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ABSTRACT

This work presents a model-order reduction approach for parametric multiphysics problems.

The developed method utilizes the intrusive Proper Orthogonal Decomposition aided Reduced Ba-

sis technique (POD-RB) which builds suitable, only space-dependent, reduced subspaces for the

solution field variables using snapshots generated by higher fidelity Full-Order Models (FOMs).

The basis functions of the generated reduced subspaces together with the original operators of the

FOM are then used to create parametric Reduced-Order Models (ROMs). The evaluation of these

ROMs is computationally inexpensive compared to the FOM, therefore, they can be used as em-

ulators to speed up multi-query applications which require the solution of the same model with

different parameter configurations. Typical examples of such tasks are design optimization and

uncertainty quantification. The applicability of the developed method is demonstrated on Molten

Salt Reactors (MSRs) whose simulation can be computationally expensive, since is requires the

solution of coupled fluid dynamics, neutronics and heat transfer problems. In this work, we use the

porous-medium incompressible Navier-Stokes and energy equations coupled with a multi-group

neutron diffusion equation accounting for the drift of the delayed neutron precursors. Models in-

volving turbulent flows employ the Reynolds-Averaged Navier-Stokes (RANS) approach with a

Boussinesq eddy viscosity approximation, while buoyancy effects are modeled using the Boussi-

nesq buoyancy approximation. The FOM is created and solved using GeN-Foam, an OpenFOAM

finite volume library based open source multiphysics solver. To assess the applicability of the

derived POD-RB method, GeN-ROM, an OpenFOAM-based ROM framework has been created.

The ROMs generated by this framework are tested on multiple parametric steady-state and tran-

sient scenarios of two MSRs: the Molten Salt Fast Reactor (MSFR) concept and the Molten Salt

Reactor Experiment (MSRE). The results obtained throughout the validation tests indicate that the

developed method is able to yield accurate multiphysics ROMs which can be 1-5 orders of mag-

nitude faster compared to the FOM. To show potential applications of the ROMs, we carry out the

uncertainty quantification of numerous quantities of interest (QoIs), e.g., effective multiplication

ii



factor, effective delayed neutron fraction or maximum temperature, using the ROMs as the emula-

tors. The results show that computationally demanding multi-query tasks, such as the generation of

Sobol Indices or accurate statistical moments of the QoIs, become 1-3 orders of magnitude faster

using the ROMs.
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1. INTRODUCTION

This chapter is dedicated to discuss the concept of model order reduction including the moti-

vation and possible applications together with a brief, literature-based review of the specific tech-

niques which provide alternatives to the one used in this work. The method in this work is reviewed

in detail later, in Chapter 2. Since the aim of this dissertation is to apply model order reduction to

typical problems arising during the simulations of Molten Salt Reactors (MSRs), a history-based

review of the rector concept is included in this chapter as well. Lastly, we conclude this chapter by

summarizing the aims and content of this dissertation.

1.1 Motivation for Model Order Reduction

The modeling and simulation of complex systems is common in many fields of science, includ-

ing nuclear engineering. Oftentimes, this requires the discretization, in phase-space, of a system

of partial differential equations, yielding an algebraic system of equations of possibly large size

whose solution can be, in many cases, computationally expensive to obtain. In this work, these

computationally expensive models are referred to as Full-Order Models (FOMs). In most cases,

simulations using high-fidelity FOMs may not be optimal for multi-query applications where one

has to carry out a large number of simulations with changing model parameters. Examples of

such applications include design optimization and uncertainty quantification, where solutions are

needed for each new realization of the uncertain parameters and/or for each change in the design

parameters. Model order reduction consists of a set of empirical and mathematical techniques that

aims at lowering the computational complexity of the FOMs, by creating Reduced-Order Models

(ROMs) that sacrifice a controllable degree of accuracy for gains in simulation speed. Thus, the

utilization of fast-running ROMs can greatly alleviate the computational burden of a multi-query

problem.

It is worth noting that, in this work, we consistently call these simplified models ROMs; how-

ever, many other disciplines employ another terminology for such concepts. In machine learning
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and data science they are often called surrogates or emulators, meaning that they mimic the be-

havior of an underlying response function with (hopefully) requiring less computational effort to

evaluate.

Physics-informed ROMs have been used for decades in nuclear engineering. Examples in-

clude the utilization of sub-channel codes instead of CFD or point reactor kinetics instead of time-

dependent neutron transport equations. However, in recent years new techniques have emerged

and can be categorized into several, sometimes overlapping groups based on whether they are

physics-informed or data-driven, intrusive or non-intrusive, to mention a few. In the following

sections, an overview of some of the model order reduction techniques commonly used today is

given by grouping the methods based on if they are intrusive or non-intrusive. The intrusiveness of

a method, in this work, refers to the need to access the operators in the FOM. If a method does not

require the knowledge of such operators, it is considered to be non-intrusive.

1.2 Non-intrusive Approaches

Let us assume that there is a specific Quantity of Interest (QoI) for which the Full-Order Model

needs to be evaluated. This can be the solution at specific locations, extreme values of the solution

or the full solution state vector itself, to name a few. For the time being, this response will be

denoted as

QoI(θ(t, r;µ),µ)

expressing that this quantity depends on a space-, time-, and parameter-dependent solution, θ(r, t;µ),

and possibly on additional model parameters as well. Altogether d model parameters are assumed,

therefore the vector containing these can be expressed as µ = [µ1, ..., µd]
T . A common feature

of non-intrusive methods is that they treat the FOM as a black box, meaning that the means of

obtaining the response of the FOM and the dependence of the QoI on the solution are not consid-

ered; the FOM only generates data which is later used to generate approximate functions for the

QoI. This also means that every non-intrusive method is data-driven at the same time. Among

the oldest non-intrusive ROMs, one can mention polynomial regression and fitting techniques or
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by simply choosing the nearest point in a data set. However, for the sake of brevity, only a few

recently emerging techniques within nuclear engineering are reviewed in this section.

1.2.1 Gaussian Processes

A Gaussian Process is defined as the collection of random variables whose joint distribution is

Gaussian. The following brief review follows the one in [8] with the approximated function being

our quantity of interest. Furthermore, it is assumed here that the QoI is a scalar-valued function

with the elements of µ as arguments. The extension of the following description to vector-valued

problems is also discussed in [8]. Next, we assume that the quantity of our interest can be simulated

as a Gaussian Process, or

QoI(µ) ∼ GP(m(µ),k(µ,µ′)), (1.1)

wherem(µ) and k(µ,µ′) are mean and covariance functions that fully specify the given Gaussian

Process. The mean function is considered to be constant zero since in most cases the available

data can be centered around the mean values. The kernel function, on the other hand, describes

the covariance between different random variables used in the multivariate Gaussian. The choice

of this function can add additional information about the system which can considerably influence

the accuracy of the predictions given by the ROM. The interested reader is referred to [9] for the

comparison of different kernel functions.

It is assumed that there are Ns training samples available with the corresponding µi parameter

vectors and QoI(µi) (i = 1, ..., Ns) evaluations organized in matrixMµ and vector q, respectively.

Using the information in these samples, we would like to estimate the function values (q′) at an

additional n test parameter samples organized in matrixM ′
µ. These values can be computed using

the conditioning of the joint distribution which include all of the test and training samples:

q
q′

 ∼ N
0,

K(Mµ,Mµ) + σ2
nI K(Mµ,M

′
µ)

K(M ′
µ,Mµ) K(M ′

µ,M
′
µ)


 . (1.2)

It turns out that due to the properties of a Gaussian distribution (see [10] and Appendix A in [11]),
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the mean (q′) and covariance (cov(q′)) of QoI at the test samples can be determined as:

q′ = K(M ′
µ,Mµ)[K(Mµ,Mµ) + σ2

nI]−1q (1.3a)

and

cov(q′) = K(M ′
µ,M

′
µ)−K(M ′

µ,Mµ)[K(Mµ,Mµ) + σ2
nI]−1K(Mµ,M

′
µ), (1.3b)

where K(M ′,M) is a covariance matrix whose elements are generated by evaluating the covari-

ance function with all the possible combinations of the parameter vectors in the argument matrices.

Furthermore, σ2
n denotes the variance of a Gaussian random variable responsible for modeling the

noise (not knowing the training values exactly) in the system. In Gaussian Processes trained with

the results of numerical simulations, this can be the stopping tolerance of the nonlinear or linear

iteration throughout the solution process, for example.

In nuclear engineering, Gaussian Processes have been utilized for uncertainty quantification of

thermal hydraulics simulations [12], dose mapping [13] and nuclear component degradation [14],

to name a few.

1.2.2 Polynomial Chaos Expansion

The first use of Polynomial Chaos Expansion (PCE) for stochastic differential equations was

presented in [15] in an intrusive setting and the corresponding non-intrusive methods have quickly

followed [16]. The review below is based on [17] with the notation adjusted to the content of this

paper. Again, for the sake of brevity, it is assumed that the quantity of interest is a scalar-valued

function of the model parameters. It must be noted, however, that this procedure can be easily

extended to vector-valued problems as well.

PCE is based on the polynomial expansion of the output (QoI) in the uncertain model parame-

ters (µ):

QoI(µ) ≈
n∑
j=0

cjPj(µ), (1.4)
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where n is the number of polynomial terms used and cj and Pj are the corresponding expansion

coefficients and multi-dimensional polynomial functions. It can be shown that Pj can be written

as the product of polynomials depending on single model parameters (µi) as [16]:

Pj(µ) =
d∏
i=1

Pi,j(µi). (1.5)

The number n and the degree of the one-dimensional polynomials Pi,j is, most of the times, se-

lected using a maximum allowed degree over all the dimensions and constructing all the possible

combinations from Pi,j that satisfy this condition. The type of the polynomials typically depend on

the assumed probability distribution of the model parameter. For the corresponding distribution-

polynomial pairs, the reader is referred to [15, 16]. In this setting, the only remaining unknowns

are the expansion coefficients. These can be determined using multiple approaches, like linear re-

gression or spectral projection. In case of spectral projection, one needs to evaluate the following

expression for each coefficient:

cj =

∫
QoI(µ)Pj(µ)w(µ)dµ∫
P2
j (µ)w(µ)dµ

, (1.6)

where w(µ) is a weighting function determined using the assumed distributions of the model pa-

rameters. The integrals can be evaluated using Monte Carlo methods or different quadrature rules,

such as tensor grids or Smolyak sparse grids. When the expansion coefficients are available, every

evaluation of the QoI simplifies into the evaluation of the polynomial approximate in Eq. (1.4)

which is of low computational cost. Furthermore, another desirable feature of PCE is that the

statistical moments and sensitivities of QoI can be computed analytically.

PCE based ROMs have been used in nuclear engineering for the uncertainty propagation of

prompt fission neutron spectrum [18], criticality problems [19] and multiphysics problems [20], to

name a few.
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1.2.3 Interpolation using Sparse Grids

Interpolation on sparse grids using global polynomial functions have been introduced in [21].

Later, it has been extended to dimension-wise adaptive interpolation on sparse grids in [22] and

to locally defined spline interpolation in [23]. The essence of the method is that the function of

interest (QoI) is approximated by its interpolant in the parameter space:

QoI(µi) ≈ I l(µi) =

ml∑
j=1

QoI(µli,j)P lj(µi), (1.7)

where I l denotes the interpolant at the hierarchical level l of the grid, whileml denotes the number

of interpolation points and P lj the associated polynomial basis functions, respectively. Note that

first, only a one-dimensional problem is considered in one of the model parameters (µi). This will

be extended when the multidimensional grids are introduced. The same notation is used as for the

PCE in the previous subsection. However, in this method, the polynomials may have local support

instead of the global support required for PCE. The only remaining question is where to anchor

these basis points. When the number of model parameters, d, is low, one can just use a tensor

product interpolant of different dimensions as

QoI(µ) ≈ I(µ) = I l1 ⊗ · · · ⊗ I ld =

ml1∑
ji=1

· · ·
mld∑
jd=1

QoI(µl1j1 , ..., µ
ld
jd

)
(
P l1j1(µ1)⊗ · · · ⊗ P ldjd(µd)

)
, (1.8)

where the interpolation points are also generated as the tensor product of the anchor points in each

dimension. However, in high dimensional parameter spaces, the number of evaluations needed for

a certain accuracy might be too large, therefore the use of sparse grids becomes necessary. These

sparse grids are usually the linear combination of low-resolution tensor product grids with a certain

rule for the summation. In case of the Smolyak sparse grid, the interpolant can be constructed as

follows:

QoI(µ) ≈ ISmol
q (µ) =

∑
q−d+1≤|l|≤q

(−1)q−|l|
(
d− 1

q − |l|

)(
I l1 ⊗ · · · ⊗ I ld

)
, (1.9)

where |l| = l1 + ... + ld and we assume that q ≥ d and q is the level of the sparse grid itself. This

approach can be further improved with hierarchical adaptive sparse grids [23].
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Interpolation using sparse grids is not commonly used within the nuclear engineering com-

munity, however applications can be noted in the treatment of few-group cross-sections [24] and

uncertainty quantification of Molten Salt Reactors [25].

1.2.4 Dynamic Mode Decomposition

Lastly, Dynamic Mode Decomposition (DMD) [26] is a useful reduction tool for mainly linear

and nonlinear time-dependent problems (hence the name) where the quantity of interest can be

represented as a series of related data vectors. Let us denote this time-dependent vector of QoIs

with q(t). Note, there is no parameter dependence involved in this case. The process starts with

collecting Ns snapshots of q(t) by saving these vectors at (for now) equidistant times from t0 to

tNs . These snapshots are then organized into two snapshot matrices in the following manner:

X = [q(t0) q(t1) · · · q(tNs−1)] and X ′ = [q(t1) q(t2) · · · q(tNs)]. (1.10)

As a next step, it is assumed that subsequent snapshots are connected by a linear operator, A,

thereforeX ′ can be expressed in terms ofX as

X ′ = AX.

However, this A operator is unknown and computing a low-order approximation (Ar) is the key

in DMD. This can be computed by the following procedure:

Ar = UTX ′WΣ−1, (1.11)

where U , W and Σ are matrices obtained through the Singular Value Decomposition (SVD) of

matrix X . In many scenarios, matrix X can be reconstructed accurately with the first r basis

vectors in U , therefore it is enough to use the first r columns of U , Σ and W to construct Ar.

Therefore, in most of the cases the size of Ar is less than the number of snapshots (r � Ns),

resulting in savings in computation time. As a next step,Ar is diagonalized using its eigendecom-
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position:

Ar = V ΛV T , (1.12)

whereV and Λ are matrices containing the eigenvectors and eigenvalues ofAr. This operation can

be extremely fast if the rank ofAr is small, that is, when only a few columns ofU are kept. Using

the computed eigenvalues and eigenvectors, the approximate and exact DMD modes (ΨDMD,i,

i = 1, ..., r) can be computed as:

Ψapp
DMD = U rV and Ψex

DMD = Λ−1X ′WΣ−1V . (1.13)

For more information about the difference in the two types of DMD modes, the reader is referred

to [27]. These DMD modes can then be used to reconstruct the dynamics of the system QoI by the

following expression:

QoI(x, t) ≈
r∑
i=1

aiΨDMD,i(x)eln(λi)
t

∆t , (1.14)

where ai coefficients can be computed by a = Ψ−1
DMDq(t0). Using this expression, the dynamics

of the quantity of interest can be predicted or tracked back in time. This method has mostly been

applied to fluid flow problems; however, recent studies has showed that it can be used for neutronics

problems as well to study time-eigenvalues of a system, see for example in [28] and [29].

1.3 Intrusive Approaches

The intrusive methods are fundamentally different in a sense that the operators of the underly-

ing mathematical model are needed for the construction of the ROMs. In this section, few of the

most common intrusive techniques are reviewed using a linear time-invariant (LTI) problem of the

following form:

dθ(t)

dt
=Aθ(t) + bu(t), (1.15)

o(t) =cTθ(t), (1.16)
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where θ(t) ∈ RN is a discretized state vector with N denoting the degrees of freedom. Further-

more, u(t) ∈ R is an input function, o(t) ∈ R is an output function, A ∈ RN×N is a discretized

linear operator, and b ∈ RN and c ∈ RN are the input and output distribution vectors. Lastly, we

assume that θ(t0) = 0 initial condition is used for simplicity. It is apparent that only single-input

single-output cases are considered in the demonstration problem; however, the presented tech-

niques can be generalized for multi-input and multi-output cases as well. A common feature of

these methods that they employ a projection onto a carefully selected reduced subspace generated

for the state vector. The projection approach and the approximation of the state vector depend

strongly on the selected method.

It must be mentioned that the Reduced Basis method used in this work also belongs to the

group of intrusive ROM techniques, however it is discussed in greater details later, in Chapter 2.

1.3.1 Krylov Subspace Methods

The theory for Krylov subspace methods for efficient reduced-order modeling was developed

in the 1970s, but its application became widespread in the early 1990s [30], mainly for electrical

circuit related problems. The following description of the essence of the method follows the one in

[31] with the notation adjusted to Eq. 1.16. As a first step, the Laplace transform of system (1.16)

is taken:

sθ(s) =Aθ(s) + bu(s), (1.17)

o(s) =cTθ(s), (1.18)

where we can introduce X = −(A − s0I)−1 and r = (A + s0I)−1b to compute the transfer

function H(s) (that connects o(s) and u(s) directly), around an expansion point s0:

H(s) = cT (A+ s0I − s0I + sI)−1b = cT (I − (s− s0)X)−1r. (1.19)
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At this point, matrix (I − (s − s0)X)−1 in the transfer function can be expanded into Neumann

series to get the following form:

H(s) = cT (I − (s− s0)X)−1r = cTr + (cTXr)(s− s0) + (cTX2r)(s− s0)2 + ... , (1.20)

where (cTX ir) are called the moments about s0. The reduced-order modeling is based on n-

th Padé approximation [32] of H(s), denoted here by Hn(s). This approximation matches the

moments in the expansion up to 2n. There are different techniques to compute this approximation

starting from the classical moment matching algorithm to the more advanced Padé via Lánczos

(PVL) [33] method which is one of the most used methods today. PVL utilizes the fact that the

moments in the expansion can be computed by taking products of the right and left Krylov spaces:

Kn(X, r) = span{r,Xr, ...,Xn−1r} and Kn(X, r) = span{c,XTc, ..., (XT )n−1c}. (1.21)

Unfortunately, using the basis vectors above for the moment-matching algorithms result in ill-

conditioned systems which puts a limitation on the maximum order of the Padé approximation. To

circumvent this problem, the Lánczos process is used to create basis vectors that span the same

Krylov spaces. The first n Lánczos basis vectors vi, i = 1, ..., n, for the right Krylov space and the

corresponding basis vectors in the left Krylov space wi, can be used to transform matrix X into a

n× n tridiagonal matrix, T n, as follows:

W T
nXV n = DnT n, (1.22)

where Dn is a diagonal matrix, and W and V matrices contain the left and right basis vectors,

respectively. Using these basis vectors, one can not only compute the n-th Padé approximation,

but can reduce the system in the time domain by approximating the time-dependent state vector as

the linear combination of the right Lánczos vectors and projecting (left multiplying) system 1.16
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using the left Lánczos vectors:

Dn
dθ̃

dt
=Arθ̃(t) + bru(t),

o(t) =cTr θ̃(t),

where Ar = W T
nAV n, br = W T

nb and cr =
(
cV T

n

)T
. This system is smaller than the original

and therefore obtaining the solution takes less effort. It must be mentioned, that obtaining the basis

vectors using the Lanczos process is computationally efficient, since it is a recursive procedure that

can be terminated at the required number of basis functions. However, parametric and nonlinear

problems pose a considerable challenge for this technique. These have been investigated in [34]

and [35], respectively.

1.3.2 Balanced Truncation

Balanced truncation for model order reduction was originally proposed in [36] and is still

widely used in electric circuit modeling [37]. The overview of the method in this section follows

the one in [37] with slight adjustments to the notation in Eq. (1.16). The idea behind this method

is that the modes of the original system that are difficult to control through u(t) while being unob-

servable through o(t) can be truncated. Many variants have been developed, but the most common

is the Lyapunov truncation which requires the generation of two Gram matrices: a controllability

matrix, W c, and an observability matrix, W o. These can be obtained by solving two Lyapunov

problems. For example (1.16), these equations are the following:

AW c +W cA
T + bbT =0, (1.23)

ATW o +W oA+ cTc =0, (1.24)

Using these matrices one can generate a transformation matrix, T and its inverse, T−1, which can

transform both W c and W o into the same diagonal form Σ with TW cT
T = T−TW oT

−1 =

Σ. State space models where W c and W o are both diagonal matrices are called balanced in
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control terminology, hence the name of the method. One can expand the state vector as the linear

combination of the first r most important column vectors of the transformation matrix, θ ≈ T rθ̃,

where the importance of each vector can be determined by the magnitude of the corresponding

diagonal element in Σ, also called as Hankel eigenvalues. Using this reduced transformation

matrix T r, the reduced-order model for the LTI can be expressed as:

dθ̃

dt
=Arθ̃(t) + bru(t),

o(t) =cTr θ̃(t),

where Ar = T−1
r AT r, br = T−1

r B and cr =
(
cT T

r

)T
. This system is smaller than the orig-

inal and therefore obtaining the solution takes less effort. It must be mentioned, however, that

solving a Lyapunov equation has a O(N3) operation cost meaning that Lyapunov truncation is not

practical with the current computational resources if N > 105. Furthermore, this method in the

presented form is not capable of simulating parametric and nonlinear systems. These issues have

been addressed in [38] and [39], respectively.

1.3.3 Proper Generalized Decomposition

For the review of Proper Generalized Decomposition (PGD) [40], we step back to the non-

discretized form of the state vector θ. It is assumed that the solution function depends on a spatial

coordinate and time so the corresponding continuous problem can be written as

∂θ(t, x)

∂t
= Aθ(t, x) + b(x)u(t), (1.25)

where θ(t, x) is the solution field, A is a linear operator and b(x) is a source field. In case of

PGD, one approximates the multi-variant solution function with the sums of products of univariant

functions as follows:

θ(x, t) ≈ θN(x, t) =
N∑
i=1

Xi(x)Ti(t), (1.26)
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where the constituent functions can be computed in an iterative procedure. Let θn(x, t) denote the

n-th iterate and assume an initial function for both X1(x) and T1(t). Using the recurrence in the

summation, the solution at iteration step n can be expressed as the solution at the previous iteration

step and an additional term as:

θn(x, t) =
n−1∑
i=1

Xi(x)Ti(t) +Xn(x)Tn(t) = θn−1(x, t) +Xn(x)Tn(t). (1.27)

Plugging this approximation into Eq. (1.25) and taking the weak form using a test function θ∗(x, t)

we obtain the following system:

∫
Υ×[0,T ]

θ∗(x, t)

(
Xn(x)

dTn(t)

dt
− AXn(x)Tn(t)

)
dΥdt =

∫
Υx×[0,T ]

θ∗(x, t)

(
n−1∑
i=1

[
Xi(x)

dTi(t)

dt
− AXi(x)Ti(t)

]
+ b(x)u(t)

)
dΥdt, (1.28)

where θ∗(x, t) is chosen to be either X∗n(x)Tn(t) or Xn(x)T ∗n(t) with the asterisk denoting the

function which is kept unchanged for the given step of a fixed-point iteration. If the spatial test

function is unchanged, the equation reduces to a one-dimensional nonlinear problem in time, while

in the other scenario it reduces to a one-dimensional nonlinear problem in space. These problems

can be discretized and solved repeatedly. The fixed-point iteration can be implemented by alternat-

ing the one-dimensional solves until the n-th components of the update converge. Therefore, this

approach is often called the method of alternating directions. It is visible that PGD decouples a

multi-dimensional solve into multiple one-dimensional solves meaning that the complexity of the

system scales linearly with the number of dimensions instead of exponentially. In case of para-

metric cases, the only additional step is to extend approximation (1.26) with one one-dimensional

function for each parameter. Furthermore, PGD can be utilized for nonlinear problems as well, for

example see the multiphysics problems in [41]. The utilization of PGD for neutronics problems

typically encountered in nuclear engineering has been explored in [42, 43, 44].
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1.4 Molten Salt Reactors

In this section, the history of the Molten Salt Reactor (MSR) technology is briefly reviewed

with special emphasis on two concepts, the Molten Salt Reactor Experiment (MSRE) and the

Molten Salt Fast Reactor (MSFR), which are used for the numerical examples in this dissertation.

Probably the most distinguishing feature of MSRs is that the nuclear fuel is in liquid form,

dissolved in a salt. Salts are typically based on fluorides or chlorides and include one or more of

the following compounds: LiF, NaF, BeF2, ZrF4, KF, NaCl, MgCl2. MSRs have highly promising

features in terms of sustainability and safety. They can be designed to have strong negative-only

reactivity feedback; they operate at atmospheric pressure; they allow for an online removal of

gaseous fission products; and they give the possibility to drain the fuel salt in passively cooled

and critically-safe tanks in case of emergency. Furthermore, the typically high boiling point of the

molten salts allow high temperature and consequently high efficiency energy conversion.

The first MSR designs were developed during the Aircraft Reactor Experiment (ARE) in the

1950s at Oak Ridge National Laboratory (ORNL, USA) [45]. Following this experiment, a new,

8 MWth demonstrating reactor was designed at ORNL which was under operation between 1965

and 1969 [46]. This project was called the Molten Salt Reactor Experiment (MSRE) and the

gathered data has been the baseline for MSR-related code-validation up until this day. Figure 1.1

shows the structure of the core of the MSRE. The molten salt fuel enters the core through a flow

distributor, down-comer and lower plenum. The salt then enters the channels between the mod-

erator stingers made of graphite and, assuming an operation at non-zero power, warms up due

to the fission reactions within the fluid. The warm fluid then leaves the graphite channels and,

through the upper plenum, the core as well. The reactor mainly operated with LiF-BeF2-ZrF4-UF4

fuel with temperatures slightly above 900 K. The experience gathered during this program lead

to the design of an industrial 1 GWe, thermal spectrum reactor, the Molten Salt Breeder Reactor

(MSBR). The MSBR project, however, was terminated in 1976 because of the sodium-cooled fast

reactors seemed to be more favorable alternatives. The MSR research in the USA dwindled down

to low-priority, low-funding efforts over the following decades. However, the safety requirements
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in the nuclear sector have changed over these decades and MSRs have been selected as one of the

six concepts for further investigation by the Generation-IV International Forum [47].

Figure 1.1: The reactor core (right) and the graphite stingers (left) used in the Molten Salt Reactor
Experiment. Modified from [1].

Since the termination of the MSBR project, the international research efforts on MSRs split

into two main directions. One direction kept the original, thermal reactor design of the MSBR

with certain modifications. Good examples for such concepts are the Chinese Thorium Molten

Salt Reactor (TMSR) [48] or the Japanese FUJI [49]. The other direction of the development

chose a system with fast neutron spectrum. Examples of such designs include: the Russian MOlt

en Salt Actinide Recycler and Transforming (MOSART) project [50], the Molten Chloride Fast

Reactor (MCFR) developed by Terrapower (USA) [51] and the Molten Salt Fast Reactor (MSFR)

concept, developed in the European EVOL (Evaluation and Viability of Liquid Fuel Fast Reactors)

[52, 53] and then SAMOFAR (Safety Assessment of the Molten Salt Fast Reactor) [54] programs.

Later is selected as a representative fast spectrum system for the examples in this work. The reactor

core of the MSFR is depicted in Figure 1.2. It is visible that this design is simpler in a sense that
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the reactor core cavity is entirely filled with the fuel salt, which is a common feature of MSRs with

fast neutron spectrum. Advantages of this approach are the very hard neutron spectrum which can

be used for breeding and transmutation, and the considerable reduction in pumping power due to

the lack of flow resistances. On the other hand, this concept exhibits new challenges in the design

process due to the complicated heat and mass-transfer phenomena [55]. The MSFR is supposed to

operate with LiF-ThF4-UF4 salt with temperatures between 900 K and 1100 K.

Figure 1.2: The reactor core of the Molten Salt Fast Reactor. Reprinted from [2].

1.5 The Aim and Structure of the Dissertation

The goal of this dissertation is to develop an intrusive Proper Orthogonal Decomposition aided

Reduced Basis (POD-RB) ROM which can be used for multi-query tasks involving the simula-

tions of liquid-fuel MSRs. Following the introduction, the content of the dissertation is structured

as follows. Chapter 2 gives an overview of the chosen intrusive ROM technique with the help of a

simple 1D example. Following this, Chapter 3 discusses the governing equations used to describe

the behavior of MSRs together with the discretization techniques used to obtain the corresponding

numerical models. Chapter 4 then introduces the derivation of the corresponding POD-RB ROMs,

while Chapter 5 discusses the developed computational framework together with different methods
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for the evaluation of the ROMs and a proposed approach that can be used for the uncertainty quan-

tification and sensitivity analysis of the original system by the utilization of ROMs as emulators.

Following these chapters, several numerical examples are provided. First, the ROM is applied to

parameterized steady-state end transient zero-power simulations of the MSFR in Chapter 6. Then,

in Chapter 7, the ROM is applied to parameterized steady-state simulation of the MSRE at nom-

inal power level, with the assumption that the flow fields are fixed. This assumption ensures that

the efficiency of the developed multiphysics ROMs for the handling the temperature-dependent

cross sections can be assessed. The last example, discussed in Chapter 8, consists of parameter-

ized, fully-coupled steady-state simulations of the MSFR with a 23-dimensional parameter space.

Lastly, Chapter 9 summarizes the content of the dissertation with special emphasis on the novel

contributions and possible approaches to improve on the presented work.
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2. PROCESS OF THE INTRUSIVE POD-RB METHOD

The aim of reduced basis methods is to decrease the number of degrees of freedom in a simu-

lation by using global basis functions chosen in a specific manner instead of local basis functions

common in Finite Element Methods (FEM) or Finite Volume Methods (FVM). In the problems pre-

sented in this work, an intrusive Proper Orthogonal Decomposition aided Reduced Basis (POD-

RB) technique is used to decrease the number of spatial degrees of freedom. The choice of the

method relies on two assumptions:

i The intrusiveness of the method has the potential of decreasing the number of computationally

expensive model evaluations needed for training the ROMs. This is based on the intuition that

the intrusive process incorporates additional information about the differential operators of the

full-order models.

ii Intrusive POD-RB ROMs have been proven to be efficient for parametric nonlinear problems,

which is ideal for simulations of MSRs. For specific applications of POD-RB ROMs, see the

literature review in Section 2.5 later in this chapter.

Moreover, this chapter covers the general process of creating intrusive POD-RB ROMs and serves

as an outline and reference for the more detailed, MSR-specific sections later in this dissertation.

Figure 2.1 summarizes the necessary steps in this process, while Sections 2.1-2.3 discuss each step

in more detail with the help of a simple, diffusion-reaction problem on a one-dimensional domain.

Even though this example may be simple, it can already showcase the crucial details one needs to

account for when creating intrusive POD-RB ROMs. The results for the 1D problem have been

generated using a custom program coded in python.
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Figure 2.1: Flow chart of the Reduced-Order Modeling procedure carried out in this work.

2.1 Identifying the Problem

The process starts with the description of a mathematical model, i.e., a set of governing partial

differential equations in a specific domain, together with the corresponding initial and boundary

conditions. In this work, these governing equations describe the fluid flows, heat transfer, and

neutronics phenomena in MSRs and are discussed in Section 3.1 in detail. For the time being, the

general form of these equations is used which can be described as

dθ(r, t;µ)

dt
+ A(r, t;µ)θ(r, t;µ) + F (θ(r, t;µ), r, t;µ) = S(r, t;µ), r ∈ Υ, (2.1)

where θ(r, t) is a general solution field that can be either scalar- (temperature, pressure) or vector-

valued (velocity). Furthermore, A denotes a general liner operator, F () a general, nonlinear func-

tion and S a general, external source term. All of these terms can depend on time, t, spatial

position, r = [x, y, z]T , and µ, a vector containing model parameters (e.g., material or geometrical

properties). The domain of interest and its boundary are denoted by Υ and Γ, respectively. Lastly,

the governing law is supplemented with adequate initial and boundary conditions which can be
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case-specific and, therefore, are not discussed in detail here.

Even though at certain parts of this chapter we utilize this general notation, the main steps of

the procedure are presented for a simplified one-dimensional diffusion-reaction problem as well.

This example has been specifically chosen to show the typical challenges and the corresponding

solutions encountered in the generation of intrusive POD-RB ROMs, without the additional com-

plexity associated with higher-dimensional problems. The example reads as:


− ∂
∂x

(
D(x)∂φ(x)

∂x

)
+ Σ(x)φ(x) = Sext(x) + F (φ(x)), x ∈ [0, 1],

φ(x) = 0, x = 0, x = 1

(2.2)

where φ(x) denotes the solution field, while the diffusion coefficient, D(x), reaction coefficient,

Σ(x), and external source term, Sext(x), are given by:

D(x) =


D1, x < 0.5,

D2, x > 0.5

Σ(x) =


Σ1, x < 0.5,

Σ2, x > 0.5

Sext(x) =


S1, x < 0.5,

S2, x > 0.5,

The nonlinear source term in this specific case is as follows:

F (φ(x)) = e−φ
2(x).

