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ABSTRACT 

 

 Many independent events led by public institutions significantly increased grain 

sorghum yield in the US, including the development of grain sorghum hybrids and the 

introgression of exotic germplasm. Nonetheless, the rates of genetic gain have been 

modest, and hence new strategies should be explored. This study assesses alternatives to 

maximize genetic gain via elite germplasm enhancement based on exchanging inbred 

lines derived from distinct sorghum breeding programs. Additionally, it presents 

classical and genomic prediction models that explore combining abilities and their 

interaction with environments to predict the performance of grain sorghum hybrids. 

Lastly, it evaluates the adaptability and stability of grain sorghum hybrids within mega-

environments. For that, ten elite A- and R-lines from Texas A&M and Kansas State 

sorghum breeding programs were crossed in a factorial design to generate 100 hybrids. 

Hybrid combinations were grouped to represent hybrids within and across programs. 

Grain yield, plant height, and days to anthesis were measured in ten environments over 

two years. Results indicate that crosses between elite inbred lines developed from 

distinct sorghum breeding programs can increase selectable variation and generate top 

performers. General and specific combining abilities and their interaction with the 

environment can effectively predict hybrid performance, and the inclusion of genomic 

information further increased the prediction accuracy of models. The mega-environment 

analysis identified the established subtropical and temperate sorghum production regions 

and suggested that hybrid combinations between Texas A&M and Kansas State sorghum 
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breeding programs can generate high-performing and stable grain sorghum hybrids 

across target regions. Plant breeders, growers, and seed companies are encouraged to 

explore such crosses to produce promising new products. Finally, the opportunity the 

exchange elite germplasm across breeding programs could foster collaborative efforts 

between public institutions and enhance the rate of genetic gain in crops with limited 

public and private resources. 
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1. INTRODUCTION  

 

 Long before plant breeding branched into its “business” aspect (Bernard, 2012), 

plant breeding was defined as “the art and science” of improving plant genetics to meet 

human needs (Fehr, 1987; Sleper and Poehlman, 1995). In the early days of scientific 

crop improvement, public plant breeding programs played a crucial role in developing 

most of the breeding methodologies that successfully enabled the development of new 

cultivars and their subsequent hybrids.  

Although the ultimate goal of a breeding program is the release of a new product, 

the process for achieving it is equally important. Public plant breeding programs 

pioneered the application of quantitative genetics, population genetics, and statistical 

analysis to select genotypes expressing desirable phenotypic traits. Additionally, these 

programs elucidated many fundamental concepts involved in crop improvements, 

including genotype-by-environment interaction effect, heterotic groups, plant genome 

sequencing techniques, marker assisted selection, and genomic selection. These concepts 

transformed crop production by developing enhanced methods that increased yield 

potential more efficiently. In essence, public plant breeding programs significantly 

impacted the rates of genetic gain and continue to develop new technologies to optimize 

the breeding pipeline (Cobb et al., 2019). 

Public sorghum breeding programs have been responsible for developing much 

of the elite grain sorghum germplasm worldwide. In the US, the Texas A&M and 

Kansas State sorghum breeding programs have supported the national sorghum 
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production for over a century. Both programs have released high yielding lines with 

biotic and abiotic stress resistance and improved quality for the sorghum industry.  

1.1. Sorghum improvement 

Sorghum [Sorghum bicolor (L.) Moench] is the third most-produced grain in the 

US and the fifth most important grain crop across the globe (FAO, 2019). Although 

national sorghum production hectarage has been declining, the US continues to be a 

global producer of the crop with a planted area of 2.30 million hectares, which 

corresponds to 16% of the total sorghum production worldwide (FAOSTAT, 2019).  

Grain sorghum is a grass native to and domesticated in East Africa. Sorghum 

arrived in the US as “guinea corn” via the West African slave trade, and although widely 

distributed, eventually disappeared from cultivation. Grain sorghum, as known today, 

reached the semiarid regions of the Southern Great Plains, where it found a home due to 

its highly drought-and-heat-tolerant trait. According to Vinall et al. (1936), White and 

Brown Durra arrived in 1874 from Egypt and became the first grain sorghums to be 

successfully used in expanding the crop in the country. Afterward, the Red and White 

Kafirs, Giant Standard Yellow Milo, Blackhull Kafir, Shallu, Pink Kafir, Feterita, and 

Hegari entered the Great Plains during the late 19th and early 20th centuries. These 

introductions originated the genetic basis that contributed to the development of the 

early grain sorghum cultivars in the region (Smith and Frederiksen, 2001). 

By the 1880s, farmers already recognized the potential of sorghum as a feed crop 

(Haney, 1989). As these genotypes were not adapted to the regions, sorghums were 

easily lodged, often goose-necked, late, and tall (Smith and Frederiksen, 2001; Rooney, 
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2004). Farmers performed the first selections of genetic variants and randomly 

outcrossed progeny which led to the fixation of the short-statured, straight peduncle, and 

early maturing cultivars (Smith and Frederiksen, 2001; Rooney, 2004). However, the 

development of more adapted cultivars further increased the need for a systematic 

accumulation of information about sorghum. The establishment of experimental research 

centers managed such needs. 

Selections initially made by farmers benefited sorghum breeders, who started to 

develop cultivars via hybridization. Desirable characteristics fixed in different plants 

were combined into distinct cultivars through controlled crosses. Several combine 

cultivars expressing early maturity were developed and grain sorghum acreage 

increased. Due to a lack of uniformity, these improved cultivars could not fully express 

their yield potential. The discovery of cytoplasmic male sterility led to the development 

of hybrids, which significantly increased grain sorghum yields (Smith and Frederiksen, 

2001; Rooney, 2004). Concomitantly, the need for genetic variation enhancement 

motivated sorghum breeders to develop new strategies to incorporate divergent 

germplasm to high-performing parents. The introduction of exotic materials to the 

breeding population positively affected modern parental lines and hybrids agronomic 

performance (Stephens et al., 1967; Klein et al., 2016). However, the rates of genetic 

gain in sorghum have been modest, and new methods to leverage yield potential and 

genetic variation should be developed. 
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1.2. Sorghum breeding at Texas A&M and Kansas State 

Texas A&M and Kansas State sorghum breeding programs have long been 

important to sorghum crop improvement. It is not a coincidence that most of the national 

sorghum production is in or adjacent to these states (Smith and Frederiksen, 2001). In 

2018, more than 75% of the total US sorghum production was harvested at Kansas and 

Texas farmlands (FAO, 2019). Both programs began sorghum investigations and 

breeding in the early twentieth century. They both have origins in the land-grant system 

established by the Hatch Act, which authorized the establishment of the Agricultural 

Experimental Stations (AES) in each state (Shelton, 1888; Haney, 1989; Wilson, 1963; 

Phillips, 2001). The Texas AES was established in 1887 (Haney, 1989), while the 

Kansas AES was founded in 1901 (Wilson, 1963; Phillips, 2001).  

Early sorghum research in College Station (Texas) demonstrated the need for 

multiple environment testing; additional sorghum research began in Chillicothe, 

Weslaco, and eventually Lubbock, Amarillo, and Corpus Christi (Haney, 1989). Similar 

results in Hays (Kansas) led to sorghum research activities in Colby, Garden City, and 

Manhattan (Phillips, 2001). Both programs initially benefited farmers by developing and 

diffusing standard agricultural practices to improve the production and processing of 

grain sorghum. In the most important form, this involved identifying the best cultivars 

available to each specific production site (Dickson, 1917; Karper, 1917; Jackson 1917; 

Cunningham and Kenney, 1917; Conner and Karper, 1918; Laude and Swanson 1933; 

Swanson and Laude 1934).  
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The rediscovery of Mendel’s law impacted crop improvement considerably. 

Sorghum breeders began to apply the principals of heredity by crossing desirable plants 

with the expectation to produce selectable progenies. Vinall and Cron, for instance, 

released Chiltex and Premo as the first sorghum cultivars deliberately developed from 

crossing Feteritas and Kafirs (Smith and Frederiksen, 2001; Rooney, 2004). Crosses 

between Milos and Kafirs resulted in short-statured and early-maturing cultivars, such as 

Beaver and Wheatland (Quinby, 1974). Many other breeding-crosses led to the 

development of better performing, biotic-stress resistant, and abiotic-stress tolerant 

cultivars. These cultivars were used as the final product until hybrid production started. 

Sorghum hybrids were known to perform better then pure-line cultivars 

(Stephens and Quinby, 1952), but their production was not economically feasible. 

Hybrid seeds were obtained from either hand emasculation, or pollen development 

disruption, using hot water (Stephens and Quinby, 1933). The limited number of seeds 

led the first hybrids to become a source for population development and genetic studies 

(Quinby, 1967; Quinby and Karper, 1954). Advanced methods based on male genetic 

sterility increased the number of seeds, but the inability to produce uniform hybrids 

terminated their use in commercial production (Rooney, 2004). Hybrid sorghum 

production became economically feasible only after the identification of cytoplasmic-

male-sterility (CMS) at Texas A&M AgriLife Research (Stephens and Holland, 1954). 

From discovery to development, CMS required approximately ten years, but the effects 

on the sorghum industry were immediate; hybrids were produced and widely adopted 

with a concomitant yield increase (Maunder, 1972; Miller and Kebede, 1984).  
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The CMS facilitated the development of the hybrid sorghum seed industry. 

Public sector breeding programs began to focus on germplasm development and genetic 

research. This led to developments of great value to the sorghum industry; the sorghum 

conversion program (Stephens et al., 1967; Klein et al., 2016); disease and insect 

resistance (Rooney, 2004); grain and forage quality; and yield enhancement. While 

many of the sorghum breeding programs were dissolved over time, the programs in 

Texas and Kansas maintained their identity and programs continuously.  

However, the rates of yield gain have been modest since commercial hybrid 

sorghum production began. A long-term hybrid sorghum selection in either private and 

public breeding programs provided an increase of 0.005 to 0.015 t ha-1y-1 (Manson et al., 

2008; Assefa and Staggenborg, 2010; Gizzi and Gambin, 2016; Pfeiffer et al., 2018). 

Such improvement rates are marginal to keep sorghum as a major crop, and hence new 

strategies to maximize yield gain must be developed.  

The combination of divergent elite inbred lines from distinct sorghum breeding 

programs can elucidate the relative benefits and limitations regarding the variation and 

performance existing within and across these programs. Such combinations might 

maximize yield potential across a broader range of environments by exploiting its 

dominance variation. It might also indicate how to better explore selectable variance for 

the future development of superior parents. Additionally, the implementation of genetic 

prediction models for grain sorghum could aid breeders to appropriately allocate 

resources to identify outperforming hybrid combinations using genetic information 

derived from the inbred parents. Thus, this dissertation assessed alternatives to maximize 
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genetic gain via elite germplasm enhancement based on exchanging inbred lines derived 

from the Texas A&M and Kansas State breeding programs and demonstrate how a 

collaborative effort between these two programs might benefit sorghum producers. 

Further, it aims to implement genomic selection into a sorghum breeding pipeline to 

assist breeders to increase the rates of genetic gain of the crop. 
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2. COMBINING ABILITIES AND ELITE GERMPLASM ENHANCEMENT 

ACROSS US PUBLIC SORGHUM BREEDING PROGRAMS 

2.1. Synopsis 

 For mature breeding programs, maintaining genetic variation in elite germplasm 

requires a continual assessment of the most efficient methods to maximize functional 

genetic variation while improving productivity. This research assessed the relative value 

(defined as population means and variances) derived from elite germplasm exchange 

between distinct public breeding programs. Ten elite A- and R-lines from Texas A&M 

and Kansas State sorghum breeding programs were crossed in a factorial design to 

generate 100 hybrids. Hybrid combinations were grouped to represent hybrids within 

and across programs. Grain yield, plant height, and days to anthesis were measured in 

ten environments over two years. Combining abilities and their interactions with the 

environment were assessed. Combined analysis detected significant effects for all traits, 

but genetic effects for grain yield were not consistently significant within each group of 

hybrid combinations. Hybrids derived from only Texas inbreds had limited genetic 

variation for grain yield but the highest mean of all four groups; hybrids derived from 

only Kansas inbreds produced moderate genetic variation but lower grain yield potential. 

Maximum genetic variation for grain yield and plant height occurred when Kansas A-

lines were crossed to Texas R-lines, whereas hybrids between Texas A-lines and Kansas 

R-lines maximized variation for days to antheses. Results demonstrated the potential 

benefit from crossing elite inbred parents derived from distinct breeding programs to 

increase genetic variation and enhance agronomic performance. Further, these crosses 
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could foster collaborative efforts between public institutions to enhance the rate of 

genetic gain in crops with limited public and private resources. 

2.2. Introduction 

 In any plant breeding program, assembling germplasm with genetic variation is 

essential for long-term genetic improvement of yield and other complex traits in hybrid 

crops (Dudley and Moll, 1969; Fehr, 1991; Byrne et al., 2018; Bernardo, 2020). While 

genetic variation is crucial for the long-term success of improvement programs, its 

presence must be balanced with the need for high performance for agronomic traits such 

as yield and quality (Rooney, 2004; Smith, 2007). Population improvement approaches 

have been the standard practice to simultaneously increase genetic variation and 

agronomic performance (Lynch and Walsh, 1998; Hallauer et al., 2010). Although 

effective, population improvement involves progeny testing, which may hinder the rates 

of genetic gain over time (Comstock et al., 1949; Doggett, 1972; Hallauer and Darrah, 

1985). Further, population improvement approaches are not readily adaptable to inbred 

line and hybrid development.  

 To address these issues, new breeding approaches to balance the mean and 

variation have been developed. Rapid cycling genomic selection, for instance, addresses 

some limitations intrinsic to the conventional population improvement scheme (Gaynor 

et al., 2017; Zhang et al., 2017; Gorjanc et al., 2018). Alternatively, plant breeders often 

search for exotic germplasm to introgress new sources of variation to the breeding 

population (Pollak, 2003; Fan et al., 2016). In sorghum [Sorghum bicolor (L.) Moench], 

the conversion program (Stephens et al., 1967) and the reinstated conversion program 
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(Klein et al., 2016) released many inbred lines adapted to subtropical and temperate 

environments, and their pedigrees continue to integrate current elite lines and 

commercial hybrids (Duncan et al., 1991; Pfeiffer et al., 2019; Horne et al., 2020).  

 Another promising method commonly used in commercial maize breeding 

programs to increase selectable variation involves exchanging elite germplasm across 

different sites (Cooper et al., 2014). Rather than centralizing the crosses within a specific 

program, breeders working in the private sector treat each program as an interconnected 

network of smaller programs to generate breeding crosses and solve local challenges 

(Podlich and Cooper, 1998; Cooper et al., 2014; Technow et al., 2020). This method 

increases genetic gain by introducing divergent yet high-performing inbred lines that 

allows for efficient selection and accumulation of favorable alleles for critical agronomic 

traits. Simulation studies demonstrate the benefits of such a method for the long-term 

genetic improvement of yield and other complex traits in hybrid crops (Podlich and 

Cooper, 1998; Technow et al., 2020). 

 Additional results involving exchange of elite germplasm between distinct 

breeding programs also increases collaborative efforts between the plant breeding 

communities. Such synergy is particularly advantageous for public institutions, which 

have downsized significantly over the years (Shelton and Tracy, 2017; Coe et al., 2020). 

For instance, Adhikari et al. (2020) assessed hybrid combinations of elite wheat lines 

derived from US public winter wheat breeding programs. The authors highlighted the 

importance of useful genetic variation within and across programs to make breeding 

crosses and develop improved lines with the potential to meet local needs. The 
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combination of exchanging elite germplasm across public institutions with the 

application of new technologies, including modern sequencing techniques and robust 

statistical models, can enhance the rates of genetic gain in public sector breeding 

programs (Xu et al., 2017; Cobb et al., 2019; Fonseca et al., 2021). 

 The introgression of elite germplasm across breeding programs impacts the 

effective size of breeding populations, causing an increase in the rates of genetic drift, a 

decrease in genetic variation, and a potential restriction on the response to selection (Yu 

and Bernardo, 2004; Fu, 2006; Charlesworth, 2009). However, empirical and simulation 

studies argue that reducing the number of selected individuals to produce breeding 

populations has a limited effect on genetic variation for yield (Guzman and Lamkey, 

2000; Bernardo et al., 2006). Moreover, long-term selection demonstrates that positive 

response to selection for quantitative traits can continue even in small populations 

(Dudley and Lambert, 2004; Duvick et al., 2004). Additionally, changing selection 

environments expose genotypes to diverse environmental effects, implying changes in 

selection targets, which might reduce the selection pressure on particular alleles or 

complexes of alleles and, thus, slow or prevent fixation (Technow et al., 2020). Based on 

this literature, the value of exchanging elite germplasm between breeding programs must 

be empirically determined and results will depend on the crop and the specific 

germplasm that is evaluated. 

 Genetic variation consists of additive and non-additive components (Falconer 

and Mackay, 1996), and the proportion of additive effects typically account for most of 

the total genetic variation (Falconer and Mackay, 1996; Lynch and Walsh, 1998; Hill et 
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al., 2008; Fischer et al., 2008). Since additive effects reflect heritable variation, they 

predict breeding crosses and hybrid performance (Bernardo, 1994; Piepho et al., 2008; 

Technow et al., 2014; Basnet et al., 2019; Fonseca et al., 2021). In the absence of 

epistasis, general and specific combining abilities reflect the magnitudes of additive and 

dominance effects, respectively (Falconer and Mackay, 1996). General combining 

ability (GCA) is the average performance of an inbred line in hybrid combinations, 

while the specific combining ability (SCA) describes deviations from those parental 

contributions with respect to a particular hybrid cross (Sprague and Tatum, 1942). 

Several mating schemes are frequently applied to generate GCA and SCA estimates 

(Comstock and Robinson, 1952; Griffing, 1956). Currently, combining ability estimates 

can be obtained in an array of ways using more flexible models (Möhring et al., 2011; 

Alves et al., 2019; Fonseca et al., 2021) and modern statistical tools (Pérez and de los 

Campos, 2014; Bates et al., 2015; Covarrubias-Pazaran, 2016; Onofri et al., 2020).  

 GCA and SCA are often generated to assist breeders in making breeding 

decisions from producing breeding crosses and advancing selected hybrid combinations 

(Fasahat et al., 2016). Typically, crops commercialized as varieties focus on estimating 

GCA effects (Isleib and Pattee, 2007; Hinze et al., 2011; Zhang et al., 2015; Teodoro et 

al., 2019; Adhikari et al., 2020), while those commercialized as hybrids also evaluate 

SCA effects to maximize heterosis (de la Vega and Chapman, 2006; Bagheri and 

Jelodar, 2010; Fan et al., 2014; Larièpe et al., 2017; Yu et al., 2020). While sorghum is a 

self-pollinated species, it has been grown as a hybrid crop in the US since the 

development of the A1 cytoplasmic male sterility system (Stephens and Holland, 1954). 
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As a hybrid crop, both GCA and SCA are important in sorghums [(Grain sorghum: 

Prasad and Biradar, 2017; Crozier et al., 2020; Fonseca et al., 2021), (Biomass sorghum: 

Sheunda et al., 2019; Oliveira et al., 2019; Wagaw and Tadesse, 2020), (Sweet sorghum: 

Lombardi et al., 2018; Rocha et al., 2018), and (Forage sorghum: Gorz et al., 

1987; Mohammed, 2009; Aruna et al., 2012)]. In countries where the hybrid sorghum 

seed industry is in its infancy, GCA and SCA estimates can be used to develop heterotic 

groups which are essential for hybrid sorghum improvement programs (Kenga et al., 

2004; Akata et al., 2017; Kante et al., 2019). 

