terms can also illustrate the distinct difference within the fusion 

aspects (e.g., theory, systems, frameworks, methods, etc.) (Nakamura et al., 2007). 

However, due to the lack of standardized categorization and/or consensus, definitions of 

the terminologies are most often customized to the field of application. For example, 

military and remote sensing fields, being the early and most prolific area of application 

of fusion, generally draw the characterization of data fusion from the early definition as 

“multilevel, multifaceted process dealing with the automatic detection, association, 

correlation, estimation, and combination of data and information from multiple sources” 

(U.S. Department of Defense, 1991). Later, the term “data fusion" has been suggested to 

be used as an overall term for fusion (Waltz and Waltz, 2009) which also resonates with 

the generalized definition by Wald (1999), who stated that “data fusion is a formal 

framework in which are expressed means and tools for the alliance of data originating 

from different sources. It aims at obtaining information of greater quality; the exact 

definition of ‘greater quality’ will depend upon the application.” 

Wald (1999) also noted that data taken from the same source at different instants 

could be considered as distinct sources.  

Highlighting the discordance in the terminology, Dasarathy (2001) adopted the 

term “Information Fusion” defining it as “in the context of its usage in the society, it 

encompasses the theory, techniques and tools created and applied to exploit the synergy 
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in the information acquired from multiple sources (sensor, databases, information 

gathered by humans, etc.) in such a way that the resulting decision or action is in some 

sense better (qualitatively or quantitatively, in terms of accuracy, robustness, etc.) than 

would be possible if any of these sources were used individually without such synergy 

exploitation.” Hence, as noted by Nakamura et al. (2007), both the terms data fusion and 

information fusion have equivalent meanings.  

On the other hand, the terms Sensor or Multisensor Fusion, subsets of 

information fusion, are generally used to denote the fusion of raw sensory data 

(Nakamura et al., 2007). Sensor fusion generally involves objects with measurable 

properties, therefore, corresponds to low-levels data fusion which is numerically based 

(Bellenger. 2013). Although often the term “data fusion" has been used to denote fusion 

of raw data, as emphasized by Elmenreich (2002) and Nakamura et al. (2007), fusion 

involving raw (or low level) data should explicitly use the term raw or low-level data 

fusion for avoiding confusion. 

Finally, decision fusion (often referred to as classifier fusion) involves making a 

decision based on the given knowledge of the perceived situation using inference 

methods (Nakamura et al., 2007). Decision fusion refers to high-level fusion, often 

taking symbolic representations of events and activities, which reasons to obtain a more 

accurate decision accounting for the uncertainties and constraints (Castanedo, 2013). 

Examples of classical inference methods are Bayesian inference and Dempster-Shafer 
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Belief theory. The concept has been receiving constant research attention since the last 

two decades (Xu et al., 1992; Kittler et al., 1998; Kuncheva et al., 2001; Kuncheva, 

2014) and has been a very active field of research in machine learning and pattern 

recognition (Cruz et al., 2018; Bashbaghi et al., 2017; Zhang et al., 2012). As the focus 

of this research is decision fusion, the subsequent discussions are focused on the 

characterization of decision fusion algorithms.  

 

 Decision Fusion Framework: Aspects and Related Research 

As discussed in the previous section, there are myriad approaches of fusion, none 

of which are optimal for all conditions and situations. Hence, contemplating the 

requirement of this research, the focus of the discussion is kept on the decision fusion 

approaches. The domain of decision fusion is also vast, necessitating a further 

understanding of inherent characteristics of the data and sources (Kuncheva, 2014; Ren 

et al., 2016). The following subsections describe the major aspects of data and sources 

that need to be assessed for selecting a decision fusion framework. The discussion was 

formulated and adopted pivoting the transportation data context in focus. 

 Types of outputs  

The first aspect that needs to be assessed for selecting a decision or classifier 

fusion approach is the type of output from each data source. The fusion framework 

https://www.tandfonline.com/doi/full/10.1080/03081079.2017.1314276
https://www.tandfonline.com/doi/full/10.1080/03081079.2017.1314276
https://www.tandfonline.com/doi/full/10.1080/03081079.2017.1314276
https://www.tandfonline.com/doi/full/10.1080/03081079.2017.1314276
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largely depends on the type of output of the classifier. Xu et al. (1992) categorized the 

outputs into three types:  

i. Abstract level: The source or classifier provides a predicted class level without 

allocating any confidence measure. The abstract level is universal as any 

classifier can produce a level for x.  

ii. Rank Level: The classifier provides a ranking of the class labels. The output of 

each source is ranked in order of plausibility. This type output is particularly 

suitable for problem data with a large number of classes, such as character, face, 

speaker recognition etc. (Kuncheva, 2014). 

iii. Measurement level (soft level): The classifier allocates a confidence 

measure/score that a specific input belongs to a given class.  

Here, each source or classifier Di (i = 1, … , S)  produces a n-dimensional vector 

[ di ,1 , … , di,n ], where  di,j is the support for the hypothesis that the vector x belongs to 

class ωj (j=1…n)  

Other categories of output level are also available. For example, Bezdek et al. 

(1999) categorized output levels into three types: crisp, possibilistic and probabilistic. 

Here, the crisp label is equivalent to the abstract level. 

Among the above-mentioned levels, the amount of information in the output 

increases from the abstract to the measurement level. Intuitively, the measurement level 

classification algorithms may obtain the best results. However, in the real application, 
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abstract level classifiers are more common. From the nonmotorized volume perspective, 

the outputs are expected to be available at the abstract level. While the transformation of 

an output with high-level information to lower level, for example, measurement level to 

abstract level, is always possible,  the opposite transformation (lower to higher) is only 

possible when adequate ground truth data is available such as by performing an 

empirical probability distribution over a set of training data (Ruta & Gabrys, 2000) or 

developing confusion matrix for the classifiers (Deng et al., 2016). 

 Type of Combiners 

The strategy of combining outputs of multiple classifiers, including for abstract 

level fusion, can be separated into two types: trainable and non-trainable (Tulyakov et 

al., 2008; Duin, 2002; Xu, 2014). The trainable approach uses the outputs of each 

classifier to train a new model. One example of this approach is when outputs of each 

classifier are concatenated into a feature vector to use machine learning techniques for 

model training. The appeal of this approach stems from the fact that the outputs of each 

classifier can be directly (or without processing) used as an input for model training. 

However, the major limitation of this approach is every time a new source is added, the 

whole combiner has to be trained again.   

On the other hand, the non-trainable approaches use pre defined combination 

rules for fusing or combining the outputs of multiple classifiers. In most cases, the 

outputs of the initial classifiers need to be preprocessed to be made comparable, for 
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example, as class label probabilities. The process of transforming the outputs into 

probabilities is one of the most complex and crucial components of these approaches.  

The majority voting method is non-trainable, while the Bayes Belief Integration 

and Behavior Knowledge Space methods are examples of the trainable model (Rothe et 

al., 2019; Battiti and Colla, 1994; Xu et al., 1992, Ji and Ma, 1997). Although the non-

trainable approach may lead to sub-optimal results when compared with trainable 

approaches (Xu, 2014), the non-trainable approach offers the flexibility of adding a new 

classifier when it becomes available. Studies have explored the pros and cons of these 

methods in the context of fusion. Raudys (2006) had argued that complex trained rules 

are appropriate only when a large enough data set is available. Duin (2001) and Roli et 

al.  (2002) asserted that trained rules are a worthwhile approach while dealing with 

classifiers with unbalanced performances, especially when compared with a nontrainable 

approach like majority voting. 

 Benchmark/Ground truth data or validation set 

Ground truth data refers to the actual information collected on fields or sites 

which can be used to verify extracted information from processed data. For example, in 

the nonmotorized demand context, the ground truth data is the walk or bike volume data, 

collected using video images in the field.  

The combination methods can also be categorized into three types, based on the 

use of priori knowledge or ground truth data (Di Lecce et al., 2000). The first category 
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does not require any priori information, for example, majority voting (Suen et al., 1990; 

Ho et al., 1994; Hull et al., 1992). The second category uses information/performance at 

the level of individual classifiers as a priori knowledge, for example, the Dempster-

Shafer Method (DS) (Lu and Yamaoka, 1994). The third category utilizes information at 

the level of the entire set of combined classifiers, for example, the BKS method (Huang, 

1993, 1994)  

The quality and size of the benchmark/ground truth data or validation set are also 

among the fundamental aspects of designing the fusion framework. Although often the 

same training set is used for designing trainable rules and validation, it is recommended 

to have an independent validation set to avoid the bias of the fusion rule (Raudys, 2006). 

While the trainable models are asymptotically optimal, they require an adequate 

size of validation sets. Complex trainable models such as BKS demand very large 

validation sets, while the belief functions can be developed using a limited size of 

validation sets (Roli et al, 2002).  

 Correlation and Conflict   

A combination of information needs consideration of other aspects of 

information quality. In addition to the reliability of sources (obtained by comparing with 

ground truth), another important aspect of information quality is its credibility (Florea et 

al., 2010). The credibility of a source can be quantified based on its relation/interaction 
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with other sources.  Both reliability and credibility measures influence the trust in the 

pieces of evidence.  

The issue of credibility is related to the issue of conflict, the existence of which 

indicates the presence of at least one unreliable source. On the other hand, the absence of 

the conflict does not necessarily confirm the reliability of sources as multiple sources 

may incorrectly agree on a decision. (Rogova & Nimier, 2004). Therefore, it is often 

necessary to quantify the interactions among the information from multiple sources. 

Studies have proposed different methods to quantify the interactions or conflict between 

the pieces of information to further refine the fusion process (Yong et al., 2004; Liu, 

2006; Martin et al., 2008) 

Moreover, when faced with many classifiers and data sources, it is often 

necessary to choose some sources, among many, to increase the performance of the 

fusion method. The selection of a set of classifiers is often an issue before the 

implementation of the final fusion framework. It is because combining similar classifiers 

may increase the computational complexity without increasing the efficiency of the 

fusion. An ideal set of classifiers should be robust as well as optimal so that it can 

provide the best solution with the minimum amount of calculation time and data memory 

(Niu et al., 2007) 

 Decision Fusion Algorithms 
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As the main objective of this paper is to combine nonmotorized traffic activity 

data which are generally available as the abstract (crisp) level output, relevant aspects 

and algorithms for abstract level fusion methods serve as the focal point of the following 

discussions. A handful of fusion algorithms are available to handle and combine 

abstract-level data. A few of the most frequently used methods are discussed here.    

 Voting Based Rules  

Voting Based methods are perhaps the oldest and simplest strategies for decision 

making (Day, 1988) which involves consensus patterns among the sources to make a 

decision. The voting methods can be applied to abstract types of outputs and have been 

utilized by several studies in different area of research (Lee, 1993; Ruta and Gabrys, 

2002; Lin et al., 2003; Burduk, 2017; Alotaibi and Elleithy, 2016; Atallah and Al-

Mousa, 2019; Lam and Suen, 1997). There are multiple voting rules based on the same 

underlying reasoning, equal weight to the decisions of the sources, but different 

consensus patterns.  The most common approaches are unanimity voting, simple 

majority voting, plurality voting. Another voting approach is threshold voting which 

considers a threshold to make a decision whether an object belongs to a specific class. 

For example, while simple majority voting needs to take three out of five votes to decide 

an outcome, a threshold of two as the minimum necessary number can be selected to 

assign a label (Raol, 2015). 
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Another variant of the voting approach is weighted voting which relaxes the 

assumption of equal weightage by assigning different weights to each decision, 

commonly estimated based on the reliability of the sources. Generally, the weight on the 

decision of the sources that perform better than others should be high. Hence, it requires 

a training sample to compute the reliability or accuracy of the sources. The approach has 

also been utilized by several studies (Kim et al., 2011; Li and Ngan 2017; Kuncheva and 

Rodríguez, 2014; Lopez-Otero et al., 2017) for fusion. The success of the approach 

depends on the method of computing weights.  Nagi and Bhattacharyya (2013) 

suggested that the weighted voting method performs well only when the weights of the 

classifiers are precisely allocated. While some researchers have followed the 

conventional approach of computing weightage based on classification accuracy 

(Moslem et al., 2011), several studies have utilized some other performance measures, 

such as Area under the ROC Curve (AUC), F-score etc., for weight estimation (Texier et 

al., 2019; Lopez-Otero et al., 2017). For example, Lopez-Otero et al. (2017) evaluated 

reliability based on precision, recall, accuracy, F-score and mutual information. On the 

other hand, in the method proposed by Kim et al. (2011), larger weights are assigned on 

classifiers that perform better on hard-to-classify instances. Moreover, viewing Weigh 

computation as an optimization problem, researchers have also utilized artificial 

intelligence techniques for improving the classification performance (Ekbal and Saha, 

2011) 
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Despite the simplicity, the approach along with its variants, have been found to 

be effective in the decision fusion process. Lee (1993) had utilized and compared this 

method with several other complex combination methods such as Bayesian, neural 

network etc. and indicated that the simple majority rule is just as effective as the other 

complex methods for improving the recognition rate. Roli et al. (2002) suggested that 

majority voting generally performs well for classifiers with a similar level of accuracy. 

Lin et al. (2003) illustrated the effectiveness of plurality voting in achieving the tradeoff 

between rejection rate and error rate. The study concluded that the combination of 

independent classifiers, using the voting method, can result in significant improvement 

in accuracy.  

The mathematical formulation of the voting approach is discussed in detail in 

section 5.1.1. 

 Behavior-Knowledge Space (BKS)  

Behavior-Knowledge Space (BKS) is another abstract level fusion method where 

a knowledge space is created to record the behavior of all the classifiers on a set of 

samples. In general terms, it creates a lookup table containing every classifier output 

combination (Huang and Suen 1993). The table is created using a training set where each 

of the combinations of the class labels is used to match the ground truth values to 

estimate their relative frequencies. For an unknown test sample, the output class label of 

each classifier is used to index a unit of the table to assign it to the class label with the 
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most training samples. The table below is an example BKS lookup table with a two 

label, two source problem (Butler, 2012): 

Table 3.1: Example of BKS lookup table 

Source 1 Source 2 Ground Truth % Occurrence 

1 1 1 90% 

0 0 0 80% 

1 0 0 50% 

0 1 1 75% 

 

According to the table above, source 2 is good at identifying label 1 compared to 

source 1. Moreover, if both sources assign label 1, it is highly likely to be true.  

The strength of the BKS method stems from the fact that it doesn’t require the 

decisions of the classifiers to be independent. However, it demands large training 

samples to build the knowledge space, hence not suitable for problems with low sample 

size. It also takes a lot of memory when the number of sources and possible outcomes is 

large. Moreover, the combiner sometimes suffers from the overtraining problem that 

means it may work well on the training data but poorly on testing data (Cozzolino, 2013; 

Kuncheva, 2014). The method has been used in multiple research areas, such as forgery 

detection (Ferreira et al., 2016), signal processing (Yang et al., 2019) etc. 

 Bayesian Inference 

Bayesian fusion uses Bayes probability theory to combine evidence from 

multiple sources. The method is formulated on the assumption of mutual independence 

of the sources. The statistical inference method represents uncertainty in terms of 
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conditional probabilities describing the belief of a hypothesis. The belief can take values 

in the interval [0,1], 1 being the absolute belief and 0 being no belief (Nakamura et al., 

2007). Bayes rule is used to obtain the posterior probability density function which is 

based on the prior belief of the hypothesis and conditional probability (likelihood) of the 

observation. 

It is also capable of incorporating a wide range of prior knowledge, hence 

applicable for the analysis when small sample size is available (Antal et al., 2008). When 

more data is available, the approach can be used to update the posterior probability of 

based on the additional observations. The popularity of the Bayesian approach stems 

from its rigorous statistical underpinning and ability to quantify and reduce uncertainties 

in complex problems (Kuncheva, 2014; Nagel, 2019). The performance of the method 

has been reported as quite robust, even when the assumption of independence is violated 

(Kuncheva, 2014). However, the Bayesian inference has some major shortcomings, as 

highlighted by Hall and Llinas (1997). In addition to the fact that the approach demands 

the hypothesis to be mutually exclusive, it also needs a well-defined prior and 

conditional probabilities of the hypothesis. Moreover, the method cannot account for the 

general uncertainty of the data (Wu, 2003). 

 The Bayesian fusion method has been applied in various areas including to 

detect events (Atrey et al., 2006); tracking (Stolkin et al., 2012); image processing (Wei 

et al., 2015; Khademi et al., 2018) etc.  
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 Dempster Shafer Evidential Reasoning  

The Dempster Shafer theory (DST), first introduced by Dempster (Dempster 

1967) and then formalized by Shafer (Shafer 1976), is one of the most popular methods 

that characterize data using probability mass to combine multiple sources. The 

framework can address both probabilistic and epistemic uncertainty and process 

uncertain, imprecise, and incomplete information from multiple data sources (Wang, 

2016). Compared with the Bayesian model, the DST theory can explicitly model the 

absence of information and allows a finer representation of uncertainty in a 

comprehensive framework. The framework is recognized due to its ability to 

simultaneously handle conflict and incompleteness. In contrast to the Bayesian method, 

the DST relaxes the mutual exclusivity assumption and doesn’t demand a well 

assignment of the prior probability; rather the probability assignment depends upon the 

availability of supporting information (Wang, 2016).  