This term introduces an additional source which is considerable when the solution is a small num-

ber, but rapidly decreases as the solution increases. It is visible that the terms in Eq. (2.2) depend

on model parameters D1, D2, Σ1, Σ2, S1 ,S2. These parameters are considered to be uncertain

in this example with distributions shown in Table 2.1. Therefore, in this scenario, the parameter

vector can be defined as: µ = [D1, D2,Σ1,Σ2, S1, S2]T , and the dependence of the solution on

these parameters will be explicitly noted as φ(x;µ). In this setting, U(a, b) denotes a uniform

distribution with a lower bound of a and an upper bound of b.
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Table 2.1: The distributions of the parameters used for the 1D example.

Parameter Distribution Parameter Distribution

D1 U(1.0, 9.0) D2 U(1.0, 9.0)

Σ1 U(0.2, 1.8) Σ2 U(0.2, 1.8)

S1 U(0.2, 1.8) S2 U(0.2, 1.8)

2.2 Offline or Training Phase

Once the problem has been clearly identified, we then enter the offline, or training phase, which

consists of three major steps. First, the selected mathematical model is discretized, resulting in a

Full-Order Model (FOM). Then, the Full-Order model is exercised to collect data about the system,

which is used to build reduced subspaces. The basis functions of the reduced subspaces are then

used to create reduced operators for the ROMs. These steps are discussed in detail in the following

subsections.

2.2.1 Creating the Full-Order Model (FOM)

This process entails the introduction of discretization schemes in space, time, and for neutronics

problems, energy and potentially angle as well. The discretization schemes used for the MSR-

specific problems in this work are discussed in Section 3.2 in detail; however, it is important

to establish at this point that, for spatial discretization, we use the cell-centered Finite Volume

Method (FVM) [56] for every problem in this work. This entails that the spatial domain is split

into N non-overlapping cells and the solution is approximated to be constant over each cell. Let us

consider the general problem described in Eq. (2.1) first. After the spatial discretization, it yields

the following nonlinear system of Ordinary Differential Equations (ODEs):

MΥ
dθ(t;µ)

dt
+A(t;µ)θ(t;µ) + F (θ(t;µ), t;µ) = S(t;µ), (2.3)
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where θ(t;µ) ∈ RN is the spatially discretized solution vector, MΥ ∈ RN×N is a mass-matrix,

A(t;µ) ∈ RN×N is the discretized linear operator, F (θ(t;µ), t;µ) ∈ RN is the discretized non-

linear function and S(t;µ) ∈ RN is the discretized external source term.

For the 1D problem outlined in Eq. (2.2), x ∈ [0, 1] domain has been split to N = 200,

non-overlapping cells and the problem has been discretized using cell-centered FVM with a linear

interpolation, while the derivative of φ(x) is approximated at the cell-boundaries with a central

differencing scheme. Using the notation already established for the general problem, the resulting

discretized system can be expressed as:

A(µ)φ(µ)− F (φ(µ)) = S(µ) , (2.4)

whereA(µ) ∈ R200×200 is the discretized linear operator that consists of the diffusion and reaction

terms, F (φ(µ)) ∈ R200 is the discretized nonlinear function , Q(µ) ∈ R200 is the discretized

source term while φ(µ) ∈ R200 is the discretized solution vector.

2.2.2 Definition of Inner Products Used

Before diving into the details of the generation of reduced subspaces and operators, the basic

notation for inner products needs to be established. In this work, the volumetric inner product of

vector fields v1 and v2 or scalar fields v1 and v2 is expressed as

〈v1,v2〉Υ =

∫
Υ

v1 · v2 dΥ ≈
N∑
k=1

v1,k · v2,kVk (2.5a)

〈v1, v2〉Υ =

∫
Υ

v1v2 dΥ ≈
N∑
k=1

v1,kv2,kVk (2.5b)

where the solution fields in the finite volume approximation are cell-wise constant in cell k with

volume Vk. Similarly, the boundary inner products can be expressed as

〈v1,v2〉Γ =

∫
Γ

v1 · v2 dΓ ≈
Nbound∑
f=1

v1,f · v2,f |Sf |, (2.6a)
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〈v1, v2〉Γ =

∫
Γ

v1v2 dΓ ≈
Nbound∑
f=1

v1,fv2,f |Sf |, (2.6b)

where |Sf | denotes the area of face f , with f = 1, ..., Nbound. Again, the fact that, in the finite

volume approximation, the value of the variable is constant on the face was used.

2.2.3 Learning About the System

In reduced basis methods, the solution fields are approximated using basis functions with global

support on the specific spatial domain. Let us take the discretized solution field θ from the general

formulation for example. The reduced basis approximation of θ can be expressed as:

θ(t;µ) ≈ θ̃(t;µ) =

rθ∑
i=1

ψθ
i c
θ
i (t;µ) = Ψθcθ, (2.7)

where Ψθ is a matrix containing space-dependent ψθ
i basis vectors of a reduced subspace and cθ

is a vector which contains the time- and parameter-dependent cθi coordinates of the approximate

solution θ̃ in this subspace. It is important to note that eachψθ
i basis vector corresponds to a ψθi (r)

basis function which is the functional expression of the finite volume solution. Furthermore, rθ is

the rank of the subspace of θ. To obtain this subspace, one needs to survey the time- and parameter-

dependent manifold of θ which is considered to be a learning process. In case of POD-RB ROMs,

this process can be separated into two steps: (1) collection of data and (2) the extraction of the

basis functions (subspaces) for the fields of interest.

2.2.3.1 Collecting Data

In this step, the FOM is used to collect information about the dominant characteristics of the

system. This involves exercising the FOM with different samples of the model parameter vector

µi (i = 1, ..., Nµ), and building a data base using the corresponding solution fields. In practice,

this means that the discretized solution vector is saved at Nτ time-instances into a snapshot matrix

for each parameter sample. Let us consider the general equation described in Eq. (2.3) first. In this
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case, the solution vector θ is saved in the following snapshot matrix:

Rθ = [θ(µ1, t1), . . . ,θ(µNµ , tNτ )] ∈ RN×NS , (2.8)

where Ns = Nµ × Nτ is the total number of snapshots collected throughout the training phase.

The types of solution fields gathered for the MSR related problems in this work are summarized in

Section 4.1.

For our one-dimensional example, two fields have been saved throughout the training phase:

the solution φ and the nonlinear source term F . The latter is necessary for the efficient handling

of nonlinear terms at reduced-order level; this will become clear in Section 2.2.4. Let

Rφ = [φ(µ1), . . . ,φ(µNs)] ∈ R200×Ns and

RF = [F (φ(µ1)), . . . ,F (φ(µNs))] ∈ R200×Ns

denote the snapshot matrices which contain the saved solution vectors φ and nonlinear source vec-

tors F , respectively. Since this example involves a steady-state problem, the number of snapshots,

Ns, is equal to the number of parameter vector samples, Nµ. Altogether Ns = 30 snapshots have

been captured by creating samples of µ using Latin Hypercube Sampling (LHS) and executing the

FOM with each sample. The first 7 snapshots for both φ and F are presented in Figure 2.2.

2.2.3.2 Extracting the Basis Vectors of the Reduced Subspaces

The general idea behind obtaining an adequate subspace is to use the information already avail-

able in the collected snapshots. This assumes that the snapshots are representative of the full so-

lution manifold, i.e., the fundamental characteristics of the latter are captured in the snapshots. It

is important to note that the snapshot matrices may contain redundant information if the stored

fields are similar. A good example would be one snapshot being equivalent to another one times a

constant. Obviously, in this case the two snapshots contain the same information about the shape

of the solution vector and the only variable describing the solution is the mentioned constant alone.
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Figure 2.2: First seven snapshots of the solution vector φ (left) and the nonlinear function F (φ)
(right).

To filter out such redundant information, Proper Orthogonal Decomposition (POD) [57, 58, 59]

is utilized in this work. This involves the discovery of a reduced set of orthonormal basis functions

that span a subspace of fixed rank that is closest to the snapshots in a global L2 sense. We use these

optimal basis functions to build our reduced subspaces for the solution vectors. Using the general

solution θ as an example, this optimization problem can be formulated as:

span{ψθi } = arg min
span{ψθi }

Ns∑
s=1

∥∥∥∥∥θs −
rθ∑
i=1

〈
ψθi , θs

〉
Υ
ψθi

∥∥∥∥∥
2

L2

, with
〈
ψθi , ψ

θ
j

〉
Υ

= δi,j . (2.9)

The basis functions ψθi of this subspace span{ψθi } are often called POD modes and the two ex-

pressions will be used interchangeably hereafter. The solution of optimization problem (2.9) can

be obtained using the generalized Singular Value Decomposition (SVD) of the snapshot matrix.

Indeed, it can be proved, that the orthonormal basis vectors spanning a space of rank rθ closest

(in an L2 sense) to the columns of the snapshot matrix are the first rθ left singular vectors of the

constrained SVD [60, 61]:

Rθ = Ψθ∆θV θ, (2.10)
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where Ψθ is the left singular matrix and is enforced to be unitary with respect to a mass matrixMΥ

(Ψθ,TMΥΨθ = I). For more details on the constrained SVD, the interested reader is referred to

[60]. Furthermore, ∆θ denotes the singular value matrix and V θ is the unitary right singular value

matrix. In finite volume methods MΥ is a diagonal matrix which contains the volumes of each

cell in the mesh, therefore computing it is relatively inexpensive. Depending on the dimensions

of Rθ, obtaining the left singular vectors might be costly in terms of computation time. In this

work, it is assumed that the number of snapshots is considerably less than the spatial degrees of

freedom (Ns � N ), therefore the following process has been used to compute the POD modes

(left singular vectors):

1. Using the snapshots inRθ, a correlation matrix is computed with its elements defined as:

Cθi,j = 〈θi, θj〉Υ, i, j = 1, .., Ns, (2.11)

note, that this is equivalent to the following matrix-matrix product formulation:

Cθ = RT
θMΥRθ. (2.12)

2. The eigendecomposition of this correlation matrix is computed as

Cθ = V θW θV θ,T , (2.13)

where V θ matrix contains the eigenvectors whileW θ the eigenvalues (in descending order)

of the correlation matrix. Since the size of the correlation matrix is Ns × Ns, obtaining

this decomposition is relatively cheap. Furthermore, it must be noted that the the singular

values (σi) in ∆θ are related to the eigenvalues (ωθi ) of the correlation matrix W θ through

ωθi = (σθi )
2.

3. Using the eigenvalue and eigenvector matrices and the snapshots themselves, the basis vec-
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tors (ψθ
i ) of the reduced subspace of θ can be reconstructed as

ψθi =
1√
ωθi

Ns∑
k=0

θkV
θ
i,k . (2.14)

Based on [61], the magnitudes of the singular/eigenvalues are good indicators of the importance

of the corresponding basis functions for reconstructing the snapshots. Oftentimes, the number of

relevant modes to keep is much smaller than the number of snapshots, rθ � Ns. In many cases rθ

can be determined using the eigenvalues as:

rθ = arg min
1≤r≤Ns


r∑

k=1

ωθk

Ns∑
k=1

ωθk

> 1− τ

 , (2.15)

where τ is an allowed relative error indicator. In the POD-ROM community (1− τ) is also called

the energy retention limit. It must be mentioned, however, that the error controlled by the energy

retention limit is not the same as the error between the solution of the full-order model and the

approximate solution from the reduced-order-model (||θ− θ̃||). The former only controls the error

in the reconstruction of the snapshots, while the latter has additional components like the adequacy

of the snapshots to represent the solution manifold. For instance, if the sampling of the parameter

space is poor, the snapshots may represent only the solution manifold at parts of the parameter

space. Consequently, the reduced-basis approximation may yield erroneous results at segments

of the parameter space not represented in the snapshots. This error can be controlled by proper

parameter sampling and snapshot taking frequency in case of transient simulations.

In case of the one-dimensional example, two subspaces are extracted from the snapshots: one

for the solution vector φ and another for the nonlinear function F . The normalized eigenvalues

of the correlation matrices built from the corresponding snapshots are presented for both fields in

Figure 2.3. The normalization in this case was carried out using the sum of all eigenvalues, as

shown in Eq. (2.15).
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Figure 2.3: Normalized scree plot of the eigenvalues of the correlation matrices.

The red line in Figure 2.3 indicates the allowed error (τ ) which would help to choose suitable

dimensions for the subspaces. It is visible that φ would need 20 basis functions to keep the recon-

struction error in the snapshots below τ = 10−16, while the same for F is 24. Furthermore, the

first 6 basis functions of the reduced subspaces for both φ and F are presented in Figure 2.4.
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It is visible that due to the fact that the basis functions are just linear combinations of the snapshots,

ψφ also respect the homogeneous Dirichlet boundary conditions.

2.2.4 Building Reduced Operators

The last step in the training procedure is the construction of reduced operators using the FOM

and the available global basis functions. The general, spatially discretized formulation in Eq. (2.3)

is considered first. Again, it is assumed that the solution can be well approximated by a vector

from the subspace spanned by the global basis vectors:

θ(µ, t) ≈ θ̃(µ, t) =

rθ∑
i=0

ψθ
i c
θ
i (µ, t),= Ψθcθ(µ, t) (2.16)

Using this approximation in Eq. (2.3) and a Galerkin projection (left multiplication by Ψθ,T in this

setting), the following equation is obtained:

∂cθ(µ, t)

∂t
+ Ψθ,TA(µ)Ψθcθ(µ, t) + Ψθ,TF (Ψθcθ(µ, t),µ) = Ψθ,TS , (2.17)

where Ψθ,TMΥΨθ = I has been used. This can be further simplified by introducing Ar(µ) =

Ψθ,TA(µ)Ψθ ∈ Rrθ×rθ and Sr = Ψθ,TS ∈ Rrθ reduced operator and source terms:

∂cθ(µ, t)

∂t
+Ar(µ)cθ(µ, t) + Ψθ,TF (Ψθcθ(µ, t),µ) = Sr . (2.18)

It is visible that at this point the only unknowns in the system are the elements of cθ(µ, t), which

means that the number of spatial unknowns is reduced from N to rθ � N . Despite this, solving

this equation might not necessarily be faster than solving Eq. (2.3) because of two reasons:

i If operatorA and source term S have a general dependence on time and model parameters, the

corresponding reduced terms have to be created from the full-order ones at every time step or

new parameter value. This operation scales with 2 × rθ × N which might result in negligible

time-savings at reduced-level.
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ii The nonlinear term has to be evaluated at each nonlinear iteration. This operation also scales

with N meaning that the time required to solve the ROM would still scale with the size of the

original system, which is not optimal.

The techniques mostly used in the ROM community to tackle these problems are covered in the

following subsections.

2.2.4.1 Affine Decomposition of the Operators

To be able to create efficient POD-RB ROMs, it is important to ensure that no full-order op-

eration (scaling with N ) is performed during the evaluation phase. For the linear operators and

source vector, this is satisfied if these terms in the FOM have an affine dependence on time and

model parameters. In other words, if they can be expressed as the sum of products of parameter-

and time-independent constituent operators and source terms (A(i) and S(i)) and parameter- and

time-dependent scalar functions (f (i)
A (t;µ) and f (i)

S (t;µ)) as

A(t;µ) =
∑
i

f
(i)
A (t;µ)A(i) and S(t;µ) =

∑
i

f
(i)
S (t;µ)S(i). (2.19)

In such cases the constituent operators can be reduced one-by-one and the complete reduced oper-

ators can be computed by multiplying and summing small dense matrices:

Ar(t;µ) = Ψθ,TA(t;µ)Ψθ =
∑
i

f
(i)
A (t;µ)Ψθ,TA(i)Ψθ =

∑
i

f
(i)
A (t;µ)A(i),r and

Sr(t;µ) = Ψθ,TS(t;µ) =
∑
i

f
(i)
S (t;µ)Ψθ,TS(i) =

∑
i

f
(i)
S (t;µ)S(i),r.

This means that the assembly of such terms at reduced-order level scales with the rank of the

reduced system, rθ, and no full-order operations are needed.

Using the one-dimensional problem as an example, the linear operatorA(µ) has the following

affine decomposition:

A(µ) = −D1K1 −D2K2 + Σ1M 1 + Σ2M 2, (2.20)
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where D1, D2, Σ1 and Σ2 are the diffusion and reaction coefficients in material regions 1 and

2, while K1, K2, M 1 and M 2 are the corresponding region-wise stiffness and mass matrices

computed by discretizing (using a weak form):

Kz(x) =
∂

∂x
δz(x)

∂

∂x
and Mz(x) = δz(x),

where δz(x) denotes a characteristic function which returns a value of 1 if x is in material zone z

and 0 otherwise. These region-wise matrices can be then reduced using the basis function for φ

as:

Kr
z = Ψφ,TKzΨ

φ and

M r
z = Ψφ,TM zΨ

φ

and the final reduced linear operator can be constructed simply by adding these constituent matrices

as:

Ar(µ) = −D1K
r
1 −D2K

r
2 + Σ1M

r
1 + Σ2M

r
2. (2.21)

The same can be shown for source term Sext(µ) as well, since the external source function is

considered to be region-wise constant. It is important to note that these reduced constituent oper-

ators and source terms are pre-computed once for all at the end of the training phase and reused

every time the ROM needs to be evaluated at a new parameter or time instance, which makes the

evaluation process of the ROM fast.

2.2.4.2 Treatment of the Nonlinear Terms

As already discussed, the solution of Eq. (2.18) still requires evaluating the full-order nonlinear

function, of size N . This can be computationally expensive, often resulting in limited computation

time savings when solving the reduced order model, compared to the original full-order model.

To refer back to the previous subsection, the problem is that the nonlinear term is not affine (by
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definition) in the elements of vector cθ.

Depending on the nonlinear function itself, multiple approaches can be used to tackle this prob-

lem. The first approach is only applicable for nonlinearities which have polynomial-like behavior.

This means that the term can be factorized as the product of linear operators times the solution

function. For simplicity, let us consider the following example:

F (θ) = ∇ · (θ∇θ),

where the problem comes from multiplying θ by the gradient of itself. If the reduced-basis approx-

imate θ̃ =
rθ∑
i

ψθi c
θ
i is plugged into this expression we get:

F

(
rθ∑
i

ψθi c
θ
i

)
= ∇ ·

(
rθ∑
i

ψθi c
θ
i∇
(

rθ∑
j

ψθj c
θ
j

))
=

rθ∑
i

cθi

(
∇ · ψθi∇

(
rθ∑
j

ψθj c
θ
j

))
,

where the last equality used the fact that the divergence operator is linear. As the next step, the

discretization of ∇ · ψθi∇ operator can be carried out and the resulting matrix is denoted by Fi.

Using this, the discretized form of the nonlinearity can be expressed as:

F

(
rθ∑
i

ψθ
i c
θ
i

)
=

rθ∑
i

cθi
(
FiΨ

θcθ
)
.

To create the reduced operator, one needs to project this expression onto the subspace. Using a

Galerkin projection, the final expression for the reduced nonlinear term becomes:

F r(cθi ) = Ψθ,TF

(
rθ∑
i

ψθ
i c
θ
i

)
=

rθ∑
i

cθi
(
Ψθ,TFiΨ

θcθ
)

=

rθ∑
i

cθiF
r
ic
θ = cθ,TF

r
cθ,

where F
r

denotes a third order tensor where each slice can be computed as: F
r

i =
(
Ψθ,TFiΨ

θ
)
.

This procedure can be applied for higher order polynomial-like nonlinearities; however, the order

of tensor F
r

increases with the increasing polynomial order as well. This approach has been

extensively utilized for the treatment of advection terms in the MSR specific reduced-order models.
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A good example can be the advection term in the Navier-Stokes equation: ∇ · (ρu⊗ u), which is

a quadratic function of the velocity (u, see Section 3.2 for notation).

A second option, which can be used for arbitrary nonlinear functions, is to use the Discrete

Empirical Interpolation Method (DEIM) introduced in [62]. This requires the construction of a

second snapshot matrix for the the nonlinear function:

RF = [F (θ(µ1, t1)), . . . ,F (θ(µNµ , tNτ ))]. (2.22)

Using these snapshots, a spatial global basis is generated for the nonlinear function using POD:

ΨF = [ψF
1 , . . . ,ψ

F
rF

] ∈ RN×rF . (2.23)

These basis functions are used to subsequently interpolate F . For this, DEIM also selects rF

distinct interpolation elements (corresponding to nodes or cells on the mesh) in vector F in order

to assemble the DEIM interpolation selection matrix:

P = [ep1 , . . . , eprF ] ∈ RN×rF , (2.24)

where ei is the i-th canonical unit vector. The process to select these interpolation points is also

adapted from [62] and is summarized in Algorithm 1. The method selects degrees of freedom for

the interpolation where the best linear combination of the preceding basis functions has the highest

error.

Once the interpolation points are obtained, the DEIM interpolant of F can be computed as:

ΨF (P TΨF )−1P TF (θ(t;µ), t,µ) ≈ ΨF (P TΨF )−1P TF (Ψθcθ(t;µ), t,µ) . (2.25)

By plugging this into Eq. (2.18) one can obtain the following reduced system:

∂cθ(µ, t)

∂t
+Ar(t;µ)cθ(t;µ) + Ψθ,TΨF (P TΨF )−1P TF (Ψθcθ(t;µ), t;µ) = Sr(t;µ) . (2.26)
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Algorithm 1: Determination of interpolation points on the mesh. [62]
Result: P
initialization: ΨF ;
p1 = arg max

i
(|ψF

1 |i);

Ψ = [ψF
1 ]; P = [ep1 ];

for m = 2 to rF do
Solve (P TΨ)c = P Tψθ

m for c;
δ = ψθ

m −Ψc;
pm = arg max

i
(|δ|i);

Ψ = [Ψ ψF
m]; P = [P epm ];

end

It is important to note that P TF extracts only a few (rF � N ) entries of F that need to be

evaluated. This results in large computation time savings because discretization of partial differen-

tial equations usually results in local connectivity between an unknown and its neighbors, meaning

that evaluatingP TF (Ψθcθ(µ, t),µ) is fast. Furthermore, Ψθ,TΨF (P TΨF )−1 ∈ Rrx×rF is a small

matrix that can be pre-computed once during the training phase and can be reused every time µ or

cθ(µ, t) changes.

This approach has been utilized to treat the F (φ) = e−φ
2 nonlinear term in the one-dimensional

example problem as well. The snapshots and basis functions for F have been already presented in

Figures 2.2 and 2.4. The interpolation points have been selected using Algorithm 1. The first four

steps of the iteration are visualized in Figure 2.5 with red and black circles indicating the newly

and previously selected cells at the given iteration step, respectively. Recall that the new points are

chosen to be at the maximum of the absolute difference between the actual and approximate POD

modes (|ψFi − ψFi |). In this scenario the reduced nonlinear term takes the following form:

Ψφ,TΨF (P TΨF )−1P T e−(Ψφcφ(µ))2

= Ψφ,TΨF (P TΨF )−1e−(P TΨφcφ(µ))2

, (2.27)

where P T could enter the nonlinear term because it is evaluated cell-wise; or in other words, the

value of the nonlinear function in a cell only depends on the solution in the same cell alone.
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DEIM has been extensively utilized in this work for the approximation of the temperature and

density feedback effects in neutronics problems and computing flow resistances in the reduced fluid

dynamics sub-problem. These applications are discussed in Section 4.3 in detail. For additional

information on DEIM, we refer the reader to [62, 63].
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Figure 2.5: First four steps in the algorithm which determines the DEIM interpolation points on
the mesh.
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2.3 Online or Evaluation Phase

The subsequent, online phase includes the assembly and evaluation of the reduced equation,

Eq. (2.26), together with the evaluation of the Quantities of Interest (QoIs).

2.3.1 Assembly and Solution of the Reduced System

If the original operators have affine decompositions and the nonlinearities are resolved using

either a polynomial form or using DEIM, this phase simplifies into operations with small, dense

matrices which are of low computational cost.

As an example, the expanded form of the reduced equation for the one-dimensional diffusion-

reaction problem can be expressed as:

−
2∑
i=1

(DiK
r
i + ΣiM

r
i ) c

φ +Bre−(P TΨφcφ(µ))2

=
2∑
i=1

SiS
r
i , (2.28)

where B = Ψφ,TΨF (P TΨF )−1 ∈ Rrθ×rF . It is visible that in this case the elements of µ =

[D1, D2,Σ1,Σ2, S1, S2]T model parameter vector are just parameters, meaning that, when the con-

stituent matrices and vectors (Kr
i , M

r
i , B

r, Sri ) are available, the assembly and solution of the

system scales with rφ, rF � N .

2.3.2 Evaluation of the Quantities of Interest

When the solution of the nonlinear reduced equation is obtained, the approximate solution can

be reconstructed using Eq. (2.7). Then, using the approximate solution, the required Quantities

of Interest (QoIs) can be extracted. Good examples for QoIs can be the extreme, point or average

values of the solution, norms of the solution, the gradient of the solution, etc. This can be a costly

procedure, compared to the solution of the ROM itself, since the size of the basis functions isN for

scalar valued problems and 3N for vector valued problems. However, certain QoIs do not require

the reconstruction of the approximate solution vector. For example, the point and average values
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of the solution can be reconstructed as:

θ(r0) =

rθ∑
i=1

ψθi (r0)cθi and (2.29)

θ =

rθ∑
i=1

ψ
θ

i c
θ
i , (2.30)

where the only additional items that have to be stored are the point values (ψθi (r0)) or the averages

(ψ
θ

i ) of the basis functions. These can be computed/saved at the offline phase stage, meaning that

in such cases the evaluation of the QoI using a ROM can be quite efficient.

In case of the one-dimensional example problem, a convergence study has been carried out. A

new sample batch of 100 parameter vectors has been created for testing ROMs built with different

numbers of basis functions. The members of the test batch do not overlap with the members of the

parameter samples used for collecting snapshots in the training phase. The number of bases for

both φ and F has been increased simultaneously. The new parameter samples have been inserted

into the FOM and different ROMs and the mean L2 difference have been computed between the

solution vectors from the FOM and the approximate solution vectors from the ROMs. This also

necessitates the reconstruction of the full approximate solution, which is a considerable effort

compared to other low-order operations in the ROM. Figure 2.6 presents the decreasing error and

increasing computation time with the increase in the rank of the reduced-subspace. The average

computation time for the FOMs varied between 38 and 41 ms meaning that a speedup of 27–205

can be achieved per new parameter sample depending on the required accuracy.

2.4 Important Remarks

Lastly, it must be noted that it is only beneficial to train ROMs if the cost of the offline phase

can be justified. In other words, if the training of a ROM with adequate accuracy takes less ef-

fort than the original task itself. Typical applications where this condition is met are uncertainty

quantification and design optimization, where the original task is the evaluation of the FOM with

hundreds or thousands of different input parameter combinations. In such cases, only a fraction of
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the parameter samples are used to generate solutions which can be utilized as training data to gen-

erate a ROM. The rest of the parameter samples are then evaluated using the slightly less accurate,

but orders of magnitude faster ROM. This results in an overall saving in computation time and al-

lows better parameter space exploration for design optimization and richer statistics for uncertainty

quantification.
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Figure 2.6: The mean L2 error of the test set for the one-dimensional diffusion-reaction problem
as function of then umber of POD modes used.

For the 1D example, we see that the ROM built using 30 snapshots (15 POD modes) is already

accurate, exhibiting a mean L2 error of approximately 10−6 over the validation set. Considering

that the generation of the ROM takes only 5.45 ms and that every simulation using the FOM takes

approximately 40 ms, the utilization of the ROM for additional computations with new parameter

samples is justified.

2.5 Application of POD-RB ROMs

The original concept of POD can be traced back to the beginning of the 20-th century [57], but

has gained an increased recognition over the last three decades in Computational Fluid Dynamics

(CFD) and turbulence modeling [64, 65]. POD-RB ROMs are now commonly used for steady-
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state and transient fluid flow simulations with finite element [66] and finite volume [67, 68] spatial

discretizations. Recently, multiple POD-RB methods have been developed for the reduced-order

modeling of the Reynolds Averaged Navier Stokes (RANS) equations [68, 69] providing a tool for

handling turbulent fluid flows with high Reynolds numbers as well. Furthermore, the technique

shows a great promise in controlling applications of fluid flows, especially when spatial effects in

the system have to be considered [70]. On the other side of the spectrum, the applicability of POD-

RB has been investigated for diffusion dominated Darcy flows in porous media as well [71] and

is also frequently used in oceanography and meteorology for solving the shallow water equations

[72] or for reducing layer dynamics [73, 74]. Moreover, it is used in the field of mechanics for

describing system dynamics [75], vibrations [76] and elastic-plastic structures [77].

In the nuclear engineering community, applications of POD-RB-ROMs can be noted in reactor

kinetics problems [78, 79, 80, 81], and fixed source, steady state neutral particle transport applica-

tions [82, 83, 84]. The utilization of POD-ROM for diffusion k-eigenvalue problems connected to

reactor physics has been established in [85, 86, 87, 88]. The method has also been applied to the

burnup analysis in [89]. Multiphysics model-order reduction is however still at experimental phase.

One of the first approaches, discussed in [90], investigates a fuel pin in a lead-cooled reactor with

cross-sections having a linear temperature dependence. Other works, like the one published in [91],

uses a similar approach for Molten Salt Reactors but use logarithmic fuel temperature dependence

for the cross sections and handles the coupling with Discrete Empirical Interpolation method. This

direction is followed in this work with certain extensions. Another approach, described in [92],

has already been developed for multiphysics simulations of Molten Salt Reactors operating in the

laminar flow regime with clean fluid. This model used a Radial Basis Function (RBF) interpolation

scheme for the treatment of temperature dependent cross-sections which resulted in decoupled heat

transfer and neutronics equations at reduced-order level.

Compared to previous efforts, this work focuses on fully-coupled POD-RB ROMs applied to

problems with fluid dynamics, heat transfer and neutronics phenomena. This, to the best of the

author’s knowledge, has not been investigated before. Furthermore, instead of clean fluid applica-
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tions, this work focuses on flows with porous medium treatment which allows the simulation of

homogenized fluid-structure interactions like heat exchange or flow resistance.
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3. GOVERNING EQUATIONS AND FULL-ORDER MODELS FOR MOLTEN SALT

REACTORS

This chapter introduces the mathematical models (governing equations) that need to be solved

for Molten Salt Reactors. The discretization of the governing laws is also discussed, leading to the

generation of so-called Full-Order Models.

3.1 The Governing Equations

Before initiating the ROM procedure, we select a set of partial differential equations, including

initial and boundary conditions, that adequately describe the underlying physics of the problem at

hand. Due to the fact that the fuel is dissolved in the coolant, the simulation of MSRs requires

a complex multiphysics handling with coupled neutronics, fluid dynamics and heat transfer sub-

problems. The general structure of the multiphysics problem is visualized in Figure 3.1 together

with the interactions between the different subproblems. The corresponding partial differential

equations including these interactions in each subproblem are discussed in detail in the follow-

ing subsections. In this work, the physical domain and its boundary are denoted by Υ and Γ,

respectively.

3.1.1 Fluid Dynamics Subproblem

To avoid the explicit modeling of the complex structural elements located in nuclear reactor

cores, a porous medium treatment [93, 94, 95, 96] is adopted in this work. This assumes that the

structures are homogenized and interact with the fluid on a macro-scale, allowing coarse mesh

treatment of the dominant physics. The following subsections discuss the way the mass and linear

momentum conservation equations are treated in porous media together with additional aspects

that need to be considered for the MSR related problems in this work.
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Figure 3.1: The simulated subproblems and the interactions between them.

3.1.1.1 Mass and Momentum Conservation in Porous Medium

The derivation of the mathematical model utilized can be found in [93] and only the final form

is presented here. The mass and linear momentum conservation equations for a liquid in a porous

medium with structural elements can be expressed as:

∇ · ρuD =0 , r ∈ Υ, (3.1)

∂ρuD
∂t

+
1

γ
∇ · (ρuD ⊗ uD) =∇ ·

(
(η + ηt)

[
∇uD + (∇uD)T

])
− γ∇pt

+ γρg + γF p + γF fr + γρgβth(T − Tref) , r ∈ Υ. (3.2)

where uD = uD(r, t) denotes the Reynolds-averaged Darcy velocity vector field, pt = pt(r, t)

the Reynolds-averaged total pressure field, T = T (r, t) the Reynolds-averaged temperature field,

Tref a reference temperature, η the molecular dynamic viscosity, ρ the density (taken as constant

here) and βth the thermal expansion coefficient. Furthermore, g is the gravitational acceleration,

γ = γ(r) is the porosity expressing the volume fraction occupied by the fluid, whileF p = F p(r, t)

and F fr = F fr(r, t) are volumetric linear momentum sources and sinks resulting from a pump

and structures moving or obstructing the flow. It is important to note that the Darcy velocity can
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be expressed as

uD(r, t) ≡ γ(r)u(r, t), (3.3)

where u(r, t) is the real velocity vector field. The conservation equations are solved for the Darcy

velocity and the real velocity can be converted back using the expression above. This substitution

ensures that the solution of the equation system is smooth in space. The pressure jump terms

at the interfaces of different porous medium zones, discussed in [93], are not taken into account

in this work because of the assumption that they are negligible compared to the pressure drops

in the porous medium zones. It is also apparent that Eqs. (3.1)-(3.2) simplify to the Reynolds-

Averaged Navier-Stokes (RANS) equations [97] with Boussinesq eddy viscosity approximation

[98] and Boussinesq buoyancy approximation [99] if the fluid is clean, i.e., γ = 1. In this work,

a Newtonian fluid model is assumed, meaning that the molecular dynamic viscosity is constant.

