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ABSTRACT

The current study focuses on developing an autonomous vertical flight aircraft ship landing

system by directly automating the established Navy helicopter ship landing procedure. The cen-

tral idea involves visually tracking a gyro-stabilized horizon bar installed on most Navy ships to

approach and land vertically independent of deck motions. This was accomplished through the de-

velopment of a rotorcraft flight dynamics modeling framework and vision-based control systems

as well as conducting simulations and flight tests.

The framework, named Texas A&M Rotorcraft Analysis Code (TRAC), was developed as a

modular tool that could model any rotorcraft configuration at a low computational cost. A UH-60

helicopter was modeled as a baseline aircraft and validated using the US Army flight test data.

A linear quadratic regulator (LQR) controller was utilized to stabilize and control the helicopter

during autonomous ship landing simulations.

The vision system was developed to obtain the visual information that a pilot perceives during

ship approach and landing. It detects the ship at long-distance by utilizing machine/deep learning-

based detection and at close range, it utilizes uniquely developed vision algorithms to detect the

horizon bar to precisely estimate the aircraft position and orientation relative to the bar. It demon-

strated 250 meters of detection range for a 6 x 6 ft sub-scale ship platform, which translates to a

range of 17.3 kilometers for a full-scale 50 x 50 ft typical small ship. The distance and attitude

estimations were validated using the measurements from an accurate 3D motion capture system

(VICON), which demonstrated sub-centimeter and sub-degree accuracy.

To control the aircraft based on the perceived visual information, both nonlinear control and

deep reinforcement learning control strategies were developed. The nonlinear controller demon-

strated robust tracking capability even with 0.5 seconds of time delay and estimation noise. When

flight-tested in 5 m/s wind gust, the deep reinforcement learning control demonstrated superior

disturbance rejection capability, with 50% reduced drift at a 3 times faster rate compared to con-

ventional control systems. Both vision and control systems were implemented on a quadrotor
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unmanned aircraft and extensive flight tests were conducted to demonstrate accurate tracking in

challenging conditions and safe vertical landing on a translating ship platform with 6 degrees of

freedom motions.

iii



DEDICATION

To my parents Byungkyun Lee and Okhwa Lee, for giving me wings,

and to my wife Sunhye Lee and my sons Jaeho Lee and Thomas Jaehee Lee, for flying with me.

iv



ACKNOWLEDGMENTS

First and foremost, I owe a large debt of gratitude to Dr. Moble Benedict. Without his careful

guidance and supervision, development of the system presented in this dissertation would have

been nearly impossible. Every time I lost the way to go, he always shed light on the path to follow.

He always listened to my opinions with open mind and shared great insights with me. Every

moment I spent with him was a great pleasure and made me open eyes to the new world.

I also would like to express my sincere gratitude to Dr. Ananth Sridharan at the University

of Maryland for the guidance and support in modeling and control system design. He always

answered my questions and his feedback played an important role in my work. I am also thankful

to my committee members Dr. John Valasek, Dr. Sivakumar Rathinam, and Dr. Dileep Kalathil

for giving me precious feedback and showing me visions.

I am also grateful to all the friends that I met here at Texas A&M University, Vinicius Goecks,

Niladri Das, Kookjin Sung, Woosang Park, Sunsoo Kim, David Coleman, Carl Runco, Hunter

Denton, Atanu Halder, Farid Saemi, Roshan Suresh, Roshan Thomas, and Utkarsh Mishra for

their help and sharing ideas. It is impossible to remember all, and I apologize to those I have

inadvertently left out.

I owe my deepest thanks to my family - my father, Byungkyun Lee, my mother, Okhwa Lee,

and my sister Younhye Lee, who have always stood by me and supported me through my career.

My wife, Sunhye Lee has sacrificed so many things in her life and beared with my busy life. I

promise that I will pay back my debts in the rest of life. My lovely two sons, Jaeho Lee and

Thomas Jaehee Lee are my reason for life. They motivated me to become a father they can be

proud of. I always love you as you are.

v



CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of professors Moble Benedict

and John Valasek in the department of aerospace engineering, professor Sivakumar Rathinam in

the department of mechanical engineering, and professor Dileep Kalathil in the department of

electrical and computer engineering. Also, Dr. Ananth Sridharan at the University of Maryland

gave guidance for mathematical rotorcraft modeling.

Graduate student Vishnu Saj in the department of electrical and computer engineering con-

tributed to the development of the classical computer vision system and all the other work for the

dissertation was completed by the author.

Funding Sources

This study has been funded by the Center for Unmanned Aircraft Systems (C-UAS), a National

Science Foundation Industry/University Cooperative Research Center (I/UCRC) under NSF award

Numbers IIP-1161036 and CNS-1946890, along with significant contributions from C-UAS indus-

try members. Also, the graduate study was supported by a fellowship from the Republic of Korea

Navy and a research scholarship from the Vertical Flight Foundation.

vi



NOMENCLATURE

A Acceleration vector

State matrix

Camera intrinsic matrix

Action space

a Lift-curve slope

Long-range controller constant

at Action at time t

B Control matrix

b Close-range controller constant

CE Current yaw estimate

CM Current yaw measurement

c Blade section chord length

Setpoint

cd Blade section drag coefficient

cl Blade section lift coefficient

cm Blade section pitching moment coefficient

cu Corner position-column

cv Corner position-row

D Replay Buffer

d Long-range controller constant

Deviation from target, meter

de(tk) Error difference between time tk and tk−1
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dtk Time difference between time tk and tk−1

E Young’s Modulus

Acceleration coupling matrix

e Hinge offset of main rotor blade

e(tk) Error at time tk

f(x) Probability density function

fx Focal length of camera in horizontal direction

fy Focal length of camera in vertical direction

G Shear modulus

g Acceleration due to gravity

H Hermite interpolation polynomials

h(tk) Height of bounding rectangle at time tk

Ib Mass flapping moment of inertia

Ixx, Iyy, Izz Aircraft mass moments of inertia about body axes

Ixy, Ixz, Iyz Aircraft products of inertia

iB, jB, kB Unit vectors of body-fixed frame

iF , jF , kF Unit vectors of blade flapped frame

iG, jG, kG Unit vectors of earth-fixed frame

iNR, jNR, kNR Unit vectors of blade non-rotating frame

iR, jR, kR Unit vectors of blade rotating frame

iL, jL, kL Unit vectors of blade lagged frame

iTPP , jTPP , kTPP Unit vectors of tip path plane frame

K Linear portion of stiffness matrix

KG Kalman gain

KD Derivative gain

viii



KI Integral gain

KP Proportional gain

L Total applied moment about body x-axis

L(φ,D) Mean squared Bellman error function

M Total applied moment about body y-axis

Linear portion of mass matrix

m Long-range controller constant

mb Blade mass per unit length

N Total applied moment about body z-axis

Nb Number of blades

O1x3 1x3 zero matrix

PE Previous yaw estimate

p Roll rate of aircraft

Indicator to check whether a terminal state or not

QN Measurement noise covariance

Q(s, a) Q-value function

q Pitch rate of aircraft

Dynamic pressure

R Main rotor radius

Position vector

Rotation matrix

Rbasic Basic rotation matrix

Rmodified Modified rotation matrix

Rt Cumulative Rewards

RN Process noise covariance
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r Yaw rate of aircraft

r(tk) Relative position at time tk

S State Space

s Scaling factor

st State at time t

sw Window size

TBG Transformation matrix from earth-fixed frame to body-fixed
frame

TGB Transformation matrix from body-fixed frame to earth-fixed
frame

TNB Transformation matrix from body-fixed frame to blade non-
rotating frame

TRN Transformation matrix from blade non-rotating frame to
blade rotating frame

TFR Transformation matrix from blade rotating frame to blade
flapped frame

TLF Transformation matrix from blade flapped frame to blade
lagged frame

TTN Transformation matrix from blade non-rotating frame to tip
path plane frame

t Time (sec)

Translation vector

u Forward speed of the aircraft

Control vector

Image pixel position-column

u(tk) Control law

u0 Center of image-column

V Velocity vector

V (s) Value function

v Lateral speed of the aircraft

Image pixel position-row
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vx Forward relative speed, m/s

vy Sideward relative speed, m/s

v0 Center of image-row

w Vertical speed of the aircraft, angular rates vector

w(tk) Width of bounding rectangle at time tk

X Total applied force along body x-axis

Sideward relative distance, meter

x Trim vector

Forward relative distance, meter

Y Total applied force along body y-axis

Vertical relative distance, meter

y State vector

Sideward relative distance, meter

Z Total applied force along body z-axis

Forward relative distance, meter

α Relative yaw angle, rad

αF Aircraft angle of attack

αs Longitudinal shaft tilt angle

β Relative pitch angle, rad

βF Fuselage sideslip angle

βS Lateral shaft tilt angle

βo Blade coning angle

β1c Longitudinal blade flapping coefficient

β1s Lateral blade flapping coefficient

Λ Tail rotor cant angle
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γ Flight path angle

Relative roll angle, rad

Discount factor

ζo Blade mean lagging angle

ζ1c Longitudinal blade lagging coefficient

ζ1s Lateral blade lagging coefficient

θ Aircraft pitch attitude Euler angle

Blade pitch angles associated with geometric rotation

θo Collective control stick angle

θ1c Lateral cyclic control stick angle

θ1s Longitudinal cyclic control stick angle

θTR Tail rotor control stick (pedal) angle

θtw Built-in blade twist

λo Steady portions of main rotor inflow

λ1c Cosine portions of main rotor inflow

λ1s Sine portions of main rotor inflow

λtr Tail rotor inflow

µ Main rotor advance ratio

Mean value

Π Policy space

π Policy

π∗ Optimal policy

φ Q-value network parameter

ρ Air density

ρu Parameter to convert pixels to SI units-column
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ρv Parameter to convert pixels to SI units-row

σ Standard deviation

φ Aircraft roll attitude Euler angle

φF Fuselage roll angle

χ Wake skew angle

ψ Aircraft yaw attitude Euler angle

Blade azimuth angle

Ω Main rotor speed

∇f(u, v) Image gradient

BEMT Blade Element Momentum Theory

DDPG Deep Deterministic Policy Gradient

DGPS Differential Global Positioning System

DOF Degrees Of Freedom

DQN Deep Q-Networks

FAA Federal Aviation Administration

FDR Flight Data Recorder

FHD Full High Definition

GPS Global Positioning System

HAFOV Horizontal Angular Field of View

HOSTAC Helicopter Operations from Ships other Than Aircraft Carri-
ers

HSV Hue-Saturation-Value

IR Infrared Radiation

JPALS Joint Precision Approach and Landing System

LQR Linear Quadratic Regulator

LTI Linear Time Invariant
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MAP Missed Approach Point

MPC Model Predictive Control

NATO North Atlantic Treaty Organization

NATOPS Naval Air Training and Operating Procedures Standardiza-
tion

NSF National Science Foundation

ODE Ordinary Differential Equation

PD Proportional-Derivative

PDE Partial Differential Equation

PID Proportional-Integral-Derivative

PnP Perspective-n-Point

PPO Proximal Policy Optimization

RGB Red, Green, Blue

RL Reinforcement Learning

TD3 Twin Delayed DDPG

TPP Tip Path Plane

TRPO Trust Region Policy Optimization

UAV Unmanned Aerial Vehicle

VTOL Vertical Takeoff and Landing
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1. INTRODUCTION

Landing a helicopter on a moving ship deck has always been a challenging task. However, this

is unavoidable and forms the basis of all maritime air operations. Looking at the naval history of

ship landing, it was recorded that XOP-1, an autogyro shown in Fig. 1.1, was the first rotary-wing

aircraft landed and took off from a ship at sea on September 23, 1931. The ship was the U.S.

Navy’s first aircraft carrier United States Ship (USS) Langley (CV-1), which had a large flight

deck that was 165.2 meters long and 19.9 meters wide providing sufficient space for the operation

of vertical take-off and landing (VTOL) capable aircraft.

(a) Pitcairn autogyro XOP-1 [10] (b) USS Langley (CV-1) [11]

Figure 1.1: First rotary-wing aircraft landing on a ship

Since this historical autogyro landing on the aircraft carrier, it took another 13 years for a

helicopter to land on a ship with a single flight deck. In early January 1944, the Sikorsky R-4

helicopter also known as Hoverfly/HNS-1 landed on the British steam tanker Daghestan as shown

in Fig. 1.2. This is the first recorded helicopter landing on a single deck ship.
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(a) Sikorsky R-4 helicopter (b) British steam tanker Daghestan

Figure 1.2: First helicopter landing on a single deck ship [1]

On June 15th, 1944 the Sikorsky R-4 helicopter also landed on the United States Coast Guard

Cutter (USCGC) Cobb (WPG-181). It was the first U.S. helicopter carrier that was converted from

the turbine-powered steamship and had a 38 x 63 ft helicopter flight deck. Since then, helicopters

have been widely utilized in Navy operations such as air transportation, search and rescue, sea pa-

trol, anti-submarine warfare, replenishment, and amphibious warfare. Later, unmanned helicopters

also appeared in Navy operations. On December 7th, 1960 the unmanned helicopter QH-50 shown

in Fig. 1.3 landed on USS Hazelwood (DD-531) without a safety pilot on board. It was the world’s

first unmanned, remotely piloted helicopter ship landing.

Figure 1.3: First unmanned helicopter (QH-50) that landed on a ship [2]
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As aircraft technology advanced, multiple vertical take-off and landing (VTOL) capable air-

craft were introduced and used more actively at sea for various purposes, which led to growing

safety concerns. To enhance the safety related to landing on small ships, safety countermeasures

were implemented such as the establishment of ship landing procedures and pilot aid equipment.

One of the efforts towards safe helicopter ship landing is the Helicopter Operations from Ships

other Than Aircraft Carriers (HOSTAC) program initiated by the North Atlantic Treaty Organiza-

tion (NATO). It aims to establish the appropriate standards and also exchange national information

for successful and safe helicopter operations. It aims to establish the appropriate standards and

also exchange national information for successful and safe helicopter operations. It became the

global standard as more countries participated. Although significant efforts over the past few

decades contributed to enhancing safety, helicopter ship landing accidents continue to occur even

today. Therefore, automating such a demanding job is crucial to aircraft safety and survivability;

however, autonomous landing is still not common in VTOL aircraft shipboard operations even 80

years after the first historical helicopter ship landing. In recent years, with the rapid rise of Un-

manned Aerial Vehicles (UAVs) for maritime applications, many efforts are targeted at developing

autonomous ship landing systems for VTOL UAVs. Since the first autonomous ship landing of an

unmanned VTOL UAV RQ-8A Fire Scout in January 2006, the autonomous ship landing capable

S-100 CAMCOPTER UAV was introduced in 2009 and the VSR700 optionally piloted vehicle

(OPV) demonstrated the autonomous deck landing in 2020, which are shown in Fig. 1.4.

(a) Northrop Grumman RQ-8A Fire
Scout [12]

(b) Boeing S-100 CAMCOPTER [13] (c) Airbus VSR700 OPV [14]

Figure 1.4: Autonomous ship/deck landing capable VTOL unmanned aircraft
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All these aircraft executed autonomous ship/deck landing by tracking the landing deck using

multiple sensors. Although it might appear natural to track the landing location, this landing

mechanism is different from the helicopter ship landing procedure that has been practiced for

several decades. Therefore, this study begins by deeply understanding the helicopter ship landing

procedure in order to seek a unified and practical autonomous ship landing solution that can be

applied to any manned or unmanned VTOL aircraft.

1.1 Helicopter Ship Landing Procedure

There are many factors that make helicopter ship landing extremely difficult such as small land-

ing space, six degrees of freedom (DOF) deck motions, limited visual references for pilots, and

lack of alternative landing places as discussed in Refs. [15, 16]. As the environment is completely

different from landing on the ground, the ship landing carried out in a unique fashion while adapt-

ing to the given situations. Each ship has its own approach chart and Fig. 1.5 shows an example

tactical air navigation system (TACAN) approach chart presented in the HOSTAC.

Figure 1.5: TACAN approach chart [3]
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TACAN is radio-based navigational aid widely used in the military since 1950 to provide the

relative bearing and distance from a ship, which is sufficient information for aircraft to approach

the ship from a distance. The missed approach point (MAP) and approach angle are two important

things to note in the chart. First, the MAP is designated at 0.5 nautical miles away from the ship. If

the pilot fails to identify the ship visually at the MAP, he/she should abort ship landing as instructed

in the chart. The approach angle can be calculated using distance and altitude information between

the points. Aircraft descends 100 ft during 1 nautical mile thus the approach angle is approximately

1 degree, which characterizes the ship approach as a horizontal approach. During the last phase of

approach and landing, pilots are assisted by visual aids as shown in Fig. 1.6.

Figure 1.6: Standard flight deck references [3]
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The standard flight deck references consist of lights and pose indicating bars. Above all, the

horizon reference bar plays a key role for safe landing and an example horizon bar is shown in Fig.

1.7.

Figure 1.7: Horizon reference bar [4]

Horizon bar is gyro-stabilized and therefore, it indicates the true horizon independent of the

ship motions. Navy helicopter pilots are trained not to follow the ship deck motions but to refer

to the horizon bar. In this way, pilots can avoid spatial disorientation caused by the ship motions

and the horizon bar acts as an excellent solution to the lack of availability of a fixed horizon to

refer to. This is a critical element to maintain the right sense of helicopter attitude. Once the

helicopter hovers in a stable fashion over the deck, the pilot waits for a quiescent moment in the

ship motion, then conducts vertical landing quickly to prevent the ship deck from impacting one

of the helicopter landing gear skids/wheels causing a rollover. This vertical landing manner is

proven safe within the operating limits of the helicopter and currently being used in practice. Ship

landing limits vary depending on the type of helicopter and ship, approach direction, day or night,

and assist equipment. The HOSTAC ship helicopter operating limit (SHOL) in the case of the

straight-in approach is defined as shown in Fig. 1.8.
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(a) Day operation (b) Night operation

Figure 1.8: HOSTAC SHOL envelope [3]

The envelopes show wind direction and magnitude boundaries for safe take-off and landing,

which are differently imposed for daytime and night-time operations. Along with the wind condi-

tions, HOSTAC SHOL also includes deck motion limits depending on helicopter configurations,

day operation, night operation, and night operation with a night vision device (NVD) as described

in Table 1.1.

Configuration
Day Night(Conventional) Night(NVD)

Pitch Roll Pitch Roll Pitch Roll
Skid/Narrow Wheel Base/

High C.G./Tail Wheel ±1◦ ±3◦ ±1◦ ±2◦ ±1◦ ±2◦

Wheel without
deck securing system ±2◦ ±4◦ ±1◦ ±3◦ ±1◦ ±3◦

Wheel with
deck securing system ±2◦ ±6◦ ±1◦ ±4◦ ±1◦ ±4◦

Table 1.1: HOSTAC SHOL deck motion limits [3]
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In the Naval Air Training and Operating Procedures Standardization (NATOPS) program, these

limits are defined for a specific type of helicopter and ship [17]. SHOLs are derived by test pilots

during the first of class flying trial (FOCFT) for each helicopter and ship. The boundaries are set

when either the pilot’s workload becomes too much for safe, accurate, and consistent landings or

aircraft reaches its operating limits.

As shown in Table 1.2, The key characteristics of helicopter ship landing can be summarized as

horizontal approach assisted by visual aids, vertical landing without following the deck motions,

and varying operational limits.

Approaching manner Horizontal approach (descent angle: 1◦)

Approaching course Port(left side of ship), starboard(right side of ship), stern(straight-in)

Landing manner Vertical landing without following deck motions

Visual aids Lights, reference bars

Wind condition*

Day: max. 35 knots within 20◦ from ship heading,

max. 30 knots between 20◦ and 30◦ from ship heading

Night: max. 30 knots within 30◦ from ship heading

Deck motion limits*
Day: ±1◦ ∼ ±2◦ pitch, ±3◦ ∼±6◦ roll

Night: ±1◦ pitch, ±2◦ ∼ ±4◦ roll
* can vary subject to a specific helicopter and ship.

Table 1.2: Characteristics of helicopter ship landing

This study intends to develop a practical autonomous landing solution based on an in-depth

understanding of the helicopter ship landing procedure and demonstrate it through extensive sim-

ulations and flight tests. The first step towards this objective is to conduct helicopter ship landing

simulations by developing a helicopter flight dynamics model coupled with autonomous flight

control systems.
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1.2 Helicopter Flight Dynamics Modeling

In order to predict helicopter responses in various flight conditions, there have been multiple

comprehensive helicopter flight dynamics modeling tools from government research institutes,

industry, and academia. Some of the major helicopter dynamic modeling frameworks since 1960

are shown in Fig. 1.9 by their organizations and the approximate time frame at which they were

introduced.

Figure 1.9: Comprehensive helicopter flight dynamics modeling frameworks

The helicopter flight dynamics models were first introduced by the helicopter manufacturing

companies during the early years followed by government organizations and university-based re-

search groups. These models have been used for various purposes such as trim and stability anal-

yses, optimizing handling qualities, and flight control design. The modeling frameworks can be

categorized based on the level of fidelity defined according to the characteristics of aerodynamics

and dynamics models as shown in Table 1.3. With the computational resources available today,

many of the modern helicopter flight dynamics modeling tools can yield accurate predictions that

closely match flight testing results.
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Fidelity level Aerodynamics Characteristics Dynamics Characteristics

Level 0
Linear airfoil aerodynamics

Rigid blades with
steady-state flapping motionStatic uniform inflow

Averaged aerodynamic loads

Level 1
Linear airfoil aerodynamics

Rigid blades with
quasi-steady motionDynamic inflow

Analytically integrated aerodynamic loads

Level 2

Nonlinear airfoil aerodynamics

Rigid blades with
flap and lag dynamics

Dynamic inflow

Local effects of blade-vortex interaction

Numerically integrated aerodynamic loads

Level 3
Nonlinear 3D aerodynamics with full wake analysis

Elastic bladesUnsteady aerodynamics and compressibility effects

Numerically integrated aerodynamic loads

Table 1.3: Classification of helicopter flight dynamics models [7]

Level 0 and 1 models are based on linear airfoil aerodynamics and rigid blade dynamics with

steady steady motion, which is far from the state of the art compared to current standards of mod-

eling. Level 2 and 3 models can capture complicated airflow and blade motions thus yield sophis-

ticated predictions validated by experimental data.

Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD) was

developed at NASA Ames Research Center and the U.S. Army in 1980. Later in 1988, CAM-

RAD/JA was developed by Johnson Aeronautics. The dynamics model of CAMRAD/JA includes

a single main rotor, tandem main rotor, and coaxial rotor systems. It can also model articulated, hin-

geless, gimballed, and teetering rotor systems with elastic fuselage and blades. The aerodynamics

model of CAMRAD/JA covers dual-peak blade circulation distributions, second-order lifting-line

theory, roll-up representations, swept blade tips, and rotor-body interactions. Also, the compu-

tational fluid dynamics (CFD) model is loosely coupled with prescribed air load increments and

local angle of attack computations for boundary conditions. The wake model of CAMRAD/JA,
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which is based on the Scully free-wake geometry, was also used in the other modeling frameworks

such as COPTER, UMARC, and 2GCHAS.

FLIGHTLAB was developed by Advanced Rotorcraft Technology Inc. in 1989. This commer-

cially available framework developed as a real-time blade element helicopter simulation program

has been updated until today. The dynamics model of FLIGHTLAB includes a rigid fuselage and

elastic blades with coupled flapping and lagging motions. The aerodynamics model of FLIGHT-

LAB uses the Peters-He finite-state dynamic inflow [18].

University of Maryland Advance Rotorcraft Code (UMARC) was developed in 1990. It can

model various configurations including articulated, hingeless, bearingless rotors, servo-flap con-

trol, and tiltrotor aircraft. The dynamics model of UMARC covers both rigid and elastic fuselage

and blades with coupled flapping, lagging, and torsion. The aerodynamics model of UMARC uses

the Bagai–Leishman relaxation-free wake model [19]. It has been used for investigation of coupled

trim and rotor response, blade and hub loads, aeroelastic stability, ground and air resonance, vibra-

tion, gust response, higher harmonic control, dynamics of composite rotors, optimization, and has

been coupled with CFD.

HeliUM was introduced in 2010 [20]. It was derived from the original GenHel [21]. The

dynamics model of HeliUM includes rigid fuselage and elastic blades with coupled flapping, lag-

ging, and torsion. The aerodynamics model of HeliUM includes the Bagai–Leishman relaxation-

free wake [19] and the Bhagwat–Leishman time-marching model [22]. It can find a trim solution,

extract linearized models, and obtain responses from pilot input.

Texas A&M University Rotorcraft Analysis Code (TRAC) was derived from the Helium by the

author [23, 24], with some modifications in aerodynamics and more added features. The TRAC

has three major functionalities which are (1) modeling comprehensive helicopter flight dynamics

with fast computation and reasonable accuracy, (2) adopting and analyzing a new component or

new aircraft configuration, and (3) integrating a control system into the model for autonomous

flight simulations.

UH-60 helicopter is selected as a baseline rotorcraft for TRAC due to a large amount of flight
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test data available for validation. The fuselage, main and tail rotor, horizontal tail (stabilator), and

vertical tail (fin) are individually modeled and integrated into a complete UH-60 model. Instead

of using a free wake model or CFD for fast computation, the rotor component model adopts Pitt-

Peters linear inflow model [25, 26] to simulate the main rotor wake, and experimental data to

predict fuselage drag and look-up tables for aerodynamic coefficients. This mathematical UH-60

helicopter model computes trim results for helicopter attitude, rotor blade flapping and lagging

angles, required power, and control inputs at given flight conditions, which are validated by the US

Army flight test data [27].

Since TRAC integrates multiple sub-component models into one, it is convenient to add or

remove a component and analyze the effect. It can also model a new aircraft configuration con-

veniently by modifying the existing components as shown in Fig. 1.10. For example, TRAC

was used to develop a coaxial rotor personal air vehicle (PAV) model and conduct extensive flight

simulations as part of the Boeing GoFly challenge [28].

Figure 1.10: Expandability of rotorcraft flight dynamics modeling framework TRAC

Beyond the trim analysis, TRAC can extract linearized models at various flight conditions
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such as hovering, vertical climb and descent, level forward flight, climb and descent with different

forward velocities, and coordinated turn with or without climb and descent. All of the linear models

are extracted based on the first-order Taylor series expansion, which can be coupled with any linear

control system. Linear Quadratic Regulator (LQR), which is a class of optimal control systems,

is constructed using the extracted model for non-zero setpoint tracking. The full flight simulation

can be accomplished by the LQR control system in the MATLAB program and visualized in the

X-plane flight simulator.

At an earlier stage of the study towards automating real helicopter ship landing, TRAC is used

to prove the concept by simulating fully autonomous flight including steady forward flight, coordi-

nated turn, descent, deceleration, and final landing on a ship deck. For each phase of this complex

flight maneuver, different linearized models for the UH-60 helicopter dynamics are extracted.

1.3 Autonomous Flight Control Systems

There are numerous ways to configure the flight control system for autonomous ship/moving-

platform landing and various control algorithms have been applied such as proportional-derivative

(PD) control [29, 30, 31], proportional-integral-derivative (PID) control [32, 33, 34], gain-scheduled

PID control [35], linear quadratic regulator (LQR) [24, 23, 36], adaptive control [37, 38, 39], non-

linear control [40, 41, 42, 43], and reinforcement learning-based control [44, 45]. In the present

study, to figure out the most appropriate control solution, a wide variety of control techniques

are implemented such as gain-scheduled PID control, nonlinear PID control, LQR control, and

reinforcement learning-based control along with the moving average filter and/or Kalman filter.

Depending on the type of sensors used to obtain information, autonomous ship landing control

systems can be classified mainly by either GPS- or vision-based methods. Approaches using GPS

can be used anywhere on the globe and the accuracy has been progressed remarkably. On the other

hand, approaches using vision-based navigation are operational in a GPS-denied environment.

Thus, previous researches regarding the GPS- and vision-based approaches have been thoroughly

studied to understand the current state and to analyze the pros and cons of each approach.
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1.3.1 GPS-based approach

First, GPS-based navigation methods are widely surveyed and categorized as shown in Table

1.4, including landing on a ship/moving platform and ground/runway.