The theory has been utilized in a wide area of research, including transportation 

such as to estimate crash analysis (Leung et al., 2017; Sohn & Lee, 2001), incident 

detection (Klein, 2000); evaluating sustainable transport solutions (Awasthi & Chauhan, 

2011); public transportation planning (Kronprasert & Kikuchi, 2011); travel time (El 

Faouzi et al., 2009); traffic flow prediction (Soua et al., 2016); traffic state estimation 

(Kong & Liu, 2009; De Donato et al., 2014).   
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A comprehensive discussion along with the mathematical formulation of the 

Dempster Shafer was presented in section 5.2. 

 Fusion with Context Consideration 

The concept of context-aware computing has been introduced within the 

perspective of sensor fusion, mainly in the computer science research domain, 

acknowledging the need of sensing and managing context information (Wu, 2003). The 

formal definition of context-aware computing can be found from Dey and Abowd 

(2000), who suggested that “Context is any information that can be used to characterize 

the situation of an entity. An entity is a person, place, or object that is considered 

relevant to the interaction between a user and an application, including the user and 

application themselves”  

Therefore, the term context can cover an extremely broad range, such as spatial, 

temporal and environmental information, social and physiological situation etc. For 

example, ultrasonic sensors are affected by the change in temperature (Hillel et al., 

2014) or certain monitoring sensors in airplanes exhibit different fault patterns during 

ascent/take of (Sarkar et al., 2013) 

The context can be categorized as intrinsic context, which directly influences 

source measurement and extrinsic context, where the interpretation of the collected data 

is affected (Virani, 2017). Dey and Abowd (2000) identified the primary categories of 

context which are: identity, activity, location, and time. The first two are high-level 
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attributes while the last two categories low-level attributes. Contexts are generally task-

specific in nature, varying across the application domain. For example, for object 

recognition by image processing, the context can be the visual scene while for a mobile 

tour planning application, the user’s availability and preference would be considered as 

context (Wu, 2003). 

Researchers focusing on context-aware computing have relied on both 

automatically and manually acquired information. Although, ideally, automatically 

obtained context would nullify the need for manual acquisition, in real-world 

applications, context sensing mostly relies on manual input (Dey and Abowd, 2001). A 

wide range of methods has been applied to handle context in fusion, where the methods 

interpret context from varying perspectives.  

Despite a growing emphasis by several researchers, context consideration is often 

avoided in the application as there is no general way to extract and handle context. Liu et 

al. (2017a) proposed fusion with contextual reliability evaluation which relies on inner 

reliability and relative reliability concepts. From a different perspective, researchers 

have pursued context extraction for sensor fusion using clustering techniques (Frigui et 

al., 2008; Virani et al., 2016) and mixture modeling methods (Ratto, 2012). However, 

most of these methods are generally steered for data rich sensor fusion environment. 

Nonetheless, researchers have emphasized the need of incorporating context for better 

accuracy of fusion.  
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Although within the same domain, the context has been deemed from a different 

perspective, particularly in the application of the Dempster Shafer algorithms. For sensor 

fusion, researchers have computed contextual discounting of the belief function that 

considers the reliability of a source of information (Mercier et al., 2008). For instance, a 

sensor may be more efficient in recognizing a specific type of target than other types. 

Another study (Mercier et al., 2012) focused on generating contextual discounting, 

hypothesizing that some sensors may have better reliability in recognizing some 

situations or objects. However, to the author's knowledge, no research within the 

decision fusion domain has incorporated the situation or context of sources (such as 

place or time), obtained from a subjective judgment, for refining the fusion algorithm.   

 Data Fusion in Transportation Research   

Owing to the advancement of technology followed by the overwhelming volume 

of data from heterogeneous sources along with the demand for highly accurate estimates, 

the transportation area has been recognized as an ideal candidate for the application of 

the data fusion approach. The tool was first utilized by El Faouzi and Lesort (1995) and 

Sethi et al. (1995) in the traffic and transportation area. Since then, numerous efforts 

have been made in this area. The users of the fusion approach were categorized into 

three types: transportation system users, transportation service providers, and 

transportation planners (Amey et al., 2009). Notable examples of the area of application 

include advanced transportation management systems, automatic incident detection, 
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network-wide control, advanced traveler information systems, advanced driver 

assistance, traffic demand estimation, traffic forecasting and traffic monitoring, traffic 

flow variables estimation for motorized traffic etc. (Faouzi and Klein, 2016; He et al., 

2016).  

The main sources of motorized traffic-related data are GPS, blue tooth, video, 

automatic vehicle identification (AVI), plate scanning, loop detector, probe vehicle, 

Cellular handoff probe system (CHPS), microwave sensors, CCTVs, toll collection 

stations data, historical data, taxi trajectories, etc. (Wu et al.,2015; Zhu et al., 2016; Zhu 

et al., 2016; Alibabai and Mahmassani,2009); Meng et al., 2017). A substantial number 

of studies have highlighted the need and superiority of fusion to provide a complete 

depiction of traffic state on roads, given that the individual data sources are often 

associated with sparseness and noise (Treiber et al., 2011). The fusion approach has been 

used for estimating speed, flow, density, travel time, queue length, etc., (Peng et al., 

2009; Han, 2012; Van Lint and Hoogendoorn, 2010; Li et al., 2013; Nanthawichit et al., 

2003; Zhou et al., 2011). The fusion approach has also been utilized in computing 

vehicle trajectories (Mehran and Kuwahara, 2013), OD flow estimation (Lu et al., 2015); 

Dynamic Origin-Destination Demand Matrices (Zhu et al., 2016; Alibabai and 

Mahmassani (2009); City-wide traffic volume (Meng et al., 2017). 

The characteristics of the data from multiple sensors and the flexibility of 

quantifying traffic parameters using the dynamics of relationship have made it possible 
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to explore and compare a wide array of approach or algorithms, such as Kalman filters, 

Bayes methods and Artificial Neural Networks, Simple Convex Combination, Dempster-

Shaefer theory or Fuzzy Logic, etc. (Ou, 2011). The choice of approach is determined by 

domain specific constraints, input parameters, operational constraints and the objective 

and application of the fusion (Klein 2012; El Faouzi and Klein (2016). For example, 

fusion approaches to estimating traffic states, where traffic flow variables (speed, 

position, travel time, density, etc.) are computable using established measurement 

equations (such as state-space model) from raw sensor data, generally utilize model-

based approach, such as Kalman filter (Zhou et al., 2011; Peng et al., 2009). Studies 

have also used data-driven approaches, incorporating statistical models such as artificial 

neural networks (ANN) or regression, for fusing data representing traffic state variables 

(Zhou, 2015).  

Although a majority of the studies have reported the superior performance of 

fusion approaches over individual estimates, multiple studies have acknowledged the 

fact that it is difficult to conclude which technique performs the best. A study by 

Bachmann et al. (2013a), comparing seven fusion-based estimation process to combine 

data from loop detectors and probe vehicles to compute highway traffic speed, 

concluded that most techniques tend to improve the accuracy of estimation when 

compared to estimation based on single sources. However, in addition to the technique, 
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the improvement depends on the number of sources (such as probe vehicles) as well as 

the situation (i.e., traffic conditions). 

A more focused literature review, conducted by this research, also revealed the 

use of decision fusion algorithms, including Bayesian Estimation and Dempster-Shafer 

evidence theory (Liu et al., 2016; Zhu et al., 2016; Shi et al., 2017; He et al., 2016) for 

estimating travel time, traffic state, OD matrices etc.  He et al. (2016) noted that the 

effectiveness of Dempster-Shafer fusion generally relies on generating the liability of 

measurements from the sources. Shi et al. (2017) found the Dempster-Shafer approach 

efficient in fusing travel time data from various sources under different information 

conflict situations, including highly inconsistent, slightly inconsistent, and highly 

consistent situations. 

 

Section II Summary 

The review of literature, in chapters 2 and 3, underlined the dire need for robust 

and accurate nonmotorized activity-related information revealing potential avenues of 

research of combining-or fusing- multiple nonmotorized data sources. The review 

asserted that both traditional and emerging data sources representing nonmotorized 

traffic activity come with great potential to understand the trend, attitudes and behaviors 

of bicyclists and pedestrians. However, each of the sources exhibits some limitations in 

terms of spatial, temporal and population representation which subsequently influence 
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the accuracy and reliability of associated demand models or estimation process. 

Moreover, the individual sources or models are often incomplete, conflicting, or 

scattered. Hence, a fusion mechanism that can offer completeness along with improved 

reliability and accuracy may prove to be a powerful tool to overcome the lack of 

knowledge or limitations associated with the individual sources.  

Outlining the commonly used algorithms and tools of fusion, the discussion also 

emphasized that the nonmotorized traffic activity data exhibits unique characteristics, in 

contrast to motorized traffic data, and methods and steps of estimating demand or states 

for motorized traffic cannot be directly adopted in nonmotorized traffic areas. The 

review revealed that the decision fusion domain is an appropriate fusion mechanism that 

can accommodate the characteristics of the nonmotorized traffic data sources. Finally, 

the discussion of various decision fusion algorithms, along with their strength and 

limitations, served a crucial role in selecting potential fusion algorithms for this research. 

The discussion on context-aware fusion studies, coupled with the unique features of 

nonmotorized data, motivated a new research question as to whether the incorporation of 

context credibility can refine the fusion process.    
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4. NONMOTORIZED DATA TO DEMAND MODELING 

The review of literature in the previous two chapters, outlined the generalized 

options of decision fusion mechanisms given the inherent characteristics of 

nonmotorized activity data and aspects related to demand analysis.  

One of the crucial issues associated with nonmotorized data, considering the 

fusion perspective, stems from the fact that different data sources come in different 

formats and structures. The spatial, temporal and population-level representation also 

vary across sources. Hence, the first step of the fusion endeavor is to process the raw 

sources to obtain a homogeneous representation. Therefore, chapter 4 elaborated a 

conceptual framework outlining the steps and aspects of processing and homogenizing 

the sources, in the light of the discussion delineated in section 2.3. This chapter also 

intended to create a better understanding of the sources and models along with their 

coverage, representativeness and skewness. At the end of the chapter, the potential 

context of nonmotorized traffic activity estimates, required for the betterment of the 

fusion mechanisms, was discussed   

In an endeavor to select and customize fusion mechanisms to accommodate the 

processed/modeled data, the research considered the practical applicability under 

different circumstances of benchmark data availability. In addition to traditional 

approaches, the novel approaches proposed by this dissertation also contemplated the 
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scenarios. Chapter 5 was devoted to illustrating the mathematical formalism of the 

algorithms utilized in this research.   

 The Framework of Processing Nonmotorized Traffic Data 

As discussed in section 2.3, nonmotorized data, both traditional and 

crowdsourced, are generated in different structures and formats. While some of the 

sources can be processed to estimate activity, some, such as Web 2.0 Tech, are not 

meant for demand representation. Moreover, some of the data sources need minimal 

processing while others have to go through an array of steps to compute demand, given 

the scope of estimation.   

However, there is no clear guidance of how different data sources can be 

processed and brought together to compute nonmotorized volume or exposure within a 

facility or area. Motivated by the ardent need for a comprehensive guideline, this 

research developed a conceptual framework that outlines the steps and aspects of 

processing and homogenizing different sources.  The outcome of data processing, 

illustrated in this section, will be used in the fusion approach, discussed in the next 

chapter. The framework consisting of processing data and applying fusion mechanisms 

can be applied to all nonmotorized traffic data such as bicycle and pedestrian. However, 

for demonstration purposes, as a case study, only bicycle-related data were collected and 

processed in the following chapters.  

The key steps of gathering and processing nonmotorized traffic data are 
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Step 1:  Select the study area  

Step 2:  Gather available data sources and identify the data structure  

Step 3:  Determine the scope of estimation  

Step 4:  Analyze/model data sources to obtain a homogenized representation 

The following sections explained the steps in detail and present a successful case 

study as an example of the application. 

 Select Study Area 

The first step of the framework is to select a study area for gathering, processing 

and analyzing nonmotorized traffic data. The study area can be a city, county, multiple 

census tracts or Traffic Analysis Zone (TAZ) etc. The selection of a study area depends 

on the ultimate objectives of the researchers (such as to analyze pedestrian crashes in a 

city or design bike lanes in an urbanized area), data availability etc. The size of the study 

area should also be a consideration as some nonmotorized models (such as the direct 

demand model) exhibit scalability and transferability issues (Munira et al., 2021). For 

example, while building a bike direct demand model for the City of Austin, Munira et 

al., 2021 noted that the model prediction was drawn for locations within the limits of the 

city’s bicycle route map and did not include areas farther into the suburban regions. 
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For this study, the city of Austin was selected as a case study. With an area of 

326 square miles, the city of Austin accommodates a population of over 996,369 (City of 

Austin Planning and Zoning, 2020). Downtown Austin, which is located on the north 

bank of the Colorado River, is the central business district of the city. The University of 

Texas (UT) at Austin, accommodating over 50,000 students, is located north of the 

downtown area. Although the eastern part of the city is flat, the western part contains 

some hilly terrain. The city is also home to several natural and man-made lakes. By its 

very nature, the city is diverse in terms of age, culture, income, and built environment 

characteristics, and it has experienced a steep rise in the degree of socioeconomic spatial 

separation over the last few decades. Despite being heavily car dependent, especially in 

suburban neighborhoods, the city has observed a significant increase in bicycle 

commuters in the last few years. 

Austin makes an excellent case study for this research for multiple reasons. 

Austin has ranked 27th among the US cities in terms of high bicycling and walking 

levels in 2012 (Swanson, 2012). The same report also indicated that Austin stood 15th 

and 37th for bicycle and walk commute share respectively when compared with other 

US cities.  Being known as a bike-friendly city, it is endeavoring to adopt a holistic 

approach to increase safety and mobility for pedestrians and bicyclists of all ages. Austin 

City Council adopted the 2014 Austin Bicycle Master Plan to develop a connected and 

protected walking and biking network. The city accommodates a total of 267.5 miles of 
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bicycle facilities, including protected and buffered bicycle lanes and urban trails  (City 

of Austin, 2018a). Approximately, 36% of the region’s arterial streets have traditional 

painted bicycle lanes (City of Austin. 2015). The planning and implementation of 

various projects since 2009 have observed a significant increase of bicycle commuters in 

the city. The citywide mode share of bicycles doubled in 2011 (around 2%) compared to 

2009 (City of Austin, 2015). Moreover, within the 32 square miles area of central 

Austin, 5.5% mode share was observed for bicycles in 2012. Some census tracts in the 

area even reported as high as 13% mode share for bicycle commute. 

The city also adopted the Vision Zero initiative to reduce traffic related death and 

injury to zero by the year 2025. To promote safe walking and biking among the 

residents, the city has also taken various programs including nonmotorized friendly 

street design, pedestrian safety action plan etc. Given the strong commitment to its 

Vision Zero goals and long-term planning to improve nonmotorized infrastructure, the 

city needs reliable and robust nonmotorized activity data and tools to facilitate strategic 

data-informed decisions. Therefore, a comprehensive data fusion framework for reliable 

nonmotorized demand/exposure estimation, applied for this study, would be of great 

value to policymakers, and practitioners along with the scholars. 
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 Gather Available Data Sources and Identify the Data Structure  

The second step after selecting the study area is to identify available data sources 

relevant to nonmotorized volume estimates in the region. Table 2.1 depicted the 

characterization of the nonmotorized data sources and Table 2.2 presented their plausible 

application from a demand analysis perspective. Hence, it is important to gather all 

available data sources and recognize the attributes associated with each source, such as 

the frequency of data collection, geographic unit, spatial, temporal and population-level 

resolution, etc.   

For the City of Austin, five primary data sources, relevant to bike activity were 

gathered. These were: 

i. Actual bicycle volume counts (Permanent and Short count) 

ii. Bicycle sharing data  

iii. NHTS add on data 

iv. Strava data 

v. StreetLight data  

The ACS and other land-use related data were also extracted for the study area, 

which served as auxiliary data sources for modeling purposes.  

The five key datasets represented bike activity at various spatial, temporal and 

sub-population representations. The structure of the datasets was presented in Table 4.1  

 



 

85 

 

 

 

Table 4.1: Structure of the Bicycle Data Sources in Austin 

Data Sources  Temporal 

Coverage or Year 

of Data Collection 

Spatial Coverage  Population 

Resolution 

Source 

Video-based 

Short count 

24-hour count in 

2017 

44 intersection Yes City of Austin 

Transportation 

Department 

Inductive Loop 

based 

permanent 

count  

Constant count 

from 2012 to 2017 

11 locations Yes City of Austin 

Transportation 

Department 

NHTS-Addon 

Survey 

Gathered in 2017 Households in the 

City of Austin 

Yes TxDOT 

Strava  Trips in 2017 Intersections in City 

of Austin 

No TxDOT 

Bike Sharing 

Data  

 

 

Trips in 2017  63 stations in 

Downtown Austin  

No Public Website 

StreetLight 

Data 

Trips in 2018 Zone/Intersections 

in City of Austin 

No StreetLight 

Inc. 

