
CONTROL OF CURVATURE EXTREMA IN CURVE MODELING

A Dissertation

by

ZHIPEI YAN

Submitted to the Graduate and Professional School of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Scott Schaefer
Committee Members, John Keyser

Ergun Akleman
Shinjiro Sueda

Head of Department, Scott Schaefer

August 2021

Major Subject: Computer Science

Copyright 2021 Zhipei Yan

ABSTRACT

We present a method for constructing almost-everywhere curvature-continuous curves that in-

terpolate a list of control points and have local maxima of curvature only at the control points. Our

premise is that salient features of the curve should occur only at control points to avoid the creation

of features unintended by the artist. While many artists prefer to use interpolated control points,

the creation of artifacts, such as loops and cusps, away from control points has limited the use of

these types of curves. By enforcing the maximum curvature property, loops and cusps cannot be

created unless the artist intends to create such features.

To create these curves, we analyze the curvature monotonicity of quadratic, rational quadratic

and cubic curves and develop a framework to connect such curve primitives with curvature conti-

nuity. We formulate an energy to encode the desired properties in a boxed constrained optimization

and provide a fast method of estimating the solution through a numerical optimization. The opti-

mized curve can serve as a real-time curve modeling tool in art design applications.

ii

DEDICATION

To those who love maths and computer science.

iii

ACKNOWLEDGMENTS

I would like to thank the Aggie Graphics Group because I enjoyed my PhD program here. I

extended my interests from mathematics to computer graphics and experienced lots of fascinating

projects in graphics and digital arts. I learnt a lot from my advisor Dr. Scott Schaefer, not only

doing research in computer graphics, but also other skills like debugging, presentation, and tricks

in Mathematica. Dr. John Keyser, Dr. Ergun Akleman, Dr. Shinjiro Sueda and Dr. Jianer Chen

provided a large variety of courses in graphics and visualization, which are really cool. Also I

would like to thank Dr. Dean Baskin for his course in differential geometry which is the best

course I’ve ever taken in A&M. Dr. Ligang Liu and Dr. Shizhe Zhou were my advisors when I was

an undergraduate student in USTC. Whout their guidance and help, I wouldn’t know the world of

computer graphics.

When I came to Texas, everything was new to me. My lab mates Hang, Shenyao, Jason,

Donghui and Songgang helped me through my first several months in a new environment. Later,

we had even more people in AGG. In my spare time, I used to play games with my friends. I’m

grateful to Valve and Gearbox, and my friends (in their nicknames): God Mountain, Teacher Xiao,

JR, Teacher Nie, BB, BA. The gaming time made me relaxed and energetic for my study and

research.

I did internships at Adobe and ByteDance. I’m thankful for the opportunities in the industry

and my advisors and colleagues in the companies. I gained a lot of experience in connecting

research and engineering applications.

iv

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professors Dr. Scott Schae-

fer, Dr. John Keyser and Dr. Shinjiro Sueda of the Department of Computer Science and Engi-

neering and Professor Dr. Ergun Akleman of the Department of Visualization.

The work of Adobe Illustrator’s curvature tool in Chapter V and VI was in collaboration with

Stephen Schiller, Gregg Wilensky and Nathan Carr from Adobe Research.

All other work conducted for the dissertation was completed by the student independently.

Funding Sources

Graduate study was supported by the Graduate Assistantship Research from Texas A&M Uni-

versity. No other outside source of funding was provided.

v

NOMENCLATURE

Rn Real space of dimension n

S1 R ∪ {∞}

Cn Algebraic continuity of order n

Gn Geometric continuity of order n

f ◦ g Function Composition

∆(·, ·, ·) Signed area of a triangle

f ′ Derivative of function f

f ′′ Second derivative of function f

v⊥ Perpendicular vector to vector v in counter-clock wise

MT Transpose of matrix M

L1 Space of absolutely Lebesgue integrable functions,

i.e.
∫
|f | <∞

L2 Space of square-Lebesgue-integrable functions,

i.e.
∫
|f |2 <∞

CAD Computer Aided Design

CAGD Computer Aided Geometric Design

DDG Discrete Differential Geometry

TOG Transaction on Graphics

TAMU Texas A&M University

CSE Computer Science and Engineering

AGG Aggie Graphics Group

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGMENTS . iv

CONTRIBUTORS AND FUNDING SOURCES . v

NOMENCLATURE . vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . x

LIST OF TABLES. xiii

1. INTRODUCTION. 1

1.1 Organization and Contribution . 4

2. BACKGROUND . 6

2.1 Curves . 6
2.1.1 Parameterization . 7
2.1.2 Continuity . 8

2.2 Curvature . 8
2.2.1 Critical Points of Curvature . 9
2.2.2 Curvature Control . 9

2.3 Polynomial Curves . 10

3. RELATED WORK . 12

3.1 Interpolatory Curves . 12
3.2 Curves with Curvature Distribution Control . 12
3.3 Quadratic Curves. 13
3.4 Elliptical Shapes . 14

4. CURVE PRIMITIVES . 16

4.1 Polynomial Quadratic Curves . 16
4.1.1 Curvature Distribution . 17

vii

4.1.2 Curvature Monotonicity and Max Curvature Points. 18
4.2 Rational Quadratic Curves . 20

4.2.1 Relationship to Conic Sections . 20
4.2.2 Curvature . 22

4.3 Polynomial Cubic Curves . 24
4.3.1 General Cubic Curves. 24
4.3.2 Restricted Cubic Curves . 25
4.3.3 Curvature . 27

4.3.3.1 S Shape . 28
4.3.3.2 Convex Shape . 28
4.3.3.3 Invalid Shape. 30

4.3.4 Edge-Angle Based Definition . 30
4.4 Hybrid Curves . 31

5. QUADRATIC INTERPOLATION: κ-CURVES . 33

5.1 Problem Formulation . 33
5.2 Construction . 34

5.2.1 Interpolation . 35
5.2.2 Curvature Extrema . 35
5.2.3 Continuity . 35

5.3 Local Optimization . 37
5.3.1 Maximum Curvature Condition . 38
5.3.2 Curvature Condition at Join Points . 40
5.3.3 Input Point Interpolation . 42

5.4 Global Optimization . 44
5.5 Results . 45
5.6 Conclusion . 49

6. RATIONAL QUADRATIC INTERPOLATION. 54

6.1 Problem formulation . 55
6.2 Construction . 55

6.2.1 Interpolation . 55
6.2.2 Curvature Extrema . 56
6.2.3 Continuity . 56

6.3 Weights . 57
6.3.1 Trivial Weights . 57
6.3.2 Half Angle Weight . 58
6.3.3 Minimum Eccentricity Weights . 58
6.3.4 Clamped Min Eccentricity Weights . 59

6.4 Fast Approach . 61
6.4.1 Maximum Curvature Condition . 61
6.4.2 Curvature Condition . 64
6.4.3 Input Point Interpolation . 64

viii

6.4.4 Fast Global Approximating Solution. 65
6.5 Numerical Optimization . 66

6.5.1 Energy Definition . 66
6.5.2 Numerical Solution . 68

6.6 Results and Conclusion . 71
6.7 Limitations . 75

7. CUBIC INTERPOLATION WITH CURVATURE CONTROL . 78

7.1 Problem Formulation . 78
7.2 Construction . 79
7.3 Optimization . 81
7.4 Relationship to Quadratic Curves . 83
7.5 Results . 84
7.6 Conclusion and Limitation . 84

8. SUMMARY AND CONCLUSIONS . 86

REFERENCES . 88

APPENDIX A. ROOTS OF CUBIC EQUATIONS. 93

A.1 Cardano’s Formula for Single Root . 93
A.2 Three Real Roots. 94
A.3 General Cubic Equations . 94

APPENDIX B. DERIVATION OF MIN ECCENTRICITY WEIGHT . 95

ix

LIST OF FIGURES

FIGURE Page

1.1 Different spline curve examples with the same control points. The control points
are high lighted in red while the control polygons are high lighted in green. The
blue curves from left to right are: cubic Bézier curves, uniform cubic B-Spline,
uniform cubic Catmull-Rom spline. 2

1.2 Comparison of different C2 curves with the same control points. First row from
left to right: 6-point interpolatory subdivision curve [1], C2 Catmull-Rom spline
[2]; second row from left to right: C2 interpolating cubic B-spline [3], κ-Curve[4].. . 3

3.1 Moving one control point continuously for a piecewise clothoid curve can result in
a discontinuous change in the curve as shown on the right where the curve suddenly
flips over. 13

4.1 Notation of a polynomial quadratic curve.. 17

4.2 Geometric condition of a quadratic curve with monotonic curvature. |Q0Q1| =
|Q1Q̃2| and the green spot is the critical point of the parabola. 19

4.3 All eight cases of critical points a rational quadratic curve segment can have. Ra-
tional Bézier curves may have 0, 1 or 2 critical points of curvature within the
parameter range (0,1). Solid black lines are Bézier control polygons, red lines are
rational Bézier curves, blue lines are axes of symmetry for the conic sections. The
first row shows a hyperbola (first two images) and a parabola (last two images),
each of which can have one or zero max curvature points within a rational Bézier
curve. The last row shows an ellipse, which may have 0, 1 min, 1 max, or 1 min
and 1 max curvature points. 23

4.4 Examples of cubic curves with different critical points. The left and right picture
have one and three local maximum curvature points in green. The middle one has
two local maximum curvature points in green and one local minimum curvature
point in black. 25

4.5 Elevation to cubic curve from a quadratic curve. In this picture, Q1 is the middle
point of line segment Q0Q̃2 so that Q0 is the critical vertex of the parabolas. The
red points and lines are the quadratic control polygon.The black points are cubic
control points. The green spot is local maximum curvature of the blue curve. 26

4.6 The regions of different monotonicity of our cubic curve. 29

x

4.7 Our restricted cubic curve can be defined purely by the angles between three edges
and the lengths of the edges according to the angles. 31

5.1 Notation and subscripts of the input points for open and closed curves. 34

5.2 Two quadratic curve segments can be connected in a convex or a concave way
satisfying G1 condition. 36

5.3 Connecting two polynomial quadratic curve segments. 41

5.4 Plot of the curvature on the two sides of the join point when moving from one end
to the other end on the line segment. 41

5.5 Iterations of our optimization showing convergence with control points (black
boxes) and maximum curvature positions (green dots). From left to right: our
initial guess, after 1 iteration, after 2 iterations, and final convergence after 30
iterations. 44

5.6 Our curve (brown) shown with control points as block boxes. Green points are po-
sitions of local maximal curvature magnitude. We also draw the curvature normal
for the curve (purple). Our curve is G2 everywhere as shown in the highlighted
region except at inflection points where the curve is G1 and the sign, but not mag-
nitude, of the curvature changes. 46

5.7 The red control point is not at a critical point of curvature, which is decreasing.
However, all local maxima of curvature magnitude appear at control points. 47

5.8 The creation of a cusp, which can only happen at control points with our method. . . . 48

5.9 The original curve in blue with the new curve in brown drawn on top. While control
points have a global influence on the curve, that influence drops dramatically with
distance from the control point, which creates the effect of local influence. 49

5.10 κ-Curve examples of a cartoon bear and elephant. 51

5.11 κ-Curve examples of a bird, a plane and pumpkin. 52

5.12 κ-Curve examples of a horse and a rose. 53

6.1 A rational Bézier curve with unit weights for the two end-points and different
ellipses generated by modifying the weight of the central control point, which is
set to 0.3 (blue), 0.7 (blue), and 0.593 (red), which is the minimal eccentricity
weight for these control points. 60

6.2 Each row contains the same input points {Pi} but uses different weights for the
input points in each column. The weights from left to right are: 0.6, 1, 2, and our
clamped min eccentricity weight. 61

xi

6.3 The purple lines show curvature normals. Each picture uses the same input points
with different weight functions. From left to right: min-eccentricity weights,
clamped min-eccentricity weights, and the original κ-curve. 72

6.4 Comparisons between different weight choices. Left to right: min eccentricity
weights, clamped min eccentricity weights, original κ-curve. 73

6.5 An asymmetric example with non-uniformly spaced control points. From left to
right: min eccentricity weights, clamped min eccentricity weights, original κ-curve. 74

6.6 Clamped minimum eccentricity weight curves with tension values µi set to 1 (left)
and with the weight of the top input point set to 2 (middle). The right picture shows
the overlapping curves for comparison. 74

6.7 The creation of a cusp using clamped min eccentricity weights. Moving the 2nd

and 4th points closer creates a cusp at an input point. 74

6.8 The blue/red curves show our curves before/after moving a single input point. De-
spite the global nature of the optimization, the change in the curve tends to decrease
with distance from the input point. 75

6.9 Curve optimization. Each image has the same input points with the error shown
below. Each row shows the initial guess (left), after 60 iterations of refining the
initial guess (middle), and the result of our optimization (right). The first row uses
weight 1 while the second row are our clamped min eccentricity weights. The top
middle picture corresponds to the κ-curve result in [4]. 75

6.10 Circle reproduction with three (top) or four points (bottom). The left column has
input points with central angles less than π. The right has points with one central
angle over π, which leads to a non-circular curve. 77

7.1 Connect two single quadratic or cubic pieces as a whole curve segments. Quadratic
control points are rendered in red {Qi}, while the cubic control points {Ci} are in
black. 80

7.2 All the three pictures have the same input points and the same curvature assigned
for each input point. Compare to the left picture, the tangent direcion of the right
point of the middle and the right pictures are rotated 7.5◦ in the clockwise and
counter-clockwise directions. 84

7.3 The three pictures have the same input points and all input points are assigned the
same tangent directions. Compared to the left picture, the curvature of the right
point in the middle and the right pictures are multiplied by 0.7 and 1.4.. 85

xii

LIST OF TABLES

TABLE Page

4.1 Quadratic shapes based on the discriminant. 21

xiii

1. INTRODUCTION

Curve modeling has a long history in computer graphics research and industrial applications,

finding use in drawing, sketching, data fitting, interpolation, animation, digital arts, architecture,

as well as vehicle engineering. This rich application space has led to decades of research for

both representing and modifying curves. The goal of such curve representations is to provide the

user with control over the shape of the curve while building a curve that has certain geometric

properties. These properties may include smoothness, interpolation of various points, and locality.

To define and manipulate these curves, many researchers have relied on polynomial curves,

which are a parametric form for shape that has been used extensively [5, 2, 1, 3, 6, 7, 8, 9]. Poly-

nomials have a simple algebraic expression and are C∞ smooth; so polynomial curves have the

advantages of continuity and are easy to compute with. The choices of polynomial basis can lead

to different geometric properties including interpolation, smoothness, control of tangent directions,

etc [3]. Rational curves are extension to polynomial ones where the polynomial ring is extended

to the quotient ring of polynomials.

The algebraic expression of polynomial curves can be expand to a linear combination of the

control points and the coefficients are in terms of polynomials of some parameter. The control

points can lie on the curve to interpolate or near the curve to approximate its shape. This property,

interpolating versus approximating, defines two classes of representations. The left picture of

figure 1.1 shows an example of Bézier curves, a typical approximating curve, where the the curve is

a linear combination of the control points using the Bernstein basis. In each Bézier curve segment,

two end points are on the curve and usually other middle control points are not on the created

curve. The middle of figure 1.1 shows a uniform cubic B-Spline curve, which is a widely used

approximating curve. Interpolatory curves provide direct control over specific locations and, in

some cases, geometric features of a shape by directly manipulating points on the shape. Many

research has been done on interpolatory curves. Catmull-Rom [2, 5], interpolatory B-Splines [3]

and κ-Curves [4] are examples of interpolatory splines. The right picture in figure 1.1 shows an

1

Figure 1.1: Different spline curve examples with the same control points. The control points are
high lighted in red while the control polygons are high lighted in green. The blue curves from left
to right are: cubic Bézier curves, uniform cubic B-Spline, uniform cubic Catmull-Rom spline.

example of a uniform Catmull-Rom spline where all control points are interpolated. Figure 5.6

shows an example of κ-Curves where local salient points only appear at control points.

In this dissertation we focus on interpolatory curves; that is, curves that pass through a set

of control points specified by the user. While much research has concentrated on approximating

curves, many users prefer direct control over salient geometric features of the curve such as the

position of the curve. Yet interpolatory curves have a maligned past as they can often generate

geometric features such as cusps and loops away from control points that the user has a hard time

controlling (see Figure 1.2). Hence, it can be difficult for the user to control the placement of these

features or even whether or not cusps and loops should exist within the curve.

Our premise is that salient geometric features should appear only at control points for inter-

polatory curves. Position is one such example of a feature that is automatically enforced in inter-

polatory curve constructions. However, the question is then: what other features should appear

only at control points? Levien et. al. [10] argue that points of maximal curvature are also salient

features and human beings are more sensitive to local salient geometric features, e.g. sharp corners

rather than flatten points. In other words, humans are more sensitive to maximum curvature points

along curves. Indeed, we can see that lack of control over points of maximal curvature has led to

many of the historical problems with interpolatory curve constructions. For example, the propen-

2

Figure 1.2: Comparison of different C2 curves with the same control points. First row from left
to right: 6-point interpolatory subdivision curve [1], C2 Catmull-Rom spline [2]; second row from
left to right: C2 interpolating cubic B-spline [3], κ-Curve[4].

sity to produce cusps is due to a local maximum of curvature (in this case, infinite curvature) being

produced away from the control points. Hence, it makes sense to identify local maxima of cur-

vature as features of the curve and require that local maxima of curvature appear only at control

points. While derivatives are easy to compute, differential properties such as curvature are nonlin-

ear and independent of the parameterization of the curve. Controlling these intrinsic features [11]

is difficult.

Beyond simply controlling features of the curve, the types of curves a modeling tool can pro-

duce are also important. While polynomial curves are prevalent due to their ease of use, circles

are important shapes due to their common occurrence in every day life whether part of images or

cylindrical or spherical 3D shapes. Therefore, a useful curve representation [12] would be able

to represent shapes such as circles exactly. In particular, if the interpolated control points lie on a

circle, even if they are not equally spaced, it would be reasonable to expect that a circle would be

3

reproduced. When the control points do not lie on a circle, the curve should be “fair” where “fair”

means the curvature plot should be simple [13].

Also, because we envision these curves to be controlled by artists, the curve should change

continuously under continuous motion of the control points. This last property is trivially satisfied

by many interpolatory curve constructions, but not all. For example, Figure 3.1 shows an example

of continuous movement of control points for a clothoid curve [9] that produces a discontinuous

change of the resulting curve. The curve may suddenly change shape as their control points are

dragged), introducing a loop where there was none before.

