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ABSTRACT

Soil moisture (SM) and evapotranspiration (ET) are key climate variables governing environ-

mental processes from local to global scales. The global burgeoning of SM and ET datasets holds

a significant potential in improving our understanding of multiscale hydrological dynamics. The

primary issues that hinder the fusion of SM and ET data are (1) different resolution of the data

instruments, (2) inherent spatial variability in SM and ET caused due to atmospheric and land sur-

face controls, (3) measurement errors caused due to imperfect retrievals of instruments, and (4)

massive size of the datasets. This dissertation aims to develop data fusion algorithms to combine

multiscale data and improve understanding of multiscale SM and ET dynamics while accounting

for the above-mentioned challenges. The research questions answered in this dissertation include

1) determining the effects of surface and atmospheric controls on the spatio-temporal mean and co-

variance of SM using a non-stationary geostatistical algorithm; 2) predicting SM across multiple

scales and quantifying the effects of surface physical controls (soil texture, vegetation, topogra-

phy) and rainfall on SM distribution as well as their effect on retrieval errors of soil moisture

platforms; 3) providing a novel framework to fuse SM data for continental scale analysis and 4)

improving existing ET data fusion algorithms by accounting for uncertainty in retrievals and incor-

porating ancillary data/domain knowledge. It was found that the variance and correlation structure

of SM varies significantly with spatial heterogeneity in land surface controls for a watershed in

Winnipeg, Canada. For the same watershed, the proposed data fusion framework was applied to

combine point, airborne and satellite SM data and it was adept at assimilating and predicting SM

distribution across all three scales. The data fusion framework was then extended to combine point

and satellite SM data across Contiguous US and the effects of physical controls on SM distribution

were quantified. For ET data fusion, a state-space modeling framework was developed to combine

daily ET satellite data for three agricultural sites in Texas and it was found that when compared

with daily Eddy-Covariance ET data, the proposed approach outperformed the traditional fusion

algorithm.
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1. INTRODUCTION

1.1 Soil Moisture

Soil moisture (SM) is a critical variable modulating the water and energy fluxes between earth

and atmosphere. At a local scale, SM is an essential variable for efficient agricultural and irrigation

practices [3] while at a global scale it affects various environmental processes such as climate [4],

biogeochemistry [5], carbon cycle [6], heat waves [7, 8], floods [9], droughts [10] and wildfires

[11].

1.1.1 Spatio-temporal heterogeneity of Soil Moisture

SM exhibits spatio-temporal heterogeneity across scales governed by complex interactions be-

tween different surface and atmospheric controls. Precipitation, soil texture, topography and veg-

etation are considered as the dominant controls affecting SM distribution across space and time

[12, 13, 14, 15, 16, 17, 18, 19, 20]. These physical controls interact dynamically to create SM

patterns and it is often difficult to isolate their individual effects [21]. Spatio-temporal correla-

tion in SM is a crucial factor to understand sub-grid SM dynamics and the mean and variance

alone fail to provide an exhaustive characterization of SM variability [22, 23, 21, 24]. Geostatis-

tics has traditionally been used to quantify this correlation structure in SM. The assumption of

stationarity/isotropy, however, has been one of the chief reasons limiting the use of geostatistics in

heterogeneous environments to determine the spatio-temporal variability of SM and its subsequent

upscaling to the required support scales.

1.1.2 Soil Moisture Data Fusion

SM is measured at various resolutions ranging from a few centimeters to hundreds of kilo-

meters and an SM measurement is defined using the scaling triplet: support, extent and spacing.

Support refers to the representative area of the data sample, extent refers to the total coverage area

of the data, and spacing refers to the distance between individual samples [25, 26]. SM is available

from local to global scales from a variety of instruments [27] such as capacitance sensors, time

1



domain reflectometers, active-passive airborne sensors, cosmic-ray neutron probes, Global Posi-

tioning Systems, and satellites such as Soil Moisture Ocean Salinity (SMOS) and Soil Moisture

Active Passive (SMAP).

Data fusion of SM denotes the process of combining SM data from multiple platforms into

a single holistic composite product such that the composite is more accurate and provides more

information than any individual platform [28]. The abundance of multiscale SM data presents a

never-before opportunity for the scientific community to improve its understanding of multi-scale

SM dynamics. There is, thus, a need for a data-driven fusion scheme to combine remote sensing

data with traditional point sensors.

1.1.3 Soil Moisture Big Data Fusion

The past few years has witnessed an explosive growth in SM (and other environmental) remote

sensing data. This so called “Big” SM data are spatio-temporal (indexed by a spatial coordinate

and a time stamp) and have the potential to uncover novel insights into multiscale SM dynamics

from local to global scales. Usually, SM data are

• spatio-temporally dependent,

• available at multiple resolutions from various instruments, and

• observed with gaps and noise.

It is unreasonable to expect one source of data to fill all the gaps across space and time. How-

ever, combining multi-sensor data, while accounting for individual strengths and weaknesses, can

lead to novel insights into multiscale SM behaviour. Paradigms facilitating the fusion of disparate

SM data while handling the sheer size of datasets are thus critical.

1.2 Evapotranspiration

Evapotranspiration (ET) is a key flux coupling the global water, energy and carbon cycle in-

fluencing a variety of processes and activities such as agricultural water management [29, 30],

drought estimation [31, 32], water and energy balance closures [33, 34], water rights studies [35],
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Figure 1.1: Different soil moisture platforms from point to satellite support scales

and atmospheric processes [36]. Remote sensing has emerged as an accurate and relatively inex-

pensive way to estimate ET over vast spatio-temporal domains and fusion of existing ET remote

sensing platforms thus is critical.

1.2.1 Evapotranspiration data fusion

Current ET remote sensing platforms either provide observations at a fine spatial resolution

(∼ 70 − 100m) but have extended revisit times or else provide data at a coarse spatial resolution
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albeit at a high temporal frequency. At sub-field scales, ET data at a fine spatial resolution is there-

fore available after prolonged time intervals. Combining different remote sensing ET products

is therefore challenging because of the sparsity of data at a fine spatial resolution. Additionally,

the data fusion scheme should account for measurement errors in the platforms and errors caused

due to different retrieval methods as well as provide a framework to include additional physi-

cal/empirical knowledge of the underlying variable.

1.3 Motivation and Objectives

Due to the importance of SM and ET in water, energy and carbon cycles, the motivation of this

dissertation is to increase our understanding of SM and ET dynamics at multiple scales as well as

provide multiscale estimates of these variables typically required from local to regional levels for

varied applications. This is achieved by developing and presenting data fusion algorithms combin-

ing SM and ET data available from disparate multi-resolution platforms while accounting for the

challenges associated with remote sensing retrievals and incorporating the effect of different phys-

ical controls on the underlying spatio-temporal distribution of these variables. Thus, the objectives

of this work are:

1. Present a framework to model SM in a nonstationary setting using a flexible geostatistical

model whose variance/correlation structure varies with underlying atmospheric and surface

heterogeneity.

2. Present a multiscale fusion algorithm to combine SM data from multiple instruments (in an

optimal way) while partitioning the inherent spatio-temporal dynamics of SM distribution

and the measurement errors induced by different data instruments.

3. Extend the data fusion scheme in Objective 2 to a Big Data setting when the size of the

datasets becomes massive.

4. Propose a data fusion scheme for ET estimation when the fine resolution ET data are tempo-

rally sparse.
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1.4 Hypotheses

The dissertation evaluates the following hypotheses:

1. Physical controls at a particular location will affect both the variance of SM at that location

as well as its correlation with SM at other locations.

2. Geostatistics driven multiscale data fusion of SM platforms increases predictive capability

of SM across multiple scales and can be efficiently scaled to combine Big data across vast

spatio-temporal domains.

3. Existing unsupervised ET data fusion algorithms can be modified to include ancillary data

and domain knowledge for improved ET estimation at fine spatial resolutions.

The dissertation addresses the objectives of this research in the five chapters that follow. Chap-

ter 2 proposes a novel non-stationary geostatistical framework such that the spatial distribution

of SM varies with the underlying physical controls. Chapter 3 presents a multiscale data fusion

framework combining a hierarchical paradigm with the the non-stationary algorithm proposed in

Chapter 2. Chapter 4 extends the data fusion to a “Big” data setting by proposing a novel numerical

approximation such that the data fusion algorithm can be applied efficiently for Big data. Chapter

5 focuses on data fusion of ET platforms where existing data fusion schemes are modified such

that they can include uncertainty in observations, ancillary data and domain knowledge. Chapter 6

concludes the dissertation by providing a summary as well as future directions of the research.
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2. A NONSTATIONARY GEOSTATISTICAL FRAMEWORK FOR SOIL MOISTURE

PREDICTION IN THE PRESENCE OF SURFACE HETEROGENEITY

2.1 Synopsis

1Soil moisture is spatially variable due to complex interactions between geologic, topographic,

vegetation and atmospheric variables. Correct representation of sub-grid soil moisture variability

is crucial in improving land surface modeling schemes and remote sensing retrievals. In addition

to the mean structure, the variance and correlation of soil moisture are affected by the underlying

land surface heterogeneity. This often violates the underlying assumption of stationarity/isotropy

made by classical geostatistical models. The present study proposes a geostatistical framework

to predict and upscale soil moisture in a non-stationary setting using a flexible spatial model

whose variance/correlation structure varies with changing land surface characteristics. The pro-

posed framework is applied to model soil moisture distribution using in situ data in the Red River

watershed in Southern Manitoba, Canada. It is seen that both the variance and correlation structure

exhibits spatial non-stationarity for the given surface heterogeneity driven primarily by vegetation

and soil texture. At the beginning of the crop season, soil texture plays a critical role in the drying

cycle by decreasing variance and increasing correlation as the soil becomes drier. Once the crops

begin to mature, vegetation becomes the dominant driver, promoting spatial correlation and reduc-

ing SM variance. We upscale our point scale soil moisture predictions to the airborne extent (∼

1.5 km) and find that the upscaled soil moisture agrees well with the observed airborne data with

RMSE values ranging from 0.04 to 0.08 (v/v). The proposed framework can be used to predict and

upscale soil moisture in heterogeneous environments.

1Reprinted with permission from, ’ A nonstationary geostatistical framework for soil moisture prediction
in the presence of surface heterogeneity’ by Kathuria et al. (2019) Water Resour. Res., 55, 729-753,
https://doi.org/10.1029/2018WR023505, Copyright 2019 John Wiley and Sons, Inc.
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2.2 Introduction

Although soil moisture (SM) comprises a minuscule percentage of the global liquid freshwa-

ter, it forms an essential link between the earth and the atmosphere by modulating the water and

energy fluxes between the two systems. SM is critical for optimal agricultural and irrigation prac-

tices [3] at a local scale. On a global scale, it affects weather [37] and climate [4] predictions,

drought forecasts [10] and future soil carbon predictions [6]. It plays a crucial role in characteriz-

ing biogeochemical processes [5] and quantifying terrestrial dust emissions [38, 39]. Through its

interactions with the atmosphere, SM acts as a driver for the intensification of extreme events such

as floods [9], heat-waves [7, 8] and wildfires [11] among others.

SM is highly variable in both space and time [21, 40, 41]. Correct representation of SM vari-

ability is crucial in improving land surface modeling schemes [42] and aids to reduce bias in

predictions of water and energy fluxes [43]. Understanding SM variability at a fine scale is critical

for planning ground-based sampling schemes, which in turn, plays a vital role in the validation of

satellite SM retrievals [23].

SM variability across different spatial scales is largely controlled by complex interactions be-

tween geologic, topographic, vegetative and atmospheric variables. While large scale (> 100 km)

SM patterns are mainly controlled by precipitation and evapotranspiration, sub-grid variability is

affected by heterogeneity in surface controls [12]. Soil texture, topography and vegetation in gen-

eral, are the dominant surface controls affecting SM distribution.

Soil texture is defined by the relative percentages of sand, silt and clay in a given soil type.

Soil texture affects the water holding capacity of the soil and has a pronounced effect on the SM

distribution. The same has been validated by several studies [15, 14]. [13] found that surface SM

variability was strongly affected by soil texture using a semi-variogram analysis. For a semi-arid

region in Nebraska, [44] inferred that an increase in spatial variability in soil texture led to a corre-

sponding increase in variability of SM. [16] showed that soil texture affects the correlation lengths

of SM at different support scales. [45] also observed soil texture to be the dominant physical

control in Iowa and Oklahoma at both point and airborne support scales.
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Topography usually affects the spatial distribution of SM in wet conditions and the same was

validated by [45]. [17] found that topography affects the SM distribution during and immediately

after a rainfall event while [18] inferred that topography influences SM distribution under uniform

vegetation conditions.

Vegetation influences both the downward flow of water (via interception) and the upward flow

(through transpiration) of water-vapor. Unlike texture and topography, the effect of vegetation is

dynamic and can vary significantly throughout the year. Vegetation can stimulate an increase or

decrease in spatial variability of SM based on the season and time of the year [19, 20].

Although many studies have found a hierarchy or dominance of one surface control over the

other, the consensus is that soil texture, vegetation and topography interact dynamically to create

SM patterns and it is often difficult to isolate their individual effects [21]. These interactions vary

with diverse wetness conditions and with the dynamic stages during the wetting and drying cycles

[46, 47]. The surface controls can act together to either create or destroy spatial variability [48]

and also govern the relationship of the variance with the mean SM across climate zones [49].

In addition to influencing the mean and variance, heterogeneity in surface controls also affects

the spatial correlation structure of SM [50, 51, 14] engendering non-stationarity in correlation

lengths [13]. Nested correlation structures in SM distribution have also been attributed to both the

heterogeneity of the surface controls and spatial variability of precipitation with smaller correlation

lengths fostered by surface controls and larger correlation lengths by rainfall patterns [16].

Correlation in SM is a crucial factor to understand sub-grid SM dynamics [52], and the mean

and variance alone fail to provide an exhaustive characterization of SM variability [22, 21]. There-

fore, in addition to the mean and variance, spatial correlation should also be considered when

modeling spatial distribution of SM. Classical geostatistics has been traditionally used to model

SM and have generally relied on variogram-based approaches to quantify the above mentioned

correlation structure in SM. Variogram techniques, though straight forward to implement, should

be used with caution, as they generally assume some form of stationarity/isotropy in the SM dis-

tribution. The assumption of stationarity/isotropy has been one of the chief reasons limiting the
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use of geostatistics in heterogeneous environments to determine the spatial variability of SM and

its subsequent upscaling to the required support scales. While there has been significant growth

in varied SM estimation techniques such as wavelet analysis [53, 14], temporal stability analysis

[54, 15, 55], thermal inertia [56], machine learning algorithms [57, 58], data assimilation [59, 60],

etc., the application of geostatistics to the same has been waning in recent years. This is unfor-

tunate, because parameters of geostatistical methods have direct physical interpretations enabling

rich scientific inference and increased potential for transferability to data-scarce regions. Recent

state of the art work in big data statistics [61, 62] has also enabled geostatistics techniques to be

implemented on a global scale, making them attractive candidates to do large-scale SM inference.

Therefore, the motivation of the present work is to present a geostatistical framework to predict

and upscale SM in a non-stationary setting. The hypothesis of this study is that local surface

Figure 2.1: Study site located in the Red River watershed at Winnipeg in the state of Manitoba in
Canada [1].

controls at a particular location will affect both the variance of SM at that location as well as its

correlation with SM at other locations. For example, the variance/correlation characteristics for a

region with predominantly bare sandy soil will be different than a clay soil in an agricultural field.

In such cases, stationarity no longer holds and classical geostatistical methods tend to fail. The

objective of the present work is to present a framework in such a scenario using a flexible stochas-
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tic geostatistical model whose variance/correlation structure varies with changing surface controls.

To achieve this, we use a class of non-stationary spatial models adapted from [63] and [64]. The

point scale spatial distribution of SM is then upscaled to an areal (block) support following [65].

This approach is formally optimal and physically interpretable, as opposed to the ad-hoc upscaling

techniques usually employed in practice.

Figure 2.2: Histogram of point scale soil moisture distribution during the SMAPVEX12 cam-
paign. Soil moisture exhibits a large range of wetness conditions due to underlying land surface
heterogeneity [1].

The proposed framework is applied to a watershed exhibiting large variability in both wetness
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conditions and surface heterogeneity in Winnipeg, Canada. Though various non-stationary covari-

ance functions have been proposed in literature [66, 67, 68], to the best of the authors’ knowledge,

this is the first study which explicitly models and aggregates the spatially varying variance and

correlation structure of SM in terms of the underlying surface heterogeneity using a geostatistical

framework. In the following sections of this chapter, vectors and matrices have been denoted by

bold-faced letters.

2.3 Study Area

The Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12) was conducted

from June 6th to July 17th 2012 in Winnipeg, Manitoba (Canada) (Figure 2.1) which is classified

as having fully humid climate (Dfb classification) according to the Köppen-Geiger climate classi-

fication [69], with an average annual precipitation of 521 mm. This study area was chosen because

the region experiences significant spatial variability in SM arising due to heterogeneity in soil tex-

ture and vegetation and as a result exhibits a large range of wetness conditions in the study domain

(Figure 2.2). There is a sharp contrast of soil texture across the site, with heavy clays in the east to

fine loamy sands in the west. The land cover is dominated by perennial agricultural crops (cereals,

soybeans, canola and corn) with approximately 15% of land occupied by wetlands and forests in

the northwest region. The campaign was carried out during the crop-growing season with low

biomass contents (<0.1 kg/m2) at the start of the campaign and reaching biomass contents of 1-2

kg/m2 for bean crops and 4 kg/m2 for corn in the final week.

During the campaign, airborne data were collected for 15 days using a passive-active L-band

sensor (PALS). In situ SM data were also collected during the flight days using Stevens Water

Hydra Probe and Delta-T Theta probes. The sampling was primarily done in the agricultural part

of the watershed and we restrict ourselves to the subset of the watershed for which these point

scale observations are available. For each agricultural field, SM was measured at 16 sampling

locations and three replicate readings were taken at each location. For complete details of the

study site and the SMAPVEX12 campaign, interested readers are encouraged to refer to [70].

The SM data at both in situ and airborne scales as well as the soil texture and rainfall data were
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Table 2.1: Summary statistics for soil texture and vegetation [1].SD = Standard Deviation

Surface control Minimum 10th percentile Mean 90th percentile Max SD
Percent clay 5 5 34.61 65 65 24.58
Percent silt 5 5 19.79 33 42 9.47

LAI
DOY 167 0.43 0.65 1.67 3.50 4.58 1.04
DOY 174 1.00 1.34 2.70 4.71 6.26 1.27
DOY 177 1.15 1.54 3.10 5.47 6.70 1.50
DOY 181 1.11 1.49 2.56 4.42 6.38 1.19
DOY 185 0.32 1.83 2.85 4.32 5.97 0.97
DOY 187 1.38 2.17 3.25 4.44 5.83 0.88
DOY 190 1.63 2.29 3.79 5.26 6.27 1.08
DOY 192 1.77 2.65 4.00 5.42 6.07 1.03
DOY 195 1.59 2.10 3.85 5.09 6.03 1.10
DOY 196 1.53 1.97 3.74 5.16 6.13 1.17
DOY 199 1.06 2.05 3.63 5.30 6.01 1.18

accessed from the National Snow and Ice Data Center (NSIDC) website. The Leaf Area index

(LAI) data were extracted from the four-day composite MODIS (MCD15A3H, version 6) product

at a 500 meters resolution available at National Aeronautics and Space Administration (NASA)

Land Processes Distributed Active Archive Center (LPDAAC). The summary statistics for soil

texture and vegetation are given in Table 2.1.

2.4 Theory

Geostatistics has traditionally been used to model and predict SM patterns across different

spatial scales [18, 26, 71, 16, 46] where it is assumed that the observed SM is an incomplete

sample from a single realization of a continuous spatial stochastic process {y(s) : s ∈ D} or y(.)

in a spatial domain or region D. y(s) is typically structured as:

y(s) = µ(s) + e(s) (2.1)

where µ(s) ≡ E(y(s)) is the deterministic mean function and, e(s) is the zero-mean spatially

dependent stochastic process. The most commonly used specification for the mean function is
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µ(s) = X(s)Tβ, whereX(s) is the vector of covariates at s and β represents the vector of regres-

sion coefficients. In traditional geostatistics, the β vector is sometimes first provisionally estimated

as βols from the data ignoring e(.), using ordinary least squares (OLS). The estimated mean func-

tion XTβols is then subtracted from the data resulting in residuals. Empirical variograms are

then generated for the residuals and parameteric variogram models are "matched" to the empirical

variograms to get an estimate of parameters in e(.) using method of moments [72, 73, 74].

Though easy to implement, the above mentioned technique for parameter estimation, also

referred to as classical geostatistics [75] or two-point statistics [21] is largely informal and not

optimal, suffering from biased parameter estimates due to provisional estimation of the mean

[76, 77, 75]. Further, empirical variograms are sensitive to outliers and become unstable as the

lag distance increases [77]. It has been seen in studies that the parameters estimated from empiri-

cal variograms are highly uncertain even with more than 200 SM measurements [24]. Therefore,

it is suggested that direct parameter estimation using empirical variograms should be avoided and

instead, they should be used as graphical exploratory tools for formal statistical procedures such

as maximum likelihood (ML) estimation [77].

Parameter estimation based on the likelihood function is statistically formal and is optimal

under mild regularity conditions [75]. The only additional assumption it requires is a fully specified

joint distribution for y(.) in equation (2.1) by explicitly defining parameteric forms for µ and for

the covariance of e [75]. A popular choice for the above is assuming the mean µ = XTβ (as

before), and the spatially dependent stochastic process e(.) as a Gaussian Process with mean zero

and covariance C such that e(.) ∼ GP (0, C). For a finite set of n locations S = {s1, ..., sn} with

si ∈ D, y = y(S) = (y(s1), ..., y(sn)) has a multivariate normal distribution given as:

y = (y(s1), ..., y(sn)) ∼ Nn(µ,C) = (2π)−n/2|C|−1/2exp(−(1/2)(y−µ)′C−1(y−µ)), (2.2)

where µ is an n-dimensional vector= (Ey(s1), ..., Ey(sn)) = (X(s1), ...,X(sn))Tβ = XTβ

and C is a n × n matrix with (i, j)th element equal to C(si, sj) for i, j = 1, .., n. Let C be a
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function of a parameter vector θ. The log-likelihood of the joint distribution is then given as:

logL(β,θ) = −1

2
(log|C(θ)|+ (y − µ(β))TC−1(θ)(y − µ(β)) + nlog(2π)) (2.3)

Then, the ML estimates are the parameter values β̂ and θ̂ which maximize equation (2.3).

It is possible to find the parameters which maximize equation (2.3) by maximizing the profile

log-likelihood which depends only on θ and is therefore computationally cheaper to maximize.

The corresponding profile log-likelihood of equation (2.3) is given by:

l(θ) = −1

2
(log|C(θ)|+ y′P (θ)y + nlog(2π)), (2.4)

where P (θ) := C−1 −C−1X(X ′C−1X)−1X ′C−1. The corresponding value of β̂ is a function

of θ̂ given by:

β̂(θ̂) = (X ′C(θ̂)−1X)−1X ′C(θ̂)−1y. (2.5)

Note that β̂ is the generalized least squares estimator of β if the covariance of y is equal to

C(θ̂) [75]. In practice, the covariance function C is often assumed to be isotropic, such that the

covariance of the process e(.) between any two points s1 and s2 depends only on the lag-distance

between them, or Cov[e(s1), e(s2)] = C(|s1 − s2|). Then C is modelled using a parametric

isotropic covariance function such as exponential, spherical, Matérn, etc. Sometimes, a nugget

effect, representing microscale variability or observational error, is added to C such that the result-

ing covariance function between any two points s1 and s2 becomes C(s1, s2) + τ 21[s1=s2](s1, s2),

where τ 2 represents the nugget variance and 1R(x) is the indicator function defined as 1R(x) :=
1 x ∈ R

0 x 6∈ R
[77]. τ 2 is assumed to be a constant and can either be known or be estimated from the

data. The resulting covariance function is isotropic and as mentioned before this assumption is not

always valid. In the next section we define the controls-driven non stationary covariance function
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for such situations.

2.5 Methodology

In this section, we present the statistical framework for SM prediction and upscaling under

a non stationary setting. The utility of empirical variograms as exploratory tools is discussed in

Section 2.5.1. The controls-driven non stationary covariance function is then presented in Section

2.5.2. We next detail tools for performing global optimization to find the ML parameter esti-

mates and discuss procedures to do physical interpretation from the parameters. This is followed

by spatial prediction at point scale and the upscaling algorithm in Section 2.5.4. The proposed

geostatistical framework is summarized in Figure 2.3.

2.5.1 Exploratory variogram analysis

We use empirical variograms to perform exploratory analysis for SM data and check whether

the assumption of stationarity holds. To do this, we divide the study area into sub-regions and

draw variograms for each of the sub-regions after subtracting the mean. If the variograms for all

the sub-regions are similar, we have some evidence that the process is spatially stationary. If the

variograms appear significantly different, we test for non-stationarity. The variograms also give an

indication of the structure of the non-stationary models.