ACS data 2017 Census tract or 

block group level in 

City of Austin 

N/A Public Website 

Land Use 

Related Data 

2014 to 2017 Point or Area-based 

data in the City of 

Austin 

N/A Internal 

communication 

and Public 

Website 
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Table 4.1 confirmed that the data sources exhibit heterogeneous structures. In 

order to obtain a homogeneous estimate, which is meaningful and relevant to policy 

planning, each of the data sources needs to be cleaned, processed and modeled given a 

scope of estimation as explained in the next section.  

 

 Determine the Scope of Estimation  

The processing of individual data sources inevitably entails the question of scope 

for demand analysis, outlined in section 2.3.3. The scopes of estimation are Spatial 

scope, Temporal scope and Population-level scope. As the details of the scopes and their 

applicability have already been discussed, the following section explains the premise and 

reasoning behind selecting scope/unit of estimation for the case study.  

 Temporal Unit of Volume/Demand Estimation 

It is imperative to select a temporal unit of analysis for representing 

nonmotorized traffic demand from all sources. Intuitively, estimate at the finer unit (such 

as hourly volume) requires data at finer temporal resolution compared to a larger unit 

(such as annual average volume). However, data at finer resolution may not be available 

from all sources. For example, the four-step demand modeling approach generally 

estimates traffic as annual average daily volume. Transforming estimations at a finer unit 

requires the involvement of multiple assumptions and an understanding of the local 

condition.  
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The temporal unit of analysis for this study was selected as annual average daily 

bicycle (AADB) volume. The rationale behind the selection was also motivated by the 

fact that the particular metric is a widely accepted policy-relevant unit of demand 

representation for policy planning and safety analysis.       

 Geographic Scale of Volume/Demand Estimation 

The task of estimating nonmotorized demand requires the analyst to select a 

geographic or spatial unit for which the volume will be estimated. The plausible spatial 

units are facility level (such as intersections, mid-block) or zone level (such as TAZ, 

Block etc.) (Turner et al., 2017).  

For this research, intersections are selected as the spatial unit of volume analysis. 

The rationale behind the selection stemmed from the fact that a large proportion of 

crashes occur at intersections in the Texas region (Texas Department of Transportation, 

2016). A microscopic level (intersection) analysis is expected to facilitate focused policy 

efforts and effective safety implementation plans. Moreover, the actual count data for the 

study area was available at the intersection level, which is expected to serve as the 

ground truth and benchmark data for models.  

To identify the intersections for the study area, a bicycle network, developed and 

managed by the City of Austin Transportation Department, was obtained. The bike route 

network is generally different from the regular street maps as it identifies various bicycle 

related facility segments (off-street, on-street bicycle facilities, special facilities etc.) in 
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addition to regular roadways that allow bicyclists. The process of extracting intersections 

from the bike network was explained in section 4.5.1.1 

 Population Scale 

Given that some of the data sources represent a different subpopulation of the 

actual bike activity, it is only logical to expand or scale such activity from individual 

sources to the total population level. While the analyst may not have to choose a 

particular population scale for homogenization, it is imperative to understand the 

representativeness and skewness of the sources. 

 Analyze/Model Data Sources to Obtain Homogenize Representation 

Given the selected scopes of bike activity estimation, AADB at intersections, the 

data sources of different structures have to go through multiple analysis steps. Using the 

data sources, tabulated in table 4.1, this research developed five models, which were:   

i. Direct Demand Model 

ii. Four-Step Model 

iii. Bike Sharing Model 

iv. Strava Model & 

v. StreetLight Model 

A tabulated summary of the key features of the modeling steps was presented in 

Table 4.2, followed by an in-depth discussion of individual processes. 
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Table 4.2: Key Steps of Volume Estimation Models 

Model Main Input Use of 

Explanatory 

variables 

Model Type or 

steps 

Adjust 

Population 

Scale? 

Direct 

Demand 

Model 

Short and 

permanent 

Counter data 

Yes Regression No 

Four-Step 

Model 

Demographics 

and  

Employment 

data,  

Yes Trip generation, 

distribution, mode 

choice, 

assignment   

No 

Bike-Sharing 

Model 

Bike-sharing 

volume 

No Trip assignment Yes 

Strava Model Node/road level 

app volume 

Yes Regression Yes 

StreetLight 

Model 

Zone level 

volume 

Yes Regression Yes 

 

The description of the process was divided into two parts. As each of the data 

sources had to undergo some processing and modeling tasks, the common steps that 

were utilized multiple times, such as gathering auxiliary data, regression model building 

process, traffic assignment and actual volume process were explained, in the first part. In 

the second part, the models developed from the induvial sources were explained.  

 General Steps 

Under this section, some of the steps that are relevant to multiple or all models, 

developed by this study, are explained first to avoid repetition when discussing 

individual models. The discussion included processing of bike network data to obtain 

intersections for the study area, processing of explanatory variables for models and 

creating bikeability index measures, developed for modeling and simulation purposes. 
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The section also explained the generalized variable and model building process and 

traffic assignment task, required for bike-sharing and four-step models.          

 Processing bike network   

The bike network of the study area is one of the crucial and essential information 

or input required for activity or demand estimation of nonmotorized traffic. It is required 

to locate the intersections or street segment locations for which the demand has to be 

computed. The network map is also necessary for route choice analysis in traffic 

assignment task. A bike or pedestrian route network is generally different from the 

regular street maps as it identifies various bicycle or pedestrian specific facilities and 

excludes the access-controlled routes on which nonmotorized activities are not allowed.  

For the study area, a bicycle network map, developed and managed by the City 

of Austin Transportation Department, was obtained. The map included information 

regarding both bicycle facility type (on-street/off-street etc.) and bicycle comfort level 

for each segment. The comfort level was computed based on a study by Geller (2009), 

taking into account a number of factors, including traffic speeds and volumes, roadway 

widths, bicycle facility type, and other readily available metrics, to determine how 

comfortable a segment is for people of all ages and abilities. The comfort level was 

mainly categorized into four types: high comfort sections, medium comfort sections, low 

comfort sections, and extremely low comfort sections. The bike network excluded road 

segments that are without any bike facility or of low comfort but with an alternative 
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route option. The residents of Austin are also allowed to suggest new routes or to update 

the comfort levels of the existing routes. Hence, the mapping follows a robust process 

that takes continuous advantage of public feedback to avoid the routes where bicyclists 

never or very seldom ride. Therefore, the network is expected to provide a good 

representation of the actual route choices by the bicyclists of the study area. 

As the network was processed to be used in intersection identification and route 

choice analysis, it was imperative to perform a comprehensive quality check to check its 

completeness and accuracy.  It was observed that the route map didn’t include access-

controlled roads (i.e., Interstate highways) where bicyclists are not allowed, as expected. 

Moreover, acknowledging the fact that even the most carefully developed networks are 

bound to have errors, the obtained network file was checked for two common digitizing 

errors: overshoots and undershoots. Overshoot and undershoot errors happen when a line 

is not connected with the neighboring line with which it should intersect (Krizek et al., 

2009). Following an exhaustive manual investigation of the network, a network 

correction task was performed (in ArcGIS) to avoid error in the traffic assignment 

process.  

The final task was to identify intersections from the route network. Both three 

and four-legged intersections were identified in the process. The study area consists of a 

total of 2,518 intersections as shown in figure 4.1. 
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Figure 4.1: Intersections within the study area 
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 Processing explanatory variables 

In an effort to assemble explanatory variables for the study, prior studies 

focusing on direct demand models and bike determinants were reviewed (Chen et al., 

2017a; Dill, 2009; Hankey et al., 2017; Hasani et al., 2019; Tabeshian & Kattan, 2014). 

This study sought to build a rich set of explanatory variables using insights from the 

earlier studies as well as the data available for the study area. To develop the explanatory 

variables for the model, first, a comprehensive search was performed to see which data 

were publicly available. Data were gathered from the City of Austin data portal 

(https://data.austintexas.gov/), 2017 American Community Survey 

(https://data.census.gov/cedsci/), City of Austin Planning and Development Review 

Department, Texas Education Agency (http://schoolsdata2-tea-

texas.opendata.arcgis.com/datasets/059432fd0dcb4a208974c235e837c94f_0), Austin 

Transportation Department Arterial Management Division, Capital Metro 

(https://data.texas.gov/Transportation/CapMetro-Shapefiles-JUNE-2018/rwce-6ann), 

and BCycle (Austin bike-sharing agency) data portal 

(https://data.austintexas.gov/Transportation-and-Mobility/Austin-MetroBike-Trips/tyfh-

5r8s). After identifying the gap between the required and available datasets, relevant 

authorities were contacted and asked to provide additional data for research purposes. 

Additionally, a review of factors included in past studies identified a need to explore 

new variables related to the features that have the potential to drive the bicycle demand 
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at an intersection. Therefore, this study examined some additional variables—including 

the presence of bike-sharing stations or bike signals around an intersection, bike-

accessible bridges, and so forth—anticipating their possible impacts on bicycle volume 

in the area. 

Since all of the raw datasets obtained from different sources were at different 

spatial scales, the datasets were cleaned and processed to bring them to homogenous 

spatial scales (buffer level). Over 400 variables for three buffer zones—0.1 miles, 0.5 

miles, and 1 mile—were created. The variables were categorized into seven groups 

following the categorization suggested by Munira and Sener (2017): demographics, 

socioeconomics, network/interaction with vehicle traffic, pedestrian- or bicycle-specific 

infrastructure, transit facilities, major generators, and land use.  

The demographic and socioeconomic variables included age, gender, education, 

race, household size and occupancy status, income, and commute mode and time of the 

surrounding population. The network and bicycle-specific infrastructure-related 

variables included different types of bicycle infrastructure based on the conditions and 

comfort level, which was developed by the City of Austin (2017), as well as bike signal, 

intersection density, and bike-sharing stations. Various transit-facility-related variables 

were compiled, including frequency of transit stops, transit route length, and distance 

from hub locations. Major generators and land use variables, such as the number of 
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schools, offices, industries, open areas, mixed-use developments, water areas, and 

bicycle-accessible bridges, were also gathered based on available data. 

 Creating Bikeability Index 

The research developed a Bikeability Index- a composite measure to quantify 

bike friendliness of the network, mainly to handle the issue of small sample size of the 

study area. As noted by Munira et al. (2021), the small sample puts constraints on the 

modeling process including the direct demand models in multiple ways such as limiting 

the number of predictors that can be added to the regression model to avoid the 

overfitting issue (Howell, 1997). The issue may result in the omission of important 

variables. 

The bikeability index was mainly inspired from the approach of Winters et al. (2013). 

The process of developing the bikeability index was detailed in the Munira et al. (2021). 

Five attributes were used in the process which were: bicycle route length, high comfort 

bicycle route length, connectivity of bicycle-friendly streets, destination density and 

transit coverage, within 1 mile of the intersection. Each of the five attributes were scored 

in a scale of 1 to 10 based on the quantile value, where 1 = least bikeable environment 

and 10 = most bikeable environment. The final index value was created by summing the 

scale value for each attribute. The highest index value could range from 5 to 50. Munira 

et al. (2021) showed that the high bikeability intersections (above 40) were located near 

the central region.  
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 Variable selection and model building 

For variable selection, an extensive three-stage procedure was followed. First, the 

relative strengths of relationships between each of the explanatory variables and the 

dependent variable was assessed through a simple OLS model. At this stage, variables 

that had significant association (at a 90% confidence level) with the dependent variable 

(AADB at intersections) were identified. Second, correlation between variables were 

examined through Pearson's correlation coefficients.  In this stage, a large number of 

significantly correlated variable pairs (at 0.7) were recognized. Finally, by iterating 

numerous combinations of variables which are not highly correlated, a final model was 

identified examining its predictive accuracy such as mean absolute error (MAE), root 

mean square error (RMSE), misclassification error and fitness (adjusted R2). In addition, 

while selecting the variables for the best model, the statistical significance of individual 

variables and intuitive interpretation were also considered.  

The performance of the models was examined using cross-validation, a 

resampling technique that helps identify a parameter value, in order to ensure a proper 

balance between bias and variance (Chan-Lau, 2017). For this process, a 10-fold, cross-

validation method was used to evaluate and compare the performance of the developed 

models. The performance evaluation criterion was the average accuracy.  

It's worth noting here that the process of variable selection could also be done 

through various state-of-the-art machine learning approaches, such as Lasso or Random 
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Forest which are often referred to as the black box approach with limited interpretability 

(Chen et al. 2017a). The approach followed in this study intended to promote a profound 

understanding of the variables along with the dynamics of their relationship. 

 

 Traffic Assignment  

A traffic assignment task is needed to allocate traffic to the facilities of the 

transport network. This is the last step of the four-step modeling process. The step is also 

required in bike-sharing traffic allocation as the raw data generally comes in a zone 

(station)-to-zone( station) trip format.  

For conducting the traffic assignment task, several software packages are 

available such as PTV VISUM from PTV Group, EMME by INRO, CUBE Voyager by 

Citilabs, TransCAD by Citilabs, which require a commercial license. In order to be used 

in the bicycle trip assignment task for this dissertation, an open-source software was 

preferred. It was found that “Tranus” is an open-source software that can be used in 

developing land use and transportation model at an urban or regional scale. First 

developed in 1982 by Modelistica, the software has gone through several versions 

incorporating theoretical developments and practical requirements (Parsons Brinckerhoff 

Quade & Douglas, Inc., 1999). This project used Tranus version 12.10.1.  

Tranus has been utilized in a large number of studies, for regions of varying 

socioeconomic and cultural contexts, such as Latin America, USA, Europe and Japan. 
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Oregon Department of Transportation had used the Tranus to develop an integrated land 

use-transport model at the statewide level (Parsons Brinckerhoff Quade & Douglas, 

1999). A research project promoted by the French National Research Agency (ANR) 

utilized Tranus platform to develop an integrated land use and transport model for the 

urban region of Grenoble, France (Feudo et al., 2017). The researchers concluded that 

they were able to achieve their goal of building a meaningful and policy-relevant model 

using the Tranus system. Wegener (2004) reviewed twenty contemporary urban land-use 

transport models and highlighted that the Tranus stands out as a particularly advanced 

and well-documented demand modeling platform with its attractive user interface. 

Center for International Intelligent Transportation Research of the Texas Transportation 

Institute (TTI) and Modelistica developed a binational travel demand model for El Paso, 

Texas, and Ciudad Juarez, Mexico, using Tranus to help transportation agencies of both 

regions anticipate traffic flow and needs (Collins et al., 2009). 

The traffic assignment task in the Tranus platform, for this study, went through 

an exhaustive process utilizing an array of assumptions and hypotheses. The section also 

highlights the process and underlying algorithms that have been utilized for the 

dissertation purpose. The models were customized based on the characteristics and 

requirements of the study area. 

 Processing actual bicycle volume counts 
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This study obtained and analyzed two types of bicycle count data: the short-count 

(24-hour) data from the City of Austin Transportation Department, and continuous-count 

data from Eco-Counter (Eco-Counter, 2019). The continuous-count data were required 

to calculate adjustment factors to estimate the annual average daily bicycle (AADB) 

volume for the specific locations (Nordback et al, 2013) using the short count data. 

As shown in Munira et al. (2021), the 24-hour bicycle count data were available 

for 44 locations. According to city officials, the locations were identified using the City 

of Austin bicycle route map (City of Austin, 2017) and based on the professional 

judgment of local planners. Standard procedures were followed for data collection where 

the data were collected using a video recorder in each of the intersections on typical 

weekdays distributed over 5 months (April, May, June, August, and October) in 2017. 

The permanent location count data, since 2012, were obtained from Eco-Counter for 11 

locations. The continuous data were used to estimate the daily and monthly factors in 

order to calculate the AADB volume for each location where the short-count data were 

available.  

As shown by Munira et al. (2021),  with a minimum of 43 and a maximum of 

1,282 riders,  the intersections exhibited notable variation in terms of AADB volume,.  

 Model Building from Individual Sources 

This section describes the demand models developed utilizing multiple sources. 

In doing so, the characteristics and features of different datasets are explained briefly. 
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While explaining the model building process, the general steps mentioned in the 

previous section are referred if/when necessary.     

 Direct Demand Model  

Among several approaches to estimate and predict the demand of pedestrian and 

bicycle travel, the direct (facility) demand model is the most frequently used modeling 

approach in the area of pedestrian/bicyclist safety (Turner et al., 2017). The model  

utilizes actual count observations to estimate or forecast demand in a specific geographic 

area (such as intersection) by directly associating the observations with mode, trip, and 

traveler attributes, generally utilizing a form of regression (Ortuzar & Willumsen, 2011). 

This research utilized the actual AADB estimate (section 4.5.1.6), bikeability index (in 

section 4.5.1.3) and explanatory variables (outlined in section 4.5.1.2) to develop a direct 

demand model that can estimate AADB for all intersections of the study area.  

