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ABSTRACT

We propose several efficient algorithms for Bayesian experimental design when studying

complex systems under uncertainty with specific operational objectives. Throughout this dissertation,

the uncertainty is quantified by the mean objective cost of uncertainty (MOCU).

First, we develop MOCU-based experimental design for physical systems described by Stochas-

tic Differential Equations (SDEs) with uncertain model parameters. We assume the observed signals

are from a system whose dynamics is governed by SDEs. The observations can be degraded by

blurring and additive noise. We aim to derive a optimal robust filter minimizing the expected filtering

error. We further derive an optimal experimental design framework to determine the importance of

the SDE parameters. Such a framework can update the knowledge about the system and thereafter

the signal processes. As a result, it guides the systems knowledge discovery to help derive better

filters.

In the MOCU-based framework, we further study Bayesian active learning to sequentially

sample queries to improve predictive models. For classification, the goal is to learn the optimal

classifier with high prediction accuracy when classification labels is difficult or costly to obtain.

The MOCU-based active learning procedure is shown to get stuck before converging to the optimal

classifier, due to the piece-wise linearity of MOCU. We propose two methods to address this myopic

issue of MOCU-based active learning by approximating the MOCU functions with strict concavities,

named Weighted-MOCU (WMOCU) and Soft-MOCU (SMOCU). We provide theoretical proofs of

the convergence of these methods and demonstrate their sampling efficiency with both synthetic

and real-world experiments.

Finally, to explore more practical MOCU-based experimental design, we study MOCU-based

active learning of both pool-based and query synthetic scenarios for Gaussian Process Classification

(GPC). We develop computationally efficient algorithms for MOCU-based active learning with

GPC. Our algorithms compute the joint predictive distribution of label pairs as a one-dimensional

integral, which enables us to compute MOCU-based acquisition functions without incrementally

ii



retraining GPC for each possible query. By deriving the gradient chain rule to efficiently calculate

the gradient of SMOCU reduction, we also develop the first MOCU-based query synthesis active

learning algorithm.
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Motivation

A wide variety of engineering problems can be formulated as building a mathematical model,

including surrogate models by machine learning, to describe the system and then finding an

optimal operator to minimize a cost function with respect to an operational objective, such as the

ones adopted in filtering, classification, or control problems. Usually complex systems cannot

be perfectly modeled or accurately identified, and the resulting model uncertainty will affect the

estimated operational objective, thereafter requiring a robust operator over the uncertainty. To

reduce the model uncertainty and thereby facilitate the efficient attainment of the final operational

objective, observations or experiments related to the complex system are required. The experiments

may directly probe the underlying system states or collect measurements from the system. From

the experimental results, one may gather information of the system and therefore reduce the model

uncertainty. However, these experiments can be both resource- and time-consuming in many areas

such as materials discovery [19], cell signaling pathway identification [3] and customer preference

understanding [8]. Therefore, efficient experimental design methods are needed.

Experimental design aims at reducing the model uncertainty by conducting as fewer experiments

as possible. In Bayesian settings, the model uncertainty is expressed in the form of the distribution

over possible models. Lindley first presented a decision-theoretic approach to Bayesian experimental

design, in which the experimental design is solved as an optimization problem, aimed at maximizing

the utility related to the operational objective provided by the new experiments [52]. The design

can be carried out either in sequential [58] or in parallel [30]. In this dissertation we discuss the

sequential experimental design. The experimental design iteration is divided in three stages: design

stage, experiment stage, and inference stage . In the design stage, the best experiment is chosen by

maximizing an acquisition function, which describes the benefit provided by a new experiment in

reducing the model uncertainty. The benefit can be formulated in different ways based on the design
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criterion and is usually averaged over the model distribution. In the experiment stage, new data is

collected from the chosen experiment. In the inference stage, the newly obtained experiment data

is used to update the distribution over models, and the updated distribution is further used for the

calculation of the acquisition function in the next iteration. After finishing the experimental design

procedure, the optimal robust operator is taken under the reduced model uncertainty.

The performance of the experimental design procedure can be measured by metrics related to

the model uncertainty. For example, Shannon entropy of the model distribution. However, Shannon

entropy fails to take the operational objective into account and therefore cannot adequately reflect

the performance of the experimental design procedure. Especially, some model uncertainties may

be unrelated to the derivation of the optimal operator and therefore will not affect the operational

objective. But the entropy will still count these unrelated uncertainties. In this dissertation, we

adopt an objective-oriented uncertainty quantification framework, the mean objective cost of

uncertainty (MOCU) [84], which directly measures the effect of the model uncertainty on the

operational objective. MOCU is defined as the expected objective cost due to using a robust operator

instead of using the optimal operator for a particular model.

MOCU can be used to measure the experimental design performance as smaller MOCU indicates

a better performance with less effect of the remaining model uncertainty on the operational objective.

It can also be treated as a design criterion to define a sequential strategy that selects the experiment

to maximally reduce the MOCU in a one-step-look-ahead manner. The MOCU-based experimental

design only focuses on reducing the uncertainty that directly affects the operational objective and

can be more efficient comparing with other experimental design strategies.

1.2 Literature Review

Sequential Bayeisan experimental design has been discussed extensively in the literature and

here we give a brief review, focusing on different operational objectives.

A significant portion of the experimental design literature is focused on the model parameter

estimation. For example, there are experimental design papers on pharmaceutical applications [66],

biomedical research [45], clinical trail analysis [4], and chemical engineering systems [79]. Among
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these papers, the most commonly used design strategy is based on mutual information, choosing the

experiment that can provide the maximum mutual information of the model parameters [79]. Such

a strategy is equivalent to maximizing the Kullback-Leibler (KL) distance between the prior and

posterior model distributions. There are also other strategies choosing the experiment minimizing

the posterior variance [21], or sequentially minimizing the Alphabetical optimality [80].

Active learning is another specific direction of the experimental design in machine learning

to efficiently acquire training data. The operational objective is optimizing the model prediction

for the whole instance space, either for regression or for classification problems, in a data efficient

manner. Usually in active learning, the experiments are queries of the instances. The simplest

active learning strategy is Maximum Entropy Sampling (MES), which queries the instance that

we are most uncertain about the outputs [51]. The uncertainty is measured by the entropy of the

predictive probability. MES strategies are simple to implement and perform well in many cases.

However, since it fails to differentiate between model uncertainty and observation uncertainty, in

the practical cases with significant observation uncertainty, it may repeatedly query instances in

regions of high observation uncertainty. Bayesian Active Learning by Disagreement (BALD) is a

mutual information based strategy [37]. Taking the effect of observation uncertainty on learning

in consideration, the strategy selects the query providing the maximum mutual information of the

model parameters. Query-By-Committee (QBC) includes a variety of models trained on the current

observed data, and the algorithms choose those points for which the “committee” disagrees the most

[74]. There are also MOCU-based active learning strategies, for example, Expected Error Reduction

(EER). EER aims directly at reducing the prediction error after observing the new data [65].

Another experimental design area, Bayesian optimization, is widely applied in materials de-

sign [27] or drug discovery [62]. The operational objective is to find the global optimal points

for black-box functions, and the experiments are still the queries from the input instance space.

Bayesian optimization only focuses on reducing the uncertainties of the optimal points. The com-

mon acquisition functions of BO includes Probability of Improvement (PI), which is defined as

the probability of improving upon the best value observed so far by querying the instance, and
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the Expected Improvement (EI), which takes the amount of expected improvement of the utility

function by a query into consideration [55]. Upper Confidence Bound (UCB) combines the effect of

exploitation and exploration linearly [77]. There is also mutual information based strategies called

Predictive Entropy Search (PES), which maximizes the mutual information of the optimal points

provided by the query [35]. We can also apply MOCU-based experimental design for Bayesian

optimization, and the resulting strategy is equivalent to Knowledge Gradient (KG), which provides

the one-step optimal policy based on the prior knowledge and the observations [26].

In optimal experimental design, an important consideration for theoretical analysis is the

sampling efficiency of different strategies. Although this dissertation focuses on the convergence

analysis and empirical evaluation of new strategies benchmarking with the state of the arts, there

have been reported theoretical results on sample complexity analysis of some existing experimental

design strategies. For example, Freund et al. [28] have shown that in the online active learning

scenario, with a correct Bayesian prior on the set of hypotheses and the realizability assumption,

the sample efficiency of QBC can be achieved with an exponential improvement over traditional

passive learning. The theoretical result on the Agnostic Active (A2) learning strategy has further

demonstrated the exponential improvement on sample efficiency without the need of knowing the

Bayesian prior [2]. Krause et al. [47] have quantified the performance difference between sequential

and parallel strategies for active learning for regression problems. Srinivas et al. [77] have analyzed

the convergence rate of the cumulative regret of UCB for BO, and have obtained a sublinear regret

bound. There are also more recent relevant theoretical analyses in multi-arm bandits and more

general reinforcement learning, which we consider out of the scope of the current dissertation.

1.3 Thesis Organization

MOCU-based experimental design methods have been applied on different scenarios [15, 18, 7].

However, there are still some unsolved challenges. 1. Usually MOCU-based methods are applied

on the simple surrogate models with uncertainty on the model parameter. However, in practice,

the uncertainty in the physical procedure cannot directly connect to the model uncertainty. 2. The

one-step-look-ahead strategy used in MOCU-based method is myopic and can not guarantee the
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asymptotic performance. There is no theoretical discussion on the convergence of the MOCU-based

methods. 3. The computation of MOCU-based acquisition functions is typically prohibitive as

it requires incrementally retraining the model with every new experiment. Also in some cases,

the acquisition function is not smooth and cannot be combined with gradient-based optimization

techniques to efficiently explore the continuous experiment space.

Throughout this dissertation, we propose several Bayesian experimental design methods to

address these challenges. We first derive robust linear filtering and experimental design for physical

systems governed by stochastic differential equations (SDEs) under model uncertainty. Then we

propose active learning methods for Bayesian classification problem with theoretical guarantee. Last

but not the least, we develop efficient algorithms for MOCU-based active learning with Gaussian

Process Classification (GPC) models. The organization of the rest of this proposal is as follows:

Chapter 2

In Chapter 2, we consider a linear filtering problem for physical systems modeled by SDEs. The

model uncertainty is characterised by the uncertain parameters of the SDEs and the experiments

measure the uncertain model parameters. Since the stochastic processes in SDE systems are time-

variant, there is no closed form solution for the optimal filter. We discretize the processes and

approximately solve the problem with matrix solutions. We further derive an intrinsically Bayesian

robust (IBR) linear filter and an optimal experimental design acquisition function to determine

the priority of the experiments. We apply the proposed method to an SDE-based pharmacokinetic

two-compartment model to esimate drug concentration levels with IBR and MOCU calculated by

Monte Carlo combined with Euler-Maruyama method. This chapter is based on [86].

Chapter 3

In Chapter 3 we discuss active learning problem, and the experiments query labels of candidates.

We first analyses MOCU-based active learning and shows that MOCU-based active learning fails

to converge to the optimal classifier due to the piece-wise linearity of MOCU as a function of the

uncertain model distribution, although they can identify the optimal one-step queries. To address
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the stuck problem and keep the myopic sampling efficiency at the same time, we propose two active

learning methods based on approximation functions of MOCU with partial or total strictly concavity.

The Weighted MOCU (WMOCU) function multiplies a weight function with each summation term

of MOCU with a weight; the weight is designed to generate strictly concave function for each

nonzero term. Soft-MOCU (SMOCU) uses logsumexp function to approximate the maximum

function, so the resulting function is a strictly concave function. The acquisition functions based

on both approximation functions can guarantee the active learning procedures converge to the

optimal classifier. We provides the convergence proof for both methods. The experiments with

both synthetic and real-world datasets demonstrate the expected sample efficiency of WMOCU and

SMOCU based active learning. This chapter is based on [88] and [87].

Chapter 4

In Chapter 4. we further develop efficient algorithms for MOCU-based active learning for

Gaussian Process Classification (GPC) problems. GPC is a nonparametric model that works in

continuous feature space. We study active learning in both pool-based scenario (discrete instance set)

and query synthesis scenario (continuous instance space). To avoid retraining GPC for each query

during the active learning procedure, we calculate the posterior predictive distribution through the

joint predictive distribution of label pairs, the expression of which is derived as a one-dimensional

integral. We further utilize the smooth property of SMOCU to enable efficient query synthesis active

learning with gradient-based optimization technique, by deriving the chain rule of the gradient

computation of the SMOCU reduction.

With the research focus on Bayesian learning and experimental design, we summarize our

methodological contributions and discuss future research directions in Chapter 5.
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2. MODEL-BASED ROBUST FILTERING AND EXPERIMENTAL DESIGN FOR

STOCHASTIC DIFFERENTIAL EQUATION SYSTEMS*

2.1 Overview

We derive robust linear filtering and experimental design for systems governed by stochastic

differential equations (SDEs) under model uncertainty. Given a model of signal and observation

processes, an optimal linear filter is found by solving the Wiener-Hopf equation; with model

uncertainty, it is desirable to derive a corresponding robust filter. This chapter assumes that the

physical process is modeled via a SDE system with unknown parameters; the signals are degraded

by blurring and additive noise. Due to time-dependent stochasticity in SDE systems, the system is

nonstationary; and the resulting Wiener-Hopf equation is difficult to solve in closed form. Hence,

we discretize the problem to obtain a matrix system to carry out the overall procedure. We further

derive an Intrinsically Bayesian Robust (IBR) linear filter together with an optimal experimental

design framework to determine the importance of SDE parameter(s). We apply the theory to an

SDE-based pharmacokinetic two-compartment model to estimate drug concentration levels.

2.2 Introduction

It is common practice in signal processing to begin with a stochastic-process model (signal

plus noise), a covariance (or power spectra) model, or a state-observation model, as with Kalman

filtering. However, in a physical context, the signal model may be derived from a physical model,

which can be a parameterized mathematical system. Hence, the properties of the signal, and of the

resulting filter, depend on the physical model, and the signal parameters are expressed in terms of

the parameters of the physical model. If there is uncertainty with regard to some parameters in the

physical model, this uncertainty is propagated to the signal model, for instance, uncertainty in the

covariance matrix. The key factor for the work presented in this chapter is that, if the uncertainty in

*Reprinted with permission from "Model-Based Robust Filtering and Experimental Design for Stochastic Differ-
ential Equation Systems." by Zhao, Guang, Xiaoning Qian, Byung-Jun Yoon, Francis J. Alexander, and Edward R.
Dougherty, 2020. IEEE Transactions on Signal Processing, 68, 3849-3859, copyright © 2020 IEEE.
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the physical model arises from lack of scientific knowledge and the uncertainty is characterized by a

prior distribution governing the uncertain (random) parameters, thereby characterizing our scientific

understanding of the uncertainty, then that prior distribution continues to govern the uncertain

parameters in the signal model. In summary, both the signal model and its uncertainty are dictated

by the physical model, and not hypothesized independently.

We focus on optimally filtering signals generated by stochastic differential equations (SDEs)

when some parameters of the SDEs are uncertain. Given an SDE, the desired (random) signal

satisfies the SDE and is derived from it. Its parameters are from the SDE, and to the extent that the

latter ones are uncertain, the signal is uncertain.

We apply Intrinsically Bayesian Robust (IBR) filtering to the signal. An IBR filter is optimal

relative to both the standard mean-square-error (MSE) for linear filtering (which leads to the Wiener-

Hopf integral equation [39, 25]) and the uncertainty, that is, the prior distribution on the parameters

of the SDE. With model uncertainty, the ordinary Wiener-Hopf equation is replaced by the effective

Wiener-Hopf equation, which incorporates the expectation of the correlation functions across the

uncertainty class.

When originally applied in [12], stationarity was assumed, thereby leading to the IBR Wiener

filter expressed in terms of effective power spectra. Although a general continuous-time non-

stationary effective Wiener-Hopf equation is also presented in [12], methods of solving non-

stationary setups are not in discussed. Here, because the signal is nonstationary due to the SDE

model in which we are operating, an IBR linear filter will have to be derived directly from the

Wiener-Hopf equation, which must be done numerically. Different approaches have been proposed

to approximate the nonstationary optimal linear filter. Here we discretize the effective Wiener-Hopf

integral equation to obtain an approximate solution. Note that since there are no new observations,

there is no state-observation pair and recursive filtering does not apply.

An IBR filter is robust in the sense that it performs best on average across the uncertainty

class; however, it is not optimal relative to the true model. Since the true model is unknown, we

quantify the cost of uncertainty relative to the MSE by averaging the loss of performance across the
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uncertainty class. The mean objective cost of uncertainty (MOCU) is the average increase in error

across the uncertainty class arising from using an IBR filter rather than individual optimal filters for

each model in the uncertainty class [84]. The MOCU provides a cost of the uncertainty relative

to the objective. A key aspect of the work is to apply MOCU-based optimal experimental design

[18] in the framework of signal models derived from physical models: determine the unknown

parameter in the SDE physical system model whose experimental assessment optimally reduces

the expected (residual) MOCU when the obtained parameter value is put into the model and a new

IBR filter is derived. The procedure can be done iteratively to yield sequential experimental design.

We would like to emphasize that here we have two types of data. One is the observations of the

signals generated from the SDE model, which we aim to estimate using our IBR filter; the other is

the experimental assessments of the parameters in the SDE model, which help reduce the model

uncertainty and MOCU by experimental design.

The general idea is to tie physical modeling, optimal signal processing, and experimental design

(here in the SDE framework). We will demonstrate aspects of the procedure via a synthetic example.

Then we will apply it to an SDE-based pharmacokinetic two-compartment model that differentiates

the body into a central compartment (plasma) and a peripheral compartment (tissues), and describes

the relationship between the drug concentrations in the central and peripheral compartments, and

the measurement of the drug concentration in the central compartment.

2.3 Background

In this section, we briefly review the background for IBR operators and optimal experimental

design in the IBR context.

2.3.1 IBR Filtering

Optimal operator design involves a mathematical model for the physical system, a class of

operators, and an optimization problem defined by a cost function:

ψopt = arg min
ψ∈F

C(ψ), (2.1)
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whereF is the operator class andC(ψ) is the cost of applying an operator ψ. With model uncertainty,

the true model is assumed to belong to an uncertainty class of models parameterized by a vector

θ ∈ Θ. We define an intrinsically Bayesian robust (IBR) operator by

ψΘ
IBR = arg min

ψ∈F
EΘ[Cθ(ψ)], (2.2)

where each θ ∈ Θ corresponds to a model and the prior probability distribution π(θ) quantifies our

prior knowledge regarding the physical system. Note that the expectation is with respect to π(θ)

on the uncertainty class Θ and Cθ(ψ) denotes the corresponding cost of applying ψ to the model

θ [12, 84]. If there is no prior knowledge beyond the uncertainty class itself, then the prior can be

taken to be uniform and π(θ) is noninformative. An IBR operator is robust in the sense that on

average it performs well over the uncertainty class Θ.

When there is a data sample S, the prior can be updated to a posterior distribution π∗(θ) =

π(θ|S), and (2.2) then defines an optimal Bayesian operator (OBO) ψΘ
OBO [63, 20]. An IBR operator

is an OBO with S = ∅, namely, when there is no data but only prior knowledge constraining the

model θ ∈ Θ.

In the signal filtering problem, the operators mentioned above are just filters. Signal fil-

tering involves a joint random process (X(t), Y (s)), t ∈ T, s ∈ S, and optimal filtering in-

volves estimating the signal Y (s) at time s via a filter ψ given observations {X(t)}t∈T . A

filter ψ ∈ F is a mapping on the space S of possible observed signals and a cost function

takes the form C(Y (s), Ŷ (s)), with Ŷ (s) = ψ(X)(s). For fixed s ∈ S, an optimal filter is de-

fined by (2.1) with C(ψ) = C(Y (s), ψ(X)(s)). With uncertainty, there is an uncertainty class

{(Xθ(t), Yθ(s)), t ∈ T, s ∈ S, θ ∈ Θ}. An IBR filter, or optimal Bayesian filter, is defined by (2.2)

with Cθ(ψ) = Cθ(Yθ(s), ψ(Xθ)(s)) [12, 63].

Finding IBR filters involves developing a theory by which (2.2) can be solved – in a similar

way as (2.1) is solved except that the effective characteristics pertaining to the full uncertainty

class are used rather than the characteristics of a single signal model. An observation-signal pair
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(X(t), Y (s)) is solvable under the function class F and cost C if there exists a solution to (2.1)

under the processes. An observation-signal pair (XΘ(t), YΘ(s)) is referred to as an effective process

under the function class F , uncertainty class Θ, and costs C if for all ψ ∈ F ,

EΘ[C(Yθ(s), ψ(Xθ)(s))] = C(YΘ(s), ψ(XΘ)(s)). (2.3)

If there exists a solvable effective process (XΘ(t), YΘ(s)) with the optimal filter ψΘ, then ψΘ
IBR =

ψΘ [12].

Robust filter design goes back to the late 1970s, with robust Wiener filtering involving minimax

optimality in regard to uncertain power spectra [49, 41, 61, 81]. Robust design was extended to

nonlinear filters and placed into a Bayesian framework by assuming a prior probability distribution

governing the uncertainty class, the aim being to find a filter with minimal expected error across the

uncertainty class [34]. IBR filters are fully optimal under this framework.

Other robust filters include a minimax estimator (τ -robust) associated with τ -divergence

space [94], a minimax estimator under covariance uncertainty with the given eigenvector ma-

trix and bounded eigenvalues [24], a minimax estimator with an uncertain model matrix [23], and a

distributed estimation formulation with model uncertainties [67].