 Throughout the development of grain sorghum hybrids, the US breeding 

programs have improved critical agronomic traits for sorghum production. Much of this 

progress was due to the successful introduction of unadapted elite germplasm through 

the sorghum conversion program. (Stephens et al., 1967; Laosuwan and Atkins, 1977; 

Lothrop et al., 1985; Miller and Kebede, 1984; Klein et al., 2016; Horne et al., 2020). 

While improvement has been consistent over recent decades, the rates of genetic gain in 

sorghum have been modest (Assefa and Staggenborg, 2010; Gizzi and Gambin, 2016; 

Pfeiffer et al., 2019). The chance to exchange divergent elite inbred lines across distinct 

sorghum breeding programs might open an opportunity to maximize the rates of genetic 

gain and indicate best practices to deploy selectable variation for developing superior 

parents. Additionally, this could foster collaborative efforts among public institutions to 

address their local challenges.  

 The present study aims to assess the relative benefits of developing hybrids using 

elite lines derived from Texas A&M and Kansas State sorghum breeding programs and 
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evaluate the suitability of exchanging elite germplasm across programs to generate 

breeding populations. Both of these public programs have an extended history of 

continual sorghum improvement (Ball and Leidigh, 1908; Cunningham and Kenney, 

1918; Laude and Swanson, 1933), and germplasm developed by each program represents 

elite inbreds adapted to their respective production environments. The specific objectives 

of this study are to estimate the general and specific combining ability within and across 

programs using a single-step linear mixed model and also assess the genetic distance 

between elite lines using molecular markers. 

2.3. Material and Methods 

2.3.1. Genetic material 

 Grain sorghum hybrids previously detailed by Fonseca et al. (2021) were used in 

this research. These 100 hybrids were generated from crossing ten female (A-lines) with 

ten male (R-lines) in a factorial mating scheme (Comstock and Robinson, 1952). The 

inbreds selected for this study represent elite germplasm from the sorghum breeding 

programs at Texas A&M AgriLife Research (College Station, Texas) and Kansas State 

University, Agricultural Research Center (Hays, Kansas). Each program provided five 

females and five males that are adapted to their respective target environments and had 

produced agronomically acceptable hybrids previously (Table 1). The 100 hybrids were 

subdivided into four groups to represent hybrid combinations derived from elite lines 

within a breeding programs and also between breeding programs (Figure 1). 

 

 



 

17 

 

Table 1. List of A- and B-lines from Texas A&M (TAM) and Kansas State (KS) 
breeding programs used in the factorial mating scheme to develop hybrids. The 
information includes pedigree, seed color, plant color, and publications describing 
the material, if applicable. 

 

 

Parents Pedigree Seed Plant Reference 
KS A-lines     

ARCH11051A 
ms3tan/ms3/3/TX623B/PI 

550610B//01714B 
White Tan Experimental line 

ARCH11129A 
KP8BS2#16/OPB/3/Tx623 

B/PI550610B//01714B 
White Tan Experimental line 

ARCH11136A RRSWht-tanB0641701-167B White Tan Experimental line 

ARCH11146A 
ms3tan/ms3/3/Tx623B/PI 

550610B//01714B 
White Tan Experimental line 

KS118A ms3tan//RTx436/PI550610 White Tan 
Kofoid and Harvey 

(2005) 
KS R-lines     

ARCH11001R 
87BH8606-6//ms3/PI 550610/3/SC 

414-12ER/PI 550610/4/N310B 
White Tan 

Perumal et al. 
(2019) 

ARCH11002R 
87BH8606-6//ms3/PI 550610/3/SC 

414-12E R/PI 550610/4/N310B 
White Tan 

Perumal et al. 
(2019) 

ARCH11028R 2006ISO11(Wht-tan RRS)R White Tan 
Perumal et al. 

(2019) 

ARCH11055R 
9614B/5/ms3tan/BHF14-

(B1*Bvar)B/4/ms3//ms3/PI 550610 
Red Tan 

Perumal et al. 
(2019) 

ARCH11056R 
9614B/5/ms3 tan/BHF14-

(B1*Bvar)B/4/ms3//ms3/PI 550610 
Red Tan 

Perumal et al. 
(2019) 

TAM A-lines     

A05071 BDLO357/BHF88 White Pigmented Experimental line 

ATx645 BTx3042//BTx625/BTx642 Red Pigmented 
Rosenow et al., 
Release Notice 

ATx3408 BTx631/08PR047 White Tan 
Mbulwe et al., 

(2015) 

ATx3447 BTx643/BTx635 White Tan 
Rosenow et al., 

(2021) 
A08140 BTx642//B9411/BTx645 Yellow Tan Experimental line 
TAM R-lines     

R08304 Tx430/00CS765 Red Pigmented Experimental line 

RTx437 77CS4/RTx430 White Tan 
Rooney et al., 

(2003) 
R07178 91BE7414/R01125 Red Tan Experimental line 
RTx436 SC120-6-sel/2//Tx7000 White Tan Miller et al., (1992) 
EON361 R5646/SC326-6 White Tan Experimental line 
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Figure 1. A- and R-lines from Texas (maroon) and Kansas (purple) sorghum 
breeding programs used in a factorial mating scheme to generate four sets of 
hybrid combinations. Maroon and purple squares represent hybrid combinations 
derived from Texas and Kansas programs, respectively. White squares represent 
hybrids generated across programs. 

2.3.2. Experimental data 

Hybrids were planted in a randomized complete block design (RCBD) with sets 

in rep adjustment; each set was composed of one of the four groups of 25 hybrids 

(Figure 1), with randomization occurring within and between sets. In 2018 trials, each 

location had three replicates, while in 2019 each location had two replicates. A plot 

consisted of two adjacent rows, approximately 5.3 m in length, with row spacing that 

ranged from 0.76 to 1.0 m, depending on the production practices in each environment. 

In 2018, trials were grown in five environments: Monte Alto (18RF), Victoria (18VC), 

and College Station (18CS), Texas, and Garden City (18GC) and Colby (18COL), 

Kansas. In 2019, the trials were in Taft (19TA), Victoria (19VC) and College Station 
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(19CS), Texas, and Hays (19HAY) and Colby (19COL), Kansas. These Texas and 

Kansas locations represent distinct adaptation zones and, in each test, agronomic 

practices standard to the location were followed (Table 2) (Fonseca et al., 2021). GPS 

coordinates of each environment were used to collect weather data from the NASA 

POWER database (NASA, 2021). 

Table 2. Classification of the environments at which hybrid trials were evaluated. 
The information includes growing season, average temperature, precipitation, 
adaptation zone, and GPS coordinates. Designations for environments are as 
follows: Monte Alto 2018 (18RF), Taft 2019 (19TA), Victoria 2018 (18VC), Victoria 
2019 (19VC), College Station 2018 (18CS), College Station 2019 (19CS), Garden 
City 2018 (18GC), Garden City 2019 (19GC), Colby 2018 (18COL), Colby 2019 
(19COL), and Hays 2019 (19HAY). 

Location Temperature 
(°C)† 

Precipitation 
(mm)‡ 

Growing 
season 

Adaptation 
zone 

GPS 
coordinates 

18RF 21 - 30 306 Feb - Jun Subtropical 26°21'06.1"N 
97°53'50.3"W 

19TA 21 - 30 335 Mar - Jul Subtropical 28°00'05.4"N 
97°15'12.4"W 

18VC 20 - 29 373 
Mar - Jul Subtropical 28°47'24.4"N 

96°50'22.6"W 19VC 17 - 30 371 
18CS 18 - 32 323 

Mar - Jul Subtropical 30°32'56.6"N 
96°26'11.5"W 19CS 13 - 30 534 

18GC 27 - 12 555 
Jun - Oct Temperate 37°59'21.4"N 

100°48'52.5"W 19GC 24 - 11 241 
18COL 26 - 10 359 

Jun – Oct Temperate 39°22'56.6"N 
101°04'45.0"W 19COL 22 - 9 345 

19HAY 22 - 10 405 Jun – Oct Temperate 38°51'10.8"N 
99°20'24.6"W 

† Average soil surface temperature at the beginning and end of the growing season 
‡ Cumulative precipitation across growing season 

 

2.3.3. Statistical analysis 

For each environment, data were analyzed following a linear mixed model 

(Henderson, 1984): 
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" = $% + '!( + '") + *,     (1) 

where " is the vector of phenotypes; % is an intercept; ( is a random effect of hybrid, 

(	~	-(/, !#$%& 1), ) is a random effect of replicates, )	~	-(/, !'&1); * is the vector of 

residuals, *	~	-(/, !(&1); 1 is a vector of ones; '! and '" are incidence matrixes; !#$%& , 

!'& and !(& are variance components for hybrids, replicates and residuals, respectively. 

Model (1) was extended to incorporate environment and GxE effects for performing a 

combined analysis. Hybrid effects were partitioned into GCA and SCA effects, 

environments were defined as a year-location combination, and GxE effects were 

represented by the interaction between GCA and SCA with the environment as follows: 

" = $% + '!3 + '"4+ ')( + '*5 + '+35 + ',45 + '-345 + '.)(5) + *, (2) 

where 3 is a vector of GCA effects of females, 3	~	-(/, !/&1); m is a vector of GCA 

effects of male, 4	~	-(/, !0& 1); 34 is a vector of SCA effects of hybrid combinations, 

34	~	-(/, !/0& 1); s is a vector of environmental effects, 6	~	-(/, !1&1), 35 is a vector 

of the interaction effect between GCA of female and environment, 76	~	-(/, !/1& 1); 45 

is a vector of the interaction effect between GCA of male and environment, 

86	~	-(/, !01& 1), 345 is a vector of the interaction effect between SCA of hybrid 

combinations and environment, 345	~	-(/, !/01& 1); r(s) is the vector of replicate effect 

nested within environment, )(5)	~	-(/, !'(1)& 1); '!, '", '), '*, '+, ',, '-, and '. are 

incidence matrixes for effects. To assess the relative value of crossing elite inbred lines 

from distinct breeding programs, model 2 was also applied for each set of 25 hybrids 
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(Figure 1) to generate estimates of GCA and SCA components within and across 

breeding programs. 

Variance components were estimated via restricted maximum likelihood 

(REML) method (Patterson and Thompson, 1971) using the lmer function of the lme4 R 

package (Bates et al., 2015), and its significance assessed by the likelihood ratio test 

(LRT) using the ranova function of the lmerTest R package (Kuznetsova et al., 2017). 

To estimate the standard errors of each variance component, the mmer function of the 

sommer R package was applied (Covarrubias-Pazaran, 2016). All analyses were 

conducted in R software (R Core Team 2020). From the variance component estimates, 

broad-sense heritability at each environment was calculated as 9 = 	 4!"#$

4!"#$ 5	%&
$
'

, whereas, 

for combined environments, :& =	 4!"#$∗

4!"#$∗ 5
%!"#)
$∗

* 5%&
$
*'

, where t is the number of 

environments; r is the number of replicates; !#$%&∗ : !/&+!0& + !/0& ; and !#$%1&∗ : !/1& +!01& +

!/01& . Additionally, the narrow-sense heritability for female and male was estimated as 

ℎ/& =	
4+$

4!"#$∗ 5
%!"#)
$∗

* 5%&
$
*'

 and ℎ0& =	 4,$

4!"#$∗ 5
%!"#)
$∗

* 5%&
$
*'

, respectively. Finally, the coefficient of 

variation (CV), genotypic coefficient of variation (CVg), and CVg / CV ratio (CVr) was 

calculated as <=( =	
84&$

9̅ × 100, <=; =	
84-$

9̅ × 100, and <=' =	
<=-
<=&

, respectively 

(Resende & Duarte, 2007).  
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2.3.4. Genetic distances 

 DNA extraction, genotyping-by-sequencing (GBS), and principal coordinate 

analysis (PCoA) of the genetic distance were described in Fonseca et al. (2021). 

2.4. Results and discussion 

2.4.1. Analysis by location 

 Phenotypic performance across environments varied markedly for all traits 

(Table 3). The environment averages for GY ranged from 4.31 to 8.34 ton ha-1, 121 to 

145 cm for PHT, and 59 to 80 days for DA. While the lowest GY (4.31 ton ha-1) 

occurred in 18RF, the highest (8.34 ton ha-1) occurred 19COL. According to The 

National Agricultural Statistics Service, grain sorghum average yields reported in 2020 

for Texas and Kansas were 4.23 ton ha-1 and 5.71 ton ha-1, respectively (NASS, 2021). 

This indicates the hybrids presented herein generate yields similar to those of 

commercial hybrids, thus meeting the expectation of high yielding germplasm. 

 Genetic variation (!#$%& ) within each environment was significant for all traits 

and high H2 estimates for all three traits confirm the consistency of the experimental data 

(Table 3). For GY, CVg/CV ratio (CVr) was close to or greater than 1.0 in all 

environments except 18COL and 19HAY. According to Resende and Duarte (2007), 

CVr values near 1.0 are considered acceptable in maize experiments. Galli et al. (2020) 

applied CVr to calculate the experimental accuracy and optimize UAS‐based high‐

throughput phenotyping experiments in grain sorghum trials. Herein, CVr was applied as 

a measurement of potential response to selection. CVr values for all traits indicated that 

selection for them would be successful. 
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Table 3. Phenotypic performance of hybrids developed from Texas A&M and 
Kansas State elite lines under a factorial II mating design across ten environments. 
Estimates include genetic variance (!2hyb), residual variance (!2e), coefficient of 
variation (CV), genotypic coefficient of variation (CVg), coefficient of variation 
ratio (CVr), and broad-sense heritability (H2). Designations for environments are 
as follows: Monte Alto 2018 (18RF), Victoria 2018 (18VC), College Station 2018 
(18CS), Garden City 2018 (18GC), Colby 2018 (18COL), Taft 2019 (19TA), 
Victoria 2019 (19VC), College Station 2019 (19CS), Hays 2019 (19HAY), and Colby 
2019 (19COL). 

Trait Parameter Environments 
18RF 18VC 18CS 18GC 18COL 19TA 19VC 19CS 19HAY 19COL 

GY 

Mean (t/ha) 4.31 5.18 6.26 5.58 5.18 6.65 6.46 7.78 6.51 8.34 
!!"#$  0.70* 0.28* 0.66* 0.67* 0.57* 0.47* 0.49* 0.77* 0.47* 1.36* 
!%$ 0.86 0.15 0.66 0.95 1.24 0.18 0.29 1.36 1.55 0.84 
CVg (%) 19.43 10.19 12.94 14.7 14.56 10.34 10.83 11.29 10.51 13.97 
CV (%) 21.49 7.35 12.95 17.47 21.51 6.37 8.29 14.97 19.14 10.96 
CVr 0.9 1.39 1 0.84 0.68 1.62 1.31 0.75 0.55 1.27 
H2 0.71 0.85 0.75 0.68 0.58 0.84 0.77 0.53 0.38 0.76 

PHT 

Mean (cm) 121 127 126 145 137 138 140 140 122 129 
!!"#$  64.6* 91.0* 155.7* 111.7* 94.8* 80.3* 71.2* 137.4* 89.3* 78.1* 
!%$ 26.31 19.33 48.76 27.15 25.32 30.14 14.32 53.02 28.05 67.18 
CVg (%) 6.6 7.48 9.83 7.27 7.1 6.46 6.02 8.37 7.73 6.81 
CV (%) 4.22 3.45 5.5 3.58 3.67 3.96 2.7 5.2 4.33 6.32 
CVr 1.57 2.17 1.79 2.03 1.93 1.63 2.23 1.61 1.78 1.08 
H2 0.88 0.93 0.91 0.93 0.92 0.84 0.91 0.84 0.86 0.70 

DA 

Mean (day) 67.9 67.2 78.7 70.6 72.4 69.6 59.5 80.4 64.2 69.1 
!!"#$  11.1* 4.7* 10.9* - - 1.6* 3.5* 4.2* - - 
!%$ 4.77 0.99 4.36 - - 0.54 0.78 6.88 - - 
CVg (%) 4.9 3.24 4.2 - - 1.85 3.14 2.54 - - 
CV (%) 3.22 1.48 2.65 - - 1.06 1.48 3.26 - - 
CVr 1.52 2.19 1.58 - - 1.75 2.11 0.78 - - 
H2 0.87 0.93 0.88 - - 0.86 0.90 0.55 - - 

* Significant at 0.05 probability level  

2.4.2. Variance components for combined analysis 

 In the combined analysis, the likelihood ratio test (LRT) indicated that all genetic 

effects and their interactions with the environment were significant for GY (Table 4), 

PHT (Table 5), and DA (Table 6). The proportion of the total variation explained by 

genetic components was highest for PHT (42.47%), followed by DA (11.94%) and GY 

(10.49%). For DA and GY, the environment effect accounted for the majority of the total 
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variation, and given the wide range of environments in this study, this result was 

expected. The combined analysis also had high repeatability and low CV for all traits 

(Tables 4, 5, and 6). 

 In the combined data set, the GCA of males explained the majority of the total 

genetic variation for all traits, while the SCA component accounted for the smallest 

portion (Tables 4, 5, and 6). Although the SCA contribution for the expression of traits is 

proportionally small, it is significant, and is an important explanation of the value of 

hybrid grain sorghum. Relative to the males, the smaller contribution of females to each 

trait likely reflects the narrower genetic variance of elite A-lines necessitated by specific 

traits of importance in seed parents (i.e., sterility, seed yield) and the additional time 

required for their development (Menz et al., 2004; Crozier et al., 2020). Specifically, 

after developing a new B-line, the line has to be male-sterilized by the introgression of 

sterility-inducing cytoplasm via backcrossing. This process of developing A- and B-line 

pairs increases the time to develop a new females and therefore hinders the deployment 

of genetic variation from this heterotic pool (Rooney, 2004). 

  

 



 

 

Table 4. Variance components, mean, coefficient of variation (CV), broad-sense heritability (H2), and female (h2f) and 
male (h2m) narrow sense heritability estimates from Texas A&M and Kansas State elite lines under a factorial II mating 
design for grain yield (GY). Standard error (SE) and the total variation in percentage for each variance component is 
shown. Estimates are presented for the analysis of whole data set (combined), for a set of Texas × Texas hybrids (T×T), 
Texas × Kansas hybrids (T×K), Kansas × Texas hybrids (K×T), and Kansas × Kansas hybrids (K×K). Numbers within 
parenthesis report the amount of data points used in each analysis. Values underlined represent the sum of 
correspondent effects.    