1.1 Organization and Contribution

We review the general definition of curve and curvature from differential geometry in Chap-

ter 2 and related curve modeling work in Chapter 3. Our contribution starts from Chapter 4. We

first analyze the geometric properties and monotonic curvature condition of polynomial quadratic,

rational quadratic and polynomial cubic curves in chapter 4. Then we develop our own idea of

utilizing the parameter range with monotonic curvature to create shape primitives with desired

curvature properties. And in Chapter 5, 6, 7, we compute the curvature at end points of such

shape primitives and develop two frameworks to compound a series of the shape primitives in a

G2 way except inflection points, where the continuity is G1. We should point out that the primary

application envisioned for these splines is more for artistic design, as opposed to CAD. Thus the

occasional lack of G2 continuity is not an issue. In one framework we compute a single curve seg-

ment that interpolates the input point somewhere in its domain. While in the other framework, we

build a curve segment between each pair of two sequential input point in a Hermite interpolation

way with predefined tangent and curvature constraints. In both frameworks we propose to create

interpolatory curves where the local maximum of the absolute value of the curvature of the curve

only appears at control points.

Besides the different shapes of the primitives, we try to involve more degrees of freedom of the

curve to provide more shape feature control for users. We extend the quadratic curve in Chapter 5

to rational quadratic curves in Chapter 6 and polynomial cubic curves in Chapter 7. In those two

4

chapters, we let users to control local sharpness at the input points and partially let users choose

the curve direction.

We use an iterative optimization method to rapidly estimate the result by holding some of

the constraints as constants and solving for the rest. This fast solution can run in real time for

engineering applications with small error tolerance. We build a box constrained optimization in

addition to the fast solution to create a refined, converged result.

The contribution of this dissertation can be summarized as

• We create a series of shape primitives with monotonic curvature properties in Chapter 4.

• We build two schemes of connecting multiple curve segments in curvature continuity and

interpolating the input points as local curvature maxima in Chapter 5, 6, 7.

• We develop a two-stage numerical method to solve the curve optimization problem with a

fast approach and an accurate numerical optimization in Chapter 5, 6, 7.

5

2. BACKGROUND

2.1 Curves

Generally a curve r is a continuous map [14] from a simple one dimensional domain D to

linear space Rn where n ≤ 1:

r : D −→ Rn (2.1)

t 7−→ r(t) (2.2)

Here the domain can be any simple connected one dimensional space, like real numbers R, inter-

vals [a, b] or a loop S1 for a closed curve.

The image of the map can also reveal the properties of the curve. A constant map is always a

single point. An injection is a curve without self-intersections. If there is only a finite number of

points in the domain which are mapped to some image with multiple pre-images, we say the curve

has self-intersections. If the images with multiple pre-images have a positive measure, the curve

may overlap with part of its self. An example is a doubled ray: r(t) = (t2, 0). The map can be

surjective. Extreme examples are Peano curves and Hilbert curves. They are continuous but non

differential curves. In geometric modeling, we usually do not use such fractal curves as modeling

tools. So, in this dissertation, we will focus on curves with at least continuous first derivatives

except for at most a finite number of points in the domain. And we restrict that, for any point in

the domain, there is a neighborhood that the curve is injection.

6

2.1.1 Parameterization

We can easily modify the domain to its homomorphic space by re-parameterizing the curve.

For any continuous map f from R to R, we can write the re-paremeterized curve r̃ = r ◦ f as

r̃ : R −→ Rn

t 7−→ r(f(t))

Similar to curve segment, we can always map interval [a, b] to [0, 1] by different polynomial func-

tions

gn : [a, b] −→ [0, 1]

t 7−→ (
t− a

b− a
)n

where n can be any natural number. To avoid unnecessary singular points, we require the derivative

of the re-parameterization and the derivative of the curve are non zero.

r′(t) 6= 0

f ′(t) 6= 0

The arc length can be computed by integrating the length of the derivative of the curve [14].

Given a curve r(t) on [a, b], the arc length from parameter a to some parameter t ∈ [a, b] can be

defined as

s(t) =

∫ t

a

|r′(u)| du, t ∈ [a, b] (2.3)

Notice the arc length s(t) is always increasing about t, so we can write t as an inverse function

about s. If we replace t with t(s) in the definition of r(t), we have a curve r in its arc length

parameterization:

r(s) = r(t(s)), s ∈ [0,

∫ b

a

|r′(u)| du].

7

The advantage is the derivative of the curve always has unit length with an arc length parame-

terization: ∣∣∣∣drds
∣∣∣∣ = ∣∣∣∣drdt dtds

∣∣∣∣ = ds

dt

dt

ds
= 1.

2.1.2 Continuity

Continuity defines the “smoothness” of a curve. A curve r(t) with a simple parameterization is

said to be Cn continuous if the n-th derivative of r(t) is continuous. If curve r(t) is Cn continuous

for an arbitrary positive integer n, we say r(t) is C∞ infinity continuous. Cn continuity is called

“parametric continuity”. As indicated by the name, the parametric continuity depends on the pa-

rameterization. Different parameterizations may result in different parametric continuity. Another

type of continuity is called geometric continuity. If we have a curve r(s) in its arc-length parame-

terization, then the n-th continuous derivative of r(s) indicates the n-th geometric continuity Gn.

Similarly we can define G∞ if the curve is Gn for any positive n.

We are interested in low order continuity: C0, C1, C2, G0, G1, G2. Higher order of continuity

can provide smoother shapes but it is not necessary for visual fairness for humans [10] and will

increase the complexity of curve modeling. C0 is the same as G0, which means the curve is simply

connected. C1 means the tangent vector is continuous along the curve and this depends on the

parameterization. G1 only require the tangent directions to be continuous, because the tangent

vector is always normalized in arc-length parameterization. C2 is the second order derivative of

the curve. G2 means the curvature continuity which will be discussed in the following section.

Curvature is also an intrinsic property of the curve. In some papers, the curvature continuity is also

called “Visual C2” or V C2.

2.2 Curvature

Curvature is the measure of how bend a curve is. For 2D and 3D curves, the second derivative

of the curve is always parallel to the normal vectors: r̈(s)‖n(s). We define the curvature κ(s) of

the curve at parameter s as the signed length of the second derivative of the curve according to the

8

normal direction:

κ(s) := r̈(s) · n(s) =

 |r̈(s)|, r̈(s) · n(s) ≥ 0

−|r̈(s)|, r̈(s) · n(s) < 0
(2.4)

In CAGD, parametric curves usually are not in arc length parameterization. For 2D curves

r(t) = (x(t), y(t)) with any valid parameterization, the curvature is

κ(t) =
r′′(t) · r′(t)⊥

|r′(t)|3
=

x′(t)y′′(t)− x′′(t)y′(t)

(x′(t)2 + y′(t)2)3/2
. (2.5)

The two equations above are the same under re-parameterization. In differential geometry, we have

the theorem that:

Theorem 1. Intrinsic properties like curve length, curvature will not change under re-parameterization

or rigid transformation.

2.2.1 Critical Points of Curvature

The curvature defines how a curve bends. A larger absolute value of curvature means the curve

bends more, or visually the curve is more sharp at high curvature points. A low curvature mean the

curve looks more flat. A straight line has a constant zero curvature. Since the sign of the curvature

depends on whether the curve is “turning left” or “turning right”, we are interested in the absolute

value of the curvature.

In this dissertation, we call points on a curve “critical points” when the derivative of the curva-

ture at those points are zero

{r(t)|κ′(t) = 0}.

So critical points means local maximum or minimum curvature points.

2.2.2 Curvature Control

Curvature distribution over a curve or points of min/max curvature is not something that can be

easily controlled for most curve constructions. Levien [10] states that high geometric continuity

Gn can provide fair shapes for human perception. However G3 and G4 continuity require many

9

constraints and increase the complexity of the construction. Yet G2 continuity provides good

fairness quality and creates curvature continuity across the object. Curvature continuity may be

important for physical reasons, like reducing drag coefficients for aircraft, but also has aesthetic

benefits. For example, reflections in car bodies depend on the normal of the shape. For G1 shapes

where the normal changes continuously over the object, reflected lines may have sharp corners at

these discontinuities where none may exist within the environment. This lack of continuity is not

desirable from an aesthetic perspective and curvature continuity is required to avoid such problem.

In this proposal, we will focus on G2 continuity or curvature continuity.

In addition to curvature continuity, the distribution of the curvature also includes the variation

of the curvature. A small variation or a monotonic distribution of curvature usually can provide

a more fair shape. We would list some typical types of spline curves or surfaces with curvature

control. Levien [10] provides a more complete discussion about curvature based fairness.

2.3 Polynomial Curves

Polynomial curves are curves whose coordinates are in polynomial about the parameter accord-

ing to some coordinate basis. The advantages of polynomial curves in CAGD are the simple form

of the curve and ease of use. The same polynomial curve can be expressed in different ways for the

ease of computing. Most polynomial curves share a similar form: a linear combination of control

points using polynomial coefficients. We can express the curve in Lagrange basis [15], Bernstein

basis, and many other choices. In this dissertation, we will use the Bézier form of polynomial

curves in Bernstein basis for their simple algebraic properties.

Typically a Bézier curve with control points {P0, P1, · · · , Pn} is defined as

r(t) =
n∑

i=0

(
n

i

)
(1− t)n−itiPi, t ∈ [0, 1] (2.6)

Bézier curves have lots of good mathematical properties. The curve is always inside the convex

hull of the control polygon. Bézier curves can be constructed by interpolating pairs of control

points in a hierarchical way which is called blossoming construction. And a Bézier curve in degree

10

n can always be elevated to degree n+1 by subdividing the control polygon and reassigning the

control points. A more detailed discussion about Bézier curves can be found in Farin’s textbook

in CAGD [3]. We take advantage of degree elevation when constructing a restricted class of cubic

curves with monotonic curvature later in this dissertation.

11

3. RELATED WORK

3.1 Interpolatory Curves

There are large numbers of interpolatory curve constructions that have been developed, and we

cannot provide an exhaustive list but refer to Hoschek’s book [16] for many such methods. Polyno-

mial and rational functions are commonly used to represent interpolatory curves like Bézier curve,

Hermite curves [3], etc. Catmull-Rom splines [2, 5] are one of the more common interpolatory

curve representations and are combinations of Lagrange interpolation with B-spline basis func-

tions. Subdivision curves [17, 1] can also be used to model interpolatory splines. Cubic splines,

formed from approximating B-splines, interpolate points with C2 continuity through the solution

to a tri-diagonal system of equations [3]. Different data-dependant parameterizations, such as cen-

tripetal or chordal parameterizations, can be used to control the shape of these curves as well. In

the case of C1 Catmull-Rom splines, such a choice can guarantee that no cusps appear except

at control points [18]. However, these results do not extend to C2 Catmull-Rom splines. These

constructions are easy to create and smooth, but enforce only parametric properties rather than

geometric properties such as curvature in their construction. While all of these constructions build

interpolatory curves, even with curvature continuity, none allow control over curvature. Figure 1.2

shows a comparison of many of these methods versus our construction. Note that all of these

curves create cusps or have local maximum curvature points away from control points except for

our curve.

3.2 Curves with Curvature Distribution Control

More related to our method are classes of curves that, not only interpolate control points, but

control curvature in some way. Higashi et al. [19] restricted the locations of control points of

Bézier curve to get monotonic curvature and generated a C2 spline. The “Typical-Curve” [20]

and “Class A” Bézier curves [6] have monotonic curvature, but few degrees of freedom and can

be difficult to control when moving the points. Clothoids, also known as Euler spirals [21, 22, 9],

12

are perhaps the best known such curves. These curves have the property that the curvature of the

curve changes linearly with respect to arc length. Hence, piecewise clothoid curves have local

maximum curvature magnitude at the interpolated points. Such curves would be ideal for our

purposes except that continuous motion of the control points does not always create a continuous

deformation of the curve as is illustrated in Figure 3.1. Log-aesthetic curves [23, 24, 25, 26] are

similar to clothoids (including clothoids are a special case) and have curvature plots that increase

exponentially with respect to arc length. Levein et al. [10] also describe a two parameter spline

family modulo conformal transformations.

Figure 3.1: Moving one control point continuously for a piecewise clothoid curve can result in a
discontinuous change in the curve as shown on the right where the curve suddenly flips over.

3.3 Quadratic Curves

Beyond parametric continuity, researchers have studied the conditions for geometric continuity

as well. In addition to controlling curvature, our method starts from piecewise quadratic curves

that meet with G2 continuity. Most curve constructions require cubic curves to generate C2 or

G2 curves, but G2 quadratic curves have appeared in the past. Schaback [27] created a piecewise

quadratic G2 Bézier curve to interpolate a list of non-inflecting points, which means the sign of

the curvature of the curve should be always positive or always negative. This approach creates a

quadratic Bézier curve between interpolated points but tends to produce flat curves at the interpo-

lated points. Feng et al. [7] modified this approach and build a G2 quadratic curve to interpolate

13

a list of points with associated tangent directions where the end points of each quadratic appear

between interpolated points. Each single curve segment interpolates a control point on the interior

of the parameter range for the curve while remaining G2 at the join points for the curve. Like

Schaback, Feng’s approach is restricted to non-inflecting points, though their numerical solver

can be applied on an “S” shape. Gu et al. [8] uses quadratic Bézier curve to interpolate a list of

points as G1 joints with arbitrary tangent directions. Our approach to creating G2 quadratic curves

differs from all these approaches, and we develop an explicit solution of the join point between

two quadratics to enforce G2 continuity. In addition, we consider the added condition that control

points are interpolated at maximal curvature magnitude locations.

We [4] utilize Feng’s approach to interpolate a series of points at local maximum curvature

points on a 2D plane as a curve modeling tool called “κ-Curves”. The quadratic Bézier curve

components are parabolas and all have a unique max curvature point. κ-Curves enforce a local

maximum curvature at all input points. However, we relax the G2 condition at join points (where

two Bézier curves meet) that form inflection points. Instead we require that the absolute value of

curvature is continuous, which means that κ-Curves can reproduce curves with inflection points.

We enumerate the desired geometric criteria and use an iterative method to create a curve with

those properties. Unfortunately, the iterative method does not guarantee convergence of the result,

though the method appears to work well in practice. In addition, the polynomial nature of their

representation means that common shapes such as circles cannot be reproduced.

3.4 Elliptical Shapes

Arc or circular splines are widely used to represent circles. Hoschek [28] inserts an arc of

a circle between each pair of adjacent control points and connect all arcs with G1 continuity at

the control points. Meek [29], Yeung [30], and Kurnosenko [31] utilize biarcs, two circular arcs

connected using G1 point, between two control points and interpolate given tangent vectors at the

control points where the curve is G1. Meek [32] uses C-Shape curves of an arc and a conic to

interpolate points, tangent vectors, and curvatures. Piegl [33] developed a method to estimate the

tangent directions at control points and then interpolate data using biarcs. While these methods

14

can obviously reproduce circles, the curves lack curvature continuity and do not allow the user to

control points of local maximum curvature.

Many non-polynomial methods have been developed to represent circles as well. Wenz [34],

Sequin [35] and Sun [36] compute local circle arcs using three adjacent control points and then

blend each pair of the adjacent circles to obtain a C2 spline though the authors do not control the

placement of curvature maxima. Schaefer [37] creates interpolatory curves through subdivision

that can reproduce circles, though the method is sensitive to the parametric spacing of points along

a circle.

Rational quadratic polynomial curves form conic sections and have the capability to represent

circles exactly. Xu [38] and Canton [39] researched the geometric properties of conic sections in

rational Bézier form. Similar to [27], [40] explored the existence and properties of interpolating a

set of non-inflecting points using G2 connected conic splines. Yang [41] compute a G1 quadratic

interpolatory splines and then adjust the tangent vectors at control points and the weights of the

Bézier control points to achieve a G2 curve. In this paper, we use G2 almost everywhere connected

conic splines to interpolate a series of 2D points with local max curvature points only occur at

the interpolated points. Unlike many papers, our input points do not need to be non-inflecting.

At inflection points, we maintain continuity in the magnitude of curvature, though the sign of

curvature inverts.

15

4. CURVE PRIMITIVES*

We’ll start from planar curve primitives with their geometric properties. Some properties like

arc length, curvature can be extended to 3D spatial curves or higher dimensional curve. However,

we focus on planar curves and leave higher dimensional curves as further research.

Quadratic and cubic curves are widely used in geometric modeling, art design, architectures,

and related areas due to its simple algebraic structures and curvature distributions. This chapter

will mainly talk about the construction, curvature and other intrinsic properties of quadratic curves,

and cubic curves.

4.1 Polynomial Quadratic Curves

A non degenerate polynomial quadratic curve is always a parabola or part of a parabola. We

define a polynomial quadratic curve by three distinct planar points {Q0, Q1, Q2} ⊂ R2 in Bernstein

basis about parameter t ∈ [0, 1]:

r2(t) = (1− t)2Q0 + 2(1− t)tQ1 + t2Q2 t ∈ [0, 1]. (4.1)

Equation 4.1 shows the definition of our polynomial quadratic curve. When the three control

points are co-linear, including three points are on a straight line, two points collapsed or all points

collapsed, the curve will be a straight line in Euclidean space. We call the curve degenerate in these

cases. Usually three distinct co-linear points will not affect the discussion about the algebraic and

geometric properties in the following sections.

If two or all three points collapsed, the collapsed points may become singular points and the

some algebraic values like curvatures may have a zero denominator at those points. To avoid these

*Part of this chapter is reprinted with permission from “κ-Curves: Interpolation at Local Maximum Curvature”[4]
by Z. Yan, S. Schiller, G. Wilensky, N. Carr, and S. Schaefer, 2017. ACM Trans. Graph., vol. 36. Copyright
2017 by ACM. DOI: https://doi.org/10.1145/3072959.3073692. And part of this chapter is reprinted with permission
from “Circle reproduction with interpolatory curves at localmaximal curvature points”[12] by Z. Yan, S. Schiller, and
S. Schaefer, 2019. Computer Aided Geometric Design, vol. 72, pp. 98-110. Copyright 2019 by Elsevier. DOI:
https://doi.org/10.1016/j.cagd.2019.06.002

16

Figure 4.1: Notation of a polynomial quadratic curve.

degeneration, we require all control points to be distinct and discuss collapsed cases separately.

