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ABSTRACT

Roboticists design robots by relying heavily on empirical knowledge and prior experience.

That design process is seldom done in an automated fashion. This dissertation aims to automate

robot design for robots for estimation and planning tasks. The work shows how to make decisions

about robot hardware choices while jointly solving for a plan or estimator. To do so, this disserta-

tion reasons about the information required by the task and the information that can be collected

by a robot with a particular design. The robot should be able to provide sufficient information to

accomplish a task. But such information can be both valuable and sensitive, and can be potentially

leaked from the robot. Motivated by applications where privacy is important, this dissertation stud-

ies automated robot design for planning and estimation tasks, subject to additional constraints on

the information that can be disclosed by or learned from the robot. It investigates the design of

robot sensors, the information disclosure policy that determines how information is disclosed from

the robot, and prior knowledge in privacy-preserving tracking and planning tasks. It also devel-

ops exact algorithms to construct estimators, which have minimum state complexity and achieve

specified functionalities in the estimation tasks.

We first characterize the strategy space of one-dimensional privacy-preserving tracking prob-

lems, where a robot must track a target with its accuracy above a tracking bound and below a

privacy bound. We present impossibility results for some tracking and privacy bounds, and show

that the feasibility of the task is sensitive to the robot’s initial belief. By characterizing sensor

power as the number of its pre-images, we prove that the amount of solvable privacy-preserving

problems is bounded, converging asymptotically with increasing sensing power.

Secondly, we examine privacy-preserving planning problems, where the robot should not only

solve the planning problem but also reason about the disclosed information of the plan execution

to a third party we call an observer—these are active variants of the passive problem we first

consider. In this problem, we introduce the notion of information disclosure policy to create a

knowledge gap between the observations perceived by the robot and the information received by
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the observer during plan execution. In addition, we also examine different assumptions about

the observer’s prior knowledge of the robot’s plan, and present a family of algorithms to search

for a plan and an information disclosure policy. Among the problems that are solved, the most

challenging one is to search for a plan and information disclosure policy, while assuming the same

plan is disclosed as prior knowledge to the observer. In this problem, before the plan is found,

there is no explicit representation of the observer’s prior knowledge, which makes the plan search

problem challenging to formulate.

Next, we consider robot sensors abstractly. Due to the sensor noise, there is a gap between

what the robot sees and the real event happening in the world. We model such a sensing gap with

a formal structure that generalizes information disclosure policy, and this structure serves as an

abstraction of the sensor. We further model sensor fabrication constraints (such as sensing fidelity)

as properties of the abstraction, and propose search algorithms to enumerate all sensors that suffice

for solving a planning problem.

Finally, we study the minimization problems of the combinatorial filters, which are the discrete

estimators used by the observer in the privacy-preserving planning problems. We generalize the

existing notion of combinatorial filters and examine the hardness of both deterministic and non-

deterministic filter minimization problems. We show that multiple concepts previously believed to

be true about combinatorial filters (and actually conjectured, claimed, or assumed to be) are in fact

false. We then present the first known complete filter minimization algorithm, and further propose

an algorithm that is efficient in practice.

To summarize, this dissertation includes impossibility results for sensor design in privacy-

preserving tracking tasks, and algorithms for finding plans, sensor-plan pairs, and disclosure-plan

pairs to enable automated design in privacy-preserving planning tasks. It also contributes counter-

examples, constructions, hardness results, and algorithms to minimize the state complexity of com-

binatorial filters.
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1. INTRODUCTION

As fundamental capabilities for autonomous robots, estimation and planning are realized

as software modules that take sensor readings as input and output commands to the robot’s

actuators, so as to solve a particular task. This dissertation extends classical estimation and

planning problems toward more general classes of tasks and toward the automated design of

robots, including in making hardware selections: As summarized visually in Figure 1.1, at

the task level, we consider estimation and planning tasks in an untrusted environment, where

the robot executing the task is being observed. The objective is to constrain the information

divulged from the robot as well as to allow the robot to accomplish its tasks. Approaching

the level of hardware selection, this dissertation examines the estimation and planning tasks

from a designer’s perspective, and automatically reasons about sensor design jointly with

the robot’s plans and estimation strategies. By reasoning about the robot design jointly with

planning and estimation, it yields better solvability for the tasks, and emphasizes the utility of

limited sensors and the value of ignorance.

Figure 1.1: The core problem of study: informed design of robot hardware and software in order
to achieve tasks. A particular (novel) focus is in considering this subject to constraints that may
arise from the robot being observed.
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1.1 Estimation and planning with stipulations on the information divulged

When interacting with the world, a robot often needs to collect information about its environ-

ment and itself with respect to the environment. Such information comes from the robot’s prior

knowledge (about the environment or its own dynamics) or sensor readings. Due to the inaccuracy

in the available prior knowledge, sensor noise, and limited field of view, the information known by

the robot is plagued by uncertainty. Indeed, uncertainty is one of the main sources of difficulties for

robotic estimation and planning tasks. It corrupts estimates via noise making the estimation task

challenging; it causes plans to fail by introducing non-deterministic or stochastic outcomes in the

system and preventing the robot from choosing the right actions to reach its goal. Uncertainty is

commonly treated as something that should be avoided, minimized, or even eliminated (if possible)

in the robot’s estimation and planning tasks. Bayesian techniques are used to build an unbiased

estimate with the minimum variance [4]; robot’s movements or sensing strategies are considered

to improve the sensing performance [5]; planning algorithms are developed for the robot to act in

the presence of uncertainty [6].

But as robots become widespread, it is likely that there will be a shift in thinking—robots

that know too much are also problematic in their own way. A robot operating in your home,

benignly monitoring your activities and your daily routine, for example to schedule vacuuming

at unobtrusive times, possesses information that is valuable. There are certainly those who could

derive profit from it. For example, in 2017, iRobot announced that they intended to sell maps of

people’s homes, as generated by their robot vacuum cleaners. The result was a public outcry [7]. It

is increasingly clear that, as robots become part of our everyday lives, the information they could

collect can be both sensitive and valuable.

When living in an untrusted environment, the robot is observed while executing its tasks, and

the information possessed by the robot can get leaked via a variety of ways. For instance, the

robot’s information can be directly disclosed from its status display, which is designed to commu-

nicate necessary information to the user but can be misused if it is leaked to an adversary. The

information may also be recorded in the robot’s log file, which is designed to help a technician for
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maintenance purposes. The same log file may also be potentially accessed and used by an adver-

sary to achieve its own purpose. We call the medium (e.g., status display or log file) through which

information is disclosed, an information disclosure channel.

From the robot’s perspective, it can control the divulged information via the information disclo-

sure channel, its sensing strategy, or actions. The robot can decide what information is disclosed or

how information is disclosed via the information disclosure channel. For example, the robot may

choose what information to present in its status display, or it can inject ambiguity when recording

information in its log file. On the other hand, the robot may choose to behave in a less informative

way, so as to prevent sensitive information to be collected or divulged. For example, the robot can

choose where to point its sensor and determine what information to be collected; the robot may

also choose not to move through a sensitive location and avoid private information from being de-

tected or divulged. Existing work focuses separately on finding appropriate sensing strategies [1],

plans [8], or synthesizing strategies for the information disclosure channel [9, 10]. This disserta-

tion examines those elements jointly in a privacy-preserving tracking or planning scenario, where

the objective is to help the robot accomplish its target tracking or planning task and to constrain

the divulged information from the robot.

1.2 Robot design for estimation and planning tasks

A second direction to approach the estimation and planning tasks is to solve them from the

perspective of a designer. To solve tasks, we roboticists tend to approach robot sensors from the

perspective of consumers, purchasing whatever seems necessary from a catalog, and then write

code to make robots useful. This perspective puts practical constraints up front: it is influenced

by technologies that are currently available, it limits options to what can be fabricated cheaply

and sold profitably, and it is tied to a narrowed solution space that can affect the solvability and

optimality of the tasks. Robot design aims to reason about the robot’s hardware including its

sensors and actuators that suffice for an estimation or planning task.

Currently, robot design is seldom done in an automated fashion. Roboticists have to reason

about the robot’s configuration (often only heuristically), then develop algorithms based on the
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given configuration, and repeat these steps until a task can be solved. To automate the design

process, this dissertation examines ways in which sensors affect whether a tracking or a planning

problem can be solved, and automatically searches for sensors that suffice for an estimation or

planning task.

1.3 Design a robot for estimation and planning tasks with information stipulations

We have provided two directions to generalize existing estimation and planning problems: in-

troducing stipulations on the divulged information on the robot’s tasks, and considering searching

for robot sensor designs. Though the two directions may seem at first blush to be independent,

they are not. Introducing stipulations on the divulged information, especially privacy stipulations,

teaches us about the less powerful sensors, which are underappreciated when designing robots

for estimation and planning tasks. To achieve the robot’s estimation and planning purposes, the

sensors that are more powerful in terms of the information they can collect are always preferred,

since they are more capable of satisfying the information requirement of the tasks [11]. However,

privacy stipulations on the divulged information will limit the usage of those more powerful sen-

sors and encourages the less powerful ones. For example, if the location of a robot carrying a

Global Positioning System (GPS) sensor is sensitive and the GPS sensor reading is accessible to

the adversary, then using a high-precision GPS sensor will immediately reveal the robot’s position

to the adversary. In this case, a low-precision GPS sensor that is sufficient for the robot’s tasks is

preferred.

Privacy stipulations on the divulged information constrain the information that the robot col-

lects, which limits the usage of those more powerful sensors and encourages the less powerful

ones. For example, the Global Positioning System (GPS) sensors with higher precision are al-

ways preferred for the robot to localize itself and take actions to reach its goal. But if sensing

information is also accessible to the adversary, then it will reveal the robot’s precise position to its

adversary. By preventing the adversary from localizing the robot too precisely with stipulations,

we encourage the usage of low-precision sensors in robot design.

On the other hand, introducing robot design improves the solvability of the tasks with infor-
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mation stipulations. Estimation and planning tasks may be infeasible due to poor sensors, which

do not provide enough information and fail to work with any estimation or planning strategy to ac-

complish the robot’s tasks. Adding constraints on the divulged information makes the solvability

of such problems even worse. If the sensor is too powerful, it collects too much information as

long as it is open and may immediately violate the privacy stipulations. As a consequence, sensor

design is critical to improve the solvability of the estimation and planning tasks while satisfying

the information stipulations, and it should be solved jointly with the robot’s estimation or planning

strategies.

1.4 Research objectives

The objective of this dissertation is to understand the information that can be communicated

and learned from the robot. It contains the information that is communicated online during the

robot’s plan execution, and the information that is disclosed offline. We want to reason about

how to constrain the communicated information in two ways: to prevent sensitive information

from being leaked, and to explicitly communicate useful information if that is part of the robot’s

tasks. We want to understand the implications of those constraints for the robot’s tasks, and develop

algorithms to solve those tasks. Further, we want to understand the relationship between the robot’s

tasks and robot design choices. We want to provide algorithms that can tame the complexity of

searching over the space of robot designs to find feasible estimation or planning strategies as well

as satisfying the stipulations on the divulged information.

1.5 Research contributions

This dissertation makes the following contributions toward the research objectives:

First, we characterize a class of one-dimensional privacy-preserving tracking problems in

terms of the robot’s initial knowledge, sensor design, and stipulations. Inheriting the problem of

target tracking whilst simultaneously preserving the target’s privacy, as was proposed by O’Kane [1],

who dubbed it the robot panda tracking scenario, elegantly illustrating the value of ignorance, we

examine the problem from the design perspective. We give a complete characterization of the solv-
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ability of the one-dimensional panda tracking problem with different tracking and privacy bounds.

Between the problems that can be solved and the non-solvable ones, we identify the cases where

the solvability of the problem is sensitive to the robot’s initial belief. By characterizing the sen-

sor power as the number of its output classes, we prove asymptotic results in privacy-preserving

tracking as we increase the sensor power. We also relate abstract sensors for scenarios to different

dimensionalities and different number of pre-images.

Second, we develop exact algorithms to jointly search for information disclosure policies to-

gether with plans in privacy-preserving planning problems. This dissertation contributes the first

formulation, to our knowledge, of planning where solutions can be constrained so as to require

that some information be communicated and other information obscured subject to an adversarial

model of an observer. Nor do we know of other work where both a plan and some notion of an

interface (the information disclosure policy, in our terminology) can both be solved for jointly.

We identify a hierarchy of the observer’s prior knowledge about the robot’s plan, and solve the

privacy-preserving planning problems for each possible prior knowledge.

Third, we develop exact algorithms to search for sensor designs that suffice for privacy-preserving

planning problems. This dissertation also contributes data structures, rooted in mathematical ab-

stractions, to represent the space of sensors as covers, which enable whole sets of sensors to be

summarized via a single special representative. Based on this representation, we proposed an

algorithm to enumerate all feasible sensor designs, each of which solves the privacy-preserving

planning problem jointly with some plan. Furthermore, we give a means by which other structures

(either task domain knowledge, sensor technology, or fabrication constraints) can be incorporated

to reduce the sets to be enumerated.

1.6 Additional contributions

In the work of both sensor design and privacy-preserving planning problems, we model the

world, plans, and estimators as p-graphs [12]. P-graphs originally come from the formulation

of discrete estimation problems, and they are then extended to represent plans in the planning

problems. But the number of states in such p-graphs grows with the scale of the problem. One
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of the relevant questions arising form the prior work is how to reduce the number of states in the

graphs, which has direct implications for the minimization of resource consumption.

This dissertation contributes hardness results for a family of combinatorial filter minimization

problems, and proposes exact and practical algorithms for deterministic filter minimization. Also it

shows that multiple concepts previously believed to be true about combinatorial filters (and actually

conjectured, claimed, or assumed to be) are in fact false. For instance, minimization does not

induce an equivalence relation. We give the first known exact algorithm for the filter minimization

problem. The algorithm also generalizes naturally to cover filter minimization, a larger class of

instances. We further propose a practical filter minimization algorithm by treating the constraints

just-in-time, which yields improvements in efficiency and has the potential to minimize larger

filters.

1.7 Outline

The rest of this dissertation is organized as follows: We present related work in Chapter 2. In

Chapter 3, we give a complete characterization of one-dimensional privacy-preserving problems

and present an impossibility result. We examine privacy-preserving planning problems in Chap-

ter 4, and develop algorithms to search for plans and information disclosure policy. In Chapter 5,

we propose an abstraction for sensors, incorporate sensor fabrication constraints in the abstraction,

and present an algorithm to enumerate all sensors that suffice for a planning problem. Chapter 6

presents hardness results and algorithms to minimize combinatorial filters.
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2. RELATED WORK

Motivated by privacy applications, this dissertation reasons about the information commu-

nicated from the robot, and solves for the robot’s tasks from a robot design perspective. In

this chapter, we will mainly present the work related to privacy, actions that communicate

information, and robot design.

2.1 Protecting private information

As we interact with devices such as computers, phones, and robots, our information is being

collected and processed to provide better service. But some information may be sensitive and

it could put our privacy in danger if leaked. To limit the divulgence of sensitive information in

data processing, a great deal of work, above and beyond the straightforward application of cryp-

tographic techniques, has been investigated to encrypt the data and prevent it from being accessed

by unauthorized parties [13]. For applications where computation needs to be done on the private

data and no secret can be distributed a priori, homomorphic encryption techniques are developed

to allow computation on the encrypted data [14]. For applications where some statistics about the

private information need to be released, differential privacy techniques are used to make sure no

private information can be learned from those statistics [15].

Individuals often need to interact with others in the same network, and extensive work has

been done to prevent privacy information from being leaked through the network. In a peer-to-peer

network, routing protocols have been proposed to increase anonymity [16]. Spatial and temporal

privacy in wireless sensor networks have also been the subject of study [17, 18]. In a social

network, privacy-preserving techniques are developed to control user privacy in online services

while preserving some functionality from the online services [19].

Traditionally within the AI and robotics communities, autonomous agents are modeled as trans-

ducers or dynamic systems that receive percepts (i.e., observations) from their environment, which

they use to choose actions to take in order to influence the world. A great deal of work examines
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how to reason about their behaviors, beliefs, goals, and planning processes [20, 21] on the basis of

some observed portions of their interaction history. In fact, a recent special issue in the journal Arti-

ficial Intelligence focuses on the topic of “Autonomous Agents Modeling Other Agents” (the issue

is still to appear, see [22]). Epistemic logic is used to reason about and constrain the knowledge

of the agents in a team [23, 24]. In tracking tasks, agents only receive information from the world

and are modeled geometrically [1], via discrete filters [25], or with Bayesian filters [10, 26, 27] to

build an estimate about the world. The estimation result is disclosed, or partially disclosed, to the

observer. Stipulations (constraints) or costs (optimization penalties) are introduced to confine the

resulting estimates or outputs of the filters, thereby preventing the observer from inferring sensi-

tive information or knowing too much. There is also work that guarantees privacy via appropriate

sensor selection [28].

Additionally, policies about how events during plan execution are disclosed from the agents to

the observer are also exploited, so as to satisfy privacy and utility specifications [29, 30]. In multi-

agent planning, agents are searching for their own plans in a distributed manner. Coordinating the

search process may require that information be shared among these agents. In these circumstances,

some agents’ actions and state information might be deemed private, thus some work has examined

privacy-constrained coordinated plan search [31, 32].

2.2 Communicating information from the robot’s behavior

Information can be communicated from the robot’s behavior. An important topic in human-

robot interaction is expressive action (e.g., see [33]). In recent years there has been a great deal

of interest in mathematical models that enable generation of communicative plans. Important

formulations include those of [34, 35], proposing plausible models for human observers (from

the perspectives of presumed cost efficiency, surprisal, or generalizations thereof). In this prior

work, conveying information becomes part of an optimization objective, whereas we treat it as a

constraint instead. Both [34] and [35] are probabilistic in nature, here we consider a worst-case

model that is arguably more suitable for privacy considerations: We ask what an observer can

plausibly infer via the history of its received observations.
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When agents are actively executing actions to achieve their goals, the observer may be particu-

larly interested in predicting this goal before the end of plan execution. Deceptive actions [36, 37]

and goal obfuscated plans [8, 38, 39] aim to hide the agent’s true goal for as long as possible, while

predictable plans make their goals predictable to their human collaborators [40].

2.3 Robot design

Approaches for automated design of robots have been the subject of three recent workshops at

RSS and ICRA over the last 3 years [41]. Current research examines aspects of hardware fabrica-

tion (e.g., 3D-printing [42] and prototyping [43, 44]), interconnection optimization [45], rapid end-

to-end development and deployment [46, 47], automated synthesis (jointly for mechanisms and

controllers) from specifications of desired capabilities [48], optimization subject to functionality–

resource interdependencies [49, 50], interactive design decision support [51, 52], and automated

material design [53].

A rich history of robotics research has examined the information required to accomplish a

particular task, including specifically what sensors ought to provide [54]. Since sensors can be

costly and unreliable, important early papers explored how one might forgo them entirely [55, 56];

other work examined how one might reason about sensors to establish that they do provide enough

information [57, 11]. We are interested in all possible sensors, including hypothetical ones, that

provide adequate information to solve the planning problem. Imperfection in sensors is modeled as

conflation in the perceived events. This conflation is usually considered to be transitive in existing

work [11, 58, 39], when reasoning about the information through the sensors. This dissertation

describes sensors via a sensor map representation which can model non-transitive conflation, in

the spirit of [59, 12]. It contributes methods to search for all sensors such that there exists a plan

for each one to accomplish a given task.

2.4 Other related techniques

In this dissertation, we are influenced by the philosophy of LaValle [6], following his use of the

term information state (I-state) to refer to a representation of information derived from a history
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of observations.∗ We use the information state to refer both the robot’s belief and the observer’s

estimate. The information state for discrete state space is a subset of consistent states. In this

dissertation, we use procrustean graphs (or p-graphs) [12] to represent the transition of the states

in the world, the robot’s plan, and the observer’s estimator. Then the information state for both the

robot and the observer can be constructed based on these p-graphs.

In the p-graph representation, the robot’s action–observation history becomes a sequence that

can be traced in the graph. The planning problems with information stipulations can be specified as

the existence of some sequences that have a particular goal attainment behavior, which matches the

functionality of model checking tools [60]. In this dissertation, we will cast the planning problems

into linear temporal logic (LTL) formulas and use model checking tools to solve them.

When p-graphs or graphs serve as representations for estimators, which are called combinato-

rial filters, one of the questions raised by prior work is filter minimization, which aims to minimize

the number of states in the filters. Despite the apparent similarity of combinatorial filter mini-

mization to the problem of state minimization of deterministic automata, with Myhill–Nerode’s

famous and efficient reduction [61], minimization of combinatorial filters is NP-complete [62].

All existing work studies filter minimization based on merger operations. These algorithms reduce

filter minimization to a graph coloring instance [62, 2, 63] or integer linear programming [64].

Saberifar et. al. [63] examined special cases, approximation and parameterized complexity of fil-

ter minimization. Rahmani and O’Kane [65] showed that the well-known notion of bisimulation

relation in general yields only sub-optimal solutions. They proposed three different integer linear

programming formulations to search for the smallest equivalence relation [64].

∗In his invited talk at WAFR’18, LaValle pointed out that his use of the term was based on earlier use by O. Mor-
genstern and J. von Neumann.
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3. ROBOT DESIGN IN ONE-DIMENSIONAL PRIVACY-PRESERVING TRACKING∗

This chapter focuses on the problem of tracking a target whilst preserving the target’s pri-

vacy. Though fairly narrow, this is a crisply formulated instance of the broader dilemma of

balancing the information a robot possesses, for the robot must maintain some estimate of

the target’s pose, but information that is too precise is an unwanted intrusion and potential

hazard if leaked. By fully characterizing the robot’s tracking strategies for one-dimensional

problems, we are able to examine the solvability of the problems from robot design perspec-

tive, including the robot’s sensing capability, prior knowledge, and information about the

target. We contribute impossibility results about the solvability of the one-dimensional prob-

lems, and generalize them to high-dimensional ones.

To illustrate the problem and idea, we follow the robotic panda tracking scenario, which is

introduced by O’Kane to express the idea of uncertainty being valuable, aloofness having utility.

The following, quoted verbatim from [1, p. 235], describes the scenario:

“A giant panda moves unpredictably through a wilderness preserve. A mobile robot tracks

the panda’s movements, periodically sensing partial information about the panda’s where-

abouts and transmitting its findings to a central base station. At the same time, poachers

attempt to exploit the presence of the tracking robot—either by eavesdropping on its commu-

nications or by directly compromising the robot itself—to locate the panda. We assume, in the

worst case, that the poachers have access to any information collected by the tracking robot,

but they cannot control its motions. The problem is to design the tracking robot so that the base

station can record coarse-grained information about the panda’s movements, without allowing

the poachers to obtain the fine-grained position information they need to harm the panda.”

Note that it is not sufficient for the robot to simply forget or to degrade sensor data via post-

processing because the adversary may have compromised these operations, possibly writing the

∗Reprinted with permission from “Complete characterization of a class of privacy-preserving tracking problems"
by Yulin Zhang and Dylan Shell, 2019. International Journal of Robotics Research. 38(7):299–315. Copyright 2019
by Sage.
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information to separate storage.

One can view the informational constraints as bounds:

1. A maximal- or upper-bound specifies how coarse the tracking information can be. The robot

is not helpful in assuring the panda’s well-being when this bound is exceeded.

2. A second constraint, a lower-bound, stipulates that if the information is more fine-grained

than some threshold, a poacher may succeed in having his wicked way.

The problem is clearly infeasible when the lower-bound exceeds the upper-bound, but what of

other circumstances? Is it always possible to ensure that one will satisfy both bounds indefinitely?

In the original paper, [1] proposed a tracking strategy for a robot equipped with a two-bit quadrant

sensor, showing its successful operation in several circumstances. As no claim of completeness

was made, one might well ask: will his strategy work for all feasible bounds? And how are the

strategies affected by improvements in the sensing capabilities of the robot? These are the class of

questions that are of interest to us.

The last of the preceding questions suggests another, more fundamental, one worth asking—

what sensors are appropriate for a given problem? The problem of establishing the minimal infor-

mation required to perform a particular task and the problem of analyzing the trade-off between

information and performance, despite both being fundamental challenges, remain poorly under-

stood territory — the efforts of [57], [55], and [56] notwithstanding. As a consequence, we do not

attempt to answer this very general question. However, recognising that little has been said regard-

ing scenarios like the one we study, where too much information can be detrimental, we are able

to shed some light on the complexity of the sensors involved by examining the relationship played

by our sensor’s preimages. While a several authors have examined sensor power from a preimage

perspective before [54, 66], there are two aspects which are novel in problem we study: (i) Our ab-

stract sensor is parameterized, allowing one to change the number of output classes, and we have a

situation where taking the limit of increasing power is instructive (see Theorem 3.2, Theorem 3.3,

and Corollary 3.1) (ii) We relate abstract sensors for scenarios with different dimensionalities and
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different numbers of preimages (see Theorem 3.4 and comment thereafter).

3.1 One-dimensional panda tracking problem

The original problem was posed in two dimensions: the robot and panda, inhabiting a plane that

is assumed to be free of obstacles, both move in discrete time-steps, interleaving their motions. A

powerful adversary, who is interested in computing the possible locations of the panda, is assumed

to have access to the full history of information. Any information is presumed to be used optimally

by the adversary in reconstruction of possible locations of the panda — by which we mean that

the region that results is both sound (that is, consistently accounted for by the information) but

is also tight (no larger than necessary). The problem is formulated without needing to appeal to

probabilities by considering only worst-case reasoning and by using motion- and sensor-models

characterized by regions and applying geometric operations.

Information stipulation: The tracking and privacy requirements were specified as two disks. The

robot is constrained to ensure that the region describing possible locations of the panda

always fits inside the tracking disk, which has the larger diameter of the two. The privacy

disk imposes the requirement that it always be possible to place the smaller disk wholly

inside the set of possible locations.

Sensor model: As reflected in the title of his paper, O’Kane considered an unconventional sensor

that consists of four IR sensors∗, and outputs only two bits of information per measurement.

With origin centered on the robot and an axis parallel to the robot’s heading, the sensor

outputs the quadrant containing the panda.

Target motion model: The panda moves unpredictably with bounded velocity. After a time-step

has elapsed, the set of newly feasible locations for the panda is obtained by convolving a disk

with the previous time-step’s region. The disk must be sized appropriately for the time-step

interval and the target’s velocity.

∗For the reader especially interested in O’Kane’s physical robot implementation: he describes tracked item (i.e.,
the panda) carrying four beacons arranged to give 360◦ coverage, and four infrared sensors, clustered in the center of
the robot, angled so that each senses a quadrant.
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Now, by way of simplification, consider pandas and robots that inhabit obstacle-free one-

dimensional worlds, each only moving left or right along a line.

Information stipulation: Using the obvious one-dimensional analogue, now the robot tracker has

to bound its belief about the panda’s potential locations to an interval of minimum size rp (p

for privacy) and maximum size rt (t for tracking).

Sensor model: Most simply, the quadrant sensor corresponds to a one-bit sensor indicating whether

the panda is on the robot’s left- or right-hand side. When the robot is at u1, the sensor indi-

cates whether the panda is within (−∞, u1] or (u1,∞).

In what follows, we will also explore how modifying the robot’s sensing capabilities alters

its possible behavior. Thus, we give the robot c set-points u1 < u2 < · · · < uc, each within

the robot’s control, so that it can determine which of the c + 1 non-overlapping intervals

contains the panda. With c set-points one can model any sensor that fully divides the state

space and produces at most c+ 1 observations. Note that this is not a model of any physical

sensor of which we are aware. The reader, finding this too contrived, may find later (e.g., for

n-dimensional tracking, see Lemma 3.13) that the choice has merit. The case with c = 1 is

the straightforward analogue of the quadrant sensor. Increasing c yields a robot with greater

sensing power, since the robot has a wider choice of how observations should inform itself

of the panda’s location.

Target motion model: The convolution becomes a trivial operation on intervals.

Figure 3.1 provides a visual example with c = 2. The panda is sensed by the robot as falling

within one of the following intervals: (−∞, u1], (u1, u2], (u2,∞), where u1, u2 ∈ R and u1 <

u2. These three intervals are represented by observation values: 0, 1 and 2. For simplicity, no

constraints are imposed on the robot’s motion and we assume that at each time-step, the robot can

pick positions of u1 < · · · < uc as it likes.
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Figure 3.1: Panda tracking in one dimension. Inimitable artwork for the robot and panda is adapted
from the original in [1, p. 2].

Notation and model:

In the 1-dim. problem the panda’s location is represented as a single coordinate indexed by

discrete time. At stage k the location of the panda is xk ∈ R. The robot (and adversary) maintains

knowledge of the panda’s possible location after it moves and between sensing steps by fusing the

knowledge accumulated about the panda’s possible location, sensor readings, and the movement

model. The set of conceivable locations of the panda (a subset of R) is a geometric realization of

an information-state or I-state, as formalized and treated in detail by [67]. In this paper, we take

the I-state as an interval.

The movement of the panda per time-step is bounded by length δ
2
, meaning that the panda

can move at most δ
2

in either direction. We use ηk to denote the robot’s knowledge of the panda

after the observation taken at time k. In evolving from ηk to ηk+1 the robot’s I-state first transits

to an intermediate I-state, which we write η−k+1, representing the state after adding the uncertainty

arising from the panda’s movement but before observation k + 1. Since this update occurs before

the sensing information is incorporated, we refer to η−k+1 as the prior I-state for time k+1. Updating

I-state ηk involves mapping every xk ∈ ηk to [xk − δ
2
, xk +

δ
2
], the resultant I-state, η−k+1, being the

union of the results.

Sensor reading updates to the I-state depend on the values of u1(k), u2(k), . . . , uc(k), which

are under the control of the robot. The sensor reports the panda’s location to within one of the c+1

non-empty intervals: (−∞, u1(k)], (u1(k), u2(k)], (u2(k), u3(k)], . . . , (uc(k),∞). If we represent the
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Figure 3.2: Roadmap of the results for 1-dim. panda tracking with c sensing parameters.

observation at time k as a non-empty interval y(k) then the posterior I-state ηk is updated as

ηk = η−k ∩ y(k).

For every stage k the robot chooses a sensing vector vk = [u1(k), u2(k), . . . , uc(k)], ui(k) <

uj(k) if i < j, ui(k) ∈ R, so as to achieve the following conditions:

1. Privacy Preserving Condition (PPC): The size of any I-state ηk = [a, b] should be at least

rp. That is, for every stage k, |ηk| = b− a ≥ rp.

2. Target Tracking Condition (TTC): The size of any I-state ηk = [a, b] should be at most rt.

That is, for every stage k, |ηk| = b− a ≤ rt.

3.2 Solving one-dimensional privacy-preserving tracking problems

Given specific problem parameters, we are interested in whether there is always some vk that

a robot can select to track the panda while satisfying the preceding conditions.

Definition 3.1. A 1-dim. panda tracking problem is a tuple P1=(η0, rp, rt, δ, c), in which
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1) the initial I-state η0 describes all the possible initial locations of the panda;

2) the privacy bound rp gives a lower bound on the I-state size;

3) the tracking bound rt gives a upper bound on the I-state size;

4) parameter δ describes the panda’s (fastest) motion; and

5) the sensor capabilities are given by the number c.

Definition 3.2. The 1-dim. panda tracking problem P1 = (η0, rp, rt, δ, c) is privacy preservable,

written as predicate PP(P1), if starting with |η0| ∈ [rp, rt], there exists some strategy π to deter-

mine a vk at each time-step, such that the Privacy Preserving Condition holds forever. Otherwise,

the problem P1 is not privacy preservable: ¬ PP(P1).

Definition 3.3. The 1-dim. panda tracking problem P1 = (η0, rp, rt, δ, c) is target trackable,

TT(P1), if starting with |η0| ∈ [rp, rt], there exists some strategy π to determine a vk at each

time-step, such that the Target Tracking Condition holds forever. Otherwise, the problem P1 is not

target trackable: ¬ TT(P1).

To save space, we say a problem P1 and also its strategy π are PP if PP(P1). Similarly, both P1

and its strategy π will be called TT if TT(P1). Putting aside trivially infeasible P1 where rp > rt,

we wish to know which problems are both PP and TT. Next, we explore the parameter space to

classify the various classes of problem instances by investigating the existence of strategies.

3.2.1 Roadmap of technical results

The results follow from several lemmas. The roadmap in Figure 3.2 provides a sense of how

the pieces fit together to help the reader keep track of the broader picture.

Our approach begins, firstly, by identifying particular actions which we call basis actions:

one increases the size of the I-state and the other does the opposite. We show that any question

about the existence of a strategy can be framed in terms of sequences comprised of these two

actions. Next, we divide the space of strategies into ‘teeth’ and ‘gaps’ according to the panda’s
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speed. The teeth regions and the last gap region describe under-constrained problems that have

PP and TT tracking strategies for all initial I-states that satisfy |η0| ∈ [rp, rt]. The region with

uncertainty that grows so quickly as to be beyond control and the remaining gaps (except the

penultimate one) are over-constrained problems that have no PP and TT tracking strategies for

any initial I-states satisfying |η0| ∈ [rp, rt]. The second-to-last gap describes boundary problems

that transition between the under-constrained problems and over-constrained ones. To proceed

further, one needs to consider circumstances where the existence of a suitable strategy depends on

the initial information available to the robot. These are a logically distinct class of solution and are,

therefore, presented in a major section of their own (Section 3.3.3). Before that segue, a summary

of the results established up to that point, including a visual representation of the parameter space,

is provided; it may aid the reader to glance ahead to Section 3.3.1 and Figure 3.6.

3.2.2 Basis actions for privacy-preserving tracking

A challenge in dealing with 1-dim. panda tracking is the fact that the space of sensor config-

urations (i.e., the choices of vk) is continuous, making it infeasible to search through all choices.

To resolve this issue, consider those sensor configurations which split the prior I-states into parts

of equal size. Thinking in worst-case terms, a suicidal panda would choose the least convenient

place to move to. Thus, compared with unevenly partitioned configurations, evenly partitioned

configurations have both a “finer” largest I-state and a “safer” smallest I-state. Moreover, evenly

sized splits mean that the size of the I-state after the observation is determined and depends only

on the number of intervals.

Let s(i) denote the choice of evenly dividing the prior I-state interval into i parts (the mnemonic

is s for split). Then the following lemma states that it is sufficient to consider strategies consisting

solely of s(i) actions to determine whether violation of either the privacy or tracking constraints is

inevitable.

Lemma 3.1. For any problem P1 = (η0, rp, rt, δ, c), PP(P1) ∧ TT(P1) if and only if there exists

a PP and TT strategy that only consists of action s(i), where i ∈ {1, 2 . . . , c+ 1}.
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Proof. ⇐: Holds trivially. ⇒: For PP and TT strategy π, then we can always construct a PP

and TT strategy π′ consisting of actions s(i), where i ∈ {1, 2 . . . , c + 1}. Under strategy π, the

sensing vector at stage k is vk, and the prior I-state is divided into ik parts. The smallest and largest

possible sizes of the resulting I-state are denoted as min
η∈vk

|η| and max
η∈vk

|η|, respectively. Then action

v′
k = s(ik) splits the prior I-state equally into ik parts. Both the smallest and largest size of the

result are equal to the average size:

min
η∈v′

k

|η| = max
η∈v′

k

|η| = |ηk|+ δ

ik
.

Since PPC and TTC bounds must be satisfied for all motions of the panda, the I-states arising

from v′
k, which are intermediate sized with min

η∈vk

|η| ≤ |ηk|+δ
ik
≤ max

η∈vk

|η|, cannot introduce a

violation where none existed in π.

Hence, instead of considering all possible choices for set-points u1 < u2 < · · · < uc, we only

need to consider those in
∪

1≤i≤c+1

s(i+ 1).

The actions can be categorized into two types depending on the number of parts the prior I-state

is divided into. As shown in Figure 3.3, there are actions that increase the I-state size, and those

that decrease its size. The distinguishing feature, which we denote with a, is the maximum number

of rt’s contained within the distance the panda can move in a single time-step, namely a =
⌈

δ
rt

⌉
.

From this definition it follows that δ ∈ (art − rt, art]. Since |ηk| ∈ [rp, rt], if δ ∈ [arp, art], then

action s(a) will always guarantee that the I-state’s size is admissible: |ηk+1| = |ηk|+δ
a
∈ [rp, rt]. For

δ ∈ (art−rt, arp), the size of the I-state that results from action s(a) is |ηk+1| = |ηk|+δ
a

> |ηk|. The

size of the resulting I-state under action s(a+ 1) is |ηk+1| = |ηk|+δ
a+1

< |ηk|. Furthermore the size of

the resulting I-state decreases with the parameter of the s(·) action. When the number partitions is

less than or equal to a, the I-state size will increase; when the number of partitions exceeds a, the

size of I-state will decrease.

Next, we reduce the action space into basis actions s(a) and s(a + 1), which we find it useful

to denote as ⊕ and ⊖, respectively.
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I-state size increase I-state size decrease

Figure 3.3: The change of the resulting I-state’s size when splitting into i equal parts with δ ∈
(art − rt, arp).

Lemma 3.2. For any 1-dim. problem P1 = (η0, rp, rt, δ, c), there exists a PP and TT strategy

consisting solely of actions of s(i) if and only if there exists a PP and TT strategy which uses

actions ⊕ and ⊖ only.

Proof. ⇐: Holds as ⊕ = s(a) and ⊖ = s(a+ 1).

⇒: For any PP and TT strategy π consisting of s(i) actions, we construct π′ as follows. For

each action vk under strategy π, suppose vk splits the prior I-state into ik parts. Construct the new

action v′
k for π′, so that

v′
k =


⊕ if ik ≤ a,

⊖ if ik ≥ a+ 1.

For the first case, where ik ≤ a, we have rp ≤ |ηk| ≤ max
η∈v′

k

|η| ≤ max
η∈vk

|η| ≤ rt And, thus one has

that min
η∈v′

k

|η| = max
η∈v′

k

|η| ∈ [rp, rt]. For the second case, where ik ≥ a+ 1, this condition also holds

similarly. The resulting I-state at each time-step under π′ satisfies both bounds, and π′ is a PP and

TT strategy.

