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ABSTRACT 

 

The human cell-free DNA (cfDNA) methylation profile in liquid biopsy has been utilized 

to diagnose early-stage disease and estimate therapy response. However, typical clinical 

procedures are capable of purifying only very small amounts of cfDNA. Whole-genome 

bisulfite sequencing (WGBS) is the gold standard for measuring DNA methylation; 

however, WGBS with small amounts of fragmented DNA introduces a critical challenge 

for data processing, analysis, and visualization. For data processing, the                                                                                                                                                                                                                                                                                                                                                                                                                                                

low mapping ratio of low input bisulfite sequencing samples resulting in genome-wide 

low sequencing depth and low coverage of CpG sites is a bottleneck for the clinical 

application of cfDNA-based WGBS assays. We developed LiBis (Low-input Bisulfite 

Sequencing), a novel augmentation for low-input WGBS data alignment. By dynamically 

clipping initially unmapped reads and remapping clipped fragments, we judiciously 

rescued those reads and uniquely aligned them to the genome. By substantially increasing 

the mapping ratio by up to 88%, LiBis dramatically improved the number of informative 

CpG sites and the precision in quantifying the methylation status of individual CpG sites. 

The high sensitivity and cost-effectiveness afforded by LiBis for low-input samples will 

help the discovery of genetic and epigenetic features suitable for downstream analysis and 

biomarker identification using liquid biopsy. For data analysis, we present Mmint, a user-

friendly comprehensive integrative analysis tool. It generates publication-quality figures 

with epigenetic data from the following aspects: quality assessment, integrative analysis 

between BS-Seq and ChIP-seq data, correlation analysis between DNA 
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methylation/Histone modification, and gene expression. Versatile analysis by Mmint can 

help users to interpret epigenetic data comprehensively and provide potential novel 

biological insights. To further simplify the data utilization and visualization, especially for 

researchers who do not specialize in bioinformatics skills, we implement GsmPlot. 

GsmPlot can simply accept GSM IDs to automatically download NCBI data or accept 

user's local bigwig files as input to plot the data of interest on promoters, exons or any 

other user-defined genome locations and generate UCSC visualization tracks. By linking 

public data repository and in-house data, GsmPlot can spark data-driven ideas and hence 

promote epigenetic research. 
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NOMENCLATURE 

 

LiBis Low-input bisulfite sequencing alignment 

cfDNA Cell-free DNA 

Bis-seq Bisulfite sequencing 

WGBS Whole-genome bisulfite sequencing 

scWGBS Single cell whole genome bisulfite sequencing 

CpG Cytosine nucleotide followed by a guanine nucleotide 

ctDNA Circulating tumor DNA 

HTML Hyper Text Markup Language 

CSF Cerebrospinal fluid 

HPV Human papilloma virus 

ATAC-Seq Assay for Transposase-Accessible Chromatin using sequencing 

Mmint Methylation data mining tools 

MOABS model based analysis of bisulfite sequencing 

CGI CpG Island 

ChIP-Seq Chromatin immunoprecipitation sequencing 

GEO Gene Expression Omnibus 

GSM Gene Sample accessions numbers 

H3K27ac Acetylation at the 27th lysine residue of the histone H3 protein 

H3K4me3 Tri-methylation at the 4th lysine residue of the histone H3 protein 

H3K4me1 Mono-methylation of lysine 4 on histone H3 protein 
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H3K27me3 Tri-methylation of lysine 27 on histone H3 protein 

DNase I Deoxyribonuclease I 

5hmC 5-Hydroxymethylcytosine 

NCBI National Center for Biotechnology Information 

RNA-Seq RNA Sequencing 

TF Transcription Factor 

TSS Transcriptional Start Site 
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1. INTRODUCTION  

 

1.1. Roles of DNA methylation in cancer genesis and diagnosis 

DNA methylation is an important biological process involved in biological 

development and cancer. It includes the addition of a methyl group to the carbon 5 of the 

cytosine pyrimidine ring or the nitrogen 6 of the adenine purine ring. Among different 

types of methylation, the most common one on the mammalian genome is observed on the 

cytosine of CpG dinucleotides [1]. In the past few decades, a series of researches indicate 

a direct relationship between CpG methylation and cancer [2]. In various malignant 

tumors, hypomethylation is observed and the DNMT3b mutations are found in patients 

which cause chromatin instability [3, 4]. It is speculated that hypomethylation can promote 

tumorigenesis by activating oncogenes (such as cMYC and H-RAS) or by activating 

potential retrotransposons [2]. Hypomethylation of the long interspersed nuclear elements 

also leads to transcriptional activation and is found in many types of cancers (such as 

bladder cancer) [2, 5]. Such hypomethylation of mobile DNA may also cause the 

interruption of the expression of neighboring genes during cancer geneses, such as APC 

in colon cancer and cMYC in breast cancer [6]. 

Increased DNA methylation level is also reported among human tumors in 

previous researches. Chromosomes 3p, 11p, and 17p are found as hot spots of 

hypermethylation on the human genome [7]. The CpG islands in these regions are 

unmethylated in healthy tissues while getting methylated in disease models [8, 9]. For 

example, transient transfection experiments show that the retinoblastoma tumor 
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suppressor gene can reduce its expression to 8% of the unmethylated control by applying 

hypermethylation in its promoter region [10]. The evidence indicate that essential genes 

such as tumor suppressor genes in normal tissues can be deactivated by hypermethylation 

in tumors [11, 12]. The inactivation of tumor suppressor genes by hypermethylation can 

further lead to selective growth of transformed cells [13, 14]. 

Based on the strong relationship between CpG methylation and tumor genesis, a 

series of researches are published in the past few years about tumor-specific methylation 

patterns. A pan-cancer research indicates that tumor-specific methylation patterns can be 

used to distinguish 10 different cancer types such as breast cancer, lung adenocarcinoma, 

and colon adenocarcinoma [15]. In the central nervous system, tumor-specific methylation 

patterns can be observed both among different cancer types and different subtypes of the 

same cancer type [16]. Moreover, DNA methylation patterns show highly consistency 

between cfDNA and the genomic DNA from the corresponding origins among tumors, 

which indicates that cfDNA in liquid biopsies samples such as urine, saliva, blood and 

cerebrospinal fluid can be used to develop potential clinical applications for cancer 

diagnosis, prognosis and therapeutics [17]. 

Facilitated by the evidence, products and algorithms are developed for early cancer 

diagnosis and prognosis monitoring. For example, Epi proColon is developed to screen 

colorectal cancer by evaluating the methylation status of the SEPT9 promoter using patient 

plasma [18]. By applying different algorithms to the methylation patterns in solid tumors 

and the adjacent liquid biopsy, tumor detecting methods using liquid biopsy for different 
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cancer types are also developed. For example, the generalized linear model is applied to 

detect renal cell carcinoma [19].  

1.2. Whole genome bisulfite sequencing methods for DNA methylome detection 

Bisulfite sequencing (BS-Seq) of DNA is considered as the gold standard for 

analysis of DNA methylation since developed [20]. The treatment of DNA by bisulfite 

results in the conversion of unmethylated cytosine to uracil while keeping methylated 

cytosine unchanged [21]. To reveal the methylome conveniently and economically in 

single-base resolution, bisulfite treatment has been combined with next-generation 

sequencing to generate reduced representation (RRBS) or whole genome (WGBS) data 

[20, 22]. After PCR and sequencing, the converted DNA can be mapped to the reference 

genome as single-base resolution. During the development of next-generation sequencing 

techniques, the cost keeps decreasing, which allows more researchers to adopt WGBS to 

investigate genome wide methylome. To adapt to different circumstances of samples such 

as solid tumor samples, liquid biopsies, and single-cell samples, different WGBS library 

preparation protocols are developed [23, 24]. Currently, according to the order of bisulfite 

conversion, these methods are divided into pre-bisulfite sequencing methods and post-

bisulfite sequencing methods. 

The difference between pre-bisulfite sequencing and traditional next-generation 

sequencing is that pre-bisulfite sequencing ligates methylated adaptors after end repairing 

and applies bisulfite conversion after ligation. In 2009, MethylC-Seq, the most widely 

used pre-bisulfite sequencing method was developed by Ryan Lister [20]. Firstly, the 

extracted DNA is sonicated to 50-500 bp fragments, followed by end repairing and ligation 
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of methylated adaptors. Bisulfite conversion is applied to the ligated DNA fragments 

before PCR and next-generation sequencing. However, the bisulfite conversion can 

damage the ligated DNA fragments and reduce the usability of the DNA fragments [25]. 

Because of that, pre-bisulfite sequencing method requires at least 1μg starting DNA for 

the library construction and sequencing [23]. 

Usage of pre-bisulfite sequencing is limited in cell-free DNA samples from liquid 

biopsy or single-cell samples since these samples have low DNA concentration and cannot 

meet basic requirement of pre-bisulfite sequencing method [26, 27]. To determine the 

methylome of these samples, researchers applies post-bisulfite sequencing to reduce the 

DNA damage during bisulfite treatment [23]. In post-bisulfite sequencing, bisulfite 

treatment is directly applied to extracted DNA. The sonication step in pre-bisulfite 

sequencing is removed since bisulfite treatment can break the DNA chain into short single-

strand fragments. After bisulfite conversion, random primers containing any possible 

combinations of bases is used to catch fragments for adaptor ligation [23]. By applying 

the only fragmentation step at the beginning of the workflow, post-bisulfite sequencing 

reduces the DNA cost and only needs less than 100 nanograms of starting DNA [23]. 

However, applying random priming to converted DNA fragments introduces 

contamination into the DNA library such as primer self-ligation and repeated primers. 

These sequences interferes the further data alignment and leads to low mapping ratio and 

low data efficiency in downstream analysis [25, 28]. 

1.3. Overview of analytic pipelines and toolkits for bisulfite sequencing data 
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After BS-Seq, raw data generated by BS-Seq is stored in the text file as FASTQ 

format, in which every 4 lines contain sequence identifier, raw sequence, and sequence 

quality value in addition to one raw sequence/reads. Under most circumstances, a 

sequencing run contains more than one sample and the raw FASTQ file includes reads 

from all samples. Therefore, to separate reads for each sample, a raw FASTQ file can be 

demultiplexing to one FASTQ file per sample by indexes [29]. After demultiplexing, the 

original FASTQ file is divided into multiple FASTQ files and each divided file contains 

all sequences for one sample. For data quality assessment, FastQC can be used to evaluate 

the FASTQ files from multiple dimensions such as adaptor content and sequence 

duplication [30]. TrimGalore and fastp are two widely used software for FASTQ file 

preprocessing such as adaptor removal and reads trimming when quality issues are 

identified [31]. 

After quality assessment, all sequences in FASTQ file need to be aligned to the 

reference genome to identify their origins. To accomplish the sequence alignment, a few 

tools are implemented based on different algorithms, which can be categorized into two 

main groups of aligners by their alignment strategies. The first one is to transform the 

reference genome into four bisulfite converted genomes (two for each strand), then align 

the sequence to these reference genomes to find the best match. This type of aligner is 

called three-letter aligners and some of them are widely used such as Bismark, BS-Seeker 

and bwa-meth [32-34]. Using a transformed reference genome reduces the engineering 

workload of implementation and allows researchers to reuse most of the aligner developed 

for whole genome sequencing. The other type, wildcard aligners directly align the 
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sequence by wildcard to the reference genome. Tools such as BSMAP, GSNAP, and Last 

are adopting this strategy [35-37]. Compared to three-letter aligners, wildcard aligners 

have higher genome coverage since it increases the complexity of reference genome and 

reads. Such complexity also introduces biases in alignment results [38]. Besides general 

usage, scBS-map is developed especially for single-cell bisulfite sequencing alignment 

[39]. The output files generated by different BS-Seq alignment tools share the same format: 

Sequence Alignment/Map (SAM) format. SAM file can also be transferred to a binary 

format to save storage, which is the BAM format. Each row of the BAM file represents an 

aligned sequence/read and almost all features about the sequence, including alignment and 

quality information [40]. 

To construct features of methylome from aligned reads for downstream research, 

methylation information in multiple granularities is extracted. Compared to the 

unsupervised method, the supervised method is the most common method for feature 

selection which allows researchers to compare the methylation status between the control 

group and case groups. Among supervised methods, the strategies diverge into two main 

categories based on whether introducing the spatial relationship between CpGs within the 

same read. Differentially methylated cytosines and regions are the most widely used 

strategies without the spatial information, in which the methylation status of CpG is 

decided by the coverage and the number of methylated cytosine on overlaid reads. Based 

on statistical models, differentially methylated CpGs (DMCs) can be identified from the 

control and case group and be concatenated into differentially methylated regions (DMRs). 