The eddy viscosity, denoted by ηt, is used to model the additional dissipation effects introduced by

turbulence.

The CFD solvers within the OpenFOAM c© framework, and consequently in GeN-Foam as well,

use a slightly different formulation for Eq. (3.2) by introducing a corrected pressure [100] using

the following identity:

∇pt − ρg = ∇ (pt − ρg · r) = ∇p, (3.4)

where p = p(r, t) is the total pressure minus the hydrostatic pressure. Eq. (3.4) can be de-

rived using Green’s identity and the fact that ρ and g are constant fields. Plugging this back into

Eqs. (3.2)–(3.1), we obtain

∇ · ρuD =0 , r ∈ Υ, (3.5)

∂ρuD
∂t

+
1

γ
∇ · (ρuD ⊗ uD) =∇ ·

(
(η + ηt)

[
∇uD + (∇uD)T

])
− γ∇p

+ γF p + γF fr + γρgβth(T − Tref) , r ∈ Υ. (3.6)

These conservation equations are supplemented with appropriate initial and boundary conditions.
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For an inlet-outlet problem (open loop), the most common boundary conditions can be written as

uD = uD,in r ∈ Γin, (3.7)

uD = 0 r ∈ Γwall, (3.8)

∇p · n = 0 r ∈ ΓF,in ∪ Γwall, (3.9)

n ·∇ui = 0 i ∈ [x, y, z], r ∈ Γout, (3.10)

p = pout r ∈ Γout, (3.11)

where Γin denotes the inlet, Γout the outlet, and Γwall the wall segments of the boundary and n

denotes the surface normal. For a closed-loop system, the boundary conditions simplify to

uD =0 r ∈ Γwall, (3.12)

∇p · n =0 r ∈ Γwall. (3.13)

The absence of Dirichlet boundary conditions, the incompressible fluid, and the fact that Eq. (3.6)

contains only the gradient of the pressure entail that more than one pressure field can satisfy the

problem. All of the possible solutions are just shifted by a constant pressure value. Thus, in a

closed-loop system, the pressure needs to be specified at a chosen location (r0) in the domain to

set the correct operating state:

pt(r0, t) = pt,0 or p(r0, t) = pt,0 − ρg · r0 . (3.14)

Moreover, in many porous medium applications a no-slip boundary condition is preferred for the

velocity at the walls which can be expressed as:

uD · n = 0, r ∈ Γwall, (3.15)

meaning that the normal component of the velocity is enforced to be zero. Finally, the initial
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velocity and pressure fields, uD(r, 0) and p(r, 0), are given and satisfy the boundary conditions.

3.1.1.2 Treatment of Volumetric Momentum Sources and Sinks

In the linear momentum conservation equation, terms F fr and F p describe the linear mo-

mentum sources and sinks resulting from the interactions between the fluid and the homogenized

structure in the porous medium.

In this work, it is assumed that the momentum source of the pump, F p, is a vector field with

region-wise constant values in the Npump pump regions (Υpump) and zero everywhere else:

F p(r) =


F p,i r ∈ Υpump,i, i = 1, ..., Npump

0 r ∈ Υ/

(⋃
i

Υpump,i

)
.

The flow resistance, on the other hand, cannot be considered independent of the fluid velocity.

Based on [93, 101, 102], the following expression is used to approximate each component of this

force:

F fr,i = −fiρu
2
D,i

2Dhγ2
, (3.16)

where Dh denotes the the hydraulic diameter of the structure and fD,i is the friction factor in

direction i = {x, y, z}. This friction factor can be computed using empirical correlation functions

in the following form (Blasius correlation [103]):

fD,i = AfD,iReBfD,i , (3.17)

where the Reynolds number, Re, is determined using the real velocity as

Re =
|u|Dhρ

η
, (3.18)

and AfD,i and BfD,i parameters are specified based on factors such as the flow regime or the geom-

etry.
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3.1.1.3 Treatment of Turbulent Flows in Porous Medium

Turbulent flows are handled using Reynolds-averaged quantities in Eqs. (3.5)-(3.6) together

with the Boussinesq eddy viscosity approximation [98]. This means that the molecular dynamic

viscosity is augmented by a turbulent viscosity (ηt) which is a nonlinear function of the velocity

and pressure, and can be computed for clean fluids using different eddy viscosity models such as

the k−ε or k−ω models [97, 104]. In this work, the k−ε eddy viscosity model is used; this requires

the solution of two additional equations for the turbulent kinetic energy k and its dissipation rate ε.

The standard implementation for clean fluids in OpenFOAM c©, and consequently in GeN-Foam as

well, is based on the following formulation [105]:

∂ρk

∂t
+ ∇ · (ρuk)−∇ · (ρDt,k∇k) =St,k − ρε (3.19)

∂ρε

∂t
+ ∇ · (ρuε)−∇ · (ρDt,ε∇ε) =

C1ε

k

(
St,k + C3

2

3
k∇ · u

)
− C2ρ

ε2

k
(3.20)

where Dt,k and Dt,ε are the effective turbulent kinetic energy and dissipation diffusivities, St,k the

turbulent kinetic energy production rate, while C1, C2 and C3 are constant parameters which might

depend on the specific problem. For porous regions, however this formulation breaks down and,

based on [93], these equations have to be modified by introducing equilibrium turbulent kinetic

energies k0, equilibrium dissipation rates ε0, and a convergence rate λε/k as follows:

∂ρk

∂t
+ ∇ · (ρuDk)−∇ · (ρDt,k∇k) =δ(γ) [St,k − ρε] + (1− δ(γ))λε/kρ [k0 − k] (3.21)

∂ρε

∂t
+ ∇ · (ρuDε)−∇ · (ρDt,ε∇ε) =δ(γ)

[
C1ε

k

(
St,k + C3

2

3
k∇ · u

)
− C2ρ

ε2

k

]
+ (1− δ(γ))λε/kρ [ε0 − ε] (3.22)

where δ(γ(r)) is a function that is 1 where γ(r) = 1 (clean fluid) and 0 everywhere else. Methods

to approximate the k0 and ε0 parameters are also discussed in [93]. These surrogate equations are

supplemented with appropriate boundary conditions that are discussed in [97]. After solving these
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equations, the turbulent thermal diffusivity αt and viscosity ηt can be computed as:

ηt = Cµ
ρk2

ε
, and αt =

ηt
Prt

, (3.23)

where Cµ is a constant which, most of the times, takes the value of 0.09 [105] and Prt is the

turbulent Prandtl number which is usually between 0.75 and 0.95.

Finally, the computation of the buoyancy term requires the knowledge of the temperature which

is obtained by solving the heat transfer sub-problem discussed in the following subsection.

3.1.2 Heat Transfer Subproblem

To be able do determine the temperature of the system, a porous medium enthalpy equation is

solved coupled to the fluid dynamics equations:

∂γρcpT

∂t
+ ∇ · (uDρcpT ) = ∇ · (γ [kl + cpαt]∇T )

− hAV (T − Text) + γ

∞∫
0

Σp(r, E
′)φ(r, E ′)dE ′, r ∈ Υ (3.24)

where cp and kl are the heat capacity and thermal conductivity of the fluid, while h is the heat

transfer coefficient, Text is an external temperature and AV is the volumetric area of the heat sink.

Furthermore, it is visible that additional turbulent mixing effects are considered through a diffusion

term utilizing αt turbulent diffusivity. This formulation has been adapted from [93] by neglecting

the terms used for kinetic energy conservation. This simplification is based on the assumption that

the kinetic energy of the fluid is considerably less than its enthalpy. The last term on the right

hand side of the equation expresses a volumetric heat deposition resulted from the fission reactions

induced by the neutrons. This is handled using a power cross section Σp(r, E
′) and the neutron

scalar flux φ(r, E ′). These quantities are discussed in Section 3.1.3 in detail. For simplicity, zero

gradient boundary conditions are employed for the temperature field in this work:

∇T · n = 0, r ∈ Γ. (3.25)
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Lastly, it is assumed that the initial temperature field T (r, 0) is known and satisfies the boundary

conditions.

3.1.3 Neutronics Subproblem

For the analysis of nuclear reactors, knowing the distribution of neutrons is essential. Several

methods have been developed to determine this variable. Solution techniques utilizing Monte-

Carlo approaches simulate particle histories in the reactor from birth to death (i.e., absorption or

leakage) and give a statistical estimate of neutron density based on the observed population [106].

Despite their capability to simulate detailed geometries, Monte Carlo methods are rarely used

in a multiphysics setting. The reason behind this is that obtaining an accurate, high-resolution

estimate for neutron distribution in the reactor requires an immense amount of simulated histo-

ries, making this method computationally expensive. Other methods formulate a neutron balance

equation which can be discretized in the independent variables and solved numerically. The most

accurate mathematical model describing the balance of neutrons in an infinitesimal small space-

energy-direction phase-space volume around (r, E,Ω) at time t is the Neutron Transport Equation

[107]. Discrete ordinates (SN ) and spectral methods using spherical harmonic expansion (PN ) are

commonly used to solve this equation [108]. Due to the six-dimensional phase-space, however,

solving the neutron transport equation is computationally demanding and is not widely used in

multiphysics applications. Fortunately, several approximations of the neutron transport equation

have been developed to obtain models which are easier to solve. The neutron diffusion equation

belongs to the family of these simplified models and can be derived using multiple methods, in-

cluding asymptotics on the neutron transport equation [109, 110, 107]. This equation yields good

results for large and homogeneous reactors if the dominant reaction between the neutrons and the

matter is scattering. Since the cores of MSRs are highly homogeneous and the scattering ratios are

typically high, the neutron diffusion equation is used in this work. The results presented in [55]

support this approach as well. This section briefly reviews the neutron diffusion based equations

for the simulation of different MSR-related problems in this work.
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3.1.3.1 Balance Equation for Neutrons

The equation describing the balance of neutrons in the reactor can be expressed as follows

[107]:

1

v(E)

∂φ(E, r, t)

∂t
= ∇ · [D(E, r)∇φ(E, r, t)]

− Σt(E, r)φ(E, r, t)

+

(
1− β(r)

)
χp(E, r)

keff

∞∫
0

ν(E ′, r)Σf (E
′, r)φ(E ′, r, t)dE ′

+

∞∫
0

Σs(E
′ → E, r)φ(E ′, r, t)dE ′

+ χd(E, r)

Gd∑
i=1

λi(r)Ci(r, t), r ∈ Υ (3.26)

where v(E) denotes the velocity of neutrons, φ(E ′, r, t) the neutron scalar flux, D(E, r) the dif-

fusion coefficient, Σt(E, r) macroscopic total cross section, β the total delayed neutron fraction,

χp(E, r) the prompt neutron spectrum, ν(E, r) the fission neutron yield, Σf (E
′, r) the macro-

scopic fission cross section, keff the effective multiplication factor, Σs(E
′ → E, r) is the differ-

ential macroscopic scattering cross section from energy E ′ to E. Furthermore, χd(E, r) is the

delayed neutron spectrum , Gd is the number of delayed neutron groups, while λi(r) and Ci(r, t)

are the corresponding decay constant and precursor concentration in precursor group i. The terms

on the right hand side of the equation describe, in order, the neutron leakage, the neutron loss due

to reactions, the neutron source from fission, the neutron source from scattering and the neutron

source from the decay of the delayed neutron precursors. It must be mentioned that, in this equa-

tion, keff is just a constant that can be used to change the fission neutron yield across the entire

reactor. This is a common tool to insert/withdraw reactivity into/from the system. The problems

presented in this work use either reflective (homogeneous Neumann)

−D(E, r, t)∇φ(E, r, t) · n(r) = 0, r ∈ ΓRefl (3.27)
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zero scalar flux (homogeneous Dirichlet)

φ(E, r, t) = 0, r ∈ ΓDir (3.28)

or albedo (homogeneous Robin)

−D(E, r, t)∇φ(E, r, t) · n(r) = γrφ(E, r, t), r ∈ ΓAlb (3.29)

boundary conditions for the scalar flux, where ΓRefl, ΓDir and ΓAlb are the corresponding segments

of Γ and n is the surface normal vector. In case of albedo boundary condition, γr = 1
2

ensures a

zero-incoming current boundary condition, while decreasing this parameter allows the simulation

of external reflectors.

3.1.3.2 Balance Equation for Delayed Neutron Precursors

To close Eq. (3.26), additional equations are needed to describe the balance of the delayed

neutron precursors in each group. These equations are especially important in the case of Molten

Salt Reactors, where the fluid can move precursors out of the high importance regions of the reactor

core. Implications of this delayed neutron drift can be the oscillation of reactivity in time and a

considerable decrease in the effective delayed neutron fraction. Furthermore, in zones treated as

porous medium, the fluid transporting the delayed neutron precursors does not occupy the entire

volume, meaning that the volumetric density of the delayed neutrons have to be adjusted with the

porosity. The equations describing the balance of delayed neutron precursors in porous media can

be expressed by modifying the clean fluid equation in [111] as follows:

∂ [γC∗i (r, t)]

∂t
+ ∇ · [uD(r, t)C∗i (r, t)] =∇ ·

([
αl(r)

ρ
+
αt(r, t)

ρ

]
∇C∗i (r, t)

)
+
βi(r)

keff

∞∫
0

ν(E ′, r)Σf (E
′, r)φ(E ′, r, t)dE ′

− λi(r)γC∗i (r, t), r ∈ Υ, i ∈ [0, ..., Gd] (3.30)
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where uD(r, t) denotes the Darcy velocity vector field, C∗i = Ci
γ

is the corrected precursor con-

centration, αl(r) is the laminar diffusivity of the precursors, and βi(r) the delayed neutron fraction

in group i. This equation is solved for the corrected precursor concentrations and the Ci is recon-

structed afterwards. The substitution is important, since C∗i is smooth in space, while Ci is not.

Furthermore, αl(r) can be computed using the molecular dynamic viscosity of the fluid, η, and the

Schmidt number, Sc, as [101]:

αl =
η

Sc
, (3.31)

and αt(r, t) is an additional diffusivity caused by turbulent mixing (defined in Section 3.1.2) in the

fluid and is determined following the procedure described in Section 3.1.1. In case of laminar fluid

flows the value of αt is zero. In this work, only homogeneous Neumann boundary conditions are

used for the corrected precursor equations:

∇C∗i (r, t) · n(r) = 0, r ∈ Γ, i ∈ [0, ..., Gd]. (3.32)

3.1.3.3 Eigenvalue Problems

In certain cases one is interested in the steady-state scalar flux and precursor concentrations.

However, the system of (3.26)-(3.30) with the time-derivatives set to zero and homogeneous bound-

ary conditions might not have a solution. In fact a steady state solution is only guaranteed if a

volumetric or boundary external source is present and the reactor is subcritical or if no external

sources are present and the reactor is critical. Therefore, in these situations, keff is assumed to be a

free parameter that can be tuned to ensure that the system is critical in a sense that the number of

generated neutrons equals to the number of neutrons lost. This transforms the mentioned system

into a generalized eigenvalue problem where 1
keff

serves as the eigenvalue (denoted by 1
k∗

momen-

tarily) and the scalar flux with the corrected delayed neutron precursor concentrations form the
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eigenvectors:

−∇ · [D∇φ] + Σtφ−
∞∫

0

Σs(E
′ → E)φdE′ − χd

Gd∑
i=1

λiγC
∗
i =

(
1− β

)
χp

k∗

∞∫
0

νΣfφdE
′ (3.33)

∇ · (uDC∗i )−∇ ·
([

αl
ρ

+
αt
ρ

]
∇C∗i

)
+ λiγC

∗
i =

βi
k∗

∞∫
0

νΣfφdE
′ (3.34)

Note that from now on, for the sake of being concise, the arguments of the field variables and

cross sections are only shown when crucial for the formulation. In most practical applications, only

the largest k∗ is needed, thus the system can be solved using power iteration [107]. The largest

k∗ is commonly denoted by keff. During the power iteration, the eigenvectors are normalized to

ensure that the thermal power of the reactor is a fixed value, Pth:

Pth =

∫
Υ

∞∫
0

Σp(r, E)φ(r, E)dEdΥ, (3.35)

where Σp(r, E) is a power cross section.

3.1.3.4 Temperature-dependent Cross Sections

To add an additional level of complexity to the problem, we consider the fact that the cross

sections in Eqs. (3.26) and (3.30) are temperature-dependent. This can be expressed using the

general notation of a cross section as:

Σ(E, r) = Σ(E, r, T ), (3.36)

where T = T (r, t) denotes the temperature field. This dependence includes the effects of the

Doppler broadening of the resonances in the cross sections together with the changing density of

the fuel salt. This also means that the neutronics equations have to be coupled not only to the fluid

dynamics equations, but to the energy equation as well. The treatment of temperature-dependent

cross sections is addressed in Section 3.2 in detail.
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3.1.3.5 Adjoint Eigenvalue Problems

In most MSRs, the effective fraction of delayed neutrons is an important parameter. This

differs from the physical fractions, since during operation, a certain amount of delayed neutrons

is moved by the fluid to lower neutron importance regions. In this work, only the steady-state

delayed neutron fractions are investigated. To be able to determine these, the adjoint problem of

Eqs. (3.33)-(3.34) has to be solved for the neutron importance fields. Based on [112], the adjoint

problem for moving precursors can be expressed as

−∇ ·
[
D∇φ†

]
+ Σtφ

† −
∞∫

0

Σs(E → E′)φ†dE′ =

(
1− β

)
νΣf

k∗

∞∫
0

χpφ
†dE′ +

νΣf
k∗

Gd∑
i=1

βiγC
∗,†
i (3.37)

∇ ·
(
−uDC∗,†i

)
−∇ ·

([
αl
ρ

+
αt
ρ

]
∇C∗,†i

)
+ λiγC

∗,†
i = λi

Ge∑
i=1

χd,iφ
†, (3.38)

where φ† denotes the neutron importance and C∗,†i is the corrected precursor importance. The

original precursor importance can be computed as C†i = γC∗,†i , where γ is the porosity. The

same homogeneous boundary conditions can be used for these equations than the ones described

for Eqs. (3.33)-(3.34). It is important to mention that, for the adjoint flux, the state (velocity,

temperature, density) of the system is fixed to the solution fields arising from the forward problem

potentially coupled with the fluid-dynamics and energy equations. Therefore, this equation system

is not coupled to any of the other physics, it is solved in a standalone manner. Assuming that the

steady-state scalar flux, delayed neutron precursor concentrations and the neutron importance are

available, the following expression can be derived for the effective delayed neutron fraction [113]

for precursor group i:

βeff,i =

∞∫
0

∫
Υ

φ†χdλiCidΥdE

∞∫
0

∫
Υ

φ†

(
χd

Gd∑
j=0

λjCj + χp
∞∫
0

νΣfφdE ′

)
dΥdE

, (3.39)
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and the total effective delayed neutron fraction (βeff) can be computed as the sum of the group-wise

fractions βeff =

(∑
i

βeff,i

)
.

3.2 Full-Order Model

The Full-Order Model (FOM) consists of the discretized forms of the governing equations

described in Section 3.1. This section briefly summarizes the spatial, temporal, and, for the neu-

tronics subproblem, the energy discretization schemes applied in this work. The solvers which

create and solve the FOM have been implemented in GeN-Foam (Generalized Nuclear Foam)

[93], an OpenFoam R© [114] based finite-volume multiphysics framework specifically developed

for nuclear applications. This framework has been chosen because, besides being open-source,

it grants easy access to discretized operators which makes the generation of intrusive POD-RB

ROMs convenient.

3.2.1 Discretization in Space

The spatial discretization in OpenFOAM is based on the Finite Volume Method (FVM) [115,

116] which is widely used in CFD applications due to its stability properties, and the fact that it

can handle arbitrary cell shapes. Furthermore, since this method is conservative, it is preferred

in applications involving conservation laws. The general idea behind this discretization scheme is

reviewed in this subsection. It involves the introduction of a spatial mesh by splitting the computa-

tional domain Υ into N non-overlapping cells, Υi, (i = 1, ..., N), with volumes of Vi. Figure 3.2

shows an example of a cell in the mesh and introduces the general notation needed for the subse-

quent derivations.

A general time-dependent diffusion-advection-reaction problem is considered to review the

discretization approach in the following form:

∂(ρθ)

∂t
+ ∇ · (ρuθ) = ∇ · (Dθ∇θ) + F (θ,u) +Qθ, (3.40)

where θ is a conserved variable, ρ is the physical density, u is the velocity vector field, Dθ is
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P

N

f

VP

Sf

δNP

Figure 3.2: A general cell with centroid at P used for the finite volume discretization. (N - centroid
of neighboring cell, f - face index, Sf - surface vector)

the diffusion coefficient, while F (θ,u) expresses a general nonlinear reaction term and Qθ is an

external source term. Note that every equation in Section 3.1 has a similar form. The spatial

discretization schemes for different terms can be derived by integrating Eq. (3.40) over a cell ΥP

(with volume VP ) and using the Gauss divergence theorem on the diffusion and advection terms.

This yields the following form using the notation in Figure 3.2:

∂

∂t

∫
ΥP

(ρθ)dV +

∫
ΓP

ρθu · ndS =

∫
ΓP

Dθ∇θ · ndS +

∫
ΥP

F (θ,u)dV +

∫
ΥP

QθdV, (3.41)

where ΓP denotes the entire boundary of the cell. As a next step, the conserved variable is assumed

to be constant, θP over the cell and θf over side f of the boundary of the cell. Furthermore, it

is assumed that the material properties (density, diffusion coefficient, etc.) and the value of the

nonlinear function are constants within the cell and on the boundary segments as well. Using these

assumptions the integrals in Eq. (3.41) can be expressed as:

∂

∂t
(ρP θPVP ) +

∑
f

ρfθfuf · Sf =
∑
f

Dθ,f∇θf · Sf + F (θP ,uP )VP +Qθ,PVP , (3.42)

It is apparent that the order of accuracy of the discretization scheme depends on the approximation
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of the face values and gradients using the cell values. In most of the cases, this involves linear

approximations for the face values:

θf ≈ wθP + (1− w)θN , (3.43)

with N denoting the centroid of a neighboring cell, while the normal gradients at the face can be

approximated as:

∇θf · Sf ≈
1

cos (αδS)

θN − θP
|δPN |

|Sf |+ ∇θold
f ·

(
Sf,i
|Sf |

− 1

cos (αδS)

δPN
|δPN |

)
|Sf |, (3.44)

where the second term expresses an explicit correction for cases when the face surface normal is

not parallel to the vector connecting the cell centers (Sf ∦ δPN ). Furthermore, αδS denotes the

angle betweenSf and δPN . These approximations yield a second order scheme in space. However,

in certain cases this is not achievable due to oscillations caused by the advection term. In these

scenarios, an upwind scheme is used to compute the face values:

θf ≈

 θP if u · Sf > 0

θN if u · Sf < 0

which yields a first order scheme. Nevertheless, it is visible that by repeating the same process

for every cell in the mesh and applying the proper boundary conditions, the partial differential

equation has been transformed into a system of ordinary differential equation where the unknowns

are the values of θ at the cell centers.

3.2.2 Discretization in Time

Following the discretization in space we are left with a system of ordinary differential equation

in a form of:

M
∂θ

∂t
= A(θ)θ + Qθ(θ), (3.45)
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where θ is a vector containing the values of θP for each cell,M is a diagonal mass matrix, A(θ) is

a system matrix that can potentially depend on θ, while Qθ(θ) is a source term which might also

depend on θ. This equation still needs to be integrated in time over a time step ∆ti = [ti, ti+1]:

M

ti+1∫
ti

∂θ

∂t
dt =

ti+1∫
ti

[A(θ)θ + Qθ(θ)] dt, (3.46)

The handling of the left hand side is simple, however the integration of the right hand side requires

more attention. In general, several approximations are used to integrate the right hand side in time.

Typical approaches include the approximation of the integral by the weighted sum of the integrand

evaluated at different points within the time step. Obviously, the order of the integration scheme

depends on the selection of these locations and the corresponding weights. In this work, an implicit

Euler discretization scheme has been used which yields first order accuracy:

Mθ(ti)−Mθ(ti+1) = [A(θ(ti+1))θ(ti+1) + Qθ(θ(ti+1))] ∆ti (3.47)

and requires the solution of a nonlinear equation system at each time-step. This means that a fixed-

point iteration is necessary at every time step to resolve the nonlinearities. This can be achieved by

lagging the solution in the nonlinear operators and source terms:

Mθ(ti)−Mθ(ti+1)l+1 =
[
A(θ(ti+1)l)θ(ti+1)l+1 + Sθ(θ(ti+1)l)

]
∆ti, (3.48)

where l is the index in the fixed-point iteration. In this case a linear algebraic equation system needs

to be solved at every iteration step which requires a linear solver with appropriate preconditioning.

3.2.3 Discretization in Neutron Energy

Looking at Eq. (3.26) and Eq. (3.30) we notice that the equations are still continuous in neutron

energy, meaning that this independent variable needs to be discretized before applying the spatial

and temporal discretization schemes mentioned in the previous subsections. In this work, the
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multigroup diffusion equation has been used which can be derived from Eq. (3.26) and Eq. (3.30)

with splitting the energy spectrum into small intervals, as shown in Figure 3.3. It is visible that the

EGe EGe−1

Group Ge

Eg+1 Eg

Group g+1

Eg−1

Group g

Eg−2

Group g-1

E1 E0

Group 1

Figure 3.3: The discretized energy spectrum.

energy spectrum is split into Ge intervals or groups. It is common practice to assign index 1 to the

interval with the highest energy and Ge to the lowest energy group. By integrating Eq. (3.26) over

a [Eg, Eg+1] interval one can derive the multigroup diffusion equations for the neutron scalar flux:

1

vg

∂φg
∂t

= ∇ · [Dg∇φg]− Σt,gφg +

(
1− β

)
χp,g

keff

Ge∑
g′=1

νg′Σf,g′φg′

+

Ge∑
g′=1

Σs,g′→gφg′ + χd,g

Gd∑
i=1

λiCi, r ∈ Υ, g ∈ [1, ..., Ge], (3.49)

where φg is the scalar flux in energy group g defined as:

φg = φg(r, t) =

Eg+1∫
Eg

φ(E, r, t)dE, (3.50)

while vg, Dg, Σt,g, χp,g, νg, Σf,g, Σs,g′→g, χd,g are space-dependent group constants which can be

derived from the coefficients in Eq. (3.26) using different averaging techniques. In this paper, these

coefficients are generated using the Serpent 2 Monte Carlo particle transport code [117]. The same

types of boundary conditions can be applied to each energy group problem as the ones described
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in Section 3.1. Similarly, the corresponding precursor equations can be expressed as:

∂γC∗i
∂t

+ ∇ · [uDC∗i ] = ∇ ·
([

αl
ρ

+
αt
ρ

]
∇C∗i

)

+
βi
keff

Ge∑
g′=1

νg′Σf,g′φg′ − λiγC∗i , r ∈ Υ. i ∈ [0, ..., Gd] (3.51)

The adjoint problem can be discretized in a similar manner resulting in a multigroup adjoint diffu-

sion problem.

3.2.4 Treatment of Temperature-dependent Cross Sections

Lastly, the treatment of the temperature-dependent cross sections have to be addressed as well.

As already mentioned, this work considers two main effects that result from the changing temper-

ature of the molten salt fuel:

i Due to the fact that the nuclear fuel is within the coolant, the changing coolant temperature can

result in neutronics Doppler effects. This is a negative feedback meaning that the increasing

fuel temperature decreases the reactivity of the system.

ii The density of the coolant is temperature-dependent as well, meaning that the increasing tem-

perature decreases the coolant density. This is also a negative feedback meaning that the in-

creasing temperature decreases the amount of fuel within the core causing a drop in reactivity.

The implementation in GeN-Foam requires the definition of three cross section libraries: one

for a reference point and one for each feedback at a perturbed state. Using these libraries, the

temperature-dependent cross sections are computed by the following interpolation/extrapolation

schemes:

Σ(r, T, ρ(T )) ≈ Σ(r, Tref , ρ(Tref )) + δFT (r)
(√

T −
√
Tref

)
+ δFD(r) (ρ(T )− ρ(Tref )) , (3.52)
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where the δ coefficients can be determined as:

δFT (r) =

[
Σ(r, Tref , ρ(Tref ))− Σ(r, Tpert, ρ(Tref ))√

Tref −
√
Tpert

]
(3.53)

δFD(r) =

[
Σ(r, Tref , ρ(Tref ))− Σ(r, Tref , ρ(Tpert))

ρ(Tref )− ρ(Tpert)

]
. (3.54)

This work assumes that the density of the molten salt has a linear temperature dependence in the

following form:

ρ(T ) = ρ(Tref ) + βthρ(Tref )(T − Tref ),

where βth is the thermal expansion coefficient. Using this, the interpolation can be simplified into

a purely temperature-dependent form:

Σ(r, T ) ≈ Σ(r, Tref , ρ(Tref )) + δFT (r)
(√

T −
√
Tref

)
+ δFD(r)βthρ(Tref ) (T − Tref ) . (3.55)

For fast spectrum reactors, the density effect stays the same; however, for the fuel temperature

effect, a logarithmic interpolation is used:

Σ(r, T ) ≈ Σ(r, Tref , ρ(Tref )) + δFT (r)ln
(

T

Tref

)
+ δFD(r)βthρ(Tref ) (T − Tref ) . (3.56)

where the δFT factor is computed as:

δFT (r) =

Σ(r, Tref , ρ(Tref ))− Σ(r, Tpert, ρ(Tref ))

ln
(
Tref
Tpert

)
 . (3.57)

3.2.5 Iteration scheme

This subsection briefly reviews the iteration strategy used to solve the above mentioned system

of discretized partial differential equations. GeN-Foam utilizes a multi-layer fixed-point iteration

to obtain solutions for the fields of interest. Figure 3.4 shows this iteration scheme which was

derived from the original version presented in [93] with applying the incompressible fluid flow
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constraint. The PIMPLE (PISO+SIMPLE) algorithm [118] is used to solve the discretized fluid

dynamics equations. This involves the creation of a Poisson equation for pressure using the already

discretized velocity equation [116]. It involves an inner loop iterating on pressure and an outer

loop iterating on velocity, temperature and the k − ε equations. It is visible, that the velocity-

temperature coupling is resolved first and only when this has converged, progresses the solver

to the neutronics-temperature coupling. In case of a steady-state computation, the process is the

New
time step

Equations
for k and ε

Velocity
predictor

Pressure
equation

Non-orthogonal
corrector(s)

Velocity
corrector

Pressure corrector(s)

Energy
equationOuter Corrector(s)

Energy
equation

Neutronics
equations

Coupling iteration(s)

Figure 3.4: The coupling scheme of the Full-Order Models. (solid lines - the default coupling,
dashed lines - possible inner iterations)

same; the simulations are run until the problems reach steady state using pseudo-time stepping

instead of real time.
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4. TRAINING REDUCED-ORDER MODELS FOR MOLTEN SALT REACTORS

As previously outlined in Figure 2.1, the training phase consists of three main steps. First, a

Full-Order Model (FOM) is created by discretizing the underlying governing laws on a specific

domain. This process, together with the MSR-related governing laws have been covered in Chap-

ter 3. The remaining two steps, namely the data-driven learning of reduced subspaces, and the

computation of reduced operators are discussed in the following sections in detail. For the sake of

better clarity, the two sub processes of the data-driven learning step, namely: (i) collection of the

data and (ii) the generation of the basis functions of the subspaces, are discussed separately.

4.1 Data Collection

As part of the learning process, this step consists of collecting data about the time- and parameter-

dependent solution manifolds. For this, the method of snapshots is utilized [64], in which FOM

simulations are performed to obtain Ns snapshots of the system at different time instances and/or

input/uncertain parameter values. Let us assume that the FOM is exercised using Nµ different

parameter samples and snapshots are captured at Nτ different time instances. With this, the total

number of snapshots is Ns = Nµ×Nτ for a parametric transient scenarios. For steady-state simu-

lations, the number of snapshots equals the number of parameter samples (Ns = Nµ). In the case

of finite volume discretization, a snapshot is a vector containing the values of a scalar field (e.g.,

scalar flux, temperature, etc.) or vector field (e.g., velocity) at the center of each mesh cell. These

solution vectors are then collected in snapshot matrices denoted by R∗. Therefore, the dimension

of the snapshot matrices is N × Ns for scalar fields and 3N × Ns for vector fields in a three di-

mensional domain, where N is the number of cells in the mesh. For the fluid dynamics equations,

the Darcy velocity and corrected pressure fields are saved in every scenario:

RuD =[uD,1, ...,uD,Ns ], (4.1)

Rp =[p1, ..., pNs ]. (4.2)
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while for turbulent flows, the eddy viscosity and eddy diffusivity fields need to be saved as well:

Rηt =[ηt,1, ..., ηt,Ns ], (4.3)

Rαt =[αt,1, ..., αt,Ns ], (4.4)

For porous medium simulations, the obstructing force (F fr) is saved for each of the NZ porous

medium zones in the geometry:

RF fr,z = [F fr,z,1, ...,F fr,z,Ns ], z = 1, .., NZ . (4.5)

For the heat transfer subproblem, one needs to save the resulting temperature fields:

RT = [T1, ..., TNs ], (4.6)

and, depending on the interpolation method chosen for the treatment of the temperature-dependent

cross sections, either the square root of the temperature
√
T or the logarithm of the temperature

ln(T ). For the sake of generality, this auxiliary temperature field will be denoted by

T aux =


√
T , if square root treatment (thermal reactor)

ln(T ), if logarithmic treatment (fast reactor)

and are saved in the corresponding snapshot matrix:

RT aux = [T aux
1 , ..., T aux

Ns ]. (4.7)

Lastly, for the neutronics subproblem we generally save the neutron flux for each energy group

and the corrected concentration for each delayed neutron precursor group:
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Rφg =[φg,1, ..., φg,Ns ], g = 1, ..., Ge, (4.8)

RC∗i
=[C∗i,1, ..., C

∗
i,Ns ], i = 1, ..., Gd, (4.9)

while for adjoint problems, the neutron and corrected precursor importances are saved in a similar

fashion:

Rφ†g
=[φ†g,1, ..., φ

†
g,Ns

], g = 1, .., Ge, (4.10)

RC†,∗i
=[C†,∗i,1 , ..., C

†,∗
i,Ns

], i = 1, .., Gd. (4.11)

4.2 Generating Reduced Subspaces

In reduced basis techniques, the solution fields are approximated using basis functions with

global support on domain Υ. This section discusses the specific fields that need to be approxi-

mated together with the steps to obtain the corresponding basis functions for the heat transfer, fluid

dynamics and neutronics subproblems.