4.1.1 Curvature Distribution

The curvature of a parabola in Bézier form has a simple expression. We substitute the defini-

tion (4.1) into the curvature formula (2.5) and get

κ2(t) =
∆(Q0, Q1, Q2)

||(1− t)(Q1 −Q0) + t(Q2 −Q1)||3
(4.2)

Directly we have the curvatures at two end control points Q0 and Q2 are

κ2(0) =
∆(Q0, Q1, Q2)

||Q1 −Q0||3
(4.3)

κ2(1) =
∆(Q0, Q1, Q2)

||Q2 −Q1||3
(4.4)

So when the triangle ∆(Q0, Q1, Q2) is degenerate, the curvature is constant zero. For non

degenerate cases, the signed area of the triangle ∆(Q0, Q1, Q2) is fixed so the curvature of the

curve is always positive or negative. The intuitive understanding is a parabola is always convex. If

we extend the parameter’s range to (−∞,+∞), the absolute value of the curvature will increase

from zero to some positive number then decrease to zero. We can compute the parameter value t̃

17

corresponding to the maximum absolute curvature by computing the root of the derivative of the

curvature: κ′
2(t) = 0 as

t̃ =
(Q0 −Q1) · (Q0 − 2Q1 +Q2)

||Q0 − 2Q1 +Q2||2
. (4.5)

4.1.2 Curvature Monotonicity and Max Curvature Points

The curvature of a parabola is monotonic on each side of the critical point at parameter t̃ in

the last section. For quadratic curve restricted on the interval [0, 1], if the parameter t̃ is outside

interval [0, 1], we obtain a quadratic segment with monotonic curvature. To get a more clear view

when the curve r2(t), t ∈ [0, 1] has monotonic curvature, we compute a necessary and sufficient

condition.

Without loss of generality, we can transform these control points to a canonical coordinate

system via a rigid transformation to {(0, 0), (a, 0), (x, y)} where a ≥ 0. Ridid transformations

do not affect curvature, so any curvature properties are maintained by this transformation. Hence,

this quadratic has few degrees of freedom, which makes analysis simpler. If we compute κ′
2(t) =

0 and solve for the parameter t̃ corresponding to the critical point, we find that the parameter

corresponding to the single critical point of curvature appears at

t̃ =
a(2a− x)

(x− 2a)2 + y2
.

If we assume y ≥ 0, the curvature of curve r2(t) will go up from zero to some positive number

κ2(t̃) on interval t ∈ (−∞, t̃] and down to zero on t ∈ [t̃,+∞). Restricted on [0, 1], the derivative

of curvature should be less than or equal to zero to create a monotonically decreasing curvature

along this curve. When x ≥ 2a, given that the denominator is always greater than or equal to

zero, t̃ ≤ 0, the quadratic curve will have monotonically decreasing curvature. When x < 2a and

y2 > (2a− x)(x− a), we have t̃ ∈ (0, 1), i.e. the local maximum curvature point always appears

on the interior of the curve. And when y2 ≤ (2a − x)(x − a), t̃ is always greater than one so the

curvature is increasing along the curve and the free end of the curve is the maximum curvature

point.

18

We can summarize the algebraic result above as following:

Theorem 2. In a set of quadratic control points {Q0, Q1, Q2}, if the angle ∠Q0Q1Q2 is an acute or

right angle, the quadratic Bézier curve must have one local maximum curvature point on it interior

with parameter t ∈ (0, 1). When angle ∠Q0Q1Q2 is obtuse angle, assuming the edge Q1Q2 is

equal or longer than edge Q0Q1, we can project point Q2 to line Q0Q1 at Q̃2. If |Q1Q̃2| ≥ |Q0Q1|,

then the curvature is monotonically decreasing from Q0 to Q2 and Q0 is the maximum curvature

point on parameter range [0,1].

Corollary 2.1. If

min(
|Q0Q1|
|Q1Q2|

,
|Q1Q2|
|Q0Q1|

) ≤ − cos∠Q0Q1Q2,

the curvature on the parameter range [0, 1] is monotonic.

Figure 4.2 shows this case, geometrically.

Figure 4.2: Geometric condition of a quadratic curve with monotonic curvature. |Q0Q1| = |Q1Q̃2|
and the green spot is the critical point of the parabola.

19

4.2 Rational Quadratic Curves

A general rational quadratic curve of control points {Q0, Q1, Q2} associating weights {w0, w1, w2}

is defined as

r2r(t) =
(1− t)2w0Q0 + 2(1− t)tw1Q1 + t2w2Q2

(1− t)2w0 + 2(1− t)tw1 + t2w2

It can be proved that we can re-parameterize and re-weight the curve above such that w0 = w2 = 1

without changing the image of the curve [3]. So we can and should define our rational quadratic in

such standard form [3] as

r2r(t) =
(1− t)2Q0 + 2(1− t)twQ1 + t2Q2

(1− t)2 + 2(1− t)tw + t2
, w > 0 (4.6)

If we restrict the parameter t in [0,1], the curve is defined within the triangle ∆(Q0, Q1, Q2).

When the weight w = 0, the middle control point Q1 will not affect the curve and the curve will

be the line segment Q0Q2. When we increase the weight w to 1, curve (4.6) will be exactly the

polynomial quadratic curve. When w goes to +∞, the curve will approach the control polygon

{Q0, Q1, Q2}. Figure 6.1 shows different weights of curve (4.6).

4.2.1 Relationship to Conic Sections

A general planar quadratic or a conic section on a 2D plane can be written general Cartesian

form as

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0. (4.7)

The non degenerate condition of the quadratic function (4.7) is A, B and C are not all zeros at the

same time. All the following discussion assumes the quadratic is not degenerate.

The discriminant of equation (4.7) is

B2 − 4AC,

which determines the geometric shape of the curve. The geometric shape of equation (4.7) can

20

be ellipse, including circles, parabolas and hyperbolas. The exact shape depends on the discrim-

inant. Table 4.1 shows the type of the shape according to the conditions on the coefficients in

equation (4.7).

B2 − 4AC Shape
= 0 parabola
< 0 ellipse

when A=C and B=0, circle
> 0 hyperbola

Table 4.1: Quadratic shapes based on the discriminant.

It can be proved that the curve defined by equation (4.6) is always a conic section. Equa-

tion (4.6) is the parametric definition of a conic section while equation (4.7) is the implicit def-

inition. We use the implicit form of a conic section to help restrict the shape of a curve in later

sections. If we restrict the parameter t on interval [0, 1], the curve segment is always inside the

polygon of the control points. And if we extend the parameter to R, the curve define by equa-

tion (4.6) can be extended to the full curve of a hyperbola, parabola, or an ellipse. Notice when the

curve is part of an ellipse, the domain R will only define an ellipse without a single point. Only

when we add the infinity point to R so that the domain is

R̄ = R ∪ {∞},

the curve can be a closed ellipse.

On the other side, for any given conic section, pick two distinct points on the curve. If the

curve is a hyperbola, the two points need to be on the same branch. If the tangent vectors at the

two points are not parallel, we can always take the two points as {Q0, Q2} and pick the intersection

of the two tangent vectors as Q1. There is a unique weight w such that the control points {Qi}

together with weight w can reproduce the conic section by equation (4.6).

21

4.2.2 Curvature

The curvature of curve r2r(t) can be computed from equation (2.5) as

κ2r(t) =
r′′2r(t) · r′2r(t)⊥

|r′2r(t)|3
. (4.8)

Since curve r2r(t) is defined by rational quadratic function about t, the full algebraic expression

of (4.8) can be quite complicated. However we can evaluate the curvature distribution of the curve

by the curvature of conic sections because the rational quadratic curves are always part of conic

sections.

A non-circle ellipse always have two local maximum curvature points and two minimum curva-

ture points. Between two sequential curvature extrema, the curvature is monotonic. If the ellipse is

a circle, then the curvature is constant and is the reciprocal of the radius. If the curve is a parabola,

the curvature has been discussed in section 4.1. And a pair of hyperbolas has one critical point on

each branch.

Restricted on domain [0, 1], a parabola or hyperbola segment can have a local maximum curva-

ture point or have monotonic curvature. An elliptical curve segment can have monotonic curvature

or have at most two critical points. Figure 4.3 shows all eight cases.

From algebraic standpoint, we can also compute the critical points, which will be used in the

curve construction sections. We try to find all critical points with κ′
2r(t) = 0 from equation (4.8).

κ′
2r(t) is a fraction of a polynomial and the square root of another polynomial in the variable

t. The denominator of this expression depends solely on the length of the tangent r′2r(t), which is

non-negative everywhere. Hence, we only need to consider the numerator of κ′
2r(t) when analyzing

its roots. The numerator of equation (4.8) is

det(r′2r(t), r
′′
2r(t))

′(r′2r(t) · r′2r(t))−
3

2
det(r′2r(t), r

′′
2r(t))(r

′
2r(t) · r′2r(t))′ (4.9)

This expression is a quartic polynomial in t. When w = 1, the leading coefficient of the numerator

22

Figure 4.3: All eight cases of critical points a rational quadratic curve segment can have. Rational
Bézier curves may have 0, 1 or 2 critical points of curvature within the parameter range (0,1).
Solid black lines are Bézier control polygons, red lines are rational Bézier curves, blue lines are
axes of symmetry for the conic sections. The first row shows a hyperbola (first two images) and
a parabola (last two images), each of which can have one or zero max curvature points within a
rational Bézier curve. The last row shows an ellipse, which may have 0, 1 min, 1 max, or 1 min
and 1 max curvature points.

is zero and the expression degenerates to a cubic polynomial. Rewriting the numerator in the

Bézier basis yields



(1− t)4

4(1− t)3t

6(1− t)2t2

4(1− t)t3

t4



T

·



−2w3|Q0 −Q1|2 + w(Q0 −Q1) · (Q0 −Q2)

−w2|Q0 −Q1|2 + 1
4
|Q0 −Q2|2

1
2
w(Q2 −Q0) · (Q0 − 2Q1 +Q2)

−1
4
|Q0 −Q2|2 + w2|Q1 −Q2|2

−w(Q0 −Q2) · (Q1 −Q2) + 2w3|Q1 −Q2|2


. (4.10)

We care about the real roots of equation (4.10) in interval [0, 1]. A general quartic function

has up to 4 real roots. Equation (4.10) may have 0, 1 or 2 roots in range [0,1] depending on the

parameter w, which controls whether the curve is piece of a hyperbola, parabola, or ellipse. The

23

first two shapes can only have zero or one critical points of curvature in the interval (0, 1). In the

elliptical case, equation (4.10) can have up to four roots corresponding to the two maximal and

two minimal points of curvature on an ellipse, but at most two of these roots, corresponding to one

maximal and one minimal curvature point, can fall into the (0, 1) interval.

Though the full expression of the curvature of a rational quadratic curve can be quite complex,

the curvature at two end points are simple:

κ2(0) =
1

w2

∆(Q0, Q1, Q2)

||Q1 −Q0||3
(4.11)

κ2(1) =
1

w2

∆(Q0, Q1, Q2)

||Q2 −Q1||3
(4.12)

Compared to equation (4.4), the only difference is the weighted coefficient. When w = 1, the

rational case meets the polynomial case.

4.3 Polynomial Cubic Curves

4.3.1 General Cubic Curves

Cubic Bézier curves can be much more complex. A general cubic curve in the Bézier form is

defined by four points {C0, C1, C2, C3} as

r3(t) = (1− t)3C0 + 3(1− t)2tC1 + 3(1− t)t2C2 + t3C3.

Then the curvature of the cubic curve is

κ3(t) =
f

g3/2
,

where f is a quadratic polynomial about t and g is a quartic polynomial about t. The full expression

of f and g is easy to compute but long, so we omit the details. We can compute the derivative of

the curvature as

κ′
3(t) =

f ′g − 3
2
fg′

g5/2
.

24

The denominator is non-negative and numerator is a polynomial of degree 5. So theoretically a

cubic curve can have up to 5 curvature extrema if we expand the parameter t from [0, 1] to all real

numbers R. Figure 4.4 shows examples of one, two and three curvature critical points on cubic

curves. This complexity of a cubic contrasts with the quadratic, which only had a single, linear

Figure 4.4: Examples of cubic curves with different critical points. The left and right picture have
one and three local maximum curvature points in green. The middle one has two local maximum
curvature points in green and one local minimum curvature point in black.

term in its numerator. Because of this complexity, it is hard to restrict some cubic curve to have

only one local maximum curvature point. However it is much easier to define a cubic curve that

does not contain any curvature extrema within its parameter range as we will show.

4.3.2 Restricted Cubic Curves

We note that the quadratic and cubic curves are related to one another through degree elevation.

Therefore, there exists some choice of cubic control points that causes the degree of the numerator

of the derivative of curvature to collapse. We exploit this idea and begin with the degree elevation

formula for a quadratic curve.

To differ from the notations in quadratic curves, we use {C0, C1, C2, C3} as the cubic control

points in Bézier form. For arbitrary quadratic curve control by {Q0, Q1, Q2}, we can always elevate

25

the curve to cubic with the control points



C0 = Q0

C1 = 1
3
Q0 +

2
3
Q1

C2 = 2
3
Q1 +

1
3
Q2

C3 = Q2

(4.13)

without changing the curve, i.e. the two curves are identical after re-parameterization.

We intend to analyze the curvature monotonicity of the elevated curve (4.13). The critical case

of the quadratic to have monotonic curvature is when Q0 is the critical vertex of the parabola, i.e.

the case shown in figure 4.2, where point Q1 is the middle point of edge Q0Q̃2. In this case, if

we apply the elevation (4.13) to the case in figure 4.2, we have another geometric relationship of

the two middle points C1 and C2. Denote C̃2 as the projection of C2 to line Q0Q1, then C1 is the

middle point of line segment C0C̃2 as shown in figure 4.5. We will use this middle point location

to substitute the definition of C1 in equation (4.13).

Figure 4.5: Elevation to cubic curve from a quadratic curve. In this picture, Q1 is the middle point
of line segment Q0Q̃2 so that Q0 is the critical vertex of the parabolas. The red points and lines
are the quadratic control polygon.The black points are cubic control points. The green spot is local
maximum curvature of the blue curve.

26

We propose our restricted cubic curve as following: given any three distinct points {Q0, Q1, Q2},

we can uniquely compute four cubic control points as



C0 = Q0

C1 = C0+C̃2

2
= 1

2

(2
3
Q1+

1
3
Q2−Q0)·(Q1−Q0)

(Q1−Q0)·(Q1−Q0)
(Q1 −Q0) +Q0

C2 = 2
3
Q1 +

1
3
Q2

C3 = Q2

. (4.14)

4.3.3 Curvature

The reason we manufactured the curve in the way above is that the curvature distribution can

be extremely simple if we place C1 at the location in equation (4.14). The intrinsic properties

of polynomial curves will not change via translation and rotation. To make the formula simpler,

we can always put Q0 at (0, 0), Q1 on the positive semi axis of X-axis at (a, 0), here a is some

positive number. And Q2 can be any 2D point (x, y). Then the four cubic control points will be

{(0, 0), (a
3
+ x

6
, 0), (2a+x

3
, y
3
), (x, y)}.

We can compute the curvature of c(t) from Equation 2.5 as

κ3(t) =
8y(2a+ x+ 3(2a− x)t2)√

(2a+ x− 3(2a− x)t2)2 + (4yt)2
3 ,

and the derivative of the curvature is

κ′
3(t) =

96yt(2(2a+ x)(4a2 − x2 − 2y2) + (x− 2a)(12a2 − 3x2 + 4y2)t2 + 9(x− 2a)3t4)√
(2a+ x− 3(2a− x)t2)2 + (4yt)2

5

Since the curve can be flipped along the x-axis, we assume y > 0 and the sign of k′
3(t) is

decided by one term of its numerator

num(t;x, y) = 2(2a+ x)(4a2 − x2 − 2y2) + (x− 2a)(12a2 − 3x2 + 4y2)t2 + 9(x− 2a)3t4

27

where t ∈ [0, 1]. The sign of num(t;x, y) can be classified into four cases according to the location

of (x, y). num(t;x, y) has only constant, quadratic and quartic terms of t. Therefore, this equation

is exactly quadratic in t2. The sign of the quartic coefficient, and the function value at 0 and 1 will

help computing the sign of function f on the interval [0,1]. We have

num(0;x, y) = 2(x+ 2a)(4a2 − x2 − 2y2) (4.15)

num(1;x, y) = 4((x− a)(x− 2a)(x− 10a)− 4ay2). (4.16)

4.3.3.1 S Shape

When x > 4a, we have the x-coordinate of C1 larger than Q1. So the control polygon {Ci} is

no longer convex, and forms an “S” shape.

When x > 10a and |y| <
√

(x−a)(x−2a)(x−10a)
4a

, we have num(0) < 0 and num(1) > 0.

Assuming y > 0, the curvature κ(t) from 0 to 1 is going down from some positive number κ3(0) to

some negative number, then going up to a negative number κ3(1). Hence there is a local maximum

curvature point near C3.

When 4a < x ≤ 10a or (x > 10a&& |y| >
√

(x−a)(x−2a)(x−10a)
4a

), we have num(t) ≤ 0 on

t ∈ [0, 1]. So κ(t) decreases from some positive number κ(0) to some negative number κ(1).

4.3.3.2 Convex Shape

When −2a < x < 4a, the shape of the control polygon {Ci} is always convex.

When 2a < x < 4a or (−2a < x < 2a&& x2

4a2
+ y2

2a2
> 1), num(t) is negative on [0,1],

curvature κ(t) is positive and decreasing on [0,1]. So the curvature is monotonic and C0 is the

maximum curvature point on [0,1].

When x2

4a2
+ y2

2a2
< 1, we have num(0) > 0. So C0 is a local minimal curvature point.

Inside the region of the ellipse x2

4a2
+ y2

2a2
= 1, if |y| <

√
(x−a)(x−2a)(x−10a)

4a
we have num(t)

positive on [0,1]. So the curvature of the curve is monotonically increasing from C0 to C3. And

if |y| >
√

(x−a)(x−2a)(x−10a)
4a

, there is some t̃ s.t num(t) is positive on (0, t̃) and negative on (t̃, 1).

So the curvature of the curve is increasing and then decreasing, i.e. there is a local maximum

28

� � 2� 10�

2�

��, �	

2�

Figure 4.6: The regions of different monotonicity of our cubic curve.

29

curvature point on the interior of the curve segment.

4.3.3.3 Invalid Shape

When x < −2a, ray Q0Q1 is to the opposite direction of ray P0P1, and the tangent constraint

can’t be satisfied. So this case should be discarded.

4.3.4 Edge-Angle Based Definition

We introduced the construction of our restricted cubic curve in the way of elevating and modi-

fying a quadratic curve control by three points. But there are still other ways to construct the same

curve using different views. Generally any cubic Bézier curve can be defined by its control points,

or edge lengths and angles between edges, or treating the edges as vectors. In this section we will

review our curve with other construction methods.