Variance 
Components 

Combined (2458) T×T (623) T×K (615) K×T (617)  K×K (603) 

Estimate SE % Estimate SE % Estimate SE % Estimate SE % Estimate SE % 
Hybrid 0.315  10.49 0.053  1.91 0.121  3.84 0.210  7.69 0.077  3.04 

GCAf 0.128*** 0.07 4.27 0.001 0.02 0.03 0.007 0.02 0.21 0.090 0.09 3.30 0 0.03 0.00 
GCAm 0.150*** 0.08 4.99 0.034 0.05 1.21 0.085* 0.08 2.70 0.039 0.05 1.43 0.026 0.05 1.01 
SCA 0.037*** 0.01 1.23 0.019 0.02 0.67 0.029 0.02 0.93 0.082*** 0.04 2.95 0.051** 0.03 2.03 

Environment 1.430** 0.71 47.54 1.564*** 0.78 55.99 1.821*** 0.96 61.26 1.203*** 0.67 43.99 0.985*** 0.53 42.05 
Hybrid × Env 0.382  12.73 0.349  14.10 0.372  11.85 0.280  10.53 0.421  16.61 

GCAf × Env 0.175*** 0.03 5.83 0.122*** 0.05 4.37 0.131*** 0.05 4.18 0.169*** 0.05 6.10 0.216*** 0.07 8.54 
GCAm × Env 0.157*** 0.03 5.23 0.165*** 0.05 5.90 0.154* 0.05 4.90 0.112*** 0.04 4.03 0.204*** 0.07 8.06 
SCA × Env 0.050* 0.02 1.67 0.107* 0.05 3.83 0.087*** 0.04 2.77 0 0.04 0.39 0 0.05 0.00 

Rep(Env) 0.082*** 0.03 2.74 0.035* 0.03 1.27 0.064 0.04 3.11 0.369*** 0.15 13.49 0.079*** 0.05 4.03 
Residual 0.796 0.03 26.51 0.746 0.06 26.72 0.627 0.05 19.94 0.673 0.05 24.31 0.868 0.07 34.27 

Mean (t/ha) 6.220 6.797 6.281 6.237 5.540 

CV (%) 14.4 12.7 12.7 13.1 16.8 

H2 0.829 0.454 0.676 0.807 0.522 

h2f 0.338 0.006 0.030 0.346 0.000 

h2m 0.394 0.288 0.476 0.149 0.174 
*, **, *** Significant at 0.05, 0.01, 0.001 probability level, respectively 
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Table 5. Variance components, mean, coefficient of variation (CV), broad-sense heritability (H2), and female (h2f) and 
male (h2m) narrow sense heritability estimates from Texas A&M and Kansas State breeding programs under a factorial 
II mating design for plant height (PHT). Standard error (SE) and the total variation in percentage for each variance 
component is shown. Estimates are presented for the analysis of whole data set (combined), for a set of Texas × Texas 
hybrids (T×T), Texas × Kansas hybrids (T×K), Kansas × Texas hybrids (K×T), and Kansas × Kansas hybrids (K×K). 
Numbers within parenthesis report the amount of data points used in each analysis. Values underlined represent the 
sum of correspondent effects. 

Variance 
Components 

Combined (2481) TxT (625) TxK (625) KxT (624)  KxK (607) 

Estimate SE % Estimate SE % Estimate SE % Estimate SE % Estimate SE % 
(Hybrid) 89.6  42.5 63.9  35.7 58.7  33.6 103.7  43.6 99.5  45.1 

 GCAf 34.2*** 16.8 16.2 34.9*** 25.9 19.5 30.1*** 22.9 17.3 38.3*** 28.9 16.1 53.7*** 39.8 24.3 
 GCAm 47.1*** 23.1 22.3 22.6*** 17.7 12.6 24.5*** 18.6 14.1 58.3*** 43.5 24.5 42.2*** 31.4 19.1 
 SCA 8.3*** 1.6 3.9 6.5*** 2.7 3.6 4.1*** 1.9 2.3 7.1*** 3.1 3.0 3.5*** 1.8 1.60 

Environment 67.9*** 33.1 31.9 65.9*** 33.8 36.9 69.9*** 35.0 40.3 66.5*** 35.3 27.9 62.9*** 32.6 28.5 
(Hybrid × Env) 18.3  8.7 11.8  6.6 9.2  5.3 26.1  10.9 30.6  13.9 

 GCAf × Env 5.2*** 1.1 2.5 2.8*** 1.3 1.6 2.4** 1.2 1.4 9.1*** 2.9 3.8 15.9*** 4.4 7.2 
 GCAm × Env 9.3*** 1.7 4.4 9.0*** 2.7 5.1 6.8*** 2.2 3.9 15.8*** 4.5 6.7 12.1*** 3.5 5.5 
 SCA × Env 3.7*** 0.9 1.7 0 1.7 0 0 1.7 0 1.1 2.0 0.4 2.5 1.8 1.1 

Rep(Env) 3.3*** 1.3 1.6 6.7*** 3.1 3.7 4.6*** 2.3 2.6 6.7*** 3.2 2.8 0.2 0.5 0.1 
Residual 32.5 1.2 15.4 30.6 2.3 17.1 31.6 2.3 18.0 34.8 2.6 14.6 27.6 2.1 12.5 

Mean (cm) 132.9 136.6 128.2 136.9 129.8 
CV (%) 4.3 4.0 4.4 4.3 4.0 
H2 0.969 0.967 0.968 0.965 0.962 
h2

f 0.370 0.529 0.497 0.357 0.519 
h2

m 0.510 0.342 0.405 0.543 0.408 
*, **, *** Significant at 0.05, 0.01, 0.001 probability level, respectively 



 

 27 

Table 6. Variance components, mean, coefficient of variation (CV), broad-sense heritability (H2), and female (h2f) and 
male (h2m) narrow sense heritability estimates from Texas A&M and Kansas State breeding programs under a factorial 
II mating design for days to anthesis (DA). Standard error (SE) and the total variation in percentage for each variance 
component is shown. Estimates are presented for the analysis of whole data set (combined), for a set of Texas × Texas 
hybrids (T×T), Texas × Kansas hybrids (T×K), Kansas × Texas hybrids (K×T), and Kansas × Kansas hybrids (K×K). 
Numbers within parenthesis report the amount of data points used in each analysis. Values underlined represent the 
sum of correspondent effects.  

Variance  
Components 

Combined (1882) TxT (474) TxK (474) KxT (473)  KxK (461) 

Estimate SE % Estimate SE % Estimate SE % Estimate SE % Estimate SE % 
Hybrid 6.0  11.9 4.9  10.2 8.2  16.2 4.9  10.6 8.1  14.5 

GCAf 2.5*** 1.3 5.0 2.9*** 2.1 5.9 2.6*** 1.9 5.2 2.7*** 2.0 5.7 2.5*** 2.0 4.5 
GCAm 3.2*** 1.6 6.4 2.0*** 1.5 4.1 5.3*** 3.9 10.5 2.1*** 1.6 4.4 4.9*** 3.7 8.8 
SCA 0.3*** 0.1 0.5 0.03 0.08 0.1 0.9** 0.8 0.6 0.2* 0.1 0.5 0.7*** 0.3 1.2 

Environment 37.8*** 18.1 75.0 38.6*** 18.5 79.2 36.7*** 17.5 72.1 36.8*** 17.7 77.9 40.3*** 19.5 72.9 
Hybrid × Env 2.9  5.6 1.9  3.9 2.0  3.9 2.4  5.1 3.8  6.9 

GCAf × Env 1.3*** 0.2 2.6 0.7*** 0.3 1.4 0.8*** 0.3 1.5 1.1*** 0.3 2.2 1.8*** 0.5 3.3 
GCAm × Env 1.3*** 0.2 2.5 1.0*** 0.3 2.1 1.2*** 0.4 2.4 1.2*** 0.4 2.6 1.7*** 0.5 3.1 
SCA × Env 0.2* 0.1 0.4 0.2 0.2 0.4 0 0.3 0 0.1 0.2 0.3 0.3 0.3 0.6 

Rep(Env) 0.6*** 0.3 1.1 0.2 0.2 0.4 0.3** 0.2 0.6 0.1 0.1 0.3 0.3** 0.2 0.6 
Residual 3.2 0.1 6.3 3.0 0.3 6.2 3.6 0.3 7.0 2.9 0.3 6.1 2.8 0.3 5.0 

Mean (Days) 69.94 69.5 69.4 70.5 70.2 

CV (%) 2.5 2.5 2.7 2.4 2.3 

H2 0.939 0.944 0.962 0.936 0.944 

h2
f 0.397 0.554 0.306 0. 502 0.289 

h2
m 0.502 0.383 0.622 0.394 0.574 

*, **, *** Significant at 0.05, 0.01, 0.001 probability level, respectively 
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 Another important aspect of the combined analysis is the proportion of the total 

variation explained by the G×E effect for GY (Table 4). This demonstrates the potential 

of developing specific high-yielding hybrid combinations for target environments 

(Fonseca et al., 2021). Also of interest, the magnitude of female GCA×environment 

interaction effect is greater than the male GCA×environment interaction, which implies 

that female parents are either more adapted to specific production regions or that male 

parents are more stable across all environments (or a combination of these two 

hypothesis). Regardless, significant genetic variation exists across the two breeding 

programs, which can be explored by crossing divergent elite lines adapted to different 

production environments. Further studies should address the adaptability and stability of 

these hybrids and assess specific target environments to further explore the G×E effect. 

2.4.3. Variance components within and across programs 

 While most of the genetic components and their interactions with the 

environment for PHT (Table 5) and DA (Table 6) were significant, results varied for GY 

(Table 4) depending on the set of hybrid combinations. For PHT (Table 5) and DA 

(Table 6), the SCA×environment interaction was not significant. Additionally, the SCA 

effect for DA was not significant for the TxT set of hybrids (Table 6). This implies an 

absence of dominance effects that control flowering time within the TxT pool and 

indicate that phenotyping the inbred lines should be sufficient to predict flowering time 

of hybrids derived therefrom. Different from the combined analysis, the GCA of females 

explained most of the variation for PHT, except for the KxT group (Table 5), and most 

of the variation for DA in TxT and KxT groups (Table 6). The data indicate that the 
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GCA and SCA variation present is sufficient to allow sorghum breeders to select hybrids 

with acceptable height and maturity for both target regions (Tables 5 and 6). 

 The variance component analysis for GY within and across sets of hybrid 

combinations demonstrates the challenge of finding useful genetic variation to improve 

highly complex traits in elite germplasm (Table 4). Only the GCA of males in T×K and 

SCA in K×T and K×K hybrid combinations were significant but most of the G×E 

interactions were significant. Among the four groups, the hybrid combination that 

maximized genetic variation for GY was K×T hybrids (Table 4). However, the highest 

yielding group was the T×T hybrids (Table 4). These results confirm the continual 

tradeoff that occurs in breeding programs; higher yields cause a concomitant reduction 

in genetic variation. While the SCA effect was significant only in the K×K group, the 

group average yield was the lowest of the four groups. The results indicate that 

dominance effects are very important in this group, and the Kansas program could 

benefit from the introduction of elite parental seed stock from other programs. 

2.4.4. General and specific combining abilities for combined, within and across 

programs 

 Estimates of GCA for each genotype varied substantially within and across 

programs ranging from -0.629 to 0.614 ton ha-1 (Table 7). Although GCA values were 

narrower across sets of hybrid combinations, most of the lines maintained their positive 

or negative contribution to GY when compared to the combined set. The only exception 

was the Kansas line RARCH11001, which performed better in the TxK group (Table 7). 
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Table 7. General combining ability (GCA) estimates of sorghum inbred lines 
derived from Texas A&M and Kansas State breeding programs under a factorial II 
mating design for grain yield (GY). GCA estimates are presented for the analysis of 
whole data set (combined), for a set of Texas × Texas hybrids (T×T), Texas × 
Kansas hybrids (T×K), Kansas × Texas hybrids (K×T), and Kansas × Kansas 
hybrids (K×K). 

Parents Combined  TxT TxK KxT KxK 

Female 

A05071 0.250 0.002 -0.019 - - 
A08140 0.355 0.004 0.019 - - 
ATx3447 0.223 -0.002 -0.006 - - 
ATx3408 0.069 -0.008 -0.045 - - 
ATx645 0.431 0.004 0.050 - - 
AARCH11051 -0.244 - - 0.076 0.000 
AARCH11129 -0.629 - - -0.432 0.000 
AARCH11136 -0.191 - - 0.057 0.000 
AARCH11146 -0.058 - - 0.229 0.000 
AKS118 -0.206 - - 0.070 0.000 

Male 

EON361 0.258 0.030 - -0.042 - 
R07178 0.292 0.013 - 0.015 - 
R08304 0.614 0.190 - 0.239 - 
RTx436 -0.002 -0.184 - -0.149 - 
RTx437 0.168 -0.049 - -0.062 - 
RARCH11001 0.109 - 0.358 - 0.156 
RARCH11002 -0.179 - 0.081 - 0.035 
RARCH11028 -0.556 - -0.293 - -0.112 
RARCH11055 -0.285 - 0.038 - -0.038 
RARCH11056 -0.419 - -0.184 - -0.041 

Blue and red colors identify positive and negative CGA values, respectively. Shades indicate the 
magnitude of values. 

 The highest SCA estimates occurred when crossing TxK lines. The hybrid 

AARCH11051/R08304 (KxT) had an SCA of 0.403 ton ha-1 and was the top performer 

in the trial (Table 8). Therefore, the development of hybrid combinations using elite 

inbred lines from distinct breeding programs has the potential to increase the yield of 

grain sorghum. Moreover, as mentioned previously, the chance to incorporate elite 

germplasm from different production regions might open an opportunity to develop 

breeding populations where useful variation can assist breeders to improve the rates of 

genetic gain of breeding programs. 
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Table 8. Specific combining ability (SCA) estimates of sorghum inbred lines 
derived from Texas A&M and Kansas State breeding programs under a factorial II 
mating design for grain yield (GY). SCA estimates are presented for the analysis of 
whole data set. 

SCA combined Texas Males 
EON361 R07178 R08304 RTx436 RTx437 

Texas  
Females 

A05071 0.083 -0.142 0.021 0.156 -0.027 
A08140 0.047 0.130 -0.134 0.002 -0.059 

ATx3447 -0.009 -0.108 0.141 0.028 -0.115 
ATx3408 -0.088 0.004 0.052 -0.175 0.105 
ATx645 0.074 0.047 -0.158 -0.151 0.058 

Kansas  
Females 

AARCH11051 -0.071 -0.110 0.403 -0.134 0.221 
AARCH11129 0.102 -0.017 -0.159 -0.193 -0.104 
AARCH11136 0.004 0.156 -0.027 0.101 -0.101 
AARCH11146 0.081 0.073 -0.067 0.153 0.101 

AKS118 -0.159 0.040 0.081 0.212 -0.037 
 Kansas Males 

RARCH11001 RARCH11002 RARCH11028 RARCH11055 RARCH11056 

Texas  
Females 

A05071 0.018 -0.124 -0.198 0.164 0.121 
A08140 -0.064 0.050 0.007 0.114 0.011 

ATx3447 0.109 0.053 0.106 -0.140 0.000 
ATx3408 0.179 0.175 -0.002 -0.043 -0.188 
ATx645 0.060 0.011 0.014 0.195 -0.025 

Kansas  
Females 

AARCH11051 -0.077 -0.044 -0.102 -0.157 0.000 
AARCH11129 -0.048 -0.078 0.370 -0.216 0.161 
AARCH11136 -0.128 -0.056 0.063 0.072 -0.139 
AARCH11146 -0.085 -0.054 -0.087 -0.113 -0.018 

AKS118 0.063 0.023 -0.309 0.052 -0.026 
Blue and red colors identify positive and negative SCA values, respectively. Shades indicate the 
magnitude of values. 

2.4.5. Genetic distance between inbred parents 

 The genetic distances of Texas and Kansas inbred lines confirm to some extent 

the results reported for the agronomic traits. The Principal Coordinates Analysis (PCoA) 

explained almost 42% of the total genetic variation among inbred parents in this study 

(Figure 2). For the most part, the A-line parents were a distinct group, although some 

Kansas R-lines clustered within this group due to a B-line lineage in their pedigree. 

Additionally, one Kansas breeding program female clustered within the male group, but 

there is no evidence of any pollinator lineage within its pedigree. As in the combined 

analysis, there was greater genetic variation in the R-lines (Tables 4, 5, and 6); these  
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Figure 2. Bidimensional representation of the genetic distance of Texas and Kansas 
inbred parents used in the factorial mating scheme. Principal Coordinate Analysis 
(PCoA) displays the first and the second axis with its correspondent % of genetic 
variance explained by each Principal Coordinate. Clusters represent each heterotic 
group based on SNP markers. 

findings are consistent with previous studies (Menz et al., 2004; Crozier et al., 2020). 

However, the genetic distance within Texas R-lines was greater than within Kansas R-

lines (Figure 2); this contradicts the genetic variation within programs for PHT and DA. 

One possible explanation for this observation is selection pressure. Within each program, 

effective selection leads to fixation of loci with favorable effects. Given the different 

target regions, each program may be selecting different alleles. As loci are fixed, 

epistatic effects may transition to additive effects and these differences might be difficult 
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to find based on phenotypic analysis (Bernardo, 2020; Technow et al., 2020). The 

application of genomic-enabled predictions may overcome such limitations since 

selection is based on genomic sequence data (Fonseca et al., 2021). 

2.5. Conclusions 

 Maintaining selectable genetic variation remains one of the most challenging 

factors for the established plant breeding programs. In sorghum, hybrid development 

significantly increases yield and the improvement of each heterotic group is further 

contributing to develop superior parents and hybrids. While the introduction of exotic 

but elite germplasm into the US sorghum breeding programs has successfully increased 

or at least maintained genetic variation within elite pools, new strategies to maintain 

variation and increase yield potential remain important. The exchange of elite 

germplasm could become a modern practice for sorghum breeding programs to 

maximize variation and improve agronomic performance of sorghum grain hybrids. 