4.2.1 Reduced Bases for Heat Transfer Subproblem

The field variable associated with this subproblem is the temperature, which can be approxi-

mated using the corresponding global basis-functions (ψT ) as:

T ≈ T̃ =

rT∑
i=1

ψTi c
T
i = ΨTcT . (4.12)

The basis functions of the reduced subspace are generated using the POD procedure from Sec-

tion 2.2.3 without any modifications. The heat transfer subproblem has an additional auxiliary

temperature field which is necessary for the coupling with the neutronics subproblem. This aux-

iliary field (
√
T or ln(T ) depending on the cross section interpolation method) is approximated
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as:

T aux ≈ T̃ aux =

rT aux∑
i=1

ψT
aux

i cT
aux

i = ΨT aux
cT

aux
. (4.13)

The basis functions for the auxiliary temperature has also been generated using the generic POD

technique in Section 2.2.3.

4.2.2 Reduced Bases for Fluid Dynamics Subproblem

In this work two reduction techniques are used for the fluid dynamics equations. The first

technique, introduced in [119] and extended to turbulent flows and finite volume approximation

in [68], employs a one-equation model with an additional physics-based approximation at reduced

level. This method is referred to as POD-FV-ROM in [120], but in this work we denote it as one-

equation ROM to make the comparison to the other approach conspicuous. The second approach

employs a two-equation ROM with supremizer stabilization [67, 69, 121]. The manner in which

the POD bases are generated is slightly different between the one- and two-equation ROMs. In

case of the two-equation ROM, the fluid dynamics related solution fields are approximated as:

uD ≈ ũD =

ruD∑
i=1

ψuDi cuDi = ΨuDcuD , and p ≈ p̃ =

rp∑
i=1

ψpi c
p
i = Ψpcp, (4.14)

where the corresponding basis functions are obtained using the general POD procedure discussed

in Section 2.2.3. It is important to mention that instead of the real velocity, we approximate the

Darcy velocity, since it is smooth in space. This property is advantageous in numerical methods

involving the weak formulation of the given problem (like POD-RB), since the smoother the func-

tions are, the better they can be approximated with global basis functions. Moreover, the fluid

dynamics subproblem has two auxiliary variables as well: the turbulent dynamic viscosity (ηt) and

the turbulent diffusivity (αt). These can also be approximated as:

ηt ≈ η̃t =

rηt∑
i=1

ψηti c
ηt
i = Ψηtcηt , and αt ≈ α̃t =

rαt∑
i=1

ψαti c
αt
i = Ψαtcαt , (4.15)
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where the bases are obtained using the general POD procedure. These fields are crucial for the

simulation of the additional dissipation effects in turbulent flows.

In the case of the one-equation method, the mentioned fields are approximated slightly dif-

ferently. This approach assumes that there is a close correlation between the dynamics of the

velocity, pressure, eddy viscosity and eddy diffusivity modes, therefore the mentioned fields can

be expressed as:

uD ≈ ũD =

ruD∑
i=1

ψuDi cuDi = ΨuDcuD , p ≈ p̃ =

ruD∑
i=1

ψpi c
uD
i = ΨpcuD (4.16)

ηt ≈ η̃t =

ruD∑
i=1

ψηti c
uD
i = ΨηtcuD , αt ≈ α̃t =

ruD∑
i=1

ψαti c
uD
i = ΨαtcuD . (4.17)

Note that the coefficients of the velocity subspace (cuD) are used for every field. Consequently, the

basis vectors of the reduced subspaces have to be obtained in a slightly different manner as well.

After obtaining the eigendecomposition of the velocity correlation matrix as

CuD = V uDW uDV uD,T , (4.18)

the modes for all of the additional fields are selected as follows

ψuDi =
1√
ωuDi

Ns∑
k=0

uD,kV
uD
i,k , ψpi =

1√
ωuDi

Ns∑
k=0

pkV
uD
i,k , (4.19)

ψηti =
1√
ωuDi

Ns∑
k=0

ηt,kV
uD
i,k , ψαti =

1√
ωuDi

Ns∑
k=0

αt,kV
uD
i,k . (4.20)

It is visible that the eigenvectors and the eigenvalues of the velocity correlation matrix are used to

construct the subspaces for every other field variable. This means that, pressure, eddy viscosity

and turbulent diffusivity modes are required to follow the same dynamics as the velocity modes.

This approximation was first introduced in [119] and has been numerically demonstrated to yield

accurate ROMs for some practical applications with inlet-outlet clean (no porous medium) fluid

flows [120].
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Lastly, there is one more auxiliary field which needs to be approximated in case if the obstruct-

ing force (F fr) in the porous medium is considerable. The treatment of this field is the same for

both ROM approaches:

F fr,z ≈ F̃ fr,z =

rF fr,z∑
i=1

ψ
F fr,z
i c

F fr,z
i = ΨF fr,zcF fr,z . (4.21)

where z is the index of the porous medium zone. This means that a separate basis is generated

for the flow resistance in every porous region. These bases are obtained using the regular POD

procedure for both the one-equation and the two-equation techniques.

4.2.3 Reduced Bases for the Neutronics Subproblem

A natural question arises during the generation of reduced subspaces for the neutronics sub-

problem: “How should the multi-group nature of the neutron flux and the precursor concentration

be addressed?”. This topic has been partially investigated in [88] on conventional nuclear reactor

benchmark problems with stationary fuel and without considering precursors. Based on the study,

there are three main approaches:

1. Full neutronics state vectors (ξ) are created by concatenating the corresponding snapshots of

the neutron fluxes and precursor concentrations:

ξi =



φ1,i

...

φGe,i

C∗1,i
...

C∗Gd,i


, i = 1, ..., Ns. (4.22)

One can organize these merged snapshots into a snapshot matrixRξ and carry out the general

POD procedure (Section 2.2.3) to obtain basis functions ψξi , i = 1, ..., rξ, for these combined

state vectors. In this scenario, the weighting matrix M is a block-diagonal matrix with
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Ge +Gd blocks ofMΥ. In this case the neutronics field variables are approximated as:

ξ ≈ ξ̃ =

rξ∑
i=1

ψξi c
ξ
i = Ψξcξ. (4.23)

This means that every group flux and precursor concentration field shares the same coef-

ficients in the reduced subspace. Without precursors, this approach yields accurate results

for fixed source and time-dependent problems. However, it also exhibits a serious weakness

when applied to eigenvalue problems. Based on [88], it turns out that if the neutronics sub-

problem is reduced using this subspace, spurious complex eigenvalues emerge at reduced-

order level with larger magnitudes than the largest eigenvalue of the FOM (keff). This would

pose serious difficulties, since the present work focuses on the comparison of the eigenvalues

with largest magnitudes only.

2. The second approach improves on the previous one by splitting the basis functions ψξi into

sections corresponding to each neutron flux and precursor group:

ψξi =



ψξi,1
...

ψξi,Ge

ψξi,Ge+1

...

ψξi,Ge+Gd



→
...

→

→
...

→

ψφ1

i

...

ψ
φGe
i

ψ
C∗1
i

...

ψ
C∗Gd
i

, i = 1, ..., rξ. (4.24)

This allows the utilization of different coefficients for the corresponding segments of the

combined state vector during the approximation:

φg ≈ φ̃g =

rξ∑
i=1

ψ
φg
i c

φg
i = Ψφgcφg , g = 1, ..., Ge, and (4.25)

C∗g ≈ C̃∗g =

rξ∑
i=1

ψ
C∗g
i c

C∗g
i = ΨC∗gcC

∗
g , g = 1, ..., Gd. (4.26)

This approach allows a group-wise reduction of the neutronics equations. The details of
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this reduction method are discussed in Section 4.3.2.1. Without the presence of precursors,

based on [88], this approach does not exhibit the issue of the method discussed under the

previous bullet. One disadvantage of this method is that the bases for the group fluxes and

precursor concentrations are not group-wise orthonormal and optimal. Furthermore, every

group needs to use rξ basis functions even when there are groups with smoother parameter

dependence which would require fewer.

3. To circumvent the shortcomings of the previous two approaches, [88] proposed another

method which generates reduced subspaces for the group fluxes and precursor concentra-

tions one-by-one without concatenating the snapshots into a single state vector. In this case,

the general POD procedure presented in Section 2.2.3 is carried out using the original snap-

shot matrices Rφg and RC∗g . This allows a flexible selection of the number of bases for

different energy and precursor groups for the approximation:

φg ≈ φ̃g =

rφg∑
i=1

ψ
φg
i c

φg
i = Ψφgcφg , g = 1, ..., Ge, and (4.27)

C∗g ≈ C̃∗g =

rC∗g∑
i=1

ψ
C∗g
i c

C∗g
i = ΨC∗gcC

∗
g , g = 1, ..., Gd. (4.28)

Furthermore, this approach does not exhibit issues in case of eigenvalue problems either.

Of course, the same approaches exist for the adjoint problem as well. Due to the improved flex-

ibility and robustness in case of eigenvalue problems, the last approach has been utilized in this

work. This means that a group-wise basis is built for every forward and adjoint group flux and

precursor concentration. Similarly to the Darcy velocity, the corrected precursor concentrations

are approximated here instead of the real concentrations, due to the fact that they are smooth in

space. This intuitively suggests, that they can be better approximated using global basis functions.
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4.3 Generating the Reduced Operators

The next step in the training phase is the generation of reduced operators. In this work, they are

obtained by using the approximate solutions in Section 4.2 in the governing equations in 3.1 and

applying a Galerkin projection. This means that the same basis vectors are used for the projection,

as for the approximation. The following subsections contain the necessary details for deriving the

final forms of the reduced equations for each subproblem.

4.3.1 Reduced Fluid Dynamics Equations

As already mentioned in terms of the generation of the reduced subspaces, there are two meth-

ods for the generation of fluid dynamics ROMs. The main difference between the two approaches

is the number of reduced equations they employ. The derivation of these two ROMs are discussed

in the following subsections together with the handling of the nonlinear terms and certain stabi-

lization approaches.

4.3.1.1 The Two-equation Reduced-Order Model

To derive this reduced-order model, approximations (4.14), (4.15) and (4.12) are plugged into

Eqs. (3.5)-(3.6) and the bases in (4.14) are used for the projection:

〈
ψuD
i ,

∂ρũD
∂t

+
1

γ
∇ · (ρũD ⊗ ũD)−∇ ·

(
(η + η̃)

[
∇ũD + (∇ũD)

T
])

+γ∇p̃− γF p − γF̃ fr − γρgβth(T̃ − Tref )
〉

Υ
= 0 i = 1, ..., ruD , (4.29)

〈ψpi , ∇ · ρũD〉Υ = 0, i = 1, ..., rp, (4.30)

Note that the approximate solutions can be expressed as the linear combinations of the correspond-

ing basis functions, and therefore, the above formulation can be written purely in terms of basis

function-dependent reduced operators and time- and parameter-dependent coefficients. Before

discussing the complete reduced equations, it is noted that in this work, ρ, η, βth, Tref and g are

constants while γ can vary in space, but not in time or parameter space. Using these assumptions,
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the two-equation reduced fluid dynamics equations can be expressed as:

ρMċuD + ρcuD,TCcuD − cη,TTcuD − ηDcuD + Pcp + Γ(BcuD − |uD,in|SBDr ) (4.31)

−
Z∑
z=1

(
|F p,z|Sp,z − Sfr,zcF frz

)
− ρβth(AcT − TrefST ) = 0, (4.32)

ρGcuD = 0 (4.33)

where the matrices and vectors are denoted by bold, while higher order tensors have been distin-

guished by adding an additional double bar symbol on the top. Furthermore, index z denotes the

porous medium zones in the domain. The elements of the low-order operators in the equations

above are computed as:

M i,j =
〈
ψuDi , ψuDj

〉
Υ

Ci,j,k =

〈
ψuDj ,

1

γ
∇ · (ψuDi ⊗ ψuDk )

〉
Υ

Di,j =
〈
ψuDi ,∇ ·

[
∇ψuDj + (∇ψuDj )T

]〉
Υ

P i,j =
〈
ψuDi , γ∇ψpj

〉
Υ

Bi,j =
〈
ψuDi , ψuDj

〉
Γin

Sp,z,i =

〈
ψuDi , γ

δz(r)F p,z

|F p,z|

〉
Υ

SBDr,i =

〈
ψuDi ,

uin
|uin|

〉
Γin

Gi,j =
〈
ψpi ,∇ · ψuDj

〉
Υ
,

T i,j,k =
〈
ψuDj ,∇ ·

(
ψηti
[
∇ψuDk + (∇ψuDk )T

])〉
Υ

Sfr,z,i,j =
〈
ψuDi , δz(r)ψ

F fr,z
j

〉
Υ

Ai,j =
〈
ψuDi , gψTj

〉
Υ

ST,i = 〈ψuDi , g〉Υ

In this context, δz(r) is a selection function (also known as characteristic function) which returns 1

if r is in porous medium zone z and 0 otherwise. Furthermore, The term Γ(BcuD−|uD,in|SBDr ) in

the reduced momentum equation is responsible for weakly enforcing the inlet boundary conditions.

It contains a constant penalty factor Γ which, in practice, should be large enough to enforce the

boundary condition, but not too large in order to avoid ill-conditioned reduced operators. This

approach has been widely used in methods involving the weak formulation (e.g., spectral methods,

finite element methods) of equations describing fluid flows [122, 123]. Tensor T is only used for
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turbulent problems, in laminar scenarios it is a zero tensor.

Before system (4.29)-(4.30) can be solved to obtain cuD and cp, three main questions need to

be addressed:

i In this form, the two-equation ROM is not stable due to the fact that the Ladyzhenskaya-

Babuska-Brezzi (LBB) condition [124] is not necessarily satisfied.

ii The coefficients of the eddy viscosity are still unknown. The computation of these coefficients

from reduced forms of eddy-viscosity models is not utilized by the fluid-dynamics ROM com-

munity, therefore a data-based approach, Radial-Basis Function (RBF) interpolation is chosen

in this work.

iii The coefficients of the flow resistances are still unknown. In this work, the Discrete Empiri-

cal Interpolation Method (DEIM) is used for the determination of these models based on the

coefficients of the Darcy velocity.

These concerns are addressed in detail in the subsequent sections. Lastly, it is important to note

that the coefficients of the temperature (cT ) are fixed to the latest solution of the reduced heat

transfer equation during the fluid ROM solves.

4.3.1.2 Stabilization of the Two-Equation ROM

It must be noted that as the linear combination of divergence-free snapshots, the velocity basis

functions are divergence-free as well. This entails that the entries of matrix G are zero, render-

ing the simultaneous determination of the pressure and velocity coefficients impossible. In other

words, the reduced system does not satisfy the Ladyzhenskaya-Babuska-Brezzi (LBB) condition

for saddle point problems [124] which can be written as:

inf
ψpj

sup
ψ
uD
i

〈
ψpj ,∇ · ψuDi

〉
||ψuDi ||H1||ψpj ||L2

= inf
ψpj

sup
ψ
uD
i

Gi,j

||ψuDi ||H1||ψpj ||L2

= β > 0. (4.34)

for the porous Navier-Stokes equations. Based on [67], there are two approaches to tackle this

problem for cases with finite volume spatial discretization. One can either construct a Pressure
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Poisson Equation at the reduced-order level and solve it together with the reduced momentum

equations, or augment the velocity reduced subspace with supremizer basis functions [125]. Due

to the fact that the Pressure Poisson approach yields models with high errors in the pressure fields,

the supremizer stabilization has been used in this work. The essence of this method is that addi-

tional stabilizing, so called supremizer basis functions are added to the velocity space. In prac-

tice, approximate supremizer modes are computed with the following procedure [125]. First, a

supremizer field, s, is computed for every pressure snapshot during the offline phase by solving

the following Poisson problem

∆si = −∇pi, r ∈ Υ, i = 1, ..., Ns (4.35)

si = 0, r ∈ Γ. (4.36)

These supremizer fields are then saved into a supremizer snapshot matrix,

Rs = [s1, ..., sNs ]

and the same POD procedure as described in Section 2.2.3 is applied to obtain the supremizer

modes. Following this, the velocity basis has to be augmented using these modes in the following

manner:

ΨuD = [ψuD1 ψuD2 · · · ψuDruD ψ
s
1 · · ·ψsrs ]

A simple rule of thumb is that as many supremizer modes should be added to the velocity basis as

pressure modes are used. Fewer modes may be used; however, including more supremizer modes

may considerably decrease the accuracy of the velocity field. Also note that the velocity basis

functions are not orthonormal after the enrichment.

4.3.1.3 Determination of the Coefficients of Eddy Viscosity

The following description is partially reprinted from [3]. In case of the two-equation ROMs and

turbulent flows, an efficient way of computing the cηt = f(cu, cp) closure is essential. For flows
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with heat and precursor transfer, the coefficients of the eddy diffusivity, αt, need to be computed

as well. At the full-order level, the eddy viscosity and diffusivity are determined by using various

eddy viscosity models. The reduction of the surrogate equations in these models is not common

practice in the reduced-order modeling community due to the fact that they are highly nonlinear

and their applicability can be case-dependent. Alternatively, the Radial Basis Function (RBF) in-

terpolation approach proposed in [69, 121, 126] is used in this work. In general, RBF interpolation

has been proven to be an efficient technique for multidimensional scattered data [127]. In this sec-

tion, the method is demonstrated using the eddy viscosity only, however the same technique is used

for the eddy diffusivity as well. In this method, the original functional dependence of the turbulent

viscosity cηt = f(cu, cp) is approximated by a function that depends only on the input/uncertain

parameters and time cηt ≈ f(µ, t). This means that, during the snapshot generation part in the

offline phase, the extended parameter vectors π = [µ, t] have to be saved for every snapshot. One

can notice that time is considered to be just another parameter in this approach, which limits the

applicability of the method for potential extrapolation in time.

As a first step, we compute the L2 coordinates of the eddy viscosity snapshots. This is achieved

by generating scalar products in the following form

cηti,k = 〈ηk, ψηti 〉Υ , i = 1, ..., rηt,t and k = 1, ..., Ns . (4.37)

In other words, cηti,k is the L2 coordinate of snapshot k corresponding to basis function i in the

reduced subspace built for the eddy viscosity. Now, these L2 coordinates can be interpolated using

the stored π vectors and radial basis functions. This scheme can be written in the following form

for the i-th component of cηt:

cηti (π∗) =
Ns∑
k=1

ξ(||π∗ − πk||L2)wi,k, (4.38)

where π∗ is a new extended parameter vector sample for which cηt,i needs to be determined. More-

over, ξ denotes the radial basis functions with w weights. In this work Gaussian radial basis
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functions are used, which can be defined as

ξ(ri,j) = e−car
2
i,j , (4.39)

with an attenuation parameter ca and ri,j = ||πi−πj||L2 . At this point the only missing pieces are

the weights used for the interpolation. These are determined for every component of cηt indepen-

dently. For the i-th component the weights can be obtained by solving a linear system of equations

where the j-th row is written as

Ns∑
k=1

ξ(||πj − πk||L2)wi,j = cηti,k, with j, k = 1, ..., Ns. (4.40)

An advantage of this method is that the computation of the L2 coefficients of the eddy viscos-

ity and the interpolation weights can be done during the training phase alone. After this, in the

online/evaluation phase, when π∗ changes, only Eq. (4.38) has to be evaluated. However, this

method exhibits weaknesses on two fronts. First, if the number of snapshots is large, evaluating

Eq. (4.38) at each time step can be still considerable compared to the other operations at reduced

level. Second, this method cannot be used for extrapolation, meaning that π∗ should be within the

bounds of the training set.

Finally, it is important to note that in multi-dimensional parameter space, the accuracy of this

method can be improved if the interpolation is carried out on a reference domain where the dis-

tances between different samples do not vary considerably. The sample points for the numerical

examples in this paper are considered to be the nodes of an orthogonal grid. This grid is presented

on the left side of Figure 4.1. Depending on the absolute values of uncertain parameters, the dis-

tances in one specific direction can be considerably larger than in others. Due to the fact that in

this work the attenuation parameter in the radial basis function is considered to be the same for

every direction and interpolation point, this may have a negative effect on the accuracy. Therefore,

the original parameter grid is mapped onto a uniform grid. This ensures that the variation of the

solution in every direction has the same importance. One can think about this mapping as a combi-
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nation of scaling and translation in each direction. The linear mapping between this reference grid

and the original one is also presented in Figure 4.1.

µ0
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Figure 4.1: Transformation of the parameter space used for the radial basis function interpolation.
Reprinted from [3]. (left: original orthogonal grid, right: transformed/projected grid.)

4.3.1.4 Determination of the Coefficients of the Flow Resistance

The coefficients for every porous medium zone, cF frz , are computed using the DEIM procedure

described in Section 2.2.4.2. In this work, the correlation function described in Eq. (3.16) is used,

therefore the coefficients are determined as:

c
F fr
z =

(
P T
z ΨF fr,z

)−1
P T
z F fr(Ψ

uDcuD), (4.41)

where P T
z is the matrix which selects the interpolation points in porous medium zone z.

4.3.1.5 One-Equation Reduced-Order Model

The one equation ROM has been first introduced for finite volume discretization in [68] and

has been previously referred to as POD-FV-ROM. In this scenario, every approximated fluid flow-

related field (except the flow resistance) is assumed to have the same coefficients, therefore it is

enough to reduce and solve the momentum equation:

〈
ψuD
i ,

∂ρũD
∂t

+
1

γ
∇ · (ρũD ⊗ ũD)−∇ ·

(
(η + η̃)

[
∇ũD + (∇ũD)

T
])

+γ∇p̃− γF p − γF̃ fr, − γρgβth(T̃ − Tref )
〉

Υ
= 0, i = 1, ..., ruD , (4.42)
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As a next step, the approximate fields are expressed as the linear combinations of the corresponding

basis functions and the operators in Eq. (4.42) are reduced to arrive to following equation:

ρMċuD + ρcuD,TCcuD − cuD,TTcuD − ηDcuD + PcuD + Γ(BcuD − |uD,in|SBDr )

−
Z∑
z=1

(
|F p,z|Sp,z − Sfr,zcF frz

)
− ρβth(AcT − TrefST ) = 0, (4.43)

where the matrices and vectors are computed using the formulas described in Section 4.3.1.1 with

the basis functions determined as in Eq. (4.19). The coefficients for flow resistances are computed

using the method in Section 4.3.1.4.

4.3.1.6 Notes on Accuracy

Before moving on to the neutronics equations, it must be mentioned that the accuracy of both

fluid ROM methods can be limited. In case of the two-equation ROM, this limitation comes from

two main sources. Part of it comes from the inclusion of the supremizer modes. The presence of

these modes is necessary for stabilization purposes, but they do not represent any physics and their

overuse can even decrease the accuracy in velocity and, in certain cases, in pressure as well. The

second part of the discrepancy between the two-equation ROM and the FOM comes from the fact

that PIMPLE iteration is used to solve Eqs. (3.6)-(3.5) in the FOM, which requires the construction

of the numerical approximation of a Pressure Poisson equation in OpenFOAM c© [116]. This means

that the two-equation ROM presented in this paper is not entirely numerically consistent with

the FOM. Since only the momentum equation is used in case of the one-equation method, we

have this numerical consistency. However, the physics-based approximation may not apply in

certain scenarios, which can result in considerable errors. For clean fluid, a comparison of these

techniques is available in [3] where these limitations are discussed in great detail with the help of

two numerical examples.

Aside from the previously mentioned factors, there can be an additional contributor to the error

between the the fluid ROMs and the FOM. The origin of this error is the advection term, discussed
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in Section 3.2, which can be discretized as:

∫
ΥP

∇ · (θρu)dV =

∫
ΓP

θρu · ndS ≈
∑
f

θfρfuf · Sf , (4.44)

saying that the scheme requires the value of variable θ on the faces of a given cell ΥP . However, in

upwind discretization schemes the value of θ on the face depends on the velocity uf on the same

face:

θf ≈

 θown if uf · Sf > 0

θneighbor if uf · Sf < 0,

During the reduction of the advection terms with a velocity approximated by the sum of basis

functions, the discretized operator in one cell will become:

∑
i

θfρf

ru∑
j=1

ψuj,fc
u · Sf . (4.45)

The issue in this case is that these integrals are evaluated separately for each basis function used

for u, meaning that depending on the current basis function, a different value of θf is used. This

means that the discretization scheme for the individual modes will not necessarily be the same as

the one with the reconstructed velocity. This only causes problems for mainly first order upwind

schemes and is still the topic of ongoing research. For higher order schemes, where the values are

interpolated to the faces or for very fine meshes, this discrepancy can be negligible. Nevertheless,

most of the models used for real-life applications utilize first order upwind schemes with relatively

coarse mesh meaning that this issue can be a considerable contributor to errors between the ROMs

and the FOM.

4.3.2 Reduced Neutronics Equations

As already discussed in Section 4.2.3, a group-wise reduction is used in this work which in-

volves the generation of bases for group fluxes and precursor concentrations. This section reviews

the generation of reduced equations for these field variables together with the treatment of the
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temperature- and density-dependent cross sections at reduced-order level.

4.3.2.1 Reduced Equations for the Group Fluxes

Using the approximations in Section 4.2.3 for the group fluxes and precursor concentrations,

the reduced equations for the scalar flux in group g can be derived from the following weak form:

〈
ψ
φg

k ,
1

vg

∂φ̃g
∂t
−∇ ·

[
Dg∇φ̃g

]
+ Σt,gφ̃g −

(
1− β

)
χp,g

keff

Ge∑
g′=1

νg′Σf,g′ φ̃g′

−
Ge∑
g′=1

Σs,g′→gφ̃g′ − χd,g
Gd∑
i=1

λiγC̃
∗
i

〉
Υ

= 0, k = 1, ..., rφg (4.46)

For the time being, the temperature and density dependence of the cross sections is neglected,

temperature-dependent scenarios will be discussed separately, in Section 4.3.2.5. As a next step,

the expansions in Section 4.2.3 are plugged into Eq. (4.46), and the reduced equation for the scalar

flux in group g can be expressed as:

(
Nz∑
z=1

1

vzg
Mz

g,g

)
ċφg +

(
Nz∑
z=1

−Dz
gK

z
g + Σzt,gM

z
g,g

)
cφg =

1

kreff

Ge∑
g′=1

(
Nz∑
z=1

(1− βz)χzp,gνzg′Σzf,g′Mz
g,g′

)
cφg′

+

Ge∑
g′=1

(
Nz∑
z=1

Σzs,g′→gM
z
g,g′

)
cφg′ +

Gd∑
i=1

(
Nz∑
z=1

χzd,gλ
z
iP

z
g,i

)
cC
∗
i (4.47)

which assumes that the cross sections are region-wise constant with the index z denoting the cor-

responding material region. For a similar, but considerably simpler example, see Chapter 2. Using

the characteristic function δz(r) which returns 1 if r is in material region z and 0 otherwise, the

elements of the operators in the reduced flux equation can be expressed as

(
M z

g,g′

)
i,j

=
〈
ψ
φg
i , δz(r)ψ

φg′
j

〉
Υ
,

(
Kz

g

)
i,j

=
〈
ψ
φg
i , ∇ ·

(
δz(r)∇ψ

φg
j

)〉
Υ
, (4.48)(

P z
g,k

)
i,j

=
〈
ψ
φg
i , δz(r)γψ

C∗k
j

〉
Υ
. (4.49)

These operators are the same for the reduced eigenvalue equations as well. However, in such

scenarios, it has to be ensured that the coefficients of the eigenvectors are normalized in a way
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which is consistent with the normalization of the flux at full-order level. As discussed in Eq.

(3.35), the eigenvectors of the FOM are normalized to ensure a pre-defined power output:

Pth =

∫
Υ

∞∫
0

Σp(r, E)φ(r, E)dEdΥ ≈
Ge∑
g=1

〈Σp,gφ
g〉Υ ≈

Ge∑
g=1

rφg∑
i=1

〈
Σp,gψ

φg
i

〉
Υ
c
φg
i , (4.50)

which ensures that the coefficients cφgi are normalized in a way that the reconstructed eigenvector

is directly comparable with the one obtained from the FOM.

Before moving on to the reduced equations for the precursors concentrations, the treatment

of the boundary conditions is addressed. The formulation in Eq. (4.47) works for only specific

boundary conditions like zero value or reflective. This is due to the fact that the basis functions

computed using snapshots with homogeneous Neumann or Dirichlet conditions on the boundaries

conserve these properties. However, in case of homogeneous Robin boundary conditions, for

example, this is not satisfied. For such cases, the computation of Kz
g is slightly different. To

discuss this difference we first have to understand how the differential operators are approximated

in the OpenFoam R© framework. As already described in Section 3.2, the integral of the Laplacian

operator in the neutron diffusion equation is approximated in a single cell as:

∫
ΥP

∇ · (Dg∇φg) dV ≈
∑
f

Dg,f∇φg,f · Sf , (4.51)

which is the weighted sum of the surface normal gradients. Therefore, the Laplacian is approxi-

mated within cell P as a constant (still FVM) by simply dividing this value by the volume of the

cell (VP ):

[∇ · (Dg∇φg)]P ≈

∑
f

Dg,f∇φg,f · Sf

VP
. (4.52)

If the cell is on the boundary, this expression can be split into three components:

∑
f

Dg,f∇φg,f · Sf

VP
=

Nint∑
f

Dg,f∇φg,f · Sf

VP
+

Next∑
f

CBC
int φg,fSf

VP
+

Next∑
f

CBC
extSf

VP
, (4.53)
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where Nint and Next are the internal and external (where BC is applied) faces of the cell, while

CBC
int and CBC

ext are the boundary condition-dependent coefficients which add an additional term on

the diagonal and to the source term of the linear system, respectively. In case of homogeneous

Robin boundary conditions CBC
ext = 0 and CBC

int = γr, meaning that the last term does not have to

be computed. In case of homogeneous Neumann conditions both CBC
ext and CBC

int are zero. In case

of homogeneous Dirichlet conditions, however CBC
ext = 0, while CBC

int = 1
h

, where h is the distance

between the center of the boundary face and the cell center. If this is carried out for every cell, the

reduced diffusion term in Eq. (4.47) splits into three additional terms:

(
Nz∑
z=1

−Dz
gK

z
g

)
cφg +

(
NBC∑
b=1

K int,b
g

)
cφg +

(
NBC∑
b=1

kext,b
g

)
, (4.54)

where the elements of the modified reduced terms can be computed using the reduced-basis ap-

proximates together with a Galerkin projection similarly to the original case. However, in this

scenario there are additional terms corresponding to the potential contributions to the system ma-

trix
(
K int,b

g

)
and source vector

(
kext,b
g

)
coming from the boundary conditions. This practice has

been followed for every differential operator whenever necessary in the following subproblems as

well. In case of the fluid dynamics subproblem, a penalty treatment was chosen to enforce non-zero

Dirichlet Boundary conditions.