According to figure 4.5, denote θ as the angle from vector C0C1 to C1C2 and ϕ as the angle

from vector C1C2 to vector C2C3. Since point C1 is the middle point of line segment C0C̃2, we

have

cos θ =
|C0C1|
|C1C2|

.

In triangle ∆C1Q1C2, we have
sin θ

|C2C3|/2
=

sin(θ + ϕ)

|C1C2|

and

0 < ϕ <
π

2
− θ.

We can simplify the relationships between then lengths as:

|C1C2| =
|C0C1|
cos θ

|C2C3| = 2|C1C2|
sin θ

sin(θ + ϕ)
=

2|C0C1| sin θ
cos θ sin(θ + ϕ)

(4.17)

So we can reform the construction of our curve as following: given any starting point C0 and

the initial direction of the first segment C0C1, length l of the first edge segment, two angles θ and

30

Figure 4.7: Our restricted cubic curve can be defined purely by the angles between three edges and
the lengths of the edges according to the angles.

ϕ, we can compute the location of the rest control points. The direction and the length of the first

edge can uniquely define the second control point C1. We extend the ray C0C1 and turn that ray

with angle θ, which is the direction of ray C1C2. On the ray C1C2, we find the location of C2 so

that

|C1C2| =
l

cos θ
.

We turn the ray C1C2 with angle ϕ as the direction of ray C2C3. We compute the location of C3 so

that

|C2C3| =
2l sin θ

cos θ sin(θ + ϕ)
.

Figure 4.7 shows the quantities we need to define the curve.

4.4 Hybrid Curves

Both quadratic curves and cubic curves have their own shortcomings. Figure 4.5 shows the

example of a quadratic and a cubic curve in the same control system. If we place C0 = Q0 at

(0, 0), and put Q1 at (a, 0). Assume the location of C3 = Q2 is (x, y), then when x < 2a, the

quadratic curve no longer has monotonic curvature. If x > 4a, the cubic curve is non-convex or

not curvature continuous. So we can combine the construction of the quadratic and cubic curves

such that the monotonic curvature region is larger than both of the curves. When x is smaller than

31

2a, we use the cubic control polygon, and when x is larger than 2a, we use the quadratic curve.

When x equals to 2a, the quadratic and cubic curves collapse and are identical. So if we move the

point (x, y) along the whole 2D plane, the curve will change continuously.

We restate our hybrid curve as following: given three control points {Q0, Q1, Q2}, if (Q2 −

Q1) · (Q1 − Q0) ≥ (Q1 − Q0)
2, we use the quadratic curve generated by {Q0, Q1, Q2}. Or, use

equation (4.14) to compute the cubic curve. This hybrid curve will be used as curve primitives in

a later curve modeling chapter.

32

5. QUADRATIC INTERPOLATION: κ-CURVES*

Beginning this chapter, we talk about how to use the curve primitive in chapter 4 to construct a

whole curve with multiple segments satisfying all the geometric criteria in chapter 1.

We proposed a curve modeling tool called κ-Curves [4] using quadratic curve segments to

generate an almost G2 everywhere interpolatory curve. More specifically, κ-Curves are piecewise-

quadratic curves that interpolate a list of control points and have local maxima of curvature only

at the control points. The advantage is that salient features of the curve will occur only at control

points to avoid the creation of features unintended by the artist.

5.1 Problem Formulation

We start from the geometric requirement of the output curve. Given an ordered set of points

{P0, P1 . . . , Pn, Pn+1} on a 2D plane, we would like to construct a curvature continuous curve (G2

curve) r(t), t ∈ D such that the curve goes through the input points {Pi} in order; that is, there

exists some parameters {ti} such that r(ti) = Pi.

The curve can be open or closed. If we want an open curve, the curve r(t) should be defined

on some closed interval and goes from P0 to Pn+1. There are n segments between the input points.

For a closed curve, to make the discussion consistent, we still want n curve segments. We take the

input points {P1, P2 . . . , Pn} cyclic. So the curve should goes from P1 to Pn and back to P1. We

add two virtual points that P0 = Pn and Pn+1 = P1. Figure 5.1 shows the subscripts of the points.

Then no matter open or closed curves, the curve should have the same n segments and the same

definition of the interpolated points. We allow P0 and Pn+1 to be at the same location for open

curves, however, the curve at P0 = Pn+1 can be considered as a G0 point on a closed curve for this

case, and P0 = Pn+1 does not need to be a curvature continuous point.

Furthermore, we would like any local maximums of the curvature magnitude (the absolute

*Part of this chapter is reprinted with permission from “κ-Curves: Interpolation at Local Maximum Curvature”[4]
by Z. Yan, S. Schiller, G. Wilensky, N. Carr, and S. Schaefer, 2017. ACM Trans. Graph., vol. 36. Copyright 2017 by
ACM. DOI: https://doi.org/10.1145/3072959.3073692

33

Figure 5.1: Notation and subscripts of the input points for open and closed curves.

value of curvature) to exist only at the Pi. This last criterion is based on the assumption that points

at which the curve bends the most, at least locally, are salient features of the curve and should be

under direct control of the user. Notice that this last property does not imply that the derivative of

the curvature magnitude must be zero at every Pi. Hence, curvature may be locally increasing or

decreasing at a interpolated point Pi. However, if a maximum of the curvature magnitude exists, it

appears at an interpolated point.

5.2 Construction

The main idea of κ-Curves is to find a parabola segment including its critical point for each

input. We align the critical point of the parabola at the input and rotate and adjust the shape of the

parabolas so that all pieces of parabola can be connected G1 and G2 one by one.

To achieve those goals, we need to analysis the geometric properties of parabolas and prove

the existence and uniqueness of such curve. The intrinsic properties of quadratic curves have been

well discussed in chapter 4. We will focus on the interpolatory properties in this section.

For each input point Pi, denote the desired parabola segment is

ci(t) = (1− t)2Qi,0 + 2(1− t)tQi,1 + t2Qi,2, t ∈ [0, 1]. (5.1)

34

Here {Qi,0, Qi,1, Qi,2} are the control points we need to find.

5.2.1 Interpolation

First we need to the curve {ci} to interpolate the input points {Pi}, so we need some parameters

ti ∈ [0, 1] s.t.

ci(ti) = (1− ti)
2Qi,0 + 2(1− ti)tiQi,1 + t2iQi,2 = Pi. (5.2)

5.2.2 Curvature Extrema

Then the input point should be the local maximum curvature point. So the points {Pi} need to

be at least critical points on the curve. Notice the only critical point of a parabola is always a local

maximum curvature (in absolute value) point. So here we need and only need the derivative of the

curvature at input points to be zero. Recall the curvature of ci from equation (4.2)

κi(t) =
∆(Qi,0, Qi,1, Qi,2)

||(1− t)(Qi,1 −Qi,0) + t(Qi,2 −Qi,1)||3

We need κ′
i(ti) = 0. From equation (4.5) we know the root of the derivative of the curvature

ti =
(Qi,0 −Qi,1).(Qi,0 − 2Qi,1 +Qi,2)

||Qi,0 − 2Qi,1 +Qi,2||2
. (5.3)

5.2.3 Continuity

We aim to piece these curves together to form a curvature continuous (i.e; G2 curve). Note that

it is not possible to create a G2 everywhere curve using piecewise quadratics if the sign of curvature

changes along the curve. The reason is that quadratic curves cannot possess zero curvature unless

the curve is trivially a straight line. Hence, unless our curves are strictly convex, we cannot hope

to build piecewise quadratic curves that are strictly G2 everywhere.

Our compromise is to build piecewise quadratic curves that are G2 almost everywhere. The

only place where our curves will lose continuity of curvature will be at points where the curve

changes from convex to concave or vice versa. Hence, unlike standard spline constructions, the

35

geometric smoothness of our piecewise construction changes dependent on the geometry of the

curve instead of how the curve is decomposed into polynomial pieces. Conditions for joining

quadratic curves with G2 smoothness have been discussed before [27]. However, given that it is

not well known that building curvature continuous quadratic curves is even possible, we derive the

conditions here and provide a closed-form solution, which will then be part of our optimization in

section 5.4.

Our curves consist of multiple quadratic curves, each with control points Qi,0, Qi,1, Qi,2, per

interpolated point Pi. The G0 continuity conditions between curves are trivial and simply require

that

Qi,2 = Qi+1,0, i = {1, · · · , n}.

G1 continuity is simple as well and requires that

Qi,2 = Qi+1,0 = (1− λi)Qi,1 + λiQi+1,1, i = {1, · · · , n} (5.4)

for some λi ∈ (0, 1), together with the G0 continuity above.

Figure 5.2: Two quadratic curve segments can be connected in a convex or a concave way satisfying
G1 condition.

36

For G2 continuity, we need curvature on the sides of a connecting point to be the same. Fig-

ure 5.2 shows the two ways connecting two quadratic curve using a G1 join point. On the left case,

the two quadratic curves form a convex shape and it is possible for the join point to be curvature

continuous. However if the two curve segments form a non-convex shape, it is impossible for the

join to be curvature continuous, because the curvature of two segments have different signs but a

quadratic curve can not have a zero curvature point unless the whole curve is a straight line. So in

the right case, we weaken the G2 condition so that the absolute value of curvature is the same at

the join point. Under this assumption, the criteria will change to match the absolute value of the

curvature. Using Equation 4.4 and we have the absolute G2 condition at join points as

|∆(Qi,0, Qi,1, Qi,2)|
|Qi,1 −Qi,2|3

=
|∆(Qi+1,0, Qi+1,1, Qi+1,2)|
|Qi+1,0 −Qi+1,1|3

. (5.5)

5.3 Local Optimization

The problem is defined by equation (5.2), (5.3), (5.4) and (5.5) for n = 1, · · · , n. There are in

total 8n equation because equation (5.2) is an equation for x and y coordinates, and equation (5.4)

is two equations about 2D coordinates. The variables are {Qi,0, Qi,1, Qi, 2} for 6n degrees of

freedom and ti and λi for n degrees of freedom each. However this is a cubic system about the

variables. Though the degrees of freedom of the variables match the number of the equation, it is

hard to solve the system directly.

Here we substitute some of the variables to reduce the complexity of the system. Notice using

equation (5.4), we can represent the end points {Qi,0, Qi,2} as a function of {λi} and off-curve con-

trol points {Qi,1}, which means we can substitute equation 5.4 into equation (5.2), (5.3) and (5.5).

Then we have 4n equations with 4n variables {Qi,1, λi, ti}, where each 2D point is considered as

two variables.

Here we perform a local optimization to compute the variables to satisfy equations (5.2), (5.3)

and (5.5) in an iterative way.

37

5.3.1 Maximum Curvature Condition

We rewrite equation (5.2) to represent the off-curve control point Qi,1 as linear combination of

the input point Pi and two end points {Qi,0, Qi,2}

Qi,1 =
Pi − (1− ti)

2Qi,0 − t2iQi,2

2ti(1− ti)
. (5.6)

Substituting the equation above into equation (5.3) results in a cubic function about parameter ti:

||Qi,2−Qi,0||2t3i+3(Qi,2−Qi,0)·(Qi,0−Pi)t
2
i+(3Qi,0−2Pi−Qi,2)·(Qi,0−Pi)ti−||Qi,0−Pi||2 = 0.

(5.7)

According to equation (5.4), the coefficients of equation (5.7) only depend on {Qi,1} and {λi}. So

the algebraic meaning of equation (5.7) is that we fix {Qi,1} and {λi} and solve for {ti} in the

system of equations (5.2), (5.3) and (5.5).

While this equation could have three real roots, which would mean the solution ti is not unique,

luckily we have proved that this equation has exactly one real root in [0, 1] for any choice of

Qi,0, Pi, Qi,2.

Theorem 3. For any given distinct points Qi,0, Pi, Qi,2, equation (5.7) has a unique root ti in the

closed interval [0, 1].

Proof. To show Equation 5.7 has exactly one real root in [0, 1], we first write its coefficients in

Bézier form, which leads to an extremely simple expression. Denote the vectors v0 = Qi,0 − Pi

and v2 = Qi,2 − Pi. Then the Bézier coefficients are

(−|v0|2,
−v0 · v2

3
,
v0 · v2
3

, |v2|2)

Given that we are interested in roots of this polynomial, we divide by the positive constant |v0||v2|

38

to obtain an even simpler expression for the coefficients

(−r,−cos(θ)

3
,
cos(θ)

3
,
1

r
) (5.8)

where r = |v0|
|v2| and θ is the angle between the vectors v0 and v2. Note that polynomials in Bézier

form follow Descartes’ rule of signs for bounding the number of roots of a polynomial [42]. Since

the first coefficient is negative while the last coefficient is positive, there exists at least one root on

the interval [0, 1]. If cos(θ) ≥ 0, then Descartes’ rule of signs indicates exactly one root in [0, 1].

Therefore, we consider the case where cos(θ) < 0.

However, under this assumption, the polynomial with Bézier coefficients from Equation 5.8 is

monotonically increasing over the interval [0, 1]. We verify this fact by computing the derivative

of the polynomial, which yields the quadratic Bézier coefficients

(3r − cos(θ), 2 cos(θ),
3

r
− cos(θ)).

Both the first and the last coefficient are positive since cos(θ) < 0 and r > 0. Furthermore, we can

compute the minimum value of this quadratic, which is

3r − cos(θ)(1 + r2 + r cos(θ))

1 + r2 − 2r cos(θ)
.

This value is also strictly positive because 1 + r2 + r cos(θ) > 0. Since the derivative of the

quadratic at 0 is 6(cos(θ) − r), which is negative, the cubic function with Bézier coefficients in

equation 5.8 is monotonically increasing and has exactly one real root in [0, 1].

So equation (5.7) can be written in an explicit function about other parameters.

ti = ti(Qi−1,1, Qi,1, Qi+1,1, λi−1, λi) ∈ [0, 1] (5.9)

Given the existence of the unique root of this cubic, finding the root is simple, and there are

39

many ways to do so. A simple numerical way is to use bi-search on [0, 1]. A faster way is Newton’s

method using the derivative of the cubic. Here we use the explicit expression for roots of a cubic

from Cardano’s formula in our implementation (Appendix A). Even in the degenerate case where

all three points form a straight line (i.e; Pi = (1− α)Qi,0 + αQi,2), the cubic trivially has one root

of ti = α. Once we have ti, substituting this value into Equation 5.2 reveals the quadratic curve

that interpolates pi at the point of local maximum curvature magnitude.

The geometric meaning of the unique root in the theorem is

Corollary 3.1. Given three ordered points on a 2D plane, there is a unique parabola going through

the three points in the same order and the middle point is the critical point, or in the same meaning,

the “vertex” of a parabola.

This corollary is useful in geometric modeling. Not only does this corollary solves a local

optimization problem, it gives us a method to interpolate any three points with strong curvature

distribution property: the middle always the local maximum curvature and the curvature is de-

creasing along the two sides to the end points. This fact can be used in any curve modeling tool

which requires “salient” points controlled. Indeed this idea has been used in a blending curve

tool [43].

5.3.2 Curvature Condition at Join Points

The basic problem of the G2 smoothness at join points is if it is always possible to connect two

quadratic curve segments in a curvature continuous way. Here we explain the unique location of

the join point in both of a geometric and an algebraic way. We only illustrate the convex connection

way here in figure 5.3 since the non-convex case can be achieved by computing the absolute value

of the curvature.

To satisfy the G1 condition (5.4), the join point Qi,2 = Qi+1,0 must be on the line segment

Qi,1Qi+1,1. So when the ratio λi goes from 0 to 1, the join point will slide from Qi,1 to Qi+1,1.

The curvature on the two sides of the join point will increase or decrease continuously as shown in

figure 5.4. So there is a unique location of the join point that the curvature on the two sides meet.

40

Figure 5.3: Connecting two polynomial quadratic curve segments.

Figure 5.4: Plot of the curvature on the two sides of the join point when moving from one end to
the other end on the line segment.

41

Using Equation 4.4 and writing the G2 condition in terms of the off-curve points and λi yields

κi(1) =
∆(Qi,0, Qi,1, Qi,2)

|Qi,1 −Qi,2|3
=

∆(Qi−1,1, Qi,1, Qi+1,1)(1− λi−1)

|Qi,1 −Qi+1,1|3λ2
i

(5.10)

κi+1(0) =
∆(Qi+1,0, Qi+1,1, Qi+1,2)

|Qi+1,0 −Qi+1,1|3
=

∆(Qi,1, Qi+1,1, Qi+2,1)λi+1

|Qi,1 −Qi+1,1|3(1− λi)2
(5.11)

The G2 condition of the absolute value of the curvature

|κi(1)| = |κi+1(0)| (5.12)

creates a quadratic equation in terms of λi that has exactly one root in (0, 1), which is

λi =

√
|∆(Qi−1,1, Qi,1, Qi+1,1)|(1− λi−1)√

|∆(Qi−1,1, Qi,1, Qi+1,1)|(1− λi−1) +
√
|∆(Qi,1, Qi+1,1, Qi+2,1)|λi+1

. (5.13)

The above equations for for λi will be undefined if both triangle areas in the denominators are

zero, which can happen when enough of the {Qi,1} are co-linear or coincident. This case can be

robustly handled by adding a small constant, ϵ = 10−10, to the square roots of each such area.

The expression (5.13) of λi is about off-curve points {Qi,1} and two parameters λi−1 and λi+1.

So the meaning of equation (5.13) is we are fixing all {Qi,1}, all {ti} to solve the parameter λi.

Because we are also fixing λi−1 and λi+1, this is not a standard numerical optimization to solve all

λi. However in our experiments, this quasi optimization about the parameter λi works pretty well.

5.3.3 Input Point Interpolation

With given parameter λi and ti, the only free variables are the off curve points {Qi,1}. Any set

of {Qi,1} will result in a piece-wise quadratic curve. We need each segment interpolate the input

point Pi at Bézier parameter ti, i.e. solving equation (5.2).

Equation (5.2) is in terms of the off-curve point and join points. So we substitute equation (5.4)

into (5.2) so that we only have the variables of {Qi,1}, {λi}, and {ti}

Pi = (1−λi−1)(1− ti)
2Qi−1,1+(λi−1(1− ti)

2+2(1− ti)ti+(1−λi)t
2
i)Qi,1+λit

2
iQi+1,1 (5.14)

42

If we cluster all the n interpolation equations above, we get a linear system about off-curve

points {Qi,1}. And the coefficient matrix is a cyclic tri-diagonal matrix for a closed curve. For

open curve, the two end points Q1,0 and Qn,2 should be fixed to the input points P0 and Pn+1, so

the coefficients should be exactly a tri-diagoal matrix. We explain the details of the linear system

in the two followings sections:

Closed Curve. To make the discussion simpler, we just expand the equations in (5.14) to all

n = 1, 2, · · · , n:



P1 = (1− λn)(1− t1)
2Qn,1 + (λn(1− t1)

2 + 2(1− t1)t1 + (1− λ1)t
2
1)Q1,1 + λ1t

2
1Q2,1

P2 = (1− λ1)(1− t2)
2Q1,1 + (λ1(1− t2)

2 + 2(1− t2)t2 + (1− λ2)t
2
2)Q2,1 + λ2t

2
2Q3,1

...