Ref. Controller Aircraft System Details

[34], [31] PID [34], VTOL 6 DOF simulations

PD with fuzzy Pitch, roll and altitude control

logic [31]

[41], [42] Nonlinear Feedback Fixed Wing [41], [43], 3 DOF aircraft model

[43] Linearization VTOL [42] Ground effect

[46] Sliding Mode Control Fixed Wing 6 DOF Nonlinear Model

Comparison with PID controller

Lyapunov stability criteria

[47], [48] Backstepping and Fixed Wing [47], 6 DOF Model

[6] Neural Networks VTOL [48], [6] Flapping correction and

servo dynamics

[49] Hybrid Control Simulated for a Landing as a sequence of tasks

general UAV Switching strategy between

controllers

Design correctness analyzed by

a reachability computation

Table 1.4: Comparison of GPS-based landing methods [8]

Since the altitude measurement from the GPS is not accurate, additional sensors such as radar

altimeter, barometric altimeter or ultrasonic sensor are also used in conjunction with GPS. With

the advances in GPS technology, the accuracy has progressed remarkably as shown in Table 1.5,

which is enabling the use of GPS for autonomous ship landing.
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Category Mode Horizontal Accuracy

Stand-Alone Civilian receiver, SA on (historical) 100 m

Stand-Alone Civilian receiver, SA off (current) 5 - 8 m

Stand-Alone Military receiver, (dual frequency) 3 - 5 m

Differential Code differential 1 - 3 m

Differential Carrier-smoothed code differential 0.1 - 1 m

Differential Precise carrier-phase (kinematic) 1 - 2 cm

Differential Precise carrier-phase 1 - 2 mm

Table 1.5: Typical GPS Accuracy [9]

Joint Precision Approach and Landing System (JPALS) was developed by the department of

the Navy [5, 50, 51].

Figure 1.11: JPALS navigation signals include GPS broadcasts and a ship-based communication
link [5]

To approach and land on a ship, JPALS acquires the orientation states of the landing deck
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with respect to the earth-fixed frame, then the aircraft matches its attitude to the deck’s attitude.

In addition, the GPS sensors are located around the landing deck and the relative position of the

landing point from the sensors should be known. A unique challenge with the ship landing is that

the flight deck is constantly moving. This increases uncertainty and the chance of error during

aircraft ship landing, which makes it extremely challenging compared to landing on the stationary

ground. Thus, the appropriate placement of the GPS sensors on a ship is important to obtain the

pose data accurately. It is known that a distinctive spacing between the positions of sensors helps to

increase the accuracy. Thus sensor accuracy plays a huge role in the precise approach and landing

while using this method. The advantage of JPALS is that it can be used in low visibility conditions

and has good precision in approach and landing. However, its application is limited to landing on

an aircraft carrier that has a large flight deck and is less sensitive to sea states. Also, it requires

multiple GPS antennas on a ship and reprogramming for a particular ship depending on the GPS

antenna placement. Above all, it cannot be operational when the GPS signals are unavailable or

spoofed.

Voos et al. [42] uses a nonlinear controller taking differential GPS (DGPS) positioning data as

states to land a quadrotor UAV on a moving platform. It comprises an inner-loop attitude control

system and an outer-loop velocity control system. It linearizes the UAV model to decouple the

differential equations then configure the inner-loop attitude control. The outer-loop velocity control

system contains sinusoidal nonlinear terms in feedback gains. The main advantage of the overall

control system is that the feedback linearization and the controllers are comparatively fast and

convenient to be implemented while taking the full nonlinear behavior of the vehicle into account.

However, the overall control algorithm requires accurate measurements of all state variables from

the DGPS and inertial measurement unit (IMU). Also, the proposed method is suitable for cruising,

but not sufficient for landing due to the lack of precise measurement of the vertical relative distance

between the UAV and platform.

Ahmed et al. [6] presents the control method to land a small helicopter UAV on a moving

platform using DGPS and tether as shown in Fig. 1.12.
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Figure 1.12: Instrumented experimental small helicopter UAV, Eagle [6]

One end of the tether is secured to the moving platform deck and the other end is reeled out from

the hovering UAV. The proposed controller is designed based on a backstepping method, which is

a recursive design procedure that links the selection of a control Lyapunov function with the design

of a feedback control system and guarantees global asymptotic stability of strict feedback systems.

It also includes blade flapping and servo dynamics. The DGPS on the UAV provides the position

data with 2cm accuracy. Also, rate gyroscopes provide angular velocities and accelerometers pro-

vide translational accelerations. Using these sensor data, it computes four control inputs which

are longitudinal cyclic, lateral cyclic, collective, and yaw control inputs. Although simulations

demonstrate the possibility of autonomous landing using this method, it requires the installation of

a tether on the moving platform and depends on the accuracy of DGPS.

There are also GPS-based methods for landing on small ships. Yang et al. [52] propose the

control method to land a small helicopter UAV on a ship by synthesizing information from GPS,

IMU, and vision sensors. The extended Kalman filter (EKF) fuses data from the sensors to provide

navigation information. The developed method simulates ship landing and the accuracy is 2 - 4

cm. However, ship motion is assumed as constant linear speeds along three axes (heave, sway,

surge) without considering the angular motions (pitch, roll, yaw).
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In 2012, Hardesty et al. [53] demonstrated autonomous helicopter landing on a ship. The

real-time kinematic (RTK) algorithms solve for the relative position vector from the base to the

receiver on a helicopter, which allows the computation of precise relative position. Continuous

communication between the receiver and the base station as well as maintaining a sufficient number

of common satellites are required.

In conclusion, the GPS-based navigation approaches heavily depend on the accuracy of GPS

and their applications are not operational in the GPS-denied environment, which is the motivation

for vision-based solutions. A vision-based ship landing system is a particular point of interest in

this research because it is crucial to the automation of the Navy helicopter ship landing procedure,

which is the objective of the present study.

1.3.2 Vision-based approach

Regarding vision-based approaches in ship landing applications, classical computer vision has

been widely applied so far. All the previous studies have a common process that is to estimate

or track ship deck motions first, then control the aircraft attitude to match the ship motions for

landing. In order to extract the ship deck motion information, specific objects or patterns are

targets for detection such as H landing marking [54], T landing marking [55], points dispersed on

the deck [33], lights [30], and infrared cooperated targets on a ship [56, 57] as shown in Fig. 1.13.

Figure 1.13: Example fiducial markings on a landing deck
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To detect such fiducial markings on a deck or features of a ship, several computer vision al-

gorithms are used such as edge and line detection [58, 59], corner detection [60, 61], and contour

detection [62].

Xu et al. [55] proposed a method to detect the "T" marking by using infrared images. It

calculates the yaw using the centerline of the marking and reference line. The use of infrared

images makes this technique effective at night as well.

Saripalli et al. [63, 64] tracks the "H" marking for ship landing. First, it converts the obtained

image to greyscale, then a median filter removes the noise in the image. Second, the area that

contains the marking is obtained by segmentation and labeling. Using the helicopter height infor-

mation from GPS, the relationship between the image plane and the landing pad plane is derived.

It demonstrated 7cm of accuracy in position estimation and 4◦ of accuracy in orientation accuracy.

Wang et al. [58, 59] designed a unique marking on the deck that has two rectangles, which

have different sizes and colors with white backgrounds. The bigger square is used for landing deck

identification and estimation of relative position. The smaller square is used to estimate relative

orientation. To detect each side of the square, it uses both edge detection by the Sobel operator

and line detection that combines the Hough transform and least square regression. To estimate

relative position and orientation, it uses the theory of perspective projection, the pinhole model of

the camera, and the known relationship between each side. It demonstrated 2 cm of accuracy in

position estimation and 1.2◦ of accuracy in orientation estimation within 10 meters of range.

Sharp et al. [60] designed a marking that consists of black and white squares in different sizes.

First, it processes an image into a binary one and segments the landing area to detect corners

of the marking. It also applies both linear and nonlinear optimization algorithms for better state

estimation. The flight testing demonstrated 5 cm of accuracy in position estimation and 5◦ of

accuracy in orientation estimation.

Lange et al. [62] designed a circular marking that consists of several concentric white rings

with a black background. Each ring diameter is known and the ratios between each ring size are

uniquely defined. First, it converts the image into grayscale and then to a binary one. Second, seg-
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mentation, contour detection, and roundness check are performed in order. To obtain the position

and orientation states, it uses additional sensors such as sonar and optical flow sensors. According

to the flight testing results, a minimum and maximum landing deviation from the center are 3.8 cm

and 23 cm, respectively.

Vision-based navigation methods including landing on a ship/moving platform and ground/runway

are categorized as shown in Table 1.6.

Ref. Aircraft Equipment Details

[64], VTOL Downward CCD camera Invariant moments

[65] VTOL Ultrasonic sonar and INS Kalman filter based tracking

[66], MAV [66], Optic flow sensor Optic flow and

[67] VTOL [67] IMU, GPS barometric altimeter

Barometric pressure sensor based HAG estimation

[68] VTOL CCD Camera mounted on a PTU Contour extraction

Accelerometer and Kalman filter fusion

angular rate gyros

[55] Not Treatment on an object Recognition from

specified Infrared thermal imager infrared images

GPS and INS Affine moment invariants

[69], Not Two cameras Monocular, stereo, machine vision

[70], specified EKF, Hough transform

[71] Vanishing geometry

RANSAC algorithm

[35], VTOL Single camera, IMU Machine learning-based vision

[72] Contour and corner extraction

Nonlinear control with Kalman

Reinforcement learning-based control

Table 1.6: Comparison of vision-based landing methods
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Even though several vision-based methods were proposed that could be applicable in the prox-

imity of the ship, visually tracking fiducial markings on the deck is fundamentally not ideal for

aircraft ship landing for the following reasons. First, it is challenging to track the highly uncertain

and complicated ship motions at sea. It requires utilizing an array of powerful sensors and complex

algorithms to capture the motions of the ship deck. Even if one could capture the ship motions pre-

cisely, its application range is limited to the vertical space where the deck can be clearly captured

in the image as shown in Fig. 1.14.

Figure 1.14: Limited application range of platform/deck tracking method

Also, actively controlling the UAV to match the complex deck motions could excite dynam-

ically unstable modes of the aircraft. This is even more unsafe when the aircraft is close to the

moving deck because even a small control error can be catastrophic due to an impact by the deck.

Moreover, any roll/pitch motion of the UAV to match the deck motion tilts the thrust vector, which

induces translational motions leading to the aircraft circling over the deck before landing as seen

in some of the previous studies [39, 30, 73, 54]. Furthermore, none of the previous methods were
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based on the established Navy helicopter ship landing procedure that is successfully executed by

pilots for decades. In fact, visually tracking the moving landing deck is exactly the opposite of

what Navy helicopter pilots are trained to do.

In conclusion, the vision-based navigation method is selected over GPS-based navigation to au-

tomate the real helicopter ship landing as it is. In the present study, the vision system is developed

in two different ways depending on the relative distance from the ship. In order to track a ship from

a long distance, the machine/deep learning-based vision technique is applied due to its long-range

detection capability. In the close distance, classical computer vision techniques are used not to

track features on a moving deck, but to track the horizon reference bar which is installed parallel to

the aircraft approach course and indicates the true horizon independent of ship motions. By using

this flight control strategy, it is able to control the aircraft in a stable and precise fashion for the

final approach and landing in the same manner that Navy pilots fly a helicopter for ship landing.

1.4 Objectives of Study and Thesis Organization

As seen from the literature survey on autonomous ship landing, previous methods have not

been developed by closely following the real helicopter ship landing procedure. Instead, ship

landing has been regarded as a control task, and therefore, those studies focused on technical details

to detect certain markings on the deck, capture the deck motions, and match the aircraft to the

deck motions for ship landing. However, this is completely orthogonal to the real helicopter ship

landing procedure where the aircraft hovers in a stable fashion over the deck and lands vertically

independent of ship motions. Therefore, unlike the previously proposed methods, the present study

aims to develop a highly practical autonomous ship landing solution for vertical flight aircraft

based on an in-depth understanding of the Navy helicopter ship landing procedure. Moreover, this

novel autonomous ship landing method can be used for manned and unmanned aircraft without

modifying the current Navy procedure. The specific objectives of the study are described below.

In order to prove the proposed concept in simulation, a comprehensive rotorcraft flight dynam-

ics modeling framework called TRAC, including LQR optimal control system is developed. It is

important to have a high-fidelity model that is incorporated into the flight control system for re-
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alistic helicopter ship landing simulations. The UH-60 helicopter model is derived as a baseline

helicopter model. Power, shaft tilt angles, and control inputs at different trimmed flight conditions

are validated through comparison with flight test data. Also, LQR optimal control system is con-

structed with the model to demonstrate the feasibility of the developed method via ship landing

simulations. In Chapter 2, the details of the modeling framework are described and the corre-

sponding ship landing simulation with the LQR control system design is detailed in Chapter 4.

After the simulation of the novel ship landing method, the autonomous vision-based flight con-

trol system to be implemented in actual flight experiments is developed. The first step is to develop

a vision system that provides information for the autonomous flight control system. The vision

system can be divided into two parts, which are machine/deep learning-based vision applied in

long-range tracking and classical computer vision applied in close-range. To detect a ship and

horizon bar as a whole at a long distance, machine/deep learning-based object detectors are de-

veloped. However, classical computer vision techniques are used to develop a close-range object

detector that detects corner points on the bar and estimates the relative position and orientation of

the aircraft. In Chapter 3, details of the machine vision for long- and close-range detections are

described.

To control the aircraft using the perceived visual information, several control systems are de-

veloped and implemented. At earlier stages of development, linear PID and gain-scheduled PID

controllers are implemented with different flight modes. Later, nonlinear control systems are devel-

oped and implemented to enhance the tracking capabilities in the presence of sensor noise and time

delay. Also, the state-of-the-art reinforcement learning-based control is introduced to improve the

robustness of tracking capabilities in more challenging conditions. In Chapter 4, the development

and effect of control systems with their simulation results are detailed.

To demonstrate the reliability and capabilities of the control system in practice, extensive in-

door and outdoor flight tests are conducted. A sub-scale ship landing platform is constructed to

reproduce ship structure and deck motions using a 6 DOF Stewart platform. A VTOL capable

quad-rotor-UAV live streams a video to a ground-station computer, which processes the image
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frames to transmit control inputs through WIFI. A crucial element of the developed ship landing

method is landing vertically on the deck independent of ship motions. Thus, multiple landing tests

are conducted while the deck is in motion. To this end, realistic ship motions that simulate the

Oliver Hazard Perry-class frigate at sea state 6 and NATOPS helicopter ship landing limits are

implemented using a 6 DOF motion platform. Vertical landings are executed at random instances

of deck motions. Full flight tests are conducted in challenging conditions such as GPS-denied

environments, unpredictable and complicated ship motions, and adverse weather conditions. In

Chapter 5, extensive flight testing results are detailed, followed by the conclusions inferred from

the study in Chapter 6.

24



2. ROTORCRAFT FLIGHT DYNAMICS MODELING FRAMEWORK

This chapter describes the mathematical modeling methodology of Texas AM University Ro-

torcraft Analysis Code (TRAC), including details on the development of each component model,

trim analysis, and linearized model extraction. A UH-60 helicopter is used as a baseline model and

validated through flight test data. The first section describes the governing equations of the system

in state-space form and the second section defines coordinate systems used in modeling. The third

section describes the computation of forces and moments from the helicopter component models.

The fourth section details the trim analysis and the last section explains the method to extract a

linearized model. UH-60 parameters used in the modeling are presented in Table A.1.

2.1 Governing Equations

The governing equations of the system are formulated in state-space form as a system of first-

order nonlinear coupled ordinary differential equations (ODEs):

f(y, ẏ, u, t) = ε = 0 (2.1)

y is a vector of system states, ẏ is time derivatives of y, u is a vector of control inputs, and t is the

current time in seconds. Numerical solutions of these equations with zero body-axis accelerations

for trim are used to study vehicle performance in steady flight. The state vector consists of the

following components:

y = { yTF yTλ yTrotor }T (2.2)

• yF represents the vector of the 9 airframe rigid-body states

• yλ represents the induced inflow coefficients for main rotor and tail rotor

• yrotor represents the vector of rotor deflection states for all blades
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u = { δo δlat δlon δped }T (2.3)

The control inputs are the same as the helicopter pilot inputs which are the positions of the

collective lever, lateral and longitudinal cyclic stick, and the pedal, in order.

2.2 Coordinate Systems

Various reference frames are used for efficient modeling and simulations. To name a few,

there are earth-fixed axes to track a trajectory in the inertial frame, body axes for force and mo-

ment equilibrium equations, hub-fixed axes for hub loads, and rotating axes for blade deflections.

Displacements and loads must be transferred from one axis system to another through coordinate

transformations to use in the governing equations for each component. Mathematically, this rota-

tion can be expressed as the pre-multiplication of a vector (X, Y, Z components) with a rotation

matrix. A rotation from one coordinate system to another is performed in "3(ψ) - 2(θ) - 1(φ)"

Euler angle sequence. The rotations are positive in the anti-clockwise sense. Although it has a

singularity at a rotation angle of ±90◦, this does not happen in general helicopter maneuver. The

rotation matrices for the yaw, pitch, and roll rotations are given in Eqn. 2.4.

Tψ =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1

Tθ =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

Tφ =


1 0 0

0 cosφ sinφ

0 − sinφ cosφ

 (2.4)

Since the sequence occurs in the order Z→Y→X, the rotation matrices must be premultiplied

in this order. Thus, the final rotation matrix from the earth-fixed coordinate system "G" to the

body-fixed coordinate system "B" through angles (ψ,θ,φ) is computed as described in Eqn. 2.5.

TBG = Tφ Tθ Tψ = R(ψ, θ, φ) (2.5)

The subscript "BG" means transformation from the ground (earth-fixed inertial frame) to body-

fixed frame. The reverse rotation from frame "B" to "G" follows the exact opposite sequence in
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reverse, i.e. angles (−ψ,−θ,−φ) about the (X , Y , Z) axes. In this case, the rotation matrix is given

in Eqn. 2.6.

TGB = T−φ T−θ T−ψ (2.6)

The rotation from "B" to "G" can be simplified to Eqn. 2.8.

TGB = T Tφ T Tθ T Tψ (2.7)

Using the matrix property described in Eqn. 2.8.

TGB = (Tφ Tθ Tψ)T = T TBG (2.8)

2.2.1 Earth-fixed Frame

The earth-fixed axes coordinates represent an inertial reference system used to track the motion

of objects in space. The origin of this axis system is a fixed point on the ground. The unit vectors

along the earth-fixed axes are represented by (iG, jG, kG). The earth-fixed axes are oriented so

that iG points North, jG points East and kG points towards the ground. The position vector of the

helicopter CG in space is given in Eqn. 2.9.

rCG = xCG iG + yCG jG + zCG kG (2.9)

2.2.2 Helicopter Body-fixed Frame

The body axes of the helicopter, shown in Fig. 2.1, are obtained from the earth-fixed coordi-

nates using three transformations to shift the origin to the helicopter center of gravity, followed

by "3(ψ) - 2(θ) - 1(φ)" Euler angle rotations. It is positive for nose-right, pitch-up, and roll-right

motions respectively. The unit vectors along the body axes are calculated as shown in Eqn. 2.10.
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iB

jB

kB

 = TBG


iG

jG

kG

 (2.10)

The rotation matrix from inertial to helicopter body axes is given in Eqn. 2.11.

TBG =


1 0 0

0 cosφF sinφF

0 0 0




cos θF 0 − sin θF

0 1 0

sin θF 0 cos θF




cosψF sinψF 0

− sinψF cosψF 0

0 0 1

 (2.11)

Figure 2.1: Earth-fixed frame and helicopter body-fixed frame

2.2.3 Blade Non-rotating Frame

The blade non-rotating axes, shown in Fig. 2.2, is transformed from the helicopter body frame,

followed by two Euler rotations αs which is a shaft longitudinal tilt angle, βs which is a shaft lateral

tilt angle in the order Y→ X, followed by a 180◦ rotation about the intermediate Y-axis. The first
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two rotations are positive when the shaft tilt causes the hub to move aft and starboard, respectively.

The new origin of this axis system is at the center of the hub. In the case of UH-60, the shaft tilts

3◦ forward and has no lateral tilt angle. The unit vectors along the blade non-rotating frame are

given in Eqn. 2.12.


iNR

jNR

kNR

 = TNB


iB

jB

kB

 (2.12)

The rotation matrix from the helicopter body frame to the blade non-rotating frame is expressed

in Eqn. 2.13.

TNB =


−1 0 0

0 1 0

0 0 −1




1 0 0

0 cos βs sin βs

0 − sin βs cos βs




cosαs 0 − sinαs

0 1 0

sinαs 0 cosαs

 (2.13)

Figure 2.2: Blade non-rotating frame
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2.2.4 Blade Rotating Frame

The blade rotating frame, shown in Fig. 2.3, is obtained from the blade non-rotating frame

using one rotation ψn about the blade non-rotating Z-axis kH . The origin of the blade rotating

frame is at the center of the hub which is identical to the origin of the blade non-rotating frame.

The ψn is the azimuth angle of the nth blade, zero when the blade passes over the tail boom,

positive in counter-clockwise direction and is given by ψn = ΩMR t + 2π
Nb

(n - 1). The unit vectors

along the blade rotating frame are given in Eqn. 2.14.


iR

jR

kR

 = TRN


iNR

jNR

kNR

 (2.14)

Figure 2.3: Blade rotating frame

The rotation matrix from the blade non-rotating frame to the blade rotating frame is given in

Eqn. 2.15.

TRN =


cosψn sinψn 0

− sinψn cosψn 0

0 0 1

 (2.15)
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2.2.5 Blade Flapped Frame

The blade flapped frame, shown in Fig. 2.4, is obtained from the blade rotating frame using

one rotation through an angle -βn about the jR blade rotating axis, and is positive for vertically

upward motion of the blade tip. The value of an angle βn depends on the azimuthal location of

the nth blade. The origin of the blade flapped frame is identical to the origin of the blade rotating

frame. The unit vectors along the blade flapped frame are given in Eqn. 2.16.


iF

jF

kF

 = TFR


iR

jR

kR

 (2.16)

The rotation matrix from the blade rotating axes to the blade flapped axes is given in Eqn. 2.17.

TFR =


cos βn 0 sin βn

0 1 0

− sin βn 0 cos βn

 (2.17)

Figure 2.4: Blade flapped frame

2.2.6 Blade Lagged Frame

The blade lagged frame, shown in Fig. 2.5, is obtained from the blade flapped frame using one

rotation through an angle -ζn about the kF blade flapped frame, and is positive for horizontally
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forward (lead) motion of the counter-clockwise rotating nth blade tip. The origin of the blade

lagged frame is identical to the origin of the blade flapped frame. The unit vectors along the blade

lagged frame are given in Eqn. 2.18.


iL

jL

kL

 = TLF


iF

jF

kF

 (2.18)

The rotation matrix from the blade flapped frame to the blade lagged frame is given in Eqn.

2.19.

TLF =


cos ζn − sin ζn 0

sin ζn cos ζn 0

0 0 1

 (2.19)

Figure 2.5: Blade lagged frame

2.2.7 Tip Path Plane

It is convenient to define Tip Path Plane (TPP) since the thrust vector is perpendicular to the

TPP. The tip path plane is the plane that contains the path described by the blade tips, assuming

that the blade motion is first harmonic only (1/rev). An observer on the tip path plane will see only

the coning angle βo. Hence, the rotor blade flapping is not a function of blade azimuth (ψ) if it
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is defined with respect to the TPP. However, the blade pitch angle θ will be a function of ψ. The

TPP frame, shown in Fig. 2.6, is obtained from the blade rotating frame using rotations through

an angle β1s about the iNR blade non-rotating axis and through an angle -β1s about the jTPP,I TPP

intermediate axis. The unit vectors along the TPP frame are given in Eqn. 2.20.


iTPP

jTPP

kTPP

 = TTN


iNR

jNR

kNR

 (2.20)

The rotation matrix from the blade non-rotating axes to the TPP axes is given in Eqn. 2.21.

TTN =


cos β1c 0 sin β1c

0 1 0

sin β1c 0 cos β1c




1 0 0

0 cos β1s sin β1s

0 − sin β1s cos β1s

 (2.21)

(a) TPP in rear view (b) TPP in side view

Figure 2.6: Geometry of tip path plane
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2.3 Component Modeling and Integration

The modeling methodology of TRAC is to integrate individually developed component models

as one complete aircraft model. To this end, a complete UH-60 helicopter is decomposed to each

modeling part as shown in Fig. 2.7.

Figure 2.7: UH-60 helicopter modeling parts

Since the fuselage is regarded as a rigid body, the position and orientation of the lifting surfaces

such as the main rotor, tail rotor, horizontal tail (stabilator), and vertical tail (fin) remain constant

in the body-fixed frame. Furthermore, the moments of inertia of a rigid body stay the same in the

body-fixed frame. Hence, force and moment contributions from each component are integrated to

formulate the force and moment equilibrium equations along the helicopter fuselage body-fixed

frame as described in Eqn. 2.22.
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X = XMR + XTR + XH + XV + XF

Y = YMR + YTR + YH + YV + YF

Z = ZMR + ZTR + ZH + ZV + ZF

L = LMR + LTR + LH + LV + LF

M = MMR + MTR + MH + MV + MF

N = NMR + NTR + NH + NV + NF

(2.22)

The subscripts which are MR, TR, H, V, and F denote the main rotor, tail rotor, horizontal tail,

vertical tail, and fuselage, respectively. The mathematical modeling for loads generated by each

component is detailed in the following sections.

2.3.1 Fuselage

The inertial loads of a fuselage can be computed from the body-axis components of the airframe

linear and angular velocities. These components are obtained from the partition of the system state

vector that contains the fuselage states as given in Eqn. 2.23.

yF = { uF vF wF pF qF rF φF θF ψF }T (2.23)

The terms (uF , vF , wF , pF , qF , rF ) are the linear velocities and angular velocities of the

helicopter along and about body-fixed frame and (φF , θF , ψF ) are the Euler angles which define

the fuselage orientation with respect to the earth-fixed frame. The fuselage force equilibrium

equations are given in Eqn. 2.24.

XF = mF (u̇F + qFwF − rFvF + g sin θF )

YF = mF (v̇F + rFuF − pFwF − g sinφF cos θF )

ZF = mF (ẇF + pFvF − qFuF − g cosφF cos θF )

(2.24)

pF , qF , and rF can be expressed in terms of the Euler angles (φF , θF , ψF ) and their time

derivatives as shown in Eqn. 2.25.
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pF = φ̇F − ψ̇F sin θF

qF = θ̇F cos phiF + ψ̇F cos θF sinφF

rF = −θ̇F sin phiF + ψ̇F cos θF cosφF

(2.25)

The moment equilibrium equations can be expressed as shown in Eqn. 2.26.

LF = IxxṗF − Ixy( ˙qF − pF rF )− Ixz( ˙rF − pF qF )− Iyz(q2F − r2F )− (Iyy − Izz)qF rF

MF = Iyy ˙qF − Iyz( ˙rF − qFpF )− Iyx(ṗF − qF rF )− Izx(r2F − p2F )− (Izz − Ixx)rFpF

NF = Izz ˙rF − Izx(ṗF − rF qF )− Izy( ˙qF − rFpF )− Ixy(p2F − q2F )− (Ixx − Iyy)pF qF

(2.26)

Also, the position vector of the fuselage reference point with respect to the center of gravity is

given in Eqn. 2.27.

rref = xref iB + yrefjB + zrefkB (2.27)

The aerodynamic loads acting on the body of the fuselage are computed based on the flow

velocity components at the reference point on the fuselage as given in Eqn. 2.28.

uref = uF + yrefrF − zrefqF + uin,F

vref = vF + zrefpF − xrefrF + vin,F

wref = wF + xrefqF − yrefrF + win,F

(2.28)

uin,F , vin,F , and win,F are interference velocity components along body axes, which are com-

puted from the average main rotor downwash λoΩMRR, the nose-down tilt of the rotor tip path

plane β1c, and wake skew angle χ as shown in Eqn. 2.29.

uin,F = λoΩMRRvx(β1c, χ)

vin,F = 0

win,F = λoΩMRRvz(β1c, χ)

(2.29)
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The functions vx(β1c, χ) and vz(β1c, χ) are obtained from look-up tables, and the wake skew

angle is obtained from the free-stream velocity components along shaft axes (us, vs, ws) as shown

in Eqn. (2.30).

χ = tan−1
us

λΩMRR− ws
+ β1c

αF = tan−1
wF
uF

βF = tan−1
vF√

u2F + w2
F

(2.30)

The longitudinal flow incidence angle αF is positive when the fuselage is tilted nose-up with

respect to the free-stream flow, and the lateral flow incidence angle βF is positive when the star-

board side is facing the free-stream flow. Using these two flow angles and the dynamic pressure at

the fuselage reference point qF , the aerodynamic coefficients in the wind-axes system are obtained

using a table look-up procedure based on wind-tunnel measurements. In addition, to precisely

predict the fuselage drag force, the function derived from the wind-tunnel testing is adopted. The

fuselage forces and moments with respect to the center of gravity are given in Eqn. 2.31.