Although we are not using recursive filters, for the sake of completeness we mention some

robust Kalman filters. Adaptive Kalman filters simultaneously estimate the noise covariances along

with the state estimation [54, 68]. Finite-impulse-response analogues have also been proposed

[50, 76]. A regularized least-squares framework has been employed in which unknown parameters

embody the deviation of the model parameters from their nominal values [69]. Another approach

penalizes sensitivity of estimation relative to modeling error [89]. It has also been extended to the

situation in which the observation can be randomly lost [90]. Last but not least, robust Kalman

filtering has been addressed in the IBR framework [17, 14].
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2.3.2 Experimental Design

While an IBR operator is optimal over the uncertainty class, it is likely to be suboptimal relative

to the true model. This performance loss is the cost of uncertainty. For any θ ∈ Θ and operator

family F , the objective cost of uncertainty relative to θ is Cθ(ψΘ
IBR)− Cθ(ψθ). The mean objective

cost of uncertainty (MOCU) [84] is the expectation of this cost over all possible models:

MF(Θ) = EΘ[Cθ(ψ
Θ
IBR)− Cθ(ψθ)]. (2.4)

While we have defined MOCU for an IBR operator relative to the prior, it can also be defined for an

OBO relative to the posterior.

MOCU is used to choose experiments to optimally reduce the model uncertainty relevant to the

operational objective. For example, given k experiments T1, ..., Tk, where experiment Ti exactly

determines the uncertain parameter θi in θ = (θ1, θ2, ..., θk), the issue for experimental design is

which experiment to conduct first. Let θ|θ̄i = θ|(θi = θ̄i) be the conditional uncertainty vector

composed of all uncertain parameters other than θi with θi = θ̄i. Θ|θ̄i = {θ|θ̄i : θ ∈ Θ} is the

reduced uncertainty class given θi = θ̄i. The IBR operator for Θ|θ̄i is denoted ψΘ|θ̄i
IBR and is called

the reduced IBR operator relative to θ̄i.

If the experiment Ti obtains the model parameter value θ̄i, then the remaining MOCU given

θi = θ̄i is

MF(Θ|θ̄i) = EΘ|θ̄i [Cθ|θ̄i(ψ
Θ|θ̄i
IBR )− Cθ|θ̄i(ψθ|θ̄i)], (2.5)

where the expectation is relative to the conditional distribution π(θ|θ̄i). The remaining MOCU is

the MOCU for ψΘ|θ̄i
IBR relative to Θ|θ̄i.

Treating the remaining MOCU as a function of θi and taking the expectation with respect to

π(θi) yields the expected remaining MOCU, given parameter θi,

Eθi [MF(Θ|θi)] = Eθi [EΘ|θi [Cθ|θi(ψ
Θ|θi
IBR )− Cθ|θi(ψθ|θi)]], (2.6)
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which is called the experimental design value and denoted by D(θi). An optimal experiment Ti∗ is

defined by

i∗ = arg min
i=1,...,k

D(θi) = arg min
i=1,...,k

R(θi), (2.7)

where

R(θi) = Eθi [EΘ|θi [Cθ|θi(ψ
Θ|θi
IBR )]] (2.8)

is called the residual IBR cost for Ti, and θi∗ is called the primary parameter [15]. The resulting Ti∗

is the experiment that is expected to minimize the model uncertainty pertaining the cost. Experiments

can be chosen in a greedy sequential manner by repeating the process for the remaining unknown

parameters, or by using dynamical programming. This sequential experimental design procedure is

illustrated in Fig. 2.1.

Monte Carlo/
SDE Solver

Update 
Parameter 

Uncertainty

SDE Parameter
Uncertainty

The Iterative 
Experimental 
Design Loop

Parameter 
Measurement by 

Experiment

Signal 
Uncertainty

Derive the IBR 
Filter

Select Parameter 
to Query Based 
on (8)

Stop Loop
Yes

No

Figure 2.1: MOCU-based experimental design loop for robust filtering. Reprinted with permission
from [86], copyright © 2020 IEEE.

Note that in the discussion above, we assume that the experiment Ti can determine θi exactly.
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The strategy can be easily extended to more general cases with imprecise experiments [56]. When

the value θ̄i obtained from the experiment Ti is imprecise with distribution p(θ̄i|θi), the piror π(θ)

can be accordingly updated to a posterior distribution π(θ|θ̄i). Then the IBR filter ψΘ|θ̄i
IBR defined by

(2.2) is optimal with respect to the posterior π(θ|θ̄i), and the residual IBR cost is still in the same

form as (2.8).

2.4 IBR Linear Filter for Nonstationary Signals

Consider an uncertain signal model (Xθ, Yθ), θ ∈ Θ, with the MSE cost function and the class

of linear functions

F =

{
ψ : ψ(X)(s) =

∫
T

g(s, t)X(t)dt

}
. (2.9)

The solvable class Φ consists of all process pairs (X, Y ) such that ψ(X)(s) has a finite second

moment for any g(s, t) and there exists ĝ(s, t) for which the Wiener-Hopf equation is satisfied:

RY X(s, t) =

∫
T

ĝ(s, u)RX(u, t)du, (2.10)

where RX(u, t) and RY X(s, t) are autocorrelation and cross-correlation functions, respectively.

With the uncertain signal model, we now define the effective correlation functions by RΘ,Y (s, v)

= EΘ[RYθ(s, v)], RΘ,X(t, u) = EΘ[RXθ(t, u)], and RΘ,Y X(s, t) = EΘ[RYθXθ(s, t)]. As an auto-

correlation function, RXθ(t, u) is conjugate symmetric and nonnegative definite for all θ ∈ Θ.

RΘ,X(t, u) has the same properties and is therefore also a valid autocorrelation function. It is

straightforward to show that (2.3) is satisfied. If (XΘ, YΘ) ∈ Φ, meaning that the Wiener-Hopf

equation relative to (XΘ, YΘ) is satisfied, then (XΘ, YΘ) is an effective process for the uncertainty

class Θ and an IBR linear filter is given by the solution, ĝ(s, t), to the effective Wiener-Hopf

equation [12]:

RΘ,Y X(s, t) =

∫
T

ĝ(s, u)RΘ,X(u, t)du. (2.11)

All basic equations hold with characteristics replaced by effective characteristics RΘ,Y , RΘ,X , and

RΘ,Y X .
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In the nonstationary case, the integral-form Wiener-Hopf equation can be difficult to solve

in closed form, and numerical approximations are employed. The authors in [43] proposed a

time-frequency formulation of the nonstationary linear filter, which can be approximately valid for

underspread cases. It is also possible to approximately approach it by solving discrete-time Wiener-

Hopf equations [78, 57]. Here we use the discrete-time approach to approximate the continuous

time signal and observation with signal vector Y = {Y (si)} at N discrete time points si, i ≤ N

and observation vector X = {X(tj)} at M discrete time points tj, j ≤ M . The integral form of

the Wiener-Hopf equation then turns into the following matrix form:

RY X = ĜRX , (2.12)

whereRX = E[XXT],RY X = E[Y XT] are the autocorrelation and cross-correlation of the matrix

form, respectively; and Ĝ is the matrix-form optimal filter. Similarly, the effective Wiener-Hopf

equation in the matrix form can be written as:

RΘ,Y X = ĜΘRΘ,X , (2.13)

and the solution is

ĜΘ = RΘ,Y X [RΘ,X ]+, (2.14)

where the superscript + denotes the pseudoinverse. The error covariance matrix of ŶIBR = ĜΘXθ

is

EΘ[E[(ŶIBR − Yθ)(ŶIBR − Yθ)T]]

= EΘ[E[(ŶIBR − Yθ)Ŷ T
IBR]]− EΘ[E[(ŶIBR − Yθ)Y T

θ ]]

= −EΘ[E[(ŶIBR − Yθ)Y T
θ ]]

= EΘ[E[YθY
T
θ ]]− EΘ[E[ŶIBRY

T
θ ]]

= RΘ,Y −RΘ,Y X [RΘ,X ]+RT
Θ,Y X , (2.15)
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where the second equality holds because ŶIBR − Yθ is orthogonal to any linear combination of Yθ.

Especially, ŶIBR as an IBR filter achieves the Bayesian optimality [42]. The last equality follows

from (2.14). The MSE of the IBR filter is just the trace of the error covariance matrix.

2.4.1 MOCU for the Discrete Wiener-Hopf Equation

With the derived IBR Wiener filter, we can quantify the model uncertainty in the MOCU

framework relative to the IBR filter:

MF(Θ) = EΘ[Cθ(ĜΘ)− Cθ(Ĝθ)]

= EΘ[Cθ(ĜΘ)]− EΘ[Cθ(Ĝθ)]

= tr(RΘ,Y −RΘ,Y X [RΘ,X ]+RT
Θ,Y X)− EΘ[tr(Rθ,Y −Rθ,Y X [Rθ,X ]+RT

θ,Y X)]

= −tr(RΘ,Y X [RΘ,X ]+RT
Θ,Y X) + EΘ[tr(Rθ,Y X [Rθ,X ]+RT

θ,Y X)]. (2.16)

Experimental design for IBR Wiener filtering involves minimizing the IBR residual cost: i∗ =

arg min
i∈1,...,k

Eθ̄i [tr(RΘ|θ̄i,Y −RΘ|θ̄i,Y X [RΘ|θ̄i,X ]+RT
Θ|θ̄i,Y X)] (2.17)

= arg max
i∈1,...,k

Eθ̄i [tr(RΘ|θ̄i,Y X [RΘ|θ̄i,X ]+RT
Θ|θ̄i,Y X)], (2.18)

where RΘ|θ̄i,Y = EΘ|θ̄i [RYθ ], RΘ|θ̄i,X = EΘ|θ̄i [RXθ ], RΘ|θ̄i,Y X = EΘ|θ̄i [RYθXθ ], and the second

equation holds for the reason that

Eθ̄i [RΘ|θ̄i,Y ] = Eθ̄i [EΘ|θ̄i [RYθ ]] = EΘ[RYθ ] = RΘ,Y (2.19)

is unrelated to the index i. As shown in (2.17) and (2.18), the IBR residual cost is only a function of

the auto- and cross-correlations, in the form of the MSE of the linear IBR filter. Therefore there is

no need to re-derive the filter during the experimental design procedure.
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2.5 IBR Linear Filter and Experimental Design with Stochastic Differential Equations

Stochastic differential equations (SDEs) are widely applied for stochastic process modeling in

areas such as pharmacology [83], population biology [6, 33] and mathematical finance [53]. In

addition to the differential equations governing the processes under study, SDEs include diffusion

processes to model potential random effects disturbing the processes of interest. Usually the

diffusion process is a Wiener process. Assume that the n-dimensional random process under study,

Y (t) ∈ Y ⊆ Rn, is defined within the time interval t ∈ [0, T ]; and the corresponding SDE is driven

by an m-dimensional Wiener processW (t). Then the typical form of an Itô SDE is [1]:

dY (t) = f(t,Y (t))dt+ g(t,Y (t))dW (t), (2.20)

where f : [0, T ] × Rn → Rn, g : [0, T ] × Rn → Rn×m are the drift vector and diffusion matrix,

respectively.

If f and g are in the linear form shown in (2.21), the solutions of the corresponding SDEs can

be Gaussian processes. Assume the functions f and g are given by

f(t,Y (t)) = A(t)Y (t) + a(t),

g(t,Y (t)) = B(t), (2.21)

where A(t) and B(t) are matrices of size n× n and n×m, respectively, and a(t) is a vector of

size n. The resulting SDE takes the form

dY (t) = (A(t)Y (t) + a(t))dt+B(t)dW (t),Y (0) = c. (2.22)

The initial-valued SDE has a unique solution if and only if the initial condition c is either a constant

or a Gaussian distributed random variable. The mean and auto-correlation of the Gaussian process
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are given by

m(ti) = Φ(ti)(E[c] +

∫ ti

0

Φ(s)−1a(s)ds) (2.23)

and

Ψ(ti, tj)=Φ(ti)
(
E
[
(c− E[c])(c− E[c])T]

+

∫ ti

0

Φ(u)−1B(u)B(u)T(Φ(u)−1)Tdu
)
Φ(tj)

T, (2.24)

where 0 ≤ ti ≤ tj ≤ T and Φ(t) is the fundamental matrix of the ordinary differential equation

dY (t) = A(t)Y (t)dt. (2.25)

When there is no closed-form solution, approximate numerical solutions of SDEs can be

obtained by the Euler-Maruyama method [46]: Partition the interval [0, T ] into N equal subintervals

of the width ∆t = T/N : 0 = t0 < t1 < . . . < tN = T . Then the numerical solution to the SDE is

computed recursively by the difference equation:

Yn+1 = Yn + f(tn,Yn)∆t+ g(tn,Yn)∆Wn, (2.26)

where ∆Wn = Wtn+1 −Wtn is a Gaussian random vector with independent components and

the variance of each component is ∆t. Monte Carlo discrete samples of Y (t) can be generated

according to (2.26), based on which we can estimate the stochastic characteristics.

In this chapter, we consider IBR filtering and optimal experimental design for the stochastic

signal Y (t) described by an SDE with a vector θ = (θ1, θ2, ..., θk) of uncertain parameters, so that

Y (t) satisfies the SDE

dY (t) = f(t,Y (t); θ)dt+ g(t,Y (t); θ)dW (t). (2.27)

The model uncertainty can be characterized by π(θ), the prior distribution of θ. Denote the

18



observation of Y (t) as X(t). Assume the observation procedure follows a linear observation

model:

X(t) =

∫ T

0

Y (s)h(s, t)ds+ n(t), (2.28)

where h(s, t) is the blurring function and n(t) is white noise. We derive the IBR linear filter to

estimate Y (t) fromX(t). The function class F is defined by (2.9) and the MSE is used as the cost

function. Among the experiments that can exactly determine one of the uncertain parameters, we

aim to predict the one minimizing the design value defined in (2.6).

2.6 Computational Complexity Analysis

Here we analyze the complexity of optimal experimental design for SDE model-based filtering

considered in this chapter. Assume the dimensions of the signal vector Y and observation vector

X are Ny and Nx, respectively. Note that Ny and Nx are equal to the multiplication of the number

of discrete time points for discrete approximation and the channel numbers of the corresponding

signal and observation processes. In addition, we assume that we have k uncertain parameters

in the SDE system and therefore there are k possible experiments to specify each parameter for

our experimental design setup, which requires solving the optimization problem in (2.18) over k

parameters.

The objective function in (2.18) involves the computation of the expectation over θ̄i, which can

be calculated by Monte Carlo (MC) integration. Assume we sample M1 samples of θ(j)
i , j ≤M1.

Given each θ(j)
i , if we have closed-form effective correlation matrices in (2.18), we just need

to calculate the matrix multiplication and the trace given effective correlation matrices inside

the expectation. First, computing the pseudoinverse [RΘ|θi,X ]+ has cubic complexity O((Nx)
3).

The matrix multiplication to derive A = RΘ|θ̄i,Y X [RΘ|θ̄i,X ]+ has complexity of O(Ny(Nx)
2) and

calculating the trace tr(ART
Θ|θ̄i,Y X

) has the complexity O(NxNy). The complexity of the matrix

calculations for each sample is O(Ny(Nx)
2 + (Nx)

3), and therefore the complexity of optimal

experimental design by solving (2.18) is O(kM1(Ny(Nx)
2 + (Nx)

3)).

In practice, there is typically no closed-form solution to the underlying SDE system modeling
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the signal process, hence there is no closed-form expression for effective correlation matrices. In

such cases, we would also need to estimate the effective correlation matrices in (2.18) by MC

sampling in addition to the matrix calculations analyzed above. Assume we generate M2 samples

of (θ|θ(j)
i ,Y (j),X(j)), j ≤M2, where Y (j) can be generated by (2.26) andX(j) by (2.28). Due to

the Markovian property of (2.26), the complexities of sampling Y (j) andX(j) are all linear. The

effective cross-correlation is estimated by:

RΘ|θ̄i,Y X =
1

M2

M2∑
j=1

Y (j)(X(j))T, (2.29)

with the complexity O(M2NyNx). Similarly, the complexity of estimating the effective auto-

correlation ofX is O(M2N
2
x). With these, the complexity of optimal experimental design is

O(kM1[Ny(Nx)
2 + (Nx)

3 +M2(N2
x +NyNx)]). (2.30)

Note that the MC integration procedure for effective correlation matrix estimation has to sample the

uncertainty class of all k parameters and M2 can grow exponentially with k.

2.7 Synthetic Experiments

To demonstrate the performance of the proposed robust filtering and optimal experimental

design methods, we first consider a synthetic example, which assumes that the original signal

Y (t) is generated by an SDE of the form in (2.22). Assume Y (t) is a two-channel signal and the
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parameters of the corresponding SDE are given by

A(t) =
θ1

100

 1 0

0 1

 ,

a(t) =

 0

0

 ,

B(t) = 0.1

 1 θ2

θ2 1

 ,

Y (0) =

 0

0

 , (2.31)

where θ = (θ1, θ2) is the uncertain parameter vector, Y (t) is defined within the time interval

[0, T = 100].

X(t) is the observation of Y (t), which is corrupted by a blurring function h(t) with additive

noiseN (t):

X(t) =

∫ T

0

h(t− s)Y (s)ds+N (t), (2.32)

where

h(t) =
1

B
(sgn(t)− sgn(t−B)), (2.33)

with B = 10, is a scalar function, so the blurring effect is the same for both channels. The variances

of additive noise for both channels are the same, σ2 = 0.01.

As mentioned earlier, the SDE has a unique solution as a Gaussian process. Therefore, we

can obtain a closed-form expression of correlations between Y (t) andX(t). Let’s begin with the

fundamental matrix of (2.25):

Φ(t) =

 eθ1t 0

0 eθ1t

 , (2.34)
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with dΦ(t)/dt = A(t)Φ(t). The auto-correlation of Y (t) can be calculated by (2.24):

RY (ti, tj)

= Φ(ti)

(∫ ti

t0

Φ(u)−1B(u)B(u)T(Φ(u)−1)Tdu
)

Φ(tj)
T

=
1

2θ1

{eθ1(ti+tj) − eθ1(tj−ti)}

 1 + θ2
2 2θ2

2θ2 1 + θ2
2


= rY (ti, tj)

 1 + θ2
2 2θ2

2θ2 1 + θ2
2

 , (2.35)

where

rY (ti, tj) =
1

2θ1

{eθ1(ti+tj) − eθ1(tj−ti)}. (2.36)

Equation (2.35) holds for tj ≥ ti ≥ 0, and we have RY (ti, tj) = RY (tj, ti). Based on the

observation model in (2.32), the cross-correlation is

RY X(ti, tj)

=

∫ T

0

h(tj − s)RY (ti, s)ds

=

∫ T

0

h(tj − s)rY (ti, s)ds

 1 + θ2
2 2θ2

2θ2 1 + θ2
2


=rY X(ti, tj)

 1 + θ2
2 2θ2

2θ2 1 + θ2
2

 , (2.37)

with

rY X(ti, tj) =

∫ T

0

h(tj − s)rY (ti, s)ds. (2.38)
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The auto-correlation ofX(t) is

RX(ti, tj)

=

∫ T

0

∫ T

0

h(ti − s)RY (s, u)h(tj − u)dsdu+ σ2δ(ti − tj)I2

=

∫ T

0

∫ T

0

h(ti − s)rY (s, u)h(tj − u)dsdu· 1 + θ2
2 2θ2

2θ2 1 + θ2
2

+ σ2δ(ti − tj)I2

=rX(ti, tj)

 1 + θ2
2 2θ2

2θ2 1 + θ2
2

+ σ2δ(ti − tj)I2, (2.39)

with

rX(ti, tj) =

∫ T

0

∫ T

0

h(ti − s)rY (s, u)h(tj − u)dsdu. (2.40)

The integrals in (2.38) and (2.40) can be calculated directly and have piecewise closed-form

expressions depending on the value relationships between ti, tj , B and T .

As noted previously, we consider the discrete filtering problem. The signals from the SDE

system are sampled at discrete time points t = 0, 1, 2, ..., 100. We denote the flattened discrete time

vectors ofX(t) and Y (t) as:

XN = (X1
0 , . . . , X

1
N , X

2
1 , . . . , X

2
N)T (2.41)

and

Y N = (Y 1
0 , . . . , Y

1
N , Y

2
1 , . . . , Y

2
N)T, (2.42)

where Y i
j and X i

j indicate the signal and observation values at the i-th channel and time j, respec-

tively, for i = 1, 2 and 0 ≤ j ≤ N .
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Then the matrix forms of correlations are

RN
θ,Y X =

 1 + θ2
2 2θ2

2θ2 1 + θ2
2

⊗ rNYX , (2.43)

RN
θ,X =

 1 + θ2
2 2θ2

2θ2 1 + θ2
2

⊗ rNX + σ2I2N , (2.44)

where ⊗ indicates the Kronecker product, and

rNYX =


rY X(t0, t0) · · · rY X(t0, tN)

... . . . ...

rY X(tN , t0) · · · rY X(tN , tN)

 ,

rNX =


rX(t0, t0) · · · rX(t0, tN)

... . . . ...

rX(tN , t0) · · · rX(tN , tN)

 (2.45)

are corresponding matrix forms of rY X(ti, tj) and rX(ti, tj).

2.7.1 IBR Filter Performance

To examine the performance of the IBR filter ĜΘ = RN
Θ,Y X [RN

Θ,X ]+, fix θ1 = 1 and let θ2 be

uniformly distributed over the interval (−1, 1). We then have a closed-form expression for the

expectation over θ:

RN
Θ,Y X =

 4/3 0

0 4/3

⊗ rNYX , (2.46)

RN
Θ,X =

 4/3 0

0 4/3

⊗ rNX + σ2I2N . (2.47)
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Note that the effective correlation doesn’t correspond to any specific value of θ2. Inserting (2.46)

and (2.47) to (2.14) yields the matrix-form IBR filter ĜΘ.