4.3.2.2 Reduced Equations for the Precursor Concentrations

Similarly to the flux equations, the reduced form of the precursor equation for group i can be

derived from the following weak form

〈
ψ
C∗i
k ,

∂C̃∗i
∂t

+ ∇ ·
[
uDC̃

∗
i

]
−∇ ·

([
αl
ρ

+
αt
ρ

]
∇C̃∗i

)

− βi
keff

Ge∑
g′=1

νg′Σf,g′φ̃g′ + λiC̃
∗
i γ
〉

Υ
= 0, k = 1, ..., rC∗i (4.55)
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where the approximations in Eq. (4.26) and (4.25) together with Eq. (4.14) are used to generate

the reduced operators as:

(
Nz∑
z=1

Mz
i

)
ċC
∗
i + cuDAic

C∗i − αl
ρ
Kic

C∗i − cαt
1

ρ
Dic

C∗i =

−
(
Nz∑
z=1

λziM
z
i

)
cC
∗
i +

1

kreff

Ge∑
g′=1

(
Nz∑
z=1

βzνzg′Σ
z
f,g′F

z
i,g′

)
cφg′ , (4.56)

where region-wise constant neutronics properties are assumed. The elements of the matrices and

tensors in the equation above can be computed using the characteristic function δz(r) as

(M z
k)i,j =

〈
ψ
C∗k
i , δz(r)ψ

C∗k
j

〉
Υ
,

(
F z
k,g

)
i,j

=
〈
ψ
C∗k
i , δz(r)ψ

φg
j

〉
Υ
, (4.57)

(K l)i,j =
〈
ψ
C∗k
i , ∇2ψ

C∗k
j

〉
Υ
,

(
Al

)
i,j,k

=
〈
ψ
C∗l
i , ∇ · (ψuDk ψ

C∗l
j )
〉

Υ
, (4.58)(

Dl

)
i,j,k

=
〈
ψ
C∗k
i , ∇ · (ψαtk ∇ψ

C∗k
j )
〉

Υ
. (4.59)

In this reduced-order model, the coefficients for the velocity and eddy diffusivity are given by

solving the fluid dynamics ROM and keeping them fixed during the fixed-point iterations of the

reduced neutronics subproblem.

4.3.2.3 Reduced Form of the Adjoint Problem

Similarly to the forward problem discussed above, the reduced equations for the adjoint flux

and precursor concentrations can be derived by taking the inner product of Eqs. (3.37) and (3.38)

with the approximate multi-group solutions and ψ
φ†g
j and ψ

C∗†i
k as test functions (g = 1, .., Ge,

i = 1, ..., Gd, j = 1, .., rφ†g , k = 1, .., rC∗†i
). In this section only the final forms of the equations are

discussed with the assumption that the neutronics parameters are material region-wise constant.

82



The reduced-order equation for the adjoint flux in group g can therefore be expressed as:

(
Nz∑
z=1

−Dz
gK

z
g + Σzt,gM

z
g,g

)
cφ
†
g =

1

kreff

Ge∑
g′=1

(
Nz∑
z=1

(1− βz)χzp,g′νzgΣzf,gM
z
g,g′

)
c
φ†
g′

+

Ge∑
g′=1

(
Nz∑
z=1

Σzs,g→g′M
z
g,g′

)
c
φ†
g′ +

1

kreff

Gd∑
i=1

(
Nz∑
z=1

νzgΣzf,gβ
z
i P

z
g,i

)
cC
∗,†
i (4.60)

where the elements of the reduced matrices can be computed as:

(
M z

g,g′

)
i,j

=

〈
ψ
φ†g
i , δz(r)ψ

φ†
g′
j

〉
Υ

,
(
Kz

g

)
i,j

=
〈
ψ
φ†g
i , ∇ ·

(
δz(r)∇ψ

φ†g
j

)〉
Υ
, (4.61)

(
P z
g,k

)
i,j

=

〈
ψ
φ†g
i , δz(r)γψ

C†,∗k
j

〉
Υ

. (4.62)

The corresponding adjoint precursor equations can be expressed as:

cuDAic
C†,∗i − αl

ρ
Kic

C†,∗i −cαt
1

ρ
Dic

C†,∗i = −
(
Nz∑
z=1

λziM
z
i

)
cC
†,∗
i +

Ge∑
g′=1

(
Nz∑
z=1

λziχ
z
d,g′,iF

z
i,g′

)
c
φ†
g′ , (4.63)

where the reduced operators are defined as:

(M z
k)i,j =

〈
ψ
C†,∗k
i , δz(r)ψ

C†,∗k
j

〉
Υ

,
(
F z
k,g

)
i,j

=

〈
ψ
C†,∗k
i , δz(r)ψ

φ†g
j

〉
Υ

, (4.64)

(K l)i,j =

〈
ψ
C†,∗k
i , ∇2ψ

C†,∗k
j

〉
Υ

,
(
Al

)
i,j,k

=

〈
ψ
C†,∗l
i , ∇ · (ψuDk ψ

C†,∗l
j )

〉
Υ

, (4.65)(
Dl

)
i,j,k

=

〈
ψ
C†,∗k
i , ∇ · (ψαtk ∇ψ

C†,∗k
j )

〉
Υ

. (4.66)

4.3.2.4 Determination of βeff

As already mentioned, the determination of the effective delayed neutron precursor yield is

crucial in Molten Salt Reactors. As we will show, it is possible to generate an approximate value

for this quantity without reconstructing the approximate solutions with the ROMs. This means

that it is enough to have the coefficients for the adjoint flux, cφ
†
g , the forward flux, cφg , and the

forward precursor concentrations, cC∗i to compute this quantity, therefore no full-order operation
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is performed. This can be shown by first inserting the approximations (4.26) and (4.25) into Eq.

(3.39) and using the multi-group nature of the problem as

βeff,i =

Ge∑
g=1

〈
φ̃†g , χd,gλiγC̃

∗
i

〉
Υ

Ge∑
g=1

〈
φ̃†g , χd,g

Gd∑
j=0

λjγC̃∗j + χp,g
Ge∑
g′=1

νg′Σf,g′φ̃g′

〉 , (4.67)

which can be further simplified into the following form by assuming that the cross sections are

region-wise constant:

βeff,i =

Ge∑
g=1

cφ
†
g ,T

(
Nz∑
z=1

χzd,gλ
z
iA

z
g,i

)
cC
∗
i

Ge∑
g=1

cφ
†
g ,T

[
Gd∑
j=0

(
Nz∑
z=1

χzd,gλ
z
jA

z
g,j

)
cC
∗
j +

Ge∑
g′=1

(
Nz∑
z=1

χzp,gν
z
g′Σ

z
f,g′F

z
g,g′

)
cφg′

] , (4.68)

where the corresponding matrices can be generated using the characteristic function δz(r) and the

porosity γ as

(
Az
g,l

)
i,j

=
〈
ψ
φ†g
i , δz(r)γψ

C∗l
j

〉
Υ

and
(
F z
g,g′

)
i,j

=
〈
ψ
φ†g
i , δz(r)ψ

φg′
j

〉
Υ
. (4.69)

These matrices are precomputed in the training phase and used only when βeff needs to be eval-

uated. The total effective delayed neutron yield is then computed as the sum of the group-wise

yields.

4.3.2.5 Treatment of The Neutronics Cross Sections

So far, the group constants in the neutronics equations have been considered to be material

zone-wise constant. This is a good approximation for zero-power reactors, where the temperatures

of the fuel, moderator, coolant and other structural elements do not change from a reference value.

In power reactors, however, this is not the case and, as already stated in Section 3.2.4, the group

constants in the neutronics equations are temperature- and density-dependent. Ultimately, both

feedback can be traced back to the changing temperature. While the density is assumed to change
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linearly with the temperature, the Doppler feedback is proportional to the logarithm or square root

of the temperature, depending upon whether the nuclear reactor operates with a predominantly fast

or thermal neutron spectrum. Therefore, the cross sections can be described as:

Σ(T ) ≈ Σref + δFT (T aux − T aux
ref ) + δFDβthρ (T − Tref) , (4.70)

where T aux is an auxiliary temperature which is either the logarithm of the square root of the

absolute temperature. The definitions of δFT and δFD are available in Section 3.2.4, and they are

assumed to be material region-wise constant as well together with Σref , while βth, ρ and Tref are

global constants. In this section, we present the way the temperature dependence of the group

constants are handled on a reaction term in the forward flux equation with a general cross section:

Σgφg, (4.71)

but it must be mentioned that this method can be (and has been) applied to every term in each

expression that contained temperature dependent cross sections. In the original approach involving

a Galerkin projection and temperature-independent group constants, the corresponding reduced-

order term of Eq. (4.71) becomes:

(
Nz∑
z=1

Σz
gM

z
g,g

)
cφg , (4.72)

where z denotes the material zone index, M z
g,g the corresponding mass matrix (defined in Sec-

tion 4.3.2.1) and cφg the coefficients of the ROM. Now, we recall that throughout the generation

of reduced subspaces, basis functions of T and T aux have already been computed. These basis

functions will be used here to derive a temperature dependent form of Eq. (4.72). As a first step,

expression (4.70) is plugged into Eq. (4.71) and the field variables are approximated as described
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in Section 4.2:

Σg(T )φg ≈ [Σref + δFT (T aux − T aux
ref ) + δFDβthρ (T − Tref)]φg

≈
[
Σref + δFT

(
T̃ aux − T aux

ref

)
+ δFDβthρ

(
T̃ − Tref

)]
φ̃g. (4.73)

Next, we take the weak form with using the basis functions of φg as test functions:

〈
ψ
φg
j ,

[
Σref + δFT

(
T̃ aux − T aux

ref

)
+ δFDβthρ

(
T̃ − Tref

)]
φ̃g

〉
Υ
, j = 1, ..., rφg . (4.74)

These inner products are then evaluated using the basis functions of T , T aux and φg, entailing that

the equation can be written in the following, simplified form:(
Nz∑
z=1

Σz
refM

z
g,g + δzFT

(
cT

aux,TA
z

FT,g − T aux
ref M

z
g,g

)
+ δzFDβthρ

(
cT,TA

z

FD,g − TrefM
z
g,g

))
cφg ,

(4.75)

where the fact that the feedback coefficient (δF∗-s) are material-wise constant is used. The ele-

ments of the reduced operators (matrices/tensors) can be computed using the δz(r) characteristic

functions as

(
M z

g,g

)
i,j

=
〈
ψ
φg
i , δz(r)ψ

φg
j

〉
Υ
,

(
A
z

FT,g

)
i,j,k

=
〈
ψ
φg
i , δz(r)ψT

aux

k ψ
φg
j

〉
Υ
, (4.76)(

A
z

FD,g

)
i,j,k

=
〈
ψ
φg
i , δz(r)ψTk ψ

φg
j

〉
Υ
. (4.77)

This approach can be applied for every other term involving group constants in the equations for

the forward/adjoint scalar flux and precursor concentration, the heat transfer equation, the expres-

sion for βeff and the normalization of the flux in case of eigenvalue problems. Furthermore, the

coefficients cT are computed in the reduced heat transfer equation (discussed soon) while the el-

ements of cT aux are determined using the DEIM method discussed in Section 2.2.4.2. The DEIM

procedure computes coefficients for cT aux based on the actual cT .

Note that in this work, DEIM is utilized to connect the absolute temperature with the auxiliary
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temperature instead of connecting the absolute temperature with every nonlinear term involving

the temperature-dependent group constants. This results in savings in both computation time and

memory. The method used in this work has been published in [91] for the fuel temperature feed-

back.

4.3.3 Reduced Heat Transfer Equation

The heat transfer equation is reduced using the approximations discussed in Section 4.2 to-

gether with considering the multi-group approach for the integrals in the heat source. Applying a

Galerking projection with the basis functions of the temperature (ψTi , i = 1, ..., rT ), we arrive to

the following form:〈
ψTi ,

∂γρcpT̃

∂t
+ ∇ · (uDρcpT̃ )−∇ ·

(
γ [kl + cpαt]∇T̃

)
+ hAV (T̃ − Text)− γ

Ge∑
g=1

〈
Σp,gφ̃g

〉〉
= 0. (4.78)

Before describing the final form of the reduced heat transfer equation, we note that it is assumed

that Av, h and Σp are region-wise constant, while cp, ρ and kl are constants on the entire domain.

With these in mind, the reduced heat transfer equation becomes

ρcpMγ ċ
T + ρcpc

ud,TAcT − klK lc
T − cpcαt,TKtc

T =

−
(
Nz∑
z=1

hzAzVM
z

)
cT +

(
Nz∑
z=1

hzAzV Texts
z
h

)
+

Ge∑
g=1

(
Nz∑
z=1

Σp,gS
z
p,g

)
cφg , (4.79)

where the elements of the reduced operators can be computed using the following expressions

(M γ)i,j =
〈
ψTi , γψ

T
j

〉
Υ
,

(
A
)
i,j,k

=
〈
ψTi , ∇ ·

(
ψuDk ψTj

)〉
Υ
, (4.80)

(K l)i,j =
〈
ψTi , ∇ ·

(
γ∇ψTj

)〉
Υ
,

(
Kt

)
i,j,k

=
〈
ψTi , ∇ ·

(
γψαtk ∇ψTj

)〉
Υ
, (4.81)

(M z)i,j =
〈
ψTi , δz(r)ψTj

〉
Υ
, (szh)i =

〈
ψTi δz(r)

〉
Υ
, (4.82)(

Szp,g
)
i,j

=
〈
ψTi , δz(r)γψ

φg
j

〉
Υ
. (4.83)

Again, characteristic function δz(r) is used to select the corresponding mesh domain for zone z. It

must be mentioned that for the sake of simplicity, a constant power cross section was assumed in
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the formulation above. For temperature-dependent cross sections, one has to use the formulation

from Section 4.3.2.5. This equation is solved for cT , while cαt and cuD ensure the coupling with

the fluid dynamics sub-problem and cφg are obtained by solving the neutronics equations.
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5. REDUCED-ORDER MODEL FRAMEWORK AND ONLINE EVALUATION PHASE

The evaluation/online phase of the ROM is covered in this section. Based on Figure 2.1, this

includes the assembly of the reduced equations derived in Chapter 4 together with the iterative

solution of the problem and the evaluation of the Quantities of Interest (QoIs). To demonstrate the

applicability of the methods discussed so far, a computational framework has been developed as an

extension of finite volume method based multiphysics solver GeN-Foam. A short overview of this

framework is presented as well. We conclude this chapter by discussing the error indicators and

other measures used to assess the quality of the ROMs together with the approach we utilize for

uncertainty quantification and sensitivity analysis throughout the numerical examples presented

later in this work.

5.1 Assembling the Reduced-Order Model

As already discussed in Chapter 2, the assembly of the reduced-order equations is a fast op-

eration, given that the full-order operators have an affine behavior in the parameters. In the for-

mulations discussed in Chapter 4, the equations are definitely affine in the neutronics and ther-

mophysical parameters. This means that once the reduced constituent operators are precomputed

in the offline or training phase, the assembly of the ROM requires operations which involve the

summation and multiplication with a scalar of small, dense matrices and vectors. Therefore, this

phase is computationally cheap compared to the execution of the FOM.

5.2 Iteration Strategy

The reduced-order equations are solved using a fixed-point iteration scheme with multiple in-

ner iterations between different sub-problems. The general iteration strategy used in this work

is presented in Figure 5.1. It must be mentioned that for certain primitive solvers within the built

ROM framework, this iteration scheme can be much simpler. The presented flowchart assumes that

a ROM for every physics component is solved in a turbulent flow domain and these components

are coupled to each other. Furthermore, we present the iteration strategy with a transient problem,
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however in case of steady state scenarios, there is only one time step, from the initial guess to the

final solution.

The iteration within a time step starts with determining the reduced-order coefficients of the

turbulent viscosity and diffusivity. Since these are handled by RBF interpolation and depend only

on time and model parameters, it is enough to do it once, at the beginning of each time step.

Then, we enter the outer-iteration cycle which couples the fluid ROM, energy ROM and neutronics

ROM solves. To converge the nonlinearities present in the fluid ROM system (i.e., convection

term and the flow resistance), an inner cycle iteration has been implemented. It is visible that in

contrast to the FOM, the solution of the ROM is not segregated, therefore does not need pressure

correctors and non-orthogonal correctors. Another inner cycle exists to iterate between the fluid

and energy ROMs in case of buoyant flows. This is especially important for buoyancy-driven

scenarios. Another inner iteration cycle follows this in order to resolve the coupling between the

energy and neutronics equations. This is only considered if the cross sections are temperature-

dependent.

New
time step

Determination of
cαt and cηt using

RBF interpol.
Solve fluid ROM

for cuD , cp

Fluid iter.

Solve energy
ROM for cT

Velocity-
temperature

iter.

Solve neutronics
ROM for cφg , cC

∗
i

Energy-
neutro. iter.

Outer iter.

Solve adjoint
neutronics ROM

for cφ
†
g , cC

†,∗
i

Figure 5.1: The coupling scheme of the Reduced-Order Models. (solid lines - the default coupling,
dashed lines - possible inner iterations)
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It is visible that the adjoint problem, if needed, is only solved at the end of the time step. The

reason behind this is that it is not coupled to any of the problems. It uses the temperature and

velocity field already computed using the forward problem without affecting them. Every iteration

cycle has a corresponding tolerance τ which can be set in the input files. The outer iteration

terminates when the maximum relative l2 error in the physics-based reduced coefficients is below

τoutrer.

Lastly, the initial guesses/conditions for the ROM coefficients of different sub-problems can be

obtained by projecting the corresponding initial guesses/conditions of the FOM onto the reduced

sub-space:

M θ
Υc

θ = s0, (5.1)

where M θ
Υ is a mass matrix created using the

〈
ψθi , ψ

θ
j

〉
Υ

inner products, while (s0)i =
〈
ψθi , θ0

〉
Υ

with θ0 denoting the FOM initial guess. It must be mentioned that in most cases, due to the

construction of the basis functions, M θ
Υ is the identity matrix. In this case it is enough to take

the inner product of the FOM initial guess and the basis functions to compute the coefficients.

However, in cases like the supremizer-augmented velocity treatment, the basis functions are not

necessarily orthonormal, therefore the mass matrix needs to be constructed as well.

5.3 Computational Framework

To be able to demonstrate the applicability of the model-order reduction technique discussed

above, a computational framework has been developed using the OpenFOAM c© [114] finite vol-

ume library and additional routines included in GeN-Foam [93], a similarly OpenFOAM c© based

multiphysics solver developed for nuclear applications. The created ROM framework utilizes the

same input files as GeN-Foam to get the model parameters, however requires an additional file

containing the parameters for the control of the reduced operations. The structure of the ROM

framework is presented in Figure 5.2. Since the development of the framework started as an exten-

sion of GeN-Foam, it has been named GeN-ROM1. It must be mentioned, however, that the ROM
1Is available under https://gitlab.com/peter.german/gen-rom (currently private, will be public

when project is completed)
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framework is coded in a way which allows the utilization of additional OpenFOAM c© based solvers

which are not included in GeN-Foam.

For the generation of snapshots, the framework uses a python script which runs the FOM

with different parameters and collects the necessary snapshots. This means that practically any

OpenFOAM c© based solver can be used for the generation of snapshots. Beyond this point, the

computation of basis functions, the generation of the operators in the ROM together with the

solution of the ROM equations is coded in C++ using OpenFOAM c© libraries.

POD RBFInterpol ROMUtilities parameterHandlers

ReducedModelBase DEIMBase

MomentumROM

PressureROM EnergyROM FluxROM

PrecROM

FlowResDEIM FuelTempDEIM

SolverBase

LaminarSteadyOne
EquationFluidSolver DiffusionEv DiffusionTransient EnergySolverLaminarSteadyTwo

EquationFluidSolver

LaminarTransientOne
EquationFluidSolver

TurbulentTransientOne
EquationFluidSolver

LaminarTransientTwo
EquationFluidSolver ThermoNeutroSolverBetaEffSolver

TurbulentTransientTwo
EquationFluidSolver

Support	Classes

Base	Classes

ROM	Classes	(for	each	equation)

Simple	Solvers

Advanced	Solvers

NutROM

...

Figure 5.2: The structure of the computational framework (GeN-ROM) created. The arrows denote
the inheritance paths of classes in C++.
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As shown in Figure 5.2, a separate ROM class has been created for every equation that needs to

be solved. The framework already has implementations for clean and porous medium incompress-

ible fluid dynamics equations, the energy equation and neutronics transient or eigenvalue com-

putations. These ROM classes are then used to create primitive solvers like laminar steady-state

fluid dynamics solver, standalone energy or neutronics solvers. These primitive solvers can then

be combined into more advanced solvers which consider the coupling between different physics.

The solver needed for a given computation can be selected using the input file containing the ROM

controls.

5.4 Indicators Used for ROM Evaluation

In this work, the relative global L2 error is used as a measure of accuracy for the ROMs. This

can be epressed for an arbitrary solution field θ as:

eθ =
||θFOM − θROM ||L2,Υ

||θFOM ||L2,Υ

=

√
〈(θFOM − θROM) , (θFOM − θROM)〉Υ√

〈θFOM , θFOM〉Υ
, (5.2)

where the FOM and ROM subscripts denote the fields from the full-order model and the recon-

structed fields from the ROMs, respectively. The average value of these relative errors over the

time steps when the solution fields are reconstructed using the ROM is defined as:

eθ =
1

NTs

NTs∑
i=1

δθi , (5.3)

whereNTs denotes the number of time instances for which the approximate fields are reconstructed.

For simulations involving eigenvalue problems, the absolute difference between the eigenvalue of

the ROM and the eigenvalue of the FOM,

∆keff =
∣∣kFOM

eff − kROM
eff

∣∣ ,
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is used to assess the quality of the ROM. For problems, where the effective delayed neutron fraction

is evaluated, we use the same absolute difference:

∆βeff =
∣∣βFOM

eff − βROM
eff

∣∣ ,
In addition, the acceleration (speed-up) achieved by the ROM compared to the FOM is defined as

follows:

Θ =
τFOM
τROM

, (5.4)

where τFOM and τROM are the solution times of the FOM and the ROM, respectively.

5.5 Approach for Uncertainty Quantification and Sensitivity Analysis

Once an adequate ROM is generated, it can be used as an emulator of the FOM to carry out

uncertainty propagation or to determine the sensitivity of the QoIs to input parameters. Due to the

considerable reduction in computation time, the ROMs allow the utilization of Monte Carlo meth-

ods. This means that a large number (Ne) of parameter samples (µi, i = 1, ..., Ne) are generated

using the assumed probability distributions, and the emulator is executed to obtain the correspond-

ing values of the QoIs which can be used for the estimation of relevant statistical moments as:

QoI =
1

Ne

Ne∑
i=1

QoI(µi) and σQoI =

√√√√ 1

Ne − 1

Ne∑
i=1

(
QoI(µi)−QoI

)2
, (5.5)

where QoI estimates the mean and σQoI the standard deviation of the QoI. The confidence intervals

of these estimators can also be estimated using a bootstrap (resampling with replacement) method

where multiple subsamples of QoI(µi) are chosen to estimate the distribution of the statistical

moments themselves.

In many scenarios, the contribution of the uncertainty in different model parameters to the

uncertainty in the QoI can be rather different. This is not only due to the fact that the relative

uncertainty in the model parameters is different, but because the sensitivity of the QoI to changes
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in the input parameter is different as well. In this work, the contributions to the uncertainty in the

QoI are analyzed using Sobol Indices which can be derived by first taking the Sobol Decomposition

of QoI(µ) as [128]:

QoI(µ1, ..., µd) = QoI0 +
d∑
i=1

QoIi(µi) +
∑

i≤i<j≤d
QoIi,j(µi, µj) + ...+ QoI12...d(µ1, ..., µd) (5.6)

with QoI0 being the average of QoI(µ) over the parameter domain Dµ. Furthermore, we assume

that the summands in Eq. (5.6) are orthogonal with respect to the probability density function

(PDF) of µ and their mean values are zero [129]. It must be noted that the functions in the expan-

sion can be determined in a straightforward sequential manner starting from QoI0 and using the

previously computed summands to determine the next function. For more information on the exact

algorithm, the interested reader is referred to [128]. If we take the variance of QoI(µ) and use the

previously mentioned assumptions, we get:

Var[QoI(µ)] = σ2
QoI =

∫
Dµ

QoI2(µ)dµ−QoI2(µ) =

d∑
i=1

σ2
i +

∑
i≤i<j≤d

σ2
ij + ...+ σ2

12...d, (5.7)

meaning that the variance of the original function can be expressed as the sum of the variances of

the member functions (σ2
i1i2...is

, s ≤ d ) in the Sobol expansion. Normalizing the equation above

by σ2
QoI we get the following expression:

1 =

Nµ∑
i=1

Si +
∑

i≤i<j≤d
Sij + ...+ S12...d, (5.8)

where Si1i2...is are called the Sobol Idices. These indices describe the relative contributions of the

variances of the model parameters together with the combined effects to the overall variance in

the QoI. Furthermore, the total Sobol Index with respect to model parameter µk (k = 1, ..., d) is

defined as the sum of all partial sensitivity coefficients which include it.

There are multiple ways to compute estimates for these indices. A Monte Carlo sampling

based approach is described by Saltelli in [130], while another, Polynomial Chaose Expanson-

based (PCE) technique is discussed in [128]. In this work, we wish to reuse the sample-output

combinations already used for the estimation of the statistical moments, meaning that Saltelli’s

method is not applicable since it requires the additional evaluation of the model with specifically
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chosen parameter vectors. For this reason, the PCE-based approach has been implemented. As

already introduced in Chapter 1, the PCE of our QoI can be expressed as:

QoI(µ) ≈ Q̂oI(µ) =

Np∑
k

QoIkΨi(µ) =

Np∑
k

QoIi

Nµ∏
j=1

Pij(µj), for all
d∑
j

ij < Nmax, (5.9)

where QoIk are the expansion coefficients for basis functions Ψk. In case of PCE, these basis

functions can be constructed as the products of univariate polynomials, Pij of degree ij . Further-

more, d denotes the number of parameters, Np is the number of expansion terms, while Nmax is

the maximum polynomial degree allowed in the expansion. Clearly, Np can be determined using

d and Nmax. The type of polynomial basis functions are typically chosen using the assumed dis-

tributions of the uncertain parameters. For the corresponding distribution-polynomial pairs, see

[15, 16]. Since we only use uniformly distributed variables in this work, Legendre polynomials are

used to build the basis. It is important to mention that similarly to the Sobol decomposition, the

multivariate basis functions of the PCE are orthogonal with respect to the PDF of µ. The QoIk ex-

pansion coefficients can be determined using multiple methods including least squares regression

or spectral projection evaluated with quadrature sets or Monte Carlo methods. Since the training

parameter-output data base is already given, a least squares regression algorithm is utilized in this

work which minimizes
∑
i

||QoI(µi)− Q̂oI(µi)||2, (i = 1, ..., Ne). This process has been carried

out using the openTURNS python library [131].

Once the coefficients of the PCE are given, the Sobol Indices can be easily computed. This

utilizes the fact that the basis functions of the PCE satisfy the requirements of the Sobol decom-

position. In other words, by computing the PCE, we obtain the Sobol decomposition of Q̂oI(µ).

The only step remaining is the rearrangement of the PCE expansion terms with respect to their

parameter-dependence and the computation of the corresponding Sobol Indices by [128]:

SPCEi1i2...is
=

1
Np∑
i=1

QoI2
i E[Ψ2

i ]

∑
α∈Ii1i2...is

QoI2
αE[Ψ2

α], (5.10)
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where E[f ] denotes the expectation of function f and Ii1i2...is contains the indices of the terms in

the PCE which can be grouped together to generate the i1i2...is-th term in the Sobol decomposition.

This means that once the expansion coefficients of the PCE are computed, the determination of the

Sobol Indices becomes a simple task which involves the computation of the square integrals of

polynomials and the summation of the squares of expansion coefficients.

Furthermore, the fitting of a PCE using the available data allows the determination of local

sensitivity coefficients in the parameter space. These sensitivity coefficients describe the relative

change in the QoI caused by the relative change in an input parameter (µk) at µ0 in the parameter

space as:

κµk |µ0
=
∂QoI

∂µk

∣∣∣∣
µ0

µ0k

QoI(µ0)
≈ µ0k

Q̂oI(µ0)

∂

∂µk

Np∑
i

QoIi

Nµ∏
j=1

Pij (µ0j) =

µk

Q̂oI(µ)

∂

∂µk

Np∑
i

QoIi
∂Pik(µk0)

∂µk

Nµ∏
j=1,j 6=k

Pij(µ0j). (5.11)

It is visible that the computation of the sensitivity coefficient simplifies to the evaluation of poly-

nomial functions and weighting the results by the corresponding expansion coefficients.

Lastly, we note that the final values of the Sobol Indices and the sensitivity coefficients are

burdened by multiple errors in this process such as:

1. The approximation of QoI(µ) by QoIROM(µ)

2. The approximation of QoI(µ)ROM by a fitted PCE which contains the error of the least

squares regression together with the error caused by discarding the terms with a polynomial

degree above Nmax in the expansion.

Nevertherless, in most of the cases these errors are negligible compared to variation of the QoI(µ),

therefore we assume that Q̂oI can adequatly emulate the original system. The numerical examples

in the following sections will confirm this assumption.
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6. REDUCED-ORDER MODELING OF ZERO-POWER REACTORS

Following the discussion of the generation process of POD-RB-ROMs, we turn our atten-

tion to several numerical examples. In this chapter, specifically, the applicability of the devised

ROM methods to zero-power steady-state and transient simulations is assessed. In these scenarios,

the thermal power of the reactor is negligible, therefore, buoyancy effects and the temperature-

dependence of neutronics cross sections are not considered, only the coupling between the neu-

tronics and fluid dynamics ROMs is investigated. ROMs are generated for a 2D axisymmetric

model of the Molten Salt Fast Reactor (MSFR) and examples with both laminar and turbulent

flows are presented. In case of steady-state simulations, the propagation of uncertainties arising

from fission cross sections, diffusion coefficients, and the pumping force is investigated. The quan-

tities of interest, in this case, are the effective multiplication factor (keff) and the effective delayed

neutron fraction (βeff). In transient scenarios, we assume that the inserted reactivity and the change

in the pumping force are model parameters with the quantity of interest being the relative reactor

power at the end of the transients (normalized by the initial power level).

6.1 The Full-Order Model (FOM) of the Molten Salt Fast Reactor (MSFR)

In this work, a 2D axisymmetric model of the MSFR is used as the FOM. A wedge geometry

and a hexahedral mesh have been constructed using the open-source mesh generation tool SA-

LOME [132] based on the design proposed in [133] and [134]. The mesh, presented in Figure 6.1,

contains altogether N = 16, 140 cells, grouped into four mesh zones: one for the pump (Zone P),

one for the heat exchanger (Zone HX), one between the pump and the heat exchanger (Zone I)

and the last one for all the remaining cells in the domain (Zone C). Since the specific design is not

publicly available, the heat exchanger is treated as a true porous medium with an approximate fluid

fraction of γ = 0.4. Every other region is assumed to be occupied entirely by molten salt. To avoid

numerical checker-boarding close to the high-magnitude momentum sources and sinks (pump and

heat exchanger), the mesh has been refined close to the interfaces of these regions. The same mesh
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has been used for simulations with turbulent and laminar scenarios. Furthermore, the thickness of

the mesh layers closest to the boundary have been determined in a way that allows the use of wall

functions in case of turbulent simulations with nominal flow velocities.

Top wall

Bottom wall
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efl
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to

r
w
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Zone P

Zone I

Zone HX

Zone C

Figure 6.1: Geometry and dimensions (in m) used for the MSFR. Modified from [3]. (red: pump,
blue: heat exchanger, green: clean fluid, orange: distinguished boundary segments)

In this work, both steady-state and transient cases are considered with two additional sub-cases

in each category. First, a laminar scenario is assumed by keeping the velocity of the fluid close

to nominal values and increasing the dynamic viscosity of the fuel salt. This is important, since

decreasing the velocity while keeping the molecular viscosity at a low value would essentially

decouple the two subproblems by reducing the precursor drift to a negligible level. The second case

considers turbulent flows using the Reynolds-Averaged Porous Medium Navier-Stokes equations

with Boussinesq eddy viscosity approximation and a porous medium k − ε eddy viscosity model.

For more information on these models, see Chapter 3. The boundary conditions used for both

the fluid dynamics and neutronics subproblems are summarized in Table 6.1. It is visible that
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homogeneous Robin boundary conditions have been employed for the neutron scalar flux to take

into account the effect of neutron reflectors. To simulate the axial reflection, γr = 0.05 has been

used at the top and bottom walls, while γr = 0.08 has been used for the wall facing the radial

reflector. For the definition of γr in terms of the incoming and outgoing currents, the reader is

referred to [93]. Every additional boundary segment is assumed to face vacuum, therefore at these

segments a γr = 0.5 has been utilized.

Table 6.1: The boundary conditions used for the fluid dynamics and neutronics subproblems.

Field Name Symbol Boundary condition

Superficial velocity uD uD = 0

Corrected pressure p ∇p · n = 0

Turbulent kinetic energy k wall function

Discipation rate ε wall function

Scalar flux in energy group i φi −Di∇φi · n = γrφi

Adjoint flux in energy group i φ†i −Di∇φ†i · n = γrφ
†
i

Corr. precursor concentration in group i C∗i ∇C∗i · n = 0

Corr. adjoint prec. conc. in group i C†,∗i ∇C†,∗i · n = 0

The same spatial discretization schemes have been used for both transient and steady-state

simulations. The advection term in the momentum equation is discretized using a vanLeer scheme

[135] which is second order in space. The advection terms in the forward and adjoint precursor

equations together with those in the k−εmodel are, however, discretized using a first order upwind

scheme. The diffusion terms, on the other hand, have been treated using a linear gradient estimator

(second order in space) in every equation.

Based on [7], a molten salt composition of 77.5LiF − 19.95232ThF4 − 2.55233UF4 (mol %)
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has been chosen. The thermophysical properties of the molten salt have been determined using

the data available in [7] with the exception of the laminar scenarios where the molecular viscosity

has been intentionally increased. The values used for the relevant thermophysical properties are

summarized in Table 6.2. The fluid is assumed to be at 900 K, which is above the melting point

of the given salt composition. Due to the negligible thermal power, the flow is considered to be

isothermal.