2.5.2 Surface controls-driven non stationary covariance function

We adapt the spatial model of [63] and spatio-temporal model of [64] to develop the non-

stationary covariance function. Since the basic motivation of our model is that different combina-

tions of surface controls will govern the spatially dependent process e(.), following [63], we model

e(.) in equation (2.1) as:

e(s) =
M∑
j=1

wj(s)ej(s) (2.6)
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Figure 2.3: Flowchart of the geostatistical framework [1].

that is, the spatially dependent process at a point s is defined as the weighted sum ofM stochas-
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tic terms, ej(s), for j = 1, ..,M . We take the individual ej to be independent zero-mean Gaussian

processes with isotropic covariance functions Cj . Further, following [64], we model the weights

wj as functions of surface controls X . This ensures that the underlying surface heterogeneity

governed by different combinations of surface controls determines the variance and correlation

structure of SM distribution. Since the individual ejs are independent, the covariance function for

e(.) is given as:

Cov(e(s1), e(s2)) = Cov(
M∑
j=1

wj(X(s1))ej(s1),
M∑
j=1

wj(X(s2))ej(s2))

=
M∑
j=1

wj(X(s1))wj(X(s2))Cj(|s1 − s2|)

= C(s1, s2,X(s1),X(s2))

(2.7)

The covariance for e(.) can therefore be represented by the non-stationary covariance function

C in equation (2.7). C is now a function of the surface controls X , in addition to the lag-distance

between the two points, and therefore serves as a non stationary extension to spatial models using

isotropic covariance functions. While there can be different ways to model the weighting functions

wj , we use a multinomial logistic function given as:

wj(s) =
exp(X(s)Tαj)∑M
l=1 exp(X(s)Tαl)

(2.8)

where α1, ...,αM are vectors of regression coefficients that describe the effect of surface controls

on the covariance function. Note that if the number of controls is p, then the length of each αi

vector is p + 1 (including the intercept). Using a multinomial function is advantageous because

it ensures that the weighting functions wj always sum to one, making the isotropic covariance

function a special case of the above (M =1, makesw1 = 1 andC = C1). This makes the above non-

stationary model flexible, as it can be used to model both stationary and non-stationary processes.

Since all the weights sum to one, we fix all the components of vector α1 equal to zero as is usually
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done in logistic regression, which also reduces the number of parameters to be estimated.

For each of the individual covariance functions Cj , we choose the Matérn as it belongs to a

class of flexible covariance functions and can model a wide variety of spatial processes. Moreover,

other widely used covariance functions such as the exponential and Gaussian functions are special

cases of the Matérn [75]. The Matérn function is defined as:

C(h) = σ2 21−ν

Γ(ν)

(h
λ

)ν
Kν

(h
λ

)
, λ > 0, ν > 0 (2.9)

where σ2, λ and ν are the variance, range and smoothness parameters, respectively, and Kν is

the modified Bessel function of the second kind of order ν. Therefore, for M=m and p controls,

the total number of parameters to be estimated are the regression coefficients for mean, β =

[β1, ..., β(p+1)], regression coefficients for the covariance function, αj = [αj1, ..., αj(p+1)] for j =

2, ..,m and the parameters for Matérn covariance functions Cj , [νj, λj, σ
2
j ] for j = 1, ...,m. We

denote all the parameters inαj and Cj as the vector θ. Note that forαj , we start from j=2 because,

as mentioned earlier, we fix all components of α1 equal to zero.

2.5.3 Maximum likelihood parameter inference

2.5.3.1 Parameter estimation

To obtain estimates of the parameters of the non-stationary model defined in Section 2.5.2, we

find the ML estimates using the log-likelihood function defined in equation (2.4). Since we do

not have closed-form expressions for θ̂, we rely on non-linear optimization techniques to find our

parameter estimates. The likelihood surface for spatial models tends to be relatively flat and can

also consist of multiple modes [78]. For the non-stationary model in Section 2.5.2, the optimiza-

tion becomes more involved. In our analysis, we therefore employ stochastic global optimization

algorithms to find the ML estimates. The performance of any global optimization algorithm to

find optimum parameter estimates is highly dependent on the problem being solved. [79] tested 18

commonly used global optimization algorithms on 48 objective functions to explore the efficacy of

the algorithms for a variety of problems. In terms of both speed and accuracy, it was found that the
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Generalized Simulated Annealing (GenSA) algorithm [80] and the GENetic Optimization using

Derivatives (Genoud) [81] were the most consistent optimization routines.

Simulated annealing is a stochastic optimization algorithm and and is widely used to find global

optima for complex non-linear objective functions with multiple local optima. The GenSA method

is a generalized and improved form of the classical simulated annealing method [80]. Genoud

on the other hand, combines evolutionary search algorithms (such as genetic algorithm) with

derivative-based methods (Newton or quasi Newton) in order to solve complex non-linear objec-

tive functions with multiple local optima and saddle points. It is relatively faster than pure genetic

algorithms, as it also incorporates the derivative information of the objective function. In order to

make sure that we arrive at the global ML estimates, we implement both optimization schemes in

this study. After finding the ML estimates of θ̂, we obtain β̂ using equation (2.5).

After finding the ML estimates, interest typically lies in parameter inference as well as spatial

prediction at unknown locations. Unlike β̂, parameter inference for θ̂ is not trivial and we discuss

the same in the following section.

2.5.3.2 Effect of surface controls on variance and correlation

Since the covariance between any two points s1 and s2 is now a function of their lag distance

in space, |s1 − s2|, as well as the vector of the controls at the two points, X(s1) and X(s2), the

effects of individual covariates on the variance/covariance of SM is not straightforward. A simple

way to demonstrate the effect of an individual control on the variance and correlation structure is

to analyze the effect of changing the value of that surface control on the non-stationary covariance

function while keeping the other controls constant [64]. To do this, we analyze the covariance

functions when the surface control is at low (10th percentile), dominant (mean) and high (90th

percentile) values while fixing the rest of the controls at the mean values. This will be a good indi-

cation of the change in variance/correlation structure when individual surface controls are varied.

If each of the surface controls is standardized (mean = 0, variance=1) then this leads to comparing
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and plotting three covariance functions:

C low
k (s) =

M∑
j=1

exp(αj1 + (x0.1k )αjk)∑M
l=1 exp(αl1 + (x0.1k )αlk)

Cj(s)

Cdominant
k (s) =

M∑
j=1

exp(αj1)∑M
l=1 exp(αl1)

Cj(s)

Chigh
k (s) =

M∑
j=1

exp(αj1 + (x0.9k )αjk)∑M
l=1 exp(αl1 + (x0.9k )αlk)

Cj(s)

(2.10)

where, for the kth surface control xk, x0.1k and x0.9k are the 10th and 90th percentile values. Since

αj1 is the intercept term in equation (2.8), it is always included. To get the variances, we find the

values at s = 0, and to get the correlations, we divide the above equations by their corresponding

variances.

2.5.4 Spatial prediction of SM

2.5.4.1 Point support

Having estimated the parameters β̂ and θ̂ of our spatial model, spatial prediction is relatively

straightforward. Given observations y = y(S) at a set of locations S and our likelihood estimates

for the mean function µ̂ and covariance function Ĉ, predictions y(SP ) at any set of locations

SP = {sP1 , ..., sPnP } can be derived from the joint distribution of y and y(SP ) given as:

y(SP )

y

 ∼ Nnp+n
(µ̂(SP )

µ̂(S)

 ,

Ĉ(SP ,SP ) Ĉ(SP ,S)

Ĉ(S,SP ) Ĉ(S,S)

) (2.11)

From well known properties of multivariate normal distribution, the posterior predictive distri-

bution (PPD) of y(SP ) given y is:

y(SP )|y ∼ NnP (µSP |y,CSP |y) (2.12)
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where

µSP |y = µ̂(SP ) + Ĉ(SP ,S)(Ĉ(S,S))−1(y − µ̂(S)) (2.13)

CSP |y = Ĉ(SP ,SP )− Ĉ(SP ,S)(Ĉ(S,S))−1Ĉ(S,SP ), (2.14)

and µSP |y and CSP |y are the mean and covariance of the PPD y(SP )|y.

2.5.4.2 Areal support

We define SM as a random variable governed by its mean and covariance structure at point

support scale. For distribution y(.) at the point support scale, its distribution for an areal pixel AP1

at spatial support |A| will be the stochastic integral of the distribution y(.) over the pixel:

y(AP1 ) =
1

|A|A
P
1
y(sP )dsP (2.15)

The spatial integral in equation (2.15) is stochastic and can be viewed as an integral over each

possible realizations of y(.). The expectation of the PPD of y(AP1 ) given observations y can be

written as:

µ
|A|
AP1 |y

= E(y(AP1 )|y) = E
( 1

|A|A
P
1
y(sP )dsP |y) =

1

|A|A
P
1
E(y(sP )|y)dsP

=
1

|A|A
P
1
µsP |yds

P

(2.16)

which is simply the average of the posterior mean (equation (2.13)) over the pixel AP1 . Similarly,

the covariance, C |A|
(AP1 ,A

P
2 )|y between any two pixels AP1 and AP2 is:

C
|A|
(AP1 ,A

P
2 )|y = Cov(y(AP1 ), y(AP2 )|y) =

1

|A||A|A
P
1 A

P
2
C(sP1 ,s

P
2 )|yds

P
2 ds

P
1 (2.17)

where C(sP1 ,s
P
2 )|y is given by equation (2.14) for any two points sP1 and sP2 . For a set of areal
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Table 2.2: Summary statistics for in situ soil moisture [1].

Day of year Min 10th %ile Mean 90th %ile Max SD No.of data points
DOY 167 0.084 0.137 0.274 0.425 0.629 0.112 735
DOY 174 0.063 0.144 0.301 0.475 0.640 0.128 827
DOY 177 0.019 0.097 0.240 0.392 0.642 0.115 864
DOY 181 0.003 0.060 0.165 0.287 0.574 0.095 558
DOY 185 0.006 0.051 0.144 0.236 0.518 0.089 606
DOY 187 0.045 0.122 0.214 0.309 0.551 0.081 860
DOY 190 0.029 0.094 0.213 0.335 0.499 0.092 827
DOY 192 0.019 0.072 0.169 0.262 0.517 0.080 805
DOY 195 0.029 0.082 0.188 0.314 0.669 0.095 832
DOY 196 0.025 0.078 0.167 0.254 0.545 0.081 807
DOY 199 0.054 0.133 0.245 0.370 0.547 0.091 789

pixels Sar = {AP1 , ..., APnar}, with APi ⊂ D, the joint distribution of y(Sar)|y is multivariate

normal: y(Sar)|y ∼ Nnar(µ|A|Sar|y,C
|A|
Sar|y), where the elements of µ|A|Sar|y and C |A|Sar|y are given by

equations (2.16) and (2.17) [65]. Therefore, if we can evaluate the integrals in these equations, we

can find the distribution of the PPD for pixels Sar. The integrals in equation (2.16) and (2.17) are

generally not available in closed form. In such situations, we adopt a numerical approximation by

assuming a fine numerical grid SP over the entire region over which we want to make predictions

and replacing the integrals with summations [65]. If pA
P
i

j for j = 1, ..., nAPi represents the grid

points falling in pixel APi , then the posterior mean for pixel AP1 and the posterior covariance for

pixels AP1 and AP2 are respectively given by:

µ
|A|
AP1 |y

≈
1

nAP1

n
AP1∑
j=1

µ
p
AP1
j |y

(2.18)

C
|A|
(AP1 ,A

P
2 )|y ≈

1

nAP1 × nAP2

n
AP1∑

j1=1

n
AP2∑

j2=1

C
(p
AP1
j1

,p
AP2
j2

)|y
(2.19)

The posterior variance of any pixel AP1 , then becomes C |A|
(AP1 ,A

P
1 )|y.
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2.6 Results and Discussion

For the SMAPVEX12 campaign, out of the 15 days, we select 11 days on which no rainfall

occurred during sampling. We also leave out DOY 201 due to insufficient number of in situ data

points. For the in-situ data, we average the three replicate readings measured at each point. Table

2.2 gives the summary statistics of the SM distribution for each day. We standardize the SM data

for each day prior to our analysis, so that the effect of the controls on the variance/correlation

structure of SM can be compared for different wetness conditions.

Figure 2.4: Spatial variation of soil texture in the study domain. There is a sharp change in soil
texture from north-west to south-east [1].

Soil texture (Figure 2.4) primarily comprises of three variables: percent sand, percent clay and

percent silt. Out of these, we select percent clay and percent silt for our analysis. Our study domain

has a gentle rolling topography with less than 2% change in elevation. The elevation also has a

high correlation with percent clay (∼ 0.7). We, therefore, exclude elevation from the analysis to

avoid multi-collinearity. As the MODIS derived LAI is available at an interval of four days, we

assume a linear change in LAI for the intervening days. The resulting LAI plots are given in Figure

2.5. We also standardize each of the surface controls by their mean and standard deviations so that

they have the same range and scale. This is paramount in order to compare the importance of the

individual controls in our study. The daily cumulative precipitation during the campaign recorded

by 7 rain gauges lying within 5 km of the study domain is given in Figure 2.6.
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Figure 2.5: Evolution of vegetation (Leaf Area index) during the campaign. The crops reach full
maturity by the end of the campaign depicted by high LAI values at the later stages [1].

Figure 2.6: Bar plot representing the daily cumulative rainfall in the study domain [1].
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2.6.1 Exploratory variogram analysis

Though there are multiple ways to choose the subregions, we divide our study area into three

equal subregions from west to east, since both soil and LAI vary in that direction (Figures 2.4

and 2.5). We chose to take three subregions as it ensured that every bin of each of the empiri-

cal variograms had at least 30 observations. We subtract the mean XTβ prior to analyzing the

variograms. The variogram plots for each day are given in Figure 2.8. We find that for each of

the days, the variogram for subregion 1 is significantly different from the other two subregions.

Hence, there is an indication of non-stationarity in the variance/correlation structure. This can be

attributed to the fact that subregion 1 is a predominantly sandy area and also has lower values of

LAI than the other two regions (Figures 2.4 and 2.5). These two surface controls affect the SM

distribution resulting in different empirical variograms. As the spatial structure of the other two

subregions is similar to each other, we explore for M=1 (isotropic case), 2 and 3 in equation (2.7)

and model the SM distribution as a weighted mixture of independent Gaussian processes with

isotropic covariance functions. As stated earlier, though variograms are sub-optimal for formal

parameter estimation, they can prove to be useful tools for selecting the structure of the parametric

stationary/non-stationary model estimated by the ML method.

Figure 2.7: Subregions for exploratory variogram analysis. The black rectangles represent the
agricultural fields in which sampling was carried out [1].
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Figure 2.8: Empirical variograms of different subregions after accounting for the mean wetness
conditions. There are 2 distinct variograms for each of the 11 days indicating the existence of
non-stationarity in the variance and correlation structure of soil moisture in the study domain [1].

2.6.2 Parameter estimation

We fit the model in equation (2.1) on in situ SM data for individual days using ML estimation

as outlined in Section 2.4 for M=1 (single isotropic covariance function) and M=2 and 3 (non-

stationary covariance functions). As mentioned earlier, for our surface controls X , we use LAI,

percent clay and percent silt for both the mean XTβ, and the covariance function C (equation

(2.7)). We do not include higher order polynomial terms for X in XTβ as it is not recommended

to take complex mean structures (unless there is a scientific justification) by just looking at the data

as data with strong spatial correlation frequently appear to have trends [75]. Following Section

2.5.2, for M=1 (single isotropic covariance function), M=2 and M=3, we estimate 7, 14 and 21

parameters, respectively. We maximize the profile log-likelihood (equation (2.4)) for each of the

three models and find the ML estimates for θ̂. We then substitute the values of θ̂ in equation (2.5)

to find β̂. Due to the large number of parameters (in θ̂) to be estimated for M=2 (10) and M=3 (17)

26



Table 2.3: BIC comparison for isotropic (M=1) and non stationary models (M=2 and M=3) [1].

without τ 2 with τ 2

M=1 M=2 M=3 M=1 M=2 M=3
Parameters 7 14 21 8 15 22
DOY 167 -164.97 -562.09 -532.36 -160.16 -560.96 -534.08
DOY 174 -380.66 -716.23 -688.19 -376.90 -712.14 -681.49
DOY 177 -189.02 -501.24 -480.73 -182.88 -496.42 -473.97
DOY 181 192.99 -197.98 -184.52 199.31 -192.16 -178.19
DOY 185 317.37 -145.99 -131.92 322.78 -144.31 -125.51
DOY 187 358.25 -130.06 -129.26 363.86 -125.82 -122.48
DOY 190 135.44 -347.76 -355.61 138.60 -344.15 -352.77
DOY 192 223.1 -253.11 -243.29 226.46 -247.02 -236.6
DOY 195 -61.49 -559.57 -534.9 -72.38 -569.31 -553.82
DOY 196 166.87 -300.32 -264.95 168.21 -303.15 -268.84
DOY 199 -127.55 -459.11 -457.65 -135.61 -453.61 -450.96

models, the convergence to the global optimum was very slow and took a fairly large number of

iterations for both GenSA and Genoud. Another reason for slow convergence is that the parameters

in equation (2.7) can switch between each other with no change in the covariance function C. e.g.,

switching [α1, ν1, λ1, σ
2
1] with [α2, ν2, λ2, σ

2
2] in equation (2.7) will not change C [64]. Since the

weights in equation (2.7) are relative to each other and the in situ data is standardized, we found

that bounding the values of individual components of αj between -20 to 20, νj and σ2
j between 0

to 1.5, and λj between 0 to 1000 km led to relatively faster convergence times without much loss

in accuracy.

2.6.3 Model selection

Since the three models have different number of parameters, to choose between the models, we

penalize the maximum log-likelihood value (equation (2.3)) for each of the models based on the

number of parameters following the Schwartz or Bayesian Information Criterion (BIC) given as:

BIC = −2× l(θ) + log(n)× q (2.20)

where q is the number of parameters in the model and n are the number of observations. Since
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Table 2.4: β̂ values for the mean SM for M=2 [1].

Day of year Intercept LAI % Clay % Silt
DOY 167 0.36 0.01 0.10 0.05
DOY 174 -0.03 0.06 0.13 0.01
DOY 177 -0.05 0.11 0.08 -0.02
DOY 181 0.07 -0.01 0.00 0.04
DOY 185 0.00 -0.05 0.21 0.14
DOY 187 -0.01 0.00 0.16 0.07
DOY 190 0.16 0.05 0.15 0.04
DOY 192 0.39 0.10 0.02 0.08
DOY 195 0.07 0.02 0.11 0.01
DOY 196 0.05 0.04 0.14 0.14
DOY 199 0.58 0.04 0.27 0.15

the BIC includes the negative log-likelihood, lower values of BIC are preferred in model selec-

tion. The BIC selects the model with the highest posterior model probability [82] and is a rough

approximation of the Bayes factor widely used in hypothesis testing [83]. The values of BIC for

the three models for each of the 11 days are given in Table (2.3). We select the model with more

parameters only if the evidence against selecting a model with fewer parameters is very strong or

the difference in BIC between the two models is greater than 10 [83]. This leads us to always

select the model with M=2 for all days, which is also consistent with the exploratory variogram

analysis (Figure 2.8). We also include the nugget variance term, τ 2 (Section 2.4), for each of three

models and estimate it along with parameters in θ̂. We calculate the BIC for each of the three

models, but all of them are also rejected in favor of M=2 (without measurement error) using the

criterion above. As we averaged the three replicate readings for each in situ observation, the mea-

surement error becomes insignificant. Also note that the difference in BIC values between M=1

and M=2 is quite large for each day, implying an overwhelming evidence of non-stationarity. Since

we assume the same mean structure (XTβ) for all three models, we conclude that there is a spatial

non-stationarity in the variance/correlation structure of SM driven by surface controls.
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Figure 2.9: Effect of vegetation and soil texture on soil moisture variance. Soil texture causes
a significant spatial non-stationarity in soil moisture variance during the initial phase of the crop
growing stage with sandy soils exhibiting more variance in general. The effect of vegetation on
soil moisture variance is dominant as the crops reach maturity [1].
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Figure 2.10: Effect of vegetation on correlation structure of soil moisture [1].

2.6.4 Effect of surface controls on the mean of SM

For M=2, the β̂ values for each day are given in Table 2.4. Since the controls are standardized,

a higher absolute value of β̂j denotes a stronger effect of the jth control on the mean SM. We find

that the β̂ values for LAI are insignificant for all the days with the highest value of 0.11 on DOY

177. For percent clay, β̂ values for all the days are positive, as higher clay content generally results

in more water holding capacity of soil. The highest β̂ value for clay occurs on DOY 199 (0.27).

The effect of percent silt on mean SM is also insignificant on most of the days with a maximum
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Figure 2.11: Effect of soil texture on correlation structure of soil moisture [1].

value of 0.15 on DOY 199.

2.6.5 Effect of surface controls on the variance/correlation of SM

As mentioned before, the effect of the controls on the covariance of SM is not straightforward.

For M =2, the effect of surface controls on SM variance/correlation structure is inferred by analyz-

ing the change in the parametric covariance function for low (10th percentile), dominant (mean)

and high (90th percentile) values of the surface controls as detailed in Section 2.5.3.2.
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Figure 2.12: Comparison of PALS airborne soil moisture with soil moisture predictions (DOY 167
- DOY 185) using in situ data [1].

2.6.5.1 Vegetation

The effect of the individual surface controls on the variance of SM is given in Figure 2.9.

During the initial growing season, vegetation has a minimal effect on SM variance. But as the crops

mature, as depicted by the increase in the mean LAI of the region, vegetation plays a dominant

role in causing differences in SM variance across the region. The effect of vegetation on the spatial

variance becomes apparent from DOY 190-199 having mean LAI values from 3.63-4.0 as opposed
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Figure 2.13: Comparison of PALS airborne soil moisture with soil moisture predictions (DOY 187
- DOY 199) using in situ data [1].

to the previous days which have mean LAI values less than 3.25. In particular, we find that areas

with low LAI (1.97-2.65) have more SM variance than regions with dominant (3.63-4.0) and high

(5-5.3) LAI contents. In fact, the presence of vegetation acts to reduce spatial variance, though the

difference in regions with dominant and high LAI contents is minimal. Areas with low LAI values
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though have a much larger variance. We find that as the growing season progresses, the difference

in SM variance between low and high vegetated areas increases until DOY 196. Two precipitation

events occur on DOY 194 and DOY 197 leading to an increase in the mean SM content of 0.02

v/v and 0.08 v/v respectively. As a result, on DOY 195 and DOY 196, there is a decrease in the

variance of SM in vegetated areas as opposed to low vegetated regions, which show an increase

in SM variance. The precipitation event on DOY 197 on the other hand causes a sharp rise in the

mean SM diminishing the effect of vegetation on SM variance.

Similar to variance, vegetation exhibits a signature on the correlation structure of SM beginning

DOY 190 (Figure 2.10) promoting spatial correlation in SM in wetter conditions. The effect of

vegetation on SM correlation decreases (Figure 2.10) as the soil undergoes drying from DOY 190

(Mean SM = 0.21 v/v) to DOY 196 (Mean SM = 0.16 v/v). There is an increase in the mean SM

on DOY 199 (Mean SM = 0.24 v/v) due to a precipitation event again causing a difference in the

spatial correlation of SM.

We therefore conclude that vegetation plays a dominant role in reducing SM variance and

promoting spatial correlation in SM distribution once the crops begin to mature, though its effect

diminishes when there is a sharp increase in the SM content causing rainfall to be the dominant

factor.

2.6.5.2 Soil texture

We classify soil texture as sandy (low silt, low clay), dominant soil texture (mean silt, mean

clay) and clay soil (high clay, low silt). Soil texture plays a crucial role in SM distribution at the

beginning of the crop growing season from DOY 167 to DOY 185 (Figures 2.9 and 2.11). We

find that sandy soils exhibit larger spatial variance (Figure 2.9) than clay and dominant soil texture

conditions. Regular rainfall showers occur from DOY 168 to DOY 173 (Figure 2.6) followed by a

drying cycle until DOY 185 with slight rainfall on DOY 179 and DOY 184. The mean SM content

during this drying period falls from 0.30 to 0.14 v/v. For sandy soils, there is a slight increase

followed by a steep decrease in variability as drying occurs. For clay and dominant soil texture

conditions, the change in the variance is not significant throughout the drying cycle. We therefore
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infer that, at the beginning of the crop season, SM variance in sandy soils, though significant in

wet conditions, decreases as the soil dries. For dry conditions, soil texture has a minimal influence

on SM variance. After DOY 185, vegetation governs SM variance. Though there is a spike on

DOY 195, it can be attributed to the localized extreme precipitation event on DOY 194. For

the correlation structure (Figure 2.11), there is a difference in the correlation between sandy and

clay/dominant soil texture till DOY 185. Sandy soils, in general, are less correlated than clay and

dominant soil texture soils but as drying occurs, the correlation increases. We therefore conclude

Table 2.5: RMSE and R2 values between predicted and observed airborne soil moisture [1].

Day of year RMSE R2

DOY 167 0.067 0.51
DOY 174 0.081 0.49
DOY 177 0.053 0.55
DOY 181 0.045 0.34
DOY 185 0.041 0.37
DOY 187 0.060 0.45
DOY 190 0.066 0.64
DOY 192 0.041 0.59
DOY 195 0.069 0.38
DOY 196 0.069 0.24
DOY 199 0.064 0.43

that soil texture plays a dominant role on SM variance and correlation in the drying cycle (in the

absence of significant vegetation) with a decrease in variance and increase in correlation as the soil

becomes drier.

2.6.6 Upscaling SM predictions to airborne scale

We upscale our point scale predictions to the airborne support (∼1500 m) using the steps

outlined in Section 2.5.4.2 and validate the predictions using PALS SM. Note that the PALS data

were only used to validate the predictions at the airborne support and were not used in parameter

estimation, We assume a fine-scale grid over the entire domain such that the distance between the
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adjacent points on the grid is 200 m. The mean and variance of the PPD at the airborne support

for each day are given in Figures 2.12 and 2.13. Note that the variance of the PPD is, in general,

higher for the north-west region of the domain due to fewer in situ SM observations (Figure 2.7).