Additional studies that include greater numbers of inbred lines and hybrid combinations 

from a more inclusive list of public breeding programs are needed to confirm and 

enhance the benefits presented herein. 
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3. ASSESSING COMBINING ABILITIES, GENOMIC DATA, AND GXE 

INTERACTIONS TO PREDICT HYBRID GRAIN SORGHUM PERFORMANCE* 

3.1. Synopsis 

 Genomic selection in maize has been one factor that has increased the rate of 

genetic gain when compared to other cereals. However, the technological foundations in 

maize also exist in other cereal crops that would allow prediction of hybrid performance 

based on general (GCA) and specific (SCA) combining abilities applied through 

genomic-enabled prediction models. Further, the incorporation of genotype-by-

environment (GxE) interaction effects presents an opportunity to deploy hybrids to 

targeted environments. To test these concepts, a factorial mating design of elite yet 

divergent grain sorghum lines generated hybrids for evaluation. Inbred parents were 

genotyped, and markers were used to assess population structure and develop the 

genomic relationship matrix (GRM). Grain yield, height, and days to anthesis were 

collected for hybrids in replicated trials, and best linear unbiased estimates were used to 

train classical GCA-SCA-based and genomic (GB) models under a hierarchical Bayesian 

framework. To incorporate population structure, GB was fitted using the GRM of both 

parents and hybrids. For GB models, GxE interaction effects were included by the 

Hadamard product between GRM and environments. A leave-one-out cross-validation 

scheme was used to study the prediction capacity of models. Classical and genomic 

 

*Reprinted with permission from “Assessing combining abilities, genomic data, and GxE interactions 
to predict hybrid grain sorghum performance” by Fonseca, J.M.O., Klein, P.E., Crossa, J., Pacheco, 
A., Pérez-Rodríguez, P., Perumal, R., Klein, R.R., and Rooney, W.L., 2021. The Plant Genome, DOI 
10.1002/tpg2.20127, Copyright [2021] by John Wiley & Sons, Inc.  
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models effectively predicted hybrid performance and prediction accuracy increased by 

including genomic data. GB models effectively partitioned the variation due to GCA, 

SCA, and their interaction with the environment. A strategy to implement genomic 

selection for hybrid sorghum breeding is presented herein. 

3.2. Introduction 

Genotypic data in breeding programs evolved from mapping simple inherited 

characteristics to the use of genetic markers for detailed genome-wide association 

studies of quantitatively-inherited traits (Nadeem et al., 2018). Despite these 

advancements, the successful application of marker-based genomic technologies for crop 

improvement is limited (Jannink et al., 2010). However, with the advent of genomic 

selection (GS), a growing wealth of information indicates that genome sequencing 

technologies are a valuable resource to augment traditional phenotypic based crop 

improvement efforts. A method for improving quantitative traits, GS relies on genomic-

enabled prediction models to predict genetic values using all available molecular 

markers across the genome. A seminal report by Meuwissen et al. (2001) demonstrated 

the principles of GS by predicting breeding values (BV) via simulation studies, and the 

authors proposed that the implementation of GS in animal and plant breeding programs 

could increase the rate of genetic gain. 

In crop improvement, genomic prediction studies in several crops have shown 

the potential to increase rates of genetic gain over classical phenotypic-based 

methodologies (Crossa et al., 2014; He et al., 2016; Bernal-Vasquez et al., 2017; Tan et 

al., 2017; Dias et al., 2018; Hunt et al., 2018; Xu et al., 2018; Islam et al., 2020). 
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Additionally, more cost-effective genotyping techniques have encouraged plant breeders 

to develop suitable models to introduce GS into the breeding pipeline (Eathington et al., 

2007; Heffner et al., 2009, 2010; Bhat et al., 2016). While these GS methods have the 

potential to revolutionize the improvement in several crops, most of these methods have 

primarily benefitted a few crops that cover vast areas or have notably high value, 

including maize (Zea mays L.) and soybeans (Glycine max (L.) Merr.) (Technow et al., 

2012, 2014; Jarquín et al., 2014; Stewart-Brown et al., 2019). While other crops are 

beginning to experiment with GS in the breeding pipeline, few studies have addressed 

the issues related to genotype x environment (GxE) interactions, population structure in 

elite germplasm, and their effects on effectively predicting hybrid performance. 

Consequently, more complex genomic prediction models may be required to account for 

GxE effects and include alternative prediction objectives, i.e., general combining ability 

(GCA) or hybrid performance (Piepho et al., 2008). 

Early genomic prediction models included statistical assumptions that were not 

applicable to hybrid crops (Technow et al., 2012; de los Campos et al., 2015). For 

instance, standard genomic best linear unbiased prediction (GBLUP) models assume 

equal variance across all loci and population homogeneity (Clark et al., 2011). By their 

very nature, hybrid crops are bred with population structure (i.e., heterotic groups) and, 

consequently, less restrictive genomic prediction models for hybrid crops are needed (de 

los Campos et al., 2015). To circumvent these limitations, extensions of standard 

GBLUP models have been developed under a hierarchical Bayesian framework 

(Meuwissen et al., 2001; Clark et al., 2011; Heslot et al., 2012; Technow et al., 2012; 
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Zhao et al., 2013; de los Campos et al., 2015; Ramstein and Casler, 2019). This approach 

models the genetic variation using prior information to define hyperparameters from 

which variances can be sampled to adjust the effect of each locus separately (Meuwissen 

et al., 2001; de los Campos et al., 2009; Gianola et al., 2009; Habier et al., 2011). Alves 

et al. (2019) showed some advantages of Bayesian models to predict the performance of 

maize hybrids. 

Parametric Bayesian models can incorporate population structure through kernel 

methods that represent genetic similarities between inbred lines via a genomic 

(co)variance matrix (VanRaden, 2008; de los Campos et al., 2009). Essentially, kernels 

include dense whole-genome marker information in genomic-enabled prediction models 

via a genomic relationship matrix (GRM) whose dimensions are equal to the number of 

inbred lines. This drastically reduces problems related to data dimensionality (i.e., big p 

small n) (Gianola and de los Campos, 2008). Non-linear kernels can also be used in 

semi-parametric models, and several studies report superior accuracy on genomic 

predictions (Gianola and de los Campos, 2008; Crossa et al., 2011; Morota and Gianola, 

2014; Costa-Neto et al., 2020). The application of kernel methods in genomic prediction 

models substantially increased the opportunities for plant breeders. For example, kernels 

can be used with almost any information set (e.g., covariates, strings, images, and 

graphs) and, due to their flexibility, kernels can accommodate multiple information 

within a genomic prediction model (de los Campos et al., 2009; de los Campos et al., 

2010; Crossa et al., 2011). Moreover, GxE effects can be designed with a kernel based 

on the interaction effect between markers (i.e., G-matrix) and environments (Burgueño 
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et al., 2012; Lopez-Cruz et al., 2015; Cuevas et al., 2016, 2017; Acosta-Pech et al., 2017; 

Sukumaran et al., 2018).  

The GS methodologies developed for maize may be applicable to other hybrid 

grain crops such as sorghum (Sorghum bicolor (L.) Moench) (Hunt et al., 2018), rice 

(Oryza sativa) (Xu et al., 2014; Wang et al., 2017), sunflower sunflower (Helianthus 

annuus L.) (Mangin et al., 2017), and wheat (Triticum aestivum) (Basnet et al., 2019). 

Initial studies on genomic prediction models in sorghum indicated that GS could be 

effective (de Oliveira et al., 2018; Fernandes et al., 2018; Hunt et al., 2018; Velazco et 

al., 2019; dos Santos et al., 2020; Sapkota et al., 2020). However, GS is not implemented 

in most sorghum breeding pipelines due to limited model testing and optimization for 

predicting hybrid performance. For instance, genomic prediction studies in sorghum 

have focused on predicting BV (de Oliveira et al., 2018; Fernandes et al., 2018; Hunt et 

al., 2018; dos Santos et al., 2020). As such, these models predict only the GCA of 

untested sorghum inbred lines. In addition, most genomic prediction studies involving 

sorghum consist of diverse germplasm panels and/or testcrosses derived therefrom, but 

these populations are not representative of the heterotic groups used in hybrid seed 

production (Fristche-Neto et al., 2018). Finally, given the importance of GxE effects in 

all crop improvement efforts and the extreme variability of sorghum production 

environments, the inclusion of GxE effects in genomic prediction models seems 

imperative to improve selection efficiency and hybrid deployment (Hunt et al., 2018).  

 This study introduces the concept of predicting the performance of hybrid grain 

crops using sorghum as a model species. We implement models with GCA and SCA 
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genetic main effects in two forms; a classical and a genomic hierarchical Bayesian 

framework. Through this research, we have addressed critical issues associated with the 

implementation of GS into an applied hybrid crop improvement program including GxE 

interactions, population structure, environment-specific training sets, and selection 

intensity on the coincidence between observed and predicted values. Based on the 

results, we propose a conceptual framework for implementing GS into the breeding 

pipeline for those hybrid crops that lack the level of resources employed in crops such as 

maize, which includes grain sorghum. 

3.3. Material and methods 

3.3.1. Phenotypic data 

 A set of 20 grain sorghum inbred lines developed in sorghum breeding programs 

at Texas A&M AgriLife Research (College Station, Texas) and Kansas State Research 

Center (Hays, Kansas) were selected and crossed using a factorial mating scheme 

(Comstock and Robinson, 1952). Each breeding program provided ten lines equally 

represented by female (A-lines) and male (R-lines) parents which are adapted to their 

respective target environments and had been evaluated in hybrid combinations prior to 

this study (Table 1). The 100 hybrids naturally divided into four groups of 25 hybrids: 

TAM (A)/TAM (R) (TxT); TAM (A)/KSU (R) (TxK); KSU (A)/TAM (R) (KxT); and 

KSU (A)/KSU (R) (KxK) (Figure 1). 

 For phenotyping, hybrids were planted in a randomized complete block design 

(RCBD) with a set (i.e., the four groups of 25 hybrid combinations aforementioned) in 

replication adjustment. In each replication, randomization occurred within and between 
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sets to keep the set structure; entries were randomized within the set while sets were 

randomly ordered. In 2018, the tests were in five environments: Monte Alto (RF) 

(26°21'06.1"N 97°53'50.3"W), Victoria (VC) (28°47'24.4"N 96°50'22.6"W), and 

College Station (CS) (30°32'56.6"N 96°26'11.5"W) in Texas, and Garden City (GC) 

(37°59'21.4"N 100°48'52.5"W), and Colby (COL) (39°22'56.6"N 101°04'45.0"W) in 

Kansas. In 2019, the environments were similar except that the Monte Alto location was 

replaced by Taft (TA) (28°00'05.4"N 97°15'12.4"W), Texas, and Garden City was 

replaced by Hays (HAY) (38°51'10.8"N 99°20'24.6"W), Kansas. These locations 

represent distinct adaptation zones and, in each test, agronomic practices standard to the 

location were implemented (Table 2). In 2018 trials, each location had three replications 

while two replications were planted in each site in 2019. A plot consisted of two rows, 

approximately 5.3 m in length, with row spacing between 0.76 and 1.0 m, consistent 

with production practices in each environment. 

 In this study, three agronomic traits were measured. Days to anthesis (DA) were 

recorded as the number of days from planting to when 50% of the plants in the plot were 

at mid-anthesis; at Kansas locations, DA was collected only on the first replication. Just 

prior to harvest, plant height (PHT) was measured in cm using a representative plant in 

each plot at the length from the soil to the tip of the panicle. Plots were harvested using 

plot combines fitted with a Harvest Master GrainGage System (Juniper Systems), to 

measure grain weight and moisture content. After adjusting yield to a 14% moisture, 

grain yield (GY) was converted to ton ha-1. 
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 The data were analyzed in each environment using the following linear 

mixed model: 

! = #$ + &!' + &"( + ),    (2) 

where ! is the vector of phenotypes; $ is an intercept; ' is a random effect of hybrid, 

'	~,(., 0#
$1), ( is a random effect of replicates, (	~	,(., 0%$1); ) is the vector of 

residuals, )	~	,(., 0&$1); 1 is a vector of ones; &! and &" are incidence matrixes; 0#$, 0%$ 

and 0&$ are variance components for hybrids, replicates and residuals, respectively. 

Model (1) was extended to incorporate environment and GxE interaction effects for 

performing a combined analysis. Environments were defined as a year and location 

combination, hybrid effects were partitioned into GCA and SCA, and GxE effects were 

represented by the interaction between GCA and SCA with the environment as follows: 

! = #$ + &!3 + &"4+ &'34+ &(5 + &)35 + &*45 + &+345 + &,((5) + ), (2) 

where 3 is a vector of GCA effects of females, 3	~	67,(., 0-$1); m is a vector of GCA 

effects of male, 4	~	,(., 0.$ 1); 34 is a vector of SCA effects of hybrid combinations, 

34	~	,(., 0-.
$ 1); s is a vector of environmental effects, 8	~	,(., 0/$1), 35 is a vector 

of the interaction effect between GCA of female and environment, 98	~	,(., 0-/$ 1); 45 

is a vector of the interaction effect between GCA of male and environment, 

:8	~	,(., 0./$ 1), 345 is a vector of the interaction effect between SCA of hybrid 

combinations and environment, 345	~	,(., 0-./$ 1); r(s) is the vector of replication 

effect nested within environment, ((5)	~	,(., 0%(/)$ 1); &!, &", &', &(, &), &*, &+, and 

&, are incidence matrixes for effects.  
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Variance components were estimated via restricted maximum likelihood 

(REML) method (Patterson and Thompson, 1971), and significance assessed by the 

likelihood ratio test (LRT) at a 5% significance level using the ranova function of the 

lmerTest R package (Kuznetsova et al., 2017). To assess phenotypic data, the lmer 

function of the lme4 R package was applied (Bates et al., 2015). From the variance 

component estimates, repeatability (i.e., broad sense heritability) at each environment 

was calculated as ; = 	 2!
"

2!
"3	#$

"
%

, whereas, for combined environments, ; = 	 2!
"∗

2!
"∗3

#!'
"∗
( 3

#$"
(%

, 

where t is the number of environments; r is the number of replications; 0#$∗ = 0-
$+0.$ +

0-.
$ ; and 0#/$∗ = 0-/

$ +0./$ + 0-./
$ . To assess the quality of the experiment, coefficient of 

variation (CVe) was calculated as <7& =	
62$"

7̅
, where =̅ is the mean of a given trait. 

Finally, the best linear unbiased estimates (BLUEs) of hybrids were calculated for each 

traits using model (1) via the solution of Henderson’s mixed equations (Henderson, 

1984), assuming hybrids as fixed. BLUEs were later employed to develop genomic 

prediction models and calculate the Pearson’s correlation between traits. 

3.3.2. Genotypic data 

DNA extraction and genotyping-by-sequencing (GBS) were conducted according 

to Morishige et al. (2013). In brief, seed from the parental lines were germinated in a 

greenhouse and DNA extracted from ~14-day-old leaf tissue. Illumina template libraries 

were prepared by digesting each DNA sample with the restriction enzyme NgoMIV. 

Fragments from each DNA sample were ligated to unique identifier barcodes; samples 

were pooled together for PCR-amplification, and templates sequenced on an Illumina 
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HiSeq 2500 sequencer. Sequences were mapped to the Sorghum bicolor BTx623 

reference genome (Sbicolor v3.1.1) downloaded from Phytozome 

(https://genome.jgi.doe.gov/portal/pages/dynamicOrganismDownload.jsf?organism=Phy

tozome), and single nucleotide polymorphisms (SNPs) detected using the CLC 

Genomics Workbench v20 (CLC Bio, Aarhus, Denmark). Genomic polymorphisms 

scored in at least 25% of the parental lines were called SNPs, and a total of 117,582 

SNPs were identified. Markers with more than 5% missing values were removed. For the 

remaining markers, missing values were imputed using FastPHASE (Scheet and 

Stephens, 2006), and SNPs with minor allele frequency (MAF) < 5% were removed. 

After quality control, 35,546 SNP were available for further analysis. 

Genomic relationship matrixes for female and male parents were computed using 

markers, the matrices were computed as follows: ?9 = @9@9
:/B, where @9 is a matrix 

of markers centered and standardized, B is the number of markers, C ∈ {F,G} (Technow 

et al., 2014; Lopez-Cruz et al., 2015). Alternatively, the genetic distance between parents 

was calculated on a pairwise basis using the Prevosti’s absolute genetic distance 

(Prevosti et al., 1975) implemented in poppr R package (Kamvar and Grünwald, 2020). 

Distances were computed based on the differences in the frequencies of SNPs as I =

;

$%
∑ ∑ KL;<9 − L$<9K

/(<)
9=;

%
<=; , where B is the number of SNPs considered, L;<9 the 

frequency of the SNP C in the chromosome N in the first parent, and L$<9 the 

corresponding value in the second parent. A principal coordinate analysis (PCoA) of the 

genetic distance was plotted to represent the genetic relatedness of parents. Clustering 
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analysis was performed using the function CLARA (Struyf et al., 1997) from R packages 

ggplot2 (Wickham, 2016) and ggfortify (Tang et al., 2016). 

3.3.3. Statistical models 

 Kernel-based Bayesian GBLUP models (GB) and classical GCA-SCA-based 

models under a Bayesian Ridge Regression (BRR) framework were fitted to predict 

yield, height, and days to anthesis of grain sorghum hybrids. These models differed on 

the (co)variance matrix related to GCA and SCA effects; genomic models included 

genomic information to account for heterogeneity within parents and hybrids (i.e., 

accommodate population structure), whereas classical GCA-SCA-based models replaced 

genomic information with the identity matrix (i.e., without the genomic kernel). GB and 

BRR models were developed based on genetic main effects of GCA (seed and males) 

and SCA at three distinct levels of complexity: a) for a single environment, b) multi-

environment , and c) multi-environment plus the GxE interaction effect 

3.3.3.1. Single-environment main genetic effect model (SM) 

 The linear model adjusted the BLUE of hybrids derived from model (1) 

separately for each environment and included GCA and SCA genetic effects as follows: 

! = #µ + &!3 + &"4+ &'' + ),    (3) 

where ! = [!!, ⋯ , !>]: is the response vector, and !> represents the observation in the 

ith hybrid (S = 1,⋯ , n) in each environment; µ is an intercept, 3 is the vector of GCA 

effects for females, 3	~	,(., 0-)
$V-), where j represents environment; 4 is a vector of 

GCA effects for males, 4	~	,(., 0.)
$ V.); ' is a vector of SCA effects for hybrid 

combinations, '	~	,(0, 0#)
$ X); ) is a vector of residuals, )	~	,(., 0&)

$ 1), 1 is a vector of 
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ones;	&;, &$, and &? are incidence matrixes for females, males, and hybrids, 

respectively; and V-, V., and X are the GRM for females, males, and hybrids, 

respectively. The elements of matrix X were calculated in silico by the Kronecker 

product of V- and V. as X = V-⨂V. (Technow et al., 2014; Acosta-Pech et al., 2017). 

This model was also used to build prediction models using the grand mean of hybrids 

across environments (i.e., mean of the BLUEs). For BRR, model (3) was fitted without 

incorporating genomic kernels, thus the GRM of parents and hybrids were replaced by 

an identity matrix. 

3.3.3.2. Multi-environment main genetic effect model (MM) 

 One multi-environment model that includes the fixed effects of environments and 

the random genetic effects across environments is presented by Bandeira e Sousa et al., 

(2017) as follows 

! = #µ + &@Z + &!3 + &"4+ &'' + ),    (4) 

where ! = 	 [!!, ⋯ , !A, ⋯ , !@]: is the vector of observations of hybrids (S = 1,⋯ , n<) in 

the jth environment (N = 1,⋯ , s); Z is a vector of the environmental effects, 

Z	~	,(., 0B
$1); and &@ is the incidence matrix that connects hybrids to phenotypes for 

each environment. Random effects are described in model (3) and are assumed to be 

equal across environments (see Lopez-Cruz et al., 2015). For BRR, model (4) was fitted 

without incorporating genomic kernels to genetic main effects. 