Theorem 3.1. For any tracking problem P1 = (η0, rp, rt, δ, c), PP(P1) ∧ TT(P1) if and only if

there exists a PP and TT strategy that consisting only of actions ⊕ and ⊖.

Proof. Combine the results from Lemma 3.1 and 3.2.

3.2.3 Characterizing the solvability of the problems

In this section, we follow the roadmap in Figure 3.2.

Lemma 3.3. Let P1 = (η0, rp, rt, δ, c) be any 1-dim. panda tracking problem, if δ ∈ [arp, art],

where a ∈ Z+, a ≤ c, then PP(P1) ∧ TT(P1).
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Proof. A PP and TT strategy is given. For any |ηk| ∈ [rp, rt] the prior I-state has size |η−k+1| =

|ηk| + δ. Since δ ∈ [arp, art], where a ≤ c, |η−k+1| ∈ [arp + rp, art + rt]. By taking action ⊖,

which is possible since a ≤ c, we get |ηk+1| = 1
a+1
|η−k+1| ∈ [rp, rt]. That is, if |η0| ∈ [rp, rt] and

we take action ⊖, then ∀k, |ηk| ∈ [rp, rt]. Therefore, there exists a strategy (always take action ⊖)

for P1, so that the privacy-preserving tracking conditions PPC and TTC are always both satisfied

when η0 ∈ [rp, rt].

Lemma 3.4. For any 1-dim. panda tracking problem P1 = (η0, rp, rt, δ, c), if δ ∈ (crt,∞), then

¬ TT(P1).

Proof. The tracking stipulation is proved to be violated eventually. Given the constraint of c sens-

ing parameters, the prior I-state |η−k+1| = |ηk| + δ can be divided into at most c + 1 parts. Among

these c + 1 posterior I-states, if c of them reach the maximum size rt, the size of the remaining

I-state is |ηk|+ δ − crt. If none of the resulting I-states violate the tracking bound, then the size of

the smallest resulting I-state is |ηk|+δ−crt. Since δ > crt, the size of the smallest resulting I-state

must increase by some positive constant δ − crt. After
⌈
rt−rp
δ−crt

⌉
stages, the I-state will exceed rt.

So it is impossible to ensure that the tracking bound will not eventually be violated.

Lemma 3.5. For 1-dim. panda tracking problem P1 = (η0, rp, rt, δ, c), if δ ∈ (art−rt, arp), where

a ∈ Z+, a ≤ c and art ≥ arp + rp, then PP(P1) ∧ TT(P1).

Proof. A PP and TT strategy is given in this proof. Since δ ∈ (art − rt, arp) and art > arp + rp,

|η−k+1| = |ηk|+δ ∈ (arp, art+rt) ⊂ L1∪L2, where L1 = [arp, art] and L2 = [arp+rp, art+rt]. If

action⊕ is performed when |η−k+1| ∈ L1 and s(a+1) is performed when |η−k+1| ∈ L2, the resulting

I-state satisfies |ηk+1| ∈ [rp, rt]. Hence, there is a strategy consisting of ⊕ and ⊖, for the problem

P1 such that the PPC and TTC are always both satisfied when η0 ∈ [rp, rt].

Lemma 3.6. For any 1-dim. panda tracking problem P1 = (η0, rp, rt, δ, c), if δ ∈ (art − rt, arp),

where a ∈ Z+, a ≤ c, art < arp + rp, then ¬ PP(P1) ∨ ¬ TT(P1) when either: (i) δ > art − rp

or (ii) δ < (a+ 1)rp − rt.
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Proof. In case (i), rp > art−δ, so the size of the prior I-state satisfies |η−k+1| = |ηk|+δ > rp+δ >

art. That is, if we take action ⊕ and divide η−k+1 into a parts, the largest posterior I-state ηk+1 will

violate the tracking stipulation at the next time-step. If we take action⊖ and divide η−k+1 into a+1

parts, it can be shown that the smallest I-state will eventually violate the privacy stipulation. Under

the action ⊖, the smallest size of the resulting posterior I-state |ηk+1|smallest = min
η∈vk

|η| is no greater

than the average size |ηk|+δ
a+1

. The amount of decrease is ∆− = |ηk| − |ηk+1|smallest ≥ |ηk| − |ηk|+δ
a+1

≥
arp−δ

a+1
> 0. Hence, eventually after

⌈
(a+1)(rt−rp)

arp−δ

⌉
steps, the smallest I-state will violate the privacy

stipulation and put the panda in danger.

The same conclusion is reached for the case of (ii), when rt < (a + 1)rp − δ, along similar

lines.

Let the domain of δ described by condition (i) in Lemma 3.6 be K1 = (art − rt, arp) ∩

(art − rp,+∞), and that of condition (ii) be K2 = (art − rt, arp) ∩ (−∞, (a + 1)rp − rt). If

(a + 1)rt < (a + 2)rp, then art − rp < (a + 1)rp − rt. We have K1 ∪ K2 = (art − rt, arp), so

condition (i) and (ii) together describe problems making up all the gaps in Figure 3.2, save for the

last and penultimate one. The previous lemma shows that there are no privacy-preserving strategies

for those gaps.

Notice that Lemma 3.3 and 3.5 describe under-constrained problems where there exists a

straightforward privacy-preserving tracking strategy. Lemma 3.4 and 3.6 prove that there are

no privacy-preserving tracking strategies for a set of problems which we might consider to be

over-constrained. Next, we give a lemma that describes boundary problems separating under-

constrained from over-constrained problems. (Definition 3.5 in Section 3.3.3 formalizes these

boundary problems, for here it is sufficient to recognize that these are elements from the penulti-

mate gap in Figure 3.2.)

Lemma 3.7. For any 1-dim. panda tracking problem P1 = (η0, rp, rt, δ, c), if a ∈ Z+, a ≤ c and

rp ≤ art − δ < (a + 1)rp − δ ≤ rt, then there is no privacy-preserving strategy for every initial

I-state.
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Proof. For |η0| ∈ (art − δ, (a + 1)rp − δ), if we take action ⊕ and equally divide the prior I-

state into a parts, the size of the largest posterior I-state at the next time-step (t = 1) is |η1| =
|η−1 |+δ

a
> art−δ+δ

a
= rt, which will violate the tracking stipulation. If we take action ⊖ and equally

divide the prior I-state into a + 1 parts, the size of posterior I-state at the next step (t = 1) is

|η1| = |η−1 |+δ

a+1
< (a+1)rp−δ

a+1
= rp, which will violate the privacy stipulation. Hence, there are no

strategies, which are both PP and TT, for |η0| ∈ (art − δ, (a+ 1)rp − δ).

The preceding proof shows that, in the case of these problems, there are no strategies which are

both PP and TT for all initial I-states. It achieves this by showing that there are particular initial

I-states for which either the PPC or the TTC must be violated. But the problems in Lemma 3.7

are not merely over-constrained instances—something rather more complex is going on in these

boundary problems. To illustrate this fact, next, we show that there exist boundary problems that

have a PP and TT strategy but only for certain initial I-states.

Example 3.1. Consider Q1 = (η0, rp = 76, rt = 101.3, δ = 227, c = 4). It satisfies the constraints

in Lemma 3.7 (viz., rp ≤ art − δ < (a + 1)rp − δ ≤ rt and a ≤ c, since a = 3) and also has

privacy-preserving strategies described by

πQ1 = (⊕(⊖)3)∗

for |η0| ∈ [76, 76.9]. The asterisk in the expression for πQ1 above should be interpreted as a Kleene

star. By removing the appropriate prefix of actions, πQ1 can also be extended to work for any

|η0| ∈ [76, 76.9] ∪ [77, 80.6] ∪ [81, 95.4] ∪ [97, 101.3].

This problem instance and the behavior of the strategy is illustrated in Figure 3.4.

Example 3.2. We can adapt Q1 from Example 3.1 by considering a slightly more lethargic panda,

which has δ = 223. This gives a new problem instance Q′
1 = (η0, rp = 76, rt = 101.3, δ =

223, c = 4), which has more complex privacy-preserving strategies, again written in regular

expression-like form

πQ′
1
= (⊕⊖⊕(⊖)2)∗
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• • •
75 76 76.9 77 80.6 81 95.4 97 101 101.3

q1 q2 q3 q4

q1 q2 q3 q4
			

⊕

Figure 3.4: The problem instance given in Example 3.1, where there exists a PP and TT tracking
strategy for |η0| ∈ q1 ∪ q2 ∪ q3 ∪ q4.

for |η0| ∈ [76, 79.21]. As with the case above, after dropping an appropriate prefix of actions, πQ′
1

will work on initial states: |η0| ∈ [76, 79.21]∪ [80, 80.9]∪ [81, 93.86]∪ [96.66, 100.6]∪ [101, 101.3].

And this problem instance and how the strategy πQ′
1

relates is illustrated in Figure 3.5.

• • •
75 76 79.21 80 80.9 81 93.86 96.66 99.67100.6 101101.3

q1 q2 q3 q4 q5

q1 q2 q3 q4 q5

		 	

⊕ ⊕

Figure 3.5: The problem instance given in Example 3.2, where there exists a PP and TT tracking
strategy for |η0| ∈ q1 ∪ q2 ∪ q3 ∪ q4 ∪ q5.

Both Figures 3.4 and 3.5 are instances of problems whose feasibility depends on the size of

the initial I-state, |η0|. They illustrate that, unlike the under-constrained and over-constrained

problems, any conclusions reached about such instances demand a deeper analysis—the details

of that analysis are deferred till Section 3.3.3. First, we collect the results presented thus far,

clarifying their interplay and giving some interpretation.
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3.3 Examing one-dimensional privacy-preserving tracking from design perspective

In this section, we will examine the solvability of the one-dimensional privacy-preserving

tracking problems from robot design perspective. We show that as we increase the sensing power

by adding more preimages, there will always be problems that cannot be solved. We also identify

that there exist problems whose sovability depends on the robot’s initial belief.

with respect to the robot’s sensing power and initial belief, and show that the

3.3.1 Impossibility results of solvability and asymptotic sensing power

To have a clearer sense of how these pieces fit together, we have found it helpful to plot the

space of problem parameters and examine how the preceding theorems relate visually. Figure 3.6

contains subfigures for increasingly powerful robots (in terms of sensing) with c = 1, 2, 3, 4. The

white regions represent the trivial rp > rt instances; otherwise the whole strategy space is cate-

gorized into the following subregions: under-constrained space (colored green), over-constrained

space (colored gray), and boundary space (colored pink). When summarized in this way, the results

permit examination of how sensor power affects the existence of solutions.

Preserving the privacy of a target certainly makes some unusual demands of a sensor. O’Kane’s

quadrant sensor has preimages for each output class that are infinite subsets of the plane, making

it possible for his robot to increase its uncertainty if it must do so. But it remains far from clear

how one might tackle the same problem with a different sensor. The privacy requirement makes

it difficult to reason about the relationship between two similar sensors. For example, an octant

sensor appears to be at least as useful as the quadrant sensor, but it makes preserving privacy rather

trickier. Since octants meet at the origin at 45◦, it is difficult to position the robot so that it does

not discover too much. One advantage of the one-dimensional model is that the parameter c allows

for a natural modification of sensor capabilities. This leads to three closely related results, each of

which helps clarify how certain limitations persist even when c is increased.

Theorem 3.2. (More sensing won’t grant omnipotence) The one-dimensional robot is not always

able to achieve privacy-preserving tracking, regardless of its sensing power.
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Figure 3.6: The problem parameter space and the existence of strategies for robots with differing c.
The green region depicts under-constrained problems, where a suitable strategy exists no matter
the initial I-state. The gray region represents the conditions that are over-constrained. The pink re-
gion depicts conditions that serve as the boundary between over-constrained and under-constrained
problems. The white region represents trivially infeasible problems. The orange rectangles empha-
size the different levels of magnification and highlight conditions where the differences in sensing
power come into play. Both rp and rt are expressed in units of δ

2
.
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Proof. The negative results in the over-constrained problems described by Lemmas 3.4 and 3.6

show that there are circumstances where it is impossible to find a tracking strategy satisfying both

PPC and TTC. Though these regions depend on c, no finite value of c causes these regions to be

empty.

Turning to the boundary cases that serve as the transition from over-constrained problems to

under-constrained ones, one might think that these boundary regions will shift or reduce when

the sensor gets more powerful to handle the constraints. But this explanation is actually erroneous.

Observe that the boundary region is more complicated than other regions within the strategy space:

in Figure 3.6, the green region is contiguous, whereas the regions marked pink are not. The spe-

cific boundary region for Lemma 3.7 under condition a = 1, visible clearly as chisel shape in

Figures 3.6a and 3.6b, is invariant with respect to c, so remains as the boundary in all circum-

stances (though outside the visible region in Figures 3.6c and 3.6d, it is present). As c increases,

what happens is that the former boundary regions still serve as the boundary, and the regions pre-

viously marked as over-constrained are claimed as under-constrained, or become the boundary

regions. It is evident that the boundary regions do not shift with more powerful sensors. The fol-

lowing expresses the fact that additional sensing power fails to reduce the number of the boundary

regions.

Theorem 3.3. (Boundary region invariance) The number of boundary regions does not decrease

by using more powerful sensors.

Proof. We focus on the boundary areas within the square between (0, 0) and (2, 2) as the parts

outside this (orange) square do not change as c increases. According to Lemma 3.7, the boundary

regions for any specific a are bounded by the following linear inequalities:
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rt <
2

a− 1
, (1)

rp >
2

a
, (2)

rt ≥
rp
a

+
2

a
, (3)

rt ≥ (a+ 1)rp − 2, (4)

rt <
(a+ 1)

a
rp. (5)

Combining (1)–(3) gives both the bound for rt as rt ∈
[
2(a+1)

a2
, 2
a−1

)
, and the bound for rp as

rp ∈
[
2
a
, 2a
a2−1

]
. The boundary region, thus, is bounded.

Next, we show that (1) and (2) are dominated by (3)–(5). According to (4) and (5), we have

rp < 2a
a2−1

. Applying this result to (5) produces (1). Similarly, combining (3) and (5) together

yields (2). Hence, the boundary regions are fully determined by inequalities (3)–(5). (Figure 3.7

provides a visual example.)

To form a bounded region with three linear inequalities, the boundary region has to be a trian-

gle. The three points of the triangle can be obtained by intersecting pairs of (3)–(5):
(
2
a
, 2a+2

a2

)
,(

2a
a2−1

, 2
a−1

)
,
(

2(a+1)
a2+a−1

, 2(a+1)2

a2+a−1
− 2

)
. Since a ∈ {2, 3, · · · , c}, the triangle region will not be empty.

Let ∆(a) denote the triangle with parameter a. Then the smallest y coordinate for ∆(a) is

minY(∆(a)) = 2a+2
a2

. And the largest y coordinate for ∆(a) is maxY(∆(a)) = 2
a−1

. For adja-

cent triangles ∆(a) and ∆(a+1), we have minY(∆(a)) > maxY(∆(a+1)). Hence, the triangles

for different values of a do not overlap.

The preceding discussion showed that the number of boundary regions increases with c and

that, along with the chisel shaped region, there are c−1 triangles of decreasing size. This motivates

our introduction of a quantitative measure of the robot’s power as a function of c.

Definition 3.4. A measure of tracking power, p(c), for the robot with c sensing parameters should

satisfy the following two properties: p(c) > 0, ∀c ∈ Z+ (positivity), and p(a) > p(b), if a, b ∈ Z+

and a > b (monotonicity).
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Figure 3.7: Relationships between the linear inequalities in Lemma 3.7.

The plots in Figure 3.6 suggest that one way to quantify change in these regions is to measure

changes in the various areas of the parameter space as c increases. As a specific measure of power

in the one-dimensional setting, we might consider the proportion of cases (in the rp vs. rt plane)

that are under-constrained (green) and boundary regions (pink). Though the green and pink areas

are unbounded in the full plane, the only changes that occur as c increases are in the square between

(0, 0) and (2, 2). Thus, we take p(c) to equal to the total volume of green and pink regions filling

within the region 0 ≤ rp ≤ rt and 0 ≤ rt ≤ 2. This area satisfies the properties in Definition 3.4

and is indicative of the power of the robot as, intuitively, it can be interpreted as an upper-bound

of the solvable cases.

Corollary 3.1. (Asymptotic tracking power) The power p(c) of a robot with c sensing parameters

to achieve privacy-preserving tracking in the 1-dim. problem is bounded and lim
c→∞

p(c) = ℓ, with

1.5 < ℓ < 1.6.

Proof. Inequalities (3)–(5) in the proof of Theorem 3.3 give c − 1 triangles, one for each a ∈

{2, 3, · · · , c}. An analytic expression gives the area of each of these triangles and the series de-

scribing the cumulative pink volume ppink(c) within 0 ≤ rp ≤ rt and 0 ≤ rt ≤ 2 can be shown
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(by the comparison test) to converge as c → ∞. Similarly, the cumulative green volume pgreen(c)

within 0 ≤ rp ≤ rt and 0 ≤ rt ≤ 2 converges. Numerical evaluation gives the value of the limit

≈ 1.545̄.

3.3.2 The greatest tracking precision for a given problem instance

A practical question what one might ask is: for a given set of panda tracking parameters (the

panda’s motion δ, privacy bound rp, sensor capability c), what is the highest precision (i.e., tightest

tracking bound), for which the problem is solvable? Formally this requires us to find the smallest

rt, which we denote r⋆t , such that an PP and TT tracking strategy exists ∀η0, P1=(η0, rp, r
⋆
t , δ, c).

For small values of c, the lower envelope of the green region in Figure 3.6 shows the values of

r⋆t graphically. By tracing the positions of the under-constrained problems, over-constrained ones,

and boundary regions, an answer to this question can be obtained more generally with the following

formula (where we have let c⋆ = ⌈ δ
rp
⌉):

r⋆t =



2rp, rp ≥ δ,

δ, c = 1, rp < δ,

δ

c
, 1 < c < c⋆, rp < δ,

(c⋆ + 1)rp
c⋆

, c ≥ c⋆, rp ∈ [
δ

c⋆
,

δc⋆

c⋆2 − 1
], rp < δ,

δ

c⋆ − 1
, c ≥ c⋆, rp ∈ (

δc⋆

c⋆2 − 1
,

δ

c⋆ − 1
), rp < δ.

The conditions on the right-hand side are exhaustive.

3.3.3 Boundary problems show a dependence on the robot’s initial I-state

The results of the preceding section provide an analysis for the green and gray areas in Fig-

ure 3.6, which correspond to the teeth, gaps, filling, and final interval in the roadmap diagram

(Figure 3.2). Only the penultimate interval, resulting in pink regions in Figure 3.6, is left. In this

section we analyze these last remaining problem instances, that is the boundary problems, and they

are shown to have a different structure from the others (which is why we have opted to treat them

separately). We show that there are no PP and TT tracking strategies for all initial I-states in these

31



instances but, as will be uncovered, there do exist some boundary problems that have PP and TT

tracking strategies for some initial I-states.

First, we describe the common characteristics of boundary problems, introducing the notion of

an “impossibility zone”, thereafter we give a detailed treatment of the each of the classes of prob-

lems that arise (Lemmas 3.9–3.12), The last subsection dealing with boundary problems provides

some broader interpretation of the technical results.

3.3.3.1 The boundary problems in detail

The boundary problem described is defined as follows:

Definition 3.5. The 1-dim. panda tracking problem P1 = (η0, rp, rt, δ, c) is a boundary problem,

if δ ∈ (art − rt, arp), rp ≤ art − δ < (a+ 1)rp − δ ≤ rt, and a ∈ {1, 2, . . . , c}.

In boundary problem P1, if the size of the I-state is art − δ, then it will transit to the I-state

with size rt under action ⊖. The I-state with size (a + 1)rp − δ will transit to the I-state with size

rp. Between art − δ and (a + 1)rp − δ, there is a zone I×0 = (art − δ, (a + 1)rp − δ) shown in

Figure 3.8, wherein all actions will violate the privacy or tracking bound in the next time-step. We

call I×0 the impossibility zone. To its left, ⊕ is the only action that can be taken, otherwise the

privacy constraint will be violated in the next time-step. Similarly, ⊖ is the only action that can be

taken to the right of the impossibility zone. The robot’s actions are forced, and making any other

choice means that the privacy or tracking constraints will be violated immediately afterward. Thus

we may conclude that if there is a PP and TT strategy for some η0, then the privacy-preserving

tracking strategy is unique.

0 rp art −δ (a+1)rp−δ rt

⊕

	

×• • • • •

Figure 3.8: The boundary problem instances have the property that there is a central zone from
which no action can safely be taken thereafter.
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Next, we will examine the I-state transitions under action ⊕ and ⊖, so as to understand the

structure of the privacy-preserving tracking strategy in the boundary problem. Let the resulting

size of I-state after taking action ⊕ and ⊖ be f+(x) and f−(x). For a perturbation ∆x, the two

functions satisfy the following:

1. If ∆x > 0, then f+(x+∆x)− f+(x) =
∆x

a
> 0.

2. If ∆x > 0, then f−(x+∆x)− f−(x) =
∆x

a+1
> 0.

These properties help in understanding the transition of I-states under action ⊕ and ⊖. Both f+

and f− are monotonically increasing functions, preserving the order of their inputs. If the same

action is performed at the both endpoints of some interval [x, x + ∆x], then the interval transits

to [f+(x), f+(x + ∆x)] under action ⊕, and [f−(x), f−(x + ∆x)] under action ⊖. Extending the

notation naturally, we will write the interval [f+(x), f+(x + ∆x)] as f+([x, x + ∆x]). The size of

the new interval will decrease to 1
a

of the original interval under action ⊕, and 1
a+1

of the original

one under action ⊖. That is, |f+([x, x+∆x])| = ∆x

a
and |f−([x, x+∆x])| = ∆x

a+1
.

Following these transition properties, we are able to divide [rp, rt] into subintervals. Let p

be the maximum number of sequential ⊕’s that can be performed before violating the tracking

constraint rt for all I-states, and m be the maximum number of sequential⊖’s that before violating

the privacy constraint rp for all I-states. Then, as shown in Figure 3.9, the interval [rp, rt] can

be divided into three parts:
∪

1≤j≤p

I+j , the impossibility zone I×0 , and ∪
1≤j≤m

I−j . For each interval

I+j = (l+j , r
+
j ], we have l+j+1 = r+j and l+j = f−1

+ (r+j ), where f−1
+ (x) denotes the size of the I-state

that transits to a new one of size x after taking action ⊕. The “+" in I+j means that only action ⊕

can be taken, and j is the number of sequential ⊕’s that can be taken before violating the tracking

constraints. Similarly, for any interval I−j = [l−j , r
−
j ], we have r−j+1 = l−j and r−j = f−1

− (l−j ). The

“-" in I−j means that only action ⊖ can be taken, and there are at most j sequential ⊖’s to be taken

before violating the privacy constraints.

Following from the I-state transition properties and as Lemma 3.8 states, the maximum number

of ⊕’s and ⊖’s are constrained.
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Figure 3.9: m ⊕’s and p ⊖’s can be taken in [rp, art − δ] and [(a+ 1)rp − δ, rt].
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Figure 3.10: All boundary problem instances have either a single ⊖ action (top) or single ⊕ action
(bottom).
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Figure 3.11: Two cases of the boundary problem after the propagating the impossibility zone with
⊕∗ or ⊖∗. The top instance fits the description in the text.

Lemma 3.8. In the boundary problem P1, either m = 1 or p = 1.

Proof. The proof is by contradiction by assuming that both m > 1 and p > 1. Since interval I+1

transits to a new one containing I−1 under ⊕, we can conclude that |I+1 | > |f+(I+1 )| > |I−1 |. But
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interval I−1 transits to a new one containing I+1 after action ⊖. Hence, |I−1 | > |f−(I−1 )| > |I+1 |,

which contradicts the prior assertion. Therefore the assumption is incorrect and either m = 1 or

p = 1.

There are two cases, shown in Figure 3.10, depending on whether p = 1 or m = 1. We see

that the unique privacy-preserving tracking strategy consists of ⊕ and ⊖ in the following regular

expression form⊕∗(⊖(⊕)p|p−1)∗ or⊖∗(⊕(⊖)m|m−1)∗, where the prefixes on the action outside the

parentheses have length no more than the same one inside.

In boundary problems, the impossibility zone, I×0 , contains the I-states that will violate the

privacy or tracking bound in one time-step for any action. The next step is to define I×j , where

j ∈ N∪{0}, such that I×j represents the set of I-states that will violate the privacy or tracking

bound in j + 1 steps. Then I×j is defined (recursively) as:

I×j =


f−1
+ (I×j−1) ∩ [rp, rt] if f−1

− (I×j−1) ∩ [rp, rt] = ∅,

f−1
− (I×j−1) ∩ [rp, rt] if f−1

+ (I×j−1) ∩ [rp, rt] = ∅.

The two conditions are mutually exclusive because actions are forced for boundary problems:

we have either f−1
− (i×j−1) ∩ [rp, rt] = ∅ or f−1

+ (i×j−1) ∩ [rp, rt] = ∅, since at least one action is

illegal, taking I×j−1 out of [rp, rt]. But the two conditions need not be jointly exhaustive and, if

neither condition holds for some j, then no such I×j is defined.

For every I×j we are justified in calling it an interval, for it is a single interval, and ∃k ∈

{1, 2, . . . }, such that I×j ⊆ I+k or I−k . Both of these properties are easily shown to hold inductively

(though the m = 1 and p = 1 cases, see Figure 3.10, each demand a slightly different inductive

basis).

To find all the impossibility zones, we need to trace through the I-state transitions until no new

impossibility zones are produced, i.e., until neither condition holds. Notice that the definition is

in terms of the inverse maps of f+ and f− so, instead of following the I-state transition forwards,

we must proceed backwards to identify the new impossibility zone I×j+1 that transits to I×j . We

call this process of tracing inverses back-propagation. In the first case (m = 1), the propagation

advances backward using the inverse of ⊕∗(⊖(⊕)p|p−1)∗, and for (p = 1), the second case, by
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using the inverse of⊖∗(⊕(⊖)m|m−1)∗. Since the two cases are symmetric, from this point onwards

we examine the first only, though all properties also hold for the second and can be derived in an

analogous manner.

The back-propagation of impossibility zones is periodic and each period can be divided into

two phases. The first phase is the back-propagation from I−1 to I+p or I+p−1 under the inverse of

action sequence ⊕∗. The second is the back-propagation from I+p or I+p−1 to I−1 following the

inverse of action ⊖. The first phase is straightforward, since the fraction of the impossibility zone

in I+j during the propagation is the same as that of I−1 ∪ I×0 in the same period. A visual example

of back-propagation in the first phase of the first period appears in Figure 3.11. Depending on

the size of interval [rp, rt], there are either p or p + 1 impossibility zones. The second phase

is important, since it determines the fraction in I−1 in the next period. To satisfy the constraint

that |f−(I−1 )| < |I−1 | < |I+p−1|, there are four possible transitions as shown in Figure 3.12. Each

transition maps f−(I−1 ) into different parts of I+p ∪ I+p−1, which results in a different fraction in the

next period. As one continues to follow the periodic transition there are two outcomes: (i) if the

fraction of the impossibility zone in I−1 converges to a value less than 1, then we have found all

the impossibility zones and the I-states that are not in the impossibility zone have a PP and TT

strategy; (ii) if the impossibility zone fills I−1 , then the impossibility zones taint the whole [rp, rt]

and no regions with privacy-preservable tracking strategies remain.

3.3.3.2 The impossibility zone’s propagation

To track of the fraction of the impossibility zone in I−1 at each period, we denote the fraction at

period t as zt. In the first period, there is no impossibility zone in I−1 and z1 = 0. In Lemmas 3.9–

3.12, we will compute zt for each possible critical transition.

Lemma 3.9. For the boundary problem P1 = (η0, rp, rt, δ, c), if rp ∈ I×p , then there are no PP and

TT strategies for any η0 ∈ [rp, rt].

Proof. The impossibility zone is proved to ultimately taint the entire interval [rp, rt]. If rp ∈ I×p ,

then f−1
− (I−1 ) is mapped into two parts: the impossibility part B1 = f−1

− (I−1 ) ∩ I×p and the non-
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Figure 3.12: Four possibilities of the I-state transition for I−1 in the first case of the boundary
problem. These correspond to Lemmas 3.9–3.12.

impossibility part f−1
− (I−1 ) ∩ (I+p \ B1). Following this mapping, the fraction of the impossibility

zone I×p+1 in I−1 in the next period, t = 2, is z2 = (a+1)|B1|
|I−1 | . In the first phase of period t = 2,

the impossibility zone I×p+1 will be back-propagated to I+p as I×2p+1, which taints part of the non-

impossibility part of the previous period and gets mapped to I−1 in the next period. There is a

relationship between the sizes: |I×2p+1| = ap(a + 1)|B1|. Let B2 be the additional impossibility

interval that will be back-propagated in the next period. But B1 and B2 are contiguous, since B2 is

the impossibility zone to the left of I+p . Then z3 = (a + 1) |B1|+|B2|
|I−1 | , where |B2| = ap(a + 1)|B1|.

Following this back-propagation pattern in general, at period t, the additional impossibility zone to

be back-propagated to I−1 is Bt−1, where |Bt−1| = ap(a+ 1)|Bt−2| and, again, Bt−1 is contiguous

with Bt−2. Therefore, after some (finite) time κ, zκ will reach 1, and the impossibility zone will

have tainted the whole interval [rp, rt].

To sum up visually, Lemma 3.9 shows that there are no PP and TT strategies in the boundary
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problem described by Figure 3.12a.

In the following I-state transitions, there are now only p − 1 impossibility zones that can be

found during the first phase of the first period. Let these impossibility zones be L =
∪

0≤j≤p−1

I×j .

Lemma 3.10. For the boundary problem P1 = (η0, rp, rt, δ, c), if rp ∈ I+p and f−(rt) ∈ I+p , then

P1 is I-state dependent: there are PP and TT strategies for |η0| ∈ (I+p \ L), while there are no such

strategies for |η0| ∈ L.

Proof. The fraction of the impossibility zone within I−1 reaches a maximum fraction less than 1,

and a PP and TT strategy for |η0| ∈ ([rp, rt] \ L) is given in this proof. If rp ∈ I+p and f−(rt) ∈ I+p ,

then f−(I
−
1 ) is mapped into the [rp, rt]\L, and no impossibility will back-propagate to I−1 at period

t = 2 or afterward. Hence, the fraction of the impossibility zone in I−1 remains zero and, therefore,

there is no PP and TT strategy for L, but a privacy-preserving tracking strategy for [rp, rt] \ L

exists. The privacy-preserving tracking strategy for [rp, rt] \ L is as follows: take action ⊕ in

[rp, rt] \ (L∪ I−1 ), and action ⊖ in I−1 . The resulting I-state remains within [rp, rt] \L forever.

Lemma 3.10 says that there are PP and TT strategies in the boundary problem described by

Figure 3.12b.

Lemma 3.11. For the boundary problem P1 = (η0, rp, rt, δ, c), there are no PP and TT strategies

for any η0 ∈ [rp, rt] when rp ∈ (I+p \ L) and f−(rt) ∈ I×p−1.

Proof. The proof is similar to Lemma 3.9.

Lemma 3.11 says that there are no PP and TT strategies in the boundary problem described by

Figure 3.12c.

For the fourth type of I-state transition, since rp ∈ I+p and f−(rt) ∈ (I+p−1\I×p−1), it follows that

f−(I
−
1 ) is mapped to three parts: the first non-impossibility zone f−(I

−
1 )∩(I+p \ L), impossibility

zone I×p , and the second non-impossibility zone f−(I−1 )∩ (I+p−1 \L). Following the forward I-state

transition, part of first one non-impossibility zone will transit to part of the second one and vice

versa. It turns out that the fraction of impossibility zones in I−1 stays the same, remaining less than
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1, when the size of the first and the second non-impossibility zone are comparable in size. And

there is, thus, a PP and TT strategy for some initial I-states in this condition. Otherwise, there

is no privacy-preserving tracking strategy for all of [rp, rt]. This conclusion is reached by first

defining v = f−(I
−
1 )∩ I+p as the first non-impossibility part, and w = f−(I

−
1 )∩ I+p−1 as the second

non-impossibility part. Details are in the following proof for Lemma 3.12.

Lemma 3.12. For the boundary problem P1 with rp ∈ I+p and f−(rt) ∈ (I+p−1 \ I×p−1):

1. If
1

ap(a+ 1)
≤ |w|
|v|
≤ ap−1(a+ 1),

then P1 is initial I-state dependent: there is a PP and TT strategy for the initial I-states

η0 ∈ [rp, rt] \ L, while there are no PP and TT strategies for I×j ∈ L.

2. If either |w|
|v| > ap−1(a + 1) or |w|

|v| < 1
ap(a+1)

, then there are no PP and TT strategies for

|η0| ∈ [rp, rt].

Proof. First we prove that if |w|
|v| > ap−1(a + 1), the impossibility zones propagate until they

taint all of [rp, rt]. By tracking I-state transitions the impossibility zone in the middle, I×p−1, is

back-propagated to I−1 as I×p in one period. In period t = 2, the tainted fraction in I−1 is z2 =

(a+1)|I×p−1|
|I−1 | . In the first phase of this period, the impossibility region will propagate to I+p−1 so

that I+p−1 will be partitioned into three parts with the ratio: |v| : |I×p−1| : |w|, where the middle

part is the new impossibility zone I×2p−1. This ratio is precisely the same as the partitioning from

period t = 1. Since |w|
|v| > ap−1(a + 1) and |I×2p−1| = (a + 1)ap−1, we have I×2p−1 ∩ w ̸= ∅.

That is, part of w will be tainted with impossibility, which will then back-propagate to I−1 at

period t = 3. Let B1 = I×2p−1 ∩ w be that which will back-propagate to I−1 in the next period.

Then z3 =(a+ 1)
|B1|+|I×p−1|

|I−1 | . In the first phase of period 3, there will be a new impossibility

zone B2 in v to back-propagate toward I−1 at next period. In addition, |B2| = (a + 1)ap|B1|.

Then z4 =(a+ 1)
|B2|+|B1|+|I×p−1|

|I−1 | . In the first phase of period 4, there will be a new impossibility

zone B3 in w, where |B3| = (a + 1)ap−1|B2|. Then z5 =(a+ 1)
|B3|+|B2|+|B1|+|I×p−1|

|I−1 | . Following
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this pattern, at period t, the additional impossibility zone to be back-propagated to I−1 is Bt−2,

where |Bt−2| ≥ ap−1(a+ 1)|Bt−3|. All the impossibility zones in I−1 form a contiguous interval.

Therefore, at some finite κ, the impossibility zone will eventually taint the whole interval [rp, rt],

and zκ will reach 1. The case with |w|
|v| <

1
ap(a+1)

has a similar proof showing that there are no PP

and TT strategies for P1.

If 1
ap(a+1)

≤ |w|
|v| ≤ ap−1(a + 1), we then have I×2p−1 ∩ w = ∅ and I×2p−1 is the last non-empty

impossibility zone. The fraction tainted stays as z2 =
(a+1)|I×p−1|

I−1
< 1. Thus, for the initial I-states

that do not belong to the impossibility zone, there is a privacy-preserving tracking strategy. Let

L′ =
∪

0≤j≤2p−1

I×j . The privacy-preserving tracking strategy for [rp, rt] \ L′ is as follows: take

action ⊕ in [rp, rt] \ (L′ ∪ I−1 ), and action ⊖ in I−1 . The resulting I-state will always stay within

[rp, rt] \ L′.

Lemma 3.12 says that the boundary problem in Figure 3.12d contains both initial I-state de-

pendent cases and also instances which have no privacy-preserving tracking strategy.

3.3.3.3 Interpretation and further observations

The preceding analysis of the boundary problem completes our characterization of all panda

tracking problems. The earlier examination of Figure 3.6 can now be supplemented with the obser-

vation that the region marked in pink, already (from Lemma 3.7) known not to contain strategies

for all initial I-states, actually consists of a mixture of colors. If we imagine an axis with the initial

I-state sizes normal to the page, then the pink region is partly gray (Lemmas 3.9 and 3.11) and

partly a mixture of green and gray (Lemmas 3.10 and 3.12), with the latter mixture having at least

some gray on every line segment departing the page.

This analysis also illuminates some new possibilities for the problem. Under the assumption

of a strong poacher who knows all the information obtained by the robot immediately, there is no

hope to save the panda from the situations that are not privacy-preservable or target trackable. But

if we relax this admittedly very strong model of the adversary, some additional versions of the
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problem can be salvaged.

Assume that there is some maximum amount of time, τ , that the poacher is willing to spend

hunting before giving up. Then the impossibility zones I×t , t ≥ τ become safe. Some problems,

previously without privacy-preserving strategies, will become I-state dependent, and the I-state

dependent problems will have more initial I-states that have privacy-preserving strategies.

Another model to consider is the case where the robot can purposefully forget some limited ini-

tial information, say, replacing η0 with η′0. Then the poacher can have all the information available,

as before, excepting η0. In this model all the I-state dependent problems can become privacy-

preservable and target trackable by simply disguising the impossible initial I-states, which is easily

achieved by expanding the I-state until it becomes a privacy-preservable and target trackable one.

3.4 Beyond one-dimensional tracking

The inspiration for this work was the 2-dimensional case. This section lifts the impossibility

result to higher dimensions.

3.4.1 Mapping from high dimension to one dimension

In the n-dimensional privacy-preserving tracking problem, the state for the panda becomes a

point in Rn. The panda can move with a maximum distance of δ
2

in any direction in Rn within a

single time-step, so that the panda’s actions fill an n-dimensional ball. The privacy and tracking

bound are also generalized from an interval of size rp and rt, to an n-dimensional ball of diameter

rp and rt respectively. That is, the I-state should contain a ball of diameter rp and be contained

in a ball of diameter rt, so as to achieve privacy-preserving tracking. The robot inhabits the n-

dimensional space as well and attention must be paid to its orientation.

It is unclear what would form the appropriate higher dimensional analogue of parameter c, so

we only consider n-dimensional tracking problems for robots equipped with a generalization of the

original quadrant sensor. The sensor’s orientation is determined by that of the robot and it indicates

which of the 2n possible orthogonal cells the panda might be in. Adopting notation and definitions

analogous to those earlier, we use a tuple for n-dimensional tracking problems—a subscript makes
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the intended dimensionality clear.