Since the SM from airborne retrievals is typically subject to bias [84], we subtract the average of

Figure 2.14: Comparison of normalized RMSE between predicted and observed airborne soil mois-
ture [1].

the mean of the PPD with the mean of the PALS airborne SM for all pixels. If the total number of

pixels for a given day is nair, then for any airborne pixel APi :

µ1500
APi |y

(bc) = µ1500
APi |y
−

nAir∑
j=1

SMPALS
APj

+

nAir∑
j=1

µ1500
APj |y

(2.21)
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Figure 2.15: Pixel by pixel comparison of observed and predicted soil moisture at airborne scale
[1].

where µ1500
APi |y

, SMPALS
APi

and µ1500
APi |y

(bc) are respectively the mean of the PPD, the observed PALS

SM and the bias-corrected mean of the PPD for the airborne pixel APi .

The root mean square error (RMSE) and coefficient of determination (R2) values for mean

of the PPD and the observed PALS SM for individual days are given in Table 2.5. The RMSE

values lie between 0.041 to 0.081. To compare RMSEs for different wetness conditions, we find

the normalized RMSE (nRMSE) given by:

nRMSE =
RMSE∑nAir

j=1 SM
PALS
APj

(2.22)

The nRMSE values for each day are given in Figure 2.14. DOY 195 and DOY 196 in par-

ticular, have a higher nRMSE. We also perform a pixel by pixel comparison (Figure 2.15). The

R2 values lie between 0.24 to 0.64. In addition, we also plot empirical cumulative distribution

functions (ecdf ) for both observed PALS SM and mean of PPD in Figure 2.16. Analyzing both
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Figure 2.16: Comparison of empirical cumulative distribution functions for observed and predicted
soil moisture at airborne scale [1].

plots, we find that, in general, our mean predictions agree well with the observed SM patterns.

We find discrepancies between the observed and predicted SM on DOY 187, DOY 195 and

DOY 196. In particular, we find that the predicted SM under-estimates the SM for wet pixels

(Figure 2.15). The same can be seen in Figure 2.16 when comparing the ecdfs. To explain this,

we analyze the precipitation events occurring on the antecedent days for each day of analysis. We

interpolate the daily cumulative rainfall recorded by the rain gauges to the entire domain by inverse

distance weighting method. The resulting rainfall patterns are given in Figure 2.17. We find that

extreme localized precipitation on DOY 186 and 194 may result in wetter pixels on the succeeding

days which are not captured by the surface control driven model. Due to the sparse number of rain
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Figure 2.17: Antecedent rainfall (mm) for each day [1].

gauges in the study domain, we were unable to fully account for the effect of rainfall especially

if it was patchy/localized on some of the days and we could only make qualitative arguments as

the ones above. The absence of precipitation as a covariate in our model might contribute to the

high RMSE values on some days in Table 2.5. Also note that, our interpretation of the effects of

the surface controls on the SM variance/correlation might be affected if there was patchy rainfall

in the domain, especially for DOY 167 and DOY 174 which were preceded by a number of rainy

days. In study regions, where the spatial distribution of rainfall can be approximated reasonably

accurately, rainfall should also be considered as a control in the vector X in equations (2.1) and

(2.7) to improve predictions.
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For study regions, where the number of in situ SM data points are moderate, fitting the non-

stationary model can be challenging because of the high number of parameters to be estimated.

In such situations we recommend to either use dimension reduction techniques on the controls

(such as Principal Component Analysis) prior to geostatistical modeling or use only the dominant

control [45] in the region. We also recommend using one parameter correlation functions such

as exponential, spherical, etc. if it gives satisfactory predictions. As an example, in the current

analysis, for M = 2, if we took the first Principal Component of LAI, clay and silt for both mean

and the covariance, and used exponential correlation functions for the two Cj in equation (2.7),

then the number of parameters to be estimated reduces from 14 to 8. Since convergence using the

optimization algorithms (GenSA and Genoud) was very slow, algorithms with faster convergence

times should also be explored. Lastly, improved formulations for controls driven non-stationary

covariance functions should be developed as they have the potential to improve soil moisture pre-

dictions across spatial scales.

2.7 Conclusions

SM is an important driver for both land and atmospheric processes, and its correct representa-

tion in land surface models and remote sensing retrievals is essential for better understanding of

the water and energy cycles and reducing biases in model predictions. SM exhibits considerable

non-stationary behavior at sub-grid scales, and stationary geostatistical methods fail to capture this

behavior. Since this is mainly caused by heterogeneity in surface characteristics, we use a spatial

model with a flexible covariance function depending on the local surface characteristics. Using

the BIC, we show that the non-stationary model fits significantly better than the stationary coun-

terpart. We examine the effects of individual surface controls on both the variance and correlation

structure of SM and find that vegetation and soil texture affects the variance/correlation at different

stages of the crop growing cycle. The extent of the dominance of these controls is governed by

wetness conditions and also on the stage of the drying cycle succeeding a rainfall event. While soil

texture plays a dominant role in the beginning of the crop growing cycle, vegetation drives the SM

variance/correlation once the crops begin to gain maturity. We then upscale our SM predictions to
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airborne support and find that our SM predictions can satisfactorily mimic the spatial patterns at the

airborne scale. According to the authors’ knowledge, this is the first study that explicitly accounts

for the effects of surface controls on the variance/correlation of SM. The proposed framework is

statistically optimal and can be used to predict and upscale SM in heterogeneous environments

using in situ SM and surface controls data.
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3. MULTISCALE DATA FUSION FOR SOIL MOISTURE ESTIMATION: A SPATIAL

HIERARCHICAL APPROACH

3.1 Synopsis

1Soil moisture (SM) has been identified as a key climate variable governing hydrologic and at-

mospheric processes across multiple spatial scales at local, regional and global levels. The global

burgeoning of SM datasets in the past decade holds a significant potential in improving our under-

standing of multi-scale SM dynamics. The primary issues that hinder the fusion of SM data from

disparate instruments are 1) different spatial resolutions of the data instruments, 2) inherent spatial

variability in SM caused due to atmospheric and land surface controls and 3) measurement errors

caused due to imperfect retrievals of instruments. We present a data fusion scheme which takes

all the above three factors into account using a Bayesian spatial hierarchical model (SHM) com-

bining a geostatistical approach with a hierarchical model. The applicability of the fusion scheme

is demonstrated by fusing point, airborne and satellite data for a watershed exhibiting high spatial

variability in Manitoba, Canada. We demonstrate that the proposed data fusion scheme is adept at

assimilating and predicting SM distribution across all three scales while accounting for potential

measurement errors caused due to imperfect retrievals. Further validation of the algorithm is re-

quired in different hydroclimates and surface heterogeneity as well as for other data platforms for

wider applicability.

3.2 Introduction

Soil moisture (SM) acts as a crucial driver in land-atmosphere interactions due to its coupling

mechanisms with temperature [10, 7, 8], precipitation [85, 86] and evapotranspiration (ET) [87,

88]. Due to its importance from local to global scales, scientists have spent the last two decades

measuring SM at various resolutions ranging from a few centimeters to hundreds of kilometers.

1Reprinted with permission from, ’ Multiscale data fusion for surface soil moisture estimation: A
spatial hierarchical approach’ by Kathuria et al. (2019) Water Resour. Res., 55, 10443– 10465,
https://doi.org/10.1029/2018WR024581, Copyright 2019 John Wiley and Sons, Inc.
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We define an individual SM measurement using the scaling triplet: support, extent and spacing

[25, 26]. Support refers to the representative area of the data sample, extent refers to the total

coverage area of the data, and spacing refers to the distance between individual samples. In situ

sensors, such as capacitance sensors and time domain reflectometers, measure SM at a point scale.

Proximal sensing techniques, such as active-passive airborne sensors, cosmic-ray neutron probes

and Global Positioning Systems (GPS), provide areal-averaged SM data at intermediate scales [27].

Satellite missions, such as Advanced Microwave Scanning Radiometer - Earth Observing System

(AMSR-E), Soil Moisture Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP),

retrieve SM globally at a coarse resolution of 25 ∼ 40 km.

The spatial distribution of SM is sensitive to the heterogeneity in land surface controls and

atmospheric forcings [12]. As a result, SM distribution usually exhibits non-stationary behavior

in space in heterogeneous environments. [54, 89, 90]. From point to remote sensing (RS) scales,

SM manifests both short and long range spatial dependence (or correlation) [91] with short range

dependence (10-30 km) usually governed by land surface characteristics comprising soil texture,

vegetation and topography [18, 17, 45, 15, 20, 14], while long range dependence (larger than 60

km) determined by precipitation [12, 16]. This inherent spatial correlation, however, has not yet

been exploited by current state of the art downscaling and data fusion algorithms used to predict

SM.

Retrievals from SM instruments are typically subject to systematic (bias) and stochastic (ran-

dom) errors. The uncertainty in retrievals usually depends on atmospheric and land surface factors.

Retrievals from airborne active sensors, for instance, are typically affected by the dominant soil

texture and vegetation characteristics of the region [92, 93, 25, 94] while cosmic neutron probes

are affected by atmospheric vapor, vegetation, lattice water and organic matter in the soil [27, 95].

Hence, it is essential for downscaling/fusion algorithms to account for this measurement uncer-

tainty to ensure that incorrect inferences are not made.

Currently, there are three broad paradigms to predict SM across different scales [96]. 1) Data

fusion of active/passive sensors [84, 97, 98]. 2) Downscaling a coarse SM pixel using ancilliary
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data such as vegetation, surface temperature, topography and soil texture [99, 56, 100] 3) Down-

scaling or data assimilation of SM data using a physical model [101, 59, 102]. The majority of the

methods in the first two paradigms are empirical and specific to the study region, support of the

data and the underlying geophysical heterogeneity [103]. Though the third approach, by contrast,

utilizes a physical model to account for spatial dependence of SM across space (and time), predic-

tions using data assimilation "typically bears signatures of the hydrologic forecast model, either as

the background field or statistical prior." [104]. Further, data assimilation of RS retrievals using

land surface models usually result in biased predictions due to the horizontal and vertical scale

mismatch between the model and RS observations [87]. Data assimilation, therefore requires pre-

processing of satellite observations to match the spatial resolution of the physical model [59, 105]

and a correction for the bias between the satellite data and model simulations [60]. It should be

noted, however, that physical models are essential to predict the deep root-zone soil moisture as

most of the RS sensors only measure SM.

Though there can be different ways to describe the term "data fusion", in this paper, we adopt

the definition of [28]: "Data fusion is the process of combining information from heterogeneous

sources into a single composite picture of the relevant process, such that the composite picture is

generally more accurate and complete than that derived from any single source alone." Data fusion

for a given study domain, combines disparate data sources to improve our understanding of the

SM distribution across multiple scales. In a way, data from different sensors can be considered

as incomplete fragments of the multi-scale SM composite and data fusion attempts to obtain this

holistic picture by fusing these fragments together.

The past few years have seen a proliferation of novel soil moisture sensors from point to RS

scales such as Distributed Temperature Sensing (DTS), COsmic-ray Soil Moisture Observing Sys-

tem (COSMOS) and Global Navigation Satellite System-Reflectometry (GNSS-R). On a global

scale, satellite missions such as SMAP and SMOS are measuring SM for the past few years with

the National Aeronautics and Space Administration (NASA)-Indian Space Research Organization

Synthetic Aperture Radar (NISAR) expected to be launched in 2021. The abundance of multi-
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scale SM data presents a never-before opportunity for the scientific community to improve its

understanding of multi-scale SM dynamics. There is, thus, a need for a data-driven data fusion

scheme to combine this data with traditional point sensors which respects the change of support

between the disparate data, accounts for uncertainty in retrievals while also exploiting the spatial

dependence/correlation inherent in SM. The data fusion scheme should also be adept in predicting

SM at the required support (upscaling/downscaling).

The objective of the present work, therefore, is to fuse SM data from multiple instruments

(in an optimal way) while partitioning the inherent spatial dynamics of SM distribution and the

measurement errors induced by different data instruments. To achieve our objective, we use a Spa-

tial Hierarchical Model (SHM) combining conventional geostatistics with a hierarchical modeling

(HM) paradigm. Traditionally, geostatistics has been used to model soil moisture only at individual

scales [18, 46, 16], and in this paper, we use an underlying geostatistical model to fuse multi-scale

SM data. While the HM paradigm enables coherent data fusion, the spatial dependence induced

by a geostatistical approach allows us to make inferences on unknown locations and scales [106].

A SHM approach is motivated not just by getting a good fit to the data but also enables scien-

tific interpretability. While data mining methods focus on the particular dataset being studied and

tease out unusual observations (often not optimally), they are unable to explain what "unusual"

means in a physical sense. A SHM approach, by contrast, accounts for these unusual observations

(optimally) using an underlying latent spatial process answering "why" some observations behave

unusually. The "why" question (rather than just getting a good fit to the data) is generally of more

interest to the scientific community.

We present a fusion algorithm combining SM datasets from multiple instruments using ancil-

lary data such as rainfall, soil texture, elevation and vegetation while accounting for the spatial

non-stationary nature of SM, the measurement errors caused due to data instruments as well as the

change of scale between individual data instruments. As a proof of concept, we apply the data

fusion scheme to combine multi-scale SM data in the Red River watershed in Manitoba, Canada.

The study area is chosen to test the applicability of the data fusion framework in a region with
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high heterogeneity in land surface controls and large variability in soil moisture conditions [70].

This paper is organized as follows. We describe the study region and the associated data in Section

3.3. The general SHM and data fusion scheme used in the present study are outlined in Section

3.4. The exact SHM used in the current study to fuse SM data is described in Section 3.5. This is

followed by the discussion of results in Section 3.6 before we conclude in Section 3.7.

Figure 3.1: (a) Study site located in the Red River watershed in the province of Manitoba, Canada.
The blue outline refers to the extent of the airborne soil moisture data retrieved during the Soil
Moisture Active Passive Experiment 2012. The 4 red pixels denote the overlapping Soil Moisture
Ocean Salinity data with the airborne extent. (b) Spatial variability in soil moisture for DOY 164.
For most days, the soil moisture exhibits large variability from west to east. The diagonal strip
refers to the airborne data retrieved from passive-active L-band sensor during the campaign, while
the 4 coarse pixels represent the satellite data. The black dots refer to the agricultural fields in
which in situ sampling was carried out at an average of 16 samples (spaced 75 m apart) per field
[2].
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3.3 Study area and data

We apply the data fusion scheme combining point, airborne and satellite SM data retrieved dur-

ing the Soil Moisture Active Passive Experiment 2012 (SMAPVEX12) in the Red River watershed

within Manitoba, Canada (Figure 3.1(a)). SMAPVEX12 was organized from June 6-July 17, 2012

in the agricultural lands south-west of Winnipeg, Manitoba which is classified as having a fully

humid climate according to the Köppen-Geiger climate classification [69], with an average annual

precipitation of 521 mm [94]. There is a sharp contrast of soil texture across the region, with high

clay content in the east to fine loamy sands in the west. The majority of the land is covered with

agricultural crops consisting of cereals, soybeans, canola and corn with wetlands and forest cover

in the northwest. The campaign was carried out during the crop-growing season with low biomass

contents at the start of the campaign (< 0.1 kg/m2) while reaching biomass conditions of 1-2 kg/m2

for bean crops and 4 kg/m2 for corn in the final week. The in situ SM data was collected using

Stevens Water Hydra (frequency-domain reflectometry) sensors and Delta-T Theta (impedance)

probes at an average of 16 sampling points spaced 75 m apart in each field. Three replicate read-

ings were taken at each location. On each flight day of the airborne sensor, on-site crews started

collecting in situ measurements at 6:30 AM local time. For each flight day, one bulk-density core

per field was collected to perform site-specific calibration of the sensors. The average root mean

square error (RMSE) after developing the site-specific calibration equations was 0.037 v/v. The

airborne data was retrieved at a spatial resolution of 1500 m using a passive-active L-band sensor

(PALS) mounted on a DHC-6 Twin Otter aircraft. PALS was mounted at the rear of the aircraft at

a 40 degree incidence angle. A total of 17 days of SM retrievals were acquired using PALS with

the flight commencing approximately at 6:30 AM local time each day. [70] provides a complete

description of the study site and the SMAPVEX12 campaign. For the satellite scale, overlapping

SMOS (RE04-MIR-CLF31A daily product) pixels (∼ 18.5 km× 33 km) were used (Figure 3.1(b)).

The RE04-MIR-CLF31A is a gridded L3 SMOS product which uses a multi-orbit (MO) retrieval

approach for enhanced SM retrievals and is available at a temporal latency of 3.5-7 days. The MO

retrieval is motivated by longer autocorrelation length of the vegetation optical depth compared to
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the corresponding SM autocorrelation enhancing the retrievals at the border of the satellite swath.

[107] Here, we use the ascending overpass of SMOS occurring at approximately 6 AM local time

as it is nearer to the in situ and airborne acquisition times.

Figure 3.2: Location of sparse rain-gauge stations (denoted by triangles) for the study site. The red
outline refers to the satellite extent of the study area. Only 8 of the 16 stations lie within the study
region [2].

Leaf Area Index (LAI), used as a proxy for vegetation, was extracted from the four day compos-

ite MODIS product (MCD15A3H, version 6) at a 500 meters resolution available at (NASA) Land

Processes Distributed Active Archive Center (LPDAAC). Since the LAI data are only available

after a period of four days, the LAI values are linearly interpolated for the intervening days. For

the airborne extent, the soil texture and elevation data are available at resolution of 1500 m on the

campaign website whereas for the rest of area we extracted the data from the Canadian National

Soils Database (NSDB). We spatially interpolate rainfall data using Inverse Distance Weighting

(IDW) from 16 weather-stations available during the duration of the campaign (Figure 3.2).
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Figure 3.3: Spatial plots of percent clay, percent sand, elevation, leaf area index (DOY 164) and
rainfall (DOY 164) [2].

3.4 Theory

A SHM finds its roots in one simple fact of probability theory [108]: The joint distribution of a

collection of random variables can be defined as a product of a series of conditional distributions.

Consider, for instance, the joint distribution of three random variables, A, B and C denoted by

[A,B,C], where [A] represents the probability distribution of the random variable A. We can

decompose this joint distribution as [A|B,C][B|C][C], where [C|A,B] denotes the conditional

probability distribution of C given A and B. Following [109], we specify a spatial hierarchical

model (SHM) in three stages:

1. Data model [z|y(.),Pz]

2. Process model [y(.)|Py]
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3. Parameter model [Pz,Py] = [P]

On top of the hierarchy lies the data model, where we model the observed SM (conditional on

the process model, y(.) and parameters in the data model, Pz) from all the data instruments. The

bias and errors caused due to imperfect retrievals are modeled here. Next is the process model,

where we model the latent underlying SM (conditional on parameters in the process model, Py).

By latent SM, we refer to the underlying (continuous) spatial distribution of SM which is devoid of

measurement errors (random or systematic) induced by the sensors. In general, we do not know the

exact form (and value) of the measurement errors and therefore make some assumptions regarding

the form of the errors (and estimate them from the data). Our definition of the latent process

(and subsequent inference and predictions) is subject to those assumptions. Lastly, we define the

parameter model consisting of the joint probability distribution of the parameters used in the data

and the process model. The parameter model characterizes the parametric uncertainty in the SHM.

3.4.1 Data model

A data model is where we model the distribution of the observations conditional on the latent

SM process and the parameters. A data model typically (but not always) consists of the bias

(systematic) and the error (random) structures of individual data instruments.

The spatial dependence induced in the observed SM at any given scale is due to the underlying

latent SM process. Therefore, conditioned on the process model, the observed data can be consid-

ered independent of each other making data fusion of multiple instruments relatively straightfor-

ward. Note that, if we don’t condition the observed data on the process, and instead look at their

marginal (unconditional) distributions, then the assumption of independence becomes untenable.

This makes a hierarchical approach powerful in data fusion.

For all the observations from a jth instrument on support scale A, we define the data as:

zj(A) = ∆j + y(A) + εj (3.1)

where zj(A) is the vector of observations from the jth data instrument, y(A) is the corresponding
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latent SM at support A, εj ∼ N (0, τ 2j ) is the normal measurement error with variance τ 2j and ∆j

is the bias associated with the jth data instrument. Pz comprises the parameters used to define

τ 2j and ∆j . The exact form of error and bias will depend crucially on the data instrument under

consideration.

3.4.2 Process model

Since we are dealing with SM processes at multiple spatial resolutions, it is beneficial to ex-

plicitly define the latent SM process at point scale called y(.) and describe the SM process at other

support scales in terms of y(.). Modeling y(.) is the most crucial step in a hierarchical approach be-

cause 1) the observed spatial dependence is considered entirely due to y(.) [110] and 2) parameters

with physical interpretation can be easily defined at the point scale [111].

3.4.2.1 Process at point scale

Since we aim to account for spatial dependence in our model, we define the latent SM as a

geostatistical process at the point scale such that y(.) is a Gaussian process with mean function µ

and covariance function C written as:

y(.) ∼ GP (µ,C) (3.2)

For any given set of n points {s1, ..., sn} in space, y = (y(s1), ..., y(sn))′ ∼ Nn(µ,C) is a n-

dimensional normal distribution, where µ is the n-dimensional mean vector and C is the n × n

covariance matrix. The principal advantage of assuming that y(.) follows a Gaussian process is

that the joint distribution for a given set of points can be completely defined by µ and C i.e.,

we can define the spatial distribution of SM in terms of its mean, variance and correlation. The

mean structure takes care of the deterministic variability while the covariance function defines

the stochastic variations. Using a Gaussian process at the latent scale also leads to computational

benefits and is a standard assumption of geostatistical models.
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3.4.2.2 Process at aggregate scale

So far, we have defined the the process y(.) at point support. Since our aim is to combine

multiple SM data sources at varying resolutions, we now define the average of y(.) for an areal

pixel A at support area |A| as y(A) = 1
|A|A

y(s)ds. In situ data can be considered a special case of

the above with |A| = 1. Since, y(.) is a random variable, the spatial integral is a stochastic integral

over all realizations of y(.) and will be difficult to solve for analytically. Under mild regularity

conditions, which are satisfied for our model, the mean function µ(A) and the covariance between

two pixels A1 and A2 can be written as:

µ
(
A
)

=
1

|A|A
µ(s)ds

C
(
A1, A2

)
=

1

|A1||A2|
A1A2C

(
s1, s2

)
ds2ds1

(3.3)

Note that the pixelsA1 andA2 can be at same or different supports and can also consist of point

data. Thus, in addition to modeling spatial dependence on a particular support scale, we also take

into account dependence between observations across different scales. For the Gaussian process

model for point scale, as defined in Section (3.4.2.1), it can be shown that for any given set S =

{A1, ...., An}, the joint distribution of y(S) = (y(A1), ..., y(An)) is given as Nn(µ(S),C(S,S)),

where the elements of µ(S) and C(S,S) are given by equation (3.3).

3.4.3 Data fusion

Data fusion of all the observations using the data model and process model in preceding sec-

tions would have been straightforward if we could evaluate the integrals in equation (3.3). Since

this is not always possible, we proceed using a numerical approximation for the spatial integrals

[65, 28, 112]. We assume a fine equidistant grid G = {gj : j = 1, ..., ngrid} of ngrid points over the

entire study domain D. For a (aggregate) data pixel Ai:
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Figure 3.4: (Top) Illustration of a hypothetical study area with data from four instruments (color-
coded) at different resolutions and extents. As depicted here, the fusion scheme can be applied even
for overlapping and missing data. The pink color refers to point scale data with the total number
of point data, npoint = 7 and areal data, npixels = 18 making the total number of data, n = 25.
(Bottom) The equidistant point scale grid is denoted by black circles and the total number of black
circles equals ngrid. Since the data fusion considers spatial correlation, we can do predictions in
the missing region as well [2].
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y(Ai) ≈
1

nAi

∑
gj∈G∩Ai

y(gj) (3.4)

where nAi = |G ∩ Ai| is the number of grid points inside the pixel Ai. We can equivalently

write equation (3.4) as h′Ai
yAi

where hAi
= (1/nAi , ..., 1/nAi) and yAi

is a vector with elements

{y(gj) : gj ∈ G ∩ Ai}.

Following equation (3.4), if we observe npixels data pixels denoted by the vector Spixels, we can

write y(Spixels) ≈ H1y(G) where H1 is a npixels × ngrid matrix such that:

(H1)i,j =


1/nAi if gj ∈ G ∩ Ai

0 otherwise.
(3.5)

In addition to pixel data, we might have point in situ data as well, whose locations might not

necessarily overlap with the equidistant grid. Therefore, for npoint in situ data points out of a total

n observations {Ai : i = 1, ..., n}, we define a n× (ngrid + npoint) matrix H such that

(H)i,j =


1i=j if Ai is an in situ data point

1

nAi
× 1gj∈G∩Ai if Ai is a data pixel.

(3.6)

where 1R is the indicator function defined as 1R(x) :=


1 x ∈ R

0 x 6∈ R
. The matrix H can there-

fore be considered as a transformation matrix to fuse data at different spatial resolutions. Fusing

all the observations, the data model in equation (3.1), becomes:

[z|y,Pz] ∼ Nn(∆ + Hy(G),Σ) (3.7)

where z = (zA1 , ..., zAn) represents the observed SM data from all the instruments, ∆ = (∆A1 , ...,∆An)

are the biases associated with each observation and Σ is the n × n error matrix. The numerical
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approximation is illustrated using a hypothetical example in Figure 3.4.

3.4.4 Parameter model

In the parameter model, we specify the joint distribution of the parameters in the data and

process models. In a Bayesian framework, this consists of putting prior probability distribution

on the parameters P = [Pz,Py] characterizing our prior beliefs of the parameters in the data and

process models.