3.3.3.3. Multi-environment main genetic effect model (MM) 

 The following model (5) is an extended version of model (4) to include GxE 

effects as proposed by Acosta-Pech et al. (2017). These authors considered the 



 

59 

 

incorporation of GxE effects (u) by applying the Hadamard product between genetic 

main effects (i.e., V-, V., and X) and the environmental effect. The model is given as 

follows: 

! = &@Z + &!3 + &"4+ &'' + \C + \D + \E + ),    (5) 

where \- is a random vector to include the interaction between GCA of females and 

environment, \-	~	,(., 0-/$ ]-); \. is a random vector that models the interaction 

between males and environment, \.	~	,(., 0./$ ].); ^# is a vector that takes into 

account the interaction between hybrids and environment, \#	~	,(., 0#/$ ]#); ]-, ]., 

and ]F are variance-covariance matrices that associate each respective genomic-main-

effect-by-environment variance component, i.e., 0-/$ , 0./$ , and 0#/$ . The variance-

covariance matrix was calculated as 7- = &;V-&′;#&/&′/, ]. = &$V.&′$#&/&′/, and 

]# = &?X&′?#&/&′/ where # stands for the Hadamard product (see Acosta-Pech et al. 

(2017) for further details about the derivations). For BRR, model (5) was fitted without 

incorporating genomic kernels to genetic main effects and GxE was calculated as ]-: =

&;&′/, ].: = &$&′/, and ]#: = &;&′$#&/&′/ for the interaction of GCAf, GCAm, and 

SCA with the environment. 

3.3.4. Software and cross-validation Scheme 

 GB and BRR models were fit using Bayesian methods implemented in the BGLR 

statistical package (Pérez and de los Campos, 2014) available for R (R Core Team 

2020). Inferences were based on 10,000 Gibbs sampler iterations with a burn-in of 

5,000, and a thin of 5. For BRR models (i.e., classical GCA-SCA-based models 3, 4, and 
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5), all effects assumed Gaussian prior distribution and included an identity (I) matrix to 

structure the data set, whereas, for GB models, only environmental effect followed this 

assumption. The remaining effects assumed a Gaussian prior distribution and applied the 

kernel-based method to create the appropriate variance-covariance structures (Pérez and 

de los Campos, 2014). 

 To validate models and estimate the predictability of parents, a simple leave-one-

out cross-validation (CV) scheme was applied following Basnet et al. (2019). For that, 

seed parents in hybrid combinations were removed, and models were then trained with 

the remaining records where that seed parent was absent, i.e., predicting hybrids of 

unobserved females (T1F). The same method was applied to pollinator parent (T1M). 

Further, seed and pollinator parents were removed simultaneously to predict hybrids 

(T0MF). Finally, T1F and T1M were applied to train models considering just TxT and 

KxK hybrids under subtropical and temperate environments (Table 2). Subtropical and 

temperate environments were assumed to be the target environments for the respective 

TxT and KxK hybrids because each set of hybrids derived from parents adapted to each 

respective environment. The prediction accuracy (r) was estimated as the Pearson’s 

correlation between observed and predicted values of hybrids. 

3.3.5. Coincidence index 

 The coincidence index (CI) originally proposed by Hamblin and Zimmermann 

(1986) aimed to assess the proportion of coincident genotypes selected under two 

different planting systems assuming a specific selection intensity (SI). Herein, a 

modified version of such CI is proposed to calculate the optimum SI that maximizes the 
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CI between observed and predicted hybrids utilizing a genomic-enabled prediction 

model. Calculations of CI was performed using GB-MMGE and BRR-MMGE under 

T0MF. For that, simulated SI values ranging from 1-50% were considered and CI 

computed as: 

<a = GHI

JHI
, 

where C is the number of coincident hybrids between observed and predicted values; T 

is the number of observed hybrids selected according to the SI; and R: the number of 

expected hybrids selected by chance, i.e., a fraction of T that also varies depending on a 

SI. For instance, considering a population of 100 hybrids, if SI = 10; then T = 10 

(100*.10), R = 1(10*.10), and C will depend on the number of coincident hybrids 

between observed and predicted values. If C = 2, therefore CI = 1/9 = 11%. 

3.4. Results 

3.4.1. Phenotypic analysis 

 The average of the best linear unbiased estimate (BLUE) of hybrids across 

environments varied significantly for all traits (Figure 3). Values for hybrid GY, ranged 

from 1.83 to 10.98 ton ha-1, from 100 to 177 cm for PHT, and from 54 to 88 days for 

DA. The lowest mean hybrid GY occurred in 2018 Monte Alto, TX and the highest 

occurred in 2019 Colby, KS. The repeatability of PHT and DA were consistently high 

while the repeatability of GY was lower and varied more across environments (Figure 

2). Coefficient of variation (CVe) indicated that data variation within locations were 

typical for sorghum grain hybrid yield trials (Figure 4). 



 

62 

 

 

Figure 3. Boxplot of best linear unbiased estimate (BLUE) for grain yield (t ha-1), 
plant height (cm), and days to anthesis in each environment. Environments are 
indicated as the combination of year and location where hybrid trials were 
conducted. Designations for environments are as follows: Monte Alto 2018 (18RF), 
Victoria 2018 (18VC), College Station 2018 (18CS), Garden City 2018 (18GC), 
Colby 2018 (18COL), Taft 2019 (19TA), Victoria 2019 (19VC), College Station 2019 
(19CS), Hays 2019 (19HAY), and Colby 2019 (19COL). 
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Figure 4. Repeatability and experimental coefficient of variation (CVe) estimates 
for grain yield, plant height, and days to anthesis in each environment. 
Environments are indicated as the combination of year and location where hybrid 
trials were conducted. Designations for environments are as follows: Monte Alto 
2018 (18RF), Victoria 2018 (18VC), College Station 2018 (18CS), Garden City 2018 
(18GC), Colby 2018 (18COL), Taft 2019 (19TA), Victoria 2019 (19VC), College 
Station 2019 (19CS), Hays 2019 (19HAY), and Colby 2019 (19COL). 

 The likelihood ratio test indicated that all genetic effects and their interactions 

with the environment were significant (Table 9). As expected, the environmental effect 

was highly significant, accounting for the majority of variation for GY (50%) and DA 

(76%). While the majority of the genetic variation was associated with GCA, SCA was 
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also significant, indicating the importance of specific hybrid combinations to maximize 

productivity. 

 Pearson’s correlations between traits were assessed for each environment and 

across environments assuming a 95% confidence interval (data not shown). While 

correlations between traits were somewhat inconsistent across individual environments, 

correlations across all environments were significant and positive between GY and PHT 

(0.17 ±0.06), and PHT and DY (0.15 ±0.06). Overall correlations across all 

environments indicate that taller hybrid grain sorghums are generally higher in yield; 

however this trend is mitigated by environmental stresses in selected environments 

(Rooney et al., 2004). 

Table 9. Variance components, repeatability, and experimental coefficient of 
variation (CVe) estimates derived from the combined analysis for grain yield (GY), 
plant height (PHT), and days to anthesis (DA). Likelihood ration test (LRT) 
indicate the significance of effects. The percent of the total variation (%) for each 
variance component is shown with its respective estimate. 

Variance components GY PHT DA 
Estimate % Estimate % Estimate % 

(Hybrid) (0.315) (10.4) (89.6) (42.5) (6.0) (11.9) 
 GCAf 0.128*** 4.2 34.2*** 16.2 2.5*** 5.0 
 GCAm 0.150*** 4.9 47.1*** 22.3 3.2*** 6.4 
 SCA 0.037*** 1.2 8.3*** 3.9 0.3*** 0.5 
Environment 1.430** 47.5 67.9*** 31.9 37.8*** 75.0 
(Hybrid x Env) (0.382) (12.7) (18.3) (8.7) (2.9) (5.6) 
 GCAf x Env 0.175*** 5.8 5.2*** 2.5 1.3*** 2.6 
 GCAm x Env 0.157*** 5.2 9.3*** 4.4 1.3*** 2.5 
 SCA x Env 0.050* 1.6 3.7*** 1.7 0.2* 0.4 
Rep(Env) 0.082*** 2.7 3.3*** 1.6 0.6*** 1.1 
Residual 0.796 26.5 32.5 15.4 3.2 6.3 
Repeatability 0.819 0.966 0.934 
CVe 0.144 0.043 0.024 

*, **, *** Significant at 0.05, 0.01, 0.001 probability level, respectively 
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3.4.2. Genetic distance between inbred parents 

 The plotted Principal Coordinates (PCoA) explained almost 42% of the total 

genetic variation among inbred parents in this study (Figure 3). For the most part, the A-

line parents were a distinct group although some R-lines clustered within this group. The 

R-lines within the A-line cluster originated from the Kansas breeding program, and their 

pedigrees reveal the presence of B-line lineage. Similarly, one A-line from Kansas 

clustered within the male group, indicating some R-line lineage within its pedigree. 

Overall there was greater genetic variation in the R-lines, which has been well 

documented in previous studies (Menz et al., 2004; Crozier et al., 2020). In general, the 

genetic distance within Texas R-lines was greater than within Kansas R-lines (Figure 2). 

3.4.3. Predictive ability across parents, traits, and models to predict hybrids 

 The predictive ability of parents to predict hybrids varied substantially across 

traits and models. Across their hybrids, KS118 and R07178 had the highest 

predictabilities for an A-line and R-line, respectively. As a group, the A-lines had higher 

prediction ability than the R-lines. Concerning traits, predictions for PHT and DA were 

better than for GY, regardless of the genetic group (Table 10). 

 The inclusion of the environmental effect (MM) reduced the accuracy of models 

to predict hybrids in most cases while the inclusion of the GxE effect (MMGE) 

considerably increased the prediction ability of models. These increases in prediction 

ability of models were greatest when parental genomic information was included (GB). 

For GB, the superiority of models that included the GxE effects was consistent across 

traits (Table 10).  
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Table 10. Prediction accuracy of classical GCA-SCA-based Bayesian Ridge 
Regression (BRR) and kernel-based Bayesian GBLUP (GB) models for single 
environment (SM), multi-environment (MM), and multi-environment plus GxE 
effect (MMGE) from leave-one-female-out , and leave-one-male-out cross-
validation schemes for grain yield, plant height, and days to anthesis. The average 
prediction ability across all A- and R-lines represents the overall model 
predictability. Higher predictabilities within BRR and GB approaches are in black 
boldface, while the best predictability between approaches are in blue boldface. 

Parents 
Grain Yield 

BRR GB 
SM* MM MMGE SM* MM MMGE 

A-line 

A05071 0.913 0.496 0.492 0.923 0.496 0.652 
A08140 0.792 0.455 0.452 0.785 0.466 0.588 
AARCH11051 0.851 0.666 0.666 0.696 0.668 0.673 
AARCH11129 0.616 0.300 0.302 0.648 0.306 0.373 
AARCH11136 0.633 0.455 0.458 0.597 0.463 0.689 
AARCH11146 0.446 0.489 0.487 0.508 0.484 0.625 
AHF14 0.048 0.468 0.467 0.040 0.457 0.597 
AKS118 0.732 0.626 0.619 0.748 0.627 0.706 
ATx3408 0.434 0.528 0.521 0.388 0.526 0.681 
ATx645 0.348 0.490 0.494 0.396 0.500 0.667 
Mean 0.581 0.497 0.496 0.573 0.499 0.625 

R-line 

EON361 0.208 0.445 0.518 0.251 0.443 0.546 
R07178 0.881 0.487 0.615 0.904 0.490 0.640 
R08304 0.370 0.335 0.481 0.459 0.347 0.508 
RARCH11001 0.136 0.413 0.550 0.463 0.422 0.624 
RARCH11002 0.231 0.422 0.664 0.481 0.438 0.712 
RARCH11028 0.548 0.251 0.467 0.559 0.260 0.473 
RARCH11055 0.503 0.556 0.623 0.318 0.554 0.577 
RARCH11056 0.597 0.381 0.568 0.282 0.387 0.563 
RTx436 0.583 0.415 0.497 0.623 0.407 0.488 
RTx437 0.640 0.447 0.614 0.636 0.447 0.575 
Mean 0.470 0.415 0.560 0.498 0.420 0.571 

Parents 
Plant height 

BRR GB 
SM* MM MMGE SM* MM MMGE 

A-line 

A05071 0.730 0.789 0.789 0.752 0.800 0.845 
A08140 0.719 0.773 0.772 0.817 0.806 0.851 
AARCH11051 0.874 0.853 0.854 0.918 0.866 0.912 
AARCH11129 0.817 0.805 0.802 0.846 0.820 0.872 
AARCH11136 0.910 0.779 0.777 0.882 0.774 0.816 
AARCH11146 0.921 0.744 0.745 0.921 0.733 0.791 
AHF14 0.745 0.732 0.733 0.781 0.750 0.803 
AKS118 0.909 0.739 0.740 0.926 0.748 0.816 
ATx3408 0.829 0.839 0.835 0.817 0.841 0.898 
ATx645 0.620 0.719 0.720 0.694 0.752 0.825 
Mean 0.807 0.777 0.777 0.835 0.789 0.843 
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Table 10. Continued       

R-line 

EON361 0.397 0.607 0.614 0.525 0.651 0.676 
R07178 0.564 0.765 0.781 0.764 0.809 0.841 
R08304 0.710 0.805 0.824 0.755 0.825 0.825 
RARCH11001 0.759 0.714 0.771 0.715 0.764 0.830 
RARCH11002 0.827 0.783 0.821 0.836 0.809 0.858 
RARCH11028 0.637 0.640 0.683 0.632 0.651 0.693 
RARCH11055 0.697 0.829 0.831 0.685 0.802 0.809 
RARCH11056 0.765 0.722 0.757 0.805 0.735 0.774 
RTx436 0.672 0.690 0.728 0.661 0.699 0.738 
RTx437 0.656 0.768 0.798 0.697 0.776 0.805 
Mean 0.668 0.732 0.761 0.707 0.752 0.785 

Parents 
Days to anthesis 

BRR GB 
SM* MM MMGE SM* MM MMGE 

A-line 

A05071 0.694 0.720 0.720 0.660 0.714 0.764 
A08140 0.489 0.707 0.705 0.404 0.701 0.694 
AARCH11051 0.622 0.644 0.644 0.600 0.656 0.760 
AARCH11129 0.821 0.589 0.584 0.835 0.596 0.685 
AARCH11136 0.867 0.779 0.776 0.865 0.777 0.863 
AARCH11146 0.837 0.741 0.739 0.781 0.739 0.808 
AHF14 0.794 0.802 0.806 0.806 0.809 0.831 
AKS118 0.834 0.776 0.777 0.864 0.779 0.839 
ATx3408 0.663 0.811 0.811 0.704 0.811 0.849 
ATx645 0.654 0.555 0.555 0.562 0.543 0.617 
Mean 0.728 0.712 0.712 0.708 0.712 0.771 

R-line 

EON361 0.760 0.651 0.730 0.795 0.646 0.738 
R07178 0.798 0.813 0.833 0.824 0.813 0.833 
R08304 0.750 0.769 0.779 0.781 0.770 0.799 
RARCH11001 0.490 0.679 0.747 0.539 0.683 0.753 
RARCH11002 0.496 0.690 0.716 0.542 0.696 0.745 
RARCH11028 0.699 0.611 0.739 0.662 0.607 0.739 
RARCH11055 0.201 0.459 0.551 0.209 0.489 0.630 
RARCH11056 0.919 0.677 0.754 0.933 0.708 0.830 
RTx436 0.888 0.616 0.657 0.877 0.609 0.673 
RTx437 0.939 0.725 0.719 0.950 0.727 0.734 
Mean 0.694 0.669 0.723 0.711 0.675 0.747 

* Predictions for the environment 19CS 

 As expected, the best predictability of hybrid performance occurred when the 

grand mean of BLUEs was used to train models (data not shown). This likely happened 

because the number of observations available to predict the grand average of hybrids 

increased tenfold compared to predicting hybrid performance for each location. While 

training models with the grand mean of BLUEs effectively improved predictability, this 
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strategy is problematic when significant GxE effects exist (as in this case) due to 

changes in the rank of hybrids across environments. 

 The average predictability of parents for all hybrid traits was assessed within 

each environment using the SM model (Figure 5). A- and R-lines had similar and 

generally high predictabilities for PHT and DA across environments (Figure 5). For 

hybrid GY, predictability varied; A-lines had higher predictability in subtropical 

environments, whereas the R-lines predicted hybrids more accurately in temperate 

environments. The exception occurred in 19HAY, where females presented higher 

prediction accuracy than males. 

3.4.4. Predictive ability across parents and target environment using GB-MMGE 

 The hybrids derived from Texas parents (TxT) were better predicted when 

genomic prediction models were developed with data from subtropical environments 

except for PHT in the T2 cross-validation scheme (when males are removed). Similar 

results occurred when genomic prediction models were developed using phenotypic 

records derived from temperate environments to predict KxK hybrids. In this case, the 

accuracy was higher for all traits and cross-validation schemes (Table 11). These 

observations likely reflect the adaptability and stability of inbred lines bred in the 

respective target environments. Hybrids derived from lines bred for the target 

environment benefit from positive covariances existing between the loci and the target 

environment, which thereby increases the accuracy of genomic prediction models. 
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Table 11. Genomic-enabled prediction accuracies under kernel-based Bayesian 
GBLUP models (GB) approach for parents at subtropical and temperate 
environments using the multi-environment plus GxE effect model (MMGE) for 
grain yield (GY), plant height (PHT), and days to anthesis (DA). Cross-validation 
scheme (T1F and T1M) for each set of hybrids (TxT and KxK) were applied for 
each trait within each subtropical and temperate environment. Higher 
predictabilities are depicted in boldface. 