To show the performance of the IBR filter, we compare it with the optimal filter for θ2 = 0.8

and the recently developed τ -robust filter which is robust with bounded τ -divergence and is the

optimal filter based on the nominal statistics with respect to θ2 = 0 [94]. The result for applying

the three filters on the observation of the signal generated by the SDE with θ2 = 0.8 is shown in

Fig. 2.2. Note that the IBR filter has a performance (Mean Square Error (MSE) = 2.6015) fairly

close to the filter that is optimal for θ2 = 0.8 (MSE = 2.5269) and performs better than the τ -robust

filter (MSE = 2.6121).
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Figure 2.2: One sample from the SDE (2.22), (2.31) with θ2 = 0.8. Left and right sub-figures show
the signals from the first and the second channels, respectively. The original signals are in blue. The
filtered signals based on the optimal filter for θ2 = 0.8 are in red. The filtered signals using the
τ -robust filter are in green. The IBR filtered signals are in yellow. The corrupted observations are in
purple crosses. Reprinted with permission from [86], copyright © 2020 IEEE.

Next we applied the same filters on the observation of the signal generated by the SDE with
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θ2 = −0.7, the result being shown in Fig. 2.3. Here the IBR filter still maintains relatively good

performance (MSE = 2.2360), followed by the τ -robust filter with MSE = 2.2416, but the filter

optimal for θ2 = 0.8 shows a significantly degraded performance (MSE = 4.4331) due to the model

mismatch.
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Figure 2.3: One sample simulated from the SDE (2.22), (2.31) with θ2 = −0.7. Left and right
sub-figures show the signals from the first and the second channels, respectively. The original
signals are in blue. The filtered signals based on the optimal Wiener filter for θ2 = 0.8 are in red.
The filtered signals using the τ -robust filter are in green. The IBR filtered signals are in yellow. The
corrupted observations are in purple crosses. Reprinted with permission from [86], copyright ©
2020 IEEE.

2.7.2 Optimal Experimental Design

The optimal experimental design problem is to determine which one of the two parameters, θ1 or

θ2, should be specified first to minimize the cost due to uncertainty. Taking MSE for signal filtering

as the cost, the cost function for experimental design is the residual IBR cost of two parameters,

26



expressed as:

R(θ1) = Eθ1 [EΘ|θ1 [CΘ|θ1(ĜΘ|θ1)]], (2.48)

R(θ2) = Eθ2 [EΘ|θ2 [CΘ|θ2(ĜΘ|θ2)]]. (2.49)

We assume θ1 and θ2 are independent. θ2 is distributed over the interval (−1, 1) as:

θ2 = 2ε− 1, ε ∼ Beta(β, β), (2.50)

with β the distribution parameter. θ1 is uniformly distributed as

θ1 ∼ U(5− L/2, 5 + L/2), (2.51)

with distribution parameter L.

In our simulations, we set three different values for β = 0.5, 1.5, 5 and L = 0.5, 1.5, 2, so that

we have 9 combinations of distribution hyperparameters. The residual IBR cost is calculated by

Monte Carlo sampling. For R(θ1), for each given pair of distribution parameters, 200 sample pairs

of θ1 are taken for Monte Carlo computation, and for each θ1, the inner term has a closed-form

expression as in (2.17):

EΘ|θ1 [CΘ|θ1(ĜΘ|θ1)]

= Eθ1 [tr(RΘ|θ1,Y −RΘ|θ1,Y X [RΘ|θ1,X ]+R′Θ|θ1,Y X)].

R(θ2) is calculated similarly by Monte Carlo sampling. We just need to substitute θ1 with θ2 in the

above expression to calculate EΘ|θ2 [CΘ|θ2(ĜΘ|θ2)]. The residual IBR costs are shown in Fig. 2.4.

The variances of the two parameters are Var(θ2) = 1
2β+1

and Var(θ1) = L2

12
.

From the figure we can see how the variances of the uncertain parameters influence the IBR

residuals. The variance of θ2 has a higher influence on the IBR residuals than the variance of θ1 does.

As Var(θ2) increases, both IBR residuals increase as a larger variance introduces more uncertainty in
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the model. But when Var(θ2) is large, R(θ2) is smaller than R(θ1), because estimating θ2 can reduce

the uncertainty (or the cost thereof) more than estimating θ1, pertaining to the filtering performance

in this case. For small Var(θ2), we have the opposite conclusion.

To further illustrate the strength of the MOCU-based experimental design, here we perform

experiments with a more complicated uncertainty class and compare its performance with both

entropy-based [9] and random sequential experimental design.

Assume that we have four uncertain parameters, θ = (θ1, θ2, B, σ) in the model described by

(2.31)-(2.33). These uncertain model parameters follow independent uniform distributions. For each

parameter, we assume an experiment can be performed to obtain its value. In addition we assume all

the parameter measurements have Gaussian errors. We perform a sequential experimental design to

decide which model parameter to measure in each iteration so that we can most effectively improve

the filtering performance within a relatively small number of iterations. For this experimental design

problem, we compare the MOCU-based strategy described by (2.18) with both entropy-based

strategy and random strategy. The entropy-based strategy chooses the experiment to measure

the parameter with the largest Shannon entropy; and the random strategy simply chooses one

out of the uncertain parameters in a random fashion. To compare the different strategies in

different cases, we set three different groups of parameter distributions for sequential experimental

design: (1) θ1 ∼ U(3, 6), θ2 ∼ U(−2, 2), B ∼ U(8, 10.5), σ ∼ U(0.01, 1.2); (2) θ1 ∼ U(3, 6),

θ2 ∼ U(−1.4, 1.4), B ∼ U(8, 10.5), σ ∼ U(0.01, 1.2); (3) θ1 ∼ U(3.7, 6), θ2 ∼ U(−1, 1),

B ∼ U(8, 10.5), σ ∼ U(0.01, 2). For all the cases, the parameters have Gaussian measurement

error with a variance σ2
ε = 0.05. In each cases, we randomly generate 100 groups of parameters,

and perform sequential experimental design following the three strategies. After each iteration, we

calculate the remaining MSE of the corresponding IBR filter to quantify the remaining uncertainty.

Figure 2.5 provides the change of the average MSE with the number of experiment iterations for

these three experimental design strategies. As expected, our MOCU-based strategy consistently

identifies the most critical uncertain parameter, whose measurement leads to the maximum reduction

of the MSE with our filtering objective in design. As a result, after two experiments, when two
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Figure 2.4: Comparison of Residual IBR cost of θ1 and θ2. The parameter with less Residual IBR
cost is suggested to be specified by next experiment. Red circles and blue circles are precise calcu-
lations of R(θ1) and R(θ2), respectively, and the surfaces are obtained by cubic spline interpolation.
Reprinted with permission from [86], copyright © 2020 IEEE.

parameters have been determined, the performance of our MOCU-based strategy has almost reached

the level obtained when there is no uncertainty remaining (after four experiments), whereas for both

entropy and random design there remains significant uncertainty after two experiments, meaning

that they have not identified the best two parameters to estimate.

2.8 Pharmacokinetics Model

In this section, we illustrate the IBR filter and experimental design for a pharmacokinetic

two-compartment model based on a SDE system [75]. Differentiating the body into a central com-

partment (plasma) and a peripheral compartment (tissues), the two-compartment model describes

the relationship between the drug concentration in the central compartment Y1(t), the drug con-

centration in the peripheral compartment Y2(t), and the measurement xt of the drug concentration

in the central compartment. The transit of the drug throughout the body is described by the SDE
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Figure 2.5: The average performance of sequential experimental design with different strategies. In
each setup, the MSE is obtained after conducting each experiment in a sequence of experiments for
the SDE signal and observation model with four unknown parameters. Reprinted with permission
from [86], copyright © 2020 IEEE.

shown below:

dY1(t) = (k21Y2(t)− k12Y1(t)− k10Y1(t)) dt+ σ1dW1(t),

dY2(t) = (k12Y1(t)− k21Y2(t)) dt+ σ2 dW2(t),

X(t) = Y1(t) + ε, ε ∼ N(0, σ2
ε ), (2.52)

where W1(t), W2(t) are independent Wiener processes, and k10, k12, and k21 are individual rate

constants (parameters) possessing the joint prior distribution

θ = (k10, k12, k21)T ∼ N(µ,Ω).
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Following the case example in [83], we set the statistics of the prior as: µ = (0.2, 0.5, 0.25)T, and

Ω a diagonal matrix with diag(Ω) = (0.012, 0.12, 0.022)T. Other parameters are set to σ2
ε = 0.04,

σ1 = 0.1, σ2 = 0.1. The initial condition of Y1(t) and Y2(t) are set to be 10 and 0, respectively,

which corresponds to the case of Intravenous injection: the pharmacy is initially injected to the

plasma and then diffuse to the tissue. After finding the IBR filter using the preceding theory, we

consider its performance, and then turn to the problem of specifying in what order to determine the

individual rate constants to optimally reduce the MSE of estimating Y (t) = (Y1(t), Y2(t))T. We

consider the discrete case with sampling points from 0 to 10 by an increment of 0.01.

The SDE in (2.52) also follows the form of (2.20), with the matrices below:

A(t) =

 −k12 − k10 k21

k12 −k21

 , a(t) =

 0

0

 ,

B(t) =

 σ1 0

0 σ2

 , Y (0) =

 10

0

 .

Therefore, similar to the procedure in the synthetic example, we can calculate the IBR filter ĜΘ

through numerical integrals.

We compare the performance of the IBR filter with two other filters: the Wiener filters given

specific values of the parameters θ = µ+ 3σθ with σθ = (0.01, 0.1, 0.02)T the vector of standard

deviations of parameters and the tau-robust filter. The comparison of the filtering performance on

signals generated with θ = µ and θ = µ + 3σθ are shown in Fig. 2.6 and Fig. 2.7, respectively.

Since there is no direct observation in the peripheral compartment, the main source of the estimation

error is in the peripheral compartment. Observation from the peripheral compartment shows that

the IBR filter performs fairly well in both cases, while the Wiener filter with θ = µ+ 3σθ performs

well only in the case with matched parameters as expected. We notice that the τ -robust filter does

not show its robustness on signals generated with θ = µ+ 3σθ, probably because in the setting of

this pharmacokinetics model, the uncertain parameters follow unbounded Gaussian distributions,

while the τ -robust filter is proposed under the bounded τ -divergence assumption.
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Figure 2.6: One example based on the SDE with θ = µ. Left and right sub-figures show the drug
concentration levels of central and peripheral compartments, respectively. Blue curves correspond
to the actual signals; purple crosses indicate the measurements of concentration in the central
compartment; red curves depict the estimation with the optimal filter for θ = µ+ 3σθ; green curves
are the estimated signals with the τ -robust filter; and yellow curves are filtered signals using the IBR
filter. Only one out of every 20 measurements is visualized here to avoid curve cluttering. Reprinted
with permission from [86], copyright © 2020 IEEE.

Then we perform sequential experimental design by calculating the design values of parameters

k10, k12 and k21. Here we suppose our experimental budget can afford to perform two experiments.

For the first experiment, the IBR residual costs are R1(k10) = 51.3, R1(k12) = 45.2 and R1(k21) =

36.4. So the first experiment should determine k21. Following the first experiment, the true value

of k21 is put into the model and the design values are calculated based on the updated model.

We randomly sample 10 values of k21 as the result of the first experiment, and then calculate the

IBR residual costs R2(k10|k21) and R2(k12|k21). All 10 random cases show that k12 should be

determined in the second experiment, and the average design values are Ek21 [D2(k10|k21)] = 33.4

and Ek21 [D2(k12|k21)] = 14.2. Although the choice of the second experiment in our example is

the same for all sampled values of the primary parameter, in general, the choice of the second
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Figure 2.7: One example based on the SDE with θ = µ + 3σθ. Left and right sub-figures show
the drug concentration levels of central and peripheral compartments, respectively. Blue curves
correspond to the actual signals; purple crosses indicate the measurements of concentration in the
central compartment; red curves depict the estimation with the optimal filter for θ = µ+ 3σθ; green
curves are the estimated signals with the τ -robust filter; and yellow curves are filtered signals using
the IBR filter. Only one out of every 20 measurements is visualized here to avoid curve cluttering.
Reprinted with permission from [86], copyright © 2020 IEEE.

experiment depends upon the value of the primary parameter, so that the choice of the second

experiment can vary depending on the determined value of the primary parameter. In this example,

the estimation error of Y2(t) dominates the full estimation cost, since Y2(t) is not observed directly,

and the estimation of Y2(t) is based on its correlation with Y1(t). Therefore, k10 is less important

than the other parameters, since it is conditionally independent of Y2(t) given Y1(t). Our calculation

confirms this observation, preferring the estimation of k12 over that of k10.
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3. UNCERTAINTY-AWARE ACTIVE LEARNING FOR OPTIMAL BAYESIAN CLASSIFIER

3.1 Overview

To achieve label efficiency for training supervised learning models, pool-based active learning

sequentially selects samples from a set of candidates as queries to label by optimizing an acquisition

function. One category of existing methods adopts one-step-look-ahead strategies based on acquisi-

tion functions tailored with the learning objectives, for example based on the expected loss/error

reduction (ELR/EER) or the mean objective cost of uncertainty (MOCU) proposed recently. These

active learning methods are optimal with the maximum classification error reduction when one

considers a single query. However, it is well-known that there is no performance guarantee in the

long run for these myopic methods. In this chapter, we show that these methods are not guaranteed

to converge to the optimal classifier of the true model because MOCU is not strictly concave. To

address this problem, we propose two Bayesian active learning methods guarantee convergence to

the optimal classifier of the true model. In the first method, we propose an acquisition function based

on a Weighted form of MOCU. Similar to MOCU-based method, the proposed method focuses

on the reduction of the uncertainty that pertains to the classification error, and the tailored weight

can guarantee the convergence of the proposed method on binary classification problems. For

training Bayesian classifiers with both synthetic and real-world data, our experiments demonstrate

the superior performance of active learning by Weighted MOCU and Soft MOCU compared to

other existing methods.

3.2 Introduction

In this chapter, we focus on learning optimal Bayesian classifiers with limited training data.

To achieve sample and label efficiency, we study pool-based Bayesian active learning. It starts

with a prior of an uncertain model and collects training data in a sequential manner by optimizing

an acquisition function measuring the benefit to our learning objective from querying labels for

corresponding candidates. By reducing model uncertainty through the active learning procedure,
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we aim to approach the optimal classifier of the unknown true model, which has the minimum

prediction error.

Several notable Bayesian active learning methods have been proposed using different acquisition

functions. Maximum Entropy Search (MES) or Uncertainty Sampling selects the candidate with the

maximum predictive probability entropy [71, 59]. However, observing the most uncertain candidate

may not provide the most useful model information if the observation itself is noisy. Another

Shannon entropy based method, Bayesian Active Learning by Disagreement (BALD) [37, 44],

selects the candidate to minimize the entropy of the uncertain model parameters. The Equivalence

Class Edge Cutting algorithm (EC2) targeting at active learning with finite possible models, chooses

the candidate that maximally reduces the version space probability mass [32]. Based on the policy

Gibbs error, a generalization of the Shannon entropy, Cuong et al. [11] proposed the maximum

Gibbs error criterion (maxGEC) to query the candidate that has the maximum Gibbs error so that the

remaining posterior entropy is minimized. While various different acquisition functions are used,

most of the existing active learning methods focus on reducing the model uncertainty instead of

directly reducing the classification error, despite this being the ultimate learning objective. To rectify

this shortcoming, in this chapter, we focus on active learning that directly focuses on reducing the

model uncertainty that impacts the classification accuracy of the resulting classifier. While the

reduction of model uncertainty often results in the decrease in classification error, it is important

to note that not all model uncertainty affects classification error. Rather than reducing uncertainty

in general, an active learning scheme that aims at reducing the model uncertainty that critically

impacts the objective (i.e., classification accuracy) can significantly improve its label efficiency.

There is one category of methods based on Expected Loss/Error Reduction (ELR/EER) that

aims to maximize the reduction in classification error directly in a one-step-look-ahead manner [65,

92, 40]. They directly target at reducing the classification error and can achieve the expected optimal

performance that is achievable with one single query [65]. However, these methods do not have

any theoretical convergence guarantee, and empirically, they suffer from myopic behavior with

degraded efficiency in the long run. Yoon et al. [84] proposed a metric, Mean Objective Cost of
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Uncertainty (MOCU), which enables model uncertainty quantification by estimating the expected

classification performance loss compared with the optimal classifier due to the uncertainty. MOCU

is equivalent to ELR when applied to active learning and provides a tool to analyze the convergence

of active learning methods to the true optimal classifier.

In this chapter, we first analyze why ELR- or MOCU-based active learning methods may get

stuck before collecting enough data to identify the true optimal classifier—despite their efficacy in

identifying optimal one-step queries. We further propose a novel Weighted-MOCU active learning

method that can focus only on the uncertainty related to the loss for efficient active learning and is

guaranteed to converge to the optimal classifier of the true model on binary classification problem.

We also propose a novel acquisition function based on a strictly concave approximation of MOCU,

referred to as Soft MOCU, to address this problem. Thanks to the strict concavity of Soft MOCU, the

resulting acquisition function can capture the continuous change in model uncertainty. As a result,

one-step-look-ahead active learning guided by this acquisition function alleviates the limitations due

to its myopic nature and is guaranteed to converge to the optimal classifier. We provide theoretical

proof of the convergence of the Weighted-MOCU- and Soft-MOCU-based method. Last but not

least, we demonstrate the expected sample efficiency of Weighted-MOCU- and Soft-MOCU-based

active learning with both synthetic and real-world datasets.

3.3 Background

We first review the basic concepts in Bayesian active learning for classification, focusing on the

acquisition function targeting directly at the learning objective.

3.3.1 Mean Objective Cost of Uncertainty

Mean Objective Cost of Uncertainty (MOCU) is a metric measuring the direct influence on

the performance with respect to the learning objective due to model uncertainty [84, 85]. We here

provide a review in the context of learning Bayesian classifiers.

Consider the classification problem in the input feature space x ∈ X and output label space

y ∈ Y = {0, 1, . . . ,M − 1} with a probabilistic model characterized by θ as p(y|x, θ). The aim is
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to find a classifier ψ : X → Y to estimate the label given a testing feature vector x∗ ∈ X as ψ(x∗).

In this chapter we focus on the 0-1 loss to measure the performance of a classifier, which directly

reflects the classification error. Denote the expected classification error of ψ on x as Cθ(ψ,x) =

Ep(y|x,θ)[1(ψ(x) 6= y)] = 1 − p(y = ψ(x)|x, θ). The optimal classifier of θ, denoted as ψθ, is

defined as the classifier that minimizes the error ψθ := arg minψ Cθ(ψ,x) = arg maxy p(y|x, θ).

In the practical situations with model uncertainty where the true model parameter θr is unknown,

we often assume that based on prior knowledge or observed data, we can derive a distribution π(θ)

over the uncertain model parameter set θ ∈ Θ. As we do not know the true model, the learning

objective is to train an Optimal Bayesian Classifier (OBC) ψπ(θ) that minimizes the expected

classification error over π(θ) [13]:

ψπ(θ) = arg min
ψ

Eπ(θ)[Cθ(ψ,x)] = arg max
y

p(y|x), (3.1)

where p(y|x) = Eπ(θ)[p(y|x, θ)] is the predictive distribution. OBC is the optimal classifier based

on the current knowledge. If we can observe enough data to update our model knowledge π(θ) with

reduced model uncertainty, OBC will converge to the true optimal classifier based on the true model

θr .

In Bayesian classification, MOCU can be defined as the expected difference between the

expected error of OBC and the optimal classifier due to model uncertainty:

M(π(θ)) = Ex[Eπ(θ)[Cθ(ψπ(θ),x)− Cθ(ψθ,x)]], (3.2)

where Ex stands for averaging over the feature space X . The first term is the OBC error. Since

ψθ is the optimal classifier with a specific θ, for the terms inside the expectation, Cθ(ψπ(θ),x) −

Cθ(ψθ,x) ≥ 0. So the second term is a lower bound of the OBC error. Denote supp(π) as the support

of π(θ). If M(π(θ)) = 0, then ∀x ∈ X , ∀θ ∈ supp(π), ψπ(θ) = ψθ, i.e. arg maxy p(y|x) =

arg maxy p(y|x, θ), indicating that OBC is the true optimal classifier. Note that MOCU does not

capture all the model uncertainty as we only require arg maxy p(y|x, θ) = arg maxy p(y|x) instead

37



of p(y|x, θ) = p(y|x) to make MOCU= 0. But with MOCU= 0, we have found the true optimal

classifier and there is no need to further reduce the model uncertainty considering our learning

objective.

3.3.2 Pool-based Bayesian Active Learning

Bayesian active learning sequentially searches for candidates in X as queries to acquire their

labels by optimizing an acquisition function. Then by including the new observed data into the

training dataset D, the learning algorithm updates the posterior distribution π(θ|D), with which the

acquisition function will be computed to guide active learning in each iteration. In the following

discussion, to simplify the notations, we use π(θ) and p(y|x) for the posterior and predictive

distribution conditioned on D by omitting D in the notations. When a new observation pair (x∗, y∗)

is collected, the posterior and the predictive distribution are updated by π(θ|x∗, y∗) = π(θ)p(y∗|x∗,θ)
p(y∗|x∗)

and p(y|x;x∗, y∗) = Eπ(θ|x∗,y∗)[p(y|x, θ)].

We can define the acquisition function based on MOCU in a one-step-look-ahead manner:

UM(x; π(θ)) =M(π(θ))− Ey|xM(π(θ|x, y)), (3.3)

which is the expected reduction of MOCU if observing the new pair (x, y). As y is not known at

the current iteration to acquire the label, it is averaged over all possible values of y.