Another feature selection strategy is to include the spatial information among CpGs within 
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the same read. The continuous CpG array represents the co-existence of methylation in 

the same sequence, which also in the same strand in one of the cells. This high-level 

information gives researchers more potential to solve deconvolution problems and to 

identify disease markers. 

Instead of only focusing on methylation data, multi-omics analysis such as 

genome-wide association studies (GWAS) or gene expression are commonly included in 

the epigenetic research to explain the confounding. These studies revealed more 

functionalities of methylation in different biological processes and triggered the progress 

of the integrative analysis toolkits such as deepTools and mint [41, 42]. 

1.4. Problem statement 

Currently, WGBS is broadly applied to purified cfDNA samples searching for new 

candidate biomarkers. However, the sensitivity of existed or new biomarkers is strongly 

influenced by the sequencing coverage and the sequencing accuracy. Compared to whole 

genome sequencing (WGS), bisulfite sequencing brings in more digestion to the DNA 

fragments, which can introduce more damage and noises into the sequencing process. Low 

DNA concentration in cfDNA samples also leads to low starting DNA for sequencing, 

which is overcomed by post-bisulfite sequencing by moving bisulfite conversion to the 

beginning of the library preparation process and using random priming to ligate the 

adaptor. However, the downstream data efficiency, namely mapping ratio of post-bisulfite 

sequencing is reported significantly lower than pre-bisulfite sequencing in both public 

datasets and in-house generated datasets. Studies also reported that potential self-priming 

and repeat-priming by random primer reduces the mapping ratio of post-bisulfite 
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sequencing samples. To solve this, we developed LiBis, an ultrasensitive alignment 

augmentation to remove the contamination of random primer in silico and to improve the 

data efficiency in post-bisulfite sequencing.  

Furthermore, during the development of WGBS, the number of samples collected 

in labs, companies and public Gene Expression Omnibus keep surging. The bisulfite 

conversion step in WGBS brings new potential problems in sequencing and data analysis 

compared with WGS, which requires a specific understanding of next generation 

sequencing, WGBS library preparation and downstream data analysis. The steep learning 

curve of such knowledge makes the learning time-consumptive and increases the labor of 

locating and resolving the potential problems. The experience from a single WGBS 

experiment is also hard to be borrowed by other WGBS experimenters. Moreover, the 

current analysis pipelines for WGBS data mainly yield numeric and descriptive results, 

which increases the difficulty of downstream analysis performed by researchers who lack 

bioinformatic background. To simplify this process, we developed Mmint, a quality 

assessment and integrative analysis toolkit for WGBS data. For researchers who have 

limited access to high performance computational resources, we also developed GsmPlot 

to help them performing analyses on epigenetics datasets such as WGBS and ChIP-Seq. 

1.5. Thesis organization 

The rest of this dissertation is organized as follows. In section 2, we propose LiBis, 

a new augmentation method for low-input bisulfite sequencing alignment. LiBis is 

developed to solve the low mapping efficiency problem in utilizing low-input bisulfite 

sequencing data. In section 3, we present Mmint, a quality assessment and integrative 
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analysis toolkit for users to measure the WGBS data quality and access the biology 

meaning conveniently. In section 4, we present GsmPlot, an online analysis tool for users 

without bioinformatics background to perform analysis on both published and in-house 

generated epigenetic datasets with no requirement of computing resource. By user cases 

in sections 3 and 4, we will further explain how Mmint and GsmPlot facilitate the analysis 

of epigenetic data. In section 5, we present the conclusions of our comprehensive toolkit 

for low-input bisulfite sequencing data processing, analysis, and visualization.  
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2. LIBIS: AN ULTRA SENSITIVE ALIGNMENT AUGMENTATION FOR LOW-

INPUT BISULFITE SEQUENCING* 

 

2.1. Background 

DNA methylation abnormalities contribute to tumorigenesis and tumor prognosis 

[43]. Tumors are characterized with global hypomethylation and focal CpG island 

hypermethylation [44]. As a simple, economical assay for early cancer diagnosis or 

monitoring therapeutic response, liquid biopsy has rapidly emerged as an alternative to 

tumor biopsy due to its minimal invasiveness and ease of repeat sampling [45]. Many 

studies have reported that tumor DNA methylation status can be accurately detected in 

circulating cell-free DNA (cfDNA) from blood or other body fluids [46-48].   

Compared to the limited number of CpGs detected using microarray technology, 

whole genome bisulfite sequencing (WGBS) can detect all the CpG sites in the genome, 

which substantially increases the power for biomarker discovery. However, the extremely 

low amount of cfDNA in liquid biopsies poses a challenge for whole genome bisulfite 

sequencing using cfDNA. The amount of cfDNA collected from the plasma of healthy 

individuals or patients usually ranges from nanograms to several dozen nanograms, and 

for late-stage cancer patients the amount is usually less than several hundred nanograms, 

which remains low for WGBS library preparation [49, 50]. To prepare WGBS libraries 

 

* Reprinted with permission from “LiBis: an ultrasensitive alignment augmentation for low-input bisulfite sequencing” by Yue Yin; 

Jia Li, 2020. Briefings in Bioinformatics, bbaa332, Copyright [2020] by Oxford University Press. 
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using low amounts of DNA, several methods have been developed. Post bisulfite 

sequencing methods such as post-bisulfite adaptor tagging (PBAT) and single-cell WGBS 

methods apply adaptor tagging after bisulfite treatment to reduce the loss of tagged DNA 

fragments during library preparation [23]. Specifically, first, the bisulfite conversion is 

carried out directly on the cell lysate; second, random oligos are added to the 3’ end of 

single-stranded bisulfite converted DNA fragments, then adaptors are added to the DNA 

fragments through two rounds of random priming and extension. This increases the 

sensitivity of library preparation for low input WGBS. However, such Adaptase reactions 

can lead to the formation of long synthetic sequences at fragment 3’ ends [51, 52]. 

Sequencing reads containing variable lengths of synthetic sequence contamination limit 

the effectiveness of current fixed-length trimming methods [52]. Moreover, random 

priming may occur not only between the primer and genomic DNA fragments, but also 

between two primers or two genomic DNA fragments. Mistakenly concatenated DNA 

fragments may be sequenced as chimeric reads, which cannot be aligned to one correct 

location but can be separated into two fragments with each mapped precisely to a distinct 

genome location [28]. These issues of WGBS library preparation from low amounts of 

DNA result in low mapping ratios (average 40%), which increase the cost of liquid biopsy 

and restrict its application in clinical settings. 

Several mapping programs such as BSMAP, Bismark, BS-Seeker, and scBS-map 

have been developed to address the above issues [53-55]. Although BS-Seeker utilizes 

soft-clipping during the mapping procedure and scBS-map adopts a local alignment 

strategy to improve the mapping ratios, the mapping ratios of samples applying low input 
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WGBS are still far lower than samples applying traditional WGBS [39]. To get enough 

data coverage for all CpGs from low-input bisulfite sequencing data, it is imperative to 

develop a mapping procedure to recover as much data as possible from the reads 

“unmapped” due to library preparation protocol drawbacks. Here, we developed a novel 

method, LiBis, to further improve the mapping ratio of low-input bisulfite sequencing 

data. LiBis applies a dynamic clipping strategy to rescue the discarded information from 

each unmapped read in end-to-end mapping.  

In our simulation study, LiBis achieved the highest mapping ratio improvement 

with the shortest CPU time among published methods. LiBis also improved the number 

of detected CpGs and the methylation ratio accuracy in a time-efficient manner. By 

applying LiBis, we achieved a better cost efficiency using both a public dataset and in-

house datasets. The number of informative CpGs increased significantly after using LiBis 

compared with using a traditional trimming protocol. The precision of bisulfite sequencing 

was also improved by LiBis for all samples. Furthermore, LiBis was able to identify virus 

insertion sites in a cervical cancer WGBS dataset, which indicates that bisulfite 

sequencing data can be used to reveal both genetic and epigenetic changes. LiBis supports 

a one-command solution for quality control, trimming, mapping, and methylation calling 

in a reasonable computing time, making it an effective and comprehensive solution to 

support large-scale single-cell or cfDNA bisulfite sequencing applications.  

 

2.2. Methods 

2.2.1. LiBis Implementation 
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LiBis is available on GitHub (https://github.com/Dangertrip/LiBis). LiBis was 

developed in Python 3.6 and integrated with published software for infrastructure 

functionalities, which can be used for processing low-input WGBS data, such as cfDNA 

methylome and single-cell DNA methylome sequencing data. For first-round mapping and 

remapping, BSMAP used ‘-S 123 -n 1 -r 0 -U’ as setting parameters for uniquely mapped 

reads and reproducible results.  For second-round mapping, parameters such as window 

length and the distance from the previous window start (stride) are set by user. After the 

second-round mapping, contiguously overlapped mapped fragments were combined with 

the following rules: 1) fragments must be strictly continuous, such that the distance 

between left ends of two overlapped fragments aligned on the genome must equal to the 

distance between the two left ends of sequences on the read; 2) only one mismatch is 

allowed on each fragment; 3) if, after the recombination, multiple overlapped recombined 

fragments are generated, the program will select the longest fragment with the fewest 

mismatches (Figure 2.1B); and 4) all recombined fragments that do not overlap are kept 

(Figure 2.1B). For paired-end reads, all clipped reads are treated as two single-end reads 

in rescue mapping stage. Then the paired-end information is added to the rescued reads if 

the mate of the read was also mapped or rescued. To achieve better time and space 

complexity, the program records the number of mismatches on the last ‘S’ base pair to 

accelerate the computation in the bam file. ‘S’ stands for the length of the stride. The 

sliding window in the visualization module was generated through “bedtools 

makewindows”. 

https://github.com/Dangertrip/LiBis
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     An HTML report template was provided in the pipeline. Datatable and JQuery 

were imported for data representation. Numeric results such as mapping ratio were 

extracted from the original reports of TrimGalore and BSMAP to a TSV file for 

visualization. Figures were generated during a computation by the Matplotlib package in 

Python. Principal component analysis plotting used methylation signals in sliding 

windows along the reference genome. 

 

 

Figure 2.1 Workflow of LiBis (low-input bisulfite sequencing alignment). A. LiBis 

overview. B. Details of the LiBis rescue procedure, including clipping initially unmapped 

reads (left panel), remapping clipped fragments (middle panel), and recombining 

contiguous fragments (right panel). 

 

2.2.2. Simulation methods 
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The random nucleotide was generated by the random function in Numpy. Real 

sequences (of 110 bases) were copied from the human reference genome with a random 

chromosome number and a random starting point. To each real sequence was added a head 

of 1–40 random bases (length m), as well as a random tail of (40-m) bases. All cytosines 

were randomized as unmethylated or methylated. The chance of being methylated was 

equal to the methylation ratio of the corresponding CpG site in human embryonic stem 

cells. For the fully randomized dataset, each nucleotide (A, C, T, or G) had an equal 

probability to fill each position.  

2.2.3. Data collection and process 

Signed informed consent was obtained from all patients or their legal guardians 

prior to sample acquisition in accordance with an institutional review board-approved 

protocol. CSF samples were obtained from two brain tumor patients at Texas Children’s 

Hospital at the time of clinically indicated lumbar puncture. CSF was processed using a 

standardized protocol and was then divided into aliquots and stored immediately at -80°C. 

The cervical tumor tissue was obtained from Southern Medical University as an FFPE 

sample. 

Cell-free DNA (cfDNA) was isolated from 200–400 µL CSF or plasma using a 

QIAamp Circulating Nucleic Acid Kit (Qiagen) according to the manufacturer’s 

instructions. For tumor tissue, DNA was isolated using an AllPrep DNA/RNA Mini Kit 

according to the manufacturer’s protocol. To process the FFPE cervical tumor sample, we 

used AllPrep DNA/RNA FFPE Kit (Qiagen, Cat No. 80234). The isolated DNA 
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concentration was measured using a Qubit 4 Fluorometer with the Qubit dsDNA High 

Sensitivity Assay Kit (Thermo Fisher Scientific).  

WGBS analysis was used to assess the genome-wide DNA methylation profile. 

The WGBS libraries were generated using a Pico Methyl-Seq Library Prep Kit (Zymo 

Research). Briefly, DNA was mixed with 0.1% unmethylated λ-bacteriophage DNA 

(w/w) (NEB), followed by sodium bisulfite conversion. The bisulfite-converted DNA was 

then annealed with random primers for initial amplification, followed by adaptor ligation 

and final amplification with Illumina TruSeq indices. Constructed libraries were run on a 

2% agarose gel to assess size distribution, and the library concentration was measured 

using a Qubit 4 Fluorometer with a Qubit dsDNA High Sensitivity Assay Kit. Normalized 

libraries were pooled at an equimolar ratio and sequenced on NovaSeq 6000 (Illumina). 