XF

YF

ZF


F

= qF


f(αF )

CY

CZ


F

LF

MF

NF


F

= qF


CL

CM

CN


F

+ rref ×


XF

YF

ZF


F

qF =
1

2
ρ (u2F + v2F + w2

F )

(2.31)

Fuselage drag force is the dominant source of the fuselage aerodynamic force. Instead of using

constant aerodynamic coefficients, it adopts the function that predicts the drag using the flat-plate

area and fuselage angle of attack. To predict the fuselage drag force precisely, several different

estimations were tested and the model finally selected for the present study is the estimation by
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Yeo et al. [74] and given in Eqn. 2.32, where 35.14 ft2 is the flat-plate area of the UH-60 helicopter

fuselage at zero angles of attack. The fuselage drag force is computed by multiplying the flat-plate

area with dynamic pressure.

f(αF ) = 35.14 + 0.016(1.66αF )2 (2.32)

2.3.2 Main Rotor

This section covers the description of the mathematical model of the main rotor system. The

main rotor blades are individually analyzed. The blades are assumed to be rigid. Forces and

moments from each blade are translated to the body-fixed frame. Each blade experiences flap and

lead-lag motions which are angles β and ζ , respectively. The flap and lead-lag hinge with its own

spring and damper are placed at the same location. The blade equations of motion are nonlinear,

coupled, partial differential equations with periodic coefficients. The inertial and aerodynamic

load vectors are calculated numerically with the assumption of the first harmonic blade motion.

Each blade is discretized to 100 finite elements and travels with 1◦ step displacement in azimuth.

In addition, the negative twist rate of 18◦ is considered in the computation of the elemental angle

of attack. The summation of the loads on each blade element is collected and transformed to the

body-fixed frame.

2.3.2.1 Inertial Loads

In the formulation of the main rotor equations of motion, the distributed loads due to blade

inertia are required. These inertia loads depend on the absolute acceleration of a point on the rotor

blade, AP . Taking into account the helicopter hub accelerations, an arbitrary point "P" on a blade

is expressed in mixed coordinate systems as given in Eqn. 2.33.

RP = Rcg + Rhub + Rb (2.33)

Rcg represents the position of the CG from the earth-fixed frame origin. Rhub represents the

position of the hub from the CG. Rb represents the position of an arbitrary point on a blade with
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consideration for the hinge offset. They can be expressed in the body-fixed frame as shown in Eqn.

2.34.

Rcg,B = TBG Rcg,G

Rhub,B = TBN Rhub,NR

Rb,B = TBL Rb,L

= TBN TNR TRF TFL Rb,L

RP,B = Rcg,B + Rhub,B + Rb,B

(2.34)

The velocity and acceleration of a generic point of the blade in the body-fixed frame need to

be calculated. Using transport theorem, the velocity VP,B of the point P is computed as shown in

Eqn. 2.35.

VP,B =
dRP,B

dt
=

∂RP

∂t
+ W ×RP

=
∂Rcg,B

∂t
+

∂Rb,L

∂t
+ (WB←NR +WNR←R +WR←F +WF←L)×Rb,L

(2.35)

∂Rcg,B
∂t

and ∂Rb,L
∂t

are the velocity of the CG in the body-fixed frame and the velocity of the point

P on a blade in the blade lagged frame, respectively. The time derivative of the hub position in the

body-fixed frame is zero since it is constant with respect to time. The other termW×Rb,L is taking

into account the transformation of coordinate systems and the fact that the blade is rotating. The

subscripts of W describe the transformation from one frame to another frame. In order to show the

transformation sequence from the lagged frame to the body-fixed frame, W is decomposed to each

step. In the same manner, the acceleration AP,B of the point P is calculated as shown in Eqn. 2.36.

AP,B =
dVP,B
dt

=
∂VP
∂t

+ W × VP

=
∂Vcg,B
∂t

+
∂Vb,L
∂t

+ (WB←NR +WNR←R +WR←F +WF←L)× Vb,L
(2.36)
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The total inertial force in the body-fixed frame is obtained by integrating along the blade and

along the azimuth as described in Eqn. 2.37.

FI,B =
Nb

2π

∫ 2π

0

∫ R

eR

mb AP,B drdψ (2.37)

Nb is the number of blades, mb is the blade mass per unit length, and eR is the hinge offset

distance from the hub. By adding a hinge, the sum of applied moments about the hinge has to be

zero. First, inertial moment about the hinge for a blade MI is calculated as shown in Eqn. 2.38.

MI =

∫ R

eR

mb (Rb,L × AP,L) dr (2.38)

2.3.2.2 Aerodynamic Loads

A key ingredient for the calculation of the aerodynamic forces and moments is the absolute

velocity of a point on the blade in the blade lagged frame. The total velocity VT of the point on a

blade is expressed as Eqn. 2.39.

VT = VP − VI (2.39)

VI is the induced velocity at the point on the blade by the rotor wake. In the blade flapped

frame, the components of the velocity VP can be written in the form as shown in Eqn. 2.40.

VP = Vi,F iF + Vj,F jF + Vk,F kF (2.40)

iF , jF , and kF are the unit vectors of the blade flapped frame and Vx,F , Vy,F , and Vz,F are the

velocity components along the blade flapped axes.

VI = λi iF + λj jF + λk kF (2.41)

λi, λj , and λk are the i, j, and k components of the induced velocity in the blade-flapped frame.
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The dynamic inflow model takes only the k component of the induced velocity. Thus, the total

velocity is expressed in Eqn. 2.42.

VT = Vi,F iF + Vj,F jF + (Vk,F − λk) kF

= Vx,F iF + Vy,F jF + Vz,F kF

(2.42)

Vx, Vy, and Vz are the velocity components in the blade-flapped frame. Using the coordinate

transformation that takes into account the lead-lag angles, this total velocity can be expressed in

terms of the airflow velocity components in the blade-lagged frame as shown in Eqn. 2.43.

VT = UR iL + UT jL + UP kL (2.43)

As shown in Fig. 2.8, VT is the resultant velocity of the airflow at the quarter-chord location.

The UT and UR components follow the sign conventions by which UT is positive for an airflow

coming toward the leading edge of the airfoil and UR is positive for an outboard flow. The compo-

nent UP is defined as positive for a flow going downward.

Figure 2.8: Blade elemental lift and drag

The body-fixed linear velocity components which are u, v, and w along the iB, jB, and kB can

be related to the fuselage angles and the total velocity VT as expressed in Eqn. 2.44.
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u = VT cosαF cos βF

v = VT sin βF

w = VT sinαF cos βF

(2.44)

The elemental lift dL, drag dD, and force along the blade-lagged frame are expressed in Eqn.

2.45.

dL =
1

2
ρ V 2

T cl c dr

dD =
1

2
ρ V 2

T cd c dr

dFL = (dL cosφ− dDsinφ) kL − (dL sinφ+ dD cosφ) jL

(2.45)

ρ is the air density, c is the chord length, and dr is the blade element of span. By assuming

linear incompressible aerodynamics, cl can be a function of the lift slope and angle of attack(cl =

a α). a is the lift slope and α is the angle of attack. cd is assumed constant. These are reasonable

under the linear range of cl and cd with respect to the angle of attack. The aerodynamic angle of

the cross section α is given in Eqn. 2.46.

α = θ − φ = θ − tan−1
UP
UT

(2.46)

The local geometric pitch at each radial station θ is defined as shown in Eqn. 2.47.

θ = θo + θ1c cosψn + θ1s sinψn + θtw (2.47)

θo is the collective pitch, θ1c is the lateral cyclic, θ1s is the longitudinal cyclic, and θtw is the

the built-in twist. Thus, dL can be re-written as Eqn. 2.48.
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dL =
1

2
ρ V 2

T a α c dr

=
1

2
ρ U2

T a (θ − UP
UT

) c dr

=
1

2
ρ a (θ U2

T − UP UT ) c dr

(2.48)

Integrating over the blade span and along the azimuth yields the total aerodynamic forces as

shown in Eqn. 2.49.

FA,L =
Nb

2π

∫ 2π

0

∫ R

eR

dFP,L drdψ

FA,B = TBL FA,L

(2.49)

Aerodynamic flap moment MA about the hinge is computed as Eqn. 2.50.

MA =

∫ R

eR

r × dL dr

=
1

2
ρ a

∫ R

eR

(θ U2
T − UP UT ) c dr

=
γ

2
Ω2 Ib

∫ R

eR

[
θ (

UT
ΩR

)2 − (
UP
ΩR

) (
UT
ΩR

)
]
dr

(2.50)

The lock number γ, the mass flapping moment of inertia Ib are shown in Eqn. 2.51.

γ =
ρ a c R4

Ib

Ib =

∫ R

eR

mb (r − eR)2 dr

(2.51)

Since MA has the blade tip speed term in common, advance ratio µ and inflow ratio λ with

respect to the blade tip speed are defined as Eqn. 2.52.

µ =
VT cosα

ΩR

λ =
v

ΩR

=
vi − VT sinαF cos βF

ΩR

=
vi − w

ΩR

(2.52)
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v is the inflow velocity and vi is the induced velocity which is normal to TPP.

2.3.2.3 Hub Loads

The forces and moments transmitted to the hub are obtained by integrating the loads along the

span and summing the contributions from each of the blades. The force components along the

blade rotating frame from the nth blade are given in Eqn. 2.53.

XMR,R(n) =

∫ R

eR

dXMR,Rdr

YMR,R(n) =

∫ R

eR

dYMR,Rdr

ZMR,R(n) =

∫ R

eR

dZMR,Rdr

(2.53)

dXMR,R, dYMR,R, and dZMR,R represent the moment components per unit span along the

blade rotating frame which contain the sum of inertial and aerodynamic loads. The hub loads

are obtained by resolving the blade loads along the blade non-rotating frame and summing the

contributions from individual blades. The hub force and moment components are expressed in

Eqn. 2.54.


XMR

YMR

ZMR


NR

=
Nb∑
n=1

TNL


XMR(n)

YMR(n)

ZMR(n)


L

LMR

MMR

NMR


NR

=
Nb∑
n=1

TNL


LMR(n)

MMR(n)

NMR(n)


L

(2.54)

The hub loads are converted to the helicopter body-fixed frame using the transformation matrix

TBN which are the main rotor contributions to the helicopter force and moment equilibrium as

shown in Eqn. 2.55.
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XMR

YMR

ZMR


B

= TBN


XMR

YMR

ZMR


NR

LMR

MMR

NMR


B

= TBN


LMR

MMR

NMR


NR

+


yhubZMR,B − zhubYMR,B

zhubXMR,B − xhubZMR,B

xhubYMR,B − yhubXMR,B


(2.55)

2.3.2.4 Blade Flapping Dynamics

The equilibrium position of the blade is determined by the balance of inertial, aerodynamic,

and centrifugal forces (CF). The flapping angle can be assumed small due to the fact that the

centrifugal force is larger than the aerodynamic force. Moment equilibrium about the flapping

hinge is expressed in Eqn. 2.56.

MI,F + MCF,F + MA,F = 0∫ R

eR

mb(y − eR)2β̈dy +

∫ R

eR

mbΩ
2y(y − eR)βdy −

∫ R

eR

L(y − eR)dy = 0
(2.56)

Figure 2.9: Geometry of blade flapping equilibrium
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Integrating along the blade and dividing by Ω2 yields the relationship in Eqn. 2.57.

Ib(
∗∗
β + ν2ββ) =

1

Ω2

∫ R

eR

L(y − eR)dy

ν2β = 1 +
eR
∫ R
eR
mb(y − eR)dy

Ib

νβ = ωn =

√
1 +

3e

2(1− e)

(2.57)

νβ is the non-dimensional flapping frequency in terms of the rotational speed and it can also

be considered as the undamped natural frequency in a spring-mass-damper system. Hence, the

flapping equation can be expressed as Eqn. 2.58.

∗∗
β + ν2ββ = γMA,F (2.58)

In general, the value of e varies from 4 to 6% for an articulated blade, so that the natural

frequency of the rotor is slightly greater than Ω or 1/rev. This also means that the phase lag between

the forcing and the rotor flapping response has to be less than 90◦ and the flapping displacements

now also depend on aerodynamic damping. After expanding all terms in the aerodynamic flapping

moment MA, it can be organized as Eqn. 2.59.

MA,F =
1

2
ρacΩ2R4(Mθθ +Mλλ+M∗

β

∗
β +Mββ +Mp

p

Ω
+Mq

q

Ω
) (2.59)

The flap damping term is the coefficientM∗
β

and it is associated with lock number. Investigating

hover case, the damping is approximately 50% which means the blade flapping motion is stable

and well damped. Assuming the blade flapping motion is the first harmonic, it can be expressed as

a function of the blade azimuth ψn which is shown in Eqn. 2.60.

βψn = βo + β1c cosψn + β1s sinψn (2.60)

By replacing flapping terms with constant and periodic terms on both sides of the flapping

equation flapping angles can be related to control angles (θo, θ1c, θ1s).
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2.3.2.5 Blade Lagging Dynamics

The equilibrium of the blade about the lead-lag hinge is determined by a balance of centrifugal

and aerodynamic moments. The aerodynamic moments are generated by the aerodynamic drag of

the blade as it rotates. Moment equilibrium about the lead-lag hinge is expressed as Eqn. 2.61.

MI,L + MCF,L + MA,L = 0

−
∫ R

eR

mb(y − eR)2ζ̈dy +

∫ R

eR

mbΩ
2y(y − eR)

eR

y
ζdy +

∫ R

eR

D(y − eR)dy = 0
(2.61)

Figure 2.10: Geometry of blade lagging equilibrium

Integrating along the blade and dividing by Ω2 yields the relationship as Eqn. 2.62.

Iζ(
∗∗
ζ + v2ζζ) =

1

Ω2

∫ R

eR

D(y − eR)dy

ν2ζ =
eR
∫ R
eR
mb(y − eR)dy

Iζ

νζ =

√
3

2
(

eR

R − eR
)

( Iζ =

∫ R

eR

mb(y − eR)2dy )

(2.62)

Iζ is the mass moment of inertia about the lead-lag hinge, νζ is the non-dimensional lag fre-

quency. The centrifugal restoring moment about the lag hinge is much smaller than in flapping,
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the corresponding uncoupled natural frequency of the lag motion is much smaller. For articulated

rotors such as UH-60 rotors, the uncoupled rotating lag frequency varies from about 0.2 to 0.3Ω.

The lead-lag displacements about the hinge are small and aerodynamic forces are produced by

changes in velocity and dynamic pressure normal to the blade’s leading edge. However, it is much

smaller than the aerodynamic forces which are produced through flapping motion by changes in

the angle of attack. Furthermore, the drag forces acting on the blades are also much smaller than

the lift forces.

2.3.2.6 Inflow Dynamics

In this study, a linear inflow distribution is assumed, thus it is expressed with respect to the

blade azimuth ψn as shown in Eqn. 2.63.

λ = λo + λ1c
r

R
cosψn + λ1s

r

R
sinψn (2.63)

Basically, modeling a linear inflow distribution is to estimate the values of λo, λ1c, and λ1s. For

this mathematical UH-60 helicopter model, the Pitt-Peters linear inflow model is used.

[M ]


λ̇o

˙λ1c

˙λ1s

 + [L]−1


λo

λ1c

λ1s

 =


CT

−CMy

CMx

 (2.64)

These dynamic inflow components are related to the forces on the rotor disk which are the rotor

thrust coefficient CT , pitching moment coefficient CMy , and rolling moment coefficient CMx . The

matrix size of M and L is 3 by 3 which are given in Eqn. 2.65.
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=
1

CV


1
2

0 15π
64

√
1−sinα
1+sinα

0 −4
1+sinα

0

15π
64

√
1−sinα
1+sinα

0 4
1+sinα



[M ] =


128
75π

0 0

0 − 16
45π

0

0 0 − 16
45π


(2.65)

α is the rotor disk tilt angle with respect to the free stream and CV is the mass-flow parameter

which can be computed as Eqn. 2.66.

CV =
µ2 + λ(λ+ λi)√

µ2 + λ2
(2.66)

For dynamic analysis of the blade, the dynamic inflow components are treated as additional

degrees of freedom. It is formulated on the basis of experimental results or more advanced vortex

theories and it is well suited for helicopter rotor aerodynamics, aeroelasticity, and flight dynamics.

2.3.3 Tail Rotor

The tail rotor model is based on a simplified implementation of the closed-form solution given

by F. J. Bailey [75], which relates the free-stream velocity to the rotor thrust, torque, and induced

inflow. The velocity at the tail rotor reference point (hub) is given in Eqn. 2.67.

VTR = Vb + ω × rTR + Vin,TR (2.67)

Vin,TR represents the induced velocity at the tail rotor reference point due by the wake of the

main rotor and fuselage as given in Eqn. 2.68.

Vin,TR = λoΩMRR
[
vxTR(β1c, χ)iB + vzTR(β1c, χ)kB

]
(2.68)

The functions vx,TR, vz,TR are obtained from the lookup tables based on the wake skew angle
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χ and the tip-path plane tilt β1c with respect to the fuselage. The velocity VTR at the tail rotor

reference point rTR is resolved into components along the tail rotor axes. The tail rotor axes

system is obtained using two rotations in the sequence Z→ Y through angles (ΓTR, ΛTR) starting

from the helicopter body axes. The rotation matrix from fuselage body axes to tail rotor axes is

given in Eqn. 2.69.

TTR,B =


cos ΛTR 0 − sin ΛTR

0 1 0

sin ΛTR 0 cos ΛTR




cos ΓTR sin ΓTR 0

− sin ΓTR cos ΓTR 0

0 0 1

 (2.69)

The velocity components in the tail rotor reference frame are given in Eqn. 2.70.


u

v

w


TR

= TTR,B VTR ·


iB

jB

kB

 (2.70)

The tail rotor thrust which is assumed to act along the shaft direction is given in Eqn. 2.71.

TTR = π R4
TR Ω2

TR |V |TR vi,TR KTR

vi,TR = λTRΩTRRTR

|V |TR =
√
u2TR + v2TR + (w2

TR − λTRΩTRRTR)2

(2.71)

vi,TR is the average induced velocity of the tail rotor, KTR accounts for blockage effects of the

vertical fin, and |V |TR is the magnitude of the total velocity (including induced inflow) at the tail

rotor. The tail rotor torque due to induced and profile drag is given in Eqn. 2.72.

QTR = CQTR ρ π Ω2
TR R5

TR (2.72)

The force and moment components in fuselage body axes exerted by the tail rotor on the air-

frame center of gravity are obtained using a coordinate transformation as shown in Eqn. 2.73.
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X

Y

Z


TR

= T TTR,B


0

−TTR

0



L

M

N


TR

= T TTR,B


0

−QTR

0

 + rTR × (XTRiB + YTRjB + ZTRkB)

(2.73)

The induced inflow of the tail rotor is assumed to be uniform over the disk and is represented

using a 1-state Pitt-Peters dynamic inflow model. The ODE governing the inflow dynamics is

given in Eqn. 2.74.

4RTR

2π|VTR|
λ̇TR + λTR =

CTTRΩTRRTR

2|VTR|
(2.74)

2.3.4 Horizontal and Vertical Tail

The aerodynamic loads acting on the horizontal stabilator and vertical fin are computed using

a procedure similar to that followed for the fuselage. The velocity at the reference point for each

lifting surface is computed from the fuselage translation velocity Vb, angular velocity wb and the

position of the reference points with respect to the vehicle center of gravity rH , rV as given in Eqn.

2.75.

VH = KHVb + ω × rH + Vin,H

VV = KV Vb + ω × rV + Vin,V

(2.75)

KH and KH are used to empirically model the dynamic pressure loss at the tail surfaces, which

occurs as a result of operating in the wake of the airframe. Vin,H and Vin,V represent the velocities

at the tail surfaces induced by the main rotor wake, obtained from wind-tunnel tests as given in

Eqn. 2.76.
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Vin,H = λoΩMRR
[
vxH (β1c, χ)iB + vzH (β1c, χ)kB

]
Vin,V = λoΩMRR

[
vxV (β1c, χ)iB + vzV (β1c, χ)kB

] (2.76)

The functions vxH , vzH , vxV , vzV are obtained from look-up tables based on the wake skew

angle χ and the tip-path plane tilt β1c with respect to the fuselage. Using (uH , vH , wH) and

(uV , vV , wV ) to represent the velocity components at the horizontal stabilator and vertical fin,

respectively, along vehicle body axes, the angles of attack and sideslip at the tail surfaces are

computed as given in Eqn. 2.77.

αH = tan−1
wH
uH

+ θH

βH = tan−1
vH√

u2H + w2
H

αV = tan−1
wV
uV

βV = tan−1
uV√

u2V + w2
V

(2.77)

The pitch of the horizontal tail (stabilator) θH is scheduled to change with the forward flight

speed in a prescribed manner. An approach similar to that followed for the fuselage aerodynamics

is utilized for computing the forces on the horizontal stabilator and vertical fin. Using the incidence

angles α and β for each surface and the dynamic pressure at the reference points, the aerodynamic

lift and drag coefficients are obtained using a table look-up procedure based on wind-tunnel mea-

surements, and transformed to the helicopter body axes. Using (FH , FV ) and (MH , MV ) that

represent the body-axes forces and moments at the reference points, the loads at the vehicle center

of gravity are given in Eqn. 2.78.
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= qH
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+ qV


CX

CY

CZ


V

= FH + FV
L
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N


EM

= rH × FH + rV × FV

(2.78)

The dynamic pressures are given in Eqn. 2.79.

qH =
1

2
ρ VH · VH

qV =
1

2
ρ VV · VV

(2.79)

2.4 Trim Analysis

The term trim refers to a steady flight condition that the linear accelerations along the body

axes and angular accelerations about the body axes are zero. The trim unknowns X are given in

Eqn. 2.80.

X = [ XC XF XR XI ]T

XC = [ θo θ1c θ1s θTR ]T

XF = [ αF βF φF θF ]T

XR = [ βo β1c β1s ζo ζ1c ζ1s ]T

XI = [ λo λ1c λ1s λTR ]T

(2.80)

XC contains control angles,XF contains fuselage angles,XR contains flap and lead-lag angles,

andXI contains inflow angles. Trim unknowns which meet the trim condition are calculated under

several flight conditions. The flight condition is defined by the velocity V along the trajectory, the

flight path angle γ (positive for climbing), and the rate of turn ψ̇ (positive for a right turn).
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2.4.1 Trim in Hover and Steady Forward Flight

Straight and level flight is a particular case in which both the flight path angle and the rate of

a turn are zero. Hover is a particular case in which the velocity is also zero. First of all, the main

rotor power along the forward flight speed is investigated and compared to flight test data. These

power curves are obtained for two conditions, which are, a helicopter gross weight of 16,360 lbs

at an altitude of 3,670 feet and a helicopter gross weight of 16,000 lbs at an altitude of 5,250 feet.

The comparison of predicted (simulated) main rotor power with flight test data from hover to 160

knots is shown in Fig. 2.11.

Figure 2.11: Main rotor power vs. forward flight speed (16,360 lbs at 3,670 feet)

In this comparison, the gross weight is 16,360 lbs and the density altitude is 3,670 feet. The

comparisons show good agreement at speeds above 40 knots. At low speeds (below 30 knots),

the simulated power curve under-predicts the power due to the linear inflow assumption. It can be

enhanced by using an inflow model which captures rotor-wake interference. Typically, rotor-wake
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interference is stronger at µ < 0.1. Thus, it requires more power at low speeds. The additional

comparison of predicted (simulated) main rotor power with flight test data from hover to 160 knots

is shown in Fig. 2.12.

Figure 2.12: Fuselage angle vs. forward flight speed (16,000 lbs at 5,250 feet)

In this comparison, the gross weight is 16,000 lbs and the density altitude is 5,250 feet. The

comparison results are similar to the previous one in Figure 3.1. It also shows good agreement

at speeds above 50 knots. However, at low speeds (below 30 knots), the simulated power curve

under-predicts the power due to the linear inflow assumption due to the same reason. Analyzing

the power curves which are obtained from different conditions, the mathematical model with the

linear inflow assumption has good agreement at higher speeds. However, predictions at lower

speeds underpredict the power. Considering the results by Theodore [20] and Ribera [76], the free-

vortex wake model can improve the power curve at lower speeds. The fuselage angles for forward

speeds from hover to 160 knots are shown in Fig. 2.13.
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Figure 2.13: Fuselage angle vs. forward flight speed (16,000 lbs at 5,250 feet)

α is the flow Angle of Attack (AOA) with respect to TPP. β is the side slip angle of the fuselage.

θ is the pitch angle of the fuselage. φ is the roll angle of the fuselage. These angles describe the

helicopter trim attitude at various forward flight speeds. Fuselage pitch angle and roll angle are

also validated with flight test date as shown in Figs. 2.14 and 2.15.

Figure 2.14: Fuselage pitch angle vs. forward flight speed (16,000 lbs at 5,250 feet)
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Figure 2.15: Fuselage roll angle vs. forward flight speed (16,000 lbs at 5,250 feet)

The predicted fuselage pitch angles correlate well with the flight test data in the entire forward

speed range. Even though the predicted fuselage roll angle is underpredicted by a few degrees at

higher forward speeds, it shows a similar trend on the whole as the flight test data. The trim values

of flap angles and lead-lag angles at various forward speeds are shown in Fig. 2.16.

Figure 2.16: Flap and lead-lag angle vs. forward flight speed (16,000 lbs at 5,250 feet)
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The angles are obtained by assuming the first harmonic (1/rev) flap and lead-lag motions. Con-

ing angle βo is the mean part of the flapping motion which is independent of time or blade azimuth.

β1c is the longitudinal flapping angle, which represents the amplitude of the pure cosine flapping

motion. β1s is the lateral flapping angle, which represents the amplitude of the pure sine flapping

motion. Lead-lag motion is also separated by ζo, ζ1c, and ζ1s in the same manner. ζo represents the

mean lagging motion. ζ1c is the longitudinal lagging angle, which represents the amplitude of the

pure cosine lagging motion. β1s is the lateral lagging angle, which represents the amplitude of the

pure sine lagging motion. The trim values of inflow ratios at various forward speeds are shown in

Fig. 2.17.

Figure 2.17: Inflow ratio vs. forward flight speed (16,000 lbs at 5,250 feet)

Dividing inflow velocities which are perpendicular to TPP by rotor tip speed, inflow ratios can

be calculated. The main rotor inflow ratios are obtained by using the Pitt-peter linear inflow dy-

namic model. Tail rotor inflow ratio is obtained by assuming a uniform inflow due to its relatively

small contribution to the entire system. λo is the mean part of the main rotor inflow ratio which

is independent of time or blade azimuth. λ1c is the longitudinal main rotor inflow ratio. λ1s is the

lateral main rotor inflow ratio. λTR is the tail rotor uniform inflow ratio. In addition, corresponding
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control inputs are also validated with flight test data as shown in Figs. 2.18, 2.19, 2.20, and 2.21.

The control inputs are closely predicted to available flight testing data in the entire flight speeds.

Figure 2.18: Collective stick vs. forward flight speed (16,000 lbs at 5,250 feet)

Figure 2.19: Longitudinal cyclic vs. forward flight speed (16,000 lbs at 5,250 feet)
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Figure 2.20: Lateral cyclic vs. forward flight speed (16,000 lbs at 5,250 feet)

Figure 2.21: Pedal vs. forward flight speed (16,000 lbs at 5,250 feet)
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2.4.2 Trim in Climbing and Descending Flight

Climbing and descending flight condition are also simulated with a gross weight of 16,000 lbs

at an altitude of 5,250 feet. The following results are investigated with 60 knots forward flight

speed at the flight path angle range from -20◦ to 25◦. The fuselage pitch angles along the flight

path (climb and descent) angle are shown along with the flight testing data in Fig. 2.22.