The following lemma shows that there is a mapping which preserves the tracking property from

n-dimensional problem to 1-dimensional problems.

Lemma 3.13. Given some 1-dim. panda tracking problem P1 = (η0, rp, rt, δ, n), there exists an

n-dim. panda tracking problem Pn = (θ0, rp, rt, δ, 1
n) where, if TT(Pn), then TT(P1).

Proof. The approach to this proof has elements of a strategy stealing argument and simulation of

one system by another. The robot faced with a 1-dim. problem constructs an n-dim. problem and

uses the (hypothetical) strategy for this latter problem to select actions. The crux of the proof is that

the 1-dim. robot can report back observations that are apposite for the n-dim. case. Figure 3.13,

below, gives a visual overview.

For some P1 = (η0, rp, rt, δ, c), with c = n, we construct Pn = (θ0, rp, rt, δ, 1
n) as follows.

Without sacrifice of generality, assume that in P1 the initial I-state η0 = {x | ηmin
0 ≤ x ≤ ηmax

0 }

is centered at the origin, so ηmin
0 = −ηmax

0 . (This simplifies the argument and a suitable translation

of coordinate system rectifies the situation otherwise.) Then we choose θ0 as the closed ball at the

origin with radius ηmax
0 .

We show how, given some πn on Pn = (θ0, rp, rt, δ, 1
n), we can use it to define a π1 for use

by the 1-dim. robot. The robot forms θ0 and also has η0. It picks an arbitrary unit-length vector

v̂ = v1e1 + v2e2 + · · ·+ vnen, unknown to the source of πn, which is the subspace that the 1-dim.

panda lives in. For subsequent steps, the robot maintains θ−1 , θ1, θ
−
2 , θ2, . . . , θ

−
k , θk, θ

−
k+1, . . . along

with the I-states in the original 1-dim. problem η−1 , η1, η
−
2 , η2, . . . , η

−
k , ηk, η

−
k+1 . . . . For any step k,

the ηk can be seen as measured along v̂ within the higher dimensional space. Given θk−1, θ−k is

constructed using Minkowski sum operations as before, though now in higher dimension. Given

θ−k , strategy πn determines a new pose for the n-dim. robot and, on the basis of this location and

orientation, the n sensing planes slice through θ−k . Though the planes demarcate 2n cells, the line

along v̂ is cut into no more than n+1 pieces as the line can pierce each plane at most once (with any

planes containing v̂ being ignored). Since the 1-dim. robot has c = n, it picks the u1, . . . , un by

measuring the locations that the sensing planes intersect the line x = αv̂, α ∈ R. (If fewer than n

42



 Move & Rotate

!i+1
1

!i+1
2

!i+1
3

η
i+1

1 ηi+1
2 ηi+1

3

2) Project n-dim.
I-state partition

 
to 1-

dim.

v

3) Update n-dim. I-
state

1) Activate n-dim. observations

Figure 3.13: Constructing a 1-dim. strategy π1 from some n-dim. strategy πn.

intersections occur, owing to planes containing the line, the extra ui’s are simply placed outside the

range of the I-state.) After the 1-dim. panda’s location is determined, the appropriate orthogonal

cell is reported as the n-dim. observation, and θ−k leads to θk via the intersection operation. This

process comprises π1. It continues indefinitely because θk must always entirely contain ηk along

the line through v̂ because, after all, a cantankerous n-dim. panda is free to choose to always limit

its movements to that line.

If πn is TT, then so too is the resulting strategy π1 since the transformation relating θk ∩ {αv̂ :

α ∈ R} with ηk preserves length and, thus, θk fitting within a ball of diameter rt implies that

|ηk| < rt.

3.4.2 Impossibility in high-dimensional privacy-preserving tracking

Now we are ready to connect the pieces together for the main result:

Theorem 3.4. (Impossibility) It is not possible to achieve privacy-preserving panda tracking in n

dimensions for every problem with rp < rt.

Proof. To extend the lemmas that have shown this result for n = 1 to cases for n > 1, suppose
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such a solution existed for Pn = (θ0, rp, rt, δ, 1
n). Then according to Lemma 3.13, every 1-dim.

panda tracking problem P1 = (η0, rp, rt, δ, n) is TT, since they can be mapped to an n-dim. TT

panda tracking problem. But this contradicts the non-TT instances in Lemma 3.4, so no such

strategy can exist for every non-trivial problem (rp < rt) in two, three, and higher dimensions.

Theorem 3.4 (via Lemma 3.13) relates an n-dim. robot equipped with a generalized quadrant

sensor (that is what the 1n denotes) to a 1-dim. robot with a sensor capability value of n. The

n-dim. sensor has 2n separate output classes (or preimages), yet the 1-dim. sensor has only n+ 1.

It appears, at first sight, that the reduction is to a less capable sensor, which seems paradoxical as

some information goes missing. But the 1-dim. robot selects the boundaries of the preimages in

a far more flexible way than any higher dimensional robot would achieve with actions that move

(and reorient) the quadrant sensor’s origin.

3.5 Summary

In this chapter, we studied the privacy-preserving tracking problems by reexamining the panda

tracking scenario introduced in [1], focusing on how various parameters specifying a problem

instance, including the capabilities of the robot and the panda, affect the existence of solutions. Our

approach has been to study nontrivial instances of the problem in one dimension. This allows for an

analysis of strategies by examining whether the sensing operations involved at each step increase

or decrease the degree of uncertainty in a directly quantifiable way. Only if this uncertainty can be

precisely controlled forever, can we deem the problem instance solved.

In examining the space of tracking and privacy stipulations, we characterize the solvability of

the privacy-preserving problems with respect to robot design, including the robot’s initial belief,

the panda’s movement, and the robot’s sensing capability. First, the existence of strategies is shown

to be a function of the robot’s initial belief and panda’s movement. There exist regions without

solution, where it is impossible for the robot to actively track the panda as well as protect its privacy

for certain nontrivial tracking and privacy bounds. Additionally, we have uncovered regions where

solution feasibility is sensitive to the robot’s initial belief, which we call I-state dependent cases
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(or conditions). The simple one-dimensional setting also permits exploration of how circumstances

change as the robot’s sensing power increases. Perhaps surprisingly, the number of these I-state

dependent strategy conditions does not decrease as the robot’s sensing becomes more powerful.

Finally, we connect the impossibility result back to O’Kane’s setting by mapping between high-

dimensional and one-dimensional versions, proving that the 2D planar panda tracking problem

does not have any privacy-preserving tracking strategy for every non-trivial tracking and privacy

stipulation.
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4. FINDING PLANS SUBJECT TO STIPULATIONS ON WHAT THEY DIVULGE∗

In this chapter, we will generalize the privacy-preserving tracking work in two aspects: First,

we consider a robot actively taking actions to interact with the world. The state of the world,

which also belongs to the information to be estimated, can be changed by the robot, while in

the previous work the target’s location cannot be influenced by the robot’s tracking strategy.

Second, we create a knowledge gap between the robot and the observer by introducing an

information disclosure policy to conflate the information perceived by the observer and a

hierarchy of prior knowledge for the observer. In doing so, we develop algorithms to jointly

search for plans and information disclosure policy for the robot to reach its goal as well as

constraining the information learned by an observer.

To illustrate the privacy-preserving planning problem, we create a simple scenario in Figure 4.1

which though simplistic, is rich enough to depict several aspects of the problem. The task requires

that a robot determine whether some facility’s processing of raw radioactive material meets interna-

tional treaty requirements or not. The measurement procedure itself depends on the type of facility

as the differing physical arrangements of ‘pebble bed’ and ‘breeder’ reactors necessitate different

actions. First, the robot must actively determine the facility type (checking for the presence of

the telltale blue light in the correct spot). Then it can go to a location to make the measurement,

with the specific measurement location corresponding with the facility type. But the facility type

is deemed sensitive information and the robot must ascertain the radioactivity state while ensuring

that the facility type is not disclosed.

What makes this scenario interesting is that the task is rendered infeasible immediately if one

prescribes a policy to ensure that the robot never gains sensitive information. Over and above

the (classical) question of how to balance information-gathering and progress-making actions, the

robot must control what it divulges, strategically increasing uncertainty as needed, precisely lim-

∗Part of this chapter is reprinted with permission from “Finding Plans Subject to Stipulations on What Informa-
tion They Divulge" by Yulin Zhang, Dylan Shell, and Jason M. OKane, 2019. Algorithmic Foundations of Robotics
XIII. 14:106–124. Copyright 2018 by Springer Nature.
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Pebble bed facility Breeder reactor

Figure 4.1: Nuclear Site Inspection A robot inspects a nuclear facility by taking a measurement
at the location marked with a ‘?’, the specific position depending on the facility type. But the type
of the facility is sensitive information that it must not be divulged to any external observers.

iting and reasoning about the ‘knowledge gap’ between the external observer and itself. To solve

such problems, the robot needs a carefully constructed plan and must establish a policy charac-

terizing what information it divulges, the former achieving the goals set for the robot, the latter

respecting all stipulated constraints—and, of course, each depending on the other.

4.1 The model: worlds, robots and observers

Figure 5.2 illustrates the three-way relationships underlying the setting we examine. Most

fundamentally, a robot executes a plan to achieve some goal in the world, and the coupling of

these two elements generates a stream of observations and actions. Both the plan and the action–

observation stream are disclosed, though potentially only partially, to a third party, we term the

observer. The observer uses the stream, its knowledge of the plan, and also other known structure

to infer properties about the interaction. Additionally, a stipulation is provided specifying particular

properties that can be learned by the observer. We formalize these elements in terms of p-graphs

and label maps (see [12]).

4.1.1 P-graph and its interaction language

We will start with the definition of p-graphs [12] and related properties:

Definition 4.1 (p-graph). A p-graph is an edge-labelled directed bipartite graph with G = (Vy ∪

Vu, Y, U, V0), where

1) the finite vertex set V (G) := Vy ∪ Vu, whose elements are also called states, comprises two

disjoint subsets: the observation vertices Vy and the action vertices Vu,
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Figure 4.2: An overview of the setting: the robot is modeled abstractly as realizing a plan to
achieve some goal in the world and a third party observes, modeled as a filter. All three, the world,
plan, and filter have concrete representations as p-graphs.

2) each edge e originating at an observation vertex bears a set of observations Y (e) ⊆ Y , contain-

ing observation labels, and leads to an action vertex,

3) each edge e originating at an action vertex bears a set of actions U(e) ⊆ U , containing action

labels, and leads to an observation vertex, and

4) a non-empty set of states V0 are designated as initial states, which may be either exclusively

action states (V0 ⊆ Vu) or exclusively observation states (V0 ⊆ Vy).

An event is an action or an observation. Respectively, they make up the sets U and Y , which

are called the p-graph’s action space and observation space. We will also have occasion to write

Y (G) and U(G) for the observation space and action space of G. Though that is a slight abuse of

notation, the initial states will be written V0(G), similarly.

Intuitively, a p-graph abstractly represents a (potentially non-deterministic) transition system

where transitions are either of type “action” or “observation” and these two alternate. The follow-

ing definitions make this idea precise.

Definition 4.2 (transitions to). For a given p-graph G and two states v, w ∈ V (G), a sequence of

events ℓ1, . . . , ℓk transitions in G from v to w if there exists a sequence of states v1, . . . , vk+1, such

that v1 = v, vk+1 = w, and for each i = 1, . . . , k, there exists an edge vi
Ei−→ vi+1 for which

ℓi ∈ Ei, and Ei is a subset of Y (G) if vi is in Vy, or a subset of U(G) if vi is in Vu.

Concisely, we let the predicate TRANSTO(v
s−→ w)G hold if there is some way of tracing s
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on G from v to w, i.e., it is True iff v transitions to w under execution s. Note, when G has non-

deterministic transitions, v may transition to multiple vertices under the same execution. We only

require that w be one of them.

Definition 4.3 (executions and interaction language). An execution on a p-graph G is a finite se-

quence of events s, if there exists some v ∈ V0(G) and some w ∈ V (G) for which TRANSTO(v
s−→

w)G. The set of all executions on G is called the interaction language (or, briefly, just language) of

G and is written LI(G).

Given any edge e, if U(e) = Le or Y (e) = Le, we speak of e bearing the set Le.

Definition 4.4 (joint-execution). A joint-execution on two p-graphs G1 and G2 is a sequence of

events s that is an execution of both G1 and G2, written as s ∈ LI(G1) ∩ LI(G2). The p-graph

producing all the joint-executions of G1 and G2 is their tensor product graph with initial states

V0(G1)× V0(G2), which we denote G1 ⊗ G1.

A vertex from G1 ⊗ G2 is as a pair (v1, v2), where v1 ∈ V (G1) and v2 ∈ V (G2). Given a

set of vertices V ⊆ V (G1 ⊗ G2), taking the first elements from all the tuples gives a set that we

write as πG1(V ). All the second elements is πG2(V ), similarly. Next, the relationship between the

executions and vertices is established.

Definition 4.5. The set of vertices reached by execution s in G, denoted VG(s), are the vertices to

which the execution s ∈ LI(G) transitions, starting at an initial state. Symbolically, VG(s) := {v ∈

V (G) | ∃v0 ∈ V0(G), TRANSTO(v0
s−→ v)G}. Further, the set of executions reaching vertex v in G is

written as SGv := {s ∈ LI(G) | v ∈ VG(s)}.

The mnemonic here being that V describes sets of vertices, S describes sets of strings/executions.

The collection of sets {SGv0 ,S
G
v1
, . . . ,SGvi . . . } can be used to form an equivalence relation∼

G
over ex-

ecutions, under which s1 ∼
G
s2 if and only if VG(s1) = VG(s2). This equivalence relation partitions

the executions in LI(G) into a set of non-empty equivalence classes: LI(G)/∼
G
= {[r0]G, [r1]G, [r2]G,
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. . . }, where each equivalence class is [ri]G = {s ∈ LI(G) | ri ∼
G
s} and ri is a representative execu-

tion in [ri]G. The intuition is that any two executions that transition to identical sets of vertices are,

in an important sense, indistinguishable.

In what follows, we shall consider systems where the vertices of a p-graph constitute the state

that is stored, acted upon, and/or represented. In this sense, the vertices are akin to a ‘sufficient

statistic’.

Definition 4.6 (state-determined). A p-graph G is in a state-determined presentation, or is in state-

determined form, if ∀s ∈ LI(G), |VG(s)| = 1.

An algorithm to expand any p-graph G into a state-determined presentation SDE(G) is given as

Algorithm 1. The key is to make sure that there is only a single starting state and that the labels on

different outgoing edges of the same vertex have empty intersections. The language of p-graphs is

not affected by state-determined expansion, i.e., LI(G) = LI(SDE(G)).

Note that, in the preceding discussion, the covering {SGv0 ,S
G
v1
, . . . ,SGvi . . . } turned into a par-

tition when we considered all the vertices reached by a string (since VG(s1) = VG(s2)), not just

whether a vertex can be reached by a string. Any string s covered by both SGvi and SGvj means

that, whatever VG(s) may be, both vi ∈ VG(s) and vj ∈ VG(s). It is easy to show that VG(s) is the

collection of all those vk’s whose SGvk contain s. One may start with vertices and ask about the

executions reaching those vertices. (Later, this will be part of how an observer makes inferences

about the world.)

Definition 4.7. Given any set of vertices B ⊆ V (G) in p-graph G, the set of executions that reach

exactly (i.e. reach and reach only) B is SGB := (∩v∈BSGv ) \ ∪v∈(V (G)\B)SGv .

Above, the ∩v∈BSGv represents the set of executions that reach every vertex in B. By subtract-

ing the ones that also reach the vertices outside B, SGB describes the set of executions that reach

exactly B. In Figure 4.3, the executions reaching w3 are represented as SGw3
= {a1o1, a2o1}. But

the executions reaching and reaching only {w3} are SG{w3} = {a1o1} since a2o1 also reaches w4.
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Algorithm 1: SDE(G)

1: Build initial vertex v′0 in G′, associate v′0 with all v0 ∈ V0(G): A(v′0)← V0(G)
2: Initialize queue Q← {v′0}
3: while Q not empty do
4: s′ ← Q.pop

// Refine each label and determine which states each refinement maps to:
5: L← all outgoing edge labels of s′

6: L′ ← RefineLabels(L) // See Alg.1 in [59].
7: dLab[.]← ∅ // Empty a map
8: for l′ ∈ L′ do
9: For every outgoing edges of s′, record which states you reach with Representative(l′) by adding them to

dLab[l
′]

10: end for// Produce new states as need:
11: for (la, Va) ∈ dLab do
12: flag ←False
13: for t ∈ V (G′) do
14: if Va = A(t) then
15: add s′

la−→ t in G′

16: flag ←True
17: end if
18: end for
19: if flag =False then
20: Create new state t′, add s′

la−→ t′ in G′, A(t′)← Va

21: end if
22: end for
23: end while
24: return G′

Specifically, the equivalence class [ri]G contains the executions that reach exactly VG(ri), so we

have [ri]G = SGVG(ri)
.

4.1.2 Planning problems and plans

In the p-graph formalism, planning problems and plans are defined as follows [12].

Definition 4.8 (planning problems and plans). A planning problem is a p-graph W along with a

goal region Vgoal ⊆ V (W); a plan is a p-graph P equipped with a termination region Vterm ⊆ V (P).

Planning problem (W, Vgoal) is solved by some plan (P, Vterm) if the plan always terminates (i.e.,

reaches Vterm) and only terminates at a goal. Said with more precision:

Definition 4.9 (solves). A plan (P, Vterm) solves a planning problem (W, Vgoal) if there is some

integer which bounds length of all joint-executions, and for each joint-execution and any pair of
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{a2}

{a1, a2}

Figure 4.3: An example showing the difference between ‘reaches’ and ‘reaches exactly’ as distin-
guished in notation as SGw and SG{w}.

nodes (v ∈ V (P), w ∈ V (W)) reached by that execution simultaneously, the following conditions

hold:

1) if v and w are both action nodes and, for every label borne by each edge originating at v, there

exist edges originating at w bearing the same action label;

2) if v and w are both observation nodes and, for every label borne by each edge originating at w,

there exist edges originating at v bearing the same observation label;

3) if v ∈ Vterm and then w ∈ Vgoal;

4) if v /∈ Vterm then some extended joint-execution exists, continuing from v and w, that does

reach the termination region.

In the above, properties 1) and 2) describe a notion of safety; property 3) of correctness; and 4)

of liveness. In the previous definition, there is an upper bound on joint-execution length. We say

that plan (P, Vterm) is c-bounded if, ∀s ∈ LI(P), |s| ≤ c.

4.1.3 Information disclosure policy, divulged plan, and observer

The observer sees a stream of the robot’s actions and observations, and uses them to build

estimates (or to compute general properties) of the robot’s interaction with the world. But the

observer’s access to this information will usually be imperfect—either by design, as a consequence

of real-world imperfections, or some combination of both. Conceptually, this is a form of partial

observability in which the stream of symbols emitted as part of the robot’s execution is distorted

into to the symbols seen by the observer (see Figure 4.4). For example, if some pairs of actions

are indistinguishable from the perspective of the observer, this may be expressed with a function
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Figure 4.4: The information disclosure policy, divulged plan and information stipulation. Even
when the observer is a strong adversary, the disclosure policy and divulged plan can limit the
observer’s capabilities effectively.

that maps those pairs of actions to the same value. In this paper, this barrier is what we have been

referring to (informally, thus far) with the phrase information disclosure policy. It is formalized as

a mapping from the events in the robot’s true execution in the world p-graph to the events received

by the observer.

Definition 4.10 (Information disclosure policy). An information disclosure policy is a label map h

on p-graph G, mapping from elements in the combined observation and action space Y (G) ∪ U(G)

to some set of events X .

The word “policy” hints at two interpretations: first, as something given as a predetermined

arrangement (that is, as a rule); secondly, as something to be sought (as in finding a policy to solve

a decision problem). Both senses apply in the present work; the exact transformation describing

the disclosure of information will be used first (in Section 4.2) as a specification and then, later

(in Section 4.4.3) as something which planning algorithms can produce. How the information

disclosure policy is realized in some setting depends on which sense is apt: it can be interpreted

as describing observers (showing that for those observers unable to tell yi from yj , the stipulations

can be met), or it can inform robot operation (the stipulations require that the robot obfuscate uℓ

and um via means such as explicit concealment, sleight-of-hand, misdirection, etc.)

The observer, in addition, may also have imperfect knowledge of robot’s plan, which is leaked

or communicated from the side-channel. The disclosed plan is also modeled as a p-graph, which
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may be weaker than knowing the actual plan. A variety of different types of divulged plan are

introduced later (in Section 4.3.1) to model different prior knowledge available to an observer; as

we will show, despite their differences, they can be treated in a single unified way.

The next step is to provide formal definitions for the ideas just described. In the following, we

refer to h as the map from the set Y ∪ U to some set X , and refer to its preimage h−1 as the map

from X to subsets of Y ∪ U . The notation for a label map h and its preimage h−1 is extended

in the usual way to sequences and sets. We consider sets of events, executions (being sequences),

and sets of executions, and they are also extended to p-graphs in the obvious way, by applying the

function to all edges:

Events Given any set of events L ⊆ Y ∪ U , its image is h[L] = {h(ℓ) | ℓ ∈ L}. And conversely,

for set L′ ⊆ X , its preimage is h−1[L′] = {ℓ ∈ Y ∪ U | h(ℓ) ∈ L′}.

Executions Given any execution s = ℓ0ℓ1 . . . ℓk, where ℓi ∈ Y ∪U , its image is h(s) = h(ℓ0)h(ℓ1)

. . . h(ℓk), and for any execution s′ = ℓ′0ℓ
′
1 . . . ℓ

′
k, where ℓ′i ∈ X , its preimage is h−1(s′) =

{s | h(s) = s′}.

Sets of executions Given any set of executions A, where ∀s ∈ A, s ∈ (Y ∪ U)∗, its image is

h[A] = {h(s) | s ∈ A}. Conversely for any set of executions A′, where ∀s′ ∈ A′, s′ ∈ X∗,

its preimage is h−1[A′] = {s | h(s) ∈ A′}.

P-graphs Given any p-graph G = (Vu ∪ Yu, Y, U, V0), its image h⟨G⟩ = (Vu ∪ Yu, h[Y ], h[U ], V0)

is produced by replacing the set of events L on each edge e with h[L]. Analogously, given

p-graph G = (Vu ∪ Yu, Xy, Xu, V0), its preimage h−1⟨G⟩ = (Vu ∪ Yu, h
−1[Xy], h

−1[Xu], V0)

is constructed by replacing the set of events L′ on each edge e with h−1[L′].

The function h can either preserve information (when it is a bijection) or it can lose information

(by mapping multiple inputs to a single output). The loss of information is felt in Y ∪ U by the

extent to which some z ∈ Y ∪ U grows under h−1 ◦ h. In contrast, starting from x ∈ X , the

uncertainty, measurable via set cardinality under h−1, is washed out again when pushed forward to

X . This idea is formalized with the following lemmas:
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Lemma 4.1. For any event ℓ ∈ Y ∪ U , h−1 ◦ h(ℓ) ⊇ {ℓ}. Similarly, we have ∀L ⊆ Y ∪ U, h−1 ◦

h[L] ⊇ L and ∀s = ℓ0ℓ1 . . . ℓn ∈ (Y ∪ U)∗, s ∈ h−1 ◦ h(s).

Proof. First, we are going to prove ∀ℓ ∈ Y ∪ U , h−1 ◦ h(ℓ) ⊇ {ℓ}. Since h is a function, there

are two cases for the images of the events in G: First, ∀ℓ1, ℓ2 ∈ U ∪ Y , h(ℓ1) ̸= h(ℓ2). In this

case, no two events are mapped to the same output. In other words, each image element has a

unique preimage, {ℓ} = h−1(h(ℓ)). Secondly, ∃ℓ1, ℓ2 ∈ U(G) ∪ Y (G), h(ℓ1) = h(ℓ2). Then we

have h−1(h(ℓ1)) = h−1(h(ℓ2)) = ℓ1 ∪ ℓ2, {ℓ1} ⊂ h−1(h(ℓ1)), and {ℓ2} ⊂ h−1(h(ℓ2)). Hence,

h−1 ◦ h(ℓ) ⊇ {ℓ}.

Next, following the result of h−1 ◦h(ℓ) ⊇ {ℓ}, we have that h−1 ◦h[L] = ∪ℓi∈Lh−1 ◦ h[ℓi] ⊇ L

for any L ⊆ Y ∪ U .

Finally, we will prove s ∈ h−1 ◦h(s) by induction for all s = ℓ0ℓ1 . . . ℓn ∈ (Y ∪ U)∗. Let sk =

ℓ0ℓ1 . . . ℓk be the prefix of s with length k+1, where 0 ≤ k < n. When k = 0, s0 only contains an

action or observation and, we have s0 ∈ h−1 ◦ h(s0). Suppose sk = ℓ0ℓ1 . . . ℓk ∈ h−1 ◦h(sk) holds

for k. The inductive step: h−1 ◦ h(sk+1) = ∪ℓ′0ℓ′1...ℓ′k∈h−1◦h(sk)∪ℓ′k+1∈h−1◦h(ℓk+1)ℓ
′
0ℓ

′
1 . . . ℓ

′
kℓ

′
k+1 ∋

ℓ0ℓ1 . . . ℓk+1, which is since ℓ0ℓ1 . . . ℓk ∈ h−1 ◦ h(sk) and ℓk+1 ∈ h−1 ◦ h(sk+1). Hence, sk+1 ∈

h−1 ◦ h(sk+1). Therefore, s ∈ h−1 ◦ h(s),∀s ∈ (Y ∪ U)∗.

Lemma 4.2. For any ℓ′ ∈ X , h ◦ h−1(ℓ′) = {ℓ′}. Similarly, we have ∀L′ ⊆ X , h ◦ h−1[L′] = L′

and ∀s = ℓ′0ℓ
′
1 . . . ℓ

′
k ∈ X∗, h ◦ h−1(s) = {s}.

Proof. Firstly, we will prove h ◦ h−1(ℓ′) = {ℓ′} holds for any ℓ′ ∈ X . Let h−1(ℓ′) = {l ∈

Y ∪ U |h(l) = ℓ′}. Then ∀ℓ ∈ h−1(ℓ′), we have h(ℓ) = ℓ′. Therefore, h ◦ h−1(ℓ′) = {ℓ′}.

Following from h ◦ h−1(ℓ′) = {l′}, we have h ◦ h−1[L′] = L′ for any L′ ⊆ X .

Thirdly, we will prove h ◦ h−1(s) = {s} by induction for any s = ℓ′0ℓ
′
1 . . . ℓ

′
n ∈ X∗. Let

sk be the prefix of s with length k + 1, where 0 ≤ k < n. When k = 0, s0 only contains an

action or observation and, we have {s0} = h ◦ h−1(s0). Suppose {sk} = h ◦ h−1(sk) holds for k.

Then h ◦ h−1(sk+1) = ∪ℓ′′0 ℓ′′1 ...ℓ′′k∈h◦h−1(sk) ∪ℓ′′k+1∈h◦h−1(ℓ′′k+1)
ℓ′′0ℓ

′′
1 . . . ℓ

′′
k+1 = {ℓ′0ℓ′1 . . . ℓ′k+1}. Hence,

h ◦ h−1(sk+1) = {sk+1}. Therefore, ∀s ∈ X∗, h ◦ h−1(s) = {s}.
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Definition 4.11 (I-state graph). For planning problem (W, Vgoal), plan (P, Vterm) and information

disclosure policy h : Y (W) ∪ U(W) → X , an observer’s I-state graph I is a p-graph, whose inputs

are from the image space of h (i.e., Y (I) ∪ U(I) = X), with LI(I) ⊇ h[LI(W)]. The action space

and observation space of I are also written as Xu = U(I) and Xy = Y (I).

The observer’s I-state graph is a p-graph with events in the image space X . By having LI(I) ⊇

h[LI(W)], we are requiring that strings generated in the world can be safely traced on I. Whether

Xu and Xy are disjoint or not depends on their initial disjointedness and the structure of h.

Using the notation above, we will frequently speak of h−1⟨I⟩. Next, are some basic properties

of the vertices and executions of I.

Lemma 4.3 (Properties of I). Given I and h, the following hold:

i. I = h ◦ h−1⟨I⟩.

ii. ∀s′ ∈ LI(I),∀s ∈ h−1(s′), VI(s′) = Vh−1⟨I⟩(s).

iii. LI(h−1⟨I⟩) = h−1[LI(I)].

iv. ∀B ⊆ V (I), h−1[SIB] = Sh−1⟨I⟩
B .

Property i. According to Lemma 4.2, each event set L in I will not change when we apply opera-

tion h ◦ h−1 on I. Therefore, we have I = h⟨h−1⟨I⟩⟩ by replacing every set of events L in I with

h ◦ h−1[L].

Property ii. We need to prove that s′ and its preimage s reach the same∗ set of vertices in I

and h−1⟨I⟩ respectively. According to the construction of h−1⟨I⟩, we have ∀s′ ∈ LI(I), ∀s ∈

h−1(s′),VI(s′) ⊆ Vh−1⟨I⟩(s). Next, we will prove ∀s′ ∈ LI(I),∀s ∈ h−1(s′), VI(s′) ⊇ Vh−1⟨I⟩(s)

by contradiction. Suppose ∃s′ ∈ LI(I),∃s ∈ h−1(s′),VI(s′) ̸⊇ Vh−1⟨I⟩(s). Then we have

VI(s′) ⊂ Vh−1⟨I⟩(s). If s is the preimage of only s′, then we should have, according to the

construction of h−1⟨I⟩, VI(s′) = Vh−1⟨I⟩(s) instead. Hence, s is the preimage of at least two
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different executions s′ and s′′, which contradicts with the fact that h is a function. Therefore,

∀s′ ∈ LI(I),∀s ∈ h−1(s′),VI(s′) = Vh−1⟨I⟩(s).

∀s′ ∈ LI(I),∀s ∈ h−1(s′), s′ reach the same set of vertices as those reached by s in h−1⟨I⟩.

Since each vertex in VI(s′) is isomorphic to the same one in Vh−1⟨I⟩(s), we have VI(s′) is identical

to Vh−1⟨I⟩(s).

Property iii. =⇒ : Given any execution s from p-graph h−1⟨I⟩, we will prove h(s) is an execution

from p-graph I. According to Lemma 4.3.i, I = h⟨h−1⟨I⟩⟩. Thus, h(s) is an execution on

I = h⟨h−1⟨I⟩⟩. And we have LI(h−1⟨I⟩) ⊆ h−1[LI(I)].

⇐= : Given any execution s ∈ h−1[LI(I)], we will prove s ∈ LI(h−1⟨I⟩). For any s ∈

h−1[LI(I)], we have h(s) is an execution from p-graph I. According to Lemma 4.3.ii. the set of

vertices reached by h(s) in p-graph I is isomorphic to the set of vertices reached by s′ ∈ h−1(h(s))

in h−1⟨I⟩. Hence, s is an execution in h−1⟨I⟩. Therefore, LI(h−1⟨I⟩) ⊇ h−1[LI(I)].

Property iv. =⇒ : Given any execution s ∈ h−1[SIB], then we have h(s) ∈ SIB and VI(h(s)) = B.

According to Lemma 4.3.ii, we have Vh−1⟨I⟩(s) = VI(h(s)) = B. Hence, s ∈ Sh−1⟨I⟩
B .

⇐= : Given any execution s ∈ Sh−1⟨I⟩
B , then we have Vh−1⟨I⟩(s) = B. According to

Lemma 4.3.ii, VI(h(s)) = Vh−1⟨I⟩(s) = B. Hence, h(s) ∈ SIB and therefore, we now have

s ∈ h−1[SIB].

Next we present a core definition of the paper. The crucial aspect to be formalized is the

connection from the interaction of the robot and world, via the stream of symbols generated, to

the state tracked by the observer. Inference runs from observer back to the world, but causality

proceeds from the robot–world to observer (glance again at Figure 5.2). We begin, accordingly,

with that latter direction.

Definition 4.12 (compatible world states). Given observer I-state graph I, robot’s plan (P, Vterm),

world graph (W, Vgoal), and label map h, the world state w is compatible with the set of I-states

∗Since, by h−1⟨I⟩ we refer to the graph I with each of the edge labels replaced by preimages under h, there is
a one-to-one correspondence between the two graphs via a natural isomorphism. For convenience we speak of the
“same” vertex rather than being explicit about the associated bijection and, further, we have used ‘=’ rather than ‘∼=’.
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B ⊆ V (I) if ∃s ∈ LI(W) such that s ∈ h−1[SIB]︸ ︷︷ ︸
(1)

∩ LI(P)︸ ︷︷ ︸
(2)

∩ SWw︸︷︷︸
(3)

.

Informally, each of the three terms can be interpreted as:

(1) An observer with I-state graph I may ask which sequences are responsible for having arrived

at states B. The answer is the set SIB, an equivalence class of strings identical up to those

states, the executions contained therein being indistinguishable up to states in I. Those strings

are in the image space X , so, to obtain an answer in the world Y ∪U , their preimages must be

taken. Every execution in h−1[SIB] leads the observer to B. Note that information is degraded

both by h and I. Figure 4.5 provides a visual example that shows how information can be

degraded by a label map h, an I-state graph I, and both together. The leftmost sub-figure gives

a scenario by providing a world p-graph W, a plan P, and divulged plan information D— all

three are identical p-graphs. The next sub-figure (second from the left) shows an I-state graph

with the same structure as W and an identity label map. Every I-state corresponds to a single

world state in this case. In the third sub-figure, there is an I-state graph with the same structure

as W, thus clearly possessing sufficient structure to account for the world states. But here a label

map conflates some actions and some observations. A consequence is that the world states w1

and w2 are indistinguishable given I-state i1 and plan P. In the rightmost sub-figure both h and

I degrade information and do so independently. In this case, w3 and w4 are indistinguishable

owing to the label map, w5 and w6 are indistinguishable owing to the collapsed structure in I.

(2) The set of executions that may be executed by the robot is represented byLI(P). If the observer

knows that the robot’s plan takes, say, the high road, this information allows the observer to

remove executions involving the robot along the low road.

(3) The set of executions reaching world state w is represented by SWw. Two world states w,w′ ∈

V (W) are essentially indiscernible or indistinguishable if SWw = SWw′ , as the sets capture the

intrinsic uncertainty of world W.
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Figure 4.5: Both the label map and the I-state graph can degrade information. Leftmost: a scenario
where the world p-graph W, a plan P, and divulged plan information D are all identical. Second
from the left: an I-state graph I with the same structure as W and an identity label map h. Second
from the right: an I-state graph with I the same structure as W and a label map h which conflates
some actions/observations. Rightmost: both h and I degrade information independently.

When an observer is in B, and w is compatible with B, there exists some execution, a certificate,

that the world could plausibly be in w subject to (1) the current information summarized in I;

(2) the robot’s plan; (3) the structure of the world. The set of all world states that are compat-

ible with B is denoted WI,P
B , which is the observer’s estimate of the world states when known

information about W, P and I have all been incorporated.

A typical observer may know less about the robot’s future behavior than the robot’s full plan.

Weaker knowledge of how the robot will behave can be expressed in terms of some p-graph D, such

that LI(D) ⊇ LI(P). Here the mnemonic is that it is the divulged information about the robot’s

plan, which one might imagine as leaked or communicated via a side-channel. Another decision

is that the information divulged to the observer about the robot’s execution is in the preimage

space. This modeling decision may seem strange at first blush, so we provide some explanation

and justification for it. As the observer will only see things in the image space, it may seem that

granting access to information in the preimage or the image space would have little difference.

But, since inference occurs by pulling back observed events to preimage space and then taking an

intersection, there actually can be an appreciable difference. As this paper is interested in a worst-

case adversarial conditions, we are interested in what strong ne’er-do-well observers might infer

and thus study the problem where the adversary gains the maximum possible. From this setting
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Figure 4.6: Find the estimated world states when given world graph W, I-state graph I, divulged
graph D or h⟨D⟩, label map h = {a1, a2 7→ a; o1, o2 7→ o}.

the other variant can be easily posed as well (one simply needs to consider h−1 ◦ h⟨D⟩ to simulate

the knowledge of image space information).

To clarify the previous statements, made only informally, we must be more formal with the

image space inference process:

Definition 4.13. Given an I-state graph I, divulged information about the robot’s behavior h⟨D⟩

in the image space, and label map h, the set of estimated world states for I-states B ⊆ V (I) is

WI,h⟨D⟩
B = {w ∈ V (W)|h−1[SIB] ∩ LI(h−1 ◦ h⟨D⟩) ∩ SWw ̸= ∅}.

Lemma 4.4. Given any p-graph D, LI(D) ⊆ LI(h−1 ◦ h⟨D⟩).

Proof. According to Lemma 4.1, for event ℓ ∈ LI(D), we have {ℓ} ⊆ LI(h−1 ◦ h(ℓ)). Then the

set of events bearing in each edge of p-graph h−1 ◦ ⟨D⟩ is a superset of the corresponding edge in

p-graph D. Therefore, LI(D) ⊆ LI(h−1 ◦ h⟨D⟩).

Theorem 4.1. Given I-state graph I, divulged information D, world graph W, and label map h, the

set of estimated world states for any set of I-states B ⊆ V (I) is WI,D
B . By replacing D with its

image graph h⟨D⟩, the set of estimated world states for B isWI,h⟨D⟩
B . ∀B ⊆ V (I),WI,h⟨D⟩

B ⊇ WI,D
B .

Proof. According to Lemma 4.4, LI(D) ⊆ LI(h−1 ◦ h⟨D⟩). Thus ∀B ⊆ V (I),∀w ⊆ V (W), we

have h−1[SIB]∩LI(D)∩SWw ⊆ h−1[SIB]∩LI(h−1 ◦ h⟨D⟩)∩SWw. If h−1[SIB]∩LI(D)∩SWw ̸= ∅, then
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h−1[SIB] ∩ LI(h−1 ◦ h⟨D⟩) ∩ SWw ̸= ∅. Thus, if v ∈ WI,D
B , then v ∈ WI,h⟨D⟩

B . Hence, ∀B ⊆ V (I),

we haveWI,h⟨D⟩
B ⊇ WI,D

B .