All WGBS data mapped by first round mapping with BSMAP are described as 

“BSMAP”, and WGBS data mapped by a second round of clipped mapping are described 

as “LiBis rescued”. The combination of two rounds of mapping are described as “LiBis”. 

scBS-map was applied with default parameters. LiBis used 40 as the window size, five as 

the stride, and 45 as the filter length. Picard (http://broadinstitute.github.io/picard) was 

used to remove PCR duplicates from both first round BSMAP results and second round 

LiBis rescued reads before analysis of clinical samples. The smoothed scatterplots 

(geneplotter in R package) used the CpG sites in common between the two samples as 

input. Pearson correlations were calculated using the R cor function. Boxplots were plotted 

using the Python package seaborn. Fixed length trimming used Trim-Galore with ‘--

clip_R1’ and ‘--clip_R2’. Single cell whole genome bisulfite sequencing data is available 
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at the Gene Expression Omnibus database under accession number GSE56879. Data used 

to compute correlations between LiBis-specific CpGs and public tumor samples are from 

the GBM tumor sample methylome at GSE121721 [56]. 

2.3. Results 

2.3.1. Alignment augmentation strategy in LiBis for low-input bisulfite sequencing 

LiBis is an integrated Python package for processing low-input WGBS data, such 

as cfDNA methylome and single-cell DNA methylome sequencing data. FastQC, Trim-

galore, BSMAP, mcall, and bedtools are integrated into LiBis for quality control, adaptor 

trimming, read mapping, methylation calling, and functional analysis, respectively [30, 

35, 53, 57]. The LiBis toolkit contains three modules: a preprocess module for quality 

control and adaptor trimming, a compute module for dynamic clipping and mapping, and 

a visualization module for report generation (Figure 2.1A, Figure 2.2).  
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Figure 2.2 Example of the final report generated by the LiBis visualization module. 

Top panel, table of basic statistics and HTML links to FastQC figures. Bottom panel, 

principal component analysis scatter plot and heatmap. 

 

To improve the mapping efficiency for low-input bisulfite sequencing data, we 

applied a clipping strategy within the compute module to eliminate random base 

contamination, as follows. First, LiBis maps the trimmed raw data with BSMAP and 

generated a new fastq file containing unmapped reads. Second, LiBis clips all unmapped 

reads using a sliding window with a specific width and step size as defined by the user. 

Third, LiBis remaps all clipped read fragments and keeps only uniquely mapped fragments 

for subsequent recombination. During recombination, fragments derived from the same 

unmapped read are recombined only if they are remapped contiguously to the reference 
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genome, and the distance between two adjacent fragments equals the step size. 

Recombined fragments are required to be above a minimum length to reduce the 

likelihood of a false-positive alignment. For reads with multiple candidate recombined 

clipped fragments that overlap, such as that illustrated in the top half of Figure 2.1B, the 

recombined clip with the greatest mapping confidence (i.e., the longest clip with least 

mismatches) is kept as a rescued read. If the recombined clipped fragments do not overlap 

each other, such as the two clips in the bottom half of Figure 2.1B, all recombined clipped 

fragments will be kept. Through the remapping and recombination steps mentioned above, 

reads discarded in first-round mapping can be rescued. 

The LiBis workflow for bisulfite sequencing data involves five steps. In step 1, the 

raw reads are examined for quality control by FastQC. FastQC allows assessment of 

quality features including base quality, base content, and duplication level. These features 

reveal the overall quality of the library, amplification, and sequencing. Results of FastQC 

are aggregated in the final report. In step 2, the reads are trimmed by trim-galore, which 

removes sequencing adaptors and low-quality reads. If random priming was used to 

generate the library, trimming is recommended but cannot remove random priming-

associated amplification artifacts. Step 3 is read mapping by the compute module, which 

combines initial mapping with the dynamic clipping and remapping strategy to improve 

the cost efficiency. In step 4, the methylation ratio of CpGs is called by mcall from the 

MOABS program. In step 5, the data is visualized as various figures. After LiBis analysis, 

an overview webpage presents summaries of all input samples, heatmaps, and principal 

component analysis results (Figure 2.1A). 
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LiBis requires two types of input files, namely the reference genome sequence file 

in FASTA format and the FASTQ files containing raw reads. For small numbers of 

samples, a command line can be used to run LiBis. Alternatively, config file reader was 

developed for large numbers of samples. The LiBis output includes bam files, methylation 

ratio files, quality control results, stats files and an integrated HTML report.  

2.3.2. LiBis improves mapping ratios and mapping sensitivity in simulated data 

To compare the mapping effectiveness of LiBis with published approaches, we 

determined the mapping ratio of BSMAP [35], Bismark [54], BS-Seeker3 [58], scBS-map 

[39], bwa-meth [59], WALT [60] and BatMeth2 [61] on a single cell WGBS dataset 

(GSE56879; SRR1248444-SRR1248455) (Table 2.1). Results showed that WALT, 

Bismark and BS-Seeker3 had a median mapping ratio ranging from 13% to 22%, and that 

scBS-map, bwa-meth and BatMeth2 had a median mapping ratio ranging from 35% to 

55%. Compared to these tools, LiBis had the highest median mapping ratio 65% (Figure 

2.3AB).  

 

 

Table 2.1 Features of collected software.  
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Figure 2.3 Evaluation of mapping efficiency and accuracy of LiBis. A. Mapping ratio 

of MII oocyte single cell WGBS samples by indicated methods. B. True positive rates of 

mapped reads generated by indicated methods. 

 

To further test other features of LiBis, three simulation datasets (each containing 

10 million 150 base pair length reads) were randomly and independently generated in 

silico. Each 150 base read was composed of a real 110 base DNA sequence (randomly cut 

from the hg38 human genome), a random artificial head sequence added to the front of the 

real read, and a random artificial tail sequence added to the end of the real sequence while 

the head and tail add up to 40 bases. The random heads and tails simulated contamination 

introduced by the random priming process, which cannot be fully removed by traditional 

trimming methods such as trim-galore (Figure 2.4A). 
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Figure 2.4 LiBis performance on simulation datasets in silico. A. Scheme for 

generating simulated reads with random heads and tails. B. True positive rates of LiBis 

using different filter lengths. C. Mapping ratios using simulated reads by LiBis and scBS-

map. D. Smoothed scatterplot showing the correlation between the DNA methylation 

ratios generated by LiBis and simulated reads. E. CPU times for processing 10 million 

reads (150 bp) by LiBis and scBS-map. 

 

The LiBis mapping ratio is associated with the minimum length of the rescued 

reads. We investigated the relationship between the true positive rate and the filter length. 

A true positive event was defined if the simulated read was aligned to a genomic location 

which was same as its simulated location. As shown in Figure 2.4B, the true positive rate 

saturated when the parameter of minimum rescued length was set at 45 bases. Among the 

different mapping approaches tested, LiBis and scBS-map showed the highest true 

positive rates (Figure 2.3B). Among these tools, to our knowledge, scBS-map and LiBis 

are the only two tools designed to rescue WGBS reads with artificial or chimeric 

sequences introduced by the random priming process, though the original purpose for 
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scBS-map and LiBis are single cell WGBS and cfDNA WGBS, respectively. Thus, we 

further compared the mapping ratio between LiBis and scBS-map [39]. For simulation 

data, LiBis achieved a mapping ratio (92.6%) which is higher than scBS-map (44.5%) 

(Figure 2.4C). The DNA methylation ratios of CpGs identified by LiBis also showed a 

high correlation (r=0.98) with the ground truth of methylation ratios from the simulation 

(Figure 2.4D), indicating that LiBis has high accuracy. For real data, LiBis also had a 

higher mapping ratio (52%) than scBS-map (around 45%) using GSE81233 [62], and a 

higher median mapping ratio (65%) than scBS-map (35%) using SRR1248444 - 

SRR1248455.  In addition, by analyzing the rescued reads from GSE81233 [62], we found 

that most of the rescued reads are indeed synthetic reads (Figure 2.5B). These results from 

simulation data and real data revealed that LiBis could rescue synthetic reads and achieved 

high detectability and high sensitivity.  

 

Figure 2.5 Diagram of LiBis clipped reads. A. Clipped types of LiBis rescued reads. 

B. Percentages of different clipped types of LiBis rescued reads in sperm single cell 

samples in GSE81233. 

 

Regarding efficiency, LiBis required only 20.9 CPU hours in total to process the 

simulated dataset (10 million 150 bp length reads) from fastq input, which is comparable 
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to BSMAP (10.6 CPU hours) considering the rescue of contaminated reads from 

simulation dataset. In contrast, LiBis is nearly four times faster than scBS-map (Figure 

2.4E).  

2.3.3. LiBis improves mapping ratios and mapping sensitivity in a single-cell DNA 

methylome dataset 

To test the efficiency of LiBis using real data, we applied LiBis on single cell 

mouse ESC WGBS samples from a public dataset (GSE56879). Similar to post bisulfite 

WGBS, single cell WGBS applies random priming to capture bisulfite truncated 

fragments. In this dataset, we observed that the mapping ratio for the scWGBS samples 

increased by as much as 24% with LiBis compared to BSMAP (Figure 2.6A). A large 

number of CpGs were specifically discovered by LiBis, but failed to be detected by 

BSMAP (Figure 2.6B). To further gauge the effects of these improvements on downstream 

analysis, we defined CpGs that were covered at least 5 times as informative CpGs. LiBis 

recovered as many as 70% more informative CpGs compared to BSMAP, dramatically 

increasing the number and depth of usable CpG sites (Figure 2.6C). For the CpG sites 

specifically discovered by LiBis, our result shows that these CpGs had relatively higher 

methylation ratios compared to the initially discovered CpGs (Figure 2.7A), indicating 

that reads from highly methylated regions may suffer more severe contamination from 

random priming, which may partially explain the lower methylation ratios detected in 

libraries built using random priming versus in libraries prepared using pre-bisulfite 

sequencing methods [51]. 
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Figure 2.6 LiBis improved both the efficiency and the precision of methylation 

measurements in scWGBS datasets Diagram of LiBis clipped reads. A. Improvement 

in mapping ratios by LiBis, compared to BSMAP in three scWGBS datasets; B. Number 

of CpGs specifically detected by LiBis, but not detected by BSMAP, in three scWGBS 

datasets; C. Improved informative CpGs (covered at least 5 times) using LiBis-rescued 

reads compared to BSMAP. D. Smooth scatterplot showing the correlation of the DNA 

methylation ratio (averaged for 1-kb windows) between bulk and merged single cell DNA 

methylomes. E. Smooth scatterplot showing the correlation of DNA methylation ratio 

between bulk and merged DNA methylomes at regions specifically rescued by LiBis, but 

not detected by BSMAP. 
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Figure 2.7 Overview of LiBis processed scWGBS dataset. A. Boxplots showing the 

distribution of DNA methylation ratios calculated using BSMAP reads and LiBis-specific 

rescued reads (i.e., not mapped by BSMAP) from three scWGBS datasets. B. Merged 

methylomes generated with LiBis or without LiBis exhibit nearly identical methylation 

ratio distributions over gene regions. We analyzed all genes in the genome beginning 2 kb 

before the transcription start site (Start) through 2 kb past the transcription end (Stop), and 

aligned gene positions along the X axis. The Y axis is the methylation ratio. The bulk 

methylome by BSMAP is in red, the merged methylome with or without LiBis is in purple 

or blue, respectively. C. The distributions of the methylation ratio difference between bulk 

and merged methylomes are subtly different between BSMAP and LiBis. 

 

To estimate the accuracy of the DNA methylation ratios recovered by LiBis, we 

performed a comparison between the DNA methylation ratios generated by LiBis using 

mixed scWGBS data (LiBis-MII ESCs-scWGBS) and the DNA methylation ratios 

generated by BSMAP using bulk methylome data (BSMAP-MII ESCs-bulk) from the 

same cells. We observed a high correlation in the DNA methylation ratio (Pearson 
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correlation r = 0.83) between LiBis-MII ESC-scWGBS and BSMAP-MII ESCs-bulk on 

the 2.5 million CpGs detected in common (Figure 2.6D, 2.7B). This result indicated that 

LiBis can identify CpGs with accurate DNA methylation ratios. By comparing with 

BSMAP-MII ESC-scWGBS, we identified 187,804 CpGs that were specifically recovered 

by LiBis but not by BSMAP in merged single cell samples, while the methylation ratios 

of these specific CpGs were highly correlated with those from BSMAP-MII ESCs-bulk 

(Pearson correlation r=0.95) (Figure 2.6E). Additionally, the methylation ratio difference 

between the BSMAP bulk methylome and the merged scWGBS methylome by BSMAP 

or LiBis was subtle and comparable with the results using BSMAP (Figure 2.7C). These 

results strongly demonstrated that the CpG DNA methylation ratios from LiBis rescued 

reads are accurate and beneficial for downstream analysis. 