Pn = (1− λn−1)(1− tn)
2Qn−1,1 + (λn−1(1− tn)

2 + 2(1− tn)tn + (1− λn)t
2
n)Qn,1 + λnt

2
nQ1,1

which is a linear system



∗ ∗ · · · · · · ∗

∗ ∗ ∗ · · · · · ·
...

...
...

...
...

∗ · · · · · · ∗ ∗


·



Q1,1

Q2,1

...

Qn,1


=



P1

P2

...

Pn


(5.15)

Open Curve. An open curve is slightly different from a closed curve. With input points

{P0, P1, · · · , Pn+1}. We are trying to construct n curve segments interpolating {P1, · · · , Pn} as lo-

cal maximum curvature points. The first and last segment should have control points {P0, Q1,1, Q1,2}

and {Qn,0, Qn,1, Pn+1}. The according interpolation equations (5.14) turn to

P1 = (1− t1)
2P0 + (2(1− t1)t1 + (1− λ1)t

2
1)Q1,1 + λ1t

2
1Q2,1

Pn = (1− λn−1)(1− tn)
2Qn−1,1 + (λn−1(1− tn)

2 + 2(1− tn)tn)Qn,1 + t2nPn+1

43

Equations (5.14) remain the same. So the equations for an open curve turns to a tri-diagonal system



∗ ∗ · · · · · · 0

∗ ∗ ∗ · · · · · ·
...

...
...

...
...

0 · · · · · · ∗ ∗


·



Q1,1

Q2,1

...

Qn,1


=



P1 − (1− t1)
2P0

P2

...

Pn − t2nPn+1


(5.16)

5.4 Global Optimization

We have established an equation system (5.2), (5.3) and (5.5) with variable {Qi,1}, {ti} and

λi. Based on the local solutions in section 5.3, we adopt a global approach to meet all the three

classes of equations one by one. In each global iteration, we first estimate the time parameters {ti}

by equation (5.9) to satisfy (5.3), then solve the join point parameters {λi} by equation (5.13) to

satisfy the G2 condition (5.5), and then recompute the location of all corner points {Qi,1} by the

linear systems in section 5.3.3. After one iteration of updating all variables, we update all the join

points {Qi−1,2 = Qi,0} using the parameter {λi}. Notice satisfying one conditions of (5.2), (5.3)

and (5.5) may break the other two. So we need to iterate this procedure again and again until

converged. At the converged status, all geometric conditions are met and the variables remain at

the same location.

Figure 5.5: Iterations of our optimization showing convergence with control points (black boxes)
and maximum curvature positions (green dots). From left to right: our initial guess, after 1 itera-
tion, after 2 iterations, and final convergence after 30 iterations.

44

This optimization converges quickly and each iteration is fast to compute since we only solve

a small, sparse linear system of equations. Figure 5.5 shows the progress of our optimization.

After just one iteration, our result is very close to the final solution, but some maximum curvature

points do not coincide with control points yet. After two iterations, the result is nearly indistin-

guishable from our final result. Even for large curves with many control points, our optimization

yields results beyond interactive speeds due to its simplicity. Furthermore, it is possible to make

the optimization even faster by starting with the results from the user’s previous control point con-

figuration as the user manipulates the curve, although we have found such improvements to be

unnecessary.

Algorithm 1 κ-Curves

1: Input: {Pi}
2: {λi} ← 0.5
3: {ti} ← 0.5
4: {Qi,1} ← Pi

5: for iterations← 1 to 60 do
6: {ti} ← cubic root of equation (5.7)
7: {λi} ← solve from equation (5.13)
8: {Qi,1} ← linearSolve equation(5.15) or (5.16)
9: {Qi,2 = Qi+1,1} ← {(1− λi)Qi,1 + λiQi+1,1}

10: return Tuples {(Qi,0, Qi,1, Qi,2)}

Algorithm 1 shows the pseudo code of κ-Curves. This general pseudo code can be used for

closed directly. For open curve, the only adjustment is on the two boundary points. Fixing Q1,0 =

P0 and Qn,2 = Pn+1, the rest will be the same as the closed curves.

5.5 Results

Our curves are designed to have maximal curvature magnitude at the control points Pi. Fig-

ure 5.6 shows the control points as hollow boxes and displays all local maxima of curvature magni-

tude as green points on the curve. Hence, green points should appear within each control point box

45

for our curve. These are the points where the curve, locally, bends the most. Despite its complex

shape, no cusps or loops exist in the curve.

Figure 5.6: Our curve (brown) shown with control points as block boxes. Green points are positions
of local maximal curvature magnitude. We also draw the curvature normal for the curve (purple).
Our curve is G2 everywhere as shown in the highlighted region except at inflection points where
the curve is G1 and the sign, but not magnitude, of the curvature changes.

Figure 5.6 also displays the continuity of the curve through the curvature normal (the normal

whose length is proportional to curvature of the curve at that point). For a curvature continuous

(G2) curve, the magnitude of the curvature normal should change continuously over the curve.

This is true for our curve everywhere except at the inflection points of the curve. At these points

the curvature normal flips orientation but maintains the same magnitude.

46

Note that it is possible that a control point does not exist at a maximum curvature point as

demonstrated in Figure 5.7. In this case, the curvature is decreasing at the highlighted point.

However, all points of maximum curvature magnitude appear at control points.

Figure 5.7: The red control point is not at a critical point of curvature, which is decreasing. How-
ever, all local maxima of curvature magnitude appear at control points.

Figure 5.8 depicts the creation of a cusp at a control point as the user manipulates the curve.

Unlike curves such as clothoids, continuous motion of the control points results in continuous

deformation of the curve. Clothoids use estimates of curvature that change continuously with

motion of the control points. When moving from positive to negative curvature, the curve must

47

pass through a point of infinite positive curvature to a point of infinite negative curvature (a cusp)

in order for the geometry of the curve to change continuously. Clothoids vary curvature piece

wise linearly between control points and cannot possess such behavior. In contrast, our curves can

generate infinite curvature, though only at control points. Having unbounded curvature is not a

unwanted artifact but precisely the property that creates continuous motion of the curve. However,

the cost of this continuous motion is a curvature profile that is not as “fair” as clothoids.

Figure 5.8: The creation of a cusp, which can only happen at control points with our method.

Since our optimization produces a global solution, the influence of one control point is techni-

cally global. That is, moving one point changes the shape of the entire curve. However, practically,

the influence of one point is quite bounded. Figure 5.9 shows an example curve where we move a

single control point and draw the original curve (blue) behind the new curve (brown). The figure

illustrates that very little movement of the curve occurs outside of just a few control points away

from the modified shape.

Figure 5.10, 5.11 and 5.12 are more examples in real art design with the input points and

demonstrates shapes composed of multiple open and closed curves. And local maxima of curvature

magnitude only appear at control points.

48

Figure 5.9: The original curve in blue with the new curve in brown drawn on top. While control
points have a global influence on the curve, that influence drops dramatically with distance from
the control point, which creates the effect of local influence.

5.6 Conclusion

Interpolatory curves typically suffer from shape artifacts and use high degree polynomials with

large support for even low continuity curves. Our curves change this paradigm. We use low degree

curves, yet achieve higher-order continuity. Despite their global nature, we have demonstrated

that the influence of an input point is local for practical applications. Moreover, the input points

coincide with features of the curve; namely, local maxima of curvature magnitude. Even though

the user has no direct control over the tangent angle or curvature at the input points, the system

automatically chooses natural values for these parameters. In fact one may see this work a way

of automatically choosing natural and pleasing tangent angles and curvatures based only the input

points. Finally, our curves change continuously under continuous motion of the control points.

These two combined properties make them ideal for a number of creative tasks including vector

design and motion path key framing. In summary, we believe that κ-Curves solve many of the

problems that have plagued interpolatory curves, rendering them much more suitable for modern

49

design applications.

The κ-curve system has been implemented as a tool in Adobe Illustrator and in Adobe Pho-

toshop at a later time. The actual implementation in Adobe Illustrator differs slightly from what

was presented in this paper due to compatibility and other issues, but the underlying technology is

essentially the same. Adobe Illustrator is instrumented to report the amount of time users spend

using each of the available tools. The new tool, called the curvature tool, is a direct competitor for

the much older pen tool that uses cardinal splines. Even though there are experienced and exacting

artists with many years invested in the the pen tool, six months after the release of the curvature

tool 35% of the combined use of the two tools was with the newer curvature tool on desktop de-

vices. On devices with touch screens, the curvature tool captured 66% of the combined use of the

two tools. While more studies are needed to fully understand artists preferences, this usage data

strongly suggests that our model is a welcome addition to professional workflows.

50

Figure 5.10: κ-Curve examples of a cartoon bear and elephant.

51

Figure 5.11: κ-Curve examples of a bird, a plane and pumpkin.

52

Figure 5.12: κ-Curve examples of a horse and a rose.

53

6. RATIONAL QUADRATIC INTERPOLATION*

κ-Curves in chapter 5 showed that control points should be located at features of the curve.

Moreover, such features should not occur in the curve outside of the control points.

Beyond simply controlling features of the curve, the types of curves a modeling tool can pro-

duce are also important. While polynomial curves are prevalent due to their ease of use, circles

are important shapes due to their common occurrence in every day life whether part of images

or cylindrical or spherical 3D shapes. Therefore, a useful curve representation would be able to

represent shapes such as circles exactly. In particular, if the interpolated control points lie on a

circle, even if they are not equally spaced, it would be reasonable to expect that a circle would be

reproduced. When the control points do not lie on a circle, the curve should be “fair” where “fair”

means the curvature plot should be simple [13].

In this chapter, we introduce a piece-wise rational curve that interpolates a series of input points

on a 2D plane. All local maxima of curvature only occur at input points. For each input point, we

compute a single rational quadratic curve that interpolates the input point somewhere in its domain.

We use the remaining degrees of freedom in the curve to connect consecutive curves with curvature

continuity everywhere except at inflections. At these inflection points, the magnitude of curvature

will be continuous though the sign (positive/negative) is different. We build a box constrained

optimization to solve for the final curve and use an iterative method to compute a close initial

guess to accelerate the optimization. Finally, we show how to automatically compute the rational

weights of the curve and incorporate this function into the optimization to ensure that circles are

reproduced when the control points lie on a circle.

*Part of this chapter is reprinted with permission from “Circle reproduction with interpolatory curves at localmax-
imal curvature points”[12] by Z. Yan, S. Schiller, and S. Schaefer, 2019. Computer Aided Geometric Design, vol. 72,
pp. 98-110. Copyright 2019 by Elsevier. DOI: https://doi.org/10.1016/j.cagd.2019.06.002

54

6.1 Problem formulation

We are trying to solve a similar problem from κ-Curves with more shape requirements. We

would like to interpolate a series of input points such that the input points are local maximum

curvature points. The geometric meaning is we are trying to control the “salient” features of a 2D

curve.

The general requirements of the interpolatory curves here is the same as κ-Curves. Given a

series of input points on a 2D plane: n points {P1, P2, · · · , Pn} for closed curve, n + 2 points

{P0, P1, · · · , Pn, Pn+1} for open curves. We have explained the reason to use different numbers of

the input points for open and closed curves in section 5.1. Then we would like to construct a curve

interpolating all the input points as local maximum curvature points.

The additional feature of this chapter is that we require one more degree of freedom for each

input point so that we let the user to adjust the local “sharpness” which we called “tension” control.

6.2 Construction

The main idea is to replace the polynomial quadratic curve segments in κ-Curves with rational

quadratic curves. For each input point Pi, we try to compute some rational quadratic segment

ci(t) =
(1− t)2Qi,0 + 2(1− t)twiQi,1 + t2Qi,2

(1− t)2 + 2(1− t)twi + t2
, t ∈ [0, 1], wi > 0 (6.1)

with three control points {Qi,0, Qi,1, Qi,2}. And wi is the weight for the “sharpness”. When all

wi = 1, the curve is exactly the polynomial curve. However, if we adjust the value of wi, the local

shape will change and geometric criteria might be broken, So we slightly modify the numerical

optimization of the curve.

6.2.1 Interpolation

For each curve segment ci(t), we need the input point Pi interpolated at some parameter ti ∈

[0, 1]

Pi =
(1− ti)

2Qi,0 + 2(1− ti)tiwiQi,1 + t2iQi,2

(1− ti)2 + 2(1− ti)tiwi + t2i
, (6.2)

55

6.2.2 Curvature Extrema

The input point Pi should also be local maximum curvature point. So curve ci(t) should have

zero derivative of curvature at parameter ti from equation (4.10)



(1− ti)
4

4(1− ti)
3ti

6(1− ti)
2t2i

4(1− ti)t
3
i

t4i



T

·



−2w3
i |Qi,0 −Qi,1|2 + wi(Qi,0 −Qi,1) · (Qi,0 −Qi,2)

−w2
i |Qi,0 −Qi,1|2 + 1

4
|Qi,0 −Qi,2|2

1
2
wi(Qi,2 −Qi,0) · (Qi,0 − 2Qi,1 +Qi,2)

−1
4
|Qi,0 −Qi,2|2 + w2

i |Qi,1 −Qi,2|2

−wi(Qi,0 −Qi,2) · (Qi,1 −Qi,2) + 2w3
i |Qi,1 −Qi,2|2


. (6.3)

This is a quartic function about ti, however we will prove there’s a unique root of the function on

interval [0, 1]. So we can rewrite the parameter ti defined by the root of the function above as

ti = ti(Qi,0, Qi,1, Qi,2, wi;Pi) (6.4)

where Pi is used as a constant.

6.2.3 Continuity

To create curvature continuity between consecutive curves ci(t) and ci+1(t), we must enforce

G0 and G1 continuity in addition to curvature continuity. G0 continuity is trivial and simply re-

quires

Qi,2 = Qi+1,0.

G1 continuity requires that the tangents of both sides of a join point are in the same direction. With

the G0 condition we have the equation

Qi,2 = Qi+1,0 = (1− λi)Qi,1 + λiQi+1,1 (6.5)

56

for some λi ∈ (0, 1). We utilize the G0 and G1 conditions as constraints and use {λi} as new

variables in the later optimization to eliminate the join point variables {Qi,0, Qi,2}.

G2 condition is a little more complex but the basic idea is the same as κ-Curves. Curvature

continuity requires the curvatures at the end-points of consecutive curves to be equal. Similar

to chapter 5, requiring curvature continuity for rational quadratic curves at an inflection point is

impossible since conic sections cannot possess zero curvature unless the entire curve degenerates

to a line. Hence, we cannot require that curves are curvature continuous everywhere. Instead,

like Chapter 5, we require that the absolute value of curvature is continuous |ki(1)| = |ki+1(0)|,

meaning that the magnitude of curvature is continuous at inflection points but the sign of curvature

will be discontinuous:

|∆(Qi,0, Qi,1, Qi,2)|
w2

i |Qi,1 −Qi,2|3
=
|∆(Qi+1,0, Qi+1,1, Qi+1,2)|
w2

i+1|Qi+1,0 −Qi+1,1|3
. (6.6)

6.3 Weights

The curve system has been defined by equation (6.2), (6.4), (6.5) and (6.6). The number of the

variables meet the number of the equations. So the rational weight wi can be considered as extra

degrees of freedoms. wi provides the users additional control over the shape of the curve and can

be used to adjust the shape of the curve. However, for users who do not wish to manually adjust

wi, we can choose wi automatically to optimize for certain geometric properties of the curve. Our

original motivation is to choose wi to produce a circle when the user places input points Qi along

a circle. Unlike other methods [37], we do not require that the vertices are evenly spaced in terms

of arc length along the circle to reproduce this shape.

There are multiple choices of the weights and we consider 4 different possibilities below al-

though other choices certainly exist.

6.3.1 Trivial Weights

The simplest weights are all one. Then the curve is exactly the same as κ-Curves and all curve

segments are parabolas. Another trivial set of weights are all weights close to infinity, which causes

57

the curve to approach the control polygon. The weights can not be all zero since corner points will

be ignored. If the weights are close to zero, the curve will have a curvature minima in the parameter

range rather than a maxima.

6.3.2 Half Angle Weight

If the curve ci(t) is a circular arc, the control polygon must form an isosceles triangle i.e.

|Qi,0Qi,1| = |Qi,1Qi,2|.

And the weight of point Qi,1 must be

wHA
i =

|Qi,0Qi,2|
2|Qi,0Qi,1|

= sin

(
∠Qi,0Qi,1Qi,2

2

)
.

If we use this half-angle weight for all points, then when the two edges Qi,0Qi,1 and Qi,1Qi,2 are

equal, the curve is always a circular arc. However this is also the disadvantage. When Qi,0 and

Qi,2 are close enough and the off-curve point Qi,1 are far, the desired shape is likely a cusp but the

half angle weight will result in a short circular arc. Whats more, the half angle weight is always

less or equal to 1.

6.3.3 Minimum Eccentricity Weights

All rational quadratic curves define a conic section as the solution to an implicit quadratic

equation (4.7). We can easily transform our parametric quadratics into this implicit form using a

resultant [44]. To create circles, we use the eccentricity of this conic, which measures the deviation

of the shape from a circle [45]. For circles, the eccentricity is 0. Ellipses have an eccentricity

between 0 and 1. Parabolas have eccentricity 1. And hyperbolas have eccentricity greater than 1.

The eccentricity for conics of the form in equation 4.7 is [45]

ϵ =

√
2
√

(A− C)2 +B2

A+ C +
√
(A− C)2 +B2

.

58

Our strategy is to choose wi that minimizes the eccentricity squared ϵ2. Substituting the coefficients

of the implicit form of equation (6.1) into the definition of ϵ2, taking its derivative with respect to

wi, and solving for the critical point with respect to wi yields a very simple expression for the

rational weight [38]

wME
i =

√
|Qi,2 −Qi,0|2

2(|Qi,0 −Qi,1|2 + |Qi,2 −Qi,1|2)
. (6.7)

We put the derivation of equation (6.7) in Appendix B. This expression is always less than 1 and,

therefore, leads to elliptical arcs.