As the characteristics of the dependent variables (Actual AADB at 44 

intersections) was over-dispersed , a negative binomial model was utilized. The variable 

selection process is outlined in section 4.5.1.4. In addition to the bikeability index, the 

direct demand model, contained five demographic and land-use variables which are total 

population of age under 14, Black or African American population, population with no 

or some academic degree, bike signals, and presence of bicycle accessible bridge, as 

shown in Table 4.3. 

Table 4.3: Negative Binomial Regression Model. 

Variable (buffer width) Estimates T-Stat 
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(Intercept)  4.96   8.82 

Bikeability index (1 mile)  0.02   1.65 

Black or African American population (1 mile) (in 100s) −0.02 −3.23 

Population with no or some academic degree (0.1 mile)  0.03   2.98 

Total population of age 14 and under (0.5 mile) (in 100s) −0.12 −2.99 

Bike signal (0.1 mile)  0.3   2.46 

Presence of bicycle accessible bridge (0.1 mile)  0.54   2.25 

Model Statistics 

N (sample size) : 44  

Adjusted R2   : 0.7 

RMSE               : 171 

MAE               : 132 

 

The adjusted R2 for the prediction model was 0.7, and RMSE was 171. Finally, 

the model was utilized to estimate AADB for all intersections of the study area. The  

predicted AADB ranged from 15 (mainly at the areas away from the downtown core) to 

1,398 (at the downtown core). 

The model also provided interesting insights into how different attributed influence 

bicycle demand within the Austin region. The AADB in intersections is characterized by 

sociodemographic (total population of age younger than 15, Black or African American 

population, and adult population of age 25 or older with no or some academic degree), 

bicycle infrastructure (bike signals), and built environment (bikeability index and 

presence of bicycle-accessible bridge) variables. The varying buffer scales of the 

variables emphasized the importance of using various buffers in developing the best 

model, being consistent with previous studies (Miranda-Moreno and Fernandes 2011). 

Moreover, while some variables exhibited the effectiveness of some of the policies taken 
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by the city for improving safety and mobility of bike traffic, some variables provided 

insights into the scope of future improvements. For more details on the interpretation of 

the variables of the model, readers are referred to Munira et al. (2021). 

 Bicycle Sharing Model 

Bicycle sharing data was obtained from the data portal of the BCycle-Austin 

bike-sharing agency. the bike-sharing system in Austin mainly covers the downtown 

region, with only 63 stations as of 2018 (BCycle, 2018). The research extracted bicycle 

trip data, from all stations, for 2017 when a total of 193492 trips were logged. The 

dataset contained limited information regarding each trip including trip start and end 

time and station. 

Initial investigation on the temporal distribution of the trips revealed that the 

highest numbers of trips were observed during March through April, followed by 

September. This distribution might be attributed to the pleasant and mild weather during 

these months. The Texan summer, when temperatures climb into the mid to high 90s 

with high humidity, might be the reason for low bike-sharing trip activity from June 

through August. It might also be attributed to the fact that during the summer time, 

University of Texas Austin students are less likely to reside in the campus.  Intuitively, 

Friday, Saturday, and Sunday observed a higher number of trips compared to other days 

of the week. Moreover, the majority of the trips were made by the users with a 24-hour 

pass (compared to annual pass, monthly pass, and 3-day pass users). This finding 
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explains the high number of plausible recreational purpose trips that started and ended at 

the same station. Despite having a wide temporal coverage, the spatial coverage of the 

data was limited because the sharing stations mainly cover the downtown region. Trip 

starting and ending volumes were concentrated near the Lady Bird Lake (downtown) 

area. Moreover, the bike-sharing activity only accounted for a proportion of the total 

bike activity in that area, and thus needed population-level scaling. 

The process of estimating annual average bicycle volume from this specific data 

went through three key stages: (a) examination and cleaning to obtain data in a 

meaningful format, (b) trip assignment, and (c) population-level scaling. In the first step, 

the distribution of the data, in terms of spatial unit, temporal unit, membership level, 

etc., was investigated. The step also included data cleaning; for example, trips starting 

and ending at the same station were removed because they would not add value to the 

assignment process (i.e., no trips would be assigned to the routes). Then, an OD matrix 

was developed using the station-level data. For this purpose, trips for the months April, 

May, and June, which represented the typical month of bike-sharing activity, were 

extracted. Then an OD table was built using the average trips for each station (OD) pair 

for the above-mentioned three months. For example, if there were six trips in three days 

(during the three months) for an OD pair, the average trip for that particular OD pair was 

taken as 2. Trips were rounded up for the decimal numbers. In the second step, a trip 

assignment process was conducted (as explained previously) to assign the trips at the 
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intersection level. The output of this step was intersection-level bike-sharing volume. 

Finally, the estimate was scaled to population level using actual AADB (presented in 

section 4.5.1.6) and utilizing a negative binomial model.  

 Strava Model  

Strava Metro is a data service that produces activity data from users of the Strava 

app. The app allows cyclists and runners to track their activities (such as rides, runs, and 

walks) on a smartphone or other GPS device. Strava allows access (in a subscription-

based format) of the anonymized and aggregated activity data to the transportation 

agencies, city governments, and corporations. For this study, bike activity data were 

collected from Strava Metro through TxDOT.  

The obtained dataset contains three subsets in three formats: streets, origin-

destination, and nodes. To meet the objective of this study, node-level data (street 

intersections) were gathered. The researchers processed the total bicycle volume count 

for all nodes for the year 2017 to estimate the daily average estimate. Strava activity data 

for 2,303 intersections were processed. However, the data only represents a 

subpopulation. In order to scale the volume to the population level, the relationship 

between the actual AADB (presented in section 4.4.1.6) and Strava volume was built 

utilizing a negative binomial model, with the intersection density as an explanatory 

variable.  

 Four-step Model 
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This dissertation developed a four-step demand model to estimate intersection-

level bicycle volume in the Austin area. The general steps of the models were: trip 

generation, trip distribution, modal split and trip assignment.  

The first two steps, trip generation and trip distribution at the TAZ level, were 

performed using the traffic forecasting model tools from the local transportation 

planning agency, known as the Capital Area Metropolitan Planning Organization 

(CAMPO). The trip generation step computed the number of trip ends (daily) produced 

in and/or attracted to each TAZ of the study area, based on sociodemographic and land-

use information, for multiple trip purposes (i.e., home-based work, non-home-based 

work, and non-home-based other). The step utilized TripCAL6 in TexPACK v3.0 beta 

version, which was created by TTI travel forecasting program for the demographic 

preparation and trip generation process. For the trip distribution step, the outputs from 

TripCAL6 in TexPACK v3.0 were converted to conform to the format of the CAMPO 

2010 model. The CAMPO model uses a standard gravity model equation and applies 

friction factors to represent the effects of impedance (i.e., travel time, spatial separation) 

between zones. The output of the trip distribution step is an OD matrix that, for each trip 

purpose, indicates the travel flow between each pair of TAZs. 

As the trip distribution output for multiple trip purposes, including all modes of 

transportation, it is necessary to develop a mode choice model to obtain an OD matrix 

for bicycle traffic. To do so, the general framework of the nonmotorized demand model 
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proposed by the National Cooperative Highway Research Program (Kuzmyak et al., 

2014) was followed. The main dataset utilized for this analysis was 2017 NHTS add-on 

data for the Austin region. To facilitate the model building process, TAZ-level 

socioeconomic and land-use variables were also used.  

For the study area, 27,950 trips were extracted, of which 353 were bicycle trips. 

Given that the bicycle trips only occurred for a limited number of purposes (i.e., no bike 

trips for pick-up/drop-off purposes), only trips of purpose (home based non work, home 

based work and none home based) that had at least one bike trip were selected. Then, the 

TAZ location of each trip’s origin and destination (based on coordinates) was identified. 

As the final step of data generation for the model building process, the land-use variables 

for each TAZ were matched to each trip’s origin and destination TAZ. Thus, one trip 

was associated with two features of each land-use variable, denoted as origin land use 

and destination land use. 

Three mode choice models were developed: home-based non-work trip model, 

home-based work trip model, and non-home-based work trip model. For all three trip 

purposes, the binary logit model was used to estimate an OD score (based on utility) 

based on the variables of distance between origin and destination (skim), origin land use, 

and destination land use. The main rationale was that people’s decision to bike depends 

on the characteristics of both origin and destination. Table 4.4 presented the mode choice 

model results for three trip purposes.  
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Table 4.4: Binary logit model for three trip purposes 
  Variable Home Based Non Work 

Model                           
None Home Based 

Model 
Home Based Work 

Model 

Estimate Pr(>|z|) Estimate Pr(>|z|) Estimate Pr(>|z|) 

 (Intercept) 0.77 0.06 2.11 0.01 2.08 0.00 

Skim (Distance) -0.30 0.00 -0.18 0.11 -0.19 0.00 

Origin-Freq of transit Stop 0.06 0.20 - - - - 

Origin-Mixed land Use 0.31 0.15 - - -1.65 0.17 

Dest- Freq of transit Stop 0.06 0.18 - - - - 

Dest-Mixed land Use 0.50 0.13 - - - - 

Dest-High comfort bike 
facility 

0.00 0.14 0.00 0.24 
  

Origin- Low comfort bike 
facility 

- - 0.00 0.20 0.00 0.07 

Dest- Low comfort bike 
facility 

- - - - 0.00 0.30 

Origin-Commercial land 
use 

- - -0.06 0.30 - - 

Dest-Commercial land use - - -0.09 0.10 - - 

Misclassification error 0.24 0.19 0.25 

ROC:  0.76 0.82 0.74 

 

The final model variables were then used to calculate the OD score for each TAZ 

pair and for each trip purpose. The computed OD score was categorized into several bins 

to estimate the rates of mode split for each bin by trip purpose, as outlined by Kuzmyak 

et al. (2014). The graph and equation developed from this step exhibited a clear pattern 

of higher rates of bike mode share for TAZ pairs of higher OD scores. The OD score and 

mode split relationship were then used to estimate bicycle trips for the study area. The 

output of the process was a trip distribution table, at the TAZ level, for bicycle traffic. 
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Since bike trips are generally short, TAZs that were more than 20 car minutes away from 

each other were removed from the trip distribution table. 

Finally, Tranus was used for the trip assignment step to allocate the trips at the 

intersections of the study area. The model outcome was found to underestimate 

intersection-level volume when compared with the actual AADB. This underestimation 

was probably due to the model being developed using the demographic and trip 

characteristics of the 2010 CAMPO model. Thus, to scale the volume to 2017, actual 

AADB was used in a negative binomial model to estimate AADB from the four-step 

model.  

 

 StreetLight Model 

StreetLight generates data representing walking and biking activity metrics that 

are derived from three main sources: general location-based services data, mode-tagged 

location-based services data, and validated bicycle and pedestrian counts (StreetLight, 

2018). Additional sources, such as GPS-enabled travel diaries and traditional surveys 

about active mode behavior, are also used during the algorithmic development of the 

metrics.  

The raw datasets go through a series of data processing steps to measure the 

active mode trips for an area. The platform utilized a probabilistic approach for mode 

inference (car, bike, walk) based on machine learning models and using multiple trip-
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related features. StreetLight (StreetLight, 2018) has noted that due to the relatively low 

sample, pedestrian and bike activity are not adjusted for population biases. To represent 

activity metrics, StreetLight generates index values that reflect a sample of bicycle trips 

starting in, passing through, or ending in defined zones. 

This research gathered StreetLight Index data for bike traffic in terms of annual 

average daily volume in 2018 for 950 intersections of the study area. In order to scale the 

volume to the population level, the relationship between the actual AADB and 

StreetLight Index was built utilizing a negative binomial model with the population 

under age 14 (within a 1-mile buffer) as an explanatory variable.  

 

 Discussion on the Model Outcomes 

Because the output from the five models was to be used as the input for fusion, it 

was imperative to discern the distribution, skewness, and coverage of the AADB 

estimates. The study area consisted of 2,518 intersections, both signalized and 

unsignalized. Overall, the AADB estimates from the models were found to be in the 

range from 0 to around 1,400. The intersections with high bike volume were generally 

concentrated in the downtown area. The estimates from the five demand models were 

deemed as reasonable and intuitive given that the actual count data also illustrated a high 

concentration (maximum of 1,282 riders) of bike ridership in downtown Austin. It is 

important to note that since the locations of counts were identified based on the city’s 



 

110 

 

 

 

bicycle route map, the counts are drawn from locations within the limits of the map and 

do not include areas farther into the suburban regions. 

The DDM generated estimates for the maximum number of intersections (2,518), 

where the minimum volume was 15 and the maximum was 1,398. The bicycle-sharing 

model estimated bike activity in 793 intersections located near the bike-sharing stations 

in the central regions. The four-step model provided estimates for 2,397 intersections. 

Strava and StreetLight data were available for 2,303 and 950 intersections, respectively.  

 

 

Figure 4.2: Frequency Distribution of AADB Estimates 
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Figure 4.2 presented the distribution of the estimated AADB from the five 

models. The figure showed that the volume distribution was right skewed. The majority 

of the estimates were found to be under 300 AADB. The mode of distribution for the 

bike-sharing model estimates was between 0 to 100 AADB. For the other four models, 

the peak was at the 100 to 200 AADB bins. Only a few observations were reported for 

AADB exceeding 800.  

When compared with the actual AADB at 44 intersections, it also showed similar 

distribution. For the actual AADB, the mode of distribution was also between 100 to 200 

AADB.  

 Context for Nonmotorized traffic data 

As discussed in section 3.6, the process of discerning context for the traditional 

context-aware researches can be based on automatically acquired information or be done 

manually. Automatic detection requires a large-scale training database which is most 

often not an issue for researchers dealing with sensors (such as image sensor) data. 

However, in real-world applications, context sensing mostly relies on manual input (Dey 

and Abowd, 2001), which requires a profound understanding of the dynamics of the data 

and inherent situations. 

The discussions in the previous chapters, along with this one, drew the 

implication that for nonmotorized demand data, the context in question can be derived 

from its spatial and temporal circumstances. For example, volume data obtained from 
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bicycle sharing data is expected to be more reliable at the locations near the bike stations 

compared to intersections that are far from the stations. Similarly, the reliability of 

volume data may vary based on time of day, when data are available at finer temporal 

resolution.  

Although this research didn’t have adequate data to investigate the influence of 

temporal features as context, the spatial variability of reliability of the data sources was 

put forward for investigation. For example, the examination of the spatial variability of 

the deviation of the Strava data (as outlined in section 2.3.1.3) indicated the fact that the 

reliability of the volume estimates, obtained from different sources, are expected to have 

a spatial variation. Therefore, the spatial feature of the estimates, from each source, can 

serve as a “context” in the fusion algorithm.  
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5. MATHEMATICAL FRAMEWORK FOR FUSION OF NONMOTORIZED 

TRAFFIC DATA 

 

 Fusion Algorithms for Nonmotorized Traffic Data 

The in-depth discussions on the characteristics and dynamics of the 

nonmotorized data sources and models shed light on multiple aspects that entail the 

choice and formulation of plausible fusion mechanisms for combining knowledge on 

nonmotorized demand. Indeed, the main objective of designing a fusion framework to 

combine multiple sources is to obtain an estimate which has better accuracy than the 

individual source. While there is no doubt on the need to develop a robust state-of-the-

art statistical approach, it is also imperative to bring attention to practical constraints and 

limitations of nonmotorized information.  

As mentioned in Chapter 3, a multitude of mechanisms for decision fusions have 

been applied in different areas of research based on multiple criteria and aspects of data. 

Among various elements and categories of fusion algorithms, the two key aspects 

deemed crucial to nonmotorized activity-related knowledge were  

i) The type of output provided by the sources/models and  

ii) The use of ground truth data.  

Nonmotorized models are likely to generate knowledge or information as the 

abstract (crisp) level output. Moreover, given the resource requirements of gathering on-
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site nonmotorized activity data, which should serve as a ground truth or benchmark 

information for generating some fusion models, some practical scenarios may call for an 

option of fusion algorithms that don’t warrant ground truth information. Therefore, 

considering the characteristics of the output of the nonmotorized activity information, 

availability of ground truth information, and sample size, this research adopted and 

illustrated multiple classifier/decision fusion mechanisms. Moreover, in addition to the 

traditional approaches, this research acknowledged the need for novel approaches 

accommodating the unique characteristics of nonmotorized demand models.  

The fusion algorithms developed and applied for this research were categorized 

into types  

i. Fusion without benchmark data 

ii. Fusion with benchmark data 

Under the first category, three traditional fusion algorithms, under the rationale of the 

voting method, were illustrated. Then a novel approach was proposed that uses the 

rationale behind the traditional weighted majority approach but generates decision 

weights without using the ground truth data  

The fusion framework endorsed a state-of-the-art statistical approach—the 

Dempster Shafer (DST) method—which requires benchmark data. The method is a well-

known generalization of the Bayesian framework, which can handle the uncertainty or 

ignorance of the data. The literature review had already outlined that the Dempster-



 

115 

 

 

 

Shafer theory is particularly adequate for nonmotorized data fusion and application. 