 

Figure 2.8 LiBis improvement on scRRBS. A. Improvement of mapping ratios by LiBis, 

compared to BSMAP in scRRBS datasets. B. Smooth scatterplots showing the correlation 

of the DNA methylation ratios of CpGs detected in common by BSMAP and LiBis.   

 

In addition, we also tested the performance of LiBis on single cell reduced 

representation bisulfite sequencing (scRRBS) data (GSE109085) and we obtained similar 
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results as scWGBS data (Figure 2.8), suggesting that LiBis worked on scRRBS data as 

designed. 

2.3.4. LiBis improves the data efficiency of tumor and cfDNA WGBS experiments 

with random priming 

 

Figure 2.9 LiBis improved the cost efficiency of clinical tumor and cfDNA WGBS 

data generated using the random priming method. A. Improvement (mapping ratio: 
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bar plots with left y axis; base pair usage: black lines with right y axis) comparisons 

between LiBis and fixed length trimming. B. Base content distribution of BSMAP 

unmapped reads (left panel) and LiBis rescued reads (right panel). C. Smooth scatterplots 

showing the correlation of the DNA methylation ratios of CpGs detected in common by 

BSMAP and LiBis. The Pearson correlation coefficients are listed on the top of each 

scatterplot. D. Distribution of the DNA methylation level across functional genome 

elements using informative CpGs as determined by mapped reads using BSMAP and the 

specific recovered reads using LiBis, as indicated. E. The differences in DNA methylation 

ratios of the CpGs detected in common between BSMAP and LiBis in genomic regions 

and across the global genome. F. The distribution of DNA methylation ratio Pearson 

correlations of LiBis-specific read CpGs (compared to BSMAP results) from our data 

compared to public bulk DNA methylomes (GSE121721) from the same tumors.   

 

To verify the capability of LiBis to rescue bisulfite sequencing data from low input 

WGBS (such as cfDNA samples), we performed WGBS on six clinical samples and 

processed the sequencing data using LiBis: 1). Two cerebrospinal fluid (CSF) cfDNA 

samples from glioblastoma patients; 2). Two plasma cfDNA samples from glioblastoma 

patients; 3). Two genomic DNA samples from glioblastoma tumor tissues. We adopted 

random priming-based WGBS to generate libraries of all collected samples [23]. To 

validate the functionality of LiBis, we first compared LiBis with the traditional fixed 

length trimming method (Figure 2.9A). Although the fixed length trimming method could 

improve the mapping ratio, there was only a slight change in the base pair usage rate (right 

Y-axis). LiBis significantly improved both the mapping ratio and base pair usage over the 

traditional fixed length trimming method. Furthermore, by analyzing the base content of 

the sequences, we found that our samples prepared using the random priming library 

method showed a strong C-bias at the beginning of the reads. This observation was also 

reported in papers using single-cell bisulfite sequencing due to the dNTP in random 
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priming [24, 52]. LiBis can effectively eliminate the C-bias by dynamically removing 

random artifactual bases in both ends of the read (Figure 2.9B). 

Next, to measure the similarity in the DNA methylation ratios of each CpG 

comparing reads recovered by LiBis with using the end-to-end mapping reads, we 

performed a correlation analysis. We observed a high correlation coefficient that ranged 

from 0.84 to 0.92 (average 0.88) between the DNA methylation ratios from the end-to-

end mapping and the LiBis clipped mapping on the CpGs covered at least 10 times by 

both methods (Figure 2.9C). LiBis recovered informative CpGs share a similar 

distribution in different genomic regions while having a relatively low recovery rate in 

repeat regions (Figure 2.9D), which suggests that there is no methylation bias. The reason 

for the low number of LiBis rescued reads in repeat regions is that short fragments may 

lead to multiple mapping on repeat regions, which leads to a lower unique mapping ratio 

in repeat regions. In addition, the majority (>75%) of the CpGs detected in common by 

BSMAP and LiBis have a DNA methylation ratio difference less than 0.15 across genome 

elements. (Figure 2.9E). CpGs at regions of low methylation such as CpG islands or 

promoters showed no methylation ratio difference because as the methylation ratio 

distribution became more skew, the confidence interval narrowed. These results further 

showed that LiBis faithfully recovered CpG DNA methylation ratios. CpGs uniquely 

recovered by LiBis, but not by BSMAP, had DNA methylation ratios that were highly 

correlated with those from public tumor tissue methylome databases (average Pearson 

coefficient r=0.87) (Figure 2.9F). These results strongly demonstrated that LiBis can 
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efficiently and correctly extract maximum DNA methylation information from low-input 

bisulfite sequencing data in clinical samples. 

2.4. Discussion 

DNA fragments sequenced by post-bisulfite sequencing are reported to undergo 

self-priming and generate chimeric reads, which leads to low efficiency of utilizing 

sequencing raw data [28, 52].  In this study, we developed a pipeline called LiBis to reduce 

this problem in post-bisulfite sequencing by fragmenting, remapping and recombining 

initially unmapped reads. To the best of our knowledge, LiBis is the first integrated 

pipeline for the processing of low-input bisulfite sequencing data that includes trimming, 

initial mapping, clipped mapping, methylation calling, and visualization. By dynamically 

clipping unmapped reads to remove random priming contamination, LiBis is capable of 

improving experimental measurement precision and cost efficiency.  

 

Figure 2.10 LiBis identified HPV insertion sites in cervical cancer WGBS 

experiments using a traditional pre-bisulfite library method. A. Scheme of HPV 
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insertion. The green line represents HPV genome sequences; black line represents human 

genome sequences. Vertical orange lines represent insertion sites; red short lines represent 

the fusion reads which are chimeric reads with human and HPV sequences spanning across 

an insertion site. B. Genomic coordinates of HPV insertion sites in a cervical cancer 

identified by LiBis. C. Visualization of a sample HPV insertion site on chromosome 8. 

The exact positions of insertion are labeled. Five fusion reads (three on the left most site, 

two on the right) were identified.  

 

To further explore the capability of LiBis to discover genomic patterns using 

WGBS data, we collected one cervical cancer tumor sample and prepared one WGBS 

library using a traditional protocol. The mapping ratio improved from 84% with BSMAP 

to 90% with LiBis using the 150 bp paired-end sequencing strategy. Although the 

improvement was relatively small compared to that observed for the cfDNA WGBS data 

(random primers based), we confirmed that LiBis can identify DNA insertion events, in 

particular for human papillomavirus (HPV) DNA insertion into the human genome in this 

case study. In cervical cancer, HPV can cleave human DNA and insert HPV DNA 

fragments into the human genome in a sense or antisense direction. These HPV insertion 

events can be detected by fusion reads which contain both HPV and human DNA 

fragments identified by LiBis (Figure 2.10A). Multiple potential insertion sites in this 

patient sample were identified using LiBis (Figure 2.10B). Next, we examined the closest 

gene to each insertion sites to evaluate the potential influence of the viral insertion on 

human gene expression. Interestingly, four out of the six insertion-proximal genes we 

identified were previously reported as HPV insertion sites or were differentially expressed 

in cervical cancer [63-65]. For example, one insertion site was located in the intron of the 

CASC11 gene and also close to the promoter region of the MYC gene (Figure 2.10C). The 

expression of CASC11 is upregulated in cervical cancer tissue, compared to normal 
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cervical tissue, which might activate the WNT/β-catenin signaling pathway to promote 

cervical cancer. And the MYC gene is well known for promoting tumorigenesis [66]. In 

addition to identifying HPV integration sites, LiBis also can identify differentially 

methylated CpGs in both human and HPV sequences (if the DNA methylome data is 

available for control or unintegrated HPV). These results suggest that LiBis can 

simultaneously identify the viral integration sites and perform differential methylation 

analysis for both human and viral DNA using WGBS data, which will significantly 

improve the DNA methylation analysis of viral integration in cancer. 

Here, we confirmed that LiBis improved performance in four case studies, namely 

simulated data, scWGBS data, cfDNA WGBS data from random priming libraries, and 

tumor WGBS data from random priming libraries. The performance improvement may 

due to several reasons. First, random priming, adapter dimers, small fragments, or bisulfite 

conversion may generate artifactual bases at both ends of a read. Our approach reduces 

the proportion of reads culled due to these issues. Second, through dynamic clipping, LiBis 

could recognize DNA fusions present in the original cell, including gene fusions, 

insertions of HPV DNA, fusions that arose during library preparation, and even circular 

DNA formed by self-priming or other mechanisms.  

For data preprocessing, Trimmomatic allows more sophisticated trimming 

procedures than trim-galore. We applied Trimmomatic and TrimGalore on scWGBS 

dataset (SRR1248444 - SRR1248455) with sophisticated procedures. Our results showed 

that more reads were discarded by Trimmomatic (around 30%) than TrimGalore (5.8%) 

(Figure 2.11A), and that Trimmomatic achieved a higher percentage than TrimGalore for 



 

34 

high-quality sequences, where the percentage was defined as bases with quality score 

larger than 30 divided by all bases (Figure 2.11B). This indicated that Trimmomatic was 

stricter than TrimGalore in terms of quality score. Next, we compared the base quality 

distributions for reads mapped by BSMAP, reads rescued by LiBis, and fragments 

discarded by LiBis. The percentage of high-quality sequences among these three groups 

were similar (97%-98%), suggesting that LiBis rescue was relatively independent to base 

quality score (Figure 2.11C). Above all, rescued reads by LiBis were mostly from 

artificial, synthetic, or chimeric sequences with good quality, which could not be removed 

by TrimGalore or Trimmomatic at all. 

 

Figure 2.11 Comparison of widely used trimming software for low input bisulfite 

sequencing. A. Remained reads ratio after trimming by TrimGalore and Trimmomatic. B. 

Distribution of quality score in raw data, data trimmed by TrimGalore and data trimmed 
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by Trimmomatic. C. Percentages of bases with quality score>30 in LiBis rescued reads, 

LiBis clipped fragments and BSMAP mapped reads.  

 

To maximize the mapping efficiency of post-bisulfite sequencing material, our 

method shares similar concepts with previous reports. scBS-map applies a local alignment 

after an end-to-end mapping step to rescue discarded reads [39]. Taurus-MH splits the 

unmapped reads in end-to-end mapping with a fixed pattern to estimate the mappable parts 

[67]. From the aspect of implementation, LiBis integrated BSMAP and applied the sliding 

window approach to segregate reads to sub-sequences and merge the overlapped sub-

sequences; while scBS-map used Bowtie2 as aligner and integrated BS-Seeker2 “end-to-

end” mode and “local” mode to improve the alignment ratio. Moreover, BSMAP aligned 

seeds by loop-up hash table and wildcard algorithm; while BS-Seeker2 adapted 3-letter 

approach and converted the genome into a C-to-T reference and a G-to-A reference. In 

addition to the differences of algorithm in integrated aligners, local mode in Bowtie2 

contained a scoring system for seed extension. However, LiBis aligned segregated reads 

independently in each sliding window. Since the contamination of random priming was 

mainly present at the beginning and the end of the reads, direct removal of these bases by 

sliding window is a more intuitive way, and confirmed to be more efficient.  The simple 

strategy and parameters in LiBis also allow users to adjust the parameters to balance the 

running time and the rescue efficiency. For example, users can set a smaller stride and 

window length when the sequencing quality is unsatisfactory to improve the cost 

efficiency. Compared to previous methods, LiBis has two advantages. First, LiBis had 

significantly higher efficiency than the traditional trimming method or other mapping 



 

36 

approaches in processing WGBS data from a random priming library. Second, LiBis is an 

integrated pipeline including quality control, trimming, mapping, methylation calling and 

visualization modules, which can achieve one-command processing of WGBS raw data. 