Figure 6.1 show an example of a single rational Bézier curve with three fixed control points.

This figure shows the entire conic section instead of just the portion of the curve the corresponds to

the Bézier curve with its parameter in [0, 1]. The only difference between the three curves shown

is the rational weight wi. We show two curves with fixed weights of 0.3 and 0.7 in blue and the

curve with minimum eccentricity weight of 0.593 in red. Note that it is not possible to generate

circle from this fixed set of control points by only manipulating wi.

Unfortunately, these minimum eccentricity weights may still generate some undesired shapes

in our experiments. Equation 6.7 approaches zero when Pi,0 approaches Pi,2. Though a zero weight

is valid for rational Bézier curves, equation 6.5 becomes undefined, which leads to instability in

the subsequent optimization for some shapes. Looking at this case from a geometric viewpoint, the

control points of the Bézier curve are collapsing to form a line and potentially flipping orientation,

which should change the sign of the curvature along the curve. This scenario corresponds to a cusp

in the curve. Therefore, reproduction of a circle is undesirable as the curve at its point of maximum

curvature should have a curvature value that approaches∞.

6.3.4 Clamped Min Eccentricity Weights

Our solution to the zero weight issue in last section is to simply clamp the minimum value of

a weight to 0.5 to avoid these instabilities. Doing so means that we cannot produce a circle if the

arc length spanned by the end-points of a Bézier curve is more than 1
3

of the circle’s perimeter. For

a set of input points consisting of three points, we will only be able to produce a circle from an

59

Figure 6.1: A rational Bézier curve with unit weights for the two end-points and different ellipses
generated by modifying the weight of the central control point, which is set to 0.3 (blue), 0.7 (blue),
and 0.593 (red), which is the minimal eccentricity weight for these control points.

equilateral triangle. However, for other curves consisting of more control points, most non-uniform

distributions of input points on a circle can reproduce that circle. Figure 6.2 shows an example of

four, non-uniformly spaced points on a circle and the curves produced using different weights.

With this modification, our weight function wi becomes

wCME
i = max(µiw

ME
i ,

1

2
) (6.8)

The coefficient µi in Equation (6.8) provides a form of tension control for the user to control the

shape of the curve. The user can adjust this value to make the curve more round by reducing µi

or more pointed by increasing µi. Or µi can be simply set to 1. Figure 6.6 shows an example of

60

Figure 6.2: Each row contains the same input points {Pi} but uses different weights for the in-
put points in each column. The weights from left to right are: 0.6, 1, 2, and our clamped min
eccentricity weight.

modifying µi to affect the shape of the curve.

6.4 Fast Approach

Our rational quadratic curve is defined by equations (6.2), (6.4), (6.5) and (6.6), with some

standalone weight functions. Similar to κ-Curves, we use a local/global approach to solve the

system. We substitute equation (6.5) into the rest three equations to eliminate all join points. Then

the variables are {Qi,1, ti, λi}. In each iteration, we fix some variables to solve the equations one

by one.

6.4.1 Maximum Curvature Condition

For each curve segment ci(t), we want the input point Pi to be located at a local maximum

of curvature. Rewrite equation (6.2) in a Lagrange-type basis in terms of three on-curve points:

Qi,0, Pi, and Qi,2. Since we know the parameters associated with the interpolated end-points (i.e.;

ci(0) = Qi,0 and ci(1) = Qi,2), we only need to find the parameter ti such that Pi is at the point of

61

maximum curvature satisfying equation (6.4). Solving for Qi,1 in equation 6.2 yields

Qi,1 =
((1− ti)

2 + 2(1− ti)tiwi + t2i)Pi − (1− ti)
2Qi,0 − t2iQi,2

2(1− ti)tiwi

. (6.9)

Substituting equation (6.9) into equation (6.3) gives a simple, polynomial expression for ti in terms

of the three on-curve points

− wiAi(1− ti)
4 − (Ai +Bi)(1− ti)

3ti + (Bi + Ci)(1− ti)t
3
i + wiCit

4
i = 0 (6.10)

where

Ai = (Qi,0 − Pi) · (Qi,0 − Pi)

Bi = (Qi,0 − Pi) · (Qi,2 − Pi)

Ci = (Qi,2 − Pi) · (Qi,2 − Pi).

Though a general quartic polynomial may have multiple or no roots in range [0, 1], we prove

that

Theorem 4. Equation 6.10 always has a unique root in [0,1] for any given Qi,0, Pi, Qi,2 and a

positive fixed weight wi.

Proof. The left-hand-side (LHS) of equation (6.10) is a polynomial of degree 4. If we use the

notation that v0 = Qi,0 − Pi and v2 = Qi,2 − Pi. Rewrite the polynomial in the Bézier basis and

the coefficients are

(−wi|v0|2,−
1

4
v0 · (v0 + v2), 0,

1

4
v2 · (v0 + v2), wi|v2|2) (6.11)

where v0 6= 0, v2 6= 0, and wi > 0.

We want to show that there is a unique root ti in [0, 1]. When t = 0, the value of the LHS of

equation (6.10) is the first coefficient of equation (6.11), which is negative. When ti = 1, the value

62

is the last coefficient of equation (6.11), which is positive. So the there must be at least one root ti

between zero and one because the function is continuous.

To prove the uniqueness, we use the fact that polynomials in Bézier form follow Descartes’

rule of signs for bounding the number of real roots of a polynomial [46], which means the number

of real roots is less than or equal to the number of sign changes in the sequence of the polynomial’s

coefficients. In our problem, we have five coefficients with the first being negative, the middle

0, and the last positive. Since weights wi are always positive, we only need to know the sign of

v0 · (v0 + v2) and v2 · (v0 + v2). If one of these coefficients is zero, then no matter what the other

one is, the sign changes in the coefficients is one. Hence, there would be at most one root in [0, 1].

If both coefficients are non-zero, then the number of sign changes of the coefficients are always

one unless both v0 · (v0 + v2) and v2 · (v0 + v2) are negative, which is not possible because the sum

is non-negative:

v0 · (v0 + v2) + v2 · (v0 + v2) = |v0 + v2|2 ≥ 0 (6.12)

Therefore, the number of times the coefficients change signs in equation (6.11) is always one, and

there is exactly one root in [0, 1] for equation (6.10).

So equation (6.10) can be expressed as

ti = ti(Qi−1,1, Qi,1, Qi+1,1, λi−1, λi, wi) ∈ [0, 1]

Notice here we only solved the root for κ′(ti)=0, which means the interpolated point Pi is either

a local minimum or a maximum point. If a small weight wi < 1 is chosen for point Qi,1, Pi may

be a local minimum of κ(t). However, in practice, our choice of weight function and optimization

procedure converges to a local maximum point. When wi ≥ 1, all interpolated points will be local

maximum points of κ(t).

Solving the root of a quartic function can be achieved in multiple ways, including the analytic

formula of quartic roots. Other methods include Newton’s method, bi-search, and etc.

63

6.4.2 Curvature Condition

To make curves connect with curvature continuity, we rewrite the G2 condition equation (6.6)

in terms of {Qi,1, ti, λi}:

|∆(Qi−1,1, Qi,1, Qi+1,1)|(1− λi−1)λi

w2
i |Qi,1 −Qi+1,1|3λ3

i

=
|∆(Qi,1, Qi+1,1, Qi+2,1)|(1− λi)λi+1

w2
i+1|Qi,1 −Qi+1,1|3(1− λi)3

. (6.13)

We can solve a unique parameter λi in [0, 1]:

λi =
wi+1

√
|∆(Qi−1,1, Qi,1, Qi+1,1)|(1− λi−1)

wi+1

√
|∆(Qi−1,1, Qi,1, Qi+1,1)|(1− λi−1) + wi

√
|∆(Qi,1, Qi+1,1, Qi+2,1)|λi+1

. (6.14)

The meaning of equation (6.14) is that fixing the points Qi,0, Qi,1, Qi+1,1, Qi+1,2, there is a unique

join point on the line segment Qi,1Qi+1,1. We can also get the same statement from the geometric

view: moving λi from 0 to 1, the two sides of the equation (6.13) will wary from∞ to 0 and from

0 to∞ monotonically. So the intersection is unique.

6.4.3 Input Point Interpolation

After satisfying the max curvature condition (6.4) and the continuity (6.6), we use the interpo-

lation equation (6.2) to recompute the off-curve points {Qi,1}. Substituting the G1 condition (6.5)

into (6.2) result in:

(1− λi−1)(1− ti)
2Qi−1,1 + (λi−1(1− ti)

2 + 2(1− ti)tiwi + (1− λi)t
2
i)Qi,1 + λit

2
iQi+1,1

= ((1− ti)
2 + 2(1− ti)tiwi + t2i)Pi. (6.15)

Collect all the equations (6.15) for each input point Pi, we can have a linear system about

off-curve points {Qi,1} with coefficients about λi and ti. For closed curve, the linear matrix is

a cyclic tri-diagonal matrix. For open curve {P0, P1, · · · , Pn, Pn+1}, equation (6.15) works for

64

P2, · · · , Pn−1. The two end points are slightly different:

(2(1− t1)t1w1 + (1− λ1)t
2
1)Q1,1 + λ1t

2
1Q2,1

= ((1− t1)
2 + 2(1− t1)t1wi + t21)P1 − (1− t1)

2P0,

(1− λn−1)(1− tn)
2Qn−1,1 + (λn−1(1− tn)

2 + 2(1− tn)tnwn)Qn,1

= ((1− tn)
2 + 2(1− tn)tnwn + t2n)Pn − t2nPn+1.

So the linear matrix for open curves is a tri-diagonal matrix.

6.4.4 Fast Global Approximating Solution

We adopt a global alternating optimization to solve the three geometric conditions (6.4),(6.6)

and (6.2) similar to the κ-Curves system.

We start from all weights wi = 1, all join points are at middle points of the control polygon

λi = 0.5, all time parameters ti at 0.5, and use the input points as the initial location of the off-

curve control points Qi,1 = Pi. In this global optimization, we first hold all variables constant

except for wi and pick one choice of the weight functions in section 6.3. Next we solve for ti from

equation (6.10) by holding the λi, wi, Qi,1. Our next step is to hold all variables constant except for

the λi and solve for λi from Equation (6.14) to make join points curvature continuous. Finally we

solve the linear system in equation (6.15) to update the Qi,1. We iterate this entire process several

times.

Algorithm 2 provides pseudo code for the entire optimization procedure. Note that, in an

interactive system, we can take advantage of the temporal coherence of prior solutions to further

accelerate the optimization. To do so, we use the results from the previous optimization as the

initial guess for the procedure instead of the default values for λi, ti, and wi.

This procedure projects the current solution onto each constraint in turn along the direction of

only one set of variables. Though there is no guarantee that the solution converges, we observe

rapid convergence towards the minimizer for the early iterations with progress slowing afterwards.

In practice, this approach is accurate enough for fast modeling and can run in real time for most

65

Algorithm 2 Fast Approach of Rational Quadratic Curves

1: Input: {Pi}
2: procedure FAST SOLUTION

3: {λi} ← 0.5
4: {ti} ← 0.5
5: {wi} ← 1
6: {Qi,1} ← Pi

7: for j ← 1 to 60 do
8: {wi} ← wi(Qi,1, λi) for any choice of the weight function
9: {ti} ← quartic root of equation (6.10)

10: {λi} ← equation (6.14)
11: {Pi,1} ← linearSolve equation (6.15)({λi, ti, wi})
12: return {λi, ti, wi, Qi,1}

examples. However, there are some examples where the approach will damp between two status

and can not converge to the real solution. Hence, we use this fast procedure to find a close initial

guess for the non linear optimization in the following section, which then converges rapidly to

the solution. In practice, this procedure quickly refines the initial guess to a curve close to the

minimum of our energy, which is then refined by the optimization procedure.

6.5 Numerical Optimization

The fast approach in the last section to the solution of equation (6.4), (6.6) and (6.2) is not a

standard numerical optimization. In this section, we develop a standard constrained least square

numerical optimization embedding all the geometric criteria as polynomial energy terms.

6.5.1 Energy Definition

We require equation (6.2) to be hard constraints since we always need the curve to interpolate

all input points.

Maximum Curvature. For each curve segment ci(t), input point Pi should be interpolated

as local maximum curvature point. We utilize the L2 norm of equation 6.10 and normalize the

expression by dividing by the coefficient of the term of the highest degree of variable ti. If wi 6= 1,

the polynomial is a quartic polynomial and the leading coefficient is (wi − 1)(Ci − Ai). And if

66

wi = 1, then the quartic term is zero and the polynomial is a cubic function with leading coefficient

Ai − 2Bi + Ci. This process yields the energy term for local maximal curvature

Ec =
n∑

i=1

(
−wiAi(1− ti)

4 − (Ai +Bi)(1− ti)
3ti + (Bi + Ci)(1− ti)t

3
i + wiCit

4
i

Li

)2 (6.16)

where Li is the leading coefficient of the numerator in equation (6.16).

Li =


(wi − 1)(Ci − Ai), wi 6= 1

Ai − 2Bi + Ci, wi = 1

If we substitute the G1 condition (6.5) into equation (6.16), we can write Ec in terms of the vari-

ables Qi,1, λi, ti.

G2 condition. We can easily encode this requirement as an error function of the squared curva-

ture using equation 6.13.

(ki(1)
2 − ki+1(0)

2)2 =

(
∆(Qi−1,1, Qi,1, Qi+1,1)

2(1− λi−1)
2

w4
i |Qi,1 −Qi+1,1|6λ4

i

−
∆(Qi,1, Qi+1,1, Qi+2,1)

2λ2
i+1

w4
i+1|Qi,1 −Qi+1,1|6(1− λi)4

)2

Given that |Qi,1 − Qi+1,1| > 0, dropping this term does not affect the null space of this energy

term. Remove this term and our final G2 energy is:

EG2 =
n∑

i=1

(
∆(Qi−1,1, Qi,1, Qi+1,1)

2(1− λi−1)
2

w4
i λ

4
i

−
∆(Qi,1, Qi+1,1, Qi+2,1)

2λ2
i+1

w4
i+1(1− λi)4

)2

(6.17)

Weight energy. We can simply compute the L2 norm of the weight to any of users’ choice of

the weight function w̃i. Here the weight function w̃i can be either of the trivial weights, Minimum

Eccentricity Weight wME
i , Clamped Min Eccentricity Weight wCME

i or any other applicable weight

functions. Then the general weight energy term can be defined as:

Ew =
n∑

i=1

(wi − w̃i)
2 (6.18)

67

For any specific weight function, the form of the weight energy can be tweaked for the choice of

the weight function. For example the Minimal Eccentricity Weight is a square root of a fraction of

polynomial, then the energy term can be defined as

Ew =
n∑

i=1

(w2
i − (wME

i)2)2 =
n∑

i=1

(w2
i −

|Qi,2 −Qi,0|2

2(|Qi,0 −Qi,1|2 + |Qi,2 −Qi,1|2)
)2

to avoid square root in the final energy expression.

Then the full geometric energy of the curve is

E({Qi,1, λi, ti, wi}) = Ec + EG2 + Ew (6.19)

6.5.2 Numerical Solution

Given the input points {Pi}, we use the energy terms from previous sections to form a numer-

ical optimization problem for our curve as

min
Qi,1∈R2,λi∈(0,1),ti∈(0,1),wi>0

Ec(Qi,1, λi, ti, wi) + EG2(Qi,1, λi, wi) + Ew(Qi,1, λi, wi) (6.20)

with the constraints



...

(1− λi−1)(1− ti)
2Qi−1,1 + (λi−1(1− ti)

2 + 2(1− ti)tiwi + (1− λi)t
2
i)Qi,1 + λit

2
iQi+1,1

= ((1− ti)
2 + 2(1− ti)tiwi + t2i)Pi

...

Note that Ew can be omitted if we do not desire automatic reproduction of circles, which also

removes wi from the variables but still gives the user control over the wi to affect the shape of the

curve.

Since the constraints are linear in the points {Qi,1}, we can solve for the {Qi,1} as a function

68

of {λi, ti, wi} from the constraints. Then insert the expressions of Qi,1 back to (6.20) and generate

a new unconstrained optimization with reduced number of variable:

min
λi,ti,wi

Ec(λi, ti, wi) + EG2(λi, ti, wi) + Ew(λi, ti, wi). (6.21)

The constraints on the variables are now simplified to λi ∈ (0, 1), ti ∈ (0, 1) and wi > 0. So

the optimization problem reduces to minimize a new energy only about {λi, ti, wi}:

Enew(λi, ti, wi) = Ec(λi, ti, wi) + EG2(λi, ti, wi) + Ew(λi, ti, wi) (6.22)

We found numerical performance of this new energy is much better than the original defini-

tion (6.20).

To solve this simplified minimization problem, we build the functions to evaluate the energy

value, the gradient of the energy and the Hessian of the energy. For the energy value, we first solve

all off-curve points {Qi,1} from equation (6.15). Then use {Qi,1} and {λi} to compute the location

of all join points {Qi,0, Qi,2}. Then we use these 2D points together with the parameters {λi, ti, wi}

to compute the energy value E in equation (6.20) as the energy value Enew. The derivatives can be

computed by the chain rule

∂Enew(λi, ti, wi)

∂λi

=
∂E(Qi,1, λi, ti, wi)

∂λi

+
∑
j

∂E(Qj,1, λi, ti, wi)

∂Qj,1

· ∂Qj,1

∂λi

∂Enew(λi, ti, wi)

∂ti
=

∂E(Qi,1, λi, ti, wi)

∂ti
+
∑
j

∂E(Qj,1, λi, ti, wi)

∂Qj,1

· ∂Qj,1

∂ti
(6.23)

∂Enew(λi, ti, wi)

∂wi

=
∂E(Qi,1, λi, ti, wi)

∂wi

+
∑
j

∂E(Qj,1, λi, ti, wi)

∂Qj,1

· ∂Qj,1

∂wi

The derivative ∂Qj,1

∂λi
,
∂Qj,1

∂ti
,
∂Qj,1

∂wi
can be computed from the linear constraints (6.15) using implicit

differential. Similarly we can compute the second derivative of the energy.

While any initial guess for the optimization could be chosen, we start with a very simple initial

guess with λi = 0.5, ti = 0.5, and wi = 1. And solve a set of off-curve points {Qi,1} from the

69

linear constraints. This initial guess is an interpolatory C1 curve. Yet this curve almost certainly

does not satisfy the automatic weight conditions, curvature continuity, or maximum curvature con-

ditions. In most cases, this simple initial guess can lead to slow convergence. To accelerate the

optimization, we use the result of the fast solution in section 6.4 as the initial status. Because the

fast solution is close enough to the final curve, our non linear optimization can converge quickly.