An example to illustrate Theorem 4.1 is shown in Figure 4.6. Given W and I, WI,D
{i0} = {w1},

whileWI,h⟨D⟩
{i0} = {w1, w2}. Hence,WI,h⟨D⟩

B ⊇ WI,D
B .

Definition 4.12 requires the simple substitution of the second term in the intersection with

LI(D). When only D is given, one can only approximateWI,P
B withWI,D

B :

Definition 4.14 (estimated world states). Given an I-state graph I, divulged plan p-graph D, world

p-graph W, and label map h, the set of estimated world states for I-states B ⊆ V (I) is WI,D
B :={

w ∈ V (W)
∣∣∣ (Sh−1⟨I⟩

B ∩ LI(D) ∩ SWw) ̸= ∅
}

.

Note that h−1[SIB] has been replaced with Sh−1⟨I⟩
B , via Lemma 4.3.iii.

Via reasoning that is entirely analogous (hence we minimize discussion in detail), the observer

may estimate the robot’s plan states:

Definition 4.15 (estimated plan states). Given an I-state graph I, divulged plan graph D, world

graph W, and label map h, the set of estimated world states for I-states B ⊆ V (I) is DI,W
B :={

d ∈ V (D)
∣∣∣ (Sh−1⟨I⟩

B ∩ LI(W) ∩ SDd) ̸= ∅
}

.

These estimated plan states are of ‘second order,’ as they represent the observer’s knowledge

about what the robot knows.

The last remaining element in Figure 4.4 that needs to be addressed is the stipulation of infor-

mation. We do that next.

4.1.4 Information stipulations

We prescribe properties of the information that an observer may extract from its input by im-

posing constraints on the sets of estimated world states. The observer, filtering a stream of inputs

sequentially, forms a correspondence between its I-states and world states. We write propositional

formulas with semantics defined in terms of this correspondence—in this model the stipulations
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Formula→ Clause1∧ . . .∧Clausen
Clause→ Literal1∨ . . .∨Literalm
Literal→ Symbol | ¬Symbol

Symbol→ v0 , v1, v2, . . .

[VALUE]

⟨vi⟩ ⇓ eval(vi
?
∈ WI,D

B )

[NOT] ⟨vi⟩ ⇓ w

⟨¬vi⟩ ⇓ the negation of w

[OR] ⟨ℓ1⟩ ⇓ w1 ⟨ℓ2⟩ ⇓ w2

⟨ℓ1 ∨ ℓ2⟩ ⇓ the logical or of w1 and w2

[AND] ⟨c1⟩ ⇓ w1 ⟨c2⟩ ⇓ w2

⟨c1 ∧ c2⟩ ⇓ the logical and of w1 and w2

Figure 4.7: The syntax and natural semantics of the information stipulations, where ci , ℓi , vi ,
represent a clause, literal, and symbol, respectively, and wi is the result of the evaluation. The
transition ⟨e⟩ ⇓ w denotes a transition, where e is any expression defined by the grammar and w is
the value yielded by the expression.

are written to hold over every reachable set of associated states.†

First, however, we must delineate the scope of the estimated world states to be constrained.

Some states, in inherently non-deterministic worlds, may be inseparable because they are reached

by the same execution. In Figure 4.3, both w3 and w4 will be reached (non-deterministically) by

execution a2o1. Since this is intrinsic to the world, even when the observer has perfect observations,

they remain indistinguishable. In the remainder of this paper, we will assume that the world graph

W is in state-determined form, and we may affix stipulations to the world states knowing that no two

vertices will be non-deterministically reached by the same execution. Similarly, when applicable,

D will also be presumed to be in state-determined form with the stipulations written in terms of

these states.‡

Second, we write propositional formulae to constrain the observer’s estimate. The formula

Φ is written in conjunctive normal form, consisting of symbols, literals and clauses as shown in

Fig. 4.7. Firstly, a basic, atomic symbol vi is associated with each world state vi ∈ V (W) or plan

state vi ∈ V (D). If vi is contained in the observer’s estimates WI,D
B or DI,W

B , we will evaluate the

†We foresee other variants which are straightforward to modifications to consider; but we report only on our
current implementation.

‡Recall that every p-graph has a state-determined presentation [12].
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corresponding symbol vi as True. Otherwise, it evaluates as False. With each symbol grounded,

we can evaluate literals and clauses compositionally, using logic operators NOT, AND, OR. These

are defined naturally, eventually enabling evaluation of Φ on the observer’s estimate WI,D
B and

DI,W
B . Suppose, for example, we wish to require that state v1 be included in the observer’s estimates

of the world whenever v2 is; this would be expressed via Φ = ¬v2 ∨ v1. Evaluation of such

formulas takes place as follows. For a set of I-states B reached under some operation of the robot

in the world, vi is connected with vi in that vi evaluates to True for B iff vi ∈ WI,D
B , whereWI,D

B

is the set of estimated world states for I-states B. The opposite condition, where vi ̸∈ WI,D
B , is

written naturally as ¬vi . Standard connectives ¬, ∧, ∨ enable composite expressions for complex

stipulations to be built and recursively evaluated.

Let the predicate satfd(B,Φ) denote whether the stipulation Φ holds for I-states B. Then a

plan P satisfies the stipulations, if and only if

∀s ∈ LI(P) ∩ LI(W) B = VI(h(s)) satfd(B,Φ).

4.2 Verifying plans and stipulations: the CHECK problem

Given everything involved, an important initial step is to successfully recognize a solution to

the problem, including determining whether the constraints have been met.

Problem: CHECK
(
(W, Vgoal), (P, Vterm), (D, I), h,Φ

)
Input: A planning problem (W, Vgoal), a plan (P, Vterm), a divulged plan p-graph D, an I-state

graph I, an information disclosure policy h and an information stipulation Φ.

Output: True if plan (P, Vterm) solves the problem (W, Vgoal), and ∀s ∈ LI(W †) ∩ LI(P), B =

VI(h(s)), the information stipulation Φ is always evaluated as True onWI,D
B and DI,W

B

(i.e. satfd(B,Φ) = True); False otherwise.

One thing demands further explanation: W† is used as a replacement for the world W; this

deals with a technical nuance, a sort of inference gained for free upfront, most easily handled by

transforming the inputs. Given a world and a disclosed p-graph, oftentimes certain parts of the p-
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graph can be determined to be irrelevant a priori—for instance, if we know, via D, that the robot is

executing a plan, then all non-goal cul-de-sacs can be excised (yielding a W† with LI(W†) ⊆ LI(W)).

4.2.1 Does the plan solve the planning problem?

To determine whether the plan (P, Vterm) solves the planning problem (W, Vgoal), safety, cor-

rectness and liveness must all be checked. The procedure is shown in Algorithm 2. A breath-first

search (BFS) of the product graph W⊗ P permits these three properties to be verified. Examina-

tion of safety and correctness follow directly from their definitions. Liveness is violated if there

is a loop in the product graph prior to terminating states being reached, or when a joint-execution

cannot be extended to reach the termination region.

4.2.2 Are the stipulations satisfied?

An important preliminary step to determine whether the stipulation is satisfied is to establish

the correspondence from sets of observer I-states to estimated world states. To accomplish this, for

sets B of I-states, we computeWI,D
B and DI,W

B .

First, one examines those sets B of I-states that can arise by dint of the observer perceiving

the image of executions under h. According to Definition 4.7, those sets correspond to equiva-

lence classes of the images of executions. We can obtain exactly the sets of I-states of interest by

expanding I into its state-determined form SDE(I), the expansion process produces a single new

state for each equivalence class. Following this, the preimage p-graph h−1⟨SDE(I)⟩ will also be in

state-determined form.

Next, we find the estimated world states for each vertex in SDE(I), by simply realizing Def-

inition 4.14 and 4.15 constructively: a world state w corresponds with an observer I-state v ∈

V (SDE(I)) if there exists a joint-execution in h−1⟨SDE(I)⟩, W and D that reaches I-state v, w,

and some plan state. Note that SDE(I) and h−1⟨SDE(I)⟩ share the same set of vertices. This

correspondence can be established easily via a graph T := W⊗ D⊗ h−1⟨SDE(I)⟩ of triples (see

Figure 4.8). In T each vertex (vW, vD, vh
−1⟨SDE(I)⟩) ∈ V (T ) represents the fact that world state vW

and plan state vD are associated with the observer I-state vh
−1⟨SDE(I)⟩. Iterating over all vertices in
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Algorithm 2: CHECKSOLN(W, Vgoal, P, Vterm)

1: Q← [] and visited← []
2: for w ∈ V0(W) do
3: for v ∈ V0(P) do
4: if v ∈ Vterm and w ̸∈ Vgoal then
5: return False // Not correct
6: else if v ̸∈ Vterm then
7: Q.append((w, v))
8: visited.append((w, v))
9: end if

10: end for
11: end for
12: while Q not empty do
13: (w, v)← Q.pop
14: Nw ← W.outNeighbors(w)
15: Nv ← P.outNeighbors(v)
16: if Nw is empty and Nv not empty then
17: return False // Not safe and not live
18: end if
19: if w is action vertex and Nv ̸⊆ Nw then
20: return False // Not safe on action
21: else if w is observation vertex and Nw ̸⊆ Nv then
22: return False // Not safe on observation
23: end if
24: for w ∈ Nw do
25: for v ∈ Nv do
26: if w ̸∈ Vgoal and v ∈ Vterm then
27: return False // Not correct or live
28: else if w ∈ Vgoal and v ∈ Vterm then
29: continue // Terminating vertex
30: else if (w, v) ∈ visited then
31: return False // Loop detected, not finite
32: else
33: Q.append((w, v))
34: visited.append((w, v))
35: end if
36: end for
37: end for
38: end while
39: return True // Passing all the tests
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V (T ), we thus find the set of world statesWI,D
{v} and plan states DI,W

{v} corresponding with I-state v.

The correspondence is both complete and tight: completeness follows from the exhaustiveness

of the enumeration; tightness from the fact that an association is formed only when some actual

execution s can simultaneously take the world to a state and the observer to an I-state.

For any vertex v ∈ V (h−1⟨SDE(I)⟩), we can use WI,D
{v} and DI,W

{v} to evaluate the information

stipulations. Each vertex v in SDE(I) can be marked as either satfd({v},Φ) = True when the

stipulation holds, or satfd({v},Φ) = False otherwise.

Next, we make another product graph W⊗ P⊗ h−1⟨SDE(I)⟩ to mark whether the I-states in

SDE(I) are reached by some execution in the joint execution LI(W)∩LI(P). Finally, the objective

is to check whether every I-state reached by the plan P (since what is really happening is P rather

than D) satsifies the stipulations.

4.3 Discussion regarding the observer’s model

Above, we hinted that observers may differ depending on the prior knowledge that has been

revealed to them; next we bring this idea into sharper focus. The information associated with an

observer is contained in a pair (D, I): D captures the observer’s prior knowledge about all possible

executions that the robot may produce according to its plan, the I-state graph I that acts as a

filter, succinctly tracking state from a stream of inputs, and knowledge of robot’s plan. Then the

I-state graph I induces ∼
I

over its set of executions and hence over the joint-executions with the

Figure 4.8: An example of product graph T formed from some W, D, and h−1⟨I⟩.
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world, or, more precisely, the image of those through h. (Recall that the coarseness of h limits

the fidelity of the observer, cf. Figure 4.5.) By comparing the fineness of the relations induced by

two I-state graphs, one obtains a sense of the relative coarseness of the two I-state graphs. As the

present paper describes methods motivated by applications to robotic privacy, we model the most

capable adversary, taking the finest observer, that is, one whose equivalence classes are as small as

possible. In this section, we will start by describing various possibilities for D, and show that D can

be equivalently represented as a p-graph. Thereafter, we will give the definition and a construction

of the finest observer.

4.3.1 Observer’s prior knowledge about robot’s plan

The first element in the observer pair is D, information disclosed about the plan, and presumed

to be known a priori, to the observer. Depending on how much the observer knows, there are

multiple possibilities here, from most- to least-informed:

I. The observer knows the exact plan P to be executed.

II. The plan to be executed is among a finite collection of plans {P1, P2, . . . , Pn}.

III. The observer may only know that the robot is executing some plan, that is, the robot is goal

directed and aims to achieve some state in Vgoal.

IV. The observer knows nothing about the robot’s execution other than that it is on W.

Definition 4.14 and 4.15 detail how the observer’s knowledge of the world state (WI,D
B ) and plan

state (DI,W
B ) from I-states B depend on Sh−1⟨I⟩

B ∩ LI(D) ∩ LI(W), a set of executions that arrive at

B in the I-state graph I. Because the observer uses D to refine Sh−1⟨I⟩
B , when LI(P) ⊊ LI(D) the

gap between the two sets of executions represents a form of uncertainty. The ordering of the four

cases, thus, can be stated precisely in terms language inclusion.

A p-graph exists whose language expresses knowledge for each of these cases:

Case I. When D = P, the interpretation is straightforward: the observer tracks the states of the

plan given the stream of observations (as best as possible, as the operation is under h).
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Case II. If instead a set of plans {P1, P2, . . . , Pn} is given, we must construct a single p-graph,

D, so that LI(D) = LI(P1) ∪ · · · ∪ LI(Pn). This is achieved via the union of p-graphs

D = P1 ⊎ P2 ⊎ · · · ⊎ Pn, cf. [12, p. 244].

Case III. If the robot is known only to be executing some plan, we must consider the set of

all plans, P∞ := {P1, P2, P3, . . . , }. As the notation hints, there can be an infinite number of

such plans, so the approach of unioning plans won’t work. Fortunately, another structure,

P∗, exists such that LI(D) = LI(P∗) = LI(P∞). Here P∗, a finite p-graph, is called the plan

closure. We will show the construction of P∗ and prove LI(P∗) = LI(P∞) below.

Case IV. When taking D = W the executions are, again, intersected with LI(D) but as they

already came from LI(W), this shows why the observer is the least informed in the hierarchy.

Now, the question is how to represent P∞ with a p-graph P∗ and show that they share the same

language.

To start, we describe construction of P∗. The initial step is to convert W to its state-determined

form W′ = SDE(W) (this is an operation described in [12, pp. 244–245], also provided as pseudo-

code in Algorithm 1). Then, to decide whether a vertex in W′ exists in some plan, we iteratively

color each vertex green, red, or gray. Being colored green means that the vertex exists in some

plan, red means that the vertex does not exist in any plan, and gray indicates that its status has yet

to be decided. To start with, we initially color the goal vertices green, and non-goal leaf vertices

(with no edges to other vertices) red. Using the iconography of [12], we show action vertices as

squares and observation vertices as circles. Then gray vertices of each type change their color by

iterating the following steps:

• → : ∃ some action a reaching , which is not an initial state.

• → : ∀ action a reaching .

• → : ∀ observation o reaching , which is not an initial state.

• → : ∃ some observation o reaching .
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The iteration ends when no vertex changes its color. The subgraph that consisting of only green

vertices and their corresponding edges is P∗. And P∗ then contains only the vertices that exist in

some plan leading to the goal states. For further detail of this algorithm for building P∗, we refer

the reader to Algorithm 3.

Next, we prove that the P∗ constructed from this procedure has the same language as P∞. The

proof shows that any green vertex is on some plan, by showing that we we can construct a plan π,

that will lead to a goal state within a finite number of steps form any such vertex.

Lemma 4.5. LI(P∗)=LI(P∞).

Proof. ⊇: For any s = s0s1s2 . . . sk ∈ LI(P∞), according to the definition of P∞, s is in the

execution of some plan P′. Though sk may not be a goal, using P′, s can be extended: ∃s′ =

s0s1 . . . skt0t1 . . . tn ∈ LI(P′), k > 0, n ≥ 0 to reach an element of Vgoal. Then VP′(s′) comprises

vertices associated with those in W′ marked green in V ′
goal. And, tracing the execution s′ on P′

backwards on W′, we find every vertex green back to a start vertex. But this means they are in P∗,

and hence s′ ∈ LI(P∗), means s ∈ LI(P∗) as well.

⊆: For any execution s = s0s1s2 . . . sk ∈ LI(P∗), s reaches V ′
goal, or s is a prefix of some

execution reaching V ′
goal in W′. We show that there is a plan that can produce s. The execution s does

not include enough information to describe a plan because: (1) it may not reach V ′
goal itself, and

(2) it gives an action after some observation that was revealed, but not every possible observation.

To address this shortfall, we will capture some additional information during the construction of

P∗, which we save in π. This provides an action that makes some progress, for states that can

result from other observations. Now, using s as a skeleton, construct plan where once a transition

outside of s occurs, either owing to an unaccounted-for observation or having reached the end of

s, the plan reverts to using the actions that π prescribes. (See Fig. 4.9 for a visual example.) This

is always possible because states arrived at in W′ under s are green. This implies that all states in W

are also assured to reach a goal states. The resulting plan can produce s, so some plan produces s,

hence s ∈ LI(P∞).
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Figure 4.9: The construction of a plan generating execution s using π, computed as part of Algo-
rithm 3, as an ‘ambient’ plan.

Thus, one may use D = P∗, for Case III in Section 4.3.1.

Now using the D as appropriate for each case, one may examine whether a given plan and

disclosure policy solves the planning problem (i.e., achieves desired goals in the world) while

meeting the stipulations on information communicated. Hence, we see that describing disclosed

information via a p-graph D is in fact rather expressive. This section has also illustrated the benefits

of being able to use both interaction language and graph presentation views of the same structure.

4.3.2 Construction of the finest observer

Next, we define the most capable observer in the particular sense of being equipped with dis-

closed information that enables it to track aspects most minutely.

Given the disclosed plan D as a prior knowledge, the observer builds estimates about the plan

states and world states. As we may place stipulations on both plan states and world states, for

privacy considerations, we are interested in the strongest observer—the one that maintains the

tightest estimate for both disclosed plan states and world states.

Definition 4.16 (finest observer given D). Given world graph W and the divulged plan D, an I-state

graph Ĩ is a finest observer if for any I-state graph I, we have ∀s ∈ LI(W), W Ĩ,D
h(s) ⊆ W

I,D
h(s) and

DĨ,W
h(s) ⊆ D

I,W
h(s).

Above we have discussed checking whether a plan meets some stipulations (Section 4.2), but

soon we will turn attention to finding suitable plans (Section 4.4). We will examine how one can
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Algorithm 3: P∗CONSTRUCTION(W, Vgoal)

1: Initialize queues red, green, gray as empty
2: W′ ← SDE(W), and initialize V ′

goal as the associated vertices of Vgoal

3: Initialize plan π as empty
4: for v ∈ V (W′) do
5: if v ∈ V ′

goal then
6: green.append(v)
7: else if v has no edges to other vertices then
8: red.append(v)
9: else

10: gray.append(v)
11: end if
12: end for
13: Q.extend(InNeighbor(red ∪ green)\(red ∪ green))
14: while Q not empty do
15: v ← Q.pop
16: flag←True
17: if v is a then
18: if one of its outgoing neighbors is then
19: red.append(v)
20: else if all of its outgoing neighbors are then
21: green.append(v)
22: else
23: flag←False
24: end if
25: else if v is a then
26: if one of its outgoing neighbors under label a is then
27: green.append(v) and π[v] = a
28: else if all of its outgoing neighbors are then
29: red.append(v)
30: else
31: flag←False
32: end if
33: end if
34: if flag then
35: Q.extend(InNeighbor(v)\{red ∪ green})
36: end if
37: end while
38: P∗ ← subgraph(W′, green)
39: return P∗ (and also π, if desired)
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seek and then disclose that sought plan, so that it will satisfy some given stipulations. There is no

natural way for stipulations in such cases to restrict knowledge of plan states, because formulae

cannot name plan states which are not yet known. Hence, we must restrict our interest is in the

strongest observer that (always) maintains the tightest estimate for the world states.

Definition 4.17 (finest observer given P). Given world graph W and robot’s plan P, an I-state graph

Ĩ is a finest observer if for any I-state graph I, we have ∀s ∈ LI(W),W Ĩ,P
h(s) ⊆ W

I,P
h(s).

Any observer attempting to keep more states that V (W) is merely tracking repetitions and, given

the form of the stipulations, this grants the observer no additional capabilities. Hence, the finest

observer is well defined and also conveniently represented:

Lemma 4.6. Three closely related claims:

• For every pair of executions s1, s2 ∈ h−1[Sh⟨W⟩
B ] ∩ LI(W), then we have either h(s1) = h(s2)

or VW(s1) = VW(s2).

• For every pair of executions s1, s2 ∈ h−1[Sh⟨D⟩
B ] ∩ LI(D), then we have either h(s1) = h(s2)

or VD(s1) = VD(s2).

• For every pair of executions s1, s2 ∈ h−1[Sh⟨W⊗D⟩
B ] ∩ LI(W) ∩ LI(D), then we have either

h(s1) = h(s2), or we have VW(s1) = VW(s2) and VD(s1) = VD(s2).

Proof. For ∀s1, s2 ∈ h−1[Sh⟨W⟩
B ], we have Vh⟨W⟩(h(s1)) = Vh⟨W⟩(h(s2)) = B. Suppose h(s1) ̸=

h(s2) and VW(s1) ̸= VW(s2). Let w1 ∈ VW(s1) and w1 ̸∈ VW(s2). Then we have w1 ∈ Vh⟨W⟩(h(s1)).

In order to satisfy Vh⟨W⟩(h(s1)) = Vh⟨W⟩(h(s2)), we need to find another execution s′ ∈ h−1[Sh⟨W⟩
B ]

such that h(s′) = h(s2) and w1 ∈ VW(s′), which contradicts with the condition s1, s2 ∈ h−1[Sh⟨W⟩
B ].

Similarly, one proves that ∀s1, s2 ∈ h−1[Sh⟨D⟩
B ] ∩ LI(D), then we have either h(s1) = h(s2) or

VD(s1) = VD(s2).

Now, ∀s1, s2 ∈ h−1[Sh⟨W⊗D⟩
B ]∩LI(W)∩LI(D), we have s1, s2 ∈ h−1[Sh⟨W⟩

B′ ]∩LI(W) and s1, s2 ∈

h−1[Sh⟨D⟩
B′′ ] ∩ LI(D). Then we have either h(s1) = h(s2) or, otherwise, both VW(s1) = VW(s2) and

VD(s1) = VD(s2).
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Lemma 4.7. h⟨W⟩ is a finest observer given P.

Proof. This lemma will be proved by showing that ∀s ∈ LI(W), B = Vh⟨W⟩(h(s)) and B′ =

VI(h(s)), we haveWh⟨W⟩,P
B ⊆ WI,P

B′ .

IfWh⟨W⟩,P
B contains only one world state w, then ∃s ∈ h−1[Sh⟨W⟩

B ] ∩ LI(P) ∩ SWw. We also have

s ∈ h−1[SIB′ ] ∩ LI(P) ∩ SWw for some B′ ⊆ V (I). Hence, w is also contained inWI,P
B′ .

If Wh⟨W⟩,P
B contains at least two world state w1, w2, then ∃s1 ∈ h[Sh⟨W⟩

B ] ∩ LI(P) ∩ SWw1
and

s2 ∈ h[Sh⟨W⟩
B ] ∩ LI(P) ∩ SWw2

. According to Lemma 4.6, h(s1) = h(s2) or VW(s1) = VW(s2). If

h(s1) = h(s2), then it is trivial that s1, s2 ∈ h−1[SIB′ ]. We have s1 ∈ h[SIB′ ] ∩ LI(P) ∩ SWw1

and s2 ∈ h[SIB′ ] ∩ LI(P) ∩ SWw2
. Hence, w1, w2 ∈ WI,P

B′ . If VW(s1) = VW(s2), then s1, s2 ∈

h[SIB′ ] ∩ LI(P) ∩ SW{w1,w2}. Hence, w1, w2 ∈ WI
B′ also holds.

Therefore,Wh⟨W⟩,P
B ⊆ WI,P

B′ . Hence, h⟨W⟩ is a finest observer.

Lemma 4.8. h⟨W⊗ D⟩ is a finest observer given D.

Proof. This lemma will be proved by showing that ∀s ∈ LI(W) ∩ LI(D), B = Vh⟨W⊗D⟩(h(s)),

B′ = VI(h(s)), such thatWh⟨W⊗D⟩,D
B ⊆ WI,D

B′ .

If there exists an execution s ∈ h−1[Sh⟨W⊗D⟩
B ] ∩ LI(D) ∩ SWw1

, such thatWh⟨W⊗D⟩,D
B contains only

one world state w. Then we also have s ∈ h−1[SIB′ ] ∩ LI(D) ∩ SWw1
. Hence, w1 ∈ WI,D

B′ .

When there exists an image execution reaching B and B′ in h⟨W⊗D⟩ and I, such thatWh⟨W⊗D⟩,D
B

contains at least two world states w1 and w2, we have ∃s1 ∈ h−1[Sh⟨W⊗D⟩
B ] ∩ LI(D) ∩ SWw1

, ∃s2 ∈

h−1[Sh⟨W⊗D⟩
B ] ∩ LI(D) ∩ SWw2

. According to Lemma 4.6, either h(s1) = h(s2) or VW(s1) = VW(s2).

Next, we will show that if ∃s1 ∈ h−1[Sh⟨W⊗D⟩
B ] ∩ LI(D) ∩ SWw1

,∃s2 ∈ h−1[Sh⟨W⊗D⟩
B ] ∩ LI(D) ∩ SWw2

such that either h(s1) = h(s2) or VW(s1) = VW(s2), then w1, w2 ∈ WI,D
B′ . If h(s1) = h(s2), then it

is trivial that s1, s2 ∈ h−1[SIB′ ]. And we have s1 ∈ h−1[SIB′ ] ∩ LI(D) ∩ SWw1
and s2 ∈ h−1[SIB′ ] ∩

LI(D)∩SWw2
. Hence, w1, w2 ∈ WI,D

B′ . If VW(s1) = VW(s2), then s1, s2 ∈ h−1[SIB′ ]∩LI(D)∩SW{w1,w2}.

Hence, w1, w2 ∈ WI,D
B′ also holds when at least two world states are consistent with the finest

observer’s belief. Hence,Wh⟨W⊗D⟩,D
B ⊆ WI,D

B′ whenever there is one or more estimated world states

inWh⟨W⊗D⟩,D
B .
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4.4 Searching for plans and disclosure policy: the SEEK problems

Naturally, the question of most interest is how to find plans and/or disclosure policies, not

merely how to verify them. We formulate this problem in three varieties:

Problem: SEEKx

(
(W, Vgoal),x, (Ĩ , D), h,Φ

)
SEEKλ

(
(W, Vgoal), P, (Ĩ , D),λ,Φ

)
SEEKx,λ

(
(W, Vgoal),x, (Ĩ ,x),λ,Φ

)
Vars. to solve for:

x is a plan

λ is a label map

Input: A planning problem (W, Vgoal), a finest observer Ĩ , a divulged plan p-graph D, infor-

mation disclosure policy h and information stipulation Φ.

Output: A plan x = (P, Vterm) and/or label map λ = h such that plan (P, Vterm) solves the

problem (W, Vgoal), and ∀s ∈ LI(W †) ∩ LI(P), B = VI(h(s)), the information stipu-

lation Φ is always evaluated as True onWI,D
B (i.e. satfd(B,Φ) = True), else False.

Of the three versions of SEEK, the first searches for a plan, the second for a label map, and the

third for both, jointly. We consider each in turn.

4.4.1 Finding a plan given some predetermined D

For SEEKx, first we must consider the search space of plans. Prior work [12] showed that,

although planning problems can have stranger solutions than people usually contemplate, there is a

core of well-structured plans (called homomorphic solutions) that suffice to determine solvability.

As an example, there may exist plans which loop around the environment before achieving the

goal, but, they showed that in seeking plans, one need only consider plans that short-circuit the

loops.

The situation is rather different when a plan must satisfy more than mere goal achievement:

information stipulations may actually require a plan to loop in order to ensure that the disclosed

stream of events is appropriate for the observer’s eyes. (A concrete example appears in Fig. 4.15(c).)

The argument in [12] needs modification for our problem—a different construction can save the

result even under disclosure constraints. This fact is key to be able to implement a solution.
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In this paper, without loss of generality, we focus on finding plans in state-determined form.

Next, we will examine the solution space closely.

Definition 4.18. A plan P is congruent on the world graph W, if and only if for every pair of

executions s1, s2 ∈ LI(P) we have s1 ∼
P
s2 =⇒ s1 ∼

W
s2.

In other words, a plan that respects the equivalence classes of the world graph is defined as a

congruent plan. (The definition of congruent plan is a generalization of homomorphic solution (see

Definition 6.7 in [12]), by considering a non-deterministic world.) Next, our search space may be

narrowed further still.

Lemma 4.9. Given any plan (P, Vterm), there exists a plan (P′, V ′
term) that is congruent on the world

graph W and LI(P′) = LI(P).

Proof. We give a construction from P of P′ as a tree, and show that it meets the conditions. To

construct P′, perform a BFS on P. Starting from V0(P), build a starting vertex v0 in P′, keep a

correspondence between it and V0(P). Mark v0 as unexpanded. Now, for every unexpanded vertex

v in P′, mark the set of all outgoing labels for its corresponding vertices in P as Lv, create a new

vertex v′ in P′ for each label l ∈ Lv, build an edge from v to v′ with label l in P′, and mark it

as expanded. Repeat this process until all vertices in P′ have been expanded. Mark the vertices

corresponding to vertices in Vterm as V ′
term. In the new plan (P′, V ′

term), no two executions reach the

same vertex. That is, ∀s1, s2 ∈ LI(P′), s1 ̸∼
P′
s2. Hence, P′ is congruent on W. In addition, since no

new executions are introduced and no executions in P are eliminated during the construction of P′,

we have LI(P′) = LI(P).

Theorem 4.2. For problem SEEKx

(
(W, Vgoal),x, (I, D), h,Φ

)
, if there exists a solution (P, Vterm),

then there exists a solution (P′, V ′
term) that is both c-bounded and congruent on W, where c =

|V (W)| · |V (D)| · |V (I)|.

Proof. Suppose SEEKx has a solution (P, Vterm). Then the existence of a solution (P′, V ′
term) which

is congruent on W is implied by Lemma 4.9. Moreover, we have CHECK
(
(W, Vgoal), (P, Vterm), D,

I, h,Φ
)

=⇒ CHECK
(
(W, Vgoal), (P

′, V ′
term), D, I, h,Φ

)
, following from two observations:
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(i.) if (P, Vterm) solves (W, Vgoal) then the means of construction ensures (P′, V ′
term) does as well,

and

(ii.) in checking Φ, the set of estimated world states WI,D
{v} does not change for each vertex v ∈

V (SDE(I)), since the triple graph is independent of the plan to be searched. The set of I-states

to be evaluated by Φ in SDE(I) is ∪s′∈h[LI(P)∩LI(W)]VSDE(I)(s
′). Since LI(P) = LI(P′), the set of

I-states to be evaluated is no altered and the truth of Φ along the plan is preserved.

The final step is to prove that if there exists a congruent solution (P′, V ′
term), then there exits a

solution (P′′, V ′′
term) that is c-bounded. First, build a product graph T of W, D, and h−1⟨SDE(I)⟩,

with vertex set V (W)×V (D)×V (h−1⟨SDE(I)⟩). Then trace every execution s in P′ on T. If s visits

the same vertex (vW, vD, vh
−1⟨SDE(I)⟩) multiple times, then vW, vD, and vh

−1⟨SDE(I)⟩ have to be action

vertices, for otherwise P′ can loop forever and is not a solution (since P′ is finite on W). Next, record

the action taken at the last visit of (vW, vP, vh−1⟨SDE(I)⟩) as alast. Finally, build a new plan (P′′, V ′
term)

by bypassing unnecessary transitions on P′ as follows. For each vertex (vW, vP, vh
−1⟨SDE(I)⟩) that is

visited multiple times, P′′ takes action alast when (vW, vP, vh
−1⟨SDE(I)⟩) is first visited. P′′ terminates

at the goal states without violating any stipulations, since it takes a shortcut in the executions of P′

but—crucially—without visiting any new observer I-states. In addition, P′′ will visit each vertex in

T at most once, and the maximum length of its executions is |V (W)|× |V (D)|× |V (h−1⟨SDE(I)⟩)|.

Since P′′ preserves the structure of P′ during this construction, P′′ is also congruent.

The intuition, and the underlying reason for considering congruent plans, is that modifying the

plan will not affect the stipulations if the underlying languages are preserved. The bound on the

length then takes this further, modifying the language by truncating long executions in the triple

graph, thereby shortcutting visits to I-states that do not affect goal achievement.

Accordingly, it suffices to look for congruent plans in the (very specific) form of trees, since

any plan has a counterpart that is congruent and in the form of a tree (for additional detail, refer

to Lemma 4.9). Theorem 4.2 states that the depth of the tree is at most c = |V (W)| · |V (D)| ·

|V (h−1⟨SDE(I)⟩)|. Therefore, we can limit the search space to trees of a specific bounded depth.

To search for a c-bounded solution, first we mark the vertex (vW, vD, vh
−1⟨SDE(I)⟩) as: (i) a goal state
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if vW is a goal state in the world graph; (ii) as satisfying Φ when all the world states and plan

states appearing together with vh
−1⟨SDE(I)⟩ together satisfy Φ. Then we will conduct an AND–OR

search [68] on the triple graph to search for a tree with bounded depth, in which:

• each action vertex serves as an OR node, and an action should be chosen for each action

vertex in the tree such that it will eventually terminate at the goal states and all the vertices

satisfy Φ along the way;

• each observation vertex is treated as an AND node, and for each of its child vertices, there

exists an action choice that satisfies Φ and eventually terminate at the goal states.

4.4.2 Finding a label map given some predetermined D

To solve SEEKλ, the key idea is to treat the label map as a partitioning where the events sharing

the same image are grouped together while the ones with different images form parts of groups

that must different. The label map is then a collection of non-overlapping groups of events: a

partition of the set of events. Like the incremental procedure used to obtain a plan, as we search

an incremental form of label map must be kept. Specifically, a partition for a subset of actions and

observations seen so far, which we term a partial label map (also, below, a partial partition), is built

up incrementally. In order to visualize the search, we present an observer’s belief tree for SEEKλ,

which encodes the observer’s belief transitions under different label map choices. The objective is

to search for a subtree, which consists of non-conflicting partial label maps.

Firstly, we will use the product graph h⟨W⊗D⟩ as the finest observer. Then the estimated world

states and plan states are formalized with the following theorem:

Theorem 4.3. Given any s ∈ LI(W) ∩ LI(D), the set of I-states reached by h(s) in h⟨W⟩ is B =

Vh⟨W⊗D⟩(h(s)). Then Wh⟨W⊗D⟩,D
B = πW(Vh⟨W⊗D⟩(h(s))) and Dh⟨W⊗D⟩,W

B = πD(Vh⟨W⊗D⟩(h(s))), where

πW(V ) takes the first elements from tuples in V and gives a a set of world states, and πD(V ) takes

the second elements from tuples in V and gives a a set of plan states.

Proof. According to the definition,Wh⟨W⊗D⟩,D
B = {w ∈ V (h⟨W⊗ D⟩)|h−1[Sh⟨W⊗D⟩

B ] ∩ LI(D) ∩ SWw ̸=

∅} = πW(∪s∈h−1[Sh⟨W⊗D⟩
B ]∩LI(W)∩LI(D)

Vh⟨W⊗D⟩(h(s))). Since ∀s1, s2 ∈ h−1[Sh⟨W⊗D⟩
B ] ∩ LI(W) ∩ LI(D),
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we have either VW(s1) = VW(s2) or h(s1) = h(s2). If VW(s1) = VW(s2), then need to consider

the set of executions whose image are equal and defined as s′. Since s′ ∈ Sh⟨W⊗D⟩
B , s′ reaches and

reaches only vertices in B. Therefore,Wh⟨W⟩,D
B is the set of all world states included in B. Hence,

Wh⟨W⟩,D
B = πW(Vh⟨W⊗D⟩(h(s))). Similarly, Dh⟨W⟩,W

B = πD(Vh⟨W⊗D⟩(h(s)))

Theorem 4.3 provides a shortcut to find the estimated world states and plan states of any set of

observer I-states B ⊆ V (h⟨W⊗ D⟩), by projecting to its first πW(B) and second components πD(B).

The observer I-states B satisfies the stipulation Φ, iff the stipulation Φ is satisfied on both πW(B)

and πD(B).

Note that not all I-states B will be visited by robot’s plan P. We only want to make sure that

the I-states that are reached by strings in P ⊗ W satisfy the stipulations. To find those I-states, we

will construct a product graph of W ⊗ D and P. The vertex in W ⊗ D is marked as reachable by the

plan P if it is paired with some vertex in P in the product graph. Then for any I-states B ⊆ W⊗ D,

B is reachable if there exists a vertex v ∈ B is reachable by P. This can be done in a preprocessing

step, without the label map.

A brief aside is necessary to describe requisite data structures. First, we represent the label

map h as a partition over all events according to the equivalence relation induced under h. Given

any label map h, its equivalence relation is defined as follows: h(ℓ1) = h(ℓ2)⇔ ℓ1 ∼
h
ℓ2. Using∼

h
,

we may partition K of the events. (We will use both ∼
K

and ∼
h

to denote their equivalence relation,

the former being more representationally explicit in bearing a collection of sets.) Next, we claim

that the partition is equivalent to the label map function in terms of the estimation of world states

and plan states for any given I-states. In the formula to estimate the world and plan states (see

Definition 4.14 and 4.15), the key to using the label map is to find the strings that share the same

image, which is exactly what is distinguished up to partitioning. Hence, searching for a partition

of the events is identical to searching for a label map function. For a partition of only some events

in p-graph W⊗ D, we term these partial partitions. The partial partitions describe partition choices

for the events that are mentioned, but place no constraints for the events that have not appeared.

We say that a partial partition K1 conflicts with K2 if ℓ1 ∼
K1

ℓ2 and ℓ1 ̸∼
K2

ℓ2.
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Now, in searching for a label map, we expand the graph W⊗D to include choices of label maps.