We can show that Cθ(ψθ,x′) in the MOCU definition (3.2) can be cancelled in two MOCUs in

(3.3). Since π(θ) = Ep(y|x)[π(θ|x, y)] (x is often assumed to be independent of θ so π(θ|x) = π(θ)),

we can rewrite the first term in (3.3) as:

M(π(θ)) = Ex′{Ey|x[Eπ(θ|x,y)[Cθ(ψπ(θ),x
′)− Cθ(ψθ,x′)]]} (3.4)

while the second term in (3.3) can be expanded as:

Ey|x[M(π(θ|x, y))] = Ex′{Ey|x[Eπ(θ|x,y)[Cθ(ψπ(θ|x,y),x
′)− Cθ(ψθ,x′)]]}. (3.5)
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So the term Cθ(ψθ,x
′) can be cancelled out. The acquisition function is just the OBC prediction

error reduction after observing the new pair (x, y):

UM(x; π(θ)) = Ex′{Eπ(θ)[Cθ(ψπ(θ),x
′)]} − Ex′{Ey|x[Eπ(θ|x,y)[Cθ(ψπ(θ|x,y),x

′)]]}, (3.6)

which is the same acquisition function as Error Loss Reduction (ELR) [65].

In this chapter, we focus on MOCU-based active learning with the OBC as the classifier.

As shown in (3.6), MOCU-based active learning queries the candidate to achieve the maximum

expected reduction in OBC classification error in each iteration. Hence, the MOCU-based method

is the optimal strategy for active learning of the OBC with a single query.

3.4 Methods

In this section, we first show that MOCU-based active learning based on a one-step-look-ahead

strategy may get stuck before MOCU converges to 0 with the corresponding OBC converging to the

true optimal classifier. We then propose a new acquisition function that has the guarantee that the

OBC converges to the true optimal classifier.

3.4.1 Analysis of MOCU-based Active Learning

We first analyze the MOCU reduction to show that MOCU-based active learning ignores the

uncertainty irrelevant to the OBC prediction. By that, we indicate that not all the model uncertainties

directly affect the OBC prediction. Denote the contribution to the MOCU at pointx asK(x, π(θ)) =

Eπ(θ)[Cθ(ψπ(θ),x) − Cθ(ψθ,x)], so thatM(π(θ)) = Ep(x)[K(x, π(θ))]. If K(x, π(θ)) = 0, then

we have ∀θ ∈ supp(π), ψθ(x) = ψπ(θ)(x), i.e. arg maxy p(y|x, θ) = arg maxy p(y|x). This means

that for all the possible models, the optimal predictions are the same, and the OBC prediction on

x will not be affected by the remaining uncertainty of p(y|x, θ), if any. In fact, K(x, π(θ)) = 0

does not necessarily mean that there is no uncertainty associated with p(y|x, θ), for which it

requires that the value of p(y|x, θ) is the same ∀θ ∈ supp(π), apparently a stronger statement than

K(x, π(θ)) being 0. Therefore, not all the uncertainties of p(y|x, θ) are captured in MOCU when

K(x, π(θ)) = 0. We consider the uncertainty in p(y|x, θ) to be “objective-irrelevant” to the OBC
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prediction if K(x, π(θ)) = 0. In the active learning procedure, when a new observation is obtained,

it reduces the uncertainty of the parameter θ; and as a result, it reduces the uncertainty of p(y|x, θ)

for each x ∈ X . If an observation only reduces objective-irrelevant uncertainty, the value of MOCU

will not change. That explains why in the first several active learning iterations, the MOCU-based

active learning can be more efficient than the methods guided by total uncertainty reduction, such

as BALD.

We now analyze why MOCU-based active learning may get stuck before the OBC converges to

the true optimal classifier. In other words, when the acquisition function for all the candidates in the

pool is 0, i.e. ∀x ∈ X , UM(x; π(θ)) = 0, the active learning will degenerate to random sampling

and keep selecting the candidate based on the adopted tie-breaking strategy. When that happens, we

say that active learning gets stuck without converging to the true optimal classifier if MOCU is still

larger than 0.

We first show that the MOCU (3.2) is a concave function of π(θ), but it is not strictly concave

everywhere with nonzero curvature to guide active learning. From the definition of ψθ and ψπ(θ),

we have Cθ(ψθ,x) = 1−maxy p(y|x, θ) and Eπ(θ)[Cθ(ψπ(θ),x)] = Eπ(θ)[1− p(ψπ(θ)(x)|x, θ)] =

1−maxy Eπ(θ)[p(y|x, θ)]. Substituting them in (3.2),

M(π(θ)) = Ex{Eπ(θ)[max
y
p(y|x, θ)]−max

y
Eπ(θ)[p(y|x, θ)]}, (3.7)

= Ex{Eπ(θ)[max
y
p(y|x, θ)]− p(ψπ(θ)(x)|x, θ)]} (3.8)

In (3.7), the first term Eπ(θ)[maxy p(y|x, θ)] is a linear function of π(θ). While the second term

maxy Eπ(θ)[p(y|x, θ)] is the maximum over M linear functions and thus is a convex piecewise

linear function. As a result, (3.7) equals to a linear function subtracting a convex function and

therefore it is concave and also piecewise linear. It is thus not strictly concave everywhere. Within

each piece of the linear functions in (3.8), the OBC classifier ψπ(θ)(x),x ∈ X takes the same

label for different π(θ). To gain the intuition, we study a binary classification problem with the

uncertainty class of two posssible models Θ = {θ1, θ2} and a candidate pool of two training samples
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to query: X = {x1, x2}. Further details of the model setup can be found in Appendix A.2. Since

π(θ1) = 1− π(θ2), we can express the MOCU function as a univariate function of π(θ1) as shown

in Fig. 3.1. It is clear that the MOCU function is a concave piece-wise linear function.

In (3.3), we observe that π(θ) = Ep(y|x)[π(θ|x, y)]. Since MOCU is a concave function,

based on Jensen’s Inequality, we have UM(x; π(θ)) ≥ 0. While MOCU is not a strictly concave

function as explained, we can find two conditions that make the equality to hold: first, ∀y ∈ Y ,

π(θ|x, y) = π(θ), which means observing x does not help change the knowledge about θ; second,

π(θ|x, y) changes but the change of π(θ|x, y), ∀y ∈ Y , is within the same linear piece of MOCU.

In the second condition, observing x one time only provides little information of θ, and that

information will not change the OBC classifier. If MOCU is larger than 0 but all the x cannot

provide enough information to update the OBC classifier, the acquisition function can then be 0 for

all the candidates, with which MOCU-based active learning will get stuck before converging to the

true optimal classifier. Appendix B.2 provides such a synthetic example. From the discussion above,

we can see that MOCU-based active learning may get stuck because MOCU is not strictly concave.

In the next section, we impose concavity to the approximations of MOCU and propose one-

step-look-ahead acquisition functions based on them. The approximation makes the corresponding

active learning to have similar short-term optimality for single iterations as in MOCU-based active

learning. More importantly, the imposed strictly concavity leads to the theoretical guarantee that the

OBC will converge to the true optimal classifier without getting stuck.

3.4.2 Weighted MOCU-based active learning

In this section, we propose a modified MOCU-based acquisition function that has the theoretical

guarantee to converge to the optimal classifier. Specifically, we propose a modified MOCU function

that multiplies a weight with each loss difference between the OBC ψπ(θ) and the optimal classifier

ψθ in the original MOCU definition:

Mw(π(θ)) = Ep(x′){Eπ(θ){w(π(θ),x′, θ)[Cθ(ψπ(θ),x
′)− Cθ(ψθ,x′)]}}, (3.9)
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where w(π(θ),x′, θ) > 0 is the weighting function. The corresponding acquisition function is:

Uw(x; π(θ)) =Mw(π(θ))− Ey|x[Mw(π(θ|x, y))]. (3.10)

In (3.9), as more data are collected and the model parameter distribution π(θ) changes, w(π(θ),x′, θ)

will change accordingly. The change of w(π(θ),x′, θ) cannot affect the value of the Weighted

MOCU if Cθ(ψπ(θ),x
′) − Cθ(ψθ,x

′) = 0, ∀θ ∈ supp(π(θ)), indicating the uncertainty at x′ is

objective-irrelevant. This makes sure that the acquisition function based on the Weighted MOCU

will inherit the property of MOCU-based active learning to directly target at classification error

reduction while ignoring irrelevant uncertainty. On the other hand, by introducing the predictive

probability into the weighting functions, the probability change from one-step samples can be

captured by the Weighted-MOCU based acquisition function such that it can have theoretical

convergence guaranteed to the optimal classifier as shown below.

We would like to emphasize that there are also active learning algorithms, such as the ones

based on the cyclic sampling and ε-greedy policies [36], that can almost surely converge to the true

model, and as a result, the OBC converges to the true optimal classifier. However, these policies

focus on the total uncertainty reduction to derive the full knowledge of the true model. However,

this is unnecessary and therefore inefficient, since we only need the OBC to converge to the true

optimal classifier if the classification performance is the primary concern. Unlike such policies, our

Weighted-MOCU based policy directly reduces the objective uncertainty affecting classification,

and as a result, it is much more efficient by focusing only on those queries that are helpful for

improving the prediction. As a result, our proposed algorithm guarantees efficiency both in the

short term as well as in the longer term.

In the following, we design a weighting function to make Mw(π(θ)) = 0 if and only if

∀x ∈ X , Uw(x; π(θ)) = 0 and show that active learning based on this Weighted MOCU converges

to the optimal classifier. Specifically, we propose the following weighting function:

w(π(θ),x′, θ) = 1− c ·K(x′, π(θ)), with (3.11)
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K(x′, π(θ)) = Eπ(θ)[Cθ(ψπ(θ),x
′)− Cθ(ψθ,x′)] (3.12)

= min
y′

Eπ(θ)[1− p(y′|x′, θ)]− Eπ(θ)[min
y′

(1− p(y′|x′, θ)] (3.13)

= Eπ(θ)[max
y′

p(y′|x′, θ)]−max
y′

p(y′|x′), (3.14)

where 0 < c ≤ 1 is a parameter controlling the approximation of the Weighted MOCU to the

original MOCU, with smaller c giving a better approximation. The choice of c depends on the

specific classification problem and the total query budget. Methods using a smaller c approximate

the ELR methods better, hence they will perform well in the first several iterations but may

converge slowly in the long run. On the other hand, when c is closer to 1, the acquisition function

weighs more heavily on long-term benefits. It is clear that K(x′, π(θ)) ≥ 0 by (3.13). For

binary classification, maxy′ p(y
′|x′) ≥ 0.5. As Eπ(θ)[maxy′ p(y

′|x′, θ)] ≤ 1, from (3.14), we have

K(x′, π(θ)) ≤ 0.5, demonstrating that the weighting function in (3.11) satisfies the requirement

w(π(θ),x′, θ) ≥ 0.5 > 0.

Note that this simple weighting function does not change with respect to the model parameter

values. Substituting it into the Weighted MOCU expression, we have:

Mw(π(θ)) = Ep(x′){(1− cK(x′, π(θ))) ·K(x′, π(θ))}, (3.15)

which is a strictly concave function of K. We also illustrate the Weighted-MOCU function in

Fig. 3.1 for the comparison with MOCU on the same example as in Section 3.4.1. As shown in

the figure, a smaller c provides better approximation to the MOCU function, and all the Weighted

MOCU functions are strictly concave functions of π(θ1) instead of being piece-wise linear, which

guarantees that the acquisition function Uw(x1; π̃(θ)) is positive. In general, Weighted MOCU is

strictly concave along most of the directions and only changes linearly along the directions that

K(x, π(θ)) is constant for x ∈ X , which correspond to the queries that only reduce irrelevant

uncertainties. Such a property can guarantee the convergence to the true optimal classifier.
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Figure 3.1: MOCU and Weighted-MOCU functions of a binary classification problem with Θ =
{θ1, θ2}.

Theoretical Convergence Guarantee

Now we show that if active learning for a binary classification problem is guided by the

acquisition function defined by (3.10) and (3.11), MOCU will converge to 0 almost surely and

hence the procedure will converge to learning the optimal classifier of the true model. We assume

that both X and Θ are discrete with finite elements; the true model parameter θr ∈ Θ and the prior

distribution π0(θ) over Θ satisfies π0(θr) > 0. We denote the posterior by πn(θ) and predictive

probability pn(y|x) in the n-th Weighted MOCU based active learning iteration, respectively.

Lemma 1. Given π(θ),M(π(θ)) = 0 if and only ifMw(π(θ)) = 0.

Lemma 1 indicates that ifMw(π(θ)) = 0, the OBC ψπ(θ) converges to the optimal classifier

ψθr as explained in Section 3.4.1.

Proof. Based on (3.2), since Cθ(ψπ(θ),x
′)− Cθ(ψθ,x′) ≥ 0, soM(π(θ)) = 0 iff Cθ(ψπ(θ),x

′)−

Cθ(ψθ,x
′) = 0∀x′ ∈ X ,∀θ ∈ supp(π). In addition, in (3.9), w(π(θ),x′, θ) > 0, soCθ(ψπ(θ),x

′)−

Cθ(ψθ,x
′) = 0 ∀x′ ∈ X , ∀θ ∈ supp(π) iffMw(π(θ)) = 0, which concludes the proof.
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Lemma 2. Define G(x′, π(θ)) = (1 − cK(x′, π(θ)))K(x′, π(θ)), 0 < c ≤ 1. G(x′, π(θ)) is a

concave function of π(θ).

It is important to choose a weighting scheme that renders a concave function G as it guarantees

the acquisition function to be larger than or equal to 0, so that adding a new observation helps to

reduce Weighted MOCU to effectively guide active learning.

Proof. In the following proof, we omit the argument x′ in G and K for simplicity. Owing to the

concavity of the min operator, miny′ Eπ(θ)[1 − p(y′|x′, θ)] is a concave function of π(θ). With

Eπ(θ)[miny′(1− p(y′|x′, θ)] being a linear function of π(θ), based on (3.13), K(π(θ)) equals to a

concave function subtracting a linear function and thus is also a concave function.

As we have analyzed, 0 ≤ K(π(θ)) ≤ 0.5. We define T (κ) = (1− cκ)κ, κ ∈ [0, 0.5], a strictly

increasing and strictly concave function. G(π(θ)) = T [K(π(θ))] is a composite function of T and

K. So we conclude the proof with the property of the concavity for the composite functions:

T [K(λπ1(θ) + (1− λ)π2(θ))] ≥ T [λK(π1(θ)) + (1− λ)K(π2(θ))]

≥ λT [K(π1(θ))] + (1− λ)T [K(π2(θ))]. (3.16)

The first inequality is because T is increasing and K is concave; and the second inequality holds as

T is a concave function.

Lemma 3. ∀x ∈ X , Uw(x; π(θ)) ≥ 0.

Proof. Since π(θ) =
∑

y p(y|x)π(θ|x, y), by Jensen’s inequality, we have G(x′, π(θ)) ≥

Ey|x[G(x′, π(θ|x, y))] as G is a concave function. So the Weighted MOCU acquisition function:

Uw(x; π(θ)) = Ex′ [G(x′, π(θ))]− Ex′ [Ey|x[G(x′, π(θ|x, y))]] ≥ 0. (3.17)

Lemma 4. At the n-th active learning iteration, if Uw(x; πn(θ)) = 0, ∀x ∈ X ,Mw(πn(θ)) = 0.
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This lemma states that if the acquisition function values of all candidates with respect to π(θ)

are 0, the Weighted MOCU is 0. By Lemma 1, so is MOCU. With these, we can conclude that

the OBC with respect to π(θ) has converged to the optimal classifier. This is significant when

comparing with original ELR and MOCU-based methods as we have shown that this is not the case

for them, which may get stuck earlier and therefore lose the long-term efficiency.

Proof. We will prove the contrapositive of the lemma: assumingMw(πn(θ)) > 0, ∃x ∈ X s.t.

Uw(x; πn(θ)) > 0.

Based on (3.15), Mw(πn(θ)) > 0 indicating ∃x ∈ X s.t. K(x, πn(θ)) > 0. It is sufficient

to show that if K(x, πn(θ)) > 0, then Uw(x; πn(θ)) > 0. To prove that, we only need to prove

G(x, πn(θ)) > Epn(y|x)[G(x, πn(θ|x, y))]; then by (3.17), Uw(x; πn(θ)) > 0.

Since G is a concave function, we know G(x, πn(θ)) ≥ Epn(y|x)[G(x, πn(θ|x, y))]. With

πn(θ) =
∑

y p
n(y|x)πn(θ|x, y), we can rewrite (3.16) as:

T [K(x, πn(θ))] ≥ T [Epn(y|x)[K(x, πn(θ|x, y))]] ≥ Epn(y|x)[T [K(x, πn(θ|x, y))]].

The second equality holds only if ∀y ∈ {0, 1}, K(x, πn(θ|x, y)) = K(x, πn(θ)), which means that

to prove G(x, πn(θ)) > Ey|x[G(x, πn(θ|x, y))], we need to show ∃y ∈ {0, 1}, K(x, πn(θ|x, y)) 6=

K(x, πn(θ)). In the following proof, we will show if K(x, πn(θ)) > 0, then ∃y ∈ {0, 1}, s. t.

K(x, πn(θ|x, y)) 6= K(x, πn(θ)).

Denote ŷ = arg maxy p
n(y|x). By (3.14) we have:

K(x, πn(θ)) =
∑

θ∈supp(πn)

πn(θ)[max
y
p(y|x, θ)− p(ŷ|x, θ)]. (3.18)

Since K(x, πn(θ)) > 0, the parameter set Θn
o = {θ ∈ supp(πn) : arg maxy p(y|x, θ) 6= ŷ} is not

empty. We only keep the nonzero terms in K:

K(x, πn(θ)) =
∑
θ∈Θo

πn(θ)[max
y
p(y|x, θ)− p(ŷ|x, θ)]. (3.19)
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For binary classification, ŷ = arg maxy p
n(y|x), indicating that the predictive probability pn(ŷ|x) ≥

0.5. For θ ∈ Θo, p(ŷ|x, θ) < 0.5, we have: if θ ∈ Θo, π
n(θ|x, ŷ) = πn(θ)p(ŷ|x,θ)

pn(ŷ|x)
< πn(θ).

In the case that we observe (x, ŷ) in (n+1)-th iteration, the updated posterior predictive proba-

bility pn(ŷ|x, {x, ŷ}) ≥ pn(ŷ|x) ≥ 0.5 and therefore maxy p
n(y|x, {x, ŷ}) = ŷ. Hence,

K(x, πn(θ|x, ŷ)) =
∑
θ∈Θo

πn(θ|x, ŷ)[max
y
p(y|x, θ)− p(ŷ|x, θ)] < K(x, πn(θ)). (3.20)

Since K(πn(θ|x, ŷ),x) 6= K(πn(θ),x), we have G(x, πn(θ)) > Epn(y|x)[G(x, πn(θ|x, y))] and

Uw(x; πn(θ)) = Ep(x′)[G(x′, πn(θ))]− Ep(x′)[Epn(y|x)[G(x′, πn(θ|x, y))]]

≥ p(x)[G(x, πn(θ))− Epn(y|x)[G(x, πn(θ|x, y))]] > 0. (3.21)

This concludes our proof.

Lemma 5. If following some policy a candidate x is measured infinitely often almost surely, then

limn→∞ U
w(x; πn(θ)) = 0 almost surely.

Intuitively, if a candidate has been measured many times, there is no benefit to measure it again.

Proof. Adding a new data point (x, y) to D, the posterior change is: πn(θ|x, y) = πn(θ)p(y|x,θ)
pn(y|x)

.

Define Θx = {θ ∈ Θ : p(y|x, θ) = p(y|x, θr)}. Denote Nx(n) as the times of the candi-

date x being queried at the n-th iteration. Based on the posterior consistency theory we have∑
θ∈Θx

πn(θ)
a.s.−−→ 1 as Nx(n) → ∞ [31]. Since pn(y|x) =

∑
θ∈Θ π

n(θ)p(y|x, θ), we have

limn→∞ p
n(y|x)

a.s.−−→ p(y|x, θr). Hence limn→∞ π
n(θ|x, y) − πn(θ) = 0 almost surely, which

indicates limn→∞ U
w(x; πn(θ)) = 0 almost surely.

With these lemmas, we can prove the convergence of Weighted-MOCU based active learning:

Theorem 1. Assume that both X and Θ are discrete with finite elements, the true model parameter

θr ∈ Θ and the prior distribution π0(θ) over Θ satisfies π0(θr) > 0; then for the active learning

algorithm defined by the acquisition function (3.10), we have limn→∞M(πn(θ)) = 0 almost surely.
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Proof. As the number of active learning iterations n→∞, following the acquisition function (3.10),

some of the candidates can be measured infinite times. Define XA ⊂ X as the set whose candidates

have been measured infinite times. Denote the measuring sequence of the candidates following (3.10)

as {xn}, we have: ∃N, s.t. ∀n > N, xn ∈ XA. Based on Lemma 5, limn→∞ U
w(xn; πn(θ)) = 0.

On the other hand, since with the Weighted MOCU Uw(xn; πn(θ)) = maxx∈X U
w(x; πn(θ)),

then limn→∞ U
w(xn; πn(θ)) = 0 indicates that ∀x ∈ X , Uw(x; πn(θ)) uniformly converges to 0.

Based on Lemma 4, limn→∞Mw
n = 0 and we can conclude the proof with Lemma 1.