However, all methods including LiBis can be further enhanced by applying parallel 

computing for mapping processes to query more computational capacity. A more precise 

iteration of parameters for LiBis can also improve the efficiency batch to batch.  
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3. MMINT: METHYLATION DATA MINING TOOLS 

 

3.1. Background 

DNA methylation is one of the most important epigenetic modifications which 

plays a predominant role in a broad range of biological processes, including development, 

tumorigenesis and cellular identity. It involves the addition of a methyl group to the 

carbon-5 position of cytosine residues. Treatment of DNA with bisulfite specifically 

converts cytosine residues to uracil but leaves 5-methylcytosine residues unaffected. In 

mammals, DNA methylation is almost exclusively existing on 5-methylcytosine (5-mC) 

residues in the context of CpG dinucleotides. Whole Genome Bisulfite Sequencing 

(WGBS) allows investigators to detect the methylation status for each single CpG site in 

the genome. Besides DNA methylation, techniques are also developed for other epigenetic 

markers such as TAB-Seq, anti-CMS technique for DNA hydroxymethylation (5hmC) 

[68, 69], ChIP-Seq for histone modifications and transcription factors (TFs), which all 

contribute to the genome regulatory landscape. It was established that active regulatory 

regions (such as promoters and enhancers) are always bound by TFs with low CpG 

methylation, while high methylation is reported as interference of the TFs binding process 

[70-72]. However, by characterizing the effect of cytosine methylation on 542 human TFs 

binding, many TFs bindings were found to be enhanced by cytosine methylation [73]. In 

addition, the correlation analysis between DNA methylation and histone modification 

indicated that the demethylation process is associated with H3K4me1 and H3K27ac which 

marked enhancer regions [74, 75]. These recent findings indicate that DNA methylation 
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plays multiple and complex roles interacting with other epigenetic markers. However, the 

ability to comprehensively determine the multidimensional epigenetic modifiers’ roles for 

one certain biological process is in unprecedented breadth and detail. Due to lack of 

appropriate tools, the large-scale crosstalk among DNA methylation, DNA 

hydroxymethylation, TF bindings and histone modifications remains insufficiently 

studied.  

Moreover, to select representative regions/genes to demonstrate their findings 

vividly, researchers always spend hours manually browse UCSC genome browser 

(http://genome.ucsc.edu/) or WashU epigenome browsers 

(http://epigenomegateway.wustl.edu/browser/) to look for regions presenting region-level 

coexistence, exclusive or gradually change the relationship among multiple epigenetic 

data, which is time-consuming and inefficient. To facilitate such a process, genomation 

[76], ChiPseeker [77],  and deepTools2 [78] were developed to visualize certain signals 

in certain genomic intervals. However, none of them can perform integrative analysis with 

multiple signals, especially with DNA methylation data. To address these challenges, we 

developed Mmint, a comprehensive data mining and visualization software centered on 

WGBS data. The features that make Mmint unique are (I) it conveniently integrates large-

scale WGBS data and other epigenetic data for quality assessment and comprehensive 

analysis; (II) Instead of using descriptive and numeric files, Mmint generates publishable 

figures to present the results.  

3.2. Methods 

http://genome.ucsc.edu/)%20/%20Wash
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Mmint is written in Python 3.6 and is available as an open-source software at 

Github (https://lijiacd985.github.io/Mmint/). To perform as an integrative pipeline, Mmint 

is also available as the analysis toolkit in MOABS 

(https://github.com/sunnyisgalaxy/moabs). 

All the sequencing data are mapped on the hg19/mm10 genome. MOABS is used 

to perform analysis of WGBS data [53]. Bowtie2 with default settings is used as the aligner 

for other types of sequencing data. MACS2 and DESeq2 are used for peak calling and 

differential peak identification in ChIP-Seq data [79, 80]. The criteria of identified 

differentially methylated regions (DMRs) are: (I) DMR needs at least 3 CpGs. (II) The 

absolute mean difference of methylation ratio between is regions are larger than 0.25. (III) 

The false discovery rate (FDR) of identified DMR is less than 0.05. Such criteria are 

decided to focus on highly different regions and minimize the influence the false 

discovery.  

3.3. Results 

3.3.1. Overview of Mmint 

Mmint takes output files from Model-based Analysis Of Bisulfite Sequencing data 

(MOABS)  such as BAM files and BED files [53] and the peak files generated by MACS2 

[79]. By taking this information, Mmint can support five types of analysis: (I) Multi-

dimensional quality assessment for WGBS data; (II) Versatilely integrative analysis of 

DNA methylation data and other epigenetic data; (III) Integrative analysis between 

epigenetic markers and gene expression; (IV) Integration of multiple signals in all 

interested regions (Figure 3.1). For all types of analysis, Mmint can generate figures and 

https://lijiacd985.github.io/Mmint/)
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well-defined tables for users, which is convenient and interpretable for users without 

bioinformatics background. More importantly, Mmint has been embedded into MOABS, 

which allows users to finish the WGBS data analysis process from raw data to publishable 

figures in a single step. Besides analysis and visualization, management of increasing 

WGBS datasets also becomes a pain point of data analysis. Lab information management 

systems such as HTS-flow and Galaxy are used to manage large batches of next generation 

sequencing data. However, these lab information management systems lack domain 

knowledge about sequencing such as library construction and coverage requirement. To 

fill this gap, Mmint integrates an empirical decision tree to reveal the potential problem in 

a raw dataset, which allows users to diagnose their sequencing process. 
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Figure 3.1 Overview of Mmint workflow. A. Mmint workflow as an independent tool 

for analysis. B. Mmint workflow as a module of MOABS.  

 

3.3.2. Data quality assessment module in Mmint 

Sequencing depth is critical to the DNA methylation analysis, which can be mainly 

revealed in the relationship among CpG depth, mean methylation ratio and detected CpG 

numbers. Mmint takes output files from MOABS to generate figures to present the mean 

methylation ratio and number of CpGs in different depths (Figure 3.2A), which allows 

users to verify whether there are discrepancies in sequencing depth. Genome coverage and 

sequencing duplication are another two important indicators for keeping sequencing high-

quality, which are also available in Mmint. Figure 3.2B shows the coverage and the 

percentage of reads at certain coverage. The black curve represents an example with no 
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significant duplication and sequencing bias: There are few reads (<10%) contributing to 

high coverage (>64) regions. However, in the red or green curve, around 75% of the reads 

contribute to high coverage regions, which indicates these samples have severe sequence 

bias or high duplication levels. After deduplication, we can see the percentages of reads 

in high coverage regions drop significantly (Figure 3.2B). Furthermore, Mmint also 

focuses on another quality indicator, which is the distribution of CpG number per read. 

Such indicator represents whether CG bias, one of the potential problems causing bisulfite 

sequencing bias exists in sequencing. To establish the criteria of the indicator, we 

simulated the random sequencing process by randomly cutting the human genome to 75bp 

segments and count the reads with CpG. After the simulation with 100 and 200 million 

reads, we found around 61.8% of the reads contain CpG (Figure 3.2C). Furthermore, the 

histogram in Figure 3.2C shows the ratio of reads with different numbers of CpG. Our 

simulation result shows that about 40% of the reads are including one CGs, which will 

warn that either the sequencing process or the library preparation has a problem when the 

deviation is found. 
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Figure 3.2 Quality assessments for WGBS data. A. Assessment of depth distribution 

and methylation ratio distribution. X axis represents depth; Y axis in the left represents 

means DNA methylation ratio under certain depth; Y axis in the right represents the 

number of CpGs under certain depth. Different colors represent different samples. B. 

Coverage distribution for amplification bias and duplication level estimation. X axis 

represents the threshold of coverage; Y axis represents the percentage for CpGs have a 

coverage >= x. C. Reads distribution based on whether the reads include CpG sites 

(simulation data on 100 million / 200 million sequenced reads). Upper panel pie chart 

shows the ratios of reads with or without CpGs on different locations; The histogram in 

lower panel shows the percentage of reads that include 1, 2, 3 … CpGs per read. 

 

Other than the single sample quality assessment, Mmint also can accomplish a 

group-level analysis between samples based on their methylation ratio. By integrating 

samples methylation ratios with minimum depth limitation, Mmint can apply Principal 

Component Analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE) and 

dendrogram cluster analysis to the methylation ratio matrix, which can further reveal the 

reproducibility of DNA methylation measurements and interrogate the relationship among 
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different groups (Figure 3.3A). To further explore the functionality of Mmint, we used 

DNA methylation data of four differential stages from H1 embryonic stem cell to 

pancreatic endoderm (PE) as an example. Figure 3.3A shows the methylation ratio 

clustering of CpGs with coverage larger than 10 by PCA, in which the samples from the 

same group are clustered together. The distribution of contributed CpGs in PCA is also 

recorded by Mmint. In this case, we can estimate that CpGs at promoter, exon, intron and 

repeat regions have more contribution to the inter-group variations compared with CpGs 

located in CG islands by counting the overlapping regions with these specific genomic 

regions (Figure 3.3B). Besides clustering, correlation among biological replicates is 

another important indicator for the reliability of experiments. In the diagonal of Figure 

3.3C, histograms represent the distribution of CG methylation ratios for each sample. The 

off-diagonal plots are the density plots for pairwise comparisons, from which, users can 

identify samples with a differently global methylation ratio compared to the others.   
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Figure 3.3 Group level quality assessments by Mmint. A. Principal Component 

Analysis (PCA) on DMRs with CpGs with certain coverage threshold (coverage >= 10). 

DE, GT, FG and PE are four stages of differentiation from H1 ESC to pancreatic 

endodermal cell. Each stage has two biological replicates. B. Annotation of interested 

regions in PCA. C. Pairwise correlation of DNA methylation ratios among samples. The 

diagonal histograms represent the distribution of CpGs methylation ratios; The off-

diagonal density scatter plot represent the pairwise comparisons of CpGs methylation 

ratio.  

 

3.3.3. Versatile integrative analysis of multi-omics data by Mmint 

To understand the epigenetic mechanism for biological processes such as gene 

regulation, exploring the interaction between methylation and protein (such as TFs, 

histone under different modifications) binding sites on the genome is considered as one of 

the prerequisites for further analysis.  To delineate this epigenetic mystery, Meth2ChIP 

function in Mmint allows users to investigate the distribution of methylation ratio and 

ChIP-Seq signals on ChIP-Seq peak regions. Figure 3.4A shows the intensity and the 
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signal of ChIP-Seq peaks of different methylation ratio regions (5% as the interval) among 

all identified peaks. Based on the mean methylation ratio in peaks, we separate the peaks 

into four categories empirically: Unmethylated Regions (UMR: 0 – 10%), Low 

Methylated Regions (LMR, 10 – 50%), Mediate Methylated Regions (MMR, 50 – 90%) 

and High Methylated Regions (HMR, 90 – 100%). The percentages of peaks in these four 

categories are also marked in the output figure. To interpret our analysis, we take 

H3K4me3, H3K36me3, H3K4me1 and DNase I (Figure 3.4A, 3.5) data in H1 ESC as 

examples. As it is shown in Figure 3.4A, 29.89% and 53.58% of the H3K4me3 peaks 

located in LMR and UMR, these peaks also have higher ChIP-seq signal (red curve) 

compared with those peaks located in MMR and HMR. The scatter plot also shows that 

83.47% (red dash box) of H3K4me3 peaks have an average methylation ratio less than 

0.5, the ChIP-seq intensity and average methylation ratio are also negatively correlated 

(Pearson r = -0.22; p < 0.01). These observations are consistent with the previous study 

that H3K4me3 signal marks active promoters with relatively low methylation ratio [81] 

(Figure 3.4A). For H3K36me3 peaks, 99.07% of them have an average methylation ratio 

larger than 0.5. This result is consistent with the previous study reporting that H3K36me3 

signal marks gene body regions, which have a high methylation level. Moreover, DNase 

I signal is negatively correlated with DNA methylation (Pearson r = -0.52, p < 0.01). 

While there are still 14.59% DNase I peaks have average DNA methylation larger than 

0.9. This indicates that 5hmC can be enriched in these peaks. As for H3K4me1, the 

methylation ratios in H3K4me1 peaks are barely correlated with H3K4me1 ChIP-Seq 

signals (Figure 3.5).  
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Figure 3.4 Integrative analysis of DNA methylation data with ChIP-seq data. A. 

Mean DNA methylation ratios in peaks against ChIP-seq intensity distribution (left panel). 

X axis represents mean DNA methylation in peaks; Left Y axis represents the percentage 

of peaks at certain mean DNA methylation ratio; Right Y axis represents mean ChIP-seq 

intensity for those peaks at certain mean methylation ratio. The text on the top of the figure 

shows the total peaks and the peaks with CpG signals included in the input file. The texts 

under the top text show the ratios of peaks in each category (Left to right: UMR, LMR, 

MMR and HMR). The right panel represents the scatter plot by peaks’ average DNA 

methylation ratio against average peaks ChIP-Seq signal. Each dot represents one peak. 