This yields a richer structure that we call an observer’s belief tree. In the observer’s belief tree

shown in Fig. 4.10, each vertex is interpreted as a subset of world states. This tree, being a sort

of generalized or enhanced AND–OR tree, captures the observer’s belief under different choices

of label map. It may be constructed incrementally as follows. Starting from B0 = V0(W ⊗ D), we

expand an OR node, where each outgoing edge leads to a partition for all outgoing events at vertices

in B0 and a single partition should be chosen. During the expansion, we will avoid expanding the

partition which conflicts with its ancestor choices, since doing so must produce an invalid label map

choice. Given a non-conflicting partition Pi = {G1, G2 . . . }, we will treat it as an AND node and

each outgoing edge bearing a set of events Gj ∈ Pi in the partition. Following the edge with events

Gj , the states in B0 transition to B′ = {v′ ∈ V (W ⊗ D)|v ∈ B0, ℓ′ ∈ Gj, TRANSTO(v
ℓ′−→ v′)W⊗D}.

For each belief vertex in the tree, if the set of vertices in B′ have been visited before, then we do

not expand it since the label map choice has already been made for this belief, which makes this

structure a tree. In addition, if the belief state B′ is reached by plan P and violates the stipulations,

then we will mark it as violating the stipulation. Otherwise, we will mark it as satisfying the

stipulation.

Now, a label map choice will give a subtree of the observer’s belief tree, where:

• there is only a single outgoing edge for each OR node;

• all outgoing edges at a chosen AND node must be included;

• all belief vertices in the subtree must satisfy the stipulation (if reached, then the belief vertex

satisfies stipulation Φ).

There is only a single outgoing edge for each OR node, since we choose a single partial partition

for its outgoing events. To be ready to receive all possible observations, all outgoing edges should

be included in the subtree for a chosen AND node. Stipulations should hold at the belief vertex that

can be generated by some execution from the plan.
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Figure 4.10: The observer’s belief tree for SEEKλ. For a set of action vertices comprising a vertex
B0 a tier of OR nodes and another tier of AND nodes are generated. The first encodes each partition
choice Pi of values {G1, G2, . . . }, (i.e., partial label maps). A given partition is expanded as an AND

node with each outgoing edge bearing a group of events sharing the same image under the partial
label map. Observation vertex B1 are expanded in the same way.

For example, a valid subtree for Fig. 4.11 can be found by choosing 1⃝ 2⃝ 5⃝, as long as these

chosen partial partitions do not conflict with each other.

Obtaining a label map involves choices across of multiple partial partitions in the AND–OR

tree. These partial partitions should not conflict with each other, otherwise, they do not form

a valid partition. There are two possible conflicts: conflicts between a partial partition and its

ancestor choices (e.g., P0 conflicts with P1 in Fig. 4.11); conflicts between partitions in different

subtrees (e.g., P1 conflicts with P2). The first conflict can be solved by passing the choices we
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Figure 4.11: A valid subtree is found from the observer’s belief tree by choosing the set of non-
conflict partial partitions 1⃝ 2⃝ 5⃝.

have committed to downwards and only choosing non-conflicting options below. The second type

of conflict prevents us from dividing the problem into strictly independent sub-problems on the

basis to the AND–OR tree structure. Thus, we need to be able to check conflicts across choices in

different subtrees and retain sufficient state to backtrack on those choices when needed.

4.4.3 Search for a label map and a plan, with the same plan to be disclosed

It is not merely the joint search that makes this, the third problem, more interesting. It actually

sidesteps a subtle issue not yet discussed. Consider a particularly cunning observer observing a

robot but who also knows that the robot does not wish to violate some stipulation—this observer

may take advantage of this awareness. The observer could reason that any execution in the dis-

closed plan that could violate the stipulations will never be executed by the robot. Hence, the

observer might eliminate this execution from consideration, thereby pruning elements from the

disclosed set. By repeating this process, the observer can refine its prior knowledge about robot’s

plan and thereby tighten its estimate. The third problem aims to deal with this, by searching for

the solution containing a plan and assuming exactly same plan is disclosed to the observer. This

is the most specific prior knowledge any observer can have, making the sort of bootstrapping just
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described futile. This matter, and the chicken-and-egg nature of the fact that plan being sought is

actually used in evaluating the stipulations, makes this third problem substantially more difficult.

At a high level, it is not hard to see why: the definitions in the previous two sections show

that both P and D play a role in determining whether a plan satisfies a stipulation. Where D is

known and fixed beforehand (for example, in Case IV, D = W, or Case III, D = P∗), a solution can

proceed by building a correspondence in the triple graph W⊗ D⊗ h−1⟨SDE(I)⟩ and searching in

this graph for a plan. In SEEKx,λ, however, one is interested in the case where D = P, where the

divulged plan is tight, being the robot’s plan exactly. We cannot search in the same product graph,

because we can’t make the correspondence since D has yet to be discovered, being determined

only after P has been found. Crucially, the feasibility of P depends on D, that is, on itself! Finding

such a solution requires an approach capable of building incremental correspondences from partial

plans. A key result of this paper is that SEEKx,λ is actually solvable without resorting to mere

generate-and-CHECK.

Lemma 4.10. LetW be estimated world states for the finest observer h⟨W⟩, and let w be the world

state which is observable to the robot. If there exists a solution for SEEKx,λ, then there exists a

solution that only visits each pair (w,W ) at most once.

Proof. Let (P, Vterm) and h be a solution for SEEKx,λ. Suppose P visited (w,W ) n times. Let the

set of actions taken at i-th visit be Ai. Then we can construct a new plan (P′, Vterm) which always

takes An at (w,W ). If P does not violate the stipulations, then P′ will never do since P′ is a shortcut

of P and never visits more I-states than P does. In addition, P′ will also terminate at the goal region

if P does.

Theorem 4.4. If there exists a solution for SEEKx,λ

(
(W, Vgoal),x, (If ,x),λ,Φ

)
, then there exists

a plan P that takes (w,Wh⟨W⟩,P
B ) as its plan state, where w is the world state and the set Wh⟨W⟩,P

B

consists of the estimated world states for I-states B. Furthermore, if (w,Wh⟨W⟩,P
B ) ∈ V (P), then

∀w′ ∈ Wh⟨W⟩,P
B , (w′,Wh⟨W⟩,P

B ) ∈ V (P).
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w0
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w1

w3
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w6
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{o1}

{o2}

{a2}

{a1}

{a4}

{a3}

Figure 4.12: An example to show that actions should be obfuscated in SEEKx,λ.

Proof. Lemma 4.10 shows that we can treat (w,Wh⟨W⟩,P
B ) as the plan state for the plan to be

searched for.

Since w′ ∈ Wh⟨W⟩,P
B , we have ∃s ∈ SWw′ ∩LI(P)∩ h−1[Sh⟨W⟩

B ]. Since s ∈ LI(P), s reaches w and

h(s) reaches B, we have s reaches the tuple (w′,Wh⟨W⟩,P
B ). Hence, (w′,Wh⟨W⟩,P

B ) ∈ V (P).

In searching for (P, Vterm), for any action state vp = (w,Wh⟨W⟩,P
B ), we determine:

w ∈ Vgoal : We must decide whether vp ∈ Vterm holds or not;

w ̸∈ Vgoal : We must choose the set of nonempty actions to be taken at vp. It has to be a set

of actions, since these chosen actions are not only aiming for the goal but also obfuscating

each other under the label map. We will show this with an example: in the world graph

shown in Fig. 4.12, we may simply pick either a1 or a2 at w1 in the planning problem. But

to solve problem SEEKx,λwith stipulation Φ = (¬w3 ∨w4)∧ (w3 ∨¬w4), we have to

choose ‘both’ action a1 and a2 when reaching w1 by mapping them to the same image in the

label map. Thence, the observer will never be able to distinguish the transitions to w3 from

w4. Therefore it is necessary to choose a set of actions at a particular world state in SEEKx,λ,

when the plan is also disclosed.

A state vp = (w,Wh⟨W⟩,P
B ) is a terminating state in the plan whenWh⟨W⟩,P

B ⊆ Vgoal.

With action choices for each plan state (w,Wh⟨W⟩,P
B ) and label map h, we are able to maintain

transitions of the estimated world states for B′ after observing the image x. Now, if (w,Wh⟨W⟩,P
B ) is
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an action state, let the set of actions taken at w be Aw. Then the label map h partitions the actions

in ∪
w∈Wh⟨W⟩,P

B
Aw into groups, each of which shares the same image. The estimated worlds states

for B′ transition in terms of groups

Wh⟨W⟩,P
B′ =

{
w′ ∈ V (W)

∣∣∣(w,Wh⟨W⟩,P
B ) ̸∈ Vterm, w ∈ Wh⟨W⟩,P

B ,

∃a ∈ Aw, h(a) = x, TRANSTO(w
a−→ w′)W

}
.

Conversely, if (w,Wh⟨W⟩,P
B ) is an observation state, let the observations available at w be Ow.

Then h also partitions the observations in ∪
(w,Wh⟨W⟩,P

B )̸∈Vterm
Ow and estimated world states for B′

transition as

Wh⟨W⟩,P
B′ =

{
w′ ∈ V (W)

∣∣∣(w,Wh⟨W⟩,P
B ) ̸∈ Vterm, w ∈ Wh⟨W⟩,P

B ,

∃o′ ∈ Ow, h(o
′) = x, TRANSTO(w

o−→ w′)W
}
.

Similarly to SEEKλ, we employ an observer’s belief tree. A generalized example shown in

Fig. 4.13, where there is an additional OR layer used to choose a set of actions for each action

world state in the belief. A solution consisting of a plan and a label map, gives a subtree, where:

• a subset of actions is chosen for each action world state, and all observations available at the

observation world state should appear in the subtree;

• a single partition is selected for all chosen actions or observations;

• all edges at each AND node are included;

• all belief vertices must satisfy the stipulations;

• each belief vertex in the subtree is visited at most once;

• all belief vertices can eventually lead to goal states.

This problem inherits all the properties of the subtree from SEEKλ. In addition, it allows us to

choose a subset of actions and map them to the same symbol, so as to satisfy the stipulation.
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According to Theorem 4.10, we are only interested in the plans that visit each vertex in the subtree

at most once and can eventually reach the goal.

4.5 Algorithms, implementations and experimental results

Previously, the CHECK problem boiled down to vertex checks on a constructed triple p-graph;

the preceding section showed that the SEEK problems can be treated as subtree searches on the

triple p-graph or observer’s belief tree. Given recent advances in practical formal methods, instead

of implementing these algorithms from scratch, we wish to utilize carefully optimized, off-the-

shelf model checking tools to check information stipulations and to solve these planning problem

for us. To do so, we encode the system dynamics as a Kripke structure, the information stipulation

and goal attainment into a property specified by Computation Tree Logic (CTL), and then use

nuXmv to verify this CTL property for us. The solution for SEEKx may be constructed from

the counterexamples of the negated CTL property. However, the requirement of non-conflicting

partitions (to give a valid label map) is unfortunately too complicated to be encoded into a CTL

property. Hence, we had to construct our own modifications of AND–OR search to solve both

SEEKλ and SEEKx,λ. Experimental results will also be presented in this section.

4.5.1 A computation tree logic based implementation toward CHECK and SEEKx

In this section, we will present solutions for CHECK and SEEKx through the use of CTL. The

triple p-graph will be encoded as a Kripke structure, and the stipulations and goal conditions will

be specified as properties, described by CTL, that should be satisfied in the computation tree of

the Kripke structure. With both Kripke structure and CTL specifications, the software nuXmv [69]

is able to evaluate whether these properties are satisfied or not, and give a counterexample in the

latter case. We will use this mechanism to solve CHECK problem and SEEK plan.

For CHECK, we will firstly transform W ⊗ P ⊗ SDE(I)−1 into a Kripke structure, where each

vertex (vW, vP, vSDE(I)−1

) is marked as stipulation satisfied if vSDE(I)−1

satisfies the stipulations. Sim-

ilarly in the problem of SEEK plan, we will also encode W⊗ D⊗ SDE(I)−1 into a Kripke structure,

where each vertex (vW, vP, vSDE(I)−1

) is marked as a goal state if all world states associated with
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Figure 4.13: The observer’s belief tree for SEEKx,λ.
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vP are in the goal region, and stipulation satisfied if vSDE(I)−1

satisfies the stipulations. Then the

computation tree of these Kripke structure is shown in the lower half of Fig. 4.14. It has two

phases: the initialization phase and execution phase. In the initialization phase, every variable,

including action, observation, label map, is initialized from its domain. Given a plan and label

map, these variables will be initialized a value by the plan and label map. Otherwise, the variable

will be assigned a value from its domain. In the execution phase, the system assigns a value for

observation, then assigns a value for action at the next time step, according to the Kripke structure.

At each time step, only one variable is updated and, as there are several choices for assignments of

variables, this gives branches in the computation tree.

Computation tree model

AX: for all child nodesEX: exist a child node

…

ActionObservation Observation …Label mapState initialization

…

AG: for all descendants AF: always possible in the future 

Action Observation

Initialization phase Execution phase

EX EX AX EX … Goal

Guarantee: finite, safe, correct, live
Solution: A[state is valid U goal_reached] 

Info constraints: A[Constraints satisfied U 
plan_termined) Constraints Satisfied

Figure 4.14: The computation tree and model specifications for both CHECK and SEEK problems.

CTL introduces two kinds of temporal operators, in addition to the logical operators. The first

group is quantifiers over paths:

87



• A p requires that p should be true on all paths starting from the current state.

• E p requires that p should be true on at least one path from the current state where p also

holds.

The second group is the path-specific quantifiers. Only the ones that will be used in this paper are

listed:

• X p requires that p should be true at the next state in the path.

• p U q requires that p has to be true util q holds. Note that q is also required to hold some time

in the future.

To CHECK whether the goal is reached, we will use “A [state is valid U goal is reached]", which

guarantees: (i.) the plan is safe and correct since all states reached by the plan are valid states;

(ii.) the plan is finite and live since the goal will eventually be reached in finite number of steps.

Similarly, to specify that the stipulations are satisfied all the way toward goal states, we use CTL

“A [stip_satisfied U (goal is reached ∧ stip_satisfied)]".

To SEEK the plan that reaches the goal and satisfies the stipulations, we will use the combina-

tion of (AX EX). AX p requires that p holds at all the children states, which is same as the search

in AND nodes. EX p requires that p holds at one of the children states, which shares the same

spirit as the search for OR nodes. With k combinations of AX EX, we can search for the plan with

depth k in terms of the action nodes. Hence, the we can use CTL “EX stip_satisfied
(
∧ (goal ∨ AX

stip_satisfied ∧ (goal ∨ EX stip_satisfied)))k (Goal ∧ stip_satisfied)
)
" to search for the plan with

maximum depth k. We will increase k from 0 to |V (W)|× |V (D)|×V (I), which is the upper bound

given in Theorem 4.2.

Once it has been determined that a plan exists, we can extract a plan by using the counterexam-

ples from the negated CTL. The counterexample of the negated CTL only serves as one execution

of a plan, which only gives us the action choices for a part of the plan. But we are still able to

get the other actions choices in two ways: (i.) By changing the Kripke structure, we can force the
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system to transition to the other executions and get additional counterexamples. Combing all these

counterexamples, we can build the plan. (ii.) By changing the CTL and initial state of the Kripke

structure, we can find an action for each action state appeared in the plan. Eventually, we are able

to build the whole plan. In this paper, we use the second method and the procedure is shown in

Algorithm 4.

Algorithm 4: BUILDPLAN(W, CTL, initState)
1: NCLT←“!("+CTL+“)"
2: (result, counterexample)← nuXmv.evaluate(W, NCLT, initState)
3: if result is False then
4: (s, event, t)← counterexample.next()
5: initialize plan as empty
6: if event is an action and s ̸∈ Vgoal then
7: CTL.removeFirstEX()
8: subplan←BuildPlan(W, CTL, t)
9: plan.addTransition(s, event ,subplan.initstate)

10: else if event is an observation and s̸∈ Vgoal then
11: CTL.removeFirstAX()
12: for obs ∈ W.outEvents(s) do
13: tgt← W.transTo(s, obs)
14: subplan← BuildPlan(W, CTL, tgt)
15: plan.addTrans(s, obs, subplan.initState)
16: end for
17: else
18: plan.addTermVertex(s)
19: end if
20: plan.initState←initState
21: return plan
22: else
23: return empty
24: end if

4.5.2 Modified AND–OR search for SEEKλ and SEEKx,λ

In both SEEKλ and SEEKx,λ, we need to search for a subtree from the observer’s belief tree.

In terms of the subtree search, SEEKλ can be treated as a special case of SEEKx,λ. In SEEKx,λ, we

first decide to include a set of actions in the plan, and then a partition is chosen for these specific

actions. While in SEEKλ, the first step is skipped and we choose a partition for all available
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actions. Here, avoiding needless repetition, we give a unified subroutine to expand the action and

observation vertices for both SEEKλ and SEEKx,λ.

To search for a subtree, we need to perform a modified AND–OR search on the observer’s belief

tree, which respects the AND–OR structure in the tree and should check whether there is any conflict

for the selected partial partitions. Here, we write subroutines to expand action (Algorithm 5) and

observation (Algorithm 6) vertices respectively. In Algorithm 5, we will firstly find all actions to

be partitioned in SEEKλ and SEEKx,λ. For SEEKλ, we will consider finding label maps for all

actions available at states inW (line 1–2). However, for problem SEEKx,λ, we will firstly check

whether we already reach the goal region. If all states in the belief are in the goal region, then we

find the plan and return the result (line 4–5). Otherwise, we will choose a set of actions for each

of the world states represented by this action vertex (line 9–14), and consider partitions for these

chosen actions (line 15). For all possible actions in SEEKλ and the chosen actions in SEEKx,λ, we

will pick a partition which does not conflict with its ancestors (line 16–19). Next, we will integrate

this choice with its ancestors and pass down to its subtree (line 20), and wait for the committed

partial partitions from the subtree (line 21–24). If there is no valid partial partition (stipulations

are satisfied on the reached vertices) from its children, then we will try another choice (line 25–

30). If there are valid choices from its children, we will integrate and return the partial partitions

to its parent node (line 31–32). If there is no choice that could have valid partial partitions for

its children, then we will return empty, which will cause a backtrack (line 33). The subroutine

to expand an observation vertex (Algorithm 6) shares most of the procedure with Algorithm 5,

without searching for the actions.

If there exists a solution for SEEKx,λ, then there exists a subtree where the chosen partitions

do not conflict with each other and the belief vertices eventually terminate at the goal states under

the action choices. The proposed algorithm will be able to find it.

Let the number of actions and observations in W be |Y | and |U |, and the number of vertices be

|V |. There are 2|U ||V | action choices to consider, in the worst case, for all the world states inW .

The total number of partitions is a Bell number B|U |, where Bn+1 =
∑n

k=0 C
k
nBk and B0 = 1. For

90



Algorithm 5: ActionExpand(W , P, h,Φ)
1: if the problem is SEEKλ then
2: AllPartitions← All partitions for all available actions at states inW
3: else if the problem is SEEKx,λ then
4: ifW ⊆ Vgoal then
5: return (P, h)
6: end if
7: AllActChoices← {}
8: for w ∈ W do
9: AllActChoices← AllActChoices× w.avblActs // Encode action choices for states

inW cartesian product
10: end for
11: for actChoice ∈ AllActChoices do
12: AllChosenActs← {}
13: for w ∈ W do
14: Aw ← actChoice[w] // Obtain the set of action choices for each state
15: AllChosenActs← AllChosenActs ∪Aw

16: end for
17: P [W ]← actChoice // Put action choices in the plan
18: AllPartitions← All partitions of AllChosenActs
19: end for
20: end if
21: for partition ∈ AllPartitions do
22: (P′, h′) as a copy of (P, h)
23: NoSoln← False
24: if h′ does not conflict with partition then
25: h′ ← h.integrate(partition)
26: for group ∈ partition do
27: W ′ ← verticesW transitions to under group
28: ifW ′ satisfies stipulation Φ ∧ P.contains(W ′)=False then
29: (P′, h′)← ObservationExpand(W ′, P′, h′,Φ)
30: if (P′, h′) is empty then
31: NoSoln← True
32: break
33: end if
34: else
35: NoSoln← True
36: break
37: end if
38: end for
39: if NoSoln is False then
40: return (P′, h′)
41: end if
42: end if
43: end for
44: return empty
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Algorithm 6: ObservationExpand(W , P, h,Φ)
1: if the problem is SEEKx,λ andW ⊆ Vgoal then
2: return (P, h)
3: end if
4: AllObs← {}
5: for w ∈ W do
6: Ow ← w.avblObs
7: AllObs← AllObs ∪Ow

8: end for
9: P [W ]← AllObs

10: AllPartitions← All partitions of AllObs
11: for partition ∈ AllPartitions do
12: (P′, h′) as a copy of (P, h)
13: NoSoln← False
14: if h′ does not conflict with partition then
15: h′ ← h.integrate(partition)
16: for group ∈ partition do
17: W ′ ← verticesW transitions to under group
18: ifW ′ satisfies stipulation Φ ∧ P.contains(W ′)=False then
19: (P′, h′)←ActionExpand(W ′, P′, h′,Φ)
20: if (P′, h′) is empty then
21: NoSoln← True
22: break
23: end if
24: else
25: NoSoln← True
26: break
27: end if
28: end for
29: if NoSoln is False then
30: return (P′, h′)
31: end if
32: end if
33: end for
34: return empty
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each partition, the number of groups we must consider is |U |. To expand an action vertex in the

search tree, the computation complexity is 2|U ||V ||U |B|U |. Similarly, the complexity to expand an

observation vertex is |Y |B|Y |. If the depth of the tree is d, then the computational complexity is

O(2d|U ||V |).

The search algorithm for SEEKλ will be treated as a special case of Algorithm 5 and 6. It does

not need to check goal conditions when expanding the vertices, or enumerate all actions for the

vertices since the actions are given. In addition, the vertices will be marked as stipulation satisfied

if (i). it is not reached by the plan P or, (ii). it satisfies stipulation Φ if reached by P. The algorithm

for SEEKλ can be constructed by removing the highlighted part of Algorithm 5 and 6.

4.5.3 Experimental results

We implemented all the algorithms in this paper, the mainly using Python. All executions in

this section used a OSX laptop with a 2.4 GHz Intel Core i5 processor.

To experiment we constructed a 3× 4 grid for the nuclear inspection scenario of Fig. 4.1.

Including the differing facility types and radioactivity status, the world graph is a p-graph with

96 vertices before state-determined expansion (154 vertices for the state-determined form). The

robot can move left, right, up, down one block at a time. After the robot’s movement, it receives 5

possible observations: pebble bed facility or not (only when located at the blue star), radioactivity

high or low at one of the ‘?’ cells, and cell is an exit. But the observer only knows the image of

the actions and observations under a label map. The stipulation requires that the observer should

learn the radioactivity strength, but should never know the facility type.

Firstly, we CHECK whether the plan and label map pair given in Fig. 4.15a solve the problem.

The plan reaches the goal but the observer cannot distinguish the radioactivity status when the

full world is divulged (i.e., D = W). Also, it violates the stipulations because the facility type is

leaked when the exact plan is disclosed (i.e., D = P). Evaluation takes less than 1 second in both

tree-based and CTL methods.

For this setting with the same label map and disclosed plan D = W, no satisfying solution exists,

and hence SEEKx returns False.
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✓

(a)

✓

(b) (c)

Figure 4.15: The scenario and results for CHECK and SEEK problem: (a) shows the plan and
label map to be checked in the nuclear inspection scenario, when the observer knows nothing
about robot’s plan or the exact plan. (b) gives the plan found by SEEKx with the given label map.
The same plan will also be used as an input for SEEKλ. (For (a) & (b) plans can be understood
as follows: the robot traces the gray arrow, then the blue one if blue light is seen, the red one
otherwise.) (c) shows the pentagonal world in SEEKx,λ, where the robot moves along the gray
lines.

Now altering the label map so that h(⇑) = h(⇓) and h(⇐) = h(⇒), a plan can be found (with

the world graph disclosed, D = W). It takes 11 seconds for the AND–OR search and 24 seconds

for the CTL-based implementation to find their solutions. The CTL solver takes longer, but it

prioritizes finding the plan of shortest length first. The plan found by CTL is shown in Fig. 4.15b.

As the plan found by AND–OR search is lengthy, we omit it.

If we disclose the same plan to the observer (i.e., D = P), then the label map in Fig. 4.15b tells

the observer the robot’s exact trajectory (blue or red trajectory). When the observer knows that

the robot moves along the blue trajectory, the facility type has to be a pebble bed reactor; the red

trajectory indicates a breed reactor. This clearly violates the stipulations. We ran the algorithm for

SEEKλ to search for an appropriate label map for the plan shown in Fig. 4.15b when D = P. It

turns out that the stipulations can be satisfied by additionally making all four actions ambiguous,

i.e., h(⇑) = h(⇓) = h(⇐) = h(⇒).

Since, for the nuclear inspection scenario, SEEKx,λ doesn’t return any result within reasonable

time we opted to examine a smaller problem. Here a robot moves in the pentagonal world shown

in Fig. 4.15c. The robot can either decide to loop in the world (a1) or exit the loop at some point

(a2 or a3). We wish to find a plan and label map pair so that the robot can reach some charging

station. The observer should not be able to distinguish the robot’s position when at either of the
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top two charging locations. SEEKx,λ gives a plan which moves forward 6 times and then exits at

the next time step. Additionally, to disguise the actions and observations after the exit, it maps

h(a2) = h(a3) and h(o1) = h(o3). Note that in this problem, the robot reaches a goal, without

considering the stipulations, by taking the exit at the next time step. The stipulations force the

robot to navigate at least one loop in the world to conflate state for the sake of the observer.

4.6 A playback observer

In the above sections, we examined what information could be learned from observation of

plan execution by a filtering adversary, namely, one who uses its current estimate and the latest

observation to construct a new estimate for the current time. Starting from this section, we consider

a different kind of adversary—a playback observer, one who may construct estimates for any past

time by playing back all its received observations. We will present algorithms to check a plan or

search for a plan, in the presence of a playback observer.

With the planning problem, the disclosed plan and the disclosed symbols through the label

map, a playback observer will (1) infer all potential interactions that could happen in the world

according to its prior knowledge, (2) play back these interactions to identify all consistent state

trajectories in the world and, (3) obtain the estimated world states at each time step. Formally, we

have:

Definition 4.19 (playback observer’s estimate). Given planning problem (W, Vgoal), robot’s dis-

closed plan D, and information disclosure policy h, when the observer receives a string x =

x1x2 . . . xk,

1) the set of potential strings inferred by the observer is Sx = h−1(x) ∩ LI(W) ∩ LI(D),

2) the set of trajectories consistent with those potential strings is Tx = ∪s′∈Sx TRAJWs′ .

3) the set of estimated world statesWm
x at time step m is extracted from these state trajectories,

i.e.,Wm
x = ∪τ∈Txτ [m], where τ [m] is the mth world state on trajectory τ .

Now, we have the following satisfaction problem for the playback observer:
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Problem: CHECKPLAYBACK
(
(W, Vgoal), (P, Vterm), h, D,Φ

)
Input: A planning problem (W, Vgoal), a plan (P, Vterm), an information disclosure h, a dis-

closed plan D, and a stipulation Φ.

Output: True if (P, Vterm) solves the planning problem (W, Vgoal) and, ∀s ∈ LI(W) ∩ LI(P), Φ is

always evaluated as True onWm
h−1◦h(s) for all integer 0 ≤ m ≤ k; False otherwise.

4.7 An algorithm to check a plan with hindsight

To solve CHECKPLAYBACK, the key is to trace all trajectories that are consistent for the images

of the strings in the plan. Unhappily there can be many strings such strings. Instead of computing

the beliefs for each string from scratch, we propose an graph-based algorithm to produce the set

of all beliefs for any string and its extensions. The stipulations are violated once it is violated on

some string in the plan.

4.7.1 A p-graph representing observer’s prior knowledge

First, we construct a p-graph to integrate observer’s prior knowledge about the planning prob-

lem and the disclosed plan, and then compute the estimated trajectories in this new graph.

To combine the observer’s prior knowledge about the world and robot’s plan, we construct a

product graph J = W ⊗ D as the tensor product graph of world W and disclosed plan D with initial

states V0(W) × V0(D). The language of this joint graph is the set of executions that could happen

in the world and could potentially be taken by the robot’s plan, i.e., LI(J) = LI(W) ∩ LI(D). In

addition, if we trace any string s ∈ LI(J) in J, take the first part (world state) of each joint state

in the trajectory TRAJJs, and denote this new sequence as TRAJJ,Ws , then we will obtain exactly the

same trajectory as tracing s in the world, i.e., TRAJJ,Ws = TRAJWs.

Now, instead of computing the trajectories in the world graph, we can compute it in the joint

graph J, essentially pretending that it is new ‘world’. The observer’s belief is a set of states in the

joint graph.
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4.7.2 A graph-based algorithm for CHECKPLAYBACK

To solve CHECKPLAYBACK, we need to check both the solutions for the planning problem and

the stipulations on the disclosed information. A tensor product graph is constructed to examine

whether the plan always terminates at a goal state. To examine the disclosed information, we give

an algorithm that incrementally constructs all beliefs which are learned by the playback observer.

In estimation with hindsight, the observer is able to playback the observations, refining previous

beliefs by eliminating the states from which subsequent events crash. Instead of playing back each

string in the plan, we conduct a breadth-first search (BFS) on the belief graph to efficiently simulate

the observer’s estimation process as shown in Algorithm 7.

Firstly, we construct a product graph W ⊗ P to check whether every termination state in P is

paired with some goal state in W in the product graph (line 1–4). If not, then the plan does not solve

the planning problem. Otherwise, it does.

The observer is only able to see the strings in h⟨J⟩, which is obtained by replacing the labels

on the edges in J with their images after label map h. In h⟨J⟩, one string may reach two states non-

deterministically. We construct a deterministic form J′ for h⟨J⟩, following Algorithm 2 in [12]

(line 5–6). During this state-determined transformation, states in h⟨J⟩ are merged into a single

state v′ in J′ if they are non-deterministically reached by some string. We say that these states are

the corresponding states for v′. Each state in J′ is a belief state, and its corresponding states are

included in the belief. Not all belief states in J′ will be active and perceived by the observer, since

the plan may not produce those beliefs. We construct a product graph J′⊗h⟨P⟩ to mark each belief

state in J′ as active, if it is paired with some plan state in the product graph (line 7–8). Stipulations

will be evaluated on these active belief states once they are generated. The plan fails to satisfy the

stipulations, if the stipulations are violated on any active belief.

The active belief states in J′ only contribute to part of the beliefs generated by the observer.

They will be refined when the observer can play back its observations. Some states in the beliefs

of past times will be eliminated when there is no string as an extension of these states to the states

in the frontier. We say that these states are not alive. A BFS search on J′ is conducted to simulate
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this playback estimation (line 9–33). Starting from each active belief state Vk in the frontier of

the search, we mark each corresponding state in belief Vk as alive. Then we propagate liveness

backward to find the states in the past beliefs that are not alive. For each transition Vk−1
x−→ Vk,

we mark each state in the belief Vk−1 as alive if the state transitions to some state in Vk under

x in h⟨J⟩. Otherwise, we mark that it is not alive. We refine belief Vk−1 by removing all states

that are not alive, and construct a new belief V ′
k−1 (line 23–25). When none of the states in belief

Vk are eliminated, i.e., V ′
k−1 = Vk−1, then we may stop propagating the liveness, since no new

beliefs will be generated. If V ′
k−1 is finer than Vk−1, then one must keep propagating the liveness

in V ′
k−1 backward (line 28–30). Stipulations must be evaluated on the refined belief states when

they are generated (line 26–27). The evaluation can stop early when one of these beliefs violates

the stipulations.

4.8 An incremental algorithm to search for a plan

We are interested in seeking plans that never disclose information to playback observers that

violate given stipulations:

Problem: SEARCHPLAYBACK
(
(W, Vgoal), D, h, ?,Φ

)
Input: A planning problem (W, Vgoal), a disclosed plan D, an information disclosure h, a stipu-

lation Φ.

Output: A plan (P, Vterm), such that CHECKPLAYBACK
(
(W, Vgoal), D, h, P,Φ

)
= True.

As mentioned in the satisfaction problem, J′ captures the observer’s beliefs. We are interested

in searching for a plan which reaches the goal in W and always generates beliefs in J′ that satisfy the

stipulations. To do this, we construct a product graph of h−1⟨J′⟩ and W, denoted as T = h−1⟨J′⟩⊗W.

The joint state in T consists of two parts: states in h−1⟨J′⟩ to examine stipulations and states in W

to examine the goal condition. Next, we conduct a AND-OR search on T to find a subgraph such

that (i) each action state has a single outgoing edge bearing one action, (ii) each observation state

has outgoing edges bearing all observations in the world, (iii) all beliefs generated from J′ in the

subgraph must satisfy stipulations, and (iv) the states eventually terminating in the subgraph must

give world states all of which are in the goal region. When constructing the AND-OR search, we are
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able to incrementally search for an action for each action state in the subgraph, and obtain a partial

plan. By calling the CHECKPLAYBACK procedure, we are able to examine whether stipulations

are satisfied on all generated beliefs of the partial plan. If the partial plan fails to satisfy the

stipulations, then one must backtrack the action choice just made and choose a different action.

This process is repeated until a solution is found.

4.9 Summary

In this chapter, we study planning with stipulations on the information divulged from the

robot’s plan to an observer. We formalize the observer as a filter or a smoother, which allows

it to reason about what is happening in the world and what the robot knows about some fact. To

make such inferences, the observer uses its prior knowledge about robots plan and observations

about robots plan execution. The observer we formulate is rich enough to capture its different

prior knowledge and capabilities to compute and store estimation results. We also introduce an

information disclosure policy to determine how the information is disclosed to the observer.

With a filtering observer, the appropriate solution concept for privacy-preserving planning con-

sists of a pair: a plan and an information disclosure policy. We proposed algorithms to search for

such solutions jointly, so that the information learned by the observer is constrained, with any given

prior knowledge and the most complete tracking capability (i.e., the finest internal structure). We

are able to search for a solution, even the observer somehow knows the plan yet to be sought. We

also develop algorithms to check a plan and search for a plan as a solution for a playback observer,

which runs a smoother to examine the strings with the power of hindsight and to estimate the

robot–world interaction.
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Algorithm 7: CheckPlayback((W, Vgoal), (P, Vterm), h, D,Φ)

1: K = W⊗ P

2: for (w, r) ∈ K.vertices do
3: if r ∈ Vterm and w ̸∈ Vgoal then
4: return False
5: end if
6: end for
7: J← W⊗ D

8: J′ ← SDE(h⟨J⟩)
9: Q← J′ ⊗ h⟨P⟩

10: active_v = πJ′(Q.vertices)
11: q ← [J′.initV ertex]
12: visited = []
13: while q is not empty do
14: m← q.pop()
15: add m to visited
16: if m ̸∈ active_v then
17: continue
18: end if
19: if m.correspState violates stipulation Φ then
20: return False
21: end if
22: p← []
23: for (n, x) ∈ J′.incoming(m) do
24: add (n, x,m) to p
25: end for
26: p← [(n, x,m)]
27: while p is not empty do
28: (v′, x, v)← p.pop()
29: bv ← v.correspStates
30: bv′ ← refine(J, v′.correspStates, x, bv)
31: if bv′ violates stipulation Φ then
32: return False
33: end if
34: if bv! = bv′ and v′ ̸∈ J.initStates then
35: for (u, x) ∈ J′.incoming(v′) do
36: add (u, x, v′) to p
37: end for
38: end if
39: end while
40: for w ∈ m.children() do
41: if w ̸∈ visited then
42: add w to q
43: end if
44: end for
45: end while
46: return True 100



5. SENSOR DESIGN IN PRIVACY-PRESERVING PLANNING PROBLEMS∗

This chapter focuses on sensor design in privacy-preserving planning problems. It introduce

a mathematical description for sensors based on a set cover structure, and proposes an al-

gorithm to enumerate all abstract sensors that provide sufficient information for a robot to

reach its goal, as well as constraining the robot’s belief. It contributes data structures that

enable whole sets of sensors to be summarized via a single special representative. It also

gives a means by which other aspects (either task domain knowledge, sensor technology or

fabrication constraints) can be incorporated to reduce the sets to be enumerated.

To illustrate multiple aspects of the sensor design problem, we introduce the following simple

scenario as shown in Fig. 5.1: A robot, uncertain about its initial position and incapable of navi-

gating stairs, needs to reach a charging station. We give four exemplar sensors that, under different

plans, ensure goal attainment:

(i) a camera to distinguish red and gray helps to eliminate uncertainty in the initial pose when

following the top plan;

(ii) a robot with a distance sensor can disambiguate initial position 2 from {1, 3}, since it observes

that it is near the wall after two forward moves only when it starts at 2, while observing medium

or far from the wall for {1, 3};

(iii) with a lidar sensor the robot can distinguish 3 from {1, 2} since, after three forward moves

from 3, it senses a different polygon from those of 2 and 3.

(iv) the vacuous sensor also suffices, albeit only under the assumption of benign collisions, and

with many steps.

The sensors do not all quash the uncertainty completely, but they eliminate enough to reach the

goal under different plans. For example, the robot with a distance sensor never resolves whether

it came from 1 or 3 in executing the corresponding plan. The robot with a lidar sensor does not

∗Reprinted with permission from “Abstractions for computing all robotic sensors that suffice to solve a planning
problem" by Yulin Zhang and Dylan Shell, 2020. 2020 IEEE International Conference on Robotics and Automation.
8469-8475. Copyright 2020 by IEEE.
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Figure 5.1: A wheeled robot (as a blue disk) needs a charging station (the lightning bolts), but is
slightly lost (the uncertainty in its initial pose is shown visually, as three possibilities). Unable
to navigate stairs, it must avoid those locations lest it topple down a stairwell. The robot is able
to recharge its battery despite the presence of uncertainty, with the help of either a camera, a
simple linear distance sensor, or a short-range scanning lidar. (If bumping into walls is permitted,
a sensorless plan is possible as well.)

distinguish 1 from 2. But, in both cases, the robot reaches a charger. There are also important dif-

ferences in the sensors’ fidelity. The camera divides all the locations into three equivalent classes:

a red location, a gray one, and the white ones. In contrast, the distance sensor’s specification tells

us that middle range distance readings are noisy, failing to separate medium and far distances from

the wall crisply (when the robot observes ‘med’, then it is either at a medium or a far range from

the wall; when obtaining ‘near’, it is close to the wall).