3.4.3 Soft-MOCU-based Active Learning

As we discussed, the myopic behavior that MOCU-based active learning has is due to the linear

function pieces causing the acquisition function for active learning to lose the guiding capability

when the update of π(θ|x, y) is not significant enough. To address this problem, we propose a new

acquisition function based on modified MOCU, which has the theoretical convergence guarantee to

the true optimal classifier.

In this chapter, We approximate the maximum operator in (3.2) by the log-sum-exp function:

max
y
p(y|x) ≈ 1

k
log[
∑
y

exp(k · p(y|x))], (3.22)

where k is a parameter controlling the approximation. Using a larger k in log-sum-exp gives a

better approximation to the maximum operator. Note that other functions can also be used. With

this approximation, we can define the following Soft MOCU (SMOCU) as:

Ms(π(θ)) = Ex{Eπ(θ)[max
y
p(y|x, θ)]− 1

k
log[
∑
y

exp(k · p(y|x))]}, (3.23)

which is now a strictly concave function instead of being piecewise linear. Similarly, as with larger

k, Soft MOCU gets closer to MOCU. We illustrate the modified MOCU with different k values in

Fig. 3.2 for the example described in Section 3.4.1.

We now define an acquisition function by the reduction of Soft MOCU to guide active learning
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Figure 3.2: Comparison between MOCU and Soft MOCU with different k values.

in the one-step-look-ahead manner:

U s(x; π(θ)) =Ms(π(θ))− Ey|x[Ms(π(θ|x, y))]. (3.24)

As shown in the example, Soft MOCU can provide a good approximation to MOCU. More

critically, it also has large curvature on the changing points of MOCU so that the above acquisition

function has large values when the update of π(θ|x, y) is significant causing the change of OBC.

While when the update of π(θ|x, y) is not significant (falling within intervals of linear pieces in

the original MOCU), Soft MOCU still has small curvature so that the acquisition function has

small positive values instead of being zero as in (3.3). With these properties of the Soft-MOCU-

based acquisition function, when the model has high uncertainty with large MOCU values, the

approximation by Soft MOCU will not affect the choice of candidates and the corresponding active

learning performs similarly as the original MOCU-based method to achieve short-term optimality.

On the other hand, when the model has low uncertainty and a single query will not be able to change

π(θ|x, y) significantly, for example when π(θ1) is close to 0 or 1 in Fig. 3.2, the MOCU-based
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method will get stuck. However, our Soft-MOCU-based acquisition function can still guide active

learning out of the myopic behavior. Please refer to Appendix B.1 for the pseudo-code of our

Soft-MOCU-based active learning and the complexity analysis.

Theoretical Convergence Guarantee

We now first prove that Soft MOCU (3.23) is a strictly concave function. If active learning is

guided by the acquisition function (3.24) based on Soft MOCU, MOCU will converge to 0. This

means that we can learn the optimal classifier of the true model without getting stuck with the

theoretical convergence guarantee.

We assume that both X and Θ are discrete with finite elements, and the true model parameter

θr ∈ Θ with π0(θr) > 0 for the prior π0(θ).

Lemma 6. Ms(π(θ)) is a strictly concave function of π(θ).

Proof. It is known that log-sum-exp is a convex function (page 74, Sec. 3.1 in [5]). We

now prove that f(p(y|x)) = 1
k

log[
∑

y exp(k · p(y|x))] is a strictly convex function of p(y|x)

conditioning on
∑

y p(y|x) = 1. In the following proof, we denote p(y|x) for y ∈ Y as the vector

z for simplicity. From [5],

∇2f(z) = k(diag(g)− ggT ), g :=
exp(z)

1T exp(z)
, (3.25)

where exp(z) = (ez1 , . . . , ezM ). Note that in the expression of ∇2f(z), diag(g) is a full-rank

matrix and rank(ggT ) is 1. Therefore, rank(∇2f) = n − 1 and f(z) is affine (being a linear

function) along only one direction. Apparently that direction is along the all-ones vector 1, as can

be verified by: 1T∇2f(z)1 = 0, and f is strictly convex along any other directions. In addition,

since z denotes a probability mass function, it is constrained on the hyperplane 1Tz = 1. On the

hyperplane, no vector is parallel to 1, as 1T (z + α1) 6= 1 forα 6= 0. Hence, within the hyperplane

f is a strictly convex function.

Since f(·) is a strictly concave function and p(y|x) is a linear function of π(θ), log[
∑

y exp(k ·

p(y|x))] is therefore a strictly convex function of π(θ). Ms(π(θ)) is equal to a linear function
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subtracting a strictly convex function and hence is a strictly concave function of π(θ).

Lemma 7. ∀x ∈ X , U s(x; π(θ)) ≥ 0; the equality only holds for the case π(θ) = π(θ|x, y), ∀y ∈

Y .

Proof. Since Soft MOCU is a strictly concave function and Ey|x[π(θ|x, y))] = π(θ), by Jensen’s

inequality, we have

U s(x; π(θ)) =Ms(π(θ))− Ey|x[Ms(π(θ|x, y))] ≥ 0.

and the equality only holds if π(θ) = π(θ|x, y), ∀y ∈ Y .

Lemma 8. If U s(x; π(θ)) = 0, ∀x ∈ X , thenM(π(θ)) = 0.

Proof. This lemma states that if the acquisition function values of all the candidates are 0, then we

can conclude that MOCU is 0. This means that the OBC of π(θ) has converged to the true optimal

classifier ψθr . MOCU-based active learning does not have such a property. Because of that, it may

get stuck before converging to the true optimal classifier.

Proof. We will show that the lemma holds by proving the contraposition: if M(π(θ)) > 0,

∃x ∈ X s.t. U s(x; π(θ)) > 0.

Based on (3.2), M(π(θ)) > 0 indicating ∃x∗ ∈ X ∃θ∗ ∈ supp(π) s.t. ψπ(θ)(x
∗) 6= ψθ∗(x

∗),

i.e. maxy p(y|x∗) 6= maxy p(y|x∗, θ∗), where supp(π) is the support of π(θ). So ∃y∗ ∈ Y s.t.

p(y∗|x∗, θ∗) 6= p(y∗|x∗). Now we assume that we observe (x∗, y∗), then the update of π(θ∗) can be

written as:

π(θ∗|x∗, y∗) =
π(θ∗)p(y|x∗, θ∗)

p(y∗|x∗)
. (3.26)

Since p(y∗|x∗, θ∗) 6= p(y∗|x∗), we have π(θ∗|x∗, y∗) 6= π(θ∗). With Lemma 7, we can have

U s(x∗; π(θ)) > 0. That concludes our proof. �

Lemma 9. If a candidate x is measured infinitely often almost surely (a.s.), U s(x; πn(θ))
a.s.−−→ 0 as

n→∞.
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Intuitively, if a candidate has been measured many times, there is no benefit to measure it again.

Proof. For a candidate x, define a set of θ as Θx = {θ ∈ Θ : p(y|x, θ) = p(y|x, θr)}. At the n-th

iteration, assume that the candidate x has been observed Nx(n) times and limn→∞Nx(n) = ∞.

Based on the posterior consistency theory we have
∑

θ∈Θx
πn(θ)

a.s.−−→ 1 as n → ∞ [31]. Since

pn(y|x) =
∑

θ∈Θ π
n(θ)p(y|x, θ), we have pn(y|x)

a.s.−−→ p(y|x, θr). By Bayes’ rule, πn(θ|x, y) =

πn(θ)p(y|x,θ)
pn(y|x)

, and hence we have πn(θ|x, y)− πn(θ)
a.s.−−→ 0. With Lemma 7, we can conclude that

U s(xn; πn(θ))
a.s.−−→ 0 as n→∞. �

Theorem 2. Assume that both X and Θ are discrete with finite elements, the true model parameter

θr ∈ Θ and π0(θr) > 0; then for the active learning algorithm defined by the acquisition function

(3.24), we haveM(πn(θ))
a.s.−−→ 0 as n→∞.

Proof. As the number of active learning iterations n→∞, some of the candidates will be measured

infinitely often. Following the Soft-MOCU-based method by the acquisition function (3.24), denote

the set of candidates being measured infinitely often as XI = {x ∈ X : limn→∞Nx(n) = ∞}.

With the query sequence of the candidates as {xn}, we have ∃N, s.t. ∀n > N,xn ∈ XI , which

means that after N iterations, we can only observe candidates from the set XI . Based on Lemma 9,

this indicates U s(xn; πn(θ))
a.s.−−→ 0.

On the other hand, as Soft-MOCU-based active learning maximizes the acquisition function

in each iteration, we have U s(xn; πn(θ)) = maxx∈X U
s(x; πn(θ)). Then the maximum value

U s(xn; πn(θ)) converging to 0 means that U s(x; πn(θ)), x ∈ X converges to 0 uniformly. Based

on Lemma 8, we haveM(πn(θ))
a.s.−−→ 0 and we can conclude the proof. �

We should emphasize that the inverse of Lemma 8 is not true. When MOCU is 0, the acquisition

function of some candidate x’s can still be positive. To understand this, as we have shown in Section

3.4.1, MOCU does not capture all the model uncertainty. On the other hand, based on Lemma 7, the

acquisition function based on Soft MOCU can only be 0 when there is no model uncertainty.
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3.5 Empirical Results of Weighted-MOCU-based Method

We benchmark our Weighted-MOCU method with other active learning algorithms, includ-

ing random sampling, MES [71], BALD [37] and ELR [65], on both simulated and real-world

classification datasets. In the following experiments, we set c = 1 for the Weighted MOCU function.

3.5.1 Simulated Experiments.

In addition to the one-dimensional simulated example introduced in Section 3.2, we test our

model on a similar simulation setting as the block in the middle dataset in [37], where noisy obser-

vations with flip error are simulated in a block region on the decision boundary. We generate data

based on a two-dimensional Bayesian logistic regression model: p(y = 1|x,w, b) = 1
1+exp(−wTx−b)

with x ∈ [−4, 4]2. The block region is within [−0.5, 0.5]2 with the flip error rate equal to 0.3. For

the model parameter prior, w1 ∼ U(0.3, 0.8) is uniformly distributed and w2 ∼ U(−0.25, 0.25) and

b ∼ U(−0.25, 0.25); w1, w2 and b are independent.

We randomly sample 100 particles from the parameter prior with one of the particles as the true

model parameter. The five active learning algorithms are compared for 500 iterations by the OBC

error with respect to the testing data generated from the true model. We repeat the simulations for

500 runs and plot the average performance with standard deviation bars in Fig. 3.3. The error regret

is defined as the error difference between the OBC and the true optimal classifier. From the figure,

MES simply chooses the candidates with the predictive probability closest to 0.5, it can sample

many noisy observations from the block region. ELR performs well in the first several iterations but

poorly after 200 samples. Our Weighted MOCU performs the best.

We have also benchmarked our Weighted-MOCU based method with other active learning

methods for a synthetic multi-class classification problem. We assume that the probabilistic model

p(y|x, σ2
y) = fy(x, σ

2
y)/
∑

y′ f(x, σ2
y′) with x ∈ [−2, 2]2, y ∈ {0, 1, 2} and fy = exp(−(x −

my)
2/2σ2

y). We set my to be (0, 0), (1, 0), (0, 1) for y = 0, 1, 2 respectively; and σ2
y ∼ U(1, 5)

being the uncertain parameters. Same as the previous binary classification experiment, we test for

300 runs and plot the average performance with standard deviations in Fig. 3.4. We can observe that
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Figure 3.3: The expected OBC error regret comparison between different active learning algorithms
on binary classification.

ELR performs poorly in the long run while our Weighted MOCU has better empirical performance

on par with BALD.

More results and discussion are in Appendix A.5.

3.5.2 Real-world Benchmark Experiments.

We also present the results on the UCI User Knowledge dataset [38]. The dataset includes 403

samples assigned to 4 classes (High, Medium, Low, Very Low) with each sample having five features

in [0, 1]5. We have grouped the samples into two classes with 224 samples in High or Medium,

179 in Low or Very Low. We consider the first and fifth features for classification and equally

divide the feature space into 4× 4 bins. For the i-th bin, the probability of candidates belonging to

High or Medium is denoted by θi, 1 ≤ i ≤ 16 and θi’s are independent and θi ∼ Beta(αi, βi), with

hyperparameters αi and βi. We present the results with the uncertainty class by setting αi = βi = 10

in eight randomly chosen bins and for the other bins, αi = 5, βi = 2 if the true frequency of High

or Medium in the i-th bin is lower than 0.5 and αi = 2, βi = 5 otherwise. We have randomly drawn
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Figure 3.4: The expected OBC error regret comparison between different active learning algorithms
on 3 class classification.

150 samples from each class as the candidate pool and perform the five different active learning

algorithms. We repeat the whole procedure 150 times and the average error rates are shown in

Fig. 3.5. While ELR clearly gets stuck in this setup, our Weighted MOCU method can converge to

the optimal classifier with less samples than all the competing methods. BALD performs poorly

as the bins with α = β = 10 have less uncertainty but have more impact on OBC prediction and

BALD fails to identify that. More comprehensive results and discussion, including results on the

UCI Letter Recognition dataset [22], can be found in Appendix A.6.

3.6 Empirical Results of Soft-MOCU-based Method

We first investigate the influence of the parameter k on the performance of our Soft-MOCU-

based active learning (SMOCU). We then benchmark SMOCU with other active learning methods,

including random sampling, MES [71], BALD [37] and MOCU, on both simulated and real-world

classification datasets.
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Figure 3.5: Classification error rate comparison on UCI User Knowledge dataset.

3.6.1 Performance of Soft-MOCU with Different k Values

Here we compare the performance of SMOCU with different k values together with MOCU and

BALD on a binary classification problem with one feature x ∈ [−4, 4]. The underlying probabilistic

model is:

p(y = 1|x, α, β) = S(x) + ε(x, α, β)

S(x) = 0.6
exp (x)

1 + exp (x)
+ 0.2

ε(x, α, β) = α exp(−x2) + β[exp(−(x− 4)2) + exp(−(x+ 4)2)], (3.27)

where θ = (α, β)T is the uncertain parameter vector with α and β independently uniformly

distributed in the intervals [−0.1, 0.1] and [−0.2, 0.2] respectively. Fig. 3.6a illustrates the uncertain

probabilistic model with red lines indicating the upper and lower bounds of the predictive probability.

The probabilistic model has higher uncertainty near x = ±4 depending on β than the uncertainty

near x = 0 depending on α. Observing data near x = ±4 can reduce model uncertainty significantly

and is preferred by BALD, but it cannot help on the label prediction since the optimal classifier will
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always label x = ±4 as 1 or 0. On the other hand, as the optimal labels of the points in the middle

are uncertain given the prior knowledge, MOCU-based active learning will query these points first

to better reduce the classification error at the beginning.

We randomly sample the true parameters from the prior and perform different active learning

methods for 300 iterations. We compare different methods by the error regret, which is defined as

the error difference between the OBC and the true optimal classifier. We repeat the simulations

for 500 runs and plot the average performance with standard deviation bars in Fig. 3.6b. From the

figure, not surprisingly, BALD performs inefficiently at the beginning since it queries the candidates

on both sides. MOCU performs well at the beginning but becomes inefficient after about 100

iterations, indicating some of the 500 simulations get stuck as we analyzed in Section 3.4.1.

For Soft MOCU with different k values, as we shown in Fig. 3.2, Soft MOCU gets closer to

MOCU with increasing k. As a result, Soft-MOCU-based active learning should perform more

similar to the MOCU-based method as k increases. We can see from the figure that, when k is small

(k = 1), the performance is close to BALD that aims to reduce the total model uncertainty. With

increasing k (= 10 or 100), the performance of Soft-MOCU-based active learning at the beginning

gets closer to MOCU and more importantly, in the long run it performs better than both BALD and

MOCU, demonstrating Soft-MOCU-based active learning can converge to the optimal classifier

with fewer iterations. As expected, when k is really large (k = 10000), Soft MOCU can get really

close to MOCU with very small curvature with respect to π(θ) as illustrated in Fig. 3.2, which leads

to similar performance degradation as shown in Fig. 3.6b.

We next benchmark Soft-MOCU-based active learning for more simulated experiments and

real-world experiments, for which we compare active learning methods based on random sampling,

MES, BALD, MOCU, and our Soft MOCU with k = 10 and 100.

3.6.2 Simulated Experiments

We test these active learning methods on a simulated experiment similar as the block in the

center dataset in Houlsby et al. [37]. The experiment includes a binary classification problem with

candidates from 2-d feature space [−4, 4]2. The simulated data are described by a Bayesian logistic
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Figure 3.6: (a) Predictive probability of class 1 under uncertainty: the red lines indicate the upper
and lower bounds of the predictive probability; the blue dashed line is the mean of the predictive
probability; the green dashed line indicates that the probability is equal to 0.5. (b) Active learning
performance.

regression model:

p(y = 1|x,w, b) =
1

1 + exp(−wTx− b)
, (3.28)
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Figure 3.7: Comparison of different active learning methods based on the expected OBC error
regret for binary classification.

with a uniform parameter prior w1 ∼ U(0.3, 0.8), w2 ∼ U(−0.1, 0.1) and b ∼ U(−0.25, 0.25);

w1, w2 and b are independent. With this prior setting, the uncertainty of p(y|x,w, b) is low in the

region near the x2 axis where the decision boundary lies and the uncertainty is high in the region far

away from the x2 axis. Within the block region of [−1, 1]2, the observed labels are flipped with the

probability 0.3.

We randomly sample 100 particles from the parameter prior as the uncertain parameter set, and

randomly choose one of them as the true parameter. We also uniformly sample 100 candidates from

the feature space as the candidate pool. Then we perform these different methods for 500 iterations

and calculate the error regret. We repeat the simulation for 500 times and plot the performance

comparison with standard deviations in Fig. 3.7. From the figure, MES has quite poor performance

as it simply queries the candidates with the predictive probability close to 0.5. It may sample many

noisy observations from the noisy block region. BALD performs poorly at the beginning since it

cannot identify which uncertainty is related to the learning objective. MOCU performs well in the

first several iterations, but poorly in the long run. As expected, our Soft-MOCU-based methods

perform better than other competing methods with k = 100 performing the best.

We also compare these different methods on a multi-class classification setup. We assume the
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Figure 3.8: Comparison of different active learning methods based on the expected OBC error
regret for three-class classification.

feature space X = [−2, 2]2 and label space Y = {0, 1, 2} with the probabilistic model p(y|x, σ2
y) =

fy(x, σ
2
y)/
∑

y′ f(x, σ2
y′), where fy(x, σ2

y) = exp(−(x − my)
2/2σ2

y), y ∈ Y . We set my to

be (0, 0), (1, 0), (0, 1) for y = 0, 1, 2 respectively; and independent uncertain parameters σ2
y ∼

U(1, 5), y ∈ Y . Similar as the previous binary classification experiment, we perform the five

methods for 500 times and plot the average error regret with standard deviations in Fig. 3.8. From

the figure, MES performs poorly as it samples the candidates with maximal predictive entropy,

while querying these candidates provides little information to improve classification. We again

observe that MOCU performs poorly in the long run while both Soft-MOCU-based methods have

better empirical performance on a par with BALD.

3.6.3 Real-world Benchmark Experiments

We compare different active learning methods on the UCI User Knowledge dataset [38]. The

dataset assigns the knowledge status of 403 students into four levels (High, Medium, Low, Very

Low) based on five input features in [0, 1]5, which reflect the degree of study or exam performance.

Here we use the 1st and 5th features as inputs for classification and equally separate the 2-d feature
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Figure 3.9: Classification error comparison on UCI User Knowledge dataset.

space into 4× 4 bins. Within the ith bin we assume a categorical distribution for the knowledge

levels p(y|x ∈ i-th bin) = p(i), 1 ≤ i ≤ 16 with parameters p(i) = (p
(i)
0 , p

(i)
1 , p

(i)
2 , p

(i)
3 ). Assume

that each parameter independently follows a Dirichlet distribution p(i) ∼ Dir(α(i)) with α(i) as the

hyperparameters. We randomly choose 8 bins and set uniform priors on them with α(i) = 1. For the

other 8 bins, we set the prior by setting α(i)
j = 1 if j is the true label, and α(i)

j = 10 for other labels.

To obtain a balanced classification problem, we randomly sample 50 samples from each class to

test the five different methods. We repeat the active learning procedures for 150 times and compare

the average classification error in Fig. 3.9. From the figure, we can clearly observe two stages in the

active learning procedures: the first stage has about 20 iterations, in which all the methods learn the

optimal classification rules in the 8 bins with the uniform prior; while in the following iterations as

the second stage, different methods perform differently based on their acquisition functions. BALD

keeps choosing candidates from the bins with the uniform prior in the second stage as those bins

still have larger model uncertainty. However, they cannot help improve the classification. MOCU

performs well at the beginning, and then converges slowly. Our Soft-MOCU-based method with

k = 100 is again demonstrated to converge faster than other methods.
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4. EFFICIENT ACTIVE LEARNING FOR GAUSSIAN PROCESS CLASSIFICATION BY

ERROR REDUCTION

4.1 Overview

Active learning sequentially selects the best instance for labeling by optimizing an acquisition

function to enhance data/label efficiency. The selection can be either from a discrete instance

set (pool-based scenario) or a continuous instance space (query synthesis scenario). In this work,

we study both active learning scenarios for Gaussian Process Classification (GPC). The existing

active learning strategies that maximize the Estimated Error Reduction (EER) aim at reducing the

classification error after training with the new acquired instance in a one-step-look-ahead manner.