Hybrids Parents 
Subtropical Env Temperate Env 

GY PHT DA GY PHT DA 

TxT 
(T1F) 

A05071 0.720 0.837 0.852 0.442 0.610 0.625 

A08140 0.387 0.822 0.870 0.489 0.151 0.497 

AHF14 0.589 0.842 0.887 0.276 0.649 0.814 

ATx3408 0.470 0.719 0.831 0.463 0.832 0.913 

ATx645 0.532 0.735 0.831 0.745 0.214 0.533 
 Mean 0.540 0.791 0.854 0.483 0.491 0.677 

TxT 
(T1M) 

EON361 0.536 0.657 0.859 0.532 0.688 0.742 

R07178 0.451 0.830 0.866 0.165 0.884 0.829 

R08304 0.066 0.798 0.846 0.427 0.836 0.689 

RTx436 0.224 0.899 0.795 -0.076 0.929 0.598 

RTx437 0.294 0.854 0.883 0.374 0.834 0.735 
 Mean 0.314 0.807 0.850 0.285 0.834 0.718 

KxK 
(T1F) 

AARCH11051 0.388 0.778 0.699 0.451 0.945 0.815 

AARCH11129 0.420 0.847 0.765 0.121 0.840 0.704 

AARCH11136 0.203 0.901 0.913 0.758 0.933 0.933 

AARCH11146 0.326 0.854 0.792 0.363 0.913 0.838 

AKS118 0.521 0.698 0.804 0.394 0.823 0.950 
 Mean 0.372 0.816 0.795 0.417 0.891 0.848 

KxK 
(T1M) 

RARCH11001 0.588 0.742 0.914 0.779 0.938 0.929 

RARCH11002 0.453 0.887 0.796 0.776 0.940 0.867 

RARCH11028 0.432 0.577 0.630 0.297 0.814 0.824 

RARCH11055 0.241 0.886 0.208 0.465 0.946 0.431 

RARCH11056 0.196 0.836 0.549 0.242 0.883 0.635 
 Mean 0.382 0.786 0.619 0.512 0.904 0.737 
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3.4.5. Impact of genomic and classical GCA-SCA-based models on the coincidence 

index 

 Means across environments were used to calculate variance components for 

hybrid grain yield to compare genomic (GB) and classical GCA-SCA-based (BRR) 

models (Figure 5). In both models, the majority of the variation is attributed to the 

environment, but the partition of the variation differed between models. For example, 

GCA for females and males was lower in GB; alternatively, BRR did not capture GxE 

(e.g., Env x GCA). Both models showed similar estimates for SCA but the Env x SCA 

estimate was considerably smaller in BRR than GB. The error component in the GB 

model was lower than the same in BRR. The generally lower standard deviations in GB 

are likely the reason for the higher precision of the variance component estimates. 

Finally, the deviance information criteria (DIC) for BRR was higher than for GB 

indicating that multi-environment models to predict hybrid performance should include 

the GRM. The robustness of GB-MMGE increased the CI at any SI so that GB-MMGE 

was efficient even when SI assumed values less than 10% (Figure 6). The highest CI 

values (~79%) were obtained when SI assumed values around 9%. After a slight decay 

in the CI with an increase in SI, CI maintained a value of ~70% for the GB-MMGE 

model, and ~60% for the BRR-MMGE model. 
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Figure 5. Variance component estimates and standard deviations for grain yield 
using best linear unbiased estimate (BLUE) under multi-environment genomic 
(GB) and classical GCA-SCA-based (BRR) models. The graph includes estimates 
for environmental effect (Env), general combining ability of females (GCAf), 
general combining ability of males (GCAm), specific combining ability (SCA), 
interaction effect between environment and combining abilities (Env x GCAf, Env 
x GCAm, Env x SCA), and error term. 
 

 

Figure 6. Coincidence index and selection intensity for grain yield using multi-
environment genomic (GB) and classical GCA-SCA-based (BRR) models under 
cross-validation scheme T0MF (both male and female is taken out simultaneously). 
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3.5. Discussion 

3.5.1. Predicting grain sorghum hybrid performance 

 Bernardo (1994) first described the concept of predicting hybrids with the 

application of GCA and SCA genetic effects using the Best Linear Unbiased Prediction 

(BLUP) model in maize. Technow et al. (2012) developed a simulation study based on a 

maize breeding program having complementary heterotic groups to assess genomic 

prediction of hybrid performance using different models; results supported the 

application of models based on GCA and SCA to suitably include genetic effects. In the 

present study, we extend that concept of predicting hybrids using GCA and SCA to a 

hybrid cereal crop that lacks the extensive resources of maize, and we expanded the 

prediction models to include genomic information and GxE interaction effects under a 

kernel-based hierarchical Bayesian framework. Further, the results demonstrate the 

importance of including GCA and SCA effects to effectively account for the inherent 

genetic structure that exists in all hybrid breeding populations, including but not limited 

to sorghum. Both classical GCA-SCA-based and genomic methods successfully 

predicted grain sorghum hybrid performance and the application of kernel-based 

Bayesian GBLUP models (GB) increased the prediction ability of the models. While the 

inclusion of the GxE interaction effects in GB models led to consistently higher 

prediction accuracies, the same trend was not observed in BRR models. 

3.5.2. Advantages of using kernel-based models 

 The present implementation of kernel-based regression models featured practical 

advantages relative to the use of standard genomic models in the computational process 
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(Crossa et al., 2011), which included a significant reduction with issues related to data 

dimensionality (e.g., when the number of markers considerably exceeds the number of 

genotypes) (Gianola and de los Campos, 2008). Additionally, kernel-based regression 

models can be used with nearly every information set (e.g., covariates, strings, images, 

and graphs) (de los Campos et al., 2010; Crossa et al., 2011). For instance, parametric 

and semi-parametric kernels accommodate the genomic relationship matrix to represent 

identical-by-state similarities among parents (de los Campos et al., 2009). This creates a 

unique opportunity for breeders to account for genetic relatedness among genotypes 

without tracing genealogy (Morota and Gianola, 2014). Nonetheless, if molecular 

marker datasets are not available, pedigree information can also be used as a kernel. 

Models based on marker information manifested higher predictive ability than pedigree-

based models in studies involving wheat and maize data (Crossa et al., 2010). Such 

results exist because pedigree can only explain the expected degree of genetic similarity 

but it cannot consider segregation distortion. In addition, dense molecular marker 

datasets can account for the realized degree of genetic similarity, i.e., the mendelian 

sample. The linear kernel applied herein that included the genetic relationship among 

divergent elite grain sorghum parents was effective in adjusting the degree of genetic 

similarity. 

 The application of the genomic relationship matrix (VanRaden, 2008) via kernel-

based framework is also critical in hybrid prediction models because of its subtle ability 

to include population structure in genomic-enabled prediction models. de los Campos et 

al. (2015) demonstrated that the inclusion of multi-bred or sub-populations is adequate 
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to increase the size of training sets when heterogeneity is modeled. Technow et al. 

(2013) increased the prediction accuracy of models when assessing northern leaf blight 

resistance in maize by combining data from heterotic groups. The application of kernels 

appears to be especially relevant for predicting hybrids using GCA and SCA due to the 

chance of suitably incorporating population structure to each main genetic effect. Herein, 

kernels representing the genetic (co)variance between inbred parents were applied to 

each specific genetic effect. Genetic similarities within A- and R-lines were modeled by 

unique kernels to adjust the GCA of females and males, respectively. Additionally, the 

SCA effect was generated in silico by the Kronecker product between the A- and R-lines 

relationship matrix (de los Campos et al., 2015). This process adequately accounted for 

heterogeneity and genetic main effect simultaneously, which increased the prediction 

accuracy of the models. It is important to note that the predictability greatly benefited 

from the inclusion of kernels especially when A-lines were involved in the cross-

validation scheme (T1F). This is likely due to the higher degree of similarity among A-

lines compared to among R-lines. The limited genetic variability present in the A-lines 

relative to the R-lines reflects the longer timeline and difficulty associated with 

developing high-performing A-lines. Thus, kernels make it possible to “borrow” 

information from closely related parents resulting in the higher predictabilities reported 

herein. 

 Another advantage of the kernel-based genomic prediction models is the 

opportunity to include GxE effects using markers. Burgueño et al. (2012) introduced a 

multi-environment version of the standard GBLUP model to account for the genetic 
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correlation between wheat lines and environments, and the authors reported a significant 

increase in prediction accuracy. The application of reaction norm models within the 

context of genomic predictions exhibited similar results (Jarquín et al., 2014a). When 

reaction norm models are applied, kernels usually include GxE effects by the interaction 

between markers and environmental covariables. Acosta-Pech et al. (2017) applied the 

reaction norm framework using linear kernels to model GCA, SCA, and their interaction 

with environments; and their results demonstrated the importance of including each of 

these effects in the genomic prediction of hybrids. Basnet et al. (2019) extended a 

similar model to include environmental covariables to describe sites and results support 

its practice. Costa-Neto et al. (2020) presented nonlinear kernels to incorporate GxE and 

nonadditive effects in genomic-based prediction in multi-environment trials and 

suggested its application to predict maize hybrids. In the present study, a linear kernel 

was applied to model GxE effects using the method presented by Acosta-Pech et al. 

(2017), and higher prediction accuracy was observed. It is important to highlight that the 

inclusion of GxE effects in genomic prediction models increases prediction accuracy 

because it can borrow information existing not only among the females and males 

involved in hybrid combinations, but can also utilize the genetic correlations among 

environments. 

3.5.3. Factors affecting the prediction accuracy in grain sorghum hybrids 

 In our cross-validation studies, we were able to ascertain additional factors that 

impact the prediction accuracy of models for hybrid performance traits. Results herein 

demonstrated that prediction accuracy (often defined as the Pearson correlation between 
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the predicted and observed values) of grain sorghum hybrids is affected by repeatability 

and genetic architecture of the trait, the degree of genetic similarity among parents, the 

structure of the training set, the method used to perform predictions (genomic or 

classical GCA-SCA-based models), and the complexity of models (single or multi-

environments). Of these factors, the repeatability of trait measurement is most critical. 

For instance, the 19HAY environment had lower prediction accuracies for GY and DA; 

19HAY also has the lowest repeatabilities for these traits of any environment. 

Alternatively, in the same environment, PHT had high repeatability and good prediction 

accuracy. Similar results have been documented in wheat and maize (He et al., 2016; 

Alves et al., 2019). 

 Previous studies have also shown the importance of the genetic architecture in 

genomic-enabled predictions (Hayes et al., 2010; Jia and Jannink, 2012; Daetwyler et al., 

2013; Fernandes et al., 2018). Traits such as PHT and DA are controlled by few loci 

compared to GY (Quinby, 1974; Hilley et al., 2017; Casto et al., 2019). Thus, as 

expected, the prediction accuracy of these traits was higher than for GY. An additional 

factor influencing prediction accuracy is the precision of measuring PHT and DY 

compared to GY (Velazco et al., 2019). Because GY is a highly complex quantitative 

trait, efforts to increase the precision and repeatability of GY estimates are essential and 

should be implemented. 

 As discussed previously, higher prediction ability for the T1F cross-validation 

scheme (i.e., when females are removed) occurred due to similarity within the female 

heterotic group. An interesting finding in this study was the positive relation between 
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prediction ability and the structure of the training set – this occurred when the training 

set involved hybrids tested in environments where the inbred parents were well adapted. 

Such outcomes are probably due to a natural covariance between the genotypes and their 

adaptive environmental gradient. The inclusion of environmental covariables to classify 

sites might capture this covariance and explain such relations (Jarquín et al., 2014a; 

Costa-Neto et al., 2020). Additionally, classic GCA-SCA-based (BRR) and less complex 

models (single/multiple environments without GxE) had poorer prediction ability 

compared to GB-MMGE models due to the aforementioned advantages of kernel-based 

models. Several studies have reviewed factors influencing the prediction ability of 

genomic selection in hybrids (Crossa et al., 2014; Zhao et al., 2015; Wang et al., 2018). 

Among these factors, the size of the training set and its relationship with the validation 

population is pivotal because genetic relatedness and variation in the elite germplasm is 

essential. Therefore, a large reference population that accounts for the genetic variation 

in the breeding program should produce the most accurate genomic prediction models. 

Finally, high marker density is also important to ensure that most of the genetic variation 

is being captured (Daetwyler et al., 2013). Although these effects were not directly 

assessed herein, they should be considered before developing a training set and initiating 

genomic selection. 

3.5.4. Pre-screening hybrids for field evaluation 

 Genomic selection offers the advantage of predicting hybrid performance of new 

inbreds without field evaluation; this approach allows for a much larger initial screening 

of new inbred parents without the costly investment in hybrid seed production and 
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phenotypic evaluation. This combination should improve both the efficiency of crop 

improvement as well as the rates of genetic gain. Alves et al. (2019) reported on the 

correlation between pre-screening intensity and the proportion of the 5% best maize 

hybrids for different traits and environments. According to their study, the selection of 

the top 30% of the predicted hybrids was able to identify approximately 85% of the best 

evaluated hybrids. Herein with sorghum, predictions using the GB-MMGE model under 

cross-validation scheme T0MF (both male and female are removed), showed a 

coincidence index (CI) of almost 80% when less than the top 10% was selected. These 

results indicate that a significantly smaller subset of all possible hybrid combinations can 

be pre-screened for subsequent field trials. Thus, breeders would evaluate only the 

promising hybrids, significantly increasing the efficiency of resource allocation. 

 A typical application of the CI is to determine the efficiency of models to 

perform indirect selection, assuming a fixed selection intensity. Fernandes et al. (2018) 

applied the CI to assess the efficiency of multi-trait, indirect, and trait-assisted genomic 

selection for improvement of biomass sorghum using a diverse panel. Dos Santos et al. 

(2020) used CI to assess the merit of early selection in biomass sorghum and proposed a 

two-level selection framework to enhance genetic gain per unit of time. Such an 

approach has proven to be capable of assessing the superiority of models under 

evaluation. Alternatively, results of this study demonstrate that the CI can identify the 

optimum selection intensity for a breeding program. 
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3.5.5. Implementing Genomic Prediction and Selection in sorghum breeding 

programs 

 Since the development of sorghum hybrids, sorghum breeding programs have 

focused on improving the performance of A- and R-lines in a concurrent and 

complementary mean with the expectation that hybrid combinations between elite inbred 

lines derived from complementary heterotic groups will maximize heterosis. There is 

some evidence that this has occurred over the past 60 years (Assefa and Staggenborg, 

2010; Gizzi and Gambin, 2016; Pfeiffer et al., 2019).  

This strategy has increased the performance of hybrids, but these increments 

have been modest, and continual modification to the production environments has 

exacerbated the selection priorities in sorghum breeding programs (Monk et al., 2014; 

Pfeiffer et al., 2019). Technow et al. (2014) proposed a paradigm shift on plant breeding 

program pipelines designed to develop hybrids using genomic selection to scan the early 

generation of hybrids and only evaluate promising experimental hybrids at the final 

stages. In that approach, genomic prediction of hybrid performance allows the program 

to screen for a larger number of hybrids.  

To implement a genomic-enabled prediction model for a hybrid sorghum 

breeding program, some changes are needed. For instance, programs would need to 

increase the number of experimental inbreds and the structure of testcrossing to build 

training models; this testcrossing will be different than the traditional approaches as 

described by Rooney (2004). The testcross mating scheme would focus more on hybrids 

per se rather than estimating GCA. Fristche-Neto et al. (2018) reported that testcross 
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was the least effective mating design to develop training sets to predict maize-single 

crosses, and recommended using either a full diallel or a factorial, due to the number of 

hybrid combinations these methods can develop. Herein, a factorial mating design 

generated sorghum hybrids and the results suggest that such a mating scheme could 

become a benchmark for producing experimental hybrids within the context of genomic 

prediction of sorghum hybrid performance. 

 Gaynor et al. (2017) proposed a two-part strategy for the effective use of 

genomic selection to develop inbred lines in a simulation study; part one focused on 

identifying new inbreds, and a part two focused on identifying parents for subsequent 

breeding cycles. In concept, it should be possible to accomplish both objectives 

simultaneously. Genomic selection can be effective and efficiently implemented in 

sorghum breeding programs by i) selecting promising hybrids that will participate in 

future hybrid trials using the models presented previously, while ii) breeding crosses 

would be designed by combining the information from the genetic relationship derived 

from the genotyping data plotted in a PCoA, and the GCA of the tested lines (when 

applicable), or GEBV (using genomic prediction models to estimate breeding values).  

3.5.6. Limitations and prospects 

 The results in this study were based on a full factorial of 20 inbred parents that 

produced 100 hybrids that were evaluated in ten environments. Further research, 

including more parents with an incomplete set of hybrid combinations, is needed to 

confirm the utility of classical GCA-SCA-based and genomic models. Additionally, this 

study was based on a simple leave-one-out cross-validation scheme, which usually 
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results in higher prediction accuracy due to the relatively larger population size left for 

the training set. Future studies should consider other cross-validation schemes that 

remove higher percentages of parents, hybrids and contemplate common challenges 

faced by plant breeders. Moreover, only linear kernels were used to compute the GRM; 

the assessment of non-linear kernels must be evaluated for their potential to increase 

prediction accuracies.  

 Recently, kernel-based regression models have included high-throughput remote-

sensing and phenomics data to perform prediction of hybrids (Cuevas et al., 2019; Lane 

et al., 2020). Studies on grain sorghum hybrid predictions should incorporate such 

technique and evaluate their potential benefits. Moreover, multi-trait and reaction norm 

models using environmental covariables are likely to increase the prediction ability of 

untested grain sorghum hybrids in untested environments; thus, future research should 

also include these effects. 

3.6. Conclusion 

 Classical and genomic hierarchical Bayesian models based on GCA, SCA, and 

their interaction with the environment can effectively predict relevant agronomic traits in 

untested grain sorghum hybrids; molecular markers can further improve the efficiency of 

the breeding program pipeline. The inclusion of genomic information in kernel-based 

GBLUP models (GB) suitably incorporated the natural population structure existent in a 

hybrid crop breeding scheme and, simultaneously, allocated the genetic similarity to 

each specific genetic main effect (i.e., general and specific combining abilities). The 

incorporation of the GxE interaction effect in GB methods allowed models to utilize 
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information existing among the females and males involved in hybrid combinations and 

to exploit the genetic correlations among environments. The application of the GxE 

interaction effect also permits breeders to develop strategies to deploy specific hybrids to 

the targeted environment. These procedures are likely to become the standard method to 

implement genomic selection in sorghum breeding programs for the reasons presented 

herein. Finally, the suitability of the GB-MMGE model improves the prediction capacity 

of grain sorghum hybrids, which permits increasing selection intensity and, ultimately, 

increasing the rates of genetic gain. 
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4. MEGA-ENVIRONMENT ANALYSIS TO ASSESS ADAPTABILITY, 

STABILITY, AND GENOMIC PREDICTIONS IN GRAIN SORGHUM HYBRIDS 

4.1. Synopsis 

Multi-environment trials (MET) are fundamental for assessing genotype-by-

environment interaction (GxE) effects, adaptability and stability of genotypes and 

provide valuable information about target regions. As such, a MET involving grain 

sorghum hybrid combinations derived from elite inbred lines adapted to diverse sorghum 

production regions was developed to assess agronomic performance, stability, and 

genomic-enabled prediction accuracies within mega-environments (ME). Ten females 

and ten males from the Texas A&M and Kansas State sorghum breeding programs were 

crossed following a factorial mating scheme to generate 100 hybrids. Grain yield, plant 

height, and days to anthesis were assessed in a MET consisting of ten environments 

across Texas and Kansas locations over two years. Genotype plus Genotype-by-block-

of-environment biplot assessed ME, while the "mean-vs-stability" view of the biplot and 

the Bayesian Finlay-Wilkinson regression evaluated the adaptability and stability of 

hybrids. A genomic prediction model considering the GxE effect was applied within ME 

to assess prediction accuracy. Results suggest that grain sorghum hybrid combinations 

involving lines adapted to different target regions can produce superior hybrids. ME 

analysis identified established grain sorghum production regions in the U.S. Further, 

genomic predictions within ME reported inconsistent results, suggesting that additional 

effects rather than the correlations between environments are influencing genomic 

prediction of grain sorghum hybrids. 
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4.2. Introduction 

 Sorghum [Sorghum bicolor (L.) Moench] is the fifth most important cereal crop 

in the world, following corn (Zea mays L.), wheat (Triticum aestivum L.), rice (Oryza 

sativa L.), and barley (Hordeum vulgare L.) with 57.8 million tons of global annual 

production in 2019 (FAOSTAT, 2021). While Africa is responsible for almost 50% of 

the total grain sorghum production, sorghum yield is significantly higher in developed 

countries, where production technology is not a limiting factor. For example, the average 

sorghum yield in 2019 was 4.58- and 1.23-tons ha-1 in the U.S. and Nigeria, respectively 

(FAOSTAT, 2021). Among the U.S. states, Kansas and Texas account for 82% of total 

U.S. production, with average yields of 5.72- and 5.38-tons ha-1, respectively (NASS, 

2020). 