Table 6.2: The thermophysical parameters used in the fluid dynamics suproblem for laminar and
turbulent scenarios.

Parameter name Symbol Value (laminar) Value (turbulent)

Physical density ρ 4125 kg
m3

Molecular viscosity η 15 Pa · s 0.01 Pa · s

In both laminar and turbulent cases, the pump serves as the volumetric momentum source,

while the heat exchanger obstructs the flow with a volumetric force that depends on the velocity

itself. The exact form of this functional dependence is also discussed in Chapter 3. The parameters

of the porous medium emulating the heat exchanger are summarized in Table 6.3.

For steady-state simulations, the magnitude of the pumping power (|F p|) is considered to be

an uncertain/design parameter with a uniform distribution within the [60 kN
m3 , 100 kN

m3 ] interval. The

same interval has been used for laminar and turbulent scenarios. This interval ensures that the

Reynolds number in the core cavity is 225−310 for laminar and 9.6×105−1.3×106 for turbulent

simulations, respectively.

The group constants in the multigroup diffusion equations in the neutronics submodule have

been generated using Serpent 2 Monte Carlo particle transport code [117] from the cross section

libraries available at 900 K. Altogether six energy groups and eight precursor groups have been
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used. The energy group structure is presented in Table 6.4, while the default, 8-group structure of

Serpent has been utilized for the precursors.

Table 6.3: The parameters of the porous medium heat exchanger used in the fluid dynamics suprob-
lem.

Parameter name Symbol Value

Fluid fraction γ 0.4 m3

m3

Hydraulic diam. of the heat exchanger Dh 0.02 m

Flow res. coefficient in heat exchanger AfD 0.687

Flow res. exponent in heat exchanger BfD -0.25

Table 6.4: The energy group structure used for the 2D model of the MSFR [4].

Group Upper bound (MeV) Lower bound (MeV)

1 2.231E-00

2 2.231E-00 4.979E-01

3 4.979E-01 2.479E-02

4 2.479E-02 5.531E-03

5 5.531E-03 2.485E-04

6 2.485E-04

For steady-state simulations, it is assumed that the diffusion coefficients (Di) and neutron

yield times fission cross section (νΣf,i) are uncertain in mesh region C (which includes the core
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cavity, see Figure 6.1). These coefficients are approximated with uniformly distributed random

variables within the ±10% interval around their nominal values. This means that the problem

has altogether 13 design/uncertain parameters that can be aggregated into a parameter vector:

µ = [D1, ..., D6, νΣf,1, ..., νΣf,6, |F p|]. The quantities of our interest in steady-state simulations

are the effective multiplication factor and the effective total delayed neutron fraction, meaning that

our goal is to use our reduced-order models to approximate the keff = keff(µ) and βeff = βeff(µ)

functions.

In case of time-dependent simulations, a reactivity driven transient is considered with the fol-

lowing timeline (also shown in Figure 6.2):

1. The reactor is initially critical with a volumetric pumping force of |F p,0| = 30kN
m3 . The fields

at the initial time step are obtained from a steady-sate k-eigenvalue computation to ensure

that the reactor is in a critical state in a sense that the production and the disappearance of

the neutrons are equal. The keff where this is satisfied is 0.981969 for laminar and 0.981711

for turbulent simulations, respectively.

2. At T0, an unintentional reactivity insertion occurs. The reactor becomes supercritical, but not

prompt supercritical. The increase in reactivity is simulated by decreasing keff in the time-

dependent multi-group neutron diffusion equations. The change in the effective multiplica-

tion factor δkeff is an uncertain parameter in these scenarios varying in the [25 pcm, 55 pcm]

interval with uniform distribution. Note that in the time-dependent scenario keff is just a fac-

tor which can modify the fission cross section times the fission neutron yield (νΣf ) across

the whole reactor. The decrease in this factor leads to an increase in the fission neutron yield

rendering the reactor supercitical in a sense that the production of neutrons will be higher

than the disappearance. An example for this could be the accidental, relatively homogeneous

injection of additional fissile material into the fuel salt.

3. Between T1 and T2, the pumping power is increased to |F p| = Fp with a linear ramp. This

decreases the reactivity by transporting an increasing fraction of delayed neutron precursors
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from the high importance zones of the reactor core. The magnitude of the new pumping

force is considered to be a design/uncertain parameter with a uniform distribution in the

[60, 100] kN
m3 interval for both laminar and turbulent scenarios. In the subsequent chapters,

instead of using the absolute value of the pumping force we use a relative pumping power,

denoted by aFp = Fp
|F p,0| , which varies in the [2.0, 3.3̇] interval.
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Figure 6.2: Timeline of the transients in case of simulations with zero-power MSFR.

The described transient has been specifically selected to investigate whether the reduced-order

models can reconstruct: (i) the prompt jump following the initial reactivity insertion and (ii) the

oscillation in power caused by the drift of the delayed neutron precursors. To ensure that the initial

jump in power is resolved, an adaptive time-stepping technique is used to modify the next time

step based on the relative power change:

∆tnew = min

min

 CPth
|Pth−P oldth |

P oldth

, 1 + 0.1
CPth

|Pth−P oldth |
P oldth

 , 1.2

∆told, (6.1)
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where CPth factor describes the maximum allowed relative power change in each time step. The

initial time step has been set to 10−6 s, while the maximum allowed time step is 0.001 s. As

described in Chapter 3, backward Euler discretization scheme is used to integrate the equations in

time.

In the transient scenario, only the jump in keff and the final relative pumping power are con-

sidered to be uncertain, giving a parameter vector of µ = [δkeff , aFp ]. The quantity of interest in

this case is the relative reactor power
(
P rel
th (t) = Pth(t)

Pth(T0)

)
attained at t = Tfinal. Therefore, in these

scenarios we attempt to approximate the P rel
th (Tfinal;µ) function with our reduced-order model.

6.2 Reduced-Order Models for Steady-State Simulations

The construction of the reduced-order models for steady-state simulations begins with the col-

lection of snapshots at different states of the system. Due to the computationally expensive FOM,

only 20 parameter vectors have been sampled in the 13 dimensional parameter space using Latin

Hypercube Sampling (LHS). These parameter samples are fed to the FOM and the steady-state

solution fields are saved into corresponding snapshot matrices. As a next step, the spatial basis

functions are extracted from these snapshot matrices using POD. For this, correlation matrices are

generated from the snapshot matrices and the eigen-decompositions of the correlation matrices are

obtained. The decay of the eigenvalues on the diagonal of the eigenvalue matrix is a good indicator

of the error in approximating (by an L2 projection) the snapshots using the linear combination of

the generated POD modes. The decay in the normalized (using the largest eigenvalue) eigenvalues

of the correlation matrices is presented in Figure 6.3 for laminar and in Figure 6.4 for turbulent

simulations. It must be mentioned, however, that this error is not necessarily indicative of the

expected L2 difference between the fields of the ROM and the FOM, since that depends on addi-

tional factors such as the ability of the snapshots to represent the solution manifold and the other

approximations introduced at reduced-order level.
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Figure 6.3: Scree plots of the normalized eigenvalues of the correlation matrices built from the cor-
responding snapshot matrices obtained from steady-state simulations with a laminar fluid model.
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Figure 6.4: Scree plots of the normalized eigenvalues of the correlation matrices built from the cor-
responding snapshot matrices obtained from steady-state simulations with a turbulent fluid model.

Nevertheless, by observing the steepness of the decay curves we can anticipate whether the

given field can be approximated in a lower-dimensional subspace. The steeper the decay is, the
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better the function can be approximated. As it is visible in the scree plots, the eigenvalues of every

single field decay rapidly, meaning that the system can be most likely represented by a low-rank

model. This is not surprising, since the MSFR is an exceedingly homogeneous reactor concept

in a sense that the solution fields are predominantly smooth in space. It is interesting to note that

the eigenvalues of the forward and adjoint group fluxes decay in a similar manner, independent

of the energy groups. This is again the consequence of the homogeneous zone together with

the fast neutron spectrum. Furthermore, it is visible that the longer the half-life of the neutron

precursor group (group 1 - longest half-life, group 8 - shortest half-life), the faster the decay of the

corresponding eigenvalues is. This can be explained by the fact that the precursors with the longest

half-life are distributed relatively evenly by the flow within the core due to their slow nuclear decay.

In case of the groups with the shortest half-lives, most of the neutron precursors do not leave the

core before decaying, thus introducing a considerable spatial variation which is also reflected in

the decay of the corresponding eigenvalues.

As a next step, multiple reduced-order models are generated using different number of ex-

tracted basis functions. The accuracy of these reduced-order models is evaluated using a set of

new parameter vectors which do not overlap with the ones used for the collection of the snapshots.

Altogether 30 new parameter vectors have been generated using LHS. Based on the conclusions

in [3], namely that the one-equation ROM for the fluid dynamics gives good results for laminar

fluid flows while being faster than its two-equation counterpart, the one equation ROM has been

utilized for laminar cases. For the turbulent scenarios, however, the two-equation ROM is utilized

since the physics-based approximations in the one-equation ROM do not hold anymore.

The accuracy of the multiphyics ROMs for laminar steady-state simulations is evaluated with

different numbers of POD modes determined by varying the truncation parameter τ (see Chapter 4

for more information). Generally, the decrease in the truncation parameter entails an increase in

the number of POD modes used for the reduced-basis expansion. The results of the experiments

with the different truncation parameters for laminar scenarios are presented in Tables 6.5. Due to

the large number of solution fields, only the ones considered representative are shown. For the
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neutronics subproblem, these are the adjoint and forward scalar flux in energy group 5, and the

adjoint and forward precursors concentration in precursor group 6. However, it must be mentioned

that the trends are the same for the other solution fields. It is visible that the decrease in the

truncation limit entails the increase in accuracy. With τ = 10−7, the maximum error in keff and

βeff is below 1 pcm and 0.5 pcm, respectively.

Table 6.5: The average and maximum errors over the validation set in case of laminar steady-state
zero-power simulations MSFR.

τ
∆keff

(pcm)
max(∆keff )

(pcm)
eφ5

(%)
max(eφ5)

(%)
eC6

(%)
max(eC6)

(%)
euD

(%)
max(euD

)
(%)

10−4 2.79 6.64 0.49 1.20 0.46 0.93 0.50 1.18

10−5 1.09 2.23 0.15 0.28 0.22 0.48 0.05 0.12

10−6 0.83 2.07 0.13 0.34 0.12 0.28 0.05 0.12

10−7 0.17 0.62 0.03 0.06 0.06 0.10 0.02 0.04

τ
∆βeff

(pcm)
max(∆βeff )

(pcm)
eφ†5
(%)

max(eφ†5)
(%)

eC†,∗6

(%)
max(eC†,∗6

)
(%)

10−4 0.338 0.942 0.48 1.28 0.45 0.96

10−5 0.179 0.480 0.15 0.28 0.24 0.52

10−6 0.080 0.254 0.13 0.31 0.14 0.30

10−7 0.011 0.035 0.03 0.05 0.07 0.10

Furthermore, it is also visible that the corresponding average and maximum relative L2 errors

are below 0.07% and 0.1%. Since the expected variation in the quantities of interest in case of

steady-state computations is higher than the errors shown over the validation set at a truncation

limit of 10−7, the last model has been selected to carry out the uncertainty propagation in the fol-

lowing chapter. The final number of POD modes used for each physics component is summarized
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in Table 6.6. It is visible that 3-5 POD modes are enough to describe the variations in the fields of

interest. Again, the reason behind this is that the reactor concept is homogeneous and the smooth

solution fields can be described using only a few global basis functions.

Table 6.6: The ranks of the subspaces used for the construction of the final ROMs for laminar
steady-state simulations.

Field Rank Field Rank Field Rank Field Rank Field Rank

φ1 3 C∗2 4 φ†1 3 C†,∗2 4 uD 3

φ2 3 C∗3 4 φ†2 3 C†,∗3 4 p 3

φ3 3 C∗4 4 φ†3 3 C†,∗4 5 F fr 3

φ4 3 C∗5 4 φ†4 3 C†,∗5 4

φ5 3 C∗6 4 φ†5 3 C†,∗6 4

φ6 4 C∗7 4 φ†6 3 C†,∗7 4

C∗1 4 C∗8 4 C†,∗1 4 C†,∗8 4

Lastly, it must be mentioned that the FOM in laminar scenarios with a coupled steady-state fluid

dynamics and forward k-eigenvalue computation have 258,240 degrees of freedom which increases

to 484,200 for cases where the adjoint problem has to be solved. These numbers are reduced in the

ROM to 57 and 108 unknowns, respectively. Computing a steady-state fluid flow together with a

forward k-eigenvalue problem took approximately 2400 s on average, while the ROM was solved

in about 0.08 s. This means that a speedup of 3.0× 104 is obtained with the ROM. However, there

are two additional aspects that may change this factor. First, the full-order solver, GeN-Foam, uses

a transient simulation to obtain the steady state, which is not efficient in terms of computation

time. Second, the ROM still needs a considerable amount of file handling such as reading the

POD modes, mesh files and reduced matrices and writing out results. This slows down the ROMs

considerably, since solving the reduced equation system takes approximately only 6−8×10−3 s. If
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βeff needs to be determined as well, the solve time of the FOM increases to 2600 s on average, while

the execution time for the ROM, mainly due to the increased amount of file handling, increases to

0.15 s. This yields an approximate speedup factor of 1.7×104. The achieved speedup is considered

to be satisfactory for the present work, however it must be noted that by storing the necessary files

(matrices, POD modes) in the memory of the computer, this factor can be considerably improved.

A similar experiment has been carried out for turbulent cases as well. Due to the fact that the

supremizer stabilization of the two-equation ROM can decrease its accuracy, the number of basis

functions used in the fluid ROM have to be determined in a different manner; the truncation limit

is not necessarily indicative. In this work, we opt for an iterative strategy using the validation set.

For this, the number of velocity modes are increased first and then the corresponding number of

pressure and supremizer modes are determined in a way that the average relative L2 error in the

velocity and pressure are the lowest with maintaining a stable ROM. The number of eddy viscosity

and diffusivity modes is determined using a τ = 10−6 truncation parameter. Below this, the gain in

the accuracy of the velocity and precursor concentrations from including additional eddy viscosity

and diffusivity modes is negligible. The resulting number of modes and average and maximum L2

errors for the final fluid ROM are summarized in Table 6.7.

Table 6.7: The used POD modes for the fluid dynamics subproblem together with the resulting
average and maximum errors over the validation set in case of turbulent steady-state simulations.

Field Rank e (%) max(e) (%)

uD 2 (+1) 0.34 0.68

p 1 0.42 0.92

νt 10 0.13 0.50

αt 10 0.13 0.50

In case of the velocity field, the additional one mode indicates that one supremizer mode was
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added to the velocity space. This means that the rank of the velocity subspace is 3. Determining

the number of POD modes separately for the fluid dynamics FOM can be justified by the fact that

the neutronics subproblem does not influence the field variables of the fluid dynamics submodule

at all (zero-power assumption).

Using the selected fluid dynamics ROM, a convergence study has been carried out for the

neutronics ROM using the validation set and changing the value of the truncation parameter. The

corresponding errors over the validation set are shown in Table 6.8. It is visible that overall the

error decreases with the decreasing truncation limit. The final model corresponding to τ = 10−7

yields an average error in the effective multiplication factor and effective delayed neutron fraction

of 0.3 pcm and 0.11 pcm with the corresponding maximum errors being 0.93 pcm and 0.3 pcm,

respectively. Furthermore, the L2 error of every field of interest is below 0.28%.

Table 6.8: The average and maximum errors over the validation set in case of turbulent steady-state
simulations.

τ
∆keff

(pcm)
max(∆keff )

(pcm)
eφ5

(%)
max(eφ5)

(%)
eC∗6
(%)

max(eC∗6 )
(%)

10−4 3.21 7.09 0.49 1.19 0.35 0.70

10−5 1.53 2.82 0.15 0.28 0.26 0.45

10−6 1.19 2.66 0.13 0.34 0.26 0.41

10−7 0.30 0.93 0.02 0.05 0.20 0.28

τ
∆βeff

(pcm)
max(∆βeff )

(pcm)
eφ†5
(%)

max(eφ†5)
(%)

eC†,∗6

(%)
max(eC†,∗6

)
(%)

10−4 0.45 1.10 0.48 1.26 0.36 0.79

10−5 0.23 0.62 0.15 0.27 0.21 0.37

10−6 0.19 0.51 0.13 0.31 0.21 0.43

10−7 0.11 0.30 0.03 0.03 0.18 0.28
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The model corresponding to the neutronics truncation limit of 10−7 has been selected for further

analysis and uncertainty propagation. The number of POD modes used for each physics component

in the neutronics subproblem is summarized in Table 6.9.

Table 6.9: The ranks of the subspaces used for the construction of the final neutronics ROM for
turbulent steady-state simulations.

Field Rank Field Rank Field Rank Field Rank

φ1 3 C∗2 2 φ†1 3 C†,∗2 2

φ2 3 C∗3 3 φ†2 3 C†,∗3 3

φ3 3 C∗4 3 φ†3 3 C†,∗4 4

φ4 3 C∗5 5 φ†4 3 C†,∗5 5

φ5 3 C∗6 6 φ†5 3 C†,∗6 6

φ6 3 C∗7 5 φ†6 3 C†,∗7 5

C∗1 2 C∗8 5 C†,∗1 2 C†,∗8 5

Lastly, it must be mentioned that solving a steady state fluid problem together with a forward

eigenvalue problem took 4200 s on a single processor core. This is decreased to 2600 s if 4 pro-

cessor cores are used. The poor scaling is due to the low number of distributed spatial degrees

of freedom, meaning that the specific communication between processors is considerable. Mean-

while, executing the ROM for the same problem took 0.09 s on average. Again, the overwhelming

majority of this execution time is spent with reading and writing files, only 7 × 10−3 s is needed

for the solution of the reduced system. In case of simulations when the quantity of interest is βeff ,

the simulation time with the FOM increased to 4400 s on average, while the execution time of

the ROM increased to 0.19 s. This means that the speedup factors varied between 2.3 × 105 and

4.7 × 105 on average. Altogether, for a simple k-eigenvalue problem, the number of degrees of

freedom is decreased from 290,520 to 69, while for cases that require the solution of the adjoint
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problem as well, it decreased to from 516,480 to 119.

6.3 Uncertainty Quantification and Sensitivity Analysis for Steady-State Simulations

With the generated ROMs as emulators, the propagation of the uncertainty in the cross sections

and the pumping force is investigated in this section. Additionally, a sensitivity study is carried

out on the quantities of interest. As already discussed in Section 6.1, there are altogether 13

uncertain parameters in this scenario: µ = [D1, ..., D6, νΣf,1, ..., νΣf,6, |F p|], where the diffusion

coefficients and cross sections have a uniform distribution within the ±10% interval around their

expected values, while the pumping force is uniformly distributed in the [60, 100]kN
m3 interval. Since

the simulation times with the ROMs are orders of magnitude shorter compared to that of the FOM,

a simple Monte Carlo approach can be used here with a large number of experiments. The goal is

to estimate the mean and standard deviation of the effective multiplication factor and the effective

total delayed neutron fraction. For this, 5× 104 random samples are drawn using the distributions

of the uncertain parameters. The experiments have been carried out for both turbulent and laminar

flows. The estimated mean values and standard deviations together with the corresponding 95%

confidence intervals are presented in Table 6.10. The confidence intervals have been computed

using a bootstrap (re-sampling with replacement) method with 5,000 cycles. The corresponding

histograms are depicted in Figures 6.5 and 6.6 using seaborn [136]. A kernel density estimator

(smoothed curve) has also been included.

It can be observed that every distribution is close to a Gaussian. It is also visible that the

confidence intervals of the mean values are tight, meaning that the presented estimates can be

considered accurate. Surprisingly, the difference in the mean values of keff for the two fluid flows

is not statistically significant. The reason behind this is that the quality of the fluid flow influences

only the emission of the delayed neutrons only, which is a small fraction of the total neutron

population. This suggests (will be confirmed later) that the variation of other parameters influences

keff stronger compared to the pumping force. For βeff , on the other hand, we see that the mean

value depends considerably on the flow domain. The difference in the mean values (32.25 pcm) is

statistically significant.

114



Table 6.10: The estimated mean values and standard deviations (with confidence intervals) of keff

and βeff for different flow regimes.

keff

Flow Regime Mean 95% CI Std. Dev. 95% CI

Laminar 0.981805 [0.981553, 0.982057] 0.028775 [0.028616, 0.028927]

Turbulent 0.981467 [0.981216, 0.981718] 0.028642 [0.028485, 0.028793]

βeff (pcm)

Flow Regime Mean 95% CI Std. Dev. 95% CI

Laminar 142.92 [142.89, 142.96] 4.00 [3.98, 4.02]

Turbulent 111.90 [111.87, 111.93] 3.53 [3.51, 3.55]
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Figure 6.5: The distribution of keff in case of laminar (left) and turbulent (right) steady-state com-
putations, obtained using 5× 104 random samples.
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Figure 6.6: The distribution of βeff in case of laminar (left) and turbulent (right) steady-state com-
putations, obtained using 5× 104 random samples.

Additionally, the joint distribution plots of keff and βeff are presented in Figure 6.7. It is visible

that the two QoIs are correlated in both laminar and turbulent scenarios.
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Figure 6.7: The joint distributions of keff and βeff in case of laminar (left) and turbulent (right)
steady-state computations, obtained using 5× 104 random samples.

A possible explanation for this can be the effect of the changing fission cross sections. Increas-
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ing the fission cross section leads to an increase in keff , while based on Eq. (3.39), it results in a

decrease in βeff . The difference in the spread of the data points suggests that the pumping force has

a stronger influence in the turbulent scenario. These phenomena will be further investigated using

the Sobol Index and Sensitivity Analyses later in this section.

To determine the contributions to the variance from the uncertain parameters, a Sobol Index

Analysis has been carried out. For this, the 5 × 104 samples are used to fit a Polynomial Chaos

Expansion (PCE) model using a least squares method, as described in Section 5.5. The expansion

contained polynomials up to degree Nmax = 4 meaning that altogether Np = 2380 coefficients

have been computed. The quality of the fit has been determined using the absolute residuals and

the relative errors over the training set. The corresponding values are summarized in Table 6.11.

Table 6.11: The residuals and relative errors of the fitted PCE over the training set for steady-state
zero-power scenarios.

keff βeff

Flow Regime Residual Relative Error Residual Relative Error

Laminar 6.8× 10−11 2.8× 10−13 2.4× 10−10 1.8× 10−6

Turbulent 9.8× 10−10 5.8× 10−11 4.5× 10−10 8.5× 10−6

The resulting expansion can be used to determine the Sobol Indices analytically. The reader is

referred to [128] (or Section 5.5) for the derivation of the connection between the PCE coefficients

and the Sobol Indices. The indices for laminar fluid flows are presented in Figure 6.8, while the

corresponding results for turbulent flows are presented in Figure 6.9. It must be mentioned, that

the error between the FOM and the ROM and the PCE fitting error are not quantified in these

figures. Still, the relative values of the indices can be considered indicative, since we assume that

the mentioned errors are negligible.
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Figure 6.8: First order and total Sobol Indices of keff (left) and βeff (right) for laminar steady-state
computations.

As noted while observing the histograms of keff , the contribution of the uncertainty in the

pumping power is negligible to the contribution of the uncertainties of the fission cross sections.

This can be explained by the fact that the variation in pumping power introduces little variation in

the precursor concentrations whose contributions to the total neutron population is low by default.
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Figure 6.9: First order and total Sobol Indices of keff (left) and βeff (right) for turbulent steady-state
computations.
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Furthermore, the increased molecular viscosity (for laminar cases) influences the diffusion of

the delayed neutron precursors as well, which decreases the impact of the changing velocity field.

What is also worth mentioning is that the diffusion coefficients have close to negligible contribu-

tions compared to the fission cross sections. These results are similar to the findings published in

[25], which were obtained using a (non-intrusive) POD-based sparse grid interpolation technique.

In case of βeff , however, we see that both the pumping force and the diffusion coefficients have

meaningful contributions. In the laminar scenario, these contributions are still less than those of

the fission cross sections; however, for turbulent flows the uncertainty in pumping power becomes

the second biggest contributor. The reason behind this is that the precursor concentrations have

a higher contribution to βeff than keff . Also, the contribution of the diffusion coefficients can be

explained by the fact that their change influences the shape of the adjoint flux which has a high

impact on βeff .

After the Sobol Index analysis, we investigate the local sensitivity coefficients of the QoIs at

the midpoint of the parameter space. Due to the similarity between the results of the laminar and

turbulent scenarios, only the turbulent results are presented here in Tables 6.12 and 6.13 for keff

and βeff , respectively.

Table 6.12: Local sensitivity coefficients of the effective multiplication factor at the middle of the
parameter space in case of turbulent zero-power steady-state simulations.

µk κkeff
µk

µk κkeff
µk

µk κkeff
µk

µk κkeff
µk

D1 -4.11×10−3 D5 -1.18×10−2 νΣf,3 2.08×10−1 |Fp| -1.06×10−4

D2 -1.13×10−2 D6 -8.42×10−4 νΣf,4 2.19×10−1

D3 -1.87×10−2 νΣf,1 3.02×10−2 νΣf,5 3.92×10−1

D4 -1.49×10−2 νΣf,2 7.75×10−2 νΣf,6 7.39×10−2

As expected, the increase in D leads to a decrease in keff , while the increase in νΣf has an op-
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posite effect. In case of βeff , the signs of the corresponding sensitivity coefficients are the opposite:

the increase in D leads to an increase in βeff through more homogeneous importance fields, while

the increase in νΣf results in a decreaseing βeff due to the increase in the prompt fission term in

Eq. (3.39). Furthermore, we see that both keff and βeff decrease with the increasing pumping force.

In terms of magnitudes, similarly to the Sobol Indices, both QoIs are most sensitive to the changes

in νΣf .

Table 6.13: Local sensitivity coefficients of the effective delayed neutron fraction at the middle of
the parameter space in case of turbulent zero-power steady-state simulations.

µk κβeff
µk

µk κβeff
µk

µk κβeff
µk

µk κβeff
µk

D1 2.08×10−2 D5 4.01×10−2 νΣf,3 -1.96×10−1 |Fp| -9.57×10−2

D2 5.05×10−2 D6 2.89×10−3 νΣf,4 -2.00×10−1

D3 6.36×10−2 νΣf,1 -5.95×10−2 νΣf,5 -3.58×10−1

D4 5.26×10−2 νΣf,2 -1.18×10−1 νΣf,6 -6.76×10−2

Lastly, the required computational effort is compared to a fictional scenario where the uncer-

tainty quantification and sensitivity analysis are carried out with the FOM using one processor core

only. In this scenario, the overall speedup factor can be quantified by the following expression:

SF =
5× 104 · τFOM

20 · τFOM + τtrain + 5× 104 · τROM
≈ 5× 104 · τFOM

20 · τFOM + 5× 104 · τROM
, (6.2)

where τFOM and τROM is the computation times necessary to solve the FOM and ROM, respec-

tively. Furthermore, τtrain denotes the time necessary for training the ROMs and, for steady-state

simulations, we assume that it is negligible compared to the other costs. After plugging in the

relevant solve times, this speedup factor turns out to be between 2,184 and 2,372. Of course, if the

number of Monte Carlo experiments is increased to obtain better estimates of the statistical mo-

120



ments, SF would increase as well until it reaches the speedups previously measured in Section 6.2.

6.4 Reduced-Order Models for Transient Scenarios

The generation of the reduced-order models for the transient scenario outlined in Section 6.1

begins with data collection. In this work, 9 transients are carried out with different model parameter

vectors. We recall that this problem has two model parameters: the step change in the effective

multiplication factor (δkeff) and the relative pumping force (aFp) at the end of the ramp. The

quantity of interest is the relative reactor power (normalized by the initial power) at end of the

simulation. In this example, the step change in keff is introduced at t = 0 s, the ramp in the

pumping force starts at t = 1 s and ends at t = 4 s, while the simulation is terminated at t = 6 s.

For the laminar scenario, a 3×3 tensor product grid has been used for sampling parameter vectors,

while LHS has been applied in the turbulent setting. The choice of LHS can be justified by the fact

that it yields a better resolution in the pumping force dependence of the solution, which is crucial

to increase the accuracy of the RBF interpolation when computing the coefficients of the eddy

viscosity and eddy diffusivity. It is assumed that the step in the effective multiplication factor has

a uniform distribution in the δkeff ∈ [25 pcm, 55 pcm] interval, while the final relative pumping

power changes uniformly in aFp ∈
[
2.0, 3.3̇

]
interval. The relative reactor power curves of the

training transients are presented in Figure 6.10. Visually, we can note that the final relative power

is more sensitive to the initial step decrease in the multiplication factor than the pumping power.

The reason behind this is simple: the reactor does not start with stationary fluid but with a flow field

obtained with a decreased pumping force. Nevertheless, it is visible that the change in pumping

force does influence the QoI and the extent of this effect depends on the relation between the

magnitude of the change in keff and the perturbation introduced by the pump.
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Figure 6.10: Reactor power as function of time for the training transients in case of laminar (left)
and turbulent (right) zero-power experiments with the MSFR.

For laminar simulations, the solution fields are captured at every 0.05 s yielding a total of 1,080

snapshots. For turbulent simulations, to ensure a reasonable accuracy for the RBF interpolation of

the turbulent viscosity and diffusivity, a slightly finer step size, 0.03 s, has been chosen. This yields

1,800 snapshots per solution field altogether. The basis functions of the reduced subspaces are then

extracted from the snapshot matrices using the methods described in Section 4.2.2. Similarly to

the steady-state problem, the one-equation fluid dynamics ROM has been used for the laminar

scenario, while the two-equation method is utilized for the turbulent computations. The decay

in the eigenvalues of the field-wise correlation matrices is shown in Figures 6.11 and 6.12 for

the laminar and turbulent scenarios, respectively. It is visible that in both cases the decay in the

eigenvalues of the group fluxes is extremely steep suggesting that only a few modes can be enough

to reconstruct these fields. This is not surprising, since none of the model parameters change the

shape of the flux, unlike in the steady-state experiments where the varying diffusion coefficient

introduced notable change in the spatial distribution. Furthermore, one can conclude that the other

solution fields show a considerably slower decay suggesting that many POD modes are needed for

an accurate approximation.
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Figure 6.11: Scree plots of the normalized eigenvalues of the correlation matrices built from the
corresponding snapshot matrices obtained from transient simulations with a laminar fluid model.

In both laminar and turbulent scenarios, the decay in the eigenvalues of the precursor groups

with the longest and shortest half-lives is the fastest. This is not surprising, since the change in

the flow pattern has the least influence on these precursor groups. It can also be observed that the

decay in all of the precursor groups is much slower in the turbulent scenario. The reason behind

this is that the problem is less diffusive and therefore the change in the spatial distributions is less

smooth. This is true for the fields of interest in the fluid dynamics subproblem as well. Apparently,

the time and parameter dependence of the eddy viscosity and diffusivity is not easy to capture with

global basis functions, since these curves show the slowest decay.
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Figure 6.12: Scree plots of the normalized eigenvalues of the correlation matrices built from the
corresponding snapshot matrices obtained from transient simulations with a turbulent fluid model.

The number of POD modes per field variable used to construct the ROMs has been determined

slightly differently for the laminar and turbulent scenarios. Due to the fact that the laminar fluid

ROM is more robust, simply the truncation limit can be utilized. For the testing of the created

ROMs, 10 additional parameter vectors are drawn using LHS. The average and relative maximum

errors in the QoI and field variables over the test set as a function of the truncation limit is presented

in Table 6.14. It is visible that beyond τ = 10−6 the results do not improve, therefore this model

has been chosen for uncertainty quantification purposes. We also note that the errors are signifi-

cantly higher than those presented in steady-state scenarios. This is the result of the inaccuracy of

the fluid dynamics ROM and the advection terms discussed in Section 4.3.1.6. Nevertheless, the

124



average error in both the field variables and the QoI is less than 1%, with maximum errors around

2%. This is considered to be adequate for the uncertainty quantification tasks where the expected

parameter-dependent change in these quantities is much higher (see Figure 6.10).

Table 6.14: The average and maximum errors over the validation set in case of laminar transient
simulations.

τ
eP
(%)

max(eP )
(%)

eφ5

(%)
max(eφ5)

(%)
eC6

(%)
max(eC6)

(%)
euD

(%)
max(euD

)
(%)

10−3 1.29 3.06 0.94 3.10 2.14 7.02 4.41 8.41

10−4 0.67 1.46 0.36 1.42 0.76 2.50 1.31 2.95

10−5 0.70 1.53 0.35 1.49 0.59 2.03 1.12 1.88

10−6 0.55 1.12 0.37 1.12 0.59 1.93 1.08 1.92

10−7 0.56 1.12 0.39 1.37 0.61 2.11 1.12 1.96

The number of modes for each of the field variables are summarized in Table 6.15 for the

model generated using τ = 10−6. It is visible that it is enough to use one spatial basis vector for

the group fluxes. This is to be expected based on the decay curves discussed before. It can also be

observed that even though the number of model parameters is considerably lower, the number of

modes used for the precursor concentrations and the fields in the fluid dynamics ROM are higher.

This means that the time evolution of these fields introduces considerable changes in the spatial

distributions.