The computation of EER-based acquisition functions is typically prohibitive as it requires retraining

the GPC with every new query. Moreover, as the EER is not smooth, it can not be combined with

gradient-based optimization techniques to efficiently explore the continuous instance space for query

synthesis. To overcome these critical limitations, we develop computationally efficient algorithms

for EER-based active learning with GPC. We derive the joint predictive distribution of label pairs as

a one-dimensional integral, as a result of which the computation of the acquisition function avoids

retraining the GPC for each query, remarkably reducing the computational overhead. We also

derive the gradient chain rule to efficiently calculate the gradient of the acquisition function, which

leads to the first query synthesis active learning algorithm implementing EER-based strategies.

Our experiments clearly demonstrate the computational efficiency of the proposed algorithms. We

also benchmark our algorithms on both synthetic and real-world datasets, which show superior

performance in terms of sampling efficiency compared to the existing state-of-the-art algorithms.

4.2 Introduction

Compared to traditional passive learning with randomly sampled training instances, active

learning aims at “optimally” querying instances for labeling to achieve label efficiency when

training machine learning models, especially when labeling is difficult or costly. There are two
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fundamental scenarios of active learning discussed in the literature: query synthesis and pool-based

sampling [73]. In query synthesis, the leaner can request labels for any instance generated from a

continuous feature space while pool-based sampling selects the instance from a finite set. Query

synthesis is more challenging due to the infinite search space and inherent higher label uncertainty.

Recent research on query synthesis with deep generative models has shown promising potential

[91, 70]. However, in many science and engineering applications, acquiring the label for even one

instance is prohibitively resource-demanding and therefore active learning with deep models may

not be practical.

For example, one of critical materials science research questions is to identify phase transition

diagrams, where the phase transition response surface can be complex [60]. Identifying phase

transitions can be formulated as finding the optimal classification boundaries between different

phases in the enormous materials design space. However, precisely knowing the phase of each

design with the corresponding input features requires costly and time-consuming materials synthesis

and profiling experiments or running complex simulation models. Furthermore, there may exist

significant uncertainty in acquired phase labels due to technical limitations. Hence, active learning

for optimal Bayesian classifiers is a natural solution to help identify the phase diagram with as few

as possible synthesized or simulated materials under such uncertainty and complexity. Gaussian

Process Classification (GPC) as a popular and powerful Bayesian classifier with the flexibility of

adopting different kernels [82], is suitable for solving this problem with appropriate active learning

strategies. Fig.4.1 shows an example of phase identification in a two-dimensional design space

by active learning with GPC. In the figure, the black solid line indicates the transition response

surface, the crosses and dots indicate the queries of different phases, and the colorbar indicates the

predictive distribution of GPC. From the figure we can see, the predictive distribution identifies

the phase transition boundary with a few samples guided by active learning using GPC surrogate

models, which has significant cost and time savings compared to the traditional trial-and-error phase

diagram identification paradigm in the current materials science practice.

Many active learning strategies have been proposed for GPC. For example, Bayesian Active
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Figure 4.1: Phase diagram identification by active learning with GPC.

Learning by Disagreement (BALD) selects the instance with the maximum mutual information

between the observation and the derived uncertain model [37]. There also have been strategies

targeting at reducing classification error directly or indirectly. Estimated Error Reduction (EER)

strategies optimize for the error reduction after training with the new queries [72, 65, 40]. We note

here that EER-based active learning has been studied for both Gaussian Process Regression (GPR)

and GPC [72, 40]. For GPR, the regression error can be represented by the posterior predictive

variance with the analytical expression and the acquisition function is easy to calculate for efficient

active learning. In contrast, for GPC, there is no analytical expression for the posterior predictive.

The model updates need approximate inference, such as Expectation Propagation (EP), an algorithm

iteratively approximating the GPC posterior [48]. Moreover, the classification error computation

requires the new query labels; so the calculation of the corresponding EER-based acquisition

function requires incrementally retraining the model for each possible query label to calculate the

expected future error as the utility to guide active learning. The complexity of training GPC with

EP approximation is O(n3), where n is the number of observed data. This has been the main hurdle

to develop active learning for GPC models.

To reduce the calculation cost of EER, the paper [40] proposed to use a non-iterative but less

accurate method approximating the new posterior when calculating the acquisition functions. The

paper [29] proposed a novel approximated error reduction (AER) criterion, in which the error reduc-

tion of a candidate is estimated based on the impact over its nearby instances. The approximated
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estimation avoids re-inferring the labels of massive instances. These methods are relatively efficient

in computation. But besides EP approximation, they need additional approximations in calculating

acquisition functions so the acquisition functions are not precisely calculated, which may degrade

the desired data efficiency.

In this chapter, within the EER-based active learning framework for GPC, we develop com-

putationally efficient algorithms to compute EER to guide both query synthesis and pool-based

active learning. In particular, we consider EER as the reduction of the Mean Objective Cost

of Uncertainty (MOCU) [87] since the learning objective of GPC, in particular for identifying

phase diagram, is to reduce the classification error. By deriving the joint distribution of queries

as a one-dimensional integral, we avoid retraining the GPC for each query when calculating the

EER/MOCU-based acquisition function. We further leverage a smooth approximation of MOCU,

Soft MOCU (SMOCU) [88], to enable efficient gradient computation of the SMOCU reduction by

deriving the corresponding chain rule for efficient query synthesis with GPC. We emphasize that

this is the first algorithms for query synthetic active learning based on EER strategies to the best

of our knowledge. We show in experiment that our algorithm accelerate the computation of the

acquisition functions. Compared with other benchmark algorithms, we demonstrate the sample

efficiency of our algorithms with both synthetic and real-world datasets.

4.3 Problem Setting and Background

4.3.1 Gaussian Process Classification (GPC)

Consider a binary classification problem with the instance space X and binary label set Y =

{0, 1}, we aim to train a classifier ψ : X → {0, 1, . . . ,M − 1} to predict labels for unobserved

instances ψ(x∗),x∗ ∈ X . The Gaussian Process classification (GPC) framework connects the

instance and the label by a latent function f , which is a random process depending on x. Assume

that f follows a Gaussian Process (GP) prior f ∼ GP(µ(·), k(·, ·)), where µ(·) is a mean function

and k(·, ·) is a covariance kernel function [64]. GP is a popular and powerful model for both

regression and classification. A good property of GP is that given any finite number of instances
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xi, the joint distribution of f(xi) is still Gaussian. For classification problems, given f , the label y

takes a Bernoulli distribution with probability p(y = 1|x, f) = Φ(f(x)), where Φ is the Gaussian

cumulative distribution function.

Given a sequence of observations D = {X, Y } with X = {x1,x2, . . . ,xn} and Y =

{y1, y2, . . . , yn}, the class labels are conditionally independent given the latent function. Therefore,

the joint likelihood can be factorized as: p(Y |X, f) =
∏

i p(yi|xi, f). Since the likelihood proba-

bility is non-Gaussian, the posterior π(f |X, Y ) ∝ π(f)p(Y |f,X) can not be computed analytically

and approximation are often adopted. The Expectation Propagation (EP) algorithm approximates

π(f |X, Y ) with a Gaussian approximation q(f |X, Y ) = N (f |µ̃(·), Σ̃(·, ·)) by iteratively moment

matching marginal posteriors [64].

With the approximated posterior, the marginal distribution of f∗ = f(x∗) is still Gaussian.

Denote the mean and variance as µ∗ and σ∗∗ respectively, then there is a closed-form expression for

p(y∗|x∗, X, Y ) as:

p(y∗ = 1|X, Y,x∗) =

∫
Φ(f∗)φ(f∗|µ∗, σ2

∗)df∗ = Φ(
µ∗√

1 + σ∗∗
). (4.1)

Given the predictive probability, we assume the prediction of the instance is the most probable label

arg maxy∗ p(y∗|X, Y,x∗), which is known as the Optimal Bayesian Classifier (OBC) [13].

4.4 Efficient Active Learning for GPC

In this section, we present our EER-based active learning algorithms for GPC based on the

acquisition functions defined by the MOCU and SMOCU reduction. As defined in the previous

chapter, the expressions of MOCU reduction UM(x∗) and SMOCU reduction US(x∗) are:

UM(x∗) = Exs{Ey∗|x∗ [max
ys

p(ys|xs,x, y)]−max
ys

p(ys|xs)}, (4.2)

US(x∗) = Exs{Ey∗|x∗ [
1

k
LogSumExp(k ·p(ys|xs,x∗, y∗))]−

1

k
LogSumExp(k ·p(ys|xs))}. (4.3)
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We emphasize that the posterior predictive distributions p(ys|xs) and p(ys|xs,x∗, y∗)) are all condi-

tional on X, Y . For the sake of clarity, we omit X, Y from the notations. UM(x∗) is not a smooth

function with the maximization operators, while US(x∗) is a smooth function of p(ys|xs,x∗, y∗).

We will leverage this smooth acquisition function to derive the first efficient gradient-based query

synthesis active learning algorithm for GPC.

At each iteration, with the updated GPC given previous observations, the acquisition function

(4.2) or (4.3) can be optimized to guide the selection of the next query for active learning. We first

present a straightforward algorithm for both the discrete instance set (pool-based sampling) and

continuous instance space (query synthesis) scenarios, where the acquisition function is optimized

by random optimization. Random optimization first collects a random sample set X∗ ⊂ X of size

M1, calculates the acquisition function for each sample in the set and then takes the instance with

the maximum acquisition function value as the query.

To calculate (4.2) or (4.3), the integral over X space is not analytical. Hence we need to cal-

culate the integral by Monte Carlo sampling with M2 samples of xs ∈ X . Define gM(xs;x∗) and

gS(xs;x∗) such that UM(x∗) = Exs{gM(xs;x∗)} and US(x∗) = Exs{gS(xs;x∗)}. Let g(xs;x∗)

denote either gM(xs;x∗) or gS(xs;x∗). For each xs, the calculation of g(xs;x∗) requires deriv-

ing the probability distribution of p(ys|xs) and p(ys|xs,x∗, y∗),∀y∗ ∈ {0, 1, . . . ,M − 1}. Here,

p(ys|xs) can be calculated directly from (4.1) while updating p(ys|xs,x∗, y∗) needs incremental

training of GPC with observations {X, Y,x∗, y∗} based on the EP approximation, and then calcu-

lating (4.1). The whole procedure of optimizing the acquisition function at the n-th iteration is

illustrated in Algorithm 1, in which we need to retrain GPC for each possible pair (x∗, y∗) as shown

in the 6-th line. Therefore, the EP approximation needs to be performed 2×M1 times.

There are three issues of the acquisition function calculation in Algorithm 1. First, we need a

large number of samples to have a reliable estimation of the integral in (4.2) or (4.3). Second, the

calculation of p(ys|xs,x∗, y∗) requires incremental retraining of the GPC model for each pair of

(x∗, y∗), with computational complexity O(M1n
3). Third, even though US(x∗) is a differentiable

function of p(ys|xs,x∗, y∗), in the algorithm we actually use the EP approximation q(f |x∗, y∗)
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Algorithm 1 Random EER-based active learning for GPC: n-th iteration

1: function RANDOMOPTIMIZATION(p(x), q(f |X, Y ))
2: Sample M1 samples of x∗ ∼ p(x)
3: Sample M2 samples of xs ∼ p(x)
4: for each x∗ do
5: Calculate p(y∗|x∗) by (4.1)
6: for y∗ in {0, 1} do
7: Use EP to approximate the posterior q(f |x∗, y∗)
8: for each xs do
9: Calculate p(ys|xs) and p(ys|xs,x∗, y∗) by (4.1)

10: Update g(xs;x∗) with y∗
11: end for
12: end for
13: U(x∗) = 1

M2

∑
xs
g(xs;x∗)

14: end for
15: return x̃ = arg maxx∗ U(x∗)
16: end function

to calculate US(x∗), and it is impossible to calculate the gradient ∇q(f |x∗, y∗) during the EP

procedure.

We develop our EER-based active learning algorithms to address these three presented chal-

lenges: 1) By importance sampling leveraging inhere GPC assumptions, we reduce the required

number of samples for estimating acquisition functions; 2) We also propose to obtain p(ys|xs,x∗, y∗)

by deriving analytic solution to marginalize the joint distribution p(ys, y∗|xs,x∗) from the approxi-

mated posterior q(f |X, Y ), which avoids the retraining with EP approximation; 3) More critically,

we derive the first gradient-based query synthesis algorithm when using the SMOCU-based acquisi-

tion function by deriving the gradient ∇q(f |x∗, y∗) for efficient active learning together with the

aforementioned two strategies.

4.4.1 Importance Sampling

Regarding the issue in requiring the high sampling number of xs for reliable estimation of the

acquisition function, we notice that most of the kernels applied in GPC assume that the observed

data only have influence on neighboring regions. Hence, we only need to account for the samples

near x∗ to estimate its influence on the classification error, thereafter the acquisition function for
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each new query. More specifically, we can use importance sampling to reduce the required sampling

number. Reformulate the expectation U(x∗) = Exs∼p(xs)[g(xs;x∗)] over an assistant distribution

p̃(xs;x∗) as:

U(x∗) = Exs∼p̃(xs;x∗)[p(xs)g(xs;x∗)/p̃(xs;x∗)]. (4.4)

The variance of the expectation is minimized when p̃(xs;x∗) is proportional to p(xs)g(xs;x∗).

But this requires knowledge of the value of U(x∗), which is the acquisition function that we try

to estimate. In practice, we can choose p̃(xs;x∗) ∝ k(xs,x∗)p(xs) instead, as k(xs,x∗) reflects

the non-zero region of g(xs;x∗): k(xs,x∗) ≈ 0 means (xs, ys) and (x∗, y∗) are independent, thus

p(ys|xs,x∗, y∗) ≈ p(ys|xs) and g(xs;x∗) ≈ 0. For example, if p(xs) is uniformly distributed

within a finite region, k(xs,x∗) is a square exponential kernel, then p̃(xs;x∗) can be chosen as a

truncated Gaussian distribution. Note that importance sampling and random optimization is only

suitable for continuous instance space, or discrete set with large cardinality, For small instance

set, we can traverse all the elements for calculating the expectation and optimizing the acquisition

function.

4.4.2 Joint Distribution Calculation

To avoid the retraining of GPC for each (x∗, y∗), we can calculate the posterior predictive by

p(ys|xs,x∗, y∗) = p(ys, y∗|xs,x∗)/p(y∗|x∗), which requires computing the joint distribution of

p(ys, y∗|xs,x∗). We remind the reader all the probabilities are conditioned on {X, Y } and we omit

them for the seek of brevity. Denote fs = f(xs) and f∗ = f(x∗). Now we show how to simplify

the calculation of p(ys, y∗|xs,x∗). In the Gaussian approximation of the posterior q(f |X, Y ), the

joint distribution of fs, f∗ is still Gaussian. Since ys and y∗ are conditionally independent given fs

and f∗, the joint distribution can be expressed as:

p(ys = 1, y∗ = 1|xs,x∗) =

∫∫
Φ(fs)Φ(f∗)φ(fs, f∗|µs∗,Σs∗)dfsdf∗, (4.5)
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where µs∗ and Σs∗ are the marginal mean and covariance matrix of fs and f∗. This integral can be

simplified as a one-dimensional integral. Denote the elements in the variance as:

µs∗ =

 µs

µ∗

 , Σs∗ =

 σss σs∗

σs∗ σ∗∗

 . (4.6)

We can decompose the joint Gaussian distribution as the marginal distribution of fs times the

conditional distribution of f∗ given fs, i.e.

φ(fs, f∗|µs∗,Σs∗) = φ(fs|µs, σss)φ(f∗|µ̃∗(fs), σ̃∗∗), (4.7)

where µ̃∗(fs) = µ∗+(fs−µs)σs∗/σss and σ̃∗∗ = σ∗∗−σ2
s∗/σss. Therefore, (4.7) can be transformed

as:

p(ys = 1, y∗ = 1|xs,x∗) =

∫∫
Φ(f∗)Φ(fs)φ(fs, f∗|µs∗,Σs∗)dfsdf∗,

=

∫∫
Φ(f∗)φ(f∗|µ̃∗(fs), σ̃∗∗)df∗ Φ(fs)φ(fs|µs, σss)dfs

=

∫
Φ(

µ̃∗(fs)√
σ̃∗∗ + 1

)Φ(fs)φ(fs|µs, σss)dfs. (4.8)

The last line is based on the integral equation introduced in [64]. The above equation (4.8)

calculates the joint distribution with the 1-d integral in constant time. With the joint distribution

p(ys = 1, y∗ = 1|xs,x∗), we can easily obtain the joint distribution of ys, y∗ with other label pairs,

and finally we can obtain the posterior predictive p(ys|xs,x∗, y∗) without retraining the GPC with

EP approximation. Based on the techniques in this and previous subsection, Algorithm 1 can be

modified as illustrated in Algorithm 2. We name the active learning algorithm with MOCU reduction

as Non-Retraining MOCU reduction with Random Optimization (NR-MOCU-RO), and name the

algorithm with SMOCU reduction as Non-Retraining Soft MOCU with Random Optimization

(NR-SMOCU-RO).
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Algorithm 2 NR-(S)MOCU-RO: n-th iteration

1: function RANDOMOPTIMIZATION(p(x), q(f |X, Y ))
2: Sample M1 samples of x∗ ∼ p(x)
3: for each x∗ do
4: Calculate p(y|x∗) by (4.1)
5: Sample M2 samples of xs ∼ p̃(xs;x∗)
6: for y∗ in {0, 1} do
7: for each xs do
8: Calculate p(ys, y∗|xs,x∗) by (4.8)
9: Calculate p(ys|xs) by (4.1)

10: Calculate posterior p(ys|xs,x∗, y∗) = p(ys, y∗|xs,x∗)/p(ys|xs)
11: Update g(xs;x∗) with y∗
12: end for
13: end for
14: U(x∗) = 1

M2

∑
xs
p(xs)g(xs;x∗)/p̃(xs;x∗)

15: end for
16: return x̃ = arg maxx∗ U(x∗)
17: end function

4.4.3 Gradient Calculation

With the introduced marginalization strategy and importance sampling, we can significantly

improve the computational efficiency for pool-based active learning with GPC. However, in the

query synthesis problems, we would like to optimize the acquisition functions with gradient-based

algorithms. Usually the acquisition functions are multi-modal in the feature space, so the common

practice is to perform random optimization first, and then take the optimal point as the initial point

to perform the gradient-based algorithms [35].

Here we consider the gradient calculation of the acquisition function based on the SMOCU

reduction ∇US(x∗) for query synthesis active learning as US(x∗) is a smooth function whose

gradients exist everywhere. For a Gaussian Process, the gradients of its mean and covariance

functions have closed-form expressions of the gradients of its adopted kernel function. Here we

assume that given the EP approximation q(f |X, Y ) and any pair of points (xs,x∗), we already

know the gradient of∇µ∗,∇σ∗∗ and∇σs∗ with respect to x∗. With this assumption, we can use the

chain rule to compute the gradients and finally express the gradients US(x∗) in the form of ∇µ∗,
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∇σ∗∗ and ∇σs∗.

In (4.3), the second term is unrelated to x∗, so the gradient of the SMOCU reduction can be

expressed as:

∇US(x∗) = Exs [∇gS(xs,x∗)] = ∇Exs{
∑
y∗

p(y∗|x∗)
1

k
LogSumExp[k · p(ys|xs,x∗, y∗)]}

=
∑
y∗

∇p(y∗|x∗) · Exs{
1

k
LogSumExp[k · p(ys|xs,x∗, y∗)]}

+
∑
y∗

p(y∗|x∗) · Exs{∇
1

k
LogSumExp[k · p(ys|xs,x∗, y∗)]}. (4.9)

In the first term, ∇p(y∗|x∗) can be calculated with ∇µ∗ and ∇σ∗∗ based on (4.1). For the second

term, we can use the chain rule to compute∇LogSumExp[k · p(ys|xs,x∗, y∗)] = g1 · g2, where:

g1 =
∂LogSumExp[k · p(ys|xs,x∗, y∗)]

∂p(ys|xs,x∗, y∗)
, g2 = ∇p(ys|xs,x∗, y∗). (4.10)

Since p(ys|xs,x∗, y∗) = p(ys, y∗|xs,x∗)/p(y∗|x∗), g2 can be calculated with ∇p(y∗|x∗) and

∇p(ys, y∗|xs,x∗) based on the derivative of a fraction. ∇p(ys, y∗|xs,x∗) can be calculate based on

(4.8):

∇p(ys = 1, y∗ = 1|xs,x∗) =∇
∫

Φ(fs)φ(fs|µs, σss)Φ(
µ̃∗(fs)√
σ̃∗∗ + 1

)dfs

=

∫
Φ(fs)φ(fs|µs, σss)φ(

µ̃∗(fs)√
σ̃∗∗ + 1

) · ∇(
µ̃∗(fs)√
σ̃∗∗ + 1

)dfs, (4.11)

which is again a 1-d integral. The gradient of∇( µ̃∗(fs)√
σ̃∗∗+1

) can be again calculated by chain rule, and

connected to the calculation of∇µ̃∗(fs) and ∇σ̃∗∗:

∇µ̃∗(fs) = ∇µ∗ +
fs − µs
σss

∇σs∗, ∇σ̃∗∗ = ∇σ∗∗ −
2∇σs∗
σss

. (4.12)

Therefore, ∇( µ̃∗(fs)√
σ̃∗∗+1

) is a linear function of fs, and we can use numerical integral methods to

calculate (4.11). The query synthesis algorithm with the integral computation is summarized in
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Algorithm 3 named as NR-SMOCU with Stochastic Gradient Descent (NR-SMOCU-SGD).

In summary, to reduce the number of samples xs for relable estimation of acquisition functions,

our algorithm utilizes an importance sampling with an assistant distribution chosen according to

the kernel function. By calculating the posterior predictive directly from the joint distribution, the

algorithm avoids retraining GPC with EP approximation. The introduction of the joint distribution

also enables the efficient calculation of the gradient of the smooth acquisition function, with which

we develop an efficient active learning algorithm for query synthesis.