 Grain sorghum production is predominantly cultivated in agricultural areas where 

water is limited (Monk et al., 2014). Sorghum is favored in these regions because the 

species possesses and uses several drought-tolerance mechanisms, including stay-green 

and pre-flowering drought-tolerance (Rooney, 2016). This drought tolerance results in 

greater yield stability compared to other crops such as maize (Zea mays) that are less 

able to perform under water-stress conditions.  

 Because sorghum is produced in more stress environments, developing improved 

grain sorghum genotypes requires special consideration about traits that affect yield, 

including adaptability and stability. For instance, sorghum hybrids that are highly 

responsive to distinct locations may be appropriate for those non-limiting environments, 

which correspond to an atypical sorghum production region. Hence, assessing the 
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stability of grain sorghum hybrids across target environments before releasing new 

products becomes particularly important for the effective deployment of sorghum 

hybrids.  

 Multi-environment trials (MET) are commonly used to assess genotype-by-

environment interaction (GxE) effects. When MET detect GxE that do not involve 

crossover interaction (COI), GxE may be ignored since significant genotype rank 

changes are unlikely to occur. However, GxE is often associated with COI, and judicious 

product placement requires breeders to investigate the adaptability and stability of 

genotypes (Crossa et al., 2004; Burgueño et al., 2008). Many stability tests contemplate 

univariate measures of stability (Wricke, 1962; Finlay and Wilkinson, 1963; Shukla, 

1972), while others have proposed the use of multivariate measures based on 

biplot technique (Gabriel, 1971) (i.e., additive main effects and multiplicative 

interaction, AMMI, Gauch and Zobel, 1997; genotype + GxE, GGE, Yan et al., 2000), 

and nonparametric measures (Nassar and Huhn, 1987; Huehn, 1990). Depending on the 

test, stability can be classified as static and dynamic (Becker, 1981; Becker and Leon, 

1988). 

 As MET consist of a continuous series of testing genotypes across target 

environments, not all genotypes are present in every environment. As such, MET are 

usually unbalanced, challenging the ability to assess the stability of a genotype. A 

common practice to circumvent unbalanced data and assess stability is to remove 

genotypes that are missing in some environments and perform stability tests via classical 

models that assume genotype and environment effects as fixed (Finlay and Wilkinson, 
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1963; Gauch, 1988; Yan et al., 2000). A better alternative to manage unbalanced data 

involves applying linear mixed models that accommodate random effects and include 

(co)variance structure to model genetic and environmental effects.  

 Among the models that assume effects as random, factor analytics models are 

commonly applied to assess MET (Piepho, 1994; Smith et al., 2001, 2005; Piepho et al., 

2008). Linear mixed models allow better prediction of those missing data by 

incorporating the genetic relationship matrix of tested and untested genotypes (Jarquin et 

al., 2020). Many studies have reported on the benefits of using linear mixed models to 

assess MET (Piepho, 1997, 1998; Smith et al., 2001, 2019; Resende and Thompson, 

2004; Piepho and Möhring, 2005; Burgueño et al., 2008; Balestre et al., 2010; Hu, 2015; 

Jarquin et al., 2020). Bayesian models have also demonstrated their advantages for 

analyzing genotypic data (Sorensen and Gianola, 2007; Crossa et al., 2010; Alves et al., 

2019). Lian and de los Campos (2016) developed a Finlay and Wilkinson stability test 

under a Bayesian framework, and studies in grain sorghum hybrids using such a 

technique are lacking. 

 In addition to the inconsistency of genotypes in the MET, different evaluation 

stages can also affect the number of genotypes and environments involved in an 

experiment. Many genotypes are tested in only a few environments at initial stages, 

whereas advanced stages evaluate a few genotypes across many environments. Although 

generally applied, such a breeding pipeline is under adjustments to accommodate 

predictive breeding technologies (Crossa et al., 2021). For instance, genomic-enabled 

prediction is likely to replace the phase I hybrid trials in grain sorghum breeding 
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schemes (Fonseca et al., 2021a). Further, MET allow the development of genomic-

enabled prediction models to include GxE, and results indicate better prediction 

accuracy (Burgueño et al., 2012; Lopez-Cruz et al., 2015; Lado et al., 2016; Cuevas et 

al., 2016; Acosta-Pech et al., 2017; Basnet et al., 2019; Costa-Neto et al., 2020).  

Although MET primarily focus on identifying superior genotypes for target 

environments, mature breeding programs also apply MET to generate relevant 

information about tested environments (Gauch and Zobel, 1997; Yan et al., 2000; Yan 

and Kang, 2002; Laffont et al., 2013; Gauch, 2013; Yan, 2015, 2016). This analysis can 

be useful to identify mega-environments (ME) across a wider production area (Rakshit 

et al., 2012; Nielsen and Vigil, 2018; Dalló et al., 2019; Sharma et al., 2020; Ansarifard 

et al., 2020). By definition, ME reduce GxE and allow breeders to extract genotypic 

information about genotypes more effectively within a ME (González-Barrios et al., 

2019). Lado et al. (2016) indicated that wheat line performance was more predictable 

when ME information is considered. Alves et al. (2021) also showed that the prediction 

accuracy of hybrids in low correlated environments can be increased when including 

additional phenotypic information from other positive correlated trials. 

Lopez-Cruz et al. (2015) presented a marker-by-environment genomic best linear 

unbiased prediction (MxE GBLUP) model to account for GxE effects in genomic-

enabled prediction models. The MxE model borrows genetic information across 

environments and increases prediction accuracies for untested genotypes in tested 

environments. Acosta-Pech et al. (2017) further expanded the MxE GBLUP model to 

include combining abilities, environment, and combining abilities-by-environment 
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interactions and reported higher prediction accuracies in maize. Fonseca et al. (2021a) 

then applied the Acosta-Pech approach to sorghum with similar results. Most genomic-

enabled prediction models that include GxE effects assume the GxE (co)variance matrix 

to be positive semi-definite (Cuevas et al., 2016; Crossa et al., 2019). Thus, higher 

correlations between environments are expected to yield higher prediction accuracies. 

The combination of the Acosta-Pech model under ME may generate good prediction 

accuracies as ME are expected to increase the correlation between environments, 

causing a reduction in the residual variance, and potentially capturing more of the 

genetic variation. 

A common breeding approach for multinational breeding programs is to cross 

elite germplasm adapted to diverse target environments (Cooper et al., 2014). This 

strategy is not as common in public institutions (Fonseca et al., 2021b), likely due to 

restrictions on germplasm exchange and that state-based breeding programs function 

primarily in state. These programs could benefit from this exchange of germplasm since 

simulation studies have demonstrated the potential advantages of utilizing this strategy 

in hybrid crops (Podlich and Cooper, 1998; Technow et al., 2020).  

 The development of hybrid combinations between elite inbred lines derived from 

distinct breeding programs fosters a collaborative system between public breeding 

programs and mitigates the decrease these institutions are experiencing (Shelton and 

Tracy, 2017; Coe et al., 2020; Fonseca et al., 2021b). This approach could also generate 

agronomically competitive grain sorghum hybrids. Therefore, this research aims to 

develop ME for grain sorghum production regions and assess the adaptability and 
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stability of grain sorghum hybrids derived from U.S. public breeding programs within 

ME. Further, it evaluates genomic-enabled prediction accuracies to predict the 

performance of grain sorghum hybrids using GxE models within ME as a strategy to 

explore GxE effects among closely related environments. Comparison between genomic 

predictions based on ME and without ME are presented. 

4.3. Material and methods 

4.3.1. Genetic material 

 Grain sorghum hybrids described by Fonseca et al. (2021a) were used in this 

research. These 100 hybrids were generated from crossing ten female with ten male lines 

in a factorial mating scheme (Comstock and Robinson, 1952). The inbreds selected for 

this study represent elite germplasm from the sorghum breeding programs at Texas 

A&M AgriLife Research (College Station, Texas) and Kansas State Research Center 

(Hays, Kansas). Each program provided five females (A-lines) and five males (R-lines) 

that are adapted to their respective target environments and had produced agronomically 

acceptable hybrids previously (Table 1). The 100 hybrids were subdivided into four 

groups to represent hybrid combinations derived from elite lines within a breeding 

programs and between breeding programs (Figure 1). 

4.3.2. Experimental data 

 Hybrids were planted in a randomized complete block design (RCBD) 

with sets in replicate adjustment; each set was composed of one of the four groups of 25 

hybrids (Figure 1), with randomization occurring within and between sets. In 2018 trials, 

each location had three replicates, while in 2019 each location had two replicates. A plot 
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consisted of two adjacent rows, approximately 5.3 m in length, with row spacing that 

ranged from 0.76 to 1.0 m, depending on the production practices in each environment. 

In 2018, trials were grown in Monte Alto – TX, Victoria – TX, and College Station – 

TX, and Garden City – KS and Colby – KS. In 2019, the trials were in Taft – TX, 

Victoria – TX, College Station – TX, Hays – KS, and Colby – Kansas. These Texas and 

Kansas locations represent distinct adaptation zones and, in each test, agronomic 

practices standard to the location were followed (Table 2) (Fonseca et al., 2021a). GPS 

coordinates of each environment were used to collect weather data from the NASA 

POWER database (NASA, 2021). 

 Three agronomic traits were measured. Days to anthesis (DA) were recorded as 

the number of days from planting to when 50% of the plants in the plot were at mid-

anthesis. In Kansas locations, DA was collected on one replicate only. Just prior to 

harvest, plant height (PHT) was measured in cm using a representative plant in each plot 

at the length from the soil to the tip of the panicle. Plots were harvested using plot 

combines fitted with a Harvest Master GrainGage System (Juniper Systems), to measure 

grain weight and moisture content. After adjusting yield to a 14% moisture, grain yield 

(GY) was converted to tons ha-1 (Fonseca et al., 2021a). 

4.3.3. Statistical analysis 

For each environment, data were analyzed following a linear mixed model 

(Henderson, 1984): 

! = #$ + &!' + &"( + ),     (3) 



 

104 

 

where ! is the vector of phenotypes; $ is an intercept; ' is a random effect of hybrid, 

'	~	,(., 0#
$1), ( is a random effect of replicates, (	~	,(., 0%$1); ) is the vector of 

residuals, )	~	,(., 0&$1); 1 is a vector of ones; &! and &" are incidence matrixes; 0#$, 0%$ 

and 0&$ are variance components for hybrids, replicates and residuals, respectively. 

Model (1) was extended to incorporate environment and GxE effects for performing a 

combined analysis as followed: 

! = #$ + &!' + &"5 + &''5 + &(((5) + ),   (2) 

where s is a vector of environmental effects, 5	~	,(., 0/$1); '5 is a vector of the GxE 

effect '5	~	,(., 0#/$ 1), r(s) is the vector of replicate effect nested within environment, 

((5)	~	,(., 0%(/)
$ 1); &!, &", &', &(, are incidence matrixes for the corresponding effect. 

 Variance components were estimated via restricted maximum likelihood 

(REML) method (Patterson and Thompson, 1971) using the lmer function of the lme4 R 

package (Bates et al., 2015), and its significance assessed by the likelihood ratio test 

(LRT) using the ranova function of the lmerTest R package (Kuznetsova et al., 2017). 

All analysis were conducted in R software (R Core Team 2020). From the variance 

component estimates, broad-sense heritability at each environment was calculated as 

; = 	
2!
"

2!
"3	#$

"
%

, whereas, for combined environments, b$ =	
2!
"

2!
"3

#!'
"
( 3

#$"
(%

, where t is the 

number of environments and r is the number of replicates. Best linear unbiased estimates 

(BLUEs) of each hybrid at each location were obtained using the R package emmeans 

(Lenth 2021) from model (1) assuming hybrids as fixed. BLUEs were used to develop 

the training set in genomic prediction models. 
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 Mega-environments (ME) were developed using the gge function of the gge R 

package (Wright and Laffont, 2020). Genotype plus genotype × environment (GGE) 

biplot and which-won-where polygon were used to assess grain sorghum hybrid 

performance, while genotype plus genotype × block of environments (GGB) biplots 

were used to define ME. Biplots were scaled and environment-centered. For GGE biplot, 

stability was assessed using loading projections on the average environment coordinate 

(AEC) at each ME. For Bayesian Finlay-Wilkinson regression (BFW - Lian and De Los 

Campos, 2016), static and dynamic stability was assessed based on the slope of 

genotypes across environment. Regression lines presenting slopes close to 0 classified 

static stability while slopes close to 1 defined dynamic stability. For BFW, genomic 

information of hybrids was included in the model as (co)variance matrix of the 

genotypic effect. Posterior distribution was calculated based on 10,000 interactions, 

burn-in of 5,000 and a thin of 5. Genomic relationship of hybrids were developed in 

silico by the Kronecker product of the parental marker matrix. For details see Fonseca et 

al. (2021a). 

4.3.4. Genotypic data 

 DNA extraction, genotyping-by-sequencing (GBS), and development of 

molecular markers were described in Fonseca et al. (2021a). 

4.3.5. Genomic prediction model and cross validation scheme 

 Genomic-enabled prediction model used in this study was first introduced by 

Acosta-Pech et al. (2017) and applied in grain sorghum hybrids by Fonseca et al. 

(2021a). Herein, the model was applied for each ME separately and included combining 
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abilities, environment and GxE effects to predict the performance of sorghum hybrids as 

follows: 

! = &@Z + &!3 + &"4+ &'' + \C + \D + \E + ),    (3) 

where ! = 	 [!!, ⋯ , !A, ⋯ , !@]: is the vector of observations of hybrids (S = 1,⋯ , n<) in 

the jth environment (N = 1,⋯ , s); Z is a vector of the environmental effects, 

Z	~	,(., 0B
$1), 3 is the vector of GCA effects for females, 3	~	,(., 0-)

$V-), where j 

represents environment; 4 is a vector of GCA effects for males, 4	~	,(., 0.)
$ V.); ' is 

a vector of SCA effects for hybrid combinations, '	~	,(0, 0#)
$ X); \- is a random vector 

to include the interaction between GCA of females and environment, \-	~	,(., 0-/$ ]-); 

\. is a random vector that models the interaction between males and environment, 

\.	~	,(., 0./$ ].); ^# is a vector that takes into account the interaction between 

hybrids and environment, \#	~	,(., 0#/$ ]#); ) is a vector of residuals, )	~	,(., 0&)
$ 1); 

&@, &;, &$, and &? are incidence matrixes for environment, female, male, and hybrid, 

respectively. V-, V., and X are the genomic relationship of matrix for females, males, 

and hybrids, respectively. The elements of matrix X were calculated in silico by the 

Kronecker product of V- and V. as X = V-⨂V. (Technow et al., 2014; Acosta-Pech et 

al., 2017). ]-, ]., and ]F are variance-covariance matrices that associate each 

respective genomic-main-effect-by-environment variance component, i.e., 0-/$ , 0./$ , and 

0#/
$ . The variance-covariance matrix was calculated as 7- = &;V-&′;#&/&′/, ]. =

&$V.&′$#&/&′/, and ]# = &?X&′?#&/&′/ where # stands for the Hadamard product 

(see Acosta-Pech et al. (2017) for further details about the derivations).  To validate 
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models and estimate the predictability of parents, a simple leave-one-out cross-validation 

(CV) scheme was applied following Fonseca et al. (2021a). Briefly, female parents in 

hybrid combinations were removed, and models trained with the remaining records 

where that seed parent was absent. The same process was applied for males. Thus, the 

CV scheme led to prediction of hybrids when a female parent or a male parent were 

removed. Female and male parents were removed individually. The prediction accuracy 

(r) at each ME was estimated as the Pearson’s correlation between observed and 

predicted values of hybrids. 

 Genomic prediction model was fit using Bayesian methods implemented in the 

BGLR statistical package (Pérez and de los Campos, 2014) available for R. Inferences 

were based on 10,000 Gibbs sampler iterations with a burn-in of 5,000, and a thin of 5. 

4.4. Results and discussion 

4.4.1. Analysis by location 

 Genetic variation was significant for all traits in all environments (Table 12). 

Broad-sense heritabilities were generally high, indicating that most of the variation 

within a location was caused by genetic effects. Grain yield ranged from 4.31 to 8.34 ton 

ha-1, PHT ranged from 121 to 145 cm, and DA from 59 to 80 days across environments. 

The lowest GY occurred in 2018 Monte Alto, TX, and the highest occurred in 2019 

Colby, KS. In 2020, the National Agricultural Statistics Service reported grain sorghum 

average yields of 4.23 ton ha-1 and 5.71 ton ha-1 for Texas and Kansas, respectively 

(NASS, 2021). Such grain sorghum averages indicate that hybrids presented in this study 

generate yields similar to those of commercial hybrids, thus meeting the expectation of 
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high-yielding germplasm. Fonseca et al. (2021b) provided a detailed report on the 

combining abilities of these grain sorghum hybrids and highlighted the benefits 

concerning genetic variance in exchanging elite germplasm between distinct public plant 

breeding programs. 