Figure 2.22: Fuselage pitch angle vs. climb/descent angle (16,000 lbs at 5,250 feet)

Zero flight path angle means the steady level flight at 60 knots which has an approximately 1-

degree nose-up helicopter pitch angle. Negative angles mean descending flight and positive angles

mean climbing flight states. Considering the tendency and magnitude, the prediction is still in the

reasonable range. However, it is also difficult to investigate this case since flight test data only

have 5 data points. The comparisons of the four predicted (simulated) control inputs with flight

test data are presented in Figs. 2.23, 2.24, 2.25, and 2.26. The predicted control inputs are close to

the available flight test data for the entire flight speed range.
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Figure 2.23: Collective stick vs. climb/descent angle (16,000 lbs at 5,250 feet)

Figure 2.24: Longitudinal cyclic vs. climb/descent angle (16,000 lbs at 5,250 feet)
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Figure 2.25: Lateral cyclic vs. climb/descent angle (16,000 lbs at 5,250 feet)

Figure 2.26: Pedal vs. climb/descent angle (16,000 lbs at 5,250 feet)

2.4.3 Trim in Steady Turning Flight

In trimmed turning flight, the turn rate is a constant, which is nonzero. Since flight test data

are obtained with respect to the roll angle, the relation between the turn rate and roll angle is
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investigated first. Steady turning is also simulated with a gross weight of 16,000 lbs at an altitude of

5,250 feet. The range of turn rates is from -25 to 25 (◦/sec). The fuselage roll angles corresponding

to the turn rates and the fuselage pitch angles are investigated in Figs. 2.27 and 2.28, respectively.

Figure 2.27: Fuselage roll angle vs. turn rate (16,000 lbs at 5,250 feet)

Figure 2.28: Fuselage pitch angle vs. roll angle (16,000 lbs at 5,250 feet)
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The flight test data exist as a function of roll angles, so the predicted control inputs are com-

pared as shown in Figs. 2.29, 2.30, 2.31, and 2.32.

Figure 2.29: Collective stick vs. roll angle (16,000 lbs at 5,250 feet)

Figure 2.30: Longitudinal cyclic vs. roll angle (16,000 lbs at 5,250 feet)
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Figure 2.31: Lateral cyclic vs. roll angle (16,000 lbs at 5,250 feet)

Figure 2.32: Pedal vs. roll angle (16,000 lbs at 5,250 feet)

Although the available flight test data for validation are limited, the control inputs are predicted

closely.
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2.5 Extraction of Linearized Model

A linearized model is extracted based on a first-order Taylor series expansion of the nonlinear

system about an equilibrium (trim) point. By expanding the left-hand side of the Eqn. 2.1 in a

Taylor series, it yields the Eqn. 2.81.

f +
∂f

∂ẏ
∆ẏ +

∂f

∂y
∆y +

∂f

∂u
∆u + · · · = ε (2.81)

At equilibrium(f = ε def= 0), the Jacobian matrices are expressed in Eqn. 2.82.

E =
∂ε

∂ẏ

∣∣∣
trim

, F =
∂ε

∂y

∣∣∣
trim

, G =
∂ε

∂u

∣∣∣
trim

(2.82)

Neglecting the higher-order terms, it yields the linearized system dynamics about equilibrium

as shown in Eqn. 2.83.

E∆ẏ + F∆y + G∆u = 0 (2.83)

By rearranging the above equation with respect to ∆ẏ, it yields the Eqn. 2.84.

∆ẏ = A∆y + B∆u

A = −E−1F

B = −E−1G

(2.84)

A and B matrix are extracted at a given flight condition which defines the specific model(i.e.

60 knots forward flight model). By using Eqn. 3.2 and a state-to-output conversion matrix C,

transfer functions between pilot inputs and system outputs for the relevant physical quantities can

be constructed as shown in Eqn. 2.85.

H(s) = C(sI − A)−1B + D (2.85)

D matrix represents the direct influence of the inputs on the outputs. The nature of the aero-
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dynamics and rotor dynamics introduces time delays between the application of input and the es-

tablishment of steady-state response. The control inputs influence the force distributions over the

rotor disks, modifying the rotor and airframe accelerations. These accelerations, integrated over

time, manifest as changes in the positions and velocities which are the system states and outputs.

Therefore, the matrix D is identically zero.
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3. MACHINE VISION SYSTEM

The objective of the vision system is to provide the visual information required in a given

situation. This chapter explains how to detect objects of interest and estimate the relative position

and orientation and then validate its accuracy. Considering the visual references a helicopter pilot

refers to while approaching the ship, different detection strategies are developed depending on the

distance. Throughout the study, a gimballed camera of the VTOL UAV is used to capture images

that can mechanically compensate for the roll and pitch motions of the UAV.

3.1 Detection Methodology

The development begins by understanding how a helicopter pilot perceives and acts during

different situations while approaching and landing on a ship. First, the pilot visually confirms the

ship’s location in the long-distance and then determines a course and speed for the approach. Once

the helicopter reaches close proximity of the ship, the horizon reference bar becomes visible, and

from that point, the pilot controls the helicopter in a stable fashion by referring to the horizon

bar, which indicates a true horizon independent of the ship motions, for a safe landing. In the

developed vision system, the same strategy is automated for VTOL UAVs by taking advantage of

state-of-the-art machine learning based object detection and classical computer vision methods.

Figure 3.1: Tracking object depending on distance
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As shown in Fig. 3.1, the ship, horizon bar, and corner points on the bar are the primary detec-

tion targets depending on the distance. In case those target objects are not successfully detected,

the vision system detects the secondary objects as backups. Note that it is only possible to detect

the corner points on the horizon bar at close proximity to the landing pad.

3.1.1 Machine/Deep Learning-based Vision

To detect the ship as a whole in the long-range and the horizon bar in the mid-range, ma-

chine/deep learning-based object detectors are developed. Classical computer vision may achieve

the same task, however, it requires explicit algorithms for detection which leads to being compli-

cated and also challenging to capture every aspect of the object. On the contrary, machine/deep

learning-based object detection learns the characteristics of the object thoroughly using neural

networks. The speed and accuracy of this detection process are remarkably improved by using

advanced Graphics Processing Units (GPUs).

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) which was held annually

from 2010 to 2017 became an opportunity to enhance the object detection capability by utilizing

machine/deep learning algorithms [77]. The accuracy achieved each year by the state-of-the-art

algorithms is compared as shown in Fig. 3.2.

Figure 3.2: Accuracy achieved by year in ILSVRC
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ILSVRC is a benchmark in object category classification and detection using millions of im-

ages. There have been many algorithms tried such as AlexNet, ZF, VGG, GoogLeNet, ResNet,

and SENet. Since 2015, it began performing better than human eyes. ILSVRC investigated the ac-

curacy in three different categories which are image classification, single-object localization, and

object detection as shown in Fig. 3.3.

Figure 3.3: Accuracy of image classification, single-object localization, and object detection in
ILSVRC during 2012 - 2014

The image classification task is to classify the object in an image without identifying its posi-

tion. The accuracy is based on the rate that a label created by the algorithm is matched to the actual

object. The single-object localization task includes identifying the object position in the image and

the object detection task is to detect multiple objects and localize them in the image.

According to the accuracy achieved in the three tasks from 2012 to 2014, the image clas-

sification model achieves 94.6% accuracy on average, however, there is a 41% absolute differ-

ence in accuracy between the most and least accurate object class. The single-object localization

model achieves 81.5% accuracy on average with a 77% total range and the object detection model
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achieves 44.7% accuracy on average with an 84.7% total range. The accuracy will increase as

research progresses; however, it is clear that a single-object localization task has better accuracy

than a multiple object detection task. Thus, instead of having one object detector that identifies

two objects (ship and horizon bar), two separate object detectors are developed for each object so

that they do not have to distinguish one object from the other. By this approach, each detector only

needs to find a particular object in the image, and the object class is automatically assigned without

incurring the risk of false classification.

Developing such object detectors involves three steps, which are, collecting images, labeling

objects in the images, and training the object detector. First, 2,000 ship platform images and 1,000

horizon bar images are individually collected by UAV’s onboard camera. To include various as-

pects of object figures in training sets, images are captured in different perspectives, lights, weather

conditions, and distances. Second, the objects in the collected images are manually labeled with

their bounding boxes. Even though the ship images contain the horizon bar, only one object per

image is labeled and training sets for the ship detection and horizon bar detection are strictly sep-

arated to develop two single-object detectors. These data are stored as the pixel position of the

bounding box and the object identification number that indicates object class/name. Third, the set

of labeled images are used for training by a state-of-the-art machine learning algorithm.

To implement the machine/deep learning-based vision on a real-time flight control system,

there is also an important factor, which is detection speed. Several algorithms have been developed

for the purpose of fast detection as well as higher accuracy such as Region-based CNN (R-CNN)

[78, 79, 80], Single Shot Detector (SSD) [81], and You Look Only Once (YOLO) [82, 83, 84].

They commonly have the architecture of convolutional neural network (CNN) which is a class of

deep neural networks. R-CNN is classified as a two-stage detector that combines region-proposal

algorithms with CNN to extract 2,000 regions through a selective search, then classifies the selected

regions on the image. Its recent variant, Faster R-CNN, is developed to improve the detection speed

by replacing the slow selective region search process. Meanwhile, SSD and YOLO are classified as

one-stage detectors that treat object detection as a regression problem by taking an input image and

72



learning the probability of an object class and bounding box coordinates simultaneously. There was

a study that compared the speed and accuracy of such state-of-the-art algorithms, where YOLOv3

demonstrated faster detection speed than Faster R-CNN and SSD [84, 85]. Hence, the YOLOv3

algorithm is finally selected to train an object detector. The YOLOv3 object detection task consists

of object classification and localization as shown in Fig. 3.4.

Figure 3.4: Ship platform detection process by YOLOv3 algorithm

The one-stage detector YOLOv3 regards the detection as a regression problem and uses a single

neural network. It analyzes the entire image to predict the object-bounding box. The input image is

divided into an N x N grid and each grid cell predicts bounding boxes with a confidence score and

class probability. To better detect the object in different sizes, it predicts bounding boxes at three

different scales, which helps to detect the object from a far distance. The predictions of developed

detector are encoded as an N ×N × [3∗ (4+1+1)] tensor for N ×N grid cells, 3 different scales,

4 bounding box offsets, 1 object confidence score, and 1 class prediction. The observed maximum

ranges for detecting the present sub-scale ship platform and horizon bar are approximately 250m
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and 100m, respectively. The real-time detection at different distances is shown as bounding boxes

with object names in Fig. 3.5.

Figure 3.5: Long- and mid-range real-time object detection result
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The verified maximum range is approximately 250 meters (820 feet) in the case of tracking a

6 x 6 feet object (sub-scale ship platform). Since the detection range is proportional to the object’s

occupying area in the image, a typical small ship whose rear-side occupies 50 x 50 feet area can be

detected from 17.3 kilometers (9.3 nautical miles) away. This is 18 times greater than the Missed

Approach Point (MAP) distance, which is a point at which a pilot must identify the ship visually.

Once the target object is detected, it provides the object position and its bounding box in the image

to the control system. Although the actual relative position and orientation are not estimated, the

developed control system achieves autonomous flight in a long distance using the object size and

its position in the image.

3.1.2 Classical Computer Vision

The state-of-the-art machine/deep learning-based approach has the advantage of detecting the

visual cue from far away. However, the disadvantage of the machine/deep learning-based approach

is that training is non-deterministic, meaning that the detection can be failed for unknown reasons.

For example, the model could identify some other objects as the visual cue and the object bounding

box could be larger or smaller than the original object size. These failures are not acceptable in

the case of close-range tracking and accurate landing. Also, the machine/deep learning-based

approach requires high computational loads, which can lead to latency. In this regard, classical

computer vision algorithms that explicitly instruct what to do for detection, and execute in no time

are used to develop a close-range vision system.

Once the UAV reaches close proximity of the ship platform, it is required to detect the visual

cue and then estimate its relative position and orientation for the final approach and landing. The

visual cue should be installed perpendicular to the landing pad and parallel to the pilot’s/aircraft’s

line of sight in the same way that the horizon reference bar is installed on a ship. The visual cue

does not need to have any particular form as long as the dimensions are known apriori. However,

unique features that are distinguishable from the surroundings are favorable for detection. since the

onboard front-facing camera has pitch and roll mechanical gimbals, the camera stays level with the

horizon. Thus, captured images do not experience the effects of pitch or roll motions of the UAV.
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This reduces the complexity caused by rotational motions. However, the effect of yaw is reflected

in the images, which is utilized to extract the heading of the UAV with respect to the visual cue. A

number of different visual cues are tested and representative cases are shown in Fig. 3.6.

Figure 3.6: Representative visual cues tested

Among many candidates, checkerboard pattern visual cue is investigated first due to its dis-

tinctive features and a redundant number of corners. Its geometry exhibits local image features

such as edges, lines, and corners which are greatly helpful in detection. From the experiments that

utilize checkerboard pattern visual cues, the effect of camera resolution and the size of squares in

the checkerboard on the detection range is studied. The maximum resolution of the camera is 4k

ultra-high definition, UHD (4096 x 2160), and the higher resolution helps in increasing the detec-

tion range. The size of squares on the checkerboard, technically the spacing between corners, is

the other factor that affects the detection range. As the square size increases, the effective range for

detection also increases. However, there is a trade-off between the maximum effective range and

the closest proximity from the visual cue since the camera has to be located farther away for the

visual cue detection in case of a bigger square size. The effective ranges for each case are found

through experiments and are provided in Table 3.1.
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Table 3.1: Valid range for varying resolution & square size

Resolution 80 mm Square 120 mm Square

qHD(540p) 13 m 15.5 m

HD(720p) 14 m 17.5 m

FHD(1080p) 15 m 19 m

4K UHD(2160p) 17 m 25 m

According to the results, the square size is selected as 120 mm since it can be detected ac-

curately from distances as high as 25 meters, and the square size is small enough to be captured

even when the visual cue is only 1 meter away. Although higher resolution increases the effective

range, it also increases the quantity of data to process. Therefore, HD 720p (1280 x 720) reso-

lution is selected considering the latency in live streaming and image processing for a relatively

high bandwidth integrated vision-based feedback control system as well as a good effective range.

This visual cue is used in the earlier development phase of the vision-based autonomous ship land-

ing system. Finally, the visual cue that closely mimics the horizon reference bar on Navy ships

is constructed and used for close-range detection and pose estimation. It has two green-colored

rectangles on a grey background with known size and separation as shown in Fig. 3.7.

Figure 3.7: Constructed horizon reference bar
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Considering the characteristics of the installed horizon bar, the corner points of the green rect-

angles are determined as the targets to be detected. In order to ensure robust detection and esti-

mation in scenarios involving large UAV movements and different light conditions, the established

vision system sequentially conducts the image filtering, contour and corner detection, detected

points screening, and the estimation of position and orientation.

3.1.2.1 Image Filtering

The image filtering takes the processing steps as shown in Fig. 3.8.

Figure 3.8: Image filtering process

The initial approach involves applying a Hue-Saturation-Value (HSV) filter to sort out the green

rectangles. The HSV filter is preferred over Red-Green-Blue (RGB) because the RGB color space

is more sensitive to light conditions. To ensure the capture of the green rectangles in different

light conditions, the greater range of HSV (H: 35 - 85, S: 70 - 255, V: 90 - 255) is assigned;
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however, this inevitably leads to the capture of undesired portions. In the HSV filtered image, there

possibly exists small white patches outside the rectangles and black voids inside the rectangles.

The morphological opening technique is used to remove the white patches in the image. It first

erodes an image removing any small white patches and then dilates the eroded image to preserve

the original shape and size. Morphological closing is used to fill up small voids in those rectangles

by dilating an image first then eroding the dilated image. By performing these operations, the

rectangles are depicted as white regions on the black background. The watershed algorithm [86]

is exploited to obtain clear boundaries of the rectangles. The two reference areas are obtained by

eroding the processed image by 1% and dilating the processed image by 1%. The gap between the

two areas is assumed to contain the boundaries of the rectangles. The algorithm simultaneously

expands the area of the background and the rectangles toward each other until they meet at a one-

pixel point. By connecting the points, clear boundaries of the rectangles are obtained.

3.1.2.2 Contour and Corner Detection

Once the green rectangles are isolated by the image filtering process, the detection of contours

and corner points is conducted. Even after the filtering, directly implementing any pre-existing

corner detection algorithms is prone to detect some false corners. To detect the eight corner points

precisely, the contours of the detected region are found and bounded in rectangles first. Thus, the

size and shape of the detected areas are very close to the green rectangles and the corners of those

bounding rectangles can be used as rough estimates of the actual corners. Second, the Förstner

corner detection method is adopted to detect the corner points of the rectangles precisely based

on the rough corners obtained by contour detection [87]. The Förstner corner detection increases

the accuracy by sub-pixel refinement process as shown in Fig. 3.9. It is based on the fact that an

ideal corner is a single point that tangent lines of the object cross perpendicular to each other. This

way, false corner detection can be avoided. The pixel information around a corner is not perfectly

clear. Therefore, an approximation process for defining the corner position (cu, cv) is required and

is expressed in Eqn. (3.1).
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Figure 3.9: Förstner corner detection method

(ĉu, ĉv) = arg min
cu,cv

∑
u,v∈N

([∇f(u, v)]T (u− cu, v − cv))2 (3.1)

The image gradient ∇f(u, v) at the image pixel position (u, v) is perpendicular to line from

(u, v) to corner position (cu, cv). In order to obtain (cu, cv), a least square estimation in a small

window is used. The projection of line from (cu, cv) to (u, v) on to the tangent line at (u, v)

is required to be maximized in the given window. In other words, the projection of the image

gradient onto the line segment connecting (cu, cv) and (u, v) has to be minimized for all (u, v)

inside the window N . One crucial part here is the size of the window chosen for each image. It

cannot be a fixed window size because the UAV is always moving towards the landing pad. The

size of the detected region increases as it approaches closer to the visual cue. Hence a variable

window size which is a function of the width and height is assigned as expressed in Eqn. (3.2).

sw(w(tk), h(tk)) =
1

5
{w(tk)× h(tk)} (3.2)

sw(w(tk), h(tk)) is the window size at time tk where w(tk) and h(tk) are the width and height
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of bounding rectangles in pixels. The detection results are shown in Fig. 3.10.

Figure 3.10: Detection of contours and corners

3.1.2.3 Detected Points Screening

The screening procedure is established to assure that no false corners are present. All the

corners are sorted in a particular order as shown in Fig. 3.11, which helps in finding the length and

slope of each side of the rectangles in the image. Even though they are not perfect rectangles in

the image, width 1, 2, 3, and 4 have similar lengths and slopes. The height 1, 2, 3, and 4 also have

similar lengths and slopes. A±10% tolerance level is set for the lengths and a±5% tolerance level

is set for the slopes.

Figure 3.11: Detected corners in the sorted order
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3.2 Estimation of Relative Position and Orientation

The estimation is based on a single camera calibration method using a planar object [88, 89].

The geometric relation of the image and real-world coordinates is shown in Fig. 3.12.

Figure 3.12: Geometric relationship of 2D image coordinates and 3D real-world coordinates

A conventional pinhole camera model is used to derive the geometric relation. A 3D coor-

dinate system can be defined with respect to the visual cue and there is a 2D coordinate system

associated with the image frame. (X, Y, Z) is a point on the object described in the visual cue

body-fixed frame, and (u, v) is a corresponding point on the image frame (pixel position in the

image). The relationship between the image coordinates and the body-fixed coordinates in matrix

form is described in Eqn. (3.3).
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The equation is derived in a homogeneous coordinate system. In the homogeneous coordinate

system, the 2D image point (u, v) becomes a 3D vector (u, v, 1) and the 3D world coordinates

(X, Y, Z) become 4D vector (X, Y, Z, 1). The scaling factor s comes from transforming the ho-

mogeneous coordinates to cartesian coordinates. R is a 3 x 3 rotation matrix and t is a 3 x 1

translation vector. R matrix has the information about the camera orientation with respect to the

visual cue and t provides the information on how far the camera is from the particular (X, Y, Z)

point in the visual cue body-fixed frame. O1x3 is 1 x 3 zero matrix. The matrix which includes R,

t, O1x3, and 1 is called the camera extrinsic matrix, which varies from image to image. The matrix

A is called the camera intrinsic matrix and its components are shown in Eqn. (3.4).

A =


1/ρu 0 u0

0 1/ρv v0

0 0 1



fx 0 0 0

0 fy 0 0

0 0 1 0

 (3.4)

1/ρu and 1/ρv are parameters that scale the image coordinates, which are in pixels to values in

the International System of Units (SI). u0 and v0 are the center position in the image plane. The

first matrix shifts the center of the image plane to the top left corner point. The second matrix

contains the focal length information fx and fy, which are the focal lengths of the camera in the

x and y directions, respectively. The product of two matrices forms the camera intrinsic matrix,

which depends on the particular camera. This unique camera intrinsic matrix can be found using a

camera calibration [90].

To determine the relative position and orientation of the camera, the Perspective-n-Point (PnP)

algorithm is applied. Given a set of n 3-D coordinates of an object and its corresponding 2-D
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projections on the image, this algorithm solves Eqn. (3.3) to obtain the rotation vectors R and the

translation vectors t. There are 6 DOF for a camera, which are 3 DOF in rotation (roll, pitch, yaw)

and 3 DOF in translation (X, Y, Z). A minimum of 3 points are required to find a solution, but

the solution is not unique. There should be a minimum of 4 points to obtain a unique solution;

however, it can be more reliable and redundant when there are more points. An iterative method

is used for the PnP algorithm since it is robust for objects which consist of a planar surface and

gave more accurate results. The iterative method is based on Levenberg-Marquardt optimization

[91, 92]. In this method, the function minimizes re-projection error, which is the sum of squared

distances between the observed image points (u, v) and projected object points (X, Y, Z). By

default, the iterative algorithm sets the initial value of rotation and translation as zero and then

updates during each iteration.

The RANSAC method [93, 94] is used to find a rough initial guess for the extrinsic matrix in an

iterative approach. The RANSAC method also identifies the outliers and removes them during the

calculation. The initial guess and inliers are fed into the iterative algorithm to have a more accurate

estimation. The solvePnP algorithm [90] returns a rotation vector and the translation vector. The

rotation vector can be converted to the rotation matrix using the Rodrigues function. Thus, once

the rotation matrix (R) and translation vector (t) are obtained, −R−1t gives the relative distances

in 3D from the camera to the origin of the visual cue body-fixed frame.

The present estimation method is modified from the existing algorithm to take advantage of the

gimbal camera. Since the gimbal corrects for the roll and pitch motion of the UAV, the images only

reflect the yaw motion (heading angle) with respect to the visual cue. Thus, roll and pitch angles

computed by the image can be regarded as camera noise and gimbal correction errors. Therefore,

the roll and pitch angles are excluded from the position estimation. The basic and modified rotation

matrix are specified in Eqs. (3.5) and (3.6), respectively.
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Rbasic =


cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ

sαcβ sαsβsγ − cαcγ sαsβcγ + cαsγ

−sβ cβsγ cβcγ

 (3.5)

Rmodified =


cosα − sinα 0

sinα − cosα 0

0 0 1

 (3.6)

α, β, and γ represent yaw, pitch, and roll angles, respectively. Each row of the R matrix

contributes to their respective coordinates (X, Y, Z). By setting the pitch and roll angle to zero, the

modified rotation matrix is obtained from the basic rotation matrix. Only the yaw angle remains,

which takes care of the relative heading angle. The third row of the modified rotation matrix shows

that the Z-coordinate is independent of the yaw angle, α. Hence, the yaw angle has no contribution

in the estimation of the forward relative distance (Z-coordinate) between the UAV and the visual

cue. However, the sideward relative distance (X-coordinate) and vertical relative distance (Y -

coordinate) are heavily dependent on the yaw angle. The camera position with respect to the visual

cue is given in Eqn. (3.7).


Xcam

Ycam

Zcam

 = −Rmodified
−1t (3.7)

It is apparent from multiple experiments that the yaw angle estimation becomes noisy as the

camera gets farther away from the visual cue. Since the estimation is based on the number of

visual cue pixels in the image, the changes in pixels with distance result in the noise. Despite this

sensitivity issue, yaw estimation still shows a reasonable trend within the range that the forward

relative distance is accurately estimated. To utilize the yaw estimation trend, instead of directly

taking the noisy yaw angle estimation, a moving average filter is configured first and the results are

shown in Fig. 3.13.
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Figure 3.13: Effect of moving average filter on yaw

The red line denotes the yaw angle estimation results by the basic algorithm and the blue line

denotes the results after the moving average filter is applied. The moving average is calculated

using the history of the previous estimation data. A lower and upper bound are defined for the

next yaw angle estimation value with respect to the current average. Whenever the estimated yaw

angle is out of the defined range, it rejects that value and takes an average value. In this way, the

moving average filter provides stable yaw estimation by tracking a trend in a further distance, and

the accuracy naturally increases as it gets closer to the visual cue due to having more pixel data in

the image.

However, the moving average filter requires multiple accumulated data to predict the current

estimation. Thus, a simple low pass filter is configured to reduce the noise level. One of the

commonly used real-time data filters is Kalman Filter. Kalman filter predicts the current estimate

by taking into account the current measured value, the previous estimate, and the noise level in

the data. A single state Kalman filter was opted over other real-time filters because of the lesser

number of variables required while computation. Gaussian noise is assumed to be present in the

measurement data with a specified mean and variance. The yaw estimation method is given in Eqn.

3.8.
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CE = PE +KG× CM

KG = PrE × 1

PrE +RN

PrE = PE +QN

(3.8)

CE is the current yaw estimate, PE is the previous yaw estimate, KG is the Kalman Gain, CM

is the current yaw measurement, RN is the process noise covariance, and QN is the measurement

noise covariance. RN and QN values are experimental values found by analyzing different sets

of yaw angle measurements and they are set to 0.005 and 0.05, respectively. The Kalman filter

effectively reduced the fluctuations in yaw estimations as shown in Fig. 3.14.

Figure 3.14: Effect of Kalman filter on yaw

3.3 Validation

The results obtained from the developed computer vision system are validated through position

and attitude measurements using a Vicon motion capture system shown in Fig. 3.15.
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Figure 3.15: Experimental setup in Vicon system

Vicon motion capture system is widely used in the entertainment industry to track the motion

of people and other objects even up to sub-millimeter resolution. The Vicon system used for this

study can capture images at 120 Hz using eight 16-megapixel digital video cameras. Camera-

mounted strobes illuminate small, retro-reflective markers, which are identified and processed by

the imagers. The Vicon cameras track reflective markers on both the UAV and the visual cue to

obtain precise position and orientation data, which is then used as the ground truth for this study

to validate the computer vision system.

The validation is for the estimation method along with the developed algorithm and conducted

with the checkerboard visual cue with 9 corners. The detection method varies depending on the

selection of visual cues, however, the estimation method that computes the relative position and

angle is the same for every visual cue. The developed algorithm applied here is based on the mov-

ing average filter which is replaced with the Kalman filter later. The comparisons of the forward

relative distance and sideward relative distance are shown in Fig. 3.16 and 3.17, respectively.

The blue, red, and green lines denote the Vicon measurements, baseline algorithm estimations,

and estimations from the present improved algorithm, respectively. As seen from the figure, the
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Figure 3.16: Validation of forward distance estimation

Figure 3.17: Validation of sideward distance estimation

baseline and the improved algorithms have no difference when it comes to the forward relative

distance estimation, and both these methods can obtain the same level of accuracy as the Vicon

measurements. The sideward distance estimation by the baseline algorithm has fluctuations; how-

ever, the improved algorithm shows smooth results due to the moving average filter. The maximum
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error in sideward distance estimation is 1 centimeter when compared to the Vicon result. The com-

parisons of the vertical relative distance and relative yaw angle are as shown in Fig. 3.18 and 3.18,

respectively.

Figure 3.18: Validation of vertical distance estimation

Figure 3.19: Validation of yaw angle estimation
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In both vertical relative distance and relative yaw angle comparison, the improved algorithm

yields smooth estimation results. The maximum error in the vertical relative distance is below

1 centimeter and the maximum error in the relative yaw angle is 1 degree. Through the Vicon

experiments, the ability of the present computer vision system to detect the visual cue and precisely

estimate the position and orientation is demonstrated.
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4. CONTROL SYSTEMS AND SIMULATIONS

This chapter discusses the details of control systems that have been applied for autonomous

ship landing along with simulation results. Various control strategies such as optimal control,

gain-scheduled control, nonlinear control, and deep reinforcement learning control are developed

with respective control objectives. First, helicopter ship landing simulations with the optimal con-

trol system are conducted to prove the novel ship landing concept. To verify tracking capability,

landing accuracy, and disturbance rejection capability as a preliminary step of flight testing, the

gain-scheduled control, nonlinear control, and deep reinforcement learning control systems are

developed and extensively simulated in the Gazebo simulation program.