Finally, in an endeavor to develop a robust statistical tool considering context, the 

Dempster Shafer with context credibility was proposed due to its ability to incorporate 

human subjectivity with mathematical probability to combine information (Wu, 2003) 

The following sections of this chapter were devoted to illustrating the 

mathematical formalism of the algorithms utilized in this research.   

 Fusion Methodology without Benchmark Data  

Fusion mechanisms under this category were described in two sections. The first 

section identified the traditional voting fusion approaches, applicable without ground 

truth data. The second section proposed a weighted majority voting approach that 

considers the pairwise interaction of the data to assign weightage on each decision and 

obtain a fused estimate.  

 Voting rules  

The Majority voting is the simplest method to combine abstract-level classifiers. 

It doesn’t require any prior training from the sources (Suen and Lam, 2000). Hence it 

can function without the ground truth data. In the simple majority voting method, the 

decision from each classifier or source is assigned an equal weight.  

In general, there are three forms of voting rules (Raol, 2015; Kuncheva, 2014) 
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i. Unanimity: When combining the decisions of 𝑘 sources or classifiers, a decision 

is made when all 𝑘 sources agree on the decision/class label. Otherwise, the 

sample is rejected. 

ii. Simple majority: When combining the decisions of 𝑘 sources or classifiers, a 

decision is made when at least 𝑚 of the sources agree on the decision/class 

label. Otherwise, the sample is rejected 

       𝑚 = {

𝑘

2
+ 1, 𝑖𝑓 k 𝑖𝑠 𝑒𝑣𝑒𝑛

𝑘+1

2
, 𝑖𝑓 𝑘 𝑖𝑠 𝑜𝑑𝑑

  ………………………..(1) 

iii. Plurality: When combining the decisions of 𝑘 sources or classifiers, a decision is 

made based on the most voted label. 

Let us assume that class labels are obtained from each classifier or source. The 

decision of the kth classifier is defined 𝑑𝑘,𝑗 € 0,1 , where k= 1… . 𝑠  (s classifiers) and  

𝑗 = 1… . 𝑛   (n class pattern). Each input x is classified into one of the n classes. 𝑑𝑘,𝑗 = 1 

if 𝑘   labels x as 𝑤𝑗, 𝑑𝑘,𝑗 = 0 otherwise. In this case, plurality will result in a decision for 

𝑤𝑗, if ∑ 𝑑𝑘,𝑗

𝑠

𝑘=1
= max

𝑗=1

𝑛 ∑ 𝑑𝑘,𝑗

𝑠

𝑘=1
 ………………………..(2) 

 

 Novel Weighted Majority Vote 

Weighted majority voting is another framework of combining decision-level data 

where each classifier is given a certain weight/importance in the decision-making. 
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Intuitively, the stronger classifier has more weightage in the decision compared to the 

weaker classifier. Typically, the weight corresponds to the accuracy of the classifier 

(Polikar, 2006); hence it requires ground truth data or a training set.   

The label outputs can be represented as the degree of support for the class using 

the following equation 

𝑑𝑘,𝑗 = {
  1, 𝑖𝑓 𝐷𝑘  𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑠 𝑥 𝑎𝑠 𝑤𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
………………………..(3) 

If 𝑏𝑘 is the weightage assigned to the classifier 𝐷𝑘, the class support for 𝑤𝑗 can 

be obtained from 

μj(𝑥) =  ∑ 𝑏𝑘
𝑠
k=1 𝑑𝑘,𝑗………………………..(4) 

The classifiers, in interest, would choose class 𝑤𝑚 , given the following 

condition hold true  

∑ 𝑏𝑘𝑑𝑘,𝑚
𝑠

𝑘=1
= max

𝑗=1

𝑛 ∑ 𝑏𝑘𝑑𝑘,𝑗

𝑠

𝑘=1
………………………..(5) 

To estimate weights, this dissertation proposed to use a dissimilarity measure that 

can compute the pairwise interaction of the datasets. The underlying assumption was that 

if the decisions of two sources are far from each other, they are considered to be 

dissimilar. Therefore, if a data source has high dissimilarity with the other data sources, 

the piece of data is regarded as less important and will have a small weight in the final 

decision. To measure the pairwise dissimilarity, the concept of Euclidian distance was 
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utilized. If 𝑥𝑟 and 𝑦𝑟 are the rth observation of data source x and y, Euclidian distance 

between two data source is  

𝐝(𝑥, 𝑦) =  √∑ (𝑥𝑟 − 𝑦𝑟)2𝑛
r=1   ………………………..(6) 

Here,  

𝐝𝐫(𝑥, 𝑦) = {
0, if  𝑥𝑟 = 𝑦𝑟

1, if  𝑥𝑟 ≠ 𝑦𝑟
………………………..(7) 

Based on the pairwise distance measure, the weight of each source can be 

quantified based on its dissimilarity with the rest of the sources.  For k information 

sources (k=1,…s), the dissimilarity and similarity of kth source can be defined as  

D(𝑘, 𝑠) =
1

s−1
∑ 𝑑(𝑘, 𝑗)𝑠

𝑗=1,k≠𝑗  ………………………..(8) 

𝑆𝑖𝑚𝑘 = 1/D(𝑘, s)………………………..(9) 

Finally, the weight of kth source, to be assigned in the decision process is 

 b𝑘 = 𝑆𝑖𝑚𝑘/∑ 𝑆𝑖𝑚𝑘
𝑆
k=1 ………………………..(10) 

 

 Fusion Methodology with Benchmark Data  

Given the characteristics of the nonmotorized activity data, which are often 

scarce, vague, incomplete, conflicting, or scattered, a robust fusion algorithm is needed 

to represent the knowledge and handle uncertainty. In this regard, Dempster Shafer 

(DST) had been deemed as a suitable mathematical framework that elicits decisions 

from multiple sources and measures uncertainty involving ambiguity (or ignorance) and 
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conflict (Kronprasert, 2012), where traditional probability theory falls short. The 

following sections illustrated the principle, terminology and axioms of the mechanisms 

along with a brief literature review when deemed necessary. The section also described 

the proposed DST with context credibility.  

 Dempster Shafer Combination: Overview  

Dempster Shafer method (DST), the core mathematical framework in this study, 

is a generalization of traditional probability theory. The DST framework utilizes belief 

measures to allocate degrees of support to one or multiple hypotheses instead of one 

mutually exclusive outcome as in the probability theory (Kronprasert, 2012). The theory 

can handle evidence with different levels of precision and ambiguity.  

It should be mentioned here that The DST and Bayesian methods generate 

identical results when all the hypotheses are singletons and mutually exclusive (Wu, 

2003). However, the framework for fusing nonmotorized data sources, when benchmark 

data is available, was built under the DST formulation, over Bayesian, for two reasons.  

First, the DST framework is applicable where information or decision of different 

granularity are needed to be dealt with at the same time. For example, two different 

sources or models may estimate a volume using different class boundaries, such as one 

as 100-200 AADB while the other data as 75-250 AADB. The second reason is the DST 

can accommodate imprecision and inaccuracy, i.e. missing knowledge, which is a 

common phenomenon for nonmotorized traffic data. The DST framework allows the 
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modeling of the ignorance and missing information by generating explicit estimation of 

inaccuracy and the conflict between the information of various data sources (Chust et al., 

2004) 

 

 Dempster Shafer: Basic Concept, Principles and Formulation 

Outlining the basic elements and formulation of the DST, a brief literature review 

regarding the process of generating Basic Probability Assignments (BPA) was provided 

to illustrate how the BPA generation mechanism was adopted by this study. This section 

also discusses the need to incorporate discount factors in the DST framework.  

 Frame of discernment, Focal elements and Mass function   

The frame of discernment (Ω) is the fundamental concept in the DST. A frame of 

discernment denotes a problem domain Ω = {ω1, ω2,... ωN} which consists of an 

exhaustive set of mutually exclusive hypotheses. The power set of Ω is 2Ω which is the 

set of all possible subsets of Ω (including the empty set ∅). That means  

2Ω= {∅, {ω1}, {ω2},.,{ωN}, {ω1, ω2}, . . ., {ω1, ω2 . . . , ωN}}.  

Any subset of Ω may represents a proposition or hypothesis regarding the state of 

the object or system. The subsets containing only one element are called singletons. 

Here, each subset is a focal element where ∅ denotes empty set and the last subset {ω1, 

ω2 . . ., ωN} denotes complete ignorance as it doesn’t provide any specific information. 
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In contrast to Bayesian theory, the DST framework assigns all missing evidence to 

ignorance.  

In the DST framework, a notion of basic probability assignment (BPA), a 

function of mass function (𝑚), is used which represents the degree of belief that 

supports a particular focal element.  The range of a mass function is between 0 and 1 

where 0 represents no belief and 1 represents a complete belief. The mass function has 

the following properties: 

𝑚(∅) = 0 and  ∑  𝑚(𝐴) = 1A∈2𝛺  …………………………… (11) 

Here, 𝐴 denotes a focal element where 𝑚(𝐴) > 0. Moreover, 𝑚(𝐴) denotes a 

degree of belief associated with the hypothesis that  ′𝜔 ∈ A′ . The above equation 

corresponds to a closed world assumption, which means the frame of discernment is 

considered exhaustive. When evidence relevant to any focal element cannot be obtained, 

the remainder BPA is allocated to ignorance.  

 Dempster’s Rule of Belief Combination  

The DST fusion framework offers a mathematical architecture that allows each 

of the data sources to contribute to reaching a decision regarding the state of an object or 

incident. If 𝑚1 and 𝑚2 is two mass function obtained from two independent sources of 

information, the new mass function based on Dempster's combination rule can be 

denoted as 𝑚 = 𝑚1 ⊕ 𝑚2.  

It can be represented as  
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𝑚1 ⊕ 𝑚2 (𝐴) =
1

1−q
 ∑ 𝑚1(𝐵)𝑚2(𝐶)𝐵∩𝐶=𝐴  ………………………..(12) 

 𝑚1 ⊕ 𝑚2 (∅) = 0………………………..(13) 

𝑞 = ∑ 𝑚1(𝐵)𝑚2(𝐶)𝐵∩𝐶=∅ ………………………..(14) 

Here, 𝐴, 𝐵 & 𝐶 ∈  2𝛺 .  𝑞 is the degree of conflict, alternatively called the degree 

of normalization or global conflict, between 𝑚1 and 𝑚2. Large 𝑞 indicates more conflict 

between sources. The combination rule is valid only when 𝑞 < 1. 

Dempster’s rule of combination is associative and commutative. That means the 

fused mass function does not depend on the order of aggregation. For 𝑠 information 

sources, the combined mass function after the DST fusion process is  

  𝑚𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝑚1 ⊕ 𝑚2 ⊕ … .𝑚𝑠 ………………………..(15) 

 Pignistic Probability Transformation  

The final step of the fusion is to make a decision regarding the label or class from 

the frame of discernment. The decision to reach a singleton can be made using various 

theories, including maximum belief (pessimistic strategy), maximum plausibility 

(optimistic strategy) or pignistic probability transform (Xu, 2014; Barnett, 1991; 

Denoeux, 1997).  

Pignistic probability transform is a popular method that offers to transform a 

mass function m into a probability function for decision-making. The pignistic 

probability transformation of the final mass values was introduced in the concept of the 

Transferable belief model (Smets and Kennes, 1994). It transforms the mass function 
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into a probability measure utilizing the principle of insufficient reason. It can be defined 

as  

𝐵𝑒𝑡𝑃𝑚(𝜔𝑛) = ∑
𝑚(𝐴)

|A| 𝐴⊆𝛺,𝜔𝑛∈𝑨 ………………………..(16) 

Here |A| is the cardinality (number of elements) of focal element A.  𝐵𝑒𝑡𝑃𝑚 

transfers the positive belief mass of each nonspecific element to the singletons in that 

element, based on the cardinal number of the proposition. 

 Generating Basic Probability Assignments- A look at the literature 

The issue of generating the BPA has been a focus of research attention for 

decades as it plays a crucial role in the success of the DST (Parikh et al., 2001). One of 

the prominent methods to estimate BPA is utilizing information obtained from the 

confusion matrices. In a groundbreaking paper, published in 1992, Xu, Krzyzak and 

Suen combined multiple abstract level classifiers where BPA function for each of the K 

classifiers was defined using recognition rate, substitution rate and rejection rate (Xu et 

al., 1992). The methodology considered an additional class representing unknown 

classes or ignorance. However, in the method, each class of a classifier shared the same 

BPA, which couldn’t identify the source/classifier’s ability to recognize different 

classes.   

Rogova (1994) applied the DST to combine fuzzy outputs where BPAs were 

generated for each class ‘n’ for each source ‘S’.  The method was interesting as the 

construction of the first per-class-per-source BPAs utilized information regarding the 
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recognition ability of each source across the classes. A similar approach was later 

utilized by Kuncheva et al. (2001), who proposed decision templates (DT) based fusion 

technique. In order to improve the approach proposed by Rogova (1994), Al-Ani and 

Deriche (2002) developed BPA  based on the distance between the classification of an 

input vector and a reference vector, estimated as the mean classification output on 

training data for the class. Parikh et al., (2001) proposed to modify the approach 

proposed by Xu et al., (1992), by constructing BPA for each class, utilizing a precision 

rate estimated from the confusion matrix. Thiel et al., (2005) utilized DST concept to 

combine the normalized outputs of multiple source or classifiers where samples were 

rejected if the information were highly conflicting. Other methods of BPA generation 

include an approach based on expert knowledge about the domain of application 

(Milisavljevic and Bloch, 2003; Hégarat-Mascle et al., 2003) which can assign beliefs to 

compound hypotheses in addition to singletons.  

In a relatively recent publication, Deng et al. (2016) proposed to construct BPA 

using both precision and recall rate for each class and demonstrated the effectiveness of 

the approach. A similar approach was later used by Schmitz et al. (2020) for land cover 

classification. This research also adapted the approach proposed by Deng et al.  

 Discounting Approach in the Dempster–Shafer theory 

The traditional DST rule of combination has some limitations. Studies have 

shown that the theory poses the risk of leading to counterintuitive results while dealing 
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with highly conflicting evidence. This limitation was first demonstrated by Zadeh (1984) 

and has been discussed by several studies, including Wilson (1993), Haenni (2005), 

Yager (1987) etc. The issue has been addressed from two different perspectives: i) 

preprocessing the evidence before combination, without changing the DST combination 

rule (Murphy, 2000; Yong et al., 2005; Martin et al., 2008; Chen et al., 2018) and ii) 

modifying the combined rule (Yager, 1987; Dubois and Prade, 1988). This research 

opted towards the first option to modify or discount the evidence before the DST 

combination process. 

To manage conflict between different disagreeing sources within the DST 

framework, researchers have introduced the idea of discounting to reduce the strength of 

a mass function. As noted by Noble and Smith (2015) and Florea et al., (2010), two key 

factors influence the degree of trustworthiness and justify the discounting of a 

mass/belief function prior combination (1) either the data source is not found fully 

reliable; (2) or evidence from source is not fully credible. Both cases warrant for 

weakening the belief as argued by Shafer (1976) “discounting at higher rates those 

belief functions one particularly distrusts and whose influence one wants to reduce”.  

In the context of DST, the discounting factor based on reliability may reduce the 

strength of a mass function by allocating some masses to the ignorance state. The 

discounted mass function 𝑚α can be written as  

𝑚α(𝐴) = αm(A)    & 
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𝑚α(Ω) = 1 − α(1 − m(Ω)), A ⊂ Ω        ………………………..(17) 

Here, α ∈ [0,1] is the discount factor of source S.  

The issue of estimating discounting rates has been addressed by numerous 

researchers. Studies have computed discount rates based on reliability degrees of the 

source, calculated using ground truth information (Mercier et al., 2008; Smet, 1993). The 

discounting rate can also be based on credibility which can be computed, without any 

reference to ground truth data, based on a degree of disagreement between evidence 

(Noble and Smith, 2015; Florea et al., 2010).  The rationale behind this estimation is the 

more one source is in disagreement with the others, the more the source is unreliable. 

Thus, the underlying assumption implies that a majority of experts are reliable (Martin et 

al., 2008). 

Discounting rates can also be computed based on consensus between belief 

functions using evidence distance as a measure of the difference (Yong et al., 2004; Guo 

et al., 2006; Martin et al., 2008; Liu et al., 2017a). Several definitions of distance, in the 

evidence theory, have been proposed, such as Jousselme distance (Jousselme et al., 

2001), cosine similarity (Wen et al., 2008), belief function distance metric (Sunberg and 

Rogers, 2013) etc. A more detailed discussion of the discounting rates (including 

dissimilarity measures between belief functions and membership degrees based on a 

distance measure) can be found in Florea et al., 2010, Chen et al., 2018. 

This research adopted the Jousselme distance measure for estimating conflict.  
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 Dempster Shafer Combination: Adaptation 

The previous section laid out the background that lead to the adaptation of the 

DST framework for this dissertation. After illustrating the mathematical formulation of 

the BPA generation process, this section outlined the distance measure adopted to handle 

the conflicting evidence for this study   

 BPA Generation 

The first key step of the DST approach is to estimate BPA functions from the 

different information sources. This research followed the approach proposed by Deng et 

al. (2016) to construct the BPA functions, recognizing its ability to capture source or 

classifier’s performance based on the classes.  