Sensors can be modeled as the information they provide for the plan. While previous works [58,

70] regard sensors as partitions over all events to be perceived, this paper is more general, consid-
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ering sensors as covers. Doing so requires some care, including new representations and means to

lessen the combinatorial explosion that a naïve treatment entails.

5.1 Model

We study a setting depicted in Fig. 5.2. The robot is equipped with a sensor, through which it

receives observations from the world. Actions are chosen to alter states according to the robot’s

plan to, ultimately, reach some goal states in the world. The sensor may have limited fidelity and

fail to distinguish different observations from the world. The uncertainty in sensing is modeled via

a type of function, termed a sensor map. These elements are formalized in terms of p-graphs and

sensor maps that we outline below.

Figure 5.2: An overview of the setting: the robot is modeled abstractly as realizing a plan to
achieve some goal in the world. The sensor is modeled as a sensor map. Both the world and the
plan have concrete representations as p-graphs.

5.1.1 Sensor maps

As we see in Definition 4.8, the world and the robot are modeled are two p-graphs that are cou-

pled, resulting in a planning problem. Sensors influence this coupling relationship by influencing

the distinguishability of observations made by the robot. Conflations and corruptions of events are

treated next.

Definition 5.1 (observation/sensor maps [59]). A sensor map on p-graph G is a function h : Y →

P(X)\{∅}mapping from an observation in Y to a non-empty set of observations X , where P(X)

is the powerset of X .
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If h maps y1 to {x1, x2, x3, x4} then, when event y1 happens in the world, the robot may re-

ceive any of those four values as a sensor reading; further, we assume the choice happens non-

deterministically.

Given any subset of sensor readings X ′ ⊆ X as input to (that is, observed or perceived by) the

robot, the associated observations within the world W are related via the preimages of X ′ under h,

denoted by h−1(X ′) := {ℓ ∈ Y (W) | h(ℓ) ∩X ′ ̸= ∅}. Below, the notation for a sensor map h and

its preimage h−1 is extended in the usual manner to p-graphs by applying the function to labels on

each observation edge, i.e., in the obvious way.

Definition 5.2 (solves under sensor map). A plan (P, Vterm) solves a planning problem (W, Vgoal)

under sensor map h if (h−1⟨P⟩, Vterm) solves (W, Vgoal).

5.1.2 Sensor design in a planning problem

Now we can define the central problem of the paper:

Problem: Joint-Plan-Sensor-Design (JPSD)

Input: A planning problem (W, Vgoal)

Output: All the sensor maps H, such that there exists a plan (P, Vterm) to solve the planning

problem (W, Vgoal) under each sensor map h ∈ H.

5.2 Computational abstractions for sensor maps

Sensor maps map observations to their images, while the planning problem is defined in the

preimage space. To solve this problem, we will begin by considering an alternate form in the

preimage space for the sensor maps.

5.2.1 Equivalent representation for sensor maps

Any sensor map has an equivalent cover representation.

Theorem 5.1. For planning problem (W, Vgoal), any sensor map h is equivalent to a cover up to

plan solvability.
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Proof. ⇒: Given any sensor map h, to see whether a plan is a solution (cf. Def. 5.2), we must

determine the preimage h−1(x) = {ℓ ∈ Y (W) | h(ℓ) = x} for single readings x. Collect all the

data associated with h, on the X , via

M = {h−1(x1), h
−1(x2), . . . , h

−1(xn)},

where X = {x1, x2, . . . , xn}. This is a multiset. But now observe that where for any xi and xj we

have h−1(xi) = h−1(xj), we can construct a new sensor map by replacing xi and xj with a new

symbol x′. This new sensor map is also a solution if and only if h is a solution for JPSD. Under

this new sensor map, no two readings in the sensor map share the same preimage, and h−1 can be

thus represented as set

C = {h−1(x1), h
−1(x2), . . . , h

−1(xn)},

where ∪xi∈Xh
−1(xi) = Y (W). The set above is called a cover for set Y (W). Henceforth, we call

the cover for sensor map h an observation cover, denoting it Ch. (It is a subset of the powerset of

Y (W), i.e., Ch ⊆ P(Y (W)) \ {∅}.)

⇐: Having just showed that there exists a cover interpretation for any sensor map h, we now

construct a sensor map for any observation cover. Suppose cover {S1, S2, . . . , Sk} ⊆ P(Y (W)) for

set Y (W) is given. Taking the first k natural numbers for X , consider a label map h defined so that

y
h7→
{
i ∈ {1, 2, . . . , k} | y ∈ Si

}
.

Together, the cover Ch is an equivalent representation for any sensor map h, up to plan solv-

ability.

5.2.2 Operations on observation covers

Next, we give two operations on covers (projection and intersection) that are useful for sensor

maps.

The sensor map is a cover for all observations in the planning problem. Only some small

number of observations may be applicable while at particular world states. We are interested
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in how the observations in such a reduced set conflate with each other. This is realized via an

operation that reduces the domain:

Definition 5.3 (cover projection). For cover C = {G1, G2, . . . , Gn}, denote its domain by d(C) =

∪1≤i≤nGi. Then the projection of C on any domain D is πC(D) = {Gi ∩D|Gi ∈ C}.

We call sensor map πC(D) with reduced domain d(C) ∩D a partial sensor map. The word

‘partial’ is apt as the sensor map need not cover every observation in the planning problem.

On the other hand, we are also interested in finding all sensor maps with certain behavior on

their restrictions. Specifically, we desire to find all label maps which, when given two partial label

maps, agree with those label maps on their projections. This comes from an intersection between

two partial sensor maps.

Definition 5.4 (cover intersection). For any two partial sensor maps, expressed as cover C1 and

C2, with the union of their domains D = d(C1) ∪ d(C2), then let D be all covers∗ whose domain

is D. Then the intersection of C1 and C2, denoted C1 ⊓ C2, is defined so that ∀C ′ ∈ D, we have

C ′ ∈ C1 ⊓ C2, if and only if

(a) d(C ′) = d(C1) ∪ d(C2), and

(b) πC′(d(C1)) ⊆ C1 and πC′(d(C2)) ⊆ C2.

Note that ⊓ is associative and that C1 ⊓∅ = ∅ for any cover C1. When no cover that satisfies

(a) and (b) above, then C1 ⊓ C2 = ∅. We say that C1 is compatible with C2 if C1 ⊓ C2 ̸= ∅. We

will also lift this notation to the intersection of lists of covers. In writing L1 ⊓ L2 for two lists of

covers L1 and L2, we mean L1 ⊓ L2 = ∪C1∈L1,C2∈L2C1 ⊓ C2.

5.3 Jointly searching for sensor designs & plans

First, we construct a robot’s belief tree and then give approaches to search for all sensor designs

and plans in it.

∗Throughout, variables in blackboard bold represent a list of covers.
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5.3.1 The belief tree under different sensor maps and actions

The robot’s plan must manage uncertainties owing to initial ignorance, action non-determinism,

and sensor imperfection. The robot’s belief expresses this uncertainty, which we represent as a set

of states. Without this, the robot may violate plan safety by trying to execute some action that is

not possible in its actual state. The dynamics of the belief will be captured by a finite tree structure,

where each vertex lists a set of world states, the robots’ belief. Plans need only visit each belief

vertex at most once.

Theorem 5.2. Let W be the set of estimated world states for the robot’s belief. For any sensor

design h ∈ H, where H is a set of sensor maps for JPSD, if there exists a plan that solves the

planning problem under h, then there exists another plan, also a solution, that visits W at most

once under h.

Proof sketch. This theorem can be proved by constructing a new plan, which always takes the

action chosen at the last visit at W under the same sensor map. Then the new plan is a shortcut

of the original one. Inherited from the original plan, the new one will always terminate at the goal

region.

Let A(w) be the set of outgoing events for vertex w ∈ V (W). Then the belief tree, a sketch of

which appears in Fig. 5.3, can be constructed as follows:

▷ Initialization: An initial vertex W0 of the same vertex type is created for the set of initial

world states V0(W).

▷ Expanding action vertexW: Collect the common actions as U(W) = ∩w∈WA(w), i.e., the

set of actions each of which is available at every state inW . Now, for any action a ∈ U(W),

consider the transition W {a}−−→ W ′. If the set of world states W ′ has not appeared earlier

in the path from W0 to W , add new belief vertex W ′ connected via an edge bearing {a}.

Otherwise, add transition from W to a vertex Wdummy to avoid expanding the same belief

vertex multiple times.
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▷ Expanding observation vertexW: Let all possible observations at the states inW be Y (W),

i.e., Y (W) = ∪w∈WA(w). As before, construct a transition fromW toW ′ ifW ′ is new, or

toWdummy otherwise. But now do this, not just the singletons, but for every G ⊆ Y (W).

▷ Goals in the tree: MarkW a goal state, ifW ⊆ Vgoal.

The belief tree is finite. Any sensor map and goal-achieving plan are a subtree that satisfies the

following:

(i) Goals are achieved: the leaf vertices in the subtree are all in the goal region;

(ii) Readiness to receive all observations: the outgoing labels at a particular observation vertex

in the subtree cover all outgoing events in the original belief tree;

(iii) Discernment is consistent: the subset of observations in the tree is universal, i.e., if {o1, o2}

appears on any edge of the subtree, then it will appear at every belief vertex whose outgoing

events contains both o1 and o2.

5.3.2 Searching for sensor designs and plans jointly

Next, we search this structure for sensor designs and plans jointly, returning all appropriate

sensor maps. While the tree is constructed from the root down, this search bubbles from the leaves

back upwards.

For each belief vertex W , we will maintain a list of covers, denoted by L(W), to record all

the appropriate observation covers in the subtree. When W is in the goal region, there are no

constraints on sensor maps from its subtree. Hence, we create a new symbol ϵ ̸∈ Y , and initialize

its cover list to L(W) = J{ϵ}K. This will make it compatible with any cover when integrating

with the goal-achieving sensor covers in a bottom-up manner. For any non-goal belief vertexWp

(‘p’ stands for parent), we will construct its cover list from its children. Let the outgoing events

be {G1, G2, . . . , Gm} and the corresponding child vertices be {Wc
1,Wc

2, . . . ,Wc
m} (‘c’ for child).

Then we have:
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Figure 5.3: The robot’s belief tree. Action and observation vertices, visualized as boxes and circles
respectively, have different expansions.

• IfWp is an action vertex, then each cover in any of its children’s lists L(Wc
i ) is a valid one for

Wp (under a particular action choice), i.e., L(Wp) = ∪1≤i≤mL(Wc
i ).

• IfWp is an observation vertex, we must consider the combinations from {G1, G2, . . . , Gm} that

nevertheless cover Y (Wp). Let K denote one such combination, then K = {Gk1 , Gk2 , . . . , Gkℓ},

where kj ∈ {1, 2, . . . ,m} and ∪1≤j≤ℓGkj = Y (Wp). Each edge labeled with Gkj gives a child

vertexWc
kj

, where that child has a cover list L(Wc
kj
) modeling the sensors that can reach the goal

fromWc
kj

. For a given combination K, representing a set of sensor readings, we want to find all

sensor maps, denoted as LK , that can generate K when projected to d(K), and is goal-achieving

for the subtrees starting from each child vertexWc
kj

. This is realized via intersection operations:

LK = ∪C1∈L(Wc
k1

),...,Cn∈L(Wc
kn

)K ⊓ C1 ⊓ . . . Cm−1 ⊓ Cm.
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The ⊓ operation guarantees the universality of the subsets in the resulting cover. Let C be the set

of all such combinations, such that their labels cover Y (Wp). Each combination K ∈ C gives a

list of covers for the parent vertex. So we update L(Wp) to value ∪K∈CLK .

By propagating the list of covers from the goal vertices back upward until the initial belief

vertex, we are able to obtain all the covers from L(W0) where there exists some plan for each

cover in L(W0) toward the goal.

5.3.3 Compact representation with upper covers

In the data structure above, we need to maintain a list of covers L(W) for each belief vertex

W . The list can grow very large. Luckily, we only need to maintain the largest covers among the

ones with the same domain. Every subset of such covers is also a valid solution, so long as it is a

proper cover.

Theorem 5.3. If C is an observation cover in the solution of JPSD, then for any C ′ ⊆ C, such

that d(C ′) = d(C), there exists a plan achieving the goal.

This theorem can be proved by showing that the subtree without edges bearing subsets of events

in C ′ \ C, still has all leaf vertices as goals and sensor map as a valid cover.

Definition 5.5 (upper cover). Let C be a list of observation covers, C is an upper cover in C if

there does not exist any cover C ′ ∈ C, such that C ′ ⊋ C and d(C ′) = d(C).

According to Theorem 5.3, we only need to maintain a set of upper covers in each L(W).

5.3.4 Empirical explorations of sensor maps

We implemented the algorithms in Python to search for all sensor map solutions for the problem

displayed in Fig. 5.4, a modified version of the (Fig. 5.1) motivating example: a robot, initially

located at 1 or 2, moves to the charging station. The robot can only move forward one or two steps,

turn left or right at the location 5 or the corner 6. The robot must avoid bumping into the walls

of the four offices A–D and also the stairs. It must, thus, obtain information from its sensors to
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Figure 5.4: A robot moves toward the charging station, while avoiding stairs. The figure below
shows the p-graph of this planning problem.

reduce its uncertainty. To realize this scenario, we construct a world p-graph with 22 states and 11

observations.

The algorithm outputs an upper cover with 767 entries. By enumerating all subsets of the

upper cover that covers all the observations (Theorem 5.3), an enormous number of sensor maps

are produced. Among these, several are directly recognizable sensors. For example, they include a

sensor map distinguishing every pair of positions, describing a GPS device. The sensor partitioning

the situations into those before and after bumping into walls, could be realized as a contact sensor.

Naturally, some of the sensor maps are inscrutable and there are others for which no known

hardware implementation could be discerned. For instance, the sensor isolating cell 5 when facing

west from cell 7 when facing north (e.g., a distance sensor won’t work). This motivates the next

section.

5.4 Structure and fabrication constraints for realizable sensors

The covers found via the preceding approach might be thought of as a sort of ‘free object’,

on which we may now impose additional constraints. Specifically we’re interested in including

constraints that help model aspects pertinent to realizable sensors.

5.4.1 Sensor map properties

We will start with the following properties:

Property 5.1 (Partition). Cover C = {G1, G2, . . . , Gn} is a partition, if Gi ∩ Gj = ∅ for any
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i, j ∈ {1, . . . , n}, i ̸= j.

The label map for the camera in Fig. 5.1 is a partition, as it divides the space into red, gray and

white locations.

The next concept of interest is a notion of contiguousness, but we need a more basic structure

first.

Definition 5.6 (Neighbor). Relation N ⊆ Y × Y , written y1Ny2, is a neighbor relation if it is

reflexive and commutative.

Property 5.2 (Contiguous). With neighbor relation N , then C is the largest contiguous cover if

(1) ∀y ∈ Y , {y} ∈ C; (2) ∀G1, G2 ∈ C, G1∪G2 ∈ C ⇐⇒ ∃y1 ∈ G1,∃y2 ∈ G2, such that y1Ny2.

A given cover C is contiguous, if C ⊆ C.

The distance sensor in Fig. 5.1 has a contiguous sensor map for the obvious neighbor notion,

since its noise distribution is contiguous.

Property 5.3 (output). Cover C is k-outputting, if |C| = k.

The cardinality of the sensor keeps track of total number of output readings, a sort of notion of

dynamic range.

Property 5.4 (overlap). A cover C = {G1, G2, . . . , Gn} is k-overlapping, if ∀i, j ∈ {1, . . . , n}

and i ̸= j, |Gi ∩Gj| ≤ k.

This is a generalization of the partition property, quantifying how much readings bleed into

one another.

Property 5.5 (width). Cover C = {G1, G2, . . . , Gn} is k-wide (or, has width k), if ∀1 ≤ i ≤ n,

|Gi| = k.

The width of a cover gives a notion of precision, a sense of the volume of noise, describing the

number of events that could account for a single sensor reading.

The properties above may also be combined in specifying constraints on sensor maps.
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All of the properties can be used either in (1) reducing the sets generated, or in (2) filtering to

discard those which violate the constraints, as operators are applied. For instance, in the first case,

if searching for partitions only, then partitions exclusively need be computed—a process easier to

write and faster to execute than the full cover case.

5.4.2 Empirical search for sensors under fabrication constraints

We included the properties described above in our implementation and examined in the follow-

ing scenario. A robot moves along a cyclic track toward some goal, marked by a star. The robot

can move forward or backward at different speeds at different parts of the track, which discretizes

the track into 6 segments {s1, s2, . . . , s6} as shown in Fig. 5.5. The angular range of segment

si is denoted as {oi} for i ∈ {1, . . . , 4}, and {oi, o} for i ∈ {5, 6}. The overlap o is the com-

mon angular range for both s5 and s6, arising from the kink. Now, the set of all observations is

Y = {o, o1, o2, . . . , o6}, where each observation represents a range of angles.† The neighbor re-

lationship of these observations inherits from the circular neighbor relationship of their angles as

shown in the figure. Considering only forward or backward actions, the robot, initially located at

s1 or s3, must move to reach the goal s5. To achieve this, the robot has to reduce its uncertainty,

and it does this via a VHF omnidirectional range (VOR) sensor. As shown on the right-hand side

of Fig. 5.5, the sensor measures the angular information via a timer. The specification of the timer

determines the properties of the sensor map. Suppose we have a timer with no noise, then it gives

1-overlapping contiguous sensor maps, such as [{o2, o3, o4, o5}, {o5, o}, {o, o6, o1}]. There are only

2183 such sensor maps. But with a noisy timer, it generates contiguous sensor maps, which leads

to 235 807 observation covers.

Consideration of the scenario above leads to the following:

Proposition 5.1. A noiseless sensor taking measurements on a continuous or non-continuous space

always gives a 1-overlapping sensor map under discretization.

Proof. When there is no noise for the sensor, the sensor map partitions the original continuous
†Previously we pointed out that Y was finite; this is still true, though the elements it contains are themselves

infinite sets.
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Figure 5.5: A robot with a sensor equipped to determine angles moves from its initial position
toward the goal along a cyclic track. The sensor is realized by a VOR-like beacon at the center, a
photo-electric sensor and a timer on the robot. The beacon has a unidirectional blue light rotating
at a fast constant angular velocity, which is so fast that can be neglected with respect to robot’s
movement. It also emits an omnidirectional red light when the blue light points North. The robot
can determine angular information by timing the difference between seeing red-red and red-blue
flashes.

or non-continuous measurement space. The task may only need a coarser discretization of the

measurement space. If every boundary of the sensor map is a discretization boundary, then the

sensor map is still a partition on the discretized space. If it is not, then there exists a sensor map

boundary that falls into one of the discretized observations. That observation is shared by the

preimage of only the readings separated by the corresponding sensor map boundary. Hence, the

maximum overlap between subsets in the observation cover is 1.

5.5 Generalization to belief stipulations

Some prior work has examined instances wherein a robot should be stopped from knowing

too much due to privacy considerations [1]. In these cases, one may pose constraints on robot’s

belief; in our previous chapter this was achieved via logical expressions. To search for sensor

maps and plans that also satisfy these richer stipulations, the algorithm above needs the following

modifications:

• The belief tree should only contain belief vertices satisfying the stipulations, and the dummy

vertex. We transition to the dummy if the target belief violates the stipulations.
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• We must expand the action vertex in the belief tree over all subsets of actions in the plan instead

of just the singleton ones, since none of the singleton actions may transition to the subtree that

satisfies the stipulations in each belief vertex.

5.6 Summary

This chapter views robot sensors as generalized information disclosure policies to conflate

the information between the world and the robot, and it abstracts sensors as covers, which are

generalizations of prior models. It explores the space of all feasible abstract sensors by jointly

searching for plans and sensors in the planning problem. A notion of upper cover is proposed to

compress the representation and speed the search process. Properties are introduced to express

domain-knowledge regarding fabrication constraints for sensors.
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6. COMBINATORIAL FILTER MINIMIZATION∗

In the previous chapters, the world, the plan, and the observer’s estimator are represented

as graphs. An important aspect of robot design in these problems is to minimize the storage

resource used by these structures. This chapter focuses on the problem of minimizing the

number of states in estimators, which is termed combinatorial filter minimization. It gener-

alizes the existing notion of combinatorial filter minimization, by defining and examining the

vertex-multi-outputting filters and nondeterministic filters. It shows that multiple concepts

previously believed to be true about combinatorial filter minimization (and actually conjec-

tured, claimed, or assumed to be) are in fact false, and contributes the first known complete

algorithm to solve the deterministic filter minimization problems. In addition, it gives com-

plexity results for a family of combinatorial filter minimization problems, and identifies and

discusses the degrees of freedom that separate filter minimization from automata minimiza-

tion.

6.1 Combinatorial filter minimization

Combinatorial filters or filters are discrete structures used for estimation and inference tasks. In

this section, we first give an intuitive example to illustrate combinatorial filters and their minimiza-

tion problem, then formalize the problem, and correct some prior ideas for filter minimization.

6.1.1 Motivating example

Here is a motivating example: Consider the safari park with vehicle rental service shown in

Figure 6.1a. The cars for hire are each equipped with a compass and an intelligent gear shifting

system. The compass measures the heading of the vehicle before and after its movement, e.g., ‘nw’

means that the vehicle was heading north and then turned to face west. The intelligent gear shifting

system takes the readings from the compass as input, and automatically shifts gears to abide with

∗Part of this chapter is reprinted with permission from “Cover Combinatorial Filters and Their Minimization
Problem" by Yulin Zhang and Dylan Shell, 2020. Algorithmic Foundations of Robotics XIV. 17:90–106. Copyright
2020 by Springer Nature.
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the speed limit. There are three types of speed limits on roads: (a) between 15 and 30 (gray), (b)

slower than 15 (brown and green). Every vehicle is capable of moving with a low gear to drive

with a maximum speed 15, and with a high gear to drive between speed 15 and 30.

A naïve gear shifting system satisfying the speed limits is realized by a filter shown in Fig-

ure 6.1b: each vertex represents a system state, each edge represents the state transition, with the

label on the edges representing the readings from the compass. A vertex is colored gray if the

system outputs high gear, or colored green if it outputs low gear. Filer minimization is to find a

minimal filter, like the one shown in Figure 6.1c, that realizes appropriate behavior but with fewest

states.

A natural way to proceed is by first constructing a discrete state-transition system (such as

in Figure 6.1b) using the problem description as a basis. Then, the next step is to apply some

algorithm capable of compressing it. One commonly used approach for filter reduction is to merge

the states in the input filter. But are merging operations sufficient to find a minimizer for any input

filter? We will answer this question in this section.

6.1.2 Definition of combinatorial filter minimization

We firstly introduce the notion of p-filter:

Definition 6.1 (procrustean filter [59]). A procrustean filter, p-filter or filter for short, is a tuple

(V, V0, Y, τ, C, c) with:

1) a finite set of states V , a non-empty initial set of states V0 ⊆ V , and a set of possible observa-

tions Y ,

2) a transition function τ : V × V → 2Y ,

3) a set C, which we call the output space, and

4) an output function c : V → 2C \ {∅}.

The states, initial states and observations for p-filter F will be denoted V (F), V0(F) and Y (F).

Without loss of generality, we will also treat a p-filter as a graph with states as its vertices and

transitions as directed edges.
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Figure 6.1: (a) A safari park with vehicles for hire. The vehicles are equipped with an intelligent
gear shifting system automatically shifts gears to satisfy the speed limit according to its compass
readings. (b) A naïve filter to implement the intelligent gear shifting system. (c) A minimal filter
for the intelligent gear shifting system.

A sequence of observations can be traced on the p-filter:

Definition 6.2 (reached). Given any p-filter F = (V, V0, Y, τ, C, c), a sequence of observations

s = y1 . . . yn ∈ Y ∗, and states w0, wn ∈ V , we say that wn is a state reached by some sequence s

from w0 in F (or s reaches wn from w0), if there exists a sequence of states w0, . . . , wn in F, such

that ∀i ∈ {1, . . . , n}, yi ∈ τ(wi−1, wi). We denote the set of all states reached by s from state w0

in F as VF(w0, s). For simplicity, we use VF(s), without the subscript, to denote the set of all states
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reached when starting from any state in V0, i.e., VF(s) = ∪v0∈V0VF(v0, s). Note that VF(s) = ∅

holds only when sequence s crashes in F starting from V0.

For convenience, we will denote the set of sequences reaching state v ∈ V from some initial

state by SFv .

Definition 6.3 (extensions, executions and interaction language). An extension of a state v on

a p-filter F is a finite sequence of observations s that does not crash when traced from v, i.e.,

VF(v, s) ̸= ∅. An extension of any initial state v0 ∈ V0(F) is also called an execution or a string

on F. The set of all extensions of a state v on F is called the extensions of v, written as Le
F(v).

The extensions of all initial vertices on F is also called the interaction language (or, briefly, just

language) of F, and is written LI(F) = ∪v0∈V0(F)Le
F(v0).

Note in particular that the empty string ϵ belongs to the extensions of any state on the filter, and

belongs to the language of the filter as well.

Definition 6.4 (vertex single-outputting). A filter F = (V, V0, Y, τ, C, c) is vertex single-outputting

if |C| = 1. Otherwise, it is vertex multi-outputting.

When minimizing some filter, we are interested in reduced filters that simulate the given filter

in terms of outputs on its strings:

Definition 6.5 (output simulating). Let F and F′ be two filters, then F′ output simulates F if the

following properties hold: (i) language inclusion: LI(F) ⊆ LI(F′); (ii) output consistency: ∀s ∈

LI(F), C(F′, s) ⊆ C(F, s).

Intuitively, this requires that F′ be capable of processing all the inputs which F can, and produce

outputs that F could. The input set is no smaller; the set of outputs no larger.

We want to search for a minimal filter that output simulates the original filter:

Problem: Vertex Single-outputting Filter Minimization (VSO-FDM)

Input: A deterministic vertex single-outputting filter F.

Output: A deterministic filter F† with fewest states, such that F† output simulates F.
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We use ‘VSO’ for vertex single output p-filters, ‘D’ for deterministic input and output, ‘M’ for

minimization.

Theorem 6.1. VSO-FDM is NP-Complete (Theorem 2 in [2]).

6.1.3 Revisiting prior ideas for filter minimization

In this section, we revisit some prior ideas for filter minimization, and correct them with the

new ones shown in Figure 6.2.

The original question of minimizing state in filtering is first alluded to by LaValle [67] as an

open problem, who suggested that it is ‘similar to Nerode equivalence classes’. The problem of

filter reduction, i.e., VSO-FDM in our terms, was formalized and shown to differ in complexity

class from the automata problem in [2]. That paper also proposed a heuristic algorithm, which

served as a starting point for subsequent work. The heuristic algorithm uses conflict graphs to

designate which vertices cannot be merged (are conflicting). It starts with a conflict relation where

two vertices are in conflict when they have different outputs, then iteratively refines the conflict

relation. Refinement has two steps: (i) introducing edges: two vertices are determined to be con-

flicting or not via a graph coloring subroutine, and edges are added between conflicting vertices;

(ii) propagating conflicts upstream: filter states are marked as conflicted when they transition to

conflicted states under the same observation. An example input filter, shown in Figure 6.3a, is

reduced by following this procedure, which is depicted step-by-step in Figures 6.3b–6.3e.

A conjecture in [2] was that this algorithm is guaranteed to find a minimal filter if the graph

coloring subroutine gives a minimal coloring. (Put another way: the inexactness in arriving at a

minimal filter can be traced to the graph coloring giving a suboptimal result.) But this conjecture

was later proved to be false by Saberifar et al. [63]. They show an instance where there exist

multiple distinct optimal solutions to the graph coloring subproblem, only a strict subset of which

lead to the minimal filter. One might naturally ask, and indeed they do ask, the question of whether

some optimal coloring is sufficient to arrive at the optimal filter. Following along these lines (see

§7.3 in [63]), one might sharpen the original conjecture of [2] to give the following statement:
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deterministic p-filter OKane and Shell’s
heuristic algorithm

‘minimal deterministic’
p-filter

Step-wise conflict refinement
produces a minimal p-filter.
(Some optimal coloring is
sufficient, [63, §7.3])

Merging compatible states
induces a deterministic p-filter.
(Implicitly in [2, 63, 65])

Some equivalence relation
induces a minimal p-filter.
(Lemma 5 [63, 65])

idea 6.1
idea 6.2

idea 6.3

This is shown to be false.
(Lemma 6.1)

This is shown to be false.
(Lemma 6.2)

This is shown to be false.
(Lemma 6.3)

Single-step compatibility
relation
(Definition 6.6)

Zipper constraints to
enforce determinism.
(Lemma 6.8)

Some minimal clique cover
in the compatibility graph
induces a deterministic p-filter.
(Section 6.1.6)

inspires inspires inspires

deterministic p-filter Minimum clique cover
with zipper constraints

minimal deterministic
p-filter

Figure 6.2: This roadmap shows the provenance of those insights in terms of previous ideas in
VSO-FDM, which we examine carefully.

Idea 6.1. In the step-wise conflict refinement procedure of O’Kane and Shell’s heuristic algo-

rithm [2], some optimal coloring is sufficient to guarantee a minimal filter for VSO-FDM.

Lemma 6.1. Idea 6.1 is false.

Proof. This is simply shown with a counterexample. Consider the problem of minimizing the input

filter shown in Figure 6.3a, the heuristic algorithm will first initialize the colors of the vertices with

their output. Next, it identifies the vertices that disagree on the outputs of extensions with length

1 as shown in Figure 6.3b, and then refines the colors of the vertices as shown in Figure 6.3c

following a minimal graph coloring solution on the conflict graph. Then it further identifies the

conflicts on extensions with length 2, via the conflict graph shown in Figure 6.3d, and the vertex

colors are further refined as shown in Figure 6.3e. Now, no further conflicts can be found. A filter,
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with 6 states, is then obtained by merging the states with the same color. However, there exists a

minimal filter, with 5 states, shown in Figure 6.3f, that can be found by choosing coloring solution

for the conflict graph shown in Figure 6.3b. That coloring is suboptimal.

This appears to indicate a sort of local optimum arising via sub-problems associated with in-

cremental (or stepwise) reduction. Since optimal colorings for individual steps are seen to be
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(a) Example input p-filter.
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(f) The coloring that gives the minimal filter.

Figure 6.3: An example run of the heuristic minimization algorithm in [2] (a)–(e). This particu-
lar input also shows that optimal step-wise conflict refinement may fail to yield a minimal filter
(Lemma 6.1).
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insufficient to guarantee a minimal filter, to find a minimal filter, we would have to enumerate all

colorings (suboptimal or otherwise) at each iteration. That is, however, essentially a brute force

algorithm. A more informed approach is to compute implications of conflicts more globally, in a

way that doesn’t depend on earlier merger decisions. In our algorithm, rather than tracking ver-

tices which are in conflict, we introduce a new notion of compatibility between vertices that may be

merged. This notion differs from the one recursively defined in [65], as our compatibility relation

is computed in one fell swoop, before making any decisions to reduce the filter:

Definition 6.6 (compatibility). Let F be a deterministic p-filter. We say a pair of vertices v, w ∈

V (F) are compatible, denoted v ∼c w, if they agree on the outputs of all their extensions, i.e.,

∀s ∈ Le
F(v) ∩ Le

F(w),∀v′ ∈ VF(v, s),∀w′ ∈ VF(w, s), c(v′) = c(w′). A mutually compatible set

consists of vertices where all pairs are compatible.

Via this notion of compatibility, we get an undirected compatibility graph:

Definition 6.7 (compatibility graph). Given a deterministic filter F, its compatibility graph K(F) is

an unlabeled undirected graph constructed by creating a vertex associated with each state in F, and

building an edge between the pair of vertices associated with two compatible states.

This compatibility graph can be constructed in polynomial time. As every filter state and

associated compatibility graph state are one-to-one, to simplify notation we’ll use the same symbol

for both and context to resolve any ambiguity.

The second idea relates to the type of the output one obtains after merging states that are

compatible or not in conflict. Importantly, the filter minimization problem VSO-FDM requires one

to give a minimal filter which is deterministic.

Idea 6.2. By merging the states that are compatible, the heuristic algorithm always produces a

deterministic p-filter.

The definition of the reduction problems within [2, 63, 65] are specified so as to require that the

output obtained be deterministic. But this postcondition is never shown or formally established. In

fact, it does not always hold.
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Lemma 6.2. Idea 6.2 is false.

Proof. We show that the existing algorithm may produce a non-deterministic filter, which does

not output simulate the input filter, and is thus not a valid solution. Consider the filter shown in

Figure 6.4a as an input. The vertices with the same color are compatible with each other, with the

following exception for w5, w6 and w7. Vertex w5 is compatible with w6, vertex w6 is compatible

with w7, but w5 is not compatible with w7. The minimal filter found by the existing algorithm is

shown in Figure 6.4b. The string aac suffices to shows the non-determinism, reaching both orange

and cyan vertices. It fails to output simulate the input because cyan should never be produced.

If determinism can’t be taken for granted, we might constrain the output to ensure the result

will be a deterministic filter. To do this, we introduce a zipper constraint when merging compatible

states:

Definition 6.8 (zipper constraint). In the compatibility graph G = K(F) of filter F, if there exists

a set of mutually compatible states U = {u1, u2, . . . , un}, then they can only be selected to be

merged if they always transition to a set of states that are also selected to be merged. For any sets

of mutually compatible states U,W ⊆ V (G) and some observation y, we create a zipper constraint

expressed as a pair (U,W )y if W = {w ∈ V (G) | y ∈ τ(u,w) for some u ∈ U}. We denote the set

of all zipper constraints on compatibility graph G = K(F) by Z (F).

The zipper constraints for the input filter shown in Figure 6.4a consist of ({w1, w2}, {w5, w6})a

and ({w3, w4}, {w6, w7})b. Constraint ({w1, w2}, {w5, w6})a is interpreted as: if w1 and w2 are

selected for merger, then w5 and w6 (reached under a) should also be merged. We call it a zipper

constraint owing to the resemblance to a zipper fastener: merger of two earlier states, merges (i.e.,

pulls together) later states. In the worst case, the number of zipper constraints can be exponential

in the size of the input filter.

A third idea is used by O’Kane and Shell’s heuristic algorithm and is also stated, rather more

explicitly, by Saberifar et al. (see Lemma 5 in [63] and Lemma 5 in [65]). It indicates that we

can obtain a minimal filter via merging operations on the compatible states, which yields a special
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(a) An input filter.
(b) The non-deterministic minimal filter found
by the existing algorithm.

Figure 6.4: A counterexample showing how compatible merges may introduce non-determinism
(Lemma 6.2). The input filter also illustrates a violation of the presumption that an equivalence
relation can yield a minimum filter (Lemma 6.3).

class of filter minimization problems. For this class, recent work has exploited integer linear

programming techniques to compute exact and feasible solutions efficiently [64].

Idea 6.3. Some equivalence relation induces a minimal filter in VSO-FDM.

Before examining this, we rigorously define the notion of an induced relation:

Definition 6.9 (induced relation). Given a filter F and another filter F′, if F′ output simulates F,

then F′ induces a relation R ⊆ V (F)× V (F), where (v, w) ∈ R if and only if there exists a vertex

v′ ∈ V (F′) such that SFv ∩ SF
′

v′ ̸= ∅ and SFw ∩ SF
′

v′ ̸= ∅. We also say that v and w corresponds to

state v′.

Lemma 6.3. Idea 6.3 is false.

Proof. It is enough to scrutinize the previous counterexample closely. The minimization problem

VSO-FDM for the input filter shown in Figure 6.4a, is shown in Figure 6.5a. It is obtained by (i)

splitting vertex w6 into an upper part reached by a and a lower part reached by b, (ii) merging the

upper part of w6 with w5, the lower part of w6 with w7, and other vertices with those of the same

color. This does not induce an equivalence relation, since w6 corresponds to two different vertices

in the minimal filter.

In light of this, for some filter minimization problems, there may be no quotient operation

that produces a minimal filter and an exact algorithm for minimizing filters requires that we look
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(a) A minimal filter for Figure 6.4a. (b) Cliques from the minimal filter.

Figure 6.5: A minimal filter for Figure 6.4a and its induced cliques.

beyond equivalence relations.

Some strings that reach a single state in an input filter may reach multiple states in a minimal

p-filter (e.g., ba and cb on Figure 6.4a and 6.5a). On the other hand, strings that reach different

states in the input p-filter may reach the same state in the minimal filter (e.g., a and b on those

same filters). We say that a state from the input filter corresponds to a state in the minimal filter if

there exists some string reaching both of them and, hence, this correspondence is many-to-many.

An important observation is this: for each state s in some hypothetical minimal filter, suppose we

collect all those states in the input filter that correspond with s. When we examine the associated

states in the compatibility graph for that collection, they must all form a clique. Were it not so,

the minimal filter could have more than one output associated for some strings owing to non-

determinism. But this causes it to fail to output simulate the input p-filter.

By building the correspondence between the input p-filter in Figure 6.4a and the minimal result

in Figure 6.5a, one obtains the set of cliques in the compatibility graph shown visually in Fig-

ure 6.5b. Like previous approaches that make state merges by analyzing the compatibility graph,

we interpret each clique as a set of states to be merged into one state in the minimal filter. The

clique containing w3 and w4 in Figure 6.5b gives rise to m34 in the minimal filter in Figure 6.5a

(and w1 and w2 yields m12, and so on). However, states may further be shared across multiple

cliques. We observe that w6 was merged with w5 in the minimal filter to give m56, and w6 also

merged with w7 to give m67. The former has an incoming edge labeled with an a, while the latter

has an incoming edge labeled b. The vertex w6, being shared by multiple cliques, is split into
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different copies and each copy merged separately.