4.1 Optimal Control Strategy

The optimal control system is implemented on the linearized UH-60 helicopter model extracted

by the TRAC. The objective of the optimal control system is to investigate realistic helicopter

maneuvers while approaching and landing on a ship. To this end, it is assumed that the vision

system provides perfect estimations for the relative position and orientation. It demonstrates the

tracking capability from approach to landing on a ship. For each phase of flight, corresponding

models are used which are extracted from trimmed flight conditions such as hover, steady forward

flight, and steady coordinated turn.

4.1.1 Linear Quadratic Regulator (LQR) Control Design

LQR for set-point tracking method is used to track prescribed vehicle motions and obtain the

control inputs required to fly the desired trajectory which is designed to simulate real helicopter

ship approach and landing closely. The trajectory begins 680 meters away from the ship and

the helicopter maneuvers consist of initial descent, steady forward flight, steady coordinated turn,

deceleration, and final vertical landing.

In order to obtain the feedback gains K from the linearized dynamics, the LQR provides a

methodology to stabilize and control a linear system by minimizing a quadratic cost function in
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the state deviations from targets and the control inputs. For a linear time-invariant (LTI) system

with dynamics given in Eqn. 4.1, the infinite-horizon continuous-time LQR controller yields state

feedback gains K to minimize the quadratic cost function.

J =

∫ ∞
0

(xTQx+ ∆uTR∆u)dt

( where x = y − ytarget )

(4.1)

Computing the steady-state values of the states and the control inputs results in zero output

error and then forces them to take these values. If the desired final values of the states and control

inputs are xss and uss respectively, then the new control formula is formed as given in Eqn. 4.2.

∆u = uss −K(x− xss) (4.2)

Plugging it in the standard form yields the Eqn. 4.3.

ẋ = Ax+B(uss −Kx+Kxss)

y = Cx

(4.3)

When x = xss(no error), and u = uss, it is expressed as Eqn. 4.4.

O = Axss +Buss

yss = Cxss

(4.4)

It can be re-arranged in matrix form as Eqn. 4.5.

xss
uss

 =

 A B

Cs Ds


−1 O

yss

 (4.5)

In order to make it feasible, the matrix consisting of A, B, Cs, and Ds components has to be

invertible. Hence, Cs and Ds are selected to meet the size of the matrix. In this control system,

the number of rows in Cs has to be the same as the number of control inputs which is 4. In other
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words, it is able to provide 4 non-zero reference states (setpoints) to track and the other states are

regulated to zero at the same time.

4.1.2 Simulation Results

In this section, helicopter states and the corresponding trajectory of the CG are described. The

simulation is conducted for 3 minutes without disturbances. For initial conditions, a helicopter is

flying forward with 30 knots at an altitude of 200 ft (60.96 m), and its initial position is defined as

(0, 0, -60.96) in the earth-fixed frame. A target ship is moving forward at 10 knots. The horizon

bar position represents the position of the target ship and its initial position is at (679.73, -88, -5)

in the earth-fixed frame. All units are in meters and in order to demonstrate the trajectory more

intuitively, the sign of the Z-axis component in the earth-fixed frame is swapped in the following

plots (positive upwards). In all the trajectory plots shown in Figs. 4.1 and 4.2, the red markers

represent the ship trajectory and the blue line represents the helicopter trajectory.

(a) Diagonal view (b) Top view

Figure 4.1: Isometric and top view of entire trajectory
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(a) Side view (b) Rear view

Figure 4.2: Side and rear view of entire trajectory

In order to check the trajectory more accurately, relative distance in the earth-fixed frame is

investigated and the final landing position is also plotted as shown in Fig. 4.3.

(a) Entire relative displacement (b) Final relative displacement

Figure 4.3: Relative displacement in time
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The relative distance is calculated by "Ship position" - "Helicopter position" in the earth-fixed

frame. ∆X , ∆Y , and ∆Z are relative distances along the earth-fixed X, Y, and Z-axis. In the

following plots, the Z-axis component sign also follows a re-defined direction(positive upwards).

The final landing circle on the flight deck means that landing anywhere inside the circle is safe.

Thus, it can be considered as an allowable error range. Final values of ∆X , ∆Y are considered as

errors, but ∆Z is the summation of the distance from the landing gear to the CG (48.26 cm) and

error. Hence, the final errors mean the deviation from the center of the circle and are expressed

along each axis in meters (0.0353, 0.0728, 0.0037) as shown in Fig. 4.4.

Figure 4.4: Final landing point

4.1.2.1 Initial Descent

For the initial descent maneuver, the UH-60 linearized model, which is extracted at forward

speed of 30 knots is used. It is controlled by LQR for set-point tracking to achieve desired states.

In order to descend, non-zero setpoints for vertical speed w are assigned and the controller effec-

tively regulates the error which is the difference between the setpoint and current state. Gains for

the controller are determined by changing weights on Q and R matrices. Weights are carefully

chosen since there is a trade-off between transient responses and control efforts. Therefore, it is
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important to check if the control inputs are in the reasonable range. With the selected gains, it

takes 41.68 seconds to regulate the errors in states to less than 1e−05 and the corresponding final

altitude deviation is 0.03 cm. Trajectory for descent, fuselage states as a function of time, and

relative control inputs (deviation from the trim control inputs) are shown in Figs. 4.5, 4.6, and 4.7.

(a) Top view (b) Side view

Figure 4.5: Trajectory in descent maneuver

(a) Linear velocities along axes (b) Angular velocities about axes

Figure 4.6: Body-fixed linear and angular velocities in descent maneuver
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(a) Helicopter attitude (Euler angles) (b) Control inputs

Figure 4.7: Helicopter attitude and control inputs in descent maneuver

Considering the helicopter’s relative position, it starts the next maneuver before the states are

settled. In this case, it requires to begin the next maneuver (steady turn) at 30.14 seconds. Thus,

the state values at 30.14 seconds are used as initial values for the next maneuver.

u = 15.4295 (m/s) v = 0.0029 (m/s) w = -0.0060 (m/s)

p = -0.0018 (◦/s) q = -8.2214 (◦/s) r = 0.0019 (◦/s)

φ = 0.0028 (◦) θ = -9.0965 (◦) ψ = -0.0005 (◦)

Table 4.1: State values at 30.14 seconds
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4.1.2.2 Steady Turn

For the steady turn maneuver, the UH-60 linearized model, which is extracted at forward speed

of 30 knots is used. It is controlled by LQR for set-point tracking to achieve desired states. In order

to turn, non-zero setpoints for Euler angle ψ are assigned and the controller effectively regulates

the error which is the difference between the setpoint and current state. It takes 17.71 seconds to

regulate the errors in states to less than 1e−05 and the corresponding final Euler angle deviation

is 8.45e−07(◦), which is nearly zero. According to this simulation, the displacement along the

earth-fixed Y-axis is computed as -6.68 meters. From this point, the lead time to start the steady

turn maneuver can be calculated. Considering the lead time, the turning maneuver begins 30.14

seconds after the start of the descent. Corresponding steady turn trajectory, fuselage states as a

function of time, and relative control stick inputs are shown in Figs. 4.8, 4.9, and 4.10.

(a) Top view (b) Side view

Figure 4.8: Trajectory in steady turn
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(a) Linear velocities along axes (b) Angular velocities about axes

Figure 4.9: Body-fixed linear and angular velocities in steady turn

(a) Helicopter attitude (Euler angles) (b) Control inputs

Figure 4.10: Helicopter attitude and control inputs in steady turn
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4.1.2.3 Deceleration

For the deceleration maneuver, the UH-60 linearized model which is extracted at forward speed

of 10 knots is used. First, a 20 knots headwind is applied to simulate the deceleration from 30

knots to 10 knots. Although it has no problem regulating all states, the helicopter gains undesired

altitude which is 14.78 meters. This occurs due to the way that a helicopter typically decelerates.

In order to decelerate, the helicopter has to pitch nose up, which tilts the TPP and hence the thrust

vector backwards, which creates a force in the backward direction. The nose-up motion can cause

undesired altitude changes if the collective input is not controlled perfectly to maintain the altitude.

Hence, besides assigning an initial value for forward speed u, non-zero setpoints for vertical speed

w are assigned to minimize undesired vertical altitude increase.

It is controlled by LQR for set-point tracking to regulate the errors, which are the differences

between setpoints and the current states at each time step. It takes 37.08 seconds to regulate the

errors in states to less than 1e−05. The final deviation in altitude is 0.024 cm and the lateral devia-

tion is 1.69 cm. During this deceleration maneuver, the maximum altitude gain is 1.52 meters and

the maximum altitude loss is 0.97 meters. Assigning non-zero setpoints for vertical speed w with

appropriate LQR gains minimize this variation in altitude. To achieve the desired position for the

helicopter when it completes deceleration, this deceleration maneuver begins 28.43 seconds after

the start of the steady turn. Since the previous maneuver steady turn takes 17.71 seconds to achieve

settlement in states, initial values for deceleration maneuver is set to zero other than forward speed

u (which simulates deceleration from 30 knots to 10 knots). Corresponding deceleration trajectory,

fuselage states as a function of time, and relative control stick inputs are shown in Figs. 4.11, 4.12,

and 4.13.
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(a) Top view (b) Side view

Figure 4.11: Trajectory in deceleration maneuver

(a) Linear velocities along axes (b) Angular velocities about axes

Figure 4.12: Body-fixed linear and angular velocities in deceleration maneuver
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(a) Helicopter attitude (Euler angles) (b) Control inputs

Figure 4.13: Helicopter attitude and control inputs in deceleration maneuver

4.1.2.4 Landing

For the landing maneuver, the UH-60 linearized model, which is extracted at forward speed of

10 knots is used. It is controlled by LQR for set-point tracking to achieve the desired states. In order

to land vertically, non-zero setpoints for vertical speed w are assigned and the controller effectively

regulates the error which is the difference between the setpoint and current state. Although it takes

28.34 seconds to regulate the errors in states to less than 1e−05, state responses after the 20.41-

second mark are meaningless since it touches down the deck at 20.41 seconds. In this simulation,

the final landing maneuver begins 48.87 seconds after the start of deceleration. Landing gear

position from the CG is considered and the final landing point deviation from the center of the

landing circle is 0.035 meters along the earth-fixed x-axis and 0.073 meters along the earth-fixed

Y-axis. Corresponding landing trajectory, fuselage states in time, and relative control stick inputs

are identified as shown in Figs. 4.14, 4.15, and 4.16.
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(a) Top view (b) Side view

Figure 4.14: Trajectory in landing maneuver

(a) Linear velocities along axes (b) Angular velocities about axes

Figure 4.15: Body-fixed linear and angular velocities in landing maneuver
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(a) Helicopter attitude (Euler angles) (b) Control inputs

Figure 4.16: Helicopter attitude and control inputs in landing maneuver

4.1.3 Visualization

Simulation results are visualized by using X-Plane 11 flight simulator software due to its ex-

cellent graphic quality and capability to implement a flight data recorder (FDR) file. It visualizes

a UH-60 helicopter and a Navy ship realistically. Visualization through the FDR file is useful pri-

marily in accident investigation and re-creation. In that case, it can be done by taking the data from

the black box of an aircraft and put it in a format that X-Plane can load.

The mathematical simulation conducted in the MATLAB program stores the data, which is

then re-written in the FDR format for visualization. It visualizes the values of fuselage attitude

(roll, pitch, yaw) at each time step by taking those values directly from the simulation results. The

helicopter position data at each time step are converted to latitude and longitude values, then they

are visualized for the entire helicopter ship landing.
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Figure 4.17: Visualized ship landing from initial position in cockpit view

Figure 4.18: Visualized ship landing at flight deck in outside view
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Figure 4.19: Visualized ship landing under bad weather in tail view

Figure 4.20: Visualized ship landing with night vision goggle (NVG) at night in cockpit view
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4.2 Gain-scheduled Control Strategy

As a first step towards implementing the novel autonomous ship landing method in practice, a

gain-scheduled control system is designed to approach and land by tracking a checkerboard pattern

visual cue installed on the ship platform as shown in Fig. 3.6 of Chapter 3. This vision-based

control system forms the outer-loop of a cascaded feedback control system, where the inner-loop

handles the basic attitude stability of the aircraft and yields the required pitch, roll, heave (throttle),

and yaw control inputs as demanded by the outer loop. The standard form of the PID controller is

represented in Eqn. 4.6.

u(t) = KP e(t) +KI

∫ τ

0

e(τ)dτ +KD
d

dt
e(t) (4.6)

e(t) denotes an error between a setpoint and relative position with respect to the visual cue. The

positions and heading angle computed from the vision system reflect the disturbances and sensor

noise. In this case, the update rate of the closed-loop feedback control system is 0.1 seconds

including the live-streaming, detection, and estimation. KP , KI , and KD gains are tuned based on

the effect of each parameter as shown in Table 4.2.

Table 4.2: Effect of KP , KI , and KD

Characteristic Increase KP Increase KI Increase KD

Rise Time Decrease
Small Small

Decrease Decrease

Overshoot Increase Increase Decrease

Settling Time
Small

Increase Decrease
Increase

Steady-state Error Decrease
Large Minor

Decrease Change

Stability Degrade Degrade Improve
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The different sets of gains are scheduled based on relative positioning data to control the be-

havior of a UAV as desired. It allows the UAV to fly at high speed in the long-distance and then

slow down the relative speed for cautious tracking when it gets closer to the landing point. The

flight mode selector is also configured in order to adapt the UAV movements to the flight condi-

tions and enhance safety. The states are the relative positions in three dimensions and the heading

angle of the UAV with respect to the visual cue obtained from the computer vision system. The

control inputs are pitch, roll, yaw, and throttle commands. Each control magnitude ranges from

-100 to 100 as a percentage of the total input. The outputs are UAV attitude and raw images from

the camera. The UAV attitude consists of roll angle φ, pitch angle θ, and yaw angle ψ.

4.2.1 Control Architecture

The vision-based PID control system with scheduled gains is structured as shown in Fig. 4.21.

Setpoints are the desired relative positions and heading angle of the UAV. The mode selector auto-

matically chooses a proper flight mode based on the flight conditions. Depending on the selected

flight mode, the control inputs are obtained through the gain-scheduled PID controllers or from

the pre-assigned values. The parameters that are fed back include the estimated UAV position and

heading angle obtained from the computer vision system.

Figure 4.21: Gain-scheduled PID control system architecture
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4.2.2 Flight Modes

A robust flight control system should be able to operate under various flight conditions. Thus,

three flight modes are configured to fly the UAV in an appropriate manner given the scenario.

They consist of the mode selector and gain-scheduled PID controllers in order to obtain the proper

control inputs depending on the scenario.

4.2.2.1 Scanning mode

In the case of a visual cue detection failure, the scanning mode is activated anytime during the

flight to search for the visual cue. Once it is engaged, the UAV starts yawing by commanding the

pre-assigned control inputs instead of relying on the gain-scheduled PID controllers. It continues

to yaw until it detects the visual cue and one successful detection disengages this mode instantly.

This allows the UAV to track the visual cue irrespective of its initial heading orientation as long as

the visual cue is within the detection range. During the flight, if the UAV loses the visual cue from

the camera view, it stops moving and then scans for the cue in order to get back on track. Hence,

the scanning mode enhances safety as well as increases operational range and robustness.

4.2.2.2 Tracking mode

This mode is activated once the visual cue is properly detected. Based on the relative distance

and heading angle, different gain-scheduled PID controllers are engaged as shown in Fig. 4.22.

Figure 4.22: Composition of gain-scheduled PID controllers
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First, three different pitch controllers are configured based on the forward relative distance.

Level 1 pitch PID controller gains are scheduled to track the visual cue at the maximum speed

when the distance to the landing spot is more than 6 meters. Level 2 pitch PID controller gains

are scheduled to track the visual cue at moderate speeds when the distance range is between 6

and 1.5 meters. The controller is tuned to prevent overshoots and oscillations. Level 3 pitch PID

controller gains are scheduled to track the visual cue within a range of 1.5 meters. It focuses on

minimizing steady-state error for precise tracking and mimics the cautious final approach maneuver

of a helicopter.

Second, two different roll controllers are configured based on the sideward relative distance.

Level 1 roll controller gains are scheduled to track the visual cue when the sideward distance is

more than 1.5 meters and is tuned to achieve fast tracking, no overshoots, and no oscillations.

Level 2 roll controller gains are scheduled to track the visual cue precisely within the range of 1.5

meters focusing on steady-state error minimization.

Third, two different yaw controllers are configured based on the relative heading (yaw) angle

to maintain the desired approach angle. In order to prevent the visual cue from getting out of

the camera view by commanding large pitch and roll motions with excessive yaw angle, it gives

priority to the yaw correction by reducing the magnitude of pitch and roll control inputs. Level 1

yaw controller is designed to slow down the pitch and roll motion as well as correct the yaw angle

quickly when the relative yaw angle is more than 15 degrees. Level 2 yaw controller is designed to

correct the yaw angle precisely without slowing down the pitch and roll motion when the relative

yaw angle is less than 15 degrees. Lastly, one throttle PID controller is configured to control the

heave motion based on the vertical relative distance. Considering the vertical displacement that the

UAV can have within the camera view, one set of PID gains is enough to handle its heave motion.

4.2.2.3 Safety mode

This mode is activated to enhance safety by responding appropriately to three different situa-

tions shown in Fig. 4.23 and the safety mode supersedes any other mode.
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Figure 4.23: Schematic of safety mode

First, a backward (nose-up) pitch is applied instantly to prevent a collision when crossing the

landing pad centerline instead of relying on the pitch PID controller. Second, the directional ap-

proach is designed to control the UAV when estimated relative positions are not reliable. Partic-

ularly, there exists a distance range where the forward distance estimation is accurate enough but

the sideward distance and relative yaw angle estimation are not accurate due to a small number of

pixels. In this case, it directly uses pixel position data in a 2D camera plane to control roll motion

instead of estimating a position from an image. It does not correct for yaw angle but the roll is

commanded if the visual cue is located in the area which is more than 15 percent offset from the

center of the image in order to make sure the visual cue is not lost from the camera view. Third, an

immediate landing is attempted to reduce the time for the final vertical movement by commanding

throttle down instantly when the UAV enters into the landing threshold.

4.2.3 Simulation Results

The objective is to verify every aspect of the vision-based flight control system under different

scenarios and to demonstrate that extreme accuracy can be achieved by adopting this novel method

of tracking a visual cue installed parallel to a UAV approach course instead of tracking a landing

platform. In the implementation, the entire coding is done in the Python programming language

and a realistic robot simulation program, Gazebo [95], is used to simulate the physical and visual

112



surroundings of a UAV as shown in Fig. 4.24 and Video [96].

Figure 4.24: Simulated UAV and moving platform in Gazebo simulation program

The simulated UAV model has the same dimensions, mass moments of inertia, gimbal camera,

and flight mechanism as the physical UAV, Parrot Anafi. The simulation also implements a moving

vehicle that carries the visual cue and landing platform as shown in Fig. 4.24. As determined by

vision system experiments, the visual cue has a checkerboard pattern consists of 4 x 4 squares

with a side length of 120 mm each, and the landing platform size is 3 x 3 ft. These characteristics

remain the same throughout simulations and flight tests.

The simulations are conducted in the same way as the actual flight tests including live-streaming,

real-time vision processing, and feedback control loop. First, the simulated UAV is connected via

WIFI to the base station computer. Once the UAV takes off, the images from the simulated camera

are streamed to the computer. The images are processed one by one to obtain the relative position

and heading information, which is utilized by the feedback controller running on the computer to

generate the control inputs. Then, the computed control inputs are sent back to the UAV via the

WIFI connection. This one cycle from streaming to sending commands back to the UAV takes 0.1

seconds. This simulated system, once verified, can be directly applied to a real flight test by simply

switching an IP address from the simulated UAV to the physical UAV. The following simulation

results show the tracking capability and landing accuracy in detail.
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4.2.3.1 Landing Accuracy

To demonstrate the tracking and landing accuracy of the present vertical-visual-cue based

method, multiple simulations are conducted with different landing thresholds and varying the speed

of the moving platform. The final landing locations from 100 independent simulations are plotted

in Fig. 4.25.

Figure 4.25: Landing points with landing threshold of 25 x 25cm (left), 15 x 15cm (center), and 5
x 5 cm (right)

The green line depicts the landing pad and each mark denotes the landing point for different

speeds of the moving platform. Note that landing anywhere within the 25 x 25 cm area can be

regarded as a safe landing considering the UAV size. The present vision-based control system

achieves precise landing within a 5 x 5 cm landing threshold for all platform speeds. When the

platform is moving at 8.5 m/s, it requires the UAV to fly close to its maximum speed but it still

can make accurate landings. The dispersion of landing points in the figure can be attributed to the

assigned landing threshold.

To investigate the effect of landing thresholds and platform speeds on tracking time, various

cases are simulated and the time history of relative distance for each landing case is shown in Fig.

4.26.
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Figure 4.26: Relative distance with landing threshold of 25 x 25cm (left), 15 x 15cm (center), and
5 x 5 cm (right)

Each line denotes the relative distance between the UAV and landing pad center at different

platform speeds. By the time the UAV starts tracking after take-off, the platform is already accel-

erating forward up to its designated speed. Thus, the relative distance increases at the beginning of

the tracking phase. Also, it takes more time to land as the landing threshold is made smaller. The

average time to achieve a landing threshold in each case is specified in Table 4.3.

Table 4.3: Average time to achieve landing threshold

Vehicle Speed 5x5cm 15x15cm 25x25cm
0.5m/s 15.3s 4.6s 3.3s
2.0m/s 25.6s 7.0s 6.8s
4.0m/s 26.9s 13.8s 10.3s
6.0m/s 28.6s 16.4s 16.2s
8.5m/s 35.2s 23.0s 22.9s

In conclusion, the landing accuracy depends on an assigned landing threshold. The present

system can achieve a precise landing, however, there is a trade-off between the time and landing

accuracy. Thus, the landing threshold should be selected based on the priority of a mission, which

could be accuracy or time. In the following simulations, the medium landing threshold of 15 x 15

cm is applied.
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4.2.3.2 Case-1: Platform moving in a straight line at 0.5 m/s

To examine the tracking capability, simulations are conducted by varying the speed and the

course of the moving platform. The four cases discussed in this paper include the platform moving

forward in a straight line at speeds 0.5 m/s and 8.5 m/s as well as the platform moving in an S-

pattern and a circular pattern. The trajectories, final landing points, set-point tracking data in time,

and time history of control inputs are analyzed for each case.

First, the platform is programmed to move forward at 0.5 m/s speed and the trajectories viewed

from the top and side are shown in Fig. 4.27.

(a) Top view (b) Side view

Figure 4.27: Vehicle and UAV trajectories in case-1

The solid blue line denotes the UAV trajectory whereas the dashed red line denotes the platform

trajectory from take-off to landing. The initial position of the UAV is on the ground at a sideward

distance of 1.5 meters from the platform. The UAV takes off and then tracks the visual cue until

satisfying the landing condition. Once the UAV enters the 15 x 15 cm landing space from the pad

center, it lands quickly.
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The forward relative distance and pitch command input in time are shown in Fig. 4.28.

(a) Forward relative distance (b) Pitch command inputs

Figure 4.28: Forward relative distance and pitch command in case-1

The blue and red solid lines denote the time history of the forward relative distance and pitch

command input, respectively. The pitch command input ranges from -100 to 100 as percentage

input where -100 is the maximum pitch backward and 100 is the maximum pitch forward. Initially,

the distance increases since the UAV has to pick up speed from 0 m/s speed while the platform is

already moving forward at 0.5 m/s. Due to the different levels of gain-scheduled PID controllers

activated based on the relative distance, the tracking rate changes from fast-tracking at a large

distance to precise tracking in the proximity of the landing pad. It takes 4.4 seconds to reach the

landing threshold of 15 cm from the landing pad center and the final landing deviation is 2 cm.

The sideward relative distance and roll command input in time are shown in Fig. 4.29. The

blue and red solid lines denote the time history of sideward relative distance and roll command

input, respectively. The roll command input ranges from -100 to 100 as percentage input where

-100 is maximum roll left and 100 is maximum roll right.
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(a) Sideward relative distance (b) Roll command inputs

Figure 4.29: Sideward relative distance and roll command in case-1

For an initial 1 second, the roll is commanded based on the visual cue position in a 2D camera

view, which is the directional approach of safety mode. It prevents responding to the noisy side-

ward distance estimates that happen while the moving average method is not activated. It takes 10

previous data (1 second) to activate the moving average method. The final landing deviation in the

sideward direction is 11 cm.

The vertical relative distance and throttle command input in time are shown in Fig. 4.30.

(a) Vertical relative distance (b) Heave(throttle) command inputs

Figure 4.30: Vertical relative distance and heave(throttle) command in case-1
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The blue and red solid lines denote the time history of vertical relative distance and throttle

command input, respectively. The zero setpoint means 15 cm above the landing pad. The throttle

command input ranges from -100 to 100 as percentage input where -100 is maximum throttle down

and 100 is maximum throttle up. At 4.4 seconds, the immediate landing is conducted by applying

the maximum throttle down command.

The relative yaw angle and yaw command input in time are shown in Fig. 4.31.

(a) Relative yaw angle (b) Yaw command inputs

Figure 4.31: Relative yaw angle and yaw command in case-1

The blue and red solid lines denote the time history of relative yaw angle and yaw command

input, respectively. The zero setpoint means that a heading angle is set to zero for making a parallel

approach. The yaw command input ranges from -100 to 100 as percentage input where -100 is the

maximum yaw left and 100 is the maximum yaw right. As in the case of the roll, it takes one

second for the moving average method to be active. Therefore, instead of responding to initial

fluctuating yaw angle estimations, the directional approach of safety mode commands no yaw for

the first one second. Then, it starts regulating the yaw angle by the yaw PID controller once the

moving average method is active.
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4.2.3.3 Case-2: Platform moving in a straight line at 8.5 m/s

The platform is programmed to move forward at 8.5 m/s, which requires the UAV to fly at

its maximum speed during tracking. Therefore, it occasionally experiences control saturation;

however, it still makes a successful approach and landing. The trajectories viewed from the top

and side are shown in Fig. 4.32.

(a) Top view (b) Side view

Figure 4.32: Vehicle and UAV trajectories in case-2

The solid blue line denotes the UAV trajectory whereas the dashed red line denotes the platform

trajectory from take-off to landing. The overshoots and undershoots observed in the trajectories

are due to the control saturation when the UAV flies with its maximum pitch forward command

which limits other commands.

The forward relative distance and pitch command input in time are shown in Fig. 4.33. Up

to 7.5 seconds, the relative distance increases since the platform is moving faster than the UAV.

When the relative distance is further than 6 meters, the level 1 pitch controller yields maximum

forward pitch for high-speed tracking. Since UAV control inputs are achieved through propeller

speed variation, the maximum forward pitch that requires the highest rotating speed for the two

rear propellers affects the capability to yield the other control inputs as desired. Level 2 and 3 pitch
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controllers are activated at distances of 6 and 1.5 meters, respectively. It takes 23 seconds to reach

the landing threshold of 15 cm from the pad center and the final landing deviation in the forward

direction is 12 cm.

(a) Forward relative distance (b) Pitch command inputs

Figure 4.33: Forward relative distance and pitch command in case-2

The sideward relative distance and roll command input in time are shown in Fig. 4.34.

(a) Sideward relative distance (b) Roll command inputs

Figure 4.34: Sideward relative distance and roll command in case-2
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Initially, the directional approach of safety mode is activated to command roll with a magnitude

of 10 based on the visual cue position in a 2D camera view, and the level 2 roll controller takes over

the control after 1.1 seconds. Between 4 and 17 seconds, it experiences limited control authority

caused by maximum pitch forward commands. Thus, the relative distance is fully regulated after

17 seconds. The final sideward landing deviation is 11 cm.

The vertical relative distance and throttle command input in time are shown in Fig. 4.35.

(a) Vertical relative distance (b) Heave(throttle) command inputs

Figure 4.35: Vertical relative distance and heave(throttle) command in case-2

It shows the time history of vertical relative distance with respect to the setpoint which is 15

cm above the landing pad as well as throttle command input after take-off. At 23 seconds, the

immediate landing is executed by applying the maximum throttle down command.