B. Horizontal heatmap for multiple epigenetic signals on interested regions. Each row 

represents one epigenetic signal and each column represents the signals in one bin with 

user-defined bin size across interested regions. X axis represents the interested regions 

(marked by “start” and “end”) and upstream/downstream (marked by -2 kb and 2 kb), as 

the same for the following figures (C, D). The signals are normalized by Z-score in each 

row. C. DNA methylation distribution on CpG island during the 4 differentiation stages. 

D. DNA methylation distribution on classified genes based on H3K4me3 and H3K27me3 

in transcriptional start site with upstream/downstream 1kb regions. When the interested 



 

48 

region is considered as regions, Mmint will generate result like this example. E. 5hmC 

distribution on classified peaks based on H3K4me1 and H3K27ac. When the interested 

region is considered as points, Mmint will generate results like this example. 

 

Besides the output figures, the Meth2ChIP function will also output eight files 

(regions and annotations for UMRs, IMRs, MMRs and HMRs) for the users’ self-usage. 

In addition, by running Meth2ChIP for different groups, users can compare the 

distributional difference under different conditions (such as control vs. cancer) to see if 

the TFs/Histone modification change their dependency on DNA methylation. By utilizing 

Meth2ChIP, users can understand how DNA methylation ratios correlate with certain 

epigenetic factors multidimensionally. 
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Figure 3.5 DNA methylation in H3K36me3, H3K4me1, DNase I peaks against their 

intensity. 

 

Another regular task for epigenetic data analysis is to comprehensively visualize 

multiple signals on certain regions to provide a multi-factorial interaction landscape for 

the given regions. To fill the gap, we developed HorizontalHeatmap function in Mmint, 

which generates normalized signal plots to overcome the inconsistency of scales. In Figure 

3.4B, each row represents one epigenetic signal. The x axis shows the regions of interest 

with their upstream/downstream regions (2kb in the example). We can see that in 5hmC 

enriched regions we selected in H1 embryonic cell, H3K4me1, H3K27ac and DNase I are 
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enriched while H3K4me3 and H3K27me3 are depleted.  To investigate the epigenetic 

signal from another dimension, we developed multiBW2bed and curveDualYaxis to 

explore the difference of one or more specific signals on certain regions in different groups. 

As shown in Figure 3.4C, during the four stages (DE, GT, FG and PE) of H1 

differentiating to pancreatic endoderm cells, DNA methylation decrease gradually in CpG 

islands, which indicates that DNA demethylation in CpG island during this process might 

play pivotal roles. For two signals with different scales, Mmint will automatically use both 

y axis for visualization. 

To further illustrate the interaction among methylation and multiple histone 

modifications, we developed HistonePeaks and HistoneGenes to comprehensively dissect 

the complex interactions at peaks and genes level. Based on two histones peaks (For 

example A, B), Mmint can separate peaks/genes into four categories: A+B+, A+B-, A-

B+, A-B- and plot DNA methylation ratios on these four categories peaks/genes (Figure 

3.4D, E). As an example, Figure 3.4E shows that 5hmC is the highest enriched on active 

enhancer regions (coexist H3K4me1 and H3K27ac) which is validated by previous studies 

[82]. 
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Figure 3.6 Correlation analysis between DNA methylation/histone modification and 

gene expression. A. Scatter plot for DNA methylation at transcriptional start site with 

upstream 500bp and downstream 100bp (TSSup500dn100) against gene expression in 

mouse HSC. B. H3K4me3 signals in TSSup1kdn1k regions against gene expression in 

mouse HSC. C. Mean methylation ratio of DMRs located in promoters (TSSup1kdn1k) 

against gene expression log2Fold Changes; D. Pie charts for DEGs explained by histone 

modifications. 

 

Besides the signal interaction, the relationship between methylation and gene 

expression level is another central topic in the epigenetic area. Previous studies have 

shown that DNA methylation in promoter regions negatively regulates gene expression 
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[83]. However, some genes’ changes can be explained by histone modification only and 

some others are explained by both DNA methylation and histone modification. To reveal 

the complex relationship between epigenetic signals and gene expression, Mmint can plot 

a scatter plot of a specific signal in genes’ promoter against gene expression level, which 

can give users a direction of how the signal in promoters influences gene expression. As 

shown in Figure 3.6A, in mouse hematopoietic stem cell, the DNA methylation in 

transcriptional start site with upstream 500bp and downstream 100bp (TSSup500dn100) 

is weakly negative correlated with gene expression (Spearman correlation coefficient = -

0.235; p < 0.01); however, the H3K4me3 signal in promoter regions is positive correlated 

with gene expression (Spearman correlation coefficient = 0.477; p < 0.01) (Figure 3.6B). 

Moreover, by plotting the scatterplot for mean methylation ratio of DMRs located in 

promoter regions against gene expression log2Fold changes, it is clearly showing that 

most of the DMRs in promoters have a decrease of methylation ratio in Dnmt3a KO mouse 

hematopoietic stem cell (Figure 3.6C). Among genes with DMRs in their promoter, the 

change of their expression level is not monotonous, which strongly indicates that DEGs 

cannot be fully explained by DNA methylation changes. To further investigate the 

contribution of epigenetic markers in leading to DEGs, Mmint calculates the overlap 

between DEG’s promoter and all differential epigenetic markers between groups. Based 

on the changing direction of DEG and epigenetic markers, Mmint categorized DEGs into 

groups by their main influential signal (Figure 3.6D). 

During data analysis, another common task for bioinformaticians is to use genome 

browsers to find proper examples or representing regions. However, all current genome 
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browsers only allow users to view the regions one by one, which may take several hours 

for users to get a screenshot for publication or summarize a clue for further analysis. To 

solve this problem, we developed multiTracks to take a list of locations and the bigwig 

files as input to generate screenshots for each location automatically, which allows users 

to choose candidate genes or regions for visualization or further study (Figure 3.7A). As 

an example, we identified 839 DNA methylation canyons in H1 ESC. To characterize the 

TFs binding in the DNA methylation canyon regions in H1 ESCs, we plotted several TFs 

signals on selected DNA methylation canyon regions (continuous low methylated 

regions). CTCF is an architecture protein and RAD21 is a cohesion component complex, 

Figure 3.7B shows that CTCF (pink) and RAD21 (black) are binding at the same position 

in the DNA methylation canyon. This result indicates that CTCF and RAD21 co-bind in 

the “DNA methylation canyon”, which might contribute to the higher order of chromatin.  

In another user case, to compare the different contexts of the same marker, Figure 3.7C 

shows that in the gene region, H3K4me3 is decreased in Dnmt3a KO mouse HSC 

compared with wildtype. These results suggest that multiTracks can screenshot multi-

epigenetic factors signal in certain regions effectively and precisely. By using this 

function, users can easily browse these pictures and simply eye-picking the perfect 

visualization examples, which significantly simplifies the analysis process, especially for 

the overview of interested regions. 
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Figure 3.7 Automatically plot multitrack visualization in a batch manner. A. The 

schematic for multitrack function. B, C. The output figure examples generated by Mmint 

multitrack function. 

 

3.3.4. Case study: Integrative functional analysis of epigenetic signals in H1 

embryonic stem cell 

To further confirm that Mmint can discover potential novel findings with 

biological meanings, we performed a detailed analysis on H1 ESC, which has large 

amounts of epigenetic data contributed by ENCODE project [84]. We downloaded the 

WGBS data (23,669,925 CpGs have a coverage >= 5), H3K4me1, H3K4me3, H3K27me3, 

H3K27ac, DNase I data and ten TFs ChIP-seq data from ENCODE official website 

(https://www.encodeproject.org).  
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Figure 3.8 Case study for DNA methylation and H3K27ac modification in H1 ESC. 

A. Mean DNA methylation ratio in H3K27ac peaks regions against mean H3K27ac 

signals. B. Mean DNA methylation ratio in overlapped regions between H3K4me1 and 

H3K27ac peaks against mean H3K27ac signals. C. Mean DNA methylation ratio in 

H3K27ac peaks that located in out of genes upstream and downstream 1kb regions against 

mean H3K27ac signals. D, E. DNA methylation and 5hmC distribution on All H3K27ac 

peaks, Intron regions, Out of gene upstream/downstream 1kb regions and enhancer 

regions.  

 

Figure 3.8A shows the distribution of the average methylation ratio of H3K27ac 

peaks (total 42,153 peaks, among them, 33,830 peaks include detected CpGs ratio) against 

H3K27ac peaks’ intensity. The H3K27ac peaks’ intensity decreases (red dot line) along 

with DNA methylation increases (Pearson r = -0.34; p<0.05). As an active marker, 

H3K27ac peaks are considered to have a low methylation ratio. Suprisingly, we find that 
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53.18% of H3K27ac peaks have an average methylation ratio higher than 0.5 in H1 ESC 

(6.76% of H3K27ac peaks have an average methylation ratio higher than 0.9) (Figure 

3.8A). To further explore the locations of H3K27ac peaks with a high methylation ratio, 

we performed the hotspot analysis on H3K27ac peaks located in specific regions such as 

gene body, upstream/downstream 1kb of transcriptional starting point, Exons, Introns, 

CGI and enhancers (Figure 3.9). Except active enhancers and regions excluding 

upstream/downstream 1kb of genes, all the other regions have a low percentage of peaks 

with a high methylation ratio (Figure 3.9). As we can see from Figure 3.8B and 3.8C, large 

portion of H3K27ac peaks located in active enhancers (67.15%) and regions excluding 

upstream/downstream 1kb of genes (63.9%) have an average methylation ratio higher than 

0.5. As the bisulfite treatment cannot distinguish 5mC and 5hmC, we wonder if the 

H3K27ac peaks with high methylation ratios are enriched for 5hmC. Thus, we include H1 

ESC CMS-IP data (GSE97988) for analysis. We firstly used multibw2bed function to plot 

the DNA methylation ratio and 5hmC level of all interested regions mentioned above. 

Interestingly, H3K27ac peaks in active enhancers have the highest DNA methylation ratio 

and the highest 5hmC level, peaks in regions excluding upstream/downstream 1kb of 

genes have the second-high DNA methylation ratio and second high 5hmC level (Figure 

3.8D, E). This result suggests that a high level of 5hmC contributes to the high DNA 

methylation ratio in H3K27ac peaks located in active enhancers and regions excluding 

upstream/downstream 1kb of genes.  
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Figure 3.9 DNA methylation in H3K27ac peaks against H3K27ac intensity in various 

regions in H1 ESC. 

 

We also performed a similar analysis on transcription factors ChIP-Seq data. As 

shown in Figure 3.10, in EP300, POU5F1 and ATF3 binding regions, about 40% - 50% 

CpGs have a methylation ratio less than 0.1. And, all of these TFs show the highest ChIP-

seq signal in UMRs and the lowest ChIP-seq signal in HMRs. More importantly, in LMRs 

and MMRs, the ChIP-seq signals do not correlate with methylation ratios. As for CTCF, 

RAD21, PRDM14 and YY1, they all have a weak negative correlation between ChIP-seq 

signals and methylation ratio in general. And, in their binding regions, about 11% - 20% 

peaks are located in HMRs. CTCF and RAD21 are members of the cohesion complex, 

they both have their highest ChIP-seq signals at LMRs, which is consistent with the study 

in mice [71]. PRDM14 is a member of PR domain-containing family, and contains 

multiple zinc fingers. Previous studies show that PRDM14 can interact with polycomb 

repressive complex 2 (PRC2) and play a critical role in the maintenance and induction of 
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pluripotency [85, 86]. In general, observations about PRDM14 indicates that PRDM14 

can either repress methyltransferase through PRC2 or methylation can repress PRDM14s’ 

binding. In YY1 binding regions, as the methylation ratio increases, the ChIP-seq signal 

of YY1 decreases, which suggests that YY1 binding is sensitive to DNA methylation. 

Different from the above seven TFs that all prefer to bind in UMRs and LMRs, C/EBP-β, 

Ring1 and SP1 prefer to bind in HMRs. There are about 70.85% (C/EBP- β), 90.8% 

(Ring1) and 92.75% (SP1) peaks locate in MMRs and HMRs. For C/EBP- β and SP1, the 

relatively flat red curve means that the ChIP-seq signals do not correlate with DNA 

methylation, which is supported by a previous study [87]. These results suggest that the 

relationship between TFs binding and methylation is complicated rather than a simple 

linear correlation, which indicates multi-functions of TFs due to their dependency on DNA 

methylation. 
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Figure 3.10 DNA methylation in TFs binding regions against TFs binding intensity 

in H1 ESC.  