In this framework, let 𝑚𝑖
𝜑𝑘is the BPA function for each class 𝜔𝑖 (𝑖 = 1… 𝑁) in 

every data source 𝜑𝑘 (𝑘 = 1…𝑆). The BPA for each class was estimated using recall and 

precision rates, obtained from the Confusion matrix 𝐶𝜑, developed for each source.  

The confusion matrix for each source can be represented as follows 

𝐶𝜑 = [

𝑛11 𝑛12 ⋯ 𝑛1𝑁 𝑛1(𝑁+1)

𝑛12 𝑛12 … 𝑛2𝑁 𝑛2(𝑁+1)

⋮ … ⋱ … ⋮
𝑛𝑁1 𝑛𝑁2 ⋯ 𝑛𝑁𝑁 𝑛𝑁(𝑁+1)

]………………………..(18) 

Here, 𝑛𝑖𝑗 denotes the number of samples belonging to class 𝜔𝑖 but identified as 𝜔𝑗 

by source 𝜑𝑘. The last column represents the rejection class that means not identified as any 

of the 𝑁 classes. From the confusion matrix, precision rate 𝑒𝑖𝑗
𝑝

 and recall rate 𝑒𝑖𝑗
𝑟  can be 

obtained from the following equations.  
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𝑒𝑖𝑗
𝑟 =

𝑛𝑖𝑗

∑ 𝑛𝑖𝑗
𝑁+1
𝑗=1

  and   𝑒𝑖𝑗
𝑝

=
𝑛𝑖𝑗

∑ 𝑛𝑖𝑗
𝑁+1
𝑖=1

………………………..(19) 

Both 𝑒𝑖𝑗
𝑟  and 𝑒𝑖𝑗

𝑝
 can be used to develop a corresponding Recall matrix 𝐶𝜑

𝑟  and 

Precision matrix 𝐶𝜑
𝑝
 as follows 

𝐶𝜑
𝑟 =

[
 
 
 
 
𝑒11

𝑟 𝑒12
𝑟 ⋯ 𝑒1𝑁

𝑟 𝑒1(𝑁+1)
𝑟

𝑒21
𝑟 𝑒22

𝑟 … 𝑒2𝑁
𝑟 𝑒2(𝑁+1)

𝑟

⋮ … ⋱ … ⋮
𝑒𝑁1

𝑟 𝑒𝑁2
𝑟 ⋯ 𝑒𝑁𝑁

𝑟 𝑒𝑁(𝑁+1)
𝑟

]
 
 
 
 

  and  𝐶𝜑
𝑝

=

[
 
 
 
 
𝑒11

𝑝
𝑒12

𝑝
⋯ 𝑒1𝑁

𝑝
𝑒1(𝑁+1)

𝑝

𝑒21
𝑝

𝑒22
𝑝

… 𝑒2𝑁
𝑝

𝑒2(𝑁+1)
𝑝

⋮ … ⋱ … ⋮
𝑒𝑁1

𝑝
𝑒𝑁2

𝑝
⋯ 𝑒𝑁𝑁

𝑝
𝑒𝑁(𝑁+1)

𝑝
]
 
 
 
 

…(20) 

BPA 𝑚𝑖
𝑟 and 𝑚𝑖

𝑝
for each source 𝜑𝑘  can be derived using the following equations  

𝑚𝑖
𝑟({𝜔𝑖}) =  

𝑒𝑖𝑖
𝑟

∑ 𝑒𝑗𝑖
𝑟𝑁

𝑗=1

 and  𝑚𝑖
𝑝({𝜔𝑖}) =  

𝑒𝑖𝑖
𝑝

∑ 𝑒𝑖𝑗
𝑟𝑁+1

𝑗=1

  𝑤ℎ𝑒𝑟𝑒,𝜔𝑖𝜖 𝛺 ……………..(21) 

𝑚𝑖
𝑟(Ω)= 1-𝑚𝑖

𝑟({𝜔𝑖}) and 𝑚𝑖
𝑝
(Ω)= 1-𝑚𝑖

𝑝({𝜔𝑖})  𝑤ℎ𝑒𝑟𝑒 𝜔𝑖𝜖 𝛺……………..(22) 

𝑚𝑖
𝑟(𝐴) = 0 𝑎𝑛𝑑 𝑚𝑖

𝑝(𝐴) = 0 𝑤ℎ𝑒𝑟𝑒 ∀A𝜖 2𝛺  \ {{𝜔𝑖}, 𝛺}……………..(23) 

The final BPA 𝑚𝑖
𝜑𝑘 for dataset 𝜑𝑘 and class 𝜔𝑖 can be obtained by combining both 

𝑚𝜑𝑘,𝑖
𝑟  𝑎𝑛𝑑 𝑚𝜑𝑘,𝑖

𝑝
 

𝑚𝑖
𝜑𝑘 = 𝑚𝜑𝑘,𝑖

𝑟 ⊕ 𝑚𝜑𝑘,𝑖
𝑝

……………..(24) 

If a sample had been classified as a rejection class, the BPA is  

𝑚𝑖
𝜑𝑘(Ω) = 1. 

This BPA generated from the training data can be utilized to fuse independent test 

data. For each sample in the test area, every data source allocates a class 𝜔𝑝
𝜑𝑘. According to 

the predictions, the corresponding BPA function 𝑚𝑖
𝜑𝑘 is selected. For the unclassified 

samples, 𝑚𝜑𝑘(Ω)=1. If 𝑓(𝜑k, 𝜔𝑝
𝜑𝑘) represents the BPA 𝑚𝑖

𝜑𝑘 associated with the predicted 
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class 𝜔𝑝
𝜑𝑘 , for a sample, the combined BPA for the sample can be obtained from the 

Dempster Shafer’s combination rule.  

𝑚𝑝
𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝑓(𝜑1, 𝜔𝑝

𝜑1) ⊕ 𝑓(𝜑2, 𝜔𝑝
𝜑2)… .⊕ 𝑓(𝜑S, 𝑐𝑝

𝜑S) ……………..(25) 

The last step is the final decision-making step where a final class is assigned to each 

sample based on the combined BPA, applying the pignistic transformation method.  

 Conflict Measure Based on Distance  

To handle the conflict between sources, this research utilized the relative 

reliability measure, proposed by Martin et al., (2008), to define the distance between the 

BPAs. The underlying assumption is that if the evidence of two sources is far from each 

other, they are considered to be in conflict. Therefore, if a piece of evidence is highly 

conflicting with other evidence, this piece of evidence should be regarded as less 

important and will have a small influence on the final combination results. 

The research utilized the Jousselme distance (Jousselme et al., 2001) measure in 

which the distance between two BPA m1 and m2 can be defined as 

𝑑12 = √
1

2
(𝑚1 ⃗⃗ ⃗⃗ ⃗⃗ −  𝑚2 ⃗⃗ ⃗⃗ ⃗⃗ )𝑇𝐷 (𝑚1 ⃗⃗ ⃗⃗ ⃗⃗ −  𝑚2 ⃗⃗ ⃗⃗ ⃗⃗ )……………..(26) 

Here, 𝑚1, 𝑚2 are two BPAs under the frame of discernment Ω. The power set of 

the frame of discernment 2Ω is regarded as a 2N-linear space. 𝐷 is a 2N × 2N matrix, 

whose elements are 

𝐷(𝐴, 𝐵) =  
|𝐴∩𝐵|

|𝐴∪𝐵| 
 ∀A, B ϵ 2Ω.  
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Therefore, the conflict measure between two sources can be defined by 

𝐶𝑜𝑛𝑓(1,2) = 𝑑12……………..(27) 

The weight on each source can be quantified based on its conflict with the rest of 

the sources.  For k information sources (k=1…S), the conflict measure between kth and 

the other S-1 sources can be defined as  

𝐶𝑜𝑛𝑓(𝑘, S) =
1

𝑆−1
∑ 𝐶𝑜𝑛𝑓(𝑘, 𝑗)𝑆

𝑗=1,𝑘≠𝑗  ……………..(28) 

Therefore, the reliability of each source can be estimated as 

𝛼𝑘 = 𝑓(𝐶𝑜𝑛𝑓(𝑘, S))……………..(28) 

Here, 𝑓 denotes a decreasing function.  

𝛼𝑘 = (1 − 𝐶𝑜𝑛𝑓(𝑘, 𝑆)λ)
1

λ, where λ > 0. ……………..(29) 

Here, λ is the degree of conflict discount. The conflict measure can be used to 

adjust the belief assignment before the DST combination, as illustrated in equation 17. 

 Dempster Shafer with Context Credibility 

Acknowledging the potential of incorporating context to improve fusion (as 

discussed in section 3.6) coupled with the fact that the nonmotorized activity exhibits 

contextual properties (section 2.3.1), this research proposed an approach within the DST 

framework where the belief function of each source can be modified based on the 

contextual situation of an entity or object.  The DST framework was particularly chosen 
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for this purpose, given its ability to synthesize human subjectivity with mathematical 

probability (Wu, 2003). 

While the relative reliability or conflict-based discount computed the 

disagreement among the evidence, the proposed method estimated a discounting factor 

based on contextual situation (such as spatial location, temporal scale etc.). This was 

deemed particularly important for the fusion of nonmotorized data, which exhibited 

significant variation based on spatial location. Moreover, as previously discussed, the 

deviation of the source estimate from the actual observation also varied with space, 

probably due to differences in demographic characteristics and trip purpose distribution 

in different areas (Munira and Sener, 2020). That means the reliability of the volume 

estimates, obtained from various sources, may exhibit a spatial variation. For example, a 

volume estimate from bicycle sharing data may be more reliable on spatial zones near 

the kiosk stations. Identification of such context would require subjective judgment 

based on knowledge of the local conditions. 

In the proposed mechanism, the discounting measure based on contextual 

situation (such as location) was estimated based on the Grey theory. Grey theory allows 

exploring the intrinsic information of the system without requiring a specific relationship 

as an assumption (Song et al. 2005). This study had particularly chosen the theory as it is 

an effective approach to analyze the relationship between cases with small samples and 

inadequate information, overcoming the limitation of the traditional statistical methods 
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(Chang et al., 2003; Liu and Forrest, 2010). The theory was also used to measure sensor 

credibility (Ye et al., 2016), Rotor’s fault detection (Zhang et al., 2012) etc. The 

proposed framework consisting of DST with context credibility, based on Grey theory, 

was illustrated in figure 5.1. 

 

Figure 5.1: Proposed Framework of DST with Context Credibility 

Grey correlation analysis (GCA) is one of the main components of the Grey 

System Theory proposed by Deng (1987).  The measure can quantify the correlation 

between the reference sequence and the comparison sequence (Yunlong et al., 2019).  

Suppose that the 𝑥𝑜= [𝑥𝑜(1),𝑥𝑜(2), …𝑥𝑜(𝑛) ] is the reference sequence and 𝑥𝑘 

=[𝑥1(1),𝑥1(2), …𝑥1(𝑛) ] is the comparison sequence, 𝑘 = 1…𝑆.  
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γ(xo(𝑟), 𝑥𝑘(𝑟)) denotes the comparison measurement of  𝑥𝑜 and 𝑥k at the rth (r = 

1….n) point in the grey relation factor space. If γ(xo, 𝑥𝑘) is the average value of 

γ(xo(𝑟), 𝑥𝑘(𝑟)) at all points, the relationship can be represented as  

γ(xo, 𝑥𝑘) =
1

𝑛
∑ γ(xo(𝑟), 𝑥𝑘(𝑟))𝑛

𝑟=1 ……………..(30) 

Where, γ(xo(𝑟), 𝑥𝑘(𝑟)) =
min𝑘min𝑟 Δok(𝑟)+𝜁max𝑘max𝑟Δok(𝑟)

Δok(𝑟)+𝜁max𝑘max𝑟Δok(𝑟)
     ……………..(31) 

𝜁 ϵ[0,1] is the distinguishing coefficient. Usually, 𝜁 =0.5 is used as it has 

moderate discrimination and good stability (Yunlong et al., 2019) 

Δok(𝑟) = {

∣ xo(𝑟) − 𝑥𝑘(𝑟) ∣,  when xo(𝑟) and xk(𝑟) are numerical

1,when xo(𝑟) and xk(𝑟) are categorical and  xo(𝑟) ≠  xk(𝑟)

0,when xo(𝑟) and xk(𝑟) are categorical and  xo(𝑟) =  xk(𝑟)
…………(32) 

Based on the GCA, the proposed spatial correction σ𝑘, for kth source is  

σ𝑘 = γ(xo, 𝑥𝑘)
𝛽 , where 𝛽 > 0. ……………..(33) 

Here, 𝛽 is the degree of discount due to context credibility. Therefore, the new discount 

function and adjusted belief function are 

Ѳ𝑘=σ𝑘 ∗ 𝛼𝑘 , Ѳ𝑘 > 0 

𝑚𝑎𝑑𝑗(𝐴) = Ѳ𝑘𝑚(𝐴),  𝑤ℎ𝑒𝑟𝑒 ∀A𝜖 2𝛺   \ {𝛺}……………..(34) 

 𝑚𝑎𝑑𝑗(𝛺) = 1 − Ѳ𝑘(1 − 𝑚(𝛺)) ……………..(35) 
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 Summary 

The main objective of the chapter was to design a fusion framework for 

consolidating nonmotorized data. The framework was devised keeping both statistical 

robustness and practical application in mind. The voting approach, despite its simplicity, is 

expexted to add great value for the fusion of multiple sources, especially when adequate 

ground truth data is not available. The fusion framework also endorsed a state-of-the-art 

statistical approach—the Dempster Shafer (DST) method—which requires benchmark data 

but is adequate to accommodate the often incomplete and conflicting nonmotorized demand 

output with a mechanism of handling uncertainty involving ambiguity (or ignorance) and 

conflict.  Moreover, the basic DST was reinforced, incorporating a robust belief assignment 

method based on both precision and recall matrix and a conflict discounting mechanism 

based on Jousselme distance. Besides, the DST fusion approach with credibility context, as 

proposed by this study, offered a unique way to incorporate the subjective judgment of 

experts in mathematical fusion formulation. The novel DST approach that considers contexts 

is also expected to add value to other areas of research, in addition to nonmotorized traffic, 

especially when the sample size is a constraint and the analyst’s judgment senses the 

potential variability of reliability of the sources across one or multiple contexts of an entity 

or object.  

While theoretically, both the traditional and novel approaches were deemed well-

founded and promising, it is imperative to observe the performance of the approaches when 
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they are applied to real-world data. The next Chapter consequently focused on the numerical 

outcomes of the application. 
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6. EXPERIMENTATIONS AND EVALUATIONS OF FUSION FRAMEWORK  

Based on the formalism and interpretations of the fusion algorithms, illustrated in 

the previous chapter, Chapter 6 intended to elucidate the application of the fusion 

framework to address the critical question of when or under what scenario the fusion 

methods are suitable for the application. In explaining the application and 

efficaciousness of the framework, the section utilized both actual and artificially 

generated data to exhibit the performance of different algorithms. The findings from the 

numerical application were expected to furnish a more intuitive explanation regarding 

the potential and limitations of the fusion algorithms. 

Application of the fusion algorithms necessitates an experimental setup with 

mechanisms for demonstrating the validation process. The application and validation 

process was divided into two parts. First, actual bike volume estimates from the five bike 

demand models, as described in chapter 4, were utilized for fusion application. Due to 

the unavailability of adequate ground truth data, voting algorithms were applied for 

fusing the estimates. However, for explaining the application and interpretation of the 

voting algorithms, the actual volume information (from 44 locations) was used.  

For demonstrating the efficacy of the DST framework, the size of the ground 

truth data for the study area was not deemed adequate. However, the framework was 

expected to be useful for areas where adequate ground truth data is available. Hence, the 

research generated artificial datasets, conforming to the actual data condition and context 
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as much as possible, to evaluate the performance of the DST mechanism. The purpose 

was to empirically test the performance of the DST approaches, both traditional and 

novel, by applying them on a set of artificially generated datasets with different intrinsic 

characteristics. The goal was to gain an understanding of which strategy, and under what 

condition, performs the best in order to bolster the conclusion of this research. The 

artificial datasets also allowed for the creation of multiple scenarios to examine the range 

of outcomes and understand the potential factors that contribute to the performance of 

the algorithm.  

 

 

This chapter is divided into three parts. First, the validation process to 

demonstrate the effectiveness of the algorithms was explained. The second and third 

sections illustrated the findings of the numerical experiment using actual (voting fusion) 

and simulated data (DST fusion), respectively. A chapter summary encapsulated the key 

lessons learned from the analysis.  

 Experimental Setup  

The ultimate goal of any fusion endeavor is to produce estimates that are superior 

to the individual source estimates. The key operative word here is ‘superior,’ which may 

entail 



 

138 

 

 

 

completeness, accuracy, or a mix of both. While the completeness can be evaluated by 

comparing the coverages (for example spatial coverage), the superiority of the accuracy 

can be demonstrated by showing that the accuracy of the fused estimate is higher than 

the best individual source. 