The same procedure has been repeated for the turbulent transient ROMs with slight modifi-

cations. Due to the accuracy concerns described in Section 4.3.1.6, the turbulent fluid dynamics

ROM cannot be generated by using the truncation limit alone. For this reason, the fluid dynamics

ROM has been tested separately using an iterative process for the selection of the number of modes

necessary for the best accuracy over the validation set.
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Table 6.15: The ranks of the subspaces used for the construction of the final ROMs for laminar
transient simulations.

Field Rank Field Rank Field Rank Field Rank

φ1 1 φ6 1 C∗5 9 p 6

φ2 1 C∗1 6 C∗6 8 F fr 4

φ3 1 C∗2 7 C∗7 6

φ4 1 C∗3 8 C∗8 4

φ5 1 C∗4 9 uD 6

In the iterative process, the number of eddy viscosity modes has been fixed to 37 which corre-

sponds to τ = 10−5. The number of modes selected for the field variables in the fluid dynamics

ROM is listed in Table 6.16 together with the corresponding average and maximum L2 errors over

the transients in the validation set. The (+3) for uD indicates that the velocity space has been

augmented with 3 supremizer modes, meaning that altogether 19 basis functions haven been used.

Moreover, altogether 6 modes have been used for the flow resistance, however the corresponding

errors have not been analyzed separately.

Table 6.16: The used POD modes for the fluid dynamics subproblem together with the resulting
average and maximum errors over the validation set in case of turbulent transient simulations.

Field Rank e (%) max(e) (%)

uD 16 (+3) 1.84 4.22

p 3 1.55 9.53

νt 37 5.60 31.84

αt 37 5.60 31.84
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It is visible that the RBF interpolation for the eddy viscosity/diffusivity yields high errors. This

is due to the fact that the advection dominated problem in time and parameter space is not smooth

and the 9 × 200 interpolation points are still not enough. Unfortunately, further refinement is not

practical since the evaluation of the increasing number of interpolation terms can considerably

increase the runtime of the ROM. A possible solution for this problem can be the utilization of

the sparsity in the parameter space by the evaluation of the interpolation terms that correspond to

the points within a certain radius of the given parameter-time vector. This, however has not been

analyzed in the frame of this dissertation. For this reason, and based on the results presented in

[3], we conclude that the RBF interpolation is better suited for parametric steady-state scenarios.

Lastly, we note that an attenuation parameter of ca = 0.16 has been used for the RBF interpolation

on the reference grid. Two other parameter values have been investigated: ca = 0.09 and ca = 0.25;

however, both yielded considerably higher average and maximum errors.

Using the pre-generated fluid dynamics ROM, the neutronics ROM has been run with selecting

the number of basis functions using the truncation limit. The relative errors over the validation set

for the QoI and different representative fields are summarized in Table 6.17.

Table 6.17: The average and maximum errors over the validation set in case of turbulent transient
zero-power simulations.

τ
eP
(%)

max(eP )
(%)

eφ5

(%)
max(eφ5)

(%)
eC6

(%)
max(eC6)

(%)

10−1 7.06 17.70 10.83 28.92 18.60 32.05

10−2 7.50 14.45 8.93 21.43 10.75 20.63

10−3 1.18 3.56 0.88 3.66 1.95 4.55

10−4 2.54 3.51 0.87 3.61 1.82 4.44

10−5 2.48 4.54 0.79 4.55 1.34 4.63
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It is visible that τ = 10−3 yields the best ROM in terms of QoI. Even though the average

errors in the field variable slightly decrease, the maximum errors increase in certain cases which

may introduce high errors in the QoI. Therefore, the ROM with τ = 10−3 has been selected for

uncertainty quantification purposes. This ROM yields an average error of slightly more than 1%

for the QoI which is less than the expected total variation in the parameter space.

Lastly, the gain in computational time needs to be addressed. Since an adaptive time-stepping

scheme has been used, the runtimes for the FOMs varied considerable depending on the relative

change in reactor power. Using one core of a processor, the FOM required 4,000-20,000 s per

transient, while the turbulent scenarios were slightly slower with their 4,600-26,000 s. Similarly,

due to the adaptive time-stepping, the execution time of the laminar ROMs varied in the 16-23 s

interval, while the same for the turbulent ROM is 59-120 s. The source of the considerable differ-

ence between the execution times of the laminar and turbulent ROMs is the RBF interpolation of

37 turbulent viscosity and diffusivity modes at 9×200 anchor points at every single timestep. This

means that the laminar ROM yields a single-run speedup factor of 250-870, while the same for the

turbulent ROM is 78-216.

6.5 Uncertainty Quantification and Sensitivity Analysis for Transient Scenarios

Using the two ROMs (laminar or turbulent) as emulators, we can explore the parameter-

dependent response surface of the problem using a simple Monte Carlo approach. We assume that

the jump in keff and the relative change in pumping power are uncertain parameters in this case

with uniform distributions. Using this knowledge, we draw 10,000 new parameter samples for the

laminar and 1,400 for the turbulent scenario. The turbulent case has fewer test samples because the

ROM is considerable slower. The ROMs are then evaluated using these input parameters and the

statistical moments of the QoIs are computed. The mean and standard deviation of the relative re-

actor power at the end of the simulation are presented in Table 6.18. The corresponding confidence

intervals have been computed using a bootstrap (re-sampling with replacement) method with 5,000

cycles. The distributions of the QoI for the two different scenarios are presented in Figure 6.13.
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Table 6.18: Mean and standard deviation of the relative power at the end of the transient together
with the corresponding confidence intervals over the test set.

Flow Regime Mean 95% CI Std. Dev. 95% CI

Laminar 2.4029 [2.3865, 2.4198] 0.8617 [0.8512, 0.8726]

Turbulent 2.9961 [2.9290, 3.0643] 1.2799 [1.2339, 1.3245]
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Figure 6.13: The distribution of the relative reactor power in case of zero-power laminar (left) and
turbulent (right) transients.

It is visible that the distributions are exponential-like. This suggests that the change in keff has

a larger impact on the time evolution of the power than the change in pumping power. However,

it is also visible that the highest probability spot for the laminar scenario is not the lowest relative

power, but a slightly higher one. This is attributed to the presence of pump which decreases the

relative powers in the mid-low ranges of δkeff .

This effect is not visible in the turbulent scenario suggesting that the change in pumping power

has a lower influence on the QoI. To quantify this effect, a Sobol Index Analysis is performed
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together with a local sensitivity analysis. The process is similar to the one used for the steady-

state results. First, a Polynomial Chaos Expansion is computed using a least squares regression,

as described in Section 5.5. Using the computed expansion coefficients, the Sobol Indices and

Sensitivity Coefficients can be easily determined. The sum of the residuals and relative errors of

the PCE at the training samples for both laminar ant turbulent cases are summarized in Table 6.19.

It is important to note that the PCE needs a maximum allowed degree of 4 for the laminar scenario

to keep the relative error below 10−5, while the same for the turbulent model is 5.

Table 6.19: The residuals and relative errors of the fitted PCE over the training set in case of
zero-power transient simulations.

Flow Regime Max. degree Residual Relative Error

Laminar 4 1.3× 10−5 2.4× 10−6

Turbulent 5 7.9× 10−5 5.3× 10−6

The computed Sobol Indices are presented in Table 6.20. As expected, the indices correspond-

ing to the change in the multiplication factor have considerably higher magnitudes. It is also visible

that in case of turbulent simulations, the effect of the change in pumping power is even lower. A

possible explanation for this phenomenon can be that, assuming a simple point-kinetics approxi-

mation without pump, the same change in keff causes larger power variation if βeff is lower. Indeed,

mainly due to the different velocity profile, the effective delayed neutron yield is lower in case of

turbulent scenarios meaning that the same change in the multiplication factor should yield larger

variation in the relative power. Also, it is important to note that even though the absolute change

in keff is the same for both laminar and turbulent scenarios, the corresponding relative change is

higher for turbulent cases since the steady-state keff is slightly lower: 0.981711 compared to the

0.981969 of the laminar simulation. Furthermore, we recall that in case of the steady-state ex-

amples, the interaction between uncertain parameters has been negligible because the total Sobol
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Indices turn out to be almost identical to the first order indices. This is different for transient sce-

narios. Here we see that the total indices are higher than the first order indices, indicating that the

effects of the two parameters are clearly coupled through time.

Table 6.20: First order and total Sobol Indices of the parameters for zero-power laminar and tur-
bulent transients.

Flow Regime Laminar Tubulent

First order SI δkeff 0.9441 0.9737

Total SI δkeff 0.9525 0.9827

First order SI aFp 0.0475 0.0173

Total SI aFp 0.0559 0.0265

Similarly to the steady-state cases, a local sensitivity analysis has been carried out using the

fitted PCE models at the midpoint of the parameter space. Table 6.21 presents the sensitivity

coefficients. It can be observed that the increase in keff leads to the increase in the final power, while

the increase in pumping power has an opposite effect. Furthermore, based on the magnitudes of the

coefficients, we see that the QoI is 3-6 times more sensitive to the change in keff (change in fission

cross section) than to the change in pumping power. This is in agreement with the conclusions

drawn in case of the Sobol Index analysis.

Table 6.21: Local sensitivity coefficients of the quantities interest for transient zero-power simula-
tions at the middle of the parameter space.

Flow Regime Laminar Tubulent

δkeff Sensitivity 1.5311 1.8013

aFp Sensitivity -0.5254 -0.3112
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Lastly, the savings in computational time are estimated for the uncertainty quantification task

by assuming that the ROMs are 560 and 147 times faster on average than the corresponding laminar

and turbulent FOMs. With this, the overall speedup factor for the laminar ROM can be quantified

by using the formula in Eq. (6.2). This results in an approximate speedup of 391 for the laminar

ROM, while the same for the turbulent scenario is 82, mainly due to the lower number of parameter

samples in the Monte Carlo study of the ROM. Altogether, it can be concluded that, due to the

deficiencies of the RBF interpolation in the turbulent ROM, the computational speedup is rather

limited for transient scenarios.
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7. REDUCED-ORDER MODELING OF TEMPERATURE FEEDBACK

Using a second numerical example, we demonstrate the efficiency of the method developed

for the treatment of temperature-dependent cross sections at reduced-order level. For this, a 2D

model of the Molten Salt Reactor Experiment (MSRE) has been adopted. The original model is

based on the one developed within the work published in [5] and only slight modifications have

been applied. In this example, precomputed fluid flow fields are used, meaning that the fluid

dynamics equations are not solved; only the coupled neutronics and heat transfer subproblems

are considered. Two combined temperature feedback mechanisms are investigated: the Doppler

broadening of the resonances of the cross sections and the expansion of the molten salt with the

increasing temperature. These are tested using a steady-state simulation where the quantities of our

interest (QoIs) are the effective multiplication factor (keff) and the maximum system temperature

(Tmax). Additionally, an uncertainty and sensitivity analysis is carried out on the two QoIs using

six uncertain model parameters.

7.1 Full-Order Model (FOM) of the Molten Salt Reactor Experiment (MSRE)

The 5-degree wedge geometry simulating a 2D axisymmetric model of the MSRE and the cor-

responding mesh for the full-order model have been prepared using GMSH [137] and are presented

in Figure 7.1. Several approximations have been used in the mesh generation process:

(i) the complex structural elements in the core, upper and lower plenum and heat exchanger are

homogenized into porous zones,

(ii) the elements of the external loop (heat exchanger, pump, pipelines) are modeled with a sim-

plified geometry with the salt residence times matched to measurements [5] and

(iii) the downcomer wall is assumed to be infinitesimal thin.

Approximation (ii) could be ensured by fine-tuning the geometry and porosity factors in each of

the mesh zones in the external loop. The mesh consists of 38,562 cells altogether, distributed in 11
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mesh regions highlighted in Figure 7.1.

Top plenum

Bottom plenum

Core

Outlet Pipe 1 Pump Heat exchanger

Pipe 2
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Inlet

Downcomer

Downcomer
wall

Figure 7.1: Geometry and mesh of the MSRE together with the used real velocity field. Dimensions
are in m.

As already mentioned in the introduction, the velocity and turbulent viscosity/diffusivity fields

are assumed to be fixed throughout the simulations in this chapter, meaning that the fluid dynamics

subproblem is not solved. The used fluid dynamics fields (velocity, turbulent viscosity/diffusivity)
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have been obtained by solving the stand-alone Porous Medium Navier-Stokes equations with nom-

inal thermophysical parameters and 1,200 gpm flow rate. The resulting velocity field is included

in Figure 7.1 as well.

The temperature of the system is obtained by solving the heat transfer subproblem. We assume

that the thermophysical properties of the fuel salt are constant in this subproblem with the values

listed in Table 7.1 which corresponds to a 911 K reference temperature. Based on [5, 6], the

following fuel salt composition has been used: 62.5LiF-31.6BeF2-5.1ZrF4-0.8UF4 (mol%).

Table 7.1: The thermophysical properties of the molten salt in the MSRE [5, 6].

Parameter name Symbol Value

Density ρ 2327.5 g
cm3

Heat capacity cp 1967.8 J
kgK

Thermal expansion coefficient βth 2× 10−4 1
K

Reference temperature T0 911 K

Dynamic viscosity η 0.00785 Pa · s

Prandtl number Pr 10.7

The reactor core, upper and lower plenums together with the heat exchanger are modeled as

porous medium with fluid fractions determined using the original design of the MSRE. The cor-

responding fluid fractions (γ) are summarized in Table 7.2. Every additional zone is assumed

to contain clean fluid. The heat exchanger acts as a homogenized heat sink. Lastly, the porous

medium enthalpy equations are solved using homogeneous Neumann (∇T · n = 0) boundary

conditions.
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Table 7.2: The fluid fractions of the porous medium zones in the MSRE [5].

Zone γ Zone γ

Core 0.2677 Bottom plenum 0.7908

Top plenum 0.85 Heat exchanger 0.9477

The neutronics subproblem consists of two energy and six delayed neutron precursor groups.

The utilization of the 2-group structure can be justified based on the comparison discussed in

[5], namely that the difference between the 2-group and a 23-group structure is only 25 pcm

in the steady-state effective multiplication factor. The two energy groups used are separated at

0.625 eV. The homogenized cross sections for each material region have been determined us-

ing Serpent 2 [117] Monte Carlo transport code. As discussed in Chapter 3, the temperature-

dependence of the cross sections is handled using three different cross section libraries: a reference

library (Tfuel = 911 K, ρ = 2327.5 g
cm3 ), and two other libraries with perturbed fuel temperatures

(Tfuel = 1200 K, ρ = 2327.5 g
cm3 ) and fuel salt densities (Tfuel = 911 K, ρ = 2184.6 g

cm3 ).

The actual value of the cross sections is determined using a linear interpolation in the direction

of the fuel salt density and a square root interpolation in the direction of the fuel temperature,

respectively. See Section 3.2 for more information on the handling of the temperature-dependent

cross sections. The equations of the group fluxes are solved using vacuum boundary conditions

(Dg∇φg · n = −0.5φg, g = 1, 2), while homogeneous Neumann boundary conditions have been

applied for the corrected precursor concentrations (∇C∗i · n = 0, i = 1, .., 6).

Lastly, it must be mentioned that six uncertain model parameters are considered. The parame-

ters together with their corresponding distributions are summarized in Table 7.3. It is visible that

four out of the six parameters (AV , αHX , THX , Pr) come from the porous medium enthalpy equa-

tion, while the remaining parameters (Pth, βth) directly influence the neutronics equations. As

before, U(a, b) denotes a uniform distribution in the [a, b] interval.
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Table 7.3: The distributions of the uncertain model parameters for the steady-state simulations of
the MSRE.

Parameter Name Symbol Distribution

Volumetric surface AV U(110, 150) m2

m3

Heat transfer coefficient αHX U(1.8× 104, 2.2× 104) W
m2K

External coolant temperature THX U(700, 800) K

Prandtl number Pr U(9.6, 11.8)

Thermal expansion coefficient βth U(1.8× 10−4, 2.2× 10−4) 1
K

Reactor power Pth U(1.0× 105, 1.22× 105) Wth

5 degree

7.2 Reduced-Order Model (ROM) of the Molten Salt Reactor Experiment (MSRE)

The generation of the ROM starts with data collection. For this purpose, a training parameter

sample set of size 20 has been prepared using Latin Hypercube Sampling (LHS). The FOM is then

executed using the samples in this set and the group fluxes, corrected precursor concentrations,

the temperature and auxiliary temperature fields are saved into corresponding snapshot matrices.

Following this, the spatial basis functions are extracted from the snapshots by POD, which involves

the generation of correlation matrices using the snapshots. By observing the eigenvalue spectrum

of these correlation matrices, one can get a hint if the given fields can be accurately represented in

a low-order subspace. The eigenvalues of the built correlation matrices in this work are plotted in

Figure 7.2. It is visible that every curve shows a steep decay indicating that the problem exhibits

a low-dimensional behavior. Similarly to the steady-state ROMs in Chapter 6, the eigenvalues of

the correlation matrices in case of the precursor concentrations decay faster when the half life of

the given precursor group is longer. The reason behind this is the same: precursors with longer

half-life are distributed more evenly in the system by the fluid, while the short lived precursors due

to their faster nuclear decay introduce a considerable spatial variation.
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Figure 7.2: Scree plot of the normalized eigenvalues of the correlation matrices built from the
corresponding snapshot matrices obtained from steady-state simulations of the MSRE.

Using the snapshots and the eigendecomposition of the correlation matrices, the spatial basis

functions are generated for the 10 fields of interest. Figure 7.3 presents the first three spatial basis

functions (POD modes) for the scalar flux in the thermal energy group, the precursor concentration

in group 5 and the temperature. We see that a first mode for the neutronics fields depicts an

average distribution, while the second and third modes introduce the axial asymmetries mainly in

the reactor core. It is slightly different in case of the temperature since instead of axial asymmetries,

we see that the higher order modes represent the asymmetries in the whole loop, including the heat

exchanger.
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Figure 7.3: The first three POD modes (columns) of the scalar flux in the thermal energy group
(first row), the precursor concentration in group 5 (second row) and the temperature (third row) for
the steady-state simulations of the MSRE.
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As a next step, multiple ROMs are created using different number of POD modes. To test

these ROMs, a new parameter sample set (validation set) has been created using LHS. This set

contains 30 new samples with no overlap with the training set. The number of POD modes used

for the different ROMs has been determined using different values for the energy truncation limit

(τ ) described in Chapter 2. Then, both the ROM and FOM have been executed using the model

parameter samples in the validation set and the generated effective multiplication factors and the

solution fields are compared. The statistics of the absolute difference in keff and the relative L2

difference in the representative solution fields are summarized in Table 7.4. It is visible that the

decreasing truncation limit results in ROMs with higher accuracy. We note, however, that the

increase in accuracy is almost negligible at high values for τ . The reason behind this is that the

decay curves of the fields of interest are very steep and it takes multiple orders of magnitude

change in τ to include additional modes. Nevertheless, it can be concluded that the method for

the treatment of the temperature-dependent cross sections results in accurate ROMs in this case.

Using τ = 10−10, the maximum absolute difference in the eigenvalues of the ROM and the FOM

over the validation set is 0.36 pcm, which is considerably less than the expected variation in the

parameter space.

Table 7.4: The average and maximum errors over the validation set in case of steady-state simula-
tions of the MSRE.

τ
∆keff

(pcm)
max(∆keff )

(pcm)
eφ2

(%)
max(eφ2)

(%)
eC5

(%)
max(eC5)

(%)
eT

(%)
max(eT )

(%)

10−5 14.21 49.30 0.090 0.191 0.108 0.212 0.278 0.760

10−6 13.15 40.20 0.093 0.190 0.115 0.234 0.195 0.589

10−7 11.65 35.61 0.059 0.167 0.050 0.161 0.193 0.584

10−8 0.39 1.23 0.003 0.009 0.003 0.008 0.006 0.018

10−9 0.40 1.23 0.003 0.009 0.003 0.008 0.006 0.018

10−10 0.08 0.36 0.001 0.001 0.001 0.001 0.003 0.012
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Furthermore, the relative L2 difference in the fields of interest is always lower than 0.003%,

which also suggest a good agreement between the results of the FOM and ROM. Therefore, the

ROM built with τ = 10−10 has been selected for further use for uncertainty quantification. The

number of POD modes used for the construction of this ROM is presented in Table 7.5 for every

approximated field. It is visible that 3-5 spatial basis functions are enough to describe the system

with great accuracy. This is not surprising, since just like the MSFR, the MSRE is also an ex-

ceedingly homogeneous reactor which is further homogenized using the porous medium treatment

and the additional approximations in the geometry. Another interesting thing to note is that while

the temperature field needs to be approximated with 5 basis functions, it is enough to use 4 for its

square root.

Table 7.5: The ranks of the subspaces used for the construction of the final ROMs for the steady-
state simulations of the MSRE.

Field Rank Field Rank

φ1 4 C∗4 4

φ2 4 C∗5 4

C∗1 3 C∗6 4

C∗2 3 T 5

C∗3 4
√
T 4

Lastly, the time savings resulting from using a ROM instead of the FOM for as single run

is evaluated. The solution of a single steady-state problem on a single core of a processor takes

approximately 1,200 s using the FOM. Compared to this, the ROM built using τ = 10−10 takes

only 0.4 s. This means that the ROM results in an approximate overall speedup factor of 3,000. It

must be mentioned, however, that the majority of the 0.4 s needed for the execution of the ROM is

spent with file input-output operations, since the pure solution time of the ROM is only 0.019 s. In
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repeated computations, when the ROM is executed multiple times and the precomputed matrices

do not need to be loaded separately for every run, a considerably higher speedup factor can be

achieved.

7.3 Uncertainty Quantification and Sensitivity Analysis

Using the previously created ROM as emulator, a parameter-study has been carried out. The

six uncertain model parameters introduced for the FOM together with their assumed distributions

are summarized in Table 7.3. We recall that the quantities of interest in this case are the effective

multiplication factor keff and the maximum temperature Tmax. Therefore, we are are using the

emulator to approximate the keff = keff(µ) and Tmax = Tmax(µ) functions. First, we attempt to

propagate the uncertainties in the input parameters to the quantities of interest. Since the ROM is

significantly faster than the FOM, a simple Monte Carlo sampling approach has been chosen. This

means that 50,000 new parameter samples have been drawn using the corresponding probability

distribution and the results of the simulations are tallied.

The estimated means and standard deviations of the QoIs over the test set are presented in

Table 7.6. The corresponding 95% confidence intervals are included as well. The confidence

intervals have been computed using a bootstrap (re-sampling with replacement) method with 5,000

cycles in this case. The histograms of the QoIs are depicted in Figure 7.4. It is visible that both

histograms are slightly skewed, they deviate from a Gaussian. This deviation is further analyzed

with the normality plots in Figure 7.5. These plots compare the logarithmic distribution from the

experiments to that of a fitted Gaussian curve. It is visible that the distribution of the effective

multiplication factor exhibits a larger deviation from Gaussian, since not only the tails (before 5%

and beyond 95%) are off the fitted Gaussian, but the middle region as well. In case of the maximum

temperature, the mid-section of the distribution conforms a Gaussian, however as we approach the

tails, the deviation increases considerably.
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Table 7.6: Mean and standard deviation of keff and Tmax together with the corresponding confidence
intervals for the steady-state simulations with the MSRE.

keff

Mean 95% CI Std. Dev. (pcm) 95% CI (pcm)

1.030949 [1.030924, 1.030975] 287.4 [285.9, 288.8]

Tmax (K)

Mean 95% CI Std. Dev. 95% CI

1015.10 [1014.78, 1015.42] 36.73 [36.54, 36.93]
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Figure 7.4: The distribution of the effective multiplication factor (left) and the maximum temper-
ature (right) for steady-state simulation with the MSRE.

In order to investigate which uncertain parameter has the highest impact on the variance of the

QoIs, a Sobol Index Analysis is carried out. Similarly to the methodology discussed in Chapter 6,

a Polynomial Chaos Expansion (PCE) is fitted onto the results from the 50,000 tests samples using

a least squares regression. This has been carried out using the OpenTURNS [131] library, as
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described in 5.5. Since the distributions of the uncertain variables are assumed to be uniform,

Legendre polynomials have been used for the PCE model. The maximum allowed polynomial

degrees together with the resulting number of expansion terms and the residuals and relative errors

of the fitting process are summarized in Table 7.7. The Sobol Indices can then be computed using

the expansion coefficients in the fitted PCE.

Figure 7.5: Normality plots of the effective multiplication factor (left) and the maximum tempera-
ture (right) for steady-state simulations with the MSRE.

It is visible that more terms are needed to reduce the relative error in the PCE to about 10−10

in case of the effective multiplication factor. Nevertheless, we can also observe that both in terms

of residuals and relative errors, the PCE fit shows good statistics, therefore we conclude that the

fitted models are satifactory for the prediction of the Sobol Indices. The Sobol Indices computed

using the PCE are presented in Figure 7.6. It must be mentioned that the error in the fitting of the

PCE and the difference between the ROM emulator and the actual result from the FOM are not

quantified in the figure and these tasks are beyond the scope of this dissertation. Note, however,

that due to the error statistics presented in Tables 7.4 and 7.7, we assume that these errors are

negligible.
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Table 7.7: Important parameters together with the residuals and relative errors of the fitted PCE
over the training set in case of steady-state simulations with the MSRE.

QoI Max. degree Number of terms Residual Relative Error

keff 6 924 1.3× 10−10 1.0× 10−10

Tmax 5 462 1.4× 10−6 6.9× 10−11

The results show that the variation in the temperature of the external coolant in the heat ex-

changer is the most dominant contributor to the uncertainty in both QoIs. Furthermore, while the

uncertainty in the heat transfer coefficient is the second largest contributor in case of keff , it is only

the third in case of Tmax, since Tmax is more sensitive to the thermal power which is a direct source

in the heat transfer subproblem. The reason behind the difference in the ordering is that the magni-

tude of the heat source does not influence the effective multiplication factor directly, only through

the temperature feedback.
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Figure 7.6: Sobol Indices of the effective multiplication factor (left) and maximum temperature
(right) in case of steady-state simulations with the MSRE.

We also point out that the total indices are generally 1-2% higher than the first order indices,
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meaning that there is a low level of interaction between the chosen uncertain parameters, with

one exception: the Prandtl number. The total thermal expansion coefficient index for keff is more

than three times the magnitude of its first order counterpart meaning that the interactions with other

parameters is higher than the first order effect. This is not surprising, since thermal expansion coef-

ficient only influences the density feedback which depends on the temperature which is determined

using the other parameters.

Following this, the sensitivities of the QoIs to the model parameters at the middle of the pa-

rameter space are investigated using the results in Table 7.8. The sensitivity coefficients can also

be generated using the previously fitted PCE using the method described in Section 5.5.

Table 7.8: The local sensitivity coefficients of the quantities of interest at midpoint of the parameter
space in the MSRE.

Parameter Symbol κkeff κTmax

Volumetric surface AV 8.93× 10−3 −1.09× 10−3

External temperature THX −6.07× 10−2 7.43× 10−1

Heat transfer coefficient αHX 8.93× 10−3 −1.09× 10−3

Thermal expansion coefficient βth 1.43× 10−3 −9.07× 10−4

Prandtl number Pr 9.07× 10−7 2.42× 10−5

Reactor power (per 5 degree wedge) Pth −1.12× 10−2 2.59× 10−1

We see that with one exception, the signs of the sensitivities of keff and Tmax are opposite.

This is not surprising since the changes in parameter values that lead to the increase in the system

temperature generally lead to the decrease in keff through the negative feedback coefficients. The

increase in Prandtl number results in a decrease in thermal conductivity which, in turn, leads to

the increase in the maximum temperature. Furthermore we see that both QoIs have negligible

sensitivities to Pr which is not surprising since the turbulent mixing effects almost completely
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overshadow the heat conduction in the fluid. Similarly to the Sobol Indices, it turns out that the

QoIs are most sensitive to the external coolant temperature in the heat exchanger.

Lastly, the gain in computational time is quantified by comparing the time needed to generate

the 50,000 samples with the ROM to a theoretical scenario where the same task is carried out using

the FOM. The equation described in Section 6.3 can be used for this comparison by plugging in

τROM = 0.4 s and τFOM = 1200 s in. With this, we get a speedup factor of SF = 1, 363 which

proves that using ROMs for tasks like uncertainty quantification can be highly beneficial.
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8. REDUCED-ORDER MODELING OF A FULLY-COUPLED PROBLEM

Following the examples of partially coupled systems, we turn our attention to cases that require

the solution of all three subproblems discussed in Section 3.1. In this chapter, we present the ap-

plicability of the developed POD-RB method to a parameterized steady-state problem using a 2D

model of the Molten Salt Fast Reactor (MSFR) at nominal power level. The constructed ROMs are

then utilized for the uncertainty quantification and sensitivity analysis of the system at hand. Model

parameters include group constants in the neutronics subproblem, pumping force and thermal ex-

pansion coefficient from the fluid dynamics subproblem and other thermophysical properties and

heat exchanger parameters from the heat transfer subproblem. Altogether 23 model parameters are

considered. The quantities of interest (QoIs) are the effective multiplication factor (keff) together

with the maximum temperature in the system (Tmax). A similar example has been investigated in

[25] using a 3D model and a neutron transport solver instead of the diffusion approximation em-

ployed in this work. Whenever possible, we emphasize the similarities and differences between

the results in this section and those presented in [25].

8.1 The Full-Order Model (FOM) for Fully-coupled Simulations of the MSFR

The FOM used for the current example is based on the model discussed in Chapter 6 with

certain extensions. Therefore, only the additional details not mentioned in Section 6.1 are covered

here. The most important difference is that the power level in this scenario is not negligible,

therefore the heat transfer subproblem needs to be solved as well. This means that buoyancy effects

and the temperature-dependence of the cross sections are both taken into account. Furthermore,

this example involves turbulent fluid flows only. The important thermophysical properties have

been imported from Table 6.2. Beyond these properties, three additional fluid parameters need to

be defined for the characterization of the fluid dynamics and energy equations. These parameters

are presented in Table 8.1. As before, U(a, b) denotes a uniform distribution within the [a,b]

interval. In this scenario, the thermal expansion coefficient and the Prandtl number are uncertain
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parameters. Since the salt characteristics are not entirely fixed for the MSFR yet, the used values

are approximates based on [7].

Table 8.1: The thermophysical properties of the molten salt in the MSFR [7].

Parameter name Symbol Value

Heat capacity cp 1600 J
kgK

Thermal expansion coefficient βth U(1.8× 10−4, 2.2× 10−4) 1
K

Reference temperature T0 900 K

Prandtl number Pr U(7.2, 8.8)

The thermal conductivity of the fluid can be computed using the heat capacity (cp), the dynamic

viscosity (η) and the Prandtl number (Pr) of the fluid as:

kl =
cpη

Pr
, (8.1)

meaning that the thermal conductivity is uncertain as well. Similarly to Section 6.1, the heat

exchanger is treated as a porous medium. The parameters used to describe the flow resistance in

the porous region are the same as presented in Table 6.2. However, in this case, the heat exchanger

serves as a heat sink and can be characterized by the parameters in Table 8.2. It must be mentioned

that these parameters are approximate values since the exact design is not publicly available yet.
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Table 8.2: The porous medium properties of the heat exchanger in the MSFR.

Parameter name Symbol Value

Volumetric surface AV 200 m2

m3

Heat transfer coefficient αhx U(0.8× 105, 1.2× 105) W
m2K

External temperature Thx U(850, 950) K

The pump (Zone P in Figure 6.1) is treated as a homogeneous momentum source. Since no

specific design is available in the literature, we assume that the volume fraction of the fluid is 100%

(γ = 1.0) in this region. The magnitude of the pumping force (momentum source) is assumed to

be an uncertain model parameter with a distribution highlighted in Table 8.3.

Table 8.3: The pumping force used in the fluid dynamics subproblem.

Parameter name Symbol Value

Pumping force |Fp| U(60, 100) kN
m3

The boundary conditions used for the fluid dynamics and neutronics fields are exactly the same

as the ones discussed in Section 6.1. Since the energy equation is also solved in this case, a

boundary condition needs to be specified for the temperature as well. We assume that the reactor

is well insulated, therefore a homogeneous Neumann condition can be used (∇T · n = 0) for

every wall segment. The same condition is used on the symmetry planes as well. Throughout the

computations we assume that the reactor power is fixed at 3 GWth.

As in Chapter 6, the steady-state neutronics fields are obtained through the solution of a multi-

group diffusion k-eigenvalue problem. The group constants used for the neutron diffusion prob-
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lems have been generated using the Serpent 2 Monte Carlo transport code [117]. Similarly to

Chapter 6, 6 energy groups and 8 precursor groups have been employed. The energy group struc-

ture has been summarized in Table 6.4. Altogether 3 cross section databases have been generated:

one with nominal parameters (Tsalt = 900 K, ρsalt = 4125 kg
m3 ), one with perturbed salt tempera-

ture (Tsalt = 1500 K, ρsalt = 4125 kg
m3 ) and a last one with perturbed salt density (Tsalt = 900 K,

ρsalt = 3419 kg
m3 ). The temperature-dependent cross sections are determined using these libraries by

a logarithmic interpolation in the direction of fuel temperature (Doppler feedback) and a linear in-

terpolation in the direction of salt density. For more information on the treatment of the parameter-

ized cross sections, see Section 3.2.4. We assume that the diffusion coefficients (Di, i = 1, ..., 6),

fission neutron yield times fission cross sections (νΣf,i, i = 1, ..., 6) and removal cross-sections

(Σr,i, i = 1, ..., 6) are uncertain model parameters in the reactor core cavity (Zone C in Figure 6.1).