3.5 Methodology

The exact form for the mean, covariance, bias and error functions for the SHM depends on

the sensors, the available ancilliary data and surface heterogeneity of the study region. In the

present section, we specify the exact SHM to fuse SM data (in situ, airborne and satellite) during

SMAPVEX12 campaign. The flowchart of the data fusion scheme is given in Figure 3.5.

3.5.1 SHM specification

3.5.1.1 Data model

For SMAPVEX12, three replicate readings of in situ data are available. We average the three

readings and regard the resulting value as the "ground truth", i.e. we assume that it has no er-

ror/bias. For the active-passive airborne sensors, it has been observed that the backscatter data

is affected by second-order effects of clay content and first order effects of vegetation [113]. We

therefore model bias as a second order polynomial function of clay content and a linear function

of LAI, i.e, ∆ = Xηη where Xη is the vector of (Intercept, LAI, %Clay, % Clay2) and η is the

vector of regression coefficients. For the error structure, we assume a normal distribution with zero

mean and constant variance τ 2. We assume zero bias and error for the satellite data due to fewer

satellite pixels (four) in the study region. This will not induce much error since SM retrievals from

passive sensors (used by SMOS) are more robust than active sensors [113]. For a study area with

sufficient satellite pixels, an appropriate bias/error structure can be parameterized for the satellite

data as well. It should be noted that even though the number of satellite pixels are few in our study

region, they are critical to constrain the SM predictions in regions where no other observations (in
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Figure 3.5: Flowchart of the data fusion framework using a Bayesian spatial hierarchical model.
Soil moisture data along with their errors are modeled in the data model. The spatial dynamics of
soil moisture governed by atmospheric and surface controls are parameterized by a non-stationary
geostatistical model while the parameter model accounts for the uncertainty in parameters [2].
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situ or airborne) are available.

3.5.1.2 Process model

The spatial distribution of the latent SM is typically affected by land surface controls such as

topography, vegetation and soil texture, as well as atmospheric variables such as rainfall inducing

spatial non-stationarity in SM distribution. Naturally, the mean and covariance functions of the

geostatistical process model should essentially be functions of these controls.

In absence of strong prior information (or theoretical justification) about the mean structure,

it is preferable to assume the mean as a linear function of the covariates, Xββ, where Xβ is the

vector of spatial covariates affecting the mean and β are the regression coefficients, and model

the residual spatial structure in the covariance function [114]. Defining a covariate-dependent

covariance function, is not trivial. Traditionally, geostatistical studies have often relied on isotropic

covariance functions whose spatial structure is considered constant for the entire study domain. In

areas with high geophysical heterogeneity, the stationarity assumption for SM covariance tends to

be violated [90].

To attend to this shortcoming, we adapt the spatial model of [63] and the spatio-temporal

covariance function of [64] for our study following [90] such that the covariance function can take

into account the non-stationarity arising due to heterogeneity in controls. The covariance function

is then a function of the controls (in addition to the location) i.e. the covariance between any two

locations s1 and s2 is given by C(s1, s2) = C(s1, s2,Xα(s1),Xα(s2)) where Xα(s) is the vector

of spatial covariates affecting the covariance at point s. We define the covariance function as a

weighted sum of isotropic parametric covariance functions where the weights explicitly depends

on the controls Xα. Therefore,

C(s1, s2,Xα(s1),Xα(s2)) =
M∑
j=1

wj(Xα(s1))wj(Xα(s2))Cj(|s1 − s2|) (3.8)

where wj is the weight for the jth covariance function Cj and M is the total number of isotropic

covariance functions. Though the weights wj’s can be parameterized in any way, we assume
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them to be multinomial logistic functions of the controls (ensuring that the sum of the weighting

functions equals one) i.e.

wj(Xα(s)) =
exp(Xα(s)Tαj)∑M
l=1 exp(Xα(s)Tαl)

(3.9)

where α1, ...,αM are vectors of regression coefficients that describe the effect of geophysical

controls on the covariance function. If the number of controls affecting the covariance equals q,

then αj = [αj1, ..., αj(q+1)], where αj1 is the coefficient for the intercept term. Equation (3.9) can

also be used to model isotropic covariance function (in such a case, one weighting function out of

all wjs equal to one, rest equal to zero) which might be present in relatively homogeneous areas.

Further details regarding the non-stationary covariance function can be found in [90].

3.5.1.3 Parameter model

After specifying the SHM, the main interest is in parameter inference (posterior parameter dis-

tribution [P|z]) from the observed data z and then subsequently doing predictions of the latent

process (posterior predictive distribution [yPr|z]) at unobserved locations. Let γ be the vector de-

noting the parameters in the covariance function and τ 2. Then, the posterior parameter distribution

[P|z] = [β,η,γ|z]. Since it is difficult to sample from the joint distribution [β,η,γ|z], we instead,

carry out a Gibbs sampler to sample from the full-conditional distributions (FCDs) of β, η and γ

respectively. Specifically, given an initial vector of parameters P[0] = {β[0],η[0],γ [0]}, we generate

P[l] from P[l−1] as follows:

sample β[l] ∼ [β|η[l−1],γ [l−1], z]

sample η[l] ∼ [η|β[l],γ [l−1], z]

sample γ [l] ∼ [γ|β[l],η[l], z]

(3.10)

After a burn-in period, for large L, the sampling distribution of P[1], ..,P[L] approaches the

posterior parameter distribution [P|z] [115], where P[l] = {β[l],η[l],γ [l]}.

The FCDs on the right hand side in equation 3.10 are derived in Appendix A. To get good
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starting values for our parameters, we use a global optimization algorithm, Generalized Simulated

Annealing (GenSA) [80], to find the point parameter estimates that maximize the likelihood of the

SHM. After a burn-in period, parameter convergence is monitored using trace-plots, and samples

(from equation 3.10) are used to approximate the posterior parameter distribution. Note that, in A,

the FCDS for β and η are available in closed form only for normal prior distributions. If a normal

prior distribution is untenable, sampling can still be carried out using Metropolis-Hastings [115]

though the convergence will be slower.

The effects of the controls on the mean, covariance and bias are analyzed by examining the 95%

highest posterior density (HPD) interval for the parameters. The 95% highest posterior density

(HPD) interval denotes the subset of the parameter space such that the posterior probability of the

parameter lying in that subset equals 95%. For the mean (bias), if the 95% HPD interval includes

zero or is very close to zero, we assume that there is little evidence in the data that the control

affects the mean (bias) and if the 95% HPD interval excludes zero (or is not close to zero), we

assume that there is evidence in the data that the control affects the mean (bias). Note that, we

cannot say with certainty that the effect is present because there might be a small probability that

the parameter equals zero. For the covariance, the HPD intervals are calculated for different lags.

Since the covariance between any two points (governed by equations (3.8) and (3.9)) is a function

of their lag-distance in space, as well as the vector of controls affecting the covariance (Xα), the

effect of an individual control on the covariance is not trivial. The effect of an individual control

on the covariance is quantified by comparing the covariance when the control is at the mean value

(of the study region) compared to when the control is at extreme value (10th and 90th percentile)

while keeping the other controls at their mean values [64]. Since all the controls are standardized

(mean = 0, variance = 1), for a kth control, a simple way to do this is to compute the 95% HPD

region for δlowxk |s| and δhighxk
|s| for any lag |s| given as:
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δlowxk |s| =
C low
xk

(|s|)
Cmean
xk

(|s|)
=

∑M
j=1

exp(αj1+(x0.1k )αjk)∑M
l=1 exp(αl1+(x0.1k )αlk)

Cj(|s|)∑M
j=1

exp(αj1)∑M
l=1 exp(αl1)

Cj(|s|)

δhighxk
|s| =

Chigh
xk

(|s|)
Cmean
xk

(|s|)
=

∑M
j=1

exp(αj1+(x0.9k )αjk)∑M
l=1 exp(αl1+(x0.9k )αlk)

Cj(|s|)∑M
j=1

exp(αj1)∑M
l=1 exp(αl1)

Cj(|s|)

(3.11)

where for the kth control xk, x0.1k and x0.9k are the 10th and 90th percentiles. Since αj1 is the

intercept term, it is always included. Again, if the HPD region includes one (or is very close to

one), then we assume that there is little evidence in the data that the control affects the covariance

and if the 95% HPD interval excludes one (or is not close to one), we assume that there is evidence

in the data that the control affects the covariance [64]. A similar argument can be made for the

variance by analyzing the HPD region of δlowxk |0| (δhighxk
|0|) and for correlation at any lag |s| by

analyzing the HPD region of δlowxk |s|/δ
low
xk
|0| (δhighxk

|s|/δhighxk
|0|).

3.5.2 Spatial Prediction

Once we have the samples from the posterior parameter distribution, spatial prediction is

straightforward. Given observations z = z(S) at a set of locations S and the posterior sam-

ples P[1], ..,P[L] from [P|z], the posterior predictive distribution [yPr|z] = [y(SPr)|z] at the unob-

served locations SPr = {sPr1 , ..., sPrnPr} can be approximated by [yPr|z] = (1/L)
∑L

l=1[y
Pr|z,P[l]].

For the SHM proposed in the study, it can be derived that for a posterior sample P[l], [yPr|z,P[l]] ∼

NnPr(µ
[l]

yPr|z,Σ
[l]

yPr|z) where:

µ
[l]

yPr|z = µ[l](SPr) + C [l](SPr,G)H′(Σ−1H )[l](z− µ[l](S)−∆[l](S)) (3.12)

Σ
[l]

yPr|z = C [l](SPr,SPr)− C [l](SPr,G)H′(Σ−1H )[l]HC [l](G,SPr) (3.13)

where ΣH = HC(G,G)H′ + Σ, and µ[l]

yPr|z and Σ
[l]

yPr|z are the predicted mean and covariance

respectively for the posterior sample P [l]. To obtain predictions at any spatial support A, we

predict at the point level following equations (3.12) and (3.13) and then upscale to any spatial
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support. The predicted mean and the covariance at support scale A would then be given as:

µ
[l]

yPrA |z
= HAµ

[l]

yPr|z

Σ
[l]

yPrA |z
= HAΣ

[l]

yPr|zH
′
A

(3.14)

where, HA, for a support A is given by equation (3.6). Posterior summaries of predicted mean and

covariance (such as average and 95% HPD intervals) can then be calculated using the sampling

distribution resulting from applying equation 3.14 to {P[1], ..,P[L]}.

Table 3.1: Summary statistics for soil moisture (v/v) for point, airborne and satellite scales [2].

Point Airborne Satellite
DOY Min Mean Max SD Min Mean Max SD Min Mean Max SD
164 0.075 0.334 0.668 0.114 0.077 0.296 0.551 0.133 0.188 0.286 0.371 0.079
167 0.084 0.280 0.629 0.113 0.070 0.221 0.545 0.089 0.193 0.198 0.205 0.005
169 0.118 0.344 0.665 0.125 0.062 0.280 0.551 0.135 0.171 0.253 0.336 0.067
174 0.063 0.307 0.640 0.130 0.084 0.270 0.551 0.111 0.167 0.189 0.220 0.025
177 0.019 0.245 0.642 0.116 0.030 0.162 0.480 0.071 0.096 0.100 0.105 0.004
179 0.025 0.224 0.688 0.100 0.030 0.126 0.480 0.063 0.077 0.093 0.101 0.011
192 0.019 0.170 0.517 0.079 0.030 0.143 0.418 0.072 0.072 0.082 0.096 0.011
196 0.025 0.174 0.545 0.087 0.030 0.144 0.443 0.071 0.056 0.115 0.147 0.041
199 0.054 0.252 0.547 0.095 0.057 0.210 0.507 0.092 0.168 0.179 0.210 0.020
201 0.056 0.189 0.420 0.084 0.036 0.162 0.421 0.071 0.103 0.131 0.153 0.022

3.6 Results and Discussion

We apply the proposed fusion scheme separately for each day for which in situ, airborne and

satellite data are available resulting in a total of 10 days, i.e. the data fusion scheme is spatial-

only. Due to the less number of days of the dataset, it will be difficult to specify and estimate a

valid controls-driven spatio-temporal mean/covariance function using the data though analyzing

the temporal dynamics of SM is equally important. The summary statistics for SM at each scale

are given in Table 3.1. For in situ SM, we average the three replicate measurements at each lo-

cation. We take soil texture (percent sand and percent clay), elevation and vegetation (LAI) to
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Table 3.2: Summary statistics for land surface controls and antecedent rain [2]. LAI = Leaf Area
Index, ant. = antecedent

LAI 1-day ant. rain (mm) 2-day ant. rain (mm)
DOY Min Mean Max SD Min Mean Max SD Min Mean Max SD
164 0.00 2.39 6.00 1.09 0.01 6.71 11.42 2.17 0.00 4.67 9.11 1.84
167 0.00 1.80 7.00 1.03 0.00 0.26 1.65 0.16 0.00 1.20 3.03 0.47
169 0.00 1.05 7.00 1.41 0.03 15.88 29.91 5.21 0.00 0.00 0.00 0.00
174 1.00 3.11 6.00 1.28 0.00 2.50 12.66 2.53 0.00 0.40 2.27 0.21
177 1.00 3.35 7.00 1.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
179 1.00 3.32 7.00 1.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
192 1.00 3.37 7.00 1.21 0.00 0.00 0.00 0.00 0.00 0.04 0.25 0.04
196 1.00 3.03 7.00 1.19 0.00 0.04 0.25 0.04 2.44 17.94 57.53 8.57
199 1.00 3.09 6.00 1.20 0.00 0.16 1.01 0.12 5.79 8.37 12.26 0.87
201 1.00 3.28 7.00 1.33 0.00 0.01 0.08 0.01 0.00 0.21 1.69 0.23

% Clay %Sand Elevation (m)
0.00 31.36 69.00 24.57 0.00 47.85 93.00 35.29 240.00 269.26 335.37 23.96

be the dominant land surface controls and the two-day cumulative antecedent precipitation to be

the dominant atmospheric-control affecting the SM distribution [16, 46, 45, 14, 103] for both the

watersheds. The summary statistics for the controls are given in Table 3.2. Prior to our analysis,

we standardize all the controls by their respective means and standard deviations. This is done to

ensure that they are at the same scale and range, so that their effects on the mean, covariance and

bias be compared. For the process model, we assume that the mean structure is affected by both

precipitation and land surface controls while the covariance is affected only by the land surface

controls. We do this because we spatially interpolate precipitation using IDW which might not

represent point-scale rainfall dynamics accurately. For the study region, we find that percent sand,

percent clay and elevation have a high correlation with each other (∼ 0.7). Therefore, to avoid

multicollinearity, we perform principal component analysis on all the three variables and take the

first PC (explaining more than 85% of the variance) in our analysis. For each day, the first PC

equals 0.60×(%Clay)−0.60×(%Sand)−0.54×(Elevation). Therefore for the mean function,

we use antecedent 2-day cumulative rainfall, LAI and first PC of percent sand, percent clay and

elevation as our controls, and for the covariance we exclude rainfall.
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As the assumed grid G (Section 3.4.3) becomes finer, the numerical approximation approaches

the spatial integrals in equation 3.3 but at the expense of increased computational cost. Therefore,

we assume a grid spacing of 750 m (half of the airborne support) for the entire study domain

to strike a balance between accuracy and computational expense. For the covariance given by

equation 3.8, we use M=2 and use a mixture of exponential covariance functions for Cjs. We

restrict M=2, as increasing M did not improve predictions.

Assuming we have no prior knowledge of SM distribution, we use apriori independent dif-

fuse/vague prior distributions for all the parameters. For the β, η and α regression coefficients,

we assume normal distributions N(0, 102). Since the parameters in the covariance functions Cjs

in equation (3.8) and error variance τ 2 are always non-negative, we assume a uniform distribu-

tion U(0, 20). We divide the Northing-Easting coordinates (in meters) by 100000 so that above-

mentioned uniform prior is appropriate for the range parameters of the covariance functions.

3.6.1 Validation

To explore the validity of the fusion algorithm at multiple scales, we hold out observations at

both point and airborne support. We don’t hold out observations at the satellite support because of

the limited number of pixels. As the difference in support between the three data instruments is

large, if we are able to predict at all the three supports reasonably well, it will be a good validation

for the algorithm. Since we are trying to combine observations across the three spatial scales,

if we get satisfactory results at all the scales, we hypothesize that that the predictions for the

intermediate scales will be satisfactorily interpolated as well. For validation, we cannot randomly

hold-out observations (as is usually done for independent and identically distributed models) since

the data fusion model accounts for spatial correlation. Therefore, we hold-out a section in the

south-eastern region of the study area which accounts for roughly 20% of the airborne pixels and

the in situ data lying inside the section. The area of the hold-out region varies from 142 to 193

km2 (Table 3.3). The hold-out area for each day is chosen such that it has a high density of in

situ measurements (37% to 56% of the total in situ measurements (Table 3.3)) and shows high

variability in soil moisture values. The hold-out area for DOY 164 is given in Figure 3.6.
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Table 3.3: Number of hold-out data at point and airborne scales for individual days [2].

DOY Hold-out
area (km2)

total point
data

hold-out point data total air-
borne pixels

hold-out air-
borne data

164 171.00 879 347 (39.48%) 373 76 (20.38%)
167 186.75 735 288 (39.18%) 412 83 (20.15%)
169 173.25 828 294 (35.51%) 380 77 (20.26%)
174 180.00 827 318 (38.45%) 393 80 (20.36%)
177 189.00 864 349 (40.39%) 413 84 (20.34%)
179 141.75 806 322 (39.95%) 312 63 (20.19%)
192 191.25 805 341 (42.36%) 422 85 (20.14%)
196 191.25 807 299 (37.05%) 418 85 (20.33%)
199 193.50 789 292 (37.01%) 427 86 (20.14%)
201 193.50 313 176 (56.23%) 425 86 (20.24%)

We find the mean of the posterior predictive distribution at fine and airborne support for the

hold-out region using equations 3.12 and 3.14 respectively. To validate against the hold-out ob-

servations we average the predicted mean resulting from all the posterior samples (Section 3.5.2).

Since we assumed bias in PALS data, we add the bias back to the predictions at the airborne scale,

so we can validate against the observed airborne data. The one-to-one plots between the obser-

vations and the average of the mean posterior predictive distribution at in situ and airborne scale

along with their correlation (R) are given in Figure 3.7. The correlation values range from 0.40

to 0.88 for in situ data and from 0.70 to 0.93 for the airborne data. Though, the general trend of

the observations is well predicted for all days at both the scales, the airborne predictions perform

better than in situ. This can be attributed to the fact that the in situ data in each field is spaced 75 m

away from each other [70], while the spatial support of the land-surface controls used to drive the

data fusion model vary from 500 m (LAI) to 1500 m (soil and elevation). Also, our estimate for the

spatial distribution of rainfall using IDW on sparse rainfall data (Figure 3.2) is approximate at best,

and does not account for the spatial heterogeneity induced in SM by complex rainfall patterns. The

correlation coefficient for both the supports is the lowest for DOY 196 which receives the heaviest

antecendent rainfall as recorded by the raingauges (Table 3.2).

We also do predictions for the 4 SMOS pixels analyzed in the study. The RMSE values for the

in situ, airborne and the 4 SMOS pixels are given in Table 3.4. For in situ data, the RMSE values
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Figure 3.6: (Left) Soil moisture data at point (denoted with black), airborne (diagonal strip) and
satellite (four pixels in the background) support for DOY 164. (Right) The sub-area, denoted by
purple border, represents the hold-out area for validation of the algorithm at point and airborne
scales. The area is chosen such that it has a high density of in situ data and also exhibits good soil
moisture variability [2].

lie between 0.032 to 0.099 v/v while for the airborne scale the RMSE lies between 0.029 v/v to

0.074 v/v. Again, airborne predictions do better than in situ in terms of RMSE. Since the first four

days have the highest mean wetness conditions (Table 3.1) and large SM variability (in terms of

the standard deviation), they also register high RMSE values. For the SMOS pixels, the RMSE

values lie below 0.04 v/v. In general, the SHM provides a good fit to the data across all the three

scales and is therefore able to satisfactorily capture the multi-scale SM dynamics in the region.

3.6.2 Effect of controls on soil moisture

The 95% HPD intervals of the posterior distribution of the mean parameters (β) are given in

Figure 3.8. As mentioned in Section 3.5.1.3, if the 95% HPD interval for the mean parameters

(β) includes zero or is very close to zero, we assume that there is little evidence in the data that
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Figure 3.7: One to one plots of the hold-out observations and the average of the mean predictive
posterior distribution for point and airborne support scales. The red line denotes the 1:1 line [2].
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Table 3.4: Root mean squared error (v/v) for Soil moisture predictions for point (hold-out region),
airborne (hold-out region) and satellite (four SMOS pixels) support scales [2].

DOY Point Airborne Satellite
164 0.071 0.068 0.004
167 0.096 0.064 0.011
169 0.099 0.074 0.010
174 0.096 0.056 0.018
177 0.076 0.037 0.020
179 0.059 0.033 0.020
192 0.081 0.050 0.011
196 0.054 0.038 0.012
199 0.055 0.040 0.012
201 0.032 0.029 0.005

the control affects the mean and if the 95% HPD interval excludes zero (or is not close to zero),

we assume that, subject to some uncertainty, there is evidence in the data that the control affects

the mean. There is little evidence in the data that LAI (as a proxy for vegetation) affects the mean

structure of SM for SMAPVEX12 on any day whereas there is evidence in the data that soil and

elevation, represented by the first principal component of percent clay, percent sand and elevation,

affect the mean on the majority of the days. There is little evidence in the data that precipitation

affects the mean of SM on any day. This can be attributed to the fact that the IDW interpolation of

sparse rain-gauge does not reflect the true rainfall patterns. Since, precipitation is a major driver

of land surface processes, better spatial representation of rainfall dynamics (such as by using a

stochastic rainfall model) will improve the applicability of the data fusion algorithm.

Figure 3.9 depicts the 95% HPD intervals for δlowLAI and δhighLAI for the variance and correlation

(for certain lag-distances). There is little evidence that LAI affects the variance of SM but there

is evidence that it has an effect on correlation during the later stages of the crop-growth season.

There is evidence that soil and elevation affect the variance/correlation of SM, though in the later

stages, when the crops begin to gain maturity, the 95% HPD is very close to one (Figure 3.10).

Therefore, it can be hypothesized (with some uncertainty) that the land surface controls induce non-

stationarity in the covariance structure of SM. This can be attributed to high spatial heterogeneity
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Figure 3.8: The dots represent the average of the posterior distribution while the error-bars denote
the 95% highest posterior density intervals for the mean (top) and bias (bottom) for the physical
controls. If the HPD region includes zero (or is very close to zero), we assume that there is little
evidence in the data that the control affects the mean (bias) and if the 95% HPD interval excludes
zero (or is not close to zero), we assume (with some uncertainty) that there is evidence in the data
that the control affects the mean (bias) [2].
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Figure 3.9: The dots represent the average of the posterior distribution while the error-bars denote
the 95% highest posterior density (HPD) intervals for δlowLAI and δhighLAI . If the HPD region includes
one (or is very close to one), we assume that there is little evidence in the data that LAI affects the
covariance and if the 95% HPD interval excludes one (or is not close to one), we assume that (with
some uncertainty) that there is evidence in the data that LAI affects the covariance [2].
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Figure 3.10: The dots represent the average of the posterior distribution of the variance/correlation
while the error-bars denote the 95% highest posterior density intervals for δlowsoil_elevation and
δhighsoil_elevation. If the HPD region includes one (or is very close to one), we assume that there is
little evidence in the data that soil and elevation affects the covariance and if the 95% HPD interval
excludes one (or is not close to one), we assume (with some uncertainty) that there is evidence in
the data that soil and elevation affect the covariance [2].
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both in terms of soil texture and vegetation in SMAPVEX12 leading to significant variability in

SM over short distances [70].

3.6.3 Effect of controls on PALS soil moisture bias

The 95% HPD intervals of the posterior distribution of the bias parameters (η) are given in

Figure 3.8. In general, there is little evidence that LAI affects the bias. This is because low-

frequency L-band sensors are in general less affected by vegetation than high-frequency sensors

such as those operating at C- and X-band [93]. Subject to some uncertainty, there is evidence in the

data that the PALS bias is affected by both first and second order of % clay content on the majority

of the days, though the 95% HPD region of second-order effects gets close to zero as the growing

season progresses.

The average of the posterior distribution of bias (∆) for all the observed airborne pixels (ex-

cluding the hold-out data) is given in Figure 3.11. Except DOY 174, it can be seen that the major-

ity of the pixels (depicted by the peak of the histogram) have a negative bias, i.e the PALS sensor

under-estimates the SM for most of the airborne pixels.

3.6.4 Predictions at intermediate scales

Since the data fusion scheme predicts well at each of the three scales, we can use the SHM to

predict the latent SM at the intermediate scales following equation 3.14. As an illustration, Figure

3.12 gives the average of the mean posterior predictive distribution for 1.5 km, 3 km, 9 km and

SMOS support respectively. Such predictions are crucial as multi-scale SM distribution is typically

required from local to regional levels for varied applications. Predictions at the edges are prone to

high uncertainty as they are very far away from in situ and airborne data. Since we are assuming a

continuous (Gaussian Process) SM distribution, on dry days (for instance, DOY 177 - DOY 196),

this can cause predictions in dry regions become even less than zero. Thus, in our study we lower-

bound the predictions at 0. This illustrates a limitation of using a Gaussian process model for a

bounded variable such as SM. Though SM has been found to be generally normally distributed

[116, 117, 46], this might not hold true in extreme wet and dry conditions [23]. An alternative in
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Figure 3.11: Histogram of the average of the posterior distribution of soil moisture bias for all
airborne pixels. For most days, the passive-active L-band sensor underestimates the soil moisture
for the majority pixels [2].
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such cases is to do prior transformations on SM data such as a logit transformation to ensure that

the SM distribution lies between 0 and 1.