The first step of the experimental setup was to select a performance measure to 

evaluate the performance of the modeling framework. Although there are several 

measures for assessing the performance of classification algorithms (Reich and Barai, 

1999), the focus of this research was given to the evaluation of the overall classification 

accuracy, meaning the number of correctly predicted samples in a test fold. In doing so,  

an exhaustive set of mutually exclusive hypotheses, or a frame of discernment for DST, 

had to be created with the AADB estimates. While the DST framework can 

accommodate different class labels from different sources, this research used the same 

class label (categorization) for all sources. 

While the overall accuracy is the performance measure, this research adopted k- 

fold cross-validation for validating the DST framework. Consulting previous studies 

(Kohavi, 1995; Rodriguez et al., 2009), k=5 was used to maintain a trade-off between 

bias and variance while minimizing computational effort. To compare the performances, 

the partitioning of every data source was kept exactly the same for all of the sources and 

fusion estimates. The final accuracy of the fused algorithm was computed by averaging 

the estimated accuracy of each fold.   
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 Application of Voting Fusion on Actual Data 

The application of the voting fusion algorithms was demonstrated utilizing the 

outputs from five bike demand models. The first task in the process was to categorize or 

assign class labels to the estimates. Four class labels, reflecting the distribution of the 

datasets (Figure 4.2) and ensuring adequate observation in each of the categories, were 

assigned to the model outputs: < 100 AADB, 100 to 250 AADB, 251 to 400 AADB, > 

400 AADB. 

Table 6.1 presents the deviation of the individual model outputs from the actual 

bicycle volume count data (termed as accuracy) along with their coverage. The direct 

demand model exhibited the highest accuracy, while the bike-sharing model had the 

lowest accuracy for the study area.    

Table 6.1 Accuracy and Spatial Coverage of the Sources  

Model Number of Intersection  Overall Accuracy (%) 

Direct demand Model 2518 0.59 

Strava Model 2303 0.50 

Bike-Sharing Model 793 0.27 

Fourstep Model 2397 0.41 

StreetLight Model 950 0.52 
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Four voting fusion algorithoms, as outlined in Chapter 5, were applied to 

combine the bike estimates. Intuitively, a fusion algorithm can be considered effective 

when the accuracy is higher than that of the direct demand model (best individual 

source). In addition to the accuracy, it is also essential to examine the detection rate (or 

coverage) of each fusion method because the goal is to obtain high-accuracy estimates 

for the maximum number of intersections. Thus, it is essential to evaluate both the 

detection accuracy and overall accuracy of the algorithms.    

Figure 6.1 presents the detection rate and accuracy among the detected AADBs 

of each voting fusion approach. For evaluating the latter, the actual volume counts were 

utilized.   

 

Figure 6.1 Detection Rate and Accuracy (Among Detected) of the Voting 

Approaches 
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The results indicated that the unanimity voting approach had the lowest detection 

rate (for the entire study area) yet the highest accuracy among the detected estimates. 

This finding is intuitive because to reach a decision for unanimity, each of the sources 

has to agree. The trade-off between detection rate and accuracy for the first four voting 

approaches is also made apparent in the figure. The novel weighted voting approach 

allocated AADB at all the intersections of the study area with a detection accuracy of 

57%. Therefore, the evaluation suggests that the novel weighted approach exhibits 

decent performance considering the detection rate and the detected accuracy. However, 

if the analyst prefers accuracy over coverage, the unanimity and simple majority voting 

approaches may be regarded as potential options.  

Based on evaluation of the overall performance of the approaches and 

comparison of each with the best individual source (as shown in Error! Reference 

source not found.6.2), it was observed that the novel weighted voting approach 

exhibited slightly lower accuracy compared to the best individual model—the direct 

demand model.  
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Figure 6.2: Overall Accuracy of the Voting Fusion Approaches 

 

Another weighted voting fusion algorithm was run with four data sources, 

removing the StreetLight data. It was observed that the novel weighted voting approach 

with four data sources (direct demand model, Strava model, bike-sharing model & 

fourstep model) exhibited almost the same accuracy (0.59%) as the best individual 

model.  

In light of the limited sample of the validation data for the current case study, it 

can be noted that the weighted voting fusion algorithms may not result in a better 

outcome than the best individual source. However, when rightly adapted, it may at least 

exhibit similar accuracy compared to the best individual model/source outcome.  
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The weighted voting approach was developed to apply when the analyst does not 

have any knowledge of the accuracy of the individual sources. It was expected that the 

application of the novel weighted method, although with no significant increase in 

accuracy, may instill confidence in the estimate, which is another objective of the fusion 

endeavor. The approach also had the potential to provide better coverage of the estimates 

when the individual sources have a significant number of missing cases. However, the 

findings indicated that the weighted voting approach actually poses the risk of obtaining 

worse off results compared to individual sources. It was also noted that adding the 

maximum number of sources may not add value to the process. A minimal 

understanding of the individual sources is desired to adopt an effective voting fusion 

approach.   

 Application of DST Fusion on Artificial Data 

The purpose of this experiment was to empirically test the performance of the 

DST approaches applying them on a set of artificially generated datasets of different 

characteristics. As the DST approach requires adequate ground truth data, which wasn’t 

available for the study area, meticulous attention has been given to ensure that the 

artificial data conform to the real-world condition. In this section, the experimental 

procedures, including data and scenario generation, were explained before discussing the 

findings from the numerical analysis.     

 Design of Simulated Experiments 
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In order to ensure that the demonstration of the effectiveness of the fusion 

framework is objective and convincing, this dissertation followed a systematic approach 

to design the simulated experiment.  

For doing the experiment, a ground truth dataset and multiple other datasets 

which have some degree of relationship with the ground truth data were needed. While 

the ground truth dataset was required to train and validate the model, the other data sets 

served as input sources for fusion, as in DDM or four-step model output for 

nonmotorized traffic. While creating the datasets, the following criteria were deemed 

essential for consideration.  

i. The data should conform to the actual nonmotorized model outputs for 

the study area. However, the artificially generated data should have a 

larger, yet realistic range of nonmotorized volume 

ii. To demonstrate the effectiveness of the contextual discount, proposed by 

this study, the artificial dataset should exhibit a contextual difference in 

reliability, in some form, which conforms to the actual scenario 

In order to create the ground truth data, representing a realistic nonmotorized 

volume, the relationship between the bikeability index and bike volume gleaned from the 

direct demand model, was taken as a reference point. First, a random set of 2500 data 

points (as in locations or intersections) of bikeability index were created which was of 

uniform distribution. The random bikeability index values were run through the equation 
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E[Y] =exp(0.14 * bikeability index). Finally, the Ground Truth was simulated from each 

Poisson (E[Y]) variable. 

The other datasets, denoted as the individual sources, were created using Normal 

distribution noise with the ground truth data. The key equation for building the source- 

datasets was 

𝑆𝑜𝑢𝑟𝑐𝑒 𝐾1 = 𝐺𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ + 𝑌,  𝑊ℎ𝑒𝑟𝑒, 𝑌~𝑁(𝜇, 𝜎2)………………..6.1 

Here, 𝜇 denotes mean and 𝜎 denotes standard deviation 

As the normal distribution noise results in both positive and negative values, the 

negative estimates were assigned as missing values. Additional missing values were also 

imputed in the datasets, randomly, for building the missing case scenarios.  

While creating the datasets, careful attention was given to instill contextual 

accuracy differences in the sources. In doing so, the reliability variation of actual model 

estimates (as shown in Table 6.2), based on their location as of downtown (DT) or out of 

downtown, were consulted.  

Table 6.2: Overall Accuracy of the models within and outside Downtown (DT) 

Model in DT Outside of DT  

Direct demand Model 0.6 0.59 

Strava Model 0.6 0.47 

Bike-Sharing Model 0.6 0.17 

Fourstep model 0.5 0.38 

StreetLight 0.6 0.5 
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The table showed that some of the models have a notable variation in terms of 

accuracy based on the locations. Hence, the location of the intersection could serve as a 

context for the actual models. In order to replicate the real data, each of the artificial 

datasets was divided into two sets, context 1 and 2, where the accuracy varied. An 

example is shown in Table 6.3, where for each scenario, the accuracy varied across two 

contexts.  

Table 6.3: Example of Context Variation of the Artificial Datasets 

 Source 
Context 1 

accuracy 

Context 2 

accuracy 

Source 1 0.75 0.63 

Source 2 0.63 0.56 

Source 3 0.52 0.55 

 

 Scenario Design  

Given that it is possible to generate an infinite number of simulated data sets to 

validate an experiment, it is often easy to lose sight of essential questions that need be 

addressed. This research formulated four distinct questions for the evaluation process. 

These questions were relevant to nonmotorized data characteristics and local situations 

to which the simulated scenarios were expected to respond: 

i. Does the fusion algorithm always provide a better estimate? 

ii. Is the more (number of sources) always better (for fusion estimates)? 
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iii. Is the fusion estimate sensitive to degree of conflict and context credibility 

discount?  

iv. Is the fusion estimate sensitive to categorization or class labels? 

To address these questions, three main scenarios, each containing two sub-

scenarios, were created. Each scenario was developed with three datasets of varying 

accuracy and missing case situations.  

The three key scenarios were  

Scenarios 1: No missing observations, fairly similar accuracy across the sources 

 Scenarios 2: No missing observations, a varying level of accuracy across the sources 

Scenarios 3: Each of the sources has missing observations, a varying level of accuracy 

across the sources 

For each sub-scenarios, models were built for two categorizations or class labels, 

mainly to examine if the algorithms are sensitive to categorization type.  

Two categorizations denoted as trial 1 and 2 are  

Trial 1:  4 categories 

            <100", 100-250, 251-400, >400 

Trial 2:  12 categories 

< 50, 50–100, 101–200, 201–300, 301–400, 401–500, 501–600, 601–800, 801–

1,000, 1,001–1,200, 1,201–1,400, > 1,400. 
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The scenario also assessed the sensitivity of the DST fusion based on the degree 

of conflict (λ) and context credibility (𝛽). The lower the value of λ, the more heavily the 

mass function is discounted due to conflict.  On the other hand, higher 𝛽 indicates 

greater discounting of the mass function. The value of λ and 𝛽 > 0 mean discounts are 

applied based on conflict and context credibility.  

Finally, to address whether the more (number of sources) is always better, the 

lowest accuracy source was removed for each of the six scenarios (three key and two sub 

scenarios) and the model performance was evaluated.  

 Scenario Analysis and Comparison 

This section evaluated the performance of the DST when applied on the three 

scenarios explained in the previous section. As noted before, the objective of fusion is to 

obtain a superior estimate (better accuracy and/or coverage) than the best individual 

source. This research presented the analysis outcome in terms of change in accuracy, 

representing the difference of accuracy between the fusion estimate and the best 

individual source. Hence, a positive change in accuracy indicates that the fusion estimate 

is better than the best individual source estimate. For each scenario, varying values (0, 

0.5, 1) of λ and β were tested for the two categorizations or trials. While illustrating the 

relationship between λ and change in accuracy, the value of β was kept as 0 and vice 

versa.  
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Before delving into the specifics of the fusion outcomes, a descriptive statistic of 

the scenarios was presented in Table 6.4, which reported the coverage, in terms of 

complete cases, and accuracy of the individual sources for both categories. Here, the 

complete case indicated the number of data points (as in intersection for the 

nonmotorized model) for which all three sources have estimates. As explained in the 

previous section, the first two scenarios had no missing cases.     

Table 6.4: Scenario Description and Accuracy of Individual Sources 

Scenario Complete 

cases 

Source 1 Source 2 Source 3 

Cat 1 Cat 2 Cat 1 Cat 2 Cat 1 Cat 2 

1 2500 0.69 0.43 0.70 0.47 0.71* 0.48* 

2 2500 0.57 0.32 0.68 0.43 0.78* 0.55* 

3 1974 0.54 0.29 0.60 0.40 0.70* 0.50* 

*indicates the best source to compute change in accuracy (for each categorization) 

Table 6.4 showed that the accuracy of the sources varied with the categorization 

type. Overall, trial 1 (4 labels) has higher accuracy than trial 2 (12 labels) for each 

source. The change in accuracy of the fusion method was computed comparing with the 

best individual source, marked with asterisks, for each category.   

 Scenario 1 Analysis 

Scenario 1 was built with no missing observations where the sources have fairly 

similar accuracy. It intended to explore whether fusion of similar sources, without any 

missing cases, may add computational value to the system.  Figure 6.3 reported the 

analysis outcome for scenario 1. 
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As shown in Figure 6.3, a positive change in accuracy, meaning the fusion 

estimate is better than the best individual source, was observed in most cases. However, 

the change in accuracy varied with both categorization type and values of λ and β. Even 

the optimal value of λ and β varied with the categorization.  

 For trial 1, the optimal value of λ and β were 0 and 0.5, respectively, and for trial 

2, the optimal values were 0 and 1, respectively. While trial 1 exhibited positive change 

in accuracy across the values of λ and β, label 2 showed accuracy loss (fusion is not 

better than the best individual estimate) when λ was 0.5 (for β=0). Overall, the positive 

change in accuracy indicated that even for no missing case scenarios, the fusion 

algorithm may prove to be of great value to obtain better estimates, especially when the 

individual sources are of similar accuracy. The optimal value of β>0 asserted the 

superiority of the application of the contextual discount, as proposed by the study.  

Across all (six) tested values of λ and β, the highest change in accuracy for trial 1 

and trial 2 were 5.8% and 6.1% respectively. The average change in accuracy for trial 1 

and trial 2 was 3.55% and 3.58% respectively.  

 

 

 



 

151 

 

 

 

 

(a) 

 
(b) 

Figure 6.3: Change in accuracy based on conflict (a) and context credibility (b) for 

Scenario 1 
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Scenario 2 was built with no missing observations, similar to scenario 1. 

However, the accuracy of the sources, in this scenario, varied notably. Figure 6.4 

reported the analysis outcome for scenario 2. 

 
     (a)  

 
(b) 

Figure 6.4: Change in accuracy based on conflict (a) and context credibility (b) for 

Scenario 2 
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Assessment of Figure 6.4 illustrated that for label 1, the fusion algorithm 

couldn’t yield positive change in accuracy across the tested values of λ and β, meaning 

fusion effort was not effective. However, for label 2, a positive gain was observed for 

the values of β=1 and λ=0. This indicated that even for the same dataset, the fusion 

algorithm might be effective for one categorization or label but not for the other one. It 

also indicated that fusing low and high accuracy sources may not yield the desired 

outcome for no missing case scenarios. 

For this scenario, the average accuracy loss across all (six) tested values of λ and 

β, for trial 1 and trial 2 were -4.49% and -2.25% respectively. The lowest change in 

accuracy (loss) was -10% for trial 1.  

 

 Scenario 3 Analysis 

For Scenarios 3, each of the sources had missing observations and their accuracy 

also varied notably. Figure 6.5 reported the analysis outcome for scenario 3. 
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(a) 

 

 
(b) 

Figure 6.5: Change in accuracy based on conflict (a) and context credibility (b) for 

Scenario 3 
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accuracy was higher compared to scenario 1 and 2. For label 1, the optimal value of λ 

and β were 0 and 1, respectively, and for label 2, the optimal values were 0 for both 

cases.   

Overall, across all (six) tested values of λ and β, the highest change in accuracy 

for trial 1 and trial 2 were 7.42% and 5.89% respectively. The average change in 

accuracy for trial 1 and trial 2 was 3.38% and 2.93% respectively.  

The result indicated that when there is a significant number of missing 

observations in each source, a fusion endeavor may complement each other (sources), 

especially by providing a decision for a case where an estimate is not available from all 

the sources.  

Analysis from three scenarios indicated that for the first trial, the average change 

in accuracy over 18 cases was 0.82%. For the second trial, the average change in 

accuracy was 1.42%. .  

In this regard, it is worth mentioning here that each scenario was built with an 

intention to contributes to the conclusion of this research. Although the magnitude of 

change in accuracy or loss, depends on data characteristics, trial or categorization type 

and values of λ and β, when findings from all scenario were considered, it was seen that 

the average change in accuracy was below 1% for trial 1. The findings suggested that 

along with the risk of resulting in worse off result that the individual sources, the fusion 

endeavor may also generate an outcome that is non-noteworthy.  
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 Scenario Analysis for Fewer Data Sources 

While the analysis of the three scenarios, explained in the previous section, 

undoubtedly suggested the efficacy of the fusion algorithms to obtain a better, the 

magnitude may vary, estimate in most cases, it also indicated that fusion may not always 

yield the desired outcomes. In light of the findings, this research intended to investigate 

further if fusion with fewer sources can yield better estimates for the same scenarios. To 

examine this, the lowest accuracy source (identified from table 6.4) was removed for 

each of the scenarios and fusion was conducted utilizing the remaining two sources. As 

for the two source fusion, the λ (conflict discount)  would not add any value to the 

analysis; the optimal value of β, for each scenario, was taken to conduct the fusion 

process for both trials.  