Algorithm 3 shows the whole procedure of our rational quadratic curve.

Algorithm 3 Rational Quadratic Curve

1: Input: {Qi}
2: procedure ENERGY(λi, ti, wi)
3: {Qi,1} ← equation (6.15) of ({λi, ti, wi})
4: return Ec(Qi,1, λi, ti, wi) + EG2(Qi,1, λi, wi) + Ew(Qi,1λi, wi)

5: procedure GRADIENT(λi, ti, wi)
6: {Qi,1} ← equation (6.15) of ({λi, ti, wi})
7: return (∂E

∂λi
, ∂E
∂ti

, ∂E
∂wi

) by equation (6.24)

8: procedure HESSIAN(λi, ti, wi)
9: {Qi,1} ← equation (6.15) of ({λi, ti, wi})

10: return ((∂
2E

∂λ2
i
, ∂2E
∂λi∂ti

, ∂2E
∂λi∂wi

), (∂2E
∂ti∂λi

, ∂
2E
∂t2i

, ∂2E
∂ti∂wi

), (∂2E
∂wi∂λi

, ∂2E
∂wi∂ti

, ∂
2E

∂w2
i
))

11: procedure MAIN

12: {λi, ti, wi} ← Fast_Solution({Pi}) from Algorithm 2
13: {λi, ti, wi} ← minimize Energy(λi, ti, wi) with 0 < λi, ti < 1, wi > 0
14: {Qi,1} ← linearSolve equation (6.15) of ({λi, ti, wi})
15: {Qi,0, Qi,2} ← the G1 condition equation (6.5)
16: return {(Qi,0, Qi,1, Qi,2)}

We implemented the optimization in both Wolfram Mathematica and C++. In C++, we use

the Cholesky decomposition from the Eigen* library to solve the linear system of {Qi,1} and use

the boxed constrained numerical optimization of Alglib† library to compute the minimizer of Enew.

According to our experiments, the combination of the fast solution in section 6.4 and the non linear

optimization above can compute the curves in real time for curve modeling tools. The fast solution

*https://eigen.tuxfamily.org/
†https://www.alglib.net/

70

is fast when far from the energy minimizer and slow down when approaching the minimizer. The

standard numerical optimization is only fast when close to the minimizer. So the combination

works well in real practice.

6.6 Results and Conclusion

Our curves extend the geometric properties of κ-Curves [4] by introducing rational weight

parameters and improve the optimization procedure for these curves. Figure 6.2 shows the effect

of choosing different rational weights on the shape of the curve. In each case the weights for all

control points are uniform though the user could set weights on a control point by control point

basis. As the weights become higher, the curves tend to become sharper, though still smooth.

When all weights are one, we produce the piece-wise polynomial κ-curves. The right portion

of figure 6.2 shows the result of our minimum eccentricity weights with the bottom right figure

reproducing a circle as the four points are co-circular even though they are non-uniformly spaced

on a circle.

Our minimum eccentricity weights do not require that the user set any weights individually

on the curve. Instead, our method chooses the weights automatically through our optimization.

At the same time, the minimum eccentricity weights become unstable as weights approach zero,

which leads to our clamped solution. Figure 5.6 shows the results of clamping our minimum

eccentricity weights compared to κ-curves [4]. In both cases, our minimum eccentricity weights

provide a “fairer” curve as measured by variation of curvature. At the same time, all curves have

the property that the local maximum of curvature is reached at the control points even though the

(absolute value of) curvature is near constant for the far left image. Each curve is also curvature

continuous everywhere except at inflection points.

In figure 6.3 (middle), our clamped minimum eccentricity weights produce a solution similar

to κ-curves though a bit more round. In regions where curves have concave corners, our clamped

minimum eccentricity weights often produce shapes that locally resemble κ-curves.

However, figure 6.4 shows an example with mostly convex (though overlapping) curves. In

these cases, our clamped minimum eccentricity weights appears far closer to the unclamped version

71

Figure 6.3: The purple lines show curvature normals. Each picture uses the same input points with
different weight functions. From left to right: min-eccentricity weights, clamped min-eccentricity
weights, and the original κ-curve.

of the curves than κ-curves. Figure 6.5 shows the results of our method on a non-symmetric

shape with non-uniform control point spacing from [17]. Figure 6.6 demonstrates our minimum

eccentricity weights where the user modifies the parameter µi at a single control point to make the

curve appear sharper. Figure 6.7 shows our method creating a cusp as points move closer to one

another. Cusps represent local maxima of curvature and, hence, can only appear at input points.

Like κ-curves, our solution is a global solution, which means the whole curve will change after

a small movement of a control point. However, in practice, the influence of a control point drops

dramatically away from that point. Figure 6.8 shows an example of this effect using our minimum

eccentricity weights. In both cases the original curve is shown in blue with the newly modified red

curve drawn on top. The resulting curve only changes within a small region away from the initial

control point in any significant fashion.

The rational quadratic curve also improves upon the original κ-curve optimization by con-

structing a formal energy that can be minimized in addition to extending the method to rational

curves. Figure 6.9 shows the results of this optimization with the top row having a uniform weight

of one and the bottom using our minimum eccentricity weights. The starting curve appears on the

left and its error is listed below. After performing 60 iterations of our initial guess, we obtain the

72

Figure 6.4: Comparisons between different weight choices. Left to right: min eccentricity weights,
clamped min eccentricity weights, original κ-curve.

curve in the middle. For many applications, this curve may be a sufficiently good approximation.

However, optimizing our energy function produces a significant reduction in error as shown on the

right, which does affect the shape of the curve and is particularly visible on the bottom row.

73

Figure 6.5: An asymmetric example with non-uniformly spaced control points. From left to right:
min eccentricity weights, clamped min eccentricity weights, original κ-curve.

Figure 6.6: Clamped minimum eccentricity weight curves with tension values µi set to 1 (left) and
with the weight of the top input point set to 2 (middle). The right picture shows the overlapping
curves for comparison.

Figure 6.7: The creation of a cusp using clamped min eccentricity weights. Moving the 2nd and
4th points closer creates a cusp at an input point.

74

Figure 6.8: The blue/red curves show our curves before/after moving a single input point. Despite
the global nature of the optimization, the change in the curve tends to decrease with distance from
the input point.

Figure 6.9: Curve optimization. Each image has the same input points with the error shown below.
Each row shows the initial guess (left), after 60 iterations of refining the initial guess (middle), and
the result of our optimization (right). The first row uses weight 1 while the second row are our
clamped min eccentricity weights. The top middle picture corresponds to the κ-curve result in [4].

6.7 Limitations

In our construction we require that the rational weights wi for all off-curve Bézier control points

Qi,1 be positive. The implication of this requirements is that all pieces of the rational quadratic

75

curve are minor arcs. Hence, in the elliptical case, the arc cannot span more than half of an

ellipse. This restriction implies that when all input points are on a circle, the curve produced by

our minimum eccentricity method may not form a circle in some scenarios. In particular, when the

end-points of each Bézier curve Qi,0, Qi,2 span more than half a circle, we cannot produce an exact

circle.

The connection between the end-points of each Bézier curve and the control points the user

specifies is, unfortunately, governed by a non-linear optimization. Let θ be the angle between

consecutive input points formed from the center of the circumscribed circle as shown in figure 6.10.

If the angle spanned by two consecutive segments is less than π, for all segments, then the end-

points of each Bézier curve cannot span more than half a circle since Qi,0 lies in between Pi−1

and Pi. Yet this property is too restrictive in practice. We tested our technique on many different

point distributions of input points Pi on a circle. In our tests we found that if the angle spanned

by consecutive input points was less than π, our method reproduced the circumscribed circle.

However, our method would often fail to produce a circle if the angle spanned by consecutive input

points exceeded π. Figure 6.10 shows several examples where non-uniform point distributions

produce circles and two failure cases where our method was unable to reproduce a circle.

76

θ

Figure 6.10: Circle reproduction with three (top) or four points (bottom). The left column has
input points with central angles less than π. The right has points with one central angle over π,
which leads to a non-circular curve.

77

7. CUBIC INTERPOLATION WITH CURVATURE CONTROL

Both quadratic κ-Curves and the rational quadratic curves solved the problem of 2D curves

interpolating control points as local maximum curvature points and the curvature should be de-

creasing first then increasing from one control point to the next control point. And both curves

have G2 continuity except at inflection points. However, κ-Curves do not have extra degrees of

freedom, i.e. the result is unique to each set of input points, which means the users can not cus-

tomize the result curve. The rational quadratic curve has one degree of freedom for each input

point. The point weight can directly affect the sharpness at the input point, and indirectly affect

the tangent and curvature at the input point.

Our original motivation of the proposed method is to provide a curve that interpolates the con-

trol points at local maximum curvature points with local tangential directions and tension control.

To provide a complete replacement for the existing pen tool, users should be able to assign the tan-

gent directions and potentially curvature at the input points. Doing so would decouple the global

constraints from κ-Curves and its extension to produce true locality. To achieve this new require-

ment, we adapt the cubic curve and hybrid curve in section 4.3 and develop a new framework using

Hermite interpolation.

7.1 Problem Formulation

Given a set of 2D points {Pi}, we want to interpolate all the points and at each point, the tangent

directions {Ti} and curvature ki. Because the location, tangent and curvature information at each

point has been fixed, we can split the curves into several segments with each segment connecting

two input points. We only need to think about single piece of the cubic or hybrid curves since

global G2 condition is achieved by the geometric information at the control points.

We focus on the curve segment between points Pi and Pi+1. Other segments are the same. We

78

would like to compute some curve piece Ci(t) satisfying

ci(0) = Pi

ci(1) = Pi+1

c′i(0)

|c′i(0)|
= Ti

c′i(1)

|c′i(1)|
= Ti+1

κi(0) = k0

κi(1) = k1

And there should be some parameter t̃ ∈ (0, 1) s.t. the curvature is decreasing from k0 to some

positive number on [0, t̃] and increasing to k1 on [t̃, 1].

7.2 Construction

Since we are computing the curve segment with boundary constraints, we eliminate the mono-

tonic curvature requirement by using two curve segments from section 4.3, each with monotoni-

cally varying curvature that interpolate the constraints at the end points and meet with curvature

continuity. Figure 7.1 shows our idea.

Denote the two input points Pi, Pi+1 as Q0 and Q4 for this segment. First we put tangent vectors

Ti and negative Ti+1 at Q0 and Q4. We extend the two tangent vectors to some points Q1 and Q3

with distances a and b to the input points: Q1 = Q0 + aTi, Q3 = Q4 + b(−Ti+1). On line segment

between Q1 and Q3, we choose some splitting point Q2 = (1− λ)Q1 + λQ3 where λ is between 0

and 1. Then we use triple (Q0, Q1, Q2) and (Q2, Q3, Q4) as the control triangles. We can use the

three control points as a quadratic control polygon directly, or elevate to the restricted cubic curve

in Section 4.3, or we can use a hybrid curve of both quadratic and cubic curves.

We first introduce our three-point cubic curve. We can construct the cubic Bézier control points

79

Figure 7.1: Connect two single quadratic or cubic pieces as a whole curve segments. Quadratic
control points are rendered in red {Qi}, while the cubic control points {Ci} are in black.

{Ci}6i=0 as following:

C0 = Q0 = Pi

C1 = Q0 +
1

2

(C2 −Q0) · (Q1 −Q0)

(Q1 −Q0) · (Q1 −Q0)
Ti = Q0 + (

3− λ

6
a+

λ

6
(Q4 + b(−Ti+1)−Q0) · Ti)Ti

C2 =
2

3
Q1 +

1

3
Q2 = (1− λ

3
)(Q0 + aTi) +

λ

3
(Q4 + b(−Ti+1))

C3 = (1− λ)Q1 + λQ3 = (1− λ)(Q0 + aTi) + λ(Q4 + b(−Ti+1))

C4 =
1

3
Q2 +

2

3
Q3 =

1− λ

3
(Q0 + aTi) +

2 + λ

3
(Q4 + b(−Ti+1)) (7.1)

C5 = Q4 +
1

2

(C4 −Q4) · (Q3 −Q4)

(Q3 −Q4) · (Q3 −Q4)
(−Ti+1)

= Q4 + (
2 + λ

6
b+

1− λ

6
(Q0 + aTi −Q4) · (−Ti+1))(−Ti+1)

C6 = Q4

To keep the join point Q2 as a G2 connection point, add the constraint that that curvature of the

80

left side of point Q2 equals to the right side of Q2:

(1− λ
3
((Pi+1 + b(−Ti+1)− Pi) · Ti/a− 1))|∆(Pi, Q1, Q3)|

λ2

=
(1− 1−λ

3
((Pi + aTi − Pi+1) · (−Ti+1)/b− 1))|∆(Q1, Q3, Pi+1)|

(1− λ)2
(7.2)

where ∆(·, ·, ·) is the signed area of a triangle. The G2 constraint of the join point Q2 is a cubic

equation of parameter λ. When λ goes to 0+, the left hand side of equation 7.2 is +∞ while the

right hand side is some limited number. And when λ goes to 1−, the left hand side is limited and

the right hand side is +∞. This simple observation indicated equation 7.2 always has at least a

root λ ∈ (0, 1). However, the root does not necessarily need to be unique.

The tangent control at two end points has been satisfied by construction. The curvature condi-

tions at c0 and c1 can be achieved by the constraints:

ki =
8

9

λ(det(Ti, Pi+1 − Pi) + b det(Ti,−Ti+1)))

((1− λ
3
)a+ λ

3
(Pi+1 + b(−Ti+1)− Pi) · Ti)2|Ti|3

ki+1 =
8

9

(1− λ)(det(−Ti+1, Pi − Pi+1) + a det(−Ti+1, Ti)))

(2+λ
3
b+ 1−λ

3
(Pi + aTi − Pi+1) · (−Ti+1))2|Ti+1|3

(7.3)

7.3 Optimization

In the construction of each curve segment between Pi and Pi+1, points Pi, Pi+1, vector Ti, Ti+1

and curvature ki, ki+1 are input constant. We have three variables a > 0, b > 0, 0 < λ < 1 and

three constraints, one for the G2 condition and two for the curvature fitting at end points. Here we

provide a fast approach of the root. Any standard numerical optimization can be adopted to refine

the result. In our experiments, the error of the fast approach is small enough and speed fast enough

that real time curve modeling is possible.

We start from a = 1, b = 1, λ = 1
2
. In each iteration, fix a, b and solve λ from equation 7.2. We

can always use Cardano’s formula to solve roots. Here we use an adaptive method to update the

root in an iterative way. Between iterations, the value change of λ can not be large. So each time

we start from the value in last iteration and compute the derivative of λ and use Newton’s method

81

to solve the root of equation (7.2). Then fix λ and solve a, b from equation 7.3. Here a, b is the

intersection of two quadratics in the first quadrant. We can also use the iterative strategy that uses

the value from last iteration as the initial status in current iteration. In our experiments, usually 30

iterations of computing λ and (a, b) are enough to converge. Algorithm 4 shows the pseudo code

of our optimization.

Algorithm 4 Cubic Cuves

1: Input: {Pi, Ti, ki}
2: procedure LOCAL CURVE(Pi, Pi+1, Ti, Ti+1, ki, ki+1)
3: λ← 0.5
4: a← 1
5: b← 1
6: Q1 ← Pi + aTi

7: Q3 ← Pi+1 − bTi+1

8: C3 ← (1− λ)Q1 + λQ3

9: {C1, C2, C4, C5} ← equation (7.2)
10: for j ← 1 to 30 do
11: λ← Solve the cubic root of equation (7.2)
12: a, b← Solve from equation (7.3)
13: Q1 ← Pi + aTi

14: Q3 ← Pi+1 − bTi+1

15: C3 ← (1− λ)Q1 + λQ3

16: {C1, C2, C4, C5} ← equation (7.2)
17: return (Pi, C1, C2, C3), (C3, C4, C5, Pi+1)
18: procedure GLOBAL CUBIC CURVE({Pi, Ti, ki})
19: for i← 1 to n do
20: ci ← LocalCurve(Pi, Pi+1, Ti, Ti+1, ki, ki+1)
21: return {ci}

Notice after convergence, the location of the join point may not be in the valid zone computed

from section 4.3.3. So the input values of the tangents and curvatures can not be arbitrary. This is

also a limitation of this method.

82

7.4 Relationship to Quadratic Curves

Our restricted cubic curve have the same degrees of freedom with a quadratic curve. If we

fix the two end points, the two middle cubic control points are defined uniquely by the off-curve

quadratic control point. Since the cubic curve is controlled by the quadratic polygon in figure 4.5,

we use the quadratic polygon {Q0, Q1, Q2} for simpler discussion in the following. According to

figure 4.6, if we place Q0 at (0, 0), Q1 at (a, 0), then the region of monotonic curvature of the

quadratic and cubic curve will only rely on the x-coordinate of the location of Q2. The region of

monotonic curvature for quadratic curves is the the semi plane where x ≥ 2a. And the monotonic

region for our cubic one is −2a ≤ x ≤ 4a. Notice x = 2a means the angle ∠Q0Q1Q2 is a

right angle. So our cubic curve can create curves with monotonic curvature when ∠Q0Q1Q2 is

less than 90◦. In contrast, quadratic curves must have an angle for ∠Q0Q1Q2 of 90◦ or more to

have monotonic curvature. Our hybrid curve combines both curvature regions and leads to a more

flexible modeling paradigm.

Another aspect compared to κ-Curves is range of the curves. The restricted cubic curves are

defined by the input points, and curvature and tangents at input points. If we use curvature and

tangent information from the κ-Curve computed from the input points, we can compute a unique

curve from our cubic method since there is no extra degree of freedom. On the other hand, the

κ-Curve satisfies all the geometric constraints of our cubic curve. So we are reproducing the κ-

Curves if choose the specific tangents and curvature at the input points. This result is important

because using the new restricted cubic curve, we are not losing any intrinsic geometric properties

of κ-Curves. If we split each segment of a quadratic κ-Curve at the input points, we get two half

quadratic segments. If we connect the two half segments between two input points as a single piece

of G2 curve, we are forming a similar Hermite interpolating curve with our restricted cubic curves.

Indeed, this cubic curve is an extension to the original quadratic κ-Curve.

83

7.5 Results

The main geometric feature of our cubic curve is that we allow the tangent vectors and curva-

tures to be defined at input points. We show several examples of this feature. Figure 7.2 shows

an example of four input points. We fix the curvature at the input points and modify the tangent

direction at one of the input points. Figure 7.3 shows an example of four input points where the

tangent vectors are fixed and one input point is assigned different values of curvature.