This means that the neutronics subproblem contributes with 18 uncertain parameters. The uncer-

tain group constants are summarized in Table 8.4.

Table 8.4: The distributions of the uncertain group constants for the fully-coupled computations of
the MSFR.

Group const. Distribution Group const. Distribution

D1 U(0.021, 0.026) cm νΣf,4 U(0.561, 0.685) 1
cm

D2 U(0.014, 0.017) cm νΣf,5 U(1.320, 1.61) 1
cm

D3 U(0.009, 0.011) cm νΣf,6 U(4.283, 5.235) 1
cm

D4 U(0.011, 0.013) cm Σr,1 U(6.210, 7.590) 1
cm

D5 U(0.010, 0.012) cm Σr,2 U(3.560, 4.351) 1
cm

D6 U(0.010, 0.012) cm Σr,3 U(1.597, 1.952) 1
cm

νΣf,1 U(0.517, 0.633) 1
cm

Σr,4 U(1.785, 2.182) 1
cm

νΣf,2 U(0.338, 0.413) 1
cm

Σr,5 U(1.474, 1.801) 1
cm

νΣf,3 U(0.370, 0.452) 1
cm

Σr,6 U(3.210, 3.923) 1
cm
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It must mentioned that even though the group constants are considered uncertain, the parame-

ters describing their temperature-dependence (δFD and δFT coefficients in Eq. (4.73)) are not.

This means that altogether 23 uncertain parameters are in the fully-coupled system, organized

in parameter vector µ. The quantities of interest, in this scenario, are the maximum temperature

in the system (Tmax) and the effective multiplication factor (keff). Therefore, this example aims

at generating a reduced-order model which can adequately approximate the keff = keff(µ) and

Tmax = Tmax(µ) functions.

Lastly, we review the used finite volume discretization techniques in the FOM. For the dis-

cretization of the diffusion terms we used a scheme based on linear interpolation in every case.

The discretization of the advection terms, however, depends on the equation itself. In the fluid

dynamics equations, a vanLeer [135] scheme has been used. In every other equation involving

the transport of passive scalars, due to stability reasons, a simple upwind scheme is used. The

steady-state solutions are obtained through a transient simulation which employed the fixed-point

iteration scheme described in Figure 3.4. A maximum of 6 velocity correctors have been employed

with 2 additional pressure non-orthogonal correctors per cycle. A maximum of 20 non-linear it-

erations have been used per timestep. This could change adaptively depending on the residuals of

the velocity, pressure and energy equations.

8.2 Reduced-Order Model (ROM) of the Fully-coupled System

The generation of reduced-order models begins with the collection of data in the form of snap-

shots of the solutions. In this case, we save snapshots of the scalar flux in each energy group

(φi, i = 1, ..., 6), the corrected precursor concentrations (C∗i , i = 1, .., 8), the temperature (T )

together with the logarithmic temperature (log(T )), the Darcy velocity (uD), the corrected pres-

sure (p), the eddy viscosity (νt) and diffusivity (αt) and the flow-resistance in the heat exchanger

(F fr). The snapshots of these fields are taken using 30 randomly selected (using LHS) points in

the parameter space. Note that 30 samples in the 23-dimensional parameter space is considered

sparse, however, due to the high cost of the solution of the FOM, and the homogeneous nature of

the reactor concept, it is assumed to be an adequate number. The basis functions for these fields
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are then extracted from these snapshots using the POD-procedure discussed in Chapter 2. The

decay of eigenvalues for each correlation matrix built from the snapshots (indicative of the error in

approximating the snapshots) is presented in Figure 8.1.
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Figure 8.1: Scree plots of the normalized eigenvalues of the correlation matrices built from the cor-
responding snapshot matrices obtained from steady-state fully-coupled simulations of the MSFR.

We see that the decay of the eigenvalues is much slower compared to the steady-state cases

investigated in Chapter 6. This foreshadows that more basis functions (POD modes) are necessary

for the accurate reconstruction of the solution fields. Furthermore it is also visible that the precursor

concentrations in groups with longer half-lives need fewer POD modes for the same accuracy.

As the half-lives of the precursors decrease, more and more basis functions are needed for the
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reconstruction to handle the local spatial variations caused by the changing fluid flow.

Due to the stability issues of the one-equation ROM for turbulent closed-loop problems [3], a

two-equation fluid ROM has been utilized in this example. The coefficients of the eddy viscosity

are therefore determined using the Radial Basis Function (RBF) interpolation technique described

in Section 4.3.1.3. Instead of using the full parameter vector, however, only the magnitude of

the pumping force is used as the input for the RBF interpolation. Discarding the other parameter

dimensions can be justified by the fact that the neutronics cross sections and other heat transfer

related parameters only influence the fluid dynamics through the buoyancy term which has a con-

siderably lower impact on the flow field than the pumping force in the problem at hand (operation

at nominal power). The results presented later in this chapter justify this approach as well.

Following this, 20 new parameter vectors are sampled for validation purposes. The FOM is

then executed using the parameters in the validation set and the results are compared to those ob-

tained from the ROM. The average and maximum relative L2 errors over the 20-sample validation

set are presented in Table 8.5 as function of the truncation limit (τ ). This limit is used for the deter-

mination of the number of basis functions for each solution field, with one exception. The number

of pressure modes is chosen to ensure stability but minimize the pollution effects introduced by

corresponding supremizer modes. For more information on this pollution, see Section 4.3.1.1.

Therefore, for every case shown below the number of velocity modes is specified using a trunca-

tion limit and the corresponding number of pressure modes (and supremizer modes) is chosen to

maximize the accuracy in velocity.

In general, we see that the relative L2 errors decrease with the inclusion of additional basis

functions to the reduced subspaces. We also see that the accuracy in the eddy viscosity does

not change considerably beyond τ = 10−6. This error is attributed to the approximation error

introduced by the RBF interpolation. Nevertheless, the maximum error over the validation set is

1.35% which is considered adequate and justifies the choice of shrinking the parameter space to

the pumping force only. Every other field of interest has a maximum L2 error below 0.52% which

is considered good in this scenario. The corresponding convergence in the absolute errors in the
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effective multiplication factor is presented by the black curves in Figure 8.5.

Table 8.5: The average and maximum L2 errors of the representative fields over the validation set
in case of steady-state fully-coupled turbulent simulations of the MSFR.

τ
eφ5

(%)
max(eφ5)

(%)
eC7

(%)
max(eC7)

(%)
eT

(%)
max(eT )

(%)

10−2 0.75 1.64 2.82 5.17 0.50 1.24

10−4 0.51 1.14 0.59 1.25 0.50 1.24

10−6 0.17 0.40 0.29 0.53 0.15 0.36

10−8 0.06 0.10 0.42 0.51 0.09 0.12

10−10 0.03 0.05 0.41 0.52 0.07 0.09

τ
euD

(%)
max(euD

)
(%)

ep
(%)

max(ep)
(%)

eνt
(%)

max(eνt)
(%)

10−2 0.94 1.91 0.48 1.02 1.63 3.17

10−4 0.91 1.86 0.50 1.11 0.73 1.33

10−6 0.40 0.74 0.49 1.10 0.73 1.35

10−8 0.24 0.30 0.09 0.17 0.73 1.35

10−10 0.26 0.31 0.10 0.17 0.73 1.35

We see that before starting to decrease, the error in keff increased when the truncation limit is

decreased to τ = 10−5. This increase is, however, not present in the L2 errors. The reason behind

this behavior is the difference in the decay of the eigenvalues of the correlation matrices built for

the temperature and the logarithmic temperature, shown in Figure 8.1. It is visible that the same

truncation limit results in different number of modes for these two fields. This means that while

the density feedback (driven by the temperature) is treated properly by including additional local

effects by each additional basis function, the fuel temperature (Doppler, driven by the logarithmic
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temperature) feedback cannot handle these local effects because the corresponding spatial basis

functions are not included yet. As we start including more than 1 basis function for the logarithmic

temperature at τ = 10−7, the errors start to decrease considerably.
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Figure 8.2: Decay of the maximum and average absolute error in keff using the original method
(black curves) and the lower dimensional fluid ROM (blue curves).

At this point, we recall that the inclusion of too many velocity modes can also decrease the

accuracy due to various effects like using upwind schemes for the precursor end enthalpy transport

equations. For this reason, a test has been carried out where the number of basis functions used for

the velocity, pressure, supremizer and flow resistance fields beyond τ = 10−7 are fixed to the ones

determined at τ = 10−7. This scenario is depicted by the blue curves in Figure 8.1. It is visible

that using fewer basis functions for the fluid dynamics fields yields more accurate ROMs both at

τ = 10−8 and τ = 10−10, with τ = 10−9 being slightly worse than the original scenario. For

10−10 energy retention limit, specifically, the original, truncation limit based ROM gives average

and maximum errors of 10.37 pcm and 14.14 pcm, while the modified ROM gives 3.48 pcm and

9.1 pcm for the same, respectively.

156



The L2 errors which correspond to the modified (lower-order fluid ROM) multiphysics ROMs

are presented in Table 8.6. It is visible that the modified ROMs yield better L2 errors in terms of

every solution field except temperature which is marginally better in case of the original ROM.

Table 8.6: The average and maximumL2 errors of the representative fields over the validation set in
case of steady-state fully-coupled turbulent simulations of the MSFR using the lower-dimensional
fluid ROM.

τ
eφ5

(%)
max(eφ5)

(%)
eC7

(%)
max(eC7)

(%)
eT

(%)
max(eT )

(%)

10−8 0.03 0.05 0.31 0.38 0.09 0.14

10−10 0.02 0.04 0.31 0.38 0.08 0.13

τ
euD

(%)
max(euD

)
(%)

ep
(%)

max(ep)
(%)

eνt
(%)

max(eνt)
(%)

10−8 0.15 0.21 0.10 0.16 0.73 1.35

10−10 0.15 0.21 0.10 0.16 0.73 1.35

Based on the results in this section, the modified ROM which corresponds to τ = 10−7 for

the fluid dynamics fields and τ = 10−10 for every other field has been selected for uncertainty

quantification and sensitivity analysis purposes. We assume that the 3 pcm mean and 9 pcm max-

imum error in the multiplication factor is much lower compared to the variation in the parameter

space, which is on the order of 10,000 pcm. Besides the effective multiplication factor, this ROM

yields good results in the reconstruction of the other field variables as well. The dimensions of the

subspaces used in the selected ROM are summarized in Table 8.7. The (+2) in case of the veloc-

ity field denotes that two additional supremizer basis functions have been used. Furthermore, we

see that the final subspaces utilize considerably more basis functions compared to the steady-state

zero-power experiments in Chapter 6. This is not surprising, since the addition of new uncertain

model parameters and the inclusion of temperature-dependent cross sections introduce additional
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spatial variation in the solution fields.

Table 8.7: The ranks of the subspaces used for the construction of the final ROMs for turbulent
fully-coupled multiphysics simulations of the MSFR. The ranks correspond to τ = 10−7 for the
fluid dynamics fields and τ = 10−10 for every additional field.

Field Rank Field Rank Field Rank Field Rank Field Rank

φ1 15 φ6 16 C∗5 16 p 2 log(T ) 6

φ2 15 C∗1 9 C∗6 17 F fr 4

φ3 14 C∗2 11 C∗7 18 νt 8

φ4 15 C∗3 12 C∗8 17 αt 8

φ5 15 C∗4 14 uD 4 (+2) T 10

Additionally, Figures 8.3 and 8.4 present the spatial distribution of the errors in the represen-

tative fields at the first parameter point in the validation set using the selected ROM. Figure 8.3

shows the errors in the velocity and temperature fields together with the corresponding solution

fields of the FOM at the given parameter sample. It is visible that the maximum error in the ve-

locity is approximately 3 orders of magnitude lower than the characteristic velocity of the original

solution. The same is true for the temperature, where the maximum error is 2.73 K, while the

maximum temperature in the system is 1,268 K. Following this, Figure 8.4 shows the solutions

and corresponding errors for the neutron scalar flux in energy group 5 together with the concen-

tration of delayed neutrons in group 7. It can be observed that the maximum errors in the flux are

approximately 4 orders of magnitude lower than the characteristic flux values at the given sample.

Most of the error is concentrated close to the central line of the reactor. A possible explanation for

this can be the inaccuracy in the temperature in this region. The precursor concentrations, however,

show considerably higher errors that are only 2 orders of magnitude lower than the characteristic

concentrations of the FOM. The bulk of the error is concentrated in close vicinity of the axis plane

158



and the top reflector.

Figure 8.3: The velocity and temperature fields of the FOM (left) together with the absolute errors
between the FOM and the ROM (right) for the first sample in the validation set used for the fully-
coupled simulations of the MSFR.

At this point we can compare the performance of the generated ROMs to the similarly POD-

based, but non-intrusive, sparse-grid interpolation ROMs used for a similar experiment in [25].

The non-intrusive ROMs are capable of reconstructing the temperature field with a maximum l2

error of 0.02% and the effective multiplication factor with a maximum absolute error of 37 pcm.

The same are 0.13% and 9.1 pcm for the intrusive ROM discussed here. An interesting difference,
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however, is that while the non-intrusive ROM requires 63 and 1,639 model evaluations for the

temperature and keff , the intrusive ROM needs only 30. We note, however, that the two examples

are not one-to-one comparable due to the differences in the used FOMs and parameters.

Figure 8.4: The representative scalar flux and precursor concentration of the FOM (left) together
with the absolute errors between the FOM and the ROM (right) for the first sample in the validation
set used for the fully-coupled simulations of the MSFR.

Lastly, the time required to solve the selected ROM is compared to that of the FOM. Due to

the slow convergence and the fact that a transient simulation is used to obtain the steady state of

the FOM, it takes a considerable, 21,000 s on average to solve the FOM per parameter sample on
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a single core of a processor. The solution time of the ROM, on the other hand, is only 1.25 s on

average. This yields an approximate speed-up factor of 16,800. This speed-up is the consequence

of decreasing the number of degrees of freedom in the problem from 274,380 to 256.

8.3 Uncertainty Quantification and Sensitivity Analysis of the Fully-coupled Problem

Once the ROM is generated, it can be used as an emulator of the FOM for the purpose of

uncertainty quantification and sensitivity analysis. First, we attempt to propagate the uncertainties

in input parameters to the quantities of interest (QoIs). For the list of uncertain model parameters

and their corresponding distributions, see Section 8.1. We note that the selected group constants

have physical dependencies. A good example is the fission cross section (Σf ) which, in a realistic

scenario, would influence the removal cross section (Σr) and the diffusion coefficient (D) as well.

In this example, however, our goal is to demonstrate the applicability of the ROMs for multi-query

problems, therefore these dependencies are not resolved. Recall that two QoIs are defined for this

problem, the effective multiplication factor (keff) and the maximum temperature in the system.

Since the ROM is orders of magnitude faster than the FOM, a Monte Carlo approach has been

used to generate the distributions and the corresponding important statistical moments of the QoIs.

Altogether 50,000 random samples have been used for the experiment. The resulting histograms

for the two QoIs are plotted in Figure 8.5. The distributions are compared to a Gaussian using

the normality plots in Figure 8.6. It is visible that the distribution of keff is seemingly closer

to Gaussian, even though it is slightly skewed, especially in the tail regions. Nevertheless, this

suggests that the QoI is influenced considerably by more than one model parameter. The maximum

temperature, on the other hand, resembles a distorted uniform distribution which implies that it is

influenced by predominantly only one model parameter. This will be confirmed later in this section.

The corresponding statistical moments estimated using 50,000 samples are presented in Table 8.8.

The confidence intervals of the statistical moments have also been estimated using a bootstrap (re-

sampling with replacement) method with 5,000 cycles in this case. It is visible that the uncertainty

on the effective multiplication factor is considerable with the standard deviation being close to

10,000 pcm. This emphasizes the importance of of accurate cross section libraries, since the used
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uniform distributions with a ±10% variation result in a highly unreliable effective multiplication

factor. The same can be stated about the maximum temperature.
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Figure 8.5: The histograms of the effective multiplication factor (left) and maximum temperature
(right) for the fully-coupled problem using 50,000 parameter samples.

Figure 8.6: Normality plots of the effective multiplication factor (left) and the maximum tempera-
ture (right) in the fully coupled system using 50,000 parameter samples.

162



Table 8.8: Mean and standard deviation of keff and Tmax together with the corresponding confidence
intervals for the steady-state simulations of the fully-coupled problem.

keff

Mean 95% CI Std. Dev. 95% CI

0.979730 [0.978934, 0.980525] 0.090254 [0.090254, 0.091316]

Tmax (K)

Mean 95% CI Std. Dev. 95% CI

1273.46 [1273.18, 1273.74] 31.47 [31.32, 31.61]

Following the analysis of the distributions and statistical moments, we turn our attention to the

determination of the parameter-wise contributions to the uncertainty in the QoIs. This is supple-

mented by the sensitivity study of the QoIs. To perform these studies, the strategy discussed in

Section 5.5 is employed. In this process, a Polynomial Chaos Expansion (PCE) is fitted onto the

data of 50,000 samples. The PCE can then be used to generate global and local sensitivity indi-

cators. The residuals and relative errors of the fitted PCE over the training set are summarized in

Table 8.9.

Table 8.9: Quantities of interest together with the residuals and relative errors of the fitted PCE
over the training set in case of steady-state fully-coupled simulations with the MSFR.

QoI Max. degree Number of terms Residual Relative Error

keff 3 2,600 1.7× 10−7 1.7× 10−7

keff 4 17,500 3.1× 10−8 5.8× 10−9

Tmax 3 2,600 3.6× 10−3 6.4× 10−4

Tmax 4 17,500 2.8× 10−3 4.1× 10−4
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It is visible that both the residuals and relative errors are low in case of the effective multipli-

cation factor. The approximation of the maximum temperature, on the other hand shows higher

relative errors. Moreover, increasing the maximum degree of the polynomial expansion does not

seem to reduce the error considerably. Increasing the maximum degree beyond 4 is not possible for

the PCE since then number of terms would exceed the number of parameter samples. An explana-

tion of this behavior can be that the Tmax = Tmax(µ) function is not smooth enough. Nevertheless,

for this example, we consider the accuracy of the fitted PCE adequate. For more accurate results,

adaptive PCE can be used or more training samples can be added to allow higher polynomial

degrees.

The contribution of the variance in the model parameters to the variance in the QoIs can be

analyzed using the corresponding Sobol Indices. These indices can be generated using the already

fitted PCE. Figure 8.7 presents the Sobol Indices computed for the effective multiplication factor.
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Figure 8.7: First order and total Sobol Indices of the effective multiplication factor for the fully-
coupled MSFR model.
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We see that the variance in the removal cross sections has the strongest impact on the vari-

ance of keff . Following this, come the fission cross sections, external coolant temperature and

the diffusion coefficients. The fact that the other thermophysical properties have little impact is

not surprising, since the neutronics equations are expected to have the highest sensitivity to the

model parameters directly used in them. To further investigate, the local sensitivity of the effective

multiplication factor to the parameters at the middle of the parameter space are summarized in

Table 8.10.

Table 8.10: The local sensitivity coefficients of keff at the middle point of the parameter space.

µk κkeff
µk

µk κkeff
µk

µk κkeff
µk

µk κkeff
µk

D1 -4.03×10−3 νΣf,1 3.12×10−2 Σr,1 -3.68×10−1 |Fp| 2.53×10−3

D2 -1.12×10−2 νΣf,2 8.01×10−2 Σr,2 -8.17×10−1 THX -1.11×10−1

D3 -1.87×10−2 νΣf,3 2.14×10−1 Σr,3 -8.77×10−1 αHX 3.76×10−3

D4 -1.48×10−2 νΣf,4 2.26×10−1 Σr,4 -6.69×10−1 βth -4.23×10−3

D5 -1.16×10−2 νΣf,5 4.02×10−1 Σr,5 -4.51×10−1 Pr 4.16×10−5

D6 -8.43×10−3 νΣf,6 7.40×10−2 Σr,6 -7.21×10−2

By looking at the signs of the sensitivity coefficients, we see that the increase in diffusion coef-

ficients and removal cross sections decrease the effective multiplication factor, while the opposite

is true for the fission cross sections. Regarding the magnitudes, a similar behavior can be observed

as in case of the Sobol Indices. We see that keff is most sensitive to the removal cross sections. In-

terestingly, the sign of the sensitivity coefficient of the pumping force is positive, meaning that the

increase in pumping power leads to the increase in keff . This is in contradiction with the zero-power

simulations where the increase in pumping power leads to decreasing precursor concentration in

the high-importance regions of the reactor core which, in turn, results in a decrease in keff as well.

In this scenario, however, the increase in velocity does not only increases the loss of delayed neu-
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tron precursors but improves the cooling of the system which results (through negative feedback)

in a net increase in keff .

The same Sobol Index and Sensitivity Analyses have been carried out for the maximum tem-

perature. The Sobol Indices are presented in Figure 8.8. It is visible that the variation in the

maximum temperature is predominantly influenced by the variation in the pumping force and the

external coolant temperature in the heat exchanger. This has been expected based on the shape of

the histogram of the maximum temperature. Other notable contributors are the thermal expansion

coefficient and the heat transfer coefficient in the heat exchanger.
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Figure 8.8: First order and total Sobol Indices of the maximum temperature in case of fully-coupled
simulations.

It can also be observed that the Sobol Indices corresponding to the cross sections have negligi-

ble magnitudes. This is not surprising, since throughout the eigenvalue iteration in the neutronics

solver, the solution fields are normalized to ensure that the reactor power is maintained at the nom-
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inal level. This means that the source term in the enthalpy equation does not change considerably.

On the other hand, the contribution of the variance in βth is noticeable since it changes the shape

of the flux and power distributions through the density feedback and contributes to the changing

flow profiles through buoyancy effects. For the exact dependence, see Section 3.2.

The local sensitivity coefficients at the midpoint of the parameter space for each parameter are

summarized in Table 8.11. We see that the increase in the pumping force, heat exchange coefficient

and the thermal expansion coefficient all result in the decrease in maximum temperature. All of

these parameters influence directly or indirectly (through the velocity and flux distributions) the

cooling of the system. As expected, the QoI is most sensitive to the external coolant temperature.

Table 8.11: Local sensitivity coefficients of the maximum temperature at the middle of the param-
eter space in case of the fully-coupled problem.

µ κTmax
µk

µ κTmax
µk

µ κTmax
µk

µ κTmax
µk

D1 -9.67×10−4 νΣf,1 2.24×10−4 Σr,1 -2.91×10−3 |Fp| -6.77×10−2

D2 -2.78×10−3 νΣf,2 3.78×10−4 Σr,2 -8.34×10−3 THX 7.08×10−1

D3 -2.96×10−3 νΣf,3 2.74×10−3 Σr,3 -1.19×10−2 αHX -2.37×10−2

D4 -2.21×10−3 νΣf,4 2.73×10−3 Σr,4 -7.27×10−3 βth -4.58×10−2

D5 -4.96×10−4 νΣf,5 6.52×10−3 Σr,5 -4.58×10−3 Pr 3.32×10−4

D6 2.27×10−4 νΣf,6 4.60×10−4 Σr,6 -2.43×10−4

Lastly, the savings in computation time resulted by the utilization of the ROMs is evaluated for

the uncertainty quantification and sensitivity analysis. For this, we use the formula introduced in

Eq. (6.2). An average execution time of 21,000 s is assumed for the FOM, while 1.25 s is used for

the ROM. By plugging these numbers into Eq. (6.2), the overall approximate speedup, including

the training phase, becomes SF = 1, 516. Based on this, we conclude that the utilization of ROMs

for the uncertainty quantification tasks can be highly beneficial.
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9. CONCLUSIONS AND OUTLOOK

9.1 Summary

The work presented in this dissertation focuses on the development and implementation of

intrusive multiphysics Reduced-Order Models (ROMs) for parametric problems in Molten Salt

Reactors (MSRs). The motivation behind the generation of these ROMs is that high-fidelity Full-

Order Models (FOMs) for complex multiphysics problems are computationally demanding, there-

fore they are are not suitable for multi-query problems like uncertainty quantification or design

optimization. These multi-query problems require the repeated solution of the computationally

expensive Full-Order Models (FOM) at a potentially large number of model parameter combina-

tions. In this work, we propose that training ROMs and using them as emulators of the FOM can

greatly accelerate such multi-query applications. The developed ROMs are based on the intrusive

Proper Orthogonal Decomposition aided Reduced Basis technique (POD-RB), where the intrusive

nature of the technique denotes that the discretized operators of the original, computationally ex-

pensive FOMs are used to create the ROMs. In the following paragraphs we summarize the main

take-aways of each chapter in this dissertation. Whenever possible, we emphasize the novelty in

the presented work.

Chapter 2 reviews the process of the generation of intrusive POD-RB ROMs using a one-

dimensional diffusion-reaction example. In general, the construction of the ROMs starts with the

collection of information using the system at hand. This means that snapshots of the solution fields

are saved at different times and parameter values. Using the snapshots, reduced subspaces are

generated for these solution fields with the help of POD. The original solutions are then expanded

using the basis vectors of these subspaces. The final form of the ROMs can be derived by plugging

in the expansions into the original mathematical model and projecting it using the basis vectors of

the created subspaces (Galerkin projection). For the handling of non-quadratic nonlinearities, the

Discrete Empirical Interpolation Method (DEIM) has been employed.
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Chapter 3 presents the system of governing equations used for the description of the behavior

of liquid-fuel MSRs together with the discretization techniques used to derive the FOMs. This

work considers the incompressible Reynolds-Averaged Porous Medium Navier-Stokes equations

for the description of fluid dynamics phenomenon. This is coupled with a porous medium en-

thalpy equation for the determination of temperature. The neutronics behavior of the system is

described by the multigroup neutron diffusion equations supplemented with delayed neutron pre-

cursor balance equations in porous media. The neutronics equations use temperature-dependent

group constants and consider the advection of the precursors. The buoyancy effects in the fluid are

treated using a Boussinesq approximation. In this work, the governing equations are discretized

using the cell-centered Finite Volume Method (FVM), while transient examples utilize implicit

Euler discretization in time. GeN-Foam, an OpenFOAM c©-based open-source multiphysics solver

has been employed for the generation and solution of the FOMs. The nonlinearities in the system

are resolved using a multi-layer fixed-point iteration between the fluid dynamics, heat transfer and

neutronics subproblems.

Chapter 4 then presents the derivation of the corresponding multiphysics ROMs. More specif-

ically, it describes in details the methods used for building the reduced subspaces for the solution

fields, the generation of stable physics-wise ROMs and the multiphysics coupling between them.

To the best knowledge of the author, this chapter contains the following novel contribution to the

field of reduced-order modeling of nuclear systems:

• The derivation of POD-RB-ROMs for the incompressible Reynolds-Averaged Porous Medium

Navier-Stokes equations with flow resistances included. This expands on the work published

in [3] by the author.

• The derivation of a neutronics ROM based on group-wise reduction and the porous medium

equations describing the delayed neutron precursor concentrations. This expands on the

work published in [88] by the author.

• The derivation of a reduced-order system for the determination of the effective delayed neu-
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tron fraction, involving the derivation of the reduced-order adjoint neutronics equations for

liquid-fuel systems. The proposed method does not require any full-order operations, there-

fore is highly efficient in terms of computation time.

• The derivation of an efficient way of treating the temperature-dependent cross sections based

on DEIM. The method is capable of handling the density and Doppler feedback separately.

The presented method is efficient in terms of memory usage, extrapolability and computation

cost. This expands on the method published in [91] by the author.

Chapter 5 presents the evaluation phase of the ROM. This includes the assemly and the solu-

tion of the reduced multiphysics system together with the extraction of the quantities of interest.

Besides these, the chapter discusses methods to evaluate the accuracy of the ROMs and a possible

approach to use the ROMs for uncertainty quantification and sensitivity analysis. To the best of the

knowledge of the author this section contains the following novel contributions:

• The implementation of a multiphysics POD-RB-ROM framework (named GeN-ROM) using

OpenFOAM c©. The developed code can be used for simulations based on GeN-Foam, but

also with other OpenFOAM-based solvers.

• The derivation of a multi-layered fixed point iteration scheme at reduced order level that

yields stable multiphysics ROMs.

Following the details of the derivation and implementation of the multiphysics ROMs, several

numerical examples are presented. The example in Chapter 6 demonstrates the applicability of

the multiphysics ROMs to zero-power parametric simulations on a 2D model of the Molten Salt

Fast Reactor (MSFR). Due to the zero-power assumption, only the neutronics and fluid dynamics

subproblems are solved, the enthalpy equation does not need to be considered. In other words,

the temperature-dependence of the cross sections and the buoyancy effects in the fluid dynamics

subproblem are not taken into account. This example involves a steady-state problem with 13

uncertain parameters and a transient scenario with two uncertain parameters. The quantities of
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interest are the effective multiplication factor and delayed neutron fraction for steady-state simu-

lations and the power level at t = 6 s for the transient scenario. The accuracy of the generated

ROMs are considered to be adequate in terms of both the solution fields and the quantities of in-

terest. The steady-state ROMs, depending on the case, are capable of a single run speedup of

2.3× 105-4.7× 105, while the same for the transient ROMs was 78-870. The generated ROMs are

then used for uncertainty quantification and sensitivity analysis of the given systems. The results

indicate that the ROMs can be efficient emulators of the FOM, and can reduce the computation

cost of the uncertainty quantification task by 1-3 orders of magnitude.

Chapter 7 presents another example of a partially coupled system. In this example, the fluid

dynamics fields are considered to be fixed, therefore only the neutronics and heat transfers sub-

problems are solved. This example is specifically designed for the evaluation of the developed

reduced-order method for the handling of temperature-dependent cross sections. The problem in-

volves parameterized steady-state simulations of a 2D model created based on the Molten Salt

Reactor Experiment (MSRE). Altogether 6 uncertain parameters are used in this scenario with the

quantities of interest being the effective multiplication factor and maximum temperature in the

system. The results indicate that the developed multiphysics ROMs yield accurate results and a

considerable single-run approximate speedup of 3000. The generated ROM is then used for the

uncertainty quantification and sensitivity analysis of the MSRE and the results indicate that the

methodology can, in fact, be used for the acceleration of similar multi-query problems.

The last numerical example, presented in Chapter 8, demonstrates a case where all three of

the subproblems are solved, coupled with each other. The model consists of a parameterized

steady-state simulation using a 2D geometry of the MSFR. The uncertain model parameters in

this scenario are group constants, parameters of the heat exchanger and the pump and other ther-

mophysical properties. Altogether 23 model parameters are used. Similarly to the example of

the MSRE, the quantities of interest are the effective multiplication factor and the maximum tem-

perature of the system. The results indicate that the developed method can be used to generate

accurate ROMs with single-run speedups on the order of 1000. The generated ROMs are then used

171



as emulators for the uncertainty quantification and sensitivity analysis of the system. Compared to

other, recently developed, non-intrusive ROM techniques applied to the simulation of MSRs, the

method in this paper yields similar accuracy with considerably fewer samples (snapshots in our

case) needed for the training. Although, it must be mentioned that the used FOMs and uncertain

parameters are not entirely comparable in the two works.

Overall, we conclude that the developed multiphysics ROM technique shows promising results

for the steady-state and transient simulations of Molten Salt Reactors. Most likely, the main reason

behind this is that MSRs are highly homogeneous systems, therefore the solution fields can be

easily approximated by global basis functions.

9.2 Possible Improvements

Lastly, we give suggestions on possible further enhancements on the developed technique.

These suggestions are made based on the difficulties faced during the simulations shown in Chap-

ters 6, 7 and 8 and paper [3]:

• The one-equation fluid ROM and the supremizer stabilization-based two-equation fluid ROM

approaches are not robust for turbulent simulations. We propose using a Discrete Empirical

Interpolation method to solve a ROM for the numerically consistent segregated pressure

equation derived for the SIMPLE/PIMPLE algorithms.

• The utilization of Radial Basis Function (RBF) interpolation for the determination of the

coefficients of the eddy viscosity and diffusivity for the two-equation ROMs is not robust

enough. In many scenarios, if the sampling of the parameters is not dense enough, the

ROMs may exhibit stability issues due to the inaccuracy in the turbulent dissipation. For

this reason, we propose either using a different, more robust multi-dimensional interpolation

technique (e.g., neural networks or nearest neighbors) or reducing the auxiliary equations

used for the determination of the turbulent viscosity and diffusivity. A possible approach

would be the reduction of the k− ε equations using Discrete Empirical Interpolation Method

(DEIM).
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• The treatment of the advection terms in case of the passive scalar transport equations can

considerably influence the accuracy of the ROM. If the FOM utilizes a first-order upwind

scheme, the discretization depends on the velocity. This means that the quadratic approach

used to generate the advection tensor in the ROMs would include errors due to the fact

that different velocity modes will result in different discretization stencils compared to what

the actual solution would use. This may not cause problems for high-resolution meshes,

but it should be accounted for in case of simulations using a coarse-mesh. For this reason,

we propose the utilization of the Discrete Empirical Interpolation method for resolving the

advection terms in such cases.
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