Note that the Bayesian sampling scheme in Appendix A holds true only when the measurement

error is additive to the Gaussian process model. In situations where such assumptions are unten-

able, the data fusion scheme can still be implemented and posterior distributions can be found

using numerical procedures such as the Laplace approximation of the integral but at an added

computational expense. Since, the data fusion framework is controls-driven, its applicability will

be influenced by the accuracy and resolution of the governing surface and atmospheric controls.

For instance, for this study, the predictions can definitely be improved with better estimates of

ancillary data such as high-resolution rainfall and soil texture. A possible extension to the data fu-

sion framework will be to also account for uncertainties/errors in these controls. Another possible

area of future research will be to modify existing scaling algorithms such as those motivated by the

vegetation-temperature triangular feature space [118, 99] for the mean function of the geostatistical

process and model the covariance using a stationary/non-stationary covariance function.

3.7 Conclusions

SM data are going to become increasingly available at multiple scales and instruments in the

21st century, and techniques to combine such data to provide a holistic picture of SM dynamics

will become increasingly important. In addition to the inherent SM dynamics that vary with at-

mospheric and land surface conditions, each data instrument will be accompanied by its own set

of errors. Data fusion using spatial hierarchical modeling is a promising methodology to account

for these uncertainties and more importantly, make a distinction between the inherent SM vari-

ability and measurement errors of data instruments, to ensure that incorrect scientific inferences

are avoided. We demonstrate that the proposed fusion scheme can be used to fuse SM data across

multiple instruments while accounting for the above-mentioned uncertainties. Such a technique

can also be used to characterize measurement errors occurring in SM retrievals from other data

instruments (using appropriate data models) such as cosmic-ray neutron probes and GPS sensors

though the algorithm needs to be validated with existing SM datasets from such sensors in different
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Figure 3.12: Prediction of soil moisture at different spatial supports [2].
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hydroclimatic conditions to vet its wider applicability.

Data fusion using SHM is not a black-box approach and depends crucially on the choice of the

mean, covariance and measurement error functions as well as the prior distributions of the param-

eters. Therefore, while fusing data, care must be taken to select the model parameterization which

best approximates reality. In regions with sparse or no in situ data, aggregate SM data can still be

fused using the framework presented in this paper. In such cases, though the model is expected

to perform well at the support of aggregate data, the point scale behavior of the process will be

influenced more by the choice of the prior distributions. Although we applied the fusion scheme

on a watershed scale, the real potential of the data fusion framework lies in its applicability to

fuse SM data in an operational environment at large scales such as fusing data from intermedi-

ate sensors such as GNSS-R and SMAP/Sentinel-1, and coarse radiometer products derived from

SMOS and SMAP using Big Data geostatistical techniques [61, 62]. In such a case, the SHM

can be further extended to a spatio-temporal setting by defining spatio-temporal mean, bias and

covariance functions. Since we are working in a Bayesian framework, the posterior parameter

distributions found in data-rich regions can be used as strong priors in regions with similar land

surface heterogeneities and hydroclimates to aid in parameter estimation. The SM predictions re-

sulting from fusion of all available data can also be assimilated in a physical model to potentially

improve estimates of root-zone soil moisture and other hydrologic processes (for an example, refer

[60]). To quote [106]: "Hierarchical statistical modeling is where data, Science and uncertainty

join forces" and can therefore serve as a valuable tool to optimally combine disparate SM (and

other environmental) data across multiple scales.
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4. A MULTISCALE SPATIO-TEMPORAL BIG DATA FUSION ALGORITHM FROM

POINT TO SATELLITE FOOTPRINT SCALES

4.1 Synopsis

The past six decades has seen an explosive growth in remote sensing data across air, land,

and water dramatically improving predictive capabilities of physical models and machine-learning

(ML) algorithms. Physical models, however, suffer from rigid parameterization and can lead to

incorrect inferences when little is known about the underlying physical process. ML models, con-

versely, sacrifice interpretation for enhanced predictions. Geostatistics are an attractive alternative

since they do not have strong assumptions like physical models yet enable physical interpretation

and uncertainty quantification. In this work, we propose a novel multiscale multi-platform geo-

statistical algorithm which can combine big environmental datasets observed at different spatio-

temporal resolutions and over vast study domains. As a case study, we apply the proposed al-

gorithm to combine satellite soil moisture data from Soil Moisture Active Passive (SMAP) and

Soil Moisture and Ocean Salinity (SMOS) with point data from U.S Climate Reference Network

(USCRN) and Soil Climate Analysis Network (SCAN) across Contiguous US for a fifteen-day

period in July 2017. Using an underlying covariate-driven spatio-temporal process, the effect of

dynamic and static physical controls—vegetation, rainfall, soil texture and topography—on soil

moisture is quantified. We successfully validate the fused soil moisture across multiple spatial

scales (point, 3 km, 25 km and 36 km) and compute five-day soil moisture forecasts across Con-

tiguous US. The proposed algorithm is general and can be applied to fuse many other environmen-

tal variables.

4.2 Introduction

On April 1, 1960, (National Aeronautics and Space Administration) NASA launched the Tele-

vision and Infrared Observation Satellite (TIROS 1) demonstrating that satellites could observe

weather patterns, marking the advent of remote sensing (RS) to observe global environmental phe-
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nomena. Sixty years and the launch of several satellites later, rapid progress has been made in

observing Earth-system processes (across air, land, and water) accompanied by an explosion in

the availability of data. This so called “big data” are often spatio-temporal (indexed by a spatial

coordinate and a time stamp) resulting in an increased interest in space-time problems in the past

two decades [75, 119]. Usually, environmental data are 1) spatio-temporally dependent, 2) avail-

able at multiple resolutions from various instruments, and 3) observed with gaps and noise. It is

unreasonable to expect one source of data to fill all the gaps across space and time. However, com-

bining multi-sensor data, while accounting for individual strengths and weaknesses, can lead to

novel insights into Earth-system Science. Paradigms facilitating the fusion of disparate data while

handling the sheer size of datasets are thus critical.

RS data have traditionally been used to update the states and improve parameterization of phys-

ically based models. Indeed, the assimilation of satellite data into numerical weather prediction

models led to the “quiet revolution” [120] in global weather prediction. Data assimilation has also

found success in oceanography [121, 122] and land-surface hydrology [123]. Physical models are

vital for predicting variables poorly observed by RS platforms such as ocean mixed layer [124] and

root-zone soil moisture (SM) [125]. However, the rigid parameterization of physical models can

be a hindrance when knowledge of the underlying spatio-temporal process is incomplete [126].

The resulting predictions can suffer from signatures of strong (and sometimes incorrect) assump-

tions [104]. Moreover, RS observations usually need to be pre-processed for correcting bias and

scale-mismatch before assimilation in the numerical model [87].

The recent decade has seen an incredible rise of Machine Learning (ML) in Earth-System

Sciences, which has been instrumental in improving predictive accuracy of disparate physical pro-

cesses [127, 128, 129, 130, 131]. Though classical ML models are inept at accounting for spatio-

temporal dependence, recent research in Deep Learning seems promising [132, 133, 131]. Accu-

racy without interpretability, however, is insufficient [134]; the lack of transparency and physical

interpretability of many ML models is viewed as a major deficiency. Moreover, current state-of-

the-art ML models are ill-equipped to handle some of the major challenges associated with fusing
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RS data such as accounting for multi-sensor multiscale data, uncertainty in observations and pre-

dictions, and missing data [134].

On an interpretation-prediction spectrum, physical models derived from the first laws of physics

lie on one end while ML algorithms using black-box models fall on the other. Geostatistics

lie somewhere in the middle and are an attractive alternative for spatio-temporal inference in

a data-driven setting. They do not have strong assumptions like physical models yet enable

physical interpretation and uncertainty quantification. From its humble origins in South African

mines [135, 136], geostatistics has been widely used in modeling the spatio-temporal distribu-

tion of environmental variables including precipitation [137], temperature [138], soil properties

[139, 140, 141, 142], carbon dioxide [143], ground-water quality [144] and SM [46, 1, 18]. Re-

cent work on covariate-driven non-stationary models have also enabled the seamless integration of

covariates into geostatistical models [64, 145] enabling them to model complex spatio-temporal

phenomena.

Geostatistical approaches typically assume an underlying Gaussian process (GP) requiring

quadratic memory and cubic time complexity in the number of observations, which make them

prohibitive as the data size increases. Various approximations have therefore been proposed for

applying geostatistics to massive datasets. Such approaches generally aim at approximating the

covariance [146] and inverse-covariance matrices [147]. Among these, the Vecchia approximation

[148] is one of the oldest with several advantages such as it is 1) suitable for high-performance

parallel computing, 2) accounts for uncertainty in predictions, and 3) outperforms several state-of-

the-art approaches in accuracy [149]. Moreover, recent work [150, 151] has shown that Vecchia

approximation can be generalized to include many existing GP approximation approaches as spe-

cial cases. However, the use of the Vecchia approximation, to the best of the authors’ knowledge,

has been restricted to single-scale data only.

Thus, the objective of this paper is to investigate whether geostatistics, with its rich parametric

inference and uncertainty quantification, can potentially be used with Vecchia approximation to

fuse spatio-temporal multiscale big data.. We achieve this by applying the Vecchia approximation
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to a geostatistical hierarchical model [65, 2]. In this paper, we define the term “multiscale big data”

as data which are observed from multiple platforms at varying footprints, are massive in size,

and are observed over vast extents rendering standard geostatistical (and many other statistical)

approaches infeasible.

We explore the utility of the approximation using simulations, and by fusing real SM datasets

as a case study. SM is a critical variable governing land-atmosphere interactions and contains

significant information about physical processes such as rainfall [152], streamflow [153] and evap-

otranspiration (ET) [104]. SM is highly correlated in space and time resulting from dynamic

interactions between surface and atmospheric controls making it a prime candidate for geostatis-

tics driven multiscale data fusion. [2] previously proposed a geostatistical data fusion scheme for

combining multiscale SM data but its application was restricted to regions with small extent and

small data size limiting its utility. We also choose SM as a case study application for our proposed

algorithm to provide a big data closure for [2]. The rest of the chapter is organized as follows. We

describe the SM datasets used in the case study in Section 4.3. The data fusion algorithm along

with its big data extension is detailed in Section 4.4. This is followed by the discussion of results

in Section 4.5 before we conclude in Section 4.6. Note that in the following sections, all vectors

are assumed to be column vectors.

4.3 Study Area and Data

4.3.1 Case Study: Soil moisture

We apply the proposed algorithm to combine daily point surface (top 0-5 cm) SM data from

U.S. Climate Reference Network (USCRN) [154] and Soil Climate Analysis Network (SCAN)

[155] with satellite data from Soil Moisture Ocean Salinity (SMOS) [156] and Soil Moisture Active

Passive (SMAP) [157] for Contiguous US (CONUS) for July 06-20, 2017. This fifteen-day time

interval was randomly chosen for the warm summer period so that the effect of snow on SM

estimation is minimal. For any given day, there are approximately 143 sites for USCRN and

SCAN while individual satellites partially observe SM across CONUS with some overlap between
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the two data sets (Figure 4.1).

Both SMOS and SMAP use L-band radiometers to measure surface brightness temperature (Tb)

at an average revisit time of three days [158, 159]. Both the satellites apply (different) retrieval

algorithms to Tb and generate composite daily L3 SM products resampled, at 36 km for SMAP (L3)

and 25 km for SMOS (Barcelona Expert Center L3), to an Equal Area Scalable Earth (EASE)-2

grid. For the SMAP data we remove the pixels where 1) the retrieval was unsuccessful (using flag

data), and 2) where the vegetation water content is greater than 5 kg/m2 [160]. For consistency

we use the morning overpass for both satellites— 6 AM local time. For the covariate data, daily

rainfall data were extracted from Parameter-elevation Regressions on Independent Slopes Model

(PRISM) at 4 km resolution. PRISM provides gridded rainfall data across CONUS at a daily

scale using a combination of climatological and statistical methods [161]. Soil and elevation data

were extracted from Soil Survey Geographic Database (1 km) [162] and Leaf Area Index (LAI)

(as a proxy for vegetation) were extracted from Moderate Resolution Imaging Spectroradiometer

(MCD15A3H, 500m) [163].

4.4 Methodology

4.4.1 Multiscale data fusion

Let the environmental variable varying across space and time (such as SM, ET, temperature,

etc.) be denoted by y. We assume that y(.) is a Gaussian Process (GP) (a standard geostatisti-

cal assumption) at the point scale in a domain or extent D in d dimensions (d = 1, 2, 3. . . ). For

instance, if y represents daily land-surface temperature (LST) varying spatially (latitude and lon-

gitude) and temporally (days), then d equals 3. The variable y is defined at the point scale using a

mean function µ and a covariance function C

y(.) ∼ GP (µ,C) (4.1)

For any environmental variable y, in addition to point data, we might observe data at aggre-

gate resolutions from RS platforms or large-scale numerical models. For instance, surface SM
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Figure 4.1: Fifteen day soil moisture data from USCRN and SCAN (black cross), SMOS (swath -
black outline) and SMAP (swath - purple outline) for July 06-20, 2017. For individual days, both
SMOS and SMAP observe different regions of Contiguous US (CONUS) and there is a significant
overlap between the data. The size of the SM data and the extent of study domain (CONUS) are
both massive making data fusion computationally demanding.
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is observed at aggregate resolutions from SMAP (∼36 km × 36 km, daily) and SMOS (∼25 km

× 25 km, daily) while ET is observed using ECOSTRESS (∼70m × 70m, daily) and MODIS

(∼500m × 500m, 8-day). Since y is defined at point scale, for any aggregate pixels Ai and Aj ,

y(Ai) = 1
|Ai|

∫
Ai
y(s)ds, with the corresponding mean and covariance as:

µ(Ai) =
1

|Ai|

∫
Ai

µ(s)ds

C(Ai, Aj) =
1

|Ai||Aj|

∫
Ai

∫
Aj

C(s1, s2)ds2ds1

(4.2)

where |Ai| is the d-dimensional resolution of pixel Ai and s represents a point in d dimensions.

If Ai and Aj represent coordinates of point data, the mean of data at Ai is simply µ(Ai) and the

covariance between Ai and Aj is given as C(Ai, Aj). If Ai is an areal pixel and Aj represents a

point, then the covariance C(Ai, Aj) is given as 1
|Ai|

∫
Ai
C(s, Aj)ds

Let the total number of observed pixels be n and be denoted by A = {A1, . . . , An} with

Ai ⊂ D. The joint distribution of y(A) = (y(A1), . . . , y(An)) can be shown to be multivariate

normal [65]:

y(A) = Nn(µ(A), C(A,A)), (4.3)

where µ(A) is a vector of length n and C(A,A) is a matrix of size n × n. The individual

elements of (µ(A))i and (C(A,A))ij are given by equation 4.2. Since we cannot always analyti-

cally solve the above integrals, we use a numerical approximation [65] by assuming an equidistant

numerical grid G over the extent D with nG number of grid points such that G = {g1, . . . , gnG} or

equivalently G = {gk : k = 1, . . . , nG}. Here gk denotes the location of the kth grid point in G. We

can then approximate y(Ai) as:

y(Ai) ≈
1

nAi

∑
gk∈GAi

y(gk) (4.4)
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where GAi denotes the subset of the total grid points G lying inside the pixelAi ,and nAi denotes

the number of grid points in GAi . The corresponding approximations for the mean and covariance

can be written as:

µ(Ai) ≈
1

nAi

∑
gk∈GAi

µ(gk)

C(Ai, Aj) ≈
1

nAi

1

nAj

∑
gk∈GAi

∑
gl∈GAj

C(gk, gl)

(4.5)

We illustrate the numerical approximation using a hypothetical example in Figure 4.2. Figure

4.2 (a) represents three partially overlapping datasets which cover different extents and have dif-

ferent resolutions: two areal datasets R1 (64 green pixels) and R2 (36 purple pixels), and point

dataset P1 (40 blue triangles). Figure 4.2 (b) represents the equidistant grid G (black dots) over

the study domain. Assuming the mean and covariance functions are known at the point scale, the

mean of pixel A1 (A2) and the covariance between pixels A1 and A2 in Figure 4.2 (c) are given by

equation 4.5. Here GA1(GA2) are subset of the total grid points G, color-coded as green (purple),

lying inside A1 (A2) with nA1 = 9 (nA2 = 6). Similarly, the mean function at point A3 in Figure

4.2 (d) is simply given as µ(A3) while C(A1, A3) is given by 1
nA1

∑
gk∈GA1

C(gk, A3).

We can write 1
nAi

∑
gk∈GAi

y(gk) (equation 4.4) in matrix form as hTAiyAi , where hAi is a vector

of length nAi with each element equal to 1/nAi or hAi = (1/nAi , ....., 1/nAi), and yAi is a vector

of length nAi with elements {y(gk) : gk ∈ GAi}. Similarly in equation 4.5, µ(Ai) can be written

as hTAiµAi (with µAi having elements {µ(gk) : gk ∈ GAi}). We also write C(Ai, Aj) in equation

4.5 in matrix form as hTAi(C(GAi ,GAj))hAj , where (as mentioned before) GAi denotes the subset

of the total grid points G lying inside the pixel Ai. Retrievals of an environmental variable from

different platforms are typically subject to systematic (bias) and stochastic (random) errors (e.g.

refer [164, 165] for SM, [166, 167] for LST, [168] for water storage, [169, 170] for ET). Thus,

for any observed pixel Ai, it is important to differentiate between the noisy observation from a

platform (denoted as z(Ai)) and the latent environmental variable y(Ai) that is uncorrupted by the
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Figure 4.2: (a) Example depicting two areal (green and purple) and one point (blue triangles)
data platforms (b) Equidistant point grid assumed throughout the study domain (c) The mean
and covariance of pixels A1 and A2 approximated using the numerical grid (d) The mean and
covariance between a pixel A1 and point observation A3.
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parameterized errors. For a given observation z(Ai) (from a data platform) for pixel Ai, we thus

write:

z(Ai) = y(Ai) + δ(Ai) + κ(Ai)y(Ai) + ε(Ai) (4.6)

where δ(Ai), κ(Ai) and ε(Ai) are respectively the additive bias, multiplicative bias, and random

measurement error associated with z(Ai). We parameterize the random error as ε(Ai) ∼ N (0, τ 2Ai)

with variance τ 2Ai . We then write:

z(Ai) ≈ hTAiyAi + δ(Ai) + κ(Ai)h
T
Ai
yAi + ε(Ai)

= (1 + κ(Ai))h
T
Ai
yAi + δ(Ai) + ε(Ai)

= (hκAi)
TyAi + δ(Ai) + ε(Ai),

(4.7)

where hκAi = (1 + κ(Ai))h
T
Ai

. The mean (µ) and covariance function (C) in equation 4.1 are

thus given parametric forms based on the environmental variable y while the additive bias (δ(Ai)),

multiplicative bias (κ(Ai)) and error-variance (τ 2Ai) for a pixelAi in equation 4.7 are parameterized

depending on the data platforms. Let all the parameters used to parameterize the mean, covariance,

bias and random error be denoted by the vector θ. Elements of θ can either assumed to be known

or be estimated from the observations. If the total number of observations from all platforms is

equal to n, we denote z(A) = {z(A1), z(A2), . . . , z(An)}. The parameter vector θ is estimated by

maximizing the likelihood f(z(A)|θ) where f(A|B) denotes the probability density of A given B.

For our model, it can be easily derived that the (log-) likelihood is:

− 2log(f(z(A)|θ) = log(det(Σz)) + (z(A)− µz)TΣ−1z (z(A)− µz) + nlog(2π), (4.8)

where the ith element of the vector µz (size n) and the (i, j)th element of the matrix Σz (size

n× n) in equation 4.8 are given as:
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µz,i ≈ (hκAi)
TµAi + δ(Ai)

Σz,i,j ≈ (hκAi)
TC(GAi ,GAj)hκAj + τ 2Ai,j ,

(4.9)

where τ 2Ai,j =


τ 2Ai i = j

0 i 6= j

. However this data fusion algorithm becomes computationally

infeasible when the size of the datasets and/or the extent of study domain becomes large. We

therefore propose an approximation to the fusion algorithm for such cases in the next Section.

4.4.2 Vecchia-multiscale: An Approximation for Multiscale Big Data

If the total number of observations (governed by the number of data platforms and resolution

of pixels for a given study domain) be n, and the number of assumed grid points (governed by the

extent of the study domain and distance between individual grid points) be nG , then computing

Σz and finding its inverse Σ−1z in equation 4.8 requires O(n2
G) +O(n3) floating point operations.

This evaluation becomes computationally prohibitive as the number of data and the size of study

domain increase (e.g., when combining multiple data platforms for continental scale fusion of an

environmental variable), and thus requires an approximation. To approximate the likelihood, we

first write the joint distribution in f(z(A)|θ) as a product of univariate conditional distributions as

f(z(A)|θ) = f(z(A1)|θ)×
n∏
i=2

f(z(Ai)|z(A1:i−1), θ), (4.10)

whereA1:i−1 denotes {A1, . . . , Ai−1} and thus z(A1:i−1) denotes {z(A1), . . . , z(Ai−1)}. Fol-

lowing [148] we approximate the likelihood f(z(A)|θ) as:

f̂(z(A)|θ) = f(z(A1)|θ)×
n∏
i=2

f(z(Ai)|z(Ami
), θ), (4.11)
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where Ami
is a subvector of A1:i−1 of length mi such that mi =


i− 1 i ≤ m

m i > m

. Here

m is an integer lying between 1 and n − 1 with m = n − 1 representing the exact likelihood

in equation 4.10. The elements of subvector Ami
consist of mi elements from A1:i−1 which

are closest to Ai in space. The subvector z(Ami
) is the observed data vector corresponding to

Ami
. To illustrate the approximation, we again use the hypothetical example in Figure 4.2 (a)

comprising three datasets: areal data R1 (64 green pixels) and R2 (36 purple pixels), and point

data P1 (40 blue triangles), making the total number of observations n = 140. For this data, the

univariate conditional distributions are illustrated in Figure 4.3 using a random permutation of the

pixels A and choosing m = 20. Column (a) presents the conditional distributions in equation 4.10

corresponding to the exact likelihood while column (b) consist of the corresponding conditional

distributions resulting from the Vecchia approximation. The ith pixelAi in equations 4.10 and 4.11

(where i = 2, ..., 140 increases from top to bottom in the columns) is color-filled in red while the

pixels (or points) of the conditioning vector z(A1:i−1) (equation 4.10) or z(Ami
) (equation 4.11)

are color-filled in green (R1), purple (R2) and blue (P1). It can be seen in Figure 4.3 that for i > m,

the Vecchia approximation selects a subset of m pixels (or points) for each Ai. It can be shown

that this approximation is equivalent to inducing sparsity (large percentage of zeros) in the inverse

Cholesky factor matrix Λ(ΛTΛ = Σ−1z ). This leads to fast evaluation of Σ−1z (and consequently the

likelihood) in equation 4.8 used for estimating the parameter vector θ as well as doing subsequent

predictions. The detailed algorithm for parameter estimation and subsequent predictions is given

in Appendix B. We call this approximation Vecchia-multiscale.

4.4.2.1 Permutation in Vecchia-multiscale

There are two criteria we seek in the approximation: speed and accuracy. For the Vecchia-

multiscale, significant computational and memory benefits can be achieved by selecting m << n.

Further, equation 4.11 results in a product of independent univariate distributions which is readily

parallelized for faster computations.
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Figure 4.3: Illustration of the Vecchia-multiscale to the hypothetical data in Figure 4.2 (a) consist-
ing of 64 green pixels (R1), 36 purple pixels (R2) and 40 point data P1 (blue triangles). Column
(a) denotes the conditional distributions as implied by the the exact likelihood while column (b)
gives the conditional distributions using Vecchia-multiscale approximation with maximum size of
the conditioning vector m equal to 20. The ith pixel Ai (where i = 2, ..., 140 increases from top to
bottom in the columns) is color-filled in red while the pixels (or points) of the conditioning vector
are color-filled in green (R1), purple (R2) and blue (P1).
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Regarding accuracy for a fixed value of m, as the right side of equation 4.11 consists of an

“ordered” sequence of conditional probability distributions, the approximation depends on the

order in which the pixels appear in A. This is because in equation 4.11, for a pixel Ai (i ≤ 2), we

select the subset Ami (of length mi) from elements of A1:i−1 which are closest in space to Ai. This

leads to different values for z(Ami
) in equation 4.11 based on how we permute {A1, ..., An}. Thus,

the approximation accuracy will depend upon what permutation of {A1, ..., An} we choose for the

pixels (and points) for computing f̂(z(A)|θ) in equation 4.11. When the size of the multiscale

data is massive, it is infeasible to explore all such permutations. For point data, [149] found

that certain permutations of A give more accurate approximations when compared with the exact

likelihood f(z(A)|θ). In this paper we explore the same for multiscale data. We use four popular

permutations [149]: 1) Joint-Coordinate (ordering the locations based on increasing coordinate

values), 2) Joint-Middleout (ordering locations based on increasing distance to the mean location

of the extent), 3) Joint-Maxmin (ordering in which each successive point is chosen to “maximize

the minimum distance” to previously selected points), and 4) Joint-Random (randomly ordering

locations). Interested readers are encouraged to refer to Appendix C and [149] for details on these

permutations.