After firming up and developing these intuitions, the next subsection introduces the concept of

a clique cover which enables representation of a search space that includes relations more general

than equivalence relations. Based on this new representation, we propose a graph problem use of

zipper constraints, and prove it to be equivalent to filter minimization.

6.1.4 A new minimum clique cover problem

To begin, we extend the preceding argument from the compatibility clique associated to single

state s, over to all the states in the minimal filter. This leads one to observe that the collection of

all cliques for each state in the minimal p-filter forms a clique cover:

Definition 6.10 (induced clique cover). Given a p-filter F and another p-filter F′, we say that a

vertex v in F corresponds to a vertex v′i in F′ if SFv ∩ SF
′

v′i
̸= ∅. Then, denoting the subset of vertices

of F corresponding to v′i in F′ with Kv′i
= {v ∈ V (F) | v corresponds to v′i}, we form the collection

of all such sets, Q(F, F′) = {Kv′1
, Kv′2

, . . . , Kv′n}, for i ∈ {1, . . . , n} where n = |V (F′)|. When F′

output simulates F, then the Kv′i
form cliques in the compatibility graph K(F). Further, when this

collection of sets Q(F, F′) covers all vertices in F, i.e., ∪Ki∈Q(F,F′) = V (F), we say that Q(F, F′) is

an induced clique cover.

It is worth repeating: the size of filter F′ (in terms of number of vertices) and the size of the

induced clique cover (number of sets) are equal.

Without loss of generality, here and henceforth we only consider the p-filter with all vertices

reachable from the initial state, since the ones that can never be reached will be deleted during

filter minimization anyway.

Each clique of the clique cover represents the states that can be potentially merged. But the

zipper constraint, to enforce determinism, requires that the set of vertices to be merged should

always transition under the same observation to the ones that can also be merged. Hence, the

zipper constraints (of Definition 6.8) can be evaluated across whole covers:
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Definition 6.11. A clique cover K = {K0, K1, . . . , Km} satisfies the set of zipper constraints

ZIP = {(U1,W1)y1 , (U2,W2)y2 , . . . }, when for every zipper constraint (Ui,Wi)yi , if there exist a

clique Ks ∈ K, such that Ui ⊆ Ks, then there exists another clique Kt ∈ K such that Wi ⊆ Kt.

Now, we have our new graph problem, MCCZC.

Problem: Minimum clique cover with zipper constraints (MCCZC)

Input: A compatibility graph G, a set of zipper constraints ZIP.

Output: A minimal cardinality clique cover of G satisfying ZIP.

6.1.5 From minimal clique covers to filters

Given a minimal cover that solves MCCZC, we construct a filter by merging the states in the

same clique and choosing edges between these cliques appropriately:

Definition 6.12 (induced filter from a clique cover). Given a clique cover K on the compatibility

graph of deterministic p-filter F, if K satisfies all the zipper constraints in Z (F), then it induces a

filter F′ = M(F,K) by treating cliques as vertices:

1. Create a new filter F′ = (V ′, V ′
0 , Y, τ

′, C, c′) with |K| vertices, where each vertex v′ is asso-

ciated with a clique Kv′ in K;

2. Add each vertex v′ in F′ to V ′
0 iff the associated clique contains an initial state in F;

3. The output of every v′ in F′, with associated clique Kv′ , is the set of common outputs for all

states in Kv′ , i.e., c′(v′) = ∩v∈Kv′
c(v).

4. For any pair of v′ and w′ in F′, inherit all transitions between states in the cliques of v′ and

w′, i.e., τ(v′, w′) = ∪v∈Kv′ ,w∈Kw′τ(v, w).

5. For each vertex v′ in F′ with multiple outgoing edges labeled y, keep only the single edge to

the vertex w′, such that all vertices Kv′ transition to under y are included in Kw′ . This edge

must exist since K satisfies all Z (F).
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The size of the cover (in terms of number of sets) and size of the induced filter (number of

vertices) are equal.

Notice that the earlier intuition is mirrored by this formal construction: states belonging to the

same clique are merged when constructing the induced filter; states in multiple cliques are split

when we make the edge choice in step 5. Next, we establish that the induced filter indeed supplies

the goods:

Lemma 6.4. Given any clique cover K on the compatibility graph K(F) of a deterministic p-filter

F, if K satisfies the zipper constraints Z (F) and covers all vertices of K(F), then the induced filter

F′ = M(F,K) is deterministic and output simulates F.

Proof. For any string s ∈ LI(F), let the vertex reached by string s in F be v. Then v must belong

at least one clique in K, where all vertices in this clique can be viewed as merged into a new vertex

in F′. Hence, s should reach at least one vertex in F′ and this vertex yield the same output C(F, s).

Since K satisfies the zipper constraints Z (F), the induced filter F′ must be deterministic since

there is no vertex that has any non-deterministic outgoing edges bearing the same label. Because

F′ is deterministic, ∀s ∈ LI(F), s reaches a single vertex in F′. In addition, this vertex in F′ shares

the same output C(F, s). Therefore, F′ also output simulates F.

A surprising aspect of the preceding is how the zipper constraints —which are imposed to en-

sure that a deterministic filter is produced— enforce output-simulating behavior, albeit indirectly,

too. One might have expected that this separate property would demand a second type of con-

straint, but this is not so.

On the other hand, needing to satisfy the zipper constraints of the input filter does not entail

the imposition of any gratuitous requirements:

Lemma 6.5. Given any deterministic p-filters F and F′, if F′ output simulates F, then the induced

clique cover Q(F, F
′
) on the compatibility graph of F satisfies all zipper constraints in Z (F).

Proof. Suppose that Q(F, F
′
) does not satisfy all zipper constraints in Z (F). Specifically, let

(U, V )y ∈ Z (F) be the zipper constraint that is violated, where each vertex in V transitions from
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some vertex in U under observation y. Then there exists a clique Ks ∈ Q(F, F
′
), such that U ⊆ Ks,

but there is no clique Kj ∈ Q(F, F
′
) that V ⊆ Kj . According to the construction of the induced

cover, there exists a vertex v′s ∈ F
′ , such that Ks corresponds to v′s. For any vertex u1 ∈ Ks, let

s1 ∈ SFu1
∩SF′v′s . Then s1y is also a string in both F and F′ since u1 transitions to some vertex v1 in V

under observation y in F and F′ is output simulating F′. Let VF ′(s1y) = {v′t}. (It is a singleton set

as F′ is deterministic.) Hence v1 corresponds to v′t on common string s1y. Similarly, each vertex

v ∈ V corresponds to v′t on some string ending with y. Let the clique corresponding to v′t be Kt,

and we have Kt ⊇ V . But that is a contradiction.

6.1.6 Correspondence of MCCZC and VSO-FDM solutions

To establish the equivalence between MCCZC and VSO-FDM, we will show that the induced

filter from the solution of MCCZC is a minimal filter for VSO-FDM, and the induced clique cover

from a minimal filter is a solution for MCCZC.

Lemma 6.6. Minimal clique covers for MCCZC induce minimal filters for VSO-FDM.

Proof. Given any minimal clique cover K = {K1, K2, . . . , Km} as a solution for problem MCCZC

with input p-filter F, construct p-filter F′ = M(F,K). Since K satisfies the zipper constraints

Z (F), F′ is deterministic and output simulates F according to Lemma 6.4. To show that F′ is

a minimal deterministic filter for VSO-FDM, suppose the contrary. Then there exists a minimal

deterministic filter F⋆ with fewer states, i.e., |V (F⋆)| < |V (F′)|. Hence, F⋆ induces a clique cover

K⋆ with fewer cliques than K. Since F⋆ is deterministic, K⋆ satisfies all Z (F) via Lemma 6.5.

But then K⋆ satisfies all the requirements to be a solution for MCCZC, and has fewer cliques than

K, contradicting the assumption.

Lemma 6.7. A minimal filter for VSO-FDM with input F induces a clique cover that solves MCCZC

with compatibility graph and zipper constraints of F.

Proof. Given minimal filter F⋆ as a solution for VSO-FDM with input filter F, we can construct a

clique cover K = Q(F, F⋆) from the minimal filter. For this cover to be a solution for MCCZC with
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compatibility graph G = K(F) and zipper constraints Z (F), first, it must satisfy all constraints in

Z (F). Lemma 6.5 affirms this fact. Second, we must show it to be minimal among all the covers

satisfying those constraints. Supposing K is not a minimal, there must exist a clique cover K′ with

|K′| < |K| satisfying Z (F). Then, consider the induced filter F′ = M(F,K′). Since K′ satisfies

all the zipper constraints Z (F), F′ is deterministic and will output simulate F (Lemma 6.4). But

|V (F′)| = |K′| < |K| = |V (F⋆)|, contravening the fact that F⋆ is a minimal filter. Hence K is

minimal.

Together, they establish the theorem.

Theorem 6.2. The solution for MCCZC with compatibility graph and zipper constraints of a filter

F induces a solution for VSO-FDM with input filter F, and vice versa.

Proof. Lemma 6.6 and Lemma 6.7 comprise the complete result.

Having established this correspondence, merging and split operations, modeled by a cover, are

sufficient to find a minimizer for the VSO-FDM problems.

6.2 Cover combinatorial filter minimization

In this section, we consider the problem of minimizing a slightly general filter, which does not

need to be vertex single-outputting. We call this problem FDM.

6.2.1 Motivating example

To motivate the generalized filters and their minimization problems, we relax the speed limit of

the gravel roads in the previous motivating example as shown in Figure 6.6a, such that the vehicle

can drive at a high gear or low gear at these roads. The naïve filter shown in Figure 6.6b, which

creates a state for each road, is no longer vertex single-outputting, and we call them cover filters.

In this new naïve filter, the states representing the gravel roads are colored both green and gray.

The states with multiple valid outputs introduce a new degree of freedom which influences the

size of the minimal filter. These arise, for instance, whenever there are ‘dont-care’ options. The
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flexibility of such states must be retained to truly minimize the number of states, as they give a

smaller minimizer as shown in Figure 6.6c.
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Figure 6.6: (a) A safari park with vehicles for hire. The speed limit of the gravel road is relaxed
and both high gears are applicable. (b) A naïve filter. (c) A minimal filter for the intelligent gear
shifting system.

To minimize cover filters, one straightforward approach is to enumerate all filters under dif-

ferent output choices for the states with multiple outputs, and then solve every one the resulting

deterministic single-outputting filters as instances of VSO-FDM. The filter with the fewest states

among all the minimizers could then be treated as a minimal one for the FDM problem. Unfortu-
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nately, this is too simplistic. Prematurely committing to an output choice is detrimental. Consider

the input filter shown in Figure 6.7a, it has two multi-outputting states (w4 and w5). If we choose

to have both w4 and w5 give the same output, the VSO-FDM minimal filter, shown in Figure 6.7b,

has 4 states. If we choose distinct outputs for w4 and w5, the VSO-FDM minimal filter, shown

in Figure 6.7c, now has 7 states. But neither is the minimal filter for FDM. The true minimizer

appears in Figure 6.7d, with only 3 states. It is obtained by splitting both w4 and w5 into two

copies, each copy giving a different output. Therefore, it may fail to find a minimizer by picking

an output for each vertex first and then conducting mergers and splits, since the construction of the

minimizer may require to choose different outputs for the splits. The multi-outputting states give

extra degrees of freedom to minimize the cover filters.
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(a) An input cover filter.

w6

w0 w1

w7

{a}

{a}

{a, b}

{b}

{b}

{a}

(b) A minimal filter when choosing to output
the same color for w4 and w5.

w5w0

w6

w4

w7

w1
w2

{a}

{b}
{a}

{b}

{b}

{a}

{a, b}
{b}

{a}

(c) A minimal filter when choosing to output different col-
ors for w4 and w5.

w0

w1

w6

{a}

{b}

{a, b}

{a, b}

(d) A minimal filter for the input filter.

Figure 6.7: A multi-outputting filter minimization problem.

To exploit this extra degree of freedom, is it NP-hard? In this section, we are going to examine

the hardness results and minimize the cover filters by generalizing the notion of compatibility

relationships, zipper constraints, and minimum clique cover problems.
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6.2.2 Cover combinatorial filter minimization problems and their hardness results

Problem: Filter Minimization (FDM)

Input: A deterministic filter F.

Output: A deterministic filter F† with fewest states, such that F† output simulates F.

We use ‘F’ for deterministic filters, ‘D’ for deterministic input and output, ‘M’ for minimization.

Theorem 6.3. FDM is NP-Complete.

Proof. Firstly, VSO-FDM is a special case of FDM problems. These FDM problems are at least as

hard as VSO-FDM. Hence, FDM are in NP-hard. On the other hand, a solution for FDM can be

verified in polynomial time. (Change the equality check on line 7 of Algorithm 1 in [2] to a subset

check.) Therefore, FDM is NP-Complete.

6.2.3 Modeling FDM as a generalized minimum cover problem

The idea underlying a correct approach is that output choices should be made together with

the splitting and merging operations during filter minimization. Multi-outputting vertices may

introduce additional split operations, but these split operations can still be treated via clique covers

on the compatibility graph. This requires that we define a new compatibility relationship—it is

only slightly more general than Definition 6.6:

Definition 6.13 (group compatibility). Let F be a deterministic p-filter. We say that the set of states

U = {u1, u2, . . . , un} are group compatible, if there is a common output on all their extensions,

i.e.,

∀s ∈
∪
u∈U

Le
F(u),

∩
w′∈W ′

c(w′) ̸= ∅, where W ′ = VF(u1, s) ∪ VF(u2, s) ∪ · · · VF(un, s).

(The preceding exploits the subtle fact that VF(v, s) = ∅ when tracing s from v crashes in F.)

With this definition, the compatibility graph must be generalized suitably:
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Definition 6.14 (compatibility simplicial complex). Given a deterministic multi-output filter F, its

compatibility simplicial complex is a collection of simplices, where each simplex is a set of group

compatible vertices in F.

The zipper constraints are generalized too, replacing mutual compatibility with group compat-

ible states:

Definition 6.15 (generalized zipper constraint). In the compatibility simplicial complex of filter F,

if there exists a set of group compatible states U = {u1, u2, . . . , un}, then they can only be selected

to be merged if they always transition to a set of states that are also selected to be merged. For

any sets of group compatible states U,W ⊆ V (G) and some observation y, we create a generalized

zipper constraint expressed as a pair (U,W )y if W = {w ∈ V (G) | y ∈ τ(u,w) for some u ∈ U}.

The information formerly encoded in cliques of edges is now within simplicies; the minimum

clique cover on the compatibility graph, thus, becomes a minimum simplex cover on the compati-

bility simplicial complex. Hence, the MCCZC problem is generalized as follows:

Problem: Generalized Minimum Cover with zipper constraints (GMCZC)

Input: A compatibility simplicial complex M , a set of generalized zipper constraints ZIP.

Output: A minimal cardinality simplex cover of M satisfying ZIP.

6.3 An algorithm toward filter minimization

In the previous section, we have shown that the operations that are sufficient for a filter min-

imization problem consist of both mergers and splits, and these two operations on both vertex

single-outputting and cover filters can be modeled by a clique cover, which leads to a minimum

clique cover problem. But formalizing a clique cover problem is inefficient since it involves zipper

constraints that are exponential in size. In this section, instead of formalizing the clique cover

problem with zipper constraints, we encode the solutions of the filter minimization problem as a

vertex cover, then induce a filter from the cover, and introduce output simulating constraints on the

induced filter. This gives us a formalism with only polynomial number of constraints and can be

solved by a variety of solvers.
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To begin, define the basic combinatorial object involved:

Definition 6.16 (vertex cover). A vertex cover K = {K1, K2, . . . , Km} on a filter F is a collection

of subsets of vertices which cover all F’s vertices, i.e., Ki ⊆ V (F) for each i, and
∪m

i=1Ki = V (F).

The size of K is number of the subsets, i.e., |K| = m.

A vertex cover K = {K1, K2, . . . , Km} on filter F is zipped if for every subset Ki ∈ K and

for each observation y ∈ Y (F ), there exists at least one subset Kj ∈K that contains all y-children

of the states within Ki. Next, we show how a zipped vertex cover begets a filter.

Definition 6.17 (induced filter from a vertex cover). Given zipped vertex cover K = {K1, . . . , Km}

on F = (V, {v0}, Y, τ, C, c), its induced filter F† = (V †, {v†0}, Y, τ †, C, c†) is constructed as follows:

1. Create a state v†i in F† for each non-empty subset Ki.

2. Select an arbitrary vertex v†i as v†0, such that the corresponding Ki contains the initial state

v0 in F.

3. For each vertex v†i and y ∈ Y , if y-children of vertices in Ki is not empty, then add one

transition from v†i to v†j under y such that Kj contains all y-children of Ki; if there are

multiple such v†js, pick an arbitrary one.

4. Assign the output for v†i to be c†(v†i ) ∈
∩

v∈Ki
c(v), i.e., an output common to all vertices in

Ki.

Note that each vertex in filter F may be contained in multiple subsets in the vertex cover, and

that each subset in the cover is mapped to a unique vertex in the induced filter. Hence, we say that

each vertex in F may be mapped to multiple vertices in the induced filter.

Being zipped ensures that, for any y with children, there is always an outgoing transition in 3)

of Definition 6.17. Thus, the construction never shrinks the filter’s language.

Lemma 6.8. Let F† be the induced filter for a zipped vertex cover K on a filter F. It holds that

LI(F) ⊆ LI(F†).
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Proof sketch. This lemma can be proved by induction on the length of strings s ∈ LI(F) that shows

if s reaches a state v in F, then s reaches a state v†i in F† such that the corresponding Ki contains v.

This will show that if s ∈ LI(F), then s ∈ LI(F†), meaning that LI(F) ⊆ LI(F†).

The next throws light on why vertex covers interest us.

Lemma 6.9. Given an input filter F = (V, {v0}, Y, τ, C, c), if there exists a solution to k-FM, then

there is always a filter F† as a solution to k-FM such that F† is induced from a zipped vertex cover

on F.

Proof. Let F⋆ = (V ⋆, {v⋆0}, Y, τ ⋆, C, c⋆) be any solution to k-FM with input F. From F⋆ and F, we

construct a zipped vertex cover K on F, then construct an induced filter F† from K and show that

F† is also a solution for k-FM.

We construct K as follows: For every state v⋆i ∈ V ⋆, construct set Ki = {v ∈ V | SFv ∩

SF⋆v⋆i ̸= ∅}, and form K = {K1, K2, . . . , K|V ⋆|}. Collection K is a vertex cover on F because

by assumption LI(F) ⊆ LI(F⋆), which implies that for each v ∈ V there is at least one vertex

v⋆ ∈ V ⋆ with SFv ∩ SF
⋆

v⋆ ̸= ∅, and this means that each vertex v of F is contained in at least one

subset K ∈K. In addition, K is zipped, otherwise some string is in F but not in F⋆, contradicting

the fact that F⋆ output simulates F.

Now, we show that F†, constructed from K following Definition 6.17, is also a solution to

k-FM. Trivially, |K| = |V ⋆| ≤ k, and |V (F†)| ≤ |K|. Hence, |V (F†)| ≤ k.

We will prove by contradiction that F† output simulates F. Suppose F† does not output simulate

F. Then there must be a string s ∈ LI(F), such that either (i) s ̸∈ F†, or (ii) at least two states

are reached by s in F† (F† is non-deterministic), or (iii) C(F†, s) ̸⊆ C(F, s). Regarding case (i),

since s ∈ LI(F) and LI(F) ⊆ LI(F⋆), we have s ∈ LI(F⋆). Let v⋆j be a vertex reached by s in F⋆.

Then s must also reach v†j in F†, which indicates that s ∈ F†. Regarding case (ii), let v†j and v†l

(j ̸= l) be two states in F† that are reached by s. Notice that there is an injective function from the

vertices and edges in F† to those in F⋆. Thus, s must reach two different vertices v⋆j and v⋆l in F⋆,

which contradicts the fact that F⋆ is deterministic. Regarding case (iii), there must exist a vertex
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v†i in F† and a vertex v in F that are both reached by s and that v†i and v have different outputs. But

according to the construction of F†, v†i must share the same output as v. Hence, F† must output

simulate F.

Hence, to solve FM, we can always look for vertex covers.

6.3.1 Searching over vertex covers via variables

Now we represent a vertex cover with binary variables.

To encode a vertex cover K = {K1, K2, . . . Km} on an input filter F = (V, {v0}, Y, τ, C, c),

we introduce the following binary variables:

• Create a binary variable Ri
v for each v ∈ V and each i ∈ {1, 2, . . . , |V |}, and assign Ri

v = 1

if and only if v is contained in Ki. If i > |K|, then we view Ki as an empty set and set

Ri
v = 0 for all v ∈ V .

• Create a binary variable qi for each i ∈ {1, 2, . . . , |V |}, and assign qi = 1 if and only if Ki

is not empty.

We also define additional variables with constant values assigned from the structure of the input

filter:

• Introduce a binary variable tyv for each v ∈ V and y ∈ Y , to which we assign value 1 if and

only if v has non-empty y-children.

• Introduce a binary variable pov for each v ∈ V and o ∈ O, to which we assign value 1 if and

only if v has o in its outputs, i.e., o ∈ c(v).

With these variables, we can encode an output filter and the constraints for it to be a valid solution

in FM.

6.3.2 FM as an integer nonlinear program (INP)

Now, we formalize FM as an integer nonlinear program. In what follows, we denote the input

filter as F = (V, {v0}, Y, τ, C, c), the vertex cover to be searched for as K, and the induced output
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filter from K as F† = (V †, {v†0}, Y, τ †, C, c†). For brevity, we will simply write ∀i for ∀i ∈

{1, 2, . . . , |V |}, ∀v for ∀v ∈ V , and ∀y for ∀y ∈ Y .

Minimize ∑
1≤j≤|V |

qj (INP-Obj)

Subject to:
qi, Ri

v ∈ {0, 1} : ∀i,∀v (INP-Vars)

Ri
v ≤ qi : ∀i,∀v (INP-NESubset)

qi ≤ qi−1 : ∀i (INP-Sym)

∑
1≤j≤|V |

Rj
v0 ≥ 1 (INP-ValidCover)

∑
1≤j≤|V |

∏
v∈V

(2−Ri
v − tyv +Rj

vy ) ≥ 1 : ∀i,∀y (INP-Zip)∑
o∈C

∏
v∈V

(1−Ri
v + pov) ≥ 1 : ∀i (INP-Out)

The objective (INP-Obj) is to minimize the number of non-empty subsets in K. For each j,

variable qj receives value 1 if at least one vertex of F is assigned to Kj . This is expressed by

constraints (INP-NESubset). We use the idea of Méndez-Díaz and Paula [71] to reduce symmetry

by pushing the non-empty subsets to smaller indices. This is imposed by constraints (INP-Sym).

Constraint (INP-ValidCover) requires that the initial state of F be contained in at least one sub-

set of the vertex cover. Together with constraints (INP-Zip), this ensures that all vertices of F that

are reachable from the initial state will be covered by K. For the output filter to be deterministic,

for each observation y and each state v†i in F†, v†i must have at most a single y-child. Accord-

ingly, for each subset Ki, there must exist a subset Kj that contains all the y-children of Ki. More

exactly, ∀i ∈ {1, 2, . . . , |V |}, ∀y ∈ Y :

∃j ∈ {1, 2, . . . , |V |}, s.t., ∀v ∈ V,
(
(Ri

vt
y
v = 1) =⇒ (Rj

vy = 1)
)

︸ ︷︷ ︸
all y-children of Ki are contained in Kj

.

In algebraically simplified form, this is the zipped constraints (INP-Zip). Note that we allow
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multiple such Kj’s to exist for any Ki and y, but in the output filter, only one will be (arbitrarily)

picked for the transition.

In addition, the output for vertex v†i should be the common output of all vertices in the subset

Ki. This means that for each subset Ki, all states within that subset must share a common output.

Formally, ∀i ∈ {1, 2, . . . , |V |},

∃o ∈ C, s.t., ∀v ∈ V,
(
(Ri

v = 1) =⇒ (pov = 1)
)︸ ︷︷ ︸

all vertices in Ki must share output o

,

which is expressed by constraints (INP-Out).

With a solution to the integer nonlinear program in hand, we first form the vertex cover K

by constructing the subsets according to the values assigned to variables Ri
v’s. Then we make the

output filter F† by following Definition 6.17.

The next we prove the correctness of INP.

Lemma 6.10 (correctness). Let K be the vertex cover formed by an optimal solution to the integer

nonlinear program for an input filter F and let F† be an induced filter from K. Filter F† is an optimal

solution to FM with input F.

Proof sketch. The nonlinear programming constraints formalize the requirement for the induced

F† to be deterministic and output simulate filter F. The objective function ensures the minimum

number of states. Both do this exactly, which we show by establishing the equivalence between

the nonlinear constraints and properties of determinism and output simulating in FM. This holds in

both directions.

⇐= : If constraints (INP-ValidCover) and (INP-Zip) hold, then K is a zipped vertex cover, F†

constructed following Definition 6.17 is deterministic, and LI(F) ⊆ LI(F†) as per Lemma 6.8. If

constraint (INP-Out) is satisfied, then ∀s ∈ LI(F), C(F, s) ⊇ C(F†, s). Hence, F† is deterministic

and output simulates F.

=⇒ : Given an F† that is an optimal solution for FM, construct an induced zipped cover

K following Lemma 6.9. The values of the variables encoding this cover must satisfy con-

straints (INP-NESubset) and (INP-ValidCover). If F† is deterministic, then constraints (INP-Zip)
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must also be satisfied. The fact that F† output simulates F implies that constraints (INP-Out) are

satisfied.

Proof that if F† is minimal, then the value of (INP-Obj) must be optimal (and vice versa) follows

similarly.

6.3.3 Integer linear programming (ILP) with linear constraints

This section presents an integer linear program by linearizing the nonlinear constraints (INP-Zip)

and (INP-Out).

To linearize constraints (INP-Zip), we introduce a binary variable ai,jy for each i, j ∈ {1, 2, . . . ,

|V |} and v ∈ V to determine whether there is a transition from vertex v†i to vertex v†j under label y

in the output filter F†. If ai,jy = 1, then the value of term
∏

v∈V (1− Ri
v + 1− tyv + Rj

vy) must be a

positive integer. Otherwise, we choose not to build such a transition in the output filter, regardless

of the value of the corresponding term. Mathematically, we have:

ai,jy +Ri
v + tyv −Rj

vy ≤ 2 : ∀i,∀j, ∀v, ∀y. (ILP-Zip-1)

Then constraints (INP-Zip) are written as∑
1≤j≤|V |

ai,jy ≥ 1 : ∀i,∀y. (ILP-Zip-2)

For constraints (INP-Out), we similarly introduce a binary variable bio, with value 1 to denote

the fact that the term
∏

v∈V (1−Ri
v+pov) has a positive value. If bio = 0, then we do not care whether

the value of the corresponding term is positive or not. Thus, we add the following constraints:

1− bio + 1−Ri
v + pov ≥ 1 : ∀i,∀o, ∀v. (ILP-Out-1)

Then constraints (INP-Out) are linearized as follows:∑
o∈C

bio ≥ 1 : ∀i. (ILP-Out-2)

6.3.4 Boolean satisfaction (SAT)

We next treat FM as a sequence of k-FM problems by enumerating the bound on the output

filter size. Each k-FM is formalized as a Boolean satisfaction problem, which we call SAT [k]. To
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find the minimal filter, the idea is to solve a SAT [k], and then decrement k until no smaller output

filter can be found.

To obtain a SAT [k] instance, we first remove variables qi (∀i) and constraints (INP-NESubset)

and (INP-Sym) since we do not need (INP-Obj) and only want to find an output filter with size

bounded by k. Next, we treat binary variables Ri
v, ai,jy , bio as boolean-valued and write con-

straints (ILP-Zip-1)–(ILP-Out-2) in conjunctive normal form (CNF).

Given a filter minimization problem with size bounded by k, constraint (INP-ValidCover) is

written as a clause: ∨
i∈{1,2,...,k}

Ri
v0 . (SAT-ValidCover)

Constraints (ILP-Zip-1) and (ILP-Zip-2) are written as:

ai,jy ∨Ri
v ∨ tyv ∨Rj

vy : ∀i,∀j, ∀v, ∀y (SAT-Zip-1)

∨
j∈{1,2,...,k}

ai,jy : ∀i,∀y. (SAT-Zip-2)

And constraints (ILP-Out-1) and (ILP-Out-2) become:

bio ∨Ri
v ∨ pov : ∀i,∀o, ∀v, (SAT-Out-1)

∨
o∈C

bio : ∀i. (SAT-Out-2)

Notice that consecutive SAT instances share most of their variables and constraints. The

SAT [k] instance is equivalent to the SAT [k+1] one but with additional unit clauses Rk+1
v for all

v ∈ V . Instead of making each SAT [k] instance from scratch and solving it, we add unit clauses

while decreasing k. This allows the solver to re-use knowledge acquired from previous SAT in-

stances, and leads to an incremental anytime procedure in Algorithm 8. First, we initialize k to

be |V (F)| (line 1). Next, we construct a CNF formula SAT [k] (line 2) and invoke the SAT solver

(line 3–6). If an assignment is found for SAT [k] within the time budget (line 7), then we set its

cover choice to be the smallest one found so far (line 8), update the time budget by the amount of

time used in this iteration (line 9), add the unit clauses (line 10), and decrease k (line 11). Other-

wise, if the SAT [k] has not been solved within the time budget, then we use the minimum cover
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found so far to construct the minimal filter (line 14). When given an adequate time budget, the

algorithm will find the minimal filter. And running the algorithm for a longer duration increases

the chance of finding a smaller filter.

Algorithm 8: SAT(F, timeout)

k ← |V (F)|
CNF← BuildFormula(F, k)
Initialize minimum vertex cover Kmin to be empty
solver ← SATSolver(CNF)
while k ≥ 1 and timeout > 0 do

result← solver. solve(timeout)
if result.solved then

Kmin ← result.model
Reduce timeout by the time used
Add unit clauses Rk

v (∀v ∈ V ) to solver
k ← k − 1

else
break

F′ ← FilterConstruction(F,Kmin)
return F′

6.3.5 SAT with just-in-time constraints: LazySAT

In SAT, zipped constraints (SAT-Zip-1) and (SAT-Zip-2) are critical to ensure deterministic

transitions between subsets of K. If a set of vertices in the input filter do not share any common

output, then there is no need to check these zipped constraints on any set containing these ver-

tices. In this case, we say that the zipped constraints related to these vertices are inactive. The

existence of inactive constraints slows down the resolution of the SAT problem, but detecting and

representing all active zipped constraints in FM requires exponential time and space. To speed up

the SAT approach without significant overhead, we introduce LazySAT, a just-in-time treatment of

the zipped constraints. In LazySAT, we first partition these constraints into non-overlapping sets

of clauses, solve the SAT problem without these constraints, and introduce each set of clauses only

when a non-zipped cover is returned and it violates these clauses.
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Zipped constraints ensure that K covers F as well as being zipped. To treat them lazily, we

update constraints (SAT-ValidCover) so that every state in F is contained in at least a subset:∧
v∈V

( ∨
i∈{1,2,...,k}

Ri
v

)
. (LazySAT-ValidCover)

Next, we partition the clauses in the zipped constraints. Let the set of clauses from con-

straint (SAT-Zip-1) be A. Then A can be partitioned into non-overlapping subsets according to

the vertex v and outgoing label y, i.e., A = ∪v∈V ∪y Av
y. Each subset Av

y consists of the following

clauses: ∧
i∈{1,2,...,k}

∧
j∈{1,2,...,k}

(
ai,jy ∨Ri

v ∨ tyv ∨Rj
vy

)
.

Similarly, the set of clauses from constraint (SAT-Zip-2) is denoted as B, which is parameterized

by the outgoing label y. Each subset By consists of the following clauses:∧
i∈{1,2,...,k}

( ∨
j∈{1,2,...,k}

ai,jy

)
.

We detect the violation of these clauses, and add the clauses to the solver as needed. Let Yc be

the set of outgoing labels y such that the clauses in By are already present in the solver, and P be

the set of vertex v and outgoing label y pairs such that Av
y are also added to the solver. Both Y and

P are initialized as empty sets. Given a vertex cover K returned from the SAT algorithm, if K is

not zipped, then there must exist a set of states K ∈ K and a label y such that all y-children of

vertices in K are not contained in any single subset in the cover K. This must be a consequence of

violating some missing clauses parameterized by K and y in the zipped constraints. We add these

clauses as follows: (i) if y ̸∈ Yc, add y to Yc and add clauses in By to the solver; (ii) for any v ∈ K,

if (v, y) ̸∈ P , add (v, y) to P and add clauses in Av
y to the solver. Now, repeatedly call the solver,

adding clauses if needed, until we find a zipped vertex cover with size no greater than k. To find a

minimum solution, follow the same procedure as Algorithm 8.

6.3.6 Experimental results

We implemented INP, ILP, SAT and LazySAT in Python, based on mixed integer nonlinear

solver SCIP [72], mixed integer linear solver Gurobi [73], and SAT solver CaDiCaL [74]. All
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executions are conducted on an OSX laptop with a 2.4GHz Intel Core i5 processor, and each

algorithm is given 10min budget to solve a filter minimization problem.

First, we minimize the filter in Figure 6.6b. INP failed to give a result before timing out, while

ILP, SAT and LazySAT give minimal filters with 5 states within 1 s, 2 s and 100 s, respectively.

One such minimal filter is shown in Figure 6.6c. We collected no further results for INP since

it appears to be incapable of minimizing filters with more than 10 states within 10min. To test

the performance of the remaining three algorithms, we randomly generated a filter as follows:

(i) construct a tree with a root node at layer 0 and w nodes at each of d additional layers, and

then connect each vertex from a parent vertex in an earlier layer by drawing a directed edge;

(ii) randomly pick m vertices to add self-loops; (iii) randomly pick n vertices to connect to some

parent vertex in a later layer, so as to generate cycles. Next we randomly assign no outputs to

vertices in the filter, where each vertex is assigned with p of them. Similarly, we randomly assign

ny observations to the edges in the filter while keeping the filter deterministic.

To compare ILP and SAT-based approaches, we start with a filter structure randomly generated

by parameters d=4, w=3, m=n=2, p=2 and no=5. For any given number of observations ny, we

sample 10 filters, and collect the time to minimize these filters for each algorithm in Figure 6.8a.

As more observations are added to the filter, fewer states share common observations. The zipped

constraints (ILP-Zip-1) and (SAT-Zip-1) will be simplified, since ai,jy connects with fewer vertices.

Hence, the computational time for both ILP and SAT-based approaches tend to decrease. Fixing

the number of observations to be ny = 5, we also collect the computation time under varying

outputs in Figure 6.8b. This gives an opposite trend as increasing the number of outputs makes

the problem harder from two aspects: (i) the number of variables increases; (ii) the number of

output constraints (ILP-Out-1) or (SAT-Out-1) increases owing to both an increasing number of

outputs and an increasing number of vertices with pov = 0 for each output o. Across both studies,

SAT-based approaches outperform integer linear programming. We speculate that this is because

the constraints for FM are fundamentally combinatorial in nature and can be concisely encoded in

CNF. These CNF constraints can be exploited relatively efficiently (e.g., by building a constraint-
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Figure 6.8: Comparison of logarithmic computational time to minimize filters with different num-
ber of outputs and observations.
dependency graph). And a final factor might be that the objective function really takes a limited

range of values and its values can be enumerated efficiently.

Observe that in Figure 6.8b, as we increase the number of outputs, LazySAT significantly

outperforms SAT since few states share common outputs, so most zipped constraints are inactive

and can be removed. We further tested them on a larger filter instance, where many states share

common outputs and hence a significant proportion of constraints become active. In Figure 6.9,

instead of presenting the time to find a minimal solution, we report the number of clauses used

by the solver, and size of the sub-optimal solutions found by the two algorithms along the way.

LazySAT is still able to find sub-optimal solutions faster than SAT, and the number of clauses

used by LazySAT is much fewer than those in SAT. Treating constraints lazily does incur overhead

in detecting and adding the active clauses, but the speedup from just-in-time treatment is seen to

outweigh its overhead even when a large number of vertices share common outputs.

6.4 Nondeterministic filter minimization problems and their computational complexity

Now, we generalize toward the problem of minimizing nondeterministic filters.
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Figure 6.9: The number of constraints used by SAT and LazySAT to find sub-optimal solutions
while increasing the running time. The input filter is constructed with parameters d = 20, w = 5,
m = n = 10, p = 1, with 50 observations and 5 outputs.

6.4.1 Motiving example

Consider a donut environment illustrated in Figure 6.10a: two agents wander in a circular

world, and three sensor beams (yielding symbols a, b, and c, respectively) partition the environ-

ment into sector-shaped regions (labeled 0, 1, 2). The beams detect if an agent crosses the dividing

line but can sense neither the agent’s identity nor direction of motion. With the agents starting in

some known configuration (one in region 0 and one in region 1), the task is, given a sequence of

sensor readings (i.e., a string of a’s, b’s, c’s), to determine whether the two agents are within the

same sector or not. A naïve nondeterministic filter is given in Figure 6.10b. The objective is to find

a minimal deterministic filter, like the one shown in Figure 6.10d, for this estimation problem.

To arrive at the 4 state minimizer, we first determinize the input filter and produce a filter

(Figure 6.10c), and solve it as a FDM problem. This procedure goes from 9 states, to 6, before

reaching 4, finally. By way of contrast, consider the nondeterministic 5-state filter in Figure 6.11a.

To find a minimal filter, it can be determinized to track the 24 = 16 distinct information states

shown in Figure 6.11b. Once that is minimized, it gives the deterministic filter in Figure 6.11c.

The growth in the number of vertices, caused by the need to determinize for the minimization

algorithm, indicates trouble. Not only does the set increase exponentially, but this much larger

object becomes the input for an exponential cost algorithm (since the problem is NP-hard [2]).
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Figure 6.10: Combinatorial filter minimization, as originally motivated by [3]: (a) Two agents
move in a circular world with three beam sensors. The environment is partitioned into three re-
gions, indexed by numbers 0, 1 and 2. Letters a, b, and c denote observations from each of the
three beams. (b) A nondeterministic filter to estimate whether these two agents are in the same
region (red) or not (cyan). (c) The deterministic version of the same. (d) A minimal deterministic
filter.
Double trouble.