The relative yaw angle and yaw command input in time are shown in Fig. 4.36. After the

directional approach of safety mode commands no yaw for an initial 1 second, it starts regulating

the yaw angle by the yaw PID controller with the moving average method using 10 previous data

which allows stable tracking. However, it experiences limited control authority due to maximum

pitch forward commands between 4 and 17 seconds. Therefore, the yaw angle is fully regulated

after 17 seconds.
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(a) Relative yaw angle (b) Yaw command inputs

Figure 4.36: Relative yaw angle and yaw command in case-2

4.2.3.4 Case-3: Platform moving in S-pattern

The platform is programmed to move in an S-pattern at a constant speed of 1 m/s and the

trajectories viewed from the top and side have minimal overshoot as shown in Fig. 4.37. It shows

smooth tracking capability with minimum overshoot while the platform is moving in S-pattern.

(a) Top view (b) Side view

Figure 4.37: Vehicle and UAV trajectories in case-3
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The forward relative distance and pitch command input in time are shown in Fig. 4.38.

(a) Forward relative distance (b) Pitch command inputs

Figure 4.38: Forward relative distance and pitch command in case-3

The pitch controller is switched from level 2 to 3 upon reaching the distance of 1.5 meters at

3.7 seconds and the final forward landing deviation is 9 cm.

The sideward relative distance and roll command input in time are shown in Fig. 4.39.

(a) Sideward relative distance (b) Roll command inputs

Figure 4.39: Sideward relative distance and roll command in case-3
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The directional approach of safety mode is activated for an initial 1 second followed by the

level 1 roll controller. At 2.5 seconds, the level 2 controller is activated for precise tracking and the

sideward landing deviation is 13 cm.

The vertical relative distance and throttle command input in time are shown in Fig. 4.40.

(a) Vertical relative distance (b) Heave(throttle) command inputs

Figure 4.40: Vertical relative distance and heave(throttle) command in case-3

The zero setpoint is 15 cm above the landing pad and it commands maximum throttle down to

land immediately at 7.8 seconds where the landing conditions are satisfied.

The relative yaw angle and yaw command input in time are shown in Fig. 4.41.

(a) Relative yaw angle (b) Yaw command inputs

Figure 4.41: Relative yaw distance and yaw command in case-3
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Due to the platform changing its course, the yaw angle is relatively big. However, the level 2

yaw controller regulates the yaw angle effectively. Since the yaw angle is not one of the landing

conditions, the UAV lands with a yaw angle of 1.7 degrees.

4.2.3.5 Case-4: Platform moving in circular pattern

The platform is programmed to move in a circular pattern at a speed of 1 m/s and the trajectories

viewed from the top and side are shown in Fig. 4.42.

(a) Top view (b) Side view

Figure 4.42: Vehicle and UAV trajectories in case-4

Since the platform turns more than 90 degrees, the trajectory in the side view overlaps as the

platform comes back. The entire trajectory shows that the UAV tracks the circling platform with

minimal overshoot.

The forward relative distance and pitch command input in time are shown in Fig. 4.43. The

level 2 pitch controller operates until 3.8 seconds followed by the level 3 controller. While track-

ing, the safety mode is intermittently activated to prevent a potential collision with the platform

structure, which commands -10 pitch input if the UAV crosses the pad center. It lands with a

forward deviation of 8 cm.
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(a) Forward relative distance (b) Pitch command inputs

Figure 4.43: Forward relative distance and pitch command in case-4

The sideward relative distance and roll command input in time are shown in Fig. 4.44. The

directional approach of safety mode is activated for an initial 1 second followed by the level 1

controller. At 2.5 seconds, the level 2 controller is activated for precise tracking and it takes a

relatively long time to regulate because the vehicle moves in a way to increase sideward relative

distance. The final landing deviation in the sideward direction is 14 cm.

(a) Sideward relative distance (b) Roll command inputs

Figure 4.44: Sideward relative distance and roll command in case-4
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The vertical relative distance and throttle command input in time are shown in Fig. 4.45.

(a) Vertical relative distance (b) Heave(throttle) command inputs

Figure 4.45: Vertical relative distance and heave(throttle) command in case-4

The zero setpoint means 15 cm above the landing pad and it commands the maximum throttle

down to land immediately at 15.7 seconds at which the landing conditions are satisfied.

The relative yaw angle and yaw command input in time are shown in Fig. 4.46.

(a) Relative yaw angle (b) Yaw command inputs

Figure 4.46: Relative yaw distance and yaw command in case-4
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The directional approach of safety mode commands no yaw for an initial 1 second. Due to

the circular trajectory of the platform, the yaw angle is relatively large, however, kept less than 15

degrees. Thus, the level 2 yaw controller with the moving average method is activated to regulate

the yaw angle. Since the yaw angle is not one of the landing conditions, the UAV lands with having

a yaw angle of 1.8 degrees at 15.7 seconds.

4.3 Nonlinear Control Strategy

To improve the tracking capability and robustness of the gain-scheduled PID controller, non-

linear control systems are designed which adapt to situations for generating control inputs. In this

implementation, the visual cue that is closely mimicking the actual horizon reference bar on a

ship as shown in Fig. 3.7 of Chapter 3 as well as a ship platform with 6 DOF motion deck that

reproduces the actual ship motion is constructed. Two different nonlinear control systems were

developed depending on the vision system engaged, which are the machine/deep learning-based

vision for long-range tracking and classical computer vision for close-range tracking. Each vi-

sion system provides different types of visual information at different rates, thus corresponding

nonlinear control systems are developed separately.

The sequential steps involved in the vision-based nonlinear control system are live-streaming

the video from UAV’s onboard camera to an external base station computer, image processing,

feedback controller generating the control inputs, and transmitting the control inputs back to the

UAV. The processing time is considerably affected by the type of detection method engaged in the

vision system. The average time to complete one cycle is 0.5 seconds when the machine learning

detection is engaged and 0.03 seconds when the detection of the rectangle corner points is engaged.

In order to cope with the time delay as well as potential sensor and estimation noise, nonlinear

controllers, which can adapt to different situations are developed. Particularly, five different flight

modes are configured according to the situations perceived by the vision system as shown in Fig.

4.47.
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Figure 4.47: Flowchart of vision-based nonlinear control system
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4.3.1 Control Architecture

The nonlinear control system is structured as shown in Fig. 4.48. Setpoints are different de-

pending on the engaged vision system. When the machine/deep learning-based vision detects an

object in a long distance, it returns the position of the object and the size of its rectangle bounding

box in the image. The position and size are used to determine approach course and speed respec-

tively by the long-range nonlinear control system. Since the detection range is proportional to the

area occupied by the detected object in the image, during the early phase of the approach the whole

ship is detected to maximize the detection range, and the horizon bar is detected in the mid-range.

As the UAV gets closer to the ship, it detects the corner points on the horizon bar and estimates

the relative distance and heading angle. In the close distance, the nonlinear control system yields

control inputs according to the estimated positioning data.

Figure 4.48: Nonlinear control system architecture

4.3.2 Long-range Tracking Controller

In the long range where the entire landing platform is detected as a whole, the information pro-

vided by the vision system is the platform size and position in the camera view. The flight control

system in this region deals with a relatively slow update rate that is 0.5 seconds on average. When
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the update rate is fast enough, the discrete system that receives sensor data at each update time

can be a good approximation to the continuous system. Thus, integral and derivative controllers

can be configured by using the summation and difference of error. However, the summation and

difference are not good approximations for integral and derivative controllers when the update rate

is slow. Hence, the nonlinear controller is designed to achieve the control task in the presence of

the slow update rate by applying the nonlinear exponential gainKP{e(tk)} as shown in Eqn. (4.7).

e(tk) = r(tk)− c

u(tk) = KP

{
e(tk)

}
× e(tk)

=
−m(eae(tk) − d)× e(tk) (e(tk) < 0)

m(eae(tk) − d)× e(tk) (e(tk) ≥ 0)

(4.7)

In Eqn. (4.7), e(tk) denotes the error at time tk, r(t) is the relative position at time tk, and c

is the setpoint. The control law, u(tk), has exponential term in the nonlinear gain KP{e(tk)} to

decay control magnitude exponentially near zero error. The constants m, a, c, and d selected for

the ship platform and bar tracking are provided in Table 4.4.

Table 4.4: Selected constants of long-range controllers

Flight Mode Controller m a c d

Ship Platform
Tracking

pitch 0.008 0 5000 0

roll 1.2 0.0158 640 1

heave 3.0 0.0108 360 1

Bar Tracking

pitch 0.004 0 3400 0

roll 1.0 0.0158 640 1

heave 5.0 0.0108 360 1
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The desired object size, the image center position in the horizontal direction, and the image

center position in the vertical direction are the setpoints for the pitch, roll, and heave controllers,

respectively. Unlike the roll and heave controllers, the pitch controller with the assigned parameters

returns to a linear proportional controller, which is sufficient to approach the ship in the long range.

There is also a yaw controller that can control the heading angle to set the approach course. It is

designed as a nonlinear probabilistic control system, which is the same as the close-range tracking

yaw controller and detailed in the following section. The only difference is that a magnetometer

is used to read the current heading in the long-range and the vision system provides the estimated

heading angle during close-range tracking.

The exponential nonlinear roll control input is shown in Fig. 4.49.

Figure 4.49: Exponential nonlinear roll control input

Depending on the constant value a, the rate of change of control magnitude varies. In the roll

controller case, constant a is selected as 0.0158. The maximum and minimum control magnitudes

are limited to 100 and -100, respectively. Even though it utilizes only the error at time t, it can min-

imize the overshoot around the setpoint where the error is zero by decaying quickly. On contrary,

it yields a large control magnitude as the error becomes larger.
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In the case of a slow update rate, the nonlinear controller is able to achieve stable setpoint track-

ing. The effect of the nonlinear roll controller is compared to the conventional linear proportional

controller and proportional-integral-derivative (PID) controller as shown in Fig. 4.50.

Figure 4.50: Effect of exponential nonlinear controller

It demonstrates that the nonlinear controller can prevent the system from overshooting the

setpoint. However, the linear proportional controller cannot stabilize the oscillations because it

computes the control input by multiplying the error with a fixed gain value. Even the linear PID

controller is not able to stabilize the oscillations in an effective fashion due to the slow update rate.

However, as seen from Fig. 4.50, the nonlinear controller has some steady-state error. Consid-

ering the long distances at which the nonlinear controller is engaged, the steady-state error is not an

issue because this is not the final error of the entire approach and landing maneuver, but the initial

error for the corner tracking system, which takes over the control at close distances. Therefore, it is

more imperative to control the aircraft in a stable fashion than to achieve the minimum steady-state

error while the UAV is approaching from a long distance.
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4.3.3 Close-range Tracking Controller

At close range, when the vision system can reliably detect the corners of the rectangles on

the visual cue, the vision-based controller utilizes the estimated relative position and orientation

data to yield control inputs. The average update rate is 0.03 seconds, which is significantly faster

than the machine learning object detection that is applied at long distances. Having integral and

derivative controllers along with the proportional controller enables precise tracking. Even though

the estimation provides accurate position and orientation data with sub-centimeter and sub-degree

error, a small error difference between subsequent time steps can yield large and noisy control

magnitude since it depends on the difference in error divided by the small update rate of 0.03

seconds. To take advantage of the derivative controller with minimum noise, the Kalman filter and

nonlinear derivative controller are designed.

A single state Kalman filter is applied with the unity feedback, which means that it does not

require the prediction from the model. This model-free estimator reduces the noise, however, it

uses error difference values for estimation. Therefore, it will be affected by incorrect and unrealis-

tic error difference values that may occur from time to time. To reject this intermittent unrealistic

estimation effectively, a novel nonlinear derivative controller with linear proportional and integral

controllers is designed by utilizing the normal distribution concept as described in Eqn. (4.8).

de(tk) =e(tk)− e(tk−1)

u(tk) =KP e(tk) +KI

k∑
k=1

e(tk)dtk +KD

{
de(tk)

}de(tk)
dtk

(4.8)

de(tk) is an error difference between time tk and tk−1, and u(tk) is a control law that has linear

proportional and integral terms as well as the nonlinear derivative term. KP and KI are constant

proportional and integral gains, and KD{de(tk)} is the nonlinear derivative gain that is a function

of error difference, de(tk), as specified in Eqn. (4.9).
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f(x) =
1√

2πσ2
e−0.5

(x−µ)2

σ2

KD

{
de(tk)

}
= be−0.5

(de(tk)−µ)
2

σ2

(4.9)

f(x) is the probability density function that forms a normal distribution. σ denotes the standard

deviation and µ denotes the mean value. The area under the function indicates the probability that

a certain range of deviation occurs. The probabilistic nonlinear derivative controller is constructed

by taking the exponential term from the probability density function and multiplying constant b that

determines the control magnitude. Based on the observation of aircraft movement, σ is determined

as 0.04, which means the distance that the aircraft can move during 0.03 seconds has a 68.2 percent

chance of being within 4 cm and a 95.4 percent chance of being within 8 cm. When b is 1 and µ is

0, the probabilistic nonlinear derivative controller computes derivative gains as shown in Fig. 4.51.

Figure 4.51: Probabilistic nonlinear derivative controller

Depending on the error difference, de(tk), the corresponding nonlinear derivative gain, KD,

is selected and multiplied by the derivative term de(tk)/dtk. If the estimated error difference

is too high (or unrealistic), then it takes a small KD value to significantly minimize the control
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input. In this way, the controller does not respond to the large noise in the error data, which can

trigger undesired and unstable maneuvers. Also, the magnitude of gain can vary according to the

selection of constant b in Eqn. (4.9). The effects of the Kalman filter and the probabilistic nonlinear

controller are shown in Fig. 4.52.

Figure 4.52: Effect of kalman filter and probabilistic nonlinear derivative controller

Red circles denote the control magnitude of the linear derivative controller without the Kalman

filter. The high noise that occurs in the range of 0 to 10 seconds are due to the derivative term,

de(tk)/dtk. This term is sensitive because the error is divided by a small dtk, which has an average

value of 0.03 seconds. Thus, even a small error in estimation can be magnified in the derivative

controller. The green line is the result after applying the Kalman filter to the linear derivative

controller. The noise is reduced, however, it still yields large control inputs in response to the

incorrect estimation values. The blue line shows the control inputs generated by the probabilistic

nonlinear controller with the Kalman filter and these inputs are relatively small and insensitive to

the large unrealistic error differences. At the 6.5 second mark, the error difference de has a large

value caused by incorrect estimation. In this case, the linear derivative controller with the Kalman

filter reduced the magnitude to some extent but it is still affected by that particular spurious error

value. However, the probabilistic nonlinear controller with the Kalman filter is able to screen out
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the wrong value, thereby minimizing the effect of incorrect error estimation. The finally selected

gains through extensive flight tests and simulations are specified in Table 4.5.

Table 4.5: Selected gains of close-range controllers

Flight
Mode Controller KP KI

KD

b µ σ

Corner
Points

Tracking

pitch 7.5 0.05 4.5 0.02 0.04
roll 7.5 0.01 8.5 0 0.04

heave 15 0.01 7 0 0.02
yaw 5.5 0.05 1.75 0 5

4.4 Deep Reinforcement Learning Control Strategy

Designing a conventional feedback control system requires an explicit algorithm, a precise

model, and a significant effort to tune the control gains. Even a meticulously designed conventional

control system for a certain task is subject to failure when unforeseen conditions are encountered,

which is a crucial factor that can lead to an unsuccessful ship landing. At the proximity of a ship,

the airflow is highly unsteady and turbulent due to the wake from the moving ship structure. This

turbulent wake has significant impacts on aircraft aerodynamics. Therefore, a deep reinforcement

learning (RL)-based control strategy is developed to ensure robust flight performance in the pres-

ence of uncertainties such as sudden wind gusts.

Using the representation power of deep neural networks, RL provides an attractive model-

free approach for developing nonlinear control algorithms for high dimensional systems in an

automated and computationally tractable way. A clever modification of the standard off-the-shelf

RL approach is made to adapt it to the vision-based autonomous ship landing problem and to make

it robust against adversarial disturbances in the environments.

Multiple previous works have developed RL algorithms to address the autonomous landing of

UAVs. RL-based high-precision, time-critical flight attitude control that could operate in unpre-
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dictable and harsh environments is discussed in [97]. It also discusses different policy gradient

RL algorithms such as deep deterministic policy gradient (DDPG), proximal policy optimization

(PPO), and trust region policy optimization (TRPO). An RL approach for UAV landing task on

a moving platform using a variant of the DDPG algorithm is discussed in [98]. An actor-critic

RL framework used to fly a UAV by following designated waypoints is presented in [99]. A vari-

ant of the DDPG algorithm is used to recover a UAV attitude quickly from an out-of-trim flight

state [100]. However, these works do not address the problem of designing RL controllers that

are robust against adversarial disturbances such as wind gusts. We adapt the state-of-the-art RL

algorithm called twin delayed DDPG (TD3) and use the idea of domain randomization [101, 102]

to make it robust. The disturbance rejection capability of the RL controller is compared to the

previously developed nonlinear control system with the Kalman filter [72].

4.4.1 Reinforcement Learning Overview

Reinforcement Learning is a very intuitive state-of-the-art machine learning-based approach

for finding the optimal control policy for an unknown dynamical system. In this approach, an

agent interacts with an environment to learn the best action for any given state. After executing

each action, the agent receives a reward and the system evolves to the next state. The primary

objective of the agent is to learn the optimal policy that can maximize the cumulative rewards.

Mathematically, a policy π ∈ Π is a function that maps state s ∈ S to an action a ∈ A, where Π

is the policy space, S is the state space, and A is the action space. The transition probability model

P (st+1 | st, at) determines the dynamics of the system. At each timestep, policy π determines an

action to be taken and the agent receives a reward r(st, at) from the environment. The policy can

be stochastic π(a, s) (probability of taking action a in state s) as well as deterministic π(s). The

agent tries to maximize the cumulative discounted reward Rt(s) =
∑T

i=t γ
(i−t)r(si, ai) of state

s from time t to T . The T can be finite value (finite horizon episodes) or infinite value (infinite

horizon episodes). The parameter γ is know as discount factor that determines the importance

of future rewards. The two other important terms in RL formulation is the value function V π and

action-value function or Q-functionQπ. Value function is the expectation of discounted cumulative
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reward for a state s, defined as V π(s) = Eπ[Rt(s) | s]. The optimal policy π∗ can be expressed as

one which maximizes the value function, π∗(s) = arg maxπ V
π(s).

4.4.2 Algorithm Selection

Robotic problems in general are associated with continuous state space and continuous action

space. With the advancement in deep neural networks over the years, combining RL with deep

learning shows impressive learning results. A deep version of Q-learning (DQN) algorithms has

been successful in playing video games [103, 104]. Two key features of DQN are the experience

replay and a target network. The experience replay stores prior experience (s, a, r, s′, a′) in a buffer

and randomly select one for updating Q-value network. Target network helps in target remaining

unchanged during several gradient updates. However, DQN algorithms were not successful in con-

tinuous action-continuous states space. Policy gradient algorithms are more useful in continuous

action-continuous states space problems. Deep deterministic policy gradient (DDPG) algorithm

[105] can operate over continuous action and state spaces and it uses experience replay and slow-

learning neural networks of the double Q learning. Particularly for the control of a UAV, DDPG has

demonstrated its successful implementations [100]. In this study, an improved version of DDPG,

twin delayed DDPG (TD3) [106, 107], is selected as the RL algorithm.

TD3 learns two Q-functions Qφ1 and Qφ2 by mean square Bellman error minimization. It adds

clipped noise to actions that make the policy difficult to extract the Q-functions. The target action

is obtained as described in Eqn. (4.10).

a′(s′) = clip(πθtarg(s
′) + clip(ε,−c, c), alow, ahigh), ε ∼ N(0, σ) (4.10)

πθtarg(s
′) is the target policy and alow < a < ahigh is the valid action range. This is known as

target policy smoothing which essentially serves as regularizer for the algorithm. TD3 updates

the policy less frequently than the Q-functions. Both Q-functions use the same target y(r, s′, p) (p

indicates whether state s′ is terminal state or not) which is the calculated using the smaller Q-value

among the two Q-functions as given in Eqn. (4.11).
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y(r, s′p) = r + γ(1− p) min
i=1,2

Qφtarg,i(s
′, a′(s′)) (4.11)

The two Q-functions are then optimized by using the following two loss functions (mean

squared Bellman error function) given in Eqs. (4.12) and (4.13).

L(φ1, D) = E[(Qφ1(s, a)− y(r, s′, p))2 | (s, a, r, s′, p) ∼ D] (4.12)

L(φ2, D) = E[(Qφ2(s, a)− y(r, s′, p))2 | (s, a, r, s′, p) ∼ D] (4.13)

φ1 and φ2 are network parameters and D is the replay buffer.

4.4.3 Training Procedure

The objective of the RL control strategy is for the UAV to stably hover and fly as desired against

sudden wind gusts. To obtain an RL control policy that is effective in such a challenging condition,

training is conducted in a realistic Gazebo simulation environment along with the precise UAV

model as shown in Fig. 4.53.

Figure 4.53: Schematic showing the training process for reinforcement learning
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During the training session, an agent takes some set of actions in an environment to achieve

a particular task. The agent is a UAV that decides actions based on the rewards by using neural

networks. The quality of those actions is quantified by user-defined rewards that are assigned in

the environment and the better sets of actions to achieve the task will acquire higher cumulative

rewards. A particular period that the agent takes for a set of actions by the RL control policy is

called an episode. As the episode continues, the control policy keeps getting updated according to

an RL algorithm and the cumulative rewards will be converged to a certain value.

To develop a successful RL control strategy, there are key requirements which are: (1) a precise

model of the agent, (2) a realistic simulation engine, (3) an appropriate selection of states, (4)

careful reward engineering, and (5) a powerful RL algorithm.

First, a commercial off-the-shelf (COTS) quadrotor UAV, Parrot Anafi, is used for this study.

Along with the physical UAV, the precise UAV model (agent) that can be used in the Gazebo

simulation is provided. Second, Gazebo is a realistic simulation engine that is widely used for

robotics applications. It has closely simulated the real flight dynamics. The agent can communicate

with the simulation engine using a framework called Olympe. Olympe allows the control of UAV

and access to its sensors through python scripts.

4.4.3.1 Action Space

The UAV has four different control actions: Roll, Pitch, Yaw, and Heave. It is observed in the

simulation that roll and pitch actions were heavily influenced by the wind as compared to the yaw

and heave actions. Hence the roll and pitch actions are chosen to be part of the action space. It is

worth noting that for the given UAV, the roll and pitch actions are independent of each other. Roll

action only makes the UAV move right and left, while pitch action only makes it move forward

and backward. Taking advantage of this uncoupled behavior, it is decided to split the 2-D action

space into two 1-D action spaces. Two independent RL models were trained for roll and pitch

controllers, respectively. This not only helps in reducing the dimension of the action space but

also reduces the dimension of the state space used for the independent models. The splitting of the

two controllers helps in reducing the complexity of the policy network and hence resulted in faster
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training and better convergence.

4.4.3.2 State Space

As mentioned earlier, the mission objective of the UAV is to achieve a target point and hover

at that position in the presence of wind. So the position of the UAV is an obvious choice as a

state. Since the action space is 1-D, the position state is also 1-D that is the position along the

respective action axis for each controller. The roll controller objective is to achieve a certain target

on the roll axis and maintain that position without considering the pitch motion. Similarly, for the

pitch controller, the objective is to maintain a position on the pitch axis independent of the roll

motion. Also, velocities are included as states, which can take an action quickly responding to

velocity changes before the drift becomes large. Finally, the history of position and velocity are

also selected as states for both roll and pitch controllers, which allows determining actions based

on current states and trends.

To verify the effect of selected states, three different sets of states as shown in Table 4.6 are

modeled for pitch control and roll control individually and applied for learning.

Table 4.6: Models with different sets of states

Model No. Model 1 Model 2 Model 3

States for pitch control [x]t [x, vx, vy]t [(x, vx, vy)]t−i where i = 0 to 5

States for roll control [y]t [y, vx, vy]t [(y, vx, vy)]t−i where i = 0 to 5

x and y are the deviations along the x-axis and the y-axis, respectively. vx and vy are the

velocities along the x-axis and the y-axis, respectively. t is the current time, thus model 3 is also

taking five previous deviations and velocities as states.

During the training, the simulation engine imposes four different kinds of wind conditions: zero

wind, constant magnitude wind (-10 m/s to 10 m/s), sudden wind magnitude change (-10 m/s to 10

m/s magnitude change), and a sinusoidal wind (amplitude of 5 m/s and time periods of 10 secs, 20
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secs, 30 secs, 40 secs and 50 secs). These four different conditions were applied among different

episodes. The idea here is that this makes the agent learn proper control actions for various wind

scenarios. This is known as domain randomization and it has been an active area of research in

RL [108]. It is observed that headwind affects the forward drift and crosswind affects the sideward

drift. Hence crosswinds are applied for roll controller training and headwinds are applied for pitch

controller training.

4.4.3.3 Reward Function

Reward functions are very important in the RL framework. A proper design of the reward func-

tion can yield a better convergence rate and good performance in the testing phase. A normalized

reward function is opted here, which penalizes every action based on the deviation from the target

point. The reward function is carefully designed to represent the control objective in numbers as

shown in Eqn. (4.14).

Reward =


−4× |d| if |d| < 0.25

−1 if 0.25 ≤ |d| ≤ 2

−(Tmax − Tinside) if |d| > 2

(4.14)

d denotes the deviation along the x-axis for the pitch control case and the deviation along the

y-axis for the roll control case. Tmax is the maximum episode time and Tinside is the time that the

UAV stays within 2 meters from the hovering point. Thus, it can accumulate higher rewards (less

negative) as it stays closer to the point. In other words, it will get more penalties as it deviates

from the point. One episode ends if the deviation is greater than 2 meters and a new episode is

started. Thus, the reward written by the time factor,−(Tmax−Tinside), is acquired only once in the

unsuccessful case. The idea here is that rather than exploring unnecessary states, it is better to give

the future cumulative rewards in one step. This helps in maintaining the consistency of episodic

rewards. In each episode, the UAV is spawned at a random position near the origin. Apart from

the other common RL control strategies, the episode does not end even though the UAV achieves
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the target position. Instead, it is designed to continue maintaining the position until the end of the

episode time, which can allow sufficient time to learn the proper control actions.

Successful training is heavily dependent on the selection of an RL algorithm. One of the

modern policy gradient algorithms, TD3 is used for the study. The applied hyper-parameters that

control the learning process are given in Table 4.7.

Table 4.7: Selected hyper-parameters for training

gamma 0.99 policy delay 2

learning rate 0.0001 target policy noise 0.2

buffer size 100000 target noise clip 0.5

4.4.3.4 Convergence

The training convergences of pitch and roll control cases are shown in Figs. 4.54 and 4.55,

respectively.

Figure 4.54: Training convergence of different models for the pitch control case
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Figure 4.55: Training convergence of different models for the roll control case

In both the pitch and roll control cases, model 3 converges to the higher accumulated reward

value and learns faster than the other models on average. It demonstrates that taking previous

positions and velocities as states is helpful, which is designed based on the intuition that neural

networks can decode the wind gust information from those states. The obtained control policy is

used in the simulations and flight tests.

The system used for training is LENOVO Legion Y740-15IRH, which is composed of Intel(R)

Core(TM) i7-9750H CPU @ 2.60GHz, 2592 Mhz, 6 Cores, and 12 Logical Processors. It features

an integrated NVIDIA GeForce GTX 1660 Ti 6GB Graphics and 8GB of LPDDR4 memory with

a 128-bit interface. The Ubuntu 18.04 OS with Nvidia driver version 440 and CUDA version 10.2

are used. The same system is used for flight simulations and testing.

4.4.4 Simulation Results

In order to verify the disturbance rejection capability in challenging situations, sudden wind

gusts are imposed while the UAV is hovering. 5 m/s diagonal wind (45◦) and cross-wind (90◦)

based on UAV heading are simulated using a step function. The performances of the previously

developed nonlinear PID-based feedback control system with the Kalman filter and the deep RL

control strategy are compared based on the sideward and forward drifts. The pitch and roll control

inputs are also examined. The simulation environment is shown in Fig. 4.56.
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Figure 4.56: Simulated UAV (agent) and Gazebo simulation environment

4.4.4.1 Case-1: Hovering at 5 m/s of diagonal wind gust (45◦)

The sudden diagonal wind is imposed approximately at the 7 second mark, which affects the

forward and sideward drifts equally. The forward drift from the hovering point and pitch control

inputs in the case of the nonlinear PID controller and RL controller are shown in Fig. 4.57.

(a) Forward drift (b) Pitch control inputs

Figure 4.57: Forward drift and pitch control inputs for case-1
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The RL control regulates the impact of wind gust within 2 seconds with a maximum forward

drift of 0.4 meters, which is 2 times smaller drift and 5.5 times faster settling time than the non-

linear PID control system. The RL control strategy yields high-frequency pitch commands via

the trained control policy, which rejects the disturbance more effectively than the nonlinear PID

control system.