In addition to the above “Joint-“ permutations, we introduce “Separate-” permutations where

we first separate out the point and areal data and apply the above-mentioned four permutations

separately to each. We then form the final permutation by sorting the “ordered” point data fol-

lowed by the “ordered” areal data. This leads to four additional corresponding permutations: 5)

Separate-Coordinate, 6) Separate-Middleout, 7) Separate-Maxmin, and 8) Separate-Random. The

difference between “Joint-“ and “Separate-” permutations is illustrated in Figure 4.4. We assume

the centroid of an areal pixel as its location for applying the permutations.

Using the hypothetical example in Figure 4.2 (a), we illustrate the effect of these eight chosen

permutations on how the pixels and points are ordered in A and how it affects the evaluation of

f̂(z(A)|θ). To see which permutation performs better for the Vecchia-multiscale in general, we

use simulated data in two (e.g, a variable varying across latitude and longitude) and three (e.g., a
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variable varying across latitude, longitude and time) dimensions. The details of the simulations

and the corresponding results are given in Appendix C.

For both two and three dimensions, in general, the Separate-Maxmin and Separate-Random

perform the best while the Coordinate-based orderings perform the worst. This is important be-

cause many approximation schemes use Coordinate-based ordering as their default [171, 172] and

it should be used with caution when using Vecchia-multiscale. The subvectorAmi
(equation 4.11)

consists of a good mix of both far and near pixels as well as nearby point data for Separate-Maxmin

and Separate-Random (Appendix C). We hypothesize that conditioning a pixel/point on both near

and far pixels help in better approximation of the exact likelihood. Additionally, the “Separate-“

permutations lead to the subvector Ami
consist of nearby point data which is potentially helpful

because 1) for a given study domain, point data are generally sparse for any environmental variable

and are generally (but not always) considered more accurate than remote sensing data, and 2) we

define our model at the point scale (equation 4.1), and it is thus potentially helpful to condition

pixels/points on nearby point data. We therefore suggest adopting Separate-Maxmin or Separate-

Random when using Vecchia-multiscale. Since, our aim is to propose a general algorithm, we

only use location information for permuting {A1, ..., An}. A promising area of future research is

exploring physically-based permutation of pixels based on the environmental variable to be fused.

In the next Section, we apply the Vecchia-multiscale to fuse multiscale SM data for CONUS.

4.5 Results and Discussion

4.5.1 Case Study: Soil Moisture Data

We fuse fifteen days of SMOS, SMAP, and point (USCRN and SCAN) SM data across CONUS

from July 06-20, 2017. We randomly hold-out 27 point stations (20%) for validation leaving 116

station data for training. Since SM observations are theoretically bounded between 0 and 1 and

exhibit considerable skewness, the Gaussian assumption becomes untenable. We thus use a logit

transform SM ′ = log( SM
1−SM ) which transforms the SM values to lie between − to and also make

the distribution less skewed (Appendix C). Overlapping data from SMOS and SMAP during the

90



Figure 4.4: Illustration of “Joint-“ and “Separate-“ permutations for Vecchia-multiscale. (a) Hypo-
thetical example comprising six aggregate pixels and four point data. Different colors are used to
distinguish between different pixels and points. (b) The “Joint-“ permutation results in both the pix-
els and points getting permuted together following a given permutation “Perm1”. For “Separate-“
ordering, we first separate the point and aggregate data, apply the permutation “Perm1” separately
to each, and then form the final permutation by sorting the permuted point data followed by the
permuted aggregate data. In this figure we choose a random permutation as “Perm1” and the re-
sulting permutations of the pixels/points are shown. The “Joint-“ and “Separate-“ permutations
can lead to different ordering of the pixels/points in A = {A1, . . . , A10} resulting in different val-
ues of the approximate likelihood computed using Vecchia-multiscale. In this paper, we explore
“Coordinate”, “Middleout”, “Maxmin” and “Random” as possible permutations for “Perm1”. The
centroid of an aggregate pixel is chosen as its location for permutations.
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analyzed period also exhibit slightly better correlation on the transformed scale (Appendix C).

4.5.2 Mean, covariance and bias

Numerous studies [13, 47, 12, 45, 14, 15, 46, 90, 16, 48, 21] have found that SM distribution

across space and time is affected primarily by precipitation, soil texture, topography and vege-

tation. Therefore, we model the spatio-temporal SM distribution as a function of these physical

covariates. For SMAP, since we only consider pixels where SM retrieval was successful (from flag

data) and have a vegetation water content ≤ 5kg/m2, we assume that the SMAP data are of good

quality and do not have any bias. As we did not pre-filter SMOS data, we assume a constant ad-

ditive and multiplicative bias for SMOS. Exploratory analysis between overlapping SMOS-SMAP

pixels at the logit scale (Appendix C) also suggest a (additive and multiplicative) bias between

the two platforms. We assume normally distributed measurement error (at the transformed scale)

with mean zero and variance τ 2SMAP and τ 2SMOS for the two platforms respectively. Since the

USCRN/SCAN data undergo rigorous quality control, we assume point data to be the ground truth

with no bias/error.

We use exploratory analysis for determining the parametric forms for the mean function. Since

we assume bias in SMOS data, we use only SMAP and point data for the exploratory analysis. For

the exploratory analysis, the covariates are linearly averaged to the SMAP resolution. For rainfall,

we assume 3-day antecedent mean rainfall as a covariate. On the original scale (Figure 4.5 (a)),

the relationship between SM and the physical controls is non-linear. But after some non-linear

transformations of the covariates (and logit transform of SM), an approximate linear relationship

between SM and the covariates can be assumed (Figure 4.5 (b)). The mean trend of SM can be

therefore written as:

µ(log(
SM

1− SM
)) = µ(SM ′) = β0+β1log(LAI)+β2exp(−

rain

pβrain
)+β3exp(−

elevation

pβelevation
) (4.12)

We fix pβrain and pβelevation as 3.3 mm and 342.6 m based on exploratory analysis. These two

parameters represent the range of the exponential functions in equation 4.12 for which an approxi-
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Figure 4.5: Exploratory analysis of soil moisture with physical covariates. (a) The relationship
of soil moisture with the physical covariates is non-linear on the original scale. (b) Appropriate
covariate transformation results in an approximate linear relationship of SM (on the logit scale)
with the physical covariates. The values of prain and pelevation are fixed as 3.3 mm and 342.6 m in
the plots.
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mate linear relationship holds between SM′ and the transformed covariates in Figure 4.5 (b). Note

that the covariates are resampled only for exploratory analysis and no resampling of (SM and co-

variate) data is required for implementing the actual algorithm in Section 4.4. Since we use an

equidistant grid to approximate multiscale SM data, the grid points are assigned values according

to the covariate pixels in which they lie. Though this results in grid points lying in a covariate

pixel getting the same values, this allows us to work with covariate data at different resolutions and

avoid errors introduced due to resampling of covariate data.

The covariance between any two points (x1, y1, t1) and (x2, y2, t2), where x, y, t represent the

latitude, longitude and time respectively, will also vary based on the underlying covariate hetero-

geneity and therefore the assumption of a stationary covariance function is too simplistic. Thus,

for the covariance function C (equation 4.1), we use a non-stationary covariance function [90, 64]

such that:

C(SM ′(x1, y1, t1), SM
′(x2, y2, t2)) = C(s1, s2) =

M∑
j=1

wj(Xcov(s1))wj(Xcov(s2))Cj(|s1 − s2|)

(4.13)

The covariance function in equation 4.13 is a weighted sum ofM isotropic covariance functions

{Cj; j = 1, 2, . . . ..,M}where the weights {wj; j = 1, 2, . . . ..,M} are a function of the underlying

physical covariates Xcov(s) affecting the covariance. The weighting functions wjs are modeled

using a multinomial logistic function of the underlying covariates: wj(s) =
exp(Xcov(s)Tαj)∑M
l=1 exp(Xcov(s)

Tαl)
.

For our analysis, we choose exponential covariance functions (Matern with smoothness =0.5) for

individual Cjs (equation 4.13) with different range parameters for space (rjxy) and time (rjt ) [149]:

Cj(s1, s2) = σ2
j exp(−

√
||(x1, y1)− (x2, y2)||2

(rj1)
2

+
|t1 − t2|2

(rj2)
2

) (4.14)

We chose the exponential covariance functions for individual Cjs as changing the smoothness

parameter for Matern resulted in insignificant change in the estimated maxmimum likelihood, and

exponential functions are computationally faster to evaluate than Matern due to the added cost of

94



evaluating the Bessel functions for the Matern function. We fix M = 3 to keep the number of

parameters to be estimated relatively low. We include LAI, three-day mean antecedent rain, clay

and elevation in Xcov. As mentioned in Section 4.4, both the mean and covariance functions are

defined at point scale with computations at areal supports done as outlined in Section 4.4.1. In this

work, since point data are sparse, the parameter estimates of the mean and covariance functions

are expected to be mainly driven by SMAP and SMOS data. Note that we do not include latitude,

longitude or time as covariates in either the mean or covariance function to make the fusion scheme

more general and transferable.

4.5.2.1 Parameter estimation and inference

We assume a numerical grid G (Section 4.4.1) spaced approximately 0.09 degrees apart across

the CONUS for each of the fifteen days resulting in close to 100, 000 grid points per day (nG ≈

15 × 100, 000 = 1, 500, 000). The total number of observations n from all platforms (SMAP,

SMOS, and USCRN/SCAN) for fifteen days equal 100, 386. Parameter estimation and subsequent

predictions by computing exact likelihood is computationally intractable for such a big dataset

and thus requires an approximation. We use the approximation detailed in Section 4.4 using the

Separate-Maxmin orderings. Since SMAP and SMOS observe SM at an interval of 3 − 7 days,

we compute the Separate-Maxmin ordering only considering the spatial coordinates (latitude and

longitude) of the data so that the temporal information of SM is also adequately represented in

the conditioning vector z(Ami) in equation 4.11. We fix the number of neighbors as m = 60; the

choice of m was taken to balance the predictive accuracy and computational speed. We carry out

parameter estimation using a global optimization algorithm called Generalized Simulated Anneal-

ing [80], a generalized and improved form of simulated annealing, to find the parameter estimates

that maximize the likelihood.

On the logit scale, the estimated mean parameters (equation 4.12) are β = {β0, β1, β2, β3} =

{−1.71, 0.08,−0.35, 0.17} thus showing a good correlation of mean SM with the controls es-

pecially antecedent rainfall. The additive and multiplicative bias for SMOS are δ = −0.003

and κ = 0.15 respectively, while the measurement error variance for SMAP and SMOS are
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τ 2SMAP = 0.026 and τ 2SMOS = 0.023. To quantify the effect of covariates on the spatio-temporal

covariance of SM, we first transform the covariance to the original scale. For a specified covariance

between two points (from the covariance function in equation 4.13) on the logit scale, we use the

well-known Cholesky-Decomposition method to simulate (50, 000) pairs of values for these two

points. We then back-transform these values to the original scale and use the empirical covariance

of the pairs as an approximation of the covariance at the original scale. For the non-stationary

covariance function, since the covariance between any two points depends on the lag-distance in

space and time as well as the covariates(Xcov), the effect of an individual covariate on the co-

variance is nontrivial. We thus quantify the effect of a covariate by comparing the covariance for

different lags (in space and time) when the control is at the mean value (of the study domain) to

when the control is at extreme value (5th and 95th percentile) while keeping the other controls at

their mean values [1, 64]. The resulting correlation plots are given in Figure 4.6. We find that all

four covariates affect the correlation in space with higher values of rainfall, LAI, percent clay and

lower values of elevation associated with increase in spatial correlation. For the temporal correla-

tion, we found only a slight effect of the covariates on the correlation. Note, however, inclusion

of other physical covariates as well as analysis of a longer time-period might show the effect of

certain covariates on the temporal SM correlation.

Of course, individual plots in Figure 4.6 represent only three combinations of the physical co-

variates. In reality, all the covariates exhibit considerable heterogeneity across CONUS (Appendix

C) and act together to give vastly different correlation patterns. To illustrate this effect, we choose

5 points (A-E, Figure 4.7) across CONUS under contrasting covariate heterogeneity and look at the

spatial correlation of these points with surrounding points (∼3 km apart) within an approximately

60 km × 60 km region for July 06, 2017. We see that the correlation pattern differs significantly

based on the how the quartet of rainfall, LAI, clay and elevation vary in the surrounding region of

the respective points.
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Figure 4.6: Spatial (top) and temporal (bottom) correlation plots when one of the physical co-
variates (Leaf Area Index, rainfall, clay and elevation) is changed from the mean value (of the
study domain) to high (95th percentile) and low values (5th percentile). For each of the plots, the
blue curve is the same representing the spatial and temporal correlation when all the covariates are
at their mean values (LAI =1.3, Rain = 7.1 mm, Clay =17.4% and Elevation = 586 m) The red
(green) curve refers to the correlation when one covariate is changed to a high (low) value keeping
the other three covariates at the mean value.
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4.5.3 Predictions at different Scales

Once the parameters have been estimated, we compute multiscale SM predictions (Appendix

B) across CONUS. As a final step, we back-transform the predictions i.e., SM = exp(SM ′)/(1 +

exp(SM ′)) to the original scale. We compare our SM predictions at four support scales: point

(USCRN and SCAN), 3 km (SMAP/Sentinel-1), 25 km (SMOS) and 36 km (SMAP). We compute

five-day SM forecasts from July 21-25, 2017 on all four support scales.

4.5.3.1 USCRN and SCAN Scale

As mentioned before, we randomly held out 27 USCRN and SCAN stations across CONUS

(Figure 4.8) as test data. Figure 4.9 depicts the SM for the “observed” (July 06-20, 2017) and

“forecast” (July 21-25, 2017) period. For the observed period, the correlation (R) and root mean

squared error (RMSE) are 0.67 and 0.087 v/v respectively. The slightly high value of the overall

RMSE can be attributed to some point station data where there is high bias between the predictions

and observation (such as Site 1, 2, 7 and 10) and some stations where the observed SM does not

change much during the 20-day period (such as Site 14) possibly resulting from sensor malfunc-

tion. Though the SM predictions during the observed period will be mainly influenced by SMAP

and SMOS, the predictions serve to fill in important gaps left by these platforms which observe

SM at a time interval of 3-7 days.

For the forecast period, R and RMSE of the sites are 0.57 and 0.086 v/v respectively. The

forecast period is especially important because it allows us to forecast five-day SM at the point

scale in the absence of any observed SM data. We plot the three-day mean antecedent rainfall

(from 4km PRISM data) during the forecast period to demonstrate the wetting of SM in response

to rainfall. The degree of wetting of SM in our predictions varies not only with rainfall amount but

also with the underlying land-surface covariates. Overall, the forecasts for July 21-25, 2017 at point

scale are satisfactory given that we utilize only SMAP, SMOS and 116 point station (training) data

across CONUS during July 06-20, 2017. Better bias characterization driven by underlying surface

heterogeneity for both SMOS and SMAP can help to reduce the bias occurring at some sites.
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4.5.3.2 SMAP/Sentinel-1 Scale

The SMAP/Sentinel-1 L2 SM [173] product uses concurrent 36 km SMAP Tb measurements

and 3 km backscatter measurements from Sentinel-1 radars to give 3 km SM in the overlapping

regions of the two platforms. The Sentinel-1 radars have a much narrower swath (∼250 km) how-

ever, compared with the relatively wide swath (1,000 km) of SMAP which significantly reduces the

spatial coverage of the SMAP/Sentinel-1 product. The average temporal revisit time of Sentinel-1

radars is 6 days and due to different revisit times of SMAP and Sentinel-1 radars, the temporal

resolution of the SMAP/Sentinel-1 SM product varies from 6-12 days. Therefore, for any given

day, the coverage of the SMAP/Sentinel-1 product across CONUS is quite limited.

We compute SM predictions at 3 km (assuming the equidistant grid points G to be 1 km apart)

for the observed SMAP/Sentinel-1 pixels during the 20-day period and compare with the observed

SMAP/Sentinel-1 product (Figure 4.10). We also compare the SMAP/Sentinel-1 observations with

the SMAP product from which it is derived. We see that for the majority of the days the SM pre-

dictions agree well with the SMAP/Sentinel-1 product outperforming the original SMAP product

even for the forecast period. This shows that fusing SMAP SM with SMOS (and USCRN-SCAN

data) and accounting for the effects of physical covariates on SM distribution results in better pre-

dictive accuracy at 3 km support scale than just using the SMAP SM. Since the spatio-temporal

coverage of SMAP/Sentinel-1 is extremely limited, predictions using the data fusion scheme are

useful as they help predict SM across the entire CONUS at a daily scale.

4.5.3.3 SMAP and SMOS Scale

Since we use all of SMAP and SMOS data for the “observed” period (July 06-20, 2017) for

estimating our parameters, we compare SM predictions with observed SMOS and SMAP data for

the forecast period (Figure 4.11 (a)). We make predictions assuming an equidistant numerical grid

spaced approximately 9 km apart and remove pixels which have less than 7 grid points lying inside

the pixels. We find that the predictions satisfactorily agree with the observed SM with RMSE

ranging from 0.039 v/v to 0.055 v/v for SMAP, and 0.049 v/v to 0.067 v/v for SMOS while R
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Figure 4.7: Spatial Correlation pattern of Soil moisture for five points (A-E) across Contiguous
US for July 06, 2017. The correlation of the five points with their surrounding region varies
considerably due to the covariate heterogeneity of the regions.
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Figure 4.8: Location of the validation USCRN/SCAN stations across Contiguous US. We ran-
domly hold out the 27 USCRN/SCAN stations to compare soil moisture predictions at the point
scale across Contiguous US. The locations span different hydroclimates and surface hetero-
geneities.
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Figure 4.9: Comparison of soil moisture predictions with the observed SCAN/USRN data for the
“observed” (July 06-20, 2017) and “forecast” period (July 21-25, 2017). The covariate values of
LAI (averaged during the forecast period), percent clay and elevation (m) are denoted by green,
brown and purple colors respectively. The three-day mean antecedent rainfall is also given in blue
during the forecast period to demonstrate its effect on SM forecasts
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ranging from 0.84 to 0.90 for SMAP, and 0.76 to 0.87 for SMOS. As an illustration, the mean

SM predictions as well as the prediction variance for July 21, 2017 are given in Figure 4.11 (b). It

should be noted that since the multiscale predictions are derived from both SMOS and SMAP, their

accuracy is affected by how well the two platforms agree with each other. To get a rough estimate

of this, we bilinearly interpolated the SMOS pixels which overlap with the SMAP pixels for July

21-25, 2017 and found an RMSE of 0.051 v/v to 0.076 v/v while R varied from 0.74 to 0.86.

The proposed data fusion scheme thus shows good potential for improving SM predictions

across scales. Future research efforts should focus on applying the algorithm for bigger time

periods and across different seasons using high performance computing systems. Improved for-

mulations of the mean, bias and covariance functions as well as the inclusion of other physical

covariates should be explored. The accuracy of the data fusion scheme at multiple scales can be

improved by fusing SM estimates from other platforms such as the Cyclone Global Navigation

Satellite System (CYGNSS) and the highly anticipated NASA–ISRO Synthetic Aperture Radar

(NISAR) mission. The data fusion allows seamless integration of any number of platforms at var-

ied scales; appropriate parametrization of the bias and error for individual platforms, however, is

necessary. As mentioned earlier, the proposed algorithm is general and can be potentially used to

fuse other spatio-temporally correlated environmental variables which have measurements avail-

able from multiple platforms.

4.6 Conclusions

In this work, we propose a geostatistical framework called Vecchia-multiscale for fusing multi-

scale big data. Using simulated data, we found that certain orderings work better in approximating

the exact likelihood at a fraction of the computational cost. We then apply Vecchia-multiscale to

fuse real SM datasets and compute multiscale SM predictions and forecast five-day SM across

scales.

As the volume of environmental data are expected to dramatically increase in the future, further

research into finding better orderings becomes critical. We chose our orderings based only on space

and time; future work will focus on proposing physically-based orderings where, in addition to the
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Figure 4.10: Comparison of soil moisture predictions and SMAP soil moisture with the observed
SMAP/Sentinel-1 soil moisture at 3 km scale. For the majority of the days, the predicted soil
moisture using the fusion approach outperforms the original base SMAP product (even for the
forecast period). The red line denotes the 1:1 line.
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Figure 4.11: . (a) Comparison of soil moisture predictions and SMAP and SMOS observed soil
moisture for July 21-25, 2017. The red line denotes the 1:1 line. (b) Soil moisture predictions
across Contiguous US along with the prediction variance. Predictions are unavailable for certain
regions due to absence of covariate data.
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mean and covariance, the ordering will also be covariate-driven. We applied Vecchia-multiscale to

simulated data and real SM observations; further application to diverse (spatio-temporally corre-

lated) environmental variables will vet the widespread utility of the algorithm. An advantage of the

proposed approach is that it is not a “black-box” and its components can be readily modified based

on the underlying physical variable and expert-knowledge. Note that this algorithm can only be

applied under a Gaussian Process assumption. In cases where such an assumption is untenable, re-

cent research indicates that the approximation can be further extended using Generalized Gaussian

Processes [174].

We live in an exciting era where a deluge of environmental data presents an unprecedented

opportunity for uncovering hidden patterns existing in nature and ultimately achieving the elusive

mass and energy balance in Earth-System processes. Data-fusion algorithms harnessing the com-

bined utility of RS and insitu data are critical to advance our understanding of global environmental

processes at multiple scales and make data-driven predictions. Moreover, since the breakthrough

in numerical modeling occurred when satellite data were assimilated in physical models, fusing

multi-platform satellite data can enhance the utility of existing physical models and help take the

next leap forward in understanding and predicting environmental processes.
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5. A DYNAMIC ENHANCED SPATIAL AND TEMPORAL ADAPTIVE REFLECTANCE

FUSION MODEL FOR EVAPOTRANSPIRATION

5.1 Synopsis

There has been an increased interest in combining data from satellites which provide observa-

tions at a fine spatial resolution but have extended revisit times with observations from satellites

which provide data at a coarse spatial resolution albeit at a high temporal frequency. Currently the

Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) and its subsequent exten-

sion for heterogenous landscapes, the Enhanced STARFM (ESTARFM), are the most widely used

techniques to fuse such satellite data. These algorithms however, do not take the measurement er-

rors of the satellites into account while combining data. They are also unsupervised techniques and

thus their application consists of ad-hoc choices of important parameters that govern the overall

accuracy of the algorithm. Finally, these algorithms do not have a framework to include ancillary

data or theory-driven understanding of the underlying environmental processes. To account for the

above limitations, we propose a Dynamic ESTARFM model which utilizes the original ESTARFM

algorithm in a stochastic state-space modeling framework. The proposed model is applied to com-

bine daily Evapotranspiration data from satellites ECOSTRESS and MODIS for agricultural sites

in the lower Brazos Basin, Texas and we find that the proposed approach outperforms the original

ESTARFM when compared to daily Eddy-Covariance data. The proposed scheme is general and

can be utilized to combine other environmental variables.

5.2 Introduction

Six decades into the launch of satellites for observing Earth-Science processes, few global

remote sensing platforms can retrieve data at a fine spatial resolution while providing frequent

data coverage temporally. Multiple satellites have been launched however, which either observe

the Earth frequently at a coarse spatial resolution or have long revisit time periods retrieving data

at fine spatial resolution. Some examples of the former are Moderate Resolution Imaging Spec-
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troradiometer (MODIS) [175], Soil Moisture Active Passive (SMAP) [157] and Soil Moisture

and Ocean Salinity (SMOS) [156] while satellites comprising the latter include LANDSAT [176],

ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) [177]

and SENTINEL-1 [178]. Naturally, interest in combining these disparate satellite platforms to pro-

vide a seamless coverage of remote sensing retrievals across space and time continues. The process

of combining these disparate platforms such that the fused product provides better spatio-temporal

information than provided by any individual platform is called data fusion [28].

There are three broad approaches [179] for fusing remote sensing data: 1) weighted-function

approach, 2) unmixing approach, and 3) dictionary-pair learning approach. The weighted-function

based methods [180, 181, 182] predict a fine resolution pixel using a weighted sum of predictions

computed from the surrounding “similar” pixels. The unmixing based approaches [183, 184, 185]

classify the fine resolution images into various classes or “end-members” (obtained from various

classification techniques) and computes the fractions of each of these end-members in the corre-

sponding coarse resolution image at an observed time tp. Using a moving window algorithm, the

coarse resolution image on the prediction date tq is then unmixed (using the classification at tp) to

provide predictions at the fine scale. The dictionary-pair learning methods [186, 187] use sparse

representation to establish non-linear similarities between the coarse and fine resolution images to

capture land-cover and phenological changes.

All the above data fusion algorithms combine a coarse spatial resolution (fine temporal reso-

lution) platform—hereafter called platform C—with a fine spatial resolution (and coarse temporal

resolution) platform—hereafter called platform F . The data fusion algorithms require concurrent

images from the F and C platforms for one or more training days. They further require an image

from the C platform on the prediction day to generate a synthetic fine resolution image corre-

sponding to the F platform. In this work we focus on the weighted-function approach to data

fusion.

The Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) [180] represents the

first landmark data fusion study based on the weighted-function approach and is arguably the most
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widely used among all data fusion approaches. The STARFM is an unsupervised algorithm which

requires a concurrent pair of images from an observed day (say day tp) from C and F platforms as

well as an image from C platform on the prediction day (say day tq) to generate the fine resolution

image at day tq. To predict a particular fine resolution pixel inside the study region at day tq, the

STARFM proceeds by selecting a subset of “similar” pixels within a moving window centered on

the particular pixel. Then the STARFM computes individual predictions for each similar pixel,

by adding the corresponding fine resolution values (from platform F ) at day tp to the temporal

difference of the overlapping coarse values (from platform C) between days tp and tq. Each of

these similar pixels is then assigned a weight based on: 1) the homogeneity of the overlapping C

pixel at date tp, 2) the temporal change in platform C between time tp and tq, and 3) the spatial

distance of pixels from the central pixel under consideration. The final prediction of the central

pixel is then the weighted sum of of all these individual predictions.