To by-pass this expansion, one requires filter reduction methods that are able to consume non-

deterministic filters directly as input. Looking again at Figures 6.11a and 6.11c, the dramatic

compression that cancels the extreme expansion raises some questions. Do large deterministic in-

stances arising from small nondeterministic ones really induce hard minimization problems? Or

are they instead structured in some special (sparse, say, or otherwise low-density) form, reflect-

ing conservation of underlying information? Computational complexity can provide clues: for

example, in characterizing the space requirements of direct nondeterministic filter to deterministic

minimizer computation.
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Figure 6.11: (a) A nondeterministic filter. (b) A deterministic form obtained via the power set
construction. (c) A minimal filter.

If nondeterminism can be of added value as input to a minimization algorithm, what about

as its output? In finite automata minimization, the smallest nondeterministic automata can be

smaller than any deterministic one. Typical examples exploit the fact that accepting a string in

the nondeterministic automaton requires that some tracing arrive at an accepting state. For filters,

analogous instances fail owing to their differing semantics (stated formally in the next section). The

analogous fact, however, does hold. A small example suffices to show this: the deterministic input

filter given in Figure 6.12a cannot be reduced any further when only deterministic minimizers

are considered (reason: no two states agree on their common extensions—see the definition of

compatibility in the previous section. But it has a nondeterministic minimizer with fewer states,

shown in Figure 6.10b. Nondeterminism, then, provides extra freedom that can be exploited to

further reduce filter size.

To summarize: (i) nondeterminism in the input allows minimization to proceed directly on

models of certain problems, potentially saving on expensive intermediate steps; (ii) permitting

nondeterminism in the filters produced as output can deliver greater compression. Thus, nondeter-

minism may be of considerable practical importance.

6.4.2 Nondeterministic combinatorial filter minimization problems

Here is the formal definition of the nondeterministic filter minimization problem:
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Figure 6.12: (a) A deterministic filter that has no deterministic minimizer with fewer than 10 states.
(b) A minimal nondeterministic 9-state minimizer for the filter above.
Problem: P-filter Minimization (PFM)

Input: A p-filter F.

Output: A p-filter F† with fewest states, such that F† output simulates F.

This is a generalization of its deterministic version PFDM, which only dealt with deterministic

input and deterministic minimizer. We use ‘PF’ to denote the fact that both the input and output of

this problem can be general nondeterministic p-filters, and use ‘M’ for minimization. Additionally,

we designate the problem of producing a deterministic minimizer for a nondeterministic input filter

‘PFDM’, a four-letter word where ‘D’ stands for deterministic.

6.5 Automata and their minimization

In this section, we will present some preliminary results from automata theory.

A nondeterministic finite automaton (NFA) is a tuple (Q,Q0,Σ, δ, A), where Q, Q0, Σ, δ, A

are the states, initial states, alphabet (observations), transition function, and accepting states. Both

filters and NFAs are similar, both being transition structures. Different from a filter, an NFA A has
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accepting states not outputs (colors). For automata, we are interested in the strings that reach some

accepting states, which we term the accepting language LA(A). An NFA with a singleton Q0 and

deterministic transition structure is also called a DFA.

Here are some results from automata theory:

Lemma 6.11 (NFA equivalence[75]). Given two NFAs A and B, it is PSPACE-complete to check if

LA(A) = LA(B).

Lemma 6.12 (NFA universality[76]). For a given NFA A = (Q,Q0,Σ, δ, A), it is PSPACE-complete

to check whether LA(A) = Σ∗.

Lemma 6.13 (DFA union universality[77]). Given a set of DFAs {A1, A2, . . . , An} with common

alphabet Σ, it is PSPACE-complete to check if ∪1≤i≤nLA(Ai) = Σ∗.

6.6 Computational complexity of nondeterministic filter minimization

In this section, we leverage prior hardness results from automata theory to show that the prob-

lems of finding minimizers, including deterministic and nondeterministic minimizers, for nonde-

terministic input filters are hard. Specifically, we will show that the decision version of PFM is

PSPACE-complete, and the decision version of PFDM is PSPACE-hard.

The decision problem of the PFM problem is:

Decision Problem: P-filter Minimization (PFM-DEC)

Input: A p-filter F and k ∈ N+.

Output: YES if there exists a p-filter F† with no more than k states, such that F† output simulates

F. NO otherwise.

Similarly, we denote the decision version of PFDM as PFDM-DEC.

6.6.1 The hardness of PFM and PFDM

Now, we will show that the decision versions of PFM and PFDM are, respectively, PSPACE-

complete and PSPACE-hard. Consequently, both PFM and PFDM are PSPACE-hard.
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It is helpful, as a first step, to introduce a product operator for constructing of the product

graph of two filters in polynomial time. This operator will be used to check output simulation

requirement.

Definition 6.18 (tensor product). Given two filters F1 = (V 1, V 1
0 , Y

1, τ 1, C1, c1) and F2 = (V 2, V 2
0 ,

Y 2, τ 2, C2, c2), their product, a graph denoted (F1⊙F2), is constructed to capture strings in LI(F1)

as follows:

1. List all pairs of vertices in V (F1)× (V (F2) ∪ {⊖}), where ⊖ is a placeholder for an empty

vertex.

2. Mark vertex (v, w) an initial state in graph (F1 ⊙ F2).

3. Build a transition from (v, w) to (v′, w′) under label y if y ∈ τ 1(v, v′) and y ∈ τ 2(w,w′).

Notice that if y is not an outgoing label of vertex v, then we say y ∈ τ 1(v,⊖).

4. Remove the pairs that are not reached from any initial state in (F1 ⊙ F2).

Notice that the tensor product of two filters is a transition structure with initial states, i.e., a

graph.

Lemma 6.14. PFM-DEC is in PSPACE.

Proof. We show first that representing and searching for a filter takes polynomial space, and

then that only polynomial space is needed to ascertain whether a filter output simulates F =

(V, V0, Y, τ, C, c). Since PFM-DEC requires we encode filters of size k, we need to keep track

of at most k2 transitions, at most |Y | labels for each transition, at most |C| colors for each state,

and at most k initial states. The space needed to enumerate output filters is O(k2× |Y |+ k× |C|).

To show that it also takes polynomial space to check whether a filter F′ output simulates the

filter F that was provided as input, we need to check the language inclusion property and then

output consistency.

First, we will show that it takes polynomial space to establish that LI(F) ⊆ LI(F′) by convert-

ing it to the problem of NFA equivalence, which is in PSPACE. We form product graph G = F⊙ F′.
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If there is no vertex (v,⊖) in G such that v ∈ V (F), then we claim that LI(F) ⊆ LI(F′) since every

string reaching a vertex in F also reaches some vertex in F′. If there exists some such a vertex

(v,⊖), then we must determine whether the strings reaching (v,⊖) also reach some vertex in F′.

We build an NFA A from G by treating all states {(v,⊖) | v ∈ V (F)} as accepting states. Next, we

create another NFA, B, from F′ by treating every state in F′ as accepting. Then we want to show

that strings reaching every (v,⊖) are accepted by B. Or, in other words, whether NFAs A and A∩ B

are equivalent (where ∩ is automata intersection). Creating automata A and A ∩ B, and showing

their equivalence is in PSPACE.

Secondly, verifying output consistency also needs only polynomial space. Begin by removing

the states of the form (v,⊖) from G. Then, for every state (v, w) in G such that c(v) ̸⊇ c(w), to

output simulate, for every output o ∈ c(w)\c(v), strings reaching (v, w) must reach some state u in

F with o ∈ c(u). Otherwise, o is not a legal output for some string, and F′ is not output simulating

F. To whether o is a legal output, we build an automaton M from G by treating (v, w) as accepting

states, and another automaton N from F by treating the states with color o as accepting states. If

LA(M) ⊆ LA(N), then o is safe. If every o ∈ c(w) \ c(v) is safe, then the output of F′ is consistent

on that of F. Otherwise, (v, w) is an evidence of violation for output consistency. This procedure

also takes polynomial amount of space.

Therefore, PFM-DEC is in PSPACE.

Lemma 6.15. PFM-DEC is PSPACE-hard.

Proof. We give a polynomial time reduction from NFA universality to PFM-DEC. To show the

accepting language of a given NFA A = (Q,Q0,Σ, δ, A) is Σ∗, we first create a filter F from A as

follows:

1. Add the states, transitions, initial states of A to the states, transitions, initial states of F.

2. Add a new initial state v to F, with a self-loop bearing all labels Σ from A.

3. Add a new vertex w to F. For every state in F arising from an accepting state in A, add a

transition to w under some new label z, where z is not a symbol from Σ.
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4. Add one more vertex u to F, and a transition from v to u under z.

5. Color u blue, the others green.

This procedure takes polynomial time.

Now, the interaction language for this filter is Σ∗z. Further, the outputs of strings LA(A)z are

both green and blue, while the outputs for the strings (Σ∗ \ LA(A))z are blue only.

If LA(A) is Σ∗, then the minimal filter for F has only one green state and it has a self-loop

bearing Σ ∪ {z}. If LA(A) is not Σ∗, then there there exists some string s ̸∈ LA(A) where s only

outputs green, and sz only outputs blue. There must, therefore, be at least two states (one colored

green, and one colored blue) in its minimizer. As a consequence, if the minimizer of F has only

one state, then LA(A) is Σ∗. Otherwise, LA(A) is not Σ∗.

Therefore, we get a polynomial time reduction from NFA universality problem to PFM-DEC.

PFM-DEC is PSPACE-hard since NFA universality is PSPACE-complete.

Lemma 6.16. PFM-DEC is PSPACE-complete.

Proof. Combine Lemmas 6.14 and 6.15.

Theorem 6.4. PFM is PSPACE-hard.

Proof. This is a direct consequence of Lemma 6.16.

Having considered the case where both the input and the minimizer may be nondeterministic,

next we show that limiting nondeterminism to only the input filter (what we dubbed PFDM-DEC)

still retains its hardness.

Theorem 6.5. PFDM-DEC is PSPACE-hard.

Proof. We will show the PFDM-DEC is PSPACE-hard by reducing the DFA union universality prob-

lem to PFDM-DEC. Given a set of DFAs, A1, A2, . . . , An, let the union of their alphabet be Σ. The

DFA union universality problem is to check LA(A1)∪LA(A2)∪ · · · ∪LA(An) = Σ∗. For each DFA

Ai, we first, we construct a DFA A′i, such that LA(A′i) = LA(Ai) and LI(A′i) = Σ∗:
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1. Initialize A′i as a copy of Ai.

2. If LI(A′i) ̸= Σ∗, then add a trap state v′ with a self-loop bearing all labels in Σ for each DFA

A′i. For each state w′ in A′i and every outgoing event y ∈ Σ, if y crashes when traced from

w′, build a transition from w′ in A′i to the trap state v′ under y.

3. Make all states corresponding to accepting states in Ai the accepting states for A′i.

Next, we build an NFA B′ as the union of all these A′i’s, so as to have LA(A1) ∪ LA(A2) ∪ · · · ∪

LA(An) = LA(B′). Additionally, no strings in Σ∗ crash on B′. The task, then, is to check whether

LA(B′) = Σ∗ holds or not.

To do so, create a filter F from B′ as follows:

1. Add the initial states, states, transitions of B′ to those of F;.

2. Color the copies of the accepting states in B′ green, and the copies of the non-accepting states

red.

3. Add one more state, and color it green. Make this state the destination reached from one

goal state under a fresh symbol z (i.e., where z is not a symbol from Σ).

By adding the new symbol z, we known that there is some string ending with z which outputs only

green in F.

Supposing H is a deterministic minimizer of F, there are two cases. First, if H is a one-state filter,

then it must be green because there are some strings that must output only green. But then, since the

one-state filter output simulates F, every string in Σ∗ must output at least green in F. Hence, every

string in Σ∗ must reach the accepting states in B′, and we conclude LA(B′) = Σ∗. Alternatively, if

H has more than one state, then there is at least one green state and one red state (Otherwise, H is

not minimal.). As a consequence, there must be some string in Σ∗ that can only output red. Those

strings with only red output never reach the accepting states in B′. So, consequently, LA(B′) ̸= Σ∗.

The procedure to solve PFDM-DEC involves checking whether there is a one-state minimizer

for F. If there is such a minimizer, then the accepting language of the union of all DFAs is Σ∗. Oth-
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erwise, it is not. Having given a polynomial time procedure to reduce the DFA union universality

problem to PFDM-DEC, which is itself known to be PSPACE-complete, shows that PFDM-DEC is

PSPACE-hard.

Since PFDM can be no easier than its decision version, we can claim that PFDM is PSPACE-hard

in terms of space complexity.

Theorem 6.6. PFDM is PSPACE-hard.

6.6.2 Is PFDM-DEC PSPACE-complete?

It seems natural to suppose that PFDM-DEC is simpler than PFM-DEC and should also be in

PSPACE, since the problem is narrower, focusing on more constrained (deterministic) minimizers.

However, from the perspective of space consumption, this needn’t be the case. The minimizer for

PFM is always smaller than (or equal to) the size of the filter provided as input. But this may no

longer be true in PFDM as the deterministic minimizer may be larger than the nondeterministic

input filter. Take the problem shown in Figure 6.12, and exchange the roles of the two graphs:

the filter in Figure 6.12a is a deterministic minimizer for the nondeterministic filter shown in Fig-

ure 6.12b. There, the deterministic minimizer has one more state than its nondeterministic input

filter.

But how much of a difference can there be? We give a construction for a family of filters

demonstrating that the size of the deterministic minimizer may grow so that its size is beyond any

polynomial in the input size. First, we make a nondeterministic input filter, then we follow that by

giving its deterministic minimizer.

Construction 6.1. Fix some natural number r, and construct the nondeterministic input filter with

r rows depicted in Figure 6.13a. Create a cycle of white states under a, where the number of white

states at row i ∈ N+ is the cycle of length pi, the ith prime number. For example, the number of

white states in rows 1, 2, 3 are 2, 3, 5, respectively. Create a black initial state connects, via a, to

one state at each of these r rows. At each row, starting from the state connected with the initial

one, build a transition to a new child state. Next, we will color the child state with one color from
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(a) A nondeterministic filter with n rows, where the number of white states at the ith row is the ith prime
number.

r1 r2 r3 . . . rq

p1r p2r p3r . . . p4r

a a

x1, x2, . . . , xr

a

x1, x2, . . . , xr

a

x1

x2, . . . , xr

a

x1
x2

xr

a

(b) A minimal deterministic filter for (a), where the total number of white states is the product of first n
prime numbers.

Figure 6.13: An example to show that the number of states in the deterministic minimizer is larger
than polynomial size of the nondeterministic input filter.
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the color list [o1, o2, . . . , opr ], which does not contain black and white. Each child state is colored

as the first one that is not chosen in the row.

An equivalent deterministic filter, as shown in Figure 6.13b, is produced via the power set

construction. Note that all states in the nondeterministic filter shown in Figure 6.13a that are

reached by the same string share the same color. Hence, there is but a single color for each state in

the deterministic filter: color the state in the deterministic filter with the color of the corresponding

states reached by the same string. (Part of the next lemma will show this to be the minimizer.)

Lemma 6.17. The deterministic minimizer of a nondeterministic input filter can exceed any poly-

nomial of the input size.

Proof. First we argue that the deterministic form of the nondeterministic input filter from Con-

struction 6.1 is a deterministic minimizer, then show that the gap between the size of the nonde-

terministic input filter and its deterministic minimizer is larger than any polynomial of the input

size.

The deterministic filter shown in Figure 6.13b is already a minimal one for the filter depicted in

Figure 6.13a. The n colors must be included as they are each produced by some string; the white

vertices could only be merged if there was a common divisor in the cycle lengths, but the cycle

lengths are all distinct primes. Hence, no pair of states in Figure 6.13b can be merged since they

either have different outputs or disagree on the outputs of their common extensions.

Let n be the total number of states in this nondeterministic input filter. Then we have n =

2 · S(r) + 1, where S(r) =
∑r

i=1 pi is summation of the first r prime numbers, and Bach and

Shallit[78] show that S(r) ∼ 1
2
r2 ln r holds asymptotically. When 1 < r, n = r2 ln r + 1 < r3.

Let z represent the total number of states in the deterministic filter. Then we have z = 1 +

P (r)+pr, where P (r) =
∏r

i=1 pi is the primorial denoting the product of the first r prime numbers.

According to the prime number theorem and the first Chebyshev function, we have that P (r) ∼
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e(1+o(1))r log r and pr ∼ r log r holds asymptotically. Hence,

z = 1 + P (r) + pr

= 1 + e(1+o(1))r log r + r log r > er for large r.

Since r > 3
√
n, we have z > e

3√n. So we write this lower bound of z as f(n) = e
3√n =

∑∞
m=0

n
m
3

m!

(Taylor series).

Now consider any polynomial of n of degree k and write it as g(n, k) =
∑k

m=0 αmn
m. Let

c = max{α0, α1, . . . , αk}. If n > c · (k + 1), then we have for all i ≤ k, the coefficients have

αin
i < c · nk, and the sum

∑i=k
i=0 αin

i < nk+1.

To bring the two bounds in relation to one another: when n > (3k+6)!, then f(n) > n
3k+6

3

(3k+6)!
>

n
3k+6

3

n
= nk+1, Hence, f(n) > nk+1 if n > (3k + 6)!. Thus for n > max{c · (k + 1), (3k + 6)!},

we have that z > f(n) > nk+1 > g(n, k). This is true for any k, so the size of the deterministic

minimizer, z, is larger than any polynomial of n.

Therefore, the number of states in the deterministic minimizer can exceed any polynomial of

the input size.

One implication of the preceding example is that:

Lemma 6.18. PFDM is not in P.

Proof. Since the size of the minimizer can be larger than any polynomial of the input size, it takes

more than polynomial time to output the minimizer. Therefore, PFDM ̸∈ P.

Then, considering time complexity further, we can conclude that PFDM is strictly NP-hard.

Theorem 6.7. PFDM is NP-hard, but not in P.

Proof. The deterministic input to deterministic output filter minimization problem, the decision

problem form of which is NP-complete [2], is properly contained in PFDM (one just happens

to select an input that is deterministic). We have that PFDM is NP-hard, and combining with

Lemma 6.18, we can conclude that PFDM is strictly NP-hard.
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To summarize, Construction 6.1 and Lemma 6.17 show that the gap between the size of the

deterministic minimizer can be larger than polynomial of the input size. It indicates that construct-

ing and storing the deterministic minimizer in its entirety to determine its size would disqualify

PFDM-DEC from PSPACE. Of course, other cleverer means may exist, so whether PFDM-DEC is

PSPACE (as a consequence, PFDM-DEC is PSPACE-complete) or not remains an open question.

6.7 A comparison between automata minimization and filter minimization

Det(F) min−−→ Det(F′) NDet(F) min−−→ NDet(F′) NDet(F) min−−→ Det(F′)

Automata

Filters

|V (F)| < |V (F′)|
(Filter)

|V (F)| ≥ |V (F′)|
(Filter)

P [79] PSPACE-complete [80] PSPACE-hard [80]

NP-complete [2] PSPACE-complete PSPACE-hard

Never Never Possible*

Possible
(Figure 6.1)

Possible
(Figure 6.11–6.12)

Possible
(Figure 6.11–6.12)

(II) (IV)

(I)

(II) (IV)

(I) (III) (I)

(I) Extra DOF in the output of the crashed strings.

(II) Extra DOF in the behavior of the strings in both F and F′.

(III) Extra DOF in the output of the states being nondeterministically reached.

(IV) The size of minimizer may be substantially larger than the input size.

* The size of the output filter can be substantially larger than the input size.

Figure 6.14: A comparison between hardness results of decision versions of automata minimiza-
tion and filter minimization.

With the preceding hardness results for filter minimization problems established, we now com-

pare them with the hardness of automata minimization. It is worthwhile to try distill intuition for a

couple of reasons: firstly, the automata hardness results were used in the arguments above, so their
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relationship might seem obvious at first blush. But the notion of equivalence is quite different, as

specifically are requirements on interaction vs. accepting languages. Also, secondly, the initial

supposition that the deterministic filter and deterministic automata minimization problems were

identical, was wrong.

To help elucidate, we introduce some lightweight notation for the problems, explicitly showing

the types of their inputs and outputs. We denote deterministic and nondeterministic structures as

Det and NDet respectively. Specifically, we write deterministic and nondeterministic automata as

DFA and NFA, and those for filters as DF and NF. Then the minimization problems can be written

as A min−−→B, which converts a structure of type A to a minimal structure of type B. Figure 6.14 maps

the connections using this convention.

Examining the first column: DFA min−−→DFA can be solved efficiently by identifying Myhill—

Nerode equivalence classes [79], while the decision version of DF min−−→DF is NP-complete. The

main reason for this hardness separation between these two problems is the extra degree of freedom

(DOF) for filter minimization. Filters can choose to assign any output for the strings that crash in

the filter (DOF I). To exploit this degree of freedom optimally, it is equivalent to searching for a

minimum clique cover in the compatibility graph of the input filter [81], which makes the problem

computationally hard.

The other two columns of Figure 6.14: As we consider nondeterminism in the input or output

structure, the hardness separation between automata minimization and filter minimization disap-

pears. Informally speaking, it appears that the hardness arising from DOF I is dominated by other

sources of complexity. When nondeterminism appears in both input and output, both NFA min−−→NFA

and NF min−−→NF are, as decision problems, PSPACE-complete [80]. For both, there could be multiple

states simultaneously reached by the same string (DOF II) though it takes no more than polynomial

space to check the outputs of those states. Though both are PSPACE-complete, the problems differ

in the degrees of freedom they have—though, clearly, this difference is not enough to manifest

as a hardness gap. On the one hand, NF min−−→NF has DOF I while NFA min−−→NFA does not. On the

other, NF min−−→NF requires all outputs of all states reached by the string be constrained, whereas
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NFA min−−→NFA can choose to accept the states or not, as long as at least one of them is accepted

(DOF III),

If we keep nondeterminism in the inputs but remove it from the outputs, the problems do not

become any easier. When outputs are restricted to be deterministic, the size of the output can

be substantially larger than that of the input filter, (IV). If one were to think of this as a search

problem, a more restrictive type can drastically increases the size of the search space. In particular,

the size of the minimal DFA for an n-state NFA can be 2n [82], and the size of the minimal DF for

an n-state NF can be larger than any polynomial of n (Figure 6.13). It only ever takes polynomial

space for DFA min−−→DFA and DF min−−→DF. But it is unclear whether this holds for NFA min−−→DFA and

NF min−−→DF, and the increase in output size is unfavourable, though inconclusive, evidence to the

contrary.

6.8 Discussions, open questions, and conjectures

In this section, we will revisit some of the results, build connections to the results from au-

tomata theory, propose open questions and conjectures.

6.8.1 Examining the gap between input and output for the problems of minimizing au-

tomata and filters

In both the filter minimization and automata minimization, when the input is deterministic, or

output is nondeterministic, the minimizer is always no larger than the input. In those problems,

the output is always less constrained than the input. But this is not true for the problem of finding

a deterministic minimizer for a nondeterministic input. The size of the minimizer can be larger

than the input filter. In fact, for the automata version NFA
min−−→ DFA, the minimizer can be

exponentially larger than the input. One example is to treat Figure 6.11a and 6.11b as automata

with the states containing label 3 as accepting states. Then Figure 6.11b is the minimal DFA for

the NFA in Figure 6.11a. The minimizer has 25−1 states, and is exponentially larger than the input.

On the other hand, for the filter version NF
min−−→ DF , we can only show in Figure 6.13a that the

minimizer is larger than any polynomial of the input. Whether the deterministic minimizer can be
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exponentially larger than the output filter still remains an open question.

Another question is how this gap is being created. In the automata treatment of Figure 6.11,

the exponential gap is constructed due to the rollout of the self-loop at the initial state. Similarly

in the minimization of nondeterministic Moore Machine, an example of a nondeterministic Moore

Automaton with a self-loop at the initial state is given in [83, Fig. 6], and the deterministic mini-

mizer of this example is also exponentially larger than the input. However, the strategy of looping

at the initial state does not work with filter minimization. The filter minimization algorithm may

choose to simply cut the nondeterministic edges, and obtain a minimizer with the same or smaller

size. An example is given in Figure 6.11c. We conjecture that the self-loops at the initial states of

the filter do not create an exponential gap between the filter and its minimizer.

6.8.2 Special cases

We will present some special but valuable automata and discuss about their implications to

filter and filter minimization.

6.8.2.1 Coherent Moore Automata and string single-outputting filters

A particular type of automaton, named coherent Nondeterministic Moore Automaton or c-

NMA, is proposed to allow limited nondeterminism in the output of the strings [83]. In a c-

NMA, all states reached by the same string must agree on their output. A deterministic Moore

Machine is a special c-NMA, since there is at most one state being reached by each string. But the

nondeterminism makes c-NMA more succinct than a deterministic Moore Machine to represent

the same input and output.

A similar object to c-NMA is the string single-outputting filter, which is defined below:

Definition 6.19 (string single-outputting). A filter F is string single-outputting if ∀s ∈ LI(F),

|C(F, s)| = 1.

The filter shown in Figure 6.13a is a string single-outputting filter, and its deterministic mini-

mizer in Figure 6.13b is larger than any polynomial of the size of the input filter.
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The string single-outputting filters are interesting because they comprise the solution set (or

space) of nondeterministic minimizers for deterministic vertex single-outputting filters, which are

also string single-outputting.

Lemma 6.19. There is always a string single-outputting minimizer for the problem PFM with string

single-outputting input filters.

Proof. Given an input filter F and its minimizer F′, if F′ is not string single-outputting, then we

will construct a string single-outputting minimizer F′′ and prove F′′ is also minimizer. First, the

initial states of F′ must share the same output. Second, every state in F′ must have exactly one

output. Otherwise, the states with multiple outputs can be removed and F′ is not minimal. Third,

for every state v′ in F′ and every label y, if it transitions to vertices with different outputs under y,

then keep an arbitrary edge transitioning from v′′ under y. This procedure will give a new filter F′′.

In addition, we have LI(F′) = LI(F′′), and C(F′′, s) ⊆ C(F′, s).

Next, we claim F′′ is also a minimal solution. Otherwise, there exists a string that does not

have the correct output. If there is a string s ̸∈ LI(F′′) such that C(F, s) ̸⊇ C(F′′, s), then we know

C(F, s) ̸⊇ C(F′, s), which contradicts with the fact that F′ is a minimal solution.

One question is about the computational complexity of reducing string single-outputting filters.

Since the problem of minimizing a string single-outputting filter falls into the problem PFM, where

the input does not need to be string single-outputting, the space complexity of minimizing a string

single-outputting filter is in PSPACE. One may ask what is the time complexity? Is the problem in

NP? Or can the problem of verifying the output simulating property of a solution on a string single-

outputting filter be solved in polynomial time? Unfortunately, we are not aware of any algorithm

to verify both language inclusion and output consistency in polynomial time. It remains to be an

open question to show whether the minimization of a string single-outputting input filter is NP or

not.
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6.8.2.2 Automata and filters with finite languages

In automata theory, there is also work studying automata with finite accepting languages. A

classical method to specify a finite language is to construct an acyclic deterministic finite automa-

ton, and such automata can be minimized as a trie [84]. A new type of structure, called cover

automata, was introduced by Câmpeanu, Santean and Yu [85]. These automata have accepting

languages, where the strings are restricted to be within some finite length. Compared to classical

finite automata, finite cover automata have an extra degree of freedom to include strings longer

than a particular length and those extra strings will not affect its accepting language. By includ-

ing those extra strings, a cover finite automaton can be potentially smaller than the acyclic finite

deterministic automata. There exist efficient algorithms to minimize the finite cover automata [85].

The ability to include extra strings is akin to the adjustment from language equality to lan-

guage inclusion, which has been the working requirement for all the filter minimization problems

studied here. In filter minimization, the filters with finite interaction languages have been studied

as tree filters, and the minimization of a tree filter is NP-hard [63]. This complexity difference

stimulates one to think that there are some special additional properties on the tree filter that might

reduce computational complexity of the tree filter minimization to be in polynomial time. In the

minimization of a cover automata, it can only introduce additional strings that are longer than a

particular length. This motivates us to define a tree filter such that none of the strings within a

particular length crashes on the filter:

Definition 6.20 (complete proper tree filter). Given a deterministic filter F with a finite interaction

language, let ℓ = max{|s| | s ∈ LI(F)} and Σ be the alphabet, then F is called a complete proper

tree filter, if (i) every state in F has a unique parent, (ii) the incoming edge bears only one label,

and (iii) Σℓ ⊆ LI(F), where Σℓ is the set of all strings within length ℓ.

We define a level function LF(v) for each state v in a complete proper tree filter F : (i) for the

v0 ∈ V0(F), LF(v0) = 0; (ii) for v, w ∈ V (F), LF(v) = LF(w) + 1 if there exists a label y such that

y ∈ τ(w, v). In a complete proper tree filter, the level function is complete and well-defined.
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Property 6.1. In a deterministic complete proper tree filter F, for any state v, w ∈ V (F), their

levels have implications for the extensions: (i) if LF(v) < LF(w), then Le
F (v) ⊃ Le

F (w); (ii) if

LF(v) = LF(w), then Le
F (v) = Le

F (w);

Lemma 6.20. To find a minimizer for a vertex single-outputting complete proper tree filter, we

only need to look for an equivalence relation.

Proof. In general, a deterministic minimizer of a deterministic filter is induced by a vertex cover.

Given a cover that yields a minimizer, we will construct a partition by picking an arbitrary group

for the states that are contained in multiple groups in the cover. By doing this, we will get a

partition and all states in each equivalence class are mutually compatible. Accordingly, merging

the states in the same equivalence class, we can obtain a deterministic filter with the same size as

that of the minimizer. The new filter has to output simulate the input filter. Otherwise, the given

minimizer fails to output simulate the input filter. Therefore, the deterministic filter constructed

from the partition is also a minimizer.

We then extend the level function from a state to a set of states, such that the level of a set is

the minimum level from all states in the set, i.e., LF(V ) = min{LF(v) | v ∈ V }.

Definition 6.21 (greedy partition). A partition K = {K1, K2, . . . , Km} on a vertex single-outputting

complete proper tree filter F, is a greedy partition, if (i) the states in each subset Ki are mutually

compatible, (ii) there does not exist a state v ∈ Ki, such that v is compatible with all states from a

subset Kj with a smaller level, i.e., Ki ̸= Kj , LF(Kj) < LF(v), and ∀w ∈ Kj, v ∼c w.

Lemma 6.21. Given a vertex single-outputting complete proper tree filter F and three states v1, v2,

v3 ∈ V (F) such LF(v1) < LF(v2) and LF(v1) < LF(v2), if v1 ∼c v2 and v1 ∼c v3, then v2 ∼c v3.

Lemma 6.22. There is always a greedy partition on a vertex single-outputting complete proper

tree filter that yields a minimizer.

Proof. According to Lemma 6.20, there is always a minimizer that is induced from a partition.

Given any partition, if it is not greedy, we can move the states to the partition with the smallest
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index and create a greedy partition. The filter induced from the greedy partition must be determin-

istic, have the same size, and output simulate the input filter. Otherwise, the given minimizer is not

a solution. As a consequence, the greedy partition also yields a minimizer.

Now, let’s pick one representative for each equivalence class in the partition, the state with the

minimum level. If there are several states with the same level, we pick an arbitrary one. The states

with the minimum level are the representatives, since their extensions consist of all those from the

states in the equivalence classes following Property 6.1:

Property 6.2. For each equivalence class [v] in a complete proper tree filter F with v as the repre-

sentative, Le
F(v) = ∪w∈[v]Le

F(w).

Lemma 6.23. In a greedy partition K = {K1, K2, . . . , Kn} on a vertex single-outputting com-

plete proper tree filter, the representatives from different equivalence classes must be mutually

incompatible.

Proof. Suppose vi and vj are representatives from equivalence classes Ki and Kj . Each of vi and

vj contains all the extensions of the states in their equivalence classes. If they are compatible, then

all states in Ki and Kj are mutually compatible, which contradicts with the fact that K is a greedy

partition.

Lemma 6.24. All greedy partitions on a vertex single-outputting complete proper tree filter must

share the same size.

Proof. Suppose there are two greedy partitions K1 and K2, where |K1| < |K2|. From K2, we

have |K2| mutually incompatible representatives. Two of them must be in the same equivalence

class in K1 according to the pigeon hole principle, which contradicts with the fact that K1 respects

the compatibility relation.

Theorem 6.8. Minimizing a vertex single-outputting complete proper tree filter is equivalent to

finding a greedy partition, which can be done in polynomial time.
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Proof. According to Lemma 6.22 and 6.24, we can construct a vertex single-outputting complete

proper tree filter minimizer from any greedy partition. In addition, finding a greedy partition can

be done in polynomial time.

6.9 Summary

In this section, we revisited and corrected existing ideas for combinatorial filter minimization,

by proposing a single-step compatibility relation, zipper constraints to enforce determinism, and

vertex cover representation to model both merging and split operations. These new ideas con-

tribute to the first known complete and practical algorithm to minimize a combinatorial filter. We

further generalized the notion of compatibility relation to minimizing vertex multi-outputting fil-

ters. Next, we examined the hardness results for a family of filter minimization problems, and

depicted the degrees of freedom that distinguish them from classical automata minimization. Due

to the close connection between filters and automata, we examined and compared their input-output

gap, discussed special filters inspired by coherent Moore Automata and cover automata, and the

minimization problems on these special filters.
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7. CONCLUSION AND FUTURE WORK

This dissertation examines privacy-preserving estimation and planning tasks from the design

perspective. It extends the existing estimation and planning tasks by stipulating the information

that is disclosed by or learned from the robot, and contributes algorithms to search for feasible

solutions for the robot’s estimation and planning tasks from the designer’s perspective. It also

contributes hardness results and algorithms to minimize the resource used by the estimators.

We first study privacy-preserving tracking problems, where the robot can strategically change

its sensor configuration to manipulate its estimation in a certain way. By fully characterizing

a class of privacy-preserving tracking strategies, we present impossibility results regarding the

robot’s tracking and privacy bounds, we show that the feasibility of privacy-preserving tracking is

sensitive to the robot’s initial belief, and we prove the asymptotical results of privacy-preserving

tracking with respect to the robot’s sensing power.

Then we turn to the privacy-preserving planning problems, where the robot is interacting with

the world and their interaction is being observed by an observer via a side-channel. We model the

imperfection of the side channel as an information disclosure policy, and develop algorithms to

jointly search for both plans and information disclosure policies. Here, the information from the

side channel is divulged in an online fashion. We also model the prior knowledge that is disclosed

to the observer offline, and examine its implications on the observer’s estimate. We further develop

algorithms to search for the solutions under different prior knowledge for the observer, even the

plan to be sought is the one that is disclosed.

We also examine sensor design in the privacy-preserving planning problems. The sensor is

modeled as a generalized information disclosure policy between the world and the robot, capturing

the imperfections about the robot’s observations of the world state. We abstract the senors as

covers, and propose an upper cover representation as a representative for a set of sensors. This

allows us to enumerate all abstract sensors that suffice for a privacy-preserving planning task. The

sensor fabrication constraints are also pushed to the sensor enumeration process.
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In the privacy-preserving task, the observer uses a combinatorial filter to construct an esti-

mate. We observe that the structure of the filter used by the observer has a significant impact on

its estimate. To understand the filter structure and its functionality, we study the filters from the

resource minimization perspective, where the objective is to minimize the state complexity of the

filter while preserving its functionality. We revisit and correct the existing ideas for filter mini-

mization, and propose the first known complete and practical algorithm for both classical vertex

single-outputting filter minimization problem and its vertex multi-outputting version. We further

examine the complexity for a family of nondeterministic filter minimization problems, and depict

the degrees of freedom that can be exploited by the algorithm to minimize a filter versus an au-

tomaton. We observe that those degrees of freedom create a complexity gap between deterministic

minimization problems, but are not strong enough to create a gap between the nondeterministic

ones. Among the nondeterministic minimization problems, there is a special class of problems

where the minimizer is larger than the input filter. We examine the gap size for such problems in

both automata and filter minimization, and discuss how to construct such gap. We are also inspired

by special cases from automata minimization, and discuss about the minimization of special filters

including string single-outputting filters and complete proper tree filters.

For future work, we would like to consider the computational complexity of finding nonde-

terministic minimizers for both deterministic filters and string single-outputting filters. These two

classes of filter minimization problems fall into the category of nondeterministic filter minimiza-

tion problems, which are proved to be PSPACE-hard. But they also possess extra properties, prop-

erties of both their inputs and their minimizers. For example, both of their minimizers are string

single-outputting. It is not clear whether these extra properties will make them different from gen-

eral nondeterministic filter minimization. In particular, we would like to ask whether these two

problems are in NP. In addition to the complexity results, we would also like to develop algorithms

for nondeterministic filter minimization problems. To solve a PSPACE-hard problem, we need to

reduce it to the existing PSPACE-complete ones, such as nondeterministic automata minimization.

Similar to the deterministic filter minimization problems, one important part is to efficiently specify
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the constraints for output simulating in nondeterministic filters, without explicitly determinizing

them.

Another thread is to extend filter minimization toward plan minimization. In planning prob-

lems, plans are represented as graphs. The number of states in the plan has an impact on the amount

of resources used to execute this plan or to store the plan. Plan minimization is either to reduce

the number of states in an existing plan, or to find a plan with the smallest number of states that

achieves the goal in the world. Finding the smallest plan in the world can be treated as compressing

a plan closure while avoiding cycles. One may think that plans can be treated as filters where the

observations are the inputs and actions are the outputs. In a plan, the future observations depend on

which action is chosen. However, this is not true in filters where the future events only depend on

the states rather than the output of the states. On the other hand, plan minimization is different from

filter minimization in terms of the extra strings the algorithm can introduce: (i) plan minimization

can only include additional strings that start with new observations, since introducing strings start-

ing with new actions will make the plan unsafe in the world; (ii) it only needs to choose at least one

action if there are multiple actions available at each action state. To understand the connections

and differences between plan minimization and filter minimization, plan minimization algorithms

have to be developed.
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