 

3.4. Discussion 

DNA modifications, including: 5-methylcytosine (5mC), 5-

hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), 5-carboxylcytosine (5caC) are 

essential epigenetic regulation mechanism for gene expression during mammalian 

development and disease condition [88-90]. DNA modifications regulate gene expression 

either through recruiting/inhibiting TFs binding or recruiting/inhibiting histone 

modification enzyme binding. Most of the studies only focus on one epigenetic mark, 

ignoring the crosstalk among DNA methylation and other epigenetic markers. Thus, we 

developed Mmint, a powerful toolkit to perform integrative analysis and to generate 
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publishable visualization among multiple epigenetic markers. Mmint has several 

advantages over current software: 1. Mmint integrates DNA methylation with other 

epigenetic markers such as histone modifications, TFs binding and ATAC-seq in a 

systematical and detailed way. Mmint can category these data into four classes based on 

their binding regions’ DNA methylation level and annotate them with the closest genes, 

which can associate the combinatory effects of DNA methylation and other epigenetic 

elements with gene functions; 2. Mmint can directly generates publishable figures from 

the integrative analysis of methylation and other epigenetic data; 3. Mmint automatically 

generate multiple “screenshots” (each has multiple tracks) for interested regions with 

multiple signal tracks at one time.  

For bisulfite sequencing data quality control, most of the current tools such as 

BSeQC [91], BSmooth [92] focus on M-bias, namely the sequencing technical bias, which 

can produce inaccuracy estimation of methylation ratio in single-base resolution. Mmint, 

as a complement, provides visualization for other useful quality control, such as 

sequencing depth, duplication level, statistics for reads including CpGs and PCA. 

Importantly, the statistic for reads including the number of CpGs can reflect the global 

bias for sequencing and the location of biases. In addition, PCA and correlation analysis 

can explore the similarity among biological replicates which can suggest the potential 

outliers and biases in sample preparation stages. 

Currently, there is no visualization tool that can be used to study the global 

relationship between DNA methylation data and ChIP-Seq data (TFs binding and histone 

modifications). In a traditional view, DNA methylation inhibits TFs binding in general, 
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which result in disturbs in the certain biological context.  Recently, a systematic analysis 

showed that the DNA methylation could be the negative, positive or mixed relationship to 

TFs bindings [73]. Specifically, some TFs can interact with methylated DNA without 

methyl-CpG binding domain (MBD); and some other TFs bind at new regions in certain 

conditions [93]. Thus, DNA methylation status and the structure of DNA sequence both 

influence the TFs binding. It is possible that in pathological conditions, such as cancer, 

the preference for DNA methylation in the TF binding process may be completely 

different from normal tissues. In addition, DNA methylation also shows a complex 

relationship with histone modifications. For example, in gene body regions, co-deposit of 

DNMT3B dependent DNA methylation and SETD2 mediated H3K36me3 prevents 

spurious transcription initiation [94, 95]. This indicates crosstalk among SetD2, 

H3K36me3, Dnmt3b and DNA methylation. For both TF binding region detection and 

histone modification identification, ChIP-Seq is the most popular technique to get the 

information genome widely. Mmint not only can provide a general overview of the 

relationship between DNA methylation data and ChIP-Seq data, but also can dissect the 

details of the crosstalk.  
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4. GSMPLOT: A WEB SERVER TO VISUALIZE EPIGENOMIC DATA* 

 

4.1. Background 

Epigenetic mechanisms alter phenotypes by regulating gene expression patterns 

without altering the DNA sequences in response to physiological or pathological signals 

[96]. Due to the high-throughput sequencing technological advances, such as chromatin 

immunoprecipitation sequencing (ChIP-seq), whole genome-wide sodium bisulfite 

sequencing (WGBS) [97], anti-CMS immunoprecipitation (CMS-IP)-seq [68] and ATAC-

seq [98],  an extremely large amount of epigenomic data has been collected and published. 

Epigenetic factors including histone modifications, TFs bindings, DNA modifications and 

chromatin accessibilities, always dynamically interact with each other to shape the 

epigenomic landscape specifically to certain biological processes [75, 99, 100]. Therefore, 

it is important to compare different epigenetic factors visually from different studies 

(public data) to ensure a properly comprehensive interpretation. NCBI Gene Expression 

Omnibus [101, 102] is a primary data source for a high-throughput sequencing data 

repository, which includes epigenetic data generated from various species, cell types, 

diseases and experimental conditions. In GEO, every dataset has a GSM ID, which 

includes process files in multiple formats, such as wig, bigwig and bedgraph. BigWig files 

are compressed binary indexed files containing genome wide data signals at various 

resolutions [103], which are easier to manipulate, especially for large size files. 

 

* Reprinted with permission from “GsmPlot: a web server to visualize epigenome data in NCBI” by Jia Li; Yue Yin, 2020. BMC 

Bioinformatics, 21, 55, Copyright [2020] by Springer Nature. 
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Although DaVIE [104], Octopus-toolkit [105] and EpiMINE [106] provide 

visualization of public data, they require to install some necessary software to user’s 

computer and require extensive knowledge of the pipeline from researchers to run the 

software and analyze the epigenetic data. Both WashU epigenome browser [107] and 

UCSC genome browser [108] are excellent epigenome data browsers, which allow users 

to upload bigwig files to visualize data in a “scan” genome manner. However, users are 

required to set up public URLs for their data which need bioinformatics expertise.  Many 

researchers in the biomedical field do not have bioinformatics expertise and high-

performance computer resources to analyze, reform and visualize the public data. 

Currently, there are no user-friendly tools with convenient visualization function available 

for non-bioinformatic researchers that do not require any complicated installation step and 

processing next-generation sequencing data.  

To alleviate these limitations, we developed GsmPlot, a user-friendly webserver 

to easily generate customized visualizations for the public data in GEO and additionally 

provide interactive explorations. GsmPlot is convenient to use as it needs only GSM IDs 

or the bigwig file provided by users. GsmPlot can conveniently generate profile plots on 

functional genome elements (gene, promoter, exon, intron, or any regions defined by user) 

or visualization on one specifically interested region through UCSC genome browser 

integration. Moreover, GsmPlot allows interactive selection of regions with specific 

epigenetic patterns in the heatmap for further explorative study.    

4.2. Methods 

4.2.1. Components of GsmPlot 
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GsmPlot server is composed of three parts: web crawler, data process and web 

interface. (1). Web crawler was coded in Python 3.5 and specifically designed for NCBI 

to automatically detect the URLs and download files with bigwig, wig and BedGraph 

format. We also include genome reference version check in web crawler. The data process 

includes two parts: calculation and visualizations. (2). For data calculation, we 

wrapped deepTools to calculate the average bigwig signal in bins of user-defined size 

along concerned regions [78]. A matrix of average bigwig signal with rows as 

regions and columns as bins are generated, and the column mean values are plotted as 

aggregated profiles. By transforming the wig signal to z-score, we also plot all the z-scores 

in one bin as a boxplot and so for all bins. For the z-score matrix, based on each row’s z-

score standard deviation, the top 5 k most variable regions among all samples were chosen 

to plot the heatmap. Users can choose regions based on the heatmap patterns to replot and 

download the selected regions to do further study. For data visualization, we use in-house 

scripts coded by Python 3.5 (Matplotlib, https://matplotlib.org/) and R (https://www.r-

project.org/). (3). GsmPlot web interface is implemented using HTML, CSS 

(bootstrap, http://getbootstrap.com/2.3.2/), and JavaScript. The backend of GsmPlot is 

based on Django web framework (https://www.djangoproject.com/). The interactive 

functions between users and GsmPlot web server are implemented using jQuery 

(https://jquery.com). For large data which takes a long time to finish the calculation, we 

include an email alert function by using django.cor.mail function. Due to the limited 

computing resources, we currently only allow one task for each user at a time. GsmPlot 

has been tested in Firefox, Chrome, Safari, and Edge. 

https://matplotlib.org/
https://www.r-project.org/
https://www.r-project.org/
http://getbootstrap.com/2.3.2/
https://www.djangoproject.com/
https://jquery.com/
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4.2.2. Flowchart of GsmPlot 

 

Figure 4.1 Scheme for the structure of GsmPlot web server.  

 

The flowchart of GsmPlot is in Figure 4.1. GsmPlot web server friendly accepts 

GSM IDs or user uploaded bigwig files as input. If the input is a GSM ID, the web crawler 

will search NCBI websites to locate bigwig files and automatically download the files. At 

the same time, web crawler will also try to collect the genome reference version 

information to double check user input information. If the file format is Wig or BedGraph, 

GsmPlot will automatically transform them to BigWig format. After downloading the 

files, wrapped deepTools will calculate the average signals on user provided genome 

regions according to user provided bin size. The downloaded files will be stored in 

GsmPlot server for 72 h from last access, which will save the downloading time when 

users reuse this data frequently. If the input files are uploaded by users, GsmPlot will 
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directly proceed to calculation and visualization. “Reference check” function will aid users 

to choose the right reference version by collecting the reference information from the 

NCBI website. Users can select regions with specific epigenetic patterns in the heatmap. 

Genomic coordinates of these selected regions can be downloaded in text format which 

could be further studied. 

4.3. Results 

4.3.1. Overview of GsmPlot 

GsmPlot provides two flexible methods for the user to query the data: GSM IDs 

or bigwig files on the user’s computer. GsmPlot automatically downloads the 

bigwig/wig/bedgraph file from GEO or from the user computer to the webserver. Users 

can profile the data along with user-defined genome intervals by providing BED files or 

gene sets by providing gene names (Figure 4.1). There is no limit on the number of GSM 

IDs or number of BigWig files, meaning GsmPlot can easily draw RNA-Seq, ChIP-Seq, 

ATAC-Seq, Bis-Seq or any other type of sequencing data altogether in one plot. We found 

that more than 65% of ChIP-seq, ATAC-seq and Bisulfite-seq datasets stored in GEO have 

bigwig, wig or bedgraph files available (Table 4.1), making GsmPlot a significant tool to 

revisit these large number of datasets in NCBI. Moreover, GsmPlot can automatically 

perform reference genome sanity check and lift over genome versions whenever necessary 

to correctly utilize all the data stored in NCBI for the past decades with different genome 

versions. With the same datasets and same plot setting, GsmPlot is relatively fast in our 

tests for typical datasets in GEO (Table 4.2, 4.3). 
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Table 4.1 Statistics for datasets with bigwig/wig/bedgraph files available in GEO. 

Organism Method Total datasets GsmPlot usable datasets Ratio 

Human ATAC-seq 4,010 1,759 43.87% 

 
ChIP-seq 20,640 17,390 84.25%  
Bisulfite-

seq 

521 351 67.37% 

 Total 25,171 19,500 65.16% 

Mouse ATAC-seq 2,921 1,677 57.41% 

 
ChIP-seq 11,666 8,540 73.20%  
Bisulfite-

seq 

552 359 65.04% 

 Total 15,139 10,576 65.22% 

 

Table 4.2 Processing time for variable files sizes. 

With default GsmPlot setting 

Number of 

Files 

Average file 

size (Mb) 

Total Processing 

Time 
GSM IDs 

1 463 2 m 30 s GSM2535467 

1 917 5 m GSM2535465 

2 350 8 m GSM935297; GSM935299 

2 500 8 m 25 s GSM935305; GSM935282 

3 433 9 m 21 s 

GSM935282; GSM935298; 

GSM935301  

3 225 11 m 21 s 

GSM3073977; GSM3073950; 

GSM3073962 

4 160 14 m 24 s 

GSM3444438; GSM3444440; 

GSM3444437; GSM3444439 

5 552 24 m 28 s 

GSM2781481; GSM2535467; 

GSM2535470; GSM2535468; 

GSM2535464 

6 120 20 m 53 s 

GSM3073980; GSM3073953; 

GSM3073981; GSM3073954; 

GSM3073984; GSM3073966 
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Table 4.3 Processing time of GsmPlot and EpiMINE. 

 

Furthermore, GsmPlot embedded the public DNA methylation (5mC) and 

hydroxymethylation (5hmC) data for human and mouse ES cells [109-111]. Therefore, 

researchers can visualize the 5mC or 5hmC distribution on concerned transcription factor 

(TF) binding regions, histone modification regions, or any other concerned regions, 

looking for clues about how DNA modification interacts with TFs, histones, and so on. In 

addition, the co-binding of TFs is an important gene regulatory mechanism [112]. GsmPlot 

can also be used to study the co-binding of two or more TFs by integrating the public 

ChIP-seq data (such as Cistrome [113] and ENCODE database) and the user-provided 

ChIP-seq data. Such integration of DNA methylation, hydroxymethylation, and TF 

binding data is extremely useful in terms of interpreting the regulation functions of 

epigenetic factors. Most importantly, GsmPlot integrated the UCSC genome browser 

visualization at the end of the analysis pipeline so users can browse to specific genomic 

locations to visualize these data signals. 