Algorithm 3 NR-SMOCU-SGD: n-th iteration

1: function GRADIENTOPT(p(x), q(f |X, Y ))
2: Obtain initial point x∗ from RANDOMOPT(p(x), q(f |X, Y ))
3: while not converge do
4: Sample M2 samples of xs ∼ p̃(xs;x∗)
5: Calculate p(y∗|x∗) and∇p(y∗|x∗) by (4.1)
6: for each xs do
7: for y∗ in {0, 1} do
8: Calculate p(ys, y∗|xs,x∗) , ∇p(ys, y∗|xs,x∗) and p(ys|xs) by (4.1, 4.8, 4.11)
9: end for

10: Calculate∇gS(xs,x∗) by (4.9 - 4.11)
11: end for
12: ∇US(x∗) = 1

M2

∑
xs
p(xs)∇gS(xs;x∗)/p̃(xs;x∗)

13: Update x∗ with∇US(x∗)
14: end while
15: return x∗
16: end function

4.5 Experiments

In this section we demonstrate the efficiency of our active learning algorithms combined with

either random optimization (NR-MOCU-RO, NR-SMOCU-RO) or Adagrad (NR-SMOCU-SGD)

in the following sets of experiments. In the first set of experiments, we analyze and benchmark

the running time of our algorithm by comparing to the naive computation of the MOCU/SMOCU

reduction. Then we benchmark our algorithms with other active learning algorithms, including
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random sampling, Maximum Entropy Search (MES) [71] and Bayesian Active Learning by Dis-

agreement (BALD) [37] for both query synthesis on synthetic benchmark datasets, and pool-based

active learning on real-world datasets. In our experiments, we use GP prior for f with the squared-

exponential kernels k(x,x′) = γ2exp(−‖x− x′‖2/l2), where {γ, l} are model hyperparameters.

The label probability is modeled with the probit function as p(y|x, f) = Φ(f(x)).

4.5.1 Estimation Accuracy and Running Time Comparison

We first evaluate the effect of using the joint distribution integral in calculating the acquisition

functions. We compare the estimation of p(ys|xs,x∗, y∗) through the joint distribution integral

(4.8), with p′(ys|xs,x∗, y∗) estimated by retraining GPC with EP approximation. For this set of

experiments, we generate the initial data points using a latent function f sampled form the GP prior.

The instance space X = [−4, 4], and the hyperparameters γ2 = 0.5, l2 = 1. We initially sample 100

data points to train GPC, then we compare the values g = LogSumExp(k · p(ys|xs,x, y))/k and

g′ = LogSumExp(k · p′(ys|xs,x, y))/k, since these are related to the calculation of the SMOCU

reduction. With 1000 pairs of (xs,x∗) randomly sampled from X , we calculate the absolute error

ratio as |g − g′|/g′. The average absolute error ratio is 1.8e-5 and the maximum error ratio is 2.4e-3.

We also compare the values g = max p(ys|xs,x, y) and g′ = max p′(ys|xs,x, y), which is used to

calculate the MOCU reduction. The average absolute error ratio is 1.3e-5 and the maximum ratio

is 2.2e-3. These results validate that using (4.8) can provide accurate estimates of the acquisition

functions.

Next, we compare the running time of estimating acquisition functions by three algorithms:

1) a naive algorithm calculating p(ys|xs,x∗, y∗) with GPC retraining (naive), 2) sampling xs by

Importance Sampling and calculating p(ys|xs,x∗, y∗) with GPC retraining (IS), 3) sampling xs by

Importance Sampling and calculating p(ys|xs,x∗, y∗) with the Joint Distribution Integral (IS+JDI).

The algorithms are implemented in Python 3.7 on a personal computer with Intel i5-10400 2.9 GHz

CPU and 16G RAM. We set the initial datasets of size n = 10, 50 and 100, respectively. For all

three competing algorithms, we sample 1000 xs’s, and calculate US(x∗). We benchmark them with

a “ground truth“ algorithm: calculating US(x∗) by the naive algorithm with 1e6 xs samples. We
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perform this comparison for 100 x∗’s. The average running time and absolute error rate are shown in

Table 4.1. From the table, the absolute error rate of the naive algorithm with 1000 samples is much

larger than the other two as expected since the other two algorithms use importance sampling with

smaller estimation variance. For the running time, retraining GPC in the naive and IS algorithms

is the main time-consuming component while IS+JDI spends most of the time in calculating the

joint distribution integral for marginalization. As n increase, the running time of both naive and IS

algorithms increases fast since GPC training has a complexity of O(n3), while the running time

of IS+JDI does not change much because the joint distribution integral is calculated in constant

time. Note that in all three algorithms, inferring the predictive distribution for each xs also takes a

considerable part of computations, especially when n is small. The results show that importance

sampling does not impose much extra computation load in active learning. When n is large, the

joint distribution integral is faster than retraining GPC with EP approximation.

Table 4.1: Running time in seconds (s) and estimation accuracy comparison.

n = 10 n = 50 n = 100
Algorithm Time (s) Error rate Time (s) Error rate Time (s) Error rate

naive 1.390 0.166 2.496 0.184 2.704 0.162
IS 1.364 0.012 2.465 0.032 2.685 0.024

IS+JDI 1.950 0.012 2.188 0.028 2.209 0.025

4.5.2 Query Synthesis with Synthetic Datasets

We now test the algorithms in the task of finding the optimal classifier of the unknown proba-

bilistic model p(y|x, f) with f generated from the GP prior. In this set of experiments, the domain

of f is X = [−4, 4]. Each f is generated by first sampling 1000 function values from the GP prior

with γ2 = 0.5, l2 = 1. f is then given by the resulting GP posterior mean. We generate a total of

200 f ’s following the procedure.

We perform all the competing active learning algorithms on these probabilistic models. MES,
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BALD, NR-MOCU-RO and NR-SMOCU-RO are all optimized by random optimization with

M2 = 1000. In NR-SMOCU-SGD, we first perform random optimization with M2 = 800 and

set the best point as the initial point for Adagrad so that NR-SMOCU-SGD has similar running

time compared with NR-SMOCU-RO at their corresponding setups for fair comparison. Algorithm

performance is measured in terms of the error regret defined as the OBC error at n-th iteration minus

the optimal classifier error of the simulated ground truth. Fig.4.2 shows the average error regret with

standard deviation bars in the logarithmic scale obtained by each algorithm across the 150 different

probabilistic models. The results show that in the first few iterations, all three EER-based algorithms

(NT-MOCU-RO, NT-SMOCU-RO, NT-SMOCU-SGD) outperform the competing algorithms. With

more observations

included, the decrease of the error regret slows down for NT-MOCU-RO. This is because the

MOCU-based acquisition function cannot take into account the long-term effect of a query, also

discussed in [87]. The plot also shows that the best algorithm in this setting is NR-SMOCU-SGD

as it utilizes the gradient information during optimization.
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Figure 4.2: Algorithm performance comparison on 1-d GPC.
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We further benchmark our proposed algorithms with a challenging synthetic dataset checker-

board 4×4, similar as the one tested in [37], which emulates the setup of phase diagram identification

in materials science. Fig. 4.3a illustrates the classification boundaries. To show the influence of

the observation error on the performance of different algorithms, we further assume that there is a

constant flip error rate on the observing labels, and we take different error rate equal to 0, 0.1 and

0.2. In the experiments, we initially draw 30 samples for labeling to estimate the hyperparameters

{γ, l}, then we perform different algorithms to collect new data. We repeat the procedure for 150

runs and plot the average performance with standard deviations in Figs. 4.3b-d.

We can observe from these figures that MES performs bad, which is because MES tends to query

the point close to the decision boundary, while this problem has multiple intertwined boundaries

and MES cannot differentiate different boundaries. We also observe that as the error rate increases,

the difference between NR-MOCU and NR-SMOCU also increases, that is because as the error rate

increases, MOCU reduction tends to ignore the long-term effect of a query, leading to the degraded

long-term performance. Among these algorithms, NR-SMOCU-SGD performs better than other

proposed algorithms again by leveraging the gradient information in the optimization procedure.

4.5.3 Pool-based Active Learning with Real-world Datasets

We also compare algorithms on the UCI datasets [22] for pool-based active learning. NR-

SMOCU-SGD is not included as it is designed to search the continuous space. For each dataset, we

split it into training and testing datasets. We take the training dataset as the sampling pool for active

learning, initially we randomly choose two samples from each class for labelling, and use them to

estimate the GPC hyperparameters. Then we apply the competing active learning algorithms to

sequentially select the query from the training dataset and estimate the OBC error with the testing

dataset after each iteration. Details of the tested UCI datasets are provided in Table 4.2.

Similarly, we repeat the active learning procedures for 100 runs and plot the average OBC error

with standard deviation values for each algorithm for performance comparison shown in Fig. 4.4.

Overall, NR-MOCU-RO and NR-SMOCU-RO are better than MES and BALD, which validates

that our algorithms achieve better sample or in particular label efficiency. Note that in the Wine and
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Figure 4.3: The expected OBC error regret comparison on checkerboard 4× 4 problem.

Table 4.2: Details of the tested UCI datasets.

Dataset ntrain ntest d Dataset description

WDBC 284 285 30 Wisconsin diagnostic breast cancer
Ionosphere 175 176 34 Radar returns from the ionospher

Vehicle 208 208 18 Features extracted from silhouettes image
Wine [10] 65 65 13 Wine quality

Vehicle datasets, MES performs closely to our algorithms. When checking the converging GPC

models, their classification boundaries are relatively simple on these two datasets with relatively

low-dimensional feature spaces. The WDBC and Ionosphere data are in higher dimensions, for

which our proposed algorithms perform significantly better.
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Figure 4.4: Classification error rate comparison on UCI datasets.
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5. CONCLUSIONS & FUTURE RESEARCH

In this dissertation, we focus on Bayesian learning and experimental design in an objective-

oriented uncertainty quantification framework based on the concept of mean objective cost of

uncertainty (MOCU) [84]. Several MOCU-based algorithms have been developed for Bayesian

experimental design or active learning for filtering and classification problems when studying

corresponding uncertain complex systems.

In Chapter 2, we have developed MOCU-based experimental design for optimal filtering of data

from the systems described by SDEs under uncertainty. We have propagated the prior distribution

through the SDE so that the same distribution governs the uncertainty of signal processes. In the

former classification study [93], no assumption was made on the distribution of the parameter

uncertainty class and it was then assumed that a normal-inverse-Wishart distribution governed the

mean and covariance matrix of the uncertain Gaussian features constructed by sampling the signal

trajectories. This was convenient because it allowed direct application of the theory of optimal

Bayesian classification for Gaussian features [13], thereby resulting in a closed-form solution for the

optimal Bayesian classifier. The convenience of the previous assumption comes at a significant price:

if there is physical knowledge regarding the distribution of the uncertain parameters, it has been

ignored. Thus, we believe that uncertainty propagation, as used in the present dissertation is more

sound from a physical perspective, even if it leaves us with no hope of a convenient closed-form

solution. Although computational complexity did not impede us in Chapter 2, it can become a

problem when there is high dimensionality, especially when the uncertainty class is large. Model

reduction can be used to reduce the computations. For instance, a regulatory network model can

be compressed by eliminating or combining nodes [16]. Model reduction remains an important

research topic from a practical perspective, and to be effective, such reduction should be made

in a way that maintains the structure most relevant to the objective – which makes it application

dependent.

In Chapter 3, we have investigated why ELR- or MOCU-based methods may perform poorly in
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the long run—both theoretically and empirically, though they are optimal for active learning when

considering single queries. Based on the analysis, we proposed novel active learning strategies for

classification based on weighted MOCU and Soft MOCU. Our weighted MOCU directly targets at

decreasing the classification error and ignores uncertainty irrelevant to the classification performance.

More critically, it can capture continuous change in objective-relevant uncertainty. Hence, our new

active learning can be efficient both at the beginning and in the long run with the guarantee of

converging to the optimal classifier. Our new Soft-MOCU-based active learning is efficient for the

initial iterations as it approximates the original MOCU-based active learning scheme. A critical

feature of Soft MOCU is that its strict concavity enables the resulting acquisition function to capture

small model uncertainty reduction and thus guarantees the OBC to converge to the true optimal

classifier even when the myopic one-step-look-ahead queries may not provide significant changes to

the model posterior π(θ|x, y). Consequently, our proposed active learning methods can be efficient

both at the beginning as well as in the long run. In addition to the theoretical guarantee, our empirical

results also demonstrated the superior performance of our weighted-MOCU and Soft-MOCU-based

methods. Finally, as analyzed and observed in our experiments, Soft MOCU with larger k performs

better at the beginning as it closely approximates MOCU with local optimality whereas Soft MOCU

with smaller k performs better in the long run. Adaptively updating the value of k during the active

learning procedure is an interesting research direction.

In Chapter 4, we have proposed efficient MOCU-based active learning algorithms with GPC,

which estimate the MOCU/SMOCU reduction by querying instances based on the joint distribution

of label pairs. We have derived the joint distribution as a one-dimensional integral with constant

computational cost to calculate the predictive posterior based on it. Together with importance

sampling, the acquisition function can be estimated efficiently by 1-d integral of the joint distribution

without incrementally retraining GPC with EP approximation, which has a computation complexity

of O(n3). Without the need for EP approximation, we can further derive the chain rule to calculate

the gradient of the SMOCU reduction, which provides us an efficient query synthesis active learning

algorithm. Our experiments have demonstrated both the accuracy and the running speed of our
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algorithms. Comparing with benchmark algorithms on both synthetic and real-world datasets, our

algorithm have shown the sampling efficiency in active learning with GPC models.

In summary, throughout this dissertation, we have studied different scenarios of Bayesian

learning and Bayesian experimental design focusing on the operational objective with MOCU. In

the regression problems with SDEs, we study the experimental design problem that sequentially

selects the experiments minimizing the mean squared error of the signal estimates, and we manage

to connect the system parameter uncertainties with MOCU. In the classification problems, the

operational objective is minimizing the classification error. To achieve that we study the active

learning based on MOCU and its extensions to choose the query that helps maximally reduce the

classification error. We solve the myopic performance of MOCU-based active learning methods

by imposing concavity to the MOCU approximations and develop efficient algorithms for these

methods with optimal Bayesian classifiers, including GPC models.

For more general machine learning models, including deep neural networks, the joint predictive

distribution does not have closed-form expressions as discussed in this dissertation. In order to

further extend the developed algorithms to more general cases, for both low- and high-dimensional

problems, we need to explore general methods in evaluating the joint predictive distributions,

either by sampling methods or by approximate inference. The theoretical analysis and empirical

benchmarking is necessary to gain better understanding of the performance in these setups, which

we leave for future research.
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APPENDIX A

APPENDIX FOR WEIGHTED-MOCU BASED METHOD

In this appendix section, we provide the pseudo-code of active learning algorithms, as well as

more detailed descriptions of our experiments, additional results, and discussions on the weighted

MOCU for multi-class classification.

A.1 Weighted-MOCU-based Active Learning & Computational Complexity

The pseudo-code of our weighted-MOCU based active learning is provided in Algorithm 4, with

the following computational complexity analysis.

We now estimate the computational complexity of Algorithm 4 for the discrete feature and

parameter spaces. Assume that the size of the discrete feature space is Nx = |X |, the size of the

uncertainty set of classifiers is Nθ = |Θ|. For active learning, there are T iterations of queries as

the total budget. We study the total complexity of the active learning algorithm. In the WMOCU

function, line 6 is called for O(NxNθM) times. In ACQUISITIONFUN, WMOCU is called for

constant times. Finally, in the main procedure, in each iteration, ACQUISITIONFUN is called for

each x. Hence, the total complexity of Weighted MOCU-based active learning is O(TN2
xNθ).

A.2 Details of the Binary Classification Example in Figure 3.1

In the binary classification problem, Θ = {θ1, θ2}, X = {x1, x2}. The probabilistic model

setting for the two candidates is symmetric:

p(y1|x1, θ1) = (0.6, 0.4), p(y1|x1, θ2) = (0.3, 0.7)

p(y2|x2, θ1) = (0.7, 0.3), p(y2|x2, θ2) = (0.4, 0.6)

There are three intervals corresponding to the linear function pieces of MOCU in Fig. 3.1: [0, 0.33],

(0.33, 0.67] and (0.67, 1]. In the three intervals, ψπ(θ)(x1), the OBC predictions of x1 are 1, 1 and 0,

respectively; ψπ(θ)(x2), the OBC predictions of x2 are 1, 0, and 0, respectively.
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In Fig. 3.1 we set the prior π̃(θ1) = 0.15, then based on the Bayes’s rule we can obtain the

posterior with the observations of (x1, y1). Based on the observation result of y1, the posteriors are

π̃(θ1|x1, y1 = 0) = 0.2609 and π̃(θ1|x1, y1 = 1) = 0.0916, both of which fall into the first linear

piece of MOCU.

Algorithm 4 Weighted-MOCU based active learning
1: function MAINPROCEDURE( )
2: Set a discrete candidate set X , the probability array px, and iteration number T
3: Set the discrete parameter set Θ and the corresponding probability array πθ
4: Initialize the data set D = ∅
5: πθ|D = πθ
6: for t = 1 to T do
7: for x in X do
8: Store ACQUISITIONFUN(x, πθ|D) to the array UX
9: end for

10: Optimize UX and find the maximum point x∗

11: Obtain the label y∗ corresponds to x∗ and update D = D ∪ {x∗, y∗}
12: for θ in Θ do
13: Update πθ|D ∝ πθ|D · p(y∗|x∗, θ)
14: end for
15: X = X/{x∗}
16: end for
17: end function

18: function ACQUISITIONFUN(x, πθ|D)
19: wmocu_current =WMOCU(πθ|D)
20: wmocu_next = 0
21: for y in {0, 1} do
22: for θ in Θ do
23: Generate array p(θ, y|D, x) = πθ|D · p(y|x, θ)
24: end for
25: p(y|D, x) =

∑
θ p(θ, y|D, x)

26: πθ|D,x,y = p(θ, y|D, x)/p(y|D, x)
27: wmocu_next = wmocu_next+ p(y|D, x) ·WMOCU(πθ|D,x,y)
28: end for
29: return wmocu_current− wmocu_next
30: end function
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1: function WMOCU(πθ|D)
2: wmocu = 0
3: for x′ in X do
4: bayesian_error = 0
5: for θ in Θ do
6: bayesian_error = bayesian_error + πθ|D · (1−maxy′ p(y

′|x′, θ))
7: end for
8: for y′ in {0, 1} do
9: p(y′|D, x′) =

∑
θ πθ|D · p(y′|x′, θ)

10: end for
11: obc_error = 1−maxy′ p(y

′|D, x′)
12: K = obc_error − bayesian_error
13: wmocu = wmocu+ p(x′) · [(1−K)K]
14: end for
15: return wmocu
16: end function

A.3 Multi-class Classification

Although we have shown in chapter 3 that our weighted-MOCU can achieve good empirical

performance of converging to OBC with the simulated multi-class classification experiment, active

learning for multi-class classification problems can be complicated. The weighting function (3.10)

adopted in chapter 3 may not have the same theoretical convergence guarantee to the optimal

classifier if applied to multi-class classification problems. Here we just show a counter example, for

which Lemma 4 does not hold if using the same weighting function.

Assume a three-class classification problem y ∈ {0, 1, 2}. The candidate pool only has one

candidate X = {x} and the parameter set Θ = {θ1, θ2, θ3}. In addition we set the probabilistic

model p(y|x, θ) and the prior π(θ) as shown in Tables S1 and S2, and calculate the posterior and

posterior predictive probabilities. In the tables, yo denotes the one-step-look-ahead observation

corresponding to x, and x is omitted for simplicity. Without loss generality, we just set the weighted

MOCU parameter c = 1.

Here two properties in the setting are worth mentioning:

1. π(θ1) is close to 1 and as a result ∀yo ∈ {0, 1, 2}, we have maxy p(y) = maxy p(y|yo) =
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Table A.1: The probabilities of p(y|x, θ) and p(y|x, yo).

p(y|θ1) p(y|θ2) p(y|θ3) p(y) p(y|yo = 0) p(y|yo = 1) p(y|yo = 2)

y = 0 0.4 0.4 0.4 0.4 0.4 0.4 0.4
y = 1 0.3 0.1 0.5 0.3 0.3 0.327 0.273
y = 2 0.3 0.5 0.1 0.3 0.3 0.273 0.327

Table A.2: The prior and posterior of π(θ).

π(θ) π(θ|yo = 0) π(θ|yo = 1) π(θ|yo = 2)

θ = θ1 0.8 0.8 0.8 0.8
θ = θ2 0.1 0.1 0.17 0.03
θ = θ3 0.1 0.1 0.03 0.17

maxy p(y|θ1) = 0.4;

2. p(y|θ2) and p(y|θ3) are symmetric and π(θ2) = π(θ3), as a result ∀yo ∈ {0, 1, 2}, π(θ1) =

π(θ1|yo) = 0.8 and therefore Eπ(θ)[maxy′ p(y|θ)] = Eπ(θ|yo)[maxy′ p(y|θ)] = 0.8×0.4+0.2×0.5 =

0.42.

Recall that the K function and weighted MOCU are:

K(π(θ)) = Eπ(θ)[max
y′

p(y|θ)]−max
y′

p(y), (A.1)

Mw(π(θ)) = [1−K(π(θ))] ·K(π(θ)). (A.2)

Therefore, we have ∀yo ∈ {0, 1, 2}, K(π(θ)) = K(π(θ|yo)) = 0.02, which meansMw(π(θ)) =

Mw(π(θ|yo)) > 0. On the other hand,

Uw(π(θ)) =Mw(π(θ))− Ep(yo)[Mw(π(θ|yo))] = 0, (A.3)

which means that the algorithm may get stuck. Here we just give an extreme case where only one

candidate is in the search pool, but it is straightforward to build a more practical example based on
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what we have shown here.