The sideward drift from the hovering point and roll control inputs in the case of the nonlinear

PID control and RL control are shown in Fig. 4.58. The roll response looks similar to pitch, which

is expected for hovering flight because of the symmetry.

(a) Sideward drift (b) Roll control inputs

Figure 4.58: Sideward drift and roll control inputs for case-1

The RL control regulates the effect of wind gust within 3 seconds with a maximum sideward

drift of 0.3 meters, which is 3 times smaller drift and 3 times faster settling time than the nonlin-

ear PID control system. Similar to the pitch commands, the RL control system generates high-

frequency roll commands that effectively reject the disturbances better than the nonlinear PID

control system.
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4.4.4.2 Case-2: Hovering at 5 m/s of crosswind gust (90◦)

In this case, a sudden crosswind is imposed approximately at the 7 second mark. This will

have a significant impact on the sideward drift. The forward drift from the hovering point and

pitch control inputs in the case of the nonlinear PID control and RL control are shown in Fig. 4.59.

Since the wind gust direction is orthogonal to the UAV heading, its effect on forward distance is

small.

(a) Forward drift (b) Pitch control inputs

Figure 4.59: Forward drift and pitch control inputs for case-2

The sideward drift from the hovering point and roll control inputs in the case of the nonlinear

PID control and RL control are shown in Fig. 4.60. Compared to the control inputs commanded

by the nonlinear PID control inputs, the RL control quickly responds to the crosswind gust with

higher control magnitude, which demonstrates improved disturbance rejection capability. The RL

control regulates the wind gust within 3 seconds with the maximum sideward drift of 0.4 meters,

which is 2 times smaller drift and 3 times faster settling time than the nonlinear PID control system.
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(a) Sideward drift (b) Roll control inputs

Figure 4.60: Sideward drift and roll control inputs for case-2

4.4.4.3 Case-3: Tracking at 5 m/s of diagonal wind gust (45◦)

A 5 m/s of sudden diagonal wind is imposed approximately at the 5-second mark while the

UAV approaches the ship platform. The forward relative distance between the UAV and landing

deck center and the pitch control inputs in the case of the nonlinear PID control and RL control are

shown in Fig. 4.61.

(a) Forward drift (b) Pitch control inputs

Figure 4.61: Forward drift and pitch control inputs for case-3
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Since the initial forward relative distance of 4.5 meters is dominant, the drift by the wind gust

is not clearly seen. The RL control inputs yielded by the control policy using deep neural networks

are not fully describable, however, it is obvious that this control strategy demonstrates faster and

accurate tracking than the nonlinear PID control system. The sideward drift during approach in the

presence of diagonal wind gust and the roll control inputs in the case of the nonlinear PID control

and RL control are shown in Fig. 4.62.

(a) Sideward drift (b) Roll control inputs

Figure 4.62: Sideward drift and roll control inputs for case-3

The RL control is able to adjust and stabilize the UAV in the wind gust within 3 seconds with

the maximum sideward drift of 0.45 meters, which is 2 times smaller drift and 3 times faster settling

time than the nonlinear PID control system.

4.4.4.4 Case-4: Tracking at 5 m/s of crosswind gust (90◦)

At approximately the 5 second mark, a sudden crosswind is imposed which significantly affects

the sideward drift and has minimum impact on the forward drift. The forward relative distance

between the UAV and landing deck center and pitch control inputs for nonlinear PID control and

RL control are shown in Fig. 4.63.
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(a) Forward drift (b) Pitch control inputs

Figure 4.63: Forward drift and pitch control inputs for case-4

Since the wind gust direction is orthogonal to the UAV heading, its effect on forward distance

is small. The RL control demonstrates 1.5 times faster tracking capability without overshoot than

the nonlinear PID control system. The sideward drift during approach and roll control inputs in the

case of the nonlinear PID control and RL control are shown in Fig. 4.64.

(a) Sideward drift (b) Roll control inputs

Figure 4.64: Sideward drift and roll control inputs for case-4
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The RL control regulates the wind gust within 3 seconds with the maximum sideward drift of

0.7 meters, which is 2 times smaller drift and 3 times faster settling time than the nonlinear PID

control system.

Since the RL control strategy computes control inputs (actions) from states, which include the

current and 5 previous positions and velocities using deep neural networks, it is impossible to

explicitly describe the relationship between the states and actions. As seen from the simulations,

the resultant control inputs are significantly different from the control inputs from the nonlinear

PID, which is an explicit control algorithm. However, this completely new way of controlling the

UAV using the RL controller clearly demonstrates superior disturbance rejection capability than

the nonlinear PID control system.
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5. FLIGHT TESTING

To demonstrate the novel autonomous ship landing methodology in practice, extensive flight

tests are conducted. The specific objectives are to prove the safety of vertical landing without con-

sidering the platform motion as well as to demonstrate the tracking capability and landing accuracy.

This chapter divides the flight testing into three sections based on the objectives and each section

includes detailed results obtained from the implementation of gain-scheduled PID control system,

nonlinear control system, and deep reinforcement learning-based control system. Throughout the

flight tests, the quadrotor UAV that has a gimballed camera has been used. However, the visual

cue and the landing platform have progressed during the course of the project. In the earlier phase

of flight testing, a checkerboard pattern visual cue is used along with a landing platform that has

a fixed landing pad. Later, the horizon bar visual cue is structured to the ship platform that has a

motion deck. Independent of visual cues, platforms, and control systems, the autonomous flight

shares the same process as shown in Fig. 5.1. It has an embedded (onboard) inner-loop autopilot

that controls each propeller’s rpm to achieve the commanded inputs generated by the outer-loop

vision-based control system (offboard) developed in this study.

Figure 5.1: Process of autonomous flight system
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The UAV is controlled by a Python script that runs on an external base station computer. The

external computer communicates with the UAV through the WIFI connection. The UAV transmits

raw images captured by the onboard camera to the computer in real-time. Then, the computer

processes the images to provide perceived visual information. The image resolution used is 1280

x 720p and this affects the effective range for detection and estimation. Once the perceived visual

information is fed into the feedback control loop, it yields the corresponding VTOL UAV command

inputs which are roll, pitch, throttle (heave), and yaw. The commands are sent back to the UAV

and then the embedded inner-loop autopilot controls the rotating speed of each propeller to achieve

the commanded inputs.

The system used for processing is LENOVO Legion Y740-15IRH, which is composed of In-

tel(R) Core(TM) i7-9750H CPU @ 2.60GHz, 6 Cores, and 12 Logical Processors. It features an

integrated NVIDIA GeForce GTX 1660 Ti 6GB Graphics and 8GB of LPDDR4 memory with a

128-bit interface. The Ubuntu 18.04 with Nvidia driver version 440 and CUDA version 10.2 are

used. The WIFI communication is established by an external TP-LINK TL-WN722N Wireless

N150 High Gain USB Adapter.

5.1 Vertical Landing Safety Tests

In order to demonstrate that it is safe to land vertically without matching the UAV attitude

dynamics to platform motion, multiple landing tests are conducted. While the 6-DOF platform is

simulating realistic and challenging ship motions, vertical landings are executed at random mo-

ments of motion.

5.1.1 Experimental Setup

To simulate the 6 DOF motions of the ship deck, a Servos and Simulation Inc Generic Motion

System (model 710-6-500-220) with a 4 ft × 4 ft (1.22 m x 1.22 m) landing deck as shown in Fig.

5.2 is used. The ranges of roll, pitch, and yaw are ± 13◦, ± 15◦, and ± 16◦, respectively. The ranges

of a surge, sway, and heave are ± 10.2 cm, ± 10.2 cm, and ± 6.4 cm, respectively.
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Figure 5.2: Servos and Simulation Inc. 6 DOF motion system with 4 ft x 4 ft landing deck

5.1.2 Ship Motions and Landing Tests Results

The first prescribed motion is the Oliver Hazard Perry Class frigate at the sea state of 6 and

a wave direction of 60° introduced by Sanchez-Lopez, Jose Luis, et al. [54]. The frigate is 136

meters long and 14 meters wide and has a single flight deck. Sea state 6 is defined by the World

Meteorological Organization (WMO) as a very rough condition that has a wave height of 4 to 6

meters. While the platform is undergoing this complicated motion, vertical landings are executed

at random time instances as shown in Fig. 5.3. Solid red, blue, and green lines denote continuous

angular (pitch, roll, and yaw) and linear (surge, sway and heave) motions of the 6 DOF platform.

50 landing tests are conducted in total and the motions of the platform at the time of each successful

landing are depicted by dots. The randomly distributed landing timings demonstrate the vertical

landing is safe at any moment of the Oliver Hazard Perry Class FFG frigate ship motions under the

given conditions.
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Figure 5.3: Oliver Hazard Perry class frigate motion and vertical landing moments depicted by
dots

The second prescribed motion is the Navy helicopter ship landing limits defined by NATOPS.

In the case of the FFG 7 Class Ships, which the Oliver Hazard Perry frigate belongs to, the ship

motion limits for landing are set as ± 8° of roll and ± 3° of pitch. Even though the limits are

defined by the maximum roll and pitch magnitudes, the frequency of the motion is also a crucial

factor for the motions. According to the report for a similar size ship (length: 152.4 m, width: 15.2

m) motions conducted by the Sandia National Laboratory [109], the roll period is 10.1 seconds and
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the pitch period is 6.5 seconds as shown in Table 5.1.

Table 5.1: Typical ship characteristics

Ship Type
Length Width Roll Period Pitch Period

(m) (m) (secs) (secs)

Destroyer 152.4 15.2 10.1 6.5

Aircraft
Carrier 304.8 38.1 15.8 8.8

The maximum pitch and roll magnitude with the reported periods are applied to the platform

and 50 vertical landings are conducted at random moments as shown in Fig. 5.4. Solid red and blue

lines denote continuous pitch and roll motions of the 6 DOF platform. The dots denote the motion

at the time of each successful landing. The randomly distributed landing timings demonstrate the

vertical landings are safe and independent of the motion as long as it is within the operational

limits.

Figure 5.4: Motions of helicopter ship landing limits and vertical landing moments depicted by
dots
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5.2 Full Flight Tests

To demonstrate the tracking capability and landing accuracy of the developed autonomous

vision-based control systems, extensive flight tests are conducted in indoor and outdoor environ-

ments. The flight tests consist of two different cases, which are tracking the checkerboard pattern

visual cue by the gain-scheduled PID control system and tracking the horizon bar by the nonlinear

control system and reinforcement learning based control system.

5.2.1 Experimental Setup

In the first flight test case, which is tracking the checkerboard, the platform is constructed with

the visual cue that is installed parallel to the UAV’s approach course as shown in Fig. 5.5. It has

the checkerboard pattern visual cue that has 120 x 120 mm squares. The UAV captures the 9 corner

points where the black and white squares cross each other to compute relative position and heading

angle. The landing pad is designed as 3 x 3 ft and positioned 2 meters away from the visual cue.

This setup has been used for the gain-scheduled PID control system.

Figure 5.5: Checkerboard tracking experimental setup
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Beyond the autonomous landing on the platform by tracking the checkerboard visual cue, the

ship platform is constructed including the horizon bar and motion deck as shown in Fig. 5.6. The

width, height, and length of the ship platform are 5 ft, 5 ft, and 10 ft, respectively. The horizon

bar always indicates a perfect horizon, and the motion deck has its own 6 DOF motions in addition

to the forward translational motion, which is similar to what would be experienced on a real ship.

This setup has been used for the nonlinear control system and reinforcement learning-based control

system.

Figure 5.6: Constructed ship platform with horizon bar and motion deck

In addition, a drum fan is installed for flight tests to demonstrate the disturbance rejection

capability of the developed reinforcement learning control strategy as shown in Fig. 5.7. The fan

blows 5 m/s of wind from both diagonal and orthogonal directions and the same constructed ship

platform with the motion deck is used.
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(a) Crosswind testing setup

(b) Diagonal wind testing setup

Figure 5.7: Disturbance rejection experimental setup

5.2.2 Tracking and Regulation Capability

The tracking capability can be evaluated by how closely the system can follow the setpoints.

In this section, different control systems are implemented to achieve an autonomous approach and

landing on the deck. Independent of specific control systems, it shares the common procedure

that the UAV stops streaming, then conducts a quick landing once it satisfies the desired landing
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condition. Thus, the results presented in this section show the relative positions, heading angle, and

control inputs while the streaming is operational, which is from after take-off to before landing.

First, the gain-scheduled PID control system with various flight modes is constructed to track

a stationary and moving platform by visually tracking the checkerboard pattern visual cue. The

developed gain-scheduled PID control system has been applied to track a stationary platform and

a platform moving forward. Along with the control system, the moving average filter is added to

reduce the fluctuations in yaw estimation by taking 40 previous yaw data. In this checkerboard

tracking case, the update rate is 0.1 seconds thus it takes 4 seconds for the moving average method

to be in effect. The number of yaw data for the moving average method can be chosen properly

according to the flight conditions; for example, the simulations took 10 previous yaw data for the

moving average method. Even though realistic simulations for the same flight cases have been

done, the flight tests still require more PID gain tuning process. The specific gain values obtained

from the simulations are used as initial gains for flight tests, and the final gains are determined

via multiple flight tests. More than 100 flight tests are conducted and the representative results

are presented. The flight testing videos are available via the following links: Stationary platform

landing [110], Moving platform landing [111].

Second, the nonlinear control system is designed to enhance the tracking capability where the

time delay exists and the estimation error occurs. Extensive flight tests are conducted in realistic

and challenging scenarios. The ship landing environment is mimicked by the landing pad via

implementing the Oliver Hazard Perry Class FFG Frigate motions with helicopter ship landing

limits. While the landing pad is in motion, the ship platform is also translating forward just like a

real ship during a helicopter landing. During the approach and landing, the UAV makes transitions

between the flight modes that engage with a particular vision and control method based on the

perceived situation, then lands vertically without matching the UAV attitude to that of the pad.

The maximum wind speed experienced was around 9 m/s (17.5 knots) and the wind direction kept

changing over the course of these experiments. The GPS is only used to log positions during flight

and not for control. The different flight test cases are shown in this video link video [112].

162

https://youtu.be/w0dzVwBzFGk
https://youtu.be/w0dzVwBzFGk
https://youtu.be/IboT80OR1T8
https://youtu.be/ExkyUOdgYaw


Third, the reinforcement learning-based control system is implemented to regulate the distur-

bance effectively in the presence of uncertainties.

5.2.2.1 Gain-scheduled PID control for tracking a stationary platform

Multiple tests are performed with various initial positions and heading angles. As a repre-

sentative challenging case of stationary platform landing, 45 degrees of initial yaw angle case is

presented. The forward relative distance and pitch command input in time are shown in Fig. 5.8.

(a) Forward relative distance (b) Pitch command inputs

Figure 5.8: Forward relative distance and yaw command during stationary platform landing

The time history of sideward relative distance and roll command input during tracking are

shown in Fig. 5.9.

(a) Sideward relative distance (b) Roll command inputs

Figure 5.9: Sideward relative distance and roll command during stationary platform landing
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Up to 3.4 seconds, the magnitudes of pitch and roll commands are small due to the activation

of the level 1 yaw controller which gives priority to yaw correction. It takes 6.7 seconds to satisfy

the landing conditions. The time history of vertical relative distance and throttle command input

during tracking are shown in Fig. 5.10.

(a) Vertical relative distance (b) Heave(throttle command inputs

Figure 5.10: Vertical relative distance and heave command during stationary platform landing

The relative yaw angle and yaw command input as a function of time during tracking are shown

in Fig. 5.11.

(a) Relative yaw angle (b) Yaw command input

Figure 5.11: Relative yaw angle and yaw command during stationary platform landing
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Initially, the UAV has 45 degrees of heading angle, which is near the maximum that can be

assigned without losing the visual cue in the camera view. Due to the higher image quality of

the real camera compared to the virtual camera in Gazebo simulations, the relative position and

heading estimates in real experiments experience fewer fluctuations compared to the simulations.

Thus, it commands yaw from the beginning instead of applying the safety mode for the directional

approach, which had to be activated in the simulations. Until 3.4 seconds, the level 1 yaw controller

corrects yaw and also reduces the magnitudes of pitch and roll commands to not lose the visual cue

from the camera view when the yaw angle is large. After 4.1 seconds, the estimation and control

commands become smoother due to the moving average method. By the time the UAV satisfies

the landing conditions, the vertical distance is regulated to the visual cue height and the yaw angle

is decreased to zero degrees.

5.2.2.2 Gain-scheduled PID control for tracking a moving platform

Multiple flight tests are performed while the platform is slowly moving forward and the results

from a representative case are presented in detail. The time history of forward relative distance and

pitch command input during tracking are shown in Figs. 5.12.

(a) Forward relative distance (b) Pitch command input

Figure 5.12: Forward relative distance and pitch command during moving platform landing
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The time history of sideward relative distance and roll command input during tracking are

shown in Fig. 5.13.

(a) Sideward relative distance (b) Roll command input

Figure 5.13: Sideward relative distance and roll command during moving platform landing

The time history of vertical relative distance and throttle command input during tracking are

shown in Fig. 5.14.

(a) Vertical relative distance (b) Heave(throttle) command input

Figure 5.14: Vertical relative distance and heave(throttle) command during moving platform land-
ing
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The forward distance increases due to the platform already moving in the beginning even before

the UAV takes off, and the sideward distance is kept small throughout the flight. The setpoint for

the vertical relative distance is the visual cue height on the moving platform and it is almost the

same height when the UAV starts streaming, right after take-off. Therefore, it maintains the height

until landing. The landing conditions are satisfied at 5.5 seconds, and then it stops streaming and

executes landing.

The relative yaw angle and yaw command input during tracking are shown in Fig. 5.15.

(a) Relative yaw angle (b) Yaw command input

Figure 5.15: Relative yaw angle and yaw command during moving platform landing

Since the initial heading angle of the UAV is intended to be parallel to the visual cue, it has

small yaw maneuvers during the flight. The fluctuations that exist until 4.1 seconds are at the noise

level which is ± 1 degree and become smooth after 4.1 seconds as the moving average method is

activated. When the UAV satisfies the landing condition at 5.5 seconds, the final yaw angle is less

than 1 degree.

5.2.2.3 Nonlinear control for tracking a ship from long distance

The tracking capability and landing accuracy of the developed vision-based autonomous flight

control system are verified in challenging situations such as random initial positions, maximum
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distance of 250 meters, realistic ship motions, communication latency, sensor noise, low visibility,

and windy conditions. In this fully autonomous vision-based system, GPS and a magnetometer are

used only to log positions and heading angles and not for control. During flight testing, the landing

pad is mimicking the ship deck motions that are introduced in the previous section. First, flight

tests are conducted to verify the maximum range and smooth transition between flight modes. The

trajectories from take-off to landing are logged as shown in Fig. 5.16.

Figure 5.16: Trajectories of long-range tracking

The initial positions are widely distributed and the maximum distance between the UAV and

the ship platform is approximately 250 meters. During flights, the flight modes are switched from

the ship platform/horizon bar tracking to the corner points tracking depending on the distance. The

results demonstrate stable long-range tracking capability in the presence of wind up to 9 m/s (17

knots).
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The control inputs, distances, and heading angles of the maximum distance tracking case are

logged after take-off until the execution of vertical landing. Each line denotes pitch, roll, heave,

and yaw control inputs described as percentages that range from -100 to 100 and generated based

on forward, sideward, vertical relative distances, and relative heading angle, respectively. Zero

control input means neutral control input that maintains current UAV pose such as pitch, roll,

altitude, and heading. While the UAV approaches the ship platform, the vision-based flight control

system effectively flies the UAV by smoothly switching between the flight modes from the machine

learning object tracking for ship platform and horizon bar to the rectangle corner points tracking,

depending on the relative distance. The time history of pitch control inputs and forward relative

distances is shown in Fig. 5.17.

Figure 5.17: Pitch control inputs and forward relative distances as a function of time during long-
range tracking
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It demonstrates its maximum tracking range of 250 meters and approaching the ship platform

at different flight speeds depending on the relative distance. The magnitude of control inputs

has notable changes when the flight mode switches. The time history of roll control inputs and

sideward relative distances are shown in Fig. 5.18.

Figure 5.18: Roll control inputs and sideward relative distances during long-range tracking in time

It demonstrates the tracking of sideward distance by the roll control inputs that loosely control

the distance at long distances and tightly controls the sideward deviation in the close range, which

is appropriate for the present approach. Since the different flight modes are engaged depending

on the forward relative distance, the magnitude of control inputs is different even at the same

sideward distance. The heave control inputs with vertical relative distances and yaw control inputs

with heading angles are shown in Figs. 5.19 and 5.20, respectively.
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Figure 5.19: Heave control inputs and vertical relative distances during long-range tracking in time

Figure 5.20: Yaw control inputs and relative heading angles during long-range tracking in time

171



Since the ship landing approach is nearly a horizontal approach the vertical distance change is

relatively small. At a long distance, the heading angle is controlled by the yaw controller to match

the known ship platform heading/course. As it gets closer, the yaw controller commands to achieve

the zero heading angle based on the estimation by the close-range vision system.

5.2.2.4 Nonlinear control for tracking a dynamically moving ship

Flight tests are also conducted to verify the robust tracking while the ship platform is moving

in different courses along with its own 6 DOF motions. The three representative trajectories of the

ship platform and UAV are shown in Fig. 5.21.

Figure 5.21: Trajectories of moving ship tracking

Red squares denote the trajectory of the ship platform and blue lines denote the trajectory of

the UAV. It shows robust tracking while the ship platform is moving in straight, S-pattern, and 90◦

turn.
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The control inputs, distances, and heading angles after take-off until execution of vertical land-

ing are logged while the UAV is tracking the ship platform moving in an S-pattern. The pitch

control inputs and forward relative distances of the S-pattern moving platform tracking are shown

in Fig. 5.22.

Figure 5.22: Pitch control inputs and forward relative distances during S-pattern tracking in time

The pitch control inputs are generated to approach the ship platform that varies its speed from

0 to 10 mph. It takes approximately 25 seconds to track the ship platform moving in a random

S-pattern until it flies into the 35 x 35 centimeters of the area from the deck center, which is the

designated landing condition. The pitch controller positively commands to track the ship platform

at a stable speed while it moves 90 meters in the forward direction. The roll control inputs with

sideward relative distances and heave control inputs with vertical relative distances are shown in

Figs. 5.23 and 5.24, respectively.
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Figure 5.23: Roll control inputs and sideward relative distances during S-pattern tracking in time

Figure 5.24: Heave control inputs and vertical relative distances during S-pattern tracking in time
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While tracking, the ship platform moves in a random S-pattern, which changes the sideward

relative distance unpredictably. Even in this challenging situation, it tracks the sideward distances

effectively. It is also nearly a horizontal approach and therefore, the vertical relative distance

change is relatively small. The yaw control inputs and relative heading angles for the S-pattern

moving platform tracking are shown in Fig. 5.25.

Figure 5.25: Yaw control inputs and relative heading angles during S-pattern tracking as a function
of time

Since the ship platform changes the course abruptly up to 130◦, the relative heading angles also

change to a great extent. Accordingly, the corresponding yaw controller commands aggressively

to achieve zero relative heading angles. Vertical landings are conducted once the UAV flies into

the 35 x 35 centimeters landing threshold while the ship platform is in motion.
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5.2.2.5 Reinforcement learning control for disturbance rejection (diagonal wind gust)

Flight tests are conducted to demonstrate the disturbance rejection capability of the RL con-

trol strategy when the wind gust is suddenly imposed. During flight testing, the fan generates a

5 m/s wind gust at an angle of 45 degrees with respect to UAV heading while the UAV tries to

autonomously approach and land on the ship platform. The performances of the developed non-

linear PID-based feedback control system with the Kalman filter and the deep RL control strategy

are compared based on the sideward drift. The control inputs and the sideward drift using the RL

control strategy are also examined. The sideward drift while using the nonlinear PID control and

the RL control for the diagonal wind gust case is shown in Fig. 5.26.

Figure 5.26: Sideward drift for the 5 m/s diagonal wind gust case

The flight tests using the nonlinear PID control experience more than 2 meters of sideward drift

and fail to land on the landing deck. However, the RL control strategy demonstrates less than 1.5

meters of sideward drift and successfully lands on the deck repeatedly.
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The relative distances and control inputs of successful RL control strategy are shown in Fig.

5.27. RL controller demonstrates robust tracking by rejecting the diagonal wind gust effectively

from about 6 meters distance from the landing deck. Also, it keeps the sideward drift below 1

meter during approach and landing by actively commanding the roll control inputs of high mag-

nitude and frequency. The trained control policy yields control inputs by deep neural networks

that consider the current and 5 previous positions and velocities. Therefore, for an RL controller,

it is not possible to explicitly correlate the relationship between the states and actions. However,

the flight tests clearly demonstrated that the RL control effectively rejected the disturbance while

approaching and landing.

(a) Forward relative distances and pitch control inputs (b) Sideward relative distances and roll control inputs

Figure 5.27: Disturbance rejection of reinforcement learning control for the 5 m/s diagonal wind
gust case

5.2.2.6 Reinforcement learning control for disturbance rejection (crosswind gust)

Flight tests are also conducted to demonstrate the disturbance rejection capability of the de-

veloped RL control strategy in a more challenging condition. During these flight tests, the fan is

installed perpendicular to the approach course so that it experiences a sudden 5 m/s crosswind gust
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while approaching and landing on the ship platform. The performance of the deep RL-based con-

trol strategy is compared with the nonlinear PID and Kalman filter-based feedback control system

in terms of the sideward drift and control inputs. The sideward drift of the nonlinear PID control

and RL control in the sudden crosswind case is shown in Fig. 5.28.

Figure 5.28: Sideward drift for the 5 m/s crosswind gust case

This sudden crosswind affects the sideward drift in both cases. The nonlinear PID control fails

to reject the disturbance quickly enough, and therefore, the UAV loses the visual cue at approxi-

mately 8.5 seconds. On the other hand, the RL control keeps the sideward drift below 1.5 meters

and successfully lands on the deck repeatedly.

The relative distances and control inputs of the RL control strategy are shown in Fig. 5.29. The

RL controller demonstrates robust tracking by rejecting the crosswind gust effectively at 6 meters

distance from the landing deck. It has a limited effect on forward drift but a distinguishable effect

on sideward drift due to the direction of the wind. The pitch control inputs are mainly commanded

to move forward in such a wind condition and the roll control inputs are commanded to minimized

the sideward drift caused by the wind gust. It kept the sideward drift below 1.3 meters during the

approach and landing phases.
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(a) Forward relative distances and pitch control inputs (b) Sideward relative distances and roll control inputs

Figure 5.29: Disturbance rejection of reinforcement learning control the 5 m/s crosswind gust case

5.2.3 Landing Accuracy

The final landing point from the gain-scheduled PID control case for the stationary platform

landing is shown in Fig. 5.30.

Figure 5.30: Final landing point in stationary platform landing case
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It is designed to land when the UAV enters the landing threshold which is 15 x 15 cm from the

landing pad center. The final landing deviation from the center is 5 cm. The final landing point

from the gain-scheduled PID control case for the forward-moving platform landing is shown in

Fig. 5.31, which demonstrates the landing accuracy of 4 cm.

Figure 5.31: Final landing point in moving platform landing case

In the cases of landings on the sub-scale ship platform, the safe landing boundary is set by a 35 x

35 centimeters square from the deck center considering the UAV size, landing deck size, and safety

margin. Therefore, once the UAV reaches the landing boundary the controller commands vertical

landing while the deck is in motion. The final landing points are collected from the multiple flight

tests of tracking a ship in long distance with random initial positions, different initial heading

angles, and different weather conditions. As shown in Fig. 5.32, they are distributed randomly

within the set landing boundary.
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Figure 5.32: Landing points on the deck of long-Range tracking

The final landing points are also collected from the multiple flight tests of tracking a ship that

is dynamically moving in forward, S-pattern, and 90◦ turn. They are distributed within the set

landing threshold as shown in Fig. 5.33.

Figure 5.33: Landing points on the deck of moving ship tracking
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The final landing points are also collected from the multiple flight tests of tracking a ship in

the presence of wind gust where reinforcement learning control strategy is implemented. While

approaching and landing, 5 m/s diagonal wind (45◦) and cross-wind (90◦) are suddenly imposed

by a drum fan as shown in Fig. 5.7 of the experimental setup section. They are distributed within

the set landing threshold as shown in Fig. 5.34.