Table 12. Phenotypic performance of hybrids developed from Texas A&M and 
Kansas State elite lines under a factorial II mating design across environments. 
Estimates include genetic variance (02hyb), residual variance (02e), coefficient of 
variation (CV), and broad-sense heritability (H2). Designations for environments 
are as follows: Monte Alto 2018 (18RF), Victoria 2018 (18VC), College Station 2018 
(18CS), Garden City 2018 (18GC), Colby 2018 (18COL), Taft 2019 (19TA), 
Victoria 2019 (19VC), College Station 2019 (19CS), Hays 2019 (19HAY), and Colby 
2019 (19COL). 
Trait Parameter Environments 

18RF 18VC 18CS 18GC 18COL 19TA 19VC 19CS 19HAY 19COL 

GY 

Mean (t/ha) 4.31 5.18 6.26 5.58 5.18 6.65 6.46 7.78 6.51 8.34 
!!"#$  0.70* 0.28* 0.66* 0.67* 0.57* 0.47* 0.49* 0.77* 0.47* 1.36* 
!%$ 0.86 0.15 0.66 0.95 1.24 0.18 0.29 1.36 1.55 0.84 
CV (%) 21.49 7.35 12.95 17.47 21.51 6.37 8.29 14.97 19.14 10.96 
H2 0.71 0.85 0.75 0.68 0.58 0.84 0.77 0.53 0.38 0.76 

PHT 

Mean (cm) 121 127 126 145 137 138 140 140 122 129 
!!"#$  64.6* 91.0* 155.7* 111.7* 94.8* 80.3* 71.2* 137.4* 89.3* 78.1* 
!%$ 26.31 19.33 48.76 27.15 25.32 30.14 14.32 53.02 28.05 67.18 
CV (%) 4.22 3.45 5.5 3.58 3.67 3.96 2.7 5.2 4.33 6.32 
H2 0.88 0.93 0.91 0.93 0.92 0.84 0.91 0.84 0.86 0.7 

DA 

Mean (day) 67.9 67.2 78.7 70.6 72.4 69.6 59.5 80.4 64.2 69.1 
!!"#$  11.1* 4.7* 10.9* - - 1.6* 3.5* 4.2* - - 
!%$ 4.77 0.99 4.36 - - 0.54 0.78 6.88 - - 
CV (%) 3.22 1.48 2.65 - - 1.06 1.48 3.26 - - 
H2 0.87 0.93 0.88 - - 0.86 0.90 0.55 - - 

* Significant at 0.05 probability level  
4.4.2. Combined analysis and development of mega-environments 

 The likelihood ratio test (LRT) for the combined analysis indicated that genetic, 

environmental, and GxE effects were highly significant for all traits (Table 13). 

Environment effects explained most of the variation for GY (48.9%) and DA (76.7%), 

while genetic effects were the largest for PHT (40.5%). For GY, the GxE variance 

component accounted for almost 12% of the total variation, which is more than the 
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variance associated with the genetic effects (9.8%). Yan (2020) indicates GxE effects 

that are greater than the genotype effect suggest that distinct mega environments exist. 

Given these results, the likelihood of finding a single best genotype for all environments 

is fairly low. Hence, mega-environment 1 (ME1) and mega-environment 2 (ME2) were 

developed (Table 13). 

Table 13. Combined analysis for grain yield (GY), plant height (PHT), and days to 
anthesis (DA) considering all locations (Combined), Mega-environment 1 (ME1), 
and Mega-environment 2 (ME2). Estimates include variance components of model 
effects, mean of trait, coefficient of variation (CVe), and broad-sense heritability 
(H2) for each dataset. 

Trait Variance  
Components 

Combined ME1 ME2 
Estimate % Estimate % Estimate % 

GY 

Hybrid 0.29** 9.75 0.28** 10.68 0.54** 13.92 
Environment 1.45** 48.92 1.40** 52.73 1.96** 50.90 
Hybrid × Env 0.35** 11.71 0.28** 10.45 0.19* 4.93 
Rep(Env) 0.08** 2.72 0.13** 4.76 0.01 0.36 
Residual 0.80 26.91 0.57 21.37 1.15 29.89 
Mean (t/ha) 6.22 6.10 6.40 
CVe (%) 14.35 12.36 16.77 
H2 0.83 0.78 0.79 

PHT 

Hybrid 82.39** 40.49 86.81** 42.94 84.60** 37.14 
Environment 68.50** 33.66 64.30** 31.80 97.06** 42.62 
Hybrid × Env 16.62** 8.17 14.15** 7.00 12.04** 5.28 
Rep(Env) 3.34** 1.64 5.27** 2.61 0.43 0.19 
Residual 32.65 16.04 31.64 15.65 33.63 14.77 
Mean (cm) 132.9 132.4 133.6 
CVe (%) 4.30 4.25 4.34 
H2 0.97 0.95 0.94 

DA 

Hybrid 5.33** 10.72 4.27** 6.07 - - 
Environment 38.11** 76.70 60.41** 85.87 - - 
Hybrid × Env 2.46** 4.96 2.01** 2.86 - - 
Rep(Env) 0.58** 1.16 0.58** 0.82 - - 
Residual 3.22 6.47 3.08 4.38 - - 
Mean (days) 69.9 70.5 69.07 
CVe (%) 2.56 2.49 - 
H2 0.94 0.89 - 

*, ** Significant at 0.01 and 0.001 respectively 
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 The GGE biplot analysis for grain yield explained more than 50% of the 

variation with the first two principal components (PC) (Figure 7). The which-won-where 

polygon suggested that three ME exist. Nonetheless, the relative lack of 

representativeness of the environment 19HAY combined with empirical knowledge 

about sorghum production regions led to the establishment of only two ME (Figure 8 

and Table 13). These two ME are consistent with previous grain sorghum studies that 

define production regions as subtropical and temperate environments (Monk et al., 

2014). Mega-environment 1 included Texas locations (i.e., Monte Alto, Taft, Victoria, 

and College Station), while mega-environment 2 described Kansas locations (i.e., Hays, 

Colby, and Garden City) (Figure 8). See appendix A for details about the codes used in 

the biplot. 

 
Figure 7. Genotype plus genotype × environment (GGE) biplot based on grain yield 
of sorghum hybrids evaluated in ten environments. GGE biplot was environment-
centered and singular value scaling via nipals algorithm. Information includes the 
first and second principal components (PC) and the which-won-where polygon. 
Hybrids are identified in gray, while environments in dark orange. 
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Figure 8. Mosaic plot and genotype plus genotype × block of environments (GGB) 
biplot of the multi-environment trial visualizing the two-way partitioning of the 
total sums of squares (TSS) into genotype (G), genotype × blocks of environments 
(GB), and residuals (R) along each GGB biplot axis for yield. The two mega-
environments are denoted 1 (ME1) and 2 (ME2). ME1 included Texas 
environments labeled 18RF (Monte Alto 2018), 18VC (Victoria 2018), 18CS 
(College Station 2018), 19TA (Taft 2019), 19VC (Victoria 2019), 19CS (College 
Station 2019), while ME2 accounted for Kansas environments labeled 18GC 
(Garden City 2018), 18COL (Colby 2018), 19HAY (Hays 2019), and 19COL (Colby 
2019). Hybrids are labeled according to each female x male combination. TF and 
TM codes for female and males derived from Texas A&M sorghum breeding 
programs, respectively, whereas females and males derived from Kansa breeding 
programs are identified as KF and KM respectively. Number following the inbred 
line origin identifies different parents. 

 

4.4.3. Adaptability and stability of grain sorghum hybrids derived from public 

breeding programs 

 Grain sorghum hybrids derived from both the Texas AgriLife and Kansas 

programs not only developed some of the best hybrids but these combinations also 
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resulted in highly stable genotypes (Figures 9, 10). For instance, within the subtropical 

environment (i.e., ME1), the highest yielding hybrid was a Kansas/Texas AgriLife 

combination (KF1/TM3) (Figure 9). More important, this hybrid had good stability 

(Figure 9). According to Finlay-Wilkinson (1963), linear regressions of genotype yield 

parallel to the population mean yield regression defines dynamic stability. Also, the 

authors described the ideal genotype as the one that outperforms others in both low- and 

high-yielding environments. The BFW regression method applied herein shows that 

KF1/TM3 has dynamic stability and represents a potential ideal genotype (Figure 9). For 

instance, KF1/TM3 presented one of the highest yields for 18RF and 19CS environments 

(Figure 9). Therefore, KF1/TM3 exemplifies a crucial characteristic that determines 

high-performing and stable grain sorghum hybrids: adapted to marginal areas and 

responsive to more favorable environments (Monk et al., 2014). 

 Within temperate ME2, the top two performers resulted from crosses involving 

Texas inbred lines (TF2/TM2 and TF2/TM1) (Figure 11). That implies that elite lines 

developed outside a particular target environment can produce good grain sorghum 

hybrids in another ME. It is common knowledge that it is easier to move germplasm 

from lower to higher latitudes (i.e., from South to North in the U.S.) than in the opposite 

direction (Rooney personal communication). Results presented herein support such a 

statement.  

 It is interesting to note that the top performers within ME1 expressed above-

average PHT and below-average DA across environments (Figure 10). This highlights 

the positive correlation between PHT and GY and also indicates that earlier hybrids are 



 

113 

 

less likely to be affected by biotic and abiotic stresses (i.e., midge damage and drought). 

However, for ME2, the top performers presented below-average PHT (Figure 12). 

Results suggest that taller plants might be undesirable where abiotic stress, such as wind 

or drought can lead to lodging. For those environments, shorter plants are likely to suffer 

less from lodging and stalk breakage problems, which justify these outcomes. 

 
Figure 9. The “mean vs stability” representation of the genotype plus genotype × 
environment (GGE) biplot based on mega-environment 1 (left), and Bayesian 
Finlay-Wilkinson (BFW) regression (right) for grain yield. For GGE, data were 
environment-centered and not scaled; the biplot was focused on singular value 
partitioning using nipals algorithm and grain yield scores projections on the 
average environment coordinate displayed the stability of each hybrid. Underlined 
hybrids in the GGE biplot indicated the top and bottom two and an intermediate 
less stable hybrid. The underlined hybrids were assessed using BFW regression to 
further investigate static and dynamic stability.  
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Figure 10. Bayesian Finlay-Wilkinson (BFW) regression of hybrids based on the 
top and bottom two hybrids and an intermediate less stable hybrid to assess plant 
height (left) and days to anthesis (right) stability of grain sorghums within mega-
environment 1. 

 
Figure 11. The “mean vs stability” representation of the genotype plus genotype × 
environment (GGE) biplot based on mega-environment 2 (left), and Bayesian 
Finlay-Wilkinson (BFW) regression (right) for grain yield. For GGE, data were 
environment-centered and not scaled. The biplot was genotype-focused singular 
value partitioning using nipals algorithm. Grain yield score projections on the 
average environment coordinate displayed the stability of each hybrid. Underlined 
hybrids in the GGE biplot indicated the top and bottom two hybrids and an 
intermediate less stable hybrid. The underlined hybrids were assessed using BFW 
regression to further investigate static and dynamic stability. 
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Figure 12. Bayesian Finlay-Wilkinson (BFW) regression of hybrids based on the 
top and bottom two hybrids and an intermediate less stable hybrid to assess plant 
height (left) and days to anthesis (right) stability of grain sorghums within mega-
environment 2. 

 The Bayesian Finlay-Wilkinson applied herein presents an opportunity for 

sorghum breeders to assess the stability of genotypes appropriately. Among several 

advantages, such a method considers more flexible models when compared to fixed-

effects models for allowing the inclusion of pedigree or genomic information, ultimately 

generating more reliable estimates and providing alternatives to manage the often MET 

challenge of missing values (Lian and de los Campos, 2016). 

4.4.4. Genomic predictions modeling GxE within ME 

 Genomic predictions of grain sorghum hybrid performance within ME were 

inconsistent (Table 14). When compared to the prediction without ME, the leave-one-out 

female CV scheme presented higher prediction accuracies within ME1, while the leave-

one-out male CV scheme presented better predictions in ME2 for GY and PHT. Overall, 

there was a slight increase in predicting GY and DA within ME1. These results indicate 

that closely related environments can increase prediction accuracies (Cuevas et al., 2016; 
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Crossa et al., 2019). However, other effects can negatively impact the potential of 

genomic predictions within ME.  

 The accuracy of genomic prediction models is influenced by many effects, 

including heritability of the trait, the size and structure of the training population, and the 

quality of the phenotypic data. Although ME can increase the correlations between 

environments, there are limited advantages for predicting untested genotypes because it 

reduces the number of hybrids present in the training set. While predictions without ME 

consider the entire data set, predictions within a ME only include information from that 

ME. As such, developing prediction models for specific ME is recommended when the 

target environment is well defined. For other situations, where predictions of untested 

hybrids involve new environments, reaction norm principles applied to genomic 

prediction models indicate promising results as both genomic and environmental 

information are included in the model (Jarquín et al., 2014; Li et al., 2018; Costa-Neto et 

al., 2020; Buntaran et al., 2021). 
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Table 14. Prediction accuracies of genomic GxE effects model for grain yield (GY), 
plant height (PHT), and days to anthesis (DA). Predictions are presented for 
genomic GxE effects model with and without partitioning data into mega-
environments. Mega-environment 1 included environments from Texas year-
location combination, while mega-environment 2 accounted for Kansas year-
location combination as determined by Genotype plus genotype × environment 
(GGE) biplot. Numbers in bold show the overall prediction accuracy across females 
and males. 

Parents 
Prediction accuracy  

without ME‡ 
Prediction accuracy  

in ME1 
Prediction accuracy 

 in ME2 
GY PHT DA GY PHT DA GY PHT DA 

Female 

A05071 0.65 0.85 0.76 0.86 0.89 0.84 0.35 0.78 0.65 
A08140 0.59 0.85 0.69 0.75 0.89 0.81 0.36 0.80 0.56 
AARCH11051 0.67 0.91 0.76 0.79 0.92 0.79 0.51 0.90 0.72 
AARCH11129 0.37 0.87 0.69 0.51 0.91 0.77 0.17 0.79 0.56 
AARCH11136 0.69 0.82 0.86 0.71 0.80 0.90 0.64 0.83 0.79 
AARCH11146 0.63 0.79 0.81 0.75 0.81 0.79 0.45 0.77 0.83 
AHF14 0.60 0.80 0.83 0.66 0.83 0.88 0.46 0.75 0.80 
AKS118 0.71 0.82 0.84 0.78 0.83 0.85 0.54 0.78 0.83 
ATx3408 0.68 0.90 0.85 0.73 0.89 0.84 0.59 0.88 0.90 
ATx645 0.67 0.83 0.62 0.74 0.81 0.81 0.58 0.87 0.35 
Mean 0.63 0.84 0.77 0.73 0.86 0.83 0.47 0.81 0.70 

Male 

EON361 0.55 0.68 0.74 0.40 0.65 0.73 0.76 0.72 0.78 
R07178 0.64 0.84 0.83 0.68 0.83 0.81 0.59 0.87 0.85 
R08304 0.51 0.83 0.80 0.51 0.81 0.77 0.45 0.86 0.83 
RARCH11001 0.62 0.83 0.75 0.52 0.76 0.81 0.82 0.89 0.68 
RARCH11002 0.71 0.86 0.75 0.74 0.82 0.76 0.63 0.90 0.71 
RARCH11028 0.47 0.69 0.74 0.44 0.68 0.76 0.56 0.72 0.70 
RARCH11055 0.58 0.81 0.63 0.44 0.80 0.65 0.78 0.82 0.57 
RARCH11056 0.56 0.77 0.83 0.48 0.76 0.86 0.71 0.79 0.80 
RTx436 0.49 0.74 0.67 0.52 0.76 0.77 0.45 0.69 0.54 
RTx437 0.58 0.81 0.73 0.61 0.83 0.84 0.53 0.78 0.59 
Mean 0.57 0.79 0.75 0.53 0.77 0.77 0.63 0.80 0.70 

Overall mean 0.60 0.82 0.76 0.63 0.82 0.80 0.55 0.81 0.70 
‡Prediction accuracies presented in Fonseca et al. (2021a) 

4.5. Conclusion 

 The identification of ME reduces GxE effects, provides better information about 

MET, and continues to be a common practice among plant breeders interested in both 

genotype and environment assessment. A MET for grain sorghum hybrids grown across 

Texas and Kansas confirmed the existence of two distinct ME that are consistent to 
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historically different regions of adaptation generally designated as subtropical and 

temperate environments. Hybrid combinations between elite inbred lines adapted to each 

of those regions indicate a potential benefit of using such germplasm to generate high-

performing and stable grain sorghum hybrids across locations. Plant breeders, growers, 

and seed companies are encouraged to explore such crosses to produce promising new 

products. Genomic enabled prediction models were inconsistent in their ability to predict 

hybrid performance within ME. Further research is needed to understand additional 

factors affecting the prediction of grain sorghum hybrids. 
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5. CONCLUSIONS 

 

 This dissertation reported several significant events responsible for the successful 

improvement of grain sorghum hybrids and emphasized the major contributions made by 

the Texas A&M and Kansas State sorghum breeding programs throughout the process. 

The second chapter demonstrated that maintaining selectable genetic variation remains 

one of the most challenging factors in mature plant breeding programs. Nonetheless, the 

exchange of elite germplasm could become a modern practice for sorghum breeding 

programs to maximize variation and improve the agronomic performance of grain 

sorghum hybrids. Moreover, the study suggested that such a practice could foster 

collaborative efforts between public institutions to address their local challenges. 

 The third chapter explored classical and genomic models for predicting grain 

sorghum hybrid performance under a multi-environment trial. The inclusion of genomic 

information in kernel-based GBLUP models incorporated the natural population 

structure existent in a hybrid crop breeding scheme, allocating the genetic similarity to 

each specific genetic main effect. Further, the incorporation of the GxE interaction effect 

in kernel-based GBLUP models allowed borrowing information existing among the 

females and males involved in hybrid combinations and exploiting the genetic 

correlations among environments. Hence, the suitability of the Kernel-based GxE model 

improves the prediction capacity of grain sorghum hybrids, permits increasing selection 

intensity, and, ultimately, increasing the rates of genetic gain. 
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 The fourth chapter expanded the benefits presented in chapter two. Hybrid 

combinations between elite inbred lines adapted to distinct mega-environments generate 

high-performing and stable grain sorghum hybrids across locations. Thus, plant breeders, 

growers, and seed companies should explore crossing elite germplasm adapted to diverse 

environments to produce promising new products. 
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APPENDIX A 

 

Names, codes, and origin of grain sorghum elite lines used to generate hybrid combinations 

following a factorial II mating scheme. Information includes environment names and codes 

involved in the multi environment trial to assess grain yield, plant height, and days to anthesis of 

grain sorghum hybrids derived from U.S. public breeding programs. 

Origin  Female Codes Male Codes Environment Codes 

Texas 

 A05071 TF1 EON361 TM1 Monte Alto 2018 18RF 
 A08140 TF2 R07178 TM2 Victoria 2018 18VC 
 ATx3447 TF3 R08304 TM3 College Station 2018 18CS 
 ATx3408 TF4 RTx436 TM4 Garden City 2018 18GC 
 ATx645 TF5 RTx437 TM5 Colby 2018 18COL 

Kansas 

 AARCH11051 KF1 RARCH11001 KM1 Taft 2019 19TA 
 AARCH11129 KF2 RARCH11002 KM2 Victoria 2019 19VC 
 AARCH11136 KF3 RARCH11028 KM3 College Station 2019 19CS 
 AARCH11146 KF4 RARCH11055 KM4 Hays 2019 19HAY 
 AKS118 KF5 RARCH11056 KM5 Colby 2019 19COL 

 

 

 

 

 

 

 

 

 

 

 

 