The dependence of the STARFM algorithm on the existence of homogenous or “pure” coarse

scale pixels limits its utility in heterogenous landscapes such as small agriculture fields. To improve

upon this limitation, the Enhanced STARFM (ESTARFM) was proposed by [182] by using the

spectral unmixing theory together with the original STARFM approach. The ESTARFM approach,

however, requires two days (to and tp) for which concurrent images from C and F platforms are

available (as opposed to just one pair for STARFM) and one coarse resolution image from platform

C at the prediction day tq to compute fine scale predictions at day tq. The details of the ESTARFM

algorithm are given in Section 5.4.1.

The STARFM and ESTARFM algorithms were developed to fuse low-level (Level-1) products

such as surface reflectance which generally exhibit less spatio-temporal variability than high level

environmental products (Level-2 or Level-3) such as evapotranspiration (ET) [188]. Moreover,

high-level products suffer from additional errors due to the uncertainty induced by the retrieval

algorithm applied to convert the low-level surface reflectance data (Level-1) into high-level envi-

ronmental products. Often the retrieval algorithms of two different platforms retrieving the same

environmental variable differs due to the physical differences in the sensors. For ET retrieval for
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instance, ECOSTRESS uses the PT-JPL algorithm [177] to generate daily ET while MODIS em-

ploys the MOD16 retrieval algorithm [189]. Another shortcoming of the STARFM/ESTARFM

fusion approach is that since they are unsupervised algorithms, an end-user has to make ad-hoc

choices when choosing important parameters such as the number of clusters used in clustering the

data and the size of the moving window. This not only affects the accuracy of the algorithm if

sub-optimal parameter values are chosen but also prevents the automatic processing and imple-

mentation of these methods for different study regions thus limiting their widespread applicability.

The same has been acknowledged by [182].

ET is a critical variable in energy and water cycle from sub-field to global scales. It influences a

variety of processes and activities such as agricultural water management [29, 30], drought estima-

tion [31, 32], water and energy balance closures [33, 34], water rights studies [35], and atmospheric

processes [36]. Remote sensing has emerged as an accurate and relatively inexpensive way to es-

timate ET over vast spatio-temporal domains and fusion of existing ET remote sensing platforms

thus is critical. Recent research [190, 188] have proposed ET fusion methodologies combining the

ALEXI/DisALEXI algorithm [191, 192] with the STARFM approach. In this approach, instead

of directly fusing multi-platform ET obtained from different retrieval algorithms, Land Surface

Temperature from Landsat (or ECOSTRESS) and MODIS (along with other meteorological and

remote sensing data) are used in the ALEXI/DisALEXI algorithm to generate consistent ET maps

from both platforms at the 10 km scale. The consistency helps to reduce uncertainty between the

two platforms allowing the use of the STARFM algorithm to provide fused ET at a daily scale at

high spatial resolution. Both ALEXI and DisALEXI models however, require a variety of remote

sensing, regional modeled meteorological data ,and/or local radiosonde data and are thus depen-

dent on the accuracy and availability of these products. The use of ALEXI/DisALEXI algorithm

also prevents the use of the actual retrieval algorithms of the two platforms which might be more

accurate (for certain study regions) for the specific sensor employed by the satellite. Using the

ALEXI/DisALEXI algorithm along with the STARFM approach makes the processing computa-

tionally intensive. Also, this limits the application of the STARFM/ESTARFM approaches to other
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high-level products where an equivalent ALEXI/DisALEXI algorithm is not available.

Therefore in this work, our objective is to propose an extension to the STARFM/ESTARFM

approach which allows the inclusion of parameterization of errors in the platforms as well as ad-

ditional physical/empirical knowledge of the underlying variable, thus making it more applicable

to fuse high-level products. The proposed algorithm also allows for the optimal selection of the

parameters of the STARFM/ESTARFM algorithm such as the number of clusters, the size of the

search window, etc. making the implementation of the algorithm automatic and increasing its ap-

plicability to a variety of study regions. We demonstrate the utility of the algorithm by fusing ET

estimates from ECOSTRESS and MODIS for three agricultural sites in the Lower Brazos Basin in

Texas, USA for the year 2020.

Figure 5.1: The proposed algorithm is validated for the year 2020 using daily Eddy-Covariance
data on three sites across the Brazos Basin (in red), Texas having distinct land use and landcover.
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5.3 Study Area and Data

We validate the proposed algorithm at three agricultural sites (Figure 5.1) lying in the lower

Brazos Basin, Texas using data from Eddy-Covariance stations installed as part of the Texas Water

Observatory (TWO). The first site (TfPr) is a cotton farm near Texas AM University, College

Station, the second site (RfAa) is a wheat aspirational agricultural site located in Riesel and the

third site (SfPr) is a grassland in Stiles. All three sites are classified as having Humid Subtropical

climate (Cfa) according to the Köppen-Geiger climate classification [69]. The three sites have

different agricultural crops and soil types and therefore serve as good testbeds for the validation

of the algorithm. We apply the proposed algorithm for the year 2020 for a 2.5 km × 2.5 km area

centered on the Eddy-covariance location for each day.

Fine resolution daily ET at 70m is available from ECOSTRESS using the PT-JPL algorithm

[177] and is provided as a Level-3 (L3) latent energy flux (LE) product (ECO3ETPTJPL v001).

THE ECOSTRESS comprises a thermal radiometer aboard the International Space Station (ISS)

and has an irregular orbit (unlike polar or geostationary satellites) with an overpass frequency

of 1-5 days, with higher latitudes getting sampled more frequently compared to lower latitudes.

ECOSTRESS derives the daytime average ET from the instantaneous ET retrieval by generating

a sinusoidal curve mimicking the diurnal radiation intensity from sunrise to sunset. The exact

sinusoidal curve depends on the date and latitude with additional refinements governed by different

atmospheric and surface characteristics. Since the daily ET product resulting from the PT-JPL

algorithm only gives daytime ET, it does not utilize night-time ECOSTRESS retrievals. Moreover,

cloud cover can further increase the time interval between successful daily ET retrievals from

ECOSTRESS.

Eight-day averaged ET is also available from retrievals from MODIS sensor aboard the Aqua

and Terra platforms using the MOD16 algorithm [189]. The MOD16 algorithm is motivated by

the Penman-Monteith equation using daily meteorological reanalysis data and MODIS vegetation

data to derive 8-day average ET at 500 m resolution for the entire globe. The MODIS sensor is

aboard the Terra and Aqua platforms having a revisit time of 1-2 days at approximately 10:30 AM

112



local time. The MODIS 8-day average ET has few missing time periods for our analyzed sites. We

choose ECOSTRESS and MODIS as the two ET platforms to be fused as they do not require any

local information for estimating ET and provide ET estimates for the entire globe thus potentially

increasing the future global utility of the proposed data fusion algorithm.

5.4 Methodology

5.4.1 Summary of ESTARFM algorithm

Predictions using the STARFM approach [180] are prone to errors in highly heterogeneous

regions due to the absence of homogenous or pure pixels. To solve for this limitation, [182]

proposed an extension to the STARFM approach called the ESTARFM such that the data fusion

scheme could be applied to highly heterogenous regions. Since the spatial distribution of many

environmental variables is heterogenous under complex surface and atmospheric variabilities, the

ESTARFM algorithm was an important extension to the STARFM. In this Section, we briefly

summarize data fusion between a fine scale platform F and coarse scale platform C using the

ESTARFM algorithm.

To fuse data platforms and compute predictions at fine resolution for a time tq, the ESTARFM

requires 2 pairs of fine resolution and coarse resolution data (from platforms F and C respectively)

at time periods near to tq (say to and tp) and one coarse resolution image at time tq. For a given

study region, the ESTARFM approach is iteratively applied for each pixel lying inside the study

region. For a pixel si lying inside the study region, a search window of size w × w centered on

the pixel si is utilized to compute predictions for pixels “similar” to the pixel si within the moving

window. The fine resolution prediction for pixel si at time tq based on the observed pairs at time

tp (or to) is then given as:

Ftq(si) = Ftp(si) +

Ni∑
j=1

Wj(si)× Vj(si)× (Ctq(si)− Ctp(si)) (5.1)

where Ni refers to the number of similar pixels within the moving window which are consid-

ered similar to the central pixel si. The weight Wj(si) refers to the weight assigned to each similar
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pixel while Vj(si) refers to the conversion factor accounting for the bias between the the platforms

C and F for each similar pixel.

5.4.1.1 Calculating the number of similar pixels

To calculate the number of similar pixels for a pixel si, the jth neighboring pixel is chosen as a

similar pixel if it satisfies:

|Ftp(si)− Ftp(sj)| < σ(F )× 2/nc (5.2)

where σ(F ) is the standard deviation of the variable and nc is the assumed number of classes

used for the clustering in equation 5.2. The standard deviation σ(F ) is approximated using the

sample standard deviation of the fine scale observations at time tp. From equation 5.2, higher the

value of nc less the number of similar pixels chosen for a particular pixel si. In the ESTARFM

approach we use both the dates to and tp to determine the similar pixels for each date and the

eventual set of similar pixels in equation 5.1 represent the common similar pixels for the two time

periods. If there are no similar pixels for a particular central pixel si then the weight for si is set to

1 (and all others equal to zero).

5.4.1.2 Weight calculation for ESTARFM

The weight Wj(si) for the jth similar pixel is calculated as:

Wj(si) =
(1/Dj)∑Ni
j=1(1/Dj)

(5.3)

The range of values for Wj(si) varies between 0 and 1, with the total weight of Ni similar

pixels equal to 1. Here Dj = (1−Rj)× dj . The factor Rj is a measure of the correlation between

the values of fine and coarse scale pixels. For a signal with multiple spectral bands, Rj is taken as

the correlation coefficient between the fine and coarse resolution pixel values at time to and tp. For

univariate variables, the value of Rj is given as:
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Rj = 1− 0.5(|Fto(sj)− Cto(sj)
Fto(sj) + Cto(sj)

|+ |
Ftp(sj)− Ctp(sj)
Ftp(sj) + Ctp(sj)

|) (5.4)

The factor dj determines the geographic distance between the jth similar pixel and the ith

(central) pixel. The ESTARFM algorithm gives higher weights to pixels that are closer in space to

si and is given as:

dj = 1 +

√
||si − sj||2
(w/2)

, (5.5)

where w is the size of the moving window.

5.4.1.3 Calculation of the conversion coefficient

The conversion coefficient Vj(si), which accounts for the bias existing between coarse and fine

resolution pixels, is calculated for the jth similar pixel (separately for each coarse pixel) by linearly

regressing the fine resolution values with the coarse resolution values for all the similar pixels. The

conversion coefficient Vj(si) is then the slope parameter of this regression. If the regression model

cannot be built with statistical significance (p < 0.05), then the value of Vj(si) is assumed to be 1

(or no bias is assumed between fine and coarse resolution pixels).

The ESTARFM therefore combines data from fine and coarse resolutions and provide fine res-

olution predictions at frequent time intervals. However, the ESTARFM approach does not account

for uncertainty in observations which might be especially present in high level products (Level-2

and Level-3) due to imperfect retrieval algorithms. Also, the ESTARFM approach is unsupervised

and therefore has no mechanism to determine the correct number of clusters nc and the size of

the moving window w. The number of clusters nc is especially important as it governs the num-

ber of similar pixels for a central pixel within a moving window and incorrectly determining the

number of clusters leading to erroneous predictions. Also, as mentioned earlier ESTARFM cannot

incorporate ancillary information about the underlying process such as additional data and domain

knowledge. In the next section, we propose a dynamic state-space approach to the ESTARFM

which accounts for all the above-mentioned shortcomings while preserving the salient features of
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the ESTARFM algorithm.

5.4.2 Dynamic ESTARFM

To formulate the dynamic state-space model [193, 119] for ESTARFM, we begin by looking at

the ESTARFM model in equation 5.1 as an evolution model which evolves the state of the variable

from tk to tk+1, where tk and tk+1 are not necessarily consecutive time periods. Since our objective

is to account for errors in the remote sensing retrievals, for a pixel si, we differentiate between the

observed value Ftk(si) and the underlying latent value of the variable free from parameterized

errors, say xtk(si). Substituting Ftk(si) by xtk(si) in equation 5.1, we write:

xtk+1
(si) = xtk(si) + Etk(si), (5.6)

where Etk(si) =
∑Ni

j=1Wj(si)× Vj(si)× (Ctk+1
(si)−Ctk(si)). Equation 5.6, however, might not

fully represent the how the variable evolves in time and we thus write equation 5.6 as:

xtk+1
(si) = xtk(si) + αk(si)× Etk(si) + βk(si) + η(si)

= xtk(si) + E∗tk(si) + η(si),

(5.7)

where αk(si) and βk(si) are corrections to the evolution equation and can be either fixed through

expert knowledge, physical understanding of the underlying process or be estimated from the data.

For spatially correlated variables, the residual spatial structure not captured by E∗tk(si) can be

modeled through η(si).

We relate the actual observed value Ftk(si) with xtk(si) by assuming systematic and random

errors in the platform F . Specifically we write:

Ftk(si) = xtk(si) + ∆k(si) + τk(si) (5.8)

Suppose we have a study region, consisting of nf fine scale pixels s = {s1, s2, ..., snf} which
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are fully or partly observed by the fine scale platform for a day tk where k = 1, 2, 3, . . . , T . Note

that tk and tk+1 need not be consecutive time intervals. For example, t1 can be equal to Day 1, t2

equal to Day 10, t3 equal to Day 32 and so on. For any day tk, we can write the evolution equation

as:

xtk+1
(s) = xtk(s) +E∗tk(s) + η(s) (5.9)

where η(s) ∼ Nnf (0, Q), and Q is a nf × nf covariance matrix denoting the residual spatial

covariance structure of the process. For any day tk, there might be some missing pixels in the study

region due to errors in retrievals caused due to surface or atmospheric factors such as cloud cover.

If the number of pixels observed by the platform on day tk be mk (mk ≤ nf ), then we write the

observation equation as:

Ftk = Akxtk(s) + ∆k(s) + τk(s) (5.10)

where τk ∼ Nmk(0, Rk) and Rk represents an mk ×mk error covariance matrix. For any day

tk, Ak is an mk × n dimension matrix. The matrix Ak is an identity matrix for mk = n. For

mk < n, the mk elements ofAk are equal to 1 corresponding to the observed pixels on day tk and

are zero otherwise. The evolution model denoted by equation 5.9 and the observation model in

equation 5.10 comprise the dynamic state-space ESTARFM model.

5.4.2.1 Filtering and Parameter Estimation

For the state-space model defined by equations 5.9 and 5.10, parameter inference and predic-

tions are done using filtering. Specifically, the state-space model is a linear Gaussian model and

we employ the Kalman Filter [194] to estimate parameters and compute predictions. The Kalman

filter consists of two steps — 1) forecast step and 2) update step.

Let [V |W ] denote the conditional probability distribution of V given W . Assuming that the

initial conditional distribution of [xt0(s)|Ft0 ] is Nnf (µ̂0, P̂0), for tk = t1, t2, ...., tT the Kalman

filter iteratively applies the forecast and update step as follows:
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Forecast Step :xtk(s)|F1:tk ∼ Nnf (µ̂t, P̂t)

µ̂k = µ̃k +KGk(ztk − Akµ̃k −∆k),

P̂k = P̃k −KGkAkP̃k

Update Step :xtk(s)|F1:tk−1
∼ Nnf (µ̃k, P̃k)

µ̃k = µ̂k−1 +E∗tk(s),

P̃k = P̂k−1 +Q,

(5.11)

where KGk = P̃kA
′
k(AkΣ̃kA

′
k +Rk)

−1 is the Kalman gain matrix of size n×mk.

For k = 1, 2..., T , let the parameters nc, w, Q, Rk, ∆k, αk and βk be denoted by Θ. The

parameter vector Θ is estimated by maximizing the likelihood L(Θ) or equivalently minimizing

the negative log likelihood−ln(L(Θ)), computed using innovations ε1, ε2, ..., εT [193] where εk =

ztk − Akµ̃k −∆k such that:

− ln(L(Θ)) =
1

2

T∑
k=1

ln|Σk(Θ)|+ 1

2

T∑
k=1

εk(Θ)′Σk(Θ)−1εk(Θ), (5.12)

where Σk = AkP̃kA
′
k + Rk. The function in equation 5.12 is highly non-linear and complex.

To estimate the parameters in Θ, we use a global optimization algorithm to ensure that we arrive

at the parameter vector Θest which globally minimizes equation 5.12. We use a a generalized

and improved form of simulated annealing called GenSA [80] to find the parameter estimates that

globally maximizes the likelihood in equation 5.12.

5.5 Results and Discussion

5.5.1 Implementation of Dynamic ESTARFM to Evapotranspiration

5.5.1.1 Data Processing

The Eddy-Covariance towers installed at the three TWO sites (Figure 5.1) give ET at half-hour

intervals. To convert the half-hour ET to daily average daytime ET, we take the mean of the half-
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hourly ET values during the daytime. Eddy-covariance data are prone to errors during time periods

close to sunrise and sunset and therefore we only use values of Eddy-Covariance ET from 10 AM

to 5 PM. We apply the energy-balance closure correction following the data-processing pipeline

developed by the FLUXNET community [195]. Since ECOSTRESS only uses daytime instan-

Figure 5.2: Analysis of the ECOSTRESS bias when compared with the observed daily Eddy
Covariance ET as a function of the ECOSTRESS retrieval hour for the year 2019 reveals that
ECOSTRESS exhibits the lowest bias between hours 9 AM to 5 PM (blue vertical lines).

taneous retrievals for computing daily ET and due to frequent cloud cover during the year 2020,

daily ET data for the three sites is extremely sparse for the entire year. For each day, we also filter

out the ECOSTRESS pixels which have a Band-5 emissivity (sensitive to clouds) less than 0.95 to
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ensure minimal cloud contamination. [190] found that even for ECOSTRESS daytime retrievals,

limiting the retrieval times between 9 AM to 5 PM yielded good quality ECOSTRESS retrievals.

For the three TWO sites, we analyzed the days in 2019, for which daily ECOSTRESS data was

available, and compared them with daily Eddy-Covariance ET. Figure 5.2 gives the difference be-

tween the ECOSTRESS and Eddy-Covariance ET for 2019 summarized by the retrieval hours of

ECOSTRESS. We also find that the times between 9 AM to 5 PM result in lowest bias between the

two platforms and therefore for the year 2020, select only days where the ECOSTRESS retrievals

occurred between 9 AM to 5 PM. This resulted in 10 days for RfAa (Figure 5.3), 11 days for SfPr

(Figure 5.4) and 10 days for TfPr (Figure 5.5) for the year 2020.

The ESTARFM approach requires continuous daily MODIS data as an input. Therefore,

we smooth the MODIS 8-day average ET product using locally estimated scatterplot smoothing

(LOESS) to smooth any missing values and remove any effect of outliers. As an illustration, the

smoothed ET plots for the pixel containing the Eddy-Covariance stations are given in Figure 5.6.

The temporally smoothened plots are computed separately for each MODIS pixel.
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Figure 5.3: (a) The figure depicts the days of year for which ECOSTRESS ET (W/m2) data
is available for the Riesel Farm for the year 2020. The dimensions of the study region are
2.5/, km× 2.5/, km centered on the Eddy-Covariance station. (b) MODIS ET (W/m2) retrievals
corresponding to the ECOSTRESS days for the study region.
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Figure 5.4: (a) The figure depicts the days of year for which ECOSTRESS ET (W/m2) data
is available for the Stiles Farm for the year 2020. The dimensions of the study region are
2.5/, km× 2.5/, km centered on the Eddy-Covariance station. (b) MODIS ET (W/m2) retrievals
corresponding to the ECOSTRESS days for the study region.
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Figure 5.5: (a) The figure depicts the days of year for which ECOSTRESS ET (W/m2) data
is available for the TAMU Farm for the year 2020. The dimensions of the study region are
2.5/, km× 2.5/, km centered on the Eddy-Covariance station. (b) MODIS ET (W/m2) retrievals
corresponding to the ECOSTRESS days for the study region.
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Figure 5.6: Smoothed ET plots for the eight-day averaged MODIS data for each site for 2020.

5.5.1.2 Parameterization of the Dynamic ESTARFM for TWO stations

To implement the ESTARFM algorithm for the three TWO sites, we need to employ parsi-

monious representation of the parameters in Θ since we have only 10-11 observed days from

ECOSTRESS for the year 2020. We do the analysis and estimate the parameters separately for

each TWO site. For each site we fix the size of the moving window to 1.25 km × 1.25 km and

assume that the number of clusters nc remain constant for the entire period. For any day tk, we as-

sume that the parameters Q, Rk, αk and βk remain constant spatially in the 2.5 km× 2.5 km study

region. Temporally, we assume that the parameter values for αk and βk remain constant for the

growing crop period (when ET is increasing temporally) and assume different constant values for
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Table 5.1: Estimated parameters for the Dynamic ESTARFM model for the three agricultural sites
for the year 2020.

Site SDe Range Smoothness SDo αrk βrk αfk βfk clusters
Riesel Farm 9.95 0.014 0.49 8.45 0.47 10.5 0.63 5.47 3
Stiles Farm 9.94 0.015 0.53 4.15 0.32 -1.15 0.76 -6.21 4
TAMU Farm 9.88 0.009 0.53 8.04 0.29 -2.58 0.54 -7.71 4

αk and βk during the post ET peak period (when ET decreases temporally). The exact date where

the peak ET occurs is estimated from the Eddy-Covariance data from the average of the peak ET

period as observed from ECOSTRESS and MODIS for the years 2019 and 2020. For the spatial

covariance matrix Q, we assume a temporally independent spatial process parameterized with a

Matern covariance function with variance σ2, range λ and smoothness ν. For the observed bias

∆k existing between the ECOSTRESS and Eddy-Covariance platform, we assume a constant bias

and estimate it from the observed differences in ECOSTRESS and Eddy-Covariance ET during the

year 2019. It is therefore considered fixed when applying the Kalman Filter to the ET data for the

year 2020. For the measurement error τk (equation 5.10), we assume independent and identically

distributed measurement error with variance ζ2 which remains constant for the entire year, and

therefore Rk is parameterized as a diagonal matrix with all diagonal elements equal to ζ2. The

estimated parameters for the three study sites are given in Table 5.1.

5.5.1.3 Predictions

We compute ET predictions using the original ESTARFM and the proposed dynamic ES-

TARFM and compare them to the daily observed ET from Eddy Covariance towers for the year

2020. Since, ECOSTRESS data is extremely sparse for the year 2020 (10-11 days), our objective

is to estimate the mean trend of ET throughout the year using the sparsely observed ECOSTRESS

data and the low resolution but (relatively) temporally dense MODIS data. We therefore find the

mean trend of the observed ET data from Eddy-Covariance towers and use it for comparison with

the computed predictions. The observed Eddy-Covariance data along with the mean trend, the ob-

served ECOSTRESS values, the ESTARFM predictions and the dynamic ESTARFM predictions
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Figure 5.7: Comparison of ET predictions from the proposed Dynamic ESTARFM compared with
the original ESTARFM approach. The Dynamic ESTARFM exhibits less errors when compared
with the observed Eddy-Covariance Eton all the three sites for the year 2020.

are given in Figure 5.7. For the RfAa site, the dynamic ESTARFM (RMSE = 100.78W/m2 )

performs marginally better than the original ESTARFM (RMSE = 105.22W/m2). For the SfPr

and TfPr sites, the dynamic ESTARFM does relatively better with RMSE values of 66.73W/m2

and 88.79W/m2 respectively compared with the original ESTARFM which has an RMSE of

87.9W/m2 and 117.54W/m2 for SfPr and TfPr respectively.

The dynamic ESTARFM performs better than the original ESTARFM approach for several

reasons. First, the ESTARFM approach was developed for surface reflectance data and not for

high level products such as ET which have the added uncertainty of the application of different
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retrieval algorithms. The dynamic ESTARFM approach accounts for these errors by applying a

data-driven linear correction and also accounting for residual random error. This prevents the

predictions from the dynamic ESTARFM from overfitting to the ECOSTRESS data. The dynamic

ESTARFM also provides a framework for incorporating additional information (ET data from the

year 2019 for this application) which helps to further minimize the errors and increase accuracy in

predictions compared to the original ESTARFM which is totally unsupervised in its application.

Even for applications where the original ESTARFM performs well such as prediction of surface

reflectance data, the dynamic ESTARFM can be used to find the optimal values of important inputs

to the ESTARFM such as the number of clusters nc by disregarding any additional corrections

(αk = 1, βk = 0), fixing the error variance in equations 5.9 and 5.10 as very small, and maximizing

the likelihood for different values of nc. Such an approach will potentially give more accurate

results and make the automatic implementation of the original ESTARFM feasible, though it will

come at an added computational cost for estimating the optimal value of nc.

5.5.2 Further Work- Soil moisture driven ET fusion

The purpose of this work was to extend the ESTARFM (and equivalently STARFM) approach

to include uncertainty in the observed data and utilizing additional information from observed past

data from 2019 to do corrections to the ESTARFM algorithm and improve ET predictions for the

year 2020. But the applicability of the proposed work goes well beyond the present application.