Figure 7.2: All the three pictures have the same input points and the same curvature assigned for
each input point. Compare to the left picture, the tangent direcion of the right point of the middle
and the right pictures are rotated 7.5◦ in the clockwise and counter-clockwise directions.

7.6 Conclusion and Limitation

In this chapter, we developed a framework of compounding quadratic and restricted cubic

curve segments with boundary information. We analyzed the tangent and curvature of the input

points in the construction of original κ-Curves. We reformulated the construction of κ-Curves in a

different splitting way and extend to a larger class of cubic curves. The new type of curve has all

the κ-Curves shape properties like G2 continuity, all local maximum curvature points only appear

at input points, and the locality. Besides, the new kind of curve provide more direction control

over the input points with local direction and sharpness information. The optimization can also

84

Figure 7.3: The three pictures have the same input points and all input points are assigned the same
tangent directions. Compared to the left picture, the curvature of the right point in the middle and
the right pictures are multiplied by 0.7 and 1.4.

converge in real time for curve modeling applications.

The main limitation is that tangent and curvature at the input point can not be arbitrary. We

have a set of valid input but we don’t know the range of the valid user input as the constraints.

For any set of tangent and curvature, our method can compute the proposed curve to check if the

curve has monotonic curvature but we can not predict if the input is valid without evaluating the

optimization problem.

85

8. SUMMARY AND CONCLUSIONS

In this dissertation, we reviewed the state of the art of current curve modeling tools. We develop

the features a good curve should have for geometric modeling and art design, including the geo-

metric features of the whole curve and the constraints of the local shape. The main requirements

are: interpolating input points as local curvature maxima, G2 continuity and continuously moving

along with the control points. Controlling the curvature maxima has rarely been researched though

the salient feature can benefit designers. Our work enhanced the usage of intrinsic geometric fea-

ture of spline curves and filled the gap between spline curves and direct control of sharp features

of curves in real applications.

We analyzed the monotonicity condition of polynomial quadratic, rational quadratic and poly-

nomial cubic curves. And we developed a type of restricted cubic curves with the same degree

of freedom of quadratic curve but a larger region of curvature monotonicity. We developed two

frameworks to combine curves primitives in two different ways: one is to build a curve segment

for each input point and connect the segments between the input points, another one is to construct

a curve segment between each pair of two adjacent input points. The different frameworks provide

more freedom and flexity of the curve design. Also we build up a fast solution system of our curve

modeling that can serve as a real-time curve modeling tool in art design applications. Another

advantage of our system is that we do not require any specific type of curve primitives. Any shape

primitives with monotonic curvature distribution and the boundary information can be adopted in

our system.

One limitation of our curve modeling framework is that we never dealt with zero curvature.

The absolute value of the curvature at inflection points is continuous but the normal direction is

opposite. Though this setting won’t affect the visual continuity a lot, mathematically our curve can

not cover arbitrary curvature in R.

In this dissertation we combine the same types of curve primitives as a whole curve. Indeed,

the G2 continuity only require tangent and curvature information at end points. It is possible to

86

connect different types of curve primitives as a new curve modeling tool. For example, we can

build a curve using a mixture of rational quadratic curves and cubic curves. We would leave these

challenges as future work.

87

REFERENCES

[1] G. Deslauriers and S. Dubuc, “Symmetric iterative interpolation processes,” Constructive

Approximation, vol. 5, no. 1, pp. 49–68, 1989.

[2] E. Catmull and R. Rom, “A class of local interpolating splines,” Computer Aided Geometric

Design, pp. 317–326, 1974.

[3] G. Farin, Curves and Surfaces for CAGD: A Practical Guide. Morgan Kaufmann Publishers

Inc., 5th ed., 2002.

[4] Z. Yan, S. Schiller, G. Wilensky, N. Carr, and S. Schaefer, “κ-curves: Interpolation at local

maximum curvature,” ACM Trans. Graph., vol. 36, July 2017.

[5] P. J. Barry and R. N. Goldman, “A recursive evaluation algorithm for a class of catmull-rom

splines,” SIGGRAPH Comput. Graph., vol. 22, p. 199204, June 1988.

[6] G. Farin, “Class A Bézier curves,” Computer Aided Geometric Design, vol. 23, no. 7,

pp. 573–581, 2006.

[7] Y. Y. Feng and J. Kozak, “On G2 continuous interpolatory composite quadratic Bézier

curves,” Journal of Computational and Applied Mathematics, vol. 72, no. 1, pp. 141–159,

1996.

[8] H.-J. Gu, J.-H. Yong, J.-C. Paul, and F. F. Cheng, “Constructing G1 quadratic Bézier curves

with arbitrary endpoint tangent vectors,” International Journal of CAD/CAM, vol. 9, no. 1,

2009.

[9] S. Havemann, J. Edelsbrunner, P. Wagner, and D. Fellner, “Curvature-controlled curve editing

using piecewise clothoid curves,” Computers & Graphics, vol. 37, no. 6, pp. 764–773, 2013.

[10] R. Levien and C. H. Séquin, “Interpolating splines: Which is the fairest of them all?,”

Computer-Aided Design and Applications, vol. 6, no. 1, pp. 91–102, 2009.

88

[11] E. Corman, J. Solomon, M. Ben-Chen, L. Guibas, and M. Ovsjanikov, “Functional charac-

terization of intrinsic and extrinsic geometry,” ACM Trans. Graph., vol. 36, Mar. 2017.

[12] Z. Yan, S. Schiller, and S. Schaefer, “Circle reproduction with interpolatory curves at local

maximal curvature points,” Computer Aided Geometric Design, vol. 72, pp. 98–110, 2019.

[13] G. Farin and N. Sapidis, “Curvature and the fairness of curves and surfaces,” IEEE Computer

Graphics and Applications, vol. 9, no. 2, pp. 52–57, 1989.

[14] M. P. Do Carmo, Differential geometry of curves and surfaces: revised and updated second

edition. Courier Dover Publications, 2016.

[15] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas,

graphs, and mathematical tables, vol. 55. US Government printing office, 1948.

[16] J. Hoschek and D. Lasser, Fundamentals of Computer Aided Geometric Design. A. K. Peters,

Ltd., 1993.

[17] N. Dyn, D. Levin, and J. A. Gregory, “A 4-point interpolatory subdivision scheme for curve

design,” Computer Aided Geometric Design, vol. 4, no. 4, pp. 257–268, 1987.

[18] C. Yuksel, S. Schaefer, and J. Keyser, “Parameterization and applications of Catmull–Rom

curves,” Computer-Aided Design, vol. 43, no. 7, pp. 747–755, 2011.

[19] M. Higashi, K. Kaneko, and M. Hosaka, “Generation of high-quality curve and surface with

smoothly varying curvature,” in EG Technical Papers, Eurographics Association, 1988.

[20] Y. Mineur, T. Lichah, J. M. Castelain, and H. Giaume, “A shape controled fitting method for

Bézier curves,” Computer Aided Geometric Design, vol. 15, no. 9, pp. 879–891, 1998.

[21] R. Schneider and L. Kobbelt, “Discrete fairing of curves and surfaces based on linear curva-

ture distribution,” tech. rep., DTIC Document, 2000.

[22] J. McCrae and K. Singh, “Sketching piecewise clothoid curves,” Computers & Graphics,

vol. 33, no. 4, pp. 452–461, 2009.

89

[23] N. Yoshida, R. Fukuda, and T. Saito, “Log-aesthetic space curve segments,” in 2009

SIAM/ACM Joint Conference on Geometric and Physical Modeling, SPM ’09, (New York,

NY, USA), p. 3546, Association for Computing Machinery, 2009.

[24] K. T. Miura, D. Shibuya, R. U. Gobithaasan, and S. Usuki, “Designing log-aesthetic splines

with G2 continuity,” Computer-Aided Design and Applications, vol. 10, no. 6, pp. 1021–1032,

2013.

[25] K. T. Miura and R. Gobithaasan, “Aesthetic curves and surfaces in computer aided geometric

design,” International Journal of Automation Technology, vol. 8, no. 3, pp. 304–316, 2014.

[26] N. Yoshida and T. Saito, “Quadratic log-aesthetic curves,” Computer-Aided Design and Ap-

plications, vol. 14, no. 2, pp. 219–226, 2017.

[27] R. Schaback, “Interpolation with piecewise quadratic visually C2 Bézier polynomials,” Com-

puter Aided Geometric Design, vol. 6, no. 3, pp. 219–233, 1989.

[28] J. Hoschek, “Circular splines,” Computer-Aided Design, vol. 24, no. 11, pp. 611–618, 1992.

[29] D. S. Meek and D. J. Walton, “Approximation of discrete data by g1 arc splines,” Computer-

Aided Design, vol. 24, no. 6, pp. 301–306, 1992.

[30] M. K. Yeung and D. J. Walton, “Curve fitting with arc splines for nc toolpath generation,”

Computer-Aided Design, vol. 26, no. 11, pp. 845–849, 1994.

[31] A. Kurnosenko, “Biarcs and bilens,” Computer Aided Geometric Design, vol. 30, no. 3,

pp. 310–330, 2013.

[32] D. Meek and D. Walton, “Planar G2 Hermite interpolation with some fair, c-shaped curves,”

Journal of Computational and Applied Mathematics, vol. 139, no. 1, pp. 141–161, 2002.

[33] L. A. Piegl and W. Tiller, “Data approximation using biarcs,” Engineering with computers,

vol. 18, no. 1, pp. 59–65, 2002.

[34] H.-J. Wenz, “Interpolation of curve data by blended generalized circles,” Computer Aided

Geometric Design, vol. 13, no. 8, pp. 673–680, 1996.

90

[35] C. H. Séquin, K. Lee, and J. Yen, “Fair, G2- and C2- continuous circle splines for the inter-

polation of sparse data points,” Computer-Aided Design, vol. 37, no. 2, pp. 201–211, 2005.

[36] C. Sun and H. Zhao, “Generating fair, C2 continuous splines by blending conics,” Computers

& Graphics, vol. 33, no. 2, pp. 173–180, 2009.

[37] S. Schaefer, “A factored interpolatory subdivision scheme for surfaces of revolution,” Mas-

ter’s thesis, Rice University, 1993.

[38] C. Xu, T.-w. Kim, and G. Farin, “The eccentricity of conic sections formulated as rational

Bézier quadratics,” Computer Aided Geometric Design, vol. 27, no. 6, pp. 458–460, 2010.

[39] A. Cantón, L. Fernández-Jambrina, and E. R. María, “Geometric characteristics of conics in

Bézier form,” Computer-Aided Design, vol. 43, no. 11, pp. 1413–1421, 2011.

[40] R. Schaback, “Planar curve interpolation by piecewise conics of arbitrary type,” Constructive

Approximation, vol. 9, no. 4, pp. 373–389, 1993.

[41] X. Yang, “Curve fitting and fairing using conic splines,” Computer-Aided Design, vol. 36,

no. 5, pp. 461–472, 2004.

[42] J. M. Lane and R. F. Riesenfeld, “Bounds on a polynomial,” BIT Numerical Mathematics,

vol. 21, no. 1, pp. 112–117, 1981.

[43] C. Yuksel, “A class of c 2 interpolating splines,” ACM Transactions on Graphics (TOG),

vol. 39, no. 5, pp. 1–14, 2020.

[44] A. G. Akritas, “Sylvesters form of the resultant and the matrix-triangularization subresultant

prs method,” in Computer Aided Proofs in Analysis, pp. 5–11, Springer, 1991.

[45] A. B. Ayoub, “The eccentricity of a conic section,” The College Mathematics Journal, vol. 34,

no. 2, p. 116, 2003.

[46] J. M. Lane and R. F. Riesenfeld, “Bounds on a polynomial,” BIT Numerical Mathematics,

vol. 21, no. 1, pp. 112–117, 1981.

91

[47] R. W. Nickalls, “A new approach to solving the cubic: Cardan’s solution revealed,” The

Mathematical Gazette, vol. 77, no. 480, pp. 354–359, 1993.

92

APPENDIX A

ROOTS OF CUBIC EQUATIONS

A.1 Cardano’s Formula for Single Root

Cardano’s formula is the root of cubic equation with single real root without the quadratic term

x3 + px+ q = 0. (A.1)

Let u and v be some real numbers satisfying

 p = −3uv

q = −u3 − v3
. (A.2)

Then x = u+ v is a root of equation (A.1) because of the identity

(u+ v)3 − 3uv(v − u)− u3 − v3 ≡ 0.

u3 and v3 can be solved from a quadratic equation induced from equation (A.2). A set of

solution is  u3 = − q
2
−
√

q2

4
+ p3

27

v3 = − q
2
+
√

q2

4
+ p3

27

.

The other solution is just a swapped order of u and v, which won’t affect u+ v. So if q2

4
+ p3

27
> 0,

equation (A.1) has a single real root

x =
3

√
−q

2
−

√
q2

4
+

p3

27
+

3

√
−q

2
+

√
q2

4
+

p3

27

or (A.1) has three real roots.

93

A.2 Three Real Roots

When q2

4
+ p3

27
≤ 0, equation (A.1) has three real roots. In this case p is negative and we use the

results from Nickalls [47]. All the three real roots are

xi = 2

√
−p
3

cos

(
1

3
arccos

(
−3q

2

√
3

−p3

)
+

2π

3
i

)
, i = 1, 2, 3.

A.3 General Cubic Equations

A general cubic equation with non-zero leading coefficient

ax3 + bx2 + cx+ d = 0, a 6= 0

can always been transformed to equation (A.1) by substitution

x = x̂− b

3a
.

Then we have the new equation about x̂

x̂3 + (
c

a
− b2

3a2
)x̂+ (

d

a
− bc

3a2
+

2b3

27a3
) = 0.

Solve x̂ by last two sections and then insert back to the expression of x.

94

APPENDIX B

DERIVATION OF MIN ECCENTRICITY WEIGHT

To make the notation simpler, denote {Q0, Q1, Q2} as the quadratic control polygon and w is

the weight of the middle point Q1. Define Qi = (xi, yi) on a 2d plane, then the rational quadratic

curve is

r(t) =

(
(1− t)2x0 + 2(1− t)twx1 + t2x2

(1− t)2 + 2(1− t)tw + t2
,
(1− t)2y0 + 2(1− t)twy1 + t2y2

(1− t)2 + 2(1− t)tw + t2

)
.

Denote X(t) and Y (t) as the two coordinates of r(t), we have

 ((1− t)2 + 2(1− t)tw + t2)X − ((1− t)2x0 + 2(1− t)twx1 + t2x2) = 0

((1− t)2 + 2(1− t)tw + t2)Y − ((1− t)2y0 + 2(1− t)twy1 + t2y2) = 0
. (B.1)

We use the Sylvester resultant [44] of the two polynomials in equation (B.1) to eliminate variable

t and the result is

AX2 +BXY + CY 2 +DX + EY + F = 0,

where

A = (y0 − y2)
2 + 4w2(y0 − y1)(y2 − y1)

B = −2(x0 − x2)(y0 − y2)− 4w2((x0 − x1)(y2 − y1) + (x2 − x1)(y0 − y1))

C = (x0 − x2)
2 + 4w2(x0 − x1)(x2 − x1)

D = 2(y0 − y2)(x0y2 − x2y0) + 4w2((x0y1 − x1y0)(y2 − y1) + (x2y1 − x1y2)(y0 − y1))

E = 2(x0 − x2)(y0x2 − y2x0) + 4w2((y0x1 − y1x0)(x2 − x1) + (y2x1 − y1x2)(x0 − x1))

F = (x2y0 − x0y2)
2 + 4w2(x1y0 − x0y1)(x1y2 − x2y1)

.

95

Then we try to find the minimizer of the square of eccentricity according to weight w

ϵ2 =
2
√
(A− C)2 +B2

A+ C +
√

(A− C)2 +B2
.

If we compute the derivative of ϵ2 to w, then the numerator of

∂ϵ2

∂w

can be factored as multiple terms. The term related to the variable w is

2w2((x0 − x1)
2 + (x2 − x1)

2 + (y0 − y1)
2 + (y2 − y1)

2)− (x0 − x2)
2 − (y0 − y2)

2.

So the weight can minimize the eccentricity of the quadratic curve is the root of the equation above

w =

√
(x0 − x2)2 + (y0 − y2)2√

2
√
(x0 − x1)2 + (x2 − x1)2 + (y0 − y1)2 + (y2 − y1)2

=
|Q0 −Q2|√

2
√
|Q0 −Q1|2 + |Q2 −Q1|2

.

Notice this weight is always smaller than one so the minimized eccentricity shape is always a circle

or ellipse.

96

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Organization and Contribution

	BACKGROUND
	Curves
	Parameterization
	Continuity

	Curvature
	Critical Points of Curvature
	Curvature Control

	Polynomial Curves

	RELATED WORK
	Interpolatory Curves
	Curves with Curvature Distribution Control
	Quadratic Curves
	Elliptical Shapes

	Curve Primitives
	Polynomial Quadratic Curves
	Curvature Distribution
	Curvature Monotonicity and Max Curvature Points

	Rational Quadratic Curves
	Relationship to Conic Sections
	Curvature

	Polynomial Cubic Curves
	General Cubic Curves
	Restricted Cubic Curves
	Curvature
	S Shape
	Convex Shape
	Invalid Shape

	Edge-Angle Based Definition

	Hybrid Curves

	Quadratic Interpolation: -Curves
	Problem Formulation
	Construction
	Interpolation
	Curvature Extrema
	Continuity

	Local Optimization
	Maximum Curvature Condition
	Curvature Condition at Join Points
	Input Point Interpolation

	Global Optimization
	Results
	Conclusion

	Rational Quadratic Interpolation
	Problem formulation
	Construction
	Interpolation
	Curvature Extrema
	Continuity

	Weights
	Trivial Weights
	Half Angle Weight
	Minimum Eccentricity Weights
	Clamped Min Eccentricity Weights

	Fast Approach
	Maximum Curvature Condition
	Curvature Condition
	Input Point Interpolation
	Fast Global Approximating Solution

	Numerical Optimization
	Energy Definition
	Numerical Solution

	Results and Conclusion
	Limitations

	CUBIC INTERPOLATION WITH CURVATURE CONTROL
	Problem Formulation
	Construction
	Optimization
	Relationship to Quadratic Curves
	Results
	Conclusion and Limitation

	SUMMARY AND CONCLUSIONS
	REFERENCES
	APPENDIX ROOTS OF CUBIC EQUATIONS
	Cardano's Formula for Single Root
	Three Real Roots
	General Cubic Equations

	APPENDIX DERIVATION OF MIN ECCENTRICITY WEIGHT