We can see from the example that, unlike in the cases of binary classification problems, the

weighting function 1− cK may remain unchanged for a single observation in multi-class problems.

Because of this, the weighted-MOCU algorithm may get stuck. Since OBC prediction is the

maximum of the predictive distribution p(y|x), the weight function is introduced to capture the

changes of p(y|x), as that indicates the potential shift of OBC prediction in the long run. K is a

function of maxy p(y|x), in binary case, maxy p(y|x) must change as p(y|x) changes. However,

in multi-class problems, the probability of the optimal label maxy p(y|x) may remain unchanged,

when the probability of other labels change, just like in the example above where maxy p(y) =

maxy p(y|yo = 1). In the next section, we propose a weighting function that can capture the change

of any element in p(y|x).

A.4 Another Weighted MOCU Scheme for Multi-class Classification

To extend the weighted MOCU scheme suit for the multi-class problem, we propose a weight

function that can capture the change of p(y|x). The weighting function is defined as the softmax of

p(y|x):

w(π(θ), x′, θ) =
exp(maxy p(y|x))∑

i exp(p(yi|x))
, (A.4)

where p(y|x) is the posterior predictive distribution at the current active learning iteration. We

compare this Weighted MOCU with other active learning algorithms empirically on the synthetic

three-class classification problem and the performance comparison is shown in Fig. A.1. This

new Weighted MOCU (Weighted MOCU2) performs slightly better than other algorithms on this

multi-class classification problem.

A.5 Additional WMOCU Synthetic Experiments

We run the same synthetic experiment of Fig. 3.3 with a different prior setting: w1 ∼ U(0.3, 0.8),

w2 ∼ U(−0.02, 0.02) and b ∼ U(−0.25, 0.25), and the results is shown in Fig. A.2. The perfor-

mance shows that only our Weighted MOCU method performs better than the random benchmark.

Here we benchmark different active learning strategies for OBC with another synthetic example.
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Figure A.1: The expected OBC error regret comparison between different active learning algorithms
for the three-class classification problem.

Assume the classification problem with two dimensional input features x = (x1, x2) ∈ R2 and

binary class labels y ∈ {0, 1}. The computational model is derived by a decision boundary in a

quadratic form: x2 = ax2
1 +bx1 +c, i.e. p(y = 1|x, a, b, c) = 1(x2 > ax2

1 +bx1 +c). The parameter

vector θ = (a, b, c) ∈ R3 is uncertain and the true model is characterized by a true parameter θ∗.

Unlike Monte Carlo sampling in chapter 3, here we consider a discrete grid setting for both input

space and parameter space with discretization for each variable as follows:

1. x1 ranges in [−0.5, 0.5] with increment 0.05

2. x2 ranges in [0, 2] with increment 0.1.

3. a ranges in [-4.3, -3.8] with increment 0.05,

4. b ranges in [-0.25, 0.25] with increment 0.05,

5. c ranges in [1, 2] with increment 0.05.

For now, we simply assume that the distributions over the feature space and parameter space are
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Figure A.2: The expected OBC error regret comparison between different active learning algorithms
on binary classification.

all uniform to illustrate the effectiveness of MOCU-based active learning. With prior knowledge

of the system of interest, knowledge-driven prior should be incorporated. Following the weighted-

MOCU based active learning algorithm in Algorithm 1, we can sequentially query the true system

and reduce the model uncertainty in a way that maximally reduces the classification error of the

corresponding OBC.

Now we assume that when querying the system, the class label is given with a heterogeneous

random flipping error with the error probability being a function of x1: p(y = 1|z = 0) = p(y =

0|z = 1) = 0.3 × (1 − 4x2
1) + 0.1. Therefore, when x1 = 0, the flipping error is 0.4; and when

x1 = ±0.5, the flipping error is 0.1. We have implemented the same methods as in chapter 3 with

50 iterations and 100 runs, The active learning results are illustrated in Fig. A.3. As we can see, in

this figure, MES does not perform well as it cannot differentiate between model uncertainty and

observation error. ELR performs similarly to BALD and our weighted-MOCU based method at the

beginning, but then it gets stuck before finding the true boundary. BALD and our weighted MOCU
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perform similarly. This is because in this setting p(y|x, θ) is either 1 or 0, so there is no irrelevant

uncertainty with which p(y|x, θ) is always larger or smaller than 0.5 but the value is uncertain.

In addition to the average performance comparison, we deliberately choose one of the runs

in which the ELR method gets stuck to better illustrate the difference between the existing ELR

methods and the proposed weighted-MOCU based method. In this run, the randomly chosen

parameters are (a = −3, b = 0, c = 1.9). Fig. A.4a shows the error regret (the OBC error minus

the true optimal classifier error) comparison, in which ELR gets stuck and the weighted-MOCU

based method reaches 0. Notice that the y-axis is in the logarithm scale, so the vertical line in

the WMOCU plot implies that the value turns to 0. Error regret equals to 0 indicates that the

OBC classifier equals to the true optimal classifier, but in practice we don’t know the true optimal

classifier, so we need the value of MOCU to quantify the expected error difference between OBC

and the optimal classifier of each θ = (a, b, c). Fig. A.4b shows the changes of MOCU value during

the two active learning procedures. Not surprisingly, the MOCU value during the iterations of

the ELR method also gets stuck, while the MOCU value in the iterations of the weighted-MOCU

method continues to decrease. Fig. A.4c shows the changes of the maximum value of acquisition

function in each iteration. The acquisition function of ELR decrease to 0 after 22 iterations, and that

explains why ELR gets stuck. On the other hand, the maximum acquisition function of WMOCU is

always positive as the corresponding MOCU is positive, until it gets close to 10−16, which is the

rounding error in floating point arithmetic. In theory, as the observation is noisy, we can not be sure

of the optimal prediction. Therefore, the MOCU and the acquisition function of weighted-MOCU

should always be positive, which is demonstrated in the figures.

We have also performed an experiment to show the algorithm performance change under

different noise levels. We set the flipping error rate as p(y 6= z|x) = ε× (1−4x2
1)+ε, 0 ≤ ε ≤ 0.25.

Therefore, when x1 = 0, the flipping error is 2ε; and when x1 = ±0.5, the flipping error is ε. We

perform the same methods with 100 iterations and 100 runs on the noise level ε = 0.05 and ε = 0.25.

The resulting active learning performance curves are illustrated in Fig. A.5. We can see from the

figure that the performance of MES degrades significantly with high noise while the performance of

99



0 10 20 30 40 50
Iteration number

10 4

10 3

10 2

10 1

er
ro

r

random
MES
BALD
ELR
Weighted_MOCU

Figure A.3: The expected OBC error comparison between different active learning algorithms in
the setting with heterogeneous observation error.
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Figure A.4: Comparison of ELR and weighted MOCU on a specific run.

other methods does not appear to be very sensitive to the increasing noise level. .

A.6 Additional WMOCU Real-world Benchmark Experiments

We here present the complete results on the UCI User Knowledge dataset [38]. In addition to

the uncertainty class setup in chapter 3, we have tested two other setups of hyperparameter values:

1) ‘uniform prior’ with αi = βi = 1, and 2) ’good prior’ with αi = βi = 10 in eight bins chosen
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Figure A.5: Active learning algorithm performance comparison with different noise levels.

randomly, for other bins αi = 5, βi = 2 if the true frequency of High or Medium in the i-th bin

is higher than 0.5 and αi = 2, βi = 5 if the frequency is lower than 0.5. We also randomly draw

150 samples from each class as the candidate pool and perform the five different active learning

algorithms. We repeat the whole procedure 150 times and the average error rates are shown in

Fig. A.6. In both Fig. A.6a and Fig. A.6b, ELR performs the best in these two setups while our

Weighted MOCU performs similarly. BALD performs reasonably in Fig. A.6a but it again performs

poorly in Fig. A.6b. This is because the bins with α = β = 10 have less uncertainty but have more

impact on OBC prediction and BALD fails to identify that in this setup again.

We also present the results on the UCI Letter Recognition dataset [22]. Letter Recognition is a

multi-class classification dataset with each sample having 16 numerical features generated from

typed images of the capital letters in the English alphabet. We select two pairs of hard-to-distinguish

letters: E vs. F and D vs. P. The total number of training samples is 1543 and 1608 for E vs. F

and D vs. P, respectively. Active learning algorithms are applied with Bayesian logistic regression

models. We randomly take 100 data points first to construct the prior, and use the rest of the data

as the pool to test the five active learning algorithms. For prior construction, we train a logistic

regression model on the 100 data points and take the trained parameters as the mean of a normal

distributed prior with the variance equal to 1. Then we sample 1000 particles from the prior as the
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Figure A.6: Classification error rate comparison on UCI User Knowledge dataset.
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Figure A.7: Classification error rate comparison on UCI Letter Recognition dataset.

uncertain parameter set. We repeat the whole procedure 100 times and the average error rates are

shown in Fig. A.7. Unlike the synthetic datasets, the real-world datasets have no corresponding

true models. We can only find the optimal models that approximate the data best. However, we

can still see the trends of different algorithms. Compared with random sampling, all the algorithms

quickly converge to the optimal models. ELR performs the best in the first several iterations, while

converges slowly in the latter iterations. Our weighted MOCU based method is again demonstrated

to converge faster than other competing methods.
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It is clear from all our experiments for both simulated and real-world data that, in addition to

its theoretical guarantee for active learning with OBC, our weighted MOCU method has achieved

consistently better or similar empirical performance compared to the best performing ones among

the existing pool-based active learning methods, approaching the corresponding OBCs faster with

fewer labeled samples.
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APPENDIX B

APPENDIX FOR SOFT-MOCU BASED ACTIVE LEARNING

In this appendix section, we provide the pseudo-code of our Soft-MOCU-based active learning

method together with complexity analysis in Appendix B.1, an illustrative example to demonstrate

the problem of MOCU-based active learning in Appendix B.2, and more detailed descriptions of

our experiments, additional results, and discussions in Appendix B.3 & B.4.

B.1 Soft-MOCU-based Active Learning & Computational Complexity

The pseudo-code of our Soft-MOCU-based active learning method is given in Algorithm 5

with the detailed descriptions of ACQUISITIONFUN and SMOCU functions. We further estimate the

computational complexity of our Soft-MOCU-based active learning.

Given the discrete feature space with the cardinality Nx = |X | and the uncertainty set of

classifiers with Nθ = |Θ| different models. For active learning, there are T iterations of queries

as the total budget. We study the total complexity of the active learning method. In the SMOCU

function, line 6 is called for O(NxNθ) times. In ACQUISITIONFUN, SMOCU is called for constant

times. Finally, in the main procedure, in each iteration, ACQUISITIONFUN is called for each x.

Hence, the total complexity of Soft-MOCU-based active learning is O(TN2
xNθ).

B.2 A Synthetic Example Where Mocu-based Active Learning Gets Stuck

We provide an example for intuitive illustration of how MOCU-based active learning can get

stuck without converging to the true optimal classifier. Consider a binary classification problem with

the uncertain class of two models Θ = {θ1, θ2} and the candidate pool with two candidates X =

{x1, x2}. We set the probabilistic model and the prior π(θ) as shown in Tables B.1 and B.2. In this

setting, we can calculate the predictive probabilities, which are also shown in Table B.1, indicating

the OBC ψπ(θ)(x1) = 1 and ψπ(θ)(x2) = 1. In the MOCU calculation, there is only one nonzero term

Cθ2(ψπ(θ), x2)− Cθ2(ψθ2 , x2) within the expectation in (3.2). So the MOCUM(π(θ)) = 0.01 > 0,
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indicating the OBC has not converged to the true optimal classifier corresponding to either the

underlying true model θ1 or θ2.

Assume that the observation labels of x1 and x2 are y∗1 and y∗2 respectively. Based on the different

observations of y∗1 or y∗2 , we can calculate the posterior probability of θ as shown in Table B.2, and

the posterior predictive probability as shown in Table B.1. Since for x1 the probability of y1 is the

Algorithm 5 Soft-MOCU-based active learning
1: function MAINPROCEDURE( )
2: Set a discrete candidate set X , the probability array px, and iteration number T
3: Set the discrete parameter set Θ and the corresponding probability array πθ
4: Set approximation parameter k
5: Initialize the data set D = ∅
6: πθ|D = πθ
7: for t = 1 to T do
8: for x in X do
9: Store ACQUISITIONFUN(x, πθ|D) to the array UX

10: end for
11: Optimize UX and find the maximum point x∗

12: Obtain the label y∗ corresponds to x∗ and update D = D ∪ {x∗, y∗}
13: for θ in Θ do
14: Update πθ|D ∝ πθ|D · p(y∗|x∗, θ)
15: end for
16: X = X/{x∗}
17: end for
18: end function

19: function ACQUISITIONFUN(x, πθ|D)
20: smocu_current =SMOCU(πθ|D)
21: smocu_next = 0
22: for y in {0, 1, . . . ,M − 1} do
23: for θ in Θ do
24: Generate array p(θ, y|D, x) = πθ|D · p(y|x, θ)
25: end for
26: p(y|D, x) =

∑
θ p(θ, y|D, x)

27: πθ|D,x,y = p(θ, y|D, x)/p(y|D, x)
28: smocu_next = smocu_next+ p(y|D, x) · SMOCU(πθ|D,x,y)
29: end for
30: return smocu_current− smocu_next
31: end function
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1: function SMOCU(πθ|D)
2: smocu = 0
3: for x′ in X do
4: bayesian_max = 0
5: for θ in Θ do
6: bayesian_max = bayesian_max+ πθ|D ·maxy′ p(y

′|x′, θ)
7: end for
8: p(y′|D, x′) =

∑
θ πθ|D · p(y′|x′, θ)

9: G = bayesian_max− LogSumExp[k · p(y′|D, x′)]/k
10: smocu = smocu+ p(x′) ·G
11: end for
12: return smocu
13: end function

Table B.1: The probabilities of p(y|x, θ) and predictive probabilities.

x = x1, y = y1 x = x2, y = y2

p(y|x, θ1) (0.3, 0.7) (0.4, 0.6)
p(y|x, θ2) (0.3, 0.7) (0.6, 0.4)
p(y|x) (0.3, 0.7) (0.44, 0.56)
p(y|x, y∗1 = 0) (0.3, 0.7) (0.44, 0.56)
p(y|x, y∗1 = 1) (0.3, 0.7) (0.44, 0.56)
p(y|x, y∗2 = 0) (0.3, 0.7) (0.4546, 0.5454)
p(y|x, y∗2 = 1) (0.3, 0.7) (0.4286, 0.5714)

Table B.2: The prior and posterior of π(θ).

π(θ) π(θ|x1, y
∗
1 = 0) π(θ|x1, y

∗
1 = 0 or 1) π(θ|x2, y

∗
2 = 0) π(θ|x2, y

∗
2 = 1)

θ = θ1 0.8 0.8 0.8 0.727 0.857
θ = θ2 0.2 0.2 0.2 0.273 0.143

same for both models, the posterior distribution of π(θ|x1, y
∗
1) does not change no matter what is

the true label y∗1 . Therefore, querying x1 cannot provide any information to the model and it is easy

to verify from (3.5) that:

UM(x1, π(θ)) =M(π(θ))− Ey|xM(π(θ|x1, y
∗
1)) = 0. (B.1)
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Figure B.1: Comparison of the expected OBC error regret by SMOCU with different k values
together with random sampling as well as MOCU- and BALD-based active learning methods. The
performance trends clearly show that SMOCU with appropriately chosen k values can significantly
outperform the competing methods. Note that MOCU and SMOCU with large k values achieve the
fastest convergence at the first 50 iterations as expected due to their local optimality. SMOCU-based
methods with small k values (k = 1 or 5) have similar performance trends as BALD but perform
better.

On the other hand, querying y∗2 changes the posterior distribution of θ but it does not change the

OBC for y∗2 being either 0 or 1, i.e. ψπ(θ) = ψπ(θ|x2,y∗2=0) = ψπ(θ|x2,y∗2=1). As we have discussed,

that means π(θ) and π(θ|x2, y
∗
2) are within the same linear piece of MOCU, and in this case the

acquisition function is 0. In fact, based on (3.6), we have:

UM(x2; π(θ)) = Ex{Eπ(θ)[Cθ(ψπ(θ), x)]} − Ex{Ep(y∗2 |x2)[Eπ(θ|x2,y∗2)[Cθ(ψπ(θ|x2,y∗2), x)]]},

= Ex{Eπ(θ)[Cθ(ψπ(θ), x)]} − Ex{Ep(y∗2 |x2)[Eπ(θ|x2,y∗2)[Cθ(ψπ(θ), x)]]} = 0, (B.2)

where the second line holds as π(θ) = Ep(y∗2 |x2)[π(θ|x2, y
∗
2)]. Therefore, although MOCU is larger

than 0, the corresponding acquisition function is 0 for all the candidates. Hence, the MOCU-based

active learning can get stuck in this case without identifying whether the true model is θ1 or θ2 to
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derive the true optimal classifier.

From the example above we can see that the MOCU-based method gets stuck when a single

query of y∗2 does not change the label of the OBC even though it changes the posterior of π(θ).

However, if we repetitively observe y∗2 , the posterior of π(θ1) will converge to either 0 or 1 with

reduced model uncertainty until identifying the true underlying model θ1 or θ2 and the MOCU will

converge to 0. That shows the one-step-look-ahead strategy based on MOCU reduction cannot

identify the long term effect of a single query. On the other hand, our Soft-MOCU-based acquisition

function can capture the changes of posterior, even with small changes, due to the strict concavity

of SMOCU. Therefore, SMOCU-based active learning does not have this problem and alleviates

the myopic behavior as demonstrated in our experiments.

B.3 Additional SMOCU Synthetic Experiments

In Fig. B.1, we show more results with different values of k for our Soft-MOCU-based active

learning method on the example shown in Fig. 3.6. From the figure, we can see as the value of k

increases, the performance curve of SMOCU changes gradually, from the curve (k = 1) close to

the performance curve of BALD, to the best performing curve (k = 100), then to the performance

curve (k = 10000) close to that of MOCU. The performance trends clearly show that SMOCU

with appropriately chosen k values can significantly outperform the competing methods. Note that

MOCU and SMOCU with large k values achieve the fastest convergence at the first 50 iterations as

expected due to their local optimality. SMOCU-based methods with small k values (k = 1 or 5)

have similar performance trends as BALD but perform better.

We further run the same synthetic experiment of Fig. 3.7 with a different prior setting: w1 ∼

U(0.3, 0.8), w2 ∼ U(−0.25, 0.25) and b ∼ U(−0.25, 0.25). With this prior setting, the region

near the x2 axis where the decision boundary lies has similar uncertainty of p(y|x,w, b) compared

with the region far away from the x2 axis. The results are shown in Fig. B.2. Under this setting,

BALD performs well as expected since the model uncertainty affects the classification performance

similarly, but our Soft-MOCU-based method still performs better than BALD and other competing

methods.
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Figure B.2: The expected OBC error comparison between different active learning methods on
binary classification.

B.4 Additional SMOCU Real-world Benchmark Experiments

We here present the complete results on the UCI User Knowledge dataset [38]. In addition

to the uncertainty class setup in section 3.6.3, we have tested two other setups of hyperparameter

values. In the first setup (Uniform prior), uniform priors are adopted for all the 16 bins with

α(i) = 1, 1 ≤ i ≤ 16. In the second setup (Good prior), we randomly choose 8 bins and set

uniform priors on them with α(i) = 1; for the other 8 bins, the priors are set as α(i)
j = 10 if j

corresponds to the true label, and α(i)
j = 1 for the other labels. This setting is opposite to the setting

in section 3.6.3.

We also randomly draw 50 samples from each class as the candidate pool and perform the

same active learning methods. We repeat the whole procedure for 150 times and the averaged

classification error is shown in Fig B.3. In both prior settings, MOCU-based method gets stuck

(degraded to random sampling) before converging to the optimal classifier, though it converges the

fastest at the beginning (first 10 iterations). On the other hand, in both cases our Soft-MOCU-based

method with k = 100 has the fast convergence both at the beginning and in the long run.

109



0 10 20 30 40 50
Iteration number

0.2

0.3

0.4

0.5

0.6

0.7
er

ro
r

random
MES
BALD
MOCU
SMOCU(k=10)
SMOCU(k=100)

(a) Uniform prior

0 5 10 15 20 25 30
Iteration number

0.25

0.30

0.35

0.40

0.45

er
ro

r

random
MES
BALD
MOCU
SMOCU(k=10)
SMOCU(k=100)

(b) Good prior

Figure B.3: Classification error rate comparison on the four-class classification problem with UCI
User Knowledge dataset.

We also have made a binary classification problem from the UCI User Knowledge dataset for

comparison between these different methods. We group these samples into two classes: 0: High or

Medium; 1: Low or Very Low. With the same feature space and bin settings, we have tested two

setups of hyperparameter values for the Dirichlet priors. The first setup (Bad prior) is the same

as the one we have used to generate Fig. 3.9, and the second setup (Good prior) is the same as

the one adopted for Fig. B.3b.
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Figure B.4: Classification error rate comparison on the binary classification problem with UCI User
Knowledge dataset.
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We have randomly drawn 150 samples from each class as the candidate pool and perform the

same comparison with different active learning methods. Again we repeat the whole procedure 150

times and the averaged classification error is shown in Fig. B.4. The performance trends are similar

as those observed for the four-class classification problem. Our Soft-MOCU-based method with

k = 100 has achieved better or similar performance compared with the best performing one among

the competing methods.
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