4.3.2. Convenient visualization and efficient exploration of public epigenetic data 

by GsmPlot 

 

Reads_number 400 k 2,000 k 4,000 k 8,000 k 9,671 k 

Wig file size 

(MB) 32 115 195 332 353 

Bam file size 

(MB) 23 109 214 419 440 

GsmPlot 2 m 31 s 2 m 57 s 3 m 10 s 3 m 26 s 3 m 30 s 

EpiMINE 7 m 39 s 7 m 55 s 10 m 20 s 15 m 3 s 15 m 43 s 
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Figure 4.2 Overview of GsmPlot. A. GsmPlot website interface. B. Average H3K27Ac 

(blue curve), H3K4me3 (red curve), and 5hmC (green curve) ChIP-Seq signals along 

genes. C. Average CTCF ChIP-Seq signal and DNA methylation Bis-Seq signal along 

CTCF binding sites.  

 

Figure 4.2A shows an example using GsmPlot to investigate the crosstalk between 

histone modification and DNA methylation. We entered GSM1273669 (H3K4me3 ChIP-

Seq) and GSM1273670 (H3K27ac ChIP-Seq) in the “Data information” box and selected 

“Human ESC” for 5hmC information. We optionally plot the 1000 bases upstream and 

downstream of the selected regions, and scale all target regions to be 1000 bases. We also 

set the bin size to be 50 bases to get high-resolution curves. In the result, the blue and 

green curves in Fig. 1b indicated that the average signal of H3K4me3 and H3K27ac are 

highly enriched around promoter regions with double peaks, consistent with a previous 

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-020-3386-0#Fig1
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study [114] and the 5hmC signal is enriched in gene body regions. In an example region 

shown in the UCSC genome browser in Figure 4.3, the H3K4me3 and H3K27Ac peaks 

are well aligned with gene promoters. This example confirmed that our program is correct 

and efficient. 

 

Figure 4.3 UCSC genome browser visualization for RNA-Seq, H3K27Ac, H3K4me3 

on an example region for human H1 ESC.  

 

GsmPlot also can be used to investigate the relationship between TFs and DNA 

methylation or hydroxymethylation. Figure 4.4A shows that the CTCF binding regions in 

hESC downloaded from GSM803419 generally have a depletion of 5mC but accompanied 

by complex DNA 5hmC distribution. In the center of the CTCF peak regions, we could 

observe depletion of the 5mC signal (Figure 4.4B). This result is also consistent with a 

previous study [115], proving again that GsmPlot can process and plot multiple signals 

correctly. 
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Figure 4.4 Methylation distribution in CTCF binding region of hESC. A. The average 

ChIP-Seq signal along the CTCF binding sites with red curve for the CTCF signal and 

blue curve for the 5hmc signal. B. The UCSC genome browser visualization for CTCF 

peak, DNA methylation and DNA hydroxymethylation on an example region. The yellow 

highlight areas showed the depletion of 5mC at the center of the CTCF peak.  

 

Epigenetic data from different sources are usually generated and normalized 

differently, preventing such data to be compared directly. To circumvent this problem, we 

can use z-scores to replace the raw wig signals to allow direct comparison. For each 

sample, we calculate the average bigwig signal in bins of user-defined size along 

concerned regions. Then, we calculate z-scores of the corresponding wig values for each 

bin in each region (Figure 4.6). In the example illustrated by Figure 4.5A and Figure 4.7, 

we plotted the aggregated profiles on the upper panel and the z-score boxplots on the lower 

panel for H3K4me3, H3K27ac and H3K27me3 (GSM3444436, GSM3444438 and 
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GSM3444439) in glioblastoma tissue. From both the average wig profiles and the z-score 

boxplots, we can see the enrichment of H3K4me3 and H3K27Ac but not H3K27me3 on 

the selected TSS and CGI regions, and no enrichment on the gene body regions. 

Furthermore, as a unique feature of GsmPlot, we developed an interactive heatmap to aid 

users to explore the potentially interesting regions enriched with epigenetic factors. We 

choose the top 5 k (by default) most variable regions among all samples to plot the 

heatmap (Figure 4.5B). Cluster 1 represents active genes with both H3K4me3 and 

H3K27ac enriched in the promoter and cluster 2 represents repressed genes with 

H3K27me3 enriched in the promoter. Users can slide the sidebar of the heatmap to select 

the regions with specific patterns. The z-score boxplot for these selected regions will be 

re-plotted. And the genomic locations of these selected regions can be downloaded as a 

text file for further study. For example, users can upload this file to GsmPlot as concerned 

regions to investigate how epigenetic factors distribute on this specific set of regions. 
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Figure 4.5 Analysis of GsmPlot results. A. GsmPlot default figures for the average 

signal curve (upper) and the z-score boxplots (lower) along TSS (left) and CpG Island 

(right) regions. Blue: H3K4me3; Green: H3K27ac; Red: H3K27me3. B. GsmPlot 

interactive heatmap allowing users to choose specific regions to dynamically plot column 

z-score boxplot and download the selections. 
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Figure 4.6 Illustration of the data matrix for the profile curve and the z-score 

boxplots (left), and illustration of the data matrix for the heatmap (right). 

 

 

Figure 4.7 GsmPlot default figures for the average signal curve along the gene body 

regions. Blue: H3K4me3; Green: H3K27ac; Red: H3K27me3. 
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4.4. Case study: Investigate roles of DNA hydroxymethylation around CGI regions 

in heart development 

As an example, to illustrate that GsmPlot has the potential to shape novel 

biological hypotheses or discoveries, we explored the potential roles of DNA 

hydroxymethylation (5hmC) around CGI regions in heart development. We used mouse 

heart DNA hydroxymethylation data (CMS-IP) from wildtype (GSM3466904) and Tet2/3 

knockout (GSM3466906) mice [116]. We also included mouse heart ChIP-seq 

(GSM3597759) data for Isl1, which is a cardiac progenitor marker gene and is important 

for heart development [117, 118]. Our GsmPlot results showed that in CGIs with a single 

transcriptional direction, 5hmC exhibits an unbalanced and directional distribution pattern 

(Figure 4.8A). On the contrary, the 5hmC level is symmetric on upstream and downstream 

of CGIs with dual transcriptional directions. Dramatically decreased 5hmC level in Tet2/3 

KO mouse hearts are observed in both CGIs with single and dual transcriptional directions 

(Figure 4.8B). Moreover, Isl1 binding intensity is higher at CGIs with a single 

transcriptional direction than dual directional transcriptions (dash black line). These 

results indicate that 5hmC may play different roles in terms of how heart related TFs bind 

to CGIs with single or dual transcriptional directions. 
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Figure 4.8 Investigate roles of DNA hydroxymethylation around CGI regions in 

heart development. A. 5hmC signal distribution around CGIs with single transcriptional 

direction; B. 5hmC signal distribution around CGIs with dual transcriptional directions. 

Blue: 5hmC signal from WT mouse heart; red: 5hmC from Tet2/3 knockout mouse heart; 

black: mouse heart Isl1 ChIP-seq signal. 

 

4.5. Discussion 

Biomedical data stored in NCBI is valuable for biomedical researchers. However, 

most researchers and physicians do not have computation skills or infrastructure, and 

hence this “treasure” could not be used immediately. Even for bioinformaticians, 

complicated procedures including download, computation, aggregation, hosting of data 

are required to visualize NCBI data. We developed a web server, GsmPlot, which can 

download, compute, visualize and compare data. The most important feature of GsmPlot 

is the ability to perform multiple omics integration studies, such as RNA-seq, Bis-seq, 

ChIP-seq, ATAC-seq with simply GSM IDs from NCBI. Private data sequenced by users 

in proper visualization format can be fed into GsmPlot to compare with public data. 

Compared with other good epigenome analysis platforms, such as EpiMINE, GsmPlot 
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have many advantages. GsmPlot does not need users to download public data manually 

and does not depend on users’ computer capacity especially for computation intensive bis-

seq data, which cannot be handled on a desktop computer. In addition, installation 

problems, such as software compatibility, software version, could be a big headache for 

many researchers, but can be completely avoided using GsmPlot. Moreover, interesting 

regions with certain epigenetic features can be extracted using an interactive heatmap, 

which can be fed into GsmPlot again to explore if there are new epigenetic factors in these 

interesting regions. Importantly, we have successfully proved GsmPlot’s reliability and its 

potential ability to make novel biological ideas from three case studies. Above all, 

GsmPlot is a user-friendly and reliable tool to investigate public epigenetic data, especially 

for those biomedical researchers who do not have any computation skills. 

Although GsmPlot has an email alert for those large data tasks, GsmPlot will add 

more CPUs to further improve the speed of calculation in the future depending on the 

demand. The figure’s format, label sizes and other features will be added as user options 

which will allow users to generate publication quality figures using GsmPlot. 



 

 

5. CONCLUSIONS AND FUTURE PLAN 

In this dissertation, we developed a toolkit to perform comprehensive data analysis 

for low-input bisulfite sequencing.  

In section 2, we proposed an ultrasensitive alignment augmentation for low-input 

bisulfite sequencing (LiBis) on the idea of segmenting unmapped reads by sliding 

window. Using FASTQ files as input, LiBis outputs a well-organized HTML report of 

results from the different modules. LiBis introduces a novel strategy to rescue initially 

unmapped reads and thereby significantly improved the cost efficiency of analyzing low-

input bisulfite sequencing data by providing a larger number of accurate informative CpGs 

and increasing the sequencing depth of all CpGs for downstream analysis, which also 

makes the integration of WGBS and liquid biopsy very promising. We have shown this 

improvement by performing WGBS analysis together with LiBis on cerebrospinal fluid 

cfDNA. Moreover, LiBis uses a conservative rescue strategy and consequently accuracy 

is improved. The number of informative CpGs and the overall sequencing depth were both 

increased according to the simulation and the public data with both bulk and single-cell 

WGBS experiments. The average correlation coefficient of methylomes between first 

round BSMAP mapping and LiBis rescued mapping is 0.88 (0.84-0.92). Increased depth 

and accurate methylation measurements are both crucial for downstream biomarker 

identification. 

In section 3, we proposed Mmint, an integrative toolkit to perform DNA 

methylation centered epigenetic analysis. By integrating analytical knowledge and data 

visualization, Mmint can accomplish multiple analysis tasks such as data quality 
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assessment, clustering analysis, correlation analysis, interest region exploration and 

multiple signal crosstalk analysis. Mmint generates publishable figures as results, which 

requires less bioinformatics background and skills to interpret the biological meaning and 

identify the direction of further research. Mmint flattens the learning curve of epigenetics 

data analysis and facilitates the investigation of epigenetics mechanisms through 

integrating DNA methylation and other epigenetic markers. Mmint also provides huge 

potential for the novel epigenetic mechanisms’ discovery, which will deepen our 

understanding of the epigenetic signals in biological processes. 

In section 4, we proposed GsmPlot, which is a user-friendly web server for the 

biologist to analyze in-house epigenetic datasets and re-analyze public datasets on 

NCBI.  To our best knowledge, this is the first webserver that can automatically download 

data from GEO, transform data, generate images, and support user interaction. Users can 

easily and quickly visualize and explore any public epigenetic data without requiring any 

special training or computing resources, and hence can study the epigenetic mechanism 

efficiently. The user case presented in section 4 confirmed that GsmPlot can be a huge 

driver to accelerate the research process by providing convenient visualization of both 

public and private data, and hence promoting data driven ideas. GsmPlot can dramatically 

improve the efficiency of utilization of public epigenetic data and further promote the 

research in the epigenetic community.  

In conclusion, we proposed 3 tools to improve the data processing, analysis and 

visualization of low-input bisulfite sequencing data. By utilizing these tools, we can 

achieve high efficiency in low-input bisulfite sequencing alignment. For downstream 
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analysis, researchers can validate their ideas more easily with little or no computational 

resources and bioinformatics background. These improvements we made remove the 

barriers in applying low-input bisulfite sequencing in larger scale researches and will also 

facilitate the downstream clinical epigenetic biomarker discovery and single cell 

methylome determination. To further improve data processing for low input bisulfite 

sequencing, a potential solution would be implementing LiBis in a distributed platform to 

reduce time consumption. Integrating the analysis and visualization for other sequencing 

methods such as Hi-C sequencing can also help to extend the usage of our tools. 
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