Figure 5.34: Landing points on the deck from the flight tests with wind gusts
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6. SUMMARY REMARKS, CONCLUSIONS, AND FUTURE WORK

Fully autonomous helicopter ship landing has always been a highly desired and high-priority

goal since the beginning of helicopter operation at sea. With the recent advances in autonomy

and the emergence of UAV utilization in recent years, there have been several attempts to include

vision-based autonomous ship landing capability on VTOL UAVs so that it could be operational

in GPS-denied environments; and there have been a few VTOL UAV ship landing demonstrations.

The ship landing methods that have been developed so far almost always try to track the deck

motions for the landing control of aircraft, which is completely orthogonal to the Navy helicopter

ship landing procedure that has been practiced over decades and proven to be safe.

To summarize the Navy ship landing procedure, the aircraft can fly using several conventional

navigation aids on a ship such as TACAN, VHF Omnidirectional Range with a Distance Measuring

Equipment (VOR/DME), and VHF Omnidirectional Range beacon with TACAN beacon (VOR-

TAC) before reaching the Missed Approach Point (MAP) that is typically designated at 0.5 nautical

miles away from the ship. However, it requires visual identification of the target ship at the MAP

otherwise the pilot must abort the ship landing approach. Based on the visual contact of the target

ship, it approaches the ship according to the ship approach chart. During the approach from the

MAP to the ship, the descent angle is only 1◦, thus it is nearly a horizontal approach. For the final

approach and landing, the pilot stabilizes the aircraft attitude by referring to the gyro-stabilized

horizon reference bar on the ship that indicates the true horizon independent of the ship motions.

Once the helicopter hovers over the deck in a stable fashion, it lands vertically regardless of ship

motions as long as the motions are within the predefined operational limits.

The key difference between the current Navy procedure and previous autonomous landing

methods is the fact that in the Navy procedure tracking the ship deck motions is avoided and land-

ing is executed vertically without attempting to match the aircraft attitude to the deck motions. In

previous methods, in order to track the complicated and unpredictable ship deck motions, multiple

powerful sensors and complex algorithms have been implemented, which are completely unnec-
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essary if the automation of ship landing follows the Navy procedure. Also, following the deck

motions is unsafe when the aircraft is near the deck since a small error can be catastrophic due to

an impact by the deck causing a rollover. Furthermore, this approach of tracking the deck motion

has serious fundamental limitations: (1) its application range is limited to the vertical space, and

therefore, it cannot cover the required horizontal range of 0.5 nm (MAP from the ship) and requires

separate methods for approach, and (2) since it does not follow the existing ship landing proce-

dure, it will require establishing separate operation procedures, which could possibly decrease the

operational speed and efficiency in Navy operations.

Considering all the aspects such as safety, capability, accuracy, simplicity, compatibility, and

operational efficiency, this study developed a unified and practical VTOL aircraft autonomous ship

landing solution based on an in-depth understanding of the helicopter ship landing procedure. To

prove this novel autonomous ship landing concept, a helicopter flight dynamics modeling frame-

work named TRAC was developed and validated using UH-60 flight test data. Then a linear flight

dynamics model was extracted and ship landing simulations were conducted via trajectory track-

ing using an optimal LQR control system. To implement the autonomous ship landing on a real

flying system, the technology has been developed in two major parts, which are the machine vi-

sion system and the control system. The machine vision system has been developed by taking

advantage of state-of-the-art machine learning and classical computer vision techniques. Various

control systems have been developed and their strengths and weaknesses have been demonstrated

through actual flight testing. First, a gain-scheduled PID controller with different flight modes was

constructed to select different PID control gains depending on the situation. Second, a nonlinear

controller was designed to enhance the tracking capability in the presence of sensor noise and

time delay. Third, a deep reinforcement learning-based control strategy was introduced to improve

robustness in the presence of wind gusts. Through this approach, it was able to obtain the au-

tonomous vision-based flight control system that followed human pilot’s ship landing procedures

but with better precision.

Multiple flight tests are systematically conducted to verify the safety of the vertical landing
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maneuver, long-range detection, robust tracking capability, and landing accuracy. The UAV lands

vertically independent of ship motions in the same manner as a Navy helicopter lands on a ship.

More than 100 landing tests are successfully conducted on a moving deck, which mimicked the

realistic and challenging 6 DOF ship motions. The developed control system demonstrated ro-

bust tracking capability and precise landing during a wide range of realistic scenarios such as

random initial positions, complicated ship motions, communication latency, sensor noise, and in

the presence of winds up to 20 mph. The conclusions from different areas of the present study are

summarized below.

6.1 Conclusions

6.1.1 Rotorcraft Flight Dynamics Modeling Framework

A comprehensive rotorcraft flight dynamics modeling framework was developed based on the

UH-60 helicopter and named Texas A&M University Rotorcraft Analysis Code (TRAC). This

is a complete software package that could perform trim analysis, extract linearized models, and

simulate flights by using LQR optimal control system. The dynamic/aerodynamic models of each

component of a representative helicopter (UH-60) have been developed individually and integrated

to form a complete helicopter model. Thus, it is also convenient to add or remove a component

to analyze the effect or configure a new aircraft. It has adopted empirical relations derived from

wind tunnel data to improve prediction results. The prediction results including helicopter power,

attitude, rotor blade angles, and control inputs have been validated with the US Army UH-60 flight

test data. Following are the specific conclusions derived from this study:

1. Based on the comparison of the predicted power curve with the flight test data, it is observed

that the present linear inflow dynamics model accurately predicts power at higher forward

flight speeds; however, it under-predicts the power at low forward flight speeds. Previous

modeling methods using the free-vortex wake models or CFD-coupled models could capture

rotor-fuselage interference more accurately thus showed better predictions at the low-speed

range where the interference has a nontrivial impact on power. However, more complicated
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inflow models increase the computational loads and it does not guarantee better predictions

in all the trimmed flight conditions. Actually, TRAC predicted the pitch angles with 1◦ ac-

curacy over a range of forward flight speeds via rotor analysis using a linear inflow model

coupled with the accurate fuselage drag model derived from wind-tunnel test data. There-

fore, modeling fidelity cannot be determined by one factor, and modeling the flight dynamics

of a helicopter, which is a complex, nonlinear, and highly-coupled system, requires multiple

selections of aerodynamic/dynamic models considering the flight conditions, desired accu-

racy, and computational speed. For the ship landing simulation, TRAC was able to extract

sufficiently accurate helicopter models for various flight maneuvers such as hovering, for-

ward flight, climb and descent, and coordinated turn.

2. Component dynamics/aerodynamics models were developed with respect to their own body-

fixed frame, and then their force and moment contributions were translated and transformed

to the predefined reference point. Also, the coordinate transformations were coded inde-

pendently and not as part of the component models. In this way, adding or modifying a

component model can be done without changing any other portion in TRAC. Due to its

modularity, it was also used to develop a completely new aircraft model which is a coaxial

rotor personal aerial vehicle (PAV), Harmony Aria [28]. Also, it is currently being used in a

different study to investigate the benefits of a mission-adaptive morphing rotor. Hence, this

modeling method can expand its applications to various studies.

3. TRAC includes the ship approach and landing simulation conducted using an LQR control

system. The LQR method figures out the optimal gains depending on the weights assigned

for references (states) and control inputs. The weights on references determine which states

are going to be controlled and priority among them. Also, the weights on control inputs de-

termine the priority among control inputs to achieve the desired flight maneuvers. To deter-

mine such weights, the author’s empirical knowledge from the helicopter piloting experience

was used as well as trimmed control inputs and distinctive states obtained from TRAC. It can
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be considered as a successful flight simulation only when the desired helicopter behavior is

achieved by appropriate control inputs. For example, in order to descend during forward

flight, the main control input should be a collective down command rather than a pitch for-

ward command that causes descent and increase of forward flight speed. Thus, it is important

to select appropriate weights in the LQR control system to obtain realistic simulation results

rather than simply tracking the setpoints.

6.1.2 Machine Vision Systems

The machine vision system was developed to provide the visual information perceived in a

given situation. The objects to detect were determined based on the visual cues that a helicopter

pilot refers to while approaching and landing on a ship. The long-range tracking target is the

ship as the pilot visually confirms the ship’s location from a long distance to set a course and

speed for the approach. At the proximity of the ship where the horizon reference bar becomes

visible, the pilot controls the helicopter by referring to the horizon bar, which remains horizontal

independent of the ship motions, for the final approach and vertical landing. Accordingly, the

vision system utilized machine learning-based object detection for long-range ship tracking, and

classical computer vision techniques for the estimation of aircraft relative position and orientation

using the horizon bar during the final approach and landing phases. Following are the specific

conclusions derived from this study:

1. The long-range vision system developed based on the state-of-the-art machine/deep learning

algorithm YOLOv3 detected the 6 x 6 ft sub-scale ship platform from 250 meters away.

Since the detection range is proportional to the size of an object shown in the image, it

means that the vision system can detect a typical small ship whose rear-side occupies an

area of 50 x 50 ft from 17.3 kilometers (9.3 nautical miles) away. This is a 10 times greater

detection range than the classical computer vision systems and 18 times greater detection

range than the required minimum visual ship identification distance as defined by the ship

approach chart.
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2. Even though one machine/deep learning-based object detector can detect multiple objects,

the computational load is higher and the accuracy is lower compared to single object de-

tection. Thus, two object detectors were developed to detect the ship and horizon bar,

respectively. By this approach, the object detector did not need to distinguish one object

class/name from the others, thus the chance of false classification was completely removed.

Furthermore, in the case that one object detector fails to detect the designated object, the

other object detector can provide the detected object information to the control system as a

backup.

3. The close-range vision system was developed based on classical computer vision techniques

to guarantee fast and reliable detection of the corner points on the horizon reference bar. The

existing corner detection methods were tested; however, they easily detected false corners.

Hence, the detection algorithm has been uniquely developed to detect corners precisely from

different distances, different perspectives, and different light conditions. This was achieved

by using sequential steps including image filtering, contour and corner detection, and screen-

ing the detected corner points by their spacing and slopes. It demonstrated approximately

15 times faster processing time than the machine/deep learning-based vision system used for

long-range detection.

4. In the proximity of the ship, the close-range vision system also estimated the relative posi-

tion and heading angle. To reduce the fluctuations in estimation, the moving average filter

was added first and replaced with the single-state Kalman filter. The estimated values were

validated through the VICON motion capture system, which provided true position and atti-

tude data. The estimation demonstrated sub-centimeter accuracy in position and sub-degree

accuracy in heading angle, which was sufficient to achieve precise landing.

6.1.3 Control Systems

Vision-based control systems were developed to generate situation-adaptive control inputs for

excellent autonomous ship approach and landing performance. To achieve such an objective, three
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different control strategies were introduced during the development process. First, a scheduled-

gain PID controller with flight modes was implemented to yield the appropriate control inputs

by engaging different sets of gains based on the position and heading angle. Second, a nonlinear

controller was developed based on the idea of nonlinear gain variation and a probabilistic approach

to limit the impact of incorrect estimations and ensure its tracking capability even in the presence of

high latency. Third, the state-of-the-art reinforcement learning control strategy was applied, which

can respond to disturbances (wind gusts) quickly with minimum drift. The specific conclusions

derived from this study are enumerated below:

1. The gain-scheduled PID controller along with different flight modes allowed a smart, situation-

adaptive control approach for the approach and landing maneuvers. Based on the flight con-

ditions and the relative distance to the landing platform, the controller selected one of the

following modes: high-speed gross tracking, precise tracking at low speeds, scanning for the

visual cue, collision prevention, or immediate landing. The different flight modes were ver-

ified under various flight scenarios including the landing platform moving at high speeds, as

well as following circular and S-shaped trajectories. The results confirmed that the proposed

visual cue tracking landing method is able to achieve safe, accurate, and robust landings

repeatedly.

2. The biggest challenge to implementing the machine/deep learning-based object detection for

the real-time autonomous flight was the time delay. To cope with the time delay issue, the

nonlinear control system was constructed that responded less sensitively to errors around

the setpoint and aggressively to large errors. This was achieved by using an exponential

variation of feedback gain with error. The superior performance of the nonlinear controller

was demonstrated through comparison with other control systems such as linear P controller,

linear PD controller, and linear PID controller. The linear control systems were not able to

suppress the oscillations arising from the slow update rate, which could trigger instabilities.

However, the developed exponential nonlinear control system achieved stable tracking per-

formance effectively in the same situation. This approach enabled the aircraft to stay in the
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correct flight course while approaching the ship platform from a long distance.

3. Even after going through the configured Kalman estimator, large/false estimation errors can

still occur from time to time. To prevent responding to such non-physical estimations, the

probabilistic nonlinear controller was developed. It probabilistically perceives if the estima-

tion is physically feasible, based on the normal distribution curve and known UAV charac-

teristics. The derivative control term is more sensitive than other terms since it is multiplied

by the error difference at each time step, thus one small error can generate large/false con-

trol input. However, multiplying the estimation value by its probability of occurrence can

effectively reject responding to false estimations. Using this approach, the controller never

generated abrupt large control inputs even when the vision system provided inaccurate esti-

mations. This greatly improved the robustness of tracking.

4. Sudden wind gust is an even more challenging condition than a steady strong wind. The de-

veloped reinforcement learning-based control strategy was able to react quickly when such

a transient disturbance occurred. This control strategy is completely different from conven-

tional control systems. Instead of developing control algorithms that specify what actions

should be taken in a given situation, the RL-based controller learned the best control actions

through training in a broad range of wind conditions. By examining multiple training cases,

the optimal set of states were identified and the reward function was developed, which is

substantial for successful training. This control policy was obtained from the training in the

Gazebo simulation and directly implemented in the flight testing. Compared to the flight

testing results of feedback control systems, it reduced the drift by 50% when a 5 m/s of

sudden wind gust was imposed during the ship approach.

6.1.4 Flight Testing

Extensive flight tests were conducted to prove the safety of vertical landing without considering

ship motions and to demonstrate the tracking capability and landing accuracy. To this end, multiple

vertical landings were executed while the 6 DOF platform was simulating realistic and challenging
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ship motions. The tracking capability and landing accuracy were verified through full flight testing

in situations such as random initial positions, adverse weather conditions, and dynamically moving

ship conditions. The specific conclusions derived from flight testing are given below:

1. The 6 DOF platform simulated the Oliver Hazard Perry Class frigate ship at the sea state of

6 and a wave direction of 60◦ and NATOPS helicopter ship landing limits with small ship

pitch and roll motion periods. More than 100 vertical landings were successfully conducted

at the random moments of such challenging ship motions. Considering the size of the VTOL

UAV, the landing boundary that triggers the vertical landing maneuver was set as 35 x 35 cm

from the deck center and this ensured safe landing while the ship’s maximum roll hit 9◦ and

maximum pitch reached 5◦ with small ship motion frequency. Thus, it was concluded that

vertical landing that does not follow the deck motions is a safe and appropriate ship landing

manner.

2. Full flight testing has been conducted in challenging situations such as random initial po-

sitions and heading angles, communication latency, sensor noise, low visibility, and strong

winds. The maximum distance was 250 meters away from the ship and the maximum initial

heading was 45◦. Also, the randomly moving ship platform changed its course up to 130◦

in 2 seconds and changed its speeds from 0 to 10 mph, while the landing pad was simulat-

ing the ship deck motions. The adverse weather affected flight conditions such as the low

visibility of 150 meters (490 ft), the strong wind of 17 knots (9 m/s), and different lighting

conditions. The communication latency varies from 0.03 to 0.5 seconds, depending on the

engaged vision system. Even though the flight tests were conducted under such extreme con-

ditions, the developed robust autonomous vision-based control system demonstrated stable

flight performance during approach and landing with minimum overshoots.

3. The factor that affected landing accuracy was the size of the assigned landing boundary and

there was a trade-off between the accuracy and flight time. Even in a scenario where the UAV

had to fly at its maximum speed, it landed with an accuracy of 4 cm when a landing boundary
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was set to 5 x 5 cm from the landing-pad center. Multiple flight tests were safely conducted,

which showed landing errors of less than 5 cm. However, the landing boundary was finally

set as 35 x 35 cm because that was sufficient to land on the deck safely considering the size

of the VTOL UAV and the deck. In challenging flight conditions, the UAV was able to land

at random points within the landing boundary. In other words, the study showed that the

landing accuracy is not limited by the developed control system, but determined by the set

landing boundary. Therefore, the landing boundary can be selected depending on the priority

between the flight time and landing accuracy.

6.2 Contributions to the State of the Art

Since the beginning of helicopter shipboard operations, numerous ship landing-related acci-

dents have occurred and too many souls have been sacrificed. Needless to say, this led to a yearn-

ing for autonomous ship landing technology. Even though there have been several studies for

autonomous ship landing, they commonly have regarded it as an extension of the moving-platform

landing problem without deeply considering the unique characteristics of ship landing. Hence, au-

tomation methods have been developing in a different way from the current Navy helicopter ship

landing procedure causing unnecessary complexity, instability, and limited capabilities. To the au-

thor’s best knowledge, this study is the first attempt in history to automate ship landing in a way

that closely mimics the established Navy helicopter ship landing procedure. The main contribu-

tion of the study is the demonstration of the feasibility of this novel autonomous ship approach and

landing method. Furthermore, this study has made technical contributions to the state of the art in

the development of rotorcraft flight dynamics modeling framework and autonomous vision-based

control system as below.

Over the past several decades there have been many research efforts focused on modeling a he-

licopter. As a result, the state-of-the-art helicopter flight dynamics modeling frameworks demon-

strate high fidelity but inevitably incur high computational loads. However, TRAC has been de-

veloped as a comprehensive flight dynamics tool focusing on fast computation with reasonable

fidelity, which can conveniently model arbitrary rotorcraft by adding or re-configuring compo-
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nent models from the baseline UH-60 helicopter model. Even though the component models of

rotorcraft are highly coupled, TRAC separates out individual component models, and therefore,

modifying or replacing a component can be done without changing any other portion in TRAC.

Due to its modularity, fast computation speed, and fidelity, it is appropriate for analyzing the effect

of design parameters at an early stage of aircraft development and investigating the effect of newly

designed lifting surfaces.

In recent years, the area of machine learning has been expanding rapidly and its applica-

tion areas are increasing exponentially with the increase of computing power. The machine/deep

learning-based vision is a powerful method to detect an object of interest. Previous studies focused

on developing algorithms to detect an object and classify it. However, the present study went be-

yond detection, where it incorporated the machine/deep learning-based vision into the autonomous

flight control system for the ship/moving platform approach, which is a novel contribution of this

study. To achieve real-time autonomous flight, a nonlinear control system that has exponential

variations of gain was designed. This involved coupling an autonomous control system with the

machine/deep learning-based vision to ensure the control strategy is effective in the presence of

time delays. The same approach can be applied to other machine/deep learning vision-based au-

tonomous systems.

Even though the machine/deep learning-based vision has significant advantages, the classical

computer vision technique is still very powerful to process images fast and accurately as instructed

by an explicit algorithm. The present study included the development of a method to detect specific

corner points by combining image filtering, contour detection, and contour detection as well as

the screening process. This uniquely developed detection method was able to precisely find the

corners and to avoid the false corner detection that occurred when other existing corner detection

methods were used. According to the experimental study, it was superior to other existing corner

detection methods in both accuracy and reliability. Although the application range was smaller

than the machine/deep learning-based detection, the processing time was 15 times faster than the

machine/deep learning-based vision. Hence, the developed detection method can be used for other
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applications where it is important to detect particular points fast, reliably, and accurately at close

distances.

Obtaining information from the vision sensor inevitably raises concerns about noise. The com-

mon approaches to reducing the noise are adding a moving average filter or Kalman filter as a

state estimator. The present study also reduced the noise level by configuring a moving average

filter and Kalman filter; however, the filtered values were still affected by false/large estimation

errors yielding unstable control inputs. This was not enough to achieve robust flight performance.

Therefore, a nonlinear control system was developed to reject responding to non-physical estima-

tions by using the probability of its existence. This novel probabilistic nonlinear control system is

appropriate for any control system that has a derivative term and needs to avoid unnecessary abrupt

large control inputs caused by the false/large error.

Conventional feedback control systems were not sufficient to ensure flight performance when

a sudden wind gust is imposed because they require different sets of gains depending on flight

conditions and even scheduling the gains will not cover all the possible cases. However, the state-

of-the-art reinforcement learning-based control strategy can respond quickly to such situations

since it has experienced all the possible cases during the training session. This study investigated

how to train such a control policy, and demonstrated the apparent effectiveness with respect to

conventional feedback control systems via simulations and flight testing in presence of wind gusts.

6.3 Recommendations for Future Work

First and foremost, the automation of ship landing should be developed considering its unique

characteristics. This is not just landing on a moving platform that has 6 DOF motions, but a com-

prehensive task that should comply with the established procedure including horizontal approach,

visual identification, and vertical landing without following the deck motions. The perturbations to

aircraft dynamics induced by the unsteady wake from the ship super-structure should also be con-

sidered. Throughout the study, the overwhelming capabilities of the proposed method compared to

typical moving deck tracking methods in the aspects of safety, accuracy, simplicity, compatibility,

and operational efficiency were demonstrated. However, there exists technical areas that can be

194



improved as detailed below.

At the earlier stage of this study, the rotorcraft flight dynamics modeling framework TRAC

was developed. Although it achieved reasonable accuracy at a fast computation rate, the inflow

model can be improved by coupling with CFD analysis or free-vortex wake model to capture the

fuselage-rotor interference accurately. This will significantly improve the power predictions in the

low-speed forward flight range. However, it can increase the computational loads. To avoid this,

higher-order polynomial functions or look-up tables can be derived from aerodynamic interference

predictions by CFD or free-vortex wake models. The effect of ship wake on rotor aerodynamics

should also be modeled. Furthermore, the current rigid blade model could be replaced with an elas-

tic blade model that can more accurately analyze the rotor blade behavior. In this way, the overall

capability of the framework and fidelity of the predictions could be improved while maintaining

high computational speeds.

Even though the current vision system can detect the visual cue and estimate the relative posi-

tion and heading angle with great accuracy at close proximity, it requires knowledge about visual

cue dimension and camera specifications in advance. This vision system can be used for differ-

ent visual cues; however, the parameters in the vision algorithm need to be changed if a different

visual cue is used. Hence, it is recommended to use additional sensors such as a Light Detection

and Ranging (Lidar), Radio Detection And Ranging (RADAR), and thermal camera. The Lidar

system can be useful in close proximity since it does not require knowing the specific values of

a visual cue. Moreover, with advances in recent years, multiple COTS Lidar systems that can be

conveniently integrated into aircraft systems have been introduced. To measure the relative dis-

tance, directional RADAR systems that transmit a short radio pulse with very high pulse power

can also be used. A thermal camera that uses Infrared radiation (IR) can be effective at night time

and in low visibility conditions. Maritime VTOL capable aircraft such as SH/MH-60, AW159, and

MV-22 are equipped with a Forward-Looking Infrared (FLIR) system that provides visual informa-

tion and distance from a target. Thus, the utilization of a thermal camera sensor can be integrated

into existing helicopters without installing additional sensors. Hence, it is expected that the fusion
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of the current digital camera, Lidar, RADAR, and the thermal camera can expand its operational

capability and reliability.

The developed machine/deep learning-based vision system demonstrated excellent detection of

a target ship in the long distance. Even though the YOLOv3 algorithm was carefully selected due

to its fast detection rate and good accuracy; however, its performance was not compared with other

algorithms. Therefore, a more systematic study on detection algorithms in such a ship landing

environment is recommended. The detection accuracy of machine/deep learning-based vision al-

gorithms surpassed the accuracy of human eyes in 2015 and the error was recorded as only 2.25%

in 2017. Since then, new algorithms have been developed to increase the detection speed while

maintaining the accuracy level. They typically measure the speed of detection from a recorded

video, thus the rate is evaluated based on how fast it can detect an object of interest once the image

frame is given. However, they still cause latency issues when integrated into the real-time flight

control system. Therefore, in order to identify the best algorithm, it is recommended to compare

the speed and accuracy of algorithms through flight testing. If the current machine/deep learning-

based detection feedback rate of 0.5 seconds can be reduced to below 0.1 seconds, more rigorous

control strategies can be constructed to enhance the flight performance in the long distance.

It is very powerful to use the state-of-the-art deep reinforcement learning control strategy at a

close distance from the ship where the state feedback from the vision system is fast. It can quickly

respond to a sudden wind gust, thus the drift can be minimized better than other conventional con-

trol systems. Also, this is an area where fast and accurate control is important, thus machines can

perform better than human pilots by design. Even though the control policy obtained by train-

ing with TD3 algorithm with selected states and reward engineering demonstrated the improved

disturbance rejection capability compared to the nonlinear PID control system, more extensive

studies on deep reinforcement learning control algorithms, states, and rewards are recommended.

Proximal Policy Optimization (PPO), Trust Region Policy Optimization (TRPO), Soft Actor-Critic

(SAC), and Deep Deterministic Policy Gradient (DDPG) are some of the recommended candidate

algorithms worth trying for training. The current states are selected as positions and velocities
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including their 5 previous values. However, the effect of taking the specific number of previous

data as states is not fully investigated, thus the number of previous data can be optimized during

further studies. Also, the other sets of states can be analyzed to identify the states that can obtain

a more effective control policy. After going through multiple trial and error processes, the current

reward function was developed. Nevertheless, It is expected that the current reward function could

be improved if the rewards are designed more distinctively to achieve the control task.

It is recommended to take a different control strategy in the long-distance since it requires

comprehensive decision making to set an approach course by considering many factors such as

weather condition, ship course, air and sea traffic, and so on. This is an area that the experienced

pilot’s decision-making ability is more important than quickly controlling an aircraft to achieve

certain setpoints. Moreover, developing an explicit algorithm that can take accounts of all the

possible scenarios is nearly impossible. Thus, imitation learning-based control strategy can be

an appropriate approach to develop a higher-level control policy that encodes the human expert’s

ability. It can be obtained by learning from the expert’s demonstrations in given situations, thus

successfully trained control policy will behave like the experienced pilot.

Although the current experimental setup simulated ship landing environment closely, it could

be improved for larger-scale flight tests. It is recommended to replace the current quadrotor UAV

with a small helicopter UAV. The same autonomous ship landing system can be implemented with

minimum modifications. Since the small helicopter UAV has similar configurations as existing

helicopters such as rotors, landing gear, and center of gravity position, the testing results can

be appropriately scaled for full-size helicopter ship landings. Thus, the effect of deck motions

(magnitude and frequency) and wind gusts on full-size helicopters can be estimated by considering

the differences in vehicle inertial properties and blade tip speeds. Once a small helicopter UAV

successfully lands on a ship deck in properly scaled motions, there will be more confidence to

implement the system on a full-size helicopter at sea.

Last but not least, the application of developed novel autonomous vision-based approach and

landing method can be extended broadly since it demonstrated successful landings in one of the
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most difficult moving platform landing cases, which is ship landing. Possible applications are

landing on stationary and moving platforms such as cars, tanks, trains, submarines, and aircraft. It

is also able to achieve precise approach and landing in GPS-denied environments such as inside a

tunnel, inside a building, under a bridge or forest canopy, etc.. Moreover, the same autonomous

flight method can also be applied to other purposes such as air refueling, vertical replenishment,

and so forth with some modifications. In conclusion, it is expected that the novel autonomous ship

landing method and the deliverables from this study could potentially be used across a wide range

of areas beyond its original intended application.
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APPENDIX A

UH-60 HELICOPTER CONFIGURATION

Main Rotor
Number of blades 4
Radius R, ft 26.83
Blade chord c, ft 1.75
Rotational speed, rad/sec 27.0
Tip speed, ft/sec 724.41
Longitudinal mast tilt, deg -3.0
Airfoil section SC 1095
First airfoil section, ft 5.08
Blade precone, deg 0.0
Linear blade twist, deg -18.0
Solidity 0.083
Lock number 5.11
Control phase shift -9.7
Tail Rotor
Number of blades 4
Radius, ft 5.5
Blade chord, ft 0.81
Rotational speed, rad/sec 124.62
Tip speed, ft/sec 685.41
Rotor shaft cant angle, deg 20.0
Fuselage
Gross weight, lbs 16000.00
Pitch inertia Iyy, lbs·ft2 38512.0
Roll inertia Ixx, lbs·ft2 4659.0
Yaw inertia Izz, lbs·ft2 36796.0
Ixz, lbs·ft2 1882.0
Horizontal tail surface area, ft2 45.00

Table A.1: Main parameter of the UH-60 helicopter configuration
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