Since, the state-space framework of Dynamic ESTARFM allows addition of ancillary information,

future work will focus on incorporating physical understanding of the underlying process into the

data fusion process. The original ESTARFM algorithm is purely data-driven and the predictions are

derived only from a remote sensing perspective. Adding domain understanding of the underlying

processes to the ESTARFM approach can potentially improve predictions and thus the state-space

approach can be a step forward into “Theory-Driven Data fusion” which combines the empirical

nature of data fusion algorithms with the process understanding of the physical processes. As

an example for ET estimation, future work can focus on combining the soil moisture (SM) - ET

relationship with the ESTARFM data fusion approach. In such a case, the evolution model in
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equation 5.6 becomes:

xtk+1
(si) = xtk(si) + (1− w

δtk
)f(SM(si), ET (si)) +

w

δtk
Etk(si) + η(si) (5.13)

where δtk refers to the time interval between the observed ECOSTRESS days tk and tk+1, w is a

weighting factor, f(SM(si), ET (si)) refers to the function denoting the ET-SM relationship which

has been studied at various scales [196, 197, 198], and Etk(si) is the input from the ESTARFM

approach. The weighting function w can be estimated from the observed data. The ESTARFM

approach computes relatively accurate predictions when the underlying change in ET from dates

tk+1 and tk can be assumed to be linear but the predictions degrade as this change becomes non-

linear which usually occurs when the time interval between successive ET retrievals increases. The

weighting function w is thus weighted by the time interval δtk. Together with the same observation

model in equation 5.10, the dynamic ESTARFM approach can thus effortlessly incorporate the

ET-SM relationship using SM data from various remote sensing platforms. This can result in

better predictions for both SM and ET for a given study area. Future work will focus on different

applications of the ESTARFM approach constrained by such a theory-driven process understanding

leading to increased predictive accuracy.

5.6 Conclusion

Remote sensing provides a cost-effective way to measure disparate environmental variables

across the globe and thus in the past few years, there has been growing interest in data fusion tech-

niques which can combine data from different remote sensing platforms. In this work, we propose

a novel data fusion algorithm called the Dynamic ESTARFM which improves upon the existing

STARFM/ESTARFM algorithm by accounting for measurement errors in the platforms, providing

a framework to find optimal parameters based on observed data and increasing the potential for

the inclusion of ancillary data as well as theory-driven data fusion in the hitherto unsupervised

STARFM/ESTARFM algorithms. We apply the proposed technique to three agricultural sites in

the Lower Brazos Basin, Texas and found that the Dynamic ESTARFM outperforms the original
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ESTARFM approach. Future research will focus on addition of increased theory-based constraints

in the Dynamic ESTARFM such as the one mentioned in Section 5.5.2. Better characterization of

the measurement errors as well as a non-stationary spatial covariance structure [1] in the evolution

model (equation 5.10) can also help in further increasing accuracy. The STARFM/ESTARFM ap-

proaches and by design the Dynamic ESTARFM are computationally intensive due to the moving

window algorithm (equation 5.1) and future research will also focus on efficient ways to approx-

imate this technique so that these data fusion algorithms can be applied at big spatio-temporal

scales.
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6. CONCLUSIONS

The deluge of remote sensing data in recent years presents an unprecedented opportunity to

gain novel insights into multiscale dynamics of hydrological variables from local to global levels.

Remote sensing platforms, however, suffer from several limitations such as incomplete spatio-

temporal coverage, errors in retrievals, and retrieving data at a resolution which might be different

than the one desired for a particular application. This study presented multiscale data fusion algo-

rithms for hydrological variables such as soil moisture and evapotranspiration which account for

the above limitations of remote sensing platforms while also incorporating the effect of static and

dynamic physical controls on the spatio-temporal distribution of these variables.

In Chapter 2, a non-stationary geostatistical framework for soil moisture was proposed which

accounts for the effect of physical controls such as soil texture, elevation and vegetation on the

variance and spatial correlation of soil moisture. The framework was applied to a watershed ex-

hibiting significant spatial heterogeneity in surface conditions in Winnipeg, Canada. It was seen

that both vegetation and soil texture affect the variance/correlation of soil moisture governed by

different stages of the crop-growing cycle and wetness conditions. The traditional assumption of

stationarity in the variance/correlation of soil moisture was therefore found to be too simplistic.

In Chapter 3, the non-stationary algorithm proposed in Chapter 2 was utilized in a Bayesian

Hierarchical framework to present a data fusion scheme combining multiscale soil moisture plat-

forms. The data fusion framework accounted for uncertainty in remote sensing retrievals, change of

support between different data platforms, effect of physical controls on soil moisture distribution,

and uncertainty in parameters in the form of probability distributions. The data fusion framework

was applied to the same watershed in Winnipeg, Canada to combine point, airborne and satellite

platforms and it was shown that the data fusion algorithm computed satisfactory predictions from

point to satellite scales while quantifying the retrieval errors in remote sensing platforms.

Chapter 4 focused on extending the data fusion framework presented in Chapter 3 to a “Big”

data setting where the number of observations and/or the size of the study domain becomes mas-
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sive, for instance when fusing remote sensing data at continental or global scales. An approx-

imation to the data fusion framework was proposed to make the fusion scheme computationally

efficient for Big datasets. The fusion scheme is then applied to combine point and satellite data soil

moisture data across Contiguous US and five day soil moisture forecasts are computed. The effect

of physical controls such as elevation, soil texture, vegetation and rainfall on the soil moisture

distribution is quantified and predictions are validated using soil moisture data at multiple scales.

In Chapter 5, a data fusion framework is proposed for ET prediction at a fine spatial resolution

when faced with the data limitation of fine resolution ET data being temporally sparse and only

coarse resolution ET data being available frequently. Data fusion approaches exist for combining

data for such scenarios and this work improves upon the existing fusion approaches by accounting

for uncertainty in remote sensing retrievals, providing a framework to find optimal parameters

based on the observed data, and allowing the inclusion of ancillary data and domain knowledge

in the data fusion algorithms. The proposed fusion scheme is applied to three agricultural sites

in the lower Brazos basin, Texas USA for the year 2020. It was found that the proposed fusion

scheme was more accurate than the traditional data fusion approach when validated with daily

Eddy-Covariance evapotranspiration data.

This dissertation will motivate future “Theory-Driven Data Fusion” hydrological research stud-

ies combining knowledge of the underlying physical processes with multiscale Big data from dis-

parate remote sensing platforms. Improved formulations of non-stationary data fusion schemes

which are motivated by the underlying physical processes and covariate heterogeneity need to be

explored. The objective of developing a data fusion scheme should not be motivated to just get a

good fit to the data but also further our understanding of environmental processes across scales. The

volume of remote sensing data is going to exponentially increase in the next decade and therefore

further work in proposing physically-based computationally efficient fusion techniques becomes

pertinent. Recently, Machine Learning techniques have been instrumental in improving predic-

tive accuracy of various hydrological processes [129, 130, 131, 132, 133]. The existing Machine

Learning algorithms, however, lack interpretability as well as are ill-equipped to handle multi-
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scale data and account for meaurement errors in satellites [134]. Incorporating Machine Learning

algorithms into physically motivated data fusion frameworks thus is a promising area of future

research. Future work should also focus on coupling remote sensing driven data fusion schemes to

better constrain large scale numerical models potentially enabling the scientific community to get

one step closer to achieve the elusive mass and energy balance in Earth-System processes.
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APPENDIX A

BAYESIAN SCHEME FOR PARAMETER INFERENCE

For the SHM defined in Section 3.5, we perform the Bayesian parameter inference as follows.

Let HXη = X̃η and HXβ = X̃β. We carry out a Gibbs sampler for all parameters in the model,

by sampling from the following FCD.

A.1 Update for β

Let zβ = z− X̃ηη. Then [zβ|β,γ,η] = Nn(zβ|y,Σ)Nn(y|µ,C)dy. It can be shown that this

is equal to Nn(zβ|µzβ ,ΣH), where µzβ = HXββ = X̃ββ and ΣH = HCH′ + Σ. If the prior

distribution of β is assumed to be Nnβ(µβ,Σβ), then it can be shown that:

[β|zβ,γ,η] = Nnβ(µβFCD
,ΣβFCD

) (A.1)

where µβFCD
= (Σβ

−1 + X̃′βΣH
−1

X̃β)−1(Σβ
−1µβ + X̃′βΣH

−1
zβ) and ΣβFCD

= (Σβ
−1 +

X̃′βΣH
−1

X̃β)−1.

A.2 Update for η

Again, putting zη = z− X̃ββ and for a prior distribution of η assumed to be Nnη(µη,Ση), it

can be shown that:

[η|zη,β,η] = Nnη(µηFCD
,ΣηFCD

) (A.2)

where µηFCD
= (Ση

−1 + X̃′ηΣH
−1

X̃η)−1(Ση
−1µη + X̃′ηΣH

−1
zη) and ΣηFCD

= (Ση
−1 +

X̃′ηΣH
−1

X̃η)−1.

A.3 Update for γ

Unlike β and η, closed form for FCD for γ cannot be derived. We therefore use a Metropolis

Hastings update for [γ|β,η, z] using a Gaussian proposal distribution. To ensure proper mixing,
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we adopt the Adaptive-Metropolis algorithm by [199] which adapts the covariance of the proposal

distribution at any iteration t, Covpropt using past proposals after a burn-in period t0 such that:

Covpropt =


Covprop0 t ≤ t0

sdcov(γ0, ..., γt−1) + sdεId t > t0

(A.3)

where Covprop0 is the covariance of the initial proposal distribution, d is the number of parameters

in γ, sd is the scaling parameter equal to (2.4)2/d, ε > 0 is a constant chosen to ensure non-

singularity of Covpropt , Id is the identity matrix. In the present study, we choose ε = 0.001 and

t0 = 1000 for all the analyzed days.
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APPENDIX B

DERIVATION OF VECCHIA-MULTISCALE

B.1 Parameter estimation

f(z(A)) = f(z(A1)|θ)×
n∏
i=2

f(z(Ai)|z(A1:i−1), θ) (B.1)

where A1:i−1 = A1, A2, . . . .Ai−1. If z(A) ∼ N (µz,Σz), then it can be shown that the (i, j)th

element of Λ—the inverse of Cholesky factor of Σ (λTΛ = Σ−1) — can be written as

λij = − wi,j
σ2
zi|z1:i−1

(B.2)

where wij equals wi = Σ−11:i−1C(A1:i−1, Ai) for j = 1, ..., i − 1, equals -1 for j = i, and

equals 0 for j > i. Here Σ1:i−1 = C(A1:i−1,A1:i−1) + τ 2Ii−1 and σ2
zi|z1:i−1

= C(Ai, Ai) −

C(Ai,A1:i−1)Σ
−1
1:i−1C(A1:i−1, Ai). Here Ii−1 represents the identity matrix of size i − 1. We

write C(A1:i−1, Ai)j ≈ (hκAj)
TC(GAj ,GAi)hκAi and C(A1:i−1,A1:i−1)jk(h

κ
Aj

)TC(GAj ,GAk)hκAk
for j, k = 1, ..., i− 1 where GAl denotes the subset of the total grid points G lying inside the pixel

Al and hκAl is given by equation 4.7.

We replace A1:i−1 with its subset Ami
of maximum length m. This approximation leads to a

sparse Λ because now wij = 0 for j = 1, ..., i − 1 if j 6∈ mi, leading to fast computation and low

storage for m� n.

If µ(Ai) = X(Ai)
Tβ where X(Ai) = {X1(Ai), ..., X

p(Ai)} is a vector of covariates of length

p for pixel Ai. Then µAi = XAiβ in equation 4.9 where XAi is the matrix of covariates associated

with the points associated with yAi in equation 4.7. Then µz (equation 4.8) can be written as X̃β̃

where the ith row of X̃ is given as {hκAiX
1
Ai
, ..., hκAiX

p
Ai
, δ(Ai)}. The parameter vector β̃ can be

profiled out by using the profile-likelihood:
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− 2log(f̂(z(A)|θ) = −2log(det(Λ̂)) + (Λ̂(z − X̃β̃))T Λ̂(z − X̃β̃)) + nlog(2π) (B.3)

The maximum likelihood estimate for β̃ is given as (Guinness, 2018; Stein et al., 2004):

β̃MLE = [(Λ̂X̃)T (Λ̂X̃)]−1(Λ̂X̃)T (Λ̂z) (B.4)

B.2 Prediction Algorithm

We follow the prediction algorithm from Guinness (2018). Let Apred denote a vector of length

npred comprising pixels where we want to want to make predictions ypred. Form the vectorAcomp =

(A,Apred) of length n+ npred = ncomp. The corresponding observation-prediction vector ycomp =

(z, ypred). Let the covariance matrix of ycomp be Σcomp. Writing Σcomp(Λcomp) as a 2 × 2 block

matrix {Σcomp
ij }i,j=1,2({Λcomp

ij }i,j=1,2) and using standard rules of multivariate normality:

E[ypred|z] = Xpredβ̂ + Σcomp
21 (Σcomp

11 )−1(z −Xβ)

= −(Λcomp
22 )−1Λcomp

21 z ≈ −(Λ̂comp
22 )−1Λ̂comp

21 (z −Xβ)

(B.5)

where Λ̂comp is the sparse approximation of Λcomp calculated following Section B.1.

To find the prediction variance V ar(ypred|z), we first simulate uncorrelated standard normals

of length ncomp; w∗ ∼ N (0, Incomp) where Incomp is the identity matrix of size ncomp. We then

simulate ycomp∗ = {z∗, ypred∗} = (Λ̂comp)−1w which is computationally fast since Λ̂comp is a

sparse triangular matrix.

Then,−Λ−122 Λ21(z−z∗)+ypred∗ approximately has a covariance matrix Σcomp
22 −Σcomp

21 (Σcomp
11 )−1Σcomp

12

which is equal to V ar(ypred|z) based on the well-known properties of multivariate normality. We

simulate −Λ−122 Λ21(z − z∗) + ypred∗ five thousand times and approximate the prediction variance.
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APPENDIX C

DIFFERENT PERMUTATIONS FOR VECCHIA-MULTISCALE, SIMULATION RESULTS

AND SUPPORTING INFORMATION

C.1 Illustration of different permutations for Vecchia-Multiscale

We illustrate the effect of different permutations (Figure C.1 and C.2) by applying the eight

permutations to the hypothetical example in Figure 4.2 (a) comprising three datasets: areal datasets

R1 (64 green pixels) andR2 (36 purple pixels), and point dataset P1 (40 blue triangles), making the

total number of observations n = 140. The numbers in columns (I) to (III) in Figure C.1 represent

the ordering number in A = {A1, . . . , A140} assigned to individual data in P1 (I), R1 (II) and

R2 (III) for the different permutations. Column (IV) denotes the subvector Ami
(color-filled blue

triangles, and color-filled green and purple pixels) for a randomly chosen pixelAi (color-filled red)

for m = 20.

The Joint-Coordinate permutation (Figure C.1 (a)-(c)) sorts the data based on the sum of coor-

dinate values resulting in the data from the three platforms getting ordered from the lower-left to

the upper right along the diagonal. For any pixel Ai, this results inA1:i−1 located close to Ai. The

subvectorAmi
(selected from elements ofA1:i−1 closest to Ai in space) is thus located in the im-

mediate neighborhood of Ai (Figure C.1 (d)). Middleout ordering is based on the same heuristic as

Coordinate ordering and orders the locations based on increasing distance from the mean location

of the study domain (Guinness, 2018). Thus, it also has Ami
located in the neighborhood of Ai

(Figure C.1 (h)).

The Joint-Maxmin ordering (Figure C.1 (i)-(l)) selects the first pixel/point which is closest to

the mean location of the study domain and then sequentially selects a successive pixel/point which

maximizes the “minimum distance” to previously selected pixels/points (Guinness, 2018). This

results in the pixels/points getting permuted such that for any Ai, A1:i−1 now consist of a good

mix of both far and near pixels/points (Figure C.1 (i)-(k)). The subvectorAmi
now consist of both
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far and near data surrounding Ai (Figure C.1 (l)). Though Joint-Random (Figure C.1 (m)-(p)) is

not based on any heuristic, it can give similar results to Joint-Maxmin (Guinness, 2018).

The corresponding “Separate-“ orderings for the four “Joint-“ orderings are given in Figure

C.2. The “Separate-“ orderings separate the point and areal data, apply the permutations sepa-

rately to each and then form the final permutation by sorting the permuted point data followed by

the permuted areal data (Figure 4.4). Though the “Separate-“ orderings retain the heuristic of the

corresponding “Joint-“ permutations separately for point and areal data, the “Separate-“ permuta-

tions introduce a constraint that the point data always lie in the beginning of the vector A. For

instance, in Figure C.2 (Column I) since we have 40 point data, {A1, . . . , A40} always represent

point data in “Separate-“ permutations. Now for any areal pixel Ai (which for “Separate-“ permu-

tations in this example represent {A1, . . . , A140}), A1:i−1 will always consist of point data. This

often leads to the subvector Ami
consist of point data which are near to Ai (Figure C.2, Column

IV).

C.2 Simulation

We use simulations for two (e.g, a variable varying across latitude and longitude) and three

(e.g., a variable varying across latitude, longitude and time) dimensions in space in a region D =

[0, 1] × [0, 1] and [0, 1] × [0, 1] × [0, 1] respectively. We fix each dimension between 0 and 1 for

generality. The objective of the simulations is to investigate that for a given value of m, which

approximation resulting out of the eight permutations better approximates the exact likelihood.

Similar to the hypothetical example in Figure 4.2 (a) in the main text, we assume three data sources

for each setting—two aggregate datasets (R1 and R2) covering the entire region D, and point

dataset (P1) in D. The number of pixels in R1 and R2 along with their resolutions as well as

the number of point data P1 are given in Table C.1. The number of point data are chosen as 1)

5% of the areal data to represent scenarios where the point data is sparse compared to areal data,

and 2) 25% of the areal data to represent scenarios where point data are considerable in number

compared to areal data. We assume an equidistant numerical grid G consisting of 11000 points for

two dimensions and 1089× 11 = 11979 points for three dimensions across D.
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Figure C.1: Illustration of the “Joint-“ Permutations applied on the example from Figure 4.2
(a) in the main text consisting of 40 point data P1 and 100 areal pixels in R1 (64 pixels) and
R2 (36 pixels). Numbers in columns (I) to (III) represent the ordering number in the vector
A = {A1, . . . , A140} assigned to data in P1 (I), R1 (II) and R2 (III) for the four different “Joint-“
permutations. Column (d) denotes the subvector Ami (equation 4.11) comprising color-filled blue
triangles, and color-filled green and purple pixels, for a randomly chosen pixel Ai (color-filled red)
for m = 20.
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Figure C.2: Illustration of the “Separate-“ Permutations applied on the example from Figure 4.2
(a) in the main text consisting of 40 point data P1 and 100 areal pixels inR1 (64 pixels) and R2

(36 pixels). Numbers in columns (I) to (III) represent the ordering number in the vector A =
{A1, . . . , A140} assigned to data in P1 (I), R1 (II) and R2 (III) for the four different “Separate-“
permutations. Column (d) denotes the subvector Ami (equation 4.11) comprising color-filled blue
triangles, and color-filled green and purple pixels, for a randomly chosen pixel Ai (color-filled red)
for m = 20.
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As mentioned in Section 4.4.2, evaluation of the exact likelihood requires quadratic complexity

in the number of assumed grid points nG and cubic complexity in the number of observations n.

Therefore for the simulations, the number of observations of each platform and the size of the

numerical grid are chosen so that the computation of actual likelihood f(z(A)|θ) is feasible.

We use a flexible class of covariance function called the Matern, with a range, smoothness and

variance parameter, for simulating the covariance matrix. Other widely used covariance functions

such as the Exponential and the Gaussian are special cases of the Matern. We do simulations

for range = {0.2, 0.4, 0.6}, smoothness (nu) = {0.5, 1, 1.5}, variance = 1 and measurement error

variance (in R1 and R2) = {0.05, 0.2}. This ensures that the simulations are carried out for a

wide range of parameters resulting in a total of 72 simulations for each ordering. We perform 72

simulations for each of the eight orderings and take m = 5, 10, 20, 40, 60, 100, 120 and 180.

To control for simulation error, we use the Kullback-Leibler (KL) divergence, which mea-

sures how much information we lose using the approximation f̂(z(A)θ) over the exact likelihood

f(z(A)|θ), both using the true value of the parameters. A lower KL-divergence between f̂(z(A)|θ)

and f(z(A)|θ) thus denotes a better approximation. Plots of eight representative simulations (out

of 72) comparing the (log) KL-Divergence of the approximations over the true likelihood are given

in Figure C.3. For both 2D and 3D, in general, the Separate-Maxmin and Separate-Random per-

form the best while the Coordinate-based orderings perform the worst. There was no effect of

measurement error on the relative performance of the orderings. Therefore, in general, we suggest

adopting Separate-Maxmin or Separate-Random when using Vecchia-multiscale.
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Figure C.3: Representative simulations comparing the (log) KL-Divergence of the approximations
over the true likelihood for measurement error variance equal to 0.05. A lower KL-Divergence
denotes a better approximation. For the majority of the simulation settings, the Separate-Maxmin
and the Separate-Random lead to better approximation of the exact likelihood.
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Table C.1: Data setting for simulations

Data Resolution Number of pixels/points Grid points per pixel
Two Dimensions

R1 0.09 34× 34 = 1156 9
R2 0.06 52 ×52 = 2704 4
P1 - 200(≈ 5%) -

1000(≈ 25%) -
Total - 4060 -

4860 -
Three Dimensions

R1 0.03 11× 11× 11 = 1331 9
R2 0.02 16× 16× 11 = 2816 4
P1 - 20× 11 = 220(≈ 5%) -

100×11 = 1100(≈ 25%) -
Total - 4367 -

5247 -
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C.3 Supporting Information for Chapter 4

Figure C.4: Histograms of point soil, SMAP and SMOS soil moisture data for July 06-20, 2017.
On the original scale soil moisture exhibits considerable skewness but on the logit scale the soil
moisture distribution becomes less skewed making the Gaussian assumption tenable.
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Figure C.5: Overlapping SMOS and SMAP pixels for July 06-20, 2017. The SMOS pixels are
bilinearly interpolated to the overlapping SMAP pixels for this exploratory analysis. The red line
denotes the 1:1 line. The transformed scale results in a slightly better correlation (R) between the
two datasets. On the transformed scale, it can also be seen that there is a bias between SMOS and
SMAP datasets for the analyzed time period.
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Figure C.6: Covariate plots for July 06, 2020 for Contiguous US (CONUS). All the four covariates
exhibit considerable heterogeneity across CONUS.

171


	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Soil Moisture
	Spatio-temporal heterogeneity of Soil Moisture
	Soil Moisture Data Fusion
	Soil Moisture Big Data Fusion

	Evapotranspiration
	Evapotranspiration data fusion

	Motivation and Objectives
	Hypotheses

	A nonstationary geostatistical framework for soil moisture prediction in the presence of surface heterogeneity
	Synopsis
	Introduction
	Study Area
	Theory
	Methodology
	Exploratory variogram analysis
	Surface controls-driven non stationary covariance function
	 Maximum likelihood parameter inference
	Parameter estimation
	Effect of surface controls on variance and correlation

	Spatial prediction of SM
	Point support
	Areal support


	Results and Discussion
	Exploratory variogram analysis
	Parameter estimation
	Model selection
	Effect of surface controls on the mean of SM
	Effect of surface controls on the variance/correlation of SM
	Vegetation
	Soil texture

	Upscaling SM predictions to airborne scale

	Conclusions

	Multiscale data fusion for soil moisture estimation: a spatial hierarchical approach
	Synopsis
	Introduction
	Study area and data
	Theory
	Data model
	Process model
	Process at point scale
	Process at aggregate scale

	Data fusion
	Parameter model

	Methodology
	SHM specification
	Data model
	Process model
	Parameter model

	Spatial Prediction

	Results and Discussion
	Validation
	Effect of controls on soil moisture
	Effect of controls on PALS soil moisture bias
	Predictions at intermediate scales

	Conclusions

	A Multiscale Spatio-Temporal Big Data Fusion Algorithm from Point to Satellite Footprint Scales
	Synopsis
	Introduction
	Study Area and Data
	Case Study: Soil moisture

	Methodology
	Multiscale data fusion
	Vecchia-multiscale: An Approximation for Multiscale Big Data
	Permutation in Vecchia-multiscale


	Results and Discussion
	Case Study: Soil Moisture Data
	Mean, covariance and bias
	Parameter estimation and inference

	Predictions at different Scales
	USCRN and SCAN Scale
	SMAP/Sentinel-1 Scale
	SMAP and SMOS Scale


	Conclusions

	A Dynamic Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model for Evapotranspiration
	Synopsis
	Introduction
	Study Area and Data
	Methodology
	Summary of ESTARFM algorithm
	Calculating the number of similar pixels
	Weight calculation for ESTARFM
	Calculation of the conversion coefficient

	Dynamic ESTARFM
	Filtering and Parameter Estimation


	Results and Discussion
	Implementation of Dynamic ESTARFM to Evapotranspiration
	Data Processing
	Parameterization of the Dynamic ESTARFM for TWO stations
	Predictions

	Further Work- Soil moisture driven ET fusion

	Conclusion

	Conclusions
	REFERENCES
	APPENDIX Bayesian scheme for parameter inference
	Update for bold0mu mumu 
	Update for bold0mu mumu 
	Update for 

	APPENDIX Derivation of Vecchia-multiscale
	Parameter estimation
	Prediction Algorithm

	APPENDIX Different permutations for Vecchia-Multiscale, Simulation results and Supporting Information
	Illustration of different permutations for Vecchia-Multiscale
	Simulation
	Supporting Information for Chapter 4