As shown in Figure 6.6, accuracy difference referred to the difference between 

the accuracy of two source fusion and the best-reported accuracy of the three source 

fusion (Figure 6.3, 6.4 and 6.5) for each scenario and categorization. The result showed 

that for scenario 1 and 3, three source fusion scenarios were better than the two-source 

fusion. However, for scenario 2, removing the source that had considerably lower 

accuracy than the other two sources improved the accuracy of the fused estimate, 

meaning two source fusion is better than both individual estimate and three source 

fusion. For this scenario, the fusion of two highest accuracy sources (table 6.4) resulted 

in change in accuracy of 0.8% and 1.7% for trial 1 and 2 respectively.    
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Figure 6.6: Accuracy Comparison by Removing One Source 

The finding emphasized that adding more sources in the fusion process may add 

to the computational complexity without adding any value in terms of accuracy. Hence, 

a low reliable source in the fusion pool may add risks of obtaining a worse outcome. 

 Key Lessons Learned 

Overall, the scenario analysis results, presented in figured 6.4 to figure 6.6, 

suggest the following key takeaways 

• Fusion accuracy is sensitive to categorization (trial) type, meaning for a dataset, 

fusion effort may yield change in accuracy for one label but not for the others 

• The change in accuracy varies with the degree of conflict (λ) and context 
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• Even for the same dataset, the optimal values of λ and β may vary with 

categorization label (trial) 

• Adding more sources may not necessarily yield improvements in the fusion—in 

other words, more is not always better. 

• However, if there are missing values in the individual sources, even a 

comparatively lower accuracy source may add value to the fusion process. 

 

 Concluding Remarks 

The main objective of this chapter was to demonstrate the effectiveness of the 

fusion framework formulated for consolidating nonmotorized data. The novel weighted 

voting fusion algorithm may be considered for fusion when the analyst has no prior 

knowledge about the reliability of individual sources. In the scenario where local 

agencies do not have adequate actual count data but have access to various model 

outputs and crowdsourced datasets with enhanced coverage, application of voting 

algorithms, both the traditional and novel weighted approaches, may be advantageous to 

obtain better coverage in some cases. As shown by this study, the novel weighted fusion 

of four sources generated an estimate that is comparable to the best individual source. 

However, when five sources were considered, the accuracy of fused estimate was lower 

than the individual source. Hence, the method should be applied with caution as it poses 

the risk of obtaining a worse off result.   
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This chapter also demonstrated the application of the DST mechanisms on the 

simulated data that conformed to real-world nonmotorized data characteristics. The most 

important finding is that in the majority of cases, the use of fusion methods outperforms 

the maximum individual source performance where magnitude of the change in accuracy 

varied. The optimal value of β > 0 (Figure 6.4 to 6.6) asserted the superiority of 

incorporating contextual discount in the DST, as proposed by the study. In addition to 

nonmotorized fusion, the concept of context credibility can be used in other areas of 

fusion when deemed necessary.  

Overall, the results of this numerical experiment led to the conclusion that the 

performance of fusion firmly depends on the fusion method coupled with the data and 

situation characteristics. The findings presented in this section addressed the critical 

question of which fusion method, and under what condition, can outperform individual 

estimates. There is no optimal categorization or lambda/beta value that can 

accommodate all data situations. The future application of the fusion approach requires a 

profound understanding of the data, situation, and sensitivity of the fusion models for 

varying beta to obtain the optimal combination for a given categorization. Thus, the 

findings of this research are expected to help analysts derive the best course of action 

regarding nonmotorized fusion based on the available knowledge and local context. 
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7. SUMMARY & CONCLUSIONS 

This chapter summarized the contribution of the dissertation from both research 

and application perspectives. The implication of the research findings in safety analysis 

was highlighted. The concluding remarks discussed the limitations and suggestions for 

further research. 

 Summary and Contributions 

The dissertation contributed to both research and professional practice by tapping 

the uncharted research territory of fusion for nonmotorized traffic. A fastidious approach 

was undertaken to seek a generalizable fusion solution for nonmotorized demand 

computation. A major effort in this project was expended to understand the intrinsic 

characteristics of nonmotorized data and models and explore relevant and 

accommodative fusion mechanisms to facilitate safety-focused decision-making and 

infrastructure planning. In doing so, an extensive review of the literature elucidating the 

aspects of nonmotorized data and demand models and characterization and application 

of the existing fusion practices was carried out. The literature review led to the 

recognition of three fundamental issues: (i) Nonmotorized data has unique 

characteristics, especially when compared with motorized traffic; (ii) The availability 

and size of actual observation (ground truth), needed to validate crowdsourced data as 

well as to train models, is often a constraint; (ii) Different nonmotorized data sources are 

generated in different form and structure which necessitates additional processing steps 
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to obtain a demand or exposure estimate at a given spatial and temporal scope. The 

understanding of the nonmotorized data coupled with the insights into the fusion 

mechanism and practice steered the research attention to the decision fusion algorithm, 

which was deemed as an effective strategy to consolidate information from various 

nonmotorized traffic data sources. 

Because there was no clear guidance of how different data sources—including 

both traditional and crowdsourced—can be processed and brought together to compute 

nonmotorized exposure within a facility or area, a conceptual framework was developed 

for analysis. The bike demand models developed for this project not only illustrated the 

use of different datasets of varying forms and resolutions to bring into a homogeneous 

estimate at the micro-level (intersection), they also shed light on the characteristics and 

aspects of the nonmotorized activity. For example, the direct demand model developed 

for this research took the traditional approach to the next level by incorporating a 

bikeability index that can facilitate the modeling approach even when only limited count 

data are available. Moreover, some of the variables provided unique insights into bike 

travel behavior within the city, such as the significant and positive influence of the 

presence of bike signals and bike-accessible bridges. Additionally, Strava and 

StreetLight data were examined, providing insights into the potential use of 

crowdsourced data in transportation studies, especially when resources are limited. In 

summary, the findings benefit stakeholders by explaining the determinants of bicycle 
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activity within the region, thus providing guidance to formulate effective strategies, 

training, and educational programs geared toward creating a friendlier environment for 

bicyclists. 

From a theoretical perspective, the DST fusion approach with credibility context, 

as proposed by this study, offered a unique way to incorporate the subjective judgment 

of experts in mathematical fusion formulation. The experiment on the simulated data, 

where the proposed approach outperformed the traditional approach, in varying 

magnitude in above 80% of the cases, underscored the merit of the mechanism, not only 

for nonmotorized data analysis but also for application in other areas where an analyst’s 

subjective judgment calls for contemplating context for belief refinement in the DST 

algorithm. The novel weighted approach is also expected to add value in fusion 

endeavors when adequate ground truth data are unavailable. To summarize, the 

dissertation developed fusion mechanisms that are pertinent and adaptive to 

accommodate the characteristics of the nonmotorized activity data. It also formulated 

guidance to select and customize fusion approaches based on the availability and sample 

size of the actual demand observation. Therefore, the application of the framework has 

the adaptability to fit into the need of the local condition.  

While there is no doubt that the fusion endeavors may offer increased confidence 

and, in some cases, coverage, the effort poses the risk of resulting in both worse results 

or negligible improvement in outcomes. While the framework offered an additional 
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option of data analysis, it is up to the analyst or practitioner to consider and decide the 

course of option in adopting fusion endeavors given the trade-off between effort and the 

change in confidence, coverage, and accuracy of the outcomes. Nevertheless, the 

proposed fusion framework promotes data-driven safety analysis and informed planning, 

while enhancing the strategic use of available information.  

 Generalizability and Transferability 

For effective future application, it is imperative to discuss the generalizability 

and transferability of the individual modeling approaches as well as the fusion methods. 

This section discussed the scalability and transferability of the models, including the 

direct demand model and Strava and StreetLight models. The applicability of the fusion 

approaches was also discussed here.   

First, the research followed a structured framework to search and gather a rich set 

of explanatory variables for building models. While exploring the variables, it was made 

sure that final variables cover all seven groups (demographics, socioeconomics, 

network/interaction with vehicle traffic, pedestrian- or bicycle-specific infrastructure, 

transit facilities, major generators, and land use) as suggested by Munira and Sener 

(2017). The model outcomes asserted that the bike volume in the Austin area is 

characterized by sociodemographic (such as the total population of age younger than 15, 

Black or African American population, and adult population of age 25 or older with no 

or some academic degree), bicycle infrastructure (such as bike signals), and built 
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environment (such as bikeability index and presence of bicycle-accessible bridge, 

intersection density) variables. While findings for some variables conformed to previous 

studies, some other model variables provided unique insights into bike travel behavior 

within the Austin region. For example, the contribution of transit coverage to the 

bikeability index highlighted the need to include such a variable to quantify bike 

friendliness, especially for cities such as Austin, where buses and trains offer bike-

friendly services. Moreover, the positive association between the presence of bicycle-

accessible bridges, located over lakes or creeks, and bicycle volume can be interpreted in 

two ways. First, people might be more likely to bike near locations on or around water 

bodies, and second, they might tend to appreciate the greater accessibility provided by 

the crossing facilities that the city is building (City of Austin Transportation Department, 

2016). Therefore, future model-building processes need to include both traditional 

variables along with the variables that may reflect the unique characteristics of the study 

area.  

  Moreover, the proposed framework provides an important step toward the 

development of a more generalized direct-demand modeling approach. The bikeability 

index, a composite measure encompassing multiple pertinent built environment features, 

emerged as a useful tool for improving the performance of the models as well as 

quantifying the bicycle friendliness of the entire street network for the region, which is 

often needed for evaluating development scenarios and policies. 
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While the final estimation of the model still must be unique to the region because 

the variable values in the model equation are specific to each region; however, the 

underlying theory and its application, including the formulation of the bikeability index 

and integration of it into direct demand modeling, provides a generic approach that can 

be used in any region. Moreover, the bike friendliness measure, which could be termed 

in different forms, such as level of service, rating, and score, is often readily available 

from local urban planning and/or transportation agencies. Therefore, by using the 

bikeability index, analysts can circumvent the step of seeking a wide range of built-

environment-related variables for developing direct-demand models. As a result, the 

scalability and transferability of the models are improved. Therefore, this index serves as 

an excellent basic variable to be included in direct demand models, in combination with 

additional variables, regardless of the study area. 

On the other hand, the future adoption and application of the fusion framework 

would also depend on the data availability as well as local condition. While theoretically, 

the voting fusion algorithm wouldn’t require ground truth data, there is no doubt of the 

need of some actual observation data to understand the performance of the individual 

source and validate the fusion approach. Utilizing all available data sources in the fusion, 

without any understanding or knowledge of their performance poses the risk of actually 

obtaining a worse-off result than the best individual source. Hence the application of the 
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voting fusion algorithm requires careful consideration and attention to every analytical 

step. 

The contribution of the DST fusion framework stemmed from its adaptability to 

fit into the need of the local condition. Future application would need to find the optimal 

lambda, beta and most importantly categorization labels by performing sensitivity test. 

Analysts also need to understand the missing case scenario as well as individual 

accuracy of the models to derive the best course of action. 

 Contribution in Safety Analysis  

Given that this research's main motivation stemmed from seeking a reliable and 

robust exposure measure, this section was devoted to discussing the application and 

benefits of the research findings in terms of safety analysis. 

First, it is worth mentioning that the spatial unit of demand analysis, intersection, 

was selected keeping the safety application in mind. Although nonmotorized crashes 

occur on various road facilities, such as intersections, driveways, and midblock 

locations, safety planners often focus on intersection-related crashes because a large 

proportion of crashes are observed in or near intersections (Choi, 2010). The Texas 

Strategic Highway Safety Plan reported that more than one-third of fatal and 

incapacitating injury crashes in Texas in 2013 were identified as intersection related 

(Texas Department of Transportation [TxDOT], 2016a). A report analyzing crashes in 

the Capital Area Metropolitan Planning Organization (CAMPO) region estimated that 

https://www.sciencedirect.com/science/article/pii/S0001457519317968?via%3Dihub#bib0460
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the total cost of intersection crashes was around $3.3 billion from 2010 to 2014 (Texas 

Department of Transportation (TxDOT, 2016a). The same report also revealed that more 

than one of every seven severe crashes (fatal and suspected serious injury) at 

intersections in the CAMPO region involved pedestrians or bicyclists. Hence, the 

location-based exposure data is expected to contribute to the efforts of city officials to 

discern the trend in crash rates, identify high-risk locations, and understand the crash 

causation. 

Moreover, the direct demand model, developed for this study (Munira et al., 

2021) itself, was reported as a reliable source of volume estimate for the entire study 

area, exhibiting high performance in terms of accuracy and goodness of fit. The 

predicted intersection bike volume for the entire region is expected to be useful to safety 

analysts, supporting the City’s goal of incorporating data for informed decision-making 

for nonmotorized transport. A similar approach had also been undertaken in a study 

(Munira et al., 2020) exploring pedestrian crash severities at intersections through a 

Bayesian multivariate spatial Poisson-lognormal model, where a direct demand model 

was utilized to estimate the annual average daily pedestrian volume-the exposure 

measure. The direct demand model also offered unique insights into the effectiveness of 

some of the policies taken by the City’s transportation department to improve the safety 

and mobility of bicyclists. For example, the positive association between the presence of 

bike signal and bicycle volume indicated that the number of bike signals positively 

https://www.sciencedirect.com/science/article/pii/S0001457519317968?via%3Dihub#bib0460
https://www.sciencedirect.com/science/article/pii/S0001457519317968?via%3Dihub#bib0460
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influences bike volume around intersections. The City of Austin Transportation 

Department installed bicycle signals in several locations in 2017 to improve safety for 

both bicyclists and other road users (City of Austin 2018b). Some of the intersections 

have a leading pedestrian and bicycle interval to ensure that pedestrians and bicyclists 

have extra time to start crossing. The model results might be an implication of bicyclists’ 

perception of feeling safe at such intersections. The city might evaluate the feasibility 

and the need to install additional bike signals at intersections where bicycle volume is 

high. 

Finally, the multi-source fusion endeavor, offering a superior (better coverage 

and accuracy) estimate than the individual sources, supports safety planner’s goal of 

incorporating robust and reliable exposure estimates, which is instrumental to the 

orchestration of an efficacious crash analysis for nonmotorized traffic. The fused 

estimate can be applied in both micro and macro-level models. For example, a macro-

level model (such as for block group) may aggregate the intersection AADB volumes 

into a specific zone (using the mid-value of each category) to compute the average zonal 

exposure measure. These estimates can benefit various zone-level crash models, 

including hotspot analysis which often relied on vehicular volume or population measure 

due to the unavailability of nonmotorized volume-related exposure data (Wang et al., 

2016). An area- or macro-level safety analysis is pivotal to recognizing safety problems 
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in a larger area to facilitate long-term policy planning to reduce crashes (Wang et al., 

2016). 

Moreover, the fused estimates can also be used as categorical variables in crash 

models. For example, in exploring individual’s safety-related perceptions (micro model) 

regarding biking, the maximum bike volume at a buffer zone of the one’s household 

location can be used as an explanatory variable. Such models may help recognize if the 

biking activity in the neighborhood formulates an individual’s subjective perception. 

Nonetheless, a robust exposure measure obtained from a fusion endeavor would support 

focused policy efforts and effective safety implementation plans for the city.  

 

  Limitations and Future Scope of Research 

The dissertation is not without limitations and calls for further research in this 

area. The major limitations stemmed from the limited sample size of the actual 

observation, which may not be fully representative of the entire region. To better capture 

the spatial variation of bike volume, a robust site collection approach involving sampling 

strategy and a larger data-collection program are warranted for selecting a representative 

sample of the study area. 

Moreover, the actual bicycle volume count data (from 44 locations) were utilized 

as the ground truth data for validating the voting fusion algorithms. Due to the limited 

sample size, it would not be meaningful to consider this process as a validation exercise 
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with reasonable confidence. Moreover, in the ideal case (when the analysts have the 

option to separate the validation dataset from the training dataset), a separate validation 

dataset is desirable to conduct a true evaluation. Thus, this process was instead used to 

draw insights and gain understanding of how each of the models and the voting 

algorithms were performing.  

The nonmotorized activity and land use data were generated in different years, 

ranging from 2010 to 2018. Although the estimates were scaled using the actual count 

data, the process still poses a risk of bias, leading to inaccurate outputs. Future efforts 

should seek to collect data for the same year to obtain more accurate demand estimates.   

The traffic assignment model for this research only considered distance and route 

comfort as factors of the route choice model. The route choice model for Austin’s 

bicyclists may be more complex, warranting consideration of multiple factors such as 

safety, stress, pollution, scenery etc. Future research may consider developing multi-

factor traffic assignment model to obtain a more accurate facility-level volume.   

Besides, the research considered only one context in refining the fusion 

algorithms. Given that context has a very broad definition, some additional information 

about a state or object may also serve as a meaningful context. For example, temporal 

variability is also essential in nonmotorized demand data but was beyond the scope of 

the current research due to the unavailability of relevant data to investigate the influence 

of temporal features as context. The process of investigating and exploring multiple 
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contexts may be an interesting topic for further research. Moreover, future research may 

explore other fusion algorithms, such as ensemble learning-based fusion, when more 

readily available location-based data (such as crowdsourced data) are